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1 Introduction

In order to introduce vagueness as a proper object of formal-mathematical
modeling, Max Black [5] developed the notion of consistency profile. Other
than classical logics constrained by the principium exclusi tertii , consistency
profiles allow mapping the transition from negative to positive predication to
any degree. This enabled Black to provide a framework for the classification of
predicates according to their vagueness and ambiguity. In other words: Max
Black offered a first approach to distinguishing both types of informational
uncertainty in, nevertheless, precise, mathematical terms.

It was up to Zadeh’s seminal work on fuzzy set theory, linguistic variables,
and generalized constraints [82, 83] to provide a comprehensive mathematical
framework for modeling informational uncertainty in general. The universality
of Zadeh’s approach is due to his encompassing view of cognitive information
processing which includes the syntagmatic combination of concepts and their
recursive analysis into as well as synthesis out of fuzzy granules.1 Zadeh
describes informational uncertainty as a prerequisite of efficient information
processing. He developed a formal framework for representing this uncertainty
in precise, mathematical terms without the need to exclude it for guaranteeing
modeling accuracy and bivalence, respectively. Thus, with the advent of fuzzy
set theory, possibility and probability theory, the vagueness and ambiguity of
information processing became proper objects of formal-mathematical mod-
eling.

A central premise of fuzzy computational linguistics as introduced by Burg-
hard Rieger [57, 61, 65] is that, beyond representing concepts as fuzzy con-
straints on the fuzzy values of fuzzy attributes, the question arises how these

∗This volume is dedicated to Professor Burghard B. Rieger on the occasion of
his 65th anniversary.

1This framework is explained in detail by Zadeh (in this volume).
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representations can be automatically learned as a model of those cognitive
processes by which cognitive systems actually acquire their concept systems.
Although fuzzy set theory and related approaches allow tackling informational
uncertainty in general, they do not model its constitution and evolvement ac-
cording to the onto- and glossogenesis of cognitive information processing
systems. Thus, the question put forward by Rieger arises: What does an alge-
bra of models of cognitive processes look like which prevents from abstracting
from the process dynamics of information processing and thus departs from
focusing solely on the informational uncertainty of its input/output relation?

As far as machine learning (ML) [46] is considered the scientific discipline
to investigate computer-based models of automatic concept learning, one has
to state that this claim is not met so far. This is not due to any methodic
deficit of ML, as it proves to be a very well established field of mathematical,
explorative data analysis. Rather, it is due to a lack of cognitive grounding
[78] of the learning mechanisms being applied. Although ML routines are
completely sufficient from the point of view of successful classification, they
may nevertheless be deficient from the point of view of modeling cognitive
processes.

An approach which encompasses both machine learning and cognitive
grounding is given by the simulation approach to language evolution [8] which
makes onto-, phylo- and glossogenetic [36] processes of structure formation and
meaning constitution an object of modeling in a multi-agent setting [7, 9] in-
cluding their informational uncertainty ab initio.2 The iterated learning model
[35] can be referred to as an architectural simulation model in this area. It
addresses the bottleneck problem according to which a language is transmit-
ted from generation to generation via agents who evidently do not have access
to the totality of knowledge characterizing the language to be learned. Con-
sequently, language change – subject to the pressure of varying speaker and
hearer needs – is inescapable in this model by analogy with natural languages.
In this scenario, language learning is tackled with respect to referential se-
mantics and symbolic grounding [6, 74, 77], the learning of lexical knowledge
(regarding the articulation of content and expression plane) [24, 28, 36], the
learning of syntax formation [24, 36] and the interrelation of lexico-grammar
and semantics (as regards, for example, the emergence of compositionality)
[36]. All these approaches apply machine learning techniques (e.g. classifica-
tion, grammar induction etc.) in order to model language learning of indi-
vidual agents and thus relate – from a methodological point of view – to
computational linguistics.

2Note that this focus on informational uncertainty – not as a deficit, but as a
very condition of linguistic meaning – was already proposed by Rieger [55, 56] who
develops the notion of semantic vagueness and its empirical, corpus-based measure-
ment – see also [59] and [60] for two comprehensive volumes on aspects of semantic
uncertainty; an overview of the notion of pragmatic information is given by At-
manspacher (in this volume). Note also that [54] is one of the first approaches to
meaning constitution from the point of view of computational linguistics.
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Many of these approaches utilize a rather simplistic model as their seman-
tic kernel, which in the following sections will be called meaning-signal model.
It claims that sign vehicles (either enumerated by the model constructor in
advance or intentionally defined by a procedure for the construction of ve-
hicles out of a finite alphabet) are associated with their meanings which are
likewise either enumerated in advance or intentionally constrained or proce-
durally generated as elements of, for example, a set of possible attribute-value
structures. In the case of Hurford [27], for example, the mapping of form and
meaning units is predefined by the model constructor, whereas Steels [74]
endows semiotic agents with a procedure for learning the informational un-
certain association of form and meaning units, thereby distinguishing between
meaning and reference [28].

Obviously, the meaning-signal model has its pitfalls as it introduces strong
assumptions into the simulation model and thus restricts its explanatory
power. Consequently, in order to better ground simulation models and re-
lated approaches from the point of view of cognitive processing, they need
alternatives to simplistic meaning-signal mappings which, for the time being,
are applied in the majority of cases. More specifically, text representation
models are needed which – comparable to the computer-based processes op-
erating on them – are not only grounded in terms of cognitive systems, but
are likewise consistent with prevailing architectures of simulation models of
language evolution.

As regards the learning of the meanings of lexical units, such an approach
comes from computational linguistics: Rieger [65] invents the notion of semi-
otic modeling in order to grasp the dynamics of meaning constitution. Other
than formal semantics, he focuses on the constitution of meaning representa-
tions without presupposing them as elements of predefined, enumerable sets.
Comparable to fuzzy set theory, this does not mean to dispense with any
necessary level of modeling accuracy. Rather, this process-oriented framework
models vagueness as a characteristic of the input/output relation of certain
processes of sign-meaning constitution which in Rieger’s approach come into
focus of modeling.

This approach opens up new perspectives on text-based machine learning3

and its integration into the framework of language simulation. More specifi-
cally, it relates to challenging supervised function learning (e.g. text categori-
zation) based on pre-established category sets to be learned in training phases
and to be attuned in test phases:

• Firstly, the paradigm of supervised learning is opposed by unsupervised
learning, i.e. by automatic classification with a controlled reduction of the
amount of predefined knowledge regarding the composition of the learning
space. Controlled means that what is dispensed with on the level of pre-
defined knowledge is replaced by procedures for acquiring this knowledge.
3That is, to the approach of automatically exploring linguistic information from

natural language texts.



4 Alexander Mehler and Reinhard Köhler

• Secondly, it is opposed by the paradigm of relation learning which allows
assigning more than one class per unit and allows the learned relations
to be classified as being vague, ambiguous or otherwise constrained by
informational uncertainty.4

• Thirdly, it is opposed by approaches which ground the learning mechanism
in terms of cognitive processing and thus serve as candidates for tackling
the predominance of the meaning-signal model.5

Following this analogy, Rieger’s approach can be seen as a reference exam-
ple of how to integrate unsupervised relation learning from natural language
texts into the framework of language simulation models. In the following sec-
tions, this role of Rieger’s approach as a thread is outlined with respect to
learning the meanings of lexical units (Section 2.1), with respect to seman-
tic spaces as a uniform format for representing those meanings (Section 2.2)
and with respect to the status of this format as a candidate for replacing the
meaning-signal model (Section 3).

2 Computing with Linguistic Items

Latent Semantic Indexing (LSI) is one of the predominant models in Informa-
tion Retrieval as regards automatic learning index terms from natural lan-
guage texts [2].6 It was developed in order to tackle the so called polysemy
problem [12] which relates to deficits of the vector space model [68] to re-
trieve relevant documents which do not share terms with the focal query.
Deerwester et al. propose a solution to this problem of measuring indirect,
content based similarity relations in the framework of singular value decompo-
sition. Because of its tremendous success, Landauer & Dumais [38] developed
a theoretical underpinning of this model in terms of cognitive processes. It is
based on the hypothesis that similarity relations of cognitive units result from
a two-level process of inductive learning starting from the units’ contiguity re-
lations. In the case of lexical items, they equate these contiguity relations with
co-occurrence relations. More specifically, they describe the learning of simi-
larity relations as a process of dimensionality reduction as a result of which
similarities of items can be detected even if they do not at all or only rarely
co-occur. That is, similarity associations of linguistic items are described as
functions of their contiguity associations. According to this model, inductive
learning of similarity relations of linguistic items results from exploiting the
similarities of their usage contexts. Landauer & Dumais equate this with a
solution of the knowledge acquisition problem which they describe as follows:

4See Kacprzyk & Zadrożny as well as Klir & Sentz (in this volume).
5See, for example, Perlovsky (in this volume).
6In this chapter we will speak of Latent Semantic Analysis (LSA) according to

Landauer & Dumais [38] instead of LSI in order to stress its relevance from the point
of view of modeling cognitive processes.
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“One of the deepest, most persistent mysteries of cognition is how people acquire as

much knowledge as they do on the basis of as little information as they get.” [38, p.

212].

Obviously, any algorithmic adequate answer to this question can be seen
as a first step towards an operationalization of the symbolic theft hypothesis
[6], that is, of the hypothesis, that semiotic agents successfully learn from
each other via symbolic communication even in cases where they do not have
direct, sensomotoric access to the communicated events – this is what Rieger
[65] more generally calls mediate learning.

The development of this cognitive model can be traced back to the famous
notion of syntagmatics and paradigmatics introduced by Ferdinand de Saus-
sure [11] and Louis Hjelmslev [25]. Its reconceptualization in terms of cogni-
tive contiguity and similarity associations stems from Roman Jakobson [29].
Beyond that, its predecessors primarily relate to computational linguistics
where syntagmatic and paradigmatic relations of lexical units are represented
by means of semantic spaces – cf. Rieger [57].7

Regarding automatic text analysis, this research field is of utmost rele-
vance, since it prototypically integrates unsupervised, explorative relation
learning from natural language texts with linguistic grounding of the learning
model. It does not only depart from supervised learning of crisp functions,
but places emphasis on grounding the learning of fuzzy, probabilistic relations
and thus departs from application-oriented approaches such as information
retrieval and related areas. The present section sheds light on this linguistic
grounding and outlines its computational linguistic continuation in terms of
semantic spaces. Because of its widespread roots, we dispense with explain-
ing all its development directions. Among others, this relates to the notion
of meaning as use – see Rieger [61] for a comprehensive usage-based theory
of semantic vagueness. Rather, we begin with its structuralist heritage which
nowadays comes into focus in terms of contiguity and similarity associations
as well as of word priming [32] and text priming [71].

2.1 Structuralist Abstraction, Cognitive Reconstruction
and Corpus Linguistic Exploration

Starting from Aristotelian associationism and his laws of association, Miko�laj
Kruszewski distinguished two modes of linguistic association: (i) association
by similarity (or contrast) and (ii) association by spatio-temporal contiguity

7There are further predecessors in the area of Information Retrieval. Cf., for ex-
ample, Lewis et al. [41] and especially Lesk [40] who speaks of first and second order
associations which he views to be extendable by higher order associations, although
he did not observe an effect of second order associations on retrieval effectiveness.
The iteration of measuring the similarities of associations is studied by Gritzmann
(in this volume).
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[26]. Kruszewski believes that these two modes of association form a basis of
language learning:

“Wir sind überzeugt, daß die Aneignung und der Gebrauch der Sprache unmöglich

wären, wenn sie eine Menge von vereinzelten Wörtern darstellte. Die Wörter sind

miteinander verbunden: 1. vermittelst der Ähnlichkeitsassociationen und 2. vermit-

telst der Angrenzungsassociationen. Daher entstehen Familien oder Systeme und

Reihen von Wörtern.” (cited after Heinz Happ [20, p. 38]).

Adopting the notion of similarity association, de Saussure [11] developed
his famous distinction of syntagmatic, conjunctive relations in praesentia and
disjunctive relations in absentia. More specifically, de Saussure described syn-
tagmatic relations to hold between (sub-sentential) constituents of the same
utterance.8 This concept was later specified in glossematics and syntactics,
where syntagmatic relations are seen to hold between (groups of) linguistic
items co-occurring in instances of the same (syntactic) context type, though
not necessarily side by side. In contrast to this, associative relations are seen
to hold between items which are substitutable for each other within the same
contexts (of a certain type under consideration) without changing their focal
syntactical, semantical or pragmatical properties (e.g. grammaticality, well-
formedness or acceptability etc.).

Although de Saussure factors out processes of meaning constitution and
language change from synchronic linguistics, he nevertheless clarifies the con-
stitutive dependence of language systematic associations and syntagmatic re-
lations as follows:

“[. . . ] die Zusammenordnung im Raum wirkt an der Schaffung assoziativer Zuord-

nungen mit, und diese ihrerseits sind nötig für die Analyse der Teile der Anreihung.”

[11, p. 153].

In other words, de Saussure identifies syntagmatic relations as a source
of the constitution of linguistic similarity associations which were later called
paradigmatic and reconstructed in terms of substitutability under invariance
of certain linguistic features [25]. Starting from this hypothesis, it is evident
to claim that the similarities of the syntagmatic relations into which linguistic
items enter, contribute to their paradigmatic similarity or similarity associa-
tions, respectively.

The further development of de Saussure’s opposition departed from its
psychological roots and focused instead on structural considerations inspired
by the development of formal logics in the first half of the twentieth century.
The most prominent proponent of this development is Louis Hjelmslev [25]
who introduced the term paradigmatic relation and thus opposed syntagmatic

8For a critical discussion of de Saussure’s notion of linearity see Wildgen (in this
volume).
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(i.e. text-based) by paradigmatic (i.e. system-based) relations in order to stress
this change:

“C’est pour éviter le psychologisme adopté dans le Cours de F. de Saussure que

je substitue le terme de ‘rapport paradigmatique’ à celui de ‘rapport associatif’.”

(Hjelmslev (1938) cited after Wolfgang Raible [51, p. 35]).

This was done with the help of the glossematic concept of function: Start-
ing from the concept of a functor as an argument of a linguistic function,
Hjelmslev defined constants to be functors whose presence is a necessary
condition of the presence of those functors, with which they enter into the
same function [25]. In contrast to this, he defined variables to be functors
whose presence is not a sufficient condition in this sense. Utilizing the notion
of constant and variable, Hjelmslev distinguished three types of syntagmatic
(conjunctive) and paradigmatic (disjunctive) functions, respectively, in order
to define paradigms as classes of linguistic units entering into homogeneous
functions. Moreover, Hjelmslev left the narrow limitation of syntagmatics to
sub-sentential units and focused instead on whole texts – anticipating the
structuralist beginning of text linguistics.

After Hjelmslev it was Algirdas Julien Greimas [16] who applied the syn-
tagmatics-paradigmatics opposition to semantics.9 Although he developed a
feature semantics implying a set of atomic features as constituents of meaning
representations, he places emphasis on discourse specific processes of meaning
calibration based on two syntagmatic operations. First, he described expan-
sion as a text-internal operation relating a specifying, explaining or otherwise
elaborating text span with a specified, explained or elaborated one. Second,
he viewed this operation to be reversed by condensation which relates sum-
maries or denominating spans with summarized or denominated ones. Both
operations transcend the sentence level and thus relate syntagmatics to text
constitution. The contribution of syntagmatics to text constitution was further
clarified by Roland Harweg [23]. He introduced the notion of syntagmatic sub-
stitution which describes text constitution as a result of chains of pronominal
and initial auto-semantical text constituents used to concatenate subsequent
sentences. This structuralist conception is now considered one of the start-
ing points of text linguistics which specifies syntagmatic relations in terms of
cohesion and coherence relations.

Before we continue to survey this reconceptualization, we stress Paul
Ricœur’s [52] notion of lexis and its relation to language change. Accord-
ing to his conception, the lexical system serves as a mediator between the
language system and discourse events, whereby this mediation is constrained
by two opposing processes: On the one hand, the process of meaning expan-
sion forces lexical meaning to reflect the lexemes’ discourse specific usages.
On the other hand, this lexically distributed process is restricted by limita-

9Cf. also Coseriu’s diachronic semantics as an alternative approach to structural
semantics [10].
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tion processes inside the language system – mediated, for example, by lexical
fields. According to this conception, informational uncertainty (e.g. vagueness
or ambiguity of lexical meaning) is only adequately described with respect to
this process dynamics.

So far, the concept of syntagmatics and paradigmatics is developed with
respect to lexical (meaning) relations, their informational uncertainty and
their contribution to text constitution. As text linguistics needed to leave the
structuralist stance in order to investigate criteria of textuality which cannot
be reduced to intratextual relations, the cognitive reconstruction of both types
of relations got into focus as described at the beginning of this section with
respect to Rieger’s model of semantic spaces and to latent semantic analysis.
This tradition was, amongst others, initiated by Roman Jakobson [29] who re-
lated paradigmatic and (other than de Saussure) also syntagmatic relations to
cognitive associations. More specifically, he described paradigmatic selection
in terms of substitutability which, in simple cases, is based on similarity asso-
ciations. In contrast to this, he viewed syntagmatic combinations to be based,
in simple cases, on contiguity associations. This distinction allowed Jakobson
to distinguish two types of interpretants, that is, two aspects of meaning:

“[...] there are two references which serve to interpret the sign – one to the code, and

the other to the context, whether coded or free, and in each of these ways the sign is

related to another set of linguistic signs, through an alternation in the former case

and through an alignment in the latter. A given significative unit may be replaced by

other, more explicit signs of the same code, whereby its general meaning is revealed,

while its contextual meaning is determined by its connection with other signs within

the same sequence.” [29, p. 244].

Jakobson further developed this notion in order to distinguish Broca and
Wernicke aphasia according to their effect on paradigmatic selection and syn-
tagmatic combination. Thus, he related both types of linguistic relations not
only to language systematic associations, but also to the language faculty of
single speakers/hearers. That is, both types of relations are now seen to consti-
tute part of the linguistic knowledge of single cognitive information processing
systems which they learn, maintain, change and lose during their growth,
maturity stage and dying.

These considerations of the genesis of the concept of syntagmatic and
paradigmatic learning finally lead back to its cognitive resources, challeng-
ing its structural heritage and transcending the limits of a purely associ-
ationist stance. It was Rieger [58] who first focused on the cognitive view
on syntagmatic and paradigmatic learning in computational linguistics. In
his approach, both threads are integrated: the cognitive grounding of syntag-
matic/paradigmatic relations as well as their automatic, corpus-based explo-
ration.
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Generally speaking, as far as computational linguistics is concerned with
automatically learning this kind of linguistic knowledge, three learning scena-
rios can be distinguished:

• Learning language-systematic knowledge: From the point of view of the lex-
ical system of a (sub-)language, learning lexical meanings relates, amongst
others, to learning their paradigmatic relations which in turn are seen to
be reconstructable as functions of their syntagmatic relations. This sce-
nario is described by the weak contextual hypothesis of Miller and Charles
[45]. It says that the similarity of the contextual representations of words
contributes to their semantic similarity. In structuralist terms, contextual
representations are described as representations of syntagmas. In other
words – and this leads back to de Saussure’s initial observation –: As far
as lexical units are analyzed, their paradigmatic similarity is modeled as a
function of their syntagmatic relations. In order to make this a contribu-
tion to lexical meaning, paradigmatic similarity has to be focused upon.
This was done by Rieger [61] who, in computational linguistics, first im-
plemented the two-stage process of learning paradigmatic relations from
natural language texts by means of semantic spaces as a format for repre-
senting contextual similarities.10

• Single agent-based learning: Jakobson’s conception encompasses a second
scenario according to which a computer simulation (e.g. an artificial, com-
puter-based agent) is endowed with the learning function just described
in order to autonomously acquire parts of its linguistic knowledge based
on the ontogenesis of its text processing. As an example, consider the ap-
proach of Foltz et al. [15] who utilize LSA to model lexical cohesion of
single texts. Consider also Kintsch’s construction-integration model [33]
which utilizes LSA in order to model (lexical priming as part of) text
comprehension.11 A reference example which includes a touchstone exper-
iment for evaluating instances of the focal class of approaches is given by
Rieger [65] who describes a computer simulation of a single text process-
ing system which – on the basis of a controlled vocabulary – automatically
learns semantic relations.

• Multi agent-based learning: The latter two approaches abstract from the
embodiment of the learning procedures being modeled or, as in the case
of the second approach, concentrate on single-agent models. Thus, a third
learning scenario has to be considered which relates to sociogenetic, or

10Using LSA (see above) for modeling this two-stage process, concurrent mod-
els focus, for example, on resolving lexical semantic ambiguities [70] and modeling
meaning calibration in predicate-argument structures [34].

11An alternative approach stems from Sharkey & Sharkey [71] – in order to name
only one representative of the paradigm of connectionist modeling. It focuses on the
simulation of context priming as a function of the ontogenetic and actual genetic
evolvement of text processing, and thus interrelates both kinds of associations with
the well established field of priming in cognitive linguistics.
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more specifically, to glossogenetic [9] learning in language simulation mod-
els. It is based on multi-agent computer simulations in which groups of arti-
ficial agents communicate with each other and thus cooperatively produce
the texts or dialogues which serve as input to their acquisition of linguistic
knowledge. In such a scenario, the constitution of language-systematic and
of idiosyncratic knowledge (specific to single agents as abstract models of
interlocutors participating in the language community under considera-
tion) is simulated [44].

It is the latter scenario in which approaches to semantic spaces come into
play in order to replace the meaning-signal model in the framework of simu-
lating language evolution. It departs from the first two approaches in the sense
that the corpus underlying language learning is no longer pre-established by
the model constructor (whether as a corpus of preselected (thematically or
pragmatically homogeneous) texts or as a result of a deterministic text pro-
duction system as demonstrated in [65]), but autonomously constituted within
the simulation experiment, that is, by the communicating agents. Thus, in or-
der to implement one of the first two approaches, the corpus linguistic question
for appropriate learner corpora has to be answered first. This question leads
back to a third tradition of conceptualizing syntagmatic and paradigmatic
relations, now in the framework of corpus linguistics.

Above, we mentioned the weak contextual hypothesis [45] according to
which the similarity of the contextual representations of words contributes to
their semantic similarity. This hypothesis has at least two predecessors. On
the one hand, it is connected with the Firthian tradition of corpus linguistics
[79] which stresses the notion of meaning as use. Firth states that colloca-
tions of lexical units reflect lexical affinities beyond grammatical restrictions.
Collocative regularities are seen to provide an integral part of syntagmatic
functions and in this sense of lexical meaning. He summarizes this conception
by the formula “You shall know a word by the company it keeps!” [13, p. 11].
In another context he stresses:

“Meaning by collocation is an abstraction at the syntagmatic level and is not directly

concerned with the conceptual or idea approach to the meaning of words. One of

the meanings of night is its collocability with dark [. . . ].” [14, p. 196].

Collocation analysis is an approach to reconstruct this collocability on the
basis of corpora of natural language texts. Its goal is to discover semantically
similar words based on the similarity of their collocations [cf. 73, 79], though
the notion of similarity was not mathematically operationalized at this early
level of development.

A second prominent predecessor is Harris’ distributionalism which refers
to the notion of correlation in order to specify the interdependence of meaning
and distribution:
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“[. . . ] the formal features of the discourses can be studied by distributional methods

within the text; and the fact of their correlation with a particular type of situation

gives a meaning-status to the occurrence of these formal features.” [22, p. 316].

This conception implies that there is no homomorphism between seman-
tic and distributional structure as claimed, for example, by the principle of
compositionality with respect to the syntactic and semantic structure of com-
pound expressions: Neither is the meaning of a word determined by its dis-
tribution, nor do words have a kernel (literal) meaning as input of a function
which aggregates meanings according to a compositional semantics. Rather,
Harris claims that distributional regularities correlate with some aspects of
their meaning in a way that semantic differences are reflected by dissimilar
distributions and vice versa:

“The various members of a distributional class or subclass have some element of

meaning in common, which is stronger the more distributional characteristics the

class has.” [21, p. 156].

But the question, exactly which elements of meaning are shared by the
elements of the same distributional class, is left unspecified. That is, distri-
butionalism and related approaches focus solely on co-occurrence patterns
according to the famous formula:

“[. . . ] difference in meaning correlates with difference of distribution.” [21, p. 156].

Nevertheless, distributionalism, corpus linguistics and related approaches
claim that syntagmatic [79] and, based on that, also paradigmatic relations
can be reconstructed in terms of co-occurrence patterns by exploring corpora
of natural language texts.12 Whereas the cognitive linguistic reconstruction of
these relations shed light on their cognitive status, it is corpus linguistics which
shows a way to measure the extent to which they actually hold. This raises the
question, how to represent the results of such measurements. Without giving
a detailed answer to this question, we concentrate on semantic spaces as a
candidate format for this task.13 Once more, this choice is due to the fact that
Rieger’s approach is the first one in which the cognitive grounding of linguistic
relations is integrated with their automatic, corpus-based exploration.

2.2 Semantic Spaces – Requirements Analysis

From a methodological point of view the question arises, how to represent
syntagmatic and paradigmatic patterns. That is, the question has to be an-

12See Stubbs [80] for an approach to the reconstruction of phrasal micro structures
in the framework of corpus linguistics. Cf. also Stubbs (in this volume) for a critical
review of the notion of induction in corpus linguistics.

13Gritzmann as well as Leopold – both in this volume – give detailed mathematical
specifications of semantic spaces.
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swered which format allows representing the results of measuring contiguity
and similarity associations by inducing which information loss as well as which
time and space complexity. As these measurement operations include multi-
variate analyses of the dependencies of multiple variables and their clustering
along multiple dimensions, multivariate statistics comes into play [39]. This
relates especially to semantic spaces which were explicitly developed in order
to model syntagmatic and paradigmatic relations. A reference model of se-
mantic spaces was developed by Burghard Rieger [53, 57]. In this section, the
requirements analysis underlying this format is outlined in order to shed light
on its benefits and drawbacks. These requirements are as follows:

1. Sensitivity to meaning relations: Following the line of argumentation of
the weak contextual hypothesis of Miller & Charles (see Section 2.1), it
has to be clarified that semantic spaces are used to represent usage-based
similarities of linguistic items in order to map their semantic similarity.
In other words: Regarding the data basis analyzed to explore certain us-
age regularities, it has to be substantiated how these regularities actually
contribute to the semantic similarity of the signs under consideration.

2. Linguistic grounding: The latter requirement can be intensified by deman-
ding that it has to be clarified which contribution to which meaning aspect
is actually represented by the semantic space model under consideration. In
the case that textual signs are analyzed, it has to be clarified, for example,
which type(s) of cohesion and coherence relations are mapped.

These two requirements are indispensable as they target at the possibility
to evaluate semantic spaces regarding the measurement operations they are
used to perform. This linguistic grounding has a procedural variant:

3. Procedural grounding: The computation of semantic spaces has to be
grounded by a procedural model (cf. Marr [42]) which relates this computa-
tion to linguistic processes of meaning constitution (beyond its algorithmic
formalization and computer-based implementation).

Beyond Rieger’s seminal work on semantic spaces, this requirement is met,
for example, by LSA [38] which models the two-stage process of inductive
learning by means of a dimension reduction algorithm which amalgamates
learning of contiguity and similarity associations. Rieger [61] prevents this
amalgamation by using separate formats for mapping syntagmatic and para-
digmatic regularities (by means of corpus and semantic spaces, respectively).14

Fulfilling the third requirement is indispensable, as explained above, when
looking for alternatives to the meaning-signal model in simulations of lan-
guage evolution.

The following requirement emphasizes more strictly the corpus analytic
stance of the semantic space model:

14See also Bordag & Heyer (in this volume) who explicitly put apart both steps
of learning lexical relations.
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4. Explorative corpus analysis: Semantic spaces have to be automatically
computed by referring to an amount of pre-established (linguistic) knowl-
edge as little as possible. Moreover, the knowledge represented in semantic
spaces has to be automatically explored from corpora as samples of the
sub-language (or genre, register, thematic field etc.) under consideration.

This requirement targets at the transferability of the model to corpora
of different languages, genres and registers and thus at its fault tolerance,
robustness and adaptability. It allows distinguishing semantic spaces from
approaches which exploit thesauri and related lexical reference systems like
WordNet [47]. As the majority of semantic space models is insensitive to struc-
ture (as regards syntactic structure and cohesion/coherence relations which
are hardly explored automatically in the case of large input corpora), this re-
quirement (and thus transferability) is easily met, but at the price of a loss in
linguistic grounding according to requirement (2). Requirement (4) is closely
related to the following requirement which leads back to Zadeh’s work and
Rieger’s theory of semantic vagueness:

5. Informational uncertainty: Linguistic units require a representational for-
mat which allows for modeling their varying aspects of informational un-
certainty. More specifically, it has to be clarified which aspect of uncer-
tainty (e.g. vagueness, ambiguity, variability) is actually mapped by which
part of the model under consideration.

The majority of approaches utilizes semantic spaces in order to model the
vagueness of unsystematic sense relations [19] – only a couple of them (e.g.
Schütze [69, 70]) explicitly use them to model semantic ambiguity. As semantic
spaces have originally been proposed as an alternative to the vector space
model in order to map indirect meaning relations, the following requirement
comes into focus:

6. Implicit relations: Lexical items should be considered as semantically re-
lated even if they do not or only rarely co-occur, but tend to be used
in similar contexts. Analogously, textual units should be considered as
semantically related even if they do not or share only a couple of con-
stituents, but deal with similar topics. Additionally, lexical and textual
units should be considered as semantically related even if the former do
not or rarely occur in the latter, but share usage regularities with their
lexical constituents.

This requirement can be summarized as follows: In order to be judged to
be paradigmatically related it is neither necessary nor sufficient that the signs
co-occur or share constituents (as in the case of lexical and textual units,
respectively), but that they are used or composed in a way which supports
their semantic relatedness. It is the automatic exploration of such indirect,
implicit similarity relations which separates semantic spaces from competing
approaches. But the concentration on syntagmatic and paradigmatic learning
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also reveals a central deficit of semantic spaces which – with a couple of
exceptions – disregard processes of text constitution and thus syntactic as
well as cohesion and coherence relations. This becomes palpable when looking
for state of the art models of semantic spaces which map words and texts
each onto single meaning points (i.e. feature vectors) – irrespective of the
structuring of the latter in contrast to the former.

Nevertheless, meeting the requirements just enumerated is a big step for-
ward to replacing the meaning-signal model based on pre-established sets
of meaning and signal representations in the framework of simulating lan-
guage evolution. The following sections lead back to the question how semantic
spaces can be incorporated into this framework.

3 Challenging the Meaning-Signal Model

A central assumption of the semiotic (i.e. sign-based) approach to situated
cognition is that systems of Semiotic Cognitive Information Processing (SCIP)
constitute an endo-view of their environment as a result of sign processes –
cf. Rieger [65]. As far as the system of signs involved in these processes is
concerned, its constitution is focused and, consequently, communities of SCIP
systems whose communication is both: grounded by as well as constitutive
for this system [65, 76]. According to the distinction of modeling single SCIP
systems vs. communities of them, two consequences have to be put apart when
challenging the meaning-signal approach:

• As far as the information processing of a single SCIP system is focused,
this necessarily rules out identifying the exo-view of the model construc-
tor with the endo-view of the modeled system – cf. Rieger [62]. That is,
neither context nor meaning representations are to be predefined by the
constructor. Rather, the SCIP model needs to include routines of unsu-
pervised sign processing which enable it to generate meaning and context
representations as constituents of its endo-view. This position is due to
Rieger [62] – it can be seen as a basic principle of explorative modeling in
cognitive science.

• As far as the constitution and evolution of a language system is focused,
this analogously implies that a community of SCIP systems has to be
modeled whose shared meanings cannot be predefined by the model con-
structor. Rather, the SCIP systems have to be endowed with communica-
tion routines whose unsupervised application allows them to acquire the
meanings being shared within their community.

Any effort in modeling sign systems by simulating agent-based commu-
nication necessarily needs to resist endowing the simulation with a meaning
function, that is, a function which maps predefined sign vehicles and context
representations onto likewise predefined meaning units. Rather, this approach
has to be replaced by a procedural model which allows generating both, the
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sign relation as well as its arguments, i.e. context and meaning representa-
tions. In the last consequence, this also means reconstructing sign vehicles as
arguments of this relation, and thus to resist presupposing them as lexicon
entries [64] (cf. Bordag & Heyer and Medina-Urrea, both in this volume). This
raises the question for the kind of modeling needed to pretend this identifica-
tion. In order to outline an answer, Pattee’s [49] distinction of simulation and
realization can be utilized:

1. Simulations15 symbolically stand for the entities they model. They serve,
for example, to reconstruct/predict system functions as well as input and
output states which are otherwise not directly observable. Thus, simula-
tions necessarily include a time parameter, i.e. a symbolic representation
of (physical, biological or social-semiotic) time. But simulations do not re-
alize the focal functions and states, respectively – they only symbolically
model them. The modeled functions and states are ontologically apart
from the symbolic repertoire the simulation is composed of. Nevertheless,
simulations introduce a further level of falsification: They are falsifiab-
le with respect to the reconstructions/predictions they produce and the
accuracy of the measurement being made.

2. Realizations are material models implementing certain functions of cer-
tain systems. This implementation is performed in the same ontic area
in which the modeled system operates. Realizations are necessarily proce-
dural models whose execution serves to realize the functions in question.16

They are evaluated with respect to the adequacy of this realization and
not with respect to modeling accuracy. If, for example, “flying as dragon-
flies” is the function to be realized, a helicopter can be seen as a realization
of this function, but as a bad model of dragonflies.

The computer-based simulation of the evolution of sign systems is a much
discussed topic in cognitive science and related disciplines. Starting from the
insight that an agent’s capability to survive correlates with its ability to
process signs, a lot of computer-based models of the evolution of sign systems
have been elaborated [4, 7, 62, 74, 75, 76, 81]. According to these approaches
neither rule-based [72], nor statistical models alone allow to account for the
dynamics of sign systems as a result of countless events in which agents make
use of signs to serve their communication needs. Rather, the evolution of sign
systems – which natural agents use in order to collectively survive – is neces-
sarily simulated by means of computer-based multi-agent systems.

This challenging approach hinges on efficient routines of unsupervised lear-
ning linguistic items and their relations as well as on formats expressive enough

15See also Eikmeyer, Kindt & Strohner (in this volume) for the role of simulations
in cognitive science. See also Rickheit & Strohner (in this volume) for an approach
to ground automatic text analysis in the framework of cognitive science.

16Whether this realization is only possible in the “real” physical world or also in
artificial worlds is a central question raised in artificial life studies [49].
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for representing them. It hinges on adequate representations of textual units
and of the language system manifested by these units. But how do these two
approaches – automatic text-analysis and simulation of language evolution –
interrelate, if at all? How are text representation models as developed in com-
putational linguistics, text technology17 and related areas to be used in order
to dispense with the limits of the meaning-signal model?

These questions can be tackled with the help of systems-theoretical lingu-
istics, or more concretely with the notion of text as introduced by Halliday
[17, 18].18 Halliday describes natural languages as dynamic systems which use
texts as the primary unit of interaction with their environment.19 Thereby,
frequencies of text components reflect probabilistic, fuzzy dispositions of the
corresponding lexico-grammatical system. According to Halliday, this mani-
festation is mediated by social context. He assumes that patterns of textual
manifestation do systematically, though non-deterministically, vary with types
of social context (i.e. genres and registers [43]).20 Regarding the persistence
of a language as a result of its interaction with its environment by means of
countless text events, Halliday distinguishes three moments of this interaction:

• From the point of view of phylogeny, the change of the language system as
a whole is dealt with.

• From the point of view of ontogeny, the life cycle of groups and single text
processing systems are described with respect to their growth, maturity
stage and dying.

• Finally, the point of view of actual genesis relates to the generation (pro-
duction/processing) of single textual interaction units.

From this point of view, natural language texts are informationally uncer-
tain instances of a constantly changing (though at a much slower rate) lan-
guage system where this change is mediated by numerous social-semiotic con-
text types and their changes (once more according to a slower time scale).
Evidently, this model allows integrating approaches of unsupervised relation
learning from natural language texts:

• Firstly, the system-theoretical view adopts a notion of meaning which takes
informational uncertainty in terms of diversification [1], ambiguity [31],
vagueness [50, 61] and temporal variability [67] into account. Following
this approach, learning cannot – because of the many-to-many relation

17Grammar oriented text technological modeling is exemplified by Metzing &
Pönninghaus and by Rolshoven (in this volume).

18For an approach to system theoretical linguistics which utilizes synergetic, quan-
titative modeling see Köhler (in this volume). See also Ziegler & Altmann (in this
volume) for a quantitative approach in the area of system theoretical linguistics.

19This concept relates to Ricœur’s dynamic perspective on structuralism (see
above).

20See Lenders (in this volume) who investigates structural indicators of the mem-
bership of texts to text types and registers.
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of the lexicogrammatical system, the semantic system and their textual
manifestations – be performed as (fuzzy, probabilistic) function learning
alone, but needs to include (fuzzy, probabilistic) relation learning.

• Thus, secondly, the system-theoretical view demands considering the con-
textual stratification of language. In this sense, the meaning relation has to
include context parameters [3] for which the different branches of compu-
tational linguistics offer several representation formats. But because of the
interplay of changes of linguistic and contextual units, context parameters
need to be learned in an unsupervised setting, too.

At the same time, the system-theoretical view allows integrating agent-
oriented models of meaning constitution and language evolution: Viewing
language as the focal system, its environment is seen as consisting of text
producing/processing systems, that is, of agents interacting with language by
means of the texts they produce and process, respectively. In other words, the
system-theoretical view necessarily comprises agent-oriented models in order
to account for environmental dynamics as far as it enslaves language internal
states.

Although these considerations relate automatic text-analysis to the area of
meaning constitution and language evolution, they do not determine the type
of modeling (i.e. simulation or realization) which is actually performed. If we
conceive, for example, text-based machine learning as the effort to automati-
cally reconstruct and represent outcomes of processes of text comprehension,
the question whether this learning is a kind of simulation, realization or some-
thing else is rather delicate. From the point of view of optimizing precision
and recall within the paradigm of supervised learning, answering this ques-
tion seems superfluous: As long as the input/output function focused upon is
learned correctly, it is irrelevant how this learning is achieved provided that
it is done efficiently in the sense of time and space complexity. This does not
hold for approaches related to the simulation of language evolution where lan-
guage learning becomes an object of modeling in its own right (cf. Section 1).
Consequently, a broader approach is needed which does not solely ground ma-
chine learning in statistics and mathematical modeling, but also in modeling
linguistic, cognitive processes.

Against this background, we can outline an answer to the question raised at
the beginning of this section as follows: In a narrow sense there is a negative in-
terpretation of simulations as being models of the interaction of system and en-
vironment, where the model constructor presupposes all measurements needed
to constitute the environment under consideration. Presupposing means that
the constructor enumerates the universe of all possible contexts of the system
by referring to a compositional semantics operating on a finite set of atomic
units for context representation (e.g. relations, locations, time variables, etc.)
and thereby reducing the system’s meaning relation to a classical meaning
function. Such a function may look as follows: For a system S, the meaning
‖ai‖ of sign ai ∈ V in context C1 ∈ C is Mi1 ∈ M, in context C2 ∈ C it
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is Mi2 ∈ M, . . . , the meaning ‖aj‖ of sign aj ∈ V in context C1 is Mj1 . . .
where V is the lexicon of the focal language, M is the set of meanings and
C the set of contexts.21 Focusing on a single sign x, such a function may be
noted as follows:

‖xi‖ =






Mi1 : C1

Mi2 : C2

... :
...

Min
: Cn

(1)

This blueprint of a meaning function – used, for example, in model-theo-
retic semantics [48] – is obviously inadequate when looking for an approach
to unsupervised learning as needed in simulations of language evolution and
related areas. But actually, it is this schema which underlies the meaning-
signal approach. In order to arrive at a more realistic model, this blueprint of
a context sensitive meaning-signal model can and has been revised according
to several “relaxation” steps:

1. A first step is to view ‖‖ no longer as a crisp function ‖‖ : V × C → M,
but as a fuzzy relation R ∈ F(V × C×M).22 In this case, a membership
function µR : V × C ×M → [0, 1] is introduced whose projection on a
specific v ∈ V allows deriving the “fuzzified” meaning representation of
this lexeme. Whereas this extension focuses on semantic vagueness [61],
ambiguity is dealt with by means of possibility constraints [83]. Other
aspects of informational uncertainty are introduced analogously [66, 83].23

2. Next, the fuzzy meaning relation may be relaxed by no longer viewing C

and M as finite, but as uncountable infinite sets. In this case, the origi-
nal meaning-signal model is enlarged in a way which does not presuppose
complete extensional knowledge about possible meanings. Moreover, this
approach allows mapping newly emerging context and meaning units be-
yond the set of initially established ones. This strategy is already followed
by several approaches in the field of machine learning and language sim-
ulation [cf. the review in 28].

3. So far, elements of M and V are considered atomic units irrespective
of their internal structure. Actually, the structuring of sign vehicles and
meaning units is coupled in a way which, in summary, is described by
the principle of semantic compositionality [30]. Thus, the next relaxation
step is to account for this interdependence by redefining ‖‖ as a homomor-
phism operating on (models of) the syntactic structure of signs. There are
several examples in the field of language simulation which account for com-
positional structure either as a predefined characteristic of a (non-context

21This criticizable view presupposes the countability of meanings and contexts.
22F(V ×C×M) denotes the set of all fuzzy sets over V ×C×M.
23Kacprzyk & Zadrożny (in this volume) demonstrate this relaxation step with

respect to text categorization.
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sensitive) meaning function or as an epiphenomenon of simulation [36].24

An alternative is to focus on the emergence of sign vehicles as elements of
V, that is, on the formation of expression and not only of meaning units.25

4. Likewise, elements of C can be considered according to, for example, sit-
uation semantics [3] as relational systems of necessary and sufficient con-
ditions describing classes of contextual configurations which have to be
validated in order to attribute a certain meaning to a certain sign in in-
stances of the focal class (or situation type [3]) of context units. Obviously,
these related relaxation steps (3) and (4) which incorporate structuring
on the side of signs, their meanings and the contexts of their application
can be extended by taking underspecification and other types of informa-
tional uncertainty into account. In the case of complex signs this means,
for example, utilizing probabilistic grammars. In the case of meaning units,
this means, amongst others, dealing with semantic ambiguity of complex
units. Finally, in the case of contextual units, this relates to dealing with
underspecifications thereof.

5. Next, the extensional stance of the meaning relation (whether finite or
infinite) may be abandoned. More specifically, in the case of atomic sign
vehicles it may be redefined intensionally in terms of a constraint satisfac-
tion framework which uses, for example, production or if-then rules in
order to constrain the mapping of signs onto their meanings or interpre-
tations in certain contexts. That is, statements of the form “In context C,
sign x has meaning M .” are replaced by statements of the form “In con-
text C, the meaning of sign x has the properties P1, . . . , Pn.” This leaves
out what the meanings actually are, but only considers necessary (and
maybe also sufficient) conditions any meaning representation has to obey
in order to count as a candidate meaning of x in C. It is obvious that this
approach lends itself to the framework of fuzzy constraint satisfaction [37].

Many other alternatives can be taken into account which focus on relaxing
the extensional and functional stance of the original meaning-signal model by
including structure formation and informational uncertainty. A central idea
of Rieger’s approach is that what many of these alternatives ignore is the
way the focal units are learned – whether by single semiotic agents or within
communities thereof. They disregard the fact that context sensitivity and in-
formational uncertainty are both: preconditions as well as epiphenomena of
meaning constitution. The basic idea of Rieger’s approach is to deal no longer
with meaning functions and relations in terms of extensional or intensional
definitions invented by the model constructor(s), but to view them as units to
be automatically learned as a whole. He replaces the intensional by a proce-
dural view which utilizes procedures to generate meaning representations as

24See Mehler (in this volume) who focuses on the principle of compositionality in
the context of semantic spaces.

25See, for example, Rieger [64]. See also Bordag & Heyer and Medina-Urrea (both
in this volume).
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elements of an uncountable infinite search space.26 Moreover, since language
learning is not necessarily convergent, but may be temporarily divergent, this
approach tackles the problem of changes of the search space too.

The series of enhancements of the meaning-signal model discussed so far
mirrors, so to speak, a “naturalization” of meaning representation: First, this
relates to taking more and more aspects of informational uncertainty into
account, on the level of sign structuring and sign meaning and of the contexts
of sign usage. Second, this relates to making learning an object of modeling,
too, so that it no longer acts as an attribute of the model original to be
put apart. The central idea of Rieger’s approach is that the success of these
enhancements hinges upon an adequate grounding of the resulting procedural
model in terms of semiotic, cognitive processes of meaning constitution. Rieger
explains this basic principle as follows:

“Trying to understand [. . . ] understanding of signs and meanings cannot rely on

the simulative processing of (symbol) structures whose representational status is

declared by drawing on a pre-established semantics (known by the modeler, made

accessible to the model, but not at all compulsory for the modeled system). Instead,

modeling processes of meaning constitution or understanding will have to realize

that very function in an implemented and operational information-processing system

which is able to render some structure – in a self-organizing way – representational

of something else, and also allows to identify what that structure is to stand for.”

[65, p. 167].

In other words, realizations in the sense of Rieger do not need and – be-
cause of the complexity of the environments these models operate on – do not
even allow the symbolic enumeration of their possible meanings and contexts.
That is, their semantic and contextual universes are no longer seen to be ex-
tensionally enumerable, nor intensionally definable, but only approachable by
means of procedures as models of cognitive learning processes.27 This proce-
dural definition necessarily reflects the way natural sign processing systems
learn semantic and contextual representations. That is, the procedural model
represents the way cognitive systems are used to grasp their Umwelt in which
they interact meaningfully. Consequently, following Rieger’s approach means
building computer simulations in which neither meaning nor context units are
pre-established, but learnt by the semiotic cognitive information processing
systems by forming the substance which the model constructor pre-establishes
solely besides the procedural learning model.

26This is explained in detail in [65, 66].
27Obviously, a procedure as an abstract representation interrelated by means of

its algorithmic specifications with its computer-based implementations [42] can be
seen as a complex intension mapping its input onto its output. The difference is
that in the present context a procedure is necessarily an intensional definition of the
learning process, but not an abbreviatory specification of the input-output relation
– see Ziemke [84] for a related argumentation.
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4 Conclusion: The Semiotic Approach
to Machine Learning

Rieger proposes an instantiation of the semiotic approach according to which
any static, purely symbolic representation of meaning as a function of enu-
merable sets, whose predefinition presupposes knowledge about all possible
referents of all modeled signs in all equally presupposed possible contexts, is
replaced by a simulation model in which semiotic agents are endowed with a
learning procedure which allows them to autonomously find out what relevant
contexts are and which signs refer to which referents subject to which mean-
ings. Rieger stresses that the procedural approach is insufficient as long as it
does not measure those cognitive processes for which the modeling procedures
symbolically stand. The semiotic approach to meaning constitution deals with
the following problem scenario:

“Recent research findings [...] give rise to expect that processes which determine reg-

ularities and assemble them to form (intermediate) representations whose properties

resemble (or can even be identified with) those of observable entities may indeed be

responsible for (if not identical with) the emergence and usage of sign-functional

structures in language understanding systems, both natural and artificial. As more

abstract (theoretical) levels of representation for these processes – other than their

procedural modeling – are not (yet) to be assumed, and as any (formal) means of

deriving their possible results – other than by their (operational) enactment – are

(still) lacking, it has to be postulated that these processes – independent of all other

explanatory paradigms – will not only relate but produce different representational

levels in a way that is formally controlled or computable, that can be modeled pro-

cedurally or algorithmized, and that may empirically be tested or implemented.”

[63, p. 544].

An implementation of this approach allows for replacing the meaning-
signal model in order to approach more adequate language simulation models.
Such an implementation promises a way out of the measurement fallacy as
a consequence of the limits of the meaning-signal model. This fallacy is due
to the fact that it forces the model constructor to make to far reaching pre-
suppositions and thus to restrict the explanatory power of simulations based
thereon. It is one of the many scientific merits of Burghard Rieger that he has
theoretically explored, formally specified and empirically shown a way out of
this fallacy.

5 Survey of the Book

The book is divided into seven parts covering the thematic spectrum of this
introduction. It includes contributions to informational uncertainty and se-
mantic spaces, corpus linguistics and quantitative modeling, text technology
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and text classification as well as cognitive modeling and computer-based sim-
ulations. The first part deals with information modeling. Its starting point
is the notion of informational uncertainty and its alternative formalizations.
On the background of his famous concept of fuzzy sets and its numerous en-
hancements, Lotfi A. Zadeh introduces a constraint-satisfaction language
for the formally precise and computationally tractable representation of nat-
ural language sentences. It is based on the concept of generalized constraints
which also play a fundamental role in the chapter of George J. Klir &

Kari Sentz on the notion of linguistic approximation and linguistic vari-
ables. Both contributions focus on informational uncertainty from the point
of view of fuzzy set theory. In contrast to this, Harald Atmanspacher

starts from a philosophical position in order to distinguish syntactic, seman-
tic, and pragmatic information with a focus on the latter and a review of its
formalization, amongst others, in terms of complexity theory.

The second part of the book deals with semantic spaces and thus leads to
the representation format developed by Burghard Rieger in order to automat-
ically learn fuzzy sets as representations of sign meanings. The starting point
of Peter Gritzmann is the two-level process of syntagmatic and paradig-
matic learning which he generalizes to an n-level process in order to derive
formal-mathematical constraints of clustering in semantic space. Further, he
investigates methods for the lower-dimensional representation and traversal
of those spaces and mathematically develops the notion of corpus immanent,
so to speak, intrinsic contextuality based on lower-dimensional spaces. Edda

Leopold surveys different space models starting from Rieger’s Fuzzy Lin-
guistics. She extends these approaches by building a semantic space by means
of a family of support vector machines where each of the machines repre-
sents a single, pre-established topic category. Based on a cognitive model of
text comprehension, Alexander Mehler develops a formal apparatus for
making semantic spaces sensitive to sign structure. This is done w.r.t the
hierarchical structure of texts and their graph-inducing coherence relations.

The third part of the book deals with quantitative models of lexical, syn-
tactical and textual aspects of structure formation and, thus, focuses on a wide
area of linguistic structure formation. Stefan Bordag & Gerhard Heyer

develop an algorithmic framework which combines the notion of syntagmatic
and paradigmatic learning with its reconstruction in a model of nested levels
of linguistic resolution. A major result of their contribution is a specification
of sense relations in terms of a statistical approach to lexical semantics. Next,
Reinhard Köhler investigates quantitative aspects of syntactic structure
formation. Based on synergetic linguistics, he develops a system theoretical
model of order parameters which control quantitative characteristics of syn-
tax. Finally, Arne Ziegler & Gabriel Altmann explore structure forma-
tion within natural language texts based on reference chains, that is, chains
of interlinked lexical items which refer to the same entity. These chains and
the text spanning graphs they induce are investigated, amongst others, as a
preparatory work on a quantitative model of text coherence.
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The fourth part of the book investigates the corpus linguistic background
of approaches to automatic text analysis and exemplifies text technological
modeling as well as explorative corpus analysis. Michael Stubbs critically
discusses induction as the underlying method of reasoning in corpus-based
lexicography as well as in efforts at automatically learning linguistic pat-
terns from large corpora. Consequently, he argues the possibility of an en-
tirely automatic semantic analysis. In contrast to this, he pleads for develop-
ing computer-based means which support corpus linguistic work with respect
to selecting and preprocessing large amounts of data. Such computer-based
means include annotation tools whose underlying document grammars are fo-
cused by Dieter Metzing & Jens Pönninghaus by example of the Kilivila
verb morphology. One of the research questions addressed by them concerns
the limitations of document grammars w.r.t modeling linguistic structures.
More specifically, Metzing & Pönninghaus consider using document grammars
for controlling the annotation of linguistic, multimodal corpora. Morphological
structures are also focused in the contribution of Alfonso Medina-Urrea.
But instead of grammar-based modeling, he concentrates on the exploration
of morphological units, especially of affixes. In order to exemplify his algo-
rithm, he analyzes four different languages and, thus, deals with corpus lin-
guistics from the point of view of explorative data analysis. Finally, Jürgen

Rolshoven utilizes object-oriented modeling in the area of natural language
processing, especially with respect to machine translation. This is done by
means of a two-stage modeling paradigm which starts from UML-based con-
ceptual modeling in order to derive language descriptions in a linguistic pro-
gramming language. Rolshoven exemplifies his approach by means of phrase
structures.

The fifth part of the book deals with text classification from the point of
view of discourse analysis and fuzzy-linguistic modeling. It is introduced by
Winfried Lenders who investigates the selectivity of structural indicators
in text classification. His starting point is that there is little known about
structure induced similarity measures of texts. Consequently, he focuses on a
kind of feature selection which combines structure and content-oriented indi-
cators and, thus, follows a new research field in the area of text classification.
Janusz Kacprzyk & Slawomir Zadrożny likewise focus on an aspect of
text categorization which is rather disregarded in the literature. Their starting
point is to abandon the view that category assignments are crisp. In accor-
dance with what is known about human cognition, they develop an algorithm
for multiple, fuzzy categorizations and evaluate it by means of a well-known
reference corpus. Beyond fuzziness of category assignments, the dynamics of
such category systems is a topic of semiotic approaches to machine learning
which is addressed by Leonid Perlovsky. He tackles the problem of con-
cept formation and, thus, goes beyond those approaches to text categorization
which start from pre-established category sets, whose dynamic formation they
disregard.
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The dynamic turn in automatic text analysis with its focus on fuzziness
and structure-formation as demonstrated in part five, leads over to the sixth
part of the book which stresses the point of view of cognitive modeling. Gert

Rickheit & Hans Strohner claim that a cognitive-theoretical embedding
of automatic text analysis is indispensable especially with respect to the notion
of inference based on the interaction of the textual input and the knowledge
base of the text processing system. Consequently, they plead for a kind of situ-
ated text analysis which transcends the textual input subject to cognitive con-
straints of inference processes. Based on the extended experimental-simulative
method, Hans-Jürgen Eikmeyer, Walther Kindt & Hans Strohner

deal with dialogical communication manifesting purpose dependent interac-
tions of several interlocutors. They start from an annotated corpus of dialog-
ical communication for evaluating quantitative hypotheses which are further
investigated in subsequent experiments. In this framework, simulation has the
function of hypothesis evaluation by means of parameter settings which are
experimentally inaccessible.

The last part of the book deals with visual systems modeling. Wolfgang

Wildgen analyses the dimensionality of the organization of pictorial signs as
a basic determinant of their structure. He asks for commonalities of textual
and pictorial signs and, thereby, challenges de Saussure’s linearity axiom of
language. In this sense, he returns to a linguistic tradition which was identified
at the beginning of this introduction as one of the roots of Burghard Rieger’s
approach to modeling semiotic cognitive information processing systems.
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Summary. This article is a sequel to an article titled “A New Direction in AI –
Toward a Computational Theory of Perceptions”, which appeared in the Spring 2001
issue of AI Magazine (volume 22, No. 1, 73-84). The concept of precisiated natural
language (PNL) was briefly introduced in that article, and PNL was employed as
a basis for computation with perceptions. In what follows, the conceptual structure
of PNL is described in greater detail, and PNL’s role in knowledge representation,
deduction, and concept definition is outlined and illustrated by examples. What
should be understood is that PNL is in its initial stages of development and that
the exposition that follows is an outline of the basic ideas that underlie PNL rather
than a definitive theory.

A natural language is basically a system for describing perceptions. Perceptions,
such as perceptions of distance, likelihood, relevance, and most other attributes of
physical and mental objects are intrinsically imprecise, reflecting the bounded ability
of sensory organs, and ultimately the brain, to resolve detail and store information.
In this perspective, the imprecision of natural languages is a direct consequence of
the imprecision of perceptions [44, 45].

How can a natural language be precisiated – precisiated in the sense of mak-
ing it possible to treat propositions drawn from a natural language as objects of
computation? This is what PNL attempts to do.

In PNL, precisiation is accomplished through translation into what is termed
a precisiation language. In the case of PNL, the precisiation language is the
generalized-constraint language (GCL), a language whose elements are so-called
generalized constraints and their combinations. What distinguishes GCL from lan-
guages such as Prolog, LISP, SQL, and, more generally, languages associated with
various logical systems, for example, predicate logic, modal logic, and so on, is its
so much higher expressive power.

The conceptual structure of PNL mirrors two fundamental facets of human cog-
nition, (a) partiality and (b) granularity [43]. Partiality relates to the fact that most
human concepts are not bivalent, that is, are a matter of degree. Thus, we have
partial understanding, partial truth, partial possibility, partial certainty, partial
similarity, and partial relevance, to cite a few examples. Similarly, granularity and
granulation relate to clumping of values of attributes, forming granules with words
as labels, for example, young, middle-aged, and old as labels of granules of age.
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Existing approaches to natural language processing are based on bivalent logic
– a logic in which shading of truth is not allowed, PNL abandons bivalence. By so
doing, PNL frees itself from limitations imposed by bivalence and categoricity, and
opens the door to new approaches for dealing with long-standing problems in AI
and related fields [26].

At this juncture, PNL is in its initial stages of development. As it matures, PNL
is likely to find a variety of applications, especially in the realms of world knowl-
edge representation, concept definition, deduction, decision, search, and question
answering.

1 Introduction

Natural languages (NLs) have occupied, and continue to occupy, a position
of centrality in AI. Over the years, impressive advances have been made in
our understanding of how natural languages can be dealt with on processing,
logical, and computational levels. A huge literature is in existence. Among the
important contributions that relate to the ideas described in this article are
those of [1, 2, 3, 9, 15, 21, 22, 23, 34, 35, 36].

When a language such as precisiated natural language (PNL) is introduced,
a question that arises at the outset is: What can PNL do that cannot be done
through the use of existing approaches? A simple and yet important example
relates to the basic role of quantifiers such as all, some, most, many, and few
in human cognition and natural languages.

In classical, bivalent logic the principal quantifiers are all and some. How-
ever, there is a literature on so-called generalized quantifiers exemplified by
most, many, and few [2, 29]. In this literature, such quantifiers are treated
axiomatically, and logical rules are employed for deduction.

By contrast, in PNL quantifiers such as many, most, few, about 5, close
to 7, much larger than 10, and so on are treated as fuzzy numbers and are
manipulated through the use of fuzzy arithmetic [12, 14, 40]. For the most
part, inference is computational rather than logical. Following are a few simple
examples. First, let us consider the Brian example [40]:

Brian is much taller than most of his close friends.
How tall is Brian?

At first glance it may appear that such questions are unreasonable. How
can one say something about Brian’s height if all that is known is that he is
much taller than most of his close friends? Basically, what PNL provides is a
system for precisiation of propositions expressed in a natural language through
translation into the generalized-constraint language (GCL). Upon translation,
the generalized constraints (GCs) are propagated through the use of rules gov-
erning generalized-constraint propagation, inducing a generalized constraint
on the answer to the question. More specifically, in the Brian example, the
answer is a generalized constraint on the height of Brian.
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Now let us look at the balls-in-box problem:

A box contains balls of various sizes and weights.
The premises are:

Most are large.
Many large balls are heavy.
What fraction of balls are large and heavy?

The PNL answer is: most×many, where most and many are fuzzy numbers
defined through their membership functions, and most×many is their product
in fuzzy arithmetic [14]. This answer is a consequence of the general rule

Q1 As are Bs
Q2 (A and B)s are Cs
(Q1 ×Q2) As are (B and C)s

Another simple example is the tall Swedes problem (version 1):

Swedes who are more than twenty years old range in height from 140
centimeters to 220 centimeters. Most are tall. What is the average
height of Swedes over twenty?

A less simple version of the problem (version 2) is the following (a∗ denotes
“approximately a”) – a PNL-based answer to this problem is given in the
appendix:

Swedes over twenty range in height from 140 centimeters to 220 cen-
timeters. Over 70* percent are taller than 170* centimeters; less than
10* percent are shorter than 150* centimeters, and less than 15 per-
cent are taller than 200* centimeters. What is the average height of
Swedes over twenty?

There is a basic reason generalized quantifiers do not have an ability to
deal with problems of this kind. The reason is that in the theory of generalized
quantifiers there is no concept of the count of elements in a fuzzy set. How do
you count the number of tall Swedes if tallness is a matter of degree? More
generally, how do you define the probability measure of a fuzzy event (cf.
Zadeh [39])?

What should be stressed is that the existing approaches and PNL are com-
plementary rather than competitive. Thus, PNL is not intended to be used in
applications such as text processing, summarization, syntactic analysis, dis-
course analysis, and related fields. The primary function of PNL is to provide
a computational framework for precisiation of meaning rather than to serve
as a means of meaning understanding and meaning representation. By its na-
ture, PNL is maximally effective when the number of precisiated propositions
is small rather than large and when the chains of reasoning are short rather
than long. The following is intended to serve as a backdrop.
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Fig. 1. Modalities of information: measurement-based and perception-based.

It is a deep-seated tradition in science to view the use of natural languages
in scientific theories as a manifestation of mathematical immaturity. The ra-
tionale for this tradition is that natural languages are lacking in precision.
However, what is not recognized to the extent that it should be is that adher-
ence to this tradition carries a steep price. In particular, a direct consequence
is that existing scientific theories do not have the capability to operate on
perception-based information – information exemplified by “Most Swedes are
tall”, “Usually Robert returns from work at about 6 pm”, “There is a strong
correlation between diet and longevity”, and “It is very unlikely that there
will be a significant increase in the price of oil in the near future” (figure 1).

Such information is usually described in a natural language and is intrin-
sically imprecise, reflecting a fundamental limitation on the cognitive ability
of humans to resolve detail and store information. Due to their imprecision,
perceptions do not lend themselves to meaning representation and inference
through the use of methods based on bivalent logic. To illustrate the point,
consider the following simple examples.

The balls-in-box example:

A box contains balls of various sizes. My perceptions of the contents
of the box are:
• There are about twenty balls.
• Most are large.
• There are several times as many large balls as small balls.
The question is: What is the number of small balls?

The Robert example (a):

My perception is:
• Usually Robert returns from work at about 6 pm.
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The question is: What is the probability that Robert is home at about
6:15 pm?

The Robert example (b):

• Most tall men wear large-sized shoes.
• Robert is tall.
• What is the probability that Robert wears large-sized shoes?

An immediate problem that arises is that of meaning precisiation. How
can the meaning of the perception “There are several times as many large
balls as small balls” or “Usually Robert returns from work at about 6 pm” be
defined in a way that lends itself to computation and deduction? Furthermore,
it is plausible, on intuitive grounds, that “Most Swedes are tall” conveys some
information about the average height of Swedes. But what is the nature of this
information, and what is its measure? Existing bivalent-logic-based methods
of natural language processing provide no answers to such questions.

The incapability of existing methods to deal with perceptions is a direct
consequence of the fact that the methods are based on bivalent logic – a
logic that is intolerant of imprecision and partial truth. The existing meth-
ods are categorical in the sense that a proposition, p, in a natural language,
NL, is either true or not true, with no shades of truth allowed. Similarly, p
is either grammatical or ungrammatical, either ambiguous or unambiguous,
either meaningful or not meaningful, either relevant or not relevant, and so
on. Clearly, categoricity is in fundamental conflict with reality – a reality in
which partiality is the norm rather than an exception. But, what is much
more important is that bivalence is a major obstacle to the solution of such
basic AI problems as commonsense reasoning and knowledge representation
[6, 7, 24, 34, 35, 37, 38], nonstereotypical summarization [22], unrestricted
question answering, [18], and natural language computation [3].

PNL abandons bivalence. Thus, in PNL everything is, or is allowed to be, a
matter of degree. It is somewhat paradoxical, and yet is true, that precisiation
of a natural language cannot be achieved within the conceptual structure of
bivalent logic.

By abandoning bivalence, PNL opens the door to a major revision of con-
cepts and techniques for dealing with knowledge representation, concept defi-
nition, deduction, and question answering. A concept that plays a key role in
this revision is that of a generalized constraint [42]. The basic ideas underlying
this concept are discussed in the following section. It should be stressed that
what follows is an outline rather than a detailed exposition.
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Fig. 2. Schema of a generalized constraint.

2 The Concepts of Generalized Constraint and
Generalized-Constraint Language

A conventional, hard constraint on a variable, X, is basically an inelastic
restriction on the values that X can take. The problem is that in most realistic
settings – and especially in the case of natural languages – constraints have
some degree of elasticity or softness. For example, in the case of a sign in a
hotel saying “Checkout time is 1 pm”, it is understood that 1 pm is not a hard
constraint on checkout time. The same applies to “Speed limit is 65 miles per
hour” and “Monika is young”. Furthermore, there are many different ways,
call them modalities, in which a soft constraint restricts the values that a
variable can take. These considerations suggest the following expression as
the definition of generalized constraint (figure 2):

X isr R,

where X is the constrained variable; R is the constraining relation; and
r is a discrete-valued modal variable whose values identify the modality
of the constraint [44]. The constrained variable may be an n-ary variable,
X = (X1, . . . , Xn); a conditional variable, X|Y ; a structured variable, as in
Location(Residence(X)); or a function of another variable, as in f(X). The
principal modalities are possibilistic (r = blank), probabilistic (r = p), veristic
(r = v), usuality (r = u), random set (r = rs), fuzzy graph (r = fg), bimodal
(r = bm), and Pawlak set (r = ps). More specifically, in a possibilistic con-
straint,

X is R,

R is a fuzzy set that plays the role of the possibility distribution of X. Thus,
if U = u is the universe of discourse in which X takes its values, then R is
a fuzzy subset of U and the grade of membership of u in R, µR(U), is the
possibility that X = u:
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Fig. 3. Trapezoidal membership function of “Small number”. “Small number” is
context-dependent.

µR(u) = Poss(X = u) .

For example, the proposition p: X is a small number is a possibilistic con-
straint in which “small number” may be represented as, say, a trapezoidal
fuzzy number (figure 3), that represents the possibility distribution of X. In
general, the meaning of “small number” is context-dependent.

In a probabilistic constraint:

X isp R ,

X is a random variable and R is its probability distribution. For example,

X isp N(m,σ2)

means that X is a normally distributed random variable with mean m and
variance σ2.

In a veristic constraint, R is a fuzzy set that plays the role of the verity
(truth) distribution of X. For example, the proposition “Alan is half German,
a quarter French, and a quarter Italian”, would be represented as the fuzzy
set

Ethnicity(Alan) isv (0.5 |German + 0.25 |French + 0.25 | Italian),

in which Ethnicity(Alan) plays the role of the constrained variable; 0.5 | Ger-
man means that the verity (truth) value of “Alan is German” is 0.5; and +
plays the role of a separator.

In a usuality constraint, X is a random variable, and R plays the role
of the usual value of X. For example, X isu small means that usually X is
small. Usuality constraints play a particularly important role in commonsense
knowledge representation and perception-based reasoning.

In a random set constraint, X is a fuzzy-set-valued random variable and
R is its probability distribution. For example,

X isrs (0.3\small + 0.5\medium + 0.2\large),



40 Lotfi A. Zadeh

Fig. 4. Fuzzy graph of a function.

means that X is a random variable that takes the fuzzy sets small, medium,
and large as its values with respective probabilities 0.3, 0.5, and 0.2. Random
set constraints play a central role in the Dempster-Shafer theory of evidence
and belief [30].

In a fuzzy graph constraint, the constrained variable is a function, f , and
R is its fuzzy graph (figure 4). A fuzzy graph constraint is represented as

F isfg

(
∑

i

Ai ×Bj(i)

)

,

in which the fuzzy sets Ai and Bj(i), with j dependent on i, are the granules
of X and Y , respectively, and Ai × Bj(i) is the Cartesian product of Ai and
Bj(i). Equivalently, a fuzzy graph may be expressed as a collection of fuzzy
if-then rules of the form

if X is Ai then Y is Bj(i), i = 1, . . . , m; j = 1, . . . , n

For example:

F isfg (small× small + medium× large + large× small)

may be expressed as the rule set:

if X is small then Y is small
if X is medium then Y is large
if X is large then Y is small

Such a rule set may be interpreted as a description of a perception of f .
A bimodal constraint involves a combination of two modalities: probabilis-

tic and possibilistic. More specifically, in the generalized constraint

X isbm R,
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Fig. 5. Bimodal distribution: perception-based probability distribution.

X is a random variable, and R is what is referred to as a bimodal distribution,
P , of X, with P expressed as

P :
∑

i

Pj(i) \Ai ,

in which the Ai are granules of X, and the Pj(i), with j dependent on i, are
the granules of probability (figure 5). For example, if X is a real-valued ran-
dom variable with granules labeled small, medium, and large and probability
granules labeled low, medium, and high, then

X isbm (low\small + high\medium + low\large)
which means that

Prob(X is small) is low
Prob(X is medium) is high
Prob(X is large) is low

In effect, the bimodal distribution of X may be viewed as a description of a
perception of the probability distribution of X. As a perception of likelihood,
the concept of a bimodal distribution plays a key role in perception-based
calculus of probabilistic reasoning [46].

The concept of a bimodal distribution is an instance of combination of
different modalities. More generally, generalized constraints may be com-
bined and propagated, generating generalized constraints that are compos-
ites of other generalized constraints. The set of all such constraints to-
gether with deduction rules – rules that are based on the rules governing
generalized-constraint propagation – constitutes the generalized-constraint
language (GCL). An example of a generalized constraint in GCL is

(X isp A) and ((X, Y ) is B),

where A is the probability distribution of X and B is the possibility distribu-
tion of the binary variable (X,Y ). Constraints of this form play an important
role in the Dempster-Shafer theory of evidence [30].
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3 The Concepts of Precisiability and Precisiation
Language

Informally, a proposition, p, in a natural language, NL, is precisiable if its
meaning can be represented in a form that lends itself to computation and
deduction. More specifically, p is precisiable if it can be translated into what
may be called a precisiation language, PL, with the understanding that the
elements of PL can serve as objects of computation and deduction. In this
sense, mathematical languages and the languages associated with proposi-
tional logic, first-order and higher-order predicate logics, modal logic, LISP,
Prolog, SQL, and related languages may be viewed as precisiation languages.
The existing PL languages are based on bivalent logic. As a direct conse-
quence, the languages in question do not have sufficient expressive power to
represent the meaning of propositions that are descriptors of perceptions. For
example, the proposition “All men are mortal” can be precisiated by transla-
tion into the language associated with first-order logic, but “Most Swedes are
tall” cannot.

The principal distinguishing feature of PNL is that the precisiation lan-
guage with which it is associated is GCL. It is this feature of PNL that makes
it possible to employ PNL as a meaning-precisiation language for perceptions.
What should be understood, however, is that not all perceptions or, more pre-
cisely, propositions that describe perceptions, are precisiable through trans-
lation into GCL. Natural languages are basically systems for describing and
reasoning with perceptions, and many perceptions are much too complex to
lend themselves to precisiation.

The key idea in PNL is that the meaning of a precisiable proposition, p, in
a natural language is a generalized constraint X isr R. In general, X, R, and
r are implicit, rather than explicit, in p. Thus, translation of p into GCL may
be viewed as an explicitation of X, R, and r. The expression X isr R will be
referred to as the GC form of p, written as GC(p).

In PNL, a proposition, p, is viewed as an answer to a question, q. To
illustrate, the proposition p: Monika is young may be viewed as the answer
to the question q: How old is Monika? More concretely:

p : Monika is young → p∗ : Age(Monika) is young
q : How old is Monika? → q∗ : Age(Monika) is ?R

where p∗ and q∗ are abbreviations for GC(p) and GC(q), respectively.
In general, the question to which p is an answer is not unique. For example,

p: Monika is young could be viewed as an answer to the question q: Who is
young? In most cases, however, among the possible questions there is one
that is most likely. Such a question plays the role of a default question. The
GC form of q is, in effect, the translation of the question to which p is an
answer. The following simple examples are intended to clarify the process of
translation from NL to GCL.
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Fig. 6. Calibration of most and usually represented as trapezoidal fuzzy numbers.

p : Tandy is much older than Dana →
(Age(Tandy),Age(Dana)) is much.older

where much.older is a binary fuzzy relation that has to be calibrated as a
whole rather through composition of much and older.

To deal with the example p : Most Swedes are tall, it is necessary to have
a means of counting the number of elements in a fuzzy set. There are several
ways in which this can be done, with the simplest way relating to the concept
of ΣCount (sigma count). More specifically, if A and B are fuzzy sets in a
space U = {u1, . . . , uN}, with respective membership functions µA and µB ,
respectively, then

ΣCount(A) =
∑

i

µA(ui) ,

and the relative ΣCount, that is, the relative count of elements of A that are
in B, is defined as

ΣCount(A/B) =
ΣCount(A ∩B)

ΣCount(B)

in which the membership function of the intersection A ∩B is defined as

µA∩B(u) = µA(u) ∧ µB(u) ,

where ∧ is min or, more generally, a t-norm [16, 28].
Using the concept of sigma count, the translation in question may be

expressed as

p : Most Swedes are tall →
ΣCount(tall.Swedes/Swedes) is most ,

where most is a fuzzy number that defines most as a fuzzy quantifier [25, 41]
(figure 6). A further sample translation looks as follows:

p : Usually Robert returns from work at about 6 pm.
q : When does Robert return from work?
X : Time of return of Robert from work,Time(Return)
R : about 6 pm (6∗pm)
r : u (usuality)
p∗ : Prob(Time(Return) is 6∗pm) is usually.
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Fig. 7. Semantic network of p: It is very unlikely that there will be a significant
increase in the price of oil in the near future.

A less simple example is:

p : It is very unlikely that there will be a significant increase in the
price of oil in the near future.

In this example, it is expedient to start with the semantic network repre-
sentation [34] of p that is shown in figure 7. In this representation, E is the
main event, and E∗ is a sub-event of E:

E : significant increase in the price of oil in the near future
E∗ significant increase in the price of oil
Thus, near future is the epoch of E∗.

The GC form of p may be expressed as

Prob(E) is R,

where R is the fuzzy probability, very unlikely, whose membership function is
related to that of likely by figure 8:

µvery.unlikely(u) = (1− µlikely(u))2 ,

where it is assumed for simplicity that very acts as an intensifier that squares
the membership function of its operand, and that the membership function
of unlikely is the mirror image of that of likely.

Given the membership functions of significant increase and near future
(figure 9), we can compute the degree to which a specified time function
that represents a variation in the price of oil satisfies the conjunction of the
constraints significant increase and near future. This degree may be employed
to compute the truth value of p as a function of the probability distribution
of the variation in the price of oil. In this instance, the use of PNL may be
viewed as an extension of truth-conditional semantics [1, 5].

What should be noted is that precisiation and meaning representation are
not coextensive. More specifically, precisiation of a proposition, p, assumes
that the meaning of p is understood and that what is involved is a precisiation
of the meaning of p.
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Fig. 8. Precisiation of very unlikely.

4 The Concept of a Protoform and the Structure of PNL

A concept that plays a key role in PNL is that of a protoform – an abbreviation
of prototypical form. Informally, a protoform is an abstracted summary of
an object that may be a proposition, command, question, scenario, concept,
decision problem, or, more generally, a system of such objects. The importance
of the concept of a protoform derives from the fact that it places in evidence
the deep semantic structure of the object to which it applies. For example,
the protoform of the proposition

p: Monika is young

is
PF(p) : A(B) is C ,

where A is abstraction of the attribute Age, B is abstraction of Monika, and
C is abstraction of young. Conversely, Age is instantiation of A, Monika is
instantiation of B, and young is instantiation of C. Abstraction may be an-
notated, for example, A/Attribute, B/Name, and C/Attribute.value. A few
examples are shown in figure 10. Basically, abstraction is a means of gen-
eralization. Abstraction has levels, just as summarization does. For exam-
ple, successive abstractions of p: Monika is young are A(Monika) is young,
A(B) is young, and A(B) is C, with the last abstraction resulting in
the terminal protoform, or simply the protoform. With this understanding,
the protoform of p: Most Swedes are tall is QAs are Bs, or equivalently,
Count(B/A) is Q, and the protoform of p: Usually Robert returns from work
at about 6 pm, is Prob(X is A) is B, where X,A, and B are abstractions
of “Time (Robert.returns.from work)”, “About 6 pm”, and “Usually.” For
simplicity, the protoform of p may be written as p∗∗.

Abstraction is a familiar concept in programming languages and program-
ming systems. As will be seen in the following, the role of abstraction in PNL
is significantly different and more essential because PNL abandons bivalence.
The concept of a protoform has some links to other basic concepts such as
ontology [4, 31, 32, 35], conceptual graph [33] and Montague grammar [27].
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Fig. 9. Examples of translation from NL to PFL.

However, what should be stressed is that the concept of a protoform is not lim-
ited – as it is in the case of related concepts – to propositions whose meaning
can be represented within the conceptual structure of bivalent logic.

As an illustration, consider a proposition, p, which was dealt with earlier:

p : It is very unlikely that there will be a significant increase in the
price of oil in the near future.

With reference to the semantic network of p (figure 9), the protoform of p
may be expressed as:

Prob(E) is A (A : very unlikely)
E : B(E∗) is C (B : epoch; C : near.future)
E∗ : F (D) (F : significant increase; D : price of oil)
D : G(H) (G : price; H : oil)

Using the protoform of p and calibrations of significant increase, near-fu-
ture, and likely, (figure 9), we can compute, in principle, the degree to which
any given probability distribution of time functions representing the price
of oil satisfies the generalized constraint, Prob(E) is A. As was pointed out
earlier, if the degree of compatibility is interpreted as the truth value of p,
computation of the truth value of p may be viewed as a PNL-based extension
of truth-conditional semantics.

By serving as a means of defining the deep semantic structure of an ob-
ject, the concept of a protoform provides a platform for a fundamental mode
of classification of knowledge based on protoform equivalence, or PF equiv-
alence for short. More specifically, two objects are protoform equivalent at
a specified level of summarization and abstraction if at that level they have
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Fig. 10. Computation of degree of compatibility.

identical protoforms. For example, the propositions p: Most Swedes are tall,
and q: Few professors are rich, are PF equivalent since their common proto-
form is QAs are Bs or, equivalently, Count(B/A) is Q. The same applies to
propositions p: Oakland is near San Francisco, and q: Rome is much older than
Boston. A simple example of PF equivalent concepts is: cluster and mountain.

A less simple example involving PF equivalence of scenarios of decision
problems is the following. Consider the scenarios of two decision problems, A
and B:

Scenario A:

Alan has severe back pain. He goes to see a doctor. The doctor tells
him that there are two options: (1) do nothing and (2) do surgery. In
the case of surgery, there are two possibilities: (a) surgery is successful,
in which case Alan will be pain-free; and (b) surgery is not successful,
in which case Alan will be paralyzed from the neck down. Question:
Should Alan elect surgery?

Scenario B:

Alan needs to fly from San Francisco to St. Louis and has to get there
as soon as possible. One option is to fly to St. Louis via Chicago, and
the other is to go through Denver. The flight via Denver is scheduled
to arrive in St. Louis at time a. The flight via Chicago is scheduled to
arrive in St. Louis at time b, with a < b. However, the connection time
in Denver is short. If the connection flight is missed, then the time of
arrival in St. Louis will be c, with c > b. Question: Which option is
best?

The common protoform of A and B is shown in figure 11. What this proto-
form means is that there are two options, one that is associated with a certain
gain or loss and another that has two possible outcomes whose probabilities
may not be known precisely.



48 Lotfi A. Zadeh

Fig. 11. Protoform equivalence of scenarios A and B.

The protoform language, PFL, is the set of protoforms of the elements of
the generalized-constraint language, GCL. A consequence of the concept of
PF equivalence is that cardinality of PFL is orders of magnitude lower than
that of GCL or, equivalently, the set of precisiable propositions in NL. As will
be seen in the sequel, the low cardinality of PFL plays an essential role in
deduction.

The principal components of the structure of PNL (figure 12) are (1) a
dictionary from NL to GCL; (2) a dictionary from GCL to PFL (figure 13);
(3) a multiagent, modular deduction database, DDB; and (4) a world knowl-
edge database, WKDB. The constituents of DDB are modules, with a module
consisting of a group of protoformal rules of deduction, expressed in PFL (fig-
ure 14), that are drawn from a particular domain, for example, probability,
possibility, usuality, fuzzy arithmetic [14], fuzzy logic, search, and so on. For
example, a rule drawn from fuzzy logic is the compositional rule of inference,
expressed in figure 14 where A ◦B is the composition of A and B, defined in
the computational part, in which µA, µB, and µA◦B are the membership func-
tions of A,B, and A◦B, respectively. Similarly, a rule drawn from probability
is shown in figure 15, where D is defined in the computational part.

The rules of deduction in DDB are, basically, the rules that govern prop-
agation of generalized constraints. Each module is associated with an agent
whose function is that of controlling execution of rules and performing em-
bedded computations. The top-level agent controls the passing of results of
computation from a module to other modules. The structure of protoformal,
that is, protoform based, deduction is shown in figure 16. A simple example
of protoformal deduction is shown in figure 17.

The world knowledge database, WKDB, consists of propositions that de-
scribe world knowledge, for example, Parking near the campus is hard to find
on weekdays between 9 and 4; Big cars are safer than small cars; If A/person
works in B/city then it is likely that A lives in or near B; If A/person is at
home at time t then A has returned from work at t or earlier, on the under-
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Fig. 12. Basic structure of PNL.

Fig. 13. Structure of PNL: dictionaries.

Fig. 14. Structure of protoform-based deduction.

standing that A stayed home after returning from work. Much, perhaps most,
of the information in WKDB is perception based.

World knowledge – and especially world knowledge about probabilities –
plays an essential role in almost all search processes, including searching the
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Fig. 15. Rule drawn from probability.

Fig. 16. Structure of protoform-based deduction.

Fig. 17. Example of protoformal reasoning.
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Web. Semantic Web and related approaches have contributed to a significant
improvement in performance of search engines. However, for further progress it
may be necessary to add to existing search engines the capability to operate on
perception-based information. It will be a real challenge to employ PNL to add
this capability to sophisticated knowledge-management systems such as the
Web Ontology Language (OWL) [32], Cyc [19], WordNet [8], and ConceptNet
[20].

An example of PFL-based deduction in which world knowledge is used
is the so-called Robert example. A simplified version of the example is the
following: The initial data set is the proposition (perception) p: Usually Robert
returns from work at about 6 pm. The question is q: What is the probability
that Robert is home at 6:15 pm?

The first step in the deduction process is to use the NL to GCL dictionary
for deriving the generalized-constraint forms, GC(p) and GC(q), of p and q,
respectively. The second step is to use the GCL to PFL dictionary to derive
the protoforms of p and q. The forms are:

p∗ : Prob(Time(Robert.returns.from.work) is about 6 pm) is usually
q∗ : Prob(Time(Robert is home) is 6:15 pm) is ?E

and

p∗∗ : Prob(X is A) is B

q∗∗ : Prob(Y is C) is ?D

The third step is to refer the problem to the top-level agent with the query:
Is there a rule or a chain of rules in DDB that leads from p∗∗ to q∗∗? The
top-level agent reports a failure to find such a chain but success in finding a
proximate rule of the form

Prob(X is A) is B
Prob(X is C) is D

The fourth step is to search the world knowledge database, WKDB, for a
proposition or a chain of propositions that allow Y to be replaced by X. A
proposition that makes this possible is (A/person is in B/location) at T/time
if A arrives at B before T , with the understanding that A stays at B after
arrival.

The last step involves the use of the modified form of q∗∗: Prob(X is E) is
?D, in which E is “before 6:15 pm”. The answer to the initial query is given
by the solution of the variational problem associated with the rule that was
described earlier (figure 15):

Prob(X is A) is B
Prob(X is C) is D

The value of D is the desired probability.
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What is important to observe is that there is a tacit assumption that un-
derlies the deduction process, namely, that the chains of deduction are short.
This assumption is a consequence of the intrinsic imprecision of perception-
based information. Its further implication is that PNL is likely to be effective,
in the main, in the realm of domain-restricted systems associated with small
universes of discourse.

5 PNL as a Definition Language

As we move further into the age of machine intelligence and automated rea-
soning, a problem that is certain to grow in visibility and importance is that
of definability – that is, the problem of defining the meaning of a concept or
a proposition in a way that can be understood by a machine.

It is a deeply entrenched tradition in science to define a concept in a
language that is based on bivalent logic [10, 11, 13]. Thus defined, a concept,
C, is bivalent in the sense that every object, X, is either an instance of C or it is
not, with no degrees of truth allowed. For example, a system is either stable or
unstable, a time series is either stationary or nonstationary, a sentence is either
grammatical or ungrammatical, and events A and B are either independent
or not independent.

The problem is that bivalence of concepts is in conflict with reality. In
most settings, stability, stationarity, grammaticality, independence, relevance,
causality, and most other concepts are not bivalent. When a concept that is
not bivalent is defined as if it were bivalent, the ancient Greek sorites (heap)
paradox comes into play. As an illustration, consider the standard bivalent
definition of independence of events, say A and B. Let P (A), P (B), and PA(B)
be the probabilities of A, B, and B given A, respectively. Then A and B are
independent if and only if PA(B) = P (B).

Now assume that the equality is not satisfied exactly, with the difference
between the two sides being ε. As ε increases, at which point will A and B
cease to be independent?

Clearly, independence is a matter of degree, and furthermore the degree
is context dependent. For this reason, we do not have a universally accepted
definition of degree of independence [17].

One of the important functions of PNL is that of serving as a definition
language. More specifically, PNL may be employed as a definition language
for two different purposes: first, to define concepts for which no general defini-
tions exist, for example, causality, summary, relevance, and smoothness; and
second, to redefine concepts for which universally accepted definitions exist,
for example, linearity, stability, independence, and so on. In what follows, the
concept of independence of random variables will be used as an illustration.

For simplicity, assume that X and Y are random variables that take values
in the interval [a, b]. The interval is granulated as shown in figure 18, with S,
M , and L denoting the fuzzy intervals small, medium, and large.
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Fig. 18. PNL-based definition of statistical independence.

Using the definition of relative ΣCount, we construct a contingency table,
C, of the form shown in figure 18, in which an entry such as ΣCount(S/L) is
a granulated fuzzy number that represents the relative ΣCount of occurrences
of Y , which are small, relative to occurrences of X, which are large.

Based on the contingency table, the degree of independence of Y from
X may be equated to the degree to which the columns of the contingency
table are identical. One way of computing this degree is, first, to compute the
distance between two columns and then aggregate the distances between all
pairs of columns. PNL would be used for this purpose

An important point that this example illustrates is that, typically, a PNL-
based definition involves a general framework with a flexible choice of details
governed by the context or a particular application. In this sense, the use of
PNL implies an abandonment of the quest for universality, or, to put it more
graphically, of the one-size-fits-all modes of definition that are associated with
the use of bivalent logic.

Another important point is that PNL suggests an unconventional approach
to the definition of complex concepts. The basic idea is to define a complex
concept in a natural language and then employ PNL to precisiate the defini-
tion.

More specifically, let U be a universe of discourse and let C be a concept
that I wish to define, with C relating to elements of U . For example, U is a
set of buildings, and C is the concept of tall building. Let p(C) and d(C) be,
respectively, my perception and my definition of C. Let I(p(C)) and I(d(C))
be the intensions of p(C) and d(C), respectively, with intension used in its
logical sense [5, 10], that is, as a criterion or procedure that identifies those
elements of U that fit p(C) or d(C). For example, in the case of tall buildings,
the criterion may involve the height of a building.

Informally, a definition, d(C), is a good fit or, more precisely, is cointensive,
if its intension coincides with the intension of p(C). A measure of goodness of
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fit is the degree to which the intension of d(C) coincides with that of p(C). In
this sense, cointension is a fuzzy concept. As a high-level definition language,
PNL makes it possible to formulate definitions whose degree of cointensiveness
is higher than that of definitions formulated through the use of languages ba-
sed on bivalent logic.

6 Concluding Remarks

Existing theories of natural languages are based, anachronistically, on Aris-
totelian logic – a logical system whose centerpiece is the principle of the ex-
cluded middle: Truth is bivalent, meaning that every proposition is either true
or not true, with no shades of truth allowed.

The problem is that bivalence is in conflict with reality – the reality of per-
vasive imprecision of natural languages. The underlying facts are (a) a natural
language, NL, is, in essence, a system for describing perceptions; and (b) per-
ceptions are intrinsically imprecise, reflecting the bounded ability of sensory
organs, and ultimately the brain, to resolve detail and store information.

PNL abandons bivalence. What this means is that PNL is based on fuzzy
logic – a logical system in which everything is, or is allowed to be, a matter
of degree.

Abandonment of bivalence opens the door to exploration of new directions
in theories of natural languages. One such direction is that of precisiation. A
key concept underlying precisiation is the concept of a generalized constraint.
It is this concept that makes it possible to represent the meaning of a proposi-
tion drawn from a natural language as a generalized constraint. Conventional,
bivalent constraints cannot be used for this purpose. The concept of a gen-
eralized constraint provides a basis for construction of GCL – a language
whose elements are generalized constraints and their combinations. Within
the structure of PNL, GCL serves as a precisiation language for NL. Thus,
a proposition in NL is precisiated through translation into GCL. Not every
proposition in NL is precisiable. In effect, the elements of PNL are precisiable
propositions in NL.

What should be underscored is that in its role as a high-level definition
language, PNL provides a basis for a significant enlargement of the role of
natural languages in scientific theories.
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Appendix

The Tall Swedes Problem (Version 2)

In the following version of the tall Swedes problem, a∗ denotes “approximately
a.”:

Swedes more than twenty years of age range in height from 140 cen-
timeters to 220 centimeters. Over 70∗ percent are taller than 170∗

centimeters; less than 10∗ percent are shorter than 150∗ centimeters;
and less than 15 percent are taller than 200∗ centimeters. What is the
average height of Swedes over twenty?

Fuzzy Logic Solution

Consider a population of Swedes over twenty, i.e. S = {Swede1,Swede2, . . . ,
SwedeN}, with hi, i = 1, . . . , N , being the height of Si ∈ S.

The datum “Over 70∗ percent of S are taller than 170∗ centimeters”, con-
strains the hi in h = (hi, . . . , hN ). The constraint is precisiated through trans-
lation into GCL. More specifically, let X denote a variable taking values in
S, and let X|(h(X) is ≥ 170∗) denote a fuzzy subset of S induced by the
constraint h(X) is ≥ 170∗. Then

Over 70∗ percent of S are taller than 170∗ →
(GCL): 1

N ΣCount(X|h(X) is ≥ 170∗) is ≥ 0.7∗

where ΣCount is the sigma count of Xs that satisfy the fuzzy constraint
h(X) is ≥ 170∗. Similarly,

Less than 10∗ percent of S are shorter than 150∗ →
(GCL): 1

N ΣCount(X|h(X) is ≤ 150∗) is ≤ 0.1

and

Less than 15∗ percent of S are taller than 200∗ →
(GCL): 1

N ΣCount(X|h(X) is ≥ 200∗) is ≤ 0.15

A general deduction rule in fuzzy logic is the following – in this rule, X is
a variable that takes values in a finite set U = {u1, u2, . . . , uN}, and a(X) is
a real-valued attribute of X, with ai = a(ui) and a = (ai, . . . , aN ):

1
N ΣCount(X|a(X) is C) is B
Av(X) is ?D

where Av(X) is the average value of X over U . Thus, computation of the av-
erage value, D, reduces to the solution of the nonlinear programming problem

µD(v) = max
ai

µB

(
1
N

∑

i

µi(ai)

)
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subject to

v =
1
N

∑

i
ai (average value)

where µD, µB and µC are the membership functions of D, B, and C, respec-
tively. To apply this rule to the constraints in question, it is necessary to
form their conjunction. Then, the fuzzy logic solution of the problem may be
reduced to the solution of the nonlinear programming problem

µD(v) = max
hi

(

µ≥0.7∗

(
1
N

∑

i

µ≥170∗(hi)

)

∧

µ≤0.1∗

(
1
N

∑

i

µ≤150∗(hi)

)

∧ µ≤0.15∗

(
1
N

∑

i

µ≥200∗(hi)

))

subject to

v =
1
N

∑

i

hi

Note that computation of D requires calibration of the membership functions
of ≤ 170∗, ≤ 0.7∗, ≤ 150∗, ≤ 0.1∗, ≥ 200∗, and ≤ 0.15∗.
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1 Introduction

The purpose of this paper is twofold. First, we discuss the various issues of lin-
guistic approximation in the context of intelligent systems. Second, we address
one of the approximation issues in particular, which seems to be somewhat
neglected in the literature.

In general, intelligent systems are defined in the literature as human-made
systems that are capable of achieving highly complex tasks in human-like,
intelligent way. The qualifier “human-like” in this definition is crucial for
distinguishing the area of intelligent systems within the broad field of artificial
intelligence. In intelligent systems, the human mind is viewed as a role model
and the aim is to understand and emulate its various cognitive capabilities
that allow human beings to perform remarkably complex tasks.

Two of the most exemplary capabilities of the human mind are the capabil-
ity of using perceptions in purposeful ways and the capability of approximating
perceptions by statements in natural language. Understanding these capabil-
ities and emulating them by machines is the crux of intelligent systems. To
construct intelligent systems, we need to develop appropriate methodological
tools for dealing with perceptions in machines. As has recently been argued
by Zadeh [22, 23], a feasible way to deal with perceptions in machines is to ap-
proximate them by statements in natural language and then to use fuzzy logic
to represent these statements and deal with them as needed. This approach
to developing perception-based machines, which is currently a subject of ac-
tive research, is referred to in the literature as computing with words [18, 24].
This evocative term was coined by Zadeh [22]; to capture its meaning, we can
hardly do better than to quote from his more recent paper:

“Computing, in its usual sense, is centered on manipulation of numbers and symbols.
In contrast, computing with words is a methodology in which the objects of compu-
tation are words and propositions drawn from a natural language [. . . ]. Computing
with words is inspired by the remarkable human capability to perform a wide variety
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G.J. Klir and K. Sentz: On the Issue of Linguistic Approximation, StudFuzz 209, 61–78 (2007)



62 George J. Klir and Kari Sentz

of physical and mental tasks without any measurements and any computations. Fa-
miliar examples of such tasks are parking a car, driving in heavy traffic, playing golf,
riding a bicycle, understanding speech, and summarizing a story. Underlying this
remarkable capability is the brain’s crucial ability to manipulate perceptions – per-
ceptions of distance, size, weight, color, speed, time, direction, force, number, truth,
likelihood, and other characteristics of physical and mental objects. Manipulation of
perceptions plays a key role in human recognition, decision and execution processes.
As a methodology, computing with words provides a foundation for a computational
theory of perceptions – a theory which may have an important bearing on how hu-
man beings make – and machines might make – perception-based rational decisions
in an environment of imprecision, uncertainty and partial truth.

A basic difference between the perception and measurements is that, in general,
measurements are crisp whereas perceptions are fuzzy. One of the fundamental aims
of science has been and continues to be that of progressing from perceptions to
measurements. Pursuit of this aim has led to brilliant successes. [. . . ]. But alongside
the brilliant successes stand conspicuous underachievements and outright failures.
We cannot build robots which can move with the agility of animals or humans; we
cannot automate driving in heavy traffic; we cannot translate from one language to
another at the level of a human interpreter, we cannot create programs which can
summarize nontrivial stories; our ability to model the behavior of economic systems
leaves much to be desired; and we cannot build machines that can compete with
children in the performance of a wide variety of physical and cognitive tasks.

It may be argued that underlying the underachievements and failures is the

unavailability of a methodology for reasoning and computing with perceptions rather

than measurements.” [23, p. 105].

Computing with words can thus be viewed as an underlying methodology
for computing with perceptions. It utilizes the capability of natural language
to approximate perceptions. However, the meaning of statements in natural
language is strongly context dependent. Once we approximate them in the con-
text of each particular application by appropriate propositions of fuzzy logic,
we can utilize all available resources of fuzzy logic to formalize approximate,
human-like reasoning [1, 10, 11, 19]. Sound metamathematical foundations for
this approximate reasoning have already been developed [5].

The usual outcome of reasoning with fuzzy propositions is a fuzzy set [10].
For some purpose (such as control), we need to replace this fuzzy set with a sin-
gle value which, in some sense, is its best representative. This replacement (or
a single-value approximation) of the given fuzzy set is called a defuzzification
[10]. For other purposes (such as communication of intelligent machines with
human beings), we need to approximate the given fuzzy set by an appropriate
linguistic term represented by another fuzzy set. This latter approximation is
of our interest in this article and we use the term “linguistic approximation”
in this sense. Our primary approach to dealing with this approximation issue
is based on quantifying information closeness between the given fuzzy set and
its approximation. However, we also examine several other approaches.

Although we assume that the reader is familiar with fundamentals of fuzzy
set theory and fuzzy logic, we introduce relevant concepts and symbols in sec-
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tion 2. The problem of linguistic approximation that is of our interest in this
article is discussed in section 3. Information-based approximation is intro-
duced in section 4 and several other approaches to linguistic approximation
are examined in section 5. The various approaches are illustrated and com-
pared by examples in sections 6 and 7. Our conclusions are presented in section
8.

2 Relevant Concepts and Notation

In this article, we consider only standard fuzzy sets, and we denote them by
capital letters. To define a standard fuzzy set A on a universal set of concern,
X, a value in the unit interval [0, 1] is assigned to each element x of X. This
number is viewed as the degree of membership of x in A. The function defining
these assignments for all elements in X is called a membership function of A.
According to the common practice, we use the same symbol for a membership
function and the associated fuzzy set. A degenerate fuzzy set for which A(x) ∈
{0, 1} for all x ∈ X is called a crisp set.

The largest membership degree defined by A is called a height of A and
we denote it by hA. When hA = 1, A is called a normal fuzzy set . For each
α ∈ [0, 1], we define a crisp set

αA = {x ∈ X|A(x) ≥ α}, (1)

which is called an α-cut of A. It is well established [10] that the family of
α-cuts αA for all α ∈ [0, 1] is a unique representation of A. That is, there
is a one-to-one correspondence between membership functions of fuzzy sets
and their α-cut representations. Any property of classical set theory can be
extended to fuzzy set theory by requiring that it be preserved in the classical
sense in each α-cut of a given fuzzy set. Properties of fuzzy sets that satisfy
this requirement are called cutworthy properties.

When a fuzzy set A is defined on a finite universal set X, its sigma count,
|A|, is defined by the formula

|A| =
∑

x∈X

A(x). (2)

The most common operations of a complement, intersection, and union
of fuzzy sets, which are usually referred to in the literature as the standard
operations, are defined for all x ∈ X by the following formulas:

A(x) = 1−A(x) (standard complement),
(A ∩B)(x) = min{A(x), B(x)} (standard intersection),
(A ∪B)(x) = max{A(x), B(x)} (standard union).
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Standard intersection and union are the only cutworthy operations among
all possible intersections and unions of fuzzy sets. None of the operations of
complement of fuzzy sets is cutworthy.

Given two fuzzy sets, A and B, defined on the same universal set X, A is
said to be a subset of B if and only if

A(x) ≤ B(x) (3)

for all x ∈ X. The usual notation A ⊆ B is used to signify that A is a subset of
B. It is also useful to define a more general concept, the degree of subsethood,
S(A ⊆ B), by the formula:

S(A ⊆ B) =
|A ∩B|
|A| (4)

The family of all fuzzy subsets of X is called the fuzzy power set of X and it
is denoted by F(X).

Fuzzy sets that are defined on the set R of real numbers (i.e. X = R) have
a special significance in this article. They are interpreted as fuzzy intervals if
they satisfy the following requirements:

1. they are normal fuzzy sets;
2. their supports are bounded;
3. their α-cuts are closed intervals of real numbers for all α ∈ [0, 1].

When A(x) = 1 for exactly one x ∈ R, then this special fuzzy interval A
is called a fuzzy number. A convenient way of expressing any fuzzy interval A
is the canonical form

A(x) =






fA(x) when x ∈ [a, b),
1 when x ∈ [b, c],
gA(x) when x ∈ (c, d],
0 otherwise,

(5)

where x ∈ R, fA is a real-valued function that is nondecreasing and continuous
from the right, gA is a real-valued function that is nonincreasing and contin-
uous from the left, and a, b, c, d are real numbers such that a ≤ b ≤ c ≤ d.
When b = c, A is a fuzzy number. Given any fuzzy interval A in this canonical
form, its α-cuts are expressed for all α ∈ (0, 1] by the formula

αA =

{
[f−1

A (α), g−1
A (α)] when α ∈ (0, 1),

[b, c] when α = 1,
(6)

where f−1
A and g−1

A are inverse (or pseudoinverse) functions of fA and gA,
respectively.
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For fuzzy intervals, equation (2) is not directly applicable. However, it
is meaningful to modify the definition of the sigma count by replacing the
summation in (2) by integration. That is,

|A| =
∫

X

A(x)dx (7)

when A is a fuzzy interval. This modified definition is then used in (4) when
A and B are fuzzy intervals.

A linguistic variable [20, 21] is a variable whose states are fuzzy intervals
(or fuzzy numbers) rather than real numbers. Each of these fuzzy intervals
represents the meaning of a linguistic term in the context of a particular
application. More specifically, a linguistic variable consists of the following
components:

1. a name, which should adequately capture its meaning;
2. a base variable, which is an ordinary real-valued variable with its range of

values (a closed interval of real numbers);
3. a set of linguistic terms that refer to values of the base variable;
4. a semantic rule, which assigns to each linguistic terms its meaning, in a

given application context, by an appropriate fuzzy interval (or a fuzzy
number) defined on the range of the base variable.

As is discussed in Section 3, linguistic variables play a crucial role in the kind
of linguistic approximation that is of our concern in this article.

Each fuzzy set involves two basic types of uncertainty: fuzziness and
nonspecificity [9]. While fuzziness is linguistic uncertainty , nonspecificity is
information-based uncertainty . In this article, we develop an approach to lin-
guistic approximation that is based on the information-based uncertainty:
nonspecificity. For fuzzy sets on a finite universal set X, the measure of non-
specificity is a generalization of the classical Hartley measure for crisp sets
[9]. Given a normal fuzzy set A on a finite universal set X, the generalized
Hartley measure of nonspecificity of A, GH(A), is defined by the formula

GH(A) =
∫ 1

0

log2 |αA|dα, (8)

provided that the measurement units are bits. One bit of uncertainty is equiv-
alent to the uncertainty regarding the truth value of one elementary proposi-
tion. This measure is well justified and its uniqueness has been proven [9].

For normal fuzzy sets defined on an infinite universal set X (a convex
subset of the n-dimensional Euclidean space Rn for some n ≥ 1), a generalized
Hartley-like measure of nonspecificity, GHL, is also well established [9, 16]. It
is defined by the formula

GHL(A) =
∫ 1

0

min
t∈T

log2[
n∏

i=1

(1 + µ(αAit
)) + µ(αA)−

n∏

i=1

µ(αAit
))]dα, (9)
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where A is a convex fuzzy subset of X, T is the set of all isometric transfor-
mations from one orthogonal system to another, Ait

is the i-th projection of
A in coordinate system t, and µ denotes the Lebesgue measure. When n = 1,
which is the case of our interest in this article, equation (9) reduces to

GHL(A) =
∫ 1

0

log2[1 + µ(αA)]dα. (10)

3 Linguistic Approximation of Fuzzy Sets

The problem of linguistic approximation that is of our interest in this article
can be described, in general, as follows. A linguistic variable v is given whose
base variable x ranges over the interval X = [x, x]. We assume that v is
associated with a set of linguistic terms, L = {L1, L2, . . ., Ln}, and that these
linguistic terms are represented by a family of specific fuzzy intervals F =
{F1, F2, . . ., Fn} defined on X. Fuzzy intervals in F are usually referred to as
granules. We assume that n ≥ 2 and that any linguistic term Li is represented
by a fuzzy interval (granule) Fi for each i ∈ Nn, where Nn = {1, 2, . . ., n}. We
also assume that F is a fuzzy partition of X so that

n∑

i=1

Fi(x) = 1 (11)

for all x ∈ X, and that Fi ≺ Fi+1 for all i ∈ Nn−1, where ≺ denotes the
partial ordering of fuzzy intervals [10]. Given now a fuzzy set A expressing
information about the actual value of variable x (i. e. A is a fuzzy interval on
X), our aim is to determine the most descriptive linguistic approximation of A
in terms of the linguistic terms available in L. To illustrate possible variations
of this approximation problem, let us consider the following cases:

1. the approximation is required to have the form “x is Li” for some partic-
ular Li ∈ L,

2. the approximation may be in the form “x is EXPR(L1, L2, . . . , Ln)”,
where EXPR denotes a linguistic expression containing two or more lin-
guistic terms in L represented by fuzzy intervals in F that are combined
by appropriate logical connectives;

3. the approximation may be in the form “x is m(Li)” for some particu-
lar Li ∈ L, where m denotes an appropriate modifier describing some
linguistic hedge;

4. the approximation may be in a form that is some combination of the forms
described in variations 2 and 3.

Variation 1 is clearly the simplest one. At the same time, it is also the most
restrictive one. Variations 2 and 3 allow us to obtain more expressive linguis-
tic approximations, and the expressiveness of variation 4 is clearly superior
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to both of them. When none of the variations is sufficient for obtaining an
adequate approximation of A by granules in F , the only possibility is to refine
(or enlarge in some other way) the set of granules in F and the associated set
of linguistic terms L.

Although we primarily address variation 1 in this article (see sections 4-
6), we discuss some possible enhancements of this basic way for dealing with
linguistic approximation as well (see section 7).

Throughout this article, we assume that A is a fuzzy interval. This is a
reasonable assumption with one exception. The result of a fuzzy inference may
be a fuzzy set on R that is not normal. Let us denote this fuzzy set by B and
let us assume that hB ≤ 1. When hB < 1, then we need to convert B to its
normal counterpart A. As is now well established [8], there is only one way to
make this conversion from B to A without changing evidence conveyed by B:
for all x ∈ X,

A(x) = B(x) + 1− hB . (12)

Clearly, when B is normal (hB = 1), then A = B.

4 Most Informative Approximation

The simplest problem (variation 1) of the linguistic approximation of our
interest may be formulated as follows: Given a fuzzy set A and a family of
fuzzy sets F = {Fi|i ∈ Nn}, all defined on the same universal set X, determine
a particular set Fi from the family that best describes A. The term “best
describes” may of course be interpreted in different ways. If we interpret it as
“Fi is the most informative granule in F about A”, then our choice should be
based on measuring for each Fi the relevant amount of information about A,
and choose the one with the highest amount.

As is well known [9], information is measured by a reduction of uncertainty.
In our case, uncertainty is measured by the generalized Hartley-like measure
defined by equation (10) or, when we deal with a discrete approximation of
X, by the generalized Hartley measure defined by equation (8).

Using the generalized Hartley-like measure, we define the degree of infor-
mativeness of Fi about A by the formula

I(Fi, A) = 1−
∫ 1

0
log2[1 + µ(αFi ∪ αA)− µ(αFi ∩ αA)]dα
∫ 1

0
log2[1 + µ(αFi ∪ αA)]dα

. (13)

Two desirable properties of this degree of informativeness can readily be ob-
served:

• I(Fi, A) = 0 if and only if Fi ∩A = ∅;
• I(Fi, A) = 1 if and only if Fi = A.
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In addition to (13), we also consider an alternative definition of the degree
of informativeness that is based on the information metric distance introduced
for possibility theory by Higashi and Klir [6]. In terms of the generalized
Hartley-like measure defined by (10), the metric distance between Fi and A,
D(Fi, A), has the form

D(Fi, A) = 2 ·GHL(Fi ∪A)−GHL(Fi)−GHL(A). (14)

Its minimum, Dmin(Fi, A) = 0, is obtained for Fi = A. Its maximum,
Dmax(Fi, A), is obtained for Fi ∩A = ∅ and has the value

Dmax(Fi, A) = 2 ·GHL(Fi + A)−GHL(Fi)−GHL(A), (15)

where

GHL(Fi + A) =
∫ 1

0

log2[1 + µ(αFi) + µ(αA)]dα. (16)

Information closeness is then defined by the difference Dmax(Fi, A)−D(Fi, A),
and its normalized version,

I ′(Fi, A) = 1− 2GHL(Fi ∪A)−GHL(Fi)−GHL(A)
2GHL(Fi + A)−GHL(Fi)−GHL(A)

, (17)

may be viewed as the degree of informativeness of Fi about A and vice versa.

5 Other Approaches to Linguistic Approximation

In this section, we explore four alternative approaches to linguistic approxi-
mation. We employ the same notation and deal with the same issues that are
introduced in section 3. The difference from the information-based approach
is that the degree of informativeness defined by (13) or (17) is replaced with
alternative definitions of the degree of approximation.

5.1 Approximate Equality of Fuzzy Sets

In this approach, we utilize the concept of approximate equality of two fuzzy
sets. This concept emerged in the context of fuzzy relation equations [4], where
it has been employed for dealing with approximate solvability [10]. Given two
fuzzy sets, A and B, their degree of equality, E(A,B), is usually defined by
the formula

E(A,B) = min{S(A ⊆ B), S(A ⊇ B)}, (18)

where the function S is defined by equation (4). Three desirable properties of
E for linguistic approximation can be readily recognized:

• E(A,B) = 0 if and only if A ∩B = ∅;
• E(A,B) = 1 if and only if A = B;
• if A ⊆ B ⊆ C, then E(A,B) ≥ E(A,C) and E(B,C) ≥ E(A,C).
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5.2 Tolerance Relation

The problem of linguistic approximation can be formulated in terms of a fuzzy
tolerance relation, T , defined on the fuzzy power set F (X). Defining T by the
formula

T (Fi, A) = 1−
∫

X
|Fi(x)−A(x)|dx

∫

X
[Fi(x) + A(x)]dx

, (19)

where |Fi(x)−A(x)| denotes here the absolute value of the difference, we may
interpret T (Fi, A) as the degree of tolerance to approximate fuzzy set A by
fuzzy set Fi.

We can see that T (Fi, A) = 0 iff Fi ∩ A = ∅ and T (Fi, A) = 1 iff Fi = A.
Moreover, the degree of approximation decreases with the difference |Fi(x)−
A(x)|, which is a desirable property.

5.3 Max-Min Ratio

In this approach, the degree of approximation, M(Fi, A), is defined by the
formula

M(Fi, A) =

∫

X
min{Fi(x), A(x)}dx

∫

X
max{Fi(x), A(x)}dx

(20)

The operations min and max represent here, respectively, the standard op-
erations of intersection and union on fuzzy sets. Clearly, M(Fi, A) = 0 iff
Fi ∩A = ∅ and M(Fi, A) = 1 iff Fi = A.

Equation (20) may be modified by replacing the min operation with an-
other t-norm or with an averaging operation, Ave, such that

Ave(0, a) = Ave(a, 0) = 0 (21)

for any a ∈ [0, 1]. Replacing, for example, min with the geometric average, we
would obtain an alternative degree of approximation, G(Fi, A), given by the
formula

G(Fi, A) =

∫

X

√
Fi(x) ·A(x)dx

∫

X
max{Fi(x), A(x)}dx

(22)

5.4 Closeness of Fuzzy Intervals

This approach to linguistic approximation is based on the concept of a nor-
malized distance between fuzzy intervals [17]. Using fuzzy intervals of our
concern, Fi ∈ F and A (both defined on X = [x, x]), the degree of closeness
between Fi and A, C(Fi, A), is defined by the formula

C(Fi, A) = 1−
∫ 1

0
[|f

i
(α)− a(α)|+ |f i(α)− a(α)|]dα

2(x− x)
. (23)

As can be easily shown, the term
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Fig. 1. Three families of fuzzy sets.

D(Fi, A) =
∫ 1

0

[|f
i
(α)− a(α)|+ |f i(α)− a(α)|]dα (24)

in this formula is a metric distance between Fi and A. The term 2(x − x)
in equation (23) is the largest value of D(Fi, A), which is obtained when Fi
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and A collapse to real numbers x and x. The value of C(Fi, A) expresses
thus the opposite of the distance between Fi and A, i.e. their closeness. It is
obvious that C(Fi, A) = 1 iff Fi = A. However, Fi ∩ A = ∅ does not imply
C(Fi, A) = 0, which is a deficiency of this approach.

6 Examples

The purpose of this section is to examine and compare the proposed ap-
proaches to linguistic approximation. We begin with three linguistic variables
defined on the same numerical base variable whose range is [0, 4]. The lin-
guistic variables have 9, 5, and 3 linguistic states, respectively, which are
represented by the families of fuzzy sets identified in figure 1 as (a), (b), and
(c). Linguistic states that these fuzzy sets represent are:

1. close to 0, close to 0.5, close to 1, . . . , close to 4 ;
2. very small, small, medium, large, very large;
3. small, medium, large.

Also shown in figure 1 is fuzzy set A whose approximation in terms of the
linguistic terms available in each case is to be determined.

First, we need formal descriptions of the fuzzy sets defined by their graphs
in figure 1. From the graphs, we obtain the following formulas:

1. For all i ∈ N9,

Fi(x) =






2x + 2− i when x ∈ [max{0, (i− 2)/2}, (i− 1)/2]
i− 2x when x ∈ [(i− 1)/2,min{4, i/2}]
0 otherwise,

αFi = [max{0,−1 + (i + α)/2},min{4, (i− α)/2}]
2. For all i ∈ N5,

Fi(x) =






min{1, 2x− 2i + 3.5} when x ∈
[max{0, i− 1.75},max{0, i− 1.25}]

1 when x ∈
[max{0, i− 1.25},min{4, i− 0.75}]

min{1, 2i− 2x− 0.5} when x ∈
min{4, i− 0.75},min{4, i− 0.25}]

0 otherwise

αFi = [max{0, i− 1.75 + 0.5α},min{4, i− 0.25− 0.5α}]
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Table 1. Degrees of linguistic approximations for the three situations (a), (b), and
(c) in figure 1.

(a) F4 F5 F6 F7 F8 F9

(13) .004 .096 .186 .245 .385 .096

(17) .012 .118 .323 .392 .593 .123

(18) .015 .132 .324 .373 .471 .118

(19) .020 .180 .440 .507 .640 .190

(20) .010 .099 .282 .340 .471 .105

(b) F3 F4 F5

(10) .121 .413 .164

(17) .166 .682 .270

(18) .235 .666 .262

(19) .242 .687 .313

(20) .138 .530 .220

(c) F2 F3

(10) .154 .645

(17) .247 .653

(18) .281 .706

(19) .367 .727

(20) .225 .571

3. For all i ∈ N3,

Fi(x) =






min{1, x− 2i + 3.5} when x ∈
[max{0, 2i− 3.5},max{0, 2i− 2.5}]

1 when x ∈
[max{0, 2i− 2.5},min{4, 2i− 1.5}]

min{1, 2i− x− 0.5} when x ∈
[min{4, 2i− 1.5},min{4, 2i− 0.5}]

0 otherwise

αFi = [max{0, 2i + α− 3.5},min{4, 2i− α− 0.5}]
Moreover,

A(x) =






(x− 1.75)/1.5 when x ∈ [1.75, 2.5)
0.5 when x ∈ [2.5, 3)
x− 2.5 when x ∈ [3, 3.5)
8− 2x when x ∈ [3.5, 4]
0 otherwise

αA =

{
[1.5α + 1.75, 4− 0.5α] when α ∈ (0, 0.5]
[α + 2.5, 4− 0.5α] when α ∈ (0.5, 1]

The various degrees of linguistic approximations of the given fuzzy set A
by granules shown in figure 1 are given in table 1. The three sets of granules
are identified in both figure 1 and table 1 as (a), (b), and (c). Each row
in the tables refers to an equation that defines the respective type of the
degree of approximation. Columns in the tables correspond to granules in
the three groups. Only nonzero degrees of approximation are shown in the
tables. For example, the degree of approximation for F1 is equal to zero in
each of the three sets of granules and for each of the considered definitions of
the approximation degree. We do not show degrees of approximation based
on equation (23) since this definition is ill suited for our purpose. For F1 in
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group (c), for example, we have C(F1, A) = 0.484, which is not acceptable in
our context.

We can see from table 1 that the same granule in each group has the
highest degree of approximation in terms of all the considered definitions: F8

in group (a); F4 in group (b); and F3 in group (c). These unique maxima are
also in these cases compatible with our intuition. The granule with the next
highest degree of approximation is also unique in each group. Moreover, the
order of granules in each group by their degrees of approximation is almost the
same for all the considered definition. Hence, there does not seem to be any
significant differences between the five approaches that are based on equations
(13) and (17)-(20).

Let Apr(Fi, A) denote the degree of approximation of A by Fi based on one
of the five considered definitions or, possibly, some other definition. Regardless
of which of the definitions is used, the fundamental question is: Knowing values
of Apr(Fi, A) for a given fuzzy set A and all granules Fi in a given set F , which
of the granules in F , if any, should be chosen as the best approximation of
A? We believe that a particular granule Fk ∈ F is acceptable as a sound
approximation of A provided that the following requirements be satisfied:

• Apr(Fk, A) > Apr(Fi, A) for all i �= k;
• Apr(Fk, A) ≥ γ, where γ is a specified minimum acceptable degree of

approximation (a practical value of γ should be close to 1);
• Apr(Fk, A)−max

i�=k
{Apr(Fi, A)} ≥ δApr(Fk, A),

where δ is a specified minimum acceptable fraction of Apr(Fk, A) by which
the approximation degree of Fk is required to exceed the next highest ap-
proximation degree for granules in F (a practical value should be close to
0.5).

When some of these requirements are violated for chosen values γ and δ,
we need to invoke some of the other variations of linguistic approximation
within F or, possibly, deal with the approximation by modifying F .

7 Approximation Enhancement

It is important to recognize that we always deal with linguistic approximation
in a given application context. We may thus assume that each granule Fi ∈ F
was properly constructed to represent the meaning of the associated linguistic
term Li ∈ L in this application context. If, under this assumption, a particular
granule Fk ∈ F is found to be an acceptable approximation of a given fuzzy set
A (according to the requirements stated in section 6), then the corresponding
linguistic term captures well the information conveyed about the base variable
x by A. If, however, none of the granules in F is an acceptable approximation
of A, we need to construct additional granules by combining or modifying
the given granules in F . It is crucial that each constructed granule represents



74 George J. Klir and Kari Sentz

properly the meaning of some linguistic term, as understood in the given
application context.

In this paper, we consider only two methods of constructing meaningful
new granules. The first method is based on taking appropriate unions of two
or more contiguous granules in F , the second one is based on modifying indi-
vidual granules in F appropriately to account for some linguistic hedges.

In order to describe the first method, we begin by considering unions
Fi ∪ Fi+1 of two contiguous granules for all i ∈ Nn−1 and assigning each
of them to the linguistic expression “Li or Li+1”. To represent adequately
the usual meaning of these linguistic expressions in natural language, the
chosen operation of union (t-conorm) cannot be arbitrary. It must be such
that Fi ∪ Fi+1 is again a fuzzy interval. When F is a fuzzy partition, as is
assumed here, this requirement is satisfied by using the bounded sum defined
for each x ∈ X by the formula

(Fi ∪ Fi+1)(x) = min[1, Fi(x) + Fi+1(x)]. (25)

In a more general case, when F is not a fuzzy partition, the requirement
is satisfied by using the drastic union [10]. If desirable, we can take unions of
more than two contiguous granules. In the extreme case, when we take the
union of all of them, we obtain of course the whole universal set X.

As an example, consider the granules in figure 1(b). Using the information
closeness defined by equation (13), A is best approximated by granule F4 with
the degree of approximation 0.413 (see table 1). We can obtain a higher degree
of approximation 0.618, when we take F4 ∪ F5. The linguistic expression “x
is large or very large” is thus more accurate then the expression “x is large”.

As another example, consider the granules in figure 1(a) and let A be
defined for all α ∈ (0, 1] by its α-cut representation

αA = [1.25−
√

1− α, 1.25 +
√

1− α]. (26)

In this case, the same maximum degree of informativeness is obtained for two
granules: I(F3, A) = I(F4, A) = 0.545. This suggests to consider the union
of these granules, for which we obtain I(F3 ∪ F4) = 0.864. The linguistic
expression “x is close to 1 or 1.5” is thus by far more informative about A
than either “x is close to 1” or “x is close to 1.5.” The situation is illustrated
in figure 2(a). We obtain similar results when A has the same location but a
different shape, as shown in figure 2(b). In this case, A is defined by

αA = [
√

α + 0.25, 2.25−
√

α]. (27)

The relevant degrees of informativeness are I(F3, A) = I(F4, A) = 0.199 and
I(F3∪F4) = 0.565. Again, the union of the two granules is considerably more
informative about A than either of them alone.

The issue of modifying fuzzy sets to account for linguistic hedges is a
complex one [7, 12]. We do not intend to investigate this issue, only to illustrate
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(a) (b)

Fig. 2. Modelling the informativeness of linguistic expressions.

(a) (b)

Fig. 3. A range of modified granules MF3(δ).

that linguistic hedges play a useful role in linguistic approximation. As an
example, consider again the set of granules in figure 1(a) and let

αA = [1−
√

1− α, 1 +
√

1− α]. (28)

We can readily determine that F3 is the most informative granule. How-
ever, its degree of informativeness about A is only 0.272, which is rather small.
This degree can be increased by using the linguistic hedge somewhat, which
would allow us to describe the information conveyed by A as “x is somewhat
close to 1.” A simple way of representing this linguistic hedge is to modify F3

to MF3 by extending its support from (0.5, 1.5) to (0.5 − δ, 1.5 + δ), where
δ is a small positive number. Considering, for example, that δ ∈ [0, 0.5], we
obtain a range of modified granules MF3(δ) illustrated in figure 3(a) by the
shaded area. Their α-cuts are:



76 George J. Klir and Kari Sentz

αMF3(δ) = [0.5− δ + (0.5 + δ)α, 1.5 + δ − (0.5 + δ)α]. (29)

The values of I(MF3(δ), A) for all δ ∈ [0, 0.5] are shown in figure 3(b). The
value is 0.659 for δ = 0.5. However, we can still obtain a better approximation
of A, 0.844, by taking the union F2 ∪ F3 ∪ F4.

8 Conclusion

Except for a few scattered discussions in the literature [2, 3, 15, 17], the prob-
lem of linguistic approximation has not been sufficiently investigated. It is
fair to say that no comprehensive methodology for dealing with the problem
has been developed as yet. Our motivation for writing this paper was rather
modest. We wanted to attract the attention of both linguists and mathemati-
cians to this interesting, important, and challenging problem, and we wanted
to introduce and explore an information-theoretic approach to deal with it. In
this approach, which is based on some fairly recent results in generalized in-
formation theory [9], we formulate the degree of approximation as the degree
of informativeness of one fuzzy set about another one. We define the degree of
informativeness in two ways. One of them (defined by equation (17)) is based
on the well-established metric distance between possibility distributions [6].
The other one (defined by equation (13)) is introduced here for the first time.
Our conjecture is that it is also based on a metric distance. This conjecture
is supported by a preliminary proof, which needs to be properly scrutinized.

We also suggested four other types of the degree of approximation. One
of them (defined by equation (23)) was found deficient for our purpose and
was not further pursued. The remaining types behaved in our examples as
expected. It seems significant that the degree of informativeness defined by
equation (13) was consistently the smallest one. This seems to suggest that
the information-theoretic approach is the most guarded one. We also believe
that defining the degree of approximation in information-theoretic terms is
epistemologically sound.

To formulate linguistic approximation in terms of a finite family F of fuzzy
intervals that form a fuzzy partition of X is somewhat restrictive. We can make
it less restrictive by allowing meaningful combinations of the fuzzy intervals
in F and some relevant modifiers. Assuming, for example, that |F | = n, that
we use all possible unions of contiguous fuzzy intervals in F , and that we
recognize m modifiers, the number of linguistic expressions we are capable of
representing is extended from n to mn(n+1)/2. This is certainly a substantial
extension, but it may still be restrictive for some purposes.

We can imagine an alternative approach to linguistic approximation that
is not based on a finite family of predefined fuzzy intervals. Instead, the given
fuzzy interval A is converted to an approximating fuzzy interval F of a certain
type that has a meaningful linguistic interpretation (in context of a given
application) and is the most informative one about A. The idea of a verbal
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quantity introduced by Mareš and Mesiar [13, 14] seems quite relevant for this
purpose.

We envision the following steps as a possible way of developing the alter-
native approach in information-theoretic terms:

1. Determine the value of α for which GHL(αA) = GHL(A); αA may be viewed
as the most informative crisp set representing A.

2. Take the midpoint, a(α), of αA determined in step 1 as the most informa-
tive real number representing A.

3. Use a(α) or some crisp interval around it (to make the linguistic interpre-
tation more meaningful) as the core, 1F , of the constructed fuzzy interval
F that is supposed to approximate A.

4. Determine the fuzzy interval F with the core, 1F chosen in step 3
whose membership function conforms to a desirable shape and for which
GHL(F ) = GHL(A).

We intend to investigate this fairly specific approach to linguistic approxi-
mation in the future. In the meantime, we hope that this paper will stimulate
the interest of other researchers to address this extremely challenging problem.
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[13] M. Mareš and R. Mesiar. Calculation over Verbal Quantities. In L. A.
Zadeh and J. Kacprzyk, editors, Computing with Words in Informa-
tion/Intelligent Systems, volume 1, pages 409–427. Physica, 1999.
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1 Introduction

A key topic in the work of Burghard Rieger is the notion of meaning. To
explore this notion, he and his collaborators developed a most sophisticated
approach combining theoretical ideas and concepts of semiotics with empir-
ical and numerical tools of computational linguistics (see [29] for a most re-
cent comprehensive account). In the present contribution, relations of Rieger’s
achievements to some issues of interest in the physics and philosophy of com-
plex systems will be addressed.

The notion of meaning will first be introduced in the framework of the
Cartesian distinction between mind and matter or, more precisely, between
states and properties of mental and material systems as well as their dynamics.
In this dualistic framework, meaning can be formulated in terms of a reference
relation between a descriptive term (in a model or a theory) and an object
(or a set of objects) in the material world.

Such a reference relation can be considered from a semiotic point of view
first proposed by Peirce. Within the semiotic triad of syntactics, semantics,
and pragmatics, the notion of meaning forces us to leave a purely syntactic
level of discussion and include questions of semantics and pragmatics.

The significance of the semiotic triad in a relatively new field of modern
physics, the study of complex systems, will then be outlined. The crucial
point is that the concept of complexity can be defined in a way permitting a
straightforward semiotic interpretation. This interpretation may be conversely
used to discuss basic methodological cornerstones of traditional physics in view
of some of its novel developments.

Some speculative perspectives toward an implicit, non-dualistic kind of
meaning without explicit reference relations conclude this contribution. This
reflects Peirce’s conviction that semiotics is ultimately holistic. In terms of
Rieger’s approach, it reflects the idea that mental processes “not only cut
across the distinction of mind and matter but can even be considered to
underlie and allow for this distinction” ([29], p. 352).

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
H. Atmanspacher: A Semiotic Approach to Complex Systems, StudFuzz 209, 79–91 (2007)
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2 The Cartesian Distinction

In the night from November 10 to 11, 1619, close to the German city of
Ulm, the French soldier René Descartes had a series of dreams.1 According to
virtually all biographers of Descartes, these dreams were of key influence for
his future philosophical insights and achievements. Waking up the morning of
November 11, he was left with the persistent question of how he could ever
know for sure whether he was indeed awake or still dreaming. Major parts
of his philosophy were motivated by the crucial question of how to reliably
distinguish between dream and reality, including the most fundamental issue
of the reality of one’s own existence. Descartes’ solution of this problem is
reflected in his famous “cogito ergo sum”, one of the most-cited quotations of
European philosophy.

Roughly speaking, this solution rests on Descartes’ proposal to distinguish
material and mental domains of reality, leading to Cartesian dualism as an
essential part of his philosophy. Of course, this dualistic stance does not char-
acterize his thinking exhaustively. Descartes’ philosophical writings are very
rich, they are partially incoherent, and they cover much more than the split
of matter and mind. Nevertheless, it is correct to speak of a “Cartesian”
distinction at least insofar as some of Descartes’ successors, notably those
who contributed to the development of the natural sciences, compactified and
simplified Descartes’ thoughts considerably. For this reason the notion of a
Cartesian distinction, or Cartesian cut [27], should be considered as a central
term of “scientific Cartesianism”.

Since Descartes’ time, the Cartesian distinction turned out to be an ex-
tremely powerful tool for reducing the arbitrariness inherent in the allegorical
and speculative schemes of late scholasticism and Renaissance neoplatonism;
it provided the possibility of a rational, consistent description of reality. In
Descartes’ terminology, the Cartesian distinction splits the entirety of real-
ity into a material component (res extensa) and a non-material component
(res cogitans) [14]. These labels, literally translated, characterize the realms
of “extended substance” and “thinking substance”. The notion of extension
in res extensa refers to the fact that material reality is extended in its spa-
tial location and in its temporal duration (although Descartes himself did not
put much emphasis on the latter). The notion of cognition in res cogitans is
probably best characterized as referring to conscious activity in general rather
than “thinking” in the narrow sense of cognitive capabilities.

1Baillet [6] reported this series of three dreams in his biography of Descartes.
Especially the second and third dream contain elements clearly referring to the
issue of distinguishing between realistic chains of events and unrealistic chains of
events as they are typical for dreams. Of course, much more material is contained
in Baillet’s report which has been analyzed in a number of accounts. For a detailed
interpretation of Descartes’ dreams, together with an overview concerning other
accounts, see [35].
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The Cartesian distinction can therefore be regarded as a conceptual border
between a material and a mental domain. Without any reasonable doubt this
is of central significance for the world view Western science and philosophy
have developed. On the other hand it is obvious that this cut is nothing
more than a conceptual tool – it is itself not an object in the material world,
but belongs to the non-material world of res cogitans. Although Descartes
himself thought he had discovered the cut as an ontological fact superior to
the realms it separates, it is today much more appropriate to say that he
invented it. So the question arises as to whether there might be modes of
mental activity (i.e., operations within res cogitans) reducing the relevance
of the Cartesian distinction, or even avoiding it completely, at least in its
rigorous interpretation of a prescribed and impenetrable border.

This question receives additional motivation by the fact that this border
is simply not recognized during many kinds of mental activity as it operates
in practice. Who does explicitly and consciously distinguish between what he
sees (as a fact) and what he thinks he sees (as his model of this fact)? Is it
possible to make this distinction at all, and, if yes, how can it be cognitively
realized? Moreover – a bit apart from everyday experience, but still close
to the subject of this article – each abstract scientific model contains terms
which refer to objects in the material world of concrete, empirical, material
facts. The corresponding relation of reference is crucial for the possibility to
check the validity of a model [4]. Reference relations of this kind express the
interpretation or, more colloquially, the meaning of conceptual terms with
respect to objects in the material world. In this sense they are relations across
the Cartesian distinction.

In other words, issues of meaning are primary candidates for the connection
of material and mental domains of reality, and they are of fundamentally
relational character. In the following section, another, more recent approach
to address meaning will be outlined.

3 The Semiotic Approach

The father of present-day semiotics is Charles Sanders Peirce. He developed
semiotics as a theory of signs which is always embedded in a framework of
relations. In [26], he says:

“A Sign, or Representamen, is a First which stands in such a genuine triadic relation

to a Second, called its Object, as to be capable of determining a Third, called its

Interpretant, to assume the same triadic relation to its Object in which it stands

itself to the same Object. The triadic relation is genuine, that is its three members

are bound together by it in a way that does not consist in any complexus of dyadic

relations.” [26, vol. 2, §274].

This quotation expresses the basically holistic significance that Peirce as-
cribed to the semiotic triad. Nevertheless, contemporary semiotic approaches
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often, maybe even typically, distinguish the semiotic areas of syntactics, se-
mantics and pragmatics. Syntactics deals with (grammatical or stylistic) in-
terrelations among signs, e.g. in a code. Semantics deals with interrelations
between signs and what they designate, i.e. their meaning. And pragmatics
addresses relations between signs and their users. Correspondingly, one can
conceptually distinguish syntactic, semantic and pragmatic information [25].
In contrast to Peirce’s quotation above, their demarcation may be justified
from an abstract, analytical viewpoint where signs can be considered with-
out their relational context. From a phenomenological (“lifeworld”) point of
view, concrete signs are never context-free: concreteness requires context. In
this sense, the notion of concreteness entails some type of holism, lifting the
conceptual separation inherent in the distinction between syntax, meaning,
and usage.

With respect to models or theories, the syntactic component can be con-
sidered to refer to their formal codification, the semantic component addresses
their interpretation, and the pragmatic component comprises their range of
applications. From this example, it is evident that a formal codification with-
out interpretation and application is possible only in an abstract sense. The
concrete development of a theoretical concept is never isolated from its mean-
ing and, ultimately, usage. Every element of syntax is inseparably linked to
semantic and pragmatic aspects.

Nevertheless, the history of semiotic aspects of information has shown that
it can be methodologically helpful to distinguish them analytically. For par-
ticular technical problems of communication through noisy channels, aspects
of syntactic information were extensively studied in the influential publication
by Shannon [32], which explicitly omits any reference whatsoever to meaning-
related or pragmatic issues. Shannon-type information is purely syntactic in-
sofar as it quantifies by which amount a message carrying information reduces
the uncertainty of a receiver as compared to his/her state before receiving that
message. Weaver’s contribution in [32] already pointed out that this syntac-
tical component of information requires extension to semantic and pragmatic
aspects (for more details see [3]).

Shortly after Shannon’s work, Bar Hillel and Carnap [8] proposed to quan-
tify semantic information based on a receiver’s ability to draw logical conse-
quences from a message. If a message contains a huge amount of syntactic
information, which is not or cannot be understood by its receiver, then he/she
cannot draw conclusions from it. Yet the problem remains how to evaluate, or
operationalize, an understanding of information. Clearly, self-reports may be
insufficient for this purpose, not only since they may be mistaken, but more
importantly for the reason that they can hardly be normalized and, thus, are
incomparable.

At this point, the significance of pragmatic information becomes clear.
If semantic information, i.e. meaning, is understood, then it triggers action,
e.g. changes efficiency, or leaves some other imprint on the behavior of its
receiver. (In this sense, focusing on pragmatic information resembles a par-
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ticular kind of behaviorism.) A corresponding concept has been proposed by
von Weizsäcker [36] and further developed in [16, 23].

It relies on the two notions of primordiality (“Erstmaligkeit”) and confir-
mation (“Bestätigung”). Weizsäcker argued that a (redundant) message that
does nothing but confirm the prior knowledge of a receiver will not change its
structure or behavior. On the other hand, a message providing only material
completely unrelated (primordial) to any prior knowledge of the receiver will
also not change its structure or behavior, simply because it will not be un-
derstood. In both cases, the pragmatic information of the message vanishes.
A maximum of pragmatic information is assigned to a message that transfers
an optimum mixture of primordiality and confirmation to its receiver. For the
limiting case of complete confirmation, purely syntactic Shannon information
and pragmatic information vanish coincidentally. If primordiality is added,
Shannon information increases monotonically.

4 Concepts of Complexity

In recent decades, complexity has become an extremely popular notion cov-
ering a huge variety of different kinds of behavior. From a scientific point of
view, such a colorful concept is useful only in combination with a clear-cut
definition. However, there is a plenitude of different concepts of complexity. A
systematic orientation among them requires a reasonable classification. There
are several approaches that can be found in the literature: two of them are (i)
the distinction of structural and dynamical measures [37] and (ii) the distinc-
tion of deterministic and statistical measures [13]. Another, epistemologically
inspired scheme (iii) assigns ontic and epistemic levels of description to deter-
ministic and statistical measures, respectively [2, 31].

In addition to these approaches, a purely phenomenological criterion for
classification can be given by the functional behavior in which a complexity
measure is related to measures of randomness.2 Within such an approach (for
an early reference see [38]), there are two classes of complexity measures:
(iv) those for which complexity increases monotonically with randomness and
those with a globally convex behavior as a function of randomness (cf. Fig. 1).
It turns out that classifications according to (ii) and (iii) distinguish measures
of complexity in precisely the same manner as (iv) does: deterministic or
ontic measures behave monotonically, and statistical or epistemic measures are
convex. In other words: deterministic (ontic) measures are essentially measures
of randomness, whereas statistical (epistemic) measures are not.

The class of monotonic measures of complexity contains, e.g., algorithmic
complexity [22], various kinds of Rényi information [7] (among them Shan-

2It is worth mentioning that randomness itself is a concept that is anything
but finally clarified. In the framework of the present paper we use the notion of
randomness in the broad sense of an entropy.
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non’s information [32]), multifractal scaling indices [20], or dynamical en-
tropies [21]. The class of convex measures of complexity contains, e.g., effective
measure complexity [17], ε-machine complexity [13], fluctuation complexity
[10], and variance complexity [5]. See also [15, 24] for further discussion.

Fig. 1. Schematic illustration of two different classes of complexity measures, cor-
responding to different information measures and distinguished by their functional
dependence on randomness.

A most intriguing additional difference (v) between both classes can be
recognized if one focuses on the way statistics is implemented in each of these
measures. The crucial point is that convex measures, in contrast to monotonic
measures, are meta-statistically formalized, i.e. effectively represent (in one or
another way) second-order statistics in the sense of “statistics of statistics”.
Fluctuation complexity is the standard deviation (second-order) of a net mean
information flow (first-order); effective measure complexity is the convergence
rate (second-order) of a difference of entropies (first-order); ε-machine com-
plexity is the Shannon information with respect to machine states (second-
order) that are constructed as a compressed description of a data stream



A Semiotic Approach to Complex Systems 85

(first-order); and variance complexity is based on the variance (second-order)
of the mean of many individual variances (first-order) of a distribution of data.
To our knowledge, there is no monotonic complexity measure providing such
a two-level statistical structure. Although it would be desirable to have a the-
orem for the corresponding relationship between convex complexity measures
and their two-level statistical structure, such a theorem is not yet available.

5 Complexity and Information

Since so many complexity measures bear an intimate relation to information
theoretical concepts, it is interesting to see whether first-order and second-
order complexity measures can be related to corresponding information mea-
sures. For this purpose, let us now consider some examples.

Applying a proper algorithm in order to generate a regularly alternating,
periodic pattern, the corresponding generation process is obviously recurrent
after the first steps, i.e., after the generation of the first elements of the pat-
tern. Considering the entire generation process as a process of information
transmission, it presents only confirmation of its first time steps once they
have passed by. In this sense, a regular pattern, exhibiting no complexity,
corresponds to a process of information transmission that has vanishing prag-
matic information (or “meaning”) after an initial transient phase (the first
time steps). This applies to both notions of complexity, the deterministic as
well as the statistical one.

For a completely random pattern the situation is more involved, since de-
terministic complexity and statistical complexity lead to different viewpoints.
Deterministically, a random pattern is generated by an incompressible algo-
rithm which contains as many steps as the pattern contains elements. The
process of generating the pattern is not recurrent within the length of the
algorithm. This means that it never ceases to produce elements that are un-
predictable, except under the assumption that the entire algorithm was known
a priori. Such knowledge, however, would imply that the pattern itself were
known, since the algorithm is nothing but an incompressible description of it.
Hence, the process generating a random pattern can be interpreted as a trans-
mission of information completely lacking confirmation, and consequently with
vanishing pragmatic information.

As a consequence, there is indeed a strong conceptual similarity between
complexity measures and information measures. Pragmatic information is as
convex as second-order complexity, and syntactic information is as monotonic
as first-order complexity (compare again Fig. 1). In this context, it is worth-
while to mention that quite a number of authors have emphasized that the
concept of meaning, reference, or intentionality is essential to a definition of
complexity [1, 2, 11, 12, 17, 19]. For instance, Grassberger wrote:
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“Complexity in a very broad sense is a difficulty of a meaningful task. More precisely,

the complexity of a pattern, a machine, an algorithm, etc. is the difficulty of the most

important task related to it. [. . . ] As a consequence of our insistence on meaningful

tasks, the concept of complexity becomes subjective. We really cannot speak of the

complexity of a pattern without reference to the observer. [. . . ] A unique definition

with a universal range of applications does not exist. Indeed one of the most obvious

properties of a complex object is that there is no unique most important task related

to it.” [18].

This quotation can be assessed in more detail if the two classes of complex-
ity measures and associated information measures as discussed above are taken
into account. Since monotonic, first-order measures of complexity are related
to purely syntactic information, they can only be used to characterize systems
in a way disregarding meaning. If meaning is to be considered explicitly, one
has to proceed to semantic or pragmatic information and associated convex,
second-order measures of complexity. Corresponding definitions of complexity
provide the validity domain to which Grassberger’s quotation applies.

In this respect, a conceptual framework relating second-order complexity
measures to the notion of second-order models of complex systems has been
outlined recently [4]. This approach is motivated by the idea that any refer-
ence relation between models and data, e.g. meaning, can only be explicitly
addressed from the perspective of a meta-model, or second-order model. This
move implies interesting consequences, some of which are explored in [4].

Two points should be stressed at the end of this section. First, the fact that
monotonic complexity is not related to meaning does not imply that corre-
sponding measures are useless or ill-defined. It is obvious that there are many
interesting applications of first-order complexity measures, and their benefit
is that they do not lead to the complications which second-order complexity
entails. Second, it should be kept in mind that, in contrast to syntactic infor-
mation, semantic and/or pragmatic information are not defined as precisely as
desirable. Hence their relation to second-order complexity cannot be demon-
strated as clearly as the relation between monotonic complexity and syntactic
information. Nevertheless, their common feature of convexity is prominent
enough to conjecture an intimate connection between convex complexity and
semantic/pragmatic information.

6 Implicit Meaning without Explicit Reference

Complexity is a concept that has its origin in the study of physical proper-
ties of material systems. Meaning, on the other hand, originates in human
concerns. It has become a topic of philosophy and, more recently, cognitive
science, and is discussed as pertaining to a non-material domain. From this
viewpoint, the concept of meaning is prior to the complexity of the brain as
the material carrier of mental states.
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From a material perspective, however, the complexity of a system is prior
to its capability to constitute and understand meaning. In fact, it seems plau-
sible to expect that a certain degree and kind of complexity is a precondition
for the capability of a system to constitute and understand meaning. Although
it is still unclear what the exact criteria are in this respect, it would certainly
be far too anthropocentric to fix them such as to exclude non-human beings.3

It is even an open question to what extent meaning might be a reasonable
concept for non-living systems. Atlan [1] has proposed distinguishing different
types of complexity and to assign the notion of meaning only to a specific one
among them. Approaches like those of von Weizsäcker [36] or Crutchfield and
Young [13] do not restrict the notion of meaning in this manner.

Focusing back on the convexity of both second-order complexity and prag-
matic information, it is remarkable how the perspectives of physics (complex-
ity) and of cognitive science (meaning) show an explicit complementarity [2, 4].
As Casti states [11], “the impression of complexity often appears as something
like the expression of an experience of meaning”. And Sheriff, interpreting
Peirce, writes similarly:

“We might say that the unlimited complexity of the object that the representamen

[sign] denotes is the “external”, and the indefinite continuity of consciousness that

the interpretant of the sign signifies is the “inward” view of a sign.” [33].

A complementarity relation between two (or more) concepts typically in-
dicates that the respective concepts share important features at a level of
description underlying that at which the complementarity relation applies.
With respect to the notions of complexity and meaning this can be taken as
a hint to look for a common ground at which they are implicitly embedded
and from which they emerge as explicitly different concepts under particular
conditions. A top candidate for such conditions is the need for distinctions in
order to gain epistemic access. In this sense, the Cartesian distinction can be
regarded as a tool that generates the complementary concepts of complexity
and meaning, which are unseparated without that distinction.

Another way to look at scenarios like this, motivated by physical examples,
uses the terminology of symmetry breakings and contextual representations
[28]. Insofar as symmetries (also called invariances) express indistinguishabil-
ity, breaking symmetries means nothing else than introducing distinctions.4 As

3Nevertheless, notions of meaning intended to apply beyond human beings (e.g.,
animals or AI systems) are often configured by analogies or similarities with our
everyday notion of meaning.

4For instance, consider the homogeneity and isotropy of a property of a system in
space. These two terms express translational and rotational symmetry in such a way
that the considered property is indistinguishable with respect to translations and
rotations in space. Breaking the translational symmetry generates distinguishable
(local) positions, breaking the rotational symmetry generates distinguishable (local)
directions.
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Primas [28] has discussed in detail, symmetry breakings, leading to emergent
properties, always require contextual conditions to be fixed. Such contexts
are often introduced by the environment of a system, allowing a contextual
representation of its states and properties that is different from a less specific
(more general) representation of the system without the chosen context.

Introducing new contexts and breaking symmetries is, therefore, a viable
approach to understand the emergence of complexity in physical systems.
Stepping back from the material domain of physics, it is tempting to use the
same idea to describe the emergence of this domain as such versus its non-
material counterpart. This means to apply the notion of a distinction as a, or
even as the, basic tool to achieve epistemic access, i.e. gather knowledge.5 In
this way, the Cartesian distinction of material and mental domains of reality
plays a significant role for the distinction of complexity and meaning.

To the same extent as the distinction between complexity and meaning
is blurred, we have to face a reality in which mind and matter are not as
unrelated as they appear from the viewpoint of traditional science and its es-
tablished methodology. Possible modifications with respect to cornerstones of
scientific methodology have been proposed and discussed elsewhere [4]. Par-
ticularly interesting in this context is the notion of reproducibility, a basic
requirement for using empirical facts and data to reject or confirm models
and theories. This presupposes a well-defined reference relation between the-
oretical terms and empirical data, which can be addressed in a second-order
modeling framework as it is necessary for complex mind-matter systems. For
more details, see [4].

Questioning the unrestricted assumption of a perfect Cartesian distinction,
it becomes problematic to develop or maintain a clear-cut understanding of
complexity and meaning in terms of reference relations between separate men-
tal and material domains. This leads to the question of how meaning could be
conceived without an explicit decomposition of the semiotic triad, i.e. within
the holistic framework of Peirce’s original ideas.

This has been and is a central issue in Rieger’s work. His starting point
within the field of linguistics, as far as I can reconstruct it (see, e.g., [30]),
received major input from the development of “situation semantics” (see, e.g.,
[9]). This approach emphasizes the difference between abstract and concrete
reference relations as discussed above. It focuses on the concrete aspects in
terms of the embodiment and situatedness (and related concepts) of cogni-
tive systems. Their environmental constraints serve as contexts of different
degrees of generality, thus leading to nested systems of corresponding contex-
tual knowledge representations.

Explicitly emphasizing the concrete side of semiosis, the traditional para-
digm of cognitive information processing becomes semiotic in the sense of

5In a pronounced way, Spencer-Brown proposed such a procedure as the basis of
all cognitive activity in [34]: “We take as given the idea of distinction and the idea of
indication, and that we cannot make an indication without drawing a distinction.”
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Peirce’s original intention. Using fairly sophisticated formal instruments and
concepts, Rieger developed a wonderfully refined framework allowing him to
define and model the constitution and understanding of meaning on the em-
pirical basis of natural language structures. Readers interested in details will
especially enjoy sec. 5 in [29], which is compactly summarized in Fig. 6 of [29].

It is evident that modeling concrete aspects of semiotics requires a second-
order approach insofar as any model of those concrete aspects is inevitably
abstract. Therefore, a natural extension of semiotic cognitive information
processing models is the concrete implementation of these models in terms of
“agents” capable of constituting and understanding meaning. Indeed, success-
ful first steps into this direction have been reported in sec. 7 of [29]. Although
these first steps are still fairly simple, they allow us to hope for further insight
into the fascinating problem of how meaning can emerge from an implicit,
holistic domain to an explicit reference relation.

I do not know a comparably viable and promising approach to address
the problem of meaning, as related to mind-matter relations in general, with
such detailed knowledge and broad relevance. Rieger’s work is so attractive
because it combines the merits of being philosophically informed, conceptually
convincing, formally elaborated and empirically grounded. He has initiated
and achieved continuing progress concerning our understanding of the notion
of meaning – one of the most difficult and most interdisciplinary topics of
consciousness research. Independent of the hustle and bustle of contemporary
“scientific business” and all its ramifications, this work will endure.
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Summary. We study a generalization of the models of semantic spaces introduced
by Rieger. The focus will be on the following aspects. We show to what extent
different choices of conceptual freedom leads to dramatically different behaviour.
For instance, the linguistic differentiation process introduced by Rieger is highly
dependent on the underlying metric space. Also, we introduce certain invariants that
may be seen as leading to new approaches for identifying meaning and relevance. In
particular, we study a normalized limiting process in Rieger’s original model that
may help to identify certain key elements of corpora. Also, we show how sensitivities
in defining associated measurements like dependency trees might be used to identify
linguistic relevance.

1 Introduction

Computer oriented text analysis systems are based on formal descriptions of
the relevant objects and underlying relations. Rieger [23] introduces a formal
model of some high dimensional semantic space whose elements reflect the
words and their usage correlation in sample texts; see also [26]. This space
can then be used to analyse dependencies with the goal to understand the
constitution of meaning.

The present paper begins with a short concise introduction of Rieger’s ba-
sic model of semantic spaces. Then we give a generalized model that enables
us to identify the sensitivity of Rieger’s original model with respect to some
of its assumptions. In particular we will show how already the use of different
norms leads to a dramatically different behaviour of Rieger’s linguistic dif-
ferentiation. Also, we study a limit process in Euclidean space that may be
used for identifying semantic strength and relevance of word tokens in text
corpora.

Since semantic spaces are generally of very high dimension we briefly in-
vestigate the possibility of ‘grasping structure’ via visualization by means of
appropriate mappings of low-dimensional range. The underlying mathemati-
cal task is that of near isometric embeddings into lower dimensional spaces.
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Since due to information theoretical bounds this approach is somewhat
limited we then study certain associated measurements like radii, largest sim-
plices and various kinds of associated trees with the goal to identify certain
key features of the underlying spaces. In particular, the identification of the
degree of dependence on the intrinsic context leads to a new concept of corpus
immanent contextuality and intrinsic relevance.

The present paper should be seen as a mathematical reflection of certain
computer linguistic concepts. Its main goal is to raise questions that might
stimulate the linguistic discourse. In order to make the paper more easily
accessible some of the basic mathematical background is therefore included.

2 Semantic Spaces

2.1 Rieger’s Model

We will now briefly describe the model introduced by Rieger that is based on
a 2-fold linguistic differentiation; for more details, examples and applications
we refer to the original texts by Rieger [21, 22, 23, 24, 25, 26].

Let n ∈ N, and let
W = {w1, . . . , wn}

denote a set of semiotic entities called words. W will be referred to as the
underlying vocabulary. Further, let m ∈ N and let

T = {T1, . . . , Tm}

be distinct texts over the vocabulary W . T is called corpus. By nij we denote
the number of occurrences of wi in Tj , and we set

Ni =
m∑

j=1

nij ,

counting the total number of occurrences of wi in T . The size tj of Tj is the
number of words in Tj counted with multiplicity, hence the size of the corpus
T is given by

t =
m∑

j=1

tj .

Then n∗
ij = Nitj/t gives the expected number of occurrences of wi in a text

Tj . For i, k = 1, . . . , n the correlation coefficient

κ(wi, wk) =

∑m
j=1(nij − n∗

ij)(nkj − n∗
kj)

(∑m
j=1(nij − n∗

ij)2
) 1

2
(∑m

j=1(nkj − n∗
kj)2
) 1

2
,
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is a measure of occurrence regularities of the pair (wi, wk). Now let for i =
1, . . . , n

xi =
(
κ(wi, w1), . . . , κ(wi, wn)

)T
.

Of course, x1, . . . , xn ∈ R
n. Then Rieger applies a linguistic differentiation

twice to obtain first the vectors y1, . . . , yn ∈ R
n by setting

yi =
(
‖xi − x1‖(2), . . . , ‖xi − xn‖(2)

)T

for i = 1, . . . , n, where ‖ ‖(2) denotes the Euclidean norm, subsequently
arriving at the vectors z1, . . . , zn ∈ R

n defined by

zi =
(
‖yi − y1‖(2), . . . , ‖yi − yn‖(2)

)T

for i = 1, . . . , n, The vectors x1, . . . , xn are called corpus points and can be
thought of as characterizing the use of the words w1, . . . , wn in T . The vectors
y1, . . . , yn measure the differences in the occurrence regularities and express
the intrinsic context in which the words are used in T ; they are called meaning
points , [23]. Clearly, two meaning points yi and yj will be the nearer, the more
similar the occurrences of the corresponding corpus points xi and xj are, i.e.,
the more closely semantically related the corresponding words wi and wj are,
and will therefore cluster according to the main subjects of the texts in T .
Hence the vectors z1, . . . , zn can be used to define a corpus inherent notion
of synonymity. In fact, this representation is obtained without any external
knowledge, thus reflects the ‘relative meaning’ of semiotic entities in the given
natural language texts.

2.2 A Generalized Metric Model

In the following two subsections we generalize Rieger’s model in order to show
how its specific choices for the underlying degrees of freedom affects its ana-
lytic and computational properties. Of course, the decision which assumptions
are regarded most suitable has to be based on the specific application one has
in mind.

Since in the above linguistic context metric properties of finite point sets
carry information about occurrence regularities of the words in texts, our main
subject of study are the finite metric spaces introduced below. We will, how-
ever, show how this model can be further generalized so as to accommodate
for instance asymmetric linguistic similarity relations.

Recall that a metric in R
n is a functional

d( , ) : R
n × R

n −→ R

with the following three properties for each x, y, z ∈ R
n:

d(x, y) ≥ 0 and d(x, y) = 0 ⇔ x = y,
d(x, y) = d(y, x)
d(x, y) ≤ d(x, z) + d(z, y).
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The last inequality is called triangle inequality. With any such metric d, (Rn, d)
becomes a metric space, and it is a priorily not evident which metric is suited
best for linguistic applications.

Metrics of specific importance are those derived from a norm ‖ ‖, a func-
tional

‖ ‖ : R
n −→ R

with the following properties for each x, y ∈ R
n and λ ∈ R:

‖x‖ ≥ 0 and ‖x‖ = 0 ⇔ x = 0,
‖λx‖ = |λ|‖x‖
‖x + y‖ ≤ ‖x‖+ ‖y‖.

In fact, every norm ‖ ‖ induces a metric d by

d(x, y) = ‖x− y‖.

In the original model of Rieger, the Euclidean norm ‖ ‖(2) was used.
However, as we will see below other metrics might be reasonable as well,
particularly 	p-metrics d(p) that are induced by the 	p-norms ‖ ‖(p) defined
by

‖x‖(p) =

(
n∑

l=1

|ξl|p
) 1

p

for p ∈ [1,∞[

‖x‖(∞) = max
l=1,...,n

|ξl|,

for all x = (ξ1, . . . , ξn)T ∈ R
n.

Now, let V (0) be a family1 of n points in R
n,

V (0) =
{
v
(0)
1 , v

(0)
2 , . . . , v(0)

n

}
⊂ R

n,

and let d( , ) be a metric in R
n. Then

S(0) =
(
V (0), d

)

is a finite metric space, our ground space. In Rieger’s model, S(0) is the space({
x1, . . . , xn

}
, d(2)

)
. In order to define the iteration process it is important

to note that (in order not to have to deal with equivalence classes of different
embeddings of the finite metric spaces into (Rn, d)) we fix the order in which
the points are considered, i.e., we actually deal with the n-tuple

V̄ (0) =
(
v
(0)
1 , v

(0)
2 , . . . , v(0)

n

)
∈ R

n × · · · × R
n.

Now, for k ∈ N and i = 1, . . . , n let
1Note that the difference between a family and a set is that in the former repe-

tition of elements is allowed.
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v
(k)
i = α(k)

(
d(v(k−1)

i , v
(k−1)
1 ), . . . , d(v(k−1)

i , v(k−1)
n )

)
,

where α(k) is a suitable positive real used for appropriate normalization. Of
course, we then set

V (k) =
{
v
(k)
1 , v

(k)
2 , . . . , v(k)

n

}
⊂ R

n

(or
V̄ (k) =

(
v
(k)
1 , v

(k)
2 , . . . , v(k)

n

)
∈ R

n × · · · × R
n,

to emphasise the particular order of points2) and

S(k) =
(
V (k), d

)
.

V (k) is called the kth metric derivative and S(k) the kth derived space.
In most cases we will keep the vocabulary W fixed. In Section 5 it will

however be necessary to derive the corresponding sets with respect to differ-
ent (sub-)vocabularies. If needed we will then indicate that vocabulary W is
referred to by the suffix W , i.e., we write V

(k)
W and S

(k)
W .

In Rieger’s model the iteration is performed up to k = 2 (and linguis-
tically interpreted) with respect to the Euclidian metric with normaliza-
tion factor 1. In fact, S(1) and S(2) are the spaces

({
y1, . . . , yn

}
, d(2)

)
and

({
z1, . . . , zn

}
, d(2)

)
, respectively.

2.3 Abstract Operators and Gauge Functionals

In Subsection 2.2 we gave an extension of Rieger’s model based on more gen-
eral metric spaces, and the main emphasis of the present paper will actually
be on metric models with metrics induced by norms. In the present subsection
we will, however, show how semantic spaces can be further generalized. In par-
ticular, we will show how Minkowski geometry can be used to accommodate
asymmetric distances; see [3, 27] for comprehensive studies of the theory of
convex bodies.

Let us begin with a rather abstract (but still R
n-based) generalization.

Let Pn denote the n-fold Cartesian product of R
n, i.e., the set of n-tuples of

vectors from R
n; hence

Pn = R
n × · · · × R

n.

Further, let Cn denote the set of all corpora composed of n words. In order
to define a more general linguistic differentiation procedure, we need first a
function

f : C → Pn

which actually produces for a given corpus on n words n (generalized) corpus
points. Subsequently we apply operators

2In the following we will not further stress the difference between V (k) and V̄ (k).
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gk : Pn → Pn

for k ∈ N to define the linguistic differentiation. In the metric model, f(T ) =
V̄ (0), while gk(V̄ (k−1)) = V̄ (k).

Of course, in order to make any linguistic sense, one needs to impose
appropriate assumptions on f and the operators gk. We will, however, not
try to produce an axiomatic approach here.3 Rather, we will give an example
close to the metric model of Subsection 2.2 that allows to incorporate intrinsic
asymmetry without loosing other basic features of distances.

So, let again
V (0) =

{
v
(0)
1 , v

(0)
2 , . . . , v(0)

n

}
⊂ R

n.

Now, let B be a compact convex subset of R
n containing the origin in its

interior. Then we define the gauge functional

γB : R
n → [0,∞[

for each x ∈ R
n by

γB(x) = min{λ : λ ∈ [0,∞[∧x ∈ λB}.

Note that the minimum is actually attained since 0 is an interior point of B
and B is compact. We can then replace the metric used in Subsection 2.2 by
the functional

ϕB : R
n × R

n → R

defined by
ϕB(x, y) = γB(x− y)

to define a linguistic differentiation operator. In fact, we set for k ∈ N and
i = 1, . . . , n

v
(k)
i = α(k)

(
ϕB(v(k−1)

i , v
(k−1)
1 ), . . . , ϕB(v(k−1)

i , v(k−1)
n )

)
,

where α(k) is again a suitable positive real used for appropriate normalization.
Note that ϕB is in general not a metric, since the functional is not symmetric.
However, it is still positive definite, i.e., for x, y ∈ R

n

ϕB(x, y) ≥ 0 and ϕB(x, y) = 0 ⇔ x = y,

and due to the convexity of B obeys the triangle inequality

ϕB(x, y) ≤ ϕB(x, z) + ϕB(z, y)

for x, y, z ∈ R
n. However, ϕB is symmetric i.e., ϕB(x, y) = ϕB(y, x) for x, y ∈

R
n if and only if B = −B.

3In fact, the reason for including this paragraph is just to indicate that the
framework is sufficiently general to allow for all variations that have been identified
as being linguistically relevant so far.
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Fig. 1. Two compact convex set B that contain the origin in their interior such
that ϕB is not symmetric.

Again, this is just one example deliberately constructed ‘close to the metric
case’ showing how easily certain properties (here asymmetric distance mea-
sures) can be accommodated that may seem linguistically attractive. While,
in the following, we will concentrate on the metric case since all features we
want to emphasise in this paper occur already there, it should be clear that
questions analogous to those studied subsequently can be investigated in much
greater generality.

3 Metric Dependence and Asymptotic Behaviour

It seems natural, to study the above iteration scheme in greater generality. In
particular, one can ask for the behaviour of S(k) for k → ∞. If the starting
points are obtained from texts as in Section 2.1 (and the normalization is per-
formed correctly) then limits might encode some kind of asymptotic relevance
of the semiotic entities.

This aspect will be elaborated on in Section 3.2. In Section 3.1 we first
show, how dramatically the scheme changes if the maximum norm is used
instead of the Euclidean norm in the metric model of Subsection 2.2.

3.1 Using the Maximum Norm

In the following we show how the iteration scheme behaves for the maximum
norm

‖x‖(∞) = max
i=1,...,n

|ξi|,

a norm that is quite common and often used whenever a leveling of the ef-
fects of the single coordinates is less desirable than a more radical worst case
behaviour.
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Theorem 3.1 Let x1, . . . , xn ∈ R
n, and set

ηij = ‖xi − xj‖(∞) for i, j ∈ {1, . . . , n},
yi = (ηi1, . . . , ηin)T for i ∈ {1, . . . , n},
ζij = ‖yi − yj‖(∞) for i, j ∈ {1, . . . , n}.

Then
ζij = ηij for i, j ∈ {1, . . . , n}.

Proof. By the triangle inequality we have for i, j ∈ {1, . . . , n}

ζij = ‖yi − yj‖(∞) = max
l=1,...,n

|ηil − ηjl|

= max
l=1,...,n

∣
∣‖xi − xl‖(∞) − ‖xj − xl‖(∞)

∣
∣

≤ ‖xi − xj‖(∞) = ηij .

On the other hand, specifying l to i (or to j), we see that

max
l=1,...,n

∣
∣‖xi − xl‖(∞) − ‖xj − xl‖(∞)

∣
∣ ≥ ‖xi − xj‖(∞) = ηij ,

which proves the assertion. ��

Theorem 3.1 means that in the case of the maximum norm, the differ-
entiation process generating S(1), S(2), S(3), . . . becomes static after the first
step.

Corollary 3.2 Let for i ∈ {1, . . . , n} and k ∈ N0, v
(k)
i be the ith vector of the

kth metric derivative generated by using the metric d(∞). Then

v
(1)
i = v

(2)
i = v

(3)
i = . . .

for i ∈ {1, . . . , n}.

3.2 Asymptotic Behaviour of Euclidean Derivatives

In Rieger’s model linguistic abstraction is employed only twice. Since in gen-
eral, Euclidean iterates v

(k)
i vary with every k, it seems reasonable to study

the corresponding discrete dynamical system, and particularly to understand
its asymptotic for k →∞. As an example, we investigate here explicitly what
exactly happens in the first nontrivial case, that of n = 3. Suppose we have
executed the kth step of the linguistic differentiation. Of course, if

v
(k)
1 = v

(k)
2 = v

(k)
3

everything is trivial and for l ∈ N with l ≥ k + 1 the families V (l) all contain
just the zero vector three times. So we assume that not all three vectors
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coincide. We normalize the vectors in such a way that the largest coefficient
is 1, i.e., in the notation of Subsection 2.2

α(k) =
(
max
{
‖v(k−1)

i − v
(k−1)
j ‖(2) : i, j = 1, . . . , n

})−1

.

Regarding v
(k)
1 , v

(k)
2 , v

(k)
3 as the column vectors of a 3 × 3-matrix M (k), this

matrix is of the form

M (k) =




0 µ ν
µ 0 τ
ν τ 0



 ,

with suitable real entries µ, ν and τ . Suppose that 1 = µ ≥ ν ≥ τ ≥ 0. Then,

M (k+1) = α(k+1)




0

√
2µ2 + (ν − τ)2

√
2ν2 + (µ− τ)2√

2µ2 + (ν − τ)2 0
√

2τ2 + (µ− ν)2√
2ν2 + (µ− τ)2

√
2τ2 + (µ− ν)2 0



 .

Now it follows readily that
√

2µ2 + (ν − τ)2 ≥
√

2ν2 + (µ− τ)2 ≥
√

2τ2 + (µ− ν)2,

thus
α(k+1) =

1
√

2µ2 + (ν − τ)2
.

Hence, if we number the starting vectors v
(0)
1 , v

(0)
2 and v

(0)
3 in such a way that

‖v(0)
1 − v

(0)
2 ‖(2) ≥ ‖v(0)

1 − v
(0)
3 ‖(2) ≥ ‖v(0)

2 − v
(0)
3 ‖(2)

we have
‖v(l)

1 − v
(l)
2 ‖(2) ≥ ‖v

(l)
1 − v

(l)
3 ‖(2) ≥ ‖v

(l)
2 − v

(l)
3 ‖(2)

for every l ∈ N. Of course, in view of the normalization,

‖v(l)
1 − v

(l)
2 ‖(2) = 1

for every l ∈ N. Next one checks that
√

2ν2 + (µ− τ)2
√

2µ2 + (ν − τ)2
≥ ν.

Therefore the sequence (

‖v(l)
1 − v

(l)
3 ‖(2)

)

l∈N

is increasing (and bounded by 1), hence convergent. It is now easy to see that

‖v(l)
1 − v

(l)
3 ‖(2) → 1 as l →∞.
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Unfortunately, the sequence

‖v(l)
2 − v

(l)
3 ‖(2)

is in general not monotonous. However, a careful analysis shows that exactly
two different limits are possible, 0 or 1. Hence we have the following theorem.

Theorem 3.3 For n = 3, the linguistic differentiation sequence (normalized
to maximum coefficient 1, unless all entries are 0) converges. In terms of the
corresponding matrices the limits are4




0 0 0
0 0 0
0 0 0



 ,




0 1 1
1 0 0
1 0 0



 ,




0 1 0
1 0 1
0 1 0



 ,




0 0 1
0 0 1
1 1 0



 ,




0 1 1
1 0 1
1 1 0



 .

For general n it is not clear whether the limit of V (k) always exists and
what the possible limits are. In fact, computer experiments conducted by A.
Dattasharma support the conjecture that the limits exist, yet show a some-
what chaotic behaviour of the interation points at the beginning of the process.
This indicates that the particular values of V (2) may not really exhibit invari-
ant structural information but the limits might. Hence a more detailed study
is needed to understand what exactly the linguistic significance of V (k) and
the limits of the corresponding sequences is. For instance, a distance tend-
ing to 1 might signify a pair of semantically independent keywords of a text
corpus.

4 Embeddings and Measurements

Since even relatively short texts can have a large vocabulary, semantic spaces
typically have a very large dimension. Hence, direct inspection may be diffi-
cult. In the following we pursue two approaches to deal with this difficulty.
First we study the possibility of near isometric embeddings into spaces of
much lower dimension. Then we investigate various associated measurements
that can be seen as providing access to certain linguistic features.

4.1 Embeddings and Projections

For a direct study of semantic spaces via visualization it is desirable to find
low-dimensional subspaces into which S(k) can be embedded without chang-
ing its metric properties too much. If fact, since the information is encoded
in the distances of the meaning points such an embedding must be ‘nearly
isometric’. Theorem 3.1 shows that with respect to semiotic differentiation
	∞ behaves differently than 	2. In fact this can also been interpreted in terms
of embeddings.

4Note, however, that the three matrices in the middle are equivalent in the sense
that they differ only in the order of the underlying vectors.
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Lemma 4.1 Based on V (0) let V (1) be produced with respect to the Euclidean
norm (and normalization factor 1). Then V (1) is the isometric embedding of
(V (0), d(2)) into 	∞.

Proof. On the one hand

d(2)(xi, xj) ≤ max
l=1,...,n

∣
∣d(2)(xi, xl)− d(2)(xj , xl)

∣
∣,

while on the other hand by the triangle inequality

d(2)(xi, xj) ≥
∣
∣d(2)(xi, xl)− d(2)(xj , xl)

∣
∣

for every l = 1, . . . , n. Hence for i, j = 1, . . . , n

d(2)(v
(0)
i , v

(0)
j ) = d(∞)(v

(1)
i , v

(1)
j ),

proving the assertion. ��

The following fundamental Johnson-Lindenstrauss Lemma shows that it
is in principle possible to embed finite subsets A of Euclidean space into sub-
spaces of rather small, in fact logarithmic dimension with arbitrarily small
distortion; actually orthogonal projections Π(A;U) on a suitable linear sub-
space U of R

n suffice, see [18], [8, 9], and [19].

Theorem 4.2 Let k,m, n ∈ N, v1, . . . , vm ∈ R
n, and ε ∈]0, 1

2 [. If m ≤
n2
√

ln n/2 and
k ≥ 4(ε2/2− ε3/3)−1 ln n,

then there exists a k-dimensional subspace U such that for the linear map

f =
√

n+k
k Π( ;U),

(1− ε)‖vi‖22 ≤ ‖f(vi)‖2(2) ≤ (1 + ε)‖vi‖2(2)

for all i = 1, . . . , m.

When applied to Euclidean semantic spaces on n words the Johnson-
Lindenstrauss Lemma shows that one could in principle study all metric
properties already after suitably projecting V (0) into some essentially ln(n)-
dimensional space. Of course, in order to avoid a blow up of the embedding
error, for questions concerning limits one would need to do the asymptotics in
the original space and project at the end rather than trying to understand the
limit process in the projected space. For various theoretical and algorithmic
results on embeddings and projections see [5] and [6].
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4.2 Radii

In comparing semantic spaces that originate in different text corpora, the
dimension and other geometric features of the polytope5

P = conv
(
V (k)
)

may be of some interest for certain k. Figure 2 shows P (in three of the five
cases) according to Theorem 3.3.

Fig. 2. Limit spaces and corresponding polytopes in Euclidean 3-space.

The main purpose of this section is to give some examples of geomet-
ric measurements that may lend themselves to a linguist interpretation. The
question of algorithmic accessibility of these measurements is of course impor-
tant in view of the fact that in the underlying high dimensions the semantic
spaces cannot be fully analysed in practice. For more information about the
following functionals and some of their relatives see [13], [14], and [15].

Let M = (Rn, ‖ ‖) denote a normed space. A j-dimensional affine subspace
of M is called j-flat, and a j-ball of radius ρ in M is a set of the form

(q + ρB) ∩ F = {x ∈ F : ‖x− q‖ ≤ ρ}

for some j-flat F in M and point q ∈ F . A j-simplex S in R
n is a particular

polytope in R
n that is the convex hull of j + 1 affinely independent points of

R
n; see Subsection 4.3. As an example, consider the three simplices depicted

in Figure 2, (from left to right) a 0-simplex, a 1-simplex and a 2-simplex.
The following notions will be used only for polytopes of the form P =

conv
(
V (k)
)

since those are relevant in the context of semantic spaces. For
general results see [12].

For 1 ≤ j ≤ n, the inner j-radius rj(P ) of a polytope P ⊂ M is the
maximum of the radii of the j-balls contained in P .

The outer j-radius Rj(P ) of P measures how well P can be approximated,
in a minimax sense, by an (n − j)-flat. Specifically, Rj(P ) is the minimum

5Note that each point of P corresponds to a ‘potential meaning point’ that is
constructed by ‘averaging’ some actual meaning points v. In particular, the edges of
P can be interpreted as the locus of all ‘potential meaning points’ that are obtained
by weighing the corresponding vertices with a total weight of 1.
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of the positive numbers ρ such that M contains an (n − j)-flat F for which
P ⊂ F + ρB.

The numbers rn(P ) and Rn(P ) are respectively the radius of a largest
n-ball contained in P and of a smallest n-ball containing P . They are called,
respectively, the inradius and the circumradius of P . The number 2r1(P ) is
the diameter of P , the maximum distance that is realized between two points
of P . The number 2R1(P ) is the width of P , the smallest of the distances
between pairs of parallel supporting hyperplanes of P .

It is quite conceivable that when applied to the polytopes P = conv
(
V (k)
)

these radii and the corresponding optimal flats may lead to some linguistic
interpretation. For instance, a small circumball may indicate that the under-
lying text corpus is thematically quite focussed. Also, a large diameter might
be seen as an indication for the existence of more than one key theme. A large
inradius might be characteristic for a greater semantic diversity of the under-
lying text corpus while a small width of P indicates some specific linguistic
dependencies. In particular, the orthogonal projection of V (k) on a hyperplane
that (in the sense of width computation) best approximates P may then carry
essentially the same linguistic information as the whole space.

It turns out that the algorithmic difficulties in computing radii vary dra-
matically with the norm that is used; see [13]. Even in the innocently looking
case of n-simplices, particularly relevant in the context of semantic spaces,
computations may be easy when performed with respect to one norm yet
difficult with respect to some other.6 It is for instance true that computing
the width is hard in Euclidean spaces (and also in 	∞-spaces) but easy in
	1-spaces, [13].

Hence whenever linguistic studies involve the actual computation of pa-
rameters it is important to identify which assumptions are mandatory and
which are up to discussion. If, for instance, the use of the Euclidean norm
is linguistically binding then of course one has to do the computations in
Euclidean spaces and might have to cope with computational intractabilities
(as it is the case for the width). If, however, from a linguistical point of view
various different norms may be acceptable then, of course, one should do the
computations in such spaces that render them most easy.

4.3 Largest j-Simplices and Heterogeneity

In order to detect larger substructures of maximal heterogeneity that are based
on the metric properties of V (k) one might want to identify, say, j + 1 words,

6The notion of algorithmic difficulty can be made precise within the realm of
computational complexity theory; see [10], [17] for precise definitions and various
results on computational complexity. A problem is regarded as algorithmically easy if
there exists an algorithm solving it on every instance whose running time is bounded
by a polynomial in the binary size of the input. Problems belonging to the large class
of so called NP-hard problems are regarded as algorithmically hard.
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that are ‘as independent as possible’.7 A possible measure for the common
heterogeneity may be the (j-dimensional) volume of the convex hull of the
corresponding vectors. Hence one is longing to find a j-dimensional simplex
S in the polytope P = conv

(
V (k)
)

of maximum j-volume. The algorithmic
properties of this problem have been studied in [16]; see also [15]. Essentially
it turns out that this problem can be solved efficiently if j (or n−j) is constant
but is NP-hard if j is ‘in between’, e.g. if j = γ(n) = max{1, �µn1/k�} for some
k ∈ N and fixed rational µ with 0 < µ ≤ 1, and also if j = γ(n) = n− µn1/k

for some k ∈ N and fixed positive rational µ.

4.4 Trees

The semantic spaces S(k) can naturally be regarded as weighted complete
graphs G = (N,E;ω). The points of V (k) constitute the nodes of G, the edge
set E consists of each pair of different nodes, and the weight ω(e) of an edge
e is some function of the distance d(vi, vj) of the points corresponding to its
nodes.8 For background material on graphs see [7].

Rieger [23, Chapter 9] and Mehler [20, Chapter 10] study the use of mini-
mum spanning trees and dependency trees of G to derive linguistic informa-
tion. A tree is a connected acyclic graph, a spanning tree of G is a tree that
contains all nodes of G. The weight of a graph is the sum of the weights of
its edges. Hence a minimum spanning tree in G is a connected acyclic sub-
graph of G that contains all vertices of G and is of minimal weight among
all such spanning trees.9 In particular, subtrees rooted at some specific node
(corresponding to some specific word) and containing some other specified
node as a leaf are used to derive so called dispositional dependency structures.
In fact, the combinatorial distance of two nodes within a minimal spanning
tree is regarded as a measure for the semantic relevance of a relation of the
corresponding words. The notion of criteriality then assigns an information
theoretical numerical value that is based on the metric distances.

Since the set of acyclic subgraphs of a given graph carries the structure
of a matroid simple greedy algorithms are available for computing minimum
spanning trees. In particular, the classical algorithm of Prim starts with an
arbitrary node and successively adds a minimum weight edge (and its new
node) that connects a node that has already been reached with one that had
not been reached previously; see e.g. [4] or [1]. (For a popular introduction to
combinatorial optimization see [11].)

A dependency tree of G rooted at some node v is built by ordering all
nodes according to increasing distance from v and then successively adding

7Another approach for measuring heterogeneity based on so called inference trees
is suggested in [20, Chap. 10.3].

8Of course, if needed one could study more general weights that need not come
from a metric. In particular, asymmetry can be modelled with the aid of weighted
directed graphs.

9In the case of weighted directed graphs one is led to the notion of arborescence.
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an edge of minimal weight connecting the node under consideration with some
node previously considered. Clearly, dependency trees are spanning trees but
in general not minimum spanning trees.

In the following examples and subsequent analysis we will use as the weight
ω(e) of an edge e simply the Euclidean distance d(2)(vi, vj) of the points
corresponding to its nodes. It should be clear, however, that similar properties
hold for a great variety of different weight functions.10

Figure 3 depicts a set of six points in the Euclidean plane which has the
property that no matter where the root is located, no dependency tree is
a minimal spanning tree. Specifically, no dependency tree contains all four
minimum length edges that are present in any minimum spanning tree since
either the right most or the left most vertex is the unique point furthest from
the root.

Fig. 3. No dependency tree (right: two such trees with marked roots) is a minimum
spanning tree (left).

Of course, dependency trees depend on the root, which, in the linguistic
interpretation is seen as an interpretation perspective. The special order in
which new nodes and edges are added reflects the specific perspective seen
from the corresponding word.

In [23] and [20] it is suggested to derive linguistic dependency information
by using the distances within spanning trees and dependency trees, more
precisely the length of the (uniquely determined) shortest path connecting
two nodes v1 and v2 within the produced tree. Of course, this distance does
depend on the specific tree that is used and does in general not coincide
with the shortest path in G between v1 and v2.11 Naturally, such a minimum

10As a matter of fact in [20, Chapter 10] the weights are defined differently,
reversing the order of lengths.

11In fact, due to the metric nature of the weight function this shortest path in G
is always the edge connecting v1 and v2 itself.
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spanning tree or dependency tree based analysis of linguistic relations has
to cope with the fact that these trees need not be unique. Figure 4 depicts
three topologically quite different minimum spanning trees (which are also
dependency trees for the central root) connecting seven points in the Euclidean
plane.

Fig. 4. Minimum spanning trees or dependency trees need not be unique.

Note that the regular (n − 1)-simplex can be embedded in a hyperplane
of Euclidean n-space, in fact as the convex hull of the standard coordinate
vectors. Hence the complete graph on n vertices and unit length edges shows
that the number of different minimum spanning trees or dependency trees (for
a fixed root) of an Euclidean semantic space on n points might be as large
as nn−2; see e.g. [2]. For texts with only 10 words we might therefore have
already up to 100 million different such trees, and it does not seem obvious
how to prefer one over the other.

One might argue that a semantic space with all distances being the same
is on the one hand unrealistic and on the other hand does not exhibit any
kind of metric discrimination anyway, this lack being just reflected by the
‘arbitrariness’ of the associated trees. However, the problem lies deeper. For,
if one ‘wiggles’ the points of the uniform distance semantic space slightly (and
generically) the minimum spanning tree as well as the dependency trees (one
for each root) become unique with lengths still arbitrarily close to n − 1.
Hence, the associated tree approaches bear some disturbing inherent instabil-
ity. Changing only one word in a large corpus might lead to a dramatically
different minimum spanning tree or dependency tree hence seems to support
a quite different linguistic relation.

5 Intrinsic Relevance

While human information processing is highly context sensitive, a very impor-
tant fact of Rieger’s model of automatic meaning detection is that of context
independence in the sense that only intrinsic features of the underlying texts
are considered. On the other hand, the derived intrinsic notion of meaning is
highly sensitive to the corpus immanent textuality. In the next paragraph we
will show this in more detail while Subsection 5.2 will lead to a measure of
relevance that is specifically based on this sensitivity.
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5.1 Corpus Immanent Contextuality

We are now interested in the corpus immanent contextuality in the following
sense. Suppose we are still given the same corpus T but we are only interested
in the linguistic relations within a (nontrivial) subset B of the vocabulary W .
This may be the case if we have already identified the relevant key words of
the texts and want to study their linguistic relation or if we want to restrict
the analysis to a clearly defined semantic theme.12 It is then natural to delete
all words of W \ B from all texts and compute the restricted semantic space
S

(k)
B . The obvious question is of course whether the main linguistic features of

S
(k)
B are the same as those of the space obtained from S

(k)
W after ignoring the

irrelevant vectors and coordinates, i.e., after deleting the vectors correspond-
ing to W \B and projecting the remaining vectors orthogonally on the linear
space U of all vectors whose coordinates correspond to the words of B. We
denote this space by S

(k)
(W |B).

Let us perform a simple computation for one step of the differentiation
procedure. We assume (without loss of generality) that the words of W are
ordered so that the first |B| belong to B. Hence with r = |B|, the vectors
v
(0)
1 , . . . , v

(0)
r correspond to the words of B while the others are related to

W \B. Further, let for i = 1, . . . , n

b
(0)
i ∈ R

r × {0}n−r, c
(0)
i ∈ {0}r × R

n−r such that v
(0)
i = b

(0)
i + c

(0)
i .

Clearly, performing the differentiation within S
(0)
B we obtain S

(1)
B consisting

of r vectors with r coordinates of the form

‖b(0)
i − b

(0)
j ‖(2).

The resulting vectors of S
(1)
(W |B), on the other hand, have coordinates

(

‖b(0)
i − b

(0)
j ‖2(2) + ‖c(0)

i − c
(0)
j ‖2(2)

) 1
2

.

To give an example how dramatically different the metric spaces S
(1)
B and

S
(1)
(W |B) can be even in the case r = n− 1, let ε ∈]0, 1/2[, η ∈]0,∞[ and set13

v
(0)
1 =

√
1− ε e1 + ηen,

and for i = 2, . . . , n− 1
12Also such a restriction may be desirable in order to perform computations that

due to the underlying algorithmic intractability cannot be executed for the whole
set W .

13Note that for the purpose of comparing S
(1)
B and S

(1)

(W |B) the nth vector is
irrelevant.
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v
(0)
i =

√
1− εi ei,

where e1, . . . , en denote the standard unit vectors of R
n. The different outcome

of the computation of the jth coordinate of the first vector is

(
2− ε− εj

) 1
2 vs.

(
2− ε− εj + η2

) 1
2 ,

while all other vectors are independent of η, having coordinates

(
2− εi − εj

) 1
2 .

Since 0 < 2ε < 1 we have for t, i, j ≥ 2

ε− εt > εi − εj ,

hence the minimum spanning tree in S
(1)
B is composed of all r − 1 edges

containing v
(1)
1 . However, different choices of η lead to topologically different

minimum spanning trees in S
(1)
(W |B). Clearly, a similar ‘contextuality’ holds for

dependency trees.
This means that in order to semantically relate certain basic words B

within the given corpus one cannot simply eliminate all words from W \ B
that seem irrelevant for this task and produce and analyse the derived spaces.
In fact, performing the linguistic differentiation on the whole space S

(k)
W and

then ignoring the irrelevant meaning points can give fundamentally different
results.

5.2 Relevance by Differentiation

On the one hand, the analysis of Subsection 5.1 depicts a potentially undesired
dependency on the seemingly irrelevant. On the other hand, this dependency
allows us to study relevance from the point of view of the induced changes. In
fact, a single word w of W may be regarded the more relevant the greater the
difference between S

(k)
W\{w} and S

(k)
(W |W\{w}) is. Of course, this difference can

be measured in various ways. A mathematically intriguing approach could be
based again on a metric, this time on R

n−1 × · · · × R
n−1, where each of the

n− 1 copies of R
n−1 contains the difference of the corresponding two vectors

of S
(k)
W\{w} and S

(k)
(W |W\{w}), respectively. But, of course, all measurements

discussed before can also be used.
For instance, the relevance of a word w for some other word v could be

identified by the fact that the (closest) dependency trees rooted at v are
different in S

(k)
W\{w} and S

(k)
(W |W\{w}). One might then continue and regard a

word w most relevant for a corpus if the number of different words v for which
it is relevant in the above sense is highest. Obviously, a similar approach might
be based on partial trees with different tree depths and any other notion of
dependency.
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So, there is a lot of freedom in devising notions of intrinsic relevance along
the lines outlined above, and it might be worthwhile to conduct some de-
tailed studies based on real world corpora to prove (or disprove) the linguistic
significance of this concept and its relatives.

6 Further Extensions and Concluding Remarks

Rieger’s model is based on pair correlations of words. Suppose we wanted to
extend the generalized model by encoding occurrence regularities of subsets
of W of higher cardinality. Say, we wanted to consider for each w ∈ W all
subsets of cardinality s with 1 ≤ s ≤ n− 2. In full analogy to the case of pair
correlations this would mean to associate with every element w ∈W a vector
with

q =
(

n
s

)

components, one for each subset of W of cardinality s. One step of Rieger’s
original differentiation would then immediately lead to n vectors now again in
R

n. One could, however, vary the linguistic differentiation so as to stay with n
vectors in R

q in various ways. Since the Euclidean distance of two points is the
1-dimensional volume of their convex hull, a direct generalization of Rieger’s
differentiation would be obtained by taking as the updated component the
s-volume of the convex hull of the union of {w} and the s vectors whose
indices correspond to the elements of the s-element subset associated with
this component.

It would be interesting to see what kind of additional linguistic information
could be derived from such a generalized derivation.

Clearly this and other possible extensions as well as some of the new
concepts introduced before are at present based more on their mathematical
appeal than on their proven linguistic significance. A natural next step would
therefore be to conduct practical studies to see which of the suggestions are
linguistically most promising. It should be clear that in the case of linguistic
relevance further mathematical studies may lead to extended structural in-
sight into the relevant semantic spaces that might yield new algorithms for
automatic semantic text processing.
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1 Introduction

This contribution gives an overview about different approaches to semantic
spaces. It is not a exhaustive survey, but rather a personal view on different
approaches which use metric spaces for the representation of meanings of lin-
guistic units. The aim is to demonstrate the similarities of apparently different
approaches and to inspire the generalisation of semantic spaces tailored to the
representation of texts to arbitrary semiotic artefacts.

I assume that the primary purpose of a semiotic system is communica-
tion. A semiotic system S̃ consists of signs s. Signs fulfil a communicative
function f(s) within the semiotic system in order to meet the communicative
requirements of system users. There are different similarity relations between
functions of signs. In its most general form a semantic space can be defined
as follows:

Definition 1 Let S̃ be a semiotic system, (S, d) a metric space and r : S̃ → S
a mapping from S̃ to S. A semantic space (S, d) is a metric space whose
elements are representations of signs of a semiotic system, i.e. for each x ∈ S
there is a s ∈ S̃ such that r(s) = x. The inverse metric (d(x, y))−1 quantifies
some functional similarity of the signs r−1(x) and r−1(y) in S̃.

Semantic spaces can quantify functional similarities in different respects.
If the semiotic system is a natural language, the represented units are usually
words or texts – but semantic spaces can also be constructed from other lin-
guistic units like syllables or sentences. The constructions of semantic spaces
leads to a notion of semantic distance which often cannot easily be made
explicit. Some constructions (like the one described in section 6) yield seman-
tically transparent dimensions.

The definition of a semantic space is not confined to linguistic units. Any-
thing that fulfils a function in a semiotic system can be represented in a se-
mantic space. The calculation of a semantic space often involves a reduction

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
E. Leopold: Models of Semantic Spaces, StudFuzz 209, 117–137 (2007)



118 Edda Leopold

of dimensionality and the spaces described in this paper will be ordered with
decreasing dimensionality and increasing semantic transparency. In the fol-
lowing section, the basic notations, which are used in the subsequent sections,
will be introduced. Section 3 roughly outlines the fuzzy linguistic paradigm.
Sections 4 and 5 briefly describe the methods of latent semantic indexing
and probabilistic latent semantic indexing. In section 6 I show how previously
trained classifiers can be used in order to construct semantic spaces.

2 Notations

In order to harmonise the presentation of the different approaches I will use
the following notations: A text corpus C consists of a number of D different
textual units referred to as documents dj , j = 1, . . . , D. Documents can be
complete texts, such as articles in a newspaper, short news e.g. the Reuters
newswire corpus, or even short text fragments like paragraphs or text blocks
of a constant length.

Each document consists of a (possibly huge) number of terms. The entire
number of different term-types in C (i.e. the size of the vocabulary of C) is
denoted by W and the number of occurrences of a given term wi in a given
document dj is denoted by f(wi, dj). The definition of what is considered as
a term may vary, terms can be lemmas, words as they occur in the running
text (i.e. strings separated by blanks), tagged words such as in [18], strings
of syllables as in [24], or even a mixture of lemmas and phrases as in [23].
The methods described below are independent from what is considered as a
term in a particular application. It is merely assumed that a corpus consists
of a set of documents and each of these documents consist of a set of terms1.
The term-document matrix A of C is a W × D matrix with W rows and D
columns, which is defined as

A = (f(wi, dj))i=1,...,W,j=1,...,D (1)

or more explicitly

A =








a11 a12 . . . a1D

a21 a22 . . . a2D

...
. . .

...
aW1 aW2 . . . aWD








, where aij := f(wi, dj) (2)

The entry in the ith row and the jth column of the term-document matrix
indicates how often term wi appears in document2 dj . The rows of A represent

1Actually the assumption is even weaker: the methods simply focus on the co-
occurrences of documents and terms, no matter if one is contained in the other.

2It should be noticed here that in many cases the term-document matrix does
not contain the term-frequencies f(w, d) themselves but a transformation of them
like e.g. log f(w, d) or tfidf.
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terms and its columns represent documents. In the so-called “bag-of-words”
representation, document dj is represented by the jth column of A, which is
also called the word-frequency vector of document dj and denoted by xj . The
sum of the frequencies in the j-th row of A is denoted by f(dj), which is also
called the length of document dj . The length of corpus C is denoted by L.
Clearly

f(dj) =
W∑

i=1

f(wi, dj) and L =
D∑

j=1

f(dj) (3)

The ith row of A indicates how the term wi is spread over the documents
in the corpus. The rows of A are linked to the notion of polytexty, which was
defined by Köhler [14] as the number of contexts in which a given term wi

occurs. Köhler noted that polytexty can be operationalised by the number of
texts the term occurs in i.e. the number of non-zero entries of the i-th row.
The ith column of A is therefore called vector of polytexty of term wi and the
vector of the respective relative frequencies is named distribution of polytexty.
The sum over the frequencies in the ith column, i.e. the total number of
occurrences of term wi in the corpus C, is denoted by

f(wi) =
D∑

j=1

f(wi, dj) . (4)

The polytexty measured in terms of non-zero entries in a row of the
term-document matrix is also called document-frequency denoted as df . The
so-called inverse document frequency, which was defined by [30] as idf =
(log df)−1, is widely used in the literature on automatic text processing in
order to tune term-frequencies according to the thematic relevance of a term.
Other term weighting schemes, e.g. the redundancy used by [18] consider the
entire vector of polytexty rather than solely the number of non-zero elements.
A summary of different weighting schemes is given in [20].

Matrix transposition, subsequently indicated by a superscript ·T , ex-
changes columns and rows of a matrix. So the transposed term-document
matrix is defined as

AT = (f(wj , di))i=1,...,D,j=1,...,W =








at
11 at

12 . . . at
1W

at
21 at

22 . . . at
2W

...
. . .

...
at

D1 at
W2 . . . at

DW








, (5)

where at
ij := f(wj , di)

It is easy to see that the matrix transposition is inverse to itself, i.e.
(AT )T = A. All algorithms presented below are symmetrical in documents
and terms, i.e. they can be used to estimate semantic similarity of terms as
well as of documents depending on whether A or AT is considered.
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There are various measures for judging the similarity of documents. Some
measures – the so-called association measures – disregard the term frequencies
and just perform set-theoretical operations on the document’s term sets. An
example of an association measure is the matching coefficient, which simply
counts the number of terms that two documents have in common [31].

Other measures take advantage of the vector space model and consider the
entire term-frequency vectors of the respective documents. One of the most
often used similarity measure, which is also mathematically convenient, is the
cosine measure [20, 30] defined as

cos(xi,xj) =
∑W

k f(wk, di)f(wk, dj)
√
∑W

k f(wk, di)2
∑W

k f(wk, dj)2
=

xi · xj

‖xi‖‖xj‖
, (6)

which can also be interpreted as the angle between the vectors xi and xj or,
up to centering, as the correlation between the respective discrete probability
distributions.

3 Fuzzy Linguistics

“[. . . ] the investigation of linguistic problems in general, and that of word-semantics

in particular, should start with more or less pre-theoretical working hypotheses, for-

mulated and re-formulated for continuous estimation and/or testing against observ-

able data, then proceed to incorporate its findings tentatively in some preliminary

theoretical set up which may finally perhaps get formalised to become part of an

encompassing abstract theory. With our objective being natural language meaning,

this operational approach would have to be what I would like to call semiotic.” [25].

Fuzzy Linguistics (FL) [25, 27, 29] aims at a spatial representation of word
meanings. I.e. the units represented in the semantic space are words as op-
posed to, in the other approaches, documents. However from a mathematical
point of view there is no formal difference between semantic spaces that are
constructed to represent documents and those which are intended to represent
terms. One can transform one problem into the other by simply transposing
the term-document matrix i.e. by considering AT instead of A.

Rieger has calculated a semantic space of word meanings in two steps
of abstraction, which are also implicitly incorporated in the other construc-
tions of semantic spaces described in the sections (4) to (6). The first step
of abstraction is the α-abstraction or more explicitly syntagmatic abstraction
which reflects a term’s usage regularities in terms of its vector of polytexty.
The second abstraction step is the δ-abstraction or paradigmatic abstraction,
which represents a word’s relation to all other words in the corpus.

3.1 The Syntagmatic Abstraction

For each term wi a vector of length W is calculated, which contains the
correlations of a term’s vector of polytexty with all other terms in the corpus.



Models of Semantic Spaces 121

αi,j =

∑D
k=1(f(wi, dk) − E(f(wi) | dk))(f(wj , dk) − E(f(wj) | dk))

√
∑D

k=1(f(wi, dk) − E(f(wi) | dk))2
∑D

k=1(f(wj , dk) − E(f(wj) | dk))2
(7)

where E(f(wi) | dk) = f(wi)
f(dk)

L is an estimator of the conditioned expec-
tation of the frequency of term wi in document dj , based on all documents
in the corpus. The coefficient αi,j measures the mutual affinity (αi,j > 0) or
repugnancy (αi,j < 0) of pairs of terms in the corpus [29].

Substituting yi,j = f(wi, dk) − E(f(wi) | dk), the centralised vector of
polytexty of term wi is defined as yi = (yi,1, . . . , yi,D)T . Using this definition
equation (7) can be rewritten as

αi,j =
∑D

k yi,kyj,k
√∑D

k y2
i,k

∑D
k y2

j,k

=
yi · yj

‖yi‖‖yj‖
, (8)

which is the definition of the cosine distance as defined in equation (6). The
difference between the α-abstraction and the cosine distance is merely that
in equation (7) the centralised vector of polytexty is considered instead of
the word-frequency vector in (6). Using the notion of polytexty, one might
say more abstractly that αi,j is the correlation coefficient of the polytexty
distributions of the types wi and wj on the texts in the corpus.

Syntagmatic abstraction realised by equation (7) refers to usage regulari-
ties in terms of co-occurrences in the same document. Documents in Rieger’s
works were, in general, short texts, like e.g. newspaper texts [25, 29] or small
textual fragments [28]. This means that the syntagmatic abstraction solely
relies on the distribution of polytexty of the respective terms.

In principle however, the approach can be generalised regarding various
types of generalised syntagmatic relations. Note that documents were defined
as arbitrary, disjoint subsets of a corpus. The underlying formal assumption
was simply that there is a co-occurrence structure of documents and terms,
which is represented in the term-document matrix. Consider for instance a
syntactically tagged corpus. In such a corpus documents might be defined for
example as a set of terms that all carry the same tag. The corresponding
“distributions of polytexty” would describe how a term is used in different
parts-of-speech and the syntagmatic abstraction αi,j would measure the sim-
ilarity of wi and wj in terms of part-of-speech membership.

3.2 The Paradigmatic Abstraction

The α-abstraction measures the similarities of the distribution of polytexty
over all terms in the corpus. The absolute value of the similarities, however, is
not solely a property of the terms themselves, but also of the corpus as a whole.
That is if the corpus is confined to a small thematic domain, the documents
will be more similar than in the case of a corpus that covers a wide range of
themes. In order to attain a paradigmatic abstraction, which abstracts away
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from the thematic coverage of the corpus, the Euclidean distances to all words
in the corpus are summed. This is the δ-abstraction [25, 29] given by:

δ(yi,yj) =

√
√
√
√

W∑

n=1

(αi,n − αj,n)2; δ ∈ [0; 2
√

W ] (9)

The δ-abstraction compensates the effect of the corpus’ coverage on α. The
similarity vector of each term is related to the similarity vectors of all other
terms in the corpus. In this way the paradigmatic structure in the corpus is
evaluated in the sense that every term is paradigmatically related to each other
since every term can equally be engaged in a occurs-in-document relation.

So the vector yi, is mapped to a vector (δ(i, 1) . . . δ(i,W )), which contains
the Euclidean distance of xi’s α to all other αs generated by the corpus and is
interpreted as meaning point in a semantic space [26]. Rieger concludes that in
this way a semantic representation is attained that represents the numerically
specified generalised paradigmatic structure that has been derived for each
abstract syntagmatic usage regularity against all other in the corpus [27].

Goebl [8] uses another measurement to anchor similarity measurements
of linguistic units (in his case dialectometric data sets) for the completely
different purpose of estimating the centrality of dialects in a dialectal network.
Let αi,j denote the similarity of dialect xi and xj , and let W denote the
number of dialects in the network. The centrality of xi is given by:

γ(xi) =
W∑

n=1

(
αi,n −

1
W

W∑

k=1

αi,k

)3
(10)

He argues

“The skewness of a similarity distribution has a particular linguistic meaning. The

more symmetric a similarity distribution is, the greater the centrality of the partic-

ular local dialect in the whole network.” [8].

Goebl uses (10) in order to calculate the centrality of a local dialect from
the matrix (αi,j)i,j of similarity measures between pairs of dialects in the
network. These centrality measures are employed to draw a choropleth map of
the dialectal network. Substituting the delta abstraction in (9) by the skewness
in (10) would result in a measure for the centrality of a term in a term-
document network: the more typical a term’s usage in the corpus the larger
the value of γ. Such a measure could be used as a term-weighting scheme.

Rieger’s construction of a semantic space does not lead to a reduction
of dimensionality. This was not his aim. The meaning of a term is repre-
sented by a high-dimensional vector and thus demonstrates the complexity of
meaning structures in natural language. Rieger’s idea to compute semantic
relations from a term-document matrix and represent semantic similarities as
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distances in a metric space has aspects in common with pragmatically ori-
ented approaches e.g. latent semantic analysis. The measures of the αi,j can
be written in a more condensed way as

B∗ = A∗(A∗)T = (αi,j)i,j=1,...W (11)

B∗ is a W ×W -matrix which represents the similarity of the words wi and
wj in terms of their distribution of polytexty. The semantic similarity between
words is calculated here in a way similar to the semantic similarity between
words in latent semantic indexing which is described in the next section. The
similarity matrix B∗ = A∗(A∗)T however is calculated in a slightly different
way. The entries of A∗ are yi,j = f(wi, dk) − E(f(wi) | dk) rather than the
term frequencies f(wi, dj) themselves, as can be seen from equation (7).

More advanced techniques within the fuzzy linguistic paradigm [21] extend
the concept of the semantic space to the representation of texts. The respective
computations, however, are complicated and exceed the scope of this paper.

Fuzzy linguistics aims at a numerical representation of the meaning of
terms. Thus the paradigmatic abstraction in equation (9) does not involve a
reduction of dimensionality. This is in contrast to the principal component
analysis that is performed in the paradigmatic abstraction step in latent se-
mantic analysis. There is however a close formal relationship.

4 Latent Semantic Analysis

“In essence, and in detail, it [latent semantic analysis] assumes that the psychological

similarity between any two words is reflected in the way they co-occur in small

subsamples of language” [17]. (Words in square brackets added by the author.)

In contrast to fuzzy linguistics Latent Semantic Analysis (LSA) deals with
the semantic nearness of documents rather than of words. The method however
is symmetric and can be applied to the similarity of words as well.

LSA projects document frequency vectors into a low dimensional space
calculated using the frequencies of word occurrence in each document. The
relative distances between these points are interpreted as distances between
the topics of the documents and can be used to find related documents, or
documents matching some specified query [2]. The underlying technique of
LSA was chosen to fulfil the following criteria:

1. To represent the underlying semantic structure, a model with sufficient
power is needed. Since the right kind of alternative is unknown, the power
of the model should be variable.

2. Both terms and documents should be explicitly represented in the model.
3. The method should be computationally tractable for large data sets. Deer-

wester et al. concluded that the only model which satisfied all these three
criteria was the singular value decomposition (SVD), which is a well known
technique in linear algebra [4].
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4.1 Singular Value Decomposition

Let A be a term-document matrix as defined in section (2) with rank3 r. The
singular value decomposition of A is given by

A = UΣV, (12)

where Σ = diag(σ1, . . . , σr) is a diagonal matrix with ordered diagonal ele-
ments σ1 > · · · > σr,

U =








u11 u12 . . . u1r

u21 u22 . . . u2r

...
. . .

...
uW1 uW2 . . . uWr








(13)

is a W × r-matrix with orthonormal columns and

V =








v11 v12 . . . v1r

v21 v22 . . . v2r

...
. . .

...
vr1 vr2 . . . vrr








(14)

is a r × r-matrix with orthonormal rows. The diagonal elements σ1, . . . , σr

of the matrix Σ are singular values of A. The singular value decomposition
can equivalently be written as an eigen-value decomposition of the similarity
matrix

B = AAT (15)

Note that U and V are orthonormal matrices. Therefore UUT = I and
V V T = I, where I is the neutral element of matrix-multiplication. According
to (12), the singular value decomposition of the transposed term-document
matrix AT is obtained as AT = V T ΣUT . Hence AAT = UΣV V T ΣUT =
UΣ2UT which is the eigen value decomposition of AAT with eigen-values
σ2

1 , . . . , σ2
r . Term frequency vectors are mapped to the latent space of artificial

concepts by multiplication with UΣ, i.e. x→ xT UΣ. Each of the r dimensions
of the latent space may be thought of as an artificial concept, which represents
common meaning components of different words and documents.

4.2 Deleting the Smallest Singular Values

A reduction of dimensionality is achieved by deleting the smallest singular
values corresponding to the less important concepts in the corpus. In so doing,
latent semantic analysis reduces the matrix A to a smaller K-dimensional
(K < r) matrix:

3In practice one can assume r = D, since it is very unlikely that there are two
documents in the corpus with linear dependent term-frequency vectors
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AK = UKΣKVK , (16)

Here, UK and VK are obtained from U and V in equation (12) by deleting
respectively columns and/or rows K + 1 to r and the diagonal matrix is
reduced to ΣK = diag(σ1, . . . , σK). The mapping of a term-frequency vector
to the reduced latent space is now performed by x → xT UKΣK . It has been
found that K ≈ 100 is a good value to chose for K [17].

LSA leads to vectors with few zero entries and to a reduction of dimen-
sionality (K instead of W ) which results in a better geometric interpretability.
This implies that it is possible to compute meaningful association values be-
tween pairs of documents, even if the documents do not have any terms in
common.

4.3 SVD Minimises Euclidean Distance

Truncating the singular value decomposition as described in equation (16)
projects the data onto the best-fitting affine subspace of a specified dimension
K. It is a well-known theoretical result in linear algebra, that there is no
matrix X with rank(X) < K that has a smaller Frobenius distance to the
original matrix A i.e. AK minimises

‖A−AK‖F =
K∑

i,j

(ai,j − aK
i,j)

2. (17)

Interestingly, Rieger’s δ-abstraction in equation (9) yields a nice inter-
pretation of this optimality statement. The reduction of dimensionality per-
formed by latent semantic analysis is achieved in such a way that it optimally
preserves the inherent meaning (i.e. the sum of the δ(xi, xj)). That is, the
meaning points in Rieger’s δ-space are changed to a minimal possible extent.
Another parallel between fuzzy linguistics and LSA is that equation (7) and
the corresponding matrix notation of αi,j in equation (11) coincide with the
similarity matrix in equation (15). The only difference is that the entries of
A and A∗ are defined in a different way. Using Rieger’s terminology, one may
call equation (15) a syntagmatic abstraction, because it reflects the usage
regularities in the corpus. The singular value decomposition is then the para-
digmatic abstraction, since it abstracts away from the paradigmatic structure
of the language’s vocabulary which consists of synonymy and polysemy rela-
tionships.

One objection to latent semantic indexing is that along with all other least-
square methods, the property of minimising the Frobenius distance makes
it suited for normally distributed data. The normal distribution however is
unsuitable to model term frequency counts. Other distributions like Poisson
or negative binomial are more appropriate for this purpose [20].

Alternative methods have therefore been developed [9], which assume that
the term frequency vectors are multinomially distributed and therefore agree
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with well corroborated models on word frequency distribution developed by
Chitashvili and Baayen [3]. Probabilistic Latent Semantic Analysis has ad-
vanced further in this direction.

5 Probabilistic Latent Semantic Analysis

Whereas latent semantic analysis is based on counts of co-occurrences and uses
the singular value decomposition to calculate the mapping of term-frequency
vectors to a low-dimensional space, Probabilistic Latent Semantic Analysis
(PLSA; see [10, 11]) is based on a probabilistic framework and uses the max-
imum likelihood principle. This results in a better linguistic interpretability
and makes PLSA compatible with the well-corroborated multinomial model
of word frequency distributions.

5.1 The Multinomial Model

The assumption that the occurrences of different terms in the corpus are
stochastically independent allows to calculate the probability of a given term
frequency vector xj = (f(w1, dj), . . . , f(wW , dj)). This is according to the
multinomial distribution (cf. Baayen [1] and Chitashvili & Baayen [3]):

p(xj) =
f(dj)

∏W
i=1 f(wi, dj)!

W∏

i=1

p(wi, dj)f(wi,dj) (18)

where p(wi, dj) is the probability of occurrence of term wi in document dj

which can be estimated by p(wi, dj) = f(wi, dj)/f(dj). If it is further as-
sumed that the term-frequency vectors of the documents in the corpus are
stochastically independent, the probability to observe a given term-document
matrix is

p(A) =
D∏

j=1

f(dj)
W∏

i=1

f(wi, dj)!

W∏

i=1

p(wi, dj)f(wi,dj) (19)

5.2 The Aspect Model

In order to map high-dimensional term-frequency vectors to a limited number
of dimensions, PLSA uses a probabilistic framework called aspect model. The
aspect model is a latent variable model which associates an unobserved class
variable zk, k = 1, . . . , K, with each observation, an observation being the
occurrence of a word in a particular document. The latent variables zk can
be thought of as artificial concepts like the latent dimensions in LSA. Like in
LSA, the number of artificial concepts K has to be chosen by the experimenter.
The following probabilities are introduced: p(dj) denotes the probability that
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a word occurrence will be observed in a particular document, di, p(wi | zk)
denotes the conditional probability of a specific term conditioned on the latent
variable zk (i.e. the probability of term wi given the thematic domain zk),
and finally p(zk | dj) denotes a document-specific distribution over the latent
variable space i.e. the distribution of artificial concepts in document dj .

A generative model for word/document co-occurrences is defined as fol-
lows:

(1) select a document dj with probability p(dj),
(2) pick a latent class zk with probability p(zk|dj), and
(3) generate word wj with probability p(wi|zk) [10].

Since the aspects are latent variables which cannot be observed directly,
the conditioned probability p(wi | dj) has to be calculated as the sum of the
possible aspects:

p(wi|dj) =
K∑

k=1

p(wi|zk)p(zk|dj) (20)

This implies the assumption that the conditioned probability of occurrence
of aspect zk in document dj is independent from the conditioned probability
that term wi is used, given that aspect zk is present [10].

In order to find the optimal probabilities p(wi|zk) and p(zk|dj), maximizing
the probability of observing a given term-document matrix, the maximum
likelihood principle is applied. The multinomial coefficient in equation (19)
remains constant when the probabilities p(wi, dj) are varied. It can therefore
be omitted for the calculation of the likelihood function, which is then given
as

L =
D∑

j=1

W∑

i=1

f(wi, dj) log p(wi, dj) (21)

Using the definition of the conditioned probabilities p(wi, dj) = p(dj)p(wi | dj)
and inserting equation (20) yields

L =
D∑

j=1

W∑

i=1

(

f(wi, dj) log
(
p(dj) ·

K∑

k=1

p(wi | zk)p(zk | dj)
)
)

(22)

Using the additivity of the logarithm and factoring in f(wi, dj) gives

L =

D∑

j=1

(
W∑

i=1

f(wi, dj) log p(dj) +

W∑

i=1

f(wi, dj) log

K∑

k=1

p(wi | zk)p(zk | dj)

)

(23)

Since
∑

i f(wi, dj) = f(dj) factoring out f(dj) finally leads to the likelihood
function

L =
D∑

j=1

f(dj)

(

log p(dj) +
W∑

i=1

f(wi, dj)
f(dj)

log
K∑

k=1

p(wi | zk)p(zk | dj)

)

(24)



128 Edda Leopold

which has to be maximised with respect to the conditional probabilities in-
volving the latent aspects zk. Maximisation of (24) can be achieved using the
EM-algorithm, which is a standard procedure for maximum likelihood esti-
mation in latent variable models [5]. The EM-algorithm works in two steps
that are iteratively repeated (see e.g. [22] for details).

Step 1 In the first step (the expectation step), the expected value E(zk) of
the latent variables is calculated, assuming that the current hypothesis h1

holds.
Step 2 In a second step (the maximisation step), a new maximum likelihood

hypothesis h2 is calculated. This assumes that the latent variables zk equal
their expected values E(zk) that have been calculated in the expectation
step. Then h1 is substituted by h2 and the algorithm is iterated.

In the case of PLSA, the EM-algorithm is employed as follows (see [10]
for details): To initialise the algorithm, generate W ·K random values for the
probabilities p(wi | zk) and D ·K random values for the probabilities p(zk |
dj) such that all probabilities are larger than zero and fulfil the conditions∑

i,k p(wi | zk) = 1 and
∑

j,k p(zk | dj) = 1 respectively. The expectation step
can be obtained from equation (24) by applying Bayes’ formula:

p(zk | wi, dj) =
p(wi | zk)p(zk | dj)

∑K
k=1 p(wi | zk)p(zk | dj)

(25)

In the maximization step, the probability p(zk | wi, dj) is used to calculate
the new conditioned probabilities

p(wi | zk) =

∑N
j=1 f(wi, dj)p(zk | wi, dj)

∑K
k=1

∑D
j=1 f(wi, dj)(zk | wi, dj)

(26)

and

p(zk | dj) =
∑W

i=1 f(wi, dj)p(zk | wi, dj)
f(dj)

, (27)

Now the conditioned probabilities p(zk|dj) and p(wi|zk) calculated from
equation (26) and (27) are inserted into equation (25) to perform the next
iteration. The iteration is stopped when a stationary point of the likelihood
function is achieved. The probabilities p(zk | dj), k = 1, . . . ,K, uniquely define
for each document a K − 1-dimensional point in continuous latent space.

It is reported that PLSA outperforms LSA in terms of perplexity reduc-
tion. Notably PLSA allows to train latent spaces with a continuous increase in
performance. This is in contrast to LSA where the model perplexity increases
when a certain number of latent dimensions is exceeded. In PLSA the number
of latent dimensions may even exceed the rank of the term-document matrix
[10].

The main difference between LSA and PLSA is the optimisation criterion
for the mapping to the latent space which is defined by UΣ and p(zk | dj)
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respectively. LSA minimises the least square criterion in equation (17) and
thus, implicitly assumes an additive Gaussian noise on the term-frequency
data. PLSA in contrast, assumes multinomially distributed term-frequency
vectors and maximises the likelihood of the aspect model. It is therefore in
accordance with linguistic word frequency models. One disadvantage of PLSA
is that the EM-algorithm, like most iterative algorithms, converges only lo-
cally. Therefore the solution need not be a global optimum. This is in contrast
to LSA which uses an algebraic solution and ensures global optimality.

6 Classifier Induced Semantic Spaces

“[. . . ] problems, in which the task is to classify examples into one of a discrete set

of possible categories, are often referred to as classification problems.” [22].

The main problem in PLSA approach was to find the latent aspect vari-
ables zk and calculate the corresponding conditioned probabilities p(wi|zk)
and p(zk|dj). It was assumed that the latent variables correspond to some
artificial concepts. It was impossible however to specify these concepts explic-
itly. In the approach described below, the aspect variables can be interpreted
semantically. Prerequisite for such a construction of a semantic space is a
semantically annotated training corpus. Such annotations are usually done
manually according to explicitly defined annotation rules. An example of such
a corpus is e.g. the news data of the German Press Agency (dpa) which is
annotated according to the categories of the International Press Telecommu-
nications Council (IPTC). These annotations inductively define the concepts
zk, or the dimensions, of the semantic space. A classifier induced semantic
space (CISS) is generated in two steps: In the training step classification rules
xj → zk are inferred from the training data. In the classification step these
decision rules are applied to possibly unannotated documents.

This construction of a semantic space is especially useful for practical
applications because (1) the space is low-dimensional (up to dozens of dimen-
sions) and thus can easily be visualised, (2) the space’s dimension possesses
a well defined semantic interpretation, and (3) the space can be tailored to
the special requirements of a specific application. The disadvantage of classi-
fier induced semantic spaces (CISS) is that they rely on supervised classifiers.
Therefore manually annotated training data is required.

Classification algorithms often use an internal representation of the de-
gree of membership. They internally calculate how much a given input vector
x, belongs to a given class zk. This internal representation of the degree of
membership can be exploited to generate a semantic space.

A Support Vector Machine (SVM) is a supervised classification algorithm
that recently has been applied successfully to text classification tasks. SVMs
have proven to be an efficient and accurate text classification technique [6, 7,
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Fig. 1. Generating a CISS with a support vector machine. The SVM algo-
rithm seeks to maximise the margin around a hyperplane that separate a positive
class (marked by circles) from a negative class (marked by squares). Once an SVM
is trained, vk = wkx + b is calculated in the classification step. The quantity vk

measures the rectangular distance between the point marked by a star and the
hyperplane. It can be used to generate a CISS.

12, 18]. Therefore Support Vector Machines appears to be the best choice for
the construction of a semantic space for textual documents.

6.1 Using an SVM to Quantify the Degree of Membership

Like other supervised machine learning algorithms, an SVM works in two
steps. In the first step – the training step – it learns a decision boundary in
input space from preclassified training data. In the second step – the classi-
fication step – it classifies input vectors according to the previously learned
decision boundary. A single support vector machine can only separate two
classes – a positive class (y = +1) and a negative class (y = −1). This means
that for each of the K classes zk a new SVM has to be trained, separating zk

from all other classes.
In the training step the following problem is solved: Given is a set of

training examples S� = {(x1, y1), (x2, y2), . . . , (x�, y�)} of size 	 ≤ W from
a fixed but unknown distribution p(x, y) describing the learning task. The
term-frequency vectors xi represent documents and yi ∈ {−1,+1} indicates
whether a document has been annotated as belonging to the positive class or
not. The SVM aims to find a decision rule hL : x → {−1,+1} based on S�

that classifies documents as accurately as possible.
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The hypothesis space is given by the functions f(x) = sgn(wx+ b), where
w and b are parameters that are learned in the training step and which deter-
mine the class separating hyperplane. Computing this hyperplane is equivalent
to solving the following optimisation problem [13, 32]:

minimise: V (w, b, ξ) =
1
2
ww + C

�∑

i=1

ξi

subject to: ∀�
i=1 : yi(wx + b) ≥ 1− ξi

∀�
i=1 : ξi ≥ 0 (28)

The constraints require that all training examples are classified correctly
allowing for some outliers, symbolised by the slack variables ξi. If a training
example lies on the wrong side of the hyperplane, the corresponding ξi is
greater or equal to 0. The factor C is a parameter that allows one to trade
off training error against model complexity. Instead of solving the above opti-
mization problem directly, it is easier to solve the following dual optimisation
problem [13, 32].

minimise: W (α) = −
�∑

i=1

αi +
1
2

�∑

i=1

�∑

j=1

yiyjαiαjxixj

subject to:
�∑

i=1
0≤αi≤C

yiαi = 0 (29)

All training examples with αi > 0 at the solution are called support vec-
tors. The support vectors are situated right at the margin (see the solid squares
and the circle in figure (1)) and define the hyperplane. The definition of a hy-
perplane by the support vectors is especially advantageous in high dimensional
feature spaces because a comparatively small number of parameters – the αs
in the sum of equation (29) – is required.

In the classification step an unlabeled term-frequency vector is esti-
mated to belong to the class

ŷ = sgn(wx + b) (30)

Heuristically, the estimated class membership ŷ corresponds to whether or
not x belongs on the lower or upper side of the decision hyperplane. Thus esti-
mating the class membership by equation (30) consists of a loss of information
since only the algebraic sign of the right-hand term is evaluated. However the
value of v = wx+ b is a real number and can be used in order to create a real
valued semantic space, rather than just to estimate if x belongs to a given
class or not.
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Fig. 2. A classifier induced semantic space. 17 classifiers have been trained
according to the highest level of the IPTC classification scheme. The projection to
two dimensions “culture” and “disaster” is displayed on the right, and the projection
to “culture” and “justice” on the left. The calculation is based on 68778 documents
from the “Basisdienst” of the German Press Agency (dpa) July-October 2000.

6.2 Using Several Classes to Construct a Semantic Space

Suppose there are several, e.g K, classes of documents. Each document is rep-
resented by an input vector xj . For each document the variable yk

j ∈ {−1,+1}
indicates whether xj belongs to the k-th class (k = 1, . . . ,K) or not. For each
class k = 1, . . . , K an SVM can be learned which yields the parameters wk and
bk. After the SVMs have been learned, the classification step (equation (30))
can be applied to a (possibly unlabeled) document represented by x resulting
in a K-dimensional vector v, whose kth component is given by vk = wk ·x+bk.
The component vk quantifies how much a document belongs to class k. Thus
the document represented by the term frequency vector xj is mapped to the
K-dimensional vector in the classifier induced semantic space. Each dimension
in this space can be interpreted as the membership degree of the document
to each of the K classes.

The relation between PLSA and CISS is given by the latent variable zk.
In the context of CISS, the latent variable zk is interpreted as the thematic
domain. This in accordance with semantic annotations in the corpus. Statisti-
cal learning theory assumes that each class k is learnable because there is an
underlying conditional distribution p(xj | zk), which reflects the special char-
acteristics of the class zk. The classification rules that are learned from the
training data minimise the expected error. In PLSA the aspect variables are
not previously defined. The conditioned probabilities p(wi | zk) and p(zk | xj)
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are chosen in such a way that they maximise the likelihood of the multinomial
model.

6.3 Graphical Representation of a CISS

Self-Organising Maps (SOM) were invented in the early 80s [15]. They use a
specific neural network architecture to perform a recursive regression leading
to a reduction of the dimension of the data. For practical applications SOMs
can be considered as a distance preserving mapping from a more than three-
dimensional space to two-dimensions. A description of the SOM algorithm
and a thorough discussion of the topic is given by [16].

Figure 3 shows an example of a SOM visualising the semantic relations of
news messages. SVMs for the four classes ‘culture’, ‘economy’, ‘politics’, and
‘sports’ were trained by news messages from the ‘Basisdienst’ of the German
Press Agency (dpa) April 2000. Classification and generation of the SOM was
performed for the news messages of the first 10 days of April. 50 messages
were selected at random and displayed as white crosses. The categories are
indicated by different grey tone. Then the SOM algorithm is applied (with
100×100 nodes using Euclidean metric) in order to map the four-dimensional
document representations to two dimensions admitting a minimum distortion
of the distances. The grey tone indicates the topic category. Shadings within
the categories indicate the confidence of the estimated class membership (dark
= low confidence, bright = high confidence).

It can be seen that the change from sports (15) to economy (04) is filled
by documents which cannot be assigned confidently to either classes. The
area between politics (11) and economy (04), however, contains documents,
which definitely belong to both classes. Note that classifier induced semantic
spaces go beyond a mere extrapolation of the annotations found in the training
corpus. It gives an insight into how typical a certain document is for each of
the classes. Furthermore classifier induced semantic spaces allow one to reveal
previously unseen relationships between classes. The bright islands in area 11
on Figure 3 show, for example, that there are messages classified as economy
which surely belong to politics.

7 Conclusion

Fuzzy Linguistics, LSA, PLSA, and CISS map documents to the semantic
space in a different manner. Fuzzy Linguistics computes a vector for each
word which consists of the cosine distances to every other word in the corpus.
Then it calculates the Euclidean distances between the vectors which gives
the meaning point. Documents are represented by summing up the meaning
points of the document’s words.

In the case of LSA the representation of the document in the semantic
space is achieved by matrix multiplication: dj → xT

j UKΣK . The dimensions
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Fig. 3. A self-organising map of a classifier induced semantic space. 4
classifiers have been trained according to the highest level of the IPTC classification
scheme. The shadings and numbers indicate the “true” topic annotations of the news
messages. 01: culture, 04: economy, 11: politics, 15: sports. (The figure was taken
from [19]).

of the semantic space correspond to the K largest eigen-values of the similar-
ity matrix AAT . The projection employed by LSA always leads to a global
optimum in terms of the Euclidean distance between A and Ak.

PLSA maps a document to the vector of the conditional probabilities,
which indicate how probable aspect zk is, when document dj is selected:
dj → (p(z1 | dj), . . . , p(zK | dj)). The probabilities are derived from the
aspect model using the maximum likelihood principle and the assumption
of multinomially distributed word frequency distributions. The the likelihood
function is maximised using the EM-algorithm, which is an iterative algorithm
that leads only to a local optimum.

CISS requires a training corpus of documents annotated according to their
membership of classes zk. The classes have to be explicitly defined by the hu-
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man annotation rules. For each class zk a classifier is trained, i.e. parameters
wk and bk are calculated from the training data. For each document dj the
quantities vk = wk ·x+bk are calculated, which indicate how much dj belongs
the previously learned classes zk. The mapping of document dj to the seman-
tic space is defined as dj → (v1, . . . vK). The dimensions can be interpreted
according to the annotation rules.
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Summary. This chapter introduces a variant of the principle of compositionality
in quantitative text semantics as an alternative to the bag-of-features approach.
The variant includes effects of context-sensitive interpretation as well as proces-
ses of meaning constitution and change in the sense of usage-based semantics. Its
starting point is a combination of semantic space modeling and text structure analy-
sis. The principle is implemented by means of a hierarchical constraint satisfaction
process which utilizes the notion of hierarchical text structure superimposed by
graph-inducing coherence relations. The major contribution of the chapter is a con-
ceptualization and formalization of the principle of compositionality in terms of
semantic spaces which tackles some well known deficits of existing approaches. In
particular this relates to the missing linguistic interpretability of statistical meaning
representations.

1 Introduction

Theory and practice of automatic text analysis hinge upon computable repre-
sentations of natural language texts. This relates to computational linguistics
as well as to applications such as mining, summarizing, extracting, categoriz-
ing, filtering, routing and tracking texts. Moreover, recent approaches to sim-
ulating processes of text comprehension and quantifying coherence relations
also prove their relevance in cognitive linguistics [6, 12, 34, 40]. Generally
speaking, text representation models specify the kind of mathematical entity
(e.g. sets, graphs, feature distributions or stochastic processes) used to repre-
sent texts and their constituents. One of the most prominent representation
models in this area is the bag-of-features approach [37] which represents texts
as sets of weighted features, that is, as fuzzy sets of mostly lexical items whose
membership values depend on local (i.e. text-specific) and global (i.e. corpus-
specific) weighting parameters. As input to the Vector Space (VS) model,
these sets are represented as vectors whose dimensions are defined by the lex-
ical features taken into consideration. From its beginning this model proved
to be successful in representing texts in the area of information retrieval [37].
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Table 1. Prevalent deficits of the VS model, semantic spaces and related approaches.

1. Missing typing as a result of a limitation to similarity relations

The VS model and related approaches do not classify similarity relations so that in
these frameworks similarity judgements are underspecified.1 Asserting the similarity
of two texts according to these models does not clarify the proper source of similarity:
Are they similar because they deal, for example, with the same topic, instantiate
the same text type or are written by the same author?

2. Insensitivity to indirect similarity relations

According to the VS model, texts are similar to the extent they share approximately
equally weighted words. Consequently, this model judges texts to be dissimilar which
do not share such words, even if they deal with the same or related topics and, thus,
are similar not by virtue of their expression plane, but of their content plane.

3. Unstructured representations as a result of an insensitivity to sign structure

Similarity judgements based on the VS model or related approaches are insensitive
to the (constituency and dependency) structure of signs. Texts, for example, sharing
a subset of lexical items may be judged to be similar even if they are completely dif-
ferently structured because of instantiating, for example, highly divergent genres or
text types. Consequently, meaning representations within these frameworks are un-
structured in the sense that signs of whatever linguistic stratum are always mapped
onto single feature vectors – irrespective of their internal structure.

4. Missing structure-sensitive similarity measures

A direct consequence of the latter insensitivity is the focus on (dis-)similarity mea-
sures (e.g. the cosine measure) of feature vectors leaving out structure sensitive
similarity measures (e.g. the tree edit distance).

5. Missing iterative computability

From the point of view of linguistic dynamics, a deficit of some approaches to
semantic spaces is that they do not allow to iteratively compute output spaces for
incrementally presented input texts. That is, a semantic space is computed for the
input corpus as a whole irrespective of any order of its element texts.

Nevertheless, it faces a lot of problems especially when used as a representa-
tion model in computational linguistics. We concentrate on five of them – see
Table (1).

A candidate for solving the first problem is given by semantic spaces
which are utilized in cognitive linguistics [7, 12, 17], computational linguis-
tics [20, 33, 38] and information retrieval [4]. Semantic spaces start from a
geometric interpretation of usage-based structural semantics. In the case of
words this means, for example, that the more similar their usage, the less

1In the case of lexical items, sense relations (e.g. synonymy or co-hyponymy) can
be distinguished. In the case of textual units, coherence relations such as rhetorical
relations (e.g. elaboration, contrast, circumstance – cf. Mann & Thompson [18]) are
candidates of typing.
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distant their feature vectors in semantic space. Rieger [29, 30] reconstructs
lexical meanings as the output of a two-stage process of syntagmatic and par-
adigmatic learning. In this model, paradigmatic similarity is a function of the
words’ syntagmatic regularities which, in turn, are explored based on their
lexical contexts. Consequently, Riegerian semantics suspends the requirement
that words co-occur in order to be judged as paradigmatically similar. Thus,
Rieger’s semantics is sensitive to indirect similarity relations. This model of
meaning constitution – developed in the framework of Fuzzy Linguistics (FL)
[29, 30, 31, 32, 35] – is, to my knowledge, the first formally elaborated ap-
proach to learning indirect meaning relations of signs. Because of the semiotic
universality of syntagmatics and paradigmatics, FL gives a perspective on
machine learning in still unexplored areas.

Latent Semantic Analysis (LSA) [17] is an alternative model of semantic
spaces which originates from efforts to explore indirect similarities in infor-
mation retrieval [4] according to the following requirements:

• Words should be interrelated even if they do not or only rarely co-occur,
but tend to be used in similar contexts.

• Texts should be interrelated even if they do not share any or only few
lexical items, but whose lexical constituents are similar in the sense of the
latter claim.

In a series of experiments it could be shown that LSA meets these re-
quirements and thus is sensitive to indirect similarity relations on the level
of words and texts. Comparable to FL, LSA models syntagmatic and para-
digmatic learning. But other than FL, LSA amalgamates both processes in
a single step based on singular value decomposition [20]. Consequently, we
prefer FL as it is more explicit in terms of cognitive modeling.

Both approaches, FL and LSA, also suspend the notion of a semantic
atom. That is, other than early efforts in feature semantics [8], they do not
rely on predefined semantic dimensions, but utilize lexical units observed in
the input corpora in order to span the output spaces in which the focal signs
are interrelated. Nevertheless, a shortcoming of both approaches is that they
are insensitive to typed relations as well as to text structure. Thus, they do
not solve the problem of missing typing and structural insensitivity (see Table
1). LSA, for example, maps texts – irrespective of their structure and length
– as well as words onto single meaning points. Moreover, it concentrates on
unsystematic sense relations. Thus, neighborhood relations of meaning points
are not categorized according to sense relations.

A crucial step towards structure-sensitive semantic spaces was done by
Kintsch [13] who proposes an extension of LSA in order to map sense relations
of predicate-argument structures by means of a function which is sensitive to
this class of linguistic structures.2 More specifically, Kintsch focuses on the

2See Ruge [36] for an alternative model of predicate-argument structures based
on semantic spaces.
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context variability of words, that is, on their tendency to modify their meaning
and, thus, to adopt text specific interpretations subject to the context of their
usage. In the discussion of the validity of the principle of compositionality
(CP) this phenomenon is analyzed by example of NN and AN constructions
(modeled as predicate-argument structures of the general form P (A)).3 The
decisive point is that as far as these contexts are not enumerable, context
variability argues the validity of the CP.4

Generally speaking, in order to model the similarity relations of predica-
te-argument structures P (A) as representations of simple assertions, Kintsch
proposes a predication operation

πk : Sk+2 → S (1)

where S is the set of meaning points. This operation computes the meaning
point ‖P (A)‖ ∈ S as the weighted mean of the meaning points ‖A‖, ‖P‖ ∈ S
and all k nearest neighbors of ‖P‖ also nearest to ‖A‖. In this model, the
meaning representation of predicate-argument structures P (A) is a function of
the meaning representation of A and of P , but only according to the relevance
of P to interpret A. Recursively applying this operation, Kintsch arrives at
mapping correlates of SVO structures:

(P (A1))(A2) (2)

This operation does not strictly follow the CP: Although the meaning of
P (A) is a function of the meanings of its parts and the way they are combined,
the contribution of P to P (A) varies nontrivially with its argument A:

• Firstly, this relates to the selection of a subset X of nearest neighbors of
P in semantic space. As long as the underlying universe U of meaning
points is fixed, this selection is covered by the CP. But if U changes in the
course of text comprehension, that is, if new meaning points are generated
as intermediary representations of the text-specific interpretation of A, U
cannot be enumerated in advance. In this case, the semantic contribution
of P has to be computed “at runtime” subject to its usage context.

• Secondly, this context is not bound to A, but includes selectional effects
of the preceding co-text, whose text-specific interpretations have to be re-
flected too. In cognitive linguistics, this phenomenon is called text priming
[39]. In contrast to word priming, it relates to the effect that the preced-
ing text of a lexical item enforces context adequate interpretations while
inhibiting inadequate ones.

• Thirdly, P and A do not have stable meanings allowing for deterministic,
functional selections of context adequate readings, but change in the course
of changing usage habits.
3Cf. Osherson & Smith [24] and Kamp & Partee [11], but also Lahav [16] who

rates this variability as an argument against the compositionality of natural lan-
guages.

4See Janssen [10] and Partee [25] for a systematic introduction to the CP.
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This chapter proposes a variant of the CP – called Latent Compositionality
Principle (LCP) – which reflects these considerations on the level of texts.5

It serves as the kernel of a quantitative semantics modeling sense relations
not only of lexical items, but of units belonging to whatever stratum of tex-
tual resolution. The variant includes processes of text priming, perspective
interpretation, meaning constitution and change. Its algorithmic specification
is based on the framework of fuzzy constraint satisfaction processes super-
imposed by a hierarchical order. This model departs from approaches to co-
herence as an “unordered” process of parallel constraint satisfaction [40]. As
will be shown, turning away from the paradigm of parallel processing allows
tackling a central deficit of semantic spaces (see Table 1): their insensitivity
to structure.

The chapter is organized as follows: Section (2) introduces the LCP. Sec-
tion (3) presents formal preliminaries and Section (4) introduces an algorith-
mic specification of the LCP in terms of hierarchical constraint satisfaction
processes whose numerical specification is proposed in Section (5). Section (6)
compares this model with the VS model, FL and LSA. Finally, Section (7)
gives a conclusion and prospects future work.

2 Latent Compositionality

Starting from the relational concept of meaning as defined in situation se-
mantics [2], the informal specification of the LCP introduces two extensions:
First, coherence relations are additionally referred to as determinants of in-
terpretation. Second, the LCP refers to usage regularities according to which
the interpretation of lexical items can change their usage conditions and thus
their interpretation in subsequent communication situations. Consequently,
the LCP introduces a kind of dynamics which relates to learning linguistic
knowledge (e.g. routinization, schematization etc.) and which is left out in the
classical reading of the CP:

The meaning of a linguistic item x is a relation over
• its usage-regularities,
• its usage contexts as systems of syntactic dependency as well as

cohesion and coherence relations to which it participates,
• the meanings of its components,
• the way they are combined and
• described situations.
The interpretation of x in a given context is the situation it describes
subject to concrete values of the latter parameters.

Although this version of the LCP accounts for different parameters of text
meaning constitution, it is nevertheless underspecified in the sense that it

5Note that Kintsch [see 13] does not generalize his model to texts as a whole.
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contains several innumerable parameters. Usage regularities, for example, are
dynamic entities which cannot be enumerated as lexicon entries. In order to
tackle their dynamics, the LCP needs to be redefined by including procedural
models of cognitive processes which allow computing parameter values subject
to the operative contexts:

The meaning of a linguistic unit x is a procedure P generating its in-
terpretation based on its usage regularities, the contexts of its usage,
the meanings of its components and the way they are combined. In
order to guarantee interpretability of the measurements performed by
P , it is required that not only its input and output have modeling
function w.r.t cognitive entities, but also P w.r.t cognitive processes.

This variant of the LCP asks for procedures which do not only pro-
duce “good results” in terms of machine learning, but model socio-cognitive
processes and their lexico-grammatical manifestations. In the following sec-
tions, this criterion is met by means of the Construction-Integration (CI)
theory of Kintsch [12]. That is, text interpretation is conceived as a process of
alternating construction and integration processes starting with elementary
text components and finally integrating – if successful – the input text. In
this model, construction leads to the rather unconstrained generation of pos-
sibly incoherent candidate interpretations which are selected in subsequent
integration processes in order to derive the most coherent interpretation.

At present, the LCP lacks specifications with respect to a quantitative
semantics. Comparable to the CP [10], it still contains undefined parame-
ters. This relates to the notion of context, meaning , linguistic items, their
components, the way they are combined and the usage regularities of ele-
mentary items. In the following sections, the LCP is specified with respect
to the structural meaning aspect and the linguistic context (i.e. cotext) of
text components down to the level of lexical items. Further, usage regularities
are referred to in terms of Miller and Charles [23]. In other words, we fol-
low the weak contextual hypothesis according to which the similarity of the
contextual representations of words contributes to their semantic similarity.
As demonstrated in [21], we extend this hypothesis to the level of texts by
saying that the contextual similarities of the lexical constituents of two text
segments contribute to their semantic similarity. Subsequently, the LCP is
specified in a way which accounts for the fact that the connotations of com-
plex signs do not only systematically depend on the sense relations of their
parts, but systematically vary with their textual context.

The LCP builds on situation semantics and, thus, distinguishes between
meaning and interpretation: Linguistic items are interpreted subject to their
contextual embedding. This interpretation includes the items’ linguistic mean-
ings as additional parameters which are determined irrespective of the items’
contextual embedding. In this sense we distinguish between the linguistic
meaning of a text and its discourse specific interpretation.
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3 Preliminaries

In this section, formal preliminaries are introduced. First we introduce the set
of types and tokens:

Definition 1. Let C = {x1, . . . , xn} be a text corpus, S a segmentation map-
ping each text x ∈ C onto an ordered rooted tree S(x) = (S(x), E, x,O1, O2)
as a model of its kernel hierarchical structure in the sense of an ordered hier-
archy of content objects [28] and L : T (C) → L(C) a lemmatization mapping
each token a ∈ T (C) onto its type a ∈ L(C); T (C) ⊂ S(C) is the set of tokens
and L(C) the set of types of corpus C. O1 is an order relation mapping the
syntagmatic order of all immediate constituents of any segment of x. That is,
O1(yi, yj) iff yi, yj ∈ S(x) are immediate constituents of the same z ∈ S(x)
according to S so that yi precedes yj in z. O2 is the linear order relation
induced by the postorder traversal of S(x).

We define S(x), x ∈ S(x), as the set of all segments of x according to S and
S(C) = ∪x∈CS(x). Further, T (x) ⊂ S(x) is the set of all tokens of x according
to S and T (C) = ∪x∈CT (x). Next, L(x) = {a | ∃a ∈ T (x) : a |=T a} is the set
of all types classifying at least one token in T (x). Thus, L(C) = ∪x∈CL(x).
We write S, T and L instead of S(C), T (C) and L(C) if the corpus C is
known from the context. L induces a type-token classification (T,L, |=T ) where
|=T⊆ T × L and a |=T a iff a ∈ T is a token according to S instantiating the
type a ∈ L according to L – the notation a |=T a is borrowed from [3].

Now we give an abstract definition of semantic spaces which grasps the
varying space models of FL [33], LSA [17] and derivations thereof:

Definition 2. Let a corpus C, a segmentation S and a lemmatization L be
given according to definition (1). Further, let X be an uncountable set, e.g.
X = Rn for some n > 0, n ∈ N, and (X, d) be a metric space. A semantic space
is a quintuple (L, S, α, β, (X, d)) where α : L → X is a function mapping types
a ∈ L onto representations of the contexts of their tokens a ∈ L in segments
x ∈ S. Further, β : S → X is a function mapping segments x ∈ S onto X by
operating on the context representations of their components according to S

down to the level of tokens a ∈ T (x) as instances of types a ∈ L(x).

Note that the uncountability of X (in contrast to L and S)6 is required
to guarantee an infinite inventory for representing the meanings of newly
invented or composed signs as well as to account for meaning change.

Definition (2) does not specify semantic spaces by defining the functions
α, β, but requires that candidate models of semantic spaces, instantiating this

6That is, for any u ∈ L ∪ S there is always an element x ∈ X so that either
α(u) = x or β(u) = x, but not vice versa. In terms of glossematics, the metric space
(X, d) is, so to say, a representation of those part of the “meaning substance” which
is articulated by sign systems in order to shape their system of structural meanings.
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definition, map the two-level process of meaning constitution, i.e. of consecu-
tive syntagmatic and paradigmatic learning [29]. This is reflected by the metric
d operating on context representations of signs in L and S, respectively. That
is, learning semantic similarities of linguistic items is required to operate on
measurements of their (lexical constituents’) usage regularities (in the case of
complex text segments). Further, because of decoupling of X, L and S, def.
(2) allows different signs to have the same representation in (X, d). This is
needed to distinguish, for example, signs which are used equally.

In the following section, a Fuzzy Constraint Satisfaction Problem (FCSP)
is defined in terms of semantic spaces. Normally, FCSPs are defined in terms
of fuzzy sets [41]. But this contrast is only a question of notational variants
since meaning points in semantic space are easily translated into fuzzy sets
[29]: Let (L, S, α, β, (X, d)) be a semantic space. For any sign v ∈ U = L ∪ S
we define a fuzzy set F(v) ∈ F(U) with the membership function7

∀u ∈ U : µF(v)(u) =






d(α̂(v), α̂(u)) : u, v ∈ L

d(α̂(v), β̂(u)) : u ∈ L, v ∈ S

d(β̂(v), α̂(u)) : u ∈ S, v ∈ L

d(β̂(v), β̂(u)) : u, v ∈ S

(3)

where α̂ and β̂ are standardizations of α and β onto the unit interval.
Analogously, any similarity or distance measure operating on S can be

transformed into an operation on fuzzy sets [1].

4 Hierarchical Constraint Satisfaction

Hierarchical constraint satisfaction problems (HCSP) are now introduced as
specifications of the LCP in terms of quantitative text semantics. The basic
idea is that coherence relations span networks of interpretational constraints
whose evaluation order is constrained by the focal text’s kernel hierarchical
structure. This hierarchy is assumed in accordance with the notion of logical
document structure [27] and related models. Thus, we suppose texts to have
a hierarchical structure – henceforth called integration hierarchy – which is
superimposed by constraints in the form of cohesion and coherence relations.8

The concept of integration hierarchy reflects the idea that texts are in-
terpreted bottom-up from left to right starting with elementary text com-
ponents thereby integrating more and more complex components up to the
level of texts. It is assumed that this process of constraint satisfaction tries
to maximize the degree to which all operative constraints are fulfilled subject
to their preference order. Since constraints are seen to be based on coherence

7F(U) ist the set of all fuzzy sets over U .
8Cohesion relations are treated as special cases of coherence relations according

to [22].
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Fig. 1. An example of an integration hierarchy augmented by inter- (a, b), intra-
(c) and transrelational (d, e) coherence relations from the perspective of the focal
text component 7. Numbers indicate the postorder in which the kernel hierarchy is
traversed (see Section 4.1) and, thus, the components’ interpretations are computed.

relations as informational uncertain interpretation restrictions two cases have
to be considered:

• prioritized constraints according to preference relations regarding the order
of their fulfillment;

• fuzzy constraints which may be only partially fulfilled because of a non-
specific or dissonant information base.

As will be shown, both types of constraints are easily mapped in the frame-
work of fuzzy sets [5] and its adoption in terms of semantic spaces.

Integration hierarchies superimpose an order on the interpretation of text
components. This process evolves in a continuum spanned by two extreme
cases. On the one hand, it may be strictly compositional – without being re-
stricted by any coherence relation interfering with the kernel hierarchical text
structure. On the other hand, it may evolve according to the context principle
[10] – in strict contradiction to the order induced by the integration hierarchy.
The exact course of interpretation depends on the operative coherence rela-
tions. In this sense, the LCP covers a continuum which includes strict com-
positionality (as a characteristic of logical semantics) and strict contextuality
(as a characteristic of connectionist approaches in the sense of the principle
of parallel constraint satisfaction).

Based on these preliminaries, the building blocks of HCSPs can now be
introduced with a focus on monological texts:

4.1 Integration Hierarchy

In the present approach, text components interact along syntactic dependency
and textual coherence relations. As an output of this interaction, the compo-
nents’ discourse specific, perspective interpretations participate in the process
of text interpretation which – if successful – leads to the integration of more
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and more complex components up to the level of texts. This process does
not run in parallel in the sense that all components participate on an equal
footing. Rather, it is seen to be superimposed by an integration hierarchy.
For simplicity reasons, the integration hierarchy of a text is identified with
its logical document structure [28]. That is, a text is seen to be subdivided,
amongst others, into sections, paragraphs, sentences, phrases and words by
the operative segmentation S.9

According to this concept a text x has a kernel hierarchical structure which
is modeled by the ordered rooted tree �x induced by the segmentation S of
definition (1):

�x= (V,E, x,O1, O2) =def S(x) (4)

whose root x is the text to be integrated and whose leafs are elementary text
components in the sense of S. For any y ∈ V , (y, yi1), . . . , (y, yin

) ∈ E and
O1(yi1 , yi2), . . . , O1(yin−1 , yin

) we abbreviate

y = I(yi1 , . . . , yin
) (5)

Moreover, we distinguish between the syntactic integration operation I and its
semantic counterpart I. Thus, using the homomorphism ‖‖ for interrelating
syntactic and semantic structure, we write:

‖y‖ = ‖I(yi1 , . . . , yin
)‖

= ‖I‖(‖yi1‖, . . . , ‖yin
‖)

= I(‖yi1‖, . . . , ‖yin
‖) (6)

In Section (5.1), the semantics of I is defined with the help of aggregation
operations on semantic spaces.

Next, the notion of an integration hierarchy �x= (S(x), E, x,O1, O2) is
recursively referred to all segments of x. That is, for any y ∈ S(x) we define:

�y= (S(y), E′, y, O1, O2) (7)

where E′ = {(yi, yj) ∈ E | yi, yj ∈ S(y)}.
As explained subsequently, the integration hierarchy of a text is tran-

scended by coherence relations constituting a graph-like texture by embedding
its components into contexts as a source of their perspective interpretation.

4.2 Constraints

The basic building blocks of constraint-satisfaction problems are constraints.
In HCSPs these constraints are defined by analogy with the distinction of
relations and their formats in the relational calculus:

9A more elaborate approach is to utilize the RST-tree of a text according to the
Rhetorical Structure Theory (RST) [18].
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• Constraints: In terms of HCSPs, text components are variables whose
values range over their possible interpretations. Following this terminology,
coherence relations are constraints restricting the interpretations of their
arguments. Let Di1, . . . , Dik be the domains of the variables xi1, . . . , xik.
Then a coherence relation10 of these components can be defined as a fuzzy
constraint Ri(xi1, . . . , xik) with the membership function

µRi
: Di1 × . . .×Dik → [0, 1] (8)

specifying to which degree compound labels (di1, . . . , dik), dij ∈ Dij , satis-
fy Ri. This is an example of an undirected coherence relation. In the case
of directed relations the values of the dependent variables are functions of
the values of their independent counterparts. This is symbolized as

Ri(xik |xi1, . . . , xik−1) . (9)

In this paper, only directed coherence relations with at most one depen-
dent variable are considered. Further, we restrict the set of independent
variables of a coherence relation Ri(xik |xi1, . . . , xik−1) to those segments
of the focal text x which precede xik according to the postorder O2 of
�x (see Equation 4). The only relaxation of this restriction is that the
independent variables precede the (uniquely defined) mother node of xik

in �x according to the postorder of �x. In Figure (1), segment 1 may be
dependent, for example, on segment 2, but not on segment 4. Finally, we
suppose that constraints are typed based on an appropriate type system of
coherence relations as introduced in linguistics (cf. Halliday & Hasan [9]).
This allows to classify their semantics by means of constraint schemata as
introduced in Section (4.3). Note that for simplicity reasons we suppose
that no two equally typed coherence relations connect exactly the same text
components.

• Inter-, intra- and transrelational constraints: From the point of view of a
given text component y, coherence relations are classified as follows:
– If Ri(xik

|xi1 , . . . , xik−1) is a coherence relation exclusively of compo-
nents of y, Ri is called intrarelational w.r.t y.

– If Ri(y |xi1 , . . . , xik
) is a coherence relation connecting y exclusively

with components outside of it, Ri is called interrelational w.r.t y.
– If Ri(xik |xi1 , . . . , xik−1) relates xik

as a component of y with compo-
nents outside of y, Ri is called transrelational w.r.t y.

Component 7 in Figure (1) exemplifies these three classes.
• Contexts: A coherence relation is a discourse specific instance of a certain

coherence type which imposes a constraint on the interpretation of the
relation’s arguments according to the semantics of that type. Consequently,

10The term relation as part of the compound coherence relation is not used in its
mathematical sense – i.e. as a subset of a certain Cartesian product –, but in its
linguistic sense as denoting certain dependencies of discourse components [15].
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the context of a component y in a text x equals the system of all co-
herence relations in which it participates in x. This context imposes a
complex constraint on the perspective, i.e. context-sensitive interpretation
of y which is required to fulfill as many of the constraints involved as
possible. Moreover, the higher the priority of a constraint the higher the
degree to which it is demanded to be fulfilled.11 More specifically, the
context of a component y of a text x is a directed hypergraph

�x,y = (V,E) (10)

whose edge set E collects all coherence relations Ri(y |xi1, . . . , xik) to
which y participates as the dependent variable. E collects these coherence
relations in terms of directed hyperedges ({Ri, {xi1, {. . . , {xik}}}}, {y}) ∈
E. For simplicity reasons, we write Ri(y |xi1, . . . , xik) ∈ E to denote hy-
peredges of this kind.12

• Texture: This allows defining the texture of a text x with integration hierar-
chy �x= (V,E, x,O1, O2) as a hypergraph whose set of hyperedges equals
the union of E and the contexts of all of its components.

4.3 Constraint Schemata

The fulfillment of a constraint is bound to the semantics of the corresponding
type. Anaphoric relations are, for example, evaluated differently from rhetori-
cal relations whose evaluation departs from lexical cohesion relations. On the
other hand, anaphoric relations R(xi |xj), S(xm |xn) are expected to be eval-
uated in a uniform manner. In order to specify the semantics of constraints in
accordance with the type system of coherence relations, constraint schemata
are introduced by analogy with the distinction of relation schemata and their
instances in the relational calculus. These schemata are abstract specifications
of how linguistic items can be embedded into discourse and how they have
to be interpreted according to this embedding. More specifically, constraint
schemata vary according to (i) their signatures – i.e. the non-necessarily fixed
number and roles of their instances’ obligatory/optional arguments –, (ii) the
patterns of linguistic units by which these roles are preferably manifested and
(iii) the way in which their instances (i.e. coherence relations) restrict the in-
terpretation of their respective arguments (i.e. text components). A constraint
schema R can thus be represented as a triple

R = ({A0} ∪ (Ai)i∈I\{0}, {G0} ∪ (Gi)i∈I\{0},⊗R), (11)

11Compared to the complexity of discourse processing this is a limited concept
of context which, by analogy with RST, restricts the context of a text segment to
its cotext. But insofar as components of the situative, cognitive or social context of
interpretation can be textually manifested, this specification is easily extensible.

12Note that we include a coherence relation label Ri into the sequence of input
nodes in order to allow different relations to operate on the same set of nodes.
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where {A0} ∪ (Ai)i∈I\{0} is a family of attributes with domains D(A0) =
D(Ai) = P(X), {G0} ∪ (Gi)i∈I\{0} is a family of stochastic grammars where
Gi models the set of linguistic manifestations of the ith attribute Ai and
⊗R : D(A1) × . . . × D(An) → D(A0), n = |I|, is a construction operation
(defined in Section 5.2) mapping the n-fold Cartesian product of the power
set P(X) of the universe of (X, d) onto P(X).

In order to exemplify constraint schemata we consider predicate-argument
structures, anaphoric reference, rhetorical relations and lexical cohesion:

• In the simplest case, predicate-argument structures are manifested by nom-
inal arguments and verbal predicates. Modeling more complex manifesta-
tions (e.g. nominal phrases as manifestations of arguments) already invol-
ves a complexity up to the level of sentence grammars. In the following
sections, we suppose that sentential text components are represented as
predicate argument or as SVO structures, respectively.

• In the simplest case, the constraint schema of anaphoric relations compri-
ses the role of an anaphora A1 and of a corresponding antecedent A2 where
the former is preferably manifested by pronouns and the latter by nouns.
In this case, the grammars G1, G2 contain probabilistic lexicalization rules.

• With respect to lexical cohesion, two types have to be distinguished:
– In the case of a sense relation, e.g. hyponymy, holding between two

lexical items of a text, the role of the hyperonym and of the hyponym
can be distinguished.

– In the case of a collocational dependency of unsystematic lexical co-
hesion [9] of more than two words (entering into a lexical chain) the
number of attributes is not restricted but their roles are all the same.

In both of these cases, the grammars contain lexicalization rules.13

• In contrast to this, complex grammars are needed in order to map rhetor-
ical relations. An elaboration, for example, operates on a nucleus in the
role of an elaborated and a satellite in the role of an elaborating text span.
Both spans are manifested at least by components of the phrase level, but
also by higher-level units up to the level of texts. In computational lin-
guistics exists a range of rhetorical text grammars [19] which may be used
as a starting point to build the corresponding grammars Gi.

If R is a coherence relation of type R, we write

R |=C R (12)

where C is the set of constraint schemata under consideration.

13More complex grammars have to be considered in the case of lexical chains
where, for example, Markovian constraints on the choice of items have to be consid-
ered as a function of chain length.
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4.4 Prioritization

In HCSPs, constraints are evaluated in a definite order. Anaphora have to be
resolved, for example, before they can participate in other coherence relations.
In order to map this sort of prioritization, a function rC : {Ri | i ∈ I} → N0

is introduced which maps each constraint schema R onto its rank rC(R) = j
where the lower j, the higher the rank of R. We suppose that rC is an injective,
total function on C. This allows for any text component y of a text x to define
a linear order relation �x,y ⊆ LRx(y)2 over the set LRx(y) of all coherence
relations to which y participates as the dependent variable, i.e. LRx(y) = E
for �x,y = (V,E) (see Section 4.2). We first decompose LRx(y) into two sets:
the set Lx(y) of coherence relations interrelating y solely with components
preceding it in the sense of O2 and the set Rx(y) of relations which contain
at least one independent variable preceding z, but not y (see Section 4.2):

Definition 3. Let z be the mother constituent of y in text x ∈ C in the sense
of �x= (S(x), E, x,O1, O2), i.e. (z, y) ∈ E. Further, let �x,y = (V ′, E′) be
the context of y in x. Then we define: Lx(y) = {R(y | yi1 , . . . , yik

) ∈ E′ | ∀l ∈
{1, . . . , k} : O(yil

, y)}; Rx(y) = E′ \ Lx(y).

Definition 4. Let x, y, z be given according to definition (3). Further, let
A = {yi1 , . . . , yik

}, B = {yj1 , . . . , yjl
}, R |=C R, S |=C S and R ∈ X an

abbreviation of R(y | yi1 , . . . , yik
) ∈ X for X ∈ {Lx(y),Rx(y)}. Then:14

• �1x,y
= {(R(y | yi1 , . . . , yik

), S(y | yj1 , . . . , yjl
)) |R ∈ Lx(y) ∧ S ∈ Lx(y) ∧

(rC(R) < rC(S) ∨ (R = S ∧ (infO2(A�B) ∈ A))}.
• �2x,y

= {(R(y | yi1 , . . . , yik
), S(y | yj1 , . . . , yjl

)) |R ∈ Rx(y) ∧ S ∈ Rx(y) ∧
(supO2

(A�B) ∈ B ∨ (A = B ∧ rC(R) < rC(S)))}.
• �3x,y

= {(R(y | . . .), S(y | . . .)) |R ∈ Lx(y) ∧ S ∈ Rx(y)}.

Finally, we set �x,y =�1x,y
∪ �2x,y

∪ �3x,y
.

� induces a linear order (Ro1 , . . . , Ron
) of all interrelational coherence

relations Rol
∈ LRx(y) to which y participates as the dependent variable in

x. This allows mapping these relations onto indices indicating their processing
order by means of a function r : LRx(y) → N with r(Roi

) = i, i ∈ {1, . . . , n}.

4.5 Semantic Flexibility

The semantics of coherence relations is modeled by means of construction
operations.15 As generic specifications of how coherence relations restrict the
interpretation of their arguments, they operate on sets of meaning points in
semantic space. The inclusion of these operations into constraint schemata

14Note that A � B is the symmetric difference of the sets A and B.
15Construction and integration operations roughly correspond to meaning cali-

bration in the sense of Kamp & Partee [11].
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aims at accounting for coherence not only in terms of integration but also of
construction in the sense of Kintsch’s CI model.

Construction operations may generate alternative interpretations of text
segments which are not required to belong to the interpretation domains of
these segments at the beginning of the CI process. Rather, these alternatives
may be generated subject to the operative constraints at runtime. This exten-
sion, which departs from Thagard’s [40] model of coherence as a set-theoretical
separation problem, is indispensable when trying to tackle the flexibility and,
thus, “uncountability” of meaning [13] according to which words calibrate
their meanings to fit their variable usage contexts without requiring that these
variants are enumerated in the lexicon. Obviously, this uncountability holds
all the more for complex signs above the level of words.

In order to substantiate the notion of construction operations algorithmi-
cally, structure-sensitive semantic spaces are needed. That is, a data structure
which allows to model the language systematic meaning as well as the context-
sensitive interpretation of texts and their components. Other than semantic
spaces which map words and texts onto single, unstructured meaning points
(see Table 1), the mathematical apparatus of hypergraphs will be utilized in
order to build structure-sensitive semantic spaces which also take their struc-
ture into account. Thus, the classical model of semantic spaces is extended in
a way which maps signs onto structured, but not simply distributed meaning
representations. This allows to conceive construction operations on structure-
sensitive semantic spaces as models of cognitive processes operating on sign
meanings which, in turn, are modeled by means of semantic spaces.

4.6 Usage-Based Semantics

According to Miller & Charles [23] the semantic similarity of words is con-
ditioned by the similarity of their contextual representations. This similar-
ity results from processes of text comprehension which incrementally revise
the words’ meanings subject to their varying contextual embeddings. We
use the following notation in order to represent this variability: Let ‖a‖Ci

be the meaning representation of lexeme a as a result of processing cor-
pus Ci = {x1, . . . , xi}. The incremental revision of ‖a‖Ci as a result of
processing the sequence of texts xi+1, . . . , xi+n (subject to their contexts
�xi+1,, . . . ,�xi+n, spanned by interrelational coherence relations of the texts
as a whole) is noted as

‖a‖Ci
xi+1−→ ‖a‖Ci+1

xi+2−→ . . .
xi+n−1−→ ‖a‖Ci+n−1

xi+n−→ ‖a‖Ci+n (13)

This process of incrementally learning the meanings of lexical items de-
notes an important difference compared to the CP which, due to its focus on
synchrony, abstracts from meaning constitution and change. An implementa-
tion of this incremental learning process would obviously solve the problem
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of missing iterative computability enumerated in Table (1), but is out of the
scope of the present chapter.16

4.7 Structure-Sensitive Semantic Spaces

Starting from a corpus Ct, a semantic space (L, S, α, β, (X, d)) according to
definition (2) and an arbitrary component y of a focal text x ∈ C, Structure-
Sensitive Semantic Spaces are stepwise introduced by means of triples17

(X,G1, G2) (14)

in which X is a set of meaning points and G1, G2 are hypergraphs representing
y’s integration hierarchy �y and context �x,y in x, respectively. The definition
of these parameters varies with elementary (i.e. lexical) and complex text
components as well as their meanings and interpretations, respectively:

• The meaning ‖y‖C of an elementary text component y |=T y (i.e. the
meaning of a token as a leaf of x’s integration hierarchy) w.r.t corpus C is
modeled irrespective of its contextual embedding in x as a triple

‖y‖C = ({α(y)}, G∅(y), G∅(y)) , (15)

where G∅(y) = ({y}, ∅) is a hypergraph with an empty set of edges. It
indicates that the meaning of tokens is neither sensitive to their integration
hierarchy (which is empty by definition) nor to their context in x.

• The interpretation ‖y‖C,x of a token y |=T y is a triple

‖y‖C,x = (X(y), G∅(y),�x,y) (16)

in which X(y) is a subset of X (i.e. the universe of the metric space
of the operative semantic space) and �x,y = (V,E) is the context of y
in x. X(y) is recursively computed: Suppose that all coherence relations
Ri(y | . . .) ∈ Lx(y) to which y participates in x are indexed according to
their rank as defined in Section (4.4). That is, r(Ri) = i, Ri ∈ Lx(y), and
⊥Lx(y) = r(sup�x,y

Lx(y)) is the index of the coherence relation R ∈ Lx(y)
of lowest rank to which y participates. Then we define:

‖y‖C,x
0 = ‖y‖C

. . .

‖y‖C,x
i = ‖Ri(y |xi1 , . . . , xik

)‖C,x
i

= ‖Ri‖C,x
i−1(‖y‖

C,x
i−1 | ‖xi1‖

C,x
i−1, . . . , ‖xik

‖C,x
i−1)

= R(‖y‖C,x
i−1 | ‖xi1‖C,x, . . . , ‖xik

‖C,x)

= (Xi(y), G∅(y), (Vi−1∪ ∪k
l=1{xil

}, Ei−1 ∪ {Ri})) (17)
16See Perlovsky [26] for an approach to solve the iterative learning of dynamic

category systems in the area of text categorization.
17For simplicity reasons, we will write C instead of Ct.
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where Ri |=C R, Xi(y) = ⊗R(Xi−1(y) |X(xi1), . . . ,X(xik
)), X0(y) =

{α(y)} (since ‖y‖C,x
0 = ‖y‖C) and ‖xil

‖C,x = (X(xil
),�xil

, �x,xil
) for

each l ∈ {1, . . . , k}. Note that constraint schemata model the supposedly
fixed semantics of their instance relations so that ‖Ri‖C,x

i−1 = R. Note
further that ‖xil

‖C,x
i−1 = ‖xil

‖C,x since, by definition (see Equation 9), xil

is an independent variable of Ri which, according to the postorder of x, is
preordered w.r.t y, i.e. the interpretation of xil

is known and unaffected
by Ri when interpreting y in any of the steps 0, . . . , i, . . . ,⊥Lx(y). The
construction operation ⊗R as part of the construction schema R is defined
in Section (4.5). This allows to set

‖y‖C,x
⊥Lx(y)

= (X⊥Lx(y)(y), G∅(y),

(V⊥Lx(y)−1∪ ∪k
l=1{x⊥Lx(y)l

}, E⊥Lx(y)−1 ∪ {R⊥Lx(y)}))
= (X⊥Lx(y)(y), G∅(y), (V⊥Lx(y) , Lx(y))) (18)

It remains to process those constraints operating on y as a dependent vari-
able which belong to Rx(y). We suppose these constraints to be processed
(by analogy with the elements of Lx(y)) according to their linear order in-
duced by �x,y and r : LRx(y) → N, respectively (see Section 4.4).18 That
is, r(Ri) = i, Ri ∈ Rx(y), and ⊥Rx(y) = r(sup�x,y

Rx(y)) is the index of
the coherence relation R ∈ Rx(y) of lowest rank to which y participates.
Next we set:

‖y‖C,x
i = ‖Ri(y |xi1 , . . . , xik

)‖C,x
i

= ‖Ri‖C,x
i−1(‖y‖

C,x
i−1 | ‖xi1‖

C,x
i−1, . . . , ‖xik

‖C,x
i−1)

= R(‖y‖C,x
i−1 | ‖xi1‖C,x, . . . , ‖xik

‖C,x)

= (Xi(y), G∅(y), (Vi−1∪ ∪k
l=1{xil

}, Ei−1 ∪ {Ri}))
. . .

‖y‖C,x
⊥Rx(y)

= (X⊥Rx(y)(y), G∅(y),�x,y) (19)

Note that, per definition, ‖y‖C,x
Rx(y)−1 = ‖y‖C,x

⊥Lx(y)
where �Rx(y) =

r(inf�x,y
Rx(y)) is the index of the topmost ranked coherence relation

within Rx(y). Finally, we set:

‖y‖C,x = ‖y‖C,x
⊥Rx(y)

(20)

• The meaning of a complex component y = I(yj1 , . . . , yjk
) is defined irre-

spective of its contextual embedding in x as

18Obviously, a more appropriate model is to cyclically process these constraints so
that all interrelational coherence relations of the immediate constituents of a compo-
nent to be integrated are repeatedly processed until their interpretations converge.
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‖y‖C = ‖I(yj1 , . . . , yjk
)‖C

= ‖I‖C(‖yj1‖C , . . . , ‖yjk
‖C)

= I(‖yj1‖C , . . . , ‖yjk
‖C)

= (X(y),�y, G∅(y)) (21)

where X(y) ⊆ X is computed with the help of an aggregation function
(defined in Section 5.1):

X(y) =
⊕

l∈{1,...,k},‖yjl
‖C=(X(yjl

),�yjl
,G∅(yjl

))

X(yjl
) (22)

That is X(y) is a subset of meaning points computed by means of the
aggregation operation ⊕ operating on the meaning representations of y’s
immediate constituents according to �y. Since (21) defines the meaning of
y, it disregards its context. Thus, the third parameter of ‖y‖C is G∅(y).

• The interpretation of a complex component y = I(yj1 , . . . , yjk
) of x is de-

fined as

‖y‖C,x = (X(y),�y,�x,y) (23)

Other than before, both parameters �x,y and �y restrict the interpretation
of y in x. By analogy with equation (17) we suppose that all coherence re-
lations Ri(y | . . .) to which y ∈ Lx(y) participates are indexed according to
their rank. That is, r(Ri) = i, Ri ∈ Lx(y), and ⊥Lx(y) = r(sup�x,y

Lx(y)).
Now we define:19

‖y‖C,x
0 = ‖I(yj1 , . . . , yjk

)‖C,x

= ‖I‖C,x(‖yj1‖C,x, . . . , ‖yjk
‖C,x)

= I(‖yj1‖C,x, . . . , ‖yjk
‖C,x)

= (⊕l∈{1,...,k},‖yjl
‖C,x=(X(yjl

),�yjl
,�x,yjl

)X(yjl
),�y, G∅(y))

. . .

‖y‖C,x
i = ‖Ri(y |xi1 , . . . , xik

)‖C,x
i

= ‖Ri‖C,x
i−1(‖y‖

C,x
i−1 | ‖xi1‖

C,x
i−1, . . . , ‖xik

‖C,x
i−1)

= R(‖y‖C,x
i−1 | ‖xi1‖C,x, . . . , ‖xik

‖C,x)
= (Xi(y),�y, (Vi−1 ∪ {xi1 , . . . , xik

}, Ei−1 ∪ {Ri})) (24)

where Xi(y) = ⊗R(Xi−1(y) |X(xi1), . . . ,X(xik
)), ‖xil

‖x = (X(xil
),�xil

,
�x,xil

) for each l ∈ {1, . . . , k}. This allows to set

‖y‖C,x
⊥Lx(y)

= (X⊥Lx(y)(y),�y,

(V⊥Lx(y)−1∪ ∪k
l=1{x⊥Lx(y)l

}, E⊥Lx(y)−1 ∪ {R⊥Lx(y)}))
= (X⊥Lx(y)(y),�y, (V⊥Lx(y) , Lx(y))) (25)

19Note that ‖y‖x
0 depends on the interpretations and not on the meanings of y’s

constituents.
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Note that other than in (18), the integration hierarchy �y is referred to
as the second parameter. Since �y is evaluated before any constraint in
�x,y is processed, we can, by analogy with (20), write (thereby skipping
the details of intermediary equations for reasons of brevity):

‖y‖C,x = ‖y‖C,x
⊥Rx(y)

= (X⊥Rx(y)(y),�y,�x,y) (26)

The computation of ‖y‖C,x now depends on the interpretation of its con-
stituents according to their embedding into x which because of transrela-
tional dependencies may cross the borders of y. In addition, ‖y‖C,x reflects
all interrelational coherence relations defining y’s context in x.

The CI process exemplified by ‖y‖C,x works as follows: First, an intermedi-
ate representation ‖y‖C,x

0 is computed by means of the aggregation operation
⊕ operating on the interpretations of y’s immediate constituents. Thereafter
‖y‖C,x

0 is object of one construction operation after another modeling the se-
mantics of the coherence relations to which y participates. In other words: The
interpretation of y may – in spite of its hierarchical organization – transcend its
integration hierarchy because of valuating transrelational dependencies w.r.t
y and thus depart from the classical principle of compositionality.

Equations (16-25) implement a CI model with a kernel hierarchical order
superimposed by graph-inducing coherence relations. As a result of evaluating
such an HCSP, the interpretation of a text component y – whether elementary
or complex – can deviate from its meaning. Thus, y’s interpretation does not
only depend on its constituents and the way they are combined, but also on
its embedding into the focal text. The equivalent of this process in terms
of semantic spaces is a construction operation whose application may result
in a shift, spreading (extension) or contraction (reduction) of the subspace
representing y’s text-specific interpretation. The degree to which y’s meaning
and text-specific interpretation deviate, is a function of y’s context within
the focal text: The more this embedding deviates from y’s or its constituents’
usage regularities the greater the deviation.

5 Quantitative Semantics

Construction and integration are procedural building blocks of HCSPs –
they model possibly cooperative or competing processes of text interpreta-
tion which are now defined in terms of operations on fuzzy sets.

5.1 Integration

The primary order of text interpretation is – due to the integration hierarchy
– bottom-up: Starting with the leafs of �x, a successful interpretation process
finally reaches the root of �x. In the case of complex text components y,
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Fig. 2. In (a), constraint R is processed only when interpreting A since R ∈ Rx(B)
(x denotes the focal text). That is, R is processed in step 2 so that B may have
different interpretations in step 1 and 2 (indicated by the postorder indices of the
constituents). In (b), S ∈ Lx(B) is processed as part of interpreting B in step 2.

this process either reflects coherence constraints or not. In the former case,
the meaning representations of y’s immediate constituents are input to in-
tegration (cf. Equation 22). In the latter case, the interpretations of these
constituents are used instead (cf. Equation 25). Equation (22) and (25) refer
to the operation ⊕. This operation is defined in terms of fuzzy theory with the
help of a weighted mean of membership functions and, thus, as an element of
a class of aggregation operations h : [0, 1]n → [0, 1] (cf. Klir & Folger [14]):

hp(a1, . . . , an;w1, . . . , wn) =

(
n∑

i=1

wia
p
i

)1/p

, p ∈ N, p ≥ 2,

n∑

i=1

wi = 1 (27)

This allows to define the membership function of the aggregation X =
⊕n

i=1Xi of n fuzzy sets Xi ∈ F(U), i = 1, . . . , n, as

∀x ∈ U : µX(x) = hp(µX1(x), µX2(x), . . . , µXn
(x), w1, . . . , wn) (28)

In terms of semantic spaces and their constitutive vectors, aggregation
functions are redefined as follows:

hp(a1, . . . ,an,w) =









m∑

j=1

wia
p
ij





1/p

, . . . ,




m∑

j=1

wia
p
ij





1/p





T

(29)

where ai ∈ X ⊆ Rm, i ∈ {1, . . . , n}; w = (w1, . . . , wn)T is a weighting vector.
In [13], weights are defined as functions of the distances of the k nearest

meaning points of the points assigned to the predicate B and its argument
A, respectively; – k is a parameter of the model. The corresponding distances
are computed with the help of the cosine measure. They are used to initially
bias links in a connectionist network whose weights are computed by means
of a spreading activation process. We use a non-connectionist model instead
to represent, for example, the interpretation of B(A) as a function of two
subsets of meaning points, the one interpreting A and the other B subject
to the coherence relation P (B|A), P |=C P, calibrating B dependent on A
– P denotes the constraint schema of predicate-argument structures. This is
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demonstrated in Figure (2) and specified in more detail in Section (5.4). The
construction schema involved in this example is described in Section (5.2).
The integration process takes the output of this construction process as input
to generate a set of meaning points interpreting B(A): Let {Xi ⊂ X | i ∈ I} be
a family of sets of meaning points. The aggregation function ⊕ : P(P(X)) →
P(X) is defined as follows:

p⊕

i∈I
Xi =

p⊕
({Xi ⊂ X | i ∈ I}) =

p⊕
(X1, . . . ,X|I|)

= {hp(xj1 , . . . ,xjk
,wj) | {xj1 , . . . ,xjk

} ∈ cl(X1 ∪ . . . ∪X|I|)} (30)

where p ∈ N, p ≥ 2, and

wjl
=

maxd−d(m,xjl
)

∑k
n=1 maxd−d(m,xjn

)
∈ [0, 1] (31)

is the weight of the jl-th argument of the vector wj = (wj1 , . . . , wjk
)T and

m = arg min
xjm∈{xj1 ,...,xjk

}

1
k

k∑

n=1

d(xjm
,xjn

) (32)

is the median of xj1 , . . . ,xjk
and d is a distance measure, e.g. the Maha-

lanobis distance, with the maximum value maxd. Finally, cl(X1∪ . . .∪X|I|) is
a partitive clustering of the set of meaning points X1∪. . .∪X|I|. We utilize hi-
erarchical agglomerative clustering based on average linkage with subsequent
partitioning. This partitioning refers to a lower bound [33]

θ = η̄ +
1
2
σ (33)

where η̄ is the mean and σ the standard deviation of the absolute value of
the differences of the similarity levels of consecutive agglomeration steps. This
gives a threshold for selecting an agglomeration step for dendrogram parti-
tioning whose similarity distance to the preceding step is greater than θ. We
use the first step exceeding θ.

Equations (30-31) define an aggregation function on sets of meaning points
which maps each alternative interpretation of the focal component to a single
meaning point.

5.2 Construction

Construction is performed subject to coherence relations. It generates/selects
interpretation candidates of text segments. As elementary segments do not
have an integration hierarchy, their meaning representations are input to
construction processes whose semantics is separately defined for each con-
straint type. They make use of a set of functions for generating/selecting
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meaning points defined as follows: Let (L, S, α, β, (X, d)) be a semantic space,
A,B ⊂ X, Ā = (a1, . . . ,ak) a sequence of points ai ∈ X and a,b ∈ X. Then:

nx,ρ(b |a) = {β(y) ∈ X | y ∈ S(x) ∧ d(b, β(y)) ≤ d(a,b) ∧
d(a, β(y)) < min(ρ, d(a,b))}

nx,ρ(b | ¬a) = {β(y) ∈ X | d(a, β(y)) ≥ d(a,b) ∧ d(b, β(y)) < ρ}
Nx,ρ(B |A) = nx,ρ(π(B) |π(A))

Nx,ρ(B | ¬A) = nx,ρ(π(B) | ¬π(A))

N̄x,ρ(B | Ā) = nx,ρ(π(B) |κ(Ā))

N̄x,ρ(B | ¬Ā) = nx,ρ(π(B) | ¬κ(Ā)) (34)

where ρ = η̄− 1
2σ (η̄ now denotes the mean distance of meaning points and σ

its standard deviation). Further, π : P(X) → X with

π({a1, . . .an}) = hp(a1, . . . ,an, (
1
n

, . . . ,
1
n

)T ) (35)

and κ : P(X) → X is a function, which in contrast to π, reflects the syntag-
matic order of its argument points:

κ((ai | i ∈ I)) = hp(a1, . . . ,an,w) (36)

where w = (w1, . . . , wn)T reflects the syntagmatic order of the segments whose
meaning points are collected by {ai | i ∈ I}. Such a weighting scheme has been
defined in [21]. κ defines a sequence sensitive weighted mean of vectors. It is
used to map lexical chains as cotexts of text interpretation.

Equation (34) is now used to define construction operations as part of
constraint schemata. We concentrate on the following constraint types:

• Anaphoric reference: Let A be the type of anaphoric relation and A(b | a)
an instance of this type with b in the role of an anaphora w.r.t a. Let
further Xa,Xb be the interpretations of a and b according to equation
(20) or (26), respectively. Then, ⊗A is defined as

⊗A(Xb |Xa) = Xa (37)

• Sense relations: We consider four types of sense relations:
– Synonymy: Let S1 be the type of synonymy and S(b | a) one of its in-

stances with b to be interpreted as a synonym of a. Let further Xa,Xb

be the interpretations of a and b according to (20) or (26). Then:

⊗S1(Xb |Xa) = Xa (38)

– Partial synonymy: Let S2 be the type of partial synonymy and S(b | a)
an instance of this type with b to be interpreted as a partial synonym
of a. Let further Xa,Xb be the interpretations of a and b according to
(20) or (26), respectively. Then:

⊗S2(Xb |Xa) = Nx,ρ(Xb |Xa) (39)
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– Hyponymy: Let H1 be the type of hyponymy and H(b | a) one of its
instances with b in the role of the hyponym to be interpreted w.r.t its
hyperonym a. Let further Xa,Xb be the interpretations of the compo-
nents a and b according to (20) or (26), respectively. Then:

⊗H1(Xb |Xa) = Nx,ρ(Xb |Xa) ∪Nx,ρ(Xa |Xb) (40)

– Hyperonymy: Let H2 be the type of hyperonymy and H(b | a1, . . . , an)
an instance of this type with b in the role of the hyperonym w.r.t its
hyponyms a1, . . . , an. Let further Xa1 , . . . ,Xan

, Xb be the interpre-
tations of the components a1, . . . , an and b according to (20) or (26),
respectively. Then:

⊗H2(Xb |Xa1 , . . . ,Xan
) = Nx,ρ(Xb| ∪n

i=1 Xai
) (41)

• Predicate-argument structures: Let P be the type of predicate-argument
relation and P (b|a) an instance of this type with b in the role of the pre-
dicate. Let further Xa,Xb be the interpretations of a and b according to
equation (20) or (26), respectively. Then:

⊗P(Xb|Xa) = Nx,ρ(Xb|Xa) (42)

• Lexical chains: If a token a continues a lexical chain c = (a1, . . . , am),
a is interpreted in the context of ‖c‖C,x. More specifically, let L be the
type of unsystematic lexical cohesion and L(a | a1, . . . , am) an instance of
this type with c in the role of the chain. Let further Xa,Xa1 , . . . ,Xam

be the interpretations of a, a1, . . . , am, according to equation (20) or (26),
respectively (note that since lexical chains are not necessarily constituents
of the integration hierarchy of a text, but superimpose it, the chain is
mapped by means of a hyperedge). Then we define:

⊗L(Xa |Xa1 , . . . ,Xan
) = N̄x,ρ(Xa | (π(Xa1), . . . , π(Xan

))) (43)

• Rhetorical relations: We consider two types of rhetorical relations:
– Let E be the type of elaboration and E(a | b) one of its instances with

b in the role of the elaborating segment. Let further Xa,Xb be the
interpretations of a and b according to equation (20) or (26). Then:

⊗E(Xa |Xb) = Nx,ρ(Xa|Xb) (44)

– Let C be the type of contrast and C(a | b) one of its instances with b
in the role of the contrasting span. Let further Xa,Xb be the interpre-
tations of a and b according to (20) or (26), respectively. Then:

⊗C(Xa |Xb) = Nx,ρ(Xa|¬Xb) (45)
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5.3 Consonant vs. Dissonant Constraints

Coherence relations operating on the same component may cooperate or com-
pete to varying degrees. An ambiguous segment may, for example, be inter-
related with components of the same text (e.g. elaborations) supporting its
dissonant readings. How are such relations handled in the present framework?
This can be answered as follows:

• Consonant relations narrow down a region within the focal space as small
as possible to locate the discourse specific interpretation of the focal seg-
ment (possibly down to a single meaning point).

• Dissonant relations have the opposite effect: processing them enlarges the
region of candidate interpretations, possibly by splitting it into discon-
tinuous regions as representations of competing interpretations. This is
mainly due to the integration step and clustering performed within it (see
Equation 30).

Obviously, relations resulting in many, large regions of the semantic space
as representations of candidate interpretations reflect an insufficient, incom-
plete solution of the focal HCSP.

5.4 Optimization

HCSPs induce an optimization problem as follows: To solve an HCSP induced
by a text x means to integrate its segments’ interpretations along x’s integra-
tion hierarchy bottom-up from left to right as far as possible by reflecting as
many coherence relations as possible according to their descending degree of
priority. More specifically, suppose that (a1, . . . , an), ai ∈ S(x), i ∈ {0, . . . , n},
is the postorder of x’s integration hierarchy �x. This postorder uniquely de-
termines the order of all construction and integration steps. It allows to assign
any component y ∈ S(x) a number f(y) = i iff y = ai, i = 1, . . . n, indicating
at which of the n different steps of the interpretation process (induced by x)
y is processed. More specifically, for each segment y ∈ S(x) (note that S(x)
includes x) two sets of constraints are distinguished:

1. All constraints R ∈ Lx(y) are processed in step f(y) = i either according
to equation (18) or (25) (depending on whether y is simple or complex).

2. For all constraints R(y | yi1 , . . . , yik
) ∈ Rx(y) we identify segment ai =

supO2
{yi1 , . . . , yik

} and, thus, i = f(ai) as the step at which R is processed
either according to (19) or (26) after all constraints in Lx(ai) have been
processed.

This process narrows down a subset of meaning points as an interpreta-
tion of each segment to be integrated which becomes the smaller the more
specific and less dissonant its interrelational coherence relations and the less
dissonant its constituents’ interpretations are. Now we can, finally, define the



Compositionality in Quantitative Semantics 163

Fig. 3. Outline of the texture of the text sample.

interpretation of x with immediate constituents y1, . . . , yk (for the case that
x does not participate in any interrelational coherence relation) as:

‖x‖C,x = I
(
‖y1‖C,x, . . . , ‖yk‖C,x

)
(46)

It is important to note that x’s interpretation is reduced to an integration
of the interpretations of its parts, where these interpretations may result from
construction processes transcending the borders of x by means of transrela-
tional coherence relations. This goes beyond the CP.

6 A Dry Run

In this section we outline the processing of the following text sample in the
framework of the VS model, FL, LSA and the present LCP approach – this
example is motivated by the fact that constructions as, for example, stone
lion play a prominent role in the discussion of the CP [see 11]:

All sculptures are restored. Only the lions stay in the garden.

• The vector space model represents this text as a set of words by filtering
out function and other words. The remaining words (say garden, lion,
restore, sculpture, stay) are used to build a vector of weighted descriptors
in order to locate the text sample within the vector space.

• LSA extends this approach. Instead of directly referring to weighted counts
of word occurrences, it utilizes factor analytic representations. That is,
the sample is represented by means of those factors which predominate
in locating the representations of the input words garden, lion, restore,
sculpture, stay within the semantic space. Thus, we may speak of a bag of
feature vector -based representation which still ignores the structure of the
text sample and its coherence relations.

• [20] describes a variant based on FL which derives a representation of input
texts based on their integration hierarchy. This variant is in accordance
with equation (21) although it maps texts on single meaning points and
still disregards any coherence relations.
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The present framework partly overcomes this structure insensitivity. What
we expect is that the text as a whole connotes words like sculptural art, park,
collection [of sculptures] or even castle and baroque, but not veldt, elephant
(because of lion) or zoo (because of lion and [zoological ] garden). In order to
motivate such an analysis, suppose the sample is structured as outlined in Fig-
ure (3). That is, sculpture is reinterpreted in the context of to restore which,
before, is reinterpreted in the role of a predicate. We assume that the mean-
ings of these words have been learned by means of a corpus documenting their
various readings so that to restore can be interpreted in the sense of to restau-
rate, while the interpretation of sculpture enforces its reading as a concrete
piece of work and inhibits its generic reading in the sense of statuary. Next,
restore(sculpture) is integrated so that the second sentence can be processed.
We assume lion and garden to be mutually dependent and being interpreted
in the context of sculpture which inhibits the animal reading of lion as well as
the zoo[logical garden] reading. This allows integrating stay(lion,garden) and
using it in the role of a contrasting segment in order to calibrate the inter-
pretation of restore(sculpture) before the whole text is integrated. According
to (45) this means that restore(sculpture) is interpreted in a way which fur-
ther inhibits the lion and garden reading, while enforcing the sculpture and
restauration reading.

This analysis presupposes the present order of sentences; it does not allow
reinterpreting lion if the order of the sentences is reversed. Moreover, the
example presupposes that all coherence relations as well as the integration
hierarchy have been identified before. In this sense, the present approach is
– in spite of its formal character – only a preliminary study which outlines a
way to replace the bag-of-features approach.

7 Conclusion

In this chapter, a principle of latent compositionality was introduced into
quantitative semantics. It was implemented by means of an HCSP which as-
sumes a kernel hierarchical structure superimposed by graph-inducing coher-
ence relations as the fundamental text representation model. This implemen-
tation utilized an extended model of semantic spaces which is sensitive to
text structure and thus leaves behind the bag-of-feature approach. The major
task of this model is to better account for complex units and, thus, to better
reconstruct their connotations in a framework of a higher level of cognitive
plausibility. The evaluation of this model will be a major task of future work.
In the long run, it is seen as part of an algebraic reconstruction of statisti-
cal approaches to semantics which reach a level of stringency comparable to
formal logical semantics, but in combination with empirical falsifiability.
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Summary. Recent advances in the quantitative analysis of natural language call
for a theoretical framework that explains, how these advances are possible. This
helps to unify different approaches and algorithms in quantitative linguistics. We
consider the linguistic tradition of structuralism as a basis for such a framework. In
what follows, we focus on syntagmatic and paradigmatic relations and attempt to
describe them in a coherent way. We present an abstract version of a (neo-)structu-
ralist language model and show how already known algorithms fit into it. We also
show how new algorithms can be derived from it. As has already been predicted by
linguists like Firth and Harris, it is possible to construct a computational model of
language based on linguistic structuralism and statistical mathematics. The model
we propose specifically helps to explain fully unsupervised algorithms for natural
language processing which are based on well known methods like co-occurrence
measures and clustering.

1 Introduction

One of the fundamental questions in quantitative linguistics is whether it is
possible to compute semantic relations between words using statistical meth-
ods only. If the answer is yes then other questions immediately arise, like
how it is possible and, most importantly, why it is possible. In this paper
we attempt to fuse a linguistic theory, namely structuralism, with a mathe-
matical view of language, cf. Manning & Schütze [29] and Jurafsky & Martin
[23], in order to provide a framework on which further research can be based.
The language model that will be described and represented by this frame-
work is always derived from a large sample of natural language text (see
www.wortschatz.uni-leipzig.de), and never from a hypothetical language.
The observed relations and other structural elements should always be rooted
in the data and then be made explicit by means of an algorithm that oper-
ates on the particular natural language sample. In general, we also presume
the distributional hypothesis [18] which has been successfully used within the
proposed framework in order to retrieve semantic relations, see [3] and [2]. In
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fact, the ideas in this paper can be viewed as an attempt to continue Harris’
work. For a similar work which suggests another root see Rieger [35]. The
global context introduced in the present chapter corresponds to his syntag-
matic alpha-abstraction whereas the similarity operation corresponds to his
paradigmatic delta-abstraction (or semantic topology). It is important to note
that the approach taken here is to view human cognition and language struc-
ture as being separable from each other – in contrast to what is proposed in
Rieger’s approach to Semiotic Cognitive Information Processing (SCIP) sys-
tems [36]. Nevertheless, it is only through Rieger’s work on syntagmatic and
paradigmatic learning that these two layers of abstraction can be referred to
as the basis of the algorithms modeled here. We restrict ourselves to describe
linguistic structures within an assumedly structured sample of text data. As
such, the proposed framework might be considered as agreeing with Rieger’s
approach to SCIP systems [37] with respect to one stratum, namely the lan-
guage itself.

When dealing with the problem of designing algorithms for computing
semantic relations, the first thing to do is to define which relations are go-
ing to be calculated. While some semantic relations, like cohyponymy, seem
to be more viable than others (e.g. synonymy), it is the salience of the re-
lation and the theoretical foundation of the method to calculate it that is
of greatest influence. If the relation is made up arbitrarily, and there are no
objective means to differentiate between words using this relation, then, of
course, there will never be an algorithm able to calculate them better than a
random baseline-algorithm. On the other hand, if a relation is of large impact
on language use, (in particular on the co- or non-co-occurrence of words) and
if there is a host of hints on how to recognize such words, then algorithms can
be constructed that incorporate as many of these hints as possible in order to
make reliable predictions. Nevertheless, most of these algorithms will never
make 100% correct predictions, which means that other means for improv-
ing the results will be necessary. (Without incorporating any further sources
of knowledge, the overall effectiveness of the approach can be improved, for
example, by combining several algorithms to solve a problem and by making
use of a broadened classificator-bagging. Since linguistic relations are often
mutually exclusive (e.g a word’s synonym never is its antonym at the same
time) meta-rules can also effectively help to combine different algorithms and
allow the overall results to become more accurate.)

In the following sections, we describe in formal detail some structuralist
notions for the analysis of language from which efficient algorithms for the
calculation of semantic relations in language can be derived. First, we consider
the notion of language levels. Then try to reconstruct de Saussure’s notion of
syntagmatic and paradigmatic relations. Finally we discuss how the analysis
of syntagmatic and paradigmatic relations might serve as a basis for deriving
semantic relations.
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2 Language Levels

Language is not a random concatenation of words. Following the famous Swiss
linguist Ferdinand de Saussure (who has studied and taught linguistics at the
University of Leipzig), meaning (and other notions of linguistic description)
can be defined solely by reference to the structural relations existing amongst
the words of a language [11]. The reference to the structural relations can
be seen as relations between words and therefore this, and especially the
distinction between syntagmatic and paradigmatic relations, constitute the
basis for the hypothesis that semantic relations can be computed.

One of the first and thus far, unshaken findings in linguistics is that lan-
guage splits up into several language levels, commonly named phonology, mor-
phology, syntax, and semantics. On each level, there is always the same pair of
principles working together which allows combining simple, or atomic, units
(like morphs) into complex units (like word forms or phrases), which then
represent the simple units for the next level. These two principles are

1. composition, and
2. abstraction through equivalence classes.

Composition is used to place atoms into a stream of atoms according to
some rules, which then represent a complex unit. Abstraction, on the other
hand, or, selection in traditional structuralism, allows classifying sets of atoms
into equivalence classes of atoms that all have something in common but are
somehow distinguishable from all other atoms. These findings seem trivial, but
as will be shown later, constitute the cornerstone of a theoretical framework,
in which automatic calculation of semantic relations can be explained.

To substantiate the notion of language levels, we define a certain level Ll

with l = {phones,morphs,wordforms, sentences, texts, . . .} of a language L
to consist of two sets Ll = (Al, Cl) with Al being the set of all possible atoms
on this level and Cl being the subset of all possible combinations of atoms.
Since order matters and there are rules of composition, Cl has to be seen as
a set of sets of tuples of various lengths: C = {Cl,1, Cl,2, . . . , Cl,n} (in Cl,n, l
is the level and n is the length of the tuples in this set) with ck ∈ Cl,n and
for k = 2 for example c2 = 〈ai, aj〉. The rules of composition can (and will)
be disregarded for certain analyses and algorithms in which case Cl is a set of
sets instead of tuples.

It is possible for an atom of a level Li to also be an atom on level Li+n

though it still would have an own representation both on Li and on Li+n. For
example, the atom ‘a’ as phone on the lowest phonological level can also be an
atom on the level of morphology at the same time, and even on the sentences
level, as is the case of the interjection ‘A!’. However, a rule of composition on
a level Li can modify the rules of composition on a level Li−n. For example,
if the word ‘yesterday’ occurs when constructing a sentence, it is likely that
instead of the word ‘do’ the word ‘did’ will occur in that sentence.
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In order to elucidate the definitions given so far, let us consider some
simplified examples. The language to be described is the language L denoting
written English. The language levels are

l = {letters,morphs,wordforms, sentences, texts} (1)

Notice that it is assumed that for each level there exists a set of permissible
complex units (that is a subset of the power set of its constituting atoms, i.e.
the set of their possible combinations). In the following sections, we always
assume that for each level, the set of permitted complex units can be deter-
mined empirically. The framework itself does not provide us with those sets,
but defines the principles of how the construction processes may take place,
or can be inferred, based on empirical evidence. First, we define the lowest
level Lletters of L:

L = (Aletters, Cletters) (2)

where Aletters = {a, b, . . . , z} is the alphabet of the language L and Cletters

is defined as follows: It is possible to concatenate (as a special case of com-
position) letters in order to produce strings of the form {a, b, . . . , z} with the
length n. For example for n = 3:

Cl,3 = {(a, a, a), (a, a, b), . . . , (z, z, z)}. (3)

Cletters can then be defined as a subset of all possible strings of arbitrary
length: Cletters ⊆

⋃
n>0{ai | ai ∈ Aletters}. Thus, strings like ‘aa’ or ‘baaa’ or

‘aaab’ are complex units on the level of letters, though not all combinations
of letters will really be observed in a text, thus subset relation.

As the next level we define the level of morphs Lmorphs of L:

Lmorphs = (Amorphs, Cmorphs) (4)

In general, the atoms of a given level are a subset of the complex units
of the lower levels. In this case, however, there is only one lower level, so the
definition is simple: Amorphs ⊆ Cletters. Introducing morphs as surface units of
what actually should be the morpheme level allows the methods introduced
below to find classifications and relations between morphs. This eventually
allows various morphs to be viewed as morphemes. A morpheme would then
be a collection of morphs that were found to belong to the same class or
share the same attribute. Once such relations are defined and available it is
possible to properly reintroduce this level as a morpheme level, instead of a
morph level. The same applies to all other levels, such as a word level based
on initially a word forms level.

The subset relation describes that the string ‘boat’ is a morph whereas
the string ‘aaab’ is not a morph (since it has not been observed in the data),
both having a length of 4 letters n = 4. Not all observed complex units on
the level of letters are really morphs, thus it must be a subset relation.



A Structuralist Framework for Quantitative Linguistics 175

The complex units Cmorphs of this level can again be viewed as a subset of
all possible compositions of the atoms of this level of all possible lengths (of
the atoms): Cmorphs ⊆

⋃
n>0{ai | ai ∈ Amorphs} and is the set of morph com-

binations. For example, ‘boat’ is a morphological unit of length 1, ‘boatboat’
(by doubling the morph ‘boat’) a morphological unit of length 2, as well as
‘boats’ (by taking the morph ‘boat’ and concatenating it with the morph ‘s’),
also a morphological unit of length 2.

The third level of word forms, then, Lwordforms follows in the same way
and thus is abbreviated. However, these next levels are more important than
the others since these are the ones which are usually most easily observed:

Lwordforms = (Awordforms, Cwordforms) (5)

The atoms of this level are the word forms as they occur in written English
texts. They are a subset of all possible combinations of morphs of all possible
lengths, which excludes ‘boatboat’ but includes ‘boat’ and ‘boats’:

Awordforms ⊆ Cmorphs (6)

The complex units of this level can be concatenated using additional char-
acters like space, comma and so on as part of the alphabet. The atoms and
the complex units on this level are usually (not for example for Chinese or
Korean) easily observable since words are separated by spaces and sentences
by points, exclamation marks etc.

The fourth level, the level of sentences, Lsentences, again follows from its
predecessor, the level of word forms:

Lsentences = (Asentences, Csentences) (7)

The atoms on this level are all sentences as they have been encountered in
written English texts. They are a subset of the set of all possible combinations
of word forms to sentences of all possible lengths:

Asentences ⊆ Cwordforms (8)

The complex units of this level can be concatenated using additional char-
acters like a point, an exclamation mark, etc. some of which have already been
introduced at the previous level.

In the above example we have described the relations holding between lan-
guage levels without considering rules of composition, or the meaning of the
obtained expression. Rules of composition are based on compliance on the syn-
tagmatic level, whereas the meaning of expressions is related to paradigmatic
relations as described in the following section.

3 Paradigmatic and Syntagmatic Relations

So far, the construction of complex units has been introduced as a subset of
all possible combinations of atoms. In general, however, this is not enough to
describe the mechanisms of a language.
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One of the most important distinctions made by de Saussure is the di-
chotomy between syntagmatic and paradigmatic relations. Syntagmatic or
paradigmatic relations in a language system relate two atoms that must be-
long to the same level. Two atoms stand in a syntagmatic relation, only if they
are composed, or appear together in some expression. On the other hand, two
atoms are in a paradigmatic relation, only if they appear in similar contexts,
or are interchangeable to some extent. Syntagmatic and paradigmatic rela-
tions constitute fundamental semantic relationships: Two atoms that appear
together comply in function and meaning. An example would be ‘torch’ and
‘shines’. Two atoms that appear in similar contexts have a similar grammar
and meaning. Here, simple examples are ‘torch’ and ‘sun’.

Examples of syntagmatic relations on the level of word forms typically in-
clude dependencies between nouns and verbs, compounds of nouns and nouns,
and head-modifier constructions based on adjectives and nouns, or between
nouns and nouns. Syntagmatic relations are often responsible for changes of
composition rules on a lower level. Paradigmatic relations vary depending on
the measure of similarity presumed. On the word form level, paradigmatic
relations range from semantic fields to well defined logical relations such as
hyponymy, co-hyponymy, hyperonymy, synonymy and antonymy. It should be
noted, however, that the notions of syntagmatic and paradigmatic relations
do not pertain only to the level of word forms. By involving the notion of dif-
ferent language levels, it is one of the intentions of the proposed framework to
generalize the notion of syntagmatic and paradigmatic relations and to apply
it also to language levels other than word forms. In this way, algorithms that
have been developed for one language level may be more easily transferred to
other levels.

The distinction between syntagmatic and paradigmatic relations follows
from the main assumption of structuralism that the value of a certain lan-
guage element, i.e. atom, can exist only due to the existence of another lan-
guage elements of the same language. The basic relations between the various
language elements are equalities and inequalities – or better, similarities and
dissimilarities. Dissimilarities in a language are expressed by opposition or
contrast of elements.

“Nicht dass eines anders ist als das andere ist wesentlich, sondern dass es neben

allen anderen und ihnen gegenüber steht. Und der ganze Mechanismus der Sprache

[. . . ] beruht auf Gegenüberstellungen dieser Art [. . . ].” [11, p. 145].

In order to approach the main aim of this paper, we now define for each
level the notion of local context Kc(ai):

Definition 1. The local context Kc(ai) of a given atom l on a given level
ai ∈ Al is the set of all atoms a with which the atom ai occurs together in a
complex unit cn ∈ C:

Kc(ai) = {a | a ∈ cn ∧ ai ∈ cn ∧ cn ∈ C ∧ a �= ai}



A Structuralist Framework for Quantitative Linguistics 177

Since an atom occurs n times in a statistical observation, there will be a
maximum of n possible contexts of ai. It is important that, for example on the
sentence level two sentences which differ only in the word order, represent the
same context because the composition rules, in this case the syntax, and with
them, of course, the order of atoms could be disregarded. There are various
possibilities of how to instantiate this notion of local context and all of these
possibilities might be used with different aims in mind. It is now possible to
formalize the notion of a syntagmatic relation SYN(ai, aj) between two atoms
using the above definition of a local context.

Definition 2. The syntagmatic relation SYN(ai, aj), which is symmetrical,
between two atoms ai, aj ∈ Al of the same level l, holds true if and only if
there exists a local context for one of the atoms in which the other appears:

SYN(ai, aj) ⇐⇒ ∃(Kc(ai))[aj ∈ Kc(ai)]

On a level like the sentence level, where atoms are words, it is possible for a
word to co-occur with any other word. Assuming that the number of different
sentences, and along with this the cardinality of C in general, is enumerably
infinite, this would result in a syntagmatic relation between any two words,
or possible atoms in general. To accommodate this objection, we might recall
a comment of Wittgenstein in his Tractatus Logico Philosophicus:

“In order to recognize the symbol in the sign we must consider its significant use.”

[45, p. 3.326].

Assuming that the ‘significant use’ of an atom will be reflected in terms
of frequency, there will be an expectation value X that states the absolute
number of joint occurrences that must have been observed in relation to the
number of all local contexts. To define this value, parameters like frequency of
atoms, their Zipfian distribution, the size of the text corpus etc. can be taken
into account, see for example [8, 14] or [40]. In effect, for any atom ai that is
part of local contexts of another atom a (with ai, a ∈ Al) it can be decided
whether or not ai is a significant constituent of these contexts based on the
number of such contexts, SIG(ai,Kc(a)):

SIG(ai,Kc(a)) ⇐⇒ |{Kc(ai)|ai ∈ Kc(a)}| > X (9)

Given this relation that an atom is a significant constituent of the context
of another atom, we can now define the statistical syntagmatic relation.

Definition 3. The statistical syntagmatic relation SYNS(ai, a) between two
atoms ai, a ∈ Al holds if and only if the atom ai is a significant constituent
of the contexts of an atom a:

SYNS(ai, a) ⇐⇒ SIG(ai,Kc(a))
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This relation corresponds to Rieger’s α-abstraction [35] which is assumed
between a and ai if their occurrences correlate. While for the local context of
two atoms it was sufficient to consider specific single instances of the complex
units of a level, for paradigmatic relations it is necessary to compare the
contexts of atoms of one particular level. For this purpose, we introduce the
notion of a global context.

Definition 4. The global context KG(a) of an atom a of a given level l is the
set of all atoms ai of the same level with which the atom a stands in statistical
syntagmatic relation SYNS(ai, a):

KG(a) = {ai |SYNS(ai, a)}

Since the goal was to be able to compare the contexts of a given atom with
the contexts of another atom, and the contexts of an atom have been summa-
rized by the notion of the global context, we assume a comparison operator
SIM(KG(ai),KG(aj)) that compares global contexts and yields the value 1
in all those cases where the similarity is “similar enough”, and 0 in all other
cases. In what follows, for simplicity’s sake we write SIM(KG(ai),KG(aj)) in
this case, the similarity operation on two contexts, yields the value 1. This
similarity operation results in a semantic space [35] and, thus, corresponds to
Rieger’s δ-abstraction.

Examples of comparison operator instances include known similarity mea-
sures like the Tanimoto measure, the cosine (global contexts can be interpreted
as vectors), Euclidian distance, and many more. The question as to which one
is the “best”, cannot be answered easily. On the one hand, this is due to
evaluation difficulties, on the other hand it is also important to ask for the
desired results i.e which paradigmatic relations are to be calculated by some
instance of a similarity measure. Details of this discussion are not crucial for
the model introduced here, and can be left open for further research. It should
be noted, however, that there is no uniform usage of the notion of similar-
ity in the literature. At many instances ‘word similarity’ is used to refer to
a comparison of the global contexts of a given word, whereas sometimes it
is also – misleadingly – used to refer to the co-occurrence measure (Def. 3)
of statistical syntagmatic relations, as similar words are returned by such a
computation [7, 10, 41, 43].

In order to define paradigmatic relations completely, we further need to
introduce the notion of linguistic categories. However, as a preliminary step,
two atoms ai and aj of the same level (ai, aj ∈ Al) can be considered as
standing in paradigmatic relation PARA(ai, aj), only if their global contexts
are similar to each other:

PARA(ai, aj) ⇐⇒ SIM(KG(ai),KG(aj)) (10)

When considering antonyms, it might look like a mistake at this point
to stipulate that a paradigmatic relation may only hold if the contexts of



A Structuralist Framework for Quantitative Linguistics 179

two atoms are similar to each other, since the meanings of two antonyms
should be opposite. In this case however, opposition in meaning is expressed
by one or just a few opposite values of features that basically are the same
for the antonymous expressions, and is not based on a significant difference in
contexts. For example, the words “dim” and “bright” are opposites, but still
will be found in the same contexts.

This, and the complete definition of a paradigmatic relation below, also
shows that paradigmatic relations can be derived from syntagmatic relations.
From the point of view of quantitative linguistics this is substantial, as it
justifies our focus on statistical measures of co-occurrence and similarity of
contexts.

Another justification for this focus derives from the fact that using instan-
tiations of these definitions it was possible to create working algorithms. One
example is the algorithm for unsupervised morpheme boundary detection [4].
It computes a global context for each word based on sentence cooccurrences
(local contexts). Then it compares the surface structure of the input word
with the most similar words from the global context. This enables the algo-
rithm to correctly detect morpheme boundaries even within irregular word
formations.

4 Linguistic Categories

One of the most fundamental distinctions in linguistics, in addition to the de-
finition of composition and abstraction, is the notion of linguistic categories,
i.e. the distinction of word classes on the word level, vocals and consonants
on the phoneme level etc. Traditionally, categories are sets of distribution
classes, and as such have been described and validated by subjecting samples
of a natural language to so-called substitution tests [16, 15]. The exact de-
gree of differentiation of linguistic categories can vary greatly depending on
the language level and the purpose of the categories. On the level of word
forms, a basic distinction is between four main categories of words: nouns
(N), verbs (V), adjectives (A) and functional words (S). Though rudimentary,
this distinction already allows for plenty of possibilities to distinguish between
paradigmatic and syntagmatic relations. For example [26] and [27] used cate-
gories on the word form level in syntactic functions like ‘adj-of’, ‘subj-of’, etc.
in order to distinguish between semantic relations. Paradigmatic relations are
always distribution classes with respect to one category. Hence, on the level
of words, relations between a noun and a noun (NN) can be syntagmatic and
paradigmatic, while relations between a noun and a verb (NV), or between
an adjective and a noun (AN) can be only syntagmatic.

Any category classification CLASS(ai) can be introduced as a function
that maps any atom ai of a given level l into a set of values. For the word
level, the set of values commonly used is a tag label from a set of labels like
{A,N, V, S}. In general, and for any level, the set of values can simply be a
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set of numbers:

CLASS(ai) −→ {1, 2, 3, 4, . . .} (11)

Classes and similarities in their function can indeed be found on all lev-
els. On the phoneme level it is the classification of vowels and consonants,
as it has been subject to several refinements, see [22, 42] and others. On
the morpheme level there are well-known classifications of morphemes, the
derivational, inflectional and root morphemes. On the word level there are
several classifications of lexical categories, for example [39], whereas on the
phrase level concatenations of word forms are classified into noun phrases,
verb phrases etc. Finally, there are also classifications on the sentence level,
the simplest one being between questions, assertions and exclamations, and
more advanced ones such as introduced by RST [30], with nucleus sentences,
explanatory sentences etc. The higher the level, the more complicated are
the interactions between the elements of category classes and the underlying
classes.

Once categories are available, an important precondition for automatically
computing syntagmatic and paradigmatic relations is available. The global
context of an atom (e. g. a word) – itself being a set of atoms whose contexts
are similar to the context of the given atom – will usually contain a variety of
category classes. Filtering this set with reference to the category of a particular
atom in focus will divide the set into syntagmatic and paradigmatic relations.
This way, the final definition of a paradigmatic relation between two atoms
can now be expressed as holding only if the two atoms belong to the same
level, have similar contexts (this includes also those atoms which are not in
the global context but still have similar contexts), and belong to the same
category class.

Definition 5. An atom ai stands in paradigmatic relation PARA(ai, a) with
the atom aj , ai, aj ∈ Al, if and only if their global contexts KG(ai) and KG(aj)
are similar to each other, and the atom ai belongs to the same category class
as the atom aj :

PARA(ai, aj) ⇐⇒ [SIM(KG(ai),KG(aj)) ∧ (CLASS(ai) = CLASS(aj))]

To give some examples from two levels, the word level and the phrase level,
consider the contextual sentence “The X shines.”. On the word level, word
forms like “lamp”, “sun”, “surface” would fit in here, whereas on the phrase
level phrases like “rising morning sun”, or “due to a loose contact dangerous
desk lamp” might fit. All of these atoms have something in common in that all
of them “shine”. The implications and relation of this finding to paradigmatic
relations will be detailed out in the next paragraphs.

First, however, the problem of how a category class might be obtained
automatically has to be discussed. For simplicity’s sake, only word classes
are focused on as it seems to contradict one of the initial aims of this paper,
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i.e. to describe a model that is at any point fully computable. The problem
of obtaining word classes has up to now been considered unsolvable without
supervision (as well as any other category classification on other levels). There
are several well-known ways to obtain word classes, mostly based on Hidden
Markov Models and supervised learning, which all require some sort of a
human-tagged training set, see [5, 6, 9].

A fully unsupervised word class tagger would need a different approach.
First of all, it is important to state that for our purposes it is not necessary that
the CLASS(ai) – function uses a mapping onto a set of tags like {A,N, V, S},
because a set of numbers would suffice equally well. As is obvious from Def.
5, it is only important to know whether the category of two atoms is equal or
not. From the implicit definition of the category class of an atom ai it follows
that all atoms of the same class share similarities in how they are used in
complex forms, and at the same time contrast against other classes. This can
be considered a clustering task where the units to be clustered are atoms, and
the features of these atoms are their global contexts (e.g. words from the word
level).

A first proof-of-concept implementation of this idea indicates that cluster-
ing of word forms according to their significant left and right neighbors (as
special cases of global contexts) clusters together primarily words belonging
to the same syntactic category. Similar algorithms can be specified for other
levels, and the output of an algorithm of one level can be incorporated into the
algorithms of other levels in order to improve their performance. This work
will be continued and evaluated.

5 Semantic Compliance

After exploring the atoms and their relationships, we now have a look into the
mechanics of complex units that are built from atoms. First of all, we assume
that all observed complex units are meaningful. Note that in contrast to a
truth-functional semantics we do not try to compute whether a sentence is
true or false. Rather we try to compute whether it is meaningful or meaningless
with respect to a body of knowledge represented by a large sample of texts.

The combinations of complex units from atoms on a certain level make use
of implicit rules that obey what might be called compliances and depend on
semantic relations between the atoms on a particular level. Some compliances
(sometimes also called agreements) might involve higher levels – e.g. whether
we combine some morphemes into ‘done’ or ‘did’ on the level of words depends
on the value that the feature TIME has been assigned in the sentence in which
the lemma ‘to do’ is currently used.

In order to explore the possibilities of how semantic relations can be com-
puted, we make a digression and look at the way morpho-syntactic categories
like person, gender, or number have been used to explain syntagmatic re-
lations in syntax. The main function of these categories is to explain morpho-
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Table 1. Present tense, singular.

person pronoun verb

1 ich geh+e

2 du geh+st

3 er geh+t

syntactic compliance on a morphological and sentence/phrase level. In fact,
de Saussure describes syntagmatic and paradigmatic relations by way of an
example from morphology [11]. Secondary categories like person, gender,
or number follow a syntagmatic pattern, which usually combines into tables.
Thus, in the following example from German, the pronouns ich, du, er are
syntagmatically related to the endings of a verb in present tense singular with
respect to the secondary category person – see table (1).

Obviously, the paradigm expresses a compliance condition such that a
first person pronoun always needs to be complemented by a first person verb-
ending, and vice versa; other combinations are not permitted.

Formalizing this relation, we might introduce an attribute pers applying
to pronouns (for simplicity’s sake, nouns (N)), and verbs (V), taking as values
the natural numbers 1, 2, and 3:

pers(N) = {1, 2, 3}
pers(V) = {1, 2, 3}

The compliance condition amounts to stipulating that in any meaningful
expression in a natural language always:

pers(N) = pers(V).

In effect it serves the function of restricting the possible values that a
verb ending succeeding a pronoun can take, and will result in a statistically
significant syntagmatic relation between the congruent pairs of a verb form
and its related pronoun.

The idea now is to generalize the notion of morpho-syntactic categorial
compliance sketched above, to introduce an analogous notion of semantic cat-
egories, and to exploit this analogy in order to compute semantic categorial
compliance. The morpho-syntactic categories result in compliances of atoms
in complex units on the word level, which are given through the sentence
level. In the same manner, the semantic categories are compliances of atoms
on the sentence level, which are given through the next higher level, for ex-
ample, the text level. In effect, a globally ambiguous word used in a text will
usually be used in a meaning which complies with the meaning of the text.
This explains the possibility to disambiguate words automatically by using
context extracted from the surrounding text, as is evidenced by the extensive
literature on this topic [25, 38] or [1]. It also means that in a text only words
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Table 2. An example of a semantic compliance table.

Description Morpho-syntactic
category person

Semantic category
property

atom you read sun lamp

syntactic
category

N V N N

Morpho-
syntactic/
semantic

category value

2 2 shines shines

that comply with other words in the same text will occur, since otherwise the
text would become meaningless. This might be expressed by using a notion
of coherence, where, the more compliance there is, the more coherence can
be found within a text. However more compliance also implies that less new
information is conveyed by a text of the same length. Thus, conveyance of
new information must always go along with sufficient coherence in order to
be understandable.

Analogous to the morpho-syntactic paradigm tables, semantic compliance
tables could now be constructed in the same way:

Similarly as in morphology, the exact name and value of the semantic cat-
egories may not be important. In order to automatically establish semantic
relations, we only need to be able to distinguish between equalities and in-
equalities, i.e. compliance, with respect to some abstract categories, and this
is only possible by using quantitative methods.

Besides obvious semantic categories like ‘location’ or ‘property’, there
are also less obvious ones like semantic orientation (positive or negative)
of words. Hatzivassiloglou & McKeown [19] compute the positive or negative
orientation of adjectives exploiting the fact that conjoined adjectives typically
have the same orientation in a small training set. Turney [43] computes ori-

entation by using the web search engine Altavista in order to obtain the
occurrences of all words near positive or negative words (i.e. a training set as
well). Though such algorithms use a manually created training set, and thus
do not fit in the intended paradigm of fully unsupervised algorithms, they
will become important once other algorithms become available that generate
a small set of proposals for positive/negative algorithms.

It may be interesting to view the development of the notions in this frame-
work from another perspective. Morpho-syntactic categories play a role in the
construction of complex units on the morpheme level (thus producing word
forms), and are influenced by the sentence level. Semantic categories play a
role in the construction of complex units on the word level (thus producing
sentences), and are influenced by the text level. To go a step further, it might
be interesting to consider which factors influence the construction of complex
units on the sentence level (thus producing texts), which is influenced by the
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level of text-collections. Much work on this issue has been done by Mehler
[31], who also introduces the notion of coherence in this context.

6 Structuralist Relations

In addition to semantic categories we encounter a set of abstract semantic
relations in any sufficiently large corpus of natural language that are not
dependent upon the values of certain specific semantic categories. These ab-
stract semantic relations are important for many applications of NLP, and
have traditionally been manually encoded in lexical-semantic structures like
WordNet [32], GermaNet [24] or [17], and EuroWordNet [44]. One important
application of these resources is to infer other relations, cf. Richardson [34].

In WordNet, the collection of semantic relations includes:

• Hyperonymy and hyponymy (in WordNet called hyperonymy), also some-
times called the is-a-relation. It holds between two words whenever one
has a more abstract meaning than the other.

• Two words are meronyms whenever one denotes something that is part of
the other word’s denotation. In WordNet, meronyms are split into several
different types: part-of, member-of, substance. The differences between
these types depend on the type of the denotation (countable, fluid, etc.).

• Synonymy means exchangeability within a sentence without changing the
meaning of the sentence. In the logical tradition, true synonymy means
exchangeability in all sentences of a language (i.e. the global context of
a word). However, this is very rare since it works against the economy of
language (to use as few different tokens as possible). Instead, synonymy
here means exchangeability in local contexts.

• Antonymy means all kinds of oppositions.
• Derivation in WordNet covers all cases where one word is morphologically

derived from another word; often this implies that the two words belong
to different word classes. Derivation is usually viewed as a syntagmatic
relation.

For some reason cohyponymy has not been included in either WordNet
or GermaNet. Deriving this relation from the hyperonymy relation is pos-
sible, but sometimes yields errors because hyperonymy has not been coded
consistently. In GermaNet the authors have tried to resolve that problem by
introducing artificial nodes of non-lexicalized words/meanings. However, this
technique has not been used consistently enough to prevent all errors. Fur-
thermore, new errors occur when artificial nodes are created in order to derive
cohyponymy relations between words.

Some of these relations are paradigmatic, whereas others are syntagmatic
(like derivation). In general this depends on whether or not two words are of
the same syntactic category.
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Using the framework described above, it is now possible to explicate each
of these relations by structuralist means. The following descriptions are not
precise yet, but they give an indication of how to use the framework. At the
same time they may serve as clues for the development of algorithms that
automatically extract these relations from a large corpus as it is the subject
of our research.

Hyperonymy is a paradigmatic relation. Two words belong to the same
word class and their contexts are similar to each other. It holds then be-
tween two words, if their contexts are equal while the significance of the
co-occurrence in the corpus is low. For example, sentences may include an
abstract categorization of the named objects in order to improve comprehen-
sion by redundancy: “My prairy dog, a rodent, is really cute!”

Cohyponymy is a paradigmatic relation that holds between two words if
they share a common hyperonym as well as a high co-occurrence significance
and a high context similarity. This is because there is a large number of
semantic categories on which two cohyponyms comply, and hence there will
be many similar sentences that contain either the one or the other or both
words: “In our zoo we have elephants, buffalos and giraffes.”.

Synonymy is a paradigmatic relation between two words that holds if there
is a significant number of sentences that are similar to each other but differ
by the alternation of these two words.

Antonymy is a paradigmatic relation between two words that holds if they
comply in all semantic categories, except in one or just a few in which they
oppose. In some cases they co-occur in sentences along with negating tokens:
“The water is hot, not cold !”. In fact, [28] proposes an unsupervised algorithm
that makes use of negating patterns like ‘X not Y’, ‘either X or Y’ where X and
Y have automatically been determined as similar by means of co-occurrence
measurements.

Derivation is a syntagmatic relation. When one word is a derivation of
another, they are likely to co-occur but will not necessarily have similar con-
texts. In order to extract them it will be useful to step one level down and
include the morpheme level: “using” → “user”.

7 Conclusion

We have tried to create a structuralist framework that enables computable
definitions for syntagmatic and paradigmatic relations on all language levels.
In particular, we have tried to show how this framework creates the pos-
sibility to compute semantic relations, and thus to treat semantic relations
explicitly as something independent from human intuition. Though being in-
dependent from human intuition on the methodology level, each operation is
founded within a linguistic theory and is straightforward to grasp, unlike an-
other similar model, i.e. Latent Semantic Analysis [12, 13, 33]. The abstract
framework is intended to incorporate some of the most important structuralist
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concepts. By providing precise mathematical models for each specific concept,
the framework can be instantiated.

The main mathematical model we have used in our previous work [20, 21],
is one for measuring statistical co-occurrences. Further research will continue,
in particular towards the full instantiation of the framework accompanied by
an evaluation of the resulting algorithms. Here, GermaNet and WordNet are
going to be used to evaluate the results of the extraction algorithms for seman-
tic relations. As has been mentioned above, an algorithm for the unsupervised
extraction of word classes is crucial for implementing the full computability
of the framework. Thus, research will also continue in this direction.
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tive Beschreibung, formale Repräsentation und prozedurale Modellierung
vager Wortbedeutungen in Texten. Peter Lang, Bern/Frankfurt/New
York, 1989.

[36] B. B. Rieger. Distributed Semantic Representations of Word Meanings.
In J. D. Becker, I. Eisele, and F. W. Mündemann, editors, Parallelism,
Learning, Evolution. Proceedings of the Workshop on Evolutionary Mod-
els and Strategies and of the Workshop on Parallel Processing (WOP-
PLOT’89), pages 243–273, Berlin/New York, 1991. Springer.

[37] B. B. Rieger. Situations, Language Games, and SCIPS. Modeling Semi-
otic Cognitive Information Processing Systems. In J. Albus, A. Meystel,
D. Pospelov, and T. Reader, editors, Architectures for Semiotic Model-
ing and Situation Analysis in Large Complex Systems. Proceedings of the
ISIC-Workshop and the 10th International IEEE-Symposium on Intelli-
gent Control, pages 130–138, Bala Cynwyd, 1995. AdRem.

[38] M. Sanderson. Word Sense Disambiguation and Information Retrieval. In
Proceedings of the 17th ACM SIGIR Conference, pages 142–151. ACM,
1996.

[39] A. Schiller, S. Teufel, and C. Thielen. Guidelines für das Taggen deutscher
Textcorpora mit STTS. Technical report, IMS-CL, Universität Stuttgart
and SfS, Universität Tübingen, 1995.
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Summary. This paper describes a first attempt to set up and test a basic synergetic-
linguistic model of a syntactic subsystem in analogy to the existing models of lexical
and morphological subsystems, which have been tested successfully. The modelling
is based on selected syntactic units, properties, and interrelations, which are inte-
grated into a common model structure. The empirical testing is performed on data1

from the “SUSANNE” corpus [15].

1 Introduction

A first, embryonic model of a syntactic subsystem of language in the frame-
work of synergetic linguistics [9] is set up in analogy to the existing models
of lexical [2, 3, 9] and morphological [10, 11, 12, 13, 14] subsystems. As basic
units, syntactic constructions are selected, which are, for the purpose of the
present study, operationalised on the basis of the constituency relation, i.e.,
we consider constituent types. The properties analysed are

• Frequency (of occurrence in the text corpus),
• Length (number of the terminal nodes [= words] which belong to the given

constituent),
• Complexity (number of immediate constituents of the constituent under

consideration),
• Position (in the mother constituent or in the sentence, counted from left

to right),
• Depth of embedding (number of production steps from the start symbol),
• Information (in the sense of information theory, corresponding to the

memory space needed for the temporary storage of the grammatical rela-
tions of the constituent)

1I would like to thank Claudia Prün and Sabine Weber for their help with the
extraction of the data from the corpus.
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• Polyfunctionality (number of different functions of the construction under
consideration),

• Synfunctionality (number of different functions with which a given function
shares a syntactic representation)

and the relevant inventories, viz.

• the inventory of syntactic constructions (constituent types),
• the inventory of syntactic functions,
• the inventory of syntactic categories,
• the inventory of functional equivalents (i.e., of constructions with a similar

function to the one under consideration).

2 Frequency, Complexity, and Length

The first step on the way to a model in the framework of the synergetic ap-
proach consists in setting up axioms. From earlier works (cf., e.g., Köhler
[9, 10] and Hoffmann & Krott [7]) we take, together with the general central
axiom of self-organisation and self-regulation of language systems, the commu-
nication requirement (Com) with its two aspects of the coding (Cod) and the
application requirement (Usg). Further language-external requirements the
system must meet are introduced below. The next step includes the search
for functional equivalents which can meet the requirements, and the deter-
mination on their effects on other system variables. The influences of Cod,
of which we consider here only that part which is connected with syntactic
coding means as a functional equivalent, directly affect the inventory size of
syntactic constructions (in perfect analogy to the lexical subsystem where
lexicon size is affected by Cod). In a similar analogy to the situation in the
lexicon, Usg represents the communicative relevance of an expression in the
inventory and results in a corresponding frequency of application of the given
construction (compare figure 1).

Before entering the next phase – the empirical testing of the hypotheses set
up above – we introduce another axiom, viz. the requirement of optimal coding
(OC), as known from earlier models, with two of its aspects: the requirement
of minimising production effort (minP), and the requirement of maximisation
of compactness (maxC). “Production effort” refers to the physical effort which
is associated with the articulation while uttering an expression. In the case of
syntactic constructions, this effort is determined by the number of terminal
nodes (words) – even if the words are of different lengths2 – and here is called

2The actual mean effort connected with the utterance of a syntactic construction
is indirectly given by the number of its words and on the basis of the word length
distribution (in syllables) and the syllable length distribution (in sounds). One has
also to keep in mind, however, the influence of the Menzerath-Altmann law, which
is, for the sake of simplicity, neglected here.
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Fig. 1. The language-constituting requirement Cod (only syntactic coding means
are considered) and the language-forming requirement Usg with two of their de-
pending variables.

length of a syntactic construction. As in the case of lexical units, minP affects
the relation between frequency and length, in that maximal economisation
is realised when the most frequent constructions are the shortest ones (cf.
figure 2). As a consequence, an optimised distribution of the frequency classes
and a corresponding rank-frequency distribution can be expected, in a form
similar – though probably not identical – to Zipf-Mandelbrot’s law. There is,
undoubtedly, an effect of shortening syntactic constructions in dependence on
their frequency; however, this interrelation should be explained in the first
place by the preferential application of shorter constructions over longer ones.

According to the data from the SUSANNE corpus, these distributions
display, in fact, the expected forms (cf. figure 3). The well-known Waring
distribution could be fitted to the empirical frequency spectrum (fitting with
the Altmann Fitter 2.0 (1997) yielding the parameter estimations b = .66990
and n = .47167; the result of the Chi-square test was χ2 = 81.0102 with 85
degrees of freedom and a probability of P [χ2] = .6024), which is extremely
good.

The requirement maxC is, among others, a consequence of the need for
minimisation of production effort at the mother constituent level. This require-
ment can be met at the sentence level e.g. by an additional attribute instead of
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Fig. 2. The interrelation of complexity/length and frequency as a consequence of
the requirement of optimal coding. The dotted lines represent the effect of minP as
an order parameter for the distributions of the frequency and complexity classes.

a subordinate clause3, with the effect that this economisation at the sentence
level is achieved at the expense of an increased complexity. Length (measured
in words), on the other hand, is stochastically proportional to complexity:
The more immediate constituents a construction contains, the more terminal
nodes it will consist of.

The average complexity of the syntactic constructions finally depends on
the number of the necessary constructions in the inventory and on the number
of elementary syntactic categories. This dependence results from simple com-

3An example: S[NP[Die Hörer] konnten nichts verstehen, weil sie wieder einmal
nicht vorbereitet waren]] → S[NP[Die wieder einmal nicht vorbereiteten Hörer] konn-
ten nichts verstehen]. The first sentence has a length of 12 words, the second one
only 9. On the other hand, the subject of the first sentence has only two immediate
constituents and a length of 2, the subject of the second three immediate constituents
and a length of 6.
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Fig. 3. The rank-frequency distribution of the constituent type frequencies in the
SUSANNE corpus (logarithmic axes).

binatorial analysis: Every construction consists of a linear sequence of daugh-
ter nodes (immediate constituents) and is determined by their categories and
their order. On the basis of G categories, GK different constructions with K
nodes can be generated, of which only a part – the “grammatical” one – is
actually formed, in analogy to the only partial use of the principally possible
phoneme (sound) combinations in the formation of syllables or morphemes –
to phonotactic restrictions. Figure 4 shows the complexity distribution of all
90,821 occurrences of constituents in the SUSANNE corpus.

The empirical test of the hypotheses on the interrelation between frequency
and complexity and complexity and length is shown in figures 5, 6, and 7.

Obviously, the expected tendencies are confirmed. Though there are not
yet any theoretically corroborated hypotheses on the exact mathematical form
of the interrelations (with the exception of the hypothesis on the dependence
of length on complexity) and, therefore, no serious goodness-of-fit test can be
performed, the general hypothesis on the existence of an inverse dependence
is justified by the data.

The findings described above also possess a potentially important practical
impact. Of the 4,621 different constituent types with their 90,821 occurrences,
2,710 types (58.6%) occur only once in the corpus, 615 types (32.3% of the
rest, or 13.3% of the whole inventory) occur twice, 288 types (22.2% of the
rest, or 6.2% of the inventory) thrice, 176 (17.5% of the rest, or 3.8% of the
inventory) four times, etc. Less than 20% of the rules in the corresponding
grammar can be applied more than four times, and less than 30% of the rules
more than two times.
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Fig. 4. The empirical frequency distribution of constituent complexity in the SU-
SANNE corpus.

Fig. 5. The empirical dependence of the average constituent frequency as a func-
tion of constituent complexity. Fitting of the function F = 858.83K−3.095e.00727K ,
determination coefficient D = .99.

We can expect that investigations of other corpora and of languages other
than English will yield comparable results. Similarly to how lexical frequency
spectra are applied to problems of language learning and teaching, in com-
piling minimal vocabularies, in determining the text coverage of dictionaries,
etc., the dependence described above could be taken into account, among
others, when parsers are constructed (planning the degree of text coverage,
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Fig. 6. The empirical dependence of the average constituent complexity as a
function of constituent frequency (logarithmic x-axis). Fitting of the function
F = 4.789F−.1160, determination coefficient D = .331.

Fig. 7. The empirical dependence of complexity and length. Fitting of the function
L = 2.603K.963e.0512K determination coefficient D = .960.

estimation of the expenditure needed for setting up the rules, calculation of
the degree of a text which can be automatically analysed, etc.).



198 Reinhard Köhler

3 Length, Complexity, and Position

A relation which has already been found by Otto Behaghel [1] is the Gesetz
der wachsenden Glieder (the “law of growing members”) as he called it: “Von
zwei Gliedern von verschiedenem Umfang steht das umfangreichere nach” (Of
two members of different sizes the larger one comes latest). Behaghel tested
this empirical generalisation on data from German, Latin and Greek. Since
then, word order variation has been considered, in the first place, from the
point of view of typology. In linguistics, theme-rheme division and topicali-
sation as a function of syntactic coding by means of word order have to be
mentioned and, in contrast, Givón’s discourse pragmatic “the most important
first” principle. An interesting and plausible hypothesis by John Hawkins [4],
which can explain the preference “long after short” as observed by Behaghel
and confirmed again by Hawkins on data from German, English, and Hun-
garian, is based on psycho-linguistic assumptions on mechanisms and border
conditions of human language processing. Hawkins’ Early Immediate Con-
stituent (EIC) principle explains the data by the fact that fewer nodes of the
syntactic structure have to be kept in memory during analysis if long con-
stituents are placed after shorter ones which are grammatically of the same
status.

Hoffmann [5] performed several empirical tests of consequences of this
hypothesis, since the data collected by Hawkins were evaluated in an inade-
quate way (no statistical test of significance has been used; Hawkins assessed
the data intuitively). Furthermore, she showed that the probability of a long
constituent being placed after a shorter one is a monotonous function of the
difference of their lengths: the greater the difference, the more likely is this
constituent order. Recent studies on the relation between position and length
of words can be found in [17] and [16].

Figure 8 shows this interrelation in a form which is appropriate in order to
integrate the corresponding hypothesis into a comprehensive syntactic model.
Instead of length (in number of words) as in Hawkins [4], complexity is con-
sidered as the relevant quantity, because the hypothesis refers to nodes in
the syntactic structure, not to words. The fact that the phenomenon is also
observable when length in words is considered seems to be an indirect effect.

The modified hypothesis was tested on data from the SUSANNE corpus.
Whereas the previous investigations took into account only constituent pairs
of ‘equal status’, in the present study, length, complexity, and absolute posi-
tion data were collected and evaluated for all constituents in the corpus, in
two ways: at the sentence level and recursively at all levels. Figures 9 and
10 show examples of the empirically observed interrelations. As can be seen,
the hypothesis was extremely clearly confirmed; hence, a significance test is
unnecessary, the more because a theoretical reason to postulate a specific
function, which could be fitted to the data and be tested in this way, is not
yet available. A corresponding formula will also have to take into account
and combine, besides Hawkins’ considerations, other interrelations and fac-
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Fig. 8. Hawkins’ EIC principle (modified: complexity instead of length).

Fig. 9. The empirical dependence of the average constituent length (in number of
words) and position in the mother constituent. The values of positions greater than
9 have not been taken into account because of their small frequency (< 10).

tors such as Givón’s principle (“the most important first”) and quantitative
iconicity (e.g., Hai-man’s “the more important the more linguistic material”).

4 Position and Depth of Embedding

As another hypothesis for which data can easily be collected, a consequence
of Yngve’s Depth Saving principle [18] is integrated into the model. If in fact
right branching structures are preferred due to memory efficiency in language
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Fig. 10. The empirical dependence of the average constituent complexity (in number
of immediate constituents) and position in the mother constituent. The values of
positions greater than 8 have not been taken into account because of their small
frequency (< 10).

processing, all constituents should show, on the average, an increasing depth
of embedding with increasing position. In order to test this hypothetical con-
sequence, depth of embedding4 (depth value 1 was assigned at sentence level)
and absolute position (in the mother constituent and, separately, from the be-
ginning of the sentence) were evaluated. The empirical interrelation is shown
in figures 11 and 12.

As this hypothesis was corroborated by a first test, it is included into
the synergetic model by introducing a further system requirement, viz. right
branching preference (RB), which controls the influence of constituent po-
sition on depth. Additionally, another axiom is set up which represents the
necessary limitation of the increase of depth (LD) – an order parameter of the
distribution of the variable depth. The three requirements EIC, RB, and LD
can be subsumed under the general requirement of minimisation of memory
effort (minM). Here, we also have to take into account that the requirement
of maximal compactness (maxC) has an effect opposite to the depth limi-
tation requirement, because more compactness is achieved by embedding of
constituents, as discussed above. Figure 13 shows a model section which cor-
responds to the relations described above.

4Note that our operationalisation of depth differs from Yngve’s.
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Fig. 11. The empirical dependence of depth of embedding on constituent position
(measured in running words from the beginning of the sentence) for the four text
types included in the SUSANNE corpus. Positions above 50 are not represented in
the graph because of their small frequencies.

5 Position and Information

Another consideration is possible with respect to the position of the con-
stituents: With increasing position, an increasing number of constituents has
to be stored during the processing by the hearer or reader. Therefore, an
increasing memory effort goes along with constituent position. If we assume
that the language processor’s memory has to store not only the nodes as
representatives of the constituents but also the structural (grammatical) in-
formation which results from the analysis [8], it would be advantageous if the
amount of structural information to be stored would grow slower than propor-
tionally to the number of nodes. This would be possible if the number of al-
lowed constituent types and functions decreases with increasing position. The
more alternatives are permissible at a given position, the more storage space
is needed for the representation of the constituent type of function actually
found at that position. If this consideration is correct and if the self-organising
mechanisms of the natural languages adjust their grammars (i.e., as a result
of economical language behaviour) in this way (in order to allow for a higher
complexity of constituents to be analysed by the processing device), then the
logarithm of the number of alternative constituent types and functions which
can actually be found at a given position in a text corpus decreases with the
position. The logarithm is taken as a measure for the memory space needed.
Figure 14 shows a model structure with this hypothesis integrated; the cor-
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Fig. 12. The empirical dependence of depth of embedding on constituent position
(measured in running words from the beginning of the sentence) for the entire SU-
SANNE corpus. Positions above 40 are not represented in the graph because of
their small frequencies. Fitting of the function T = 1.8188P 3.51e.00423P , coefficient
of determination D = .996.

Fig. 13. Model section containing the quantities complexity, position, and depth
with the relevant requirements.

responding requirement of minimisation of structural information (minS) is
also a special aspect of the general requirement minM.

For the empirical test again two data sets were considered, one containing
all constituents at sentence level, another all constituents at all levels. For
every position in the mother constituent the number of different immediate
follower constituent types was counted. At the sentence level, with increas-
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ing position, a nearly linear decrease of the corresponding information (the
logarithm of the number of alternative followers) was found – beginning from
a peak at position three, the follower of the favourite position of the finite
verb (which is, according to the analysis in the SUSANNE corpus, an imme-
diate constituent of the sentence). The curves of the functional dependence of
structural information in two text types is represented in figure 15.

In the SUSANNE corpus, constituents are annotated with respect to their
type and, in most cases, also to their grammatical function [15]. Therefore, it
was also possible to measure the amount of information which is yielded from
the number of alternative functions at a given position. An example of the
results is shown in figures 16 and 17 – again an almost linear curve.

Fig. 14. With increasing position, the amount of structural information which must
be stored increases.

At present, specific hypotheses providing the exact mathematical form of
the functional dependencies and their interrelations have not yet been devel-
oped. Such hypotheses must be set up on the basis of theoretical deduction
from assumptions on the human language processing mechanism and take into
account linguistic laws such as the Menzerath-Altmann [8], where this law is
derived from a simple assumption about properties of the language processing
device).
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Fig. 15. Logarithm of the number of alternatively possible constituent types in
dependence on the position (separately calculated for two of the four text types in
the corpus).

Fig. 16. Logarithm of the number of alternatively possible constituent functions in
dependence on the position (separately calculated for two of the four text types in
the corpus).

6 Other Quantities and Requirements

As in earlier models of linguistic subsystems, a requirement of minimisation
of inventory size (minI) is postulated. In a syntactic subsystem, at least the
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Fig. 17. Logarithm of the number of alternatively possible constituent types and
functions in dependence on the position (separately calculated for an individual
text).

following interrelations between inventories and other system variables must
be investigated:

• An increase in the size of the inventory of syntactic constructions has, as
discussed above, an increasing effect on the mean complexity of the con-
structions, whereas mean complexity is smaller the larger the inventory of
categories. The smaller the inventory of categories the greater the func-
tional load (or, multifunctionality). The requirement minI has a decreasing
effect on all inventories, among others on the mean number of functional
equivalents associated to a construction.

• The frequency distributions within the inventories are controlled by order
parameters (figure 18).

• Theoretical and empirical analyses of the probability distributions of the
quantities under consideration (frequency, length, complexity, position,
depth, and information) and the analysis of the rank-frequency distribu-
tions of functional equivalents and of multifunctionality of a given con-
struction will be given in a separate publication, because the empirical
frequency distributions of the system variables and the distributions of
functional diversification (syn-functionality) and of multifunctionality dis-
play an extremely heterogeneous behaviour and a large number of math-
ematical models is needed to cover the phenomena observed.

The model developed in the present paper is, as emphasised above, only a
first attempt to analyse a part of the syntactic subsystem of language in the
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Fig. 18. The structure of the syntactic model. The dotted lines represent the effect
of order parameters on distributions of system variables.

framework of synergetic linguistics and remains, at the moment, incomplete in
several respects. In the first place, a theoretical derivation of the mathematical
form of some of the functional interrelations and the frequency distributions
is missing. Besides extensions of the model by further units and properties, a
broader empirical basis and studies of data from other languages than English
is needed. A particularly interesting question is the relation between the model
structure described in this draft analysis and the Menzerath-Altmann law.
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[17] L. Uhĺıová. Length vs. Order. Word Length and Clause Length from the

Perspective of Word Order. Journal of Quantitative Linguistics, 4:266–
275, 1997.

[18] V. Yngve. A Model and an Hypothesis for Language Structure. Proceed-
ings of the American Philosophical Society, 104:444–466, 1960.

Appendix

The text corpus used is the SUSANNE corpus (cf. Sampson [15]) – a collection
of 64 English texts with a total of 128,000 running words, which is available in
a syntactically analysed and annotated form. As an example, the first sentence
of text A01 from the SUSANNE corpus is shown below. The organisational
and linguistic information for each word-form is given in six columns: The
first column (reference field) gives a text and line code, the second (status
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field) marks abbreviations, symbols, and misprints, the third gives the wordtag
according to the Lancaster tagset, the fourth the word form from the raw text,
the fifth the lemma, and the sixth the parse. In lines A01:0040j and A01:0050d
(example in figure 1), for example, the :o’s mark the NP “the over-all . . . of the
election” as logical direct object, the brackets with label Fr in lines A01:0060h
and A01:0060n mean that “in which . . . was conducted” is a relative clause.

A01:0010a - YB <minbrk> - [Oh.Oh]
A01:0010b - AT The the [O[S[Nns:s.
A01:0010c - NP1s Fulton Fulton [Nns.
A01:0010d - NNL1cb County county .Nns]
A01:0010e - JJ Grand grand .
A01:0010f - NN1c Jury jury .Nns:s]
A01:0010g - VVDv said say [Vd.Vd]
A01:0010h - NPD1 Friday Friday [Nns:t.Nns:t]
A01:0010i - AT1 an an [Fn:o[Ns:s.
A01:0010j - NN1n investigation investigation .
A01:0020a - IO of of [Po.
A01:0020b - NP1t Atlanta Atlanta [Ns[G[Nns.Nns]
A01:0020c - GG +<apos>s - .G]
A01:0020d - JJ recent recent .
A01:0020e - JJ primary primary .
A01:0020f - NN1n election election .Ns]Po]Ns:s]
A01:0020g - VVDv produced produce [Vd.Vd]
A01:0020h - YIL <ldquo> - .
A01:0020i - ATn +no no [Ns:o.
A01:0020j - NN1u evidence evidence .
A01:0020k - YIR +<rdquo> - .
A01:0020m - CST that that [Fn.
A01:0030a - DDy any any [Np:s.
A01:0030b - NN2 irregularities irregularity .Np:s]
A01:0030c - VVDv took take [Vd.Vd]
A01:0030d - NNL1c place place [Ns:o.Ns:o]Fn]Ns:o]Fn:o]S]
A01:0030e - YF +. - .O]
A01:0030f - YB <minbrk> - [Oh.Oh]
A01:0030g - AT The the [O[S[Ns:s.
A01:0030h - NN1c jury jury .Ns:s]
A01:0030i - RRR further far [R:c.R:c]
A01:0030j - VVDv said say [Vd.Vd]
A01:0030k - II in in [P:p.
A01:0030m - NNT1c term term [Np[Ns.
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A01:0030n - YH +<hyphen> - .
A01:0030p - NN1c +end end .Ns]
A01:0040a - NN2 presentments presentment .Np]P:p]
A01:0040b - CST that that [Fn:o.
A01:0040c - AT the the [Nns:s101.
A01:0040d - NNL1c City city .
A01:0040e - JB Executive executive .
A01:0040f - NNJ1c Committee committee .
A01:0040g - YC +, - .
A01:0040h - DDQr which which [Fr[Dq:s101.Dq:s101]
A01:0040i - VHD had have [Vd.Vd]
A01:0040j - JB over<hyphen>all overall [Ns:o.
A01:0050a - NN1n charge charge .
A01:0050b - IO of of [Po.
A01:0050c - AT the the [Ns.
A01:0050d - NN1n election election .Ns]Po]Ns:o]
A01:0050e - YC +, - .Fr]Nns:s101]
A01:0050f - YIL <ldquo> - .
A01:0050g - VVZv +deserves deserve [Vz.Vz]
A01:0050h - AT the the [N:o.
A01:0050i - NN1u praise praise [NN1n&.
A01:0050j - CC and and [NN2+.
A01:0050k - NN2 thanks thank .NN2+]NN1n&]
A01:0050m - IO of of [Po.
A01:0050n - AT the the [Nns.
A01:0060a - NNL1c City city .
A01:0060b - IO of of [Po.
A01:0060c - NP1t Atlanta Atlanta [Nns.Nns]Po]Nns]Po]N:o]
A01:0060d - YIR +<rdquo> - .
A01:0060e - IF for for [P:r.
A01:0060f - AT the the [Ns:103.
A01:0060g - NN1c manner manner .
A01:0060h - II in in [Fr[Pq:h.
A01:0060i - DDQr which which [Dq:103.Dq:103]Pq:h]
A01:0060j - AT the the [Ns:S.
A01:0060k - NN1n election election .Ns:S]
A01:0060m - VBDZ was be [Vsp.
A01:0060n - VVNv conducted conduct .Vsp]Fr]Ns:103]P:r]Fn:o]S]
A01:0060p - YF +. - .O]
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1 Introduction

A special kind of analysis of the denotative structure of a text can be per-
formed by partitioning the text in denotative units called hrebs [18]. The hreb,
which was called so in honor of its discoverer, L. Hřeb́ıček, is the set of all
entities of a text referring to the same object in reality or the same object in
the text. Up to now, the sentence hreb has been defined [10, 11, 12, 13, 14]
as the set of sentences with common reference, allowing the sentence to be-
long to different hrebs. The coherence of the text can be measured using the
affiliation of sentences to hrebs.

In the present paper the word hreb is defined as the set of all words of the
text which have the same denotation/reference. Simple techniques allow us
to ascertain several linguistically relevant properties of the text, to represent
them graphically and to evaluate them. The denotative analysis shows the
denotative structuring of the text, the manifest view of the reality by means
of the text, i.e. its manifold organization. For the analysis of the latent con-
notative structures which are not explicitly marked one needs somewhat finer
methods which, fortunately, can be performed mechanically.

Hrebs allow us to analyze the text supra-semantically, to study the distri-
bution of denotations both generally and sequentially, and the probabilistic
coincidence analysis transforms the text in a graph whose different properties
can be considered structural denotative properties of the text.

2 The Method of Denotative Analysis

In order to describe the denotative analysis we present the method in discrete
steps.
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Step 1: The Criteria

Set up the criteria for the establishment of hrebs. These may be different
in different languages. For the establishment of hrebs, the authors used the
following ones (for more detail see [18]):

(i) A word-like unit at a certain position of the text belongs to a unique
hreb; in different places it can belong to different hrebs: mein (“my”) in
mein Vater (“my father”) and in mein Sohn (“my son”) can belong to
different hrebs, as is the case in the analyzed text example “Erlkönig”
by Johann Wolfgang von Goethe [8].

(ii) Compounds can be decomposed if there are hrebs in the text to which the
parts can be assigned. The same procedure is used with decomposable
words (e.g. German verbs).

(iii) Conjugation and declination endings are ignored.
(iv) Synonyms belong to the same hreb, homonyms do not.
(v) Determined and indetermined nouns can belong to the same hreb or to

different ones, e.g. in Pilze sind giftig (“mushrooms are poisonous”) and
in dieser Pilz nicht (“this mushroom not”) the denotations are different.
The problem can be eliminated if one disregards all articles and some
kinds of pronouns or considers them as part of the noun, e.g. der, dieser,
jener, mancher, jeder etc., so that they are not established as hrebs.

If one wants to establish morpheme hrebs, the procedure is identical but the
text must be analyzed morphemically, thus even parts of a word could belong
to different hrebs. A Hungarian finite verb can contain three hrebs: that of the
activity, that of the person and that of the reference to the object, e.g. látlak
(“I see you”). Even if the criteria are very clear, there is a possibility that
ad hoc decisions must be made and “errors” can occur. This is the weakest
point of the analysis, because a) it (still) cannot be performed mechanically,
b) it must make do with compromises between controversial grammatical de-
scriptions and c) it must frequently make intuitive decisions at the boundary
of semantics and denotation. Thus the criteria are preliminary and should be
modified. Nevertheless, the future aim of this research is the determination
of a catalogue of acknowledged and binding criteria which enable us to fur-
nish comparable boundary conditions under which the analyses – even under
contrastive and comparative aspects – attain more objectivity.

Step II: Establishment of Hrebs

One marks the individual words of the text with position numbers, e.g. for
the first two lines of “Erlkönig”:

1 2 3 4 5 6 7 8
Wer reitet so spät durch Nacht und Wind

9 10 11 12 13 14 15
Es ist der Vater mit seinem Kind
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Next, one establishes – analyzing word for word – the individual hrebs. Thus
one finds (the number gives the position in text) e.g.

(reitet 2, reitet 203)
(so 3, so 38, so 165, so 180).

Table 1 explicitly lists all identified word hrebs of “Erlkönig”. Each hreb
was given a unique number for later reference, which essentially reflects its
position in the list of hrebs ordered by the number of elements.

Table 1. Word hrebs in Goethes poem “Erlkönig”.

2. wer 1, Vater 12,
seinem 14, er 16, er 24,
er 28, mein 32, Vater 42,
du 43, mein 53, Vater 87,
Vater 89, du 92, mein
103, Vater 139, Vater
141, du 144, mein 152,
mein 154, ich 156, Vater
185, Vater 187, Vater
200, er 202, er 205, seinen
220

1. Kind 15, Knaben 19,
ihn 26, ihn 30, Sohn 33,
du 36, dein 39, Sohn 54,
du 59, Kind 61, dir 72,
mein 86, mein 88, mir 96,
Kind 104, Knabe 113, du
114, dich 121, dich 136,
mein 138, mein 140, Sohn
153, Sohn 155, dich 169,
deine 172, du 177, mein
184, mein 186, mich 191,
mir 195, Kind 211, Kind
223

3. Erlkönig 45, Er-
lenkönig 48, mir 65, ich
70, meine 80, Erlenkönig
95, mir 116, meine 118,
meine 124, Erlkönigs
147, ich 167, mich 170,
ich 182, er 190, Erlkönig
193

17. reitet 2, reitet 203 31. sicher 27 41. gar 66

8. so 3, so 37, so 165, so
180

20. hält 29, hält 206 34. bang 38

27. spät 4 32. warm 31 42. Spiele 68

28. durch 5 21. was 34, was 94 43. spiel 69

29. Nacht 6 33. birgst 35 24. manch 73, manch 83

5. und 7, und 51, und 90,
und 130, und 132, und
134, und 142, und 175,
und 217

4. der 11, den 18, dem
22, den 44, den 47, dem
78, der 109, den 127, dem
199, den 213

11. nicht 46, nicht 93,
nicht 145, nicht 178

18. Wind 8, Wind 110 35. Gesicht 40 45. Blumen 75

9. es 9, es 55, es 158, es
160

14. siehst 41, siehst 143,
seh 157

46. an 77

6. ist 10, ist 56, sind 76,
sei 99, bist 176, war 224

15. schöne 67, schön 123
(adv.), schöne 173

7. mit 13, mit 49, mit 64,
mit 71, mit 115, mit 215

44. bunte 74 47. Strand 79 48. Mutter 81

60. sollen 120 36. Kron 50 49. gülden 84

23. geh 63, gehn 117 37. Schweif 52 50. Gewand 85

12. hat 17, hat 82, hat
194

22. ein (Artikel) 57, ein
196

51. hörest 91
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30. wohl 20 38. Nebelstreif 58 52. leise 97

10. in 21, in 105, in 207,
in 219

39. liebes 60 53. verspricht 98

13. Arm 23, Armen 208,
Armen 221

40. komm 62 25. ruhig 100, ruhig 102

54. bleibe 101 85. jetzt 188 61. warten 122

55. dürren 106 86. an (adv.) 192 63. nächtlichen 128

56. Blättern 107 87. Leids 197 93. Hof 214

57. säuselt 108 88. getan 198 62. führen 126

58. willst 111 89. grausets 201 92. erreicht 212

59. feiner 112 90. geschwind 204 91. ächzende 210

16. Töchter 119, Töchter
125, Töchter 148

26. das 209, das 222 64. Reihn 129

65. wiegen 130 94. Mühe 216 19. faßt 25, faßt 189

66. tanzen 133 95. Not 218 70. am 149

67. singen 135 96. tot 225 71. düstern 150

68. ein (adv.) 137 69. dort 146 72. Ort 151

73. genau 159 74. scheinen 161 75. die (Pl. fem.) 163

77. Weiden 164 78. grau 166 79. liebe 168

80. reizt 171 81. Gestalt 174 82. willig 179

83. brauch 181 84. Gewalt 183

It has been shown that this order complies with a probability law. Starting
from this table the text can be characterized in several ways [18].

Step III: Coincidence

If the words of the text are replaced by these numerical designations, then
the text coded according to the membership of words in hrebs has the form
as shown in table 2.

This presentation is more adequate for the analysis of the coincidence
structure. This part of the analysis can be performed by means of a program.
Concerned are exclusively positional coincidences in the framework of a higher
unit – in this case the line – since it is this unit betraying the textual structure.
There are manifold other associations like phonic ones in rhyme and alliter-
ation, grammatical ones like government and congruency, semantic ones like
synonymy, inclusion etc. Some of them are rule governed and thus strongly
deterministic, and other kinds of associations could be taken into account.
The positional coincidence regards merely the ad hoc common occurrence of
two entities which is a purely text specific phenomenon. Consequently the
probability of this coincidence can be computed. There are many other pro-
cedures taking as framework word pairs, sentences, distances between words
or even the whole text [2, 3, 4, 7, 16, 17].

We proceed as follows: Let N be the number of lines (verses, sentences,
chapters or other frame units) of the text, here N = 32. Let M be the number
of lines containing hreb A,n be the number of lines containing hreb B, and
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Table 2. Membership of words in hrebs (the second column is the continuation of
the first).

2,17,8,27,28,29,5,18 58,59,1,1,7,3,23
9,6,4,2,7,2,1 3,16,60,1,61,15
2,12,4,1,30,10,4,13 3,16,62,4,63,64
2,19,1,31,2,20,1,32 5,65,5,66,5,67,1,68

2,1,21,33,1,8,34,1,35 1,2,1,2,5,14,2,11,69
14,2,2,4,3,11 3,16,70,71,72
4,3,7,36,5,37 2,1,2,1,2,14,9,73
2,1,9,6,22,38 9,74,75,76,77,8,78

1,39,1,40,23,7,3 3,79,1,3,80,1,15,81
41,15,42,43,3,7,1 5,6,1,11,82,8,83,3,84
24,44,45,6,46,4,47 1,2,1,2,85,19,3,1,86
3,48,12,24,49,50 3,12,1,22,87,88

1,2,1,2,5,51,2,11 4,2,89,2,17,90
21,3,1,52,53 2,20,10,13,26,91,1
6,25,54,25,2,1 92,4,93,7,94,5,95
10,55,56,57,4,18 10,2,13,26,1,6,96

x be the number of lines in which A and B co-occur (multiple occurrences of
a hreb in a line is irrelevant). Then the probability that A and B co-occur at
least in x lines is

P (X ≥ x) =
min(M,n)∑

j−x

(
M
j

)(
N −M
n− j

)

(
N
n

) (1)

i.e. as the sum of individual hypergeometric probabilities. In very long texts
one can pass to the Poisson distribution [1]. The smaller the probability of (1),
the stronger the positional coincidence of the given two hrebs. In the following
output (table 3), one sees the probabilities of coincidence of hreb 1 with all
the other ones.
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Table 3. Coincidences of hreb 1 with the other ones.

Hreb no. 1 22 0.42339 59 0.65625
with: 23 0.42339 60 0.65625

25 0.65625 61 0.65625
2 0.10787 26 0.42339 65 0.65625
3 0.69768 30 0.65625 66 0.65625
4 0.99986 31 0.65625 67 0.65625
5 0.83778 32 0.65625 68 0.65625
6 0.30688 33 0.65625 69 0.65625
7 0.67013 34 0.65625 73 0.65625
8 0.89447 35 0.65625 79 0.65625
9 0.57328 38 0.65625 80 0.65625
10 0.57328 39 0.65625 81 0.65625
11 0.57328 40 0.65625 82 0.65625
12 0.73387 41 0.65625 83 0.65625
13 0.26815 42 0.65625 84 0.65625
14 0.73387 43 0.65625 85 0.65625
15 0.26815 51 0.65625 86 0.65625
16 0.96673 52 0.65625 87 0.65625
19 0.42339 53 0.65625 88 0.65625
20 0.42339 54 0.65625 91 0.65625
21 0.42339 58 0.65625 96 0.65625

In the following paragraphs we shall consider all possible hreb coincidences.
If there is no coincidence, the hreb pairs are not mentioned as, e.g., (1,17),
(1,18), (1,24) etc. in table 3.

Step IV: Graphic presentation

The output in table 3 is not lucid and not very informative. One gets a better
view if the result is presented graphically. There are different ways to do this:

(a) One chooses by convention an ad hoc boundary α. This boundary need
not agree with the usual significance levels in statistics. If the probability
(1) of a coincidence is smaller than or equal to α, one joins the two given
hrebs with an edge. In this way a graph with several components arises,
as can be seen in figure 1 (components are labelled “K1”, “K2” etc).

(b) One chooses a boundary α so that no vertex of the graph is isolated, all
are joined with at least one other vertex.

(c) One chooses a boundary α so that one obtains one unique component.
That is, all hrebs are joined with one another.
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Fig. 1. Graph of coincidences in the poem “Erlkönig”.
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Fig. 2. Path lengths between hrebs.

If one chooses e.g. α = 0.1 according to the steps (a), (b) or (c), one obtains
the graph of “Erlkönig” as shown in figure 1. The individual components
show what coincides with what in the text. If a hreb occurs many times,
one obtains high probabilities of its co-occurrence with other ones, i.e. in
the graph it can appear frequently as isolated. If two hrebs are seldom
but always occur together, then the probability, according to equation (1)
of their coincidence, is small and they are joined in the graph. A graph
of this kind has many properties that can be computed and interpreted
linguistically.

(d) And finally, one can proceed as usually and construct a so-called minimal
spanning tree in which there is a unique route from each hreb to every
other hreb, i.e. one constructs a tree.

3 Latent Connotative Structures

As can bee seen in the output in table 3, hreb 1 does not coincide with all the
others. Hrebs 24, 27, 28 etc. are missing. Does this mean that it does not have
any relationship with them? In those cases formula (1) would always yield 1
because one would sum from 0 to min(M,n) if this was not avoided by the
program.

Note that connections between hrebs may span more than one edge, i.e.
they do not need to be direct. Looking more accurately at the output one
can detect that hreb 1 coincides with hreb 3 with a probability of 0.10787
and hreb 3 with hreb 24 with a probability of 0.69153. That means, there is
a path from hreb 1 to hreb 24. But even direct coincidences have frequently
higher values then indirect ones. Compare for example

(1,8): 0.89447
(1,2): 0.10787
(2,8): 0.65017

or in graphical form as shown in figure 2. In this case the path from hreb 1
to hreb 8 is shorter via hreb 2 (0.10786 + 0.62017 = 0.72803) than the direct
path (0.89447). This means that in normal (not weighted) graphs with a given



Latent Connotative Text Structure 219

boundary α some semantic relations remain latent or disappear completely.
Their existence can be made visible by means of weighted (fuzzy) graphs or
one can take at the same time a new route to the morphemic level and first
establish morpheme hrebs which reveal more of the association structure of
the text than word hrebs. Here we remain at the word level and make the
following assumptions:

(a) The manifest, direct connection (adjacency in the coincidence graph) of
two hrebs means a denotative connection, whether it is ad hoc (text or
author specific) or constant (as a fixed phrase in the language).

(b) If two hrebs are not adjacent to each other in the coincidence graph but
there is a path between them, then they are said to be (latently) conno-
tatively connected.

(c) If the weight of the edge between two adjacent vertices x and y in the
coincidence graph has a higher value than the individual sums of weights
from other paths, x to y (see figure 2), then they are said to be denotatively
and connotatively connected.

The decision with all criteria depends on whether we accept “no adjacency”
or “no adjacency above the criterion α”. If one chooses a large α, then one
can realize that all hrebs are at least denotatively connected. By criterion
(c) we have to compare the weight of the direct adjacency with the shortest
path between two vertices. The building of coincidences and adjacencies in
the graph probably complies with Hřeb́ıček’s law of references [9, 10, 14].
There surely is a regularity within the growth of the number of connections
connected with level α and the text length.

We consider the finding of the shortest path between two hrebs. The objec-
tive is merely to find the minimal paths in the coincidence graph (as presented
in table 3). The strength of the coincidence computed by means of (1) is con-
sidered as the weight of the edge (or the distance) between the two adjacent
vertices. The smaller this weight, the greater the association of the two hrebs.
In order to find the shortest path between all pairs of edges in a graph, Floyd’s
algorithm [6] is used (see also [5, p. 152f.]).1

For the sake of illustration we show the shortest paths between hreb 1 and
the other hrebs in table 4. In the same way we proceed to find the shortest
paths between all pairs of hrebs of the text. The result cannot be shown here
in its entirety because as it is some 20 pages long.

Comparing table 3 and table 4 one finds that values in table 3 are greater
or equal to the values in table 4 and connections missing in table 3 are present.
That means that even not coinciding hrebs or coinciding over the α boundary
have a latent association that can be detected in different ways (for analogous
problems cf. Mehler [15]).

1The freely available program used to calculate these structures and written in
Python can be ordered from himself@ralfjuengling.de.
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The hreb having shortest paths to all other hrebs is a central hreb. In order
to ascertain centrality it is sufficient to compute for each hreb the sum of all
its shortest paths to all other hrebs. These sums can be seen in table 5. If we
order the sums of shortest paths and group them into classes in intervals of
5, we obtain the layers as shown in table 6.

Table 4. The shortest paths of hreb 1 to all other hrebs.

(1, 2) 0.107860 (1, 34) 0.485890 (1, 66) 0.478320
(1, 3) 0.341540 (1, 35) 0.485890 (1, 67) 0.478320
(1, 4) 0.510270 (1, 36) 0.478320 (1, 68) 0.478320
(1, 5) 0.259570 (1, 37) 0.478320 (1, 69) 0.293340
(1, 6) 0.306880 (1, 38) 0.485890 (1, 70) 0.508680
(1, 7) 0.453630 (1, 39) 0.485890 (1, 71) 0.508680
(1, 8) 0.460070 (1, 40) 0.485890 (1, 72) 0.508680
(1, 9) 0.360920 (1, 41) 0.361900 (1, 73) 0.293340
(1, 10) 0.200400 (1, 42) 0.361900 (1, 74) 0.485920
(1, 11) 0.234270 (1, 43) 0.361900 (1, 75) 0.485920
(1, 12) 0.387090 (1, 44) 0.494380 (1, 76) 0.485920
(1, 13) 0.199590 (1, 45) 0.494380 (1, 77) 0.485920
(1, 14) 0.199590 (1, 46) 0.494380 (1, 78) 0.485920
(1, 15) 0.268150 (1, 47) 0.494380 (1, 79) 0.361900
(1, 16) 0.414930 (1, 48) 0.480840 (1, 80) 0.361900
(1, 17) 0.319550 (1, 49) 0.480840 (1, 81) 0.361900
(1, 18) 0.387900 (1, 50) 0.480840 (1, 82) 0.359270
(1, 19) 0.319550 (1, 51) 0.359270 (1, 83) 0.359270
(1, 20) 0.319550 (1, 52) 0.485890 (1, 84) 0.359270
(1, 21) 0.423390 (1, 53) 0.485890 (1, 85) 0.382050
(1, 22) 0.423390 (1, 54) 0.494380 (1, 86) 0.382050
(1, 23) 0.423390 (1, 55) 0.325400 (1, 87) 0.480840
(1, 24) 0.543340 (1, 56) 0.325400 (1, 88) 0.480840
(1, 25) 0.494380 (1, 57) 0.325400 (1, 89) 0.382050
(1, 26) 0.205640 (1, 58) 0.485890 (1, 90) 0.382050
(1, 27) 0.382050 (1, 59) 0.485890 (1, 91) 0.268140
(1, 28) 0.382050 (1, 60) 0.361900 (1, 92) 0.478320
(1, 29) 0.382050 (1, 61) 0.361900 (1, 93) 0.478320
(1, 30) 0.293340 (1, 62) 0.508680 (1, 94) 0.478320
(1, 31) 0.382050 (1, 63) 0.508680 (1, 95) 0.478320
(1, 32) 0.382050 (1, 64) 0.508680
(1, 33) 0.485890 (1, 65) 0.478320
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Table 5. Sums of shortest paths for all hrebs.

1: 38.727950 33: 49.967350 65: 56.797500
2: 35.048250 34: 49.967350 66: 56.797500
3: 45.370310 35: 49.967350 67: 56.797500
4: 43.860280 36: 47.084160 68: 56.797500
5: 37.453750 37: 47.084160 69: 45.559730
6: 43.049500 38: 48.658210 70: 58.909200
7: 46.633320 39: 53.502260 71: 58.909200
8: 41.682520 40: 53.502260 72: 58.909200
9: 43.848140 41: 52.379700 73: 42.575980
10: 37.145270 42: 52.379700 74: 47.918830
11: 37.093080 43: 52.379700 75: 47.918830
12: 43.991050 44: 48.950780 76: 47.918830
13: 37.108010 45: 48.950780 77: 47.918830
14: 36.884430 46: 48.950780 78: 47.918830
15: 46.704460 47: 48.950780 79: 55.204460
16: 50.409200 48: 48.615460 80: 55.204460
17: 44.103620 49: 48.615460 81: 55.204460
18: 42.775030 50: 48.615460 82: 38.576620
19: 50.026190 51: 48.843080 83: 38.576620
20: 47.161320 52: 55.491030 84: 38.576620
21: 52.713260 53: 55.491030 85: 52.932440
22: 48.713260 54: 60.330750 86: 52.932440
23: 47.721010 55: 41.385040 87: 47.591550
24: 49.770250 56: 41.385040 88: 47.591550
25: 60.330750 57: 41.385040 89: 47.591550
26: 37.543610 58: 53.502260 90: 47.591550
27: 42.665270 59: 53.502260 91: 42.680730
28: 42.665270 60: 54.226320 92: 46.396660
29: 42.665270 61: 54.226320 93: 46.396660
30: 41.557470 62: 55.290780 94: 46.396660
31: 51.668480 63: 55.290780 95: 46.396660
32: 51.668480 64: 55.290780 96: 41.982080
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Table 6. Degrees of centrality of individual hrebs.

Sum of Degree of Hrebs
Shortest Paths Centrality

<35,40> 1 1,2,5,10,11,13,14,26,82,83,84
(40,45> 2 4,6,8,9,12,17,18,27,28,29,30,55,56,57,73,91,96
(45,50> 3 3,7,15,20,22,23,24,33,34,35,36,37,38,44,45,46,47,48,

49,50,51,69,74,75,76,77,78,87,88,89,90,92,93,94,95
(50,55> 4 16,19,21,31,32,39,40,41,42,43,52,53,58,59,60,61,85,86

> 55 5 35,54,62,63,64,65,66,67,68,70,7,72,79,80,81

If we replace the numbers in table 6 by the pertinent hrebs from table 1,
we obtain the results in table 7.

Table 7. Degree of centrality of individual hrebs.

Degree Hrebs
1 Kind, Vater, und, in, nicht, Arm, sehen, das,

willig, brauch, Gewalt
2 der, ist, so, es, hat, reitet, Wind, spät, durch,

Nacht, wohl, dürren, Blättern, säuselt, genau,
ächzende, tot

3 Erlkönig, mit, schön, hält, ein, gehen, manch,
birgst, bang, Gesicht, Kron, Schweif, Nebel-
streif, bunte, Blumen, an, Strand, Mutter,
gülden, Gewand, hörest, dort, scheinen, die,
alten, Weiden, grau, Leids, getan, grausets,
geschwind, erreicht, Hof, Mühe, Not

4 Töchter, fasst, was, sicher, warm, liebes,
komm, gar, Spiele, spiel, leise, verspricht,
willst, feiner, sollen, warten, jetzt, an

5 ruhig, bleibe, führen, nächtlichen, Reihn,
wiegen, tanzen, singen, ein, am, düstern, Ort,
liebe, reizt, gestalt

For the graphic presentations of the results of table 4 different methods
can be applied.

1. First one orders all minimal paths according to magnitude and then joins
the two hrebs with the smallest minimal path. One searches for other hrebs
whose minimal paths belong to those already connected. One continues
in this way until all hrebs are connected.

2. One uses the minimal path of each hreb and connects them. Since there
can be several minimal paths for a hreb, we obtain a tree whose edges can
contain more hrebs. They form cliques.
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3.1 Method 1

First we order all minimal paths between hreb pairs in table 4 according to
magnitude and obtain the results in table 8. Here, too, we can only show the
beginning of the table since the result is very extensive.

Table 8. Hreb pairs ordered by minimal path length.

(10,13) 0.000810 (74, 77) 0.031250 (22,38) 0.062500
(13,26) 0.006050 (74, 78) 0.031250 (22,87) 0.062500
(10,26) 0.006860 (75, 76) 0.031250 (22,88) 0.062500
(5,11) 0.025300 (75, 77) 0.031250 (23,39) 0.062500
(7,23) 0.030240 (75, 78) 0.031250 (23,40) 0.062500
(25,54) 0.031250 (76, 77) 0.031250 (23,58) 0.062500
(27,28) 0.031250 (76, 78) 0.031250 (23,59) 0.062500
(27,29) 0.031250 (77, 78) 0.031250 (24,44) 0.062500
(28,29) 0.031250 (79, 80) 0.031250 (24,45) 0.062500
(31,32) 0.031250 (79, 81) 0.031250 (24,46) 0.062500
(33,34) 0.031250 (80, 81) 0.031250 (24,47) 0.062500
(33,35) 0.031250 (82, 83) 0.031250 (24,48) 0.062500
(34,35) 0.031250 (82, 84) 0.031250 (24,49) 0.062500
(36,37) 0.031250 (83, 84) 0.031250 (24,50) 0.062500
(39,40) 0.031250 (85, 86) 0.031250 (26,91) 0.062500
(41,42) 0.031250 (87, 88) 0.031250 (26,96) 0.062500
(41,43) 0.031250 (89, 90) 0.031250 (13,91) 0.068550
(42,43) 0.031250 (92, 93) 0.031250 (13,96) 0.068550
(44,45) 0.031250 (92, 94) 0.031250 (10,91) 0.069360
(44,46) 0.031250 (92, 95) 0.031250 (10,96) 0.069360
(44,47) 0.031250 (93, 94) 0.031250 ( 3,15) 0.073390
(45,46) 0.031250 (93, 95) 0.031250 ( 3,16) 0.073390
(45,47) 0.031250 (11, 14) 0.034680 ( 2,13) 0.091730
(46,47) 0.031250 ( 5, 14) 0.059980 ( 2,14) 0.091730
(48,49) 0.031250 (17, 27) 0.062500 ( 2,10) 0.092540
(48,50) 0.031250 (17, 28) 0.062500 ( 7,39) 0.092740
(49,50) 0.031250 (17, 29) 0.062500 ( 7,40) 0.092740
(52,53) 0.031250 (17, 89) 0.062500 ( 7,58) 0.092740
(55,56) 0.031250 (17, 90) 0.062500 ( 7,59) 0.092740
(55,57) 0.031250 (18, 27) 0.062500 (12,30) 0.093750
(56,57) 0.031250 (18, 28) 0.062500 (12,48) 0.093750
(58,59) 0.031250 (18, 29) 0.062500 (12,49) 0.093750
(60,61) 0.031250 (18, 55) 0.062500 (12,50) 0.093750
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(62,63) 0.031250 (18, 56) 0.062500 (12,87) 0.093750
(62,64) 0.031250 (18, 57) 0.062500 (12,88) 0.093750
(63,64) 0.031250 (19, 31) 0.062500 (13,30) 0.093750
(65,66) 0.031250 (19, 32) 0.062500 (14,69) 0.093750
(65,67) 0.031250 (19, 85) 0.062500 (15,41) 0.093750
(65,68) 0.031250 (19, 86) 0.062500 (15,42) 0.093750
(66,67) 0.031250 (20, 31) 0.062500 (15,43) 0.093750
(66,68) 0.031250 (20, 32) 0.062500 (15,60) 0.093750
(67,68) 0.031250 (20, 91) 0.062500 (15,61) 0.093750
(70,71) 0.031250 (21, 33) 0.062500 (15,79) 0.093750
(70,72) 0.031250 (21, 34) 0.062500 (15,80) 0.093750
(71,72) 0.031250 (21, 35) 0.062500 (15,81) 0.093750
(74,75) 0.031250 (21, 52) 0.062500 (16,60) 0.093750
(74,76) 0.031250 (21, 53) 0.062500 (16,61) 0.093750

The pair (10,13) has the smallest distance, namely d(10, 13) = 0.000810.
We connect the two hrebs with two directed edges drawn as ↔. Since this
is the smallest distance in the whole graph, no edges can be formed from
either 10 or 13. However, there can be incoming edges. One finds just below
it d(13, 26) = 0.006050, i.e. an edge goes from 26 to 13:

One seeks other hrebs whose minimal paths go to 10, 13 or 26. At another
point, one finds d(26, 91) = 0.062500 and d(26, 96) = 0.062500. For 96 it is the
shortest path, but for 91 there is another path of the same “length”, namely
to 20, and this is the smallest for 20. Thus in the next step we obtain:

Hreb 20 has still two other paths of same length, namely to 31 and to 32,
which in turn have the shortest path to one each other, i.e. d(31, 32) = 0.03125.
Thus in the next step we obtain:
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Continuing in this way one finally obtains the graph in figure 3 representing
the denotation-connotation flow in the poem.

3.2 Method 2

This method refers to the output in table 3. For each hreb there is at least
one coincidence (smallest direct distance), and frequently, several smallest
coincidences are equal. One can begin with any hreb, but it is important
that there is only one component. Those hrebs having mutually the same
minimal coincidence and the same one to the others can be treated as cliques
and considered as one unique vertex. The result is a tree in which cycles are
considered as single edges. Figure 4 shows as a result the manifest denotative
structure of the text.

4 Summary

The presented methods yield one way of capturing denotative and connota-
tive structures in text. They are fruitful not only for text linguistics, as they
allow us to discover textual mechanisms, but are also applicable in psycholin-
guistic research. From the linguistic point of view they allow us to study the
regularities of denotation and its manifestation in consecutive sentences, e.g.
to develop the topic-comment problems, to study the occupation of positions
in sentence by hrebs in dependence on frequency, etc. The procedures shown
above are merely a small extract from a broad research domain which is in
development [18].

The presented graphs can be further evaluated, both qualitatively and
quantitatively. It is very probable that they could become a basis for text
classification, studies on style, the discovery of new properties of texts (e.g.
an exactly defined term of coherence), psycholinguistic studies, the unveiling
of the association world of the author or of the persons in drama etc. Since
up to now only a very small number of texts has been analyzed, further
developments can hardly be predicted. Perhaps the attained graphs represent
the so-called “small worlds” whose properties are object of many scientific
disciplines. Thus the presented graphs enable us to find contact to other,
better developed sciences.
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Fig. 3. The denotation-connotation flow in the poem.
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Fig. 4. The manifest denotative structure of the poem.
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1 Introduction

Corpus linguists, including lexicographers, use methods which are often called
‘inductive’. That is, they study large corpora or large data sets (such as word-
frequency lists) derived from these corpora, in order to identify patterns in the
data. There is detailed discussion of a few statistical techniques (e.g. for identi-
fying significant collocations), but little general discussion of the combination
of automatic and intuitive methods which are used to make significant gen-
eralizations. It might be thought that, if linguists draw generalizations from
large data sets, then they would generally agree about the resulting analyses,
and certainly corpus work often reaches a remarkably large consensus across
different studies. Findings from one corpus are regularly corroborated by stud-
ies of other independent corpora, and partly automated or computer-assisted
analysis has led to major progress in the study of semantic and pragmatic
data.

However, given the title of this book, I should say immediately that I
will argue that there can be no entirely automatic semantic analysis. First, I
discuss the historical and logical background to the concept of induction, from
Francis Bacon in the 1600s, via David Hume in the 1700s, to Karl Popper in
the 1980s. The broad consensus from this work is that induction does not exist,
and that there are no automatic methods which can be used to infer reliable
generalizations from repeated individual observations. Second, I discuss some
problematic examples from corpus-based dictionaries in order to illustrate
the uneasy balance in corpus lexicography between automatic and intuitive
methods. As examples of the results of inductive inferences (in the rough
sense), I discuss some definitions in modern corpus-based dictionaries, and
the extent to which these definitions agree or disagree. It might be thought
that they disagree surprisingly often in their definitions of individual words.
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2 Conventions and Terminology

I use the following conventions. “Double quotes” are used for the meanings
of words and phrases. ‘Single quotes’ are used for quotes from other authors.
Upper case is used for lemmas (lexemes). Italics is used for word-forms. For
example, the word forms crony and cronies are two realisations of the lemma
CRONY. I will also make a distinction which is very simple and could avoid
much confusion, but which is only rarely made (though see [22]). The terms
‘introspection’ and ‘intuition’ are often used synonymously, but there is a clear
distinction between using introspection as data (as neo-Chomskyan linguists
have done since the 1950s) and using intuition to identify interesting problems
and to analyse data. I assume that all corpus linguists reject introspection as
the (only) source of data, but that none deny the essential role of intuition
in formulating hypotheses and analysing data. One thing which becomes very
clear in teaching students to interpret corpus data is that the ability to see
patterns (e.g. in concordance lines) takes practice: recurrent patterns are not
obvious, and recognizing them is more like a skill than knowledge. This already
throws doubt on any mechanical view of induction. The same is presumably
true in any observational science: chemistry students also have to be taught
what it is important to observe.

3 An Introductory Example

Since the historical part of the paper may seem rather far from concrete lin-
guistic data, I will start with a brief linguistic example of the general problem.
Since the late 1980s, corpus studies have reinstated observation as central to
linguistics on a scale previously unimaginable. Linguists can now work with
data in the form of tens or even hundreds of millions of running words sampled
from many different speakers and writers) or with large data-sets which are
derived from these corpora with minimal human intervention. Now, one might
think that, if linguists use such data and methods – in particular concordance
software which allows large numbers of examples to be brought together and
studied – then they would infer the same generalizations from the data, with
a high degree of consensus across different studies. Findings from one study
predict similar findings in other independent corpora, and it is certainly true
that corpus studies are regularly corroborated in this way.

One very large set of parallel findings is available in the form of defi-
nitions of words in corpus-based dictionaries. However, if we compare the
definitions in different dictionaries, which have been produced independently
but with similar methods, we discover that the dictionaries sometimes differ
in the meanings (perhaps especially the evaluative connotations) which they
attribute to words. For example, here are the definitions of CRONY in four
corpus-based dictionaries, all published in 1995.
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• crony. Your cronies are the friends who you spend a lot of time with,
an informal word. Daily he returned, tired and maudlin, from lunchtime
drinking sessions with his business cronies. (Cobuild [7]).

• crony. (informal often derogatory) A close friend or companion. He spends
every evening drinking in the pub with his cronies. (OALD [17]).

• crony. (usually plural) One of a group of people, who spend a lot of time
with each other and will usually help each other, even if this involves
dishonesty. Nixon gave political power to many of his political cronies.
(LDOCE [12]).

• crony. (informal especially disapproving) A close friend or someone who
works with a stated and usually dishonest person in authority. The General
and his cronies are now awaiting trial for drug-smuggling. (CIDE [6]).

Although these definitions have much in common, they differ considerably
in emphasis. Cobuild gives a neutral denotation as “friend”, and notes that
the usage is informal. The example of drinking companions perhaps implies
something “disreputable” (but the word gets no “PRAGMATICS” label: see
below). OALD uses a very similar example with drinking companions, but
explicitly warns that the word is often (but not always?) derogatory. LDOCE
goes further and gives “dishonesty” as part of the denotation(?) with a cita-
tion which refers to one of the most notoriously dishonest political figures of
all time. CIDE also gives “dishonesty” as part of the denotation, and gives
a citation involving a major crime. In summary, the definitions range from
neutral “friend”, with only an implicit hint of “disreputable activities”, via
an explicit warning that the word is “derogatory”, to the statement that it
implies “dishonesty”, if not serious “criminality” and abuse of political power
on a major scale.

Now, what is a foreign learner to make of this? Can the word be simply
informal and casual, or is it insulting and therefore to be used only with great
care? There is no clear dividing line between the connotations given by the dic-
tionaries, but consider what would happen if these meanings were translated
into German, and then back-translated into English. This is not an artificial
example: I recently asked a lecture class of around seventy largely German-
speaking university students of English if they knew the word CRONY. Only
ten or so claimed to know it, so it is precisely the kind of word they might
want to look up in a dictionary.

These four dictionary definitions are four little theories of meaning. They
are generalizations from the corpus data (plus the intuitions of the lexicog-
raphers), which raise questions such as: Which theory is correct? Which is
wrong? How can we test such semantic claims? What would be the evidence
that one is wrong? Could we provide counter-examples? Can we at least de-
fend a preference for one definition over another? Would this preference de-
pend merely on the most frequent usage (implying that minority usages are
wrong)? Are all four definitions correct, but for different speakers? Or are they
all wrong, because each one is too narrow, and does not take into account vari-
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able usage across speakers? The last questions imply that even corpus-based
dictionaries, which seem the ultimate example of linguistic description, are in
fact prescriptive, since they do not fully take into account variation in usage.
And should foreign learners at least be warned of this variation, that many
native speakers regard the word as insulting, and that it may be safest to
avoid it altogether?

Chomsky [5, p. 51] early dismissed any attempts at automatic discovery
procedures as far too demanding and quite unworkable for syntax, and there-
fore presumably all the more so for semantics. I will also argue here that any
completely automatic procedures are impossible, (and that claims by corpus
linguists in this direction are sometimes exaggerated). But it is worth bearing
in mind that the scepticism of such procedures in the 1950s and 1960s was
at least partly due to the very restricted amount of data which could be pre-
pared in machine-readable form, and of the failure of early statistical models
(which were often tarred with the brush of failed early attempts at machine
translation).

So, corpus linguists – including lexicographers – look at large amounts
of data, observe recurrent patterns, and use these observations as evidence
of meanings. Such methods, which use large data-sets to infer patterns, are
often referred to as inductive, and they would seem to provide a much firmer
empirical basis for linguistic description than the small amounts of introspec-
tive data used in neo-Chomskyan work. However, they raise several questions
which are largely unresolved (and indeed hardly discussed).

4 Some Traditional Distinctions

I assume that no-one these days believes in automatic methods which can re-
liably lead, purely objectively, from (repeated) empirical observations to sig-
nificant generalizations. Intuition and inspired guesswork are always involved
in selecting the initial data (e.g. designing a corpus), deciding what prob-
lems to investigate, and identifying the interesting patterns. Since corpora are
typically designed according to a sociolinguistic theory of language variation,
theory is involved from the beginning. Thus, even though corpus linguists of-
ten talk of ‘raw data’, and even though they have methods of avoiding some
of the assumptions of pre-corpus grammar, I assume also that no-one these
days believes in the possibility of a neutral observation language. (But see
http://www.linguistlist.org/, July 2002, for a debate between Mukher-
jee and Pullum: disputes between these approaches are by no means settled.)
These questions have a history of at least 2,000 years, and I can here make
only a few traditional distinctions as a preface to concrete corpus examples.
Deduction and induction are often distinguished as follows.

A deductive argument starts from premises, and draws conclusions which
must be true if the premises are true. Given two premises, ‘all students like
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beer’ and ‘Bertha is a student’, then it must follow that ‘Bertha likes beer’. De-
duction concerns the validity of the conclusion, given the truth of the premises
(that all students really do like beer, and that Bertha really is a student). It
can say nothing about how the premises are established, or whether they are
well defined (e.g. does alcohol-free beer count as beer, or if Bertha is a mature
part-time student, does she count as a valid case?) Deductive logic concerns
only the validity of the argument which relates premises and conclusion.

An inductive argument starts from a number of specific observations (hope-
fully a large and representative number) and proposes a generalization which
is true of similar cases. Thus if all the students we have seen like beer, then
we have reason to believe that other students like beer. However, the obser-
vation does not lead logically to this conclusion, and indeed it is not clear
how far we can extend the generalization: to all students, to most, or only to
many? Other problems include whether our sample was a good one: perhaps
the students we observed were not typical.

Deductive reasoning takes place within a closed system, in the sense that
all the information is already contained in the premises: implications are
merely made explicit by argument. It studies ways in which sentences follow
logically from other sentences, and thereby relates propositions (premises) to
other propositions (conclusions). The conclusions would be true in all possible
worlds, because they depend on the meaning of the words. Deduction can lead
to new knowledge only in the sense of a new perspective on old knowledge
which is already contained (implicitly) in the premises. However, one of its
weaknesses is that it can tell us nothing about the truth of the premises.

Inductive reasoning claims to go beyond the particular starting point to a
generalization about cases which we have not observed. It relates individual
observations to general statements. This is its strength: we have confidence
in the starting point since we have observed these cases to be true, and it
tells us something new by going from the particular to the general. However,
this is also its weakness, since we cannot be certain about what we might see
in the future. In addition, a generalization is not an explanation: it says we
will observe more of the same, but does not explain why. (We might predict
that the next student we meet also likes beer, but we do not know whether
this is due to peer pressure, students having more money and spare time than
is good for them, their needing alcohol due to depression brought on by too
much work, or to depression brought on by too little work and subsequent
fear of exams.)

Deduction and induction are often assumed to be symmetrically related.
Deduction starts from premises, and goes from the general to the specific.
Induction starts from observations, and goes from the specific to the general.
However, this opposition is only apparent. Both deduction and induction as-
sume reliable starting points: either self-evident premises or observed facts.
Deductive logic simply assumes the truth of the premises, and treats only their
consequences in a possible world. But inductive logic assumes the reliability
of the initial observations in the real world, and since all observations are al-



238 Michael Stubbs

ready interpretations and open to all kinds of potential errors, they can never
be certain. If the initial evidence is unreliable, then the conclusions cannot be
reliable [19, pp. 221-223].

When we talk of drawing generalizations from a finite sample of observa-
tions, we ought to distinguish between three rather different situations. First,
if we have simply observed all the members of a group, then it is quite possible
to summarize the observations quantitatively (e.g. 90 per cent of this class of
100 students like beer), and this is not open to any problems of generalizing
to a larger population. Second, if we repeatedly observe some phenomenon
(e.g. students drinking beer), we might think it likely that we will see fur-
ther similar cases in future, without making any claims about numbers or
proportions. That is, we will have precedents for such similar cases. (This is
sometimes called ‘eduction’.) Third – and this is the difficult case which is
usually meant by induction – we can observe only a (small) finite sample of
a (very large) population, but we wish to make predictions about this large
open-ended population.

5 Some History

Modern ideas about inductive reasoning are often traced back to the early
1600s, when Francis Bacon argued that scientific progress must be based on
systematic data collection and observation (though he himself admits that
some of his main points had been made by Plato). Bacon rejected dogma and
authority as sources of knowledge, and criticized deductive reasoning as being
similar to spiders making webs of knowledge out of their own substance [21,
p. 26, p. 55]. In its stead, he proposed methodically recording observations,
and then proceeding gradually and cumulatively towards general principles.
He also clearly understood the difference between positive and negative ob-
servations, commenting that ‘major est vis instantiae negativae’ (the force of
the negative instance is greater):

“The human understanding [. . . ] forces everything to add fresh support and confir-

mation; and although more cogent and abundant instances may exist to the con-

trary, yet either does not observe or despises them [. . . ]. It was well answered by

him who was shown in a temple the votive tablets by such as had escaped the peril

of shipwreck, and was pressed as to whether he would then recognise the power of

the gods, by an enquiry; ‘But where are the portraits of those who have perished

in spite of their vows?’ [. . . ] It is the peculiar and perpetual error of the human

understanding to be more moved and excited by affirmatives than by negatives,

whereas it ought duly and regularly to be impartial; nay, in establishing any true

axiom, the negative instance is the more powerful.” [1, aphorism 46. Emphasis

added.].

This is the point about the asymmetry of confirming and falsifying data
that Popper much later built into a demarcation criterion for science. A con-
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firming instance is just one more instance which neither proves, nor even
makes more probable, a conclusion, since one single counter-example may fal-
sify a hypothesis. One cannot prove that a statement is true (unless in the
closed fashion of a simple deduction), but one can prove that a statement is
false. (Though see Popper on why he is not a ‘naive falsificationist’: e.g. [19,
p. xxxiii].)

Not everyone has shared the view that Bacon’s ideas were particularly
original. In a very long, often very funny, review of an edition of Bacon’s
works (which is often a vitriolic attack on Bacon’s character, rather than
a review of the book), Lord Macaulay [13] questions the originality of the
concept of induction. Here is one of his more ironic statements:

“The vulgar notion about Bacon we take to be this, that he invented a new method

of arriving at truth, which method is called Induction. [. . . ] The inductive method

has been practised ever since the beginning of the world by every human being. It is

constantly practised by the most ignorant clown, by the most thoughtless schoolboy

[. . . ]. That method leads the clown to the conclusion that if he sows barley he shall

not reap wheat. By that method the schoolboy learns that a cloudy day is the best

for catching trout. [. . . ] Not only is it not true that Bacon invented the inductive

method; but it is not true that he was the first person who correctly analysed that

method.” [13, pp. 406-408.].

Macaulay continues in this vein for another page or two. (Quinton [21]
provides a more balanced short account of Bacon’s ideas.) Bacon is also stan-
dardly criticized for his naive faith in the possibility of reliable unbiased ob-
servation (he thought that we could start from our intuitions (NB!) that some
observations and sense-perceptions were self-evident), and for his insistence
on the careful and rather timid plodding accumulation of data, as opposed to
the leaps of imagination and guesswork which lead to real progress in science
[19, pp. 222-223].

In 1758, David Hume had already made the point that there is nothing
new about the idea that we learn from experience: ‘none but a fool or madman
will ever pretend to dispute the authority of experience’ and ‘it is certain that
the most ignorant and stupid peasants – nay infants, nay even brute beasts
– improve by experience’. Hume admitted that we cannot avoid jumping to
inductive conclusions. It is an unavoidable mental habit, and a perfectly rea-
sonable thing to do, indeed often the only thing to do. But this is a matter of
necessary everyday custom and habit, not of logic. He makes these comments
in his famous discussion of different types of inference, where he distinguishes
clearly between the psychological certainty which induction seems to bring,
and the impossibility of inductive generalizations providing logical certainty,
since any predictions about the future are open to potential counter-example.
Any observations we have made were made in the past, but there is no logical
reason to assume that the future will resemble the past, since there can always
be new cases and new observations:
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“As to past Experience, it can be allowed to give direct and certain information

of those precise objects only, and that precise period of time, which fell under its

cognizance: but why this experience should be extended to future times, and to

other objects, which for aught we know, may be only in appearance similar; this is the

main question on which I would insist. [. . . ] The consequence seems nowise necessary.

[. . . ] If we be, therefore, engaged in arguments to put trust in past experience, and

make it the standard of our future judgement, these arguments must be probable

only [. . . ]. All our experimental conclusions proceed upon the supposition that the

future will be conformable to the past.” [9, Section 4. Emphasis added].

Hume continues in this vein for another page or two, making the same point
several times in slightly different words, that all inferences from experience
assume ‘that the future will resemble the past’, but that there is no proof that
this will be so, since ‘the course of nature may change’.

Hume has been read in two rather different ways. He is traditionally inter-
preted as simply rejecting induction as a rational procedure. Alternatively, he
is interpreted as merely arguing that induction must be rejected as a rational
procedure, only if reason is interpreted in very narrow deductive way. These
different readings of Hume himself are not of direct concern in this article,
but Noonan [16, pp. 116-131] summarizes the various positions and argues for
this second view.

In the 1960s, these points from Bacon and Hume were developed by Popper
[19], who refers [19, p. 62] rather ironically to Hume’s ‘problem of tomorrow’,
which he regards as a simple philosophical muddle. First, it is rather likely
that the future will not resemble the past. Second, Hume thought there was a
paradox in saying both that the laws of nature may change, and also that the
laws of nature are just these things which we think can never change. Popper
points out that there is no paradox: it simply means that we formulated the
laws wrongly in the first place, and shows again that our theories are always
open to correction and counter-example. Popper (e.g. [19, pp. 11-158]) agrees
with Hume [9, pp. 31-32] that there are countless regularities in nature on
which we rely in practice, but that we cannot logically reason from singular
observations to general laws of nature. This landed Hume in what he saw as
another clash between the invalidity of induction and the principle of empiri-
cism. Since Hume was unwilling to abandon empiricism, he concluded pes-
simistically that we have to rely on habit, but cannot rely on reason, and this
drove him into an irrationalist position. Popper [19, pp. 32-33] accepts both
the argument against induction and the principle of empiricism (that theories
are accepted or rejected on the basis of observational evidence), but changes
the role which observation plays. Observation is essential, but it cannot prove
that a theory is true, only that it is false. Popper argues at length that there
is no such thing as induction, since hypotheses are always provisional conjec-
tures (a) which are influenced by prior knowledge and expectations, and (b)
which may turn out to be false due to refutation by counter-example.
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So there are in fact three stages which should be distinguished. The prob-
lem is how we get (1) from exploratory data analysis (2) to hypotheses (3)
which we can test. First, we explore a mass of messy data (e.g. a large corpus
plus associated concordances, word lists, statistics on frequent collocations,
etc.) and these facts somehow suggest a theory. But how we arrive at the
theory (argues Popper) is irrelevant to its possible truth. In our search for
patterns we certainly get ideas from observations, but we never draw true
inductive inferences, since we always start from expectations. Second, we for-
mulate generalizations and hypotheses (e.g. dictionary entries about word
meaning). These hypotheses do not emerge from pure logic, since they also
depend on the categories which we use to classify and interpret the world (e.g.
a distinction between denotation and connotation) and on our assumptions
(e.g. that words have relatively stable meanings in a speech community). Third
comes a process of formulating and testing consequences from these hypothe-
ses. With reference to dictionaries, I am not sure if such testing is ever carried
out systematically, or indeed whether it could be carried out in practice across
large comprehensive dictionaries.

In summary, I think there is nowadays general acceptance of Popper’s view
that there is no such thing as pure induction. McGuire [15, p. 399] provides
a useful summary: knowledge is always an underrepresentation (since there is
always selective attention to data), a misrepresentation (since it is influenced
by the knower), and an overrepresentation (since it is based on inferences
which go beyond the given data).

6 Some Lexicographic Examples

These questions of research method are unresolved despite some 400 years of
intense discussion. Phrased rather negatively, it would be valuable if corpus
linguists were at least more aware of these questions. Words such as deduction
and induction do not appear in several widely-used introductions to corpus
methods (including my own, I must admit [26, 27]). Phrased positively, corpus
linguists could use their unique combination of very large data sets, computer-
assisted quantitative methods and human intuition to make some conceptual
progress on the problem. (Relevant methods, especially cyclic procedures of
data analysis, have been described by Sinclair [24], Sinclair, Mason et al. [25],
and Barnbrook [2].) So, from a rather abstract historical discussion, I return
now to the concrete questions I raised at the beginning.

Below I will be using the codings for pragmatic connotations used by the
Cobuild [7] dictionary. In an excellent article, Channell [4], the linguist who
developed the pragmatic coding framework for the dictionary, discusses the
methods used to discover these connotations, and provides clear examples
of how the lexicographers worked in practice. The essential method involved
using concordance lines to display recurrent patterns in the use of a given
word. Channell then illustrates how statements about evaluative connotations
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can be ‘based in systematic observation’, which makes it possible to ‘produc[e]
a sound description’ [4, p. 39]. Concordance data provide facts which are
not accessible to introspection, and are ‘not visible from the study of single
examples’ [4, p. 40]. The main part of the article makes no simplistic claims
about automatic methods (and does not use the term ‘induction’ at all).
However, the summary section at the end makes claims which cannot be
taken literally: ‘Without recourse to intuitions, quantitative data show clear
evidence of where there is an evaluative polarity to an item’ [4, p. 54, emphasis
added]. This implies more automatism than is possible, and a more guarded
statement would be more accurate: that the concordance software can be
instructed to find the appropriate data (possibly with further help from the
kind of software described by Sinclair et al. [25]), but that these data still
require the lexicographers’ intuition to extract the significant patterns.

Given the broad historical discussion so far, the following section may
seem disappointingly modest, but it does ask a specific question: How far do
dictionaries agree in their definitions of words? Lexicographers have large cor-
pora and associated data-sets, plus the hermeneutic procedures described by
Channell [4]. Do these procedures lead to consistent results? Inter-subjective
agreement would not of course prove that the analysis is correct: the analysts
may all have been misled in the same way, Hume would point out that ‘the
course of nature may change’, and Popper would point out that corrobora-
tion does not even increase the probability of a generalization being true. But
disagreement would point to a potential problem.

We have no independent statements of what the meaning of a word is, but
we can compare definitions of the same words in the four highly comparable
dictionaries used above for comparing the definitions of CRONY. They are
all corpus-based, all intended for advanced foreign learners, and all published
in 1995:

• CIDE: Cambridge International Dictionary, based on the Cambridge Lan-
guage Survey corpus of 100 million words.

• Cobuild: Collins Cobuild English Dictionary, 2nd ed., based on the Bank
of English corpus of over 200 million words.

• LDOCE: Longman Dictionary of Contemporary English, 3rd ed., based
on the Longman Corpus Network and the British National Corpus of 140
million words.

• OALD: Oxford Advanced Learner’s Dictionary, 5th ed., based on the
British National Corpus of 100 million words, and an American English
Corpus of 40 million words.

The remainder of the paper discusses cases where these dictionaries dis-
agree in their analyses of individual words, and therefore discusses the uneasy
balance in corpus studies between automatic and intuitive methods.
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7 The Frequency of Disagreements

I will start with the simplifying assumption that dictionaries may tend to
agree most easily over the denotations of words, but less easily over their
connotations, (though I will also question below whether this distinction can
be maintained). All(?) dictionaries use labels of one kind or another (such as
“informal” and “derogatory”) for evaluative connotations, but these labels are
notoriously unstandardized. Cobuild [7] attempts to systematize such descrip-
tion by placing the label PRAGMATICS next to words which have features
of usage which need to be specially signalled. This label is used for several
rather distinct purposes, including conversational markers (e.g. anyway), and
words where the core semantic meaning already denotes something good or
bad (e.g. dreadful). However, the dictionary also uses a range of syntactic
forms (discussed in detail by Barnbrook [2]), in order to explicitly mark eval-
uative connotations and speaker attitudes with phrases such as ‘if you say
x, you want to emphasize it’, or ‘if you say x, you approve/disapprove of it’,
or ‘if you say x, it is because you are irritated’. If we take words labelled
in this way, and compare their definitions in the four dictionaries, we would
have an initial rough sample for discussion. So, from these four corpus-based
dictionaries, a sample of words and phrases was selected as follows:

1. I started on Cobuild page 5, and took the first word (i.e. word sense) with
the PRAGMATICS label, where the entry has a further explicit evaluative
descriptor as defined above.

2. I selected words in this way every hundred pages (pages 5, 105, 205, etc.).
If there was no such word on the page, I went to the next page.

3. I compared the definitions in the four dictionaries. (It was of course pos-
sible that the given sense was not listed at all in a dictionary.)

Given my starting point, all entries selected from Cobuild have, by de-
finition, an explicit evaluative label. However, I do not distinguish further
between the dictionaries below. (And the main comparisons are amongst only
the 1995 printed versions of the four dictionaries. Different printed and CD-
ROM editions of the dictionaries, between 1995 and 2000, often have distinct
differences of emphasis in their definitions and give different citation exam-
ples.) Here are some brief comments on each of the words in this small sample.

1. page 6: absolute (sense 2)
All four dictionaries explicitly label this word as “emphatic” or “express-
ing a strong opinion”. One dictionary adds that it “emphasizes your opin-
ion [. . . ] especially when you think [that something is] very bad, stupid”,
etc. (absolute disgrace). But the other three dictionaries give mixture of
negative, neutral and positive citations (absolute nonsense, absolute min-
imum, absolute trust).

2. page 106: (do something) behind someone’s back (back sense 10)



244 Michael Stubbs

All four dictionaries give the denotation of “doing something without a
person’s knowledge or agreement”.
But two of the dictionaries add that it is “disapproving” (e.g. saying nasty
things behind his back).

3. page 205: brood (sense 2)
All four dictionaries give the denotation of “a family of young children”.
One dictionary adds: “when you want to emphasize that there are a lot
of them”. The other three dictionaries label the usage “jocular” or “hu-
morous”.
(For what it is worth, my intuitive judgement is that it could be rather
risky and potentially insulting to use the word “humorously”.)

4. page 305: cohort (sense 1)
All four dictionaries give the denotation of a person’s companions or sup-
porters, and explicitly label it as “disapproving” or “derogatory” (i.e.
rather similar to cronies). Three of the dictionaries label this usage as
especially American, or give a citation which implies an American usage.

5. page 405: cut something out (sense 4)
All four dictionaries agree that if you tell someone to cut it out, it is
because their behaviour is “annoying” and/or you are “irritated”.

6. page 505: would not dream of (dream sense 9)
All four dictionaries either label this explicitly as “emphasizing” that the
speaker would never do something because they think it is (morally) wrong
or unpleasant, or imply this in the citation.
It is not strictly within my comparisons, however another dictionary gives
no such restriction: I wouldn’t dream of going without you. This seems
more accurate than the four dictionaries under comparison.

7. page 605: far be it from me (far sense 17)
Two dictionaries give a neutral gloss: “I certainly would not want to do
this”.
The other two agree that the speaker is about to criticize someone, but
one thinks that the speaker wants to appear hostile, whereas the second
thinks that s/he wants to pretend to agree.

8. page 705: gerrymandering
All four dictionaries agree that the word denotes “altering political bound-
aries to give advantage to a political party”. All use the word “unfair”,
which implies speaker attitude, and two dictionaries explicitly label it
“disapproving” or “derogatory”.

9. page 805: hole (sense 5)
For the sense of referring to a place (e.g. usually where someone lives) as a
hole, all four dictionaries label the usage as “unpleasant” and “informal”.

10. page 905: not a jot (jot sense 2)
Two dictionaries label the phrase “old-fashioned”. One labels it “informal”
(which seems logically inconsistent with “old fashioned”), and one has
neither of these labels.
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11. page 1007: on the make (make 3 sense 9)
Three dictionaries label the phrase “disapproving”.
One of these goes further and labels it as possibly implying “illegal and
immoral” methods. But one dictionary labels the phrase merely “infor-
mal”.

12. page 1106: nepotism
All four dictionaries agree on the denotation: using power to gain advan-
tage for friends or relatives.
Two dictionaries label this practice “unfair” and as signalling the speaker’s
“disapproval”. The other two do not use any such evaluative descriptors:
everything is left to implication (see below).

13. page 1205: party politics (sense 2)
Here the differences between the dictionaries are not entirely distinguish-
able from the issue of whether a word has distinct senses: a literal denota-
tion (= “relating to political parties”) and an extended usage which is an
“accusation” and which “criticizes” people for doing or saying something
which they do not believe.
Only one dictionary gives these attitudinal labels. Two dictionaries give
only the first literal sense. One gives only the second sense. One gives
both.

14. page 1306: principled
One dictionary labels the word “approving”; the other three dictionaries
imply this with phrases such as “honest and moral”, or “esp good”.
Only one dictionary labels it “formal”.

15. page 1405: repetitious
All four dictionaries label the word “disapproving” or give citations with
the word boring.

16. page 1505: self-important
(This item occurred by chance in my small sample: it is one of the examples
discussed in detail by Channell [4].)
Three dictionaries label the word “disapproving”. The fourth implies this
in the citation (a self-important, pompous little man).

17. page 1605: spendthrift
All dictionaries give denotations such as “spending money wastefully or
extravagantly”. Two dictionaries label it “disapproving”. The other two
use words such as “careless” and “wastes money”, and seem to assume
that the evaluative connotations of these words are clear.

18. page 1705: talk down to
All four dictionaries agree on the denotation: talking to someone as if
they are not very intelligent. One dictionary explicitly labels the phrase
“disapproving”. The other three dictionaries imply this with phrases such
as “too simple”.
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19. page 1805: two-dimensional (sense 2)
One dictionary labels the phrase “critical”; a second labels it “disapprov-
ing”; a third implies this with “not very interesting”; the fourth implies
it even less directly: “does not seem real”.

20. page 1905: whatever you say (whatever sense 7)
Two dictionaries agree that this means “you do not believe or accept what
someone has said” or “do not really agree” with someone.
The other two dictionaries have no entry for the phrase.

8 Interpretation

Dictionaries can differ widely in how they represent word-meanings, including
how they divide word-meanings into different senses, whether they present
senses as separate or as specialized cases of a more general meaning, and so
on. (See Kilgarriff [10, 11], who concludes ‘I don’t believe in word senses’.)

My topic here is more specific: the extent of agreement over attitudinal
meanings. First, dictionaries differ in the labels they use, simply because there
are no standard terms for presenting pragmatic information, but only a rather
small and crude set (e.g. “emphatic” and “formal”), which are not always
clearly distinguishable (e.g. “disapproving” and “derogatory”). Second, dic-
tionary entries differ in whether connotations are explicitly labelled, or only
implicitly encoded in value-loaded words. In examples above, definitions use
words such as unfair, which certainly implies disapproval. Third, there are
cases which Channell [3] argues are more serious than this type of impli-
cation. Consider the definition in one dictionary (Channell’s point, but my
example) of nepotism as “the practice of giving the best jobs to members of
your family when you are in a position of power”. The lexicographer presum-
ably takes it for granted that this practice is a bad thing, and has (covertly)
encoded something that s/he disapproves of. However, there is no evaluative
label, the definition contains positive words (best, power), and some readers
might regard it as behaviour which is completely rational and only to be ex-
pected. In another case, as a citation for principled, one dictionary gives a
principled stand against federalism, which seems to imply that federalism is
a bad thing (and that the lexicographer may be sharing particularly British
prejudices against this form of government)!

This set of twenty definitions is a very small, and clearly not a random,
sample. Given my starting point, all the Cobuild definitions obviously contain
explicit descriptors of speaker attitude. Nevertheless, this small sample shows
a surprising number of differences between the dictionaries. Depending on how
strictly one interprets the conventions used by the four dictionaries, there is
good agreement across all four of them in perhaps half of the cases. There is
one case where two dictionaries did not have the word or phrase at all, and
in the other ten or so cases, there is either distinctly different information
(e.g. the same phrase is labelled “old-fashioned” and “informal”), or at least
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distinctly different emphases in the connotations given (e.g. a speaker wants
to appear “hostile” or wants to “pretend to agree”). How might one explain
these differences?

1. Perhaps the lexicographers looked at different corpora, which were not
entirely comparable samples, and drew legitimate generalizations from
different data. In the case of relatively infrequent words and their even
less frequent combinations in longer phrases (e.g. brood?), perhaps there
were not enough examples even in a large corpus to allow valid generaliza-
tions. This would throw doubt on claims that the dictionaries are based
on representative samples of language use. This explanation is, however,
not very convincing, since all four dictionaries are based on large mixed
corpora.

2. A second explanation might be that native speakers do not always agree
in their use of words, (which would explain why corpus samples differ),
and that the search for meanings shared across a discourse community is
misconceived. This could imply in turn that language use is more vari-
able than is admitted in dictionaries of general English. This explana-
tion sounds superficially similar to the frequently heard excuse in neo-
Chomskyan linguistics of why native speaker intuitions often fail to agree:
‘it’s grammatical in my dialect’. However, the reasons for this variability
in word meanings may be more interesting: I return to this below.

3. This could lead to a third, methodological, problem. If analyses are based
on highly variable data, they should logically be formulated as probabilis-
tic statements. First, dictionaries only seldom adopt this strategy (cf. [7]
on foreigner : “some people believe this word is slightly offensive”). Sec-
ond, it is difficult to see how such definitions can be refutable in any clear
way, since the concept of individual counter-examples does not apply. And,
third, if variable data are given a categorial description, this implies that
the dictionary is prescribing one usage as correct. If there is a difference
between this meaning and my usage, does this imply that I am using the
word wrongly?

Barnbrook [2, pp. 36-39] summarizes some of the main issues. Is meaning
in the mind of the lexicographer or in the usage of the speech community?
Do lexicographers decide, on the basis of their native speaker competence,
what the meaning of a word is, and then search for corpus examples which
illustrate this meaning? (Is the lexicographer the source of the meaning?) Or
do they discover the meaning in the corpus data (induce it from the data)? In
what sense can semantic information be ‘derived’ from ‘reliable sources’ and
‘based directly on representative corpus data’ [2, p. 46, emphasis added]?
In addition, does a word have a ‘correct’ meaning, which can be illustrated
by such data and then recorded in dictionaries?
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9 A Final Example: Size of Context

There is a fourth possible explanation of disagreements between dictionaries.
Here is a final illustration of the hermeneutic method, but also of a problem,
which is simple in this case, but unresolved in general: how much context
(co-text) is relevant to deciding meaning, especially connotation? Here are
some examples (from the 100-million word British National Corpus) of the
word horde, followed by of and a noun phrase. At first sight, there seem to
be examples of both neutral and negatively evaluated uses, respectively:

• horde of children; horde of courtiers; horde of souls; horde of tiny crablets;
horde of young girls; horde of young men; horde of volunteers

• horde of disturbed bats; horde of goblins; horde of hooligans; horde of the
damned from hell; horde of troublesome workmen

However, collocates in a larger context reveal the apparently neutral and
positive examples as often very negatively evaluated indeed:

• horde of children: ‘He left it [his carriage] [. . . ] where it attracted the
interest of a horde of children [. . . ] Garbage was piled high in corners,
and Maggie watched Sarah stepping carefully so as not to tread in the
filth.’
(A second example of horde of children collocates with awfully crowded.
An example of the plural hordes of children collocates with a slum.)

• horde of courtiers: ‘[T]he scene was one of frenetic confusion, servants
scurrying around, shouting and gesticulating [. . . ] the situation was not
improved by a horde of courtiers standing around also issuing their
instructions to a vast army of retainers [. . . ].’

• horde of souls: ‘[A] vast horde of souls were rumbling towards heaven.
There were whole companies of white-trash, clean for the first time in their
whole lives, and bands of black niggers in white robes, and battalions of
freaks and lunatics shouting and clapping and leaping like frogs’.

(These three examples are all from fiction: the first two from novels by
Pamely Pope and Doherty Crown, the third from a famous short story by
Flannery O’Connor.) Similarly, the horde of tiny crablets is described as hav-
ing an extravagant and wasteful breeding strategy; the horde of young girls
is mobbing a limousine carrying a pop group; the horde of young men is a
critical reference to the speaker’s rivals for the attentions of a young lady; and
the horde of volunteers refers to volunteer soldiers in an incident in Scottish
history.

In this case, the four dictionaries agree on the unpleasant connotations:

• horde: A large, noisy and excited crowd. A horde of students on bikes
made crossing the road difficult. (CIDE [6]).
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• horde: (sometimes derogatory) A very large group, especially of people;
a huge crowd. Fans descended on the concert hall in their hordes. (OALD
[17]).

• horde: A large crowd moving in a noisy uncontrolled way. Hordes of people
milling around the station. (LDOCE [12]).

• horde: If you describe a crowd of people as a horde, you mean that the
crowd is very large and excited and, often, rather frightening. . . . a horde
of people was screaming for tickets. (Cobuild [7]).

The four definitions, plus the citations, differ in emphasis, ranging from a
crowd which is “excited” (not necessarily a bad thing), “noisy” (sounds like
a nuisance), milling around (implies aimless, useless activity), “uncontrolled”
(might be dangerous), to causing “difficulties” and “frightening”. That is,
they differ in how explicit the connotations are made and how strong they
are claimed to be. In terms of methodology, we do not know exactly how
much context the lexicographers have used in phrasing their definitions. More
fundamentally, we do not know when connotations should be made part of
the denotation, or when they should be generated by inference from common-
sense knowledge (that excited, aimless and uncontrolled crowds can become
dangerous).

10 A Final Attempt at Explanation

Given practical constraints (including restrictions of space, the conservative-
ness of their users, and ultimately commercial pressures) dictionaries are
forced to present their definitions as though words have definitive meanings
and/or distinct senses. This is, however, a misleading model of semantics.
Sampson [23, pp. 180-207] presents a detailed account of why this is so, and
why linguistic and encyclopedic knowledge cannot be neatly separated. Due
to cultural changes and the need for new concepts, the meanings of words
change, many words encode concepts which have been recently institutional-
ized in our culture, and due to their different experiences and cultural beliefs,
speakers simply reach different conclusions about word meanings. Meanings
are therefore unpredictable and creative and, in this sense, Hume is right:
all our observations were made in the past, but there is no logical reason to
assume that the future will resemble the past.

Perhaps the problem of recording attitudinal meanings is not then, af-
ter all, separable from the question of how many distinct senses of a word
a dictionary should list. Pustejovsky [20] also argues that linguistic and en-
cyclopedic knowledge cannot be neatly separated, and formalizes a position
which seems close to Sampson’s. He argues that words do not have a fixed
number of distinct senses, but that these senses can be generated by a fixed
number of rules which operate in context. For example, we know that Susan
has finished her book can be interpreted in two ways (“finished reading” or
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“finished writing”). This does not mean that finish has two senses, but that
we know things about books (and about Susan, for example, whether she is
an avid reader or a budding author).

Take again the case of CRONY. Speakers draw inferences about the mean-
ings of words, and these inferences are based partly on what they know about
people’s behaviour (or possibly men’s behaviour: do women have cronies?). If
people (men?) are friends, then they spend time together, often go drinking
together, form alliances, acquire commitments to each other, and may then be
led into supporting dubious, and sometimes criminal, activities. That is, the
word makes sense only within larger cultural frames, which generate implica-
tions. The same points hold for words and phrases such as brood (how large
is a large family?), nepotism (when does helping one’s relatives become illegal
favouritism?), or party politics (when does working for one’s own party turn
into ignoring the general good?). Since the meanings depend on assumed com-
mon sense knowledge of cultural schemas, and on shared evaluations of what
is mildly disapproved of versus regarded as immoral or illegal, they cannot
have fixed meanings.

These observations start to explain why it is particularly difficult to handle
pragmatic meaning in dictionary entries, but they do not solve the problem.
Indeed, they produce two different problems. (1) When do such inferences be-
come conventionalized? When do connotations become part of the denotation,
and therefore when do words such as CRONY become insulting independent
of context? (2) If words make sense only within larger cultural frames, then
this implies that their meanings should be represented within the kind of
frame semantics which has long been recommended by Fillmore (e.g. [8]).

11 Conclusions

Despite his overall argument for ‘empirical linguistics’, Sampson’s conclusion
about semantics is pessimistic and uncompromising:

“[O]ne might expect to find [. . . ] areas which cannot be treated scientifically at all.

The outstanding example [. . . ] is word meaning. [. . . ] [A]nalysis of word meaning

cannot be part of empirical science. [. . . ] Word meanings are not among the phe-

nomena which can be covered by empirical, predictive scientific theories.” [23, p.

181, p. 206].

It would be more helpful to distinguish between different stages of research.
It may be misguided to try and ‘establish a rigorous scientific analysis of word
meanings’ [23, p. 197]. Nevertheless, there are ways of collecting empirical
observational data on meaning, even if there can be no automatic analysis of
the data. There are automatic procedures which can select data and put them
into a convenient form for the human analyst, but the interpretation of these
data can be only partly automated or computer-assisted, since it requires the
intuition and experience of the lexicographers.
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In a fascinating book, Macfarlane and Martin [14] argue that a specific
technological discovery decisively influenced what we often call the Scientific
Revolution, that is, the development of modern scientific methods and find-
ings from the 1600s. This was the discovery of how glass could be used to
make scientific instruments. Their most telling points are (1) that, without
glass, we would have no test-tubes, retorts, thermometers or barometers, and
that many forms of experiment and measurement would be impossible, and
(2) that, without glass, we would have no lenses, and therefore no magnifying
glasses, microscopes, telescopes or cameras, and no instruments for observ-
ing small things, distant things and fast-moving things. As a consequence,
micro-biology, astronomy and many other disciplines could simply not have
developed. In other words, there was a close relation between the development
of a material technology, a scientific method and a whole mode of thought.

Glass instruments made it possible to collect many new observations, and
the authors point out that the telescope and the microscope were invented in
the late 1500s, only a few years before Francis Bacon was making his points
about empirical methods: his New Atlantis was written around 1610. They
carefully point out that glass is an enabling, and probably necessary, technol-
ogy for the development of science: as they say, it is the only substance which
directly influences how humans see the world, and reveals things which were
previously ‘invisible to the naked eye’ [14, p. 81]. However, they emphasize
that it was not a sufficient cause and there were many other factors involved
in the development of a sceptical scientific method.

How does this relate to corpus linguistics? Computer-readable corpora and
access software also allow linguists to see things that they have never seen be-
fore. They are no longer restricted to observing their own individual introspec-
tions or short individual texts (‘the extent of language that can comfortably
be accommodated on the average blackboard’: [18, p. 8]), but can now observe
large-scale patterns of language behaviour across large text-collections, which
are evidence of the mental lexicon of thousands of speakers across a speech
community. Technologies alter what can be observed, suggest problems, make
scholars satisfied with particular answers, and therefore alter descriptions and
theories. For linguistics, this was true of the invention of written language and
of tape-recorders. Computers are particularly good at repetitive tasks, and it
is types of repetition which are particularly significant in corpus semantics.
Since corpora plus software are now one of the ‘technologies of the mind’ [14,
p. 31] of contemporary linguistics, linguists need to be clear about the rela-
tions between these technologies and their observations, generalizations and
theories.
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Summary. We will explore the role of an advanced type of document grammar,
RelaxNG, in the context of different approaches to the formalization of linguistic
regularities based on corpora and XML annotations. Our domain of exploration will
be Kilivila verb morphology. The following topics will be focused on: Which kind
of regularities in the domain can be expressed given formal limitations of document
grammars, i.e. tree grammars? Which linguistic analyses may be taken as a basis
for document grammar development? In which way can a document grammar be
sensitive to properties of annotations and raw data (document validation and data
validation)? Which kinds of formalization may be helpful in the (semi-automatic)
development of a document grammar in the case explored? In the first part we will
consider aspects of Kilivila verb morphology from the point of view of linguistic
analyses. In the second part different strategies for the development of a RelaxNG
based document grammar will be examined.

1 From XML and Corpora to Linguistic Formalizations

The introduction of the Extensible Markup Language (XML) as a standard
for the representation and/or the interchange of electronic documents has led
to far reaching changes in disciplines concerned with the analysis, representa-
tion, generation or archiving of natural language data and textual information;
for these disciplines XML-based language resources and advanced processing
tools are becoming more and more important. Since a crucial property of XML
documents is their structural and/or semantic markup added to original data
and since this information augments their processing and application value, it
is also important to control the validity of markup, i.e. document quality. And
since the process of adding markup may be resource-intensive, this control is
even more important. However, probably due to limited capabilities of Docu-
ment Type Definitions (DTDs) [3], XML document grammars are widely per-
ceived as being almost exclusively suitable for ‘storage format’ prescriptions,
and their role in the validation of XML annotated content is often ignored.
In this article we want to go a step further and use a new type of document

D. Metzing and J. Pönninghaus: Linguistic Information Modeling: from Kilivila Verb Morphol-

www.springerlink.com c© Springer-Verlag Berlin Heidelberg 2007
ogy to RelaxNG, StudFuzz 209, 255–276 (2007)
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grammar, RelaxNG, for an extended concept of validation such that not only
single annotation tags are considered but also their co-occurrence constraints
and their appropriateness to primary data. We exemplify this concept with
respect to XML annotated verb structures and morphological co-occurrence
constraints.

Fig. 1. Data and formal approaches.

In this article we want to place the development of a document grammar in
a context relevant for different linguistic disciplines such as corpus linguistics,
descriptive linguistics, theoretical linguistics, and computational linguistics. If
we assume that XML-based language resources are becoming more important,
then this will probably have also consequences for these linguistic disciplines,
their relationships and interdisciplinary cooperation.

The context into which we place the development of a document grammar
is shown in Fig. 1. On the one hand there is data, i.e. linguistic data (L) and
XML-based language resources (M). On the other hand there are formaliza-
tions of different types (A,B,C,D) related to different theoretical backgrounds
(Paradigm Function Morphology (PFM), Finite State Morphology (FSM),
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Theory of Tree Grammars (TTG)). The different representations considered
are connected through different relationships (1-10). Note that we chose only
some relationships, not all possible or desirable ones. Note also that document
grammars typically validate markup, not primary data. Link 7 in Fig. 1 refers
to formalizations that combine data and its markup. The following kinds of
relationship between representations may be distinguished: a relationship of
conversion (1), a relationship of systematization and grammar development
(2), relationships of (computational) linguistic formalization (3,4), the rela-
tionship of constraint exportation (5,6), the relationship of validation (7) and
of theoretical foundation (8-10).

2 Corpora of Language Data

Kilivila, an Austronesian language, has been extensively explored by Gunter
Senft (Senft, 1986, 1993 [16, 17]) and different aspects of the language have
been described on the basis of large corpora of audio and video data, an-
notated according to widely accepted conventions, e.g. the ‘interlinear mor-
phemic translation’ (Lehmann 1983 [11]). The corpus data have the following
structure shown by an example:

Example 1. Mtona tau eyosali yata kanunuva, ekepapi.
m-to-na tau e-yosali ya-ta(la) kanunuva e-kepapi
Dem-CP.male-Dem man 3.-stretch- CP.flexible-one sheet 3.-hold.tight
DEM N V NUM N V
This man is tightly holding one sheet, he holds it tightly.
(DEM: demonstrative; CP: classifier particle)

Kilivila corpora are currently accessible as a browsable corpus of the Max
Planck Institute for Psycholinguistics.1 The conversion of a Kilivila corpus
into an annotated XML corpus has been tested as part of a text-technological
project at the University of Bielefeld and an XML version of the corpus has
also been developed at the MPI for Psycholinguistics (cf. Broeder et al. 2005
[4]).

This simple example shows that language documentation is multilevel doc-
umentation from the beginning and even more so when more than morpho-
logical structures are considered (as for example in multimodal communica-
tion). Moreover the different levels have to be related in a systematic way.
This requirement continues to play an important role in XML-based language
documentation. Different approaches have been developed, e.g. Annotation
Graphs (cf. Bird and Liberman [2]), NITE (cf. Carletta et al. [5]) and the
Multiple Annotation Approach (cf. Witt [21, 22]).

1http://corpus1.mpi.nl/BC/IMDI-corpora/
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3 Systematized Regularities and Formalizations

A subpart of Kilivila morphology seems to be complex enough for our purpose:
Kilivila verb morphology and requirements for document grammar develop-
ment. From the point of view of linguistic information modeling the following
question comes into focus: May a document grammar be an adequate frame-
work for the expression of the observed linguistic properties, regularities and
constraints? In order to answer this question we analyzed at first a systemati-
zation of Kilivila verb morphology worked out by Claudia Wegener [20] (cf.
Fig. 2). According to Penton et al. [15] this may be called a “linguistic par-
adigm, a tabulation of linguistic forms to illustrate systematic patterns and
variations”. In their paper they show how XML technologies can be used to
store and render linguistic paradigms. Our goal, however, is to go beyond these
technologies and to address questions of information modeling and document
grammar development.

Wegener in her linguistic paradigm of Kilivila verb morphology distin-
guishes 8 position classes: Emphasis, Tense-Aspect-Mood, Person, Root, Ob-
ject, Plural, Object, Emphasis. At each position special affixes or a place-
holder for the root are listed: emphasis marking affixes, tense-aspect-mood
marker in order to distinguish different types of action, marker for person and
number and affixes for object marking. There are, obviously, three types of
constraints:

a. affix position constraints,
b. affix correlation constraints,
c. affix root constraints.

That means affixes may only occupy certain positions relative to the root;
affixes may constrain the choice of subsequent affixes, and certain verbs (roots)
allow for object marking. These patterns of Kilivila verb morphology are not
an exception, similar or even more complex patterns may be found in other
languages as well (cf. Inkelas [8]).

With respect to a document grammar, why should information about the
constraints distinguished be relevant for a document grammar? There are sev-
eral answers to this question. First, this information may be used to validate
morphological corpus annotations; annotation and linguistic data may not al-
ways correspond in the expected way and either this is due to an annotation
error or to forms of language usage not yet considered. Second, this infor-
mation may be integrated into annotation tools. In both these applications,
the constraints observed will require a type of document grammar powerful
enough for complex constraints.

4 Position Class Morphology and its Formalization

The linguistic paradigm of the Kilivila verb morphology may lead to variants
of position class morphology. “Position classes as a whole are typically used
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in languages with rich inflectional domains in the word” (McDonough [13]).
However, without a foundation in terms of a morphological theory “position
classes are exclusively formal or virtual entities: they are artifacts of a partic-
ular kind of analysis, one that assumes prior, even diachronic, knowledge of
morphophonemic structure” (McDonough [13]). It will be shown that such a
foundation may be found in Stump’s Paradigm Function Morphology (Stump
[18]).

The linguistic paradigm in Fig. 2 is a concise representation of structural
paradigmatic properties. It could be replaced by a tabulation of all possible
syntagmatic realizations. How could this be done? Imagine Fig. 2 as a matrix
of cells without content; content can be placed into these empty cells only by
paradigm functions. “A paradigm function is a function which, when applied
to the root of a lexeme L paired with a set of morphosyntactic properties
appropriate to L, determines the word form occupying the corresponding cell
in L’s paradigm” (Stump [18, p. 32]).

The approach of Paradigm Function Morphology will be illustrated by a
very simple example taken from the Kilivila data introduced above. A third
person verb form, eyosali, will be produced given the root, features, a para-
digm function and realization rules.

Step 1 : Take a root and the complete set of morphosyntactic features
needed.

yosali, {. . . , PERS:3, NUM:SG, . . . }

Step 2 : Apply the paradigm function of the language. A paradigm function
is a function in the set of form/property-set pairings, the format being:

PF < X, σ >=< X ′, σ >, where X is the root (or stem) of a lexeme L and
σ is a complete set of morphosyntactic properties for L. The function applies
to < X,σ > to yield < X ′, σ >, where X ′ is the surface-form of L. Paradigm
functions are conceived of as realization rules, these rules have the following
general form:

RRη,τ,C(< X,σ >) =def< X ′, σ >, e.g. A4 RRA,{PERS:3},V(< X,σ >
) =def< eX,σ >

The application of the paradigm function results in a sequence (i.e. func-
tional composition) of realization rule applications:

PF(< yosali, {. . . , PERS:3, NUM:SG, . . . } >)
= RRµ(. . . (RRA4(< yosali, {. . . , PERS:3, NUM:SG, . . . } >)) . . .)
= RRµ(. . . (< eyosali, {. . . , PERS:3, NUM:SG, . . . } >) . . .)
=< eyosali, {. . . , PERS:3, NUM:SG, . . . } >

Step 2.1 : Realization rules are organized into rule blocks. Each ‘slot’ in
a word’s sequence of inflectional affixes corresponds to a distinct block of
realization rules. A rule block is a set of competing rules, the most specific
one will be chosen. If no matching rule is defined, an identity function is
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applied instead. We assume that block A is specialized for the person-subject
position of a verb and rule A4 is a function realizing the third person affix.

The result of RRA4 is an affix-root concatenation (called stem), and other
rule blocks may be applicable to this result obtained so far. Note for example
that the number feature < NOM: SG > has not yet been considered.

Step 2.2 : The result may be modified by morphophonological rules, rules
associated to realization rules. In our case, there is affix variability (e vs. i).
If a rule were known, it would be applied in step 2.2.

We can visualize the process of affix concatenation and of the application
of realization rules as a process of “filling-in content into cells” (cf. Table 1 and
Table 2). When a surface form has been realized by the paradigm function,
the form and the features are filled into a cell of a paradigm. The application
of the paradigm function to the set of all feature combinations yields the
paradigm of a lexeme L.

Table 1. Initially:root and property-set.

3 4

PERS ROOT

<yosali,σ >

Table 2. Contribution of RRA4.

3 4

PERS ROOT

<eyosali,σ > <yosali,σ >

The linguistic paradigm of Kilivila verb morphology can be reconstructed
in a formal way in the framework of the Paradigm Function Morphology;
its functional “machinery” is powerful enough for the constraints observed in
Kilivila verb morphology, and it has been developed on a very broad basis
of morphological regularities and irregularities found in many typologically
different languages.

5 Paradigm Function Morphology and its Formalization

As has been pointed out by Karttunen “formal precision and unambiguous
notation are clearly important for Stump but there is no discussion in the
book about what the formal power of Realizational Morphology might be.”
(Karttunen [10]).
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Fig. 2. Kilivila verb morphology.
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Karttunen’s view is a computational linguistic view. He analyzes repre-
sentations of Paradigm Function Morphology (PFM) in the context of formal
language theory, finite state modeling and automata: PFM’s lexical repre-
sentations constitute a regular language and realization rules as well as mor-
phophonological rules represent regular relations. As a consequence regular
expressions corresponding to PFM’s representations can be specified and com-
piled into a finite state network. This approach has two advantages. First,
theoretically guided morphological analyses can be verified with respect to
their formal properties and their empirical basis, verified in a bi-directional
way (from an abstract representation to a concrete corpus instance or in the
other direction). Second, there are application aspects: the computational lin-
guistic approach may facilitate XML-based language documentation or the
development and application of language technology tools.

When we compare the linguistic and the computational linguistic ap-
proach, we observe the following differences. In the PFM analysis morpho-
logical surface forms are reconstructed formally but still manually, on the
basis of types of rules and feature sets. Rules are grouped into blocks, and
when several rules may be applicable the most specific one is chosen (Panini’s
Principle), an aspect to be considered when rule sets are built. Metaphorically
speaking: behind each morphological surface form there are groups of rules,
applicable to roots and feature sets. In the Finite State Approach (FSA) a
design (script) for how rules combine with roots, stems and feature sets is set
up once manually and compiled automatically into a network of states and
arcs. This network connects strings of an “upper language” (root + feature
set) to strings of a “lower language” (surface form + , optionally, feature set).
Although Panini’s Principle has no immediate implementation in the finite
state approach, Malouf [12] describes an algorithm that faithfully simulates
it. Rules are translated in such a way, that at most one recognizer for a single
finite state implementation in a competing rule block accepts a certain fea-
ture string. The algorithm modifies the feature recognizers for all less specific
rules to exclude those feature set descriptions (strings representing σ) that
are accepted by more specific rules. The recognizers of the most specific rules
remain unchanged. However, from the modeling point of view, the network
resulting from compiling such a script is only “machine legible”.

We observe that there are levels of (connected) representations stressing
different properties. The linguistic paradigm systematized the paradigmatic
options; the PFM analysis emphasized the role of specific functions and fea-
tures realizing morphological forms; the FSM implementation is a way to
reconstruct the PFM representations as elements of a clearly defined formal
language. Additionally, it has automatic verification and computational us-
ability to offer. The FSM approach will be exemplified with respect to an
example of Kilivila morphology.
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6 From Linguistic Paradigms to XML Corpus Validation

In order to confirm the appropriateness of annotations with respect to sound-
ness and completeness, the linguistic description of Kilivila Verb Morphology
has to be tested. It is desirable to have automatic procedures to test the
description and to facilitate incremental development or refinement. Since
linguistic paradigms seem to be a widely accepted construct (cf. Penton et al.
[15]) and are quite suitable for our purpose, we took them as starting point
in the development of automatic procedures.

Our primary goal is to validate data and markup and possibly to facili-
tate data acquisition by guiding the process of annotation of ‘raw’ data. XML
document grammars provide for both. The main disadvantage of XML docu-
ment grammars lies in the traditional view of structural validation as opposed
to data validation. XML validation is frequently seen as validation of struc-
tural conformance, neglecting the relation between markup and data. Recent
document schema languages, as XML Schema [7] or RelaxNG [9], provide
features for tightly coupling data content and structural markup. As XML
schema validation is properly integrated into the XML framework and increas-
ing numbers of editors are available that support schema based validation as
well as schema guided annotation, we explore means to derive highly restric-
tive document grammar instances from semi-formal descriptions. The derived
formal grammars incorporate language specific morphological knowledge and
effectively act as morphological analyzers.

In the following we assume XML markup to conform to conventions ex-
emplified below:

Example 2.

<verb> <m feature=’value’>surface form</m><m> ... </m></verb>

or in order to handle complex values:

<verb><m><fs><f name="per"><v>2</v></f></fs><g>ku</g></m>...</verb>

Each m-element can be seen as the root of a tiny tree, with attributes and
textual data attached. Each verb annotation corresponds to a sequence of such
tiny m-trees, a construction which typically maps to productions like w→m* in
a Document Type Definition.2 This very general production does not enforce
language specific regularities, for example feature-value combinations or affix
order.

Our main goal now is to restrict the sequence of realizations of m-elements,
such that only instances are accepted that describe and match possible verb
forms of the Kilivila language (cf. Section 10). These restrictions derive either
from the tabular description itself and are not explicitly mentioned or they are
explicitly given as informal statements. Figure 2 features several constraints:

2See for example the P4-DTD of the Text Encoding Initiative [19].
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Fig. 3. Affix positions and co-occurrence constraints.

1) Affixes not mentioned in any cell do not participate in any verb form. 2) In
order to generate a verb candidate only realization descriptions from within
a single row are acceptable. 3) Each position is realized at most once for each
verb form. 4) Chosen subdivisions in positions 3 and 6 must match.

Not all co-occurrence constraints that are known to apply to the domain of
Kilivila verbs are expressed in the table. For example, the table does not reflect
the impact of verb valency on affix realization and subsequent restrictions.

As shown in Fig. 3, the constraints between position classes form cross-
serial dependencies, so that it is impossible to have a simple mapping to
nested XML structures. Note that the ‘person’-position (cf. column 3 in Fig.
2) participates in many constraints, which explains its selection as a principal
component for the table itself.

The problem of grammar derivation can be reformulated as creation of
a mapping from the cross serial dependencies between affix positions to a
document grammar, modeling dependencies within and between annotation
subtrees. The apparent mismatch between mild context sensitivity and context
freeness can be solved as there is only a finite number of possible realizations
for each affix position and no recursion occurs, so there exists a fixed upper
bound to the total number of sequences allowed. Regarding the grammar,
there remains the problem of modeling different instantiations of m-elements
depending on some left and right context.

The solution to this difficulty is sketched in Fig. 4. In the upper section
there is a visualization of the tree structure of a verb annotation in which
the realization of an m is dependent on the realization of the descendants (i.e.
attributes and text) of the neighboring elements. The trees in the middle part
of the figure differ in so far as the m-nodes are subclassified (indices a, b,
c, d,. . . ) and their realization is now only dependent on the indices of their
siblings. The critical information encoded in subtrees in the two upper trees
is now attributed to the node itself. The actual counterpart in the grammar is
found in the distinction and separation between element names and element
types (‘compact representation’ in the lower left hand part of the figure).
While Document Type Definitions (DTDs, [3]) do not allow multiple content
models for an element name x, less restricted document grammars such as
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Fig. 4. Constraints on annotations and mapping to grammars.

XML Schema or RelaxNG distinguish element name and element types. This
allows to constrain the content model for some element x depending on some
‘context’. That is, multiple definitions for the same element name are possible
and specific definitions can be referenced from within other content models,
thus providing means to simulate context dependent elements.
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The lower left hand side of Fig. 4 lists a compact representation of a
grammar instance3, which accepts the trees from the middle of the figure. In
comparison to string based context free grammars, we observe a bracketed
structure on the right hand side of each rule, which represents the actual
content model. The preceding item defines the observable element name. The
left hand side non-terminal is some arbitrary identifier for the type of the
element. The non-terminal ‘S’ maps to two different realizations of an element
w, and their realizations are determined by regular expressions over some other
types. The lower right hand side of the figure shows a fragment of a RelaxNG
grammar instance which is equally expressive. This formal device allows us to
define different types of subtrees for some XML element m and assign unique
identifiers. These identifiers can then be used in different expressions.

Another important difference between XML-DTDs and modern document
grammars is the more sophisticated typing of actual data content, which in
our case of morphological annotations is necessary to limit some annotation
to only apply to proper surface forms. XML Schema and RelaxNG enable
e.g. limiting textual content to some strings as given by an enumeration,
regular expression or predefined data type. RelaxNG is capable of handling
co-occurrence constraints between textual content and attribute-values, which
allows us to restrict the types of m-elements to contain only the combination of
features, values and surface forms as they are given by the tabular description.
So each element of a set in a cell of our Kilivila table can be assigned a type
in the grammar, which expands to a subtree carrying appropriate attribute
names, values and textual content, e.g. binding the annotation for second
person to the Kilivila affix ku instead of arbitrary characters (#PCDATA
in DTDs), which allows to restrict the assignment of the markup for second
person to only that surface form (cf. Fig. 9).

We now have an appropriate target device and the property of ‘finiteness’
of the set of all allowed sequences, which have to be covered by the grammar.
Since the underlying description may change (frequently), e.g. due to descrip-
tive improvements triggered by additional language material, we will refrain
from manual development of grammars but will explore methods to derive
them.

In following sections we will discuss different approaches to the develop-
ment of document grammars representing regularities and constraints of the
description in Fig. 2, including mentioned additional constraints.4

3We only sketch the general ‘idea’ and refer e.g. to [14] for a more formal in-
troduction to regular tree grammars and differences between XML Schema and
RelaxNG.

4We thank Uwe Mönnich who suggested an approach involving Monadic Second
Order Logic formulas and their translation into tree automata. To the best of our
knowledge this is a mathematically elegant but ‘painful’ way, as adaption to the
problem domain and to colloquial XML as the back-end domain has to yet to be
realized.



Linguistic Information Modeling 267

7 Derivation by Finite State Compilation Techniques

There are at least two different strategies involving finite state compilation
techniques. First, regular tree grammars and their automata have mathemat-
ical properties similar to regular string grammars. It seems worthwhile to
explore the feasibility of their direct application. This approach is currently
not investigated as, to the best of our knowledge, there has been considerable
research on theoretical aspects of unranked tree automata but there are no
implementations available which provide the necessary operations to actually
construct and apply them. This approach will only be feasible if high-level op-
erators, similar to those developed for regular string automata, and optimized
implementations are available.

Another, but less powerful finite state approach is based on well known fi-
nite state string transducers and their compilers. In a first step the morpholog-
ical description of verbs in Kilivila is translated into a finite state representa-
tion in the xfst (Xerox finite state tools) rule format (cf. Beesley & Karttunen
[1]) mapping the tuple representation into a relation between strings. The
transducer resulting from the compilation of the rules will translate a string
representation of a base form and some feature-value pairs into corresponding
surface forms – and vice versa.

Example 3 (Input-Output of a Kilivila transducer).
upper band: <yosali#Emph:- PER:3 TAM:- OBJ:- Num:Sg ALL:- EmphS:->
lower band: eyosali

iyosali

The transducer underlying example 3 generates and accepts two surface
forms since there is no selection criterion described, which could form a
processable rule for the generation of the transducer.

Naturally, this kind of morphological analyzer/generator is bound to the
string representation of the features. This automaton is, in principle, appro-
priate for validation of the XML data if the gap between tree structured
representation and string based, order sensitive description is bridged, e.g. by
some adaptor (e.g. a script) that reads the XML-data, aggregates distributed
feature-value information and surface forms into a proper string representation
and pipes this to the automaton. However, we opt for a tight integration that
does not require runtime adaptors, for such a kind of adaptor would require
information about 1) the grammar of the XML documents to be processed,
2) the structure of the string description (usually the upper band of a two-
band string transducer) and 3) the current position within the document in
order to locate the candidate annotation. In the case of semi-automatic anno-
tation, a similar adaptor has to be built which maps in the opposite direction
producing XML fragments. If the underlying morphological analysis changes
three distinct components, namely the transducer and both adaptors have
to be modified in a consistent but independent manner. Since the document
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grammar is expressive enough to substitute the transducer we favor to elimi-
nate runtime components like scripts and transducer implementations which
require runtime environment as well as work-flow outside common XML edit-
ing.

Although we abandon the string transducer as a back-end computational
device, it is highly valuable as a source to document grammar construc-
tion. The directed graph underlying the transducer encodes linguistic knowl-
edge, with cross-serial dependencies disentangled into different continuations
of some common prefix path. Each path through the graph describes a relation
between the description of and a surface form itself. Two obstacles remain:
First, the relationship between the description and the surface form is holistic.
There is no detectable cause-consequence or feature-surface relation between
the substrings because those are encoded in the rules themselves, but not in
the resulting network. Therefore it is necessary to create some device (within
the rules) which allows us to attach the appropriate feature-values to the cor-
responding substrings of the surface form in order to analyze network paths
and to assign feature-value pairs to matching surface forms. The second prob-
lem is to map the obtained string descriptions to XML element declarations.

8 Derivation by Restricting Domains

An alternative group of approaches conceives Kilivila verb morphology and
constraints between the position classes as a constraint satisfaction problem
over finite domains. They use characterizations based on sets of possible values
instead of relations between parts of strings. Each tuple of feature-values and a
surface form from the tabular description can be seen as an element from the
domain of some position class variable. Interpositional restrictions between
position classes map to constraints over the binding or assignment of variable
values. Informally, the domain of a variable corresponds to a column in the
table and constraints limit the bindings of those variables.

The final goal is to derive exactly all solutions to the constraint system,
such that each solution encodes a sequence of affixes, which in turn can be
straightforwardly mapped to some definitions for a document grammar. How-
ever, considering the requirement of complete coverage of the solution space as
well as the effort to be made in order to map items in the problem space to a
description acceptable for constraint solvers, we did not pursue this approach
any further. But we implemented solution strategies which assume that in
each description there is only an arbitrary but finite number of position vari-
ables with finite domains and a finite set of binary constraints encoding the
restrictions required.

The first solution strategy requires a dominating ‘control’ variable. Each
possible value of the control variable enables a set of domain restrictions on
position class variables, which determine subsets of the initial domains. So
each value of the control variable results in a sequence of sets of possible



Linguistic Information Modeling 269

realization-description pairs. A valid verb and its description can then be
constructed by freely choosing from each of these sets. The main disadvantage
of this approach is the requirement to express constraints in terms of values for
the control variable and a cascade of domain restrictions. We already identified
the ‘person’-attribute as a principal component. Its values may serve as a
starting point to be augmented to address the additional constraints, e.g. by
extending the domain (e.g. by adding a modifier to existing values) to handle
constraints which arise from verb valency. An advantage of this approach
is its value for the generation of a document grammar, since each value of
the control variable encodes a sequence of sets, resulting in a very compact
grammar representation with ample use of choice groups. And contrary to
the finite state automata approach, we can immediately take advantage of
subsequence and subset sharing.

In order to handle rapid change in language description, we developed a
device that automatically propagates consistent ‘paths’ (sequences of variable
bindings) through the space of all possible variable bindings. Thus it is no
longer necessary to determine manually a control variable and the relevant
domain restrictions.

9 Derivation by Path Propagation

In this approach we apply search within the space of all possible variable
bindings.A path constitutes a valid verb realization where each component
is 1) chosen from the domain of the respective position class variable and 2)
all constraints between path components (i.e. position classes) are satisfied.
We propose to include domain knowledge directly into the search procedure
to significantly reduce search costs and mainly to preserve means to handle
unrestricted value domains. In order to generate all allowed paths, any ele-
ment from the domain of the first variable can be chosen without violating
any constraints. Each binary constraint in which this realization participates
can be enforced for the current path by restricting the domain of the other
participant. If, for example, the emphatic prefix o is chosen for the first posi-
tion class, then this implies that the person affix needs to match ku indicating
second person. The search space for the continuation of the current path is
reduced to exactly that affix tuple for the third position variable. If a differ-
ent search order is chosen, for example to take advantage of highly restricting
position classes early in the search process, then restriction rules have to be
reformulated to reflect the order of determination of variables, as constraints
are treated as implications in the search process since for example the real-
ization of ku does not require the realization of o. Figure 5 gives an overview
of the process5. After selection of the first and second path component, the

5Please note that for reasons of conciseness, the figure does not match the Kilivila
position classes.
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Fig. 5. Visualization of path propagation.

constraint from the selected realization of position 2 to position 5 restricts the
acceptable realization candidates of the position class variable for position 5.
This results in the exclusion of a single path from position 4 to 5.

The result of the process of path propagation is a set of tuples of vari-
able bindings, which describes all acceptable realizations. These bindings can
be either directly used to generate a document grammar or post-processing
can be applied, for example to identify common subsequences. A descrip-
tion obtainable from such post-processing seems more desirable to us, as it is
more compact than a prefix-tree-like one and reflects the enforced constraints
within the observable grammar structure. Another strategy which is actu-
ally implemented is to group realization description based on the constraints
which were enforced during their generation. Any kind of post-processing is
however completely optional and does not alter the language accepted by the
grammar.

The resulting grammar is a perfect acceptor for morphological annotations
that match the reformulations of the descriptions that were given in Table 2
and the prose constraints. Rejection of linguistically well-formed annotations
is a good indication for either a deficiency in the transfer to set constraints or
a deficiency in the linguistic description itself.
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10 Conclusion

In the first part of this article we focused on linguistic information modeling
with respect to structural or formal approaches to constraints of Kilivila verb
morphology. In the second part we concentrated on linguistic information
modeling in RelaxNG. This advanced type of document grammar is powerful
enough to represent in a precise way complex linguistic constraints and to
connect markup to raw data: RelaxNG grammars are able to validate Kilivila
verb annotations and to guide the annotation process given suitable XML-
editors.

Different approaches to a semi-automatic derivation of a RelaxNG doc-
ument grammar have been tested and described in this article. We want to
emphasize that modern XML document standards are not only suited to def-
inition of serialization or storage formats, document grammars may also con-
trol seemingly complex constraints among markup as well as the association
of markup with raw data, a control exercised in the domain of morphology
generally by finite state analyzers for sequential representations.

We think it is important to bridge the gap between standards of XML-
based language documentation on the one hand and structural or formal lin-
guistic analyses on the other, for empirical linguistic research is more and more
based on corpora and on XML-structured annotations, annotations controlled
by advanced grammatical or semantic frameworks: document grammars or for-
mal ontologies. We suppose that both domains of analysis are also becoming
more important for current approaches to metadata for descriptive grammars
(cf. Good [6]; an integration of a RelaxNG component into an augmented
version of his approach to descriptive grammars seems desirable).
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lag, Potsdam, Germany, 2005.



274 Dieter Metzing and Jens Pönninghaus

Appendix

Benefit from Kilivila Document Grammar

The figures 6 to 10 show screenshots of editing markup for a Kilivila verb in
an emacs editor with RelaxNG capabilities as provided by nxml-mode6. The
document element corpus contains arbitrary markup (e.g. ann-element) and
verb-elements which are subject to conform to the derived grammar fragment.
Violations are underlined to highlight. Figure 6 shows a morphologically well-
formed Kilivila verb which is regarded invalid since its markup is incomplete.
In the next screenshot the prefix annotation is accepted while the verb an-
notation remains invalid. In Figure 8 all affixes and the root lukwe are fully
annotated and all known constraints are met. After modifying the surface
form from ku to ka in Fig. 9, the verb markup is recognized to be invalid
which illustrates the use of co-occurrence constraints between textual data
and attributes within an m-element. The annotator changed person from sec-
ond to first in Fig. 10, which introduced violations against constraints between
position 3 and 5 (no first plural inclusive object with first person) and posi-
tion 3 and 6 (no plural with first person). This tiny example reflects potential
benefits in further data acquisition and data validation.

Fig. 6. Guided annotation/validation – invalid markup.

6http://www.thaiopensource.com/nxml-mode/
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Fig. 7. Partially annotated data.

Fig. 8. Valid annotation.

Fig. 9. Invalid due to surface form modification ‘ku’ → ‘ka’.
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Fig. 10. Violation of constraints between person and object/plural affix.
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1 Introduction

Although the focus on morpheme discovering techniques originated within
those linguistic schools which inherited from Franz Boas the concern for the
unknown languages of the New World, automatic, unsupervised morphological
segmentation remains a field of interest for the computational processing and
engineering1 of natural languages, as well as for the plain exercise of getting
to know them intimately.2

Given the diversity of morphological strategies across languages to create
new words or to inflect them, it should be obvious that morpheme discovery

1Applications requiring some processing of human language may have to deal
directly or indirectly with morphological phenomena. For example, stemmers, or so
called lemmatizers, morphological analyzers, etc., can be used for many purposes,
among them for information extraction and retrieval, text mining, electronic dictio-
nary processing, etc. If resources like these are to be developed for the lesser known
natural languages (which happen to be the majority of human languages, many of
which exhibit unimagined morphological structures), unsupervised morpheme dis-
covery is bound to be a required development stage.

2There are several prominent approaches to word segmentation. The earliest
one is due to Zellig Harris, who first examined corpus evidence for the automatic
discovery of morpheme boundaries for various languages (Harris [9]). His approach
was based on counting phonemes preceding and following a possible morphological
boundary: the more variety of phonemes, the more likely a true morphological border
occurs within a word. Later, Nikolaj Andreev designed a method based on character
string frequencies which applied to various languages. His work was oriented towards
the discovery of whole inflectional paradigms and applied to Russian and several
other languages (see Cromm [1]); and that of Josse de Kock and Walter Bossaert
[2, 3] in the seventies for French and Spanish. Other prominent approaches deal
with bigram statistics (see for instance Kageura [11]) and minimal distance methods
(Goldsmith [6]).

A. Medina-Urrea: Affix Discovery by Means of Corpora: Experiments for Spanish, Czech,
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must go beyond the application of techniques to segment words.3 Nevertheless,
the method explored here focuses on these techniques, since it deals with one
of the most widely disseminated morphological strategies: affixation. But even
within this reduced scope, when dealing with corpora, problems arise about
traditional linguistic categorial concepts4 such as affix, which is seen here
basically as a morph – i.e. the version of a morpheme determined by its
context of occurrence. Therefore, rather than making strong pronouncements
about some string of characters’ status as an affix, the method essentially
grades strings according to their likelihood of representing a true affix or valid
sequence of affixes for that language.

This approach differs somewhat from minimal distance methods, which
seek to find the best morphological model. As many would agree, the ultimate
objective of segmenting words is the discovering of not only affixes, but also
of affix paradigms. This is, however, a task not to be underestimated, mainly
because there are many kinds of paradigms. In fact, the better organized ones
coexist with the lesser organized paradigms. And, even though these may
be traced by automatic means, minimal distance methods (Goldsmith [6])
should prefer, by definition, the more compact paradigm types. For the sake
of not excluding any valuable item, the method sketched bellow gathers every
possible candidate in a format that can later be used for human evaluation.

Although interesting comparison of methods exists for various languages
(Hafer & Weiss [8], Kageura [11], Medina-Urrea [14], among others), new
comparison experiments must be conducted, that take into account more lan-
guages and the very diverse objectives that morphological segmentation may
have, including those requiring least productive morphemes not to be ex-
cluded.

In this paper, some results of experiments to discover affix subsystems of
four languages, two Indo-European languages, from the Romance and Slavonic
branches, and two unrelated American languages, from the Uto-Aztecan and
the Mayan families: a non European variant of Spanish, standard Czech, a
variant of Ralámuli or Tarahumara and a variant of Chuj. Essentially, results of
experiments conducted previously are gathered and briefly discussed (Medina-
Urrea [14, 15]; Medina-Urrea & Hlaváčová [18]; Medina-Urrea & Alvarado
Garćıa [16]; and Medina-Urrea & Buenrostro Dı́az [17]). More importantly, an
attempt is made to compare such dissimilar experiments in order to evaluate,
by means of precision and recall measurements, how well are affixes discovered.

In the next section the method will be presented, as described in Medina-
Urrea [14], which portrays some features of what we call an affix a priori. Then,
the notion of an affix catalog will be formalized as a simple measurement tool
to capture quantitative structural features of (graphical) words – rather than

3Numerous works deal with morphological complexity of natural languages. Take
for instance the classical work by Sapir [22]. In the handbook by Spencer & Zwicky
[24] many morphological phenomena are exemplified.

4This should not be surprising; see for instance Rieger [20, p. 156].
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a kind of morphological rule-based model. Later, catalogs of automatically
generated affix candidates for one of each of the four languages’ interesting
affix subsystems are briefly examined. Finally, the method evaluation section
and some concluding remarks are presented.

2 The Method

The idea of measuring affixality of word fragments by means of the three
indexes that will be next presented (number of squares, economy of signs
and entropy) arose from the comparison of various word segmentation mea-
surements (also in Medina-Urrea [14]). As opposed to the very well known
bigram statistics (e.g. mutual information, log likelihood, etc.), the three in-
dexes chosen seem to capture some aspect or another of what is traditionally
understood as an affix: they are fewer, more frequent, contain less information
than other kinds of signs, etc.

Before presenting the indexes, some basic concepts will be introduced.
Let vi be the word-types in text sample Ψ , where 0 ≤ i ≤ Ω and Ω is the
number of types. Each possible segmentation of each vi can be represented by
means of a double colon ‘::’ (so a::b represents a type where the segmentation
between word fragments a and b is put into focus). To remind us that the
fragments belong to word-types, let them carry the subscript i so that ai::bi =
vi. Furthermore, let j be another subscript, which corresponds to each of the
possible segmentations in a word-form vi. So, if vi is mi characters long, then
it contains mi− 1 possible segmentations, ai,j ::bi,j , 1 ≤ j ≤ mi− 1. Thus, the
segmentations of vi = ‘ejemplo’ can be represented:

ax,1::bx,1 (e::jemplo)
ax,2::bx,2 (ej::emplo)
ax,3::bx,3 (eje::mplo)

...
ax,mx−1::bx,mx−1 (ejempl::o)

Essentially, each segmentation j of each word-type i is examined automat-
ically in order to calculate the following three measures.

2.1 Number of Squares

Although the notion of what a square is can be traced back to de Saussure,
let us turn to Greenberg’s words to illustrate it.5 He characterized a square
as the set of word-forms which:6

5This is indeed a very old notion, which researchers keep rediscovering or just
renaming to reflect their approach – Goldsmith [6] calls them signatures; from a
graph-theoretical perspective, Johnson & Martin [10] characterize them as hubs.

6See Greenberg [7, p. 20].
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exists when there are four expressions in a language which take the form
AC, BC, AD, BD. An example is English eating:walking::eats:walks, where
A is eat-, B is walk-, C is -ing, and D is -s. One of the four members may
be zero, as in king:kingdom::duke:dukedom, where C is zero.

Thus, a square is a set of four word fragments, two left ones (a1 and a2)
and two right ones (b1 and b2), such that combining either of the left segments
with either of the right segments, a word-type results (a1::b1, a1::b2, a2::b1,
a2::b2). One of the segments may be a null string, ø, in order to allow struc-
tures like {ver::stehen, ver::teilen, ø::stehen, ø::teilen}.7 Thus, each possible
segmentation of each type vi can be examined to determine the number of
squares in which each of its sides appears, by searching for matches8 within
all vi of the corpus. Let us call this number ci,j (i.e. the number of squares
found in segment j of word-type i).

2.2 Economy Principle

Another important measure of word structure deals with the principle of econ-
omy of signs. Some experiments based on this principle – either maximum or
minimum approaches – are described in de Kock & Bossaert [2, 3], Medina-
Urrea [14], Goldsmith [6], Gelbukh, Alexandrov & Han [5], etc. In essence, the
principle deals with the fact that affixes can combine with bases to produce
a number (virtually infinite) of lexical signs. It is clear that affixes do not
combine with every base. Certain ones combine with many bases, others with
only a few. It makes sense to expect more economy where more combinatory
possibilities exist.

The attachment of affixes to bases refers to the syntagmatic dimension. But
the paradigmatic dimension should also be considered:9 in their attachment
to bases, affixes alternate with other affixes (occur in complementary distri-
bution).10 If there is a relatively small set of alternating signs (paradigms)
which attach to a large set of unfrequent signs (to constitute syntagma) the

7The requirement of squares can be varied in different ways, ranging from an
incomplete square to what can be called a hexagon, i.e. six segments contained in
three words (Kock & Bossaert [3, p. 19-20]).

8There are many possible ways of doing this, like finding cycles of length four in a
matrix or building graphs with in-degree and out-degree greater than one (Johnson
& Martin [10]).

9It should not be surprising that both these dimensions are relevant also within
semiotic approaches, see Rieger [20].

10Let us define alternation as a process by which a segment belonging to one of
the two ends of the word is fixed in order to search for all the possible segments
belonging to the other side and which happen, when combined with the fixed one,
to form words-types of the corpus. If one lets one side alternate, one obtains a set
of segments to that side (alternants), if one lets the other one alternate, another set
is obtained. Saying that one of the sides alternates, will necessarily mean that the
other one remains fixed (even if that is not explicitly said).
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relations between the former and the latter must be considered even more
economical. This is naturally pertinent for both derivation and inflection; i.e.
this is as much true for lemma affixes, as it is for affixes of textual and spoken
discourse.

The earliest attempt to capture this experimentally by means of comput-
ers is due to J. de Kock & W. Bossaert [2, 3]. Based on traditional linguistics,
de Kock observed that the number of signs at all levels of language should
be lower than the number of things named, so that “the code is organized in
such a way that a sign can serve in more than one instance without creating
any ambiguity.”11 In short, a small inventory of signs – benefiting speakers
of a language – of one level results in a large inventory – benefiting recipients
or hearers – of signs of the next level. Thus, word-types (syntactic signs) are
inflected or derived from other word-types by means of signs of the morpho-
logical level. The latter being necessarily fewer but more frequent than the
former.

Formally, if a word-type vi is divided into two segments, ai::bi, and one
of the segments occurs in many other types, while the other occurs in only
a few other, and if the first one belongs to a small set of frequent segments,
while the other to a potentially infinite set of low occurring segments, then
a morphological cut can be proposed between these segments. Moreover, the
former one would be an affix while the latter a base.

For example, take the segments in Figure 1. Suppose that each of the
left word fragments combine with every right one to form word-types found
in a Spanish corpus (compra, comprada, comprado, comprando, . . . compró;
. . . canta, cantada, . . . cantó; . . . controló; . . . ).

The fact that the right word fragments constitute a small set and occur
very frequently, whereas the left ones have a much lower frequency and belong
to a very large set (potentially infinite in an open-ended corpus) is a very
reasonable clue that the right hand set is an affix set.

Let Ai,j be the set of word fragments which occur in complementary distri-
bution attached to right word fragment bi,j ; in other words, the set of segments
found when we let ai,j alternate (thus ai,j ∈ Ai,j); and Bi,j the set of segments
which alternate to the right of ai,j (thus bi,j ∈ Bi,j). Let |Ai,j | be the number
of members belonging to Ai,j , and |Bi,j | be the number of members in Bi,j .12

By comparing the sizes of these sets we can argue for the morphological
character of the segmentation in question. Some restrictions can be applied
to that sharpen these numbers. In essence, we will attempt to eliminate from
both sets anything likely to be a base by not counting those instances in
which the string is more frequent than its accompanying segment (i.e. bases
should be a lot less frequent than their accompanying affixes). Let Ap

i,j be the
set of left segments which are likely to function as prefixes and Bs

i,j the one
containing the right segments likely to behave as suffixes. Thus, the set Ap

i,j is

11Cf. de Kock et al. [3, p. 15].
12What de Kock labeled mg and md, [cf. 3, p. 18].
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A B

compr a
cant ada
alivi ado
rest ando
ray ar

sum aron
seleccion aste

...
...

arrest es
elabor é
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Fig. 1. Left and right word segments.

a subset of Ai,j consisting of only those members likely to behave as prefixes.
Similarly, the members of Bs

i,j are those members of Bi,j likely to behave as
suffixes. Furthermore, let |Ap

i,j | be the number of elements in Ap
i,j and |Bs

i,j |
the number of elements in Bs

i,j .
But before eliminating anything likely to be a base, let us consider the fact

that Bi,j (the right-hand alternants) may contain segments which begin the
same way, while Ai,j (the left-hand segments) may contain several ones which
end the same way. This means that all phonemes common to the variable
segments which are adjacent to the invariant segment may in fact belong to
the latter one. In other words, if within the set of supposed affixes, there
is one whose accompanying bases share affix-adjacent characters, one can
suspect that those characters are actually part of the affix and not of the
bases with which it appears. Similarly, if within the set of supposed bases,
there is one whose accompanying affixes share base-adjacent characters, those
characters may be suspected to be part of the base.13 They should therefore
be eliminated. That means that in the example above, the forms ending with
the segments ∼a, ∼ada, ∼ado, ∼ando, ∼ar, ∼aron, ∼aste would be counted
as only one form.14

13Cf. de Kock & Bossaert [3, p. 21].
14The sizes of the updated sets correspond to Mg and Md in the work of de Kock

& Bossaert [3, p. 22].
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Also, it can be required that both sets contain members with more than
one occurrence (each segment must occur in at least two different word-types).
Actually, when this is not required, no complete squares can be found. In this
experiment, the presence of at least one square is required, since a lack of
squares implies no morphological cut.

By comparing the sizes of these sets one can get an idea of how economical
a segmentation is: the greater the difference in number of the word fragments
considered bases versus those hypothesized as affixes, the more economical it
is. If more base-like segments alternate to the left (Ai,j−Ap

i,j) than do affix-like
ones to the right (Bs

i,j), one may consider the right segment bi,j to be a suffix.
Conversely, if more base-like segments alternate to the right (Bi,j−Bs

i,j) than
do the affix-like ones to the left (Ap

i,j), one may be justified to accept the left
segment ai,j as a prefix. In this way, we get two measures of how economical
the segmentation is, depending on the hypothesized type of affix:

kp
i,j =

|Bi,j | − |Bs
i,j |

|Ap
i,j |

(1)

represents how economical a prefix is. It will be much greater than one when
we are dealing with such type of affix and a fraction of one when we are dealing
with a suffix. Also,

ks
i,j =

|Ai,j | − |Ap
i,j |

|Bs
i,j |

(2)

represents how economical a suffix is. Similarly, it will be much more than
one when dealing with a suffix and less than one when dealing with a prefix.
Although their notation is quite different, these quotients are basically what
de Kock explored in the seventies, so I will also refer to them as the de Kock-
Bossaert indexes.

2.3 Shannon’s Entropy

The last index that will be examined deals with the information content of the
bases accompanying affixes. High entropy measurements have been repeatedly
reported as more or less successful indicators of boundaries between bases and
affixes (Hafer & Weiss [8], Frakes [4], Oakes [19], Medina-Urrea [14, 15], Me-
dina & Buenrostro Dı́az [17], Medina-Urrea & Hlaváčová [18], etc.). These
measurements are relevant because, as it was pointed out by Greenberg,15

“both in the technical sense of information theory and in the non-technical
meaning of information, the utterance of a member of a root class of mor-
phemes gives more information.”16 Thus, shifts of amounts of information

15As mentioned before, Harris relied on phoneme counts before and after a given
word segmentation, a matter undoubtedly related to entropy measurement. But,
unlike Greenberg, he did not specifically refer to information theory.

16See Greenberg [7, p. 91].
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can be expected to correspond to the amounts of information that a reader
or hearer obtains from text or spoken discourse. Frequent word fragments
contain less information than those occurring seldom. Hence, affixes attach to
bases containing highest amounts of information.

This is the case for a wide range of affixes, including those whose structural
evidence – like that behind the amount of squares or the economy principle –
is not fully provided by a corpus, either because the corpus is too small or
not representative enough of the language or because the affixes in question
are old and unproductive [15].

Thus, if an affix is supposed to contain mostly grammatical information –
as opposed to a base which may contain much more (the occurrence of a
particular base is bound to surprise us more than that of an affix) –, a local
peak of entropy in the middle of a word would signal the beginning of a base,
whereas a local minimum that of a affix.

Given the word-type ai,j ::bi,j , the set Bi,j can be seen as a reservoir of
word fragments likely to be picked out in order to form a word by attaching it
to ai,j . The probability of picking a member of Bi,j once ai,j has been selected
would be:

p(bk,j | ai,j) =
f(bk,j)
f(ai,j)

(3)

where k = 1, 2, 3, . . . |Bi,j | and each bk,j ∈ Bi,j . Shannon’s entropy [23] can be
easily calculated for every set Bi,j (all possible segments of all word-types of
the corpus):

H(ai,j :: Bi,j) = −
|Bi,j |∑

k=1

p(bk,j) ∗ log2(p(bk,j)) (4)

Thus, for each possible segmentation of each word-type vi, an entropy
value is calculated corresponding to the content of information of all word
fragments adjacent to each word fragment considered an affix. Let us call this
number hi,j (i.e. the entropy associated to one of the fragments of word-type
i at segmentation j). Notice that, as with the economy index, there are two
entropy values for each segmentation of every word-type, depending on which
side of the vi is taken to be the affix candidate (and which side corresponds
to the set of bases that occur with such affix).

3 Affix Catalogs

Upon examination of a segmentation, it may be concluded that it is mor-
phological and, therefore, constitutes the boundary between a base and an
affix. However, the word fragment considered to behave as an affix will very
likely appear again somewhere else with higher or lower values. These differ-
ent values correspond to different measurements of the abstract affix unit and
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the simplest way to combine them is to average them. Moreover, each affix
type has a set of averages, one for each kind of index. The important thing is
that the information collected from each presumed morphological segmenta-
tion must be stored somewhere. Thus, the need of a structure, which will be
called catalog.

Formally, a catalog Υ can be seen as containing γ affix candidates, each
one represented by the ordered set 〈sx, Ωx, c̄x, k̄x, h̄x, AFx〉, where sx is a
member of the set {s1, s2, s3, . . . , sγ}, the character strings which represent
the affixes of a corpus; Ωx is the frequency of candidate k as the best affix17

within a word-type, Ωx ∈ {Ω1, Ω2, Ω3, . . . , Ωγ}; c̄x is the average of squares
associated to the string, c̄x ∈ {c̄1, c̄2, c̄3, . . . , c̄γ}; k̄x the average of economy
values for the same, k̄x ∈ {k̄1, k̄2, k̄3, . . . , k̄γ}; h̄x its averaged entropy value,
h̄x ∈ {h̄1, h̄2, h̄3, . . . , h̄γ}; and AFx the value which expresses the estimated
segment’s affixality, AFx ∈ {AF1, AF2, AF3, . . . , AFγ}. In this manner, Υ can
be also described as a set of γ ordered relations:

Υ = {〈s1, Ω1, c̄1, k̄1, h̄1, AF1〉,
〈s2, Ω2, c̄2, k̄2, h̄2, AF2〉,
〈s3, Ω3, c̄3, k̄3, h̄3, AF3〉,

. . . 〈sγ , Ωγ , c̄γ , k̄γ , h̄γ , AFγ〉} (5)

This simple scheme can be used to store either prefixes, Υ p, or suffixes, Υ s.
Furthermore, the affix entries of Υ can be ordered according to their affixality
values, AFx (1 ≤ x ≤ γ), in such a way that higher ranks correspond to lower
affixality values. This concentrates true affixes and valid affix sequences at the
top of the catalog.

Regarding the estimation of each AFx, it can simply be defined by:

AF (sx) = kxcxhx (6)

that is, the quality of sx of being an affix is directly proportional to some
measure of economy (k) and to a number of squares (c), both calculated from
the segment’s boundary with its adjacent strings, as well as to a measure (h)
of how surprising these adjacent strings (supposed bases) are.

This generalization holds for the measures calculated for each separate
word fragment as a token, but the same relationship holds among the averages
of all the values calculated for all occurrences of this affix among the word-
types, resulting in an affixality index for the affix item in the catalog (affix-
type):

AF (sx) = k̄xc̄xh̄x (7)

17The number of word-types in which the affix candidate obtained the highest
value within the word-type (i.e. with respect to all other segmentations j of the
type in question.)
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Finally, each index is normalized separately and the affixality value is esti-
mated by their arithmetic mean (rather than multiplication in order to avoid
extremely small values):

AFn(sx) =
cx

max ci
+ hx

max hi
+ kx

max ki

3
(8)

This calculation is performed for every segmentation j of all the word-types i
of the corpus.

The procedure basically takes each word-type of the corpus and determines
the best segmentation for each one, using formula (8). Each best segmentation
represents a hypothesis postulating a base and an affix. Thus, the presumed
affix (and the values associated with it) are stored into the catalog. The more
frequent a presumed affix is detected as the best candidate, the more likely it
is really an affix.18

4 Affix Discovering for Various Languages

In this section I will report the experiments mentioned above. Namely, catalogs
for each language will be presented in order to look into the Spanish verbal in-
flection subsystem, the Czech derivational prefixes, the Ralámuli derivational
suffixes and the Chuj verbal inflection subsystem.

4.1 Spanish Suffixes

The first language examined with this method was Spanish, namely Mexi-
can Spanish (Medina-Urrea [14, 17]), for which it exists a carefully compiled,
representative and well balanced corpus for the twentieth century19 (Lara
[12, 13]).

Spanish suffixes are more interesting than its prefixes because the former
constitute a compact, organized system of items carrying inflection and syn-
tactic information (e.g. verbal and noun concordance). Prefixes are few and
mainly inherited from Latin and Greek (a much more interesting set of pre-
fixes will be presented in the next section for the Czech language), so I will
focus on the suffixes.

Table 1 exhibits the top thirty suffix candidates of Spanish. These can-
didates are presented in the second column. The third column exhibits the
number of word-types where the candidate came out as the best possible suffix

18Other possibilities, like selecting several best segmentations per word or in-
cluding some threshold criteria to filter forms with low values, are discussed in
Medina-Urrea [14].

19The Corpus del Español Mexicano Contemporáneo (CEMC) was the first sta-
tistical base in the Spanish speaking world for a long term lexicographical project.
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Table 1. Catalog of Spanish Suffixes.

rank suffix freq. squares economy entropy affixality

1. ∼ó 1,428 0.73710 0.91920 0.87200 0.84280
2. ∼o 6,314 0.68600 0.97880 0.80170 0.82220
3. ∼s 12,013 1.00000 0.99680 0.46090 0.81920
4. ∼a 7,687 0.57530 0.98180 0.88880 0.81530
5. ∼os 4,554 0.47750 0.97540 0.82350 0.75880
6. ∼as 4,324 0.42160 0.97790 0.86450 0.75470
7. ∼en 945 0.41070 0.89910 0.90600 0.73860
8. ∼ar 1,633 0.21780 0.96210 0.91490 0.69820
9. ∼ado 1,429 0.20610 0.96190 0.90700 0.69170
10. ∼ando 976 0.18360 0.95440 0.91620 0.68470
11. ∼e 2,363 0.42000 0.94820 0.68170 0.68330
12. ∼é 639 0.41040 0.81980 0.81530 0.68180
13. ∼aba 828 0.18210 0.95650 0.90240 0.68030
14. ∼aron 736 0.17790 0.96040 0.89350 0.67730
15. ∼ada 1,135 0.16540 0.94910 0.91590 0.67680
16. ∼arse 665 0.14620 0.95410 0.90720 0.66920
17. ∼ados 941 0.14770 0.95490 0.90080 0.66780
18. ∼aban 551 0.14340 0.93950 0.90020 0.66100
19. ∼adas 813 0.13160 0.94490 0.90410 0.66020
20. ∼an 1,775 0.19500 0.94340 0.83540 0.65790
21. ∼ara 370 0.10980 0.91510 0.91510 0.64670
22. ∼ará 387 0.12100 0.92950 0.87390 0.64150
23. ∼arlo 316 0.09269 0.92910 0.88490 0.63560
24. ∼arla 270 0.07950 0.91850 0.90710 0.63500
25. ∼arme 244 0.08683 0.91340 0.89160 0.63060
26. ∼andose 260 0.07949 0.91360 0.88550 0.62620
27. ∼arán 256 0.08995 0.91120 0.87590 0.62570
28. ∼ido 445 0.10380 0.85670 0.91400 0.62480
29. ∼ita 453 0.09631 0.89650 0.87290 0.62190
30. ∼aŕıa 231 0.08063 0.88690 0.89200 0.61980

of that word-type. The fourth, fifth and sixth columns contain the normal-
ized measurements of word squares, economy and entropy. The last column
exhibits the affixality index, which – as mentioned above – was calculated
as the arithmetic average of the entropy and economy values of the prior
columns. Finally, the first column shows the rank of the candidates according
to this index: the lower the rank, the greater the affixality index.

Most items are inflectional suffixes or chains of inflectional suffixes (de-
pending on their context, some may be derivational). Since pronoun enclitics
are graphically suffixed to infinitives, gerundives and imperatives, some can-
didates are chains of an inflectional item and enclitic (e.g. ∼ar.se, ∼ar.lo,
∼ándo.se). Furthermore, notice that the shorter entries are the most polyse-
mous and represent items of both nominal and verbal inflectional subsystems.
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Longer items and chains are readily identifiable as one sort or another of affix
or affix sequence.

Most of the complex verbal inflection subsystem occurred within the first
749 catalog entries, gathered towards the top and mixed with derivational
items and valid sequences of affixes. As the rank increases, the lesser pro-
ductive items (such as subjunctive markers) appear along older and rarer
derivational entries and residues that could be considered mistakes.

The size of the verbal inflection system varies mainly according to how
allomorphs, homophones (homographs) or polysemous items are counted, and
whether or not all affix chains with thematic vowels are taken into account:
should ∼a.r.́ıa.mos, ∼e.r.́ıa.mos and ∼i.r.́ıa.mos be counted separately or is
∼r.́ıa.mos enough? In this experiment, all these combinations were counted.
Thus, 15 of 163 verbal suffixes and suffix combinations20 were missing within
the first 749 catalog entries (a recall of 91%). In the evaluation section, a lower
catalog size of 500 will be used to calculate recall for the sake of comparison
with the other languages.

4.2 Czech Prefixes

In a recent experiment (Medina-Urrea & Hlaváčová [18]), this method was
applied to a list of 166,733 lemmas from the Czech National Corpus. Although
this language is highly inflecting, our experiment focused only on the prefix
system. Partial results of the experiment are shown in Table 2, which shows
the top 30 entries of the catalog.

It was motivated by the need to improve a morphological analyzer which
recognizes words by eliminating prefixes. In order to do this, however, the ana-
lyzer must know a priori the typical prefixes of Czech. As noted by Hlaváčová
in [18], these happen to be very many and oddly productive. They may be,
for instance, numerals modifying nouns, e.g. sedmi∼ (entry 24 in Table 2). It
must be noted that many items that appear prefixed are really nouns. Thus,
it may be argued that we are dealing more with composition than with affix-
ation. However, according to the structural relationship they keep with the
lexical system to which they belong, these items are in fact simply behaving
like prefixes.

Since there are no false prefixes at least within the first hundred candi-
dates, there is a precision measure of 100% within these, and of 54% within
the first five hundred ones. Regarding recall, Hlaváčová compiled a set of
the most productive and traditional Czech prefixes (45 items) in order to
determine how many of the indispensable ones were missed by the method.
Approximately 49% of them occurred within the first hundred catalog entries
and 89% appeared within the first five hundred.

20Enclitics were ignored, although the perspective of analyzing them as verbal
inflection marks in concordance with direct and indirect objects is not so delicate
(see Rini [21]).



Affix Discovery by Means of Corpora 289

Table 2. Catalog of Czech Prefixes.

rank prefix freq. squares economy entropy affixality

1. severo∼ 75 0.02227 0.97350 0.93030 0.95190
2. proti∼ 457 0.10710 0.92840 0.96750 0.94790
3. jiho∼ 76 0.02194 0.94590 0.92150 0.93370
4. mezi∼ 199 0.04668 0.92270 0.92150 0.92210
5. super∼ 263 0.05129 0.85720 0.96530 0.91130
6. dvoj∼ 233 0.05450 0.86290 0.94750 0.90520
7. mimo∼ 154 0.03380 0.87910 0.93020 0.90470
8. troj∼ 136 0.04416 0.85820 0.94390 0.90100
9. mnoho∼ 103 0.04946 0.91330 0.88820 0.90080
10. osmi∼ 97 0.07297 0.92890 0.87210 0.90050
11. spolu∼ 267 0.05657 0.89610 0.90220 0.89920
12. video∼ 138 0.03361 0.93000 0.86800 0.89900
13. východo∼ 47 0.01397 0.92600 0.87140 0.89870
14. dev́ıti∼ 59 0.05196 0.96070 0.83340 0.89710
15. při∼ 1,361 0.72720 0.91030 0.88220 0.89630
16. v́ıce∼ 151 0.07567 0.88610 0.89850 0.89230
17. radio∼ 102 0.02021 0.86240 0.92040 0.89140
18. šesti∼ 113 0.08147 0.92990 0.84430 0.88710
19. nad∼ 437 0.05547 0.77360 1.00000 0.88680
20. celo∼ 123 0.02970 0.87090 0.90150 0.88620
21. šéf∼ 45 0.01141 0.93750 0.83320 0.88530
22. pěti∼ 168 0.08477 0.88590 0.88450 0.88520
23. západo∼ 44 0.01283 0.88780 0.88070 0.88430
24. sedmi∼ 82 0.06226 0.94320 0.81720 0.88020
25. několika∼ 67 0.10170 0.95710 0.80290 0.88000
26. pseudo∼ 149 0.03044 0.81950 0.93850 0.87900
27. třiceti∼ 39 0.03653 0.94370 0.81130 0.87750
28. velko∼ 172 0.03735 0.91650 0.83540 0.87600
29. elektro∼ 168 0.02725 0.80200 0.94720 0.87460
30. od∼ 2,393 0.61670 0.81390 0.93510 0.87450

4.3 Ralámuli Suffixes

Ralámuli or Rarámuri, better known as Tarahumara, is a Uto-Aztecan lan-
guage spoken in northern Mexico. It is more an agglutinative language than a
fusional one. Word formation is mainly accomplished by means of suffixation.
As could be expected, stems are followed by derivational suffixes, and these
by inflectional ones. Since stems can be the result of other morphological
processes, there might be morphemes to be discovered towards the begin-
ning of words, but they are not necessarily affixal (Medina-Urrea & Alvarado
Garćıa [16]). Furthermore, given that Ralámuli has very little inflection, we
applied the method to examine suffixes of a derivational nature.
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Table 3. Catalog of Ralámuli Suffixes.

rank suffix freq. squares economy entropy affixality

1. ∼ma 35 1.00000 1.00000 0.88030 0.98050
2. ∼re 77 0.79960 0.81100 0.86060 0.82370
3. ∼sa 33 0.63640 0.93060 0.75590 0.77430
4. ∼ra 62 0.66130 0.64610 0.85080 0.71940
5. ∼si 28 0.75000 0.52570 0.83450 0.70340
6. ∼na 25 0.41140 0.72240 0.79840 0.64410
7. ∼go 4 0.21430 0.90650 0.64930 0.59000
8. ∼é 49 0.16620 0.43580 1.00000 0.53400
9. ∼ame 51 0.25210 0.30640 0.85910 0.47250
10. ∼gá 18 0.40480 0.37810 0.61360 0.46550
11. ∼ka 19 0.25560 0.28060 0.84130 0.45920
12. ∼á 67 0.13860 0.31330 0.91950 0.45710
13. ∼ré 11 0.16880 0.41020 0.73430 0.43780
14. ∼ga 50 0.18290 0.28340 0.80650 0.42430
15. ∼a 281 0.10520 0.18960 0.97250 0.42250
16. ∼ba 8 0.21430 0.30220 0.74000 0.41880
17. ∼ayá 8 0.21430 0.44320 0.57570 0.41110
18. ∼ı́ 42 0.10200 0.26480 0.80540 0.39070
19. ∼či 39 0.10260 0.27510 0.74000 0.37260
20. ∼e 164 0.15240 0.29100 0.64290 0.36210
21. ∼mi 4 0.07143 0.30220 0.69910 0.35760
22. ∼áame 12 0.15480 0.00000 0.90570 0.35350
23. ∼yá 20 0.34290 0.11080 0.57420 0.34260
24. ∼i 139 0.03905 0.10320 0.84220 0.32820
25. ∼ira 11 0.06494 0.10990 0.79570 0.32350
26. ∼o 41 0.00000 0.00000 0.96810 0.32270
27. ∼ne 3 0.14290 0.40290 0.41950 0.32170
28. ∼wa 9 0.04762 0.13430 0.74000 0.30730
29. ∼agá 6 0.16670 0.20140 0.53640 0.30150
30. ∼śı 4 0.35710 0.00000 0.53740 0.29820

The text sample21 represents the dialectal variant from San Luis Maji-
machi, Bocoyna, Chihuahua. For today’s corpora standards, this sample is
an extremely small one, consisting of 3,584 word-tokens and 934 word-types
(everything fits in a 21Kb plain text file). Although we can hardly assume
this sample’s representativeness of the language, we still proceeded to apply
the method in order to see how appropriate it is for small corpora. Table 3
shows partial results of procedure.

Even though Ralámuli has relatively few inflectional forms, the larger cata-
log exhibits more items containing inflectional material than were expected.22

21Mainly memoirs and short stories collected by Patricio Parra.
22This is certainly due to the fact that input texts are constituted by linguistic

acts in the pragmatic act of narrating a story. Words appear therefore inflected.



Affix Discovery by Means of Corpora 291

In fact, if inflectional suffixes are to be considered somehow more affixal than
derivational ones, it should not be surprising to find the four most prominent
Tarahumara inflection affixes appear at the top of the table: ∼ma, ∼re, ∼sa,
and ∼si, which mark tense, aspect and mode.

Using her own field work experience and taking into account the work of
other experts, Alvarado Garćıa determined the 35 most prominent nominal
and verbal derivational suffixes for this language. 25 of these occurred within
the first 100 catalog entries (a recall measure of 71% within this limit). The
other entries are chains of suffixes (including sequences of derivational and
inflectional items) and residual forms.23 The 10 derivational suffixes which
did not appear in the catalog are essentially verbal derivational forms, or
modifiers of transitivity or some semantic characteristic of verbal forms. This
might mean that the small sample used is more representative of nominal
structures, rather than of verbal ones. Finally, it is worth stressing that a
significant part of the known Ralámuli derivational system – essentially the
nominal subsystem – was retrieved from a ridiculously small set of texts, which
hardly constitutes a corpus of this language.

4.4 Chuj Verbal Inflection System

Chuj belongs to the Mayan family of languages and it is spoken in both sides
of the border between Mexico and Guatemala. The experiment conducted
is fully described in Medina-Urrea & Buenrostro Dı́az [17]. This language
is particularly interesting for the present paper because its verbal inflection
system is constituted by both prefixes and suffixes. To illustrate this, Tables
4 and 6 show these affixes along with their affixality values and ranks from
the catalogs partially shown in Tables 5 and 7.

The text sample used is also very small – somehow bigger than the one for
Ralámuli – and contains 15,485 word-tokens, about 2,300 types (in a 86Kb
plain text file). It was compiled by Buenrostro Dı́az during various of her
field work visits to the region. Given its reduced size and the fact that it
is composed of only five narrations, it also cannot properly be considered a
balanced and representative corpus of the language. Results are nevertheless
interesting because, given her grammatical interests, Buenrostro Dı́az put
special emphasis in compiling a collection of texts representative of verbal
structures.

Obviously, using dictionary entries without inflection (lemma sets), rather than text
in context, would be a much better way to obtain derivational items.

23The examination of residual items was especially difficult. Questions about lexi-
calized affixes (possibly fossilized items) and about the relationship between syllable
structure and affix status emerged. These matters remain to be revised by Ralámuli
experts. Meanwhile, for evaluation purposes (see evaluation section below), entries
with unexpected syllabic structure were not counted as acceptable suffixes nor valid
chains of them.
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Table 4. Paradigm of Chuj Verbal Inflection Prefixes.

grammatical person
tense

absolutive ergative

7. tz∼ 0.74 1 1. in∼ 0.91 1. in∼ 0.91 13. w∼ 0.63
2. ix∼ 0.86 2 27. ač∼ 0.50 8. a∼ 0.71 — ø∼ —

24. x∼ 0.51 3 — ø∼ — 3. s∼ 0.83 17. y∼ 0.56
12. ol∼ 0.65 5. ko∼ 0.77
— ø∼ —

1 74. onh∼ 0.33
43. ku∼ 0.42

58. k∼ 0.36

2 251. ex∼ 0.20 22. e∼ 0.54 183. ey∼ 0.24
3 — ø∼ eb’ — 3. s∼ eb’ 0.83 17. y∼ eb’ 0.56

Chuj Prefixes

Buenrostro Dı́az’s proposal of the Chuj’s prefixed verbal inflection paradigm
appears in Table 4. Every item of the table is listed with its rank to the left
and with its affixality index to the right (they were obtained from the catalog
partially shown in Table 5).

Tense markers appear first, one of which is the null prefix ø. Then some
marker indicating the grammatical person follows, which might appear either
in its absolutive or ergative form (ergatives to the right attach to vowel initial
stems and those to the left attach to consonant initial ones). The first and
fourth lines show respectively singular and plural forms for first person (ko∼
and ku∼ are allomorphs), the second and seventh show second person and the
third and fifth third person.

Regarding Table 5, all tense markers occur within the first 24 entries. Also,
within the first 30 candidates, a couple of the absolutive and most ergative
personal markers appear. Furthermore, there are chains of tense and person
marker prefixes: ∼tz.in, ∼ol.in, ∼ix.in, ∼ix.s, ∼tz.s, ∼tz.onh, and ∼ol.ač. In
fact, personal markers are word initial only because one of the tense markers
is the null affix ø-.

In Table 5, there appear ten residual entries (either verb stems, non-readily
recognizable or fragmented prefixes). Hence, precision for this table would be
the proportion of right guesses, 66.6%.

With respect to recall, every prefix listed in Table 4 appeared in the prefix
catalog. But, since some of them obtained a rank greater than the size of Table
5, they cannot be found there. This implies a precision measure of 100% for
the first 251 catalog items, and of 90% for the first 74 (there are two of 20
items of Table 4 with rank above 74).

Chuj Suffixes

Buenrostro Dı́az’s proposal for Chuj’s inflectional suffix system appears in
Table 6. Essentially, these suffixes mark voice, mode and end of utterance (the
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Table 5. Catalog of Chuj Prefixes.

rank prefix freq. squares economy entropy affixality

1. in∼ 93 0.56200 0.83990 0.98280 0.91130
2. ix∼ 181 1.00000 0.80210 0.90880 0.85540
3. s∼ 187 0.43190 0.66620 0.98740 0.82680
4. kak’∼ 1 0.18460 1.00000 0.59290 0.79650
5. ko∼ 71 0.32980 0.66030 0.87830 0.76930
6. xsči’∼ 1 0.04615 1.00000 0.51070 0.75540
7. tz∼ 349 0.69420 0.59450 0.88610 0.74030
8. a∼ 164 0.18550 0.41110 1.00000 0.70550
9. tzin∼ 48 0.17210 0.44820 0.93380 0.69100
10. olin∼ 26 0.17990 0.47320 0.88180 0.67750
11. xal∼ 2 0.07692 0.67500 0.66010 0.66750
12. ol∼ 185 0.47400 0.52790 0.78070 0.65430
13. w∼ 70 0.44750 0.73820 0.52560 0.63190
14. olač∼ 26 0.18880 0.47210 0.76630 0.61920
15. tzs∼ 49 0.08069 0.42520 0.81010 0.61770
16. ixin∼ 29 0.13050 0.36740 0.81830 0.59290
17. y∼ 127 0.33540 0.54740 0.57100 0.55920
18. k’a∼ 11 0.01678 0.36360 0.74520 0.55440
19. ma∼ 31 0.01241 0.22020 0.87220 0.54620
20. al∼ 15 0.03692 0.21230 0.87400 0.54320
21. na∼ 9 0.01880 0.30950 0.77610 0.54280
22. e∼ 63 0.03272 0.16630 0.91730 0.54180
23. ak’∼ 12 0.04231 0.23990 0.78810 0.51400
24. x∼ 43 0.04401 0.25860 0.75680 0.50770
25. tzonh∼ 16 0.06731 0.22490 0.78660 0.50570
26. b’ati∼ 1 0.03077 0.75000 0.25540 0.50270
27. ač∼ 9 0.03248 0.19440 0.80340 0.49890
28. ixs∼ 24 0.02949 0.16880 0.81540 0.49210
29. ay∼ 23 0.07692 0.43870 0.53450 0.48660
30. k’e∼ 3 0.05128 0.25000 0.70220 0.47610

Table 6. Paradigm of Chuj Verbal Inflection Suffixes.

modal/ thematic
voice

temporal vowel

63. ∼aj 0.4129 6. ∼ok 0.7479 11. ∼i 0.6703
68. ∼chaj 0.4018 18. ∼nak 0.5977 12. ∼a 0.6549

passive 872. ∼b’il 0.1212
1,016. ∼nax 0.0949

— ∼ji —

19. ∼an 0.5958
antipassive 28. ∼wi 0.5531

161. ∼waj 0.2629
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thematic vowels distinguish transitive verbs from intransitive ones and signal
end of phrase). Again, items appear surrounded by the rank and affixality
value they obtained in the suffix catalog which is partially shown in Table 7.

Among the interesting entries of the latter table, a system of direction-
als can be partially seen. These are movement verbs which function as verbal
classifiers: ∼kan, ∼b’at, ∼el, and ∼k’och. The paradigm is not complete. How-
ever, since these classifiers are more derivational than inflectional, they must
be very productive in order to compete with verbal inflection items for slots
among the top entries of the catalog.

Table 7. Catalog of Chuj Suffixes.

rank suffix freq. squares economy entropy affixality

1. ∼kan 68 1.00000 1.00000 0.90290 0.95150
2. ∼nej 24 0.41190 0.98110 0.76980 0.87540
3. ∼ta’ 70 0.64010 0.75260 0.82030 0.78650
4. ∼b’at 63 0.56900 0.67170 0.86590 0.76880
5. ∼al 82 0.28940 0.53560 1.00000 0.76780
6. ∼ok 68 0.46950 0.55850 0.93740 0.74790
7. ∼ab’ 49 0.29590 0.50780 0.90590 0.70690
8. ∼il 62 0.24570 0.46340 0.93470 0.69900
9. ∼ač 16 0.34620 0.71490 0.67950 0.69720
10. ∼xi 37 0.54160 0.70030 0.68290 0.69160
11. ∼i 205 0.58760 0.46370 0.87690 0.67030
12. ∼a 142 0.18360 0.37910 0.93060 0.65490
13. ∼kot 48 0.41030 0.55640 0.74040 0.64840
14. ∼el 68 0.18890 0.43240 0.86430 0.64830
15. ∼tak 19 0.16800 0.37850 0.90620 0.64240
16. ∼in 46 0.16470 0.34980 0.89170 0.62070
17. ∼kani 8 0.10100 0.48810 0.71660 0.60240
18. ∼nak 18 0.34830 0.41430 0.78120 0.59770
19. ∼an 233 0.33710 0.36460 0.82710 0.59580
20. ∼alan 13 0.36980 0.36500 0.82250 0.59380
21. ∼ab’i 9 0.26070 0.54200 0.64330 0.59260
22. ∼ni’ 7 0.17580 0.61660 0.56680 0.59170
23. ∼k’oč 28 0.23350 0.29220 0.86700 0.57960
24. ∼ak’ 43 0.18520 0.34370 0.79220 0.56800
25. ∼ak’tej 6 0.09615 0.52520 0.58790 0.55660
26. ∼koti 18 0.06410 0.42930 0.68360 0.55640
27. ∼ila 9 0.34620 0.54070 0.57080 0.55580
28. ∼wi 14 0.04945 0.42080 0.68530 0.55310
29. ∼ik’ 12 0.53210 0.48130 0.60150 0.54140
30. ∼o 123 0.03096 0.11440 0.96340 0.53890

Regarding the verbal paradigm of Table 6, almost all its members do
occur in the suffix catalog, except passive voice marker ∼ji (which is shown
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in boldface). Therefore, we can measure recall within the first 1,016 catalog
entries to be 92% (eleven of twelve) and 75% for the first 500 entries (nine
of twelve). Taking prefixes and suffixes together, recall would be of 96.55%
(28 items of 29) for the first 1,016 items and 91% within the first 500 catalog
entries (29 of 32).

5 Evaluation

Evaluating discovery results for such different affix subsystems of such a set
of unlike languages, represented by such dissimilar corpora, is certainly a
challenge. Nevertheless, granted that plain errors should be expected, given
the nature of the method and the reduced size of two of the text samples,
some comparison scheme must be considered in order to evaluate results.

For the sake of simplicity and since the experiments described above dealt
with some specific affix subsystems such as inflectional or derivational, verbal
or nominal, prefixal or suffixal, I will base the following considerations on
the size of those subsystems. Recall, that these were the research matter of
separate experiments, so they were gathered from linguistic tradition (Spanish
verbal inflection and Czech’s set of traditional prefixes) or from published
work or specialist’s field experience (Ralámuli verbal and nominal derivational
prefixes and the Chuj verbal inflection paradigms).

Hence, it makes sense to pick a window of the size of each relevant sub-
system to look into the top of the relevant affix catalog and determine the
proportion of errors within that window in order to calculate precision. Notice
that items belonging to other subsystems of the same language are bound to
appear there and that they could not, of course, be considered errors. Thus,
what is measured is precision for the window, not precision for the subsystem
in question.

A recall measure, on the other hand, would deal specifically with how
much of the subsystem sought is not retrieved. In this case, the evaluation
window must be larger, mainly because these languages have other subsystems
competing to appear towards the beginning of the catalog, but also because
some parts of the subsystem may cohabit with other complex subsystems
or simply be less productive (Spanish unambiguous subjunctive forms, e.g.
∼ásemos, ∼iéremos). Upon examination of results, a window of five hundred
was selected (the Ralámuli catalog has fewer items than that).

Obviously, a smaller window means greater precision and lower recall,
whereas a greater window means lower precision and greater recall. There-
fore, the window sizes selected will maximize both measurements – the smaller
window (subsystem size) for precision, the bigger one (of 500) for recall. Nev-
ertheless, it should be clear that precision will decrease considerably as the
window grows because rarer items are mixed with plain mistakes and un-
recognizable, residual forms (which were counted as errors). Conversely, recall
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Table 8. Evaluation measurements.

Spanish Czech Ralámuli Chuj

verbal derivational prefix verbal suffix verbal
subsystem

inflection
prefixes

suffixes inflection inflection
sample tokens 2,000,000 — 3,584 15,485
sample types 79,000 166,733 934 2,300

subsystem sizea(n) 163 45 35 20 12

right guessesb 156 45 28 15 12

presumed errorsb 7 0 7 5 0
unretrieved itemsc 39 5 10 0 3

precision 0.96 1.00 0.80 0.75 1.00
recall 0.76 0.89 0.71 1.00 0.75

a Allomorphs, homographs and polysemous items count separately; null affixes are excluded.
b In relevant catalog within subsystem size.
c Members of subsystem not found in relevant catalog within first 500 catalog candidates.

will decrease as the window is diminished because rare and lesser produc-
tive members of the subsystem examined will fall outside the smaller window
(whereas other subsystem’s more productive members also compete for the
upper catalog slots).

With all of this in mind, let us look into Table 8, which shows numerical
data, as well as precision and recall measurements, for the languages exam-
ined.

The first row shows the name of the specific affix subsystem focused. The
second and third rows characterize the corpora used: their size in number of
word-tokens and number of word-types (the Czech sample is a set of lem-
mas, so there is no number of tokens). The fourth row shows the size of the
subsystem sought in those corpora.24 Then, based on a window of the size
of the subsystem in focus for each corpus, the correct guesses and presumed
errors were counted within that window (rows five and six). The seventh row
contains the number of subsystem members not found within the much larger
window of five hundred catalog items.

The last two rows exhibit the precision and recall measures. As mentioned
above, precision is the proportion of correct guesses within the first n entries
of the relevant catalog, such that n is the size of the subsystem sought. Ad-

24It is worth stressing that determining subsystem size is indeed a problem not to
be underestimated. For each of the experiments reported here, the specialists had to
study the subsystem in order to know its size, which surely varies from perspective
to perspective. Here, null morphemes were excluded and allomorphs, homographs,
and polysemous items were counted separately. In the case of Spanish, antiquated
inflections (for informal 2nd person plural, very productive in the Castilian dialect),
and those followed by enclitics, which are graphical affixes, were not counted.
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ditionally, recall is the number of members of the subsystem actually found
within the first 500 hundred catalog items.

The evaluation measures look rather good because, as mentioned above,
window sizes were selected to maximize them. The important remark to make,
for the four languages, is that there is a sense in which affixal items tend to be
concentrated towards the top of their catalogs and that most of the subsystems
in which the items play a part can be retrieved within the first five hundred
catalog entries. Undoubtedly, other languages and more corpora should be
examined with the idea of making sounder result comparisons. Meanwhile,
the method seems good enough to approach some unknown language, struc-
turally similar to those presented here, and start examining its morphological
structure, although the language sample may not be as representative as it
may otherwise be desirable.

6 Final Remarks

In this paper, an affix discovering method was examined and results of its ap-
plication to four very distinct languages, represented by very unequal corpora,
were presented and evaluated. There are, of course, certain problems with the
approach that leave a lot of room for improvement. Namely, it would be much
improved if affix and word contexts were to be accounted for by the method.
This would at the very least make residue evaluation easier. Also, the me-
chanical and quantitative examination of affix sequences is necessary in order
to study the affitactics of these languages from an unsupervised perspective.

The catalogs examined in this paper should not be considered the mor-
phological models of the languages examined. They should perhaps be seen
more as windows to complex phenomena which can be described in different
ways, according to the preferred language theoretical perspective. They are
tools for the discovery of the unknown, more related to text mining than to
rule-based formalism design.

Whether or not the method proposed here is the best way to discover
affixes or whether or not morphological models are to be constructed in later
stages of language research, it can be observed from this kind of experiment
that, like Edward Sapir [22, p. 29] once put it eloquently, there appears to
exist a potential energy that glues morphemes into the bricks of language.
This glutinous energy may seem elusive, but somehow, from what we have
seen, it can be measured by means of magnitudes portraying economical sign
structure and carried information.
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Summary. This article discusses strategies for licensing within the framework of
generative grammar as well as their application in the LPS linguistic processing
system. LPS is a Linguistic programming language developed at the Institute for
Linguistic Data Processing at the University of Cologne. It also is a computer sys-
tem which employs this language for natural language processing, in particular for
machine translation. In the introduction we give a brief sketch of formal grammar
development and derive the idea of licensing from this development. We also de-
scribe the generation of structures in linguistic processing systems by means of the
object-oriented linguistic programming language LPS. The third part discusses opti-
mization strategies through the competing of variant structures evaluated by means
of licensing. The concluding fourth part discusses licensing, specifically as a topic
of computational linguistics with the aim of distinguishing its placement within the
domain of performance or competence.1

1 Introduction

1.1 Formal Grammars and Natural Languages

Natural Language Processing (NLP) and the development of Computer Sci-
ence are related in two ways: practically, they are related via data processing
machines, and theoretically via the creation of formal languages developed
for programming these machines. The formalisms for defining such languages
were transferred to the description of natural languages. In the mid 1950s
Chomsky achieved renown both in the fields of theoretical computer science
and linguistics. Setting out from a typology of grammar-types he went on to
distinguish the different types of formal languages. Formal languages however
are not only defined by grammar but also by recognizing automata. In his
work, Chomsky also demonstrated the correspondence of specific types of au-
tomata to grammar and language types. The question of language-analysing

1I would like to thank to Gustav Vella for discussion and helpful suggestions
with this paper.
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automata is insofar of relevance in computational linguistics in that language
analysis is one of its tasks.

Chomsky distinguishes among 4 types of languages: Type 0, Type 1, Type
2, and Type 3 languages. Type 3 languages are subsets of Type 2 languages,
Type 2 languages are subsets of Type 1 languages, and Type 1 languages
subsets of Type 0 languages. This is the so called Chomskian hierarchy of
formal languages. The rules in these grammars are rewrite rules. They use the
arrow operator: to the left we have the symbol or symbols to be substituted,
to the right we define the symbol through which another symbol or chain of
symbols can be substituted.

The formal language hierarchy is evoked by constraints and substitution
rules. It follows that the subject matter here is the syntax of rules. The rules
of the grammars which produce Type 0 languages are not constrained. It is
of particular importance that the left part of a rule may be longer than the
right part of the rule. Apart from this an empty chain in the left part of the
rule is not permissible.

Type 1 languages are characterised by rules, in which the right part has
to be at least as long as the left part. Consequently empty strings are not
possible. Type 2 languages are distinguished by the fact that only one symbol
is permissible to the left of the arrow. These type of languages are context-free.
Type 3 languages are produced by rules in which the left part of the rule either
is itself a terminal symbol or else precedes or follows a non-terminal symbol.
If the former is the case, then the type 3 language is said to be right-regular,
in the latter case it is said to be left-regular.

Formal languages are typified by the constraints of their production rules.
The question as to the attribution of a word to a particular language can be
seen from two points of view. On the one hand, one can show that a grammar
is capable of producing such a word, and on the other hand, it can be proved
that an automaton associated with a language would either accept or reject
the word.

The construction of such automata is of great relevance for formal and nat-
ural languages. Formal languages, programming languages in particular, are
built to be efficiently processed by simple automata (cf. Wirth [25]). Looking
back at the development of formal languages since the 1950s, one notices that
grammatical formalisms have become increasingly constrained. In the 1960s
[5] and 1970s, Type 0 grammars [1, 2, 3, 4] changed to Type 1 grammars –
their productive strength was also tamed by constraints on context-sensitive
rules tending towards Type 2 grammars [6]. From the point of view of com-
putational linguistics this development was very welcome, since it simplifies
the modeling of the automata that recognize natural language.

The development of X-Bar syntax [14] put further constraints on produc-
tion rules. Ever since, the grammar model within the generativist framework
has been based essentially on two components: the production component,
characterized by X-Bar schemas; and a component designed to handle con-
text sensitivity.
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1.2 Licensing

The concept of licensing is related in particular to the Principles and Para-
meters model in Generative Grammar. One assumes that there is an X-bar
schema component for the production of syntactic structures and a further
component used mainly for checking context dependencies composed of sub-
modules such as the theta module, the case module, the binding module, and
the control module.

These subcomponents determine the quality of structures. They either
accept them (license them) or reject them: a so-called PRO – eg. as the subject
of the embedded sentence in he tries PRO to climb the mountain – has to be
licensed. It may only appear in a syntactic configuration in which no case
can be assigned. Only if this condition is fulfilled will a PRO be licensed, the
configuration will otherwise be rejected as ungrammatical (cf. Haegeman [13,
p. 441]).

In terms of LPS, licensing comprises traditional generative concepts, while
extending them in two ways:

1. Licensing is a generate and test process in which each configuration hy-
pothesis is evaluated (cf. Section 2 on page 305).

2. Models of competence abstract strongly from the actual conditions of
communication. Although normal communication usually contains many
errors, it does not collapse. The simulation of this fault tolerance and ro-
bustness is a weak point in NLP systems. This stems from the relationship
of these systems to recognizing automata whose task it is to decide if a
string belongs to a language or not. In our concept of licensing a model is
put forward which records partial as well as complete structures. We are
thus dealing with persistent syntactic structures. In terms of competence
these structures are licensed. They form a stock of canonical structures to
be matched with, in a linguistic sense, incomplete sentences. Through a
tolerant matching process which allows discrepancy, input sentences can
be completed by means of the pattern structures available (cf. Section 4
on page 317).

The interaction of both components is similar to generate and test proce-
dures. The X-Bar schema controls the generator, while test processes evaluate
the results.

For linguistic modelling and work in computational linguistics such a gen-
erate and test approach has several advantages. The test-, or licensing con-
ditions are defined statically. They apply to structure and not to the con-
struction processes. They are declarative and not procedural. Even from a
cognitive point of view, declarative statements are much easier to control.
Declarative statements characterize the linguistic system, the competence or
– in Saussurean terms – the langue, not individual use, i.e. performance, or
the parole.
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If we thus abstract to a large extent from the parole, another advantage
of declarative and system-oriented workflow comes to light: computational
modelling can abstract from the parsing and generating modes of language
usage. The generative knowledge relevant to the system can be leveraged for
both modes – parsing and generating – and thus does not need to be modelled
separately.

Yet it is necessary to safeguard the communication between the declar-
ative system knowledge and the corresponding syntactic-semantic structures
(of the parole) to be built. For this purpose, the following solution turns out
to fulfil more than just the requirements in modern software technology: Since
the end of the 70s, generative-oriented linguistics has developed the concept of
modules of linguistic knowledge [7, 11]. This concept was taken from the com-
puter science of that period – compare for instance programming languages
such as MODULA [24]. However this concept was not pursued to the full in
its linguistic adaption.

Here, we would not only like to pursue the concept in greater depth but
also attempt to extend it within the concept of object orientation. Linguistic
knowledge is expressed in terms of object classes. A class is a blueprint for
an object, describing which components it contains. In object-oriented pro-
gramming, algorithms are called methods. A class has no real existence as
such; it is the (abstract) typing of an object. Objects, however, only exist
in a computer’s memory during runtime. Objects are produced according to
a description provided by the class. Object-oriented terminology calls this
instantiation. Instantiation can also be seen as the birth of an object accord-
ing to the class blueprint. Thus an object is called the instance of a class.
Those components of an object which are typified by data structures are also
known as declarative variables, the methods are equally known as procedural
variables. When methods are called we can also speak of “message passing”.

The classes are instructions for creating nodes in tree-structures. In other
words, nodes are instances of classes. The process described here is realized
as an object-oriented linguistic programming language, which is interpreted
by a custom interpreter specifically designed for linguistic data processing.

The properties of a class (its components) can be passed on to other classes.
This is called inheritance. Classes that pass on their properties allow further
properties (components) to be added to the inheriting classes. By this means
they become specialized. If, in turn, these too pass on properties, the whole
chain produces a class hierarchy. From these classes we can derive objects,
with highly specialized classes resulting in highly specialized objects. Classes
are grouped by their functional similarity and are organized in modules or
packages. This grouping constrains inheritance beyond module boundaries by
requiring an explicit request for such an action. Isolating classes like this helps
avoid unwelcome side-effects.

Linguistics and the cognitive sciences have adopted the notion of modular-
isation from Computer Science. In the following we will argue that introducing
the concept of object orientation to linguistics can also be very helpful. One
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has to state however that this concept is not that unfamiliar to linguistics. By
the time the concept of object orientation had been implemented in Computer
Science, it was recalled that, to a certain extent, one was adhering to a much
older tradition: that of the Aristotelian theory of categories. Structuralist tax-
onomies in Linguistics are a reflection of this philosophical tradition.

The implementation of the concept of object orientation with a special
focus on licensing conditions is the topic of the following section.

2 Implementation

2.1 Modularization and Object Orientation
in Computational Linguistics

Introducing the concept of object orientation into the organization of lin-
guistic knowledge makes linguistic description compact and transparent. Lin-
guistic object orientation adopts the fundamental terms of object orientation
and we shall thus also use the notions of classes, inheritance and instanti-
ation.2 By means of inheritance, linguistic knowledge can be hierarchically
structured. Sibling classes inherit from parent classes. Sibling classes express
specialization, parent classes express generalization. We also make use of Mul-
tiple inheritance. The concept of inheritance promotes a typological approach.
Typological similarities are expressed through more abstract parent classes,
language-specific features are expressed through specialized sibling classes. As
a consequence the subject matter is also naturally presented to the linguist in
a clearly structured manner.

As in classical object orientation, linguistic object orientation also includes
components, data structures, and methods. Through instantiation objects are
created from classes. The objects thus created are the nodes of a phrase struc-
ture tree. These nodes are thus realizations or instances of linguistic classes. In
the linguistic object orientation described here, instantiation is tightly related
to the generation of tree structures. Linguistic classes have an elementary
data structure, comprising of a cluster or list of attribute-value pairs. As an
example we here can consider an attribute labelled category. This attribute
takes on specific values previously declared in a value set, for instance N for
noun, V for Verb, D for Determiner. Further Attributes are bar for the bar
index of a category in compliance with the X-bar schema (taking the values
0, ′ and ′′, as well as case, gender, or number.

For the German language, a determiner class can be defined in the follow-
ing manner

2The concept of object orientation in linguistics and computational linguistics
is not that well established. For more details cf. Daelemans et al. [10] and [9]. For
more on the concept within the LPS framework cf. Lalande [17], Möller [19] and
Rolshoven [21, 22].



306 Jürgen Rolshoven

CLASS D0 [neutr,sing,nom];
END;

Such a class provides the blueprint for a T 0 or D0 node, for instance in a
tree structure of the following form:

D′

D0 D′′

Fig. 1. A linguistic tree structure.

This blueprint begins with the keyword CLASS ; the keyword indicates
that a class is being defined. The keyword is followed by a list of attribute-
value pairs. The list is closed by a semicolon. The class in turn is closed with
the keyword END followed by a semicolon.

CLASS D0 [Gen,Num,Kasus];
END;

For further projections of D, the following classes apply

CLASS D′ [Gen,Num,Kasus];
END;
CLASS D′′ [Gen,Num,Kasus];
END;

2.2 Inheritance

The classes D0, D′ and D′′ differ from each other with respect to the value of
an attribute – the bar attribute. They otherwise are identical. It thus stands
to reason, that this specific difference should be expressed as a model of in-
heritance. We therefore set out from the assumption of a shared underlying
class:

CLASS D[Gen,Num,Kasus];
END;

This class does not contain a bar attribute and consequently has no speci-
fications with respect to the bar index; these will be included in the following
classes:

CLASS D0 < D;
END;
CLASS D′ < D;
END;
CLASS D′′ < D;
END;



Licensing Strategies in Natural Language Processing 307

In these classes the “<” symbol has to be interpreted in the following way
(for the first class): The D0 inherits all properties (as the case may be) all
attributes of the underlying D class described further up. The same applies for
the classes D′ und D′′. Through inheritance the following D0 class emerges:

D0[Gen,Num,Kasus]

The class which inherits, stands before the “<” symbol, the class passing
on follows the symbol. The class inheriting is an extension of the class passing
on attributes. More than one class can potentially pass on attributes. The
hierarchy described so far can be graphically depicted as follows:

Fig. 2. LPS class hierarchy in UML.

Class hierarchies start with very basic classes and end with very specialized
ones, serving as blueprints for nodes in phrase structure trees. Phrase struc-
ture trees are built as a result of language analysis and synthesis, they are
attributed to the domain of parole. Classes express properties of the langue.
In a framework of hierarchical classes, langue does not only refer to the sys-
tem of a specific language but also to the language capacity itself: this is
particularly the case with the abstract classes. The concept of inheritance is
a very helpful means for organizing linguistic knowledge i.e. for describing
the language system. Within the domain of parole, classes serve the purpose
of providing blueprints by means of which the nodes of tree structures may
subsequently be derived. We thus have a tool at our disposal – an artificial
tool – for processing natural languages.

In computer science nodes which are built according to the blueprint of a
class are called objects. We adopt this terminology and thus call the following
approach Linguistic Object Orientation.

2.3 Methods

The classes presented so far are comprised of attribute-value pairs, hence only
of static components. Together with static components, classes can also con-



308 Jürgen Rolshoven

tain dynamic components. Dynamic components are called methods. Meth-
ods trigger actions, in our case linguistic actions. These actions could be the
definition of grammatical agreement and case assignment. We shall explain
methods, taking case assignment as an example. Let us consider the following
phrase-structure tree3:

T′′

D′′

Maria

T′

V′′ T0

+finit

lacht

Fig. 3. A phrase-structure tree.

In such a configuration, the specifier is assigned nominative case, when T 0

carries the feature ‘finite’. Case is assigned in a spec-head relationship. This
is formally defined as the following Prolog (cf. Clocksin & Mellish [8]) clause4:

case(TNull,Specifier) :-
HasValue(TNull,’finit’),
SetValue(Specifier,’nom’).

Such a clause is easy to read: Case assignment from T to the specifier
(case(TNull,Specifier)) succeeds if and only if T 0 carries the value finite
(HasValue(TNull,’finit’))5 and if the specifier receives the nominative
feature (SetValue(Specifier,’nom’))6.

In the above clause, the predicate case is the head of that clause; the
body of the clause which follows the symbol for implication comprises in our
example of two predicates.

Predicates have arguments: The predicate case for instance has two ar-
guments, TNull and Specifier. Both these arguments have values (In Prolog
terminology, both arguments are said to be instantiated: one must distinguish
between the argument-value relationship and – as is the case above – the
attribute-value relationship)

3For more details on the concept of inheritance cf. Khosafian & Abnous [15] and
Reiser & Wirth [20]; for a very readable introduction to object orientation in Java
cf. Goll et al. [12]. The concept as such is well known. It has its foundations in
the Aristotelian theory of categorization and was elaborated in detail in scholastic
philosophy.

4A Prolog interpreter was implemented as part of the LPS-system.
5the ’:-’ symbol expresses the implication.
6the comma between both predicates expresses logical conjunction.
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In our case the value of TNull is the T 0 node of the tree structure, the
value of Specifier is the D′′ in the tree structure. HasValue checks if a node
has a certain value: SetValue assigns a specific value to a node.

Yet there are three basic questions which have to be dealt with:

1. Where do the clauses come from?
2. How are the predicate arguments assigned their values? For instance,

where does the Specifier argument obtain the D value from?)
3. What triggers the proof for the predicates?

These questions take us back to the components of a class, and as the
case may be, to the components of an object derived from a class. So far only
static components of a class have been presented here. The predicate case
(the head of the clause) is a dynamic component of a class. This component
appears in two classes, namely in class T 0 and class D′′

CLASS T0;
case(Self,Other);
END;
CLASS D′′ < D;
case(Other,Self);
END;

In terms of object orientation the predicate case is a method. case has
two arguments; in the T 0 class these arguments are expressed by Self and by
Other. The meaning of this expression becomes clear when one considers that
a T 0 object is derived from a T 0 class. This object is the node of a tree (i.e.
an object in the domain of parole). The object itself is the first argument of
the case predicate. It is precisely this which Self is meant to express. This is
also suggested in the case clause above. The name of the first argument in
the clause is TNull. This refers to T 0 as an instance of the variable. Hence
the first of the two questions formulated above has been partially answered:
The clauses emerge as dynamic components from the classes and obtain an
object passed on by means of the Self declaration, which is itself derived from
a class.

However, the second argument, which is expressed through Other has not
yet received a value – it has not yet been instantiated. In the following, we
consider the class D′′. This class also contains a predicate case. The order of
its arguments are inversed. The first argument is Other, the second is Self.
This Self, as was the case with T 0, is instantiated by the object derived from
D′′. In the process of derivation of an object from a class, methods of these
classes emerge as dynamic components of the object. We thus can consider
two objects containing case methods whose arguments are instantiated com-
plementarily. In the light of this constellation, the third question formulated
above can now be answered: the question as to where the proof for the case
method is realized.
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The case method can be proved when both arguments are instantiated.
This is safeguarded by the following mechanism. The case method of the
specifier D′′ and the case method of the head T 0 are passed on in the phrase-
structure tree till they meet. When two methods with the same name (e.g.
the case method) encounter each other the method can be executed. We here
call this process of “meeting” between methods and instantiated variables,
method unification. If method unification succeeds, the method will be exe-
cuted. The steps to be followed in the process are defined in the Prolog clause.
If the method is executed, it follows that the given structure is licensed. If it
fails then the structure is impermissible. The diagram on the following page
summarizes the issue.

In order to generate a structure along the lines shown in the diagram,
a mechanism has to be defined which selects the nodes to be projected. In
our example the node concerned is the T node. The diagram interprets the
langue/parole dichotomy in an object-oriented manner. The classes, the class
components and the inheritance structure lie within the domain of langue.
The nodes instantiated from classes as well as the tree-structures lie in the
realm of parole.

The example shows how methods are passed on in structures and how they
are executed as soon as method unification occurs. The range within which
the passing of methods is permissable will be described in more detail in the
following.

The case method of the T 0 class has to be passed upwards along the tree
structure to T ′′ in order to be unified and executed precisely there. By default,
the passing up of nodes is constrained to the maximum – methods in a tree
structure can usually only be passed on from the instantiating nodes up to
their parent nodes. This is the case with D′′ in our example. The parent of
D′′ is T ′′. Since the D′′ class does not specify how far up in the tree the case
(Other, Self) method can be passed on, the default case comes into play.
Upwards passing stops at the parent T ′′. We call the node which lies below
the one where methods are unified and executed the target node. The target
node for D′′ is D′′ itself. The default rule must be explicitly suspended for
the method case(Self, Other) in the T 0 class since method unification can
only take place two levels higher up. Therefore, the T 0 class method has to
be expanded as follows:

CLASS T0;
case(Self,Other) T′;
END;

The T ′ specification following the method defines where a method trig-
gered by the T 0 node can move. The method has to be unified and executed
in the parent of T 0. If this does not succeed, the suggested structure will not
be licensed. One should note that methods in the parent of the target node
must be unified and executed. If no target node is defined, it is the instantiated
node itself which by default becomes the target node.
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Fig. 4. LPS processes in linguistic object orientation.
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In some cases it is possible to have several target nodes. Methods have
to be executed in one of these target nodes. This can be expressed as shown
below, using exemplary classes, methods and nodes.

CLASS X;
methodY(Self,Other) U′,V′;
END;

The methodY has to be passed up to the method U ′. If it cannot be unified
there, it will be passed on higher to the next target node V ′ where, at the
latest, it must be unified.

Not all methods have to be proved. Some methods are optional. They can
be proved and their proof contributes to a better evaluation in terms of opti-
mality theory. If they do indeed fail, either because the method unification or
the method proof is unsuccessful, the structure currently under consideration
for licensing will not be discarded due to the failure of those methods. In other
words facultative methods are score functions if they succeed but not penalty
functions if they fail. Optional methods are expressed by an f (facultative)
which follows the method separated by a comma.

CLASS D′′ < D;
case(Other,Self),f;
END;

The X-Bar schema is a mechanism for generating binary trees. Terminal
nodes in these trees are either lexically filled or empty. Special conditions con-
straining the generative power of the X-bar schema apply in the process of
distributing filled or empty terminal nodes. These conditions are formulated
in terms of special building blocks of so-called linguistic knowledge. In bind-
ing theory and in case theory, for instance, context sensitive phenomena of
natural language can be captured. These phenomena are handled by method
unification and method execution.

Besides the two-argument methods, there are also single-argument meth-
ods. For single argument methods method unification is not possible; this
goes without saying since method unification assumes that argument posi-
tions should be filled complementarily. Single predicate methods are passed
on up to their parent nodes and must be proved there. We illustrate this with
an example on attribute-unification in instances of the D classes. D projec-
tions – for instance in German – share the values for gender, number and
case. This is an approach typical of Unification-based grammar formalisms
[23]. We express this form of unification by a method from which D0, D′ and
D′′ inherits. We thus state the method defined above more precisely in the
following way:

CLASS D[Gen,Num,Kasus];
UnifyFeatures(Self);
END;
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UnifyFeatures is specified in its associated methodspecification7 file as fol-
lows:

UnifyFeatures(Daughter) :-
GetMother(Mother,Daughter),
Unify(Mother,Daughter,’Gen’),
Unify(Mother,Daughter,’Num’),
Unify(Mother,Daughter,’Kasus’).

In the case of a D0 node this method accesses the parent-node D′ by way of
the BuiltIn-Predicate GetMother, and unifies the attributes gender, number
and case in the parent and sibling node by means of the BuiltIn-predicate
Unify.

D′

D0

die

N′′

Frau

Fig. 5. A linguistic tree structure.

2.4 Instantiation and Late Binding

The term “instantiation” often came up in discussions concerning the nodes of
a syntactic tree structure. In object-oriented programming, the instantiation
of an object means the allocation of memory for that object and the typing of
that reserved memory according to the description of a class. Here, the mean-
ing of instantiation differs slightly from the original meaning. In our model,
instantiation is the first typing of an already-present node object according
to a class blueprint. Untyped node objects are generated by the LPS-system
(cf. Section 3 on page 316). The system looks up a matching class for these
untyped node objects. Even though the node objects are untyped, they still
possess certain properties. The class that matches these properties assigns ad-
ditional attribute values or methods to its node and thus expands the nodes
with further components. For any given node it is necessary to define how
it looks up a class from which it acquires further components. This process
is here called instantiation. It could also be called late binding or more ap-
propriately late extension. We however shall reserve this term for the typed
extension of nodes, which have already received information from classes, i.e.
in our terminology, which have already been instantiated.

7The methods defined in classes are specified in so called method specification
files in order to keep class declarations and functions distinct.
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2.5 Linguistic Object Orientation: The Details

While instantiation and late binding express the extension of node objects,
inheritance expresses class extension. Consider the following class once again:

CLASS D0 < D;
END;

The D class notation following the extension symbol “<” marks the inher-
itance class. The D serves to identify the class. If there are further attributes,
they may serve as data for inference, thus enriching the instantiated object.
Attributes and values which this class can pass on, have to be explicitly de-
fined. These attributes and values follow a “|” symbol in the declaration.
Therefore the class described above:

CLASS D[Gen,Num,Kasus];
END

has to be redefined as follows:

CLASS D|[Gen,Num,Kasus];
END;

D0, D′ and D′′ inherit the attributes Gen, Num, and Kasus from this class.
Gender, number, and case, however, are not only required by these classes,
but also by the N and Adj classes. We can thus expand the above definition
as follows:

CLASS NOUNPROPERTIES|[Gen,Num,Kasus];
END;

This example demonstrates why inherited attributes are declared after
the “|” symbol. The class name NOUNPROPERTIES, a value of the attribute
Category, is incompatible with the class names D or N , which are likewise
values of the attribute Category. However since the class name is merely an
identifier, what is of relevance here are the attributes or values to be inherited.
Those are the ones that follow the vertical line “|”.

One should note here that languages differ from each other with respect to
their attributes and values for nominal features. There are languages which do
not specify gender, while others do not distinguish in number. They have an-
other, or a reduced set of nominal features at their disposal. Nonetheless they
follow the same principle of feature distribution. This cannot be expressed
by the abstract class NOUNPROPERTIES. Even there, modelling is far too lan-
guage specific. We therefore refer to the principle of interface classes. Interface
classes are surrogates for classes which are to be defined at a later stage. When
defined they overwrite the interface classes. Such classes are located at the end
of the module hierarchy. Consequently interface classes are initially empty and
in course of a derivation process, implement the full functionality of a new
class – by overwriting the empty interface-class – cf. polymorphism in modern
object-oriented programming languages.
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2.6 Modularization

Classes are grouped into modules by order of their functional aspects. This
concept is well-known from object oriented languages – in Java for instance
as packages. Inheritance is allowed beyond the borders of a module. For that
purpose the module from which a class is inherited has to be specified. This
is expressed in our notation using a prefix which follows the class name sepa-
rated by a period. Let us assume that the features of Continental Germanic8

languages were described in a module named KG, classes for the German
language – grouped in a Dts9 module – could inherit as follows:

(*Modul Dts.Clm; Klassen des Deutschen; Bearbeiter: JR; 2.02*)

....

CLASS D < KG.Nounproperties;

END;

Class Modules are files ending with a *.clm extension. For each class
module we have a module defining the corresponding methods. The methods
related to the Dts.clm module are defined in the method-specification file
Dts.Msp.

Parent classes are always defined at the beginning of the declaration, be
it the same module or a previously defined module. This way, class and mod-
ule hierarchies of inheritance are created. They enable modelling linguistic
knowledge by order of typological or genealogical criteria. Since hierarchies of
inheritance express specialization it conversely is also true, that they imply
generalization. This can be depicted as a directed graph, which originates in a
module expressing universal grammatical properties – labelled appropriately
by a UG prefix, as shown in the following diagram.10

The diagram shows how the verb is extended by its complement. For dif-
ference in word order it is crucial whether inheritance proceeds from UG.Left
or UG.Right. It goes without saying that UG.Left expresses that complements
stand to the left and UG.Right, that they stand to the right, and that verbs
in specific languages either inherit from UG.Left or UG.Right. Continental
Germanic languages inherit from UG.Left and the Romance languages from
UG.Right. As said above, class hierarchies can either reflect genealogical or
typological similarities. Classes for Continental Germanic or Romance lan-
guages express genealogical similarities: When languages such as Turkish or
German fall back on to the common parent class UG.Left, this expresses a
typological similarity.

8The term Kontinentalgermanisch is much more commonly used than its English
equivalent Continental Germanic. As long as we speak of grammatical features – as
we do here, the term is unproblematic.

9Dts for German. LPS notation has not yet been streamlined. Eventually all
classes, methods and specifications will be abbreviated in English.

10I would like to thank Knud Möller for kindly allowing me to use this diagram
from his thesis.
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Fig. 6. LPS typological hierarchy in UML.

The example of case assignment shows how linguistic knowledge is de-
ployed in the process of structure generation. As defined in the X-bar schema
non-maximal nodes can project. Via projection, they constitute hypothetical
parent nodes; such a hypothetical parent node can be considered as proven if
at least one of its methods has been proven and when none of the methods
returns false.

For computational linguistic processing it is however more suitable to carry
out tests after any form of generation, i.e. after every projection stage. Such
an approach enables hypotheses to be verified or disproved at an early stage.
This is necessary, due to the unrestrictive nature of the X-bar schema, hence
leading, as a consequence to overgeneration. Consequently, if they were not
checked and rejected after every projection, numerous structures would be
produced – this overgeneration is obviously neither efficient, nor is it cog-
nitively plausible. In the model described here, the projection mechanism is
embedded in a strongly-modified form of a Marcus parser [18].

Early local licensing of potentially over generated structures is also suitable
for optimising language processing systems. This will be demonstrated in the
following section.

3 Competition and Licensing

There are many causes of overgeneration. For instance, a projecting node
can adopt various maximum projections as potential sibling nodes. It is also
possible for the node to take an empty element as a sibling, i.e. a connec-
tor whose binding element is also part of another (partial) structure. Lexical
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entries with multiple meanings also contribute to overgeneration11 It is im-
portant to remember that a projecting node can have a sibling, but does not
necessarily have to. The processing system makes decisions in each of these
cases. One should keep in mind, however, that the decisions made, based on
considerations at the local level may be incorrect or sub-optimal on the global
level.

A two-step strategy can be used to solve this problem. The first step of
this strategy involves the principle of local licensing. The licensing is modified
so that none of the applied methods can return false, and focusses instead
on the sum of the individual results of each hypothetical configuration (from
projecting nodes, from parent nodes, and in some cases, from selected sibling
nodes). The configuration with the greatest number of methods that have
returned true (and has not returned any false) wins the trial configuration
competition.

This leads to local optimization: the best choice is selected from several
positive hypotheses for the construction of a partial structure. Since not all
information on structural relationships in trees is available at the local level,
the local optimization cannot guarantee a global optimization. A more likely
scenario is that a sub-optimal local hypothesis will create the conditions neces-
sary for a better (global) solution at some later point. Yet not all sub-optimal
local hypotheses should be considered at that later point. This would be at
odds with efficient and principally deterministic linguistic processing.

Therefore sub-optimal alternatives come into play only when structure
assembly later fails. Garden path sentences are good examples for this. Hu-
mans are able to analyze them, albeit with some difficulty and time spent
in the process. Such sentences cannot be analyzed with strictly deterministic
processing systems. We can however use the following strategy. Positive, but
sub-optimal configuration hypotheses are not discarded, but rather kept in a
memory stack. If it turns out that the analysis of an input sentence cannot
be completed, the system resets the structure built up to that point. The
system then selects the sub-optimal configuration for further processing. If it
too is unsuccessful, then a possibly even worse configuration is next in line.
If there is none, then the system resets itself one step further back. When
resetting, the system always accesses the topmost element of the alternatives
stack; accessing these naturally removes them from the stack.

4 Licensing and Performance

Formal grammars postulate idealized speakers. They are the basis for com-
petence models. Variation is explained as a problem of performance and is
neglected in linguistic description. Yet linguistic reality cannot be modelled
in this manner. Remarkably, communication works even when the grammat-
icality of a linguistic utterance is doubtful or entirely lacking. It is precisely

11Lexical transfer is described in detail in [22].
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on this point that formal and natural languages differ. Formal languages, e.g.
programming languages, are encoded entirely syntactically and need only syn-
tactic rules for their analysis, without exception. Relying on anything other
than syntactic knowledge is not necessary. Formal languages’ syntactic rigid-
ity blocks any intrinsic evolution. In light of the parallel development of for-
malisms into programming languages and into natural languages, it is easy to
assume that the abstraction required by a rigid notion of competence is much
less a virtue as it is a necessity born of the notion of grammar sketched in
section 2 on page 305.

For practical work in computational linguistics, determining strategies for
performance-related licensing will prove to be useful. Two approaches should
be considered for the system described here.

• The first approach operates within the sources of knowledge organized in
modules and classes that have been hitherto described. The goal was local
optimization via the summation of the method results of a node hypothesis
configuration. A hypothesis is considered incorrect if a required method
returns false. If it is not possible to assemble a syntactic structure due
to the linguistic material being analyzed, then the method conditions can
be relaxed. One possibility is to reduce a required method to an optional
one. Required methods that return false cause a configuration hypothesis
to fail; if these methods are marked as optional, then the hypothesis will
not fail.

• The second approach in linguistic processing takes advantage of persistent
knowledge. Here, natural communication serves as a model. Each com-
munication participant possesses persistent linguistic and extralinguistic
knowledge from which inferences are made and which is used to complete
partial utterances. Linguistic knowledge and extralinguistic knowledge are
encoded in tree structures. Together they form a knowledge base which
may be consulted by the system. This knowledge base differs from trans-
lation memories in that we are not storing strings but tree structures.
Extralinguistic knowledge is also described using language (language is al-
ready known to play an excellent role in the production, organization, and
distribution of knowledge). Thus computers are enabled to know about
what they communicate in an approximately similar way as humans.

The path we have followed here is simple to put into practice. Linguistic
and extralinguistic information within language is encoded as tree-structures.
These tree-structures are then stored as XML. This is useful because in this
way the two-dimensional graphic representation of tree-structures is reduced
by one dimension. Since one-dimensional structures can be treated as charac-
ter strings, the problem before us can be dealt with as a character sequence
comparison. The character sequences from persistent data are then compared
to the character sequences that were extracted through linguistic processing
and partial trees.
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The Levenshtein algorithm [16] provides a proven method for soft matching
when dealing with the comparison of character sequences (here we are dealing
with tree-structures that have been transformed into character sequences).
The Levenshtein algorithm provides a measurement of variance or similarity
of character sequences. It can be used to find an optimal persistent structure
for a given partial structure. If the variance remains within a predefined range,
the matched structure can then be used as a model for the continued assembly
of the partial structure.

Due to built-in predicates in the Prolog interpreter developed for LPS,
soft matching with the Levenshtein algorithm is tied into the mechanism for
processing methods described above.

Finally one must ask whether this approach makes the traditional genera-
tive concept of competence obsolete. The answer is negative. The application
domain of the concept of competence is simply shifted: it no longer serves to li-
cense structures from the domain of performance, but rather it licences those
from the domain of persistent knowledge. In principle, this involves a sim-
ple change in direction. Licensing structures on the basis of performance was
a short circuit, mainly the fault of computational linguistics. Licensing deals
with competence, a form of persistent knowledge. Grammaticality judgements
are binary: structures are either acceptable or unacceptable. When applied to
performance, the Levenshtein algorithm shows the extent of variance. This is
how it assures communicative success for variant utterances.
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1 Introduction

In modern language processing systems like Machine Translation (MT), In-
formation Extraction (IE) or Information Retrieval (IR) systems, the classifi-
cation of texts and the a priori declaration of the domain of a particular text
may help to optimize the system’s performance.1 However, in the future, in
most of these systems the identification of text type and text classification may
be done by statistical methods in combination with some structural analysis
(tagging, parsing, lemmatization).2 It may be interesting to see whether there
are structural indicators for particular classes of texts as has been postulated
by previous discourse theories. Statistical methods primarily use characteris-
tics of the vocabulary of a text like the conditional probability that a certain
element belongs to a certain class, neighbourhood measure or entropy etc.,
in order to identify the most probable class or domain of a text. These tools
operate so much better when a text contains special terminology or special lan-
guage. They do not use any structural criteria, which are – from the linguist’s
point of view – most interesting and relevant for a typological classification.
It seems, however, that up to now we have relatively poor knowledge of these
characteristic differences and structural similarities of texts and registers (cf.
Biber et al. [2, p. 106]). This could only be explored by an exhaustive and
multidimensional exploration of large text corpora [2]. The reason why up to
now such explorations are not yet available is that we do not have enough
really sufficiently working tools for automatic structural analysis.

Given this situation, the aim of this paper is to combine a vocabulary ap-
proach with a structural approach, i.e. to find out whether there are functional

∗This work was supported by Korea Research Foundation Grant (KRF-2004-
042-A00091)

1E.g. the ‘semantic domain recognizer’ of the Systran MT-system.
2For more details see Brückner [4], where the relevant statistical methods for

text classification are briefly introduced.
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words which may serve as structural operators and indicators for typical text
structures and text types.

The more restricted question is whether there are elements which indi-
cate particular argumentative structures or other sequences of speech acts
which are characteristic for descriptive or narrative or argumentative texts
(cf. van Dijk [10, p. 128ff.]). A preceding study exploring the German Limas
Corpus (www.ikp.uni-bonn.de/Limas/index.htm) already concluded firstly
that the frequency of single argumentative operators like weil and denn is not
high enough to be used for the identification of arguments and secondly that
it could be worthwhile to consider a greater number and more varied types of
structural operators. Consequently it first seems to be necessary to consider
a much bigger set of possible argumentative operators, e.g. all German con-
junctions with a causal and consecutive function which have to be examined
with respect to their distribution in a large text corpus, and, moreover, in
different types of texts. As a further approach, in this paper we extended the
exploration to a few more operators. A more exact and exhaustive elabora-
tion must be reserved for a later occasion. The empirical basis again is the
German Limas Corpus which was constructed as a representative corpus for
the German of 1970 and which contains an elaborated classification of 33 text
domains and branches.

As a result of this study we do not expect that the chance to use func-
tion words as indicators for particular text types really exists. We expect
it to become clearer that only an exhaustive analysis of complex sentences
and their interconnection in discourse can give sufficient information for their
typological classification and comparison.

The paper is divided into three parts: First, in order to fix the position of
this study we discuss several approaches of texts classification. In the second
part we present the method of investigation, i.e. the corpus data and their
characteristics and the tools. The third part presents some preliminary re-
sults. As a conclusion, we summarize what the benefits of this study and its
consequences for further analysis are.

2 Aspects of Text Classification

The type of classification which is done by the afore mentioned automatic sy-
stems leads to a domain oriented characterization and could be called thematic
classification. There are other more theoretical approaches which classify texts
according to different dimensions, e.g. their function in a communicative con-
text or its linguistic structure. There is no doubt that an outline of the state
of the art in this area would require a volume of handbook size. This study
therefore starts with a very simple assumption, that there are three general
dimensions which are used to classify texts from different points of view:3

3In German linguistics these approaches are elaborated in detail e.g. by Brinker
[3].
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The first dimension concerns the thematic view and allows a classification
of texts according to their particular domain or their specific purpose. This
is the point of view which is predominant in currently existing computational
linguistic systems (see above).

The second dimension is the communicative or functional dimension. From
a functional perspective a text as a complex speech act has a particular func-
tion according to its predominant usage in communicative acts or commu-
nicative situations. E.g. Brinker distinguishes four types of texts according to
four basic communicative functions: (a) informative texts (news, reports, spe-
cialized books, reviews), (b) appellative texts like advertising, commentaries,
proposals, petitions etc., (c) texts which involve or constitute an obligation
like a contract, a warranty etc., and (d) texts which serve to establish or care
for contacts like thank-you letters or letters of condolence ([3], 107 ff).

The third dimension is concerned with the general internal text structure
and allows the classifying of a text as a certain type of discourse. According to
van Dijk [10] in this dimension are just three global textual structures, namely
narrative, argumentative and descriptive structures. This distinction has been
adopted by de Beaugrande & Dressler [5], who also distinguish between de-
scriptive, narrative and argumentative texts (loc. cit. p. 190). According to
this theory, the function of a descriptive text is to add knowledge about an
isolated object or situation to that which is already known about objects and
situations. Narrative texts on the other side describe certain events or actions
which proceed in time, the different states of an event and the changes be-
tween these states. Argumentative texts, finally, are those texts which operate
with certain types of logical relations between sentences like claim, conclusion,
condition etc. in order to convince a person or to make a person sure about a
certain fact. Of course, in reality none of these ‘types’ occurs in a pure form,
but as a mixture with others [5, p. 191]. Brinker, in correspondence to his
functional classification of texts, differentiates between descriptive, narrative,
explicative and argumentative progress of topics in texts (loc. cit. p. 131f.).

A possible fourth approach to text classification comes from a sociolo-
gical point of view which tries to classify texts into different ‘registers’ ac-
cording to their characteristics in speech and writing coming from certain
social conditions like profession, social status or age. For instance, [2, loc.
cit.] distinguishes between Academic Prose, Official Documents, Conversa-
tions, Prepared Speech etc. This typology is similar in its intention as the
above mentioned second dimension, the characterization of texts according to
functional criteria.

A final remark concerns languages for specific purposes (in German Fach-
sprachen). These are languages which use a specific vocabulary or terminolo-
gy, and the domain of these texts can easily be detected by looking up this
particular vocabulary.

Since the aim of this paper is to study structural characteristics, it belongs
to the third dimension. It should be pointed out whether there are particular
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Table 1. Domains of the LIMAS-Corpus.

1) Allgemeines 14) Volkskunde, Völkerkunde 30) Hauswirtschaft
2) Religion 15) Geographie, Reisen 31) Sport
3) Philosophie 16) Naturwissenschaften 32) Spiel, Unterhaltung
4) Psychologie 17) Astronomie, Geodäsie 33) Belletristik
5) Kultur 18) Physik
6) Recht 19) Chemie
7) Politik, Verwaltung 20) Geologie, Mineralogie
8) Gesellschaft 21) Meteorologie
9) Wirtschaft 22) Biologie
10) Sprache 23) Botanik
11) Literatur 24) Botanik
12) Bildende Kunst, 25) Anthropologie

Musik, Theater, 26) Medizin
Tanz, Film, 27) Mathematik
Rundfunk 28) Technik

13) Geschichte 29) Land- und Forstwissenschaft

functional words which can be seen as operators indicating argumentative
structures.

The following paragraphs will show how far the investigated corpus meets
the requirements of such a study.

3 Method of Investigation

The description of a particular text type or register in comparison to other
text types or registers requires as many linguistic features as possible. Biber
et al. [2] point out, that “[. . . ] register studies based on a few, selected lin-
guistic features do not provide comprehensive register descriptions, and gene-
ralisations based on such studies are likely to be inaccurate” (136). Moreover,
“comprehensive register studies have three important requirements: inclusion
of a large number of texts, consideration of a wide range of linguistic charac-
teristics, and comparison across registers” (136). Keeping this in mind, the
aim of this paper is not to find this recommended complete set of ‘linguistic
characteristics’ or to indicate what the structural differences between texts in
law or literature are, but to demonstrate to what extend the statistical distri-
bution of conjunctions (understood as argumentative operators) are able to
separate text types, e.g. narrative texts on the one and argumentative texts
on the other side.

3.1 The Corpus and its Text Types

The LIMAS-Corpus has been collected in the early 70th under very simple
pragmatic conditions and considering the problem of text types in a very



The Surface of Argumentation 327

Table 2. Domain 6: Recht (law) with subdivisions.

06.0 RECHT
06.1 PRESSE
06.2 BUECHER UND PERIODIKA
06.21 INLAENDISCHES RECHT
06.211 GESETZE UND ENTSCHEIDUNGEN
06.212 FALLSAMMLUNGEN
06.213 KOMMENTARE UND MONOGRAPHIEN
06.22 AUSLAENDISCHES RECHT UND VOELKERRECHT
06.31 KRIMINOLOGIE

trivial manner. Nevertheless we are able to identify the above described three
typological dimensions:

• The first dimension is represented by a distinct relation of each of the 500
texts to one of 33 domains (table 1). Each of these domains represents
a thematically homogeneous set of texts, each text has a standardized
length of about 2000 running words. The 33 domains were taken from the
classification system of the German National Bibliography.

• The second, i.e. the functional dimension can be found in some subdo-
mains into which the domains are divided. Unfortunately this subdivision
has been made in a very non-homogenous way. Some of the domains are
subdivided in ‘Presse’ and ‘Bücher and Periodika’, and these are again
subdivided into different subdomains, others are subdivided according to
some prominent subjects of the intended text type. Tables (2) and (3) show
some of these subdivisions. Because of its in-homogeneity this characte-
rization of subdomains is only of a limited value for this study (and for
others as well). It may be that groups like Presse and Bücher and Periodika
from a functional point of view are of a certain value but unfortunately
this could not be elaborated in this study.

• Finally the third dimension is represented implicitly in those domains in
which a particular type of discourse structure, narrative, argumentative
or descriptive, is obviously predominant. This is the case with Belles Let-
tres (Belletristik), Law (Recht) and Sciences (Naturwissenschaften). In
the LIMAS-Corpus these fields are filled with by the following amounts
of texts: domain 6, Law: 21 texts; domains 16 to 27, Sciences: 51 texts;
domain 33, Belles-Lettres : 60 texts.

The leading hypothesis for the following is that in some of these sets a
characteristic discourse structure can be found and verified from surface cha-
racteristics like frequency of particular elements and their co-occurrence. The
immediate goal is to find those characteristics for argumentative structures.

From a methodical point of view, the first step of this study concerns the
complete inspection of the corpus in order to obtain a general overview of
the frequency of certain structural operators. As a second step, from the list,
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Table 3. Domain 8: Gesellschaft (society) with subdivisions.

08.0 GESELLSCHAFT
08.1 PRESSE
08.11 SEX
08.12 VERBRECHEN
08.13 KLATSCH
08.14 JUGEND
08.15 WERKZEITUNG
08.16 HOROSKOPE
08.2 BUECHER UND PERIODIKA
08.21 ARBEITUNDSOZIALES
08.22 SOZIOLOGIE

those which do not have the potential for an interesting result are identified
and excluded from the study (see 4.3). In a third step the frequency and oc-
currences of the remaining operators were extracted from the three mentioned
domains (Law, Belles-Lettres, Sciences) in order to find out whether there are
typical indicators for their intended discourse structure.

3.2 Tools

Most of the textual explorations in this study have been done by the Word-
Smith-Tools which allow easy compilation of concordances, frequency lists,
co-occurrence patterns, type-token ratio, etc. In particular the conjunctions
consisting of more than one part (cf. 4.2) could be identified with the co-
occurrence tool. Several additional programming has been done with Perl-
Scripts on the basis of the completely XML-annotated corpus.4

4 Results

4.1 Conjunctions and their Distribution in the Corpus

As has been pointed out at the beginning, the aim of this paper is to explore
whether there are operators in texts which are typical for particular text types
and which allow a classification of a text according to a specific classification
system. What we have in mind are those operators which indicate argumen-
tative structures, i.e. which combine sentences playing a certain role as parts
of an argument, like claims, conditions and concessive phrases.5 It has often
been argued that these operators can be found in the vocabulary in the word

4I am grateful to Shu-Ju Lee who wrote several of these scripts and made some
statistical surveys.

5These according to the basic essay in argumentation theory by Toulmin [9] are
the main components of an argumentative structure.
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Table 4. Coordinating conjunctions (Erben [7]).

copulative: und (29023); sowohl (202) - als auch (145); nicht nur(460)
- sondern auch (169); weder - noch (153)

succession: und (29023); und zwar (179); und auch (11); sowie(456)

contrast: oder (4072); oder auch (79 [oder . . . auch (137)8] ); entweder
(124) - oder9; aber (3210); hingegen (56); indessen (33);
als (6531); denn (791); jedoch (813); doch (1029); allein
(369); nur (3569); allerdings (393), freilich (142); wenig-
stens (118); zumindest (104); sondern (1059); vielmehr
(187)

causal: denn (791); nämlich (304); daher (403); deshalb (411);
darum (162); infolgedessen (18); also (960); folglich (16);
mithin (36); (und) somit (130)

class ‘conjunctions’. In accordance with the already mentioned preceding ex-
ploration for this study a list of German conjunctions is used which has been
extracted from the grammar of [7].6 This list is divided into two parts, the
coordinating conjunctions and the subordinating conjunctions. The tables (4)
and (5) list these conjunctions together with their absolute frequency in the
corpus.7

4.2 Simple and Compound Conjunctions

As can be seen from these lists, several conjunctions consist of simply one
word; we call them simple conjunctions. The others which contain more than
one element, like wenn auch, auch wenn, und wenn, angenommen (dass), im
Falle dass etc., are named compound conjunctions. With a few exceptions
(auch wenn, wenn auch, im Falle dass, vorausgesetzt dass) they are discon-
tinuous because several other words, even whole sentences, can be embedded
within them. This fact has some consequences for the certainty of their identi-
fication by means of co-occurrence patterns (cf. 4.4). The indicated frequency

6A result of this study is that the German grammar by Engel [6] would be a
more suitable basis for studies like this because this grammar is more oriented to
the description of discourse types and structures. Engel, instead of one single but
subdivided class of ‘conjunctions’ has two classes called ‘subjunctors’ and ‘conjunc-
tors’, which both function for interconnecting sentences. Engel also presents not
only a list of these types of conjunctions and of their individual readings, he also
discusses their function in the construction of complex sentences and phrases (cf.
Engel [6], § S 097 ff.).

7Frequencies of compound conjunctions have been extracted by the co-occurren-
ce tool of WordSmith.

8In this case, just to show how it works, the numbers in square brackets show
the occurrences of ‘oder. . . auch’ with up to 5 other words between them.

9entweder occurs in the corpus twice without a succeeding oder and again twice
with succeeding aber auch.
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Table 5. Subordinating conjunctions (Erben [7]).

local: wo (479), woher (33), wohin (32), soweit (188)

temporal: als (6531); wie (4021); solange (81); während (709); nachdem (181);
seitdem (35); sobald (64); sowie (456); wenn (2609); bis (1798);
bevor (88); ehe (145)

causal: concessive: obgleich (25); obschon (8); obwohl (180);
trotzdem (103); ungeachtet (14); wenn
auch (108); auch wenn (72); und wenn
(72); wenngleich (21); wennschon (0);
wiewohl (5)

conditional: falls (67); wenn (2609); so (3838); sofern
71); wo (479); wofern (0); angenommen
(dass) (87); im Falle dass (0); vorausge-
setzt (dass) (38)

causal: da (1271), deswegen (44), weil (781)
final: damit (992); (auf) dass (1); um - zu (>

700)
consecutive: (so) dass (272); weshalb (39); weswegen

(1); ohne dass (78); als dass(16)

modal: comparison: wie (4021); als wenn (17); als ob (45)
contrast (adversativ): während (709), derweil (3); indes (35); in-

dessen(35); wohingegen (0)
degree: so dass (272); seit (539); soviel (43); desto

(40); je desto (24); je nachdem (9)
circumstances: indem (198), dadurch dass (121)

in this list is only a tentative one because it has been identified by simple au-
tomatic methods, through the exploration of co-occurrence lists. Only a few
of them, namely some occurrences of wenn are discussed later.

4.3 Subclasses

From the list of coordinating conjunctions (table 4) it is easy to conclude that
there are candidates (like oder, aber, als, denn, nämlich, also etc.) for successful
further analysis of their argumentative function. Unfortunately some of these
conjunctions are compound, others are ambiguous, and therefore this group
requires a careful lexical and syntactical analysis, before their function in
discourse can be investigated. Since up to now this analysis can not be done
automatically, for the current study we leave this group aside.

Although this is also true for the subordinating conjunctions, this group
(table 5) should be taken into further consideration. This group can be clas-
sified according to their frequency and ambiguity into the following three
subclasses:

A first subclass contains those subordinating conjunctions which occur
with a relative frequency less than one per text or which occur occasionally
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Table 6. Rare conjunctions and their distribution in texts.

conj Total freq. > 4 4 3 2 1

conditional
falls 67 1 2 1 6 57×
angenommen
(verb:79) conj.: 8

8 2 (121) 6×

vorausgesetzt
(dass)

38 1 (121) 6 23

weshalb 35 1 (496) 4 30×

concessive
obgleich obschon
obwohl

214(26, 8, 180) 1 10 30 73×

trotzdem 103; adv.: 101, conj.: 2 2
deswegen 44 5 38

with a frequency of 1 or 2 in different texts. These are woher (33), wohin (32),
soweit (188), solange (81), seitdem (35), sobald (64), bevor (88), ungeachtet
(14), wenngleich (21), wennschon (0), wiewohl (5), sofern (71), wofern (0);
weswegen (1), während (709), derweil (3), indes (35), indessen (35), wohinge-
gen (0), seit (539), soviel (43), desto (40).

A second subclass contains those which have a very low total frequency
but which occur in one or a few particular texts with a higher frequency and
together with other conjunctions. In these cases they may be relevant as indi-
cators for certain structural phenomena. Examples of these probably are falls
with a total frequency of 67, occurring 5 times in one text, 4 times in two, 3
times in 1 and 2 times in 6 texts, angenommen (dass), in its conditional sense,
which has a total frequency of 8 (the other 79 occurrences are inflexional forms
of the verb nehmen; two of these occur in one text, together with vorausgesetzt
(dass)). This clearly characterizes the underlying text as formal argumenta-
tion which is usual in sciences like mathematics and formal logic. In this
case the underlying text (no. 121) is from domain 27 (mathematics) and its
topic is a very special mathematical problem (Tschebyscheff-Approximation)
which is demonstrated by means of many formula (line 217/218: “Angenom-
men, für (Formel) sei (Formel). Dann ist (Formel) für alle (Formel) und
damit (Formel) für alle (Formel)”. A few other conjunctions belonging to
this group are wo, ehe, nachdem, sowie, seit, indem, je desto, je nachdem,
dadurch dass. Concerning future studies this group becomes more relevant if
conjunctions with the same or a similar function like obgleich, obschon, obwohl
or wenn and falls are taken (in a tagged corpus) as one unique functionally
defined element (cf. section 5 ‘conclusion’).

The third group contains those conjunctions which occur with a relatively
high frequency and a relatively in-homogeneous distribution across the corpus.
These are als, wie, während, bis, um-zu, so/so dass, da, wenn, weil and damit.
From this group five conjunctions, so/so dass, da, wenn, weil and damit have
been selected to show their distribution over the corpus (cf. table 7). The
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Table 7. Most frequent subordinating conjunctions and their distribution in texts.

Conj. total freq. per text >5 10 >4 >3 >2 >1 <1

so/so dass 3838/272 7.7 57 49 92 124 122 47

da 1271 2.5 4 3 15 25 157 196

wenn 2611 11 3.0 24 20 57 88 174 109

weil 781 1.6 0 2 8 24 82 204

damit 952 1.9 0 0 4 18 126 254

Table 8. Remaining conjunctions and their ambiguity.

so da wenn 2611 weil damit

Adv. Conj. causal conditional 1518 Conj.
causal

conj.
final

Conj. concessive temporal temporal 790 adv.

conditional = falls Adv. local concessive 274

consecutive = so dass, temporal wish/desire 7
sodas

Part. confirming, modal comparisons 22
expressing
uncertainty

others are not taken into account because obviously in most cases they show
a temporal reading and their frequency exceeds the intended size of this study.

With the exception of weil, these five conjunctions are ambiguous as spec-
ified in table (8). From these only wenn will be taken into further consider-
ation. Therefore this conjunction has been disambiguated manually into its
main functional readings.

4.4 Distribution of Conjunctions in Different Text Domains

The next step is to show how these conjunctions are distributed in different
types of texts. For this reason the texts of three domains have been selected
which seem to be relatively homogeneous: Law, containing 21 texts; Sciences,
containing 51 texts and Belles-Lettres, containing 60 texts.

10The numbers in table 7 represent the frequency of one conjunction per 1000
running words. E.g., the conjunction so occurs more than 5 times per 1000 running
word in 57 texts, 4 times per 1000 running words in 49 texts etc.

11Total frequency in 500 texts including orthographical variants like wenn’s,
wenns.
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Table 9. Frequencies of conjunctions in three domains.

number
of
texts

wenn so da weil damit
abs. per

text
abs. per

text
abs. per

text
abs. per

text
abs. per

text

law 21 190 9.04 146 6.95 44 2.09 38 1.80 41 1.95

sciences 51 190 3.70 421 8.25 157 3.07 38 0.74 114 2.23

belles-
lettres

60 447 7.45 598 9.96 324 5.4 150 2.5 74 1.23

The absolute and relative frequencies of the remaining conjunctions in
these groups are shown in table (9).

These numbers are relatively less evident because of the remaining am-
biguity which has to be resolved before further analysis. Only for wenn has
this ambiguity resolution been done (cf. table 8) and leads to an interesting
perspective: wenn occurs relatively often in legal texts (9.04 times), similarly
in belles-lettres (7.45 times)12, and with a relatively low frequency of 3.7 in
Sciences. With regard to the ambiguity of wenn, the hypothesis is that wenn in
legal texts in which the argumentative superstructure is predominant13 occurs
mainly in the conditional and concessive sense, and in belles-lettres mainly
in its temporal sense. Even by a very rough disambiguation, this hypothesis
could be confirmed.

This is not surprising, but it is interesting that the disambiguation of
wenn in these two domains can be supported by characteristic collocations
with other functional words like dann, auch, aber, oder, nur, nicht, und and
also which can be used as reliable indicators for the particular reading of the
conjunction and which possibly could facilitate its automatic disambiguation.
Though concessive sense is dominant in the composition und - wenn, auch -
wenn and conditional sense is indicated by occurrences of dann - wenn, aber
- wenn, oder - wenn, nur - wenn, nicht - wenn.

Since the concessive and conditional readings are also characteristic for
argumentation these compound conjunctions are qualified as indicators for
(argumentative) legal texts. They express a strengthening or a restriction of
the intended condition and in most cases they are in accordance with common
language use. There is no significant indicator wenn for science. Of course,
there are also occurrences of wenn in its temporal sense, as can be illustrated
by an example from text 289: “Ist es ‘kühn’, wenn Juristen endlich auf Uhr
und Kalender blicken?”

12This corresponds with weil which also seems to be more frequent in law and
belles-lettres than in sciences.

13Legal texts often have been taken as outstanding instance of argumentative
discourse (cf. Toulmin [9]).
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Table 10. Absolute and relative frequencies for wenn and its collocates.

Sciences Law Belles-lettres
(51 texts) (21 texts) (60 texts)
190 occ.=3,7
per text

190 occ.=9,04
per text

447 occ.=7,45
per text

5L/5R 10L/10/R 5L/5R 10L/10/R 5L/5R 10L/10/R

dann-wenn 22 0,43 29 0,57 32 1,52 37 1,76 14 0,23 20 0,33
wenn-dann 0 0, 5 0,1 0 0 1 0,05 4 0,11 28 0,47

auch-wenn 14 0,27 18 0,35 16 0,76 20 0,95 18 0,3 31 0,52
wenn-auch 6 0,12 9 0,18 10 0,48 12 0,57 15 0,1 12 0,20

aber-wenn 0 0 4 0,08 3 0,14 7 0,33 19 0,3 31 0,52
wenn-aber 0 0 3 0,06 2 0,09 2 0,09 3 0,07 7 0,12

oder-wenn 4 0,08 4 0,08 5 0,24 7 0,33 6 0,1 16 0,27
wenn-oder 4 0,08 9 0,18 0 0 7 0,33 4 0,08 16 0,27

nur-wenn 6 0,12 12 0,24 14 0,67 18 0,86 10 0,16 12 0,20
wenn-nur 7 0,14 8 0,16 2 0,09 3 0,14 8 0,15 15 0,25

nicht-wenn 9 0,18 10 0,20 12 0,57 21 1,0 22 0,33 35 0,58
wenn-nicht 8 0,16 12 0,24 18 0,86 26 1,24 34 0,55 58 0,97

und-wenn 11 0,21 28 0,55 5 0.24 20 0,95 47 0,71 97 1,62
wenn-und 19 0,37 32 0,63 5 0,24 23 1,10 23 0,47 67 1,12

also-wenn 3 0,06 5 0,10 0 0 0 0 6 0,1 12 0,20
wenn-also 3 0,06 3 0,06 0 0 0 0 1 0 1 0,02

115 191 124 205 224 458

On the other side, und wenn seems to be more characteristic for narrative
texts, where of course also other compound conjunctions like nicht - wenn,
dann - wenn etc. occur.

Finally, in many cases, including in argumentative and in narrative texts,
wenn simultaneously involves the two main components, the temporal and the
conditional.

The co-occurrence patterns of wenn for an environment of 5 resp. 10 words
before and after the keyword have been compiled in table (10). Only those
collocations with a min. occurrence of 5 in the environment are mentioned.

It may be interesting that only auch - wenn and und - wenn occurs in
immediate environment (1L/1R) with a reasonable frequency (table 11).

With regard to the interpretation of these tables it seems that in the
5L/5R environment in sciences and law wenn co-occurs relatively often with
other particles like nur, nicht, dann, aber, etc., between 60% and 70%, and in
belles-lettres around 50%. But it is important to consider that this conclusion
could be incorrect because even a span of 5 words between the collocations
may exceed the boundaries of sentences or phrases. This becomes more obvi-
ous the more the span increases: For a span of ten words between collocates
(10L/10R) the number of co-occurrences exceeds the number of occurrences
of the keyword (see table 10). An illustrative example for this can be found in
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Table 11. Co-occurrences of wenn in immediate environment (1L/1R).

Sciences Law Belles-lettres

auch-wenn 7 0,14 4 0,19 11 0,18
wenn-auch 9 0,18 6 1,28 9 0,15

aber-wenn 0 0 13 0,21
wenn-aber 0 1 0

und-wenn 0 0 22 0,37
wenn-und 0 1 1

text No. 219 (belles-lettres), Z. 85ff.14, where wenn co-occurs with nicht and
dann in different sentences:

| Z 083 . . . . Ich finde ja, wenn man alles so an sich

| Z 083 vorbeipassieren läßt, man wird dann. Ich meine, im Laufe der

| Z 084 Zeit. Die Zeit ist ja. Die Zeit. Also eine Minute zum

| Z 085 Beispiel. Wenn man eine Uhr hat, nicht wahr, dann ist eine

| Z 086 Minute ziemlich lang. Wenn Sie keine Uhr haben und auf einem

| Z 087 Sockel stehen, dann. Auch die Menschen.

Future studies have to avoid this by using more sophisticated methods
which restrict the ‘horizons’ of co-occurrences to the sentence level.

5 Conclusion

The basic idea of this study was that there are characteristic indicators on the
surface level which allow the classification of a text according to its particular
discourse type (argumentative, descriptive or narrative) and which are availa-
ble by quantitative methods. Although it was clear from the beginning that,
in order to answer this question, many linguistic features are to be considered,
we restricted the study to subordinating conjunctions, to get ready in time.

With these – and some additional – restrictions the results are not more
than only a certain kind of interim report. It should have become clear that the
investigation of the functional role of conjunctions in concrete texts requires
much more detailed linguistic analysis, including a careful and exact disam-
biguation. For argumentative texts it can be expected that the frequency of
causal and conditional conjunctions is not that high as was hoped originally,
and that means that other structural characteristics must be used, like the-
matic progression or the general temporal structure of a text (cf. Lenders [8]).
But it seems to be plausible that particular senses of conjunctions correspond
with particular discourse types.

As could be demonstrated by an exploration of the occurrences of wenn
this conjunction has a relatively high total frequency, but distributed to at

14From: Martin Walser: Aus dem Wortschatz unserer Kämpfe. Szenen. Stierstadt/
Taunus: Verlag Eremiten-Presse, 1971.
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least four different senses. Wenn in its conditional sense seems to be charac-
teristic for law texts, in its temporal sense for narrative texts. With regard to
the chances of an automatic disambiguation, it doesn’t seem to be possible
to find contextual criteria for all, but there are indicators that some conjunc-
tional senses may be differentiated by means of certain regularities in their
collocational environment.

These observations lead to the idea of a more elaborated study. A first
recommendation for such a study is that it doesn’t seem worthwhile inve-
stigating only single conjunctions, but sets of conjunctions which have the
same or similar function. Therefore we first have to consider what sets of
conjunctions according to their function, are candidates for indicators e.g. for
argumentative (or narrative) superstructures. As can be easily extracted from
the excellent German Grammar by Engel [6] a few functionally defined sets
of conjunctions could be specified, like the concessive set (including wenn-
auch, wenn-schon, wiewohl, trotzdem, sowenig, so, obwohl, obgleich, obschon,
obzwar), the conditional set (including falls, im Falle, wenn, so, sofern), the
adversativ (während, wohingegen), and the causal set (weil, da) etc. These
sets should also include the relatively rare compound conjunctions like vo-
rausgesetzt dass, angenommen dass etc.

A second obvious recommendation is to provide a complete functional
tagging of these ‘candidates’. The different readings have to be disambiguated
before they can be used for the validation of any structural hypothesis, with
the exception of a few unambiguous cases.
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Summary. We discuss the use of some elements of Zadeh’s computing with words
and perceptions paradigms (cf. Zadeh and Kacprzyk [37, 38]) for the formulation
and solution of automatic text document categorization. This problem is constantly
gaining importance and popularity in view of a fast proliferation of textual infor-
mation available on the Internet. The main issues addressed are the document rep-
resentation and classification. The use of fuzzy logic for both problems has already
been quite deeply studied though for the latter, i.e. classification, mainly in a more
general context. Our approach is based mainly on the use of usuality qualification
in the computing with words and perception paradigm that is technically handled
by Zadeh’s classic calculus of linguistically quantified propositions [36]. Moreover,
we employ results related to fuzzy (linguistic) queries in information retrieval, in
particular various interpretations of weights of query terms. The methods developed
are illustrated by example of a well known text corpus.

1 Introduction

This paper presents an attempt at a more explicit use of Zadeh’s computing
with words and perceptions paradigm (cf. Zadeh and Kacprzyk’s [37, 38] vol-
umes) to formulate and solve the problem of text categorization viewed here
as a specific problem class within information retrieval. Basically, the comput-
ing with words and perceptions paradigm tries to grasp the human ability to
effectively represent and process vague and imprecise information. This leads
to the representation of some variables, and relations between them by lin-
guistic expressions rather than by strict numerical values and, e.g., functional
relationships. Moreover, a further processing of such information, notably ag-
gregation, fusion etc., may be done by using flexible operators, exemplified by
linguistic quantifiers.

Problems encountered in broadly perceived information retrieval (IR, for
short) may be viewed to be calling for such a paradigm as they are charac-
terized by uncertainty (mostly of a probabilistic nature), partial matching,
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incompleteness of queries, a vague concept of relevance, etc. – cf. van Rijsber-
gen [28].

Much research has been done in the application of fuzzy logic in informa-
tion retrieval, cf. [4, 5, 6, 11, 12, 18, 19]. The main issues of text document
representation and their querying have been addressed within this framework.
The use of fuzzy logic related concepts for query structure and interpretation
is especially promising. This is due to the fact that some elements of the
classical IR system interface may be artificially precise and too rigid for a
human user. In addition to the main task of an IR system, i.e., the retrieval
of documents relevant for the user needs, there are many other related tasks.
Among them, quite an important task is that of text document categoriza-
tion. Basically, it boils down to assigning some thematic categories to the
documents. This may be, and often is, done manually which is both costly
and time consuming. However, in case of huge document sets, exemplified
by those available through the Internet, this becomes ineffective and ineffi-
cient. Thus, automatic approaches are more and more often applied. They
are usually based on machine learning techniques.

The problem of text categorization exhibits some imprecision. Even a hu-
man being may be unsure as to a clear-cut classification of a document to just
one category. Moreover, it is quite natural to consider a degree of belonging-
ness to a category. This becomes even more apparent in case of an automatic
classification procedure. We may easily expect that the results of classification
may be ambiguous. Fuzzy logic approaches have proven to be useful in such a
context. We have implemented (cf. Zadrożny et al. [39]) a pilot version of an
Internet oriented IR system featuring some elements of fuzzy logic built into
the user interface and making it more human consistent. Here, we investigate
a possible application of some fuzzy logic related concepts to the very clas-
sification process. Our approach is mainly based on the use of linguistically
quantified propositions in the sense of Zadeh to model some intuitively ap-
pealing rules of classification. Moreover, we adopt results on fuzzy extensions
to the querying language of an IR system proposed by other authors – cf.
[5, 6, 4, 11, 12, 18, 19] since, viewed from a certain perspective, classification
may be treated as a specific querying task in the space other than the original
space of text documents of an IR system.

In Section 2 we overview the main concepts of information retrieval. Sec-
tion 3 presents the essence of Zadeh’s computing with words and perceptions
paradigm, mainly Zadeh’s calculus of linguistically quantified propositions and
the concept of a linguistic variable. Section 4 discusses some known extensions
to the Boolean model of IR. Section 5 discusses text document categorization
and possible approaches to its representation and solution using tools pro-
posed in preceding sections, and describes some computational results.
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2 Information Retrieval: Document Representation
and Query Matching

The most important issues in any IR project are: document representation and
query language. Usually, it is assumed that there exist three main approaches
(models):

• Boolean,
• vector space, and
• probabilistic.

Fuzzy logic based concepts have been so far primarily discussed within the
framework of the two first models, and this is also adopted in this paper. For
a brief description of these models we assume the following notation:

• D = {di}, i = 1, . . . , N – a set of text documents,
• T = {tj}, j = 1, . . . ,M – a set of index terms.

The Boolean model represents a document as a set of terms assigned to it:

di = {tk}, k = 1, . . . ,K, di ∈ D, tk ∈ T (1)

and the representation of documents may be formally expressed via the fol-
lowing function:

F : D × T −→ {0, 1} (2)

In the vector space model a document is represented as a vector:

di = [w1, . . . , wM ], di ∈ AM , A ⊆ R (3)

where each dimension corresponds to an index term and the value of wj

(weight) determines to which extent a term tj ∈ T is essential for the de-
scription of the content of the document. Most often, A = [0, 1] is assumed,
and therefore function F is:

F : D × T −→ [0, 1] (4)

The index terms may be some general concepts describing the content of
documents. In librarian IR systems these are usually carefully selected terms
indicating, e.g., in case of scientific library, the discipline of a book/journal or
keywords for a journal article. In such a case, usually an expensive and time
consuming work of an expert is required to assign index terms. An alternative
approach, popular in case when automatic indexing is needed, is to select some
words that actually appear in a document as its indexing terms. In the litera-
ture there are proposed many forms of function F (4) for this alternative. One
of the most popular is based on the requirement that such a function should
assign to a term (word) tj in a document di a weight directly proportional to
its frequency in this document and inversely proportional to the number of
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documents in which it appears. It may be formalized as a so-called tf × idf
function:

F (di, tj) = (fij/arg max
j

fij) � [log(
N

nj
)/arg max

j
log(

N

nj
)] (5)

where fij is the frequency of term tj in document di, N is the number of
all documents in set (collection) D and nj is a number of documents from
D where term tj appears (document frequency). Thus, the first factor is the
normalized frequency of term (tf , term frequency) tj in document di, while
the second factor is the normalized inverted frequency (idf , inverted document
frequency) in the collection D of documents in which term tj appears at least
once. Other normalization schemes may be employed, too.

In addition to document representation, each classical model also offers a
querying formalism. In the Boolean model the query is a formula in the sense
of propositional calculus. Each term tj is identified with an atomic formula
(proposition), zj . These may be combined using logical connectives, notably
the conjunction and disjunction. Then, such a formula/query is evaluated for
each document as it is done in model theory of propositional calculus. More
precisely, each proposition zj of a query is assigned, with respect to document
di, a truth value true if tj ∈ di and a truth value false in the opposite case.
Then, a document is treated as relevant, i.e., matching the query, if the whole
formula corresponding to the query is true after such an assignment of truth
values to its atomic formulae (propositions). Thus, in the classical Boolean
model the relevance (matching) is a binary concept: a document is relevant
or not, no intermediate situation is possible.

In the vector space model the query takes the form of a vector as in (3),
securing a unified representation of documents and queries. The relevance of a
document has here a gradual character. The matching degree of a query q and
a document d is computed as a similarity sim(d, q) of vectors that represent
them. The most popular similarity measure used is the cosine of both vectors:

sim(d, q) =
∑l

i=1 wiqi
√
∑l

i=1 w2
i ·
√
∑l

i=1 q2
i

(6)

where d = [w1, . . . , wl] and q = [q1, . . . , ql]. Thus, the matching degree is a
number from [0, 1].

Another popular family of similarity measures is based on the notion of
distance in the space of documents, notably the Euclidean distance.

In both models we can distinguish elementary queries, i.e., those referring
to just one term. Formally, they are expressed as atomic formulae (single
propositions) and one-dimensional vectors in the Boolean and vector space
models, respectively. This concept will be useful for our further considerations.

Here we just briefly describe the primary task studied in IR, i.e., the
organization of text documents and their retrieval by matching queries against
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documents. There are many other related tasks considered within IR (for their
discussion as well as for an extensive presentation of the whole domain of IR
cf., e.g., [1, 2, 17, 25]). One of them, text categorization, being a primary
topic of this paper, is discussed more thoroughly in Section 5.

3 The Computing with Words and Perception Paradigm,
and Linguistic Approaches to Information Aggregation
and Representation

Fuzzy logic makes it possible to represent and quantify imprecise information.
This provides for a more flexible information representation and processing
with words and perceptions (cf. Zadeh and Kacprzyk’s [37, 38] volumes). Its
idea may be briefly summarized as follows.

Information processing comprises, among others, an aggregation of pieces
of information. Basic classical aggregation operators related to logical con-
nectives (AND, OR) and quantifiers (‘for all’, ‘there exists’) are often too
strict – for more on that, see Section 4. In many practical situations a human
being would express a rule as “Most of the pieces of information should be
taken into account in the process of aggregation”. The word “most” may be
replaced here with some other linguistic quantifier: “almost all”, “much more
than 50%”, etc. As it often happens that all/some conditions quantified are
of a gradual type, both the conditions and quantifier are best modeled within
the framework of fuzzy logic.

Zadeh [36] introduced two types of linguistically quantified propositions:

QX ’s are G ’s (type I) (7)
QB ’s are G ’s (type II) (8)

where Q is a linguistic quantifier, and G and B are fuzzy sets in the universe
X. Fuzzy linguistic quantifiers are represented by fuzzy sets defined in an ap-
propriate universe. The absolute linguistic quantifiers such as “approximately
3”, “several”, etc. are represented as fuzzy subsets on domain of positive real
numbers, R+; proportional linguistic quantifiers such as “most”, “almost all”,
etc. are represented by fuzzy subsets, Q, of the unit interval [0, 1]:

µQ : [0, 1] −→ [0, 1] (9)

Zadeh proposed an interpretation for the proportional linguistic quantifiers
such that the degree of truth T of proposition (7) is computed by:

T = µQ

(
card(G)
card(X)

)

= µQ

(∑
i µG(xi)

n

)

(10)

where µQ(.) is the membership function of quantifier Q and n is the cardinality
of the universe X.
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For propositions of type (8) we have:

T = µQ

(
card(G ∩B)

card(B)

)

= µQ

(∑
i[µG(xi) ∧ µB(xi)]
∑

i µB(xi)

)

(11)

Thus, the truth of a proposition of type (7) is proportional to the fraction
of elements of the universe X that belong to its subset G. An exact form of
this relationship is determined by the membership function of Q which may
be, for “most” of the following, piece-wise linear, form:

µ“most”(y) =






1 for y ≥ 0.8
2y − 0.6 for 0.3 ≤ y ≤ 0.8
0 for y ≤ 0.3

(12)

On the other hand, the truth of a proposition of type (8) is proportional
to the fraction of elements of a (fuzzy) set B ⊆ X that at the same time
belong to G ⊆ X. Thus, B plays here a role similar to the scope in case of
the classical quantifiers. However, due to the nature of a linguistic quantifier,
the type II proposition is not equivalent to the type I propositions with B
connected with G using the implication or conjunction as it is true for the
classic general and existential quantifier, respectively.

This interpretation of fuzzy linguistic quantifiers is very attractive due
to its simplicity both in the definition and use of a quantifier. The type II
propositions offer a capability of a weighted aggregation. However, it may
become inconvenient in some applications, mainly due to the use of a simple
cardinality of fuzzy sets, the so-called

∑
Counts calculated for fuzzy sets as∑

i µA(xi). This makes the number of elements with a low membership degree
to count as one element with a high degree.

A convenient approach to handle fuzzy linguistic quantifiers is to use the
ordered weighted averaging (OWA) operators, introduced by Yager [30]; see
also Yager and Kacprzyk’s book [31].

Linguistic quantifiers provide for a flexible processing of fuzzy information.
However, information to be aggregated has still to be provided in a strict,
numerical form. It is argued that for some applications it may be counter-
intuitive, and not human consistent. Thus, also in IR related fuzzy logic ap-
plications, Zadeh’s [35] concept of a linguistic variable is often employed. It
may be briefly described as follows. A linguistic variable is a variable taking
on the values in the form of linguistic terms (labels). Formally, a linguistic
variable is a 5-tuple (H,T (H), U,G,M), where H is a name of the variable,
T (H) is a set of its values (linguistic terms); U = {u} denotes the universe un-
der consideration, [i.e., fuzzy sets defined over U provide the interpretation for
particular terms belonging to T (H)], G is a rule that generates values for the
linguistic variable [if T (H) is finite, then G may be just a simple enumeration
of linguistic terms]; M is a semantic rule providing for each value l ∈ T (H)
its meaning M(l) ∈ U . For example, treating age as a linguistic variable,
one may assume: T(“age”)={“very young”, “young”, “middle aged”, “old”,
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“very old”}, U = [1, 100], M associates with particular values of T (“age”)
fuzzy numbers defined over the interval [0, 100] and intuitively corresponding
to individual descriptions of the age. For example, with the term “young” a
trapezoidal fuzzy number (0; 0; 25; 35) may be associated. Thus, basically, the
meaning of linguistic terms is provided by fuzzy numbers (usually triangular
or trapezoidal) associated via M and then all operations on linguistic terms,
are done on these fuzzy numbers, see, e.g., [7]. This may lead to some prob-
lems when the results of such an aggregation are to be again expressed in
terms of the original linguistic terms (e.g., in case of the averaging of values
of a linguistic variable). Then, linguistic approximation has to be applied and
the results may not be fully reliable.

In another approach, the set of linguistic terms is assumed to be finite and
ordered. Thus, the semantics of a term is provided just by its position in the
order imposed – no fuzzy numbers are associated. In such a case all operations
on the linguistic terms have to be specifically defined. For details, see [8, 11,
12]. Such an ordinal (symbolic) linguistic approach has been proposed for IR
systems in [11, 12].

4 Fuzzy Extensions of the Boolean Model

The vector space model has been widely accepted as an effective and efficient
way of dealing with the tasks addressed within IR. On the other hand, the
query language of this model is rather limited. Practically, a query matches
such documents that are represented with the terms weighted similarly as in
the query. This corresponds, more or less, to the logical conjunction of the
elementary queries. That is in contrast with the query language of the Boolean
model in which the user may freely combine elementary queries using logical
connectives.

The classical Boolean model suffers from an oversimplified representation
of documents as sets of terms. It has been observed (cf., e.g., Baeza-Yates
& Ribeiro-Neto [1]) that a combination of flexibility of the Boolean querying
language and the vector representation of documents may be worthwhile. This
has led to many proposals for extensions of the Boolean model. The extended
Boolean model has also become a starting point for many proposals for the use
of fuzzy logic concepts in IR. A vector representing a document via function
F such as in (5) may be easily interpreted as a fuzzy set of terms.

Extensions to the Boolean model may modify only the document’s rep-
resentation or both documents’ representations and queries. In the former
case, the documents are represented like in the vector space model and the
query language remains unchanged. The evaluation of classic Boolean queries
against documents represented with weighted terms may take various forms.

First of all, queries may be interpreted as formulae of a fuzzy propositional
calculus. Thus, they may be true to a degree from the interval [0, 1]. As in
the classical case (cf. Section 2), the matching of a query against a document
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is computed as the truth degree of the query/formula under the evaluation of
propositions/terms provided by the document, or more precisely, by weights
of the query terms in the document. Classical fuzzy operators/connectives
of min and max are used in place of AND and OR, respectively. Obviously,
variants of this approach may be obtained by using some triangular norms
and conorms to represent logical connectives.

It is widely acknowledged that classical aggregation operators correspond-
ing to the AND and OR connectives often fail to represent real requirements
of the user (not only in the context of querying but in broadly meant decision
making). The present authors were among the first to propose a solution for
that problem in the context of querying of databases. We discuss it briefly
later in this paper and now let us look at a more precise statement of that
problem and a solution proposed to it even earlier by Salton et al. [1, 24].

Let us assume that a query is the conjunction of elementary queries:

q = t1 ∧ . . . ∧ tl (13)

and notice that we equate here propositions zi with terms ti, for readability.
Under the classical interpretation of the AND connective, if just one term

of t1, . . . , tl is absent in a document, then it makes the document completely
irrelevant (non-matching) to the query. Even under a fuzzy interpretation the
document is relevant only to a degree determined by a term tj to which the
lowest weight is assigned in the document, thus possibly also to degree 0.

It seems to be fully rational to expect that such a matching degree should
vary depending on the number of terms of the query that are well/poorly
matched in the document. Salton et al. [24] observed that the relevance of
a document should be inversely proportional to the distance between two
l-dimensional vectors [w1, . . . , wl] and [1, . . . , 1], where the former gathers
weights in the document of terms used in the query, t1, . . . , tl. Analogously, for
a query that is a disjunction of elementary queries q = z1∨ . . .∨ zl, its match-
ing degree should be proportional to the distance between vectors [w1, . . . , wl]
and [0, . . . , 0].

This idea has been adopted in an extension to the Boolean model, a so-
called p-norm model. The distance between the vectors is computed using a
p-norm (more often referred to as an l-norm) for a selected value of parameter
p. For p = 1 we obtain the classical vector space model, and for p = ∞ we
obtain a simple fuzzy model described above which employs the min and
max operators. The very same problem of some deficiencies of the classical
AND and OR, as well as their fuzzy counterparts the min and max were
addressed by Kacprzyk et al. [14, 15, 16] in the context of fuzzy querying of a
classical relational database (thus the setting assumed there is somehow dual
to the one considered here: queries are fuzzy while the content of a database is
crisp; however the idea of a linguistic quantifier guided aggregation applies in
both cases). They proposed to aggregate elementary queries using linguistic
quantifiers, such as, e.g., “most”. Thus, instead of insisting on the fulfillment of
all elementary queries as it is required by the AND connective (and the general
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quantifier, ∀, corresponding to it) or just one elementary query as it is allowed
by the OR connective (and the existential quantifier, ∃, corresponding to it)
the user may require to have “most”, “almost all”, “many” etc. of elementary
queries satisfied. As the above observation of Salton et al. [24] illustrates,
the use of such a flexible quantifier may be convenient even in case when we
have in mind a strict conjunction of the elementary queries. If there are no
documents fully meeting our requirements, we get an empty answer with the
classical aggregation operator AND, while using a linguistic quantifier, we get
a list of documents almost meeting the query, not perfectly but at least to a
certain degree satisfying the query.

The ordered weighted min (OWmin), cf. Dubois et al. [9], operator provides
another scheme for the evaluation of a query (13). The motivation here is
exactly the same as in case of a linguistic quantifier guided aggregation, i.e.,
instead of requiring that all elementary queries in (13) are matched, we are
satisfied with most of them being matched. This is formalized in a way slightly
different to that of linguistic quantifiers. Namely, the concept of a requested
majority of matched elementary queries, e.g., most, is modeled as a fuzzy set
I in the space {0, 1, 2, . . . , l}, such that µI(0) = 1; µI(i) ≥ µI(i + 1), cf. (9).
Thus (cf. Dubois et al. [9]), if we require that “at least k elementary queries
be matched”, then we set µI(i) = 1 for all 0 ≤ i ≤ k and µI(i) = 0 for all
i > k.

Moreover, let us assume that ti(dj) denotes the matching of document dj

to the elementary query ti. Then, we sort vectors [t1(dj), t2(dj), . . . , tl(dj)]
in a non-increasing order to obtain t1∗(dj) ≥ t2∗(dj) ≥ . . . ≥ tl∗(dj) where
t1∗(dj) is the greatest value from among t1(dj), t2(dj), . . . , tl(dj); t2∗(dj) is the
second greatest value, etc. Then, to obtain a matching degree of document dj

to the overall query (13) we compute:

min
i=1,...,l

max(1− µI(i), ti∗(dj)) (14)

In this approach the concept of a linguistic quantifier in the sense of Zadeh
may be directly employed to provide a definition of a fuzzy set I. This may
be interpreted in a more general setting as the Sugeno measure; for details cf.
Dubois et al. [9].

All the above min (or, more generally, a t-norm), p-norm and linguistic
quantifier guided models produce an aggregated evaluation (matching degree)
of the conjunction of elementary queries (13). Sometimes this is more than
needed and we may be quite satisfied with just an ordering of the documents
from the best matching the query to the least matching one. For such a pur-
pose many more methods are available.

For example, LEXIMIN [9] compares two documents in terms of their
matching to the query (13) in the following way. Let us assume the same
notation as in case of OWmin discussed above, however this time the vector
[t1(dj), t2(dj), . . . , tl(dj)] is sorted in the non-decreasing order. Then, d1 is
said to better match the overall query (13) than d2 if there exists such a k
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that ti∗(d1) = ti∗(d2) for all i < k and tk∗(d1) > tk∗(d2). Thus, cf. Dubois et
al. [9], LEXIMIN favors documents failing to match as few elementary queries
as possible.

LEXIMAX [9], on the other hand, favors documents matching as many
elementary queries as possible. Assuming the same notation as for OWmin,
this boils down to declaring d1 as better matching the overall query (13)
than d2 if there exists such a k that ti∗(d1) = ti∗(d2) for all i < k and
tk∗(d1) > tk∗(d2).

Other fuzzy extensions to the Boolean model assume weights assigned to
terms of the query. In the classical vector space model the interpretation of
such weights in queries is quite simple: we seek documents that have terms
weighted similarly as in the query. However, in the extended Boolean model
more interpretations are possible, and to sketch them, we assume a weighted
query in the disjunctive normal form:

q = ((t11, w11) ∧ . . . ∧ (t1u, w1u)) ∨ . . . ∨ ((td1, wd1) ∧ . . . ∧ (tdw, wdw)) (15)

where tij denotes a term and wij denotes its weight in the query.
Assuming such a canonical form, we focus on the matching degree of a

single conjunction:
(t11, w11) ∧ . . . ∧ (t1u, w1u) (16)

referred to as a disjunct.
The matching degree of the whole query is obtained via an aggregation,

for instance by using the max operator, of matching degrees of all disjuncts.
In the literature three interpretations of the query weights wij are considered
[5]:

• relative importance,
• thresholds of importance, and
• ideal weights.

According to the first interpretation (i.e. relative importance), weight wij

of term tij in a query indicates to which extent the appearance of term tij in
a document is important for the document to satisfy the query. If the weight
is low (close to 0), then the absence of term tij in a document (i.e., a low,
possibly equal 0, weight of this term in the document) does not exclude the
matching of this document against the query. If the weight of a term in a
query is high (close to 1), then the document has to contain the term (i.e. to
have a high weight assigned to this term) to qualify for matching the query.

According to the second interpretation (i.e. thresholds of importance), the
weights of particular terms in the documents sought have to be higher than
threshold values wij given in the query. There are further possible interpre-
tations depending on how the undersatisfaction of query terms is treated –
a further discussion is given below. Herrera-Viedma [12] proposed a modi-
fied interpretation of query weights in this interpretation. Namely, high query
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weights are treated as mentioned above but low weights require that the cor-
responding weights in the documents be lower (i.e., set a lower bound).

The third interpretation (i.e. ideal weights) is somehow analogous to that
assumed in the vector space model: documents sought should be characterized
by weights of terms similar to those specified in the query.

The existence of these various interpretations of query term weights poses
some theoretical difficulty. Fortunately, their analysis may be to some extent
unified due to results obtained in the area of using fuzzy logic in multicriteria
decision making, fuzzy querying of databases and fuzzy information retrieval,
cf. Dubois et al. [10]. These may be summarized in terms of IR as follows. Let
the matching degree of document d and query q of the form (16) be denoted by
ν(q, d). Moreover, assume the matching degree of an elementary query qi = ti
(without a weight) and a document d be equal to the weight of term ti in
document d (4), that is:

ν(qi = ti, d) = F (d, ti) (17)

The matching degree of the whole query (16) is calculated as:

µ(q, d) = min
i

(qi, d) (18)

Dubois and Prade [9, 10] analyzed several interpretations of importance
weights assigned to elementary queries (cf. Bookstein [3] and Yager [29]).
They observed that a number of them may be treated as a special case of the
following general scheme:

ν(qi, d) = wi −→ F (d, ti) (19)

where “−→” is a fuzzy implication operator.
Then, using different implication operators we recover various interpreta-

tions of importance weights of the terms.
For the Kleene–Dienes implication:

x −→ y = max(1− x, y) (20)

we obtain
ν(qi, d) = max[F (d, ti), 1− wi] (21)

which is Yager’s [29] interpretation that may be expressed as follows. If an
elementary query is completely unimportant (wi = 0), then it does not pose
any constraints on the form of the document that has to meet it (the matching
degree is always equal 1). Otherwise, a document to satisfy the query has to
contain term ti with a high weight wi. Thus, this interpretation corresponds
to the concept of a relative importance.

For the Gödel implication:

x −→ y =
{

1 if x ≤ y
y otherwise (22)
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we get

ν(qi, d) =
{

1 if F (d, ti) ≥ wi

F (d, ti) otherwise (23)

which is another Yager’s [10] interpretation, and requires that term ti has in a
document a weight higher than that indicated in the query. Thus, this directly
refers to the concept of an importance threshold. If the weight of the term in
the document, F (d, ti), does not reach the query weight of this term wi, such
a document satisfies this elementary query to a degree equal to F (d, ti).

Another, continuous treatment of such an undersatisfaction is obtained
while using the Goguen implication:

x −→ y =
{

1 if x ≤ y
y
x otherwise (24)

and we obtain:

ν(qi, d) =
{

1 if F (d, ti) ≥ wi
F (d,ti)

wi
otherwise

(25)

Yet another characterizations of importance thresholds has been provided
in the literature, cf. Radecki [22].

A similar analysis may be provided for the disjunction of elementary
queries, and we refer the reader for details to Bordogna et al. [4, 6]. Here
we add the following observation to the characterization of ideal weights pro-
vided in [4, 6], namely:

ν(qi, d) = wi ←→ F (d, ti) (26)

where “←→” is a fuzzy equivalence operator.
Then, using the definition of a fuzzy equivalence based on the Goguen

implication:

x←→ y = min(x −→ y, y −→ x) =






1 if F (d, ti) = wi
wi

F (d,ti)
if F (d, ti) ≥ wi

F (d,ti)
wi

if F (d, ti) ≤ wi

(27)

we obtain a reasonable interpretation of ideal weights.

5 Fuzzy Concepts in Document Categorization

The primary problem in IR is to retrieve documents which are relevant to
the user. This task decomposes into the representation of documents and
queries, and their matching. In Sections 2 and 4 we briefly reviewed fuzzy
logic based approaches proposed for this purpose. Now we briefly discuss a
related problem of automated text categorization. Next, we describe our idea
of using fuzzy logic based models outlined in the previous section for this
purposes. Then, we present our computational experiments and their results.
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5.1 The Concept and Purpose of Automatic Text Categorization

In order to make clearer the concept and purpose of automatic text categoriza-
tion, let us consider some scenarios in which it may be applicable and useful.
The first one is that of a Web Spider, a software agent “traversing” the Web
and automatically classifying documents found with the purpose to provide
the user only with the documents of interest (i.e., belonging to a pre-specified
category/categories). The second example may be a “translation agency”. In
this case, the purpose of the system is to automatically assign to interpreters
documents sent by customers for translation. Interpreters prefer certain cate-
gories of documents and the aim is to match their preferences so as to secure
a high efficiency of the whole translation process. In both cases the classifi-
cation may be done manually. However, it may be not as good a solution as
it may seem. Firstly, in particular in the former case, it is unreasonable to
expect that all documents are classified by their authors or some other bodies
(see, e.g., Yahoo!). Secondly, the classification provided by the author may
be useless for, or inconsistent with, the very purpose or expectations of the
document “consumer”. Both scenarios assume a set of pre-specified categories
of documents.

Basically, we can distinguish two classes of approaches to automatic text
categorization. The first consists in a manual construction of a set of explicit
classification rules that are then automatically applied to classify the docu-
ments. Thus, this methodology belongs to the field of expert systems. The
second approach consists in using techniques of machine learning to automat-
ically produce a classifier. We follow the latter and try to use some elements of
fuzzy logic, notably those mentioned in Sections 3 and 4. Another dimension
along which the text categorization tasks may be distinguished is that of how
many classes are considered and how many categories may be assigned to one
document. The most general approach (adopted in this paper) assumes a mul-
ticlass multilabel task, i.e., there are more than two categories and more than
one may be assigned to a document. Still another dimension that is possible
is to distinguish the two classes of categorization tasks depending on whether
the documents to be classified are available one at a time (“on-line catego-
rization”) or in larger portions (“batch categorization”). This distinction is to
some extent formal but is important from the point of view of thresholding
strategies considered later.

Thus, text categorization as discussed here is a typical example of classi-
fication. More precisely, the process consists of two phases:

1. learning of classification rules (explicit or implicit; i.e. building a classifier)
from examples of documents with known class assignments (supervised
learning),

2. classification of documents unseen earlier using rules derived in Phase 1.

We start with a numerical representation of documents as discussed in Sec-
tion 2 and formalized by (4). Then, any one of numerous classifier construction
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algorithms may be applied, including rule-based systems, decision trees, arti-
ficial neural networks, etc.

One of classical algorithms developed in the area of IR is that of Roc-
chio [13, 23]. The learning phase consists in computing a centroid vector for
each category of documents. Then, in the classification phase, a document is
classified to a category whose centroid is the most similar to this document.
The similarity may be meant in several ways – in the original Rocchio’s ap-
proach it corresponds to the Euclidean distance. In the next subsection we
propose to apply some fuzzy logic related concept to build such a classifier.
Here, we further precisiate the classification task that is addressed and steps
that have to be taken to develop a classifier of the type considered.

In our computational experiments, cf. Section 5.3, we use the Reuters
corpus [20] that is widely accepted as a testbed for text categorization algo-
rithms. This is a collection of newswire stories that are usually classified to a
number of categories. Thus, this calls for methods dealing with a multiclass
and multilabel case. The multilabel categorization requires the solution of an
additional problem while building a classifier. Namely, a classifier such as the
one considered here produces for a document a list of categories to which it
possibly belongs. These categories are ordered non-increasingly according to
their matching with the document. Then, a decision has to be made which of
them, or more precisely, how many of those from the top of the list are to be
assigned to a document under consideration. This is referred to as a threshold-
ing strategy [26, 32, 33]. Usually [33], the following strategies are considered:

• rank-based thresholding (RCut),
• proportion based assignment (PCut), and
• score-based local optimization (SCut).

The first strategy (RCut) consists in choosing r top categories for each doc-
ument. Parameter r may be set by the user or automatically tuned (learned)
using a part of the training set of documents. The second strategy (PCut)
works for “batch categorization” and assigns to each category such a number
of documents from a batch of documents to be classified so as to preserve
a proportion of the cardinalities of particular categories in the training set.
The third method (SCut) assigns a document to a category only if a match-
ing score of this category and document is higher than a certain threshold.
Thresholds are tuned using a part of the training set of documents, separately
for each category. In the next section we propose other strategies using the
concept of a linguistic quantifier.

To summarize, decisions related to the following issues have to be made
while building a classifier of the type considered here:

1. representation of documents and queries, of which an integral part is fea-
ture selection,

2. definition of a distance (matching degree) of a centroid and a document,
and

3. choice of a thresholding strategy.
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The next subsection describes our experiments applying the elements of
fuzzy logic mainly for the purposes of Type 2 and 3, but also to some extent
of Type 1. The computational experiments require some measures of effective-
ness. In our tests we use standard measures as discussed in Subsection 5.3.

5.2 Fuzzy and Linguistic Approaches to the Construction
of a Rocchio Type Classifier

The Rocchio type classifier fits into a more general scheme of profile-based
classifiers [26]. The idea is to compute a profile (referred to elsewhere in the
text as a centroid) for each category and then to base the categorization of a
document on its distance (more generally, some measure of similarity) from
centroids of all categories. In this way, we can order all categories from the best
to the worst by matching the document content. The origin of the Rocchio
style classifier is related to the formula for relevance feedback in the vector
space model. It is a way of modifying an original user query so as to take
into account his or her feedback as to the relevance of particular documents
retrieved according to this original query. More precisely, the user picks out
relevant documents, then the system computes their centroid (average), pos-
sibly taking into account irrelevant documents as well, by subtracting their
centroid from the centroid of relevant documents. Next, such a centroid of the
class of relevant documents is used as a modified query to once again retrieve
documents from the whole collection. Thus, in terms of the categorization
task it corresponds to a binary (only two classes of relevant and irrelevant
documents are considered), one-class (each document is classified either as
relevant or irrelevant, but not both), and “batch” rather than on-line prob-
lem. It is, then, quite different in comparison to multiclass multilabel on-line
categorization task addressed here.

Our approach assumes, classically, the computation of centroids (see the
next subsection for details) for all categories. Then, a document to be classi-
fied (more precisely, its representation) is treated as a query against the set
of centroids. Within the extended Boolean framework such a query may be
treated as the conjunction of the form (13) or (16). As we pointed out, a
simple interpretation of the conjunction as the min operator does not work
well for classical queries considered in IR, i.e., queries constructed by a human
user. This is true even to a further extent in case of the categorization task
considered here. Thus, in our experiments we try various flexible schemes of
aggregation presented in Section 4 as well as, in case of (16), different weight
interpretations discussed in the same section.

For our further discussion let us assume the following notation:

C = {cp}p∈[1,P ] (28)

is a set of centroids, one for each of P categories. Each centroid is represented
by a vector:
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cp = [cp1, . . . , cpM ] (29)

where M denotes, as previously, the number of terms used to index the doc-
uments.

These centroids are constructed in a different way than in the typical
Rocchio type classifier. Namely, weights cpi are not calculated directly as the
averages of the weights of all training documents belonging to a given category
but according to the following formula:

cpj =
fpj � log( P

nj )

arg maxj [log( P
nj

) � fpj ]
(30)

where fpj is a frequency of term j in all documents belonging to category p and
nj is the number of categories in documents of which term j appears (category
frequency). By analogy to (5) it may be called a tf× icf representation where
icf stands for an inverted category frequency. A document to be classified, d,
which is here treated as query q against a set of centroids, is represented, as
previously, by a vector, or more precisely as in (16):

d = q = [w1, . . . , wM ] ≡ (t1, w1) ∧ . . . ∧ (tM , wM ) (31)

where

wj =
fj � log( P

nj
)

arg maxj [log( P
nj

) � fj ]
(32)

where fj is a frequency of term tj in document d and nj is the category
frequency of this term, cf. (30). Thus, this setting most naturally fits the
extended Boolean model where both queries and documents are represented
using weights.

Now, we base our decision on the classification of document d as pertinent
to category p on its similarity to a corresponding centroid cp, i.e., on the
matching of query q (31) and this centroid. In order to compute this matching
degree we are going to employ our discussion of Section 4, in particular various
interpretations of the query weights.

Let us observe that, in the given context, the similarity of a query and
a centroid intuitively means that terms representing them have weights that
are comparable, relatively or absolutely. Thus, the relative importance and
ideal weights interpretations seems to be more suitable than the thresholds of
importance. In order to justify the latter claim let us assume that a document
is represented by means of 2 terms with high weights and 10 terms with very
low weights. Then, the category whose centroid is represented by all 12 terms
with high weights that perfectly fits the document/query according to the
threshold logic, does not seem to be a good fit.

Below we list and briefly comment upon the matching schemes we tested
in our experiments with an automatic text categorization. Their main goal is
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to overcome a deficiency of the min operator which is reinforced by a high di-
mensionality of the representation space of both the query (31) and documents
(29).

We group the tested schemes according to the query weight interpretation
adopted.

I. Relative importance
M.I.1. Original weight interpretation via the Kleene-Dienes implication

This concept of matching (i.e., document classification), cf. (18),(19),
may be linguistically expressed as:

“A document matches a category if all of the important terms
present in the document are also present in the centroid of the
category.”

The matching of the elementary and overall queries are here computed
using (19) and (18), respectively.

M.I.2. Linguistic majority
This concept of matching (i.e., document classification) may be lin-
guistically expressed as:

“A document matches a category if most of the important
terms present in the document are also present in the centroid
of the category.”

The idea refers directly to our previous experiences with a fuzzy data-
base querying (cf. Kacprzyk and Zadrożny [14]–[16]). The above lin-
guistic expression is formalized using Zadeh’s calculus of linguistically
quantified propositions by, cf. (8):

QB’s are G’s

where X, the universe considered, is a set T of all index terms, B is a
fuzzy set of terms important for the document d, i.e.,

µB(tj) = wj = F (d, tj)

and G is a fuzzy set of terms present in centroid cp of category p, i.e.,

µG(tj) = cpj

Due to a high dimensionality of the considered space and known de-
ficiencies of linguistic quantifiers in the sense of Zadeh (cf. Section 3)
we also tested a modified version where only terms weighted in the
query higher than a certain threshold are considered.

II. Ideal weights
M.II.1. Cosine

The classical vector space model formula (6) has been employed.
M.II.2. Fuzzy equivalence based approach

The ideal weight logic is here represented using fuzzy equivalence, as
expressed by the formulae (26) and (27). The overall matching degree
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computes using the min, as in (18) or OWmin, as in (14). Also a
modified version where only terms weighted in the query higher than
certain threshold are considered, has been tested.

III. Thresholding strategies
Concerning the thresholding strategy we also propose an approach based
on fuzzy linguistic concepts. The underlying idea may be expressed as
follows:
T.I. “Select such a threshold r that most of the important categories had

a number of sibling categories similar to r in the training data set.”
Thus, for each r ∈ [1, R] we compute the degree of truth of the above
clause in italics (R is a parameter). This is again formalized using
Zadeh’s calculus of linguistically quantified propositions as:

QB’s are G’s (33)

where X, the universe considered, is a set C of 10 categories with the
highest matching score, B is a fuzzy set of important categories for a
given document d, i.e.,

µB(cp) = ν(q, cp)

where ν(·, ·) is the matching function (18) used and q is a query/do-
cument to be classified. G is a fuzzy set of categories, that, on the
average, had in the training set the number of sibling categories simi-
lar to r for which the truth value of (33) is calculated. This similarity
is modeled by a similarity relation which is another parameter of the
method. For the purposes of this strategy (and others, as given be-
low), for each category the number of average sibling categories in the
training data set is first computed. By the sibling category for a cat-
egory cp we mean a category that is assigned to the same document
as the category cp.

T.II. Another approach exploiting the concept of sibling categories works
as follows. Only categories whose matching score is higher than a
certain parameter (in our experiments usually 0.2 is assumed) are
taken into account. Their scores are normalized (divided by the sum
of their scores) and then the weighted sum of the average number of
siblings is taken as a threshold cut (rounded to the nearest integer
value).

T.III. For the comparison we also tested the simple RCut with a thresh-
old rank equal 2, i.e., two top scored categories are assigned to each
document.
The whole classification procedure proceeds then in the following
steps:
• Training phase

1. The training documents are read and data on their frequency
in documents and categories are gathered. Also the average
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number of sibling categories is computed for each category (for
the thresholding strategy purposes),

2. The training documents are read once again and the centroids
of particular categories are calculated according to formula
(30).

• Testing phase
1. A test document is read and its representation is calculated

using formula (32) and normalized (in the experiments all co-
ordinates are divided by the highest one),

2. For each category the matching degree (score) of its centroid
and the document is computed using one of the approaches
outlined in the previous subsections and this vector of scores
is sorted in the non-increasing order,

3. One of the threshold strategies as outlined above is used to
decide which categories assign to the document.

5.3 Computational Results

In our general setting for computational experiments we use Yang and Liu’s
work [34]. The text corpus used is Reuters-21578 as made available over
the Internet by Lewis [20]. More precisely we are using the Modified Apte
(“ModApte”) split of data, i.e. for the training phase a subset of news
that are characterized by the attributes LEWISSPLIT=“TRAIN” and TOP-
ICS=“YES” and for testing phase a subset LEWISSPLIT=“TEST”; TOP-
ICS=“YES”. In both cases, we use only news that actually contains topics and
body of the text or at least the title. This gives rise to 7,728 training, 3,005
test documents and 114 categories. The title of the document and its body are
concatenated to produce the document. The documents are preprocessed by
removing stop words [27] and numbers. Stemming is done using the standard
Porter’s [21] algorithm. The terms space dimensionality reduction is done us-
ing a simple approach based on document and category frequencies of terms.
Namely, only terms with a document frequency higher than 3 and a category
frequency lower than 75% are used. This rule yields 5,565 index terms.

The evaluation of particular approaches tested has been carried out by
using standard measures of recall, precision, F1 measure and 11-point aver-
age precision. Both micro- and macro-averaging results are presented. These
measures are expressed by the following formulae:

micro-averaging

precision =
number of correct classifications made by the system
total number of all classifications made by the system

(34)

recall =
numer of correct classifications made by the system

total number of all categories indicated in test documents
(35)
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Table 1. Comparison of matching schemes for T.II. thresholding strategy.

Matching scheme micro-averaging macro-averaging 11-pt AVP*****
precision recall F1 precision recall F1

M.I.1. 0.3763 0.5521 0.4475 0.2212 0.3704 0.2770 0.6793

M.I.2. 0.3914 0.8215 0.5302 0.4038 0.5322 0.4592 0.8311

M.I.2a.* 0.4226 0.6765 0.5203 0.3416 0.6174 0.4398 0.7673

M.II.1. 0.2226 0.6462 0.3311 0.1235 0.4943 0.1976 0.6511

M.II.2a.** 0.5597 0.4597 0.5048 0.5601 0.0934 0.1601 0.5926

M.II.2b.*** 0.5847 0.5015 0.5399 0.5231 0.1349 0.2145 0.6356

M.II.2b.**** 0.3809 0.6961 0.4923 0.2978 0.4287 0.3515 0.7397

* – only terms weighted above 0.2 are considered in matching degree computation
** – aggregation via min
*** – aggregation via min; only terms weighted above 0.2 are considered in
matching degree computation
**** – aggregation via OWmin; only terms weighted above 0.2 are considered in
matching degree computation
***** – 11-point average precision

F1 = 2 � precision �
recall

precision + recall
(36)

Note that the number of classifications is higher than the number of test
documents as more than one category may be assigned to a document. By a
system we mean an automatic classifier based on a given approach.

macro-averaging
First, precision, recall and F1 measure are calculated separately for each

category using formulae (34)– (36) and then the arithmetic mean of them is
calculated.

Below in the tables we present some of the results of our experiments. First,
in Table 1 we show a comparison of results obtained for the T.II. thresholding
strategy.

In Table 2 we test various thresholding strategies for the linguistic guided
aggregation used in M.I.2.

Table 2. Comparison of different thresholding strategies for the M.I.2. matching
scheme.

Matching scheme micro-averaging macro-averaging 11-pt AVP*****
precision recall F1 precision recall F1

T.I. 0.5531 0.7765 0.6460 0.4891 0.4785 0.4837 0.8311

T.II 0.3914 0.8215 0.5302 0.4038 0.5322 0.4592 0.8311

T.III.* 0.4642 0.7478 0.5728 0.4776 0.4309 0.4530 0.8311
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The results reported for the state-of-the-art approaches, cf. Yang & Liu
[34], are better, especially for micro-averaging. The best reported F1 measure
for macro-averaging reaches 0.5242 and our result places more or less in the
middle of the five methods tested in [34]. For micro-averaging our precision
score is essentially worse than the best reported (0.8507). However, two com-
ments on that should be made. First of all, our 11-point average precision is
pretty good (high) – there are no scores reported on that in [34] – which may
suggest that the main source of our relatively poor results in this respect is a
weak thresholding strategy. This will be the subject of our further research. It
seems that in this respect, there is still a space for an essential improvement
in the framework of fuzzy logic based approaches. The results for particular
matching schemes are essentially worse than the one reported for the state-of-
the-art approaches, cf. Yang & Liu [34]. Moreover, our approach offers, typical
for Rocchio type classifiers, both fast learning and training phases which may
be important in some applications.

To summarize, however, there is still a number of various factors that
influence the effectiveness of an automatic categorization system, including
the representation of documents, tuning the parameters, and a thresholding
strategy. The very nature of fuzzy linguistic approaches makes it possible
to tune parameters that possess an interpretation that is easier to grasp by
the human user involved. In this short study we only try to check a general
applicability of fuzzy logic based concepts for text categorization.

6 Concluding Remarks and Further Research

In the paper we discussed the automatic text document categorization that
has recently attracted a lot of attention and interest. In our approach we tried
to use results obtained by other authors proposing some fuzzy logic based
extensions to classical IR models, notably the Boolean model. Although they
mainly address the primary task of retrieval of the documents relevant to the
human user, their underlying ideas are also applicable to text categorization.

Our starting point was fuzzy querying of crisp (nonfuzzy) databases. We
tried to adapt some of the ideas we proposed earlier in this respect, notably
of a linguistically guided aggregation of partial matching degrees, for the pur-
poses of text document categorization. We illustrated the preliminary results
on a standard document corpus used to test most sophisticated and success-
ful classifiers. Further research will focus on tuning various parameters that
are included in our proposed approaches. The most important factor for the
potential improvement is a better choice and a more sophisticated tuning of
the thresholding strategy. This will be a subject of our next efforts. Another
important factor is a particular document representation scheme. We plan to
compare the results obtained with our classifier for other traditional represen-
tation schemes, notably the tf × idf .
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Summary. The paper discusses possible relationships between computational in-
telligence, known mechanisms of the mind, semiotics, and computational linguistics.
Mathematical mechanisms of concepts, emotions, and goals are described as a part
of information processing in the mind and are related to language and thought
processes in which an event (signals from surrounding world, text corpus, or inside
the mind) is understood as a concept. Previous attempts in artificial intelligence
at describing thought processes are briefly reviewed and their fundamental (mathe-
matical) limitations are analyzed. The role of emotional signals in overcoming these
past limitations is emphasized. The paper describes mathematical mechanisms of
concepts applicable to sensory signals and linguistics; they are based on measures of
similarities between models and signals. Linguistic similarities are discussed that can
utilize various structures and rules proposed in computational linguistic literature.
A hierarchical structure of the proposed method is capable of learning and recogniz-
ing concepts from textual data, from the level of words and up to sentences, groups
of sentences, and towards large bodies of text. I briefly discuss a role of concepts
as a mechanism unifying thinking and language and their possible role in language
acquisition. A thought process is related to semiotic notions of signs and symbols.
It is further related to understanding, imagination, intuition, and other processes in
the mind. The paper briefly discusses relationships between the mind and brain and
applications to understanding-based search engines.

1 Language and the Mind

Language and thinking are distinctly human abilities. Even if one prefers
to consider the difference between human and animal minds in terms of de-
grees, the difference is formidable. Close relationships between language and
thinking encouraged equating these abilities in the past. Rule-based systems,
using the mathematics of logic, implied significant similarities between the
two. The situation has changed, in part due to the fact that logic-rule sys-
tems have not been sufficiently powerful to explain thinking, nor language
abilities, and in part due to improved scientific understanding (psychological,
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cognitive, neural, linguistic) of the mechanisms involved. Among contempo-
rary linguists there is a growing appreciation of a possibility that language
and thinking could be distinct and different abilities of mind (see [43] for
further references). Comparing apes with parrots, the first having significant
intellectual capabilities and the second having significant linguistic capabili-
ties, one may conclude that language and thinking might have evolved along
separate evolutionary paths; and some researchers believe there are reasons
for this conclusion.

Human language mechanisms include abilities to acquire a large vocabu-
lary, rules of grammar, and to use the finite set of words and rules to generate
virtually infinite number of phrases and sentences [16, 44]. Human thinking
includes abilities to understand the surrounding world in terms of objects,
their relationships (scenes and situations), relationships among relationships,
and so on [40]. Researchers in computational linguistics, mathematics of intel-
ligence and neural networks, cognitive science, neuro-physiology and psychol-
ogy during the last twenty years significantly advanced understanding of the
mechanisms of the mind involved in learning and using language, mechanisms
of perception and cognition – for the discussions and further references see
[10, 16, 25, 28, 40, 44, 46] Much less advance was achieved toward deciphering
mechanisms relating linguistic competence to understanding and thinking. Al-
though it seems clear that language and thinking are closely related abilities,
intertwined in evolution, ontogenesis, and everyday use, still the currently un-
derstood mechanisms of language are mainly limited to relations of words to
other words and phrases, but not to the objects in the surrounding world,
not to cognition and thinking. Possible mathematical approaches toward in-
tegrating language and thinking, words and objects, phrases and situations
are discussed in this paper.

The paper starts with a mathematical description of thinking, which still is
an issue of much controversy. Among researchers in mathematical intelligence
it has become appreciated, especially during the last decades that thinking
is not just a chain of logical inferences [10, 28, 40]. Yet, mathematical meth-
ods describing thinking as processes involving concepts, instincts, emotions,
memory, imagination are not well known, although significant progress in
this direction was achieved [10, 28, 40]. A brief historical overview of this
area including difficulties and controversies is given in the next two sections
from mathematical, psychological and neural standpoints; it is followed by
a mathematical description of thinking processes. Then the paper discusses
the ways in which the mathematical description of thinking can be combined
with language, taking advantage of recent progress in computational linguis-
tics. It touches upon novel ideas of computational semiotics relating language
and thinking through signs and symbols. In conclusion, I briefly discuss re-
lationships between mathematical, psychological, and neural descriptions of
thinking processes and language as parts of the mind.

Words like mind, thought, imagination, emotion, concept are often used
colloquially in many ways, but their use in science and especially in mathe-
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matics of intelligence has not been uniquely defined and is a subject of active
research and ongoing debates [10, 28]. According to a dictionary [42], mind
includes conscious and unconscious processes, especially thought, perception,
emotion, will, memory, and imagination, and it originates in brain. These
constituent notions will be discussed throughout the paper.

A broad range of opinions exists on the mathematical methods suitable
for the description of the mind. Founders of artificial intelligence thought
that formal logic was sufficient [31] and no specific mathematical techniques
would be needed to describe the mind [29]. An opposite point of view is that
there are few specific mathematical constructs, “the first principles” of the
mind organization. Among researchers taking this view is Grossberg, who
suggested that the first principles include a resonant matching between lower-
level signals [10] and higher-level representations and emotional evaluation
of conceptual contents [12]; several researchers suggested specific principles
of the mind organization [18, 27, 40, 51]. Hameroff, Penrose, and the author
(among others) considered quantum computational processes that might take
place in the brain [14, 33, 36]. Although, it was suggested that new unknown
yet physical phenomena will have to be accounted for explaining the working
of the mind [33]. This paper describes mechanisms of the mind that can be
“implemented” by classical physics mechanisms of the brain neural networks
and, alternatively, by using existing computers.

2 Theories of the Mind and Combinatorial Complexity

Understanding signals coming from sensory organs involves associating sub-
sets of signals corresponding to particular objects with internal representations
of these objects. This leads to recognition of the objects and activates internal
brain signals leading to mental and behavioral responses, which constitute the
understanding of the meaning (of the objects).

Developing mathematical descriptions of the very first recognition step of
this seemingly simple association-recognition-understanding process has not
been easy, a number of difficulties have been encountered during the past
fifty years. These difficulties have been summarized under the notion of com-
binatorial complexity (CC) [37]. The problem was first identified in pattern
recognition and classification problems in the 1960s and was named “the curse
of dimensionality” [2]. The following thirty years of developing adaptive sta-
tistical pattern recognition and neural network algorithms designed for self-
learning led to a conclusion that these approaches often encountered CC of
learning requirements: recognition of any object, it seemed, could be learned
if “enough” training examples were used for an algorithm self-learning. The
required examples had to account for all possible variations of “an object”,
in all possible geometric positions and in combinations with other objects,
sources of light, etc., leading to astronomical (and worse) numbers of required
examples.
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By the end of the 1960s a different paradigm became popular: logic-rule-
based systems (or expert systems) were proposed to solve the problem of
learning complexity. An initial idea was that rules would capture the required
knowledge and eliminate a need for learning. The first Chomskian ideas con-
cerning mechanisms of language grammar related to deep structure [4] were
also based on a similar idea of logical rules. Rule systems work well when
all aspects of the problem can be predetermined. However, rule systems and
expert systems in the presence of unexpected variability, encountered CC of
rules: more and more detailed sub-rules and sub-sub-rules, one contingent on
another, had to be specified.

In the 1980s model-based systems became popular, which were proposed
to combine advantages of adaptivity and rules by utilizing adaptive models.
Existing knowledge was to be encapsulated in models and unknown aspects
of concrete situations were to be described by adaptive parameters. Along
similar lines were rules and parameters ideas of Chomsky [5]. Model-based
systems encountered computational CC (N and NP complete algorithms). The
reason was that considered algorithms had to evaluate multiple combinations
of elements of data and rules (models). CC is prohibitive because the number
of combinations is very large: for example, consider 100 elements (not too
large a number) whose combinations had to be evaluated; the number of
combinations of 100 elements is 100100, a number comparable to the number
of elementary particles in a Universe; no computer would ever be able to
compute that many combinations. The CC became a ubiquitous feature of
intelligent algorithms and seemingly, a fundamental mathematical limitation.

Combinatorial complexity has been related to the type of logic, underly-
ing various algorithms and neural networks [37]. Formal logic is based on the
“law of excluded third”, according to which every statement is either true
or false and nothing in between. Therefore, algorithms based on formal logic
have to evaluate every little variation in data or internal representations as
a separate logical statement; a large number of combinations of these vari-
ations cause combinatorial complexity. In fact, combinatorial complexity of
algorithms based on logic has been related to the Gödel theory: it is a finite
system manifestation of the incompleteness of logic [34]. Multivalued logic
and fuzzy logic were proposed to overcome limitations related to the law of
excluded third [17]. Yet the mathematics of multivalued logic is no different
in principle from formal logic. Fuzzy logic encountered a difficulty related to
the degree of fuzziness: if too much fuzziness is specified, the solution does
not achieve a needed accuracy, if too little, it becomes similar to formal logic.

3 Mind: Concepts and Emotions

Seemingly fundamental nature of mathematical difficulties discussed above
led many to believe that classical physics cannot explain the working of the
mind. Yet, I would like to emphasize another aspect of the problem: often



Neural Networks, Fuzzy Models and Dynamic Logic 367

mathematical theories of the mind where proposed before the necessary phys-
ical intuition of how the mind works was developed. Newton, as often men-
tioned, did not consider himself as evaluating various hypotheses about the
working of the material world, he felt that he possesses what we call today a
physical intuition about the world [50]. An intuition about the mind points
to mechanisms of concepts, emotions, instincts, imagination, behavior gen-
eration, consciousness and unconscious. An essential role of emotions in the
working of the mind was analyzed from the psychological and neural perspec-
tive by Grossberg [13], from the neuro-physiological perspective by Damasio
[6], and from the learning and control perspective by the author [8, 38, 39].
One reason for engineering community being slow in adopting these results is
the cultural bias against emotions as a part of thinking processes. Plato and
Aristotle thought that emotions are “bad” for intelligence, this is a part of our
cultural heritage (“one has to be cool to be smart”), and the founders of Arti-
ficial Intelligence repeated this truism about emotions [31]. Yet, as discussed
in the next section, combining conceptual understanding with emotional eval-
uations is crucial for overcoming the combinatorial complexity as well as the
related difficulties of logic.

Let me summarize briefly and in a much simplified way several aspects
of the working of the mind, which seem essential to the development of the
mathematical descriptions of the mind mechanisms: instincts, concepts, emo-
tions, behavior generation. The mind has evolved for the purpose of survival
and therefore it serves for a better satisfaction of the basic instincts, which
have emerged as survival mechanisms even before the mind. Instincts oper-
ate like internal sensors: for example, when a sugar level in our blood goes
below a certain level an instinct “tells us” to eat. The most accessible to our
consciousness mechanism of the mind is concepts: the mind operates with
concepts. Concepts are like internal models of the objects and situations; this
analogy is quite literal, e.g., during visual perception of an object, an internal
concept model projects an image onto the visual cortex, which is matched
there to an image projected from retina (this simplified description will be
refined later).

An ability for concepts evolved for instinct satisfaction, and the mechanism
linking concepts and instincts involves emotions. Emotions are neural signals
connecting instinctual and conceptual brain regions. Whereas in colloquial
usage, emotions are often understood as facial expressions, higher voice pitch,
exaggerated gesticulation, these are the outward signs of emotions, serving for
communication. A more fundamental role of emotions within the mind system
is that emotional signals evaluate concepts for the purpose of instinct satisfac-
tion. This evaluation is not according to rules or concepts (like in rule systems
of artificial intelligence), but according to a different instinctual-emotional
mechanism described in the next section. This emotional mechanism is cru-
cial for breaking out of the “vicious circle” of combinatorial complexity.

The results of conceptual-emotional understanding of the world are ac-
tions (or behavior) in the outside world or within the mind. In this paper we
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touch on only one type of behavior, the behavior of improving understanding
and knowledge of the language and world (including self). In the next sec-
tion we describe a mathematical theory of a “simple” conceptual-emotional
recognition and understanding. As we will discuss, in addition to concepts
and emotions, it involves with necessity mechanisms of intuition, imagination,
conscious, unconscious, and aesthetic emotion. And this process is intimately
connected to an ability of mind to form symbols and interpret signs.

The mind involves a hierarchy of multiple levels of concept-models, from
simple perceptual elements (like edges, or moving dots), to concept-models
of objects, to complex scenes, and up the hierarchy . . . toward the concept-
models of the meaning of life and purpose of our existence. Hence the tremen-
dous complexity of the mind, yet relatively few basic principles of the mind
organization go a long way explaining this system.

4 Modeling Field Theory (MFT)

Modeling field theory [40], summarized below, associates lower-level signals
with higher-level concept-models (or internal representations), resulting in
understanding of signals, while overcoming the difficulties of CC described in
Section 2. It is achieved by using measures of similarity between the concept
models and the input signals combined with a new type of logic, i.e. the
fuzzy dynamic logic. Modeling field theory is a multi-level, hetero-hierarchical
system. This section describes a basic mechanism of interaction between two
adjacent hierarchical levels of signals (fields of neural activation); sometimes,
it will be more convenient to talk about these two signal levels as an input to
and output from a (single) processing level.

At each level, the output signals are concepts recognized (or formed) in
input signals. Input signals X are associated with (or recognized, or grouped
into) concepts according to the representation models and similarity measures
at this level. In the process of association-recognition, models are adapted
for better representation of the input signals; and similarity measures are
adapted so that their fuzziness is matched to the model uncertainty. The
initial uncertainty of models is high and so is the fuzziness of the similarity
measure; in the process of learning models become more accurate and the
similarity more crisp, the value of the similarity measure increases. I call this
mechanism fuzzy dynamic logic.

4.1 Internal Models, Learning, and Similarity

During the learning process, new associations of input signals are formed re-
sulting in evolution of new concepts. Input signal {X(n)}, n = 1, . . . , N , a
field of input neuronal synapse activation levels, enumerates the input neu-
rons. X(n) are the activation levels. A set of concept-models h = 1, . . . , H is
characterized by the models (or representations) {Mh(n)} of the signals X(n).
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Each model depends on its parameters {Sh},Mh(Sh, n). In a highly simplified
description of a visual cortex, n enumerates the visual cortex neurons, X(n)
are the “bottom-up” activation levels of these neurons coming from the retina
through visual nerve, and Mh(n) are the “top-down” activation levels (or
priming) of the visual cortex neurons from previously learned object-models1.
Learning process attempts to “match” these top-down and bottom-up activa-
tions by selecting “best” models and their parameters. Mathematically, learn-
ing increases a similarity measure between the sets of models and signals,
L({X(n)}, {Mh(n)}). The similarity measure is a function of model parame-
ters and associations between the input synapses and concept-models. It is
constructed in such a way that any of a large number of objects can be recog-
nized, no matter if they appear on the left or on the right. Correspondingly,
a similarity measure is designed so that it treats each concept model as an
alternative for each subset of signals

L({X}, {M}) =
∏

n∈N

∑

h∈H

r(h)l(X(n)|Mh(n)); (1)

l(X(n)|Mh(n)) (or simply l(n|h)) is a conditional partial similarity between
one signal X(n) and one model Mh(n) – all possible combinations of signals
and models are accounted for in this expression. Parameters r(h) are propor-
tional to the number of signals {n} associated with the model h.

In the process of learning, concept-models are constantly modified. From
time to time a system forms a new concept, while retaining an old one as well;
alternatively, old concepts are sometimes merged. (Formation of new concepts
and merging of old ones require a modification of the similarity measure (1);
the reason is that more models always result in a better fit between the models
and data. This is a well-known problem, it can be addressed by reducing the
r.h.s. of equation (1) using a “penalty function”, p(N,M) that grows with the
number of models M , and this growth is steeper for a smaller amount of data
N . For example, an asymptotically unbiased maximum likelihood estimation
leads to multiplicative p(N,M) = exp(−Npar/2), where Npar is the total
number of adaptive parameters in all models (this penalty function is known as
Akaike Information Criterion, see [40] for further discussion and references).

4.2 Fuzzy Dynamic Logic and MFT

The learning process consists in estimating model parameters Sh and associ-
ating subsets of signals with concepts by maximizing the similarity (1). Note,
that equation (1) contains a large number of combinations of models and sig-
nals, a total of HN items; this was a reason for the combinatorial complexity
of the past algorithms discussed in section 2. Modeling field theory (MFT)

1In fact, there are many levels between the retina, visual cortex, and object
models.
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solves this problem by fuzzy dynamic logic [35, 40]. MFT introduces fuzzy
association variables f(h|n):

f(h|n) =
r(h)l(n|h)

∑
h′∈H r(h′)l(n|h′)

(2)

These variables give a measure of correspondence between signal X(n) and
model Mh relative to all other models, h′. A mechanism of concept formation
and learning, an internal dynamics of the modeling fields (MF) is defined as
follows,

Sh = Sh + α
∑

n

f(h|n)
(

∂ ln l(n|h)
∂Mh

)
∂Mh

∂Sh
(3)

r(h) =
Nh

N
;Nh =

∑

n

f(h|n); (4)

Parameter α determines the iteration step and speed of convergence of the MF
system; Nh can be interpreted as a number of signals X(n) associated with
or coming from a concept object n. As already mentioned, in the MF internal
dynamics, similarity measures are adapted so that their fuzziness is matched
to the model uncertainty. Mathematically, this can be accomplished in several
ways, depending on the specific parameterization of the conditional partial
similarity measures, l(n|h); for example, they can be defined as Gaussian
functions,

l(n|h) =(2π)−
d
2 (detCh)−

1
2 exp{−0.5(X(n)−Mh(n))T

C−1
h (X(n)−Mh(n))}

(5)

In this formula, d is the dimensionality of the vectors X and M, and Ch is a
covariance. The dynamics of fuzziness of the MF similarity measures is defined
as

Ch =
∑

n

f(h|n)(X(n)−Mh(n))(X(n)−Mh(n))T /Nh (6)

Initially, models do not match data, covariances are large, and association
variables, f(h|n), take homogeneous values across the data, associating all
concept-models h with all input signals n. As matching improves, covariances
become smaller, and the association variables, f(h|n), tend to high values
1 for some subsets of signals and models and zero for others; thus certain
concepts get associated with certain subsets of signals (objects are recognized
and concepts formed). The following theorem was proven in [40]:

Theorem 1. Equations (2) through (6) define a convergent dynamic system
MF with stationary states given by max{Sh} L.
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In plain language this means that the above equations indeed result in
concept-models in the “mind” of the MFT system, which are most similar –
in terms of similarity measure (1) – to the sensory data. Despite a combina-
torially large number of items in equation (1), a computational complexity of
the MF method is relatively low, it is linear in N and could be implemented
by a physical system (like a computer or a brain). These equations describe a
closed loop system, which is illustrated in figure 1. A reference to the closed
loop emphasizes that the loop sustains its operations on its own, the loop is
not closed in that there are input signals into the loop and output concepts
from the loop.

Comment. Equation (5) of conditional partial similarities using Gaussian
functions can be considered a basis for the following probabilistic interpre-
tation: A model Mh(Sh, n) is a conditional statistical expectation of signals
from object h described by parameters Sh. A similarity measure (1) is a to-
tal likelihood. Let me emphasize that such an interpretation could be valid if
for some values of the parameters, the models are accurate (that is, models
actually are conditional statistical expectation). If models are approximate
in a non-statistical sense, other similarity measures could be more prefer-
able mathematically, like mutual information in the models about the data
[40]. I would also like to emphasize that unlike usual “Gaussian assumption”
this model is quite general, it does not assume that the signal distribution is
Gaussian, but only the deviations between the models and signals are, this
model can represent any statistical distribution [40].

Summary of the MF convergence: during an adaptation process initial
fuzzy and uncertain models (internal structures of the MF system) are as-
sociated with structures in the input signals, fuzzy models are getting more
definite and crisp. The type, shape and number of models are selected so
that the internal representation within the system is similar to input sig-
nals: The MF concept-models represent structure-objects in the input signals.
Mathematical equations which describe this process are called fuzzy dynamic
logic [40] which in terms of mind-internal processes describes an elementary
thinking process involving instincts, imagination, emotions and concepts. But
before discussing this cognitive-psychological interpretations, lets us briefly
look into integrating this process with language.

4.3 Integrating Language and Thinking

During visual perception, when internal representation-models are matched in
the visual cortex to retinal signals, cortex representations maintain their spa-
tial topology and continuity. A number of MFT models have been developed
for visual perception, for other sensor modalities, and for cognition of simple
situations [40]. By using concept-models with multiple sensor modalities, a
MFT system can integrate signals from multiple sensors, while adapting and
improving internal concept-models. Similarly, MFT can be used to integrate
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Fig. 1. For a single level of MFT, input signals are unstructured data {X(n)} and
output signals are recognized or formed concepts {h} with high values of similarity
measures. The MFT equations (2) through (6) describe a continuous loop opera-
tion involving input signals, similarity measures, models, and actions of the model
adaptation (the inner loop in this figure). Psychologically, a similarity measure cor-
responds to the knowledge instinct and its changes to aesthetic emotions.

language and thinking. This requires the development of linguistic MFT mod-
els. Here, I briefly outline an approach to the development of MFT linguistic
models. Like MFT, language is a hierarchical system. Among other things, it
involves sounds, phonemes, words, phrases, sentences, and texts, where each
level operates with its own models. Like other models of the mind, these mod-
els are a result of evolution; for computational intelligent systems we have to
develop them, and this development at each level is a research project, which
is added by a number of already described linguistic models [16, 26, 44, 46].

In order to give an illustration, I discuss an approach to the development
of models of phrases from words in the context of text understanding which,
for example, could be used for an understanding-based search engine. The
input data, X(n), in this “phrase-level” MF system are word strings of a fixed
length S. Thus: X(n) = {wn+1, wn+2, . . . , wn+S}. wn are words of a given
dictionary W = {w1, w2, . . . , wK} of size K, and n is the word position in a
body of texts. A simple phrase model is “a bag of words”, that is, a model is
a subset of words from a dictionary, without any order or rules of grammar,

Mh(Sh, n) = {wh,1, wh,2, . . . , wh,S} . (7)

The parameters of this model are its words, Mh(Sh, n) = Sh = {wh,1, wh,2, . . .,
wh,S}. The language acquisition project in this simplified context consists in
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defining models-concepts-phrases best characterizing the given body of texts
in terms of a similarity measure.

Conditional partial similarities between a string of text, X(n), and a model
Mh could be defined by a proportion of the matches between the two sets,
X(n) and Mh, l(n|h) = |X(n)∩Mh|/S. Thus, similarity in terms of equation
(1) would be defined and could be maximized over the unknown parameters of
the system, {Sh}, that is, over the word contents of phrases. This would result
in learning models-concepts-phrases, accomplishing the goal of the language
acquisition project. The difficulty of the above approach is that the dynamics
of MFT cannot be used for the similarity maximization, in particular, equa-
tion (3) requires evaluating derivatives, which requires a smooth dependence
of models on their parameters. Without the fuzzy dynamic logic of MFT,
the computational complexity of this language acquisition project becomes
combinatorial, i.e. ∼ K(H∗N∗S), which is a prohibitively large number.

The combinatorial complexity of the above solution is related to a “logic-
type” similarity measure, which treats every potential phrase model (every
combination of words) as a separate logical statement. The problem can be
solved by using dynamic fuzzy phrase contents as follows. First, define fuzzy
conditional partial similarity measures:

l(n|h) = (2πσ2
h)−

S
2 exp{−0.5

∑

s

e(n, h, s)2/σ2
h}, (8)

where e(n, h, s) is a distance (measured in the numbers of words) between the
middle of the word sequence X(n), that is n+S/2, and the closest occurrence
of the word wh,s; the sum here is over words belonging to the phrase model h.
In practical implementations, the search for the nearest word can be limited
by ±3σh words, and e(n, h, s) falling outside this range can be substituted by
a (3σh + 1). The dynamics of fuzziness of this similarity measure is given by
a modification of equation (6),

σ2
h =
∑

n

f(h|n)
∑

s

e(n, h, s)2/Nh . (9)

Second, define fuzzy phrase contents, that is a degree of the word wh,s

“belonging” to a model-phrase h, φ(s|h); this is a function of the average
distance of the word wh,s from the phrase model ε(s, h):

ε(h, s) =
∑

n

f(h|n)e(n, h, s)2/Nh; (10)

φ(s|h) =p(h|s)/
∑

s′∈h

p(h|s′);

p(h|s) =(2πσ2
h)−1/2 exp{−0.5

∑

s

ε(h, s)/σ2
h},

(11)
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The dynamics of the word contents of the phrase models is given by modify-
ing S (the number of words in phrases) in the iteration process, say, by defining
Sh ∼ Sσh, or by requiring φ(s|h) to be above a threshold value, and keeping
in each phrase model the words satisfying this criteria. The dynamics defined
in this way results in learning phrase models (concepts) and accomplishes the
goal of the language acquisition project without combinatorial complexity,
the computational complexity is moderate, ∼ H∗K∗S2.

The “bag-of-words” phrase models considered above are much simpler than
tree-like dependencies or known structures of natural languages [16, 25, 26,
44, 46, 48]. These more complicated “real” linguistic models can be used in
place of a simple distance measure e(n, h, s) in equation (8). In this way the
models of noun and verb phrases and tree structures can be incorporated into
the above formalism of MFT.

Integration of language and cognition in MFT is attained by characteri-
zing objects and situations in the world with two types of models, linguistic
models considered above and cognitive models considered in section 4.2 and
in [40]. Such integrated MFT system learns – similarly to human – in parallel
in three realms: (1) linguistic models can be learned to some extent inde-
pendently from cognition, when linguistic data are encountered for the first
time with limited or no association with perception and cognition (like in a
newborn baby); (2) similarly, cognitive models can be learned to some extent
independently from language, when perception signal data are encountered
for the first time in limited or no association with linguistic data; and (3)
linguistic and cognitive models are learned jointly, when linguistic data are
present in some association with perception signals, like during mother talk-
ing to a baby: “this is a car” (perception models and word models), and like
during more complicated conversations: “Look at Peter and Ann, they are in
love” (cognitive models and phrase models).

A Constructed Example. A real-life example of this approach would be too
voluminous and boring to follow. Here is a simplified constructed example to
illustrate some of the main points of learning phrase models. It starts with
a large text data base (hundreds of millions of words) and partitions it into
10-word chunks. Four of these chunks are shown here containing a word chair :

fifth chair foundation not-for-profit organization devoted fostering online bridge
education hickory chair furniture catalog register wish list store locator contact
fork picnic table set choice chairs benches sets fork table site give information

university course provide software engineering chair involved

After several iterations the algorithm learned phrase models limited to 6-
word length; one hundred thousand of the mostly often used phrase models
were retained, among them the following four were connected to the previous
chunks with appreciable probabilities:

chair foundation nonprofit organization online education
online furniture catalog store brand discount
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ascii table hexadecimal octal set character

university chair professor appointment invitation name

After several more iterations ten thousands of most useful 4 word phrase
models were retained, among them the following five were connected to the
previous chunks with appreciable probabilities:

organization nonprofit community service
online furniture catalog website
brand name furniture discount
ascii table hexadecimal octal

university chair professor appointment

Higher levels of generalization (fewer word sentences with broader mean-
ings) require moving to a higher level of a multi-level hierarchical system.

4.4 MFT Hierarchical Organization

The previous subsections described a single processing layer in a hierarchical
MFT system. Inputs to each layer are signals X(n), or in neural terminol-
ogy, an input field of neuronal activations. Outputs are the activated models
Mh(Sh, n); it is a set of models or concepts recognized in the input signals.
Equations (2-6) and (8-11), as shown in figure 1, can be interpreted as a loop
process: at each iteration the equations contain association variables f(h|n)
and model parameters computed at the previous iteration. In other words,
the output models “act” upon the input to produce a “refined” output model
(at the next iteration). This process is directed at increasing the similarity
between the models and signals. It can be described as an internal behavior
of model adaptation.

The output models initiate other actions as well. First, activated models
(neuronal axons) serve as input signals to the next processing layer, where
more general concept-models are recognized or created. Second, concept-
models along with the corresponding instinctual signals and emotions may
activate behavioral models and generate behavior directed into the outside
world (a process not contained within the above equations). In general, a
higher level in a hierarchical system provides a feedback input into a lower
level. For example, sensitivities of retinal ganglion cells depend on the objects
and situations recognized higher up in the visual cortex; or, a gaze is directed
based on which objects are recognized in the field of view. These interactions
within this hierarchical organization are illustrated in figure 2.

Concept objects identified at the output of the lower level of MFT system
in figure 2 become input signals to the next MFT level which identifies more
general concepts of relationships among objects and situations; at the same
time more general concepts of understanding identified at a higher level ac-
tivate behavioral concept-models that affect processes at a lower level. The
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Fig. 2. Hierarchical organization of the MFT system. High levels of similarity mea-
sures correspond to concepts recognized at a given level in the hierarchy; these are
the input signals to the next, higher level. Also concepts affect behavior (actions).
Models at a higher level are more general than models at a lower level.

agent processes, or the loop processes of model concept adaptation, under-
standing and behavior generation continue up and down the hierarchy of the
MFT levels.

The loop of operations of MFT can also be described as multiple loops
each involving a single model h, h = 1, . . . , H. To some extent these multiple
loops are independent, yet some models interact when they are associated with
the same input signals. Each model along with its adaptation mechanism is
an intelligent agent, which possesses a degree of autonomy and is interacting
with other agents. Thus MFT is an intelligent system composed of multiple
adaptive intelligent agents. Each agent, including its concept model along
with the similarity measure and behavioral response, is a continuous loop
of operations, interacting with other agents from time to time; an agent is
“dormant” until activated by a high similarity value. When activated, it is
adapted to the signals and other agents, so that the similarity increases. A
subset of data in input signals may activate several concept agents, in this way
data provide evidence for the presence of various objects (or concepts). Agents
compete with each other for evidence (matching to signals), while adapting
to the new signals.

A multi-level hierarchical linguistic MFT system can be developed by
adding more levels similar to a word phrase level described in section 4.3.
A relatively simple system can use similar “bag” models for each layer, like
“bag of phrases” model for the next level of concepts (say, sentence), and so
on. Alternatively, more realistic linguistic models of sentences, paragraphs and
large bodies of texts can be utilized (cf. Rieger [47] and Mehler [24]). Among
many possible commercial applications of such systems could be understand-
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ing-based search engines; everybody familiar with the frustration of the web
searches would appreciate a search engine that even remotely understands
user queries and contents of the web pages.

5 MFT Theory of Mind

5.1 MFT Dynamics

Equations (2-6) and (8-11) describe elementary processes of perception or
cognition, in which a number of model concepts compete for incoming signals,
model concepts are modified and new ones are formed, and eventually, more
or less definite connections (high values of f(h|n), close to 1) are established
among signal subsets on the one hand, and some model concepts on the other,
accomplishing perception and cognition.

A salient mathematical property of this processes ensuring a smooth con-
vergence is a correspondence between uncertainty in models (that is, in the
knowledge of model parameters) and uncertainty in associations f(h|n). In
perception, as long as model parameters do not correspond to actual objects,
there is no match between models and signals; many models poorly match
many objects, and associations remain fuzzy (between 0 and 1). Eventually,
one model (h′) wins a competition for a subset {n′} of input signals X(n),
when parameter values match object properties, and f(h′|n) values become
close to 1 for n ∈ {n′} and 0 for n /∈ {n′}. This means that this subset
of data is recognized as a specific object (concept). Upon the convergence,
the entire set of input signals {n} is divided into subsets, each associated
with one model object, uncertainties become small, and fuzzy a priori con-
cepts become crisp concepts. Cognition is different from perception in that
models are more general, more abstracts, and input signals are the activation
signals from concepts identified (cognized) at a lower hierarchical level; the
general mathematical laws of cognition and perception are similar and con-
stitute a basic principle of the mind organization. Kant was the first one to
propose that the mind functioning involves three basic abilities: Pure Reason
(concept-models), Judgment (emotional measure of correspondence between
models and input signals), and Practical Reason (behavior; we only consid-
ered here the behavior of adaptation and learning) [21, 20, 22]. Let us discuss
relationships between the MFT theory and concepts of mind originated in psy-
chology, philosophy, linguistics, aesthetics, neuro-physiology, neural networks,
artificial intelligence, pattern recognition, and intelligent systems.

5.2 Elementary Thought Process, Conscious, and Unconscious

A thought process or thinking involves a number of sub-processes and at-
tributes, including internal representations and their manipulation, attention,
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memory, concept formation, knowledge, generalization, recognition, under-
standing, meaning, prediction, imagination, intuition, emotion, decisions, rea-
soning, goals, behavior, conscious and unconscious [25, 27, 40]. Here and in the
following subsections we discuss how these processes are described by MFT.

A “minimal” subset of these processes, an elementary thought process, has
to involve mechanisms for afferent and efferent signals [10], in other words,
bottom-up and top-down signals coming from outside (external sensor sig-
nals) and from inside (internal representation signals). According to Carpenter
and Grossberg [3] every recognition and concept formation process involves
a “resonance” between these two types of signals. In MFT, at every level
in a hierarchy the afferent signals are represented by the input signal field
X, and the efferent signals are represented by the modeling fields Mh; re-
sonances correspond to high similarity values l(n|h) for some subsets of {n}
that are “recognized” as concepts (or objects). The mechanism leading to
the resonances between incoming signals and internal representations is given
by equations in sections 4.2 and 4.3. The elementary thought process also in-
volves elements of conscious and unconscious processes, imagination, memory,
concepts, instincts, emotions, understanding and behavior as described later.

A description of working of the mind as given by the MFT dynamics was
first provided by Aristotle [1], describing thinking as a learning process in
which an a priori form-as-potentiality (fuzzy model) meets matter (sensory
signals) and becomes a form-as-actuality (a concept). Jung suggested that
conscious concepts are developed by the mind based on genetically inherited
structures, archetypes, which are inaccessible to consciousness [19], and Gross-
berg [10] suggested that only signals and models attaining a resonant state
(that is signals matching models) reach consciousness. Fuzzy uncertain mod-
els are less accessible to consciousness, whereas more crisp and certain models
are better accessible to consciousness.

5.3 Understanding

In the elementary thought process, subsets in the incoming signals are associ-
ated with recognized model objects, creating phenomena (in the MFT-mind)
which are understood as objects, in other words signal subsets acquire mean-
ing (e.g., a subset of retinal signals acquires a meaning of a chair). There are
several aspects to understanding and meaning. First, object-models are con-
nected (by emotional signals [8, 12, 38, 39, 40]) to instincts that they might
satisfy, and also to behavioral models that can make use of them for instinct
satisfaction. Only two instincts and types of behavior are described within
equations of section 4: (1) the knowledge instinct and behavior of learning of
perception and cognition models (that is improving and adapting these mod-
els for better correspondence to the world), and (2) the language instinct and
behavior of learning linguistic models (that is improving and adapting these
models for better correspondence to the language data, like words and gram-
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mar). A formulation is proposed where these two instincts are closely related
and can be considered as two aspects of the same instinct.

The second aspects of understanding and meaning is that an object, si-
tuation, or phrase is understood in the context of a more general situation
in the next layer, consisting of more general concept-models, which accepts
as input signals the results of object recognition. That is, each recognized
object model (phenomenon) sends (in neural terminology, activates) an out-
put signal; and a set of these signals comprises input signals for the next
layer models, which ‘cognize’ more general concept-models. And this process
continues up and up the hierarchy of the models and mind toward the most
general models a system could come up with, such as models of universe (sci-
entific theories), models of self (psychological concepts), models of meaning of
existence (philosophical concepts), models of a priori transcendent intelligent
subject (theological concepts).

5.4 Imagination

Visual imagination involves excitation of a neural pattern in a visual cortex
in absence of an actual sensory stimulation (say, with closed eyes) [10]. Ima-
gination was often considered to be a part of thinking processes; Kant [20]
emphasized the role of imagination in the thought process, he called thinking
“a play of cognitive functions of imagination and understanding”. Whereas
pattern recognition and artificial intelligence algorithms of recent past would
not know how to relate to this [29, 31], Carpenter and Grossberg’s resonance
model [3] and the MFT dynamics both describe imagination as an insepara-
ble part of thinking: imagined patterns are top-down signals that prime the
perception cortex areas (priming is a neural terminology for making neural
cells to be more readily excited). In MFT, models Mh give the imagined
neural patterns. MFT (in agreement with neural data) just adds details to
Kantian description: thinking is a play of higher-hierarchical level imagina-
tion and lower-level understanding. Kant identified this “play” (described by
equations (2-6) or (8-11)) as a source of aesthetic emotions discussed later.

5.5 Mind vs. Brain

Historically, the mind is described in psychological and philosophical terms,
whereas the brain is described in terms of neurobiology and medicine. Within
scientific exploration the mind and brain are different description levels of the
same system. Establishing relationships between these description is of great
scientific interest. Today we approach solutions to this challenge [11], which
eluded Newton in his attempt to establish physics of “spiritual substance”
[50]. General neural mechanisms of the elementary thought process (which are
similar in MFT and ART [3]) have been confirmed by neural and psychological
experiments, this includes neural mechanisms for bottom-up (sensory) signals,
top-down “imagination” model signals, and the resonant matching between
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the two [9, 10, 52]. Adaptive modeling abilities are well studied and adaptive
parameters identified with synaptic connections [15, 23]; instinctual learning
mechanisms have been studied in psychology and linguistics [4, 7, 41, 43];
identifying neural structures responsible for knowledge and language instincts
is a next challenge for the neural sciences.

5.6 Instincts and Emotions

Functioning of the mind and brain cannot be understood in isolation from
the system’s “bodily needs”. For example, a biological system (and any au-
tonomous system) needs to replenish its energy resources (eat); this and other
fundamental unconditional needs are indicated to the system by instincts,
which could be described as internal sensors. Emotional signals, generated by
this instinct are perceived by consciousness as “hunger”, and they activate
behavioral models related to food searching and eating. In this paper we are
concerned primarily with the behavior of recognition: instinctual influence on
recognition modify the object perception process (3) - (6) in such a way that
desired objects “get” enhanced recognition. It can be accomplished by modi-
fying priors, r(h), according to the degree to which an object of type h can
satisfy a particular instinct. Details of these mechanisms are not considered
here, except for the two instincts considered in this paper.

5.7 Aesthetic Emotions and Instinct for Knowledge

Recognizing objects in the environment and understanding their meaning is
so important for human evolutionary success that there has evolved an in-
stinct for learning and improving concept models. This instinct (for knowl-
edge and learning) is described in MFT by maximization of similarity between
the models and the world according to equation (1). Emotions related to sat-
isfaction/dissatisfaction of this instinct we perceive as harmony/disharmony
(between our understanding of how things ought to be and how they actually
are in the surrounding world). According to Kant [20] these are aesthetic emo-
tions (emotions that are not related directly to satisfaction or dissatisfaction
of bodily needs). Aesthetic emotions in MFT correspond to changes in the
knowledge instinct (1). The aesthetic emotion is negative, when new input
signals do not correspond well to existing models. The mathematical basis for
the theorem stated after equation (6) can be interpreted psychologically: Dur-
ing iterations defined by the equations (2-6) the aesthetic emotion is always
positive.

In sections 4.2 we considered perception and cognition concept models
and similarity measures; using them in equation (1) yields an instinct driving
the MFT system to improve the knowledge about the world. Similarly, us-
ing linguistic models in equation (1) and the similarity measures considered
in section 4.3, yields the MFT system improving the knowledge of language,
or language instinct. Combining cognitive and linguistic models results in a
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system with combined linguistic and thinking abilities: language and sensory
information together help adapting both, linguistic and cognitive models. A
specific mathematical mechanism combining language and cognition described
in section 4 associates both types of models with every object and situation.
We do not know if the mind works this way. Finding out actual neural mech-
anisms combining language and cognition is a future challenge.

5.8 Beauty and Intuition

Harmony is an elementary aesthetic emotion related to improvement of object-
models. Higher aesthetic emotions are related to the development of more
complex “higher” models: we perceive an object or situation as aesthetically
pleasing if it satisfies our learning instinct, that is the need for improving the
models and increasing similarity (1). The highest forms of aesthetic emotion
are related to the most general and most important models. According to
Kantian analysis [20], among the highest models are models of the meaning
of our existence, of our purposiveness or intentionality, and beauty is related
to improving these models: we perceive an object or a situation as beautiful,
when it stimulates improvement of these highest models of meaning. Beautiful
is what “reminds” us of our purposiveness.

Intuition includes an intuitive perception (imagination) of object models
and their relationships with objects in the world, higher-level models of re-
lationships among simpler models, and behavioral models. Intuition involves
fuzzy unconscious concept models, which are in a state of being learned and
being adapted toward crisp and conscious models (a “thought” or a theory);
such models may satisfy or dissatisfy the knowledge instinct in varying degrees
before they are accessible to consciousness, hence the complex emotional feel
of an intuition. The beauty of a physical theory discussed often by physicists
is related to satisfying our feeling of purpose in the world that is satisfying
our need to improve the models of the meaning through understanding of the
universe.

5.9 Theory Testing and Future Directions

The general neural mechanisms of the elementary thought process, which in-
clude neural mechanisms for bottom-up (sensory) signals, top-down “imag-
ination” model signals, and the resonant matching between the two have
been confirmed by neural and psychological experiments (these mechanisms
are similar in MFT and ART [9, 10, 40, 52]). Adaptive modeling abilities
are well studied and adaptive parameters have been identified with synaptic
connections [15, 23]; instinctual learning mechanisms have been studied in
psychology and linguistics [4, 7, 41, 43]. Ongoing and future research will con-
firm, disprove, or suggest modifications to specific mechanisms of parameter
adaptation (equation 2-5), reduction of fuzziness during learning (equation 6),
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similarity measure (equation 1) as a foundation of aesthetic instinct for knowl-
edge, relationships between psychological and neural mechanisms of learning
on the one hand and, on the other, aesthetic feelings of harmony and emo-
tion of beauty. Differentiated forms of (1) need to be developed for various
forms of the knowledge instinct (differentiation between cognition and lan-
guage instincts in this paper is a step in this direction). Future experimental
research needs to study in details the nature of hierarchical interactions: to
what extent the hierarchy is “hardwired” vs. adaptively emerging in ontoge-
nesis and throughout life; theory of emerging hierarchical models will have to
be developed. For a combined theory of language and cognition, future ex-
perimental research ought to identify neural mechanisms combining linguistic
and cognitive concepts, prove or disprove the mechanisms proposed in this pa-
per, and also study the ontogenesis of these mechanisms in child development
processes.

5.10 Thinking Process and Semiotics

Semiotics studies symbol content of culture [49]. For example, consider a writ-
ten word “chair”. It can be interpreted by a mind to refer to something else:
an entity in the world, a specific chair, or the concept “chair” in the mind.
In this process, the mind, or an intelligent system is called an interpreter,
the written word is called a sign, the real-world chair is called a designatum,
and the concept in the interpreter’s mind, the internal representation of the
results of interpretation is called an interpretant of the sign. The essence of
a sign is that it can be interpreted by an interpreter to refer to something
else, a designatum. This process of sign interpretation is an element of a more
general process called semiosis, which consists of multiple processes of sign
interpretation at multiple levels of the mind hierarchy.

In mathematics and in “Symbolic AI” there is no difference between signs
and symbols. Both are considered as notations, arbitrary non-adaptive entities
with axiomatically fixed meaning. This non-differentiation is a “hangover”
from an old superstition that logic describes mind, a direction in mathematics
and logical philosophy that can be traced through the works of Frege, Hilbert,
Russell, to its bitter end in Gödel theory, and its revival during the 1960s and
1970s in artificial intelligence. In general culture, symbols are understood also
as psychological processes of sign interpretation. Jung emphasized that symbol
processes connect conscious and unconscious [19], Pribram wrote of symbols
as adaptive, context-sensitive signals in the brain, whereas signs he identified
with less adaptive and relatively context-insensitive neural signals [45].

In classical semiotics [30, 32] words sign and symbol were not used con-
sistently; in the context of the mathematical description in this paper, a sign
means something that can be interpreted to mean something else (like a math-
ematical notation, or a word), and the process of interpretation is called a
symbol process, or symbol. Interpretation, or understanding of a sign by the
mind according to MFT is due to the fact that a sign (e.g., a word) is a
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part of an object model (or a situation model at higher levels of the mind
hierarchy). The mechanism of a sign interpretation therefore involves first an
activation of an object model, which is connected to instincts that the object
might satisfy, and also to behavioral models that can make use of this object
for instinct satisfaction. Second, a sign is understood in the context of a more
general situation in the next layer consisting of more general concept-models,
which accepts as input signals the results of lower-level sign recognition. That
is, recognized signs comprise input signals for the next layer models, which
‘cognize’ more general concept-models.

A symbol process of a sign interpretation coincides with an elementary
thought process. Each sign interpretation or elementary thought process, a
symbol, involves conscious and unconscious, emotions, concepts, and behav-
ior; this definition connecting symbols to archetypes (fuzzy unconscious model
concepts) corresponds to a usage in general culture and psychology. As de-
scribed previously, this process continues up and up the hierarchy of models
and mind toward the most general models. In semiotics this process is called
semiosis, a continuous process of creating and interpreting the world outside
(and inside our mind) as an infinite hierarchical stream of signs and symbol
processes.
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[34] L. I. Perlovsky. Gödel Theorem and Semiotics. In Proceedings of the

1996 Conference on Intelligent Systems and Semiotics, volume 2, pages
14–18, Gaithersburg, 1996.

[35] L. I. Perlovsky. Mathematical Concepts of Intellect. In Proceedings of the
World Congress on Neural Networks, pages 1013–1016, San Diego, 1996.
Lawrence Erlbaum Associates.

[36] L. I. Perlovsky. Towards Quantum Field Theory of Symbol. In Proceed-
ings of the 1997 Conference on Intelligent Systems and Semiotics, pages
295–300, Gaithersburg, 1997.

[37] L. I. Perlovsky. Conundrum of Combinatorial Complexity. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 20(6):666–670,
1998.

[38] L. I. Perlovsky. Cyberaesthetics: Aesthetics, learning, and control. In
STIS’98, Gaithersburg, 1998.

[39] L. I. Perlovsky. Emotions, Learning, and Control. In Proceedings of the
International Symposium on Intelligent Control, Intelligent Systems &
Semiotics, pages 131–137, Cambridge, MA, 1999.

[40] L. I. Perlovsky. Neural Networks and Intellect: Using Model-based Con-
cepts. Oxford University Press, New York, 2001.

[41] J. Piaget. The Psychology of the Child. Basic Books, 2000.
[42] J. P. e. Pickett, editor. The American Heritage College Dictionary.

Houghton Mifflin, Boston, MA, 3rd edition, 2000.
[43] S. Pinker. The Language Instinct: How the Mind Creates Language.

Harper Perennial, 2000.
[44] S. Pinker. Words and Rules: The Ingredients of Language. Harper Peren-

nial, 2000.
[45] K. Pribram. Languages of the Brain. Prentice Hall, 1971.
[46] B. B. Rieger. Empirical Semantics II. A Collection of New Approaches in

the Field. In Quantitative Linguistics, volume 13. Brockmeyer, Bochum,
1981.

[47] B. B. Rieger. Situation Semantics and Computational Linguistics: To-
wards Informational Ecology. In K. Kornwachs and K. Jacoby, editors,
Information. New Questions to a Multidisciplinary Concept, pages 285–
315. Akademie-Verlag, Berlin, 1995.



386 Leonid I. Perlovsky

[48] B. B. Rieger. Tree-like Dispositional Dependency Structures for Non-
propositional Semantic Inferencing: A SCIP Approach to Natural Lan-
guage Understanding by Machine. In B. Bouchon-Meunier and R. Yager,
editors, Proceedings of the 7th International Conference on Information
Processing and Management of Uncertainty in Knowledge-based Systems
(IPMU-198), pages 351–358, Paris, 1998.

[49] T. A. Sebeok. Sign: An Introduction to Semiotics. University of Toronto
Press, Toronto, 1995.

[50] R. S. Westfall. Never at Rest: A Biography of Isaac Newton. Cambridge
University Press, Cambridge, 1983.

[51] L. A. Zadeh. Information Granulation and its Centrality in Human and
Machine Intelligence. In Proceedings of the 1997 Conference on Intelligent
Systems and Semiotics, pages 26–30, Gaithersburg, 1997.

[52] S. Zeki. A Vision of the Brain. Blackwell, Oxford, 1993.



A Cognitive Systems Approach
to Automatic Text Analysis

Gert Rickheit and Hans Strohner

Bielefeld University
{Gert.Rickheit,Hans.Strohner}@uni-bielefeld.de

Summary. By regarding cognitive aspects, some shortcomings of traditional ac-
counts of automatic text analysis can be avoided. In particular, at least the aspects
of world knowledge, the interaction between text and reader and the impact of the
communicative situation should be included. With regard to verbal information, a
cognitive system is able to process a text by relating the text information to world
knowledge and situational demands. On the basis of this interaction, the system
produces inferences, which may lead to text analysis, text evaluation and commu-
nicative responses. As a core component of automatic text analysis, we present a
cognitive theory of inference building. According to this theory, textual inferences
are the product of an intimate interaction of verbal input and world knowledge
in certain contexts. Without such inferential abilities, automatic text analysis is
severely restricted. In order to prove this claim, we present some examples from
various research projects.

1 Introduction

In his ambitious enterprise to build up a comprehensive theory of cognitive
text processing, Burghard Rieger has demonstrated that we need the close col-
laboration of all cognitive disciplines to reach this goal. Not only linguistics,
but also philosophy, psychology, computer science and neuroscience must con-
tribute their specific perspectives and experiences. As an integrative frame-
work, Rieger uses the dynamic systems theory. On this basis, he is able to
incorporate the important cognitive aspects of situatedness, grounding and
embodiment into his theory. In empirical demonstrations, Rieger was able
to show how the various components of a cognitive system work together in
order to achieve language understanding. Since cognitive representations are
central to language understanding, Rieger starts his theorising by clarifying
the concept of representation. To put it in his own words:

“Modeling semiotic cognitive information processing (SCIP) systems’ performances,

the concept of representation is considered fundamental. To realize – instead of
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simulating – the experimental distinction of semiotic processes (of cognition) from

their results (as representational structures) is – due to the traces these processes

leave behind – a process of emergence of discernible forms of (interpreted) structures

as acquisition of knowledge. Computational semiotics embarks on the venture to (re-)

construct algorithmically these emergent structures from natural language discourse

which lie at the base of cognitive processes and are representational for them.” [7,

p. 398].

We agree with Burghard Rieger on many of his theoretical and empirical
points. Specifically, we support his interdisciplinary approach to the complex
problem of text understanding. In Rieger’s and our opinion, systems theory is
a proper conceptual basis for the integration of cognitive science. Our contri-
bution to this volume can be seen as an attempt to strengthen the ecological
part of Rieger’s theory. First, we will give an overview of our approach to an
ecosystemic view on text understanding. Then we will present two empirical
examples in order to support our arguments. Finally, we conclude that the
cognitive systems approach is helpful in building up a cognitive theory of text
analysis.

2 An Ecosystemic View on Text Understanding

When people try to solve a problem, they usually use their knowledge of
already familiar events. Often they use metaphors as a basis for the analysis.
Scientific metaphors are certainly very helpful, but not without risk. Like
all metaphors, they only partially reveal the characteristics of the unknown
subject. Other characteristics may be more or less concealed or even deformed.

In his book Metaphors of mind, Robert Sternberg [9] starts with the thesis
that scientists are sometimes unaware of the exact nature of the metaphor
underlying the research, and may even be unclear about the particular set of
questions that their metaphor generates. In order to help scientists to recognise
their own type of approach, Sternberg analyses the following internal and
external metaphors of mind on the basis of their major motivating questions:

• Internal metaphors:
– Geographic: What form does a map of the mind take?
– Computational: What are the information-processing routines (pro-

grams) underlying thought?
– Biological: How do the anatomy and physiology of the brain and the

central nervous system account for intelligent thought?
– Epistemological: What are the structures of the mind through which

knowledge and mental processes are organised?
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• External metaphors:
– Anthropological: Which forms does intelligence take as a cultural in-

vention?
– Sociological: How are social processes in development internalised?

After discussing and criticising these approaches, Sternberg presents his
triarchic theory of human intelligence as a possible way that crosscuts me-
taphors. He calls the triarchic theory a systemic approach which combines
the internal and external worlds of the individual. In addition, a specific sub-
theory relates intelligence to the experience of the individual with tasks and
situations. The components of intelligence are manifested at different levels of
situational tasks which may vary in relevance to a person’s life.

Some of the most popular metaphors for cognitive text understanding are
the computer metaphor, the brain metaphor and the ecosystem metaphor.
The traditional computer metaphor refers to a classical computer system
with a central processing unit and a separate memory. According to the brain
metaphor, human understanding is modelled as a neural network with many
simple units, which combine processing and memory functions. However, hu-
man understanding is more than activation flow in the computer or in the
brain. A basic feature of human understanding is its relation to the physical
and social environment. Here is the starting point for the ecosystem metaphor
[5].

In cognitive science more and more researchers agree to the integration
of inner and outer views on cognition [7]. In order to emphasise this integra-
tive function of systems theory we use the term ecosystem [5]. The notion of
ecosystem refers not only to the processes inside the cognitive system but also
to the external processes in its environment. Biological ecosystems are units
of organisms and their natural environments. If only a single organism with
its environment is focussed, the ecological analysis results in a description and
explanation of the interactions of this single organism with its environment.

This individual level of analysis is highly relevant for a cognitive approach.
In addition to biological processes such as nutrition, metabolism and repro-
duction, cognitive processes such as perception, thinking and learning are
included. From an ecosystemic point of view, cognitive processes are not only
internal events at the representational level, but also interactions between the
system and its physical and social environment. Thus, not only are perception,
thinking and learning the topics of cognitive science, but situated perception,
situated thinking and situated learning also are.

The ecosystem metaphor of text understanding refers not only to the
processes within the brain, but also to the sensory-motor connections of living
systems to their environment and to the impact of the environment on the sys-
tems. From an ecological point of view, text understanding is the product of
evolutionary processes, which aim at a better adaptation to the environment.
On the basis of this position, much of the research into text understanding
has to be criticized.
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Fig. 1. A sample array of experimental objects.

With respect to text understanding, the cognitive system has to combine
structural and functional aspects of the overall communicative situation in-
cluding the text. In the course of discourse processing, the state of the cogni-
tive system is subject to rapid change. Bottom-up and top-down processes in-
teract quickly. In text understanding, processing often is initially data driven.
Knowledge-based processes will be activated selectively when required. Cen-
tral to knowledge-based processes in text understanding are inferences [4, 6].
In the following empirical examples, we focus on two aspects of discourse in-
ferences. First, we have a look at referential inferences. Then we discuss how
compositional inferences are built during text understanding.

3 Referential Inferences

Without referential understanding communicative text processing is impossi-
ble. Therefore, research into referential inferences is central to any compre-
hensive theory of cognitive text processing. However, the majority of current
empirical approaches are theories of coreference accounting of the way people
use words to refer to other words. This dominance of theories on coreference is
probably due to methodological factors. Experimental studies on coreference
need only control linguistic material, whereas studies on external reference
also have to take into account the presentation of pictorial stimuli and, in
addition, the relationship between linguistic and pictorial information in a
certain communicative setting.

In order to take a closer look at the effect of pictorial, verbal and situational
information on referential inferences, we carried out some simple experiments
[10]. Since we were going to study inferential processes, we used referentially
ambiguous materials. Reference resolution was possible by recourse to the dis-
course focus. In the experiment repeated here, subjects were asked to mark a
potential referent presented pictorially. Every picture contained seven objects
from one category (e.g. cubes) and two of a different kind (e.g. pyramids). The
nine objects were arranged horizontally in three groups of three. An example
is given in figure (1).

As the goal of the experiment was to gather initial information on the
role of some relevant linguistic, communicative and cognitive factors in the
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resolution of ambiguous reference, the following factors were systematically
varied:

• Description type: A syntactic-semantic factor that has attained some
prominence in the linguistic discussion of reference is indefiniteness. Con-
ceivably, a definite description causes a reader to employ a strategy aimed
at processing one single referent entity. However, this strategy will not
suffice in the case of referential ambiguity. Hence, we expected to find
a difference in processing between definite descriptions (Please mark the
cube) and indefinite descriptions (Please mark a cube). In the case of ambi-
guity, reference should be less successful with definite than with indefinite
descriptions.

• Goal orientation: From a pragmatic point of view, ambiguity constitutes
an obstacle to the mutual establishment of reference. Recipients may take
referential ambiguity as a minor or a major flaw, depending on their ori-
entation toward the communicative goal. With a cooperative attitude, vi-
olation of the singularity constraint could be more easily pardonable than
with a critical attitude. Accordingly, we induced different levels of goal
orientation by varying instructions: Under tolerant conditions, subjects
were asked to mark the intended referent “even if the expression seemed
inappropriate”. Under critical conditions, they were asked “to indicate an
inadequacy in the expressions”. We expected goal orientation to interact
with description type: Given definite descriptions, tolerant subjects should
be more successful in reference than critical subjects.

• Focus: Being an integral part of cognitive activity, reference will also be
influenced by the outcome of preceding cognitive processes. Prior experi-
ence could be a crucial factor in the resolution of referential ambiguity,
since some of the potential referents might be preactivated by virtue of
having been focused before. Thus, a cognitive account of reference will
have to consider the individual’s chain of foci. In order to disentangle pri-
macy from recency effects, we systematically varied individual “focusing
histories” by bundling reference tasks into trials of three. During the ini-
tial focusing task of each trial, we made subjects attend to one particular
side of the picture by asking them to, e.g., mark a cube on the left side
(or, alternatively, on the right side). Immediately afterward, during the
second focusing task, again a particular part of the picture (the left side,
the centre, or the right side) was put into focus by means of an appropriate
instruction. According to the primacy hypothesis, the initial focus should
exert the greater influence on the subject’s behaviour when subsequently
encountering an ambiguous situation in a target task. According to the
recency hypothesis, the second focus should exert the greater influence.

• Materials and procedure: Pictorial and verbal materials were compiled in
booklets, each one containing 36 reference tasks. The 36 tasks were grouped
into 12 trials of three consecutive tasks each. Trials were separated by an
extra sheet asking the subjects to turn the page over to proceed. In every
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trial, two focusing tasks were followed by one target task. In each task,
the subject had to mark one of nine pictured objects in accordance with
the corresponding verbal instruction. Pictorial stimuli were varied between
trials, but were held constant within a trial; verbal stimuli, however, were
varied between tasks in a trial. Thus, for example, with the accompanying
picture of figure (1), one trial comprised three tasks such as the following
(verbal materials translated from German):
1) First focusing task: Please mark a cube on the left side.
2) Second focusing task: Please mark a cube on the right side.
3) Target task: Please mark the pyramid.

The main results of the experiment were the following:

• Indefinite descriptions lead to more referential reactions than definite de-
scriptions.

• With definite descriptions, subjects with a tolerant attitude show a higher
percentage of referential reactions than subjects with a critical attitude.

Thus, there is evidence in favour of the hypothesis that, in an ambiguous
situation, a definite description constitutes an obstacle to processing. Con-
ceivably, recipients take definite descriptions as indicating that either the sin-
gularity constraint is met, or, at least, it is possible to single out a referent by
taking additional information into account. Obviously, this inferential process
agrees with an increase in processing load.

On the basis of the results at hand, the resolution of referential ambiguity
should be viewed not as an all-or-nothing phenomenon, but as a matter of
degree. In the establishment of reference, the cognitive system uses focused
information for referential disambiguation depending on the specific commu-
nicative situation. As a consequence, focus adjustment could be modelled in
a probabilistic manner.

Moreover, focus in referential ambiguity resolution is not a unidimensional,
but a multidimensional phenomenon. Since multiple foci, such as the pictorial
and verbal focus, may have an effect, one will have to consider the possibility
of focus competition as well as mutual reinforcement of foci.

Finally, reference is not a stable state but a dynamic phenomenon. Refer-
ence changes with time, partially determined by contextual influences. Since
every new input may alter the actual focus, it makes sense to study chains of
foci. The dynamic processing and development of reference could be modelled,
for instance, by the flow of activation in a system theoretical framework [1].

4 Compositional Inferences

From a cognitive systems perspective, research into compositional inferences
is especially interesting because of its extreme flexibility. This flexibility is due
to the fact that, on the one hand, words generally occur together with other
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words and thus illustrate the context dependency of language processing and,
on the other hand, they often refer to actions and events and thus give evidence
of the situatedness of language processing. These two aspects also seem to
be the reason why, in the past, many experimental researchers have refrained
from tackling compositional inferences more intensely. The variability induced
by verbal context and social situations makes experimental testing difficult
because an enormous number of factors has to be controlled. As a consequence,
a great part of experimental research dealt with semantics of isolated nouns,
thus following a research strategy which starts with the simple and already, at
least, partially known, and only then turns to the more complex and unknown.

Recently, the situatedness of semantic composition has become more and
more important to researchers. This specific change is due to a general move
towards a broader range of issues in cognitive science, as for instance human-
machine interaction, or the growing interest in various aspects of communica-
tion in natural settings.

One of the background issues for a cognitive theory of compositional se-
mantics is the number of levels which contributes to language processing.
While some researchers differentiate between a level closely related to the
syntactic structure of the sentence and a conceptual level, others feel that the
conception of a special linguistic structure in the processing of semantics is
unnecessary and even misleading. From an empirical point of view, the imme-
diacy of language processing, which has been shown in many studies, points to
a highly integrated semantics. However, only precisely controlled experiments
can give an answer to this theoretically motivated question.

The present study focuses on the semantic processes which occur during
the combination of two concepts, as in the noun phrase peeled apple. During
the comprehension of this phrase, the concepts of the participle and the noun
may first be fully activated and then combined to a near conceptual entity.
Alternatively, the combination process may be achieved in one step. If this
second alternative is true, it can be an argument for the one-level theory of
semantics, in which quick inferential processes play a central role [11].

When a participle is combined with a noun, as in peeled apple, a new cog-
nitive complex emerges. In order to achieve the new conceptual structure,
several processes must occur very quickly. Two theoretical views of the com-
bination process have been discussed recently:

• The traditional autonomous theory views the composition of two concepts
as a two-step process. During the first step, the concepts are constructed
separately from each other, e.g. the isolated meaning of peeled on the one
hand, and the isolated meaning of apple on the other are activated. During
the second step, the two concepts are combined and some semantic features
are changed, e.g. the colour of the apple turns from red to white.

• The interactive theory maintains that the combination of the two con-
cepts starts immediately after the second concept has been encountered.
According to this view, the concept of apple is activated with respect to
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the concept peeled from the very first moment. Therefore, its colour is
white and not red.

Springer & Murphy [8] reported empirical evidence in favour of the inter-
active theory. Working with a verification task, they presented their subjects
with assertions such as Peeled apples are white and Peeled apples are round.
Immediately after presentation, subjects had to decide as quickly as possible
whether the assertions were true or false. The reaction times showed that
Peeled apples are white was verified faster than Peeled apples are round. This
means that an emergent feature of conceptual combination was activated ear-
lier than a permanent feature of the noun concept. Springer and Murphy
interpreted this result as a confirmation of the interactive theory. In a partial
replication of the Springer and Murphy study, Strohner & Stoet [11] obtained
results with German-speaking subjects, which are in good agreement with
those of the original study.

According to this empirical evidence, the interactive theory comes off bet-
ter than the autonomous theory. However, as Strohner and Stoet criticised, it
remained unclear what exactly the interaction processes look like. Since ver-
ification reactions took over 1500 ms, different types of processes may occur
during this time interval. Firstly, in a study with event-related brain potentials
Kounios & Holcomb [3], besides activation processes, also discuss processes
which have the function of evaluating the coherence of the emerging semantic
structures. Secondly, one might think of inhibition processes which deactivate
those semantic features not in the actual focus of attention. Thirdly, with re-
gard to the autonomous and interactive models of semantic compositionality,
there could be a first phase of composition, during which the autonomous
model is true, and a second one, during which the autonomous processes are
replaced by more interactive processes.

In sum, the verification method is too slow to be able to provide an insight
into the composition processes, which would be differentiated enough for a
process theory of semantic composition. These standards can only be met by
observing the processing states at different times and by taking into account
different types of semantic features. In order to get closer to the composition
dynamics, Strohner & Stoet [11] used the lexical decision task and the naming
task in two further experiments. Both tasks are well-established methods in
psycholinguistic experiments and are able to show subtle activation processes.

In both experiments, eighteen German participle-noun combinations (e.g.
geschälter Apfel, English: peeled apple) are presented word by word (after
100, 500 or 1000 ms) on a computer screen. Shortly after the onset of the
noun, one of three different target words were presented: For the example of
geschälter Apfel these target words were rund (round), rot (red) and weiß
(white). The three target items represented permanent features (e.g. rund),
canceled features (e.g. rot) or emergent features (e.g. weiß) of the critical
object (e.g. Apfel). In a control study, the permanent, canceled and emergent
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features were proven to bear a clear relationship to the respective object. In
addition, the three types of target words did not differ in their word length.

The results were strikingly similar in the lexical decision task and the
naming task. After an interval of 100 ms between noun onset and presenta-
tion of the target word, the canceled features were activated faster than the
permanent and emergent features, whereas no significant differences could be
found between the three feature types for the intervals of 500 ms and 1000
ms. These results suggest that in forming concept combinations a lot of ad-
ditional knowledge and inferences are used. However, the resulting structure
of the combined concept seems to be directed by interaction with actual task
demands. Without such a selective function of the environment, the network
of conceptual units will remain more or less unstructured.

From these results we conclude that the interactive theory, which was
confirmed by the verification studies, should be modified. According to our
results, the entire composition process comprises several cognitive dimensions.
Verification of the compositional features may be one dimension, and activa-
tion of these features another. Depending on the observation methods used,
researchers will focus more on one or the other of these two crucial dimen-
sions. In a similar vein, Khalidi [2] distinguished various concept theories,
which were developed by using different empirical procedures. If the activa-
tion and evaluation aspects are combined, it may be possible to construct an
integrative theory of semantic composition.

5 Conclusion

As already mentioned, some mentalistic shortcomings of traditional approa-
ches may be avoided by analysing language processing in the framework of
cognitive systems [5, 7]. According to this theory, a cognitive system comprises
not only the mental processor but also the situation, which the processor
perceives and to which it reacts.

Since the semantic knowledge of a cognitive system relates the linguistic
to the object information, its structure consists of the following three complex
relations:

• the verbal concept, which relates the linguistic knowledge to the conceptual
knowledge,

• the reference, which connects the concept with certain entities in the sit-
uation models, and

• the semantic composition, which connects these models with other models
with which they form higher-order semantic units.

Only when all three semantic dimensions are taken into account is a com-
plete description of the semantic knowledge possible from a cognitive point of
view. Concepts, references and semantic compositions are not abstract entities
which only appear in mathematical formulae, they are concrete systems with
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concrete inputs and outputs. As concrete systems they have specific architec-
tures, they change their states of activity and they are created by learning
experiences.

Some of the main processing principles of such systems are the following:

• Immediacy: The strategy of immediacy ensures that all knowledge rele-
vant to a linguistic unit is activated as quickly as possible. The cognitive
processor does not wait until the end of the phrase or sentence before
starting the inferential machinery.

• Situatedness: Cognitive systems do not only consider verbal input informa-
tion but also the impact of the context and the communicative situation.
Only those knowledge-driven process are activated, which are necessary to
reach a coherent model of the referential information.

• Sense constitution: From a communicative point of view, language process-
ing aims at integrating verbal knowledge not only into the already existing
world knowledge but also into the social knowledge of the communication
partners. Usually, a text is regarded as making sense if it fits into the social
knowledge and the function of the particular communication.

By means of these processing principles the cognitive system is well
equipped to deal with complex linguistic information, despite its limited work-
ing memory. It is also able to handle many of the semantic problems occurring
in everyday language. The research into text understanding shows that theo-
ries in this domain have to take into consideration the specific architecture of
the dynamics of the human cognitive system. Theories of cognitive semantics
must, therefore, include notions of semantic processing in all three dimensions
of the semantic system.

The favoured cognitive strategy for dealing with the questions of semantic
text analysis is the close cooperation of linguists with researchers of other
disciplines in cognitive science. Semantics is one of the major topics also in
cognitive psychology, philosophy of mind and artificial intelligence. In a cog-
nitive view, linguistic semantics is just a special type of general information
processing. It is an important task for future research to describe its general
characteristics as well as its special characteristics in the domains of referential
and compositional inferences.
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R. Kühn, R. Menzel, W. Menzel, U. Ratsch, M. M. Richter, and I. O.
Stamatescu, editors, Perspectives on Adaptivity and Learning, pages 347–
403. Springer, Berlin/Heidelberg/New York, 2002.

[8] K. Springer and G. L. Murphy. Feature Availability in Conceptual Com-
bination. Psychological Science, 3:111–117, 1992.

[9] R. Sternberg. Metaphors of Mind: Conceptions of the Nature of Intelli-
gence. Cambridge University Press, Cambridge, 1990.

[10] H. Strohner, L. Sichelschmidt, I. Duwe, and K. Kessler. Discourse Focus
and Conceptual Relations in Resolving Referential Ambiguity. Journal
of Psycholinguistic Research, 29:497–516, 2000.

[11] H. Strohner and G. Stoet. Cognitive Compositionality: An Activation and
Evaluation Hypothesis. In M. K. Hiraga, C. Sinha, and S. Wilcox, editors,
Cultural, Rsychological and Typological Issues in Cognitive Linguistics,
pages 195–208. John Benjamins, Amsterdam, 1999.



System Theoretical Research on Language
and Communication: The Extended
Experimental-Simulative Method

Hans-Jürgen Eikmeyer, Walther Kindt, and Hans Strohner

Bielefeld University
{HansJuergen.Eikmeyer,Walther.Kindt,Hans.Strohner}@uni-bielefeld.de

1 Introduction

The following contribution presents experiences made with a system theo-
retical methodology within the frame of the Collaborative Research Center
Situated Artificial Communicators (CRC 360) at Bielefeld University. Start-
ing point for this methodology is, on the one hand, the belief that theoretically
and empirically backed research on the complex subject of natural language
communication needs a systematic and interdisciplinary integration of meth-
ods. On the other hand, this kind of integration is possible only on the basis
of a system theoretical conception of linguistics, which combines the predom-
inating structural analytical approach with a procedural analytical approach.
The experts from CRC called this a change in paradigms.

The system theoretical idea of a model, which is the basis of the Bielefeld
CRC, conceptualizes communication as the interaction of dynamic systems in
a given situation using linguistic utterances. The standard empirical setting
used in CRC consists of interactions about a construction which are examined
and modeled. In these interactions a constructor has to put together the model
of an airplane using parts from Baufix while relying solely on the verbal
instructions of the instructor. In this way we really have a specific system
theoretical constellation: the verbal output of the instructor functions as input
for the constructor and is processed in dependency on the external situation
and the mental state. At the same time the constructor reacts to the input
with his own output by making a construction and/or linguistic utterances
which are, if necessary, perceived and processed as input by the instructor.

As an example of the explanation of the system theoretical methodology
tried out here, the procedure of the partial project Strategies for the Securing
of Understanding in the CRC was chosen. The subject of examination of this
project is the verbal instructions in which the instructor and/or constructor
undertake specific linguistic or mental activities in order to arrive at success-
ful communication (coordination of meaning) for the respective construction
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using the verbal instruction. The goal of this project is, for one, the formu-
lation of hypotheses about regularities in the use and linguistic realization of
communicational strategies; and secondly, the experimental checking of these
hypotheses and their validation in simulation or to make them usable for the
construction of artificial communicators.

Which procedure seems most effective in which sequential steps for reach-
ing this goal? In contrast to the usual experimental methodology in psycholin-
guistics we conducted intensive structure analytical research on the basis of
an existing theory of understanding [3, 4] in order to find ecologically valid hy-
potheses. Consequently, we talk about an Extended Experimental-Simulative
Method. The first step includes the gathering of an extensive corpus on com-
munication in which the phenomena to be looked at can be observed using
manifestly linguistic types of utterances or in which reliable interpretative in-
ferences can be made in regard to this phenomenon on the basis of certain
linguistic activities. In the project Strategies for the Securing of Understanding
we used the option of searching for manifestly verbal strategies for the coordi-
nation of meaning. A structure analytical reason for the finding of hypotheses
takes place regardless of the specific question according to this principle: it
can be ascertained that in the given corpus the output of one interlocutor
with the property E1 very often is followed by a second interlocutor’s output,
which has the property E2. In order to gain a first hypothesis which is for-
mulated as precisely as possible an attempt should be made to find out under
what contextual constraints E1 is followed by E2.

Moving beyond the customary approach in conversation or discourse analy-
sis, the structure analytical finding of hypotheses today has the possibility of
checking and, if needed, modifying the hypotheses found in the first step using
a machine evaluation of corpora. A machine evaluation of corpora needs to
be available to annotation as a prerequisite. For this it would be convenient
if the respective contextual conditions and features could be identified using
formal linguistic indicators.

The use of the comparatively costly experimental methods for checking
the hypotheses makes sense only if both structure analytical steps of the
examination are used optimally for the formulation of the hypotheses. The
specific facts and conditions in an experimental procedure are known from
psycholinguistics and need no further explanation here. It should be said that
neurolinguistic methods are used increasingly in the Bielefeld CRC. The fa-
miliarity of these procedures is due to the fact that in the end transitions
between states and reactions in human input-output systems are conditioned
neurophysiologically.

It should not be assumed that a single experiment suffices to confirm or
falsify the hypothesis to be tested. Very often it cannot be explained suffi-
ciently to what extent the experimentally varying contextual conditions are
responsible for the dependency between E1 und E2. Furthermore, there are
indications that there are other still unconsidered relevant factors. In such
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Fig. 1. The flow-chart of the extended experimental-simulative method.

cases it can be useful to modify the hypotheses accordingly and check them
again corpus-linguistically before conducting the next experiments.

The experimentally confirmed hypotheses are used in the next step, pos-
sibly also using the already available theories on the system interaction to
be examined, in order to construct a theoretical model for the system behav-
ior in question. Generally it can be assumed that not all relevant influential
factors from the corpus or the experiments conducted are included or con-
trolled. Therefore, very often certain theoretically and/or empirically founded
intervening variables are added to the model building in order to arrive at an
explanation of wider scope. This allows for a generalization of the validity of
the model drafted in contrast to the setting within the corpus and the exper-
iments as well as to certain contexts with differing situational conditions. Of
special interest, but also problematic, are the assumptions about intervening
variables in respect to the inner states of the systems and their changes.

The final step in the systematic development of a theory is the simulation.
It checks whether the laws and assumed conditional constellations underlying
the model constructed are sufficient for an explicit and formal modeling of
the empirically established system behavior or whether the hypotheses have
to be made more precise and explicit.
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2 Qualitative Communication Analysis

Research in conversation analysis has shown that successful communication
between people relies to a great extent on the interactive coordination of
meaning. In this respect it is necessary that the participants in communi-
cation know the interactive communicative strategies used in order for suc-
cessful communication to be modeled. Usually, linguistic discourse research
deals with corpora consisting of spontaneous speech. Such corpora have the
disadvantage that the communication in these corpora is inhomogeneous in
regard to several points: The underlying tasks for interaction and the related
communicative expectancies vary and the parts taken over by the communica-
tion partners can therefore be defined very differently, meaning that different
topics are addressed, etc. In order to allow for a higher comparability and
a better generalization of the results of the analysis, it would be useful to
work with experimentally elicited corpora. The aspects to be looked at in the
communicative behavior can be considered natural in these corpora as well.
Therefore, it can be assumed that the observed interaction for the Baufix -
construction in the CRC-corpus in no way deviates from a “natural” way of
behaving. At the same time this corpus serves as a good data basis for the
question posed in the project Strategies for the Securing of Understanding
because instruction dialogues call for a higher level of understanding. This
again leads to numerous side sequences with a coordination of meaning. The
twenty-two dialogues in the CRC-corpus were transcribed using a relatively
easy transcription system and then analyzed for communication problems and
their solution using a classification system which was developed in the project.
Within the framework of this system it was checked among other things to see
whether the participants consider the respective communication problem to
be a difficulty in formulating or understanding, and which grammatical form
of a sentence is used to solve the problem (e.g. a suggestion in the form of a
statement or question), and whether several alternatives for solving the prob-
lem are offered, etc. This type of analysis inevitably shows circumstances that
occur more frequently or, in the best case, even certain dependencies which
form the starting point for the formulation of hypotheses. The constructor in
the CRC-corpus, for example, very often uses an inference introduced by the
conclusive conjunction so (also in German) resorting to what he has under-
stood as a strategy and in this way testing the instructor and the degree of
success in understanding. Also striking was the fact that questions for clarifi-
cation from the constructor were usually formulated as alternative questions
(using the conjunction or) or in form of wh-questions (using the question
pronoun which). This condition suggested checking which type of question
depends on what factors. Relatively soon it became clear that the number of
referential objects for a suitable interpretation of an utterance is a relevant
independent variable.
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3 Quantitative Communications Analysis: Computer
Assisted Analysis of Linguistic Corpora

The computer assisted analysis of linguistic data uses an annotated corpus
of linguistic data as its search space. The core of this data is a transcription
of the observed verbal behavior or speech. This information is enriched by
additional information which characterizes selections of the verbal behavior
in a purpose dependent way. An unlimited number of annotations can be
attached to a stretch of speech. The analysis combines search facilities for
both the core data and the annotations. In regard to the first, a full text
search with regular expressions is used in our system. It is more powerful
than a string search since a regular expression describes not only a single
string but a set of strings. In regard to the second, annotations assign a finite
number of properties to a selection of verbal behavior. The kind of information
covered in an annotation is the central property and other properties are
assign by attribute-value-pairs, where the attribute subspecifies the aspect of
the information given by its value.

In the framework of this CRC 360 we looked at how interlocutors can en-
sure that they understand one another. They can do so either in a prospective
way when they (try to) make sure that no problem arises, or they can do so
in a retrospective way when they already have a problem. In construction
dialogues where an instructor tells a constructor how to manipulate certain
objects, a basic problem is to make sure that both talk about the same objects.
In case of an object identification problem due to a lack of information on the
side of one of the interlocutors this can be tried to be solved with a request
for clarification. Several strategies can be applied in such a case, but, based
on eclectic analyses, we were able to formulate an initial set of hypotheses.
For their formulation we use the following terminology:

Depending on the situation, a specific or an unspecific request for clar-
ification can be formulated. Specific requests for clarification can be a
proposal (a possible partial object description adding more informa-
tion to the information already available) or a list of two proposals
connected with or. Unspecific requests for clarification do not name
a certain possibility. They are open questions, preferably in form of
wh-questions.

Hypothesis 1 The relevant situational parameter is the number of possible
reference objects: in case of exactly two objects an or-question is used while a
wh-question is used for more than two possibilities.

This set of hypotheses then claims that the constructor’s request for clar-
ification in regard to an underspecified object specification is along the lines
of C1, C2, or C3:
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I: take a long bolt
C1: the red one?
C2: the red one or the yellow one?
C3: what colour?

In order to validate this hypothesis in the corpus one can, in a first step, apply
a full text string search for the word or in order to identify all possible specific
requests for clarification and annotate those occurrences which really are such
cases. A full text regular expression search for wh-words (they are actually
“w”-words only in German and occur in inflected forms as e.g. “welcher,
welche, welches”) will find all occurrences of these words and allow for the
classification of those which are really unspecific requests for clarification.
Proposals like C1 can not be searched for and have thus to be annotated the
hard way. Simple search thus helps find candidates for expressions of a special
kind and annotate them accordingly.

Once annotated, one can then search for annotated selections of speech:

• Show all specific requests for clarification
• Show all proposals
• Show all open questions asking for “size««/“color««/“length«« informa-

tion

Moreover, Boolean combinations of search patterns of the kinds mentioned
can be used.

Table 1. The distribution of specific requests for clarification in relation to the
number of possible objects.

Number of All C1 C2
Possibilities requests cases cases

Abs. % abs % of abs % of

All re- All pro- All re- All
quests posals quests lists

One 126 28 101 80 34 3 2 6

Two 193 42 128 66 43 32 17 65

More 129 28 67 52 22 14 11 29

Sum 458 300 49

Table 1 shows some simple results of the numerical analysis. Eighty per-
cent of all requests for clarification found in situations with only one possible
object are proposals. This is a significantly higher percentage than that of
all proposals. Lists with or are the preferred way of formulating requests for
clarification in situations with two possible objects (65%). The percentage
with respect to all requests is relatively small (17%), but it is significantly
higher (Chi2 = 6,99) than the percentage with respect to all requests. The
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relatively small number of lists is possible due to the relatively high planning
activity needed to produce them. These results are completely in line with the
hypotheses formulated above.

The annotation as to form and strategy of a request for clarification is
only the starting point for a more detailed analysis, cf. Rittgeroth et al. [8].

4 Human Experiments

As a crucial part of the Extended Experimental-Simulative Method, experi-
ments fulfill several important research functions:

• They serve as a link between Quantitative and Qualitative Communication
Analysis and the Theoretical Modeling part of the method.

• They clarify the relationships between the various variables involved in
the research design.

• They give valuable insight into the mental processes underlying the ob-
servable behavior of the subjects.
For a detailed discussion of these research functions see section 7.

In order to illustrate these functions of the experimental component we
will describe an experiment carried out as part of a larger research project
(cf. Kindt et al. [5]). Specifically in the present study we focussed on the
influence of referential ambiguity and time pressure on question strategies. Our
hypotheses based on the theoretical approach of situated understanding (e.g.
[3, 4]) included in addition to the effects of a semantic factor (see Hypothesis
1 above) also a pragmatic factor:

Hypothesis 2 Time pressure has a significant influence on the question
strategy: The instruction to react as fast as possible results in more specific
descriptions than no such instruction.

The experimental procedure consists of a game of cards between two per-
sons: an experimental confident and a subject without knowledge about the
experiment. The cards show arrays of four objects, which can be combined
in groups of two or three objects, e.g. two large hexagonal bolts, one small
hexagonal bolt, and one small round bolt (see Figure 1). On each trial the
confident names a specific object in the array which the subject has to identify.
If the confident says “the small bolt”, there are only two alternative target
objects. However, if the confident says “the hexagonal bolt”, there are three
alternative target objects. If the subject is not sure about the object intended,
she or he is encouraged to ask a question for clarification. The type of these
questions for clarification is the dependent variable in the experiment.

The whole experimental procedure was tape recorded. In addition, the
experimenter documented potentially relevant behavior of the subject.

The results were in line with the two hypotheses given above (cf. Table
1). A referential field of two objects resulted in more specific questions (e.g.
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Fig. 2. An experimental situation.

“Do you mean the hexagonal or the round one?”) than did a referential field
of three objects. In this case, for instance, a preferred question was “Which
one do you mean?” Equally, time pressure resulted in more specific questions.
These main results of the experiment with human subjects can be transformed
into theorems which might serve as an input for the theoretical modeling
component of the method.

These theorems are also compatible with the results of Communication
Analysis of authentic questions for clarification in task-oriented dialogues.
Even in cases in which the results obtained from the observation seem to be
in conflict with the results from the experiment, a more finely grained analysis
was able to show the relevance of the experimentally demonstrated strategies.

Table 2. Main results in absolute and relative numbers of question types.

time
pressure alternatives specific unspecific others sum

no 2 105 (50,0%) 64 (30,5%) 41 (19,5%) 210 (100%)
3 98 (42,1%) 93 (39,9%) 42 (18,0%) 233 (100%)

yes 2 119 (63,3%) 48 (25,5%) 21 (11,2%) 188 (100%)
3 124 (55,1%) 71 (31,6%) 30 (13,3%) 225 (100%)
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5 Theoretical Modeling

The theoretical modeling component is the central link between the human
and computer experiment components. A theoretical model integrates the ex-
perimentally confirmed theorems into a coherent system, which relates the
independent variables to the dependent variables. In most cases this is possi-
ble only if certain intervening variables between independent and dependent
variables are constructed. These hypothetical instances and their functional
relations form the creative part of the model and often give reason for critical
discussions.

Fig. 3. A simple model of the observed question strategies with its independent,
intervening, and dependent variables and its main activation routes.

In order to illustrate the theoretical modeling component we present a
simple model of the described scenario for questions for clarification. The
model is based on the two theorems which are the main results from the
experiment with human subjects. In addition, the fact that there was no
tendency towards an interaction between time pressure and referential fac-
tors needs consideration. These two significant effects seem to be additive.
The model comprises the following four hypothetical intervening variables
(cf. Fig. 3):

• Cooperativeness: Since a necessary precondition for a successful task-
oriented communication is cooperativeness, this intervening variable dom-
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inates the whole interaction process. Only if the cooperativeness is high
enough, the two independent variables of the experiment can function in
a predictable way. Otherwise, the results will be idiosyncratic reactions of
the subjects.

• Collaborative efficiency: If the subject tries to react cooperatively and
there is a moderately high time pressure, the subject should select the
most efficient question strategy. Undoubtedly, the most efficient strategy
is to ask a question which includes as much information as possible. In this
case the cognitive effort may be higher, yet the efficiency of the question
will also increase.

• Referential certainty: If the referential field consists only of two possible
objects, the related knowledge of these two objects and their critical dif-
ferences should be very good. This referential knowledge is an excellent
precondition for planning a specific question, e.g. in the form of “X or Y?«
If the referential field consists of three potential objects, the knowledge is
more diffuse and the preferred question strategy might be something like
“Which one do you mean?”

• Response selection: In order to combine the effects of collaborative ef-
ficiency and referential knowledge, the model needs an operator for the
selection of the response. In figure 3, only the two main important com-
binations of effects are illustrated. The less important combinations can
easily be added to the model.

During the final step of theoretical modeling the described model has to be
transformed into a formal system and it has to be implemented as a computer
program.

6 Computer Simulation

A model is a reduced and simplified description of a section of reality (cf.
Eikmeyer [1]). There is a similar relation between the model and reality. This
can be characterized by the fact that the model highlights the essential aspects
while it neglects the inessential ones. In addition to this relation the connection
between a model and its theory have to be kept in mind. This connection can
be better understood through the three levels of description proposed by Marr
[6] for information processing models. Such a process takes information as an
input and turns it into an output. On the first level a computational theory
has to be specified, i.e. a theory which describes what the transition from input
to output aims at and why this is suitable. The latter means the specification
of the necessary and sufficient conditions of the transformation. These are
based on empirical evidence of the process to be described. The second level
of description asks for both the representations of the information assigned
to the input and the output variables. Moreover, it requires the specification
of an algorithm for the transition in the formulation of which the intervening
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variables play a central role. These two levels can be called the model. Marr’s
third level, finally, deals with the physical realization of the algorithm. If this
realization is done by a computer, it is called a simulation.

The model shown in Fig. 3 is an input-output system, in which the control
and independent variables make up the input and the dependent variables
make up the output to be specified on the first level. The intervening variables
and their connections are used to formulate the algorithm for the transition
from input to output. The algorithm is given in an intuitively understandable
graphical depiction. A concrete model needs to be more specific, since on the
second level representations for both the input and the output have to be
specified as well as the details of the algorithm.

Once a model has been specified, it has to be evaluated, i.e. it has to be
found out in what respect the model correctly describes reality and in what
respect it is false. A computer simulation can be used as a tool for model
evaluation. Tests can be repeated almost endlessly, all parameters can be
modified and new hypotheses or predictions can be derived.

According to Popper [7] falsifiability is a minimal requirement for scien-
tific models. Marr [6] claims that modeling has to aim at the specification of
representations and algorithms. Johnson-Laird [2, p. 52] further adds, that
“theories of the mind should be expressed in a form that can be modelled in
a computer program”.

7 The role of Human experiments in the Extended
Experimental-Simulative Method

7.1 The Link Function

Communication Analysis results in a rich description of the communicative
processes going on in the intended research field. Usually, this picture gets
even more complicated by different results in different case studies. For the-
oretical modeling the information resulting from Communication Analysis is
often too complex and too vague. What is needed is an evaluation procedure
of the theoretical hypotheses which resulted from the interpretation of the
observed behavior sequences. This evaluation procedure is contributed by the
experimental method. It includes the following steps.

Hypotheses

Clearly formulated hypotheses are one of the first steps towards theory build-
ing. Hypotheses are the result of Communication Analysis and a neces-
sary precondition for precise experimentation. Hypotheses are formulated as
declarative expressions linking two variable groups of the research topic in the
form of ‘If group A has property E1, then group B has property E2”. Usually,
the variable group A is termed the independent variable and B the depen-
dent variable. In order to get the A-B relationship in a relatively undisturbed
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way other relevant variables C, which may influence it, have to be thoroughly
controlled.

Research Design

On the basis of the selected hypotheses the research design spells out the vari-
able types A, B, and C with respect to the experimental setting. If there is
more than one variable in the independent group, a factorial design is given.
Since in a factorial design the various interactions between the selected vari-
ables have to be considered, the number of variables should be restricted to
a manageable size. Due to the risk of measurement interferences, the number
of dependent variables also should be as low as possible. One of the most
difficult experimental tasks consists in controlling the variable group C. If
relevant variables are not included in the control, the design may end in an
ecologically invalid situation which is not related to the authentic situation
observed in Communication Analysis.

Interpretation of Results

The interpretation of the experimental results yield answers to the question
whether the results contradict the hypotheses or not. In cases in which the
hypotheses have to be rejected some interpretation work has to be done. What
are the possible reasons for the failure? They may be found in the underlying
hypotheses or in the experimental design. A crucial part of the experimental
method is to give some tentative answers and, even more important, to give
some hints about how these problems can be resolved. The overall criterion
for these suggestions is their compatibility not only with the experimental
results but also with the observations during Communication Analysis.

7.2 The “Causal” Analysis Function

Theoretical models consist of a logically consistent network of propositions.
As already mentioned, experimental hypotheses are formulated to fulfill these
requirements. The basis of experimental hypotheses is the conditional rela-
tion between the independent variables A and the dependent variables B with
respect to the controlled variables C. Since the knowledge of conditional rela-
tions is a crucial precondition for intervening during the practical application
of the theory, the confirmation of conditional relations is a central task for
scientific research. Once established, the conditional relation or dependency
between variables A and B can be interpreted in a more specific way: Often it
raises the suspicion of a causal relation or the person modeling bases the as-
sumption of causality on the neutral dependency relation, thus enhancing the
theoretical impact. (Loosely speaking, conditional relations may be termed
“causal”, keeping in mind that the term “cause” is a philosophical term and
is not dealt with in experimental research.)
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7.3 The Mental Function

Somewhat similar to the discussion of the term “causal” analysis is the ex-
plication of the term “mental” analysis. By trying to explain the confirmed
relations between the independent and dependent variables, researchers rely
on certain intervening variables. However, the important question is how to
interpret these hypothesized structures or processes. Are they believed to be
real instances of mental life or do they serve only a formal function in or-
der to connect the input and output of the observed organism? Researchers
have to be careful not to fall back onto the ideologically based positions of
mentalism or behaviorism. One procedure generally agreed upon in the exper-
imental community is to stick closely to the operationally defined independent
and dependent variables. Anyhow, experiments serve as a valid heuristic basis
for formulating hypotheses and intelligent and well founded speculations on
mental structures and processes.

8 Management of Linguistic Corpora

8.1 Aim and Functionality

The aim was to implement a software system for handling corpora of commu-
nicative interactions. From a linguistic point of view this requires the three
following basic functionalities:

• Transcription: This means the possibility to represent an interaction be-
tween two or more persons in a written form. Interactions include both
verbal and non-verbal means and that a representation of the language
signal produced by the interlocutors is the core of the gathered data. It
has to be ensured that arbitrary information can be added to the core
data. The visualization of the data uses a score view with a number of
voices for the interlocutor’s language signal. Such a view easily codes the
relation between an interlocutor and what she is saying and, moreover,
depicts overlapping speech.

• Annotation: This means the possibility of adding meta information to the
core data. This type of information is in no way limited with respect to
what it is and how many perspectives on the core data it is representing.
However, the meta information has to be formally structured to make it
treatable by machines. We chose an attribute-value-based approach, i.e.
all meta information is represented by attribute-value-pairs, where the
attributes to be used have to be specified.

• Analysis: All information of the corpus, the language signal and all annota-
tions, has to be accessible for an automatic mechanism which analyzes the
data according to the user’s requirements. These include full-text search
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Fig. 4. A screenshot of the annotation tool.

as well as search for attributes, values, or attribute-value-pairs of anno-
tations and combinations of both. All such queries are formulated in a
special language.
From a purely practical point of view the two following functionalities were
added:

• Accessibility: All data has to be easily accessible for a group of several
researchers and the system has to be accessible from different places and
from any software platform. A web-based approach is optimal for these
means.

• Re-usability: All information of the annotated corpora has to be exportable
in a suitable standardized output format in order to offer an interface to
other systems. For practical reasons and based on the current state of the
art in text technology we chose XML as our export language.
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8.2 Data Model and Technical Aspects

A theoretical data model has to guarantee the formal integrity of the data. We
needed a data model for a corpus which is a set of interactions. An interaction
is represented by a directed acyclic graph. These graphs contain two types
of nodes: those representing a single contribution of a speaker during the
interaction – called text chunks – and those representing annotations.

Text chunks contain an ordered sequence of minimal elements. According
to the language transcribed these may be words, morphemes, phonemes, or
anything else that might be suitable. All text chunks are related by their
respective positions: they start somewhere in another chunk, mostly at its
end, but possibly somewhere in the middle. An edge in the graph has this
position as the value of its start-attribute. Overlapping speech is thus easily
represented.

Annotations are coded similarly: they have two edges pointing to a text
chunk and the start- and end-attribute of the respective edges code the relative
position of the annotation with respect to the text. Both types of node have a
set of attribute-value-pairs attached to them. The set of admissible attributes
has to be defined by the user.

Technically, the system uses a client-server architecture. User interac-
tion happens via a web browser communicating with a dedicated web server
using the HTTP-protocol. The CGI-interface starts PERL-programs which
themselves communicate with a data base (for the persistent storage of the
data) and a Prolog-engine (for data analysis). The theoretical data model was
mapped onto a relational data base scheme covering both the graph model
and the attribute-value based information. In addition to algorithms for data
handling, a transformation interface was implemented, which shows the lan-
guage data in a score view with HTML. A query language was designed for
data analysis.

9 Conclusion

The Extended Experimental-Simulative Method can be looked at from several
perspectives. We will start with a justification for it from a narrower linguis-
tic perspective and then turn to the broader context of cognitive science in
general.

The methodology proposed above tries to clarify which significance the
methods used for structure- and process-analysis in the different branches
of linguistics have for an integrated system-theoretic development of mod-
els. These methods are – in contrast to common appreciation and practice
– not to be regarded as concurrent but as complementary. Our project was
able to show that the analysis of the structure of communication has to com-
bine communication analysis (qualitative and quantitative) with grammar-
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and semantic-theoretical methods. At the same time, the relevance of postu-
lated structures in language and communication can be backed up by process-
analytic studies of the systems involved. On the other hand, psycholinguistic
experiments might have little impact if they are not based on a differentiated
language- and communication-analytical fundament.

The future development of cognitive sciences depends not only on progress
in theory construction but also on methodological innovation. We need new
methodological concepts and procedures which will contribute to a better inte-
gration of the cognitive subdisciplines. This paper presents one possible strat-
egy of relating some of the disciplines to each other. Specifically, we propose
that communication analysis, experimental research, and computer simula-
tion cooperate in order to build up a new integrated method named Extended
Experimental-Simulative Method.

The core of this new approach consists of a close relation between human
and machine experiments. The obligatory link between these two types of ex-
periments results from precise theoretical models, which can be formalized in
adequate computer programs. If the classic experimental-simulative method is
applied to complex discourse, it must be extended. The methods of communi-
cation analysis have to be included in order to relate the human experiments
to ecologically valid discourse. Since authentic corpora are hard to analyze
due to their complexity, computer assisted analysis of these corpora is added
to the method.

The Extended Experimental-Simulative Method is not only able to con-
tribute to the methodological integration of cognitive sciences but can also
form a basis for theoretical progress. If all authors in cognitive sciences could
agree that good theories should be transformed into formal models, which are
to be confirmed in human and computer experiments, then efficient criteria for
theory testing would be available. In our opinion these criteria will be better
met by system theoretically derived models than by other types of theory.
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1 Two Basic Moods of Representation

The distinction between picture and text involves a set of basic semiotic chal-
lenges. First, pictures are linked in their production to the motoricity of hands,
in their receipt to the eye and the visual cortex. Language in its basic form,
spoken language, is linked in its production to the motoricity of the human
vocal apparatus (from the vocal cords to the lips) and in its perception by
the ear and the auditory cortex. The dynamics of these four subsystems and
moreover the coordination of the pairs of subsystems in production and recep-
tion define the base line of any comparison of picture and text. The fact that
written texts map the characteristics of spoken texts onto the dynamics of
hands and eyes (to abbreviate the more complete description above) points to
the fact that transitions between the two basic modalities have been achieved
in the last millennia. If we take abstract signs of the Palaeolithic as point of
departure (cf. Wildgen [32, 34]), this (cultural) evolution has been running
the last 30,000 years. An even deeper evolutionary opposition opposes man-
ual/facial sign languages and spoken language. The origin of human language
after the proto-language of Homo erectus was basically a dominance shift
from a slower and less rich system, at least partially based on visual/motor
articulations, to a much quicker and richer systems of phonetic/auditory ar-
ticulation (cf. Wildgen [33]). We have no direct knowledge about the sign
language of Homo erectus, but we may guess the characteristics of such a
manually based language, if we consider modern signed languages. Due to the
use of the manual/visual mode, they show, in spite of being constructed in
parallel to existing phonetic languages, characteristic deviations (cf. Emmorey
[5], and Lidell [10]). The most characteristic differences concern the diversity
of parameters and the relevance of gradient subsystems. As [24] summarizes,
spoken language has as major parameter the recombinant system based on
phonetic quality. A set of further parameters of vocal dynamics (loudness,
pitch, timbre, etc.) rather contribute emotional, social-semiotic and paralin-
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guistic contents. In contrast to spoken language, the manual/visual systems of
American Sign Language (ASL) uses for its classifier systems seven groups of
mostly gradient parameters (with at least 30 variables). This example shows
that the (spoken) text is heavily dependent on discrete, recombinant dynam-
ics, whereas utterances in a sign language exploit a whole set of gradient
systems.

The “language of pictures” is again different from visual/manual sign lan-
guages because the manual activities are not restricted to directly observed
motions of the hands but rather to the effects of the instrumental use of hands
applied to colors, textures via certain media, like a canvas or others. There-
fore, the comparison between texts and pictures concerns at least two levels
that must be separated:

• the evolutionary basic distinction between a mode of manual/visual and a
mode of phonetic/auditory communication,

• the application of manually based techniques to materials (with color or
luminosity differences) and media (canvas, paper, glass, etc.) applying spe-
cific instruments (crayon, paint-brush, chisel etc.) is basic for products of
the visual arts. This applies also to writing. As a consequence, pictures
refer to a highly developed culture of materials, techniques and media (for
writing cf. Wildgen [32, chapter 5]).

Our analysis will not consider the details of artistic techniques and media,
but will concentrate on the issue of the (basic) dimensionality in the semiotic
product: a phonetic or written text versus a two dimensional picture.

If de Saussure’s axiom that language is basically a linear structure is cor-
rect, and the dominant temporal organization of spoken language as well as the
linear arrangement of all systems of writing (if their function is not primarily
decorative) argue in favor of this basic assumption, then it is fundamentally
different from the symbolic organization of pictures (e.g. paintings, photos)
and even more different from sculptures and architecture. The dimensionality
of any organization of signs is a basic determinant of its structure; it im-
poses other degrees of freedom and asks for other restrictions. Nevertheless,
one has the intuition that sentences/texts and pictures have many features
in common, they can cooperate, interact as in comics, illustrations, emblems,
etc., they may be translated into one another and, what is more crucial, they
respond to a cognitive system with perception, motor-control, memory and
imagination which is presupposed as more or less identical in the speaker and
hearer and independent from the specific semiotic modality she/he chooses.
A model called Semiotic Cognitive Information Processing (SCIP) has been
put forward by Rieger:

“[It] will allow for a pictorial representation of the semantic space structure as

computed from the text corpus describing the real world situations” [18, p. 390].

In the case of mixed text/picture sign-structures different inputs from an
external reality – called “exo-reality” in Rieger [18] – have to be mapped
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into a unitary “semantic space structure”. Similar problems of integration
starting from sensorial inputs with different spatial, temporal and dynamic
characteristics arise with all symbolic forms, e.g. language, art, myth (reli-
gion), techniques, ethical rules (laws), economic rules of exchange (monetary
systems) – cf. Cassirer [3], Sandkühler & Pätzold [21] and Wildgen [32, chap-
ter 10]. In the case of text/picture the questions, therefore, are: What (spa-
tial/temporal/dynamic) organization do text and picture have in common (we
shall later expand the comparison to sculpture and architecture)? Can we con-
ceive a semiotic framework in which both the similarities and the differences
between text (sentence) and picture are mapped?

2 How Valid is Saussure’s Axiom about the Linearity
of Language? A First Confrontation with Pictures

The linearity of language is much more controversial than Saussure’s axiom
makes us believe. The parallelism of phonetic features and in general of fea-
tures that may describe the phonological, morphological, syntactic, semantic
information found in language has become common opinion in information
based models [17] and in “Head Driven Phrase Structure Grammar” (HPSG).
In these models vectors of features are combined into matrices and thus a
multidimensional descriptive space is constructed. The tree-graphs of con-
stituent and valence analysis also have an analytic second dimension given by
the descriptive labels attached to constituents or valence bound entities. Even
if these supplementary dimensions are the consequence of descriptive devices
and therefore artificial, there exists a phenomenological multi-dimensionality
in intonation and paralinguistic information which points to parallel infor-
mation channels and interaction (structural binding) between these channels.
One could argue that parallel lines of coding are still linear and the interaction
may be restricted to points of coordination. Another complication which has
to be considered is the direction of the process of speaking/reading. The sim-
plest model was that of a linear automaton which from left to right reads one
element, replaces it or not and goes on. The discussion in Chomsky [4] on the
format of generative (production) grammars already showed the restrictions
of a linear (unidirectional) automaton. Not only do discontinuous constituents
occur, the action of the automaton must consider information given in specific
places in the sequence already passed; in the case of a “garden path”, it must
even go back to a specific place and redo the analysis. Thus, the linearity
of language must accept moves back and forth and the range of these moves
depends on the information given in single places (constituents). Even future
places not yet reached by the analysis may be relevant. As a consequence the
linearity of language has a dominant direction (on the time axis) but it also
has a memory of relevant places in the past and reacts to structural places
not yet reached (but asked for, necessary to come). In figure (1) I try to give a
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Fig. 1. Major deviations of the unidirectional linearity of language.

schematic (not a precise) picture of the kind of linearity involved in language
processing (mainly in language production).

Another counterargument to linearity in language processing could be the
duality of syntagmatic and paradigmatic relations [8, p. 59]. The syntagmatic
relations correspond roughly to the contents of figure (1). The paradigmatic
relations open a field of choices or variations (cf. Wildgen [26] for a systematic
analysis of semantic and pragmatic variation). At any moment, and before
any move on the line is made, the speaker may consider a set of possibilities
allowed by the prior choices. As the sequence does not strictly determine this
choice, the set of alternatives at any moment opens a second dimension (of
freedom) governed by morpho-syntactic rules and semantic pragmatic choice
criteria. The choice made is responsible for the style, the literary quality,
and the rhetorical effect of the uttered sequence. This is a real challenge to
Saussure’s axiom of linearity, although the control and selection of variation
and choice points to the dominant linearity of language (forward and backward
fitting) and thus tells us that a model of language processing is predominantly
linear. The difference between syntagmatic and paradigmatic relations refers
to the distinction between on-line production (working memory) and choice
out of a subset of permanent “pieces” (long term memory). The scope of
this subset depends on the available lexicon (which is static) and the current
process stage (which is dynamic). The stylistic choices open a multi-linear
field of associations and form-meaning correspondences which is definitely not
subjected to the strict linearity of linguistic production (consider the difficult
choice made by a poet). I consider therefore stylistic (and esthetic) variation
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Fig. 2. A point like attractor.

to go beyond the linearity of language and to restrict the validity of Saussure’s
axiom.

In the case of pictures (e.g., drawings or paintings) it is immediately ob-
vious that the eye which reads and the hand which draws/paints the pic-
ture operate basically in two dimensions. Even in the case of drawing where
the hand performs linear moves, these have many different directions, i.e.,
they have many orientations in two dimensional space. In paintings, linear
(directed) strokes may be performed (and even be visible as in van Gogh’s
paintings), but what is dominant is the composition of a surface out of sub-
surfaces; therefore the composition is not linear and neighborhood of colors
and shapes is defined in two dimensions.1 If a perspective is constructed, a
third dimension in space is simulated and hierarchical orders may exist, i.e.,
many phenomena mentioned in the discussion of linearity in language reap-
pear again if we analyze pictures. Nevertheless, pictures are grounded in a
two-dimensional structure. If words, sentences, texts have characteristic lin-
ear boundaries, pictures have two-dimensional boundaries. Thus, the shape
of the frame: be it rectangular, quadratic, circular, oval, etc., and all the dy-
namics inherent in a picture are influenced by the fact that they end at this
border-line or start from it.

We may generalize this basic insight: If the dimensionality of a phenom-
enon is equal or smaller than one, d ≤ 1, then we either have a point (d = 0) or
a line (d = 1).2 The dynamics are locally either stable, i.e. they are controlled
by a point-like attractor or they perform a transition by passing a border or
fold line, as shown in figure (2).

The first dynamics (of stability or state) are called quick (instantaneous)
dynamics, the second are called slow (unfolding) dynamics. The singularities
of the slow dynamics are called bifurcations. The fold is the first and simplest
bifurcation pattern; it creates or abolishes a state of stability and thus defines

1Cf. Wildgen [28, part two], where neighbourhood in a cellular automaton is
discussed and applied to describe the dynamics of narrative structure.

2If we consider fractal dimensions, e.g. 0 < d < 1, we may arrive at the Cantor
set, i.e., a line broken into line-segments or even points.
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Fig. 3. Two basic types of dynamics (quick and slow) and the fold-archetype: birth/
death.

a stable process with limitations in one dimension (co-rank or number of state
variables = 1); cf. figure (3).

3 From one Dimensional Language to Two-Dimensional
Pictures

We shall first consider the one dimensional space (of language) which is devoid
of linguistic signs, i.e., silence, and the two-dimensional space (of pictures)
which is blank. What kind of dynamics may we find in this “virgin”-situation?
In the case of language one may infer that silence just began (communication
stopped) or that silence will finish (communication is just about to start). The
void linear space has implicitly a vector pattern of begin/end, as illustrated
in the central window of figure (4).

Fig. 4. Virtual dynamics of “silence” in communication.

In the case of a frame without picture, a blank canvas, the situation is
more complex. The “linear” space of silence of language has as its corre-
late a (denumerable infinite) set of regular surfaces (I neglect non- or semi-
regular surfaces): the equilateral triangle, the square, the regular polygons
with 5, 6, 7, . . . , n corners. For simplicity sake, I shall just consider the square.
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Fig. 5. Virtual dynamics of a square (diagonal, horizontal/perpendicular and spiral
force-lines).

What are the dynamics of a square frame (without picture)? It is obvious
that the corners, the diagonals which link them, the regular grid of squares
which may compose it, or may be inscribed or circumscribed define a whole
family of implicit paths and thus dynamical potentialities. Figure (5) shows
this basic observation and adds typical paths (for further comments on the
“pictorial base space” cf. Saint-Martin [20, chapter four]).

The comparison of language and picture shows that the transition from
d = 1 to d = 2 leads to a dramatic increase in the potential dynamics: A
frame without picture (pictorial “silence”) has a complexity which goes far
beyond that of a one-dimensional linguistic “silence”. Before we begin to fill
the void spaces, we should ask, if this increase of latent structure continues
steadily with d = 3, d = 4, . . . The answer which already impressed Plato (or
his dialogue partner Timaeus) is that the story does not go on as one would
guess. The major reason is that, although we find infinite regular polygons, we
only find five regular polyhedrons (the Platonic solids), in 4-space we find six
regular hypersolids, in 5-, 6-, 7-space only three [23, p. 91]. This means that
the dimensionality does not induce a monotonic increase in the number of
basic forms, on the contrary it involves restrictions which reduce this number.
In order to complete somewhat the argument (which cannot be followed in
detail here) one has to consider, that there is still a steady increase in the
number of corners (and therefore of implicit dynamic fields, cf. above):

• two end points in a line segment,
• four corners in a square,
• eight corners in a cube,
• sixteen corners in a four-dimensional cube,
• 32, 64, 128, . . . corners if we increase further the dimensionality of the cube

(cf. Stewart [23, p. 90f.]).
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To the non-monotonic increase (even dramatic decrease) in the number
of regular entities (d = 1, 2, 3, 4, . . . , n) corresponds a dramatic clash in the
stability of unfoldings (process-types) with different (internal) co-rank. This
is the heart of Thom’s classification theorem (cf. Wildgen [27, p. 7-18] for
a short introduction). The cuspöıds (co-rank 1) correspond to the geometric
dimension 2 and have an infinite (denumerable) set of types; in co-rank 2
these are reduced to three umbilics (corresponding to Klein’s dihedrons) and
three E-unfoldings (corresponding to the Platonic solids which have three
basic types and two duals). With co-rank 3, no finite classification of stable
unfoldings is possible.

This short summary of basic regularities discovered in geometry and differ-
ential topology helps us to understand that the transition from one dimension
to two, three, four does have dramatic structural consequences and it would
be a silly mistake to believe that one has just to add some more features to
the body of results obtained in the case of one-dimensional structures (e.g.,
language) in order to describe pictures which are basically two-dimensional.
Another silly argument would be that if pictorial structures are very different
(qualitatively different) from linguistic ones, one should just forget the results
of linguistic analysis and begin the analysis of pictures ex ovo, as if they had
nothing to do with language. In both cases do we have symbolic forms (cf.
Cassirer [3] and Wildgen [31]) and basically these symbolic forms use the same
perceptual, mnemonic and imagistic resources. The dimensionality is therefore
the key to the difference between language and pictures. The common (cogni-
tive) base of both modalities allows for the blending of linguistic and pictorial
signs and their contribution to one universal type of human understanding.

4 Implicit Force-Fields and the Organization of Content

The space of silence in language may be filled by a sentence (we simplify the
real processes). It inherits the borders of this space such as: beginning/end
and is governed by relative probabilities in a linear sequence, i.e., the set of
possible first constituents and dependent on it of second constituents, etc. The
production grammars put forward since Markov’s first proposals (by Harris,
Chomsky, and others) elaborated this basic idea (and added the special cases
of context sensitivity, transformation, reanalysis, etc.). I will just take this
tradition as given and ask how a similar process may look like in the case of
picture-production/analysis.

First, we have seen that even the ideal paths in a square (let alone non-ideal
or chaotic paths) are multiple. I have mentioned the diagonals, the square grid
(vertical and horizontal symmetry lines) and a spiral moving from the outside
to the center or vice-versa.3

3In the late sixteenth century Giordano Bruno (1548-1600) made a similar analy-
sis of mnemo-technical systems based on square grids and paths in a structured
square (cf. Wildgen [29, p. 140,170]).
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Fig. 6. The force fields in Leonardo’s “Last Supper”.

In producing a picture (on a void surface) these force-fields are relevant
and they depend naturally on the shape of the picture (be it rectangular,
square, circular, elliptical, etc.). A strong preference is given to rectangular
frames which are near to the ideal (the square) but introduce a basic asym-
metry.4 If we take the painting the “Last Supper” of Leonardo da Vinci (cf.
Wildgen [30, 35] and [32, chapter 6]), the prominent table of the supper fills
the basic horizontal line and Christ marks the intersection with a vertical line
of symmetry. The diagonals correspond to the slightly deformed lines of per-
spective (see the ceiling and the tapestry at left and right) which produce the
illusion of three-dimensionality. Figure (7) reconstructs the basic force-fields.

As this example shows, all three force fields we analyzed in the case of a
void frame are used to organize specific contents (surfaces, figures, persons
in space) in Leonardo’s fresco. The head (ear) of Jesus is at the center of all
force fields. The sub-centers of the groups of apostles lie in the intersections
between the horizontal axis and the symmetric spiral which end at Jesus’ head
(ear). The rectangle of the whole fresco breaks the symmetry of the (ideal)
square.5 The perspective generates a subdivision of the background space into
three equal zones. In the central zone are situated: Jesus, John (at the right
of Jesus), and Thomas, James Major (at the left of Jesus); Judas is already
outside of this field although he has the second position at the right of Jesus.
Peter and Philip are at the intersections of these fields. Geometrically we

4An asymmetric ideal is defined by the “golden proportion” based on the irra-
tional number 1

2
(1 +

√
5) = 1.61803399 . . . .

5If the sides a, b of the rectangle fulfil the golden proportion, it can be subdivided
into smaller rectangles fulfilling the same proportion ad infinitum; under this aspect
this rectangle is also “ideal”. The fresco fills the whole breadth of the dining room
in Santa Maria delle Grazie in Milan. The proportion is roughly 1 : 2 and thus not
in the golden proportion (roughly 1 : 1.662).
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have a blending of two orders: the symmetrical subdivision of the group of
apostles into 6 + 6 and (3 + 3) + (3 + 3) and the three background fields with
Jesus and three apostles in the middle and four apostles at the right and the
left (Judas has his arms on the table and thus sits in a plane nearer to the
spectator); this order is basically 4 + 4 + 4 (+ Judas in a frontal position).
The table organizes the spatial distribution of the persons, which are all in
the lower part of the frame (which is therefore vertically in a disequilibrium);
the same is true for the trunks, heads, hands of the persons above the table
and the feet below; there is a clear dominance of the body parts above the
table. Thus, the geometrical rigor of the force lines is broken by a set of
asymmetries. The information of the picture is at the first level of analysis a
breaking and deformation of symmetries and corresponding force fields. This
fits the idea of information as the history of deformation demonstratively
focused on in [9]; i.e. the regularity of the base space is the presupposition for
the generation of “information” on deformations, asymmetries inscribed into
the (pre-informative) space.

Our analysis only considered the fundamental restructuring of a space
void of content but structured by force-fields dependent on a frame. As soon
as specific contents, i.e. a person or a configuration of persons, objects (e.g.,
flowers, fruit, dead animals in a “nature morte”) or abstract configurations are
introduced, these contents “graft” local spaces and dynamics upon the dynam-
ically organized pictorial frame. Thus Jesus and his twelve apostles implant
their own configuration into the painting. The new dynamical relations may
be gravitational (the apostles sit or stand at the table), map events and ac-
tions (giving, holding something), or symbolic acts (gestures and/or glances).
This means that the two-dimensional space contains several sub-spaces which
introduce their own structure and dynamics into the picture. They may be
coordinated by the overall structure but they still create conflicts, oppositions,
deformations in the already deformed base space. The basic content complexes
organized in Leonardo’s painting are:

1. The table in the fore-ground.
2. The perspective of the dining room, the windows, the landscape visible

through the window, the subdivision of the background into three equal
sub-fields.

3. The arrangement of 12 apostles (grouped by 4×3) on both sides of Jesus.
4. The gestures (body poses) and glances of Jesus and his apostles superim-

pose a further dynamical structure.

The blending of these different content complexes constitutes the central
message of the painting. At the same time it creates a pattern of structural
layers which is not basically different from what we know about linguistic
structures:

• The basic (linear) dynamics (start/end) of the sentence define a starting
field where we often find a subject, a middle field where verbal constituents



The dimensionality of text and picture 431

and valence governed noun phrases/pronouns are found and (sometimes)
a closing field. The specific filling depends on the type of language and on
the pragmatics of the utterance in question.

• The verb in the center of a valence pattern introduces a local space which
partially controls the linear dynamics. The dynamical patterns of verb
valences have been described in dynamic semantics [27, 28].

• In the periphery of valence patterns the hierarchically nested nominal,
verbal and adjectival phrases complete the picture and adverbial modifiers
or inflectional markers further specify the time/mode/aspect (TMA) of the
central event/action reported.

In the case of classical paintings, which transport a narrative content and
may be “translated” into a text or illustrate a given text, the basic organiza-
tion of the painting adapts the patterns found in language to the conditions
of a two-dimensional representation and its inherent dynamics (which are dif-
ferent from a linear pattern, although they can embed such patterns).

If we continue this line of thought to sculpture and architecture, new types
of restrictions are added, which may overwhelm the patterns found in sen-
tences and pictures. Thus the sculpture as a free-standing physical object
is submitted to the gravitational force field. (The objects represented in the
painting should not contradict our gravitational imagination but gravitation
does not effect them directly.) Thus we may wonder, if Mary in Leonardo’s
painting of St. Anne may fall from St. Anne’s lap, but in a corresponding
sculpture gravitational forces may really destroy this unstable configuration.
Therefore sculptors like Henry Moore formulated as the central aim of their
art that sculptures must “stand” or “lie” naturally. In an architectural design
the physical, technical restrictions become dominant, because a building must
be statically and functionally “consistent”. The domain of artistic freedom left
for a semiotic message is therefore heavily restricted by static and functional
considerations.

In the line of our framework, it would be a challenge to analyze abstract
paintings where the “contents” seem to be absent. I presume that colors and
shapes still have enough “content” that it remains a relevant problem how to
fit them into the force-field of a void frame and even a void frame may attract
specific contents and thus be “content-filled” by the sympathetic viewer. I
shall turn to a last, more general question related to dimensionality: the com-
pression or “flattening” of space and the role of dissipative systems.

5 The Reduction of Semiotic Complexity
and the Coding of “Lost” Information

Semiosis is itself a dramatic selection and a reorganization which maximizes
order and recurrence if compared to the non-semiotic world we may guess to
exist behind all the diverse manners of semiosis (cf. the plurality of “symbolic
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forms” described by Cassirer).6 As we have shown, similar real world situa-
tions (in a three-dimensional spatial frame) can be flattened to two dimensions
in the picture and one dimension in language and music. The temporal con-
tinuum is broken into discontinuous segments not only in linguistic temporal
categories, but also in comics, and to a further extent in the pictures and pixels
which make up a film or a video tape. The sensory brain, memory, imagination
add a huge diversity of features, qualities, characteristics to the spatial and
temporal base-space, and thus “blow” it up to a number of feature dimensions
which may have the magnitude of the set of adjectives or adjective pairs in
a language (cf. Osgood [13] for the construction of a Semantic Differential).
The phenomenon of “space-diffraction” asks for a strategy of compression. If
the dimensionality of space-time (R4) is reduced to three, four, two, one di-
mension we call this strategy “flattening”. The operation underlying Osgood’s
Semantic Differential exploits the fact that the many dimensions of a quality-
space exemplified in the lexicon of adjectives are statistically interdependent;
they may be clustered, such that a few abstract dimensions are found (by
factor analysis).7

From a more theoretical perspective one may consider complex dynamical
systems to be either dissipative or chaotic. Compression means that either
a few dominant “slaving” factors must be found or an algorithm must be
formulated which generates the chaotic system (and has simple rules of gener-
ation). The first strategy is described in Nicolis & Prigogine [12], the second
in Peitgen et al. [14].

Stewart [23, p. 94] compares the behavior of a dynamical system in n-
space with a fluid. Motion in n-space is like a “whole bunch of initial points,
moving along these curves”. If the system is without fluctuation or friction, if
it is “Hamiltonian”, “then the fluid is incompressible” (ibidem). This means
that the n-space cannot be reduced to n−x dimensions. But natural systems
have fluctuation, friction, statistical interdependence, etc., i.e., they are dis-
sipative or far from thermodynamic equilibrium in the sense of Nicolis and
Prigogine [12]. In this state of non-equilibrium, the probabilities of different
states, the forces of different factors are dramatically divergent. It could be
shown for many physical and non-physical systems that they are slaved by
very few strong forces, which Haken [6] calls the “order parameters”. The
compression and reorganization controlled by these strong forces is called
“self-organization” as the new order seems to emerge by itself (in reality the
order parameters reduce all other forces to irrelevance and thus select a specific
pattern which was invisible [but existent] before the effect of self-organization

6Cf. Wildgen [31] and [32, chapter 9]. The major types are: language, myth,
science, art, techniques, ethics.

7I do not discuss more specific temporal, aspectual and modal information con-
tained in sentences and texts (cf. Brandt [2, chapter II (Analyses du temps)]). The
richness of these fields may constitute a basic difference in comparison with pictures,
sculptures etc., although the medium of film recovers many of the specificities found
in language with the means of a visual code.
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occurred).8 The “fluid” in n-space may thus be compressed to 2-space if there
are two control factors which reduce all other factors to noise (for Haken the
laser is the prototype machine which compresses all frequencies of light to one
wave-length with high energy).

The chaos-theoretical strategy has as its prototype the multiple copying
machine with transformations (scaling, rotation, mirroring, and other affine-
linear transformations; cf. Peitgen et al. [14, chapter 5]). If the transforma-
tional and copying process is iterated, a fractal picture is created. All this
complexity, however, is generated by a very small set of basic operations (and
their iteration). This sketch of general ideas of “compression” in dissipative
and chaotic dynamics is intended as background for the following suggestions.

In the case of language, the categorization of vowels is a straightforward
application of self-organization. The two basic formants are the phonetic or-
der parameters; phonological oppositions, e.g., in a language with only three
vowels [i][u][a], may select three prototypes and define corresponding frontier-
lines (cf. Petitot-Cocorda [15, chapter 3]). This allows for a quick decision,
say, for [a]; even if the articulators have many (≈ 30) degrees of freedom and
the specific mix of frequencies changes with the speakers, the situations and
the position of the vowel in a word. For shape recognition similar diffusion
models have been proposed (cf. Petitot-Cocorda [16, p. 293-296]). In the case
of pictures Mandelbrot [11] has demonstrated the fractal geometry of natural
forms and his followers have created a fractal “art”.

After these first illustrations of the mechanisms underlying dimensional
“compression”, I will come back to the comparison of picture/sculpture/ar-
chitecture and language:

1. An architecture (3-space) is represented in an illusionist painting (trompe
l’œil), but one can neither enter the room nor move before it without
destroying the illusion.

2. A sculpture is represented in a mural painting; one part may be sculpted,
the other painted. In a proper position against the wall, it may be difficult
to grasp the difference between 3-space and 2-space.

3. A text describes a landscape, a building, a person either directly or as
represented in a painting.

4. A sentence contains an action scenario (in 3-space + time) in its va-
lence structure, e.g., “Eve gives Adam an apple in the garden Eden”. The
action in 3-space + time is flattened to a sentence with verb and case
assignments/linear order.

In all examples, the basic 3-space with time is flattened to a 2-space (with-
out time), or even to a 1-space (a sequential pattern). Is the other information
lost in the compression or may it be recovered? I just enumerate some answers:

8For a programmatic linguistic application of these ideas cf. Wildgen & Mottron
[36]. In 1983 Prof. Haken was the key-note speaker at the DGfS-congress in Bielefeld
with Ballmer, Eikmeyer and Wildgen as co-referents. This was probably the first
joint venture between linguistics and synergetics.
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• The technique of perspective (rediscovered in the Renaissance) codes ar-
tificially for the third dimension; gestures, glances, frozen actions code for
the temporal dimension (cf. the analysis of dynamics in Leonardo’s “Last
Supper” in [32]).

• The technique of valence patterns (control of NPs), case assignment, etc.,
codes for the spatial parameters and allows their flattening into a sequence
of verb (V) + subject (S) + object (O), etc. (in different orders dependent
on the type of langue: SVO, SOV, VSO, etc.).

• All the non-spatial or non-temporal dimensions are coded for by at-
tributes/shape modifications/colors in a painting or by lexical differen-
tiations in a sentence.

The compression thus leads necessarily to a system of coding levels which
must be such that the most relevant (not all) features may be recovered.
Common knowledge or context finally help to fully translate pictures into
language and language into pictures.

6 Symbolic Creativity and Cross-Cultural Dynamics

In order to simplify cross-cultural comparison I shall stick to the example
“Last Supper” or “Group of persons at a dinner-table”. The second topic
seems to be rather universal, but if we take “table” and “persons sitting at
the table” it becomes clear that Plato’s symposium, one of the archetypes of
this situation, had the persons rather lie than sit, and the table, if present,
was not prominent, and even in Leonardo’s painting half of the apostles are
either standing or raising. The table and the seats may be very low as in
Japan or food may just be displaced on a carpet. Women may be present (one
could argue, if in the real biblical events women were participating or not and
who cooked and served the plates). Such variations are probably culturally
relevant. For instance, the earlier prototype of a meal in Christianity was
rather a meal given to poor members of the community in the house of a
more wealthy person (agape), the separation of Judas from the other apostles
was parallel to the medieval struggle against heretics, who were excluded
from the communion (excommunicated); after the Reform wine became a
more prominent element on the table, and in Italy in the 16th century the
paintings show rather scenes of opulent and prestigious meals. In both cases
the meaning component of sacrifice became rather secondary.

In the 20th century some novels and films have totally desecrated the “Last
Supper”. Thus Marco Ferreri in the film “La Grand Bouffe” (1973) or Peter
Greenaway in “The Thief, the Cook, his Wife and her Lover” (cf. the analysis
of Roelens in [19]) transform the biblical dinner into an extreme meal, where
in the first case the participants kill themselves by eating, in the second case
the meal ends with scenes of cannibalism. These short remarks show that
the topic itself, the object of picture or text, is variable across cultures. The
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interpretation, the reading of these sign-structures will be even more relative.
The only things properly conserved are:

1. The activity of eating with the mouth helped by hands and eventually
instruments.

2. The size (approximate) of the human group that comes together for a
common meal.

3. The central position of a leader.

The (cultural) variability concerns the room, table, chairs, dishes, the kind
of food, and the composition of the group (its social structure). The linguis-
tic variability (e.g., in translations of the biblical text) concerns the lexicon
of items referring to this scene like verbs, nouns, adjectives, and their gram-
matical, morphological, semantic properties. At the lexical and syntactic level
the field of verbs and the associated case-frames may be important structures
that diverge culturally. In the case of the iconographic tradition related to the
biblical episode of the “Last Supper”, cultural differences are marked by the
outfit and the physiognomy of the persons (Jesus, his apostles, bystanders),
by the room and its furniture. The fundamental difference concerns the need
for precision and concretion that is less urgent in a text than in a (classical)
painting. In the following I shall analyze two different pathways of cultural
variation:

1. The path of pictorial abstraction. I will show that it does not coincide
with the kind of abstraction, which is fundamental for language.

2. The path of intertextual deformation, mainly in the direction of satire or
parody.

7 Abstraction in Paintings

Andy Warhol has systematically assessed the topic of the “Last Supper” in
a series of works in 1986. The different paintings [25] apply the technique of
collage introduced by Max Ernst and a super realistic style known as Pop art.
In this tradition he simplifies Leonardo’s figures to contours, lines and mono-
chrome surfaces. The collage assembles different parts of the painting, rotates
and blends them. The dish on the table is remade in a different perspective.
This variant of Leonardo’s painting shows clearly the phenomenon of citation
and of selective rearrangement. Nevertheless, it is not a satire and could be
understood as a new proposal in the classical religious iconography (Warhol
was a practicing Orthodox Catholic).

Another type of abstract presentation of the multi-person topic (as in
the “Last Supper”) was chosen by Paul Klee. In a painting of 1923 titled
“Die Sternverbundenen” (persons linked by stars) a number of human bodies
(4, 5 or more) are organized in a rectangular plane together with geometric
surfaces (“stars”). Possibly one (partial) body in the center is nearer to the
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Fig. 7. Andy Warhol, “The Last Supper”, 1998 [25, p. 81].

viewer (larger) than the others, thus a perspective is still given. In general, the
characterization of the persons is reduced to a minimum (head, trunk, four
limbs). This corresponds roughly to a simple lexicon of human body parts;
its central relation is called part/whole relationship (partinomy). The spatial
disposition uses a lower zone with a baseline (where the persons stand or sit)
and a higher zone, where the “stars” are distributed. The order of disposition
is almost regular (one could superpose a grid with two rows and five (six) cells
on each row. Thus, from the point of view of a two-dimensional composition
(with a third dimension alluded to) this painting still respects the mode of
pictorial organization valid for Leonardo. A complex narrative content like
that in the “Last Supper” can, however, no more be represented in a painting
in Klee’s style.

The third example comes from the classical “abstract” painter Wassily
Kandinsky. His first, totally abstract painting was probably “Komposition
VII” (1913) or a water color which prepared it. The painting I have chosen
is called “Rotes Oval” (Red Oval), and was made in 1920. The reason why I
chose to comment on it is that it has a (deformed) rectangle (like a table) in
its center and further objects on it, at it, around it (cf. Jesus and his apostles
sitting at the table); it thus shows a formal correspondence to Leonardo’s
“Last Supper”. Instead of persons, dishes, bread one can only distinguish
color-surfaces. The most prominent one, the oval, has a clear geometrical
contour and a vivid color (in a constant hue ‘red’). This center could fit the
role Jesus plays in Leonardo’s painting. Rather compact color-surfaces are
around it (8-10 different surfaces). A diagonal is marked from bottom-left
to the right upper corner; this may remind us of Leonardo’s perspective (its
diagonal parts).
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Fig. 8. Paul Klee, “Sternverbundene”, 1923 [7, p. 135].

One could take many examples of modern paintings which allow for a
rather formal comparison with Leonardo’s painting. It is clear that neither
Klee nor Kandinsky cite any content of Leonardo (whereas Warhol does),
but there are basic laws of figural composition that are still in vigor in all
these paintings. In more diverse cultures, some of these principles may not be
observed and, as in the case of Chomsky’s Universal Grammar (U.G.), one
may ask what the common human base for pictorial expression is (what a
U.P. = Universal Picture) is? As there are paintings dated to 40,000 B.C. (cf.
Wildgen [33] and [32, chapter 6]) but no linguistic remnants of that age (not
before writing was invented, i.e., 3,000 B.C.), it is much easier to answer the
question for paintings (U.P.) than for language (U.G.). In any case, cultural
variation must be seen in comparison with cross-cultural communalities or
even with universal features.

8 Satirical Deformations

Any topic which has gained importance and prestige in a culture may be the
object of a satire, of a comical deformation. This is true for biblical motives
(perhaps more restrained by the control of the Vatican until the last century)
but pervasive since the Renaissance for topics in antique mythology, literature,
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Fig. 9. Wassily Kandinsky, “Rotes Oval”, 1920 [1, p. 123].

philosophy, art, and even natural science (until the 17th century). The citation
may have the character of a parody (pastiche) as the “The Last Supper” by
Gradimir Smudja [22, p. 9], where Leonardo (as Jesus) sits on a table with
different European painters at his left and right. The spatial frame, the table,
the grouping of persons correspond to those in Leonard’s “Last Supper”. The
principle at work is one of replacement: Take a given famous painting (here
Leonardo’s “Last Supper”) and replace Jesus by Leonardo, the super-painter,
and his apostles by painters who occupy a similar role in the history of art,
but on a lower level. The satirical (even blasphemous) content consists in the
comparison of Jesus and his apostles with a famous painter and the next level
of painters in a hierarchy of fame. A more dramatic conflict between an artist
who cites Leonardo’s “Last Supper” and the religious authorities occurred in
the case of Buñuel. In his film “Viridiana” a group of beggars organizes a
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Fig. 10. A central picture in Buñuel’s film “Viridiana”.

meal (at the costs of the nun Viridiana who is absent) and poses for a photo,
which cites Leonardo’s “Last Supper”.

The Vatican and, due to its authority, the Spanish government, banished
the film for this citation. The author, Buñuel, however, contested the blas-
phemous interpretation. In fact he had only cited Leonardo and not directly
the Bible. As the iconography of Leonardo’s “Last Supper” shows, numerous
painters in the 16th century had already transformed the topic into a banquet
(Jacobo Bassano, Veronese and Tintoretto [35]). In general one can observe
three basic lines of development:

1. In the case of a biblical narrative, the text is dominant (it has originated
from God), the painting is understood as an illustration. Insofar as the
biblical texts were not in everyone’s hand, the paintings became a rather
independent medium of communication, however controlled by the church.
This control was politically still relevant in the 1960s, when Buñuel’s film
was banished (in Italy and Spain).

2. The topic “Supper” becomes independent from its textual source, and is
considered for its own sake and may be related to a basic human experi-
ence. In this way, the pictorial tradition becomes an independent province
of the fine arts. This may result in a kind of globalization (“mondiali-
sation”). Maria with the child Jesus can now be understood by a non-
Christian society as a representation of the intimate relation between
mother and child; the “Last Supper” can be understood all around the
world as a representation of a common meal (although there is a bias for
societies, where males dominate).
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3. The formal features of a specific iconographic tradition may survive as cul-
turally relevant structures even in the case where the painting is devoid of
meaning (in a narrative sense). Thus, even abstract paintings can continue
a given iconographic tradition. An interesting question is if a textual tra-
dition can make the same move towards abstraction that modern abstract
art did. Dada-literature and concrete poesy followed this route, but they
were much less successful. Thus one may assume that there is a funda-
mental difference between language and pictures related to the manners
of abstraction. Language is from its origin on relatively abstract, because
it has developed its referential function rather late, whereas pictures have
always (even in the Palaeolithic period) possessed a range of phenomeno-
logical diversity between very vivid, realistic pictures and highly schematic
sign-structures (cf. Wildgen [32, 34] for further discussions of this topic).

9 Conclusion

It is theoretically and empirically rewarding to analyze texts (sentences) and
pictures as two different ways of solving the same semiotic problem: How can
world-information be compressed into a basically low-dimensional represen-
tation? What is the subsidiary system of coding levels which allows for the
reconstruction of an imaginistic 3-space (+ time) and thus for the understand-
ing of the picture or the text (sentence)? At the heart of these questions lies
the phenomenon of self-organization or order selection. Some aspects of the
problem may be clarified if the generative mechanisms of chaos are studies
with reference to pictures and texts (sentences) – others ask for a statistical
model of semiotic self-organization. As a general result, the organization of
content based complexes, i.e. of meaning, depends on a proper understanding
of the dimensionality which dominates a given symbolic form (language, figu-
rative art) and on the discovery of the basic coding strategies which are able
to compensate the information loss due to dimensional compression.

The transformation of a textual topic in the history of modern art (Kandin-
sky, Klee, Warhol) showed that the specific type of bi-dimensional semantics
of paintings based on lines and color-surfaces has been put into the foreground
in modern art, whereas modern literature, although it partially took the same
path, did not follow the trend towards abstraction in the same fashion. Thus,
if we compare text and picture in the time of Leonardo and today we observe
that on the one side linguistic texts are always less concrete, less spatially
specified than pictures. On the other side, pictures allow for a radical type
of abstraction, which is not (easily) accessible to texts. Concerning cultural
diversity, one must distinguish rather superficial (conventional) differences.
They show up in the lexicon and less in the grammar of different languages
and in the décor and details of paintings. The question, if a U.G. (U.P.) of
pictures and languages exists was formulated but not answered.
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Linguistische Datenverarbeitung
Universität Trier
Universitätsring 15
D-54286 Trier, Germany
koehler@uni-trier.de

Prof. Dr. Winfried Lenders
Institut für
Kommunikationsforschung und
Phonetik der Universität Bonn
Poppelsdorfer Allee 47 D-53115
Bonn, Germany
Lenders@uni-bonn.de

Prof. Dr. Edda Leopold
Hochschule für Angewandte
Wissenschaften Hamburg
Fachbereich Medienwissenschaften
Stiftstraße 69
D-20099 Hamburg
leopold@mt.haw-hamburg.de

Dr. Alexander Mehler
Juniorprofessor for Text Technology
Universität Bielefeld
Fakultät für Linguistik und Litera-
turwissenschaft
PO Box 10 01 31
D-33501 Bielefeld, Germany
Alexander.Mehler@
uni-bielefeld.de

Dr. Alfonso Medina-Urrea
Universidad Nacional Autónoma de
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Warsaw School of Information
Technology (WSISiZ)
ul. Newelska 6
01–447 Warsaw, Poland
zadrozny@wsisiz.edu.pl

Prof. Dr. Arne Ziegler
Karl-Franzens Universität Graz
Geisteswissenschaftliche Fakultät
Mozartgasse 8/II
A-8010 Graz, Austria
arne.ziegler@uni-graz.at



Index of Names

Abnous, R., 308
Ahuja, R. K., 108
Aigner, M., 110
Albus, J. S., 364, 365
Alexandrov, M., 280
Allan, K., 34, 44
Altmann, G., 16, 22, 192, 203, 206,

210–212, 214, 215, 225, 445
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Garćıa Hidalgo, M. I., 286
Garey, M. R., 107
Gauß, C. F., 129, 370, 371
Gazdar, G., 305
Geffroy, A., 214
Gelbukh, A., 280
Gerla, G., 52
Gernert, D., 83
Gieseking, K., 191
Givón, T., 199
Givan, R., 34
Goebl, H., 122
Goguen, J. A., 350
Goldsmith, J., 277–280
Goll, J., 308
Gomez-Perez, A., 45
Gomide, F., 43
Good, J., 271
Gottwald, S., 68
Gous, A., 125
Grassberger, P., 84–86
Greco, A., 2, 5
Greenaway, P., 434
Greenberg, J. H., 279, 283
Greimas, A. J., 7, 141
Grewendorf, G., 179
Gritzmann, P., 5, 11, 22, 95, 105–108,

445
Grossberg, S., 364, 365, 367, 378–381
Gupta, M. M., 34, 35, 48
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