

Professional
Visual Basic

Project Management

Jake Sturm

Wrox Press Ltd.

Professional Visual Basic Project Management

© 1999 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in
any form or by any means, without the prior written permission of the publisher, except in the case of brief

quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy of
the information. However, the information contained in this book is sold without warranty, either express or
implied. Neither the authors, Wrox Press, nor its dealers or distributors will be held liable for any damages

caused or alleged to be caused either directly or indirectly by this book.

August 1999: First Edition
December 1999: Reprinted

Published by Wrox Press Ltd
Arden House, 1102 Warwick Road, Acock’s Green, Birmingham B27 6BH, UK

Printed in USA
ISBN 1-861002-93-9

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products mentioned in
this book by the appropriate use of capitals. However, Wrox cannot guarantee the accuracy of this
information.

Credits

Author Technical Reviewers
Jake Sturm Stephen Danielson
 Steven M Fowler
Editors Humberto Lozano Ruiz
Julian Skinner Kathleen Peters
Tony Davis Mark Underdown
Claire Fletcher Chris Vandersluis

Managing Editor Design/Layout
Chris Hindley Tom Bartlett

 Dave Boyce
Development Editor Mark Burdett
John Franklin Will Fallon

 Jonathan M Jones
Index John McNulty
Alessandro Ansa
 Cover
 Chris Morris

About the Author
Jake Sturm has extensive programming experience, throughout all levels of software development. He has
been involved in every aspect of Visual Basic application development, from simple executables to
complicated Client Server applications and a host of ActiveX controls. Jake has expanded his programming
from simply using VB for an entire project, to include the full range of Microsoft BackOffice products such
as SQL server, IIS, and MTS. He has also worked extensively with VBA in both Microsoft Office and ASP
pages.

Jake has always viewed programming and project management as a creative process, no different from an
artist creating a sculpture or painting. Visual Basic, combined with Microsoft’s BackOffice products, allows
the developer to create a masterpiece.

Presently, Jake is working for Microsoft Corporation as a Consultant. His email address is: jakes@gti.net
and his personal web site address is: http://w3.gti.net/jakes. He lives in New Jersey with his wife, Gwen,
her two daughters, Jill and Lynzie, his son, Will, and his daughter, Maya.

Jake will be setting up a web site devoted to the Visual Basic language, Enterprise development and the
people who use Visual Basic. This site will be up in late October and will have a url of
http://www.realworldvb.com.

Dedication:
This book has to be dedicated to my wife, Gwen, my three daughters, Jill, Lynzie and Maya and my son
William. This book has consumed most of my time for the last several months. They have all understood
the importance of this book and have waited patiently for its completion.

Acknowledgements:
I must begin with my wife, Gwen, who once again has spent long hours editing and reviewing these
chapters. She has cleaned up many of my grammatical errors, snapped my run-ons into smaller sentences
and kept my writing clear.

The team at Wrox has been an incredible help, working long hours on massaging my text into the final
polished work you see before you. Thanks go to the editors Chris Hindley, Julian Skinner, Tony Davis,
Claire Fletcher and Dominic Shakeshaft.

I would also like to thank all of the reviewers who have spent their time reading the chapters and making
comments. They have worked hard to make this book what it is. I would especially like to thank Kathleen
Peters. Her comments have shown an incredible depth of knowledge of project management and the Visual
Basic language. Her comments have been to the point, sometimes humorous (definitely something an author
needs as they are going through pages of comments) and always accurate. She has added much to this book
and deserves special mention.

I also want to thank my readers. May this book give you the knowledge you need to properly manage all of
your Visual Basic projects and help you make all of your projects successful.

http://w3.gti.net/jakes
http://www.realworldvb.com

Table of Contents

Introduction 1

Why Do We Need To Know About Project Management? 1
Who Is This Book For? 2
What You Need To Use This Book 2
What's Covered In This Book 2
Conventions Used 4
Source Code 5
Tell Us What You Think 5

Chapter 1: Introduction to Project Management 7

Project Management Myths 10
Myth 1: Software Projects are Bound to Fail 10
Myth 2: We Don't Need to Design Visual Basic Projects 11
Myth 3: Methodologies Stifle Creativity 11

Programming with Objects 12
Encapsulation and Abstraction 12
Building Components 13
Why Do We Need Object-Oriented Programming? 14

The Cyclic Methodology 14
The Four Phases of the Cyclic Methodology 16

Envisionment Phase 17
Milestones and Deliverables 18

Design Phase 19
Object-Oriented Project Design During the Design Phase 19
The Three Stages of the Design Phase 19
Iterative Design of the Three Stages 20
Milestones and Deliverables 20

Table of Contents

ii

Development Phase 22
Milestones and Deliverables 22

Deployment Phase 23
Deliverables 23

Team Roles for the Cyclic Methodology 24
Team Member Involvement in the Four Phases 25

Summary 27

Chapter 2: Teams 29

The Big Development Team Myth 30
The Autocratic Manager 30

Problems of Autocratic Management in a VB Project 31
Self-Directed Work Teams 32

Team Structure 33
Visual Basic Software Team Roles 36

Project Manager 36
Envisionment Phase 37
Design, Development and Deployment Phases 37

Product Managers 37
Envisionment Phase 37
Design Phase 38
Development Phase 38
Deployment Phase 38

Component Managers 38
Envisionment Phase 39
Design Phase 39
Development Phase 39
Deployment Phase 39

Developers 39
Envisionment Phase 39
Design Phase 40
Development Phase 40
Deployment Phase 40

Testing 40
Envisionment Phase 40
Design Phase 41

Table of Contents

iii

Development Phase 41
Deployment Phase 41

Logistics 42
Envisionment Phase 42
Design Phase 42
Development Phase 42
Deployment Phase 42

User Education 42
Envisionment Phase 43
Design Phase 43
Development Phase 43
Deployment Phase 43

End Users 43
Envisionment Phase 43
Design Phase 44
Development Phase 44
Deployment Phase 44

Stakeholders and Sponsors 44
Envisionment Phase 44
Design, Development and Deployment Phases 44

Team Skills and Abilities 44
Communication 45
Making Decisions 47
Proper Planning 49
Solving Problems 52
Creativity 54
Resolving Conflicts 55
A Passion for Building Enterprise Solutions 57
Focusing On the Client 58
Team Spirit 60
Leadership 61
Accomplishing Goals 63
System Management 64
General Team Skills 65

Summary 67
Skills References 68

Table of Contents

iv

Chapter 3: Creating Project Schedules 71

Using Project 98 to Schedule Your Goals 74
Project 98 Views 74
Project Starting Date 75

Gantt View 75
Gantt Chart Timescales 76
Creating the Schedule 78

Duration Field in a Gantt Chart 78
Entering Goals Into Project 98 79
Creating Sub-goals 82
Time Estimates and Milestones 83
Entering Project Information 85
Recurring Goals 88
Links 89
Saving the Schedule 93

Resources 93
Resource Management 96
Changing the Look of your Schedule 100
Project 98 Tables 105

Cost Estimates 105
Creating an Export Table 108

Summary 116

Chapter 4: Envisionment Phase 119

Summary of Team Focus 120
Overview of the Envisionment Phase 120

The Enterprise Architecture Document (EAD) 121
Evaluation of Technology 122
Evaluation of Value of the Information 123
Developer Resources 123
Geographical 123
Financial Resources 124
Realistic Expectations 124

Table of Contents

v

The Consensus Meeting-Creating Vision/Scope 124
The First Consensus Meeting 125
The Second Consensus Meeting 129

Drilling down into Goals 130
Deliverables of the Second Consensus Meeting 132

Business Processes 132
Third Level Goals 133

Defining Scope 135

Total Cost of Ownership(TCO) and
 Return on Investment (ROI) 136
The Vision/Scope Document 138

Introduction 138
Project Cycles 139
First Cycle 141
Scope 141

Second Level Goal 142
Third Level Goals 142
Goal 142

Sub Goals 142

Risk Analysis 142
Resources 143
Conflict resolution 143
TCO and ROI Documentation 143
Project Schedule 143
Definition of Important Terms 143
Goals for Later Project Cycles 143
Business Processes 144

The Final Part of the Envisionment Phase 144
Summary 144

Chapter 5: Risk Management 147

Identifying Possible Risks 148
Risk Assessment Document 148

Project Schedule 149
Funds 149

Table of Contents

vi

Resources 149
Personnel 149
Project Manager 150
Cost Controls (Methods are in place to control costs) 150
Team Member Skills 150
Client Expectations 150
Workflows 151
Consensus on the Goals 151
Well-Defined Goals 151
Long-Term Results 151
Milestones 152
Goals that Meet Corporate Needs 152
Corporate Standards and Vision Statement 152
Changes in Corporate Vision 152
Well-Tested Technology 152
Testing 153
Unit and System Testing 153
Stakeholders and Sponsors 153
Team Members Commitment 153
Roles and Responsibilities 154
User Contribution 154
User Interest 154
Built With Cycles 154
Scope 154
Building Reusable Components 155
Change Control 155
Documentation 155
Definition of Goals 155
Methodologies 155

Example Risk Document 156
Change Control 156
Funds 156
Goal Measurement (Milestones) 156
User Contribution 156

Creating Risk Metrics 157
Creating Plans to Eliminate or Reduce Risks 158

Risks that Cannot be Eliminated or Reduced 158
Risk Tracking 160

Table of Contents

vii

Example Risk Tracking Document 161
Summary 162

Chapter 6: Design Phase: Conceptual Stage 165

Summary of Team Focus 166
Overview of the Conceptual Design Stage 166
Moving from Third Level Goals to Scenarios 167

Defining the Different Types of Users 168
Interviewing Users 169
Creating Scenarios 172
Workflows 174

Use Cases 175
Business Rules 176

Requirement Business Rules 176
Definition Business Rules 177
Factual Business Rules 177
Constraint Business Rules 177
Derivation Business Rules 177

The Full Use Case Model 179
Who are the Users? 181
Iterative Cycles 184
Summary 184

Chapter 7: Design Phase: Logical Stage 187

Summary of Team Focus 188
Overview of the Logical Stage 188

The Scope of the Logical Stage 188
Object Attributes 190

Abstraction 190
Encapsulation 191
Cohesion and Coupling 193

Cohesion 194
Coupling 196

Table of Contents

viii

Composition and Emergence 196
Defining Components from Use Cases 197
Choosing a Framework 199

Single-Tier Applications 199
Two-Tier Applications 200

Data Conflicts and Locking 200
Scalability 201

Three-Tier Applications 201
Physical and Logical Models 202

Physical Three-Tier Model 202
Logical Three-Tier Model 202

Microsoft Transaction Server 203
Transaction Processing 203

What Is a Transaction? 203
ACID Properties 204

Atomicity 204
Consistency 204
Isolation 204
Durability 204

When Should MTS Be Used? 205
MTS, Visual Basic and Threading 205

Single-Threading and Multi-Threading 205
Threading Apartments 206
Apartment Threading 207

Just What is DNA? 208
Defining the Composition of the System 209
Creating a Prototype User Interface 217

Building the Order Entry Sequence Diagram 217
Using Tabs 220

Putting All the Tabs on One Form 221
Are Two Forms better than one? 222

Security 223
Internet Applications 224

A Form in Many Guises 224
Summary 225

Table of Contents

ix

Chapter 8: Design Phase: Physical Stage 227

Summary of Team Focus 228
Overview of the Physical Design Stage 228
Designing as a Team 229
Choosing the Best Solution 230

Researching the Best Solution 230
Build, Buy or Reuse? 231
When is Visual Basic not the Right Choice? 232
Resource Estimates 234

Allocating Services to Components 234
Designing the Business Services Component 235

Class Hierarchies 236
Distributing the Business Services Objects 239

Designing the Data Services Class 240
ActiveX Data Objects (ADO) 242

Connection Pooling 242
Communication Between Components 243

RDS and DCOM 243
Effect of MTS 247

Object Lifetimes 247
Managing Transactions 248
MTS and Database Transactions 248
Non-Transactional Objects 249

The Managing Class Revisited 249
Mapping Out the Code using Activity Diagrams 250

Activity Diagram For Creating an ADO connection 251
Retrieve Customer Activity Diagram 253
Update Recordset Activity Diagrams 257
Benefits of Activity Diagrams 258

Effective Testing 259
Other Features to be Determined in the Physical Stage 259

Security 259
Error Handling 261

Table of Contents

x

Risk Assessment 265
Publishing the Final Interface 265

Summary 265

Chapter 9: Development Phase 267

Summary of Team Focus 268
Overview of Development Phase 269
Risk Management 269
Writing Visual Basic Code 270

Code Reviews 270
Coding the DNA Visual Basic Project 271

The Business Services Components 271
Bottom Class 272
Middle Class 274
Top Class 276

The Server Component 277
Reusing Our Visual Basic Code 278

Patterns 279
General Patterns 279
Specific Patterns 279
Finding Your Own Patterns 280
Why Are Patterns So Useful? 280
Finding Patterns in our Sequence Diagrams 281
How Can We Take Advantage of Patterns? 283

Interfaces 283
Object Hierarchies 284

Exploiting Patterns for Code Reuse 285
Using an ASP page 286

Using a Visual Basic Component and an ASP Page 286
The Client HTML Page 288
Building the ASP Page 289
Modifying the Products Component 290
Building the Visual Basic Component 290

Using DHTML 296
Coding the DHTML HTML Page 296

The Future 300
Summary 301

Table of Contents

xi

Chapter 10: Testing 303

Usability Testing 304
User Interface Testing 304
Testing of Business and Data Services Components 305

Test Applications 305
Unstructured Test Applications 305
Structured Test Applications 306

Functional Testing 306
Types of Functional Testing 307

Bug Tracking 308
Debugging Visual Basic MTS Components 309
Logging Information from an MTS Component 320

The Log Database 321
Declarations 321
Writing to a Text File 323
Writing to the Event Log 324
Modifying the CreateInstance Function 325
Modifying the SetADOConnection Procedure 325

Conclusion 328

Chapter 11: Deployment Phase 331

Summary of Team Focus 332
Overview of the Deployment Phase 332
Activities in the Deployment Phase 333

Determine the Rollout Schedule 333
Beta Testing 333

Ranking Bugs 335
User Training 336
Prepare Infrastructure 337
Assemble Project Documentation 337

Creating Changes in the Code 338

Physically Deploying the Application 338

Table of Contents

xii

Deployment Strategies 338
Visual Basic Deployment Wizard 339

Dependency Files 341
Floppy Disk or CD-ROM? 346
Intranet / Internet Solution 347

Final Sign Off 347
Summary 348

Chapter 12: Versioning and Sharing Project
Files 351

A Look at Visual SourceSafe 352
Adding a Project to Visual SourceSafe 353
Checking Files Out of Visual SourceSafe 355
Configuring VSS 356
Merging Files 356

Versioning Files 357
Versioning with VSS 357

Visual SourceSafe Scenarios 358
Building a SourceSafe Project 362
File Histories 363
Maintaining Reusable Code 363
Summary 363

Chapter 13: Creating a Project Schedule 365

Project Resources 365
Envisionment Phase Schedule 368
Design Phase Schedule 375
Development Phase Schedule 387
Deployment Phase Schedule 398
Improvements to the Schedule 403
Summary 405

Table of Contents

xiii

Appendix A: A Brief Overview of UML 407

What Exactly is a Model? 407
UML Diagrams 408

Use Case Models 409
Interaction Diagrams 411

Sequence Diagrams 411
Collaboration Diagrams 412

Activity Diagrams 412
Class Diagrams 413
Other Diagrams 414

UML Notation 414
Classes and Objects 414
Relationships 415

Dependency 415
Association 415
Aggregation 415
Composition 415
Multiplicity 416
Naming an Association 416

Inheritance 416
Multiple Inheritance 416

States 417
Object Interactions 417
Use Cases 418
Design Patterns 418

Appendix B: UML to VB Mapping 421

Purpose of the VB Mapping 421
UML Version Covered 421
How the Mapping is Structured 421
How Well Does the UML Map to VB? 422
UML and Components 422
Concrete Or By Convention? 422
Upgrade to at Least VB5 423
Styles Used in the Mapping 423

Table of Contents

xiv

How to Use this Mapping 423
Building Your Diagrams 423
Mapping Guide 424
1.0 General Extension Mechanisms 426

1.1 Constraints and Comments 426
1.2 Element Properties 426
1.3 Stereotypes 427

2.0 Model Management 427
2.1 Packages 428

2.1.1 External Libraries as Packages 428
2.1.2 Nested Packages 429
2.1.3 Packages and the File System 429
2.1.4 Package Stereotypes 429
2.1.5 Package Dependencies 430

3.0 Static Structure Diagrams 430
4.0 Classifiers 431

4.1 General 431
4.1.1 Name 432
4.1.2 Features 432
4.1.3 Inheritance and Stereotypes 432
4.1.4 Implementation Inheritance 433
4.1.5 Static Members 434
4.1.6 Parameterized Classes (Templates) 435
4.1.7 Class Mapping Advice 435

4.2 Interfaces 435
4.3 Attributes 436

4.3.1 Visibility 436
4.3.2 Name 436
4.3.3 Type 436
4.3.4 Initial Value 437

4.4 Operations 437
4.4.1 Visibility 437
4.4.2 Name 438
4.4.3 Parameters 438
4.4.4 Return Type 438
4.4.5 The Operation and Method Distinction 438

Table of Contents

xv

4.4.6 Parameters 438
Kind 439
Type 439
Default Value 439

4.4.7 Polymorphic Operations 439
4.4.8 Stereotypes 439

4.5 Utilities 439
4.6 Associations 440

4.6.1 Multiplicity 440
4.6.2 Qualifiers 440
4.6.3 N-ary Associations 440
4.6.4 Aggregation and Composition 440
4.6.5 Implementing Associations 441
4.6.6 Basic 1-to-1 Unidirectional Associations 441
4.6.7 Basic 1-to-Many Unidirectional Associations 442
4.6.8 Implementing Qualifiers 445
4.6.9 Bi-directional Associations and Referential Integrity 445
4.6.10 Problems with Simple Associations 447
4.6.11 Link Management Routines 447
4.6.12 Association Classes and Link Management 449
4.6.13 A Final Example: Bi-directional 1-to-Many Association
 with Link Management and Qualifier 452
4.6.14 Miscellaneous Advice 456

Associations Advice: Always Hide Your Implementation 456
Associations Advice: Avoid Cyclic Dependencies 456
Associations Advice: "Keyed" References 457
Associations Advice: Use Property Procedures to Provide Read-
Only Associations 457
Associations Advice: Build Type-Safe Collections 458
Associations Advice: Use "Debug.Assert" to Firm up the "Contract"
of Your Operations 459
Associations Advice: Consider Using Events to Trigger Link
Management 459

5.0 Use Case Diagrams 459
5.1 A Word of Warning 460
5.2 Use Cases and Transactions 460
5.3 Use Cases and Controllers 460

6.0 Behavioral Diagrams 461

Table of Contents

xvi

7.0 Sequence & Collaboration Diagrams 461
7.1 Object Instances and Context 462
7.2 Interactions 463
7.3 Pseudo-Code 463
7.4 Collaboration Diagrams 463

8.0 Statechart Diagrams 464
8.1 Mapping States and Transitions 464
8.2 Implementing State 464
8.3 An Example 465
8.4 Implicit Implementation 466
8.5 Explicit Implementation: A Finite State Machine 468

9.0 Activity Diagrams 472
10.0 Implementation Diagrams: Component & Deployment
 Diagrams 473

10.1 UML Components and Visual Basic 474
10.2 Logical components 474
10.3 Physical Components 475
10.4 Stereotypes 476

Appendix C: Creating a VB Code Generator Add-
In 479

Building a Visual Basic Add-in 480
Visual Basic Extensibility Object 482

Finishing BasMain 483

Writing the Code for the Code Generator 484
Coding the Bas Module 484
Coding the Bottom Class 488

Bottom Class Declarations 488
Class Initialize 489
Class Terminate 489
Creating the ValidateFields Function 490
Changed Field Event 490
Get and Let Functions 493
Miscellaneous Properties 495

Table of Contents

xvii

Generating the Middle Class 495
Creating the Declarations 496
Intialize and Terminate Functions 497
Non-Data Methods and Properties 498
Generate Recordset Methods 503

Generating the Top Class 506
Generating the Data Services Class 509
Getting the Information From the Access Database 515
Generating the Code into the Visual Basic IDE 520
Getting a Reference to the Current Visual Basic IDE 524
Using the Code Generator 525
Testing the Generated Code 526

Table of Contents

xviii

Introduction

Why Do We Need To Know About Project
Management?

Modern day software projects are increasingly complex, not only because the functionality of the
programming languages has expanded enormously, but also because the Internet has opened up a new way
to do business; for corporations to stay afloat, they must have the technology and business processes
available to enable them to compete in an online marketplace.

This means that much more is expected of modern applications, making them a serious and complex
undertaking. The people working in a project team must have an understanding of what it is they are to do,
but they must also understand what everybody else is doing. Project management must be a team effort,
with every team member contributing to the success of the project.

This coordination of efforts needs somebody to manage it and make sure that the project is achieving its
aims. However, project management is not, and can never be, just about one person arbitrarily taking
control of project activities. There should not be one autocratic manager - this is hardly a good grounding
for a comfortable team environment!

Tied in with this is the fact that projects are not just about getting the code written and tested (although this
is very important!). There are a number of other, non-technical skills that are important within project
work, such as communication, leadership and problem solving, amongst others, which are all part of
making a project successful.

Introduction

 2

There are many ways in which a project can be structured; the emphasis on modern-day projects is that they
are built so that some parts are reusable and can be utilized in future project undertakings. This is the
essence of the object-oriented programming approach; code is written so that it has everything it needs to
be able to work - in this way, the code can be moved into other projects without causing a major rewrite.

Who Is This Book For?
This book is aimed primarily at project managers who wish to understand more of the technical issues
involved in managing a Visual Basic Software project, and for Visual Basic Developers who would like to
progress to managing Visual Basic software projects and would like to understand what is involved at every
stage of a project. However, it is important to note that all project team members will benefit from this
book - at every phase of the project, each team member's role is described, making the book a
comprehensive guide to project management for the whole project team.

For the examples in later chapters and appendices, it is assumed that you have extensive knowledge of
Visual Basic. The book as a whole, however, is not aimed specifically at Visual Basic developers (some of
you may be pleased to hear!).

What You Need To Use This Book
To try your hand at project schedules, like those found in Chapters 3 and 13, you will need Project 98. If
you do not have this, don't worry! You can download a 60-day demo version from the following location:

http://www.microsoft.com/office/98/project/trial/info.htm

For the later chapters of the book, you will need to have Visual Basic 6.0 and also Visual SourceSafe to be
able to try the examples found here.

What's Covered In This Book
This book is about effective management of a Visual Basic software project. We learn about the cyclic
methodology and how if fits into the four phases of a software project. The book is loosely written in three
sections:

� Section 1. Introduction to project management, teams and schedules in Project 98. (Chapters 1, 2

and 3)
� Section 2. The four phases of the cyclic methodology:

Envisionment (Chapters 4 and 5);
Design (Chapters 6, 7 and 8);
Development (Chapter 9);
Deployment (Chapters 10 and 11)

� Section 3: Source Control (Chapter 12) and Scheduling (Chapter 13).

http://www.microsoft.com/office/98/project/trial/info.htm

Introduction

 3

Throughout the book we will illustrate the development cycle of a DNA project. DNA stands for Windows
Distributed interNet Application Architecture and involves programming using Internet techniques, but
does not necessarily involve developing Internet applications. Our DNA project will be built on the
Northwind company - the end result will be a new order entry application; however, the company wishes to
move into electronic commerce, or e-commerce, and also wishes to reuse some of their existing order entry
components. You will see many references to this project throughout the book.

Let's look at a more detailed outline of the book.

Chapter 1 serves as an introduction to project management, object-oriented programming and the cyclic
methodology. It explains more about why we need project management and tells us why good project
management is especially important in object-oriented software projects. This chapter also introduces us to
the four phases of the cyclic methodology.

In Chapter 2 we look at teams and team structure. There are a number of different team configurations: we
are concerned with the self-directing, goal-oriented team. This chapter also provides a comprehensive list of
each team member's role in every phase of the cyclic methodology. Listed also are a number of non-
technical skills that are important to team work, as well as information on how to improve these skills.

Chapter 3 is a tutorial on Project 98. Using a Visual Basic developer as the main focus, we create a number
of goals, showing how to enter them into Project 98, allocate time and resources to each goal and looking at
how each goal is represented on a Gantt chart. This chapter results in a personal schedule, or timetable of
events.

The Envisionment phase of the cyclic methodology is the emphasis of Chapter 4. Here, we learn what
activities must take place in the initial stages of a project and what goals must be achieved in this phase, as
well as discovering the milestones and deliverables for envisionment, and understanding why these must be
agreed upon by all team members.

Chapter 5 examines the concept of risk management, showing us how we can identify risks. It provides us
with a list of possible risks, saying how they could affect our project and includes a sample risk document.
To manage risks, we need to be able to measure them and track them - this chapter shows us how, giving us
also a sample risk-tracking document.

In Chapter 6 we look at the Design phase, or, more specifically, the conceptual stage of the design phase.
This involves interviewing the users to find out exactly what it is our application must do, and also to find
out exactly who our users are! This chapter includes a discussion on Unified Modeling Language (UML)
diagrams, work flows and business rules, which are all needed to understand what our system should aim to
do.

The emphasis of Chapter 7 is the logical stage of the design phase. Here, we learn about the structure of our
application: what components it must be made up of to meet business needs. This stage builds on the
information we have gained from the conceptual phase. This chapter also discusses the different
frameworks available for our application, along with Microsoft Transaction Server (MTS) and prototyping
the user interface.

Introduction

 4

Chapter 8 concerns the physical stage of the design phase. This is where we actually define how our
application is going to be built in Visual Basic. This chapter builds on the groundwork we have carried out
in Chapter 6 and Chapter 7 and includes a discussion on mapping out code using activity diagrams. This
chapter also covers ActiveX Data Objects (ADO), Remote Data Services (RDS), Distributed Component
Object Model (DCOM) and the importance of designing as a team.

In Chapter 9 we move on to the Development phase. This is where we actually begin to code the
components we defined in Chapter 8. It suggests guidelines for coding our project and discusses the coding
of a business services component and a server component. It also stresses the importance of coding our
project so that we can reuse sections with ease in future projects. This chapter also touches upon Active
Server Pages (ASP) and Dynamic HyperText Markup Language (DHTML).

Chapter 10 moves swiftly on to testing and debugging our components. It discusses the different ways to
test our components; usability, which is testing the user interface, and functional, of which there are a
number of different types (two of which are stress and performance testing). This chapter then goes on to
discuss debugging Visual Basic MTS components and also logging information.

In Chapter 11 we examine the final phase of the cyclic methodology, the Deployment stage. In this chapter,
we will discuss the activities involved in the deployment of a project, such as Beta testing, user training and
project documentation. This chapter then goes on to describe the different deployment strategies available
to us, before explaining the importance of the final sign off of the project.

Chapter 12 discusses the notion of protecting the integrity of our source code by using Visual SourceSafe to
perform version tracking, source control and change management. This chapter discusses why we need
different versions of our project, and introduces some scenarios where Visual SourceSafe could be used to
protect our source code.

The final chapter provides an example schedule based on the project discussed throughout the book.
Chapter 13 covers all four phases of the cyclic methodology and tackles the issue of resource allocation
head-on.

Conventions Used
I have used a number of different styles of text and layout in this book to help differentiate between the
various types of information. Here are examples of the styles I use along with explanations of what they
mean:

Advice, hints or background information comes in this type of font.

Important pieces of information come in boxes like this.

Introduction

 5

Bulleted lists look like this:

� Important words are in a bold font

� Words that appear on your monitor in menus or windows, such as in the File menu, are presented in a
similar font to how they appear on the screen

� Keys that you press on the keyboard, such as Enter or F5, are italicized like this

Program code appears in a number of formats. Blocks of code that are to be keyed into Visual Basic or
other programs appear in a gray block like this:

Private Sub Text1_Change()
 lblTitles.Caption = "Titles published by " & Text1
End Sub

Code that appears in the body of the normal text looks like this: Adodc1.Recordset.MoveNext.

Sometimes you'll see code in a mixture of styles, like this:

Private Sub Text1_Change()
 lblTitles.Caption = "Titles published by " & Text1
End Sub

The code with a white background is code we've already looked at and that we don't wish to examine
further.

Source Code
All the code given in this book can be downloaded from the Wrox websites at:

http://www.wrox.com
http://www.wrox.co.uk

Tell Us What You Think
I've tried to make this book as accurate and enjoyable for you as possible, but what really matters is
whether or not you find it useful. I would really appreciate your views and comments, so please contact
Wrox at:

feedback@wrox.com

http://www.wrox.com
http://www.wrox.co.uk

Introduction

 6

Introduction to Project
Management

Complex software projects have always been notoriously difficult to manage successfully. Current projects
are required to work across numerous platforms, use multiple databases and operating systems and have to
be able to adapt to rapidly changing technology. The complexity of the modern software project has
resulted in over half of them either failing completely or not working as planned. There is a desperate need
for a structured, clear methodology for building software projects.

Visual Basic has evolved through six versions to become a very powerful programming language. The types
of applications we build with Visual Basic have also evolved from monolithic applications, through two-tier
applications to DNA applications. As the language has evolved, new features have been added that have
made the language more complex. This complexity can make it impossible to build efficient complex
enterprise systems using Visual Basic products if you do not properly manage the project. However, in
exchange for this added complexity and difficulty, we now can build complete, powerful Visual Basic
components within our enterprise systems. These projects can bring the entire enterprise together in a way
that could not be imagined just a few years ago. These unifying Visual Basic applications will allow
corporations to survive in an ultra-competitive and ever-evolving environment well into the twenty-first
century.

An object-oriented programming approach has become the most prominent technique of creating and
managing software projects. Over recent years a development model has emerged, encompassed by Unified
Modeling Language (UML), which provides a uniform mechanism for the efficient and effective design of
object-oriented projects.

Essentially, UML is a set of standard models used to design object-oriented projects (it is
not a description of actually how to implement those models). A brief overview of this topic
is given in Appendix A. For comprehensive coverage I would refer you to VB6 UML Design
and Development, also published by Wrox Press.

Chapter 1

8

The goal of this book is to show how these excellent design principles can be incorporated into a clear
methodology which will ensure the efficient and successful undertaking of the project, not just during the
design of the object-based Visual Basic application, but right through from initial conception to deployment
of the enterprise system.

We have already used terms such as product, project and system on several occasions so it’s probably a
good idea to set down a few firm definitions so that it is very clear exactly to what we are referring:

� A project is defined by a clearly visualized goal e.g. to develop the network and intranet components of
a new order entry system for company xyz.

� A product is the software delivered to the client or customer, possibly consisting of numerous
components, which will satisfy the goals set out in the project.

� A system is every component of an enterprise project, including Visual Basic components, infrastructure
components such as the physical servers or databases, third party components, etc. It includes everything
required to fulfill a certain set of business requirements.

Companies today operate in an ultra-competitive marketplace in the face of rapid advances in technology.
In order to prosper, they must constantly review and reassess the technology they have in place and the
manner in which they conduct their business. A company may be involved in a continuous process of
updating its enterprise systems. This cannot be carried out in a haphazard fashion. The company must be
very clear what it wants to achieve and why. Goals must be analyzed closely and prioritized. Each project
undertaken in the enterprise development must encompass a clearly defined goal. The project must be
carried out with a view to producing a final product that is of the best possible design, embraces all of the
required functionality, and is delivered on time.

The best way to achieve this, in my view, is to break each project into well-defined, but often overlapping,
phases. These phases, considered together, form a cycle - since they can be repeated endlessly as the
enterprise system evolves. Thus we have the cyclic methodology that is at the heart of my Visual Basic
project management philosophy.

This cyclic methodology shares many features with other methodologies based on repeated
stages, such as the Microsoft Solution Framework.

Of course, project management is not just about having a good methodology in place. A methodology is
only really as good as the team that implements it. Even relatively simple sounding projects, such as the
design of a new order entry system, can be very complex. Such a project may involve:

� A new Visual Basic application which will enable the order entry clerks to enter orders by phone

� A new Internet site that can display products to clients over the Internet, and allow these clients to place
orders

� A set of Visual Basic components to move the data from a database to a data warehouse

� A new set of programs to perform analysis on the data

Introduction to Project Management

9

In a sense this illustrates some of the key advantages of projects based around a Visual Basic object-
oriented approach:

� The project is easier to break down into component parts, which may be completely different in nature.
This is known as modularity.

� Such projects lend themselves very well to a team-based methodology. Small, closely integrated
development teams could work on the creation of different product components, either in parallel or
sequentially.

In practice this is more difficult than it sounds. Design work on one component almost always impacts the
design of others. This is one of the reasons that small, tightly integrated design teams are almost always
more desirable than large teams so that the communication between team members during the highly
changeable design phase can be fast. Even having said this, it is very clear that without proper management,
the project could very quickly spiral out of control. Effective project management is an essential function
within every project. It helps to coordinate the work of every team member, not only so that the work gets
done and the project is brought to completion, but also so that every team member will know what he or she
has to do, why they have to do it and when they have to do it by. Project management is not just performed
by the project manager: every member of the team is responsible for the successful management of the
project, and so every member of the team should know what good project management entails.

Managing a Visual Basic project can be compared to driving a car. By following a certain set of rules,
carefully planning where you are going, keeping an eye out for road signs and road hazards, and responding
to them when they arise, your chances of getting to your final destination without having an accident
greatly increase. While you can easily find a book on the rules of driving, it is very difficult to find a book
explaining all of the rules one must follow for managing a Visual Basic software project. This book is
specifically written to provide a methodology for developing Visual Basic products that will be part of a
larger enterprise system project. The cyclic methodology I discuss in this book will allow you to see the
road signs and road hazards that may “total” your project if you miss them, show you how to respond to
them, and how to plan your entire project for maximum success.

While this book is written with the project manager in mind, it is also for all members of a Visual Basic
team. In the cyclic methodology, everyone shares responsibility for the project and for making the project
succeed. This book will provide the project manager with all of the information they require to oversee the
project and the team. The project manager can also share this book with the entire team to provide them
with the information they need to know to enable them to be part of a team in which every member works
toward the success of the project.

Visual Basic project managers often lack technical knowledge. Their ability to lead
effectively may be hampered by a lack of credibility within the team if they are not
able to understand and discuss critical design issues. They may not understand the
impact that the particular technology chosen for the solution has on the manner in
which the developers go about their coding. Without this knowledge they may be
unable to properly coordinate the efforts of the team and will be less likely to be
able to make realistic estimates of schedule and resource requirements etc. This
book aims to build a bridge between project managers and developers. It will give
project managers a fundamental understanding of some of these issues.

Chapter 1

10

Before we discuss object-oriented programming, project management and the cyclic methodology, we must
first expose and dispel a few myths associated with managing projects.

Project Management Myths
There are several myths surrounding software project management that can often create attitudes that
prevent projects from succeeding. The most common ones are discussed in the following sections.

Myth 1: Software Projects are Bound to Fail
It is a widely held belief that software projects are difficult, unpredictable and likely to fail no matter what.
It is true that many projects do fail. In the January 1995 issue of Application Development Trends, a
survey, based on 835 responses, which represented over 8,000 applications, found the following:

Company Size (in
dollars of revenue)

Successful
Projects

Projects over budget
or schedule, or
delivered with
incomplete
functionality

Projects 100% or more
over budget or schedule, or
impossible to complete

500 million or greater 9% 62% 30%

200 to 500 million 16% 47% 37%

Less than 200 million 28% 50% 22%

This high rate of failure has been validated in more recent studies. It would seem that the larger the
company, the more likely it is that the project will fail. This may be due to the fact that larger companies
attempt larger, more complex projects than smaller companies - as size and complexity increase, so does the
chance of failure. Nevertheless, the table presents some frightening statistics.

Are software projects doomed from the beginning, or is there a way to improve the chances of your project
succeeding? To answer that question, we need to look at the reasons for these projects failing. The top four
reasons for failure were as follows:

� There was a lack of technical sponsorship.

� The users were not involved in the project.

� There was inadequate management of the project.

� There were technical issues.

If you follow the techniques of project management discussed in this book, you will be in a better position
to manage and probably reduce the risks posed by of all four of these problems.

Introduction to Project Management

11

The study also found the following reasons for project success:

� User and sponsorship involvement

� Clear requirements

� Clear, well structured and understandable design

� Realistic management expectations

Finding a way to achieve these essential elements of a successful project will be a central focus of this
book. While there may be several ways to manage a project so that it will contain these essential parts, with
this book I aim to demonstrate that one of the best ways to achieve them is to build your Visual Basic
project using the cyclic methodology.

Myth 2: We Don't Need to Design Visual Basic
Projects

This is perhaps one of the most destructive myths to the Visual Basic language. Design can include both
what we actually want the product to do, and also how the team decides to develop the product. As the
language seems so simple, VB developers are often sent to program with only the smallest amount of design
work. The developer will churn out code for weeks on end until the project is about two thirds complete.
Unfortunately, without any design work, the code will almost always be illogical in order and extremely
difficult to understand: this is what is known as ‘spaghetti code’. At this point, the project will have become
so complex that it is impossible to debug, clean, or maintain the code and the project starts grinding to a
halt.

Adding a single module to the code, and making this module work with the rest of the code, could take
weeks. Each step forward is now a slow, and very painful process. The last third of the project may take
longer than the first two thirds of the project put together. More often than not, a Visual Basic project will
die a painful death at this point. Everyone walks away cursing Visual Basic, when, in reality, all of this
could have been prevented if everyone had spent a few days or weeks designing the development of the
project thoroughly.

Myth 3: Methodologies Stifle Creativity
It is sometimes suggested that using a well-defined methodology to build a project limits the freedom of the
developer. At one point, a methodology was created which tried to break a project into a well-defined set of
steps. Each step could be scheduled to take a predetermined amount of time, and a complete code design of
each step could be made. The design would specify exactly how every part of the project should be coded.
The developers were usually not involved in the design process, and were typically just handed a set of
specifications that they must turn into code.

The cyclic methodology detailed in this book allows the developers to design a set of components that will
fulfill the goals of the project as specified by the end users and management. The cyclic methodology
requires the developers to be creative and use all of their skills to come up with the best possible design for
the components within the scope of the project. Designing these components, and basing them on the needs
of the end-user and management, is the first goal of the developer: in fact, every member of the team must
keep the user, and their needs, in mind at all times, as this methodology is very user-centric. Actually
building the components is the second, and most important, goal of the developer. In this way, the
developers create their own goals based on the goals of the end users and management.

Chapter 1

12

The final design is detailed enough to say what the code in the components should do, without specifying
the exact details on how the code will be written. Thus, the creativity of the developers will once again
come into play when they implement the design into actual coded components. We will discuss the
importance of creativity of all team members throughout this book.

Programming with Objects
In the real world, ‘object’ is a word used frequently to describe a lot of things we know, such as an airplane,
or a car, or a computer. These objects can also be made up of many other objects: for example, a computer
consists of a central processing unit, a monitor, a keyboard, a hard drive, etc. The main point about objects
is that they don’t need to know anything else in order to work - when you turn a computer on, it knows that
there are processes it must go through for you to be able to use it. You just know that you turn it on and
then it works.

Every object has characteristics or properties. For example, some characteristics of a computer are its
dimensions, its weight, its color, etc. In object-oriented terms, the computer object would have properties of
size, weight, color, etc. Objects are also able to carry out actions - these are called methods. Using our
computer object, we can see that one method could be called SaveFile, which would allow the computer
to save files, whereas another method could be called ChangeColor, which would change the color of
text on the screen.

Another example would be to use the order entry application. The application can use a Customer object.
This Customer object will have methods that perform services, such as updating a customer’s information
to the database or deleting the customer. The Customer object will also have properties, such as the
customer’s name, address, phone, fax, etc. These properties can be set to new values or be used to retrieve
the current values of these properties.

All objects belong to a class. A class is a template for a particular type of object; in real life terms, a class
would be, for example, the blueprints for a computer. From the blueprints we could see that they
represented a computer - however, it wouldn’t be an actual computer. To make a computer we would have
to take the blueprints, get some materials and build a computer. In object-oriented terms, we would have to
take the class and ‘build’ an object, or, in other words, make an instance of a class. So, when we make an
instance of a class, we get an object. If we make multiple instances, we get many objects. One important
point to note is that, even though each object is built in exactly the same way from the same class (or same
set of blueprints), each object exists in its own right - it is not the same as all the other objects.

Encapsulation and Abstraction
Two important concepts for object-oriented programming are encapsulation and abstraction. Earlier, I
said that we don’t need to know how a computer works: we just know that it works. The computer object is
hiding its workings from us, because we don’t need to know how it works internally: this is encapsulation.
This is one reason why we will be developing an object-oriented project: encapsulation means that we can
reuse the code we have written, because every object knows what it is supposed to do and doesn’t need any
other outside information. So, no matter where we use the object, it will always have enough information to
work properly.

Introduction to Project Management

13

Abstraction allows us to view things in general terms and not get weighed down with details. If I ask “what
is a computer?” you will instantly know what a computer is. I don’t have to tell you that a computer is a
box with a processor and memory and a monitor and an input device, etc. So, a computer is an abstraction -
we know that a computer is a collection of other objects, but we don’t need to know every single object,
just the fact that they are included in the description of a computer. Abstraction allows us to make sense of
our code - if we have somebody in the order entry system who can choose a product, place an order and pay
for an order, we don’t want to have to go through every item when we want to describe the main object. If
we call this person a customer and say that it can do these things, it will be easier to explain to everybody,
and people will know exactly what you mean without you having to go through every single detail.

Building Components
When we are actually making our Visual Basic project, we will use components. Components are simply
sections of precompiled code relating to a specific topic - for example creating a new customer or adding an
order. Because a component is precompiled, it does not matter what programming language it was created
in. During the course of the project, we will be using components that are already built, such as a text box
or a form, and other components that will have to be built from the beginning, such as the customer or order
components. When we have to build our own components, we will use one or more Visual Basic classes to
make the component. For example, we could build a customer component from two classes arranged in a
hierarchy. The bottom class will contain the properties for the component. The middle class will manage the
bottom class by retrieving instances of the bottom class and providing methods to create new customers,
delete customers, etc. These two classes will be joined together to create a customer component. When the
application is running, this component will allow you to retrieve, add or delete customers, and also to get or
set information on a customer.

When we build an object, we should consider it as making a contract. This contract says what services
(methods) the object will provide, what properties are available for reading (that is, which properties we
can get the values of), and what properties are available for writing (that is, which properties we can set).
The contract will also state if there are special conditions for reading and writing properties, such as only
having write privileges when adding a new object. When making objects, the contract is officially signed
when the classes are compiled into a component. Once the contract is signed, we agree not to change any of
the existing properties or methods.

Unofficially, the contract is created when the design of the component is created. Once the design is
complete, and the methods and properties of the component are determined, other components will be
designed and built based on this design.

Chapter 1

14

If you should change any of the methods or properties after the design is complete, you will have to
redesign and rebuild all of the components that use the redesigned component. Even worse, if you change
the component after it is compiled, you will have to un-register the original component, register the new
version, and make all the changes to the dependent components. Both of these scenarios could take days or
weeks of work, putting the project behind schedule and budget. This is why we should view the design of
our components as a contract. The way to make sure we can honor the object contracts is by carefully
designing our components.

Why Do We Need Object-Oriented Programming?
Object-oriented products are a good way to ensure that the company can keep up with evolving technology.
Encapsulation means that well-written code can be reused in the future, and the whole idea of using objects
and components means that a new component, and therefore new functionality, is easier to add at a later
date. This is also known as extensibility. This new component can take advantage of advanced technology,
but because the original components still expose the same interface (that is, they provide the same methods
and properties), they will continue to function with the old technology. This is why we will focus on
designing and building object-oriented products when using the cyclic methodology.

It is true that building object-oriented products using the cyclic methodology will require developers who
understand how to build object-oriented components, but this is only one requirement for building these
products. You do not just have to know how to build object-oriented products to undertake an object-
oriented project: the development of an object-oriented product will also require a special team structure,
management technique, and design method.

A detailed design methodology is critical for object-oriented products: without detailed design, even the
best object-oriented developers will fail to build good products. With the cyclic methodology, design is just
one phase in a carefully orchestrated process and, like the others, is a stage that involves everybody within
the project team, not just those who will go on to develop the actual code for the component. Every member
of the team will contribute to the success of the project, creating a team of peers. This is a critical element
in a successful object-oriented project. This book will discuss all of these issues.

The Cyclic Methodology
The cyclic methodology focuses on both the users’ goals and their reasons for wanting those goals. The
methodology provides a framework that will guide the project from conception through to completion. It
splits the project into four distinct linear, often overlapping, phases: envisionment, design, development and
deployment. Together, they form one cycle of the project - a cycle can be repeated endlessly as the
enterprise system evolves to add new functionality

During the envisionment phase the entire system is defined. It is a very thorough assessment of what the
company wishes to achieve and why. The goals of the entire system are defined and prioritized. This
provides a direction for all of the projects that will need to create the system. The scope of each individual
project is also carefully defined. The design phase defines the components and services that are required to
meet the requirements set out in the envisionment phase. During the development phase the components
are built, unit tested and assembled into a final, compiled application. The deployment phase focuses on
testing the final complete project and finding and fixing bugs.

Introduction to Project Management

15

We can see the advantages of the cyclic methodology (married with object-oriented programming) when
applied to vast enterprise projects, as well as to projects to create a single product (such as new company
web site). As was mentioned earlier, enterprise projects may totally redefine the manner in which a
company goes about its business and can evolve over many years. The approach I have outlined has several
advantages:

� The pace of technological advance is rapid - new versions of software appear with alarming regularity.
Rebuilding the corporation in relatively short, well-defined cycles allows the corporation to quickly
adapt the business processes to a rapidly changing market.

� In large projects it is likely that by the time the development of the last product component has been
completed, several years may have passed since the first of the components was begun. By that time, it is
fairly certain that the technology and Visual Basic will have once again evolved and changed. While it is
impossible to predict what those changes will be, and what opportunities they may open for this
company, developing object-oriented components makes it much easier to add new functionality.

Adding new functionality is never as simple as it seems - there are many areas to consider,
such as possible rewriting and probable retesting of the component: all areas which will be
explained in more detail later in the book

Bear in mind also that the very nature of certain products (e.g. web sites) requires that they be built in
cycles. The first cycle may create the initial site with the basic required functionality. Based on close
analysis of how the site is used, the cyclic methodology allows the scope of the product to be continuously
refined so that it always uses the most up-to-date and efficient technology.

Each of our four phases will have a set of goals. Each goal should have:

� A purpose (a reason why it is important that this goal is achieved)

� A set of actions that must be performed to achieve the goal

� A set of deliverables when the goal is complete

Each phase of the methodology is associated with a set of deliverables. These are the tangible results of the
work that has been performed. A deliverable may consist of UML diagrams (you will see more on these
later), code modules, risk documents, master schedules, etc. These can be given to all members of the team
for review and approval.

The completion of each of the four phases will be a well-defined, measurable point in the project, known as
a milestone. As each milestone is reached the team must assess whether the customer’s requirements are
being met and whether the project is on schedule. It is highly recommended that each milestone has one or
more associated deliverables. The deliverables will be signed off by the project manager and can be used to
determine whether a project is on schedule. When the milestone for a phase has been reached, (which means
that the deliverables have been created and completed) you may move onto the next phase. There are no
entry requirements for moving into a phase, except that the last phase’s milestones must have been
completed. Thus, when the final milestone of the first phase is complete you can then move the entire team
onto the second phase.

Chapter 1

16

An example of a milestone is as follows: you say that three months from the beginning of the project (or
any other pre-determined date) you will have a certain set of documents completed. The documents are the
deliverable. At the end of the three months, you either have a completed set of documents signed off by the
management, developers and end users, or you do not and the project is behind schedule. When something
is either true or false, it is called binary. All of your milestones should be based on binaries so that we can
determine the progress of the project. These milestones are essential for a software project. Each of the four
stages will have milestones marking the end of the stage, as well as several milestones within the stage to
monitor progress. Each of these milestones will either have happened by the pre-determined date, or they
will not have happened. If they have not happened, the project is behind schedule, and the entire schedule
may need to be reassessed.

Once one project cycle completes, the cycle of the next project cycle will begin. When all of the initial
development projects are complete, you will then move into the maintenance stage.

When maintenance needs to be performed on the project, another new cycle will be created. Maintenance
will usually occur because of some new requirement that did not exist when the project was originally
created. For example, an order entry project made four years ago would not have included e-commerce. It is
likely, however, that the order-entry application would need to be expanded to also allow orders to be
placed by the client over the Internet, in order to remain competitive. This additional Internet component
would need to be developed within the four phases. In this way, the cycles never end: the product is always
evolving and changing to meet current business requirements.

The Four Phases of the Cyclic
Methodology

This section will provide an overview of
each of the four stages in the project
cycle. The following diagram depicts the
four phases arranged into such a cycle.

Introduction to Project Management

17

Envisionment Phase
During this first phase, the entire system is defined, and vision and scope statements are created. A vision
statement states the goals of the entire system and provides a direction for all of the products that are
needed to create the system. The scope defines the limits of each individual project. Thus, the vision may
be to create a revised order entry application (either for use internally or for an external customer) that
works on the Internet, an intranet, over the network, is capable of increasing sales by 100%, and able to
provide detailed information on sales for management. The scope of the first project might be to create the
network and intranet components of the application and increase sales by 40%. Future projects may exist
that will fulfill the complete vision statement and additional features can be added at a later date.

Vision and scope statements make sure that the right problem is being solved, which will allows the
company to properly plan the rest of the project. Without knowing what the project is supposed to be doing,
and why the project is doing this, it is impossible to design or build the project. While this may seem
obvious, projects often begin without any clear definition of what they are supposed to be doing, and end up
moving haphazardly until either a clear definition is created or the project fails. A project without a clear
scope will also suffer from feature creep - features being added throughout the development of the project,
rather than being part of a new project. A clear scope freezes the features of the project at the very
beginning.

To be able to identify the vision and scope, this phase must go through the following steps:

� Identify and meet with the project's sponsors

� Have a consensus meeting

� Identify the project's goals

� Make an assessment of the resources

� Determine the deliverables of the project

� Assess the benefits of the proposed outline solution

Each of these phases is detailed in a Vision/Scope document.

A Vision/Scope document is alternatively referred to as a business case - essentially
an analysis and solution document that is drafted when a proposal is made for a
product or service.

The sponsors, who are the people who will provide funding for the project, must be involved from the
beginning. It is important to understand their vision and scope of the project, and to make sure that they are
committed to the project. Standards for the project must also be defined. If the sponsor is unwilling to get
involved or is not interested in the project, there is virtually no possibility the project will succeed. If the
sponsor does not feel the project you are building is the correct project for the system being created, it is
also likely to fail.

Chapter 1

18

A consensus meeting is where all members of the team are brought together to discuss the project. It is
essential that these meetings involve the entire team, including the end users. If possible, the sponsors and
the stakeholders should also attend. If the sponsors and stakeholders cannot attend, a summary of the
meeting should be presented to them to review and approve the results of the meeting.

A consensus meeting should be held at the beginning of the phase to discuss what the vision and scope
should be. Goals, resource availability and deliverables are part of this discussion. Another meeting would
be held once the vision and scope documents are complete to make sure all team members agree with the
contents of the document. If all members of the team agree with the vision and scope documents at the
second meeting, this phase is complete.

The primary purpose of the envisionment phase is to reach a vision and scope that all members have agreed
upon. The vision will describe what will be in the entire application. The scope will put limitations on the
project vision, and define what part of the vision this project will create. There should also be a clear
explanation of why the project is being built. The reasons should be focused on the business processes and
goals of the corporation.

Milestones and Deliverables

The Vision/Scope Approved milestone is achieved when the team and the customer reach an agreement on
what is expected of the project. When this agreement is reached, the project is approved for go-ahead. This
milestone is associated with the following deliverables:

Enterprise Architecture Document: Before the project can begin, you must take a look at the current
status of the enterprise. This document will detail what the enterprise consists of before the project is
undertaken. This will determine if there are the financial, technological, and people resources for the
project.

The primary deliverable is the vision and scope document. The vision document should contain the
following sections:

The vision statement of the project: The vision should be stated in terms of goals of the project.

The scope statement of the project: The goals that will be accomplished by this project, that is, this cycle.
This should define what will be done in this project and what will be delivered at the end of this project.

Team Responsibilities: A list of responsibilities of all the team members should be created during this
phase. The list should detail when specific responsibilities need to be completed, (a list of important
deadlines) and provide a list of risks to the project that may occur if each team member does not complete
their agreed upon responsibilities.

Risk Assessment: A complete list of all risks to the completion of the project should be carefully
documented. Examples of some major risks are:

� Critical resources not being provided

� Little support from high level management

� Unrealistic expectations meaning that the project is too difficult to undertake

Introduction to Project Management

19

The vision and scope document represent a view of what the goals of the project are, why the system is
being developed, and how these goals will be reached. These documents must be accepted and signed off by
the entire team, including end users and sponsors.

Design Phase
This phase consists of creating a set of documents that define the user requirements, defining the
components and services that are required to meet these requirements, and documenting a detailed design of
these components. The design phase will make sure that we have properly defined the solution.

We know from our earlier discussion that we must be able to create reusable components, build one part of
the system at one time and build another part either in parallel or later. The system must also be able to be
upgraded so that it can include future changes that we cannot predict. The way to do this is to build object-
oriented projects: We will now discuss the special design considerations of such a project.

Object-Oriented Project Design During the Design Phase

An enterprise Visual Basic project must be designed so that it can help the corporation be competitive in a
constantly changing marketplace and help the corporation function as a cohesive unit. This enterprise
solution is a combination of software and hardware that works together to run the business processes and
also provides the information required to run the corporation.

This enterprise solution will be built from components. If, at some later time, a component of the system is
found to be based on an outdated form of technology and needs to be upgraded, this component can be
redesigned and replaced without redesigning and rebuilding the entire system. If a new component needs to
be added, it needs to be added to the project design, built, and added to the project without affecting the
existing components.

Parts of the system that are critical for the corporation can be built in the first project cycles (as defined in
the envisionment phase). Less critical components can be added to the system in later cycles. As new
business requirements evolve, new components can be designed and added to the system, but always as part
of a well-defined cycle with carefully analyzes goals. This type of enterprise solution can adapt to any
changes in the market place or technology. As we have said, the best way to build a project with
components is to create an object-oriented project.

The Three Stages of the Design Phase

Visual Basic object-oriented enterprise projects can be designed in three stages during the design phase.
The three stages are: conceptual, logical, and physical design stages. During the conceptual design stage,
the needs of the users are analyzed and defined. A detailed description of users’ goals is used as a basis for
the generation of a detailed solution for the users and the corporation In the logical design stage we create a
more detailed description of the developers’ goals and represents a solution for the overall project team.
The users’ needs are transformed into a set of services that the project must perform to meet the
requirements of the users. The detailed design of the components that will actually perform these services is
carried out in the physical design stage. This turns the user, development and management goals into a
detailed set of design documents for all the system’s components, and represents a solution for the
developers

Chapter 1

20

This type of design will result in a user-centric approach that means that the project takes advantage of all
of the available technology and will be built from components. The most critical components can be built
first, and more than one component can be built at any given time (as each component is a separate entity).
This will also create a design that takes into consideration the needs of the users, the needs of the
developers, and the possibilities and limitations of the technology.

Iterative Design of the Three Stages

The stages of the design phase will build the project using an iterative process. Each iteration will refine the
project’s design. Initially, in the conceptual phase, the developers will meet with the users and get a rough
concept of the project. The developers will then map out their understanding of the project using diagrams,
which will be reviewed by the users, who will then add or subtract from the conceptual design. It may take
several reviews by the users before the conceptual design fulfills the users’ requirements.

Once the conceptual design reaches a point where it seems to meet all of the users’ requirements, the design
of the project moves into the logical design stage. It is possible that during the physical design stage a user
requirement will be discovered that was overlooked in the conceptual design phase. These missed
requirements must be added to the conceptual design, refining it even more.

The logical design phase will consist of mapping out all of the services the components must perform. Each
service can be traced to one or more business needs. The initial logical design may only include some high
level services for the users, such as getting customer or product information. The logical design stage can
then be refined by adding the services that will not be visible to the users, such as retrieving data from a
customer object. The logical design will also be subject to much refinement.

When the logical design seems complete, the physical design begins. A thorough review of the current
technology is made. The technology solutions that will create components that will perform the services
efficiently must be chosen. Often, several small test applications will be created to find the best technology
for a particular project. Test applications can also determine the most efficient way to use the best
technology. An initial concept of the physical design is created and numerous tests will refine and define
the physical design. It is likely that there will be missed services that will have to be added to the logical
design during the physical design stage.

Milestones and Deliverables

As should be clear from the previous discussion, when the end of design phase milestone has been achieved
the user, development and management goals will have been transformed into a detailed set of design
documents for all the system’s components. Once the design has been approved, it will be frozen and
represents a solution for the developers.

The completion of each stage of the design phase represents an interim milestone: a measurable, definable
point in the project. When the conceptual design milestone has been reached there will be a clearly defined
non-technical description of the product, the functionality it will include and the manner in which the users
will interact with the system. The deliverables for the conceptual stage will include a set of documents
describing the users’ goals for the project, which will most likely be a set of UML use cases.

Use cases are documents that explain how a particular group of users, called actors,
will use the system to perform a particular task. You will see examples of these in
chapter six.

Introduction to Project Management

21

When the logical stage milestone is reached, the deliverables will include a set of documents that identify
the components, and the services the components will need to perform, to fulfill the users’ goals for the
project.

Since it is the goal of the developer to actually build the components, and it is also the
developer who will fill in the details of these diagrams, it is important to remember that such
diagrams define the developer's goals.

The most common way to document these goals is with UML Sequence diagrams. Sequence diagrams
show the requests for services between the users and the system and between one component in the system
to another component in the system, over time. Sequence diagrams convert the verbal Use Case into a
visual diagram. You will see more of these in chapter seven.

In addition to these documents, the following deliverables may also be part of the logical stage:

� A user interface prototype (how the user will use the system)

� An evaluation of the user interface prototype

� A user interface specification

� Small test applications to test new technology and new solutions

� An evaluation of the test applications

When the physical design stage milestone is reached we will know exactly what components are required
and how the components will be coded, built, and distributed. These components should fulfill the goals of
all members of the project. The deliverables of this stage will be a set of documents detailing this
information. The usual method of documenting this is by using UML class and activity diagrams:

� Activity diagrams can be used to map out the code steps a component must take to fulfill a request to
perform a service. The steps are written in pseudo-code (each step is described in plain English rather
than actual code).

� Class diagrams are a set of diagrams that provide a pictorial description of a set of objects with the
same attributes, operations and relationships. You will see more on these in Chapter 8.

In addition, another possible deliverable for the physical stage is a document analyzing which components
should be built in-house, and which items should come from a third party.

At each stage in the design process the following additional deliverables will be developed and refined:

� A set of risk documents

� A detailed schedule for the current stage and the upcoming stage

� A document showing the distribution of resources and the current responsibilities of all of the team
members. It will include the skills required, and assignments in the project

Chapter 1

22

The end of design phase milestone, most importantly, should encompass a fully integrated design that
reflects the needs of the users, fulfills essential business requirements of the corporation, and puts
reasonable demands on the developers. The design must fit into the existing enterprise solution as well as
being able to help create the future enterprise solution. The design must also result in a system that is
scalable and extensible

At the end of the design phase all team members should have a clear sense of purpose. There should be a
common understanding of what is required of the product, what their responsibilities will be, what
resources are required and on what timescale they are expected to complete their work (a realistic project
schedule should be in place). Each of these issues will be discussed in detail in the corresponding chapters.

I would like to stress again at this stage that good communication will be the most essential ingredient for
success of the project. Communication will have to flow between managers, developers and users. A set of
documents that include design specifications and UML documents can form the basis of good
communication. Communication also includes learning certain skills. Some important communication skills
include: interviewing users, explaining the conceptual design to the users, and getting management
involved in the project. All of these skills will be required to be a team member of an object-oriented
project. We will discuss team characteristics later in this chapter.

Development Phase
The development phase consists of the building and initial testing of the components and the assembly of
these components into a final, compiled application. This phase is complete when all new development is
complete. This phase will allow you to implement the best possible solution. After this phase is complete,
any additions to the product will result in a new project (a new cycle beginning). It is likely that there will
be future additions, as the vision statement extends beyond this project, which is limited by the scope
statement. In this way, there are many cycles as the product evolves.

This phase will consist of building the components based on the design made in the design phase.
Components will be built at the same time or sequentially. After each component is complete, it will be
tested by itself (unit testing), and then within part or all of the system (system testing). The testing will be
based on a careful plan made by the testers based on standards created by Quality Assurance. Before the
components can be built, the design of the system, the schema for any database, and the design of the user
interfaces must be frozen. This will prevent feature creep, and also prevent rebuilding entire components.
Changes that are made once the coding has started are more expensive than making changes before any
components are actually built. It is fairly easy to change a design document. The further along you are in
coding a component, the more expensive any changes become. This is why it is essential that all team
members sign off the design before coding begins.

Milestones and Deliverables

The development milestone is reached (often referred to as scope complete or first use milestone) when the
team has reached a consensus that the product meets the specifications set out in the Vision/Scope
document and the product has been tested in a production environment.

Introduction to Project Management

23

There are many interim milestones and associated deliverables in this phase, including:

� All features are complete

� Testing of individual components complete

� Testing of systems complete

� Internal releases

� Versioned source code complete

� Compiled versions of the code complete

In the development phase developers must put to good use the design documents that reflect the goals of the
entire team and must find the most effective and efficient way of building the project within the limitations
of the current technology. It will be important that standards created in the conceptual design phase are
followed, especially coding and user interface standards. The development phase is where the project is
actually coded and built. The bottom line is that the final outcome of this phase must be a project that
reflects the best possible solution to improve the business process.

Deployment Phase
When the development stage is finished the project moves into what is termed a “stabilization” phase as the
team works toward the release milestone when the product will be shipped and deployed. The deployment
phase is where the final testing is completed. The developers fix any problems with the project as they are
discovered. Thus, the primary focus of this phase is finding and fixing bugs. Debuggers, and possibly the
end-users, will be testing the project, and the developers will be fixing any problems they find with the
product. As the release milestone approaches all training aids and help files must be completed and the
infrastructure for the new product must be in place.

When the project is complete, stable and there are no longer any problems with it, the project is turned over
to the end-users and to the operations and support groups. The completed project is the final deliverable for
this phase. It is sometimes called the golden release, essentially being the master copy of the final solution.

Deliverables

There are several deliverables that will occur in this phase. A few of them, not listed in the order they will
be completed, are as follows:

� Final release notes

� All project documentation

� Final source code and executables

� Training manuals

� Help Files

� A completed bug database

� Installation plan/instructions

Chapter 1

24

Team Roles for the Cyclic Methodology
When working on a software project, we will find that there are three basic groups involved in the project:
management, users and developers. The goals for the project for each group will be different.
Management goals will focus on how the project will improve the corporate mission and improve profit:
management will want evidence that the project will give a return on investment (ROI). End users are
interested in final deliverables, such as the software they will use to do their job, and how they will use this
software to make their job easier. End users are mostly interested in seeing how this project will help them
to do their day-to-day tasks. Developers are interested in seeing how they will have to build the project

There are six different roles in the software development team, some of which have been touched upon
already. People from the developer group will most likely fill the first four roles - development, testing,
logistics, and user education. The last two roles, product and component management, will most likely be
filled by people in the management group. A definition of the six roles is as follows:

Development: The team members in the development role are responsible for building the components
defined in the logical stage of design, as well as creating test applications during the logical stage of design.
Members in this role will also make sure that the components are built according to user requirements,
make recommendations for technical solutions and coding standards, review testing plans, keep the project
within schedule, repair bugs in the components, and integrate the components into a working whole.

Testing: The team members in the testing role will make sure that all of the components function
appropriately and that there are no bugs in the code. Other responsibilities include making a test plan that
will test each component separately and within the entire system, building test cases, developing automated
tests, documenting all bugs, and helping to build a high quality product.

Developing test cases is a very important activity. They specify how a product will be tested
in the next phase of the cycle and, critically, ensure that the product complies with the
required quality and performance standards.

Logistics: The team members in the logistics role are responsible for integrating the finished product into
the enterprise system and the movement of the product into the support and operations groups.

User Education: User Education team members will make sure that the users understand how to use the
application, provide training for the user, and work towards making the application easier to understand and
use. These team members will be responsible for creating user interface prototypes, setup programs and
help files, training aids and all user documentation.

Product Management: The product management team members will create a vision of the project, turn the
users’ requirements into a coherent set of UML use cases, create the conceptual and logical views, and
make sure that the client's requirements are being met. Other responsibilities include making business
projections, estimating the cost of the project, and defining key business goals and requirements.

Component management: The team members in this role will be responsible for making the critical
decision necessary to create the right project at the right time, ensuring that the project maintains enterprise
standards, managing the master schedule, and managing and documenting project changes. They will also
work with other team leaders to create the logical and physical views.

Introduction to Project Management

25

Other team members involved in the project are:

Project Manager: In large projects with many teams, the ultimate responsibility for the success of the
project may rest with a specifically designated project manager. They would coordinate the efforts of every
other team member. For smaller projects this responsibility will rest with a component manager
(alternatively referred to as a program manager).

End Users: These are the people who will be using the project’s final deliverable (the finished product) on
a day-to-day basis.

Sponsor: This will include anyone responsible for the funding of a project. Ideally, this should be one
person, but it can include several people.

Stakeholders: These are the managers in charge of the end users.

Reporting Manager: This is the manager who will evaluate the performance of team members and create
evaluation reports. However the reporting manager has nothing to do with making project decisions and is
not necessarily part of the project team.

Failure to view the end users, sponsors, and stakeholders as members of your team will almost guarantee
the failure of your project. Members of all three general groups - management, development, and end users
- need to be involved in the project from the beginning to the end and sign off all documentation.

If the project includes building a database, you will also need to add data modeler and database
administrator roles. These two team roles will be involved in the design of the database, the structure of the
database, finding ways to optimize database components and the design of the data components.

Team Member Involvement in the Four Phases
The involvement of each of the members of these different roles will vary throughout the four phases of the
project. The level of involvement of every member during each of the four phases can be summarized as
follows:

Role Envisionment Design Development Deployment

Development Low Moderate Very high High

Testing Low Moderate Very high High

Logistics High Low High Very high

User Education Low Low High Very high

Product
Management

High Very high High High

Component
management

Moderate Very high Very high Very high

Table Continued on Following Page

Chapter 1

26

Role Envisionment Design Development Deployment

Project Manager Very high Very high Very high Very high

End Users High Very high High Moderate

Sponsor Low Low Low Low

Stakeholders Moderate Moderate Low Low

If there are only a few developers for a project, it is possible that one member can play more than one role.
Some roles, though, conflict with each other. We will discuss this in more detail in the chapter on teams.

Several small teams, consisting of a component manager, developers, testers, and a person from the user
education team, can be used to build these components either at the same time (in parallel) or sequentially.
Developers, testers and user education team members should share information with their counterparts in
other teams to create a uniform set of components. The number of testers to developers can range from a
1:1 ratio up to a 1:3 ratio, depending on the project. The project manager will determine the best ratio for
the project. To better help testers understand the user requirements the testers should join the project from
the beginning, if this is possible. The project manager will coordinate the teams and will also put together
the vision and scope statement based on the consensus meeting. The component manager is responsible for
putting together the documents for the conceptual and logical design views based on documents created by
the smaller teams. The project manager will be in charge of the master schedule.

Using small development teams allows for better communication between team members, low management
costs, faster implementation of the various components and a higher quality product. Creating the physical
design for these components, and building these components, will be the responsibility of the small
component groups. Each component group must build their component so that it exposes the methods and
properties specified in the logical view. The internal workings of the components, as well as every
deliverable of the whole system, should be based on enterprise wide standards of coding and design.

These component teams should be a team of peers. Every member should be equally responsible for the
quality of the component, meeting schedules, understanding the client’s needs, and contributing to the
design and building of the component. The entire team should be focused on fulfilling the users’
requirements, identifying risks, keeping the project within budget and time constraints, and making the best
component possible. Each team member will have a well-defined role and will submit a schedule for their
component, which will become part of the master schedule (you will see more of this in later chapters).

Introduction to Project Management

27

Summary
Visual Basic projects have become more complex as the language has become more powerful and as more
complex products are being created with the language. To build efficient Visual Basic projects that meet the
needs of the enterprise we need to find an effective methodology to control them. This book will cover the
cyclic methodology, which will empower you to build powerful Visual Basic products that will bring the
enterprise into the twenty-first century.

The cyclic methodology is based upon the idea of breaking the project into four phases: envisionment,
design, development, and deployment. The design phase can be further divided into three small stages:
conceptual, logistical, and physical. The members of the team building projects that use the cyclic
methodology will all equally share the responsibility for building and creating the project. Everyone on the
team has input on the outcome of the final project. By using the cyclic methodology we can build Visual
Basic projects that:

� Have a realistic, meaningful vision for the future

� Are centered on the needs of the business

� Are centered on the needs of the end-user

� Are built using binary milestones that are associated with one or more deliverables

� Utilize a team of peers who all contribute to the success of the project

� Fit in with the entire enterprise

� Are built incrementally

� Evolve over time to take advantage of new technology

� Evolve over time to meet new needs in the enterprise

In the next chapter we will discuss the roles of the individual team members. As each team member will
share the responsibility of managing their own time and resources, and also need to be able to contribute to
the documents and communicate effectively with other team members, all of these topics will also be
discussed in the next chapter. The rest of the chapters will cover the four phases of project management and
also cover tools for scheduling, risk assessment and bug tracking.

Chapter 1

28

Teams

A Visual Basic software team consists of a group of people who work together to fulfill a set of goals that
represent the needs of the client and their business. As we will show in this chapter, if you are working on a
Visual Basic software team within the cyclic methodology outlined in this book, you will:

� Be allowed to have input into the project

� Share in the responsibility for creating and fulfilling the goals of the project

� Ensure that the schedule is met by giving time estimates for the tasks you are responsible for

� Have an understanding of the customer's needs and the overall goals of the project

This type of team does not focus on who is in charge. Instead, a set of team roles is created. Each role will
have a well-defined set of responsibilities. Instead of having an autocratic project manager who dictates
what everyone in the team is doing, we will now give each team member a set of responsibilities that they
must accomplish. The project manager has the responsibility of reviewing the recommendations of the team
members, putting together a schedule for the complete project, based on the schedules submitted by
individual team members, and of producing overall, unified documents, such as the vision/scope and design
documents, based on input from all of the team members. The project manager will also manage the
resources and make sure all of the critical goals are being accomplished.

When working within this team structure, it is likely that there will still be a reporting manager who will
evaluate the performance of team members and create your evaluation reports. However, the reporting
manager may not be a member of the software team.

Chapter 2

30

The job of the reporting manager is to make sure that everyone has met their responsibilities for the projects
they have been part of. If the reporting manager is part of the project team, he or she can make this
evaluation directly; otherwise, the reporting manager will have to speak to the project manager.

If you successfully meet your responsibilities, you can continue in the role you are in, or move up to a role
with more responsibilities. If you are not able to meet your responsibilities, then it is likely you will either
require more training, coaching, or perhaps even need to be placed in a role with less responsibility. As
long as you are willing to put the time in, to learn new skills and improve the ones you have, you should be
able to remain in your current position or advance. Ideally, if you are a regular employee, your company
should allow a certain number of hours every week in your schedule for training. With the constant changes
in Visual Basic, Microsoft Back Office and Enterprise technology, it is essential that all team members be
given some time to train in both technical and non-technical skills.

The reporting manager has nothing to do with making project decisions, and only
evaluates whether or not the team members are fulfilling their responsibilities. A
reporting manager is part of the organizational chart of the company and has
nothing to do with the structure of the software team. Team members can come
from many different parts of the company and can belong to completely different
groups in the corporate structure.

This chapter will list some important non-technical skills that you will need to be a successful member of
this type of team. We will also provide you with suggestions on how to improve these skills.

In this chapter you will learn about the roles within a software team, skills you will need to possess to be a
successful member of this team, and how to manage and schedule your time.

The Big Development Team Myth
The philosophy behind this team structure goes against a widely held belief, which I think is one of the
biggest myths of project management, and have deliberately ignored. This myth states that only the project
manager needs to understand project management. To understand why this is a myth, we must look at the
two most common types of management.

The Autocratic Manager
The first type of management involves what I call an 'autocratic manager'. An autocratic manager has
complete decision-making power and rules over the systems that he or she manages, dictating tasks to
subordinates. A successful autocratic manager must have a complete understanding of the system and the
people being managed. Autocratic managers used to be commonly found on assembly lines. Assembly-line
autocratic managers usually worked their way up through the ranks. By the time they became managers,
they understood every machine and process on the assembly line and knew the entire system intimately.

Teams

31

They were experts on the system they managed. This type of manager would know exactly what to do to
speed up or slow down one part of the line, how to improve quality and where costs could be cut. These
managers could walk past a machine, hear a squeak in the machine and know if that was normal or
abnormal. If it was abnormal, they would get advice from the floor mechanic, and then make a decision on
whether a repair was needed. This decision would be based on a full understanding of how taking this
machine offline would affect production and whether it was serious enough to do so. These capabilities
were based on years of working with the same machines and the same processes.

We can see from this example that since autocratic managers have full decision-making power, they need to
be expert in the system they manage. They need to know how to improve the system, how to make it work
better, more cheaply and more efficiently. They also need to know when they should ask a question and
when something is not serious enough to get advice on. To do this, they need experience based on years of
working with the system.

Problems of Autocratic Management in a VB Project
However, when we consider developing software projects using any of Microsoft's products, we
immediately see a major problem with the autocratic manager. The system that a Visual Basic project
manager manages comprises a set of development technologies, such as Microsoft Transaction Server
(MTS) and SQL Server, and the Visual Basic language. I would argue that it is impossible for anyone to be
an expert on the entire system. Both the technologies and the Visual Basic language evolve far too rapidly
for anyone to become an overall expert. Some people may be experts in certain areas, but I would guess you
could count on one hand the number of people who have expert knowledge on everything that is needed for
an enterprise project.

While I have worked with SQL Server for four years, the majority of what I knew about administering a
SQL server database became redundant with the release of version 7.0. The file systems in this version are
completely new, and version 7.0 has added Data Transformation Services. Can anyone claim to be an expert
in a technology that is less than a year old?

Two years ago Visual Basic programmers were making two-tier monolithic applications. Over the last two
years, Visual Basic developers have started to abandon this method of programming for three-tier object-
oriented programming with Windows DNA. While I may have six years experience as a Visual Basic
programmer, my experience as an object-oriented Visual Basic programmer only extends back a few years,
as these methods did not exist prior to a few years ago.

There are a few basics of development that will never change, such as coding standards and methods of
project management. However, most of what is done in a Visual Basic project is less than two years old and
a good portion of it is less than a year old. Many developers are working on the cutting edge with
technology and techniques that are one to six months old.

In any Microsoft development project, an autocratic manager will usually fail. No single person can
possibly have the wide range of expertise and knowledge required to make the appropriate decisions. Even
worse, they will often have no idea that they need to get advice from their subordinates. This means that
they may not properly manage risks to their projects.

Chapter 2

32

When placed in charge of development teams, autocratic rulers will usually rely on what they know and are
familiar with. Unfortunately, this is likely to be outdated technology, and this has resulted in many IT
departments developing solutions that do not meet the business needs of the corporation. In the long term,
this causes the corporation to become uncompetitive and eventually to fail. As the technology evolves past
their expertise, autocratic managers do not know how to identify risks properly in these new situations and
often miss important warning signs. Only when a crisis has been reached does the autocratic manager
realize there is a problem, and by then it is usually too late. Even when a project can be saved, it usually
leads to a development team jumping from one crisis to another. Hours become long, extending into late
nights and weekends in order to deal with the latest crisis. Team members burn out and move on.

Some autocratic managers struggle to master every element of development and spend every minute
studying, reading and learning. A few of these succeed in mastering the breadth of knowledge for
development work, but most of them do not. It is not impossible to be an autocratic project manager, but it
is extremely difficult. If you are a project leader and are looking for a better way, this book will show you
one.

Self-Directed Work Teams
If the solution does not lie with one autocratic manager, then where does it lie? While one person cannot
have the breadth of knowledge required properly to manage, design and oversee an enterprise system, the
entire team as a whole will usually have a collective knowledge that will be able to solve any development
problem, properly manage the project and all risks to the project, and properly design the project. The
management technique used to create a team where everyone contributes to managing the project is called a
self-directed work team. Companies that have instituted these self-directed work teams have seen dramatic
increases in productivity and performance. When it comes to development, it is the only way to go.

This chapter will describe the fundamental characteristics of a Visual Basic self-directed work team. This
chapter, and the entire book, is not written just for the project manager. It is written for the entire team, as
everyone on the team must contribute to managing the project, managing their time and managing the risks
to the project.

While this idea may seem radical, it is just good common sense. You only need to look at any corporation
that teaches a project management discipline to all of the team members to see how successful this method
is. I know of one major consulting firm that went from doing no development work to over ten million
dollars' worth of development work in a little over one year, and from a staff of four to forty in that time.
This company has not had a single project failure and has been successful with numerous large, complex
projects. What was the key to their success? Every new employee received extensive training in the
methods of project management that the company used, even the new programmers.

A common way of doing this is what is called "training the trainer". In this system, a select group of people
is given training, and in turn they train others in the corporation. I know of one Fortune 500 company which
trained its project leaders in a project management methodology; they then went on to train the rest of the
team.

Teams

33

If you are a project manager, read this book from cover to cover. Learn this way of managing a project, and
then pass this book around to your team members (or get them a copy). Every team member should
understand his or her responsibilities, how to manage risks, how to manage a schedule and what is expected
from them during each phase of the project. Once they have this understanding, they can begin to contribute
effectively to a collective knowledge base which the team can use to work together to find solutions with
rapidly changing technology.

Team Structure
You, and every member of the team, will be responsible for the success of the project, meeting the client's
needs, improving your skills, scheduling your tasks, and meeting your schedule. The tasks you will perform
will depend on the role you assume in the team. The roles for the software team, as we listed them in
Chapter 1, were project, product and component management, development, testing, user education, and
logistics. Product management, user education, and logistics will all work with the client.

The client can be either external to the corporation or internal to the corporation. There is
little difference between these two situations. Therefore, when I refer to client it can mean
either an internal or external client.

Component management, testing and development will have relatively little one-on-one contact with the
client and will focus on creating the project components. However, team members in these roles will be
involved from the very beginning of the project in meeting the needs of the client. They will have contact
with the client during meetings to discuss design and other issues.

The number of people within each role will depend on the number of people available, the size of the
project, and the number of end-users and stakeholders. It is best if there is only one stakeholder, so that
there is one person who can make final decisions. In this case, one product manager for the project may be
sufficient. As we said earlier, a one to one ratio between developers and testers is best. For smaller projects,
or when the team is shorthanded, there may be two to three developers per tester. To properly use these
testers there must be a good testing plan in place. The number of logisticians and educators depend on the
number of end users and what will be required to set up the final project.

When a team is very shorthanded, certain team members can play more than one role. Some roles conflict
with each other and so the same person should not be in both roles. An example of this would be the tester
and developer (though one developer testing someone else's code will probably not be a problem). Other
roles, such as educator and tester, can be performed by the same person. The following lists give some
guidelines on which roles are incompatible and which may be held by a single person.

Chapter 2

34

Roles that cannot be filled by the same person:

� Component Management and Product Management

� Component Management and Development

� Project Manager and Development

� Project Manager and Product Management

� Testing and Development

� Product Management and Testing

Roles that can be filled by the same person:

� Product Management and Testing

� Product Management and User Education

� Component Management and Logistics

� Component Management and Project Manager

� Testing and User Education

Roles that have no conflicts but would be difficult for one person to do both:

� Component Management and Testing

� Component Management and User Education

� Product Management and Logistics

� Logistics and Testing

The advantage of creating a team from roles is that you can build a team from a group of people who have a
wide range of skills and still have everyone find a role that they can perform well in. As each role has a
well-defined set of skills, team members can easily determine what skills they will need to assume any role.

Once the team is assembled, decisions are made on a group consensus. If the members of the development
team cannot reach consensus, the component manager will make the final decision; where the disagreement
is between teams, rather than within a single team, it will be the project manager who must make the
decision. Where consensus between the client and the software team cannot be reached, the stakeholder or
the product manager will make the final decision. This means every member needs to understand how to
make decisions, and how to participate in group meetings and discussions. Decisions do not always have to
be made in formal meetings: a discussion can be started by an email sent to all members of the team. Each
person can add to this email their ideas and suggestions, including the previous responses in their reply.
The email will become a living document, containing the input of the entire team. Eventually, the
discussion will lead to suggestions or solutions and (hopefully) a consensus on which is the best solution.
Everyone on the team shares the same responsibility for making the best product within budget and time
constraints. Every team member has a right to contribute to the group and to group discussions.

Teams

35

As team members assume responsibility for their tasks and the project, they will begin to identify with the
product. They will feel that the quality of the product represents them. This will lead to better work and a
more productive work environment.

Large projects will be big enough to have several component teams, consisting of a component manager,
developers, testers, logistician(s) and educator(s). The logisticians, testers and educators may belong to
more than one team or they may be roles filled by someone who is also in another role. The software team
will work in an autonomous manner, coordinated by the project manager. This is possible because the
software team will be building components. As long as the component supplies the appropriate public
properties and methods, it will fit in with the rest of the project. Thus, each team can build their component
separately from the other groups. Of course, best coding methods, techniques, changes in the design of any
component, client issues, etc. must flow through the entire team and to all software groups.

A small team of four
developers may look
as follows:

The logistics and component management roles will be filled by one person (who will function as the
project manager), as will the product management and user education roles. Operations support is the
client's infrastructure support personnel.

In a larger project
where there are many
people to fill all of
the roles, the project
team may look as
follows:

There are no direct lines connecting the component teams to the client groups, as members of the
component team will usually communicate to the client through the appropriate liaison. However, if a
member of the component team needs to speak directly to the client, this should be possible. If this does
happen, the appropriate liaison should be informed of what was discussed. Communication can flow from
any member of the team to any other member of the team.

Chapter 2

36

Remember that this is not a hierarchy. This figure shows the flow of communication through the group; it
does not indicate that any role is above any other. Again, the testing and development roles are likely to be
filled by more than one person.

Visual Basic Software Team Roles
Which role you will fulfill will depend on your skills and your personal career goals. We will look now at
each of these roles in more detail; then we will look at the skills needed to work successfully in a team and
in each role.

Project Manager
The project manager is the person who coordinates the project and bears overall responsibility for it. It must
be stressed that the project manager should not be the 'boss' of other team members, and, as we have seen,
the team should be self-directed. However, every project does need someone who is able to take a broader
view of the project as a whole, and who can coordinate the efforts of other team members (otherwise, there
is the danger of developers adding functionality to show off their favorite coding techniques, rather than
concentrating on meeting the critical goals of the client.)

The project manager is also likely to be the project
team's link to senior management. The project team
may look as follows:

The primary task of the project manager is to coordinate the component managers of each individual team.
For example, each component manager will draw up a schedule for the team, and the project manager will
compile from these a master schedule for the whole project. In this sense, the project manager acts like a
higher-level component manager, and in a small project this role and that of the component manager will
probably be merged. However, when a project is large enough to incorporate many teams, it will be
necessary to include a project manager who can take an overview of the entire project.

While the project manager does drive the development process, he or she is not the
'boss'. The project manager will, though, have final authority on disputes within the
team.

Teams

37

Envisionment Phase
During this phase, the project manager will take an active part in identifying the more general, top-level
goals of the project (the component managers will be more heavily involved in identifying the lower-level,
more specific goals). The project manager will also be involved in identifying risks which apply to the
entire project (for example, the failure of a piece of key software to work as planned) and managing such
risks (in this case, by contacting Customer Support of the software vendors). Another task will be to
incorporate the schedules of the individual development teams into a master schedule for the whole project.

Design, Development and Deployment Phases
The chief function of the project manager in these phases will be to manage resources (of time, money and
personnel) for the project. Individual component managers will juggle resources within the development
teams, but the project manager will have to arrange cover if resources are inadequate within a team. For
example, if an unexpected technical issue arises (for example, if changes to the product are required due to
feedback from alpha testers), it may be necessary to put together a team of developers at short notice to
examine the issue. Since no existing team may have the time to devote to this task, it will be the
responsibility of the project manager to assign developers to a new team, created solely for this purpose.

Product Managers
Product managers provide the channel for liaison with the stakeholders and sponsors. Because they are
working with the client's management, it is particularly vital that they have a good understanding of the
business processes of the client. The product manager works with the rest of the team to make sure that they
also understand these business processes. Product managers do not have to be developers; they only need an
understanding of the business processes of the client and have the ability to communicate and work with the
client. The product managers for a project will work with all of the component teams in the project, usually
through the component managers. A component team consists of the component manager, developers,
educators, testers and logisticians. The educators and logisticians will usually belong to several teams.

Envisionment Phase
During the envisionment phase, the product manager will be responsible for overseeing the analysis of the
corporation and the development of the Enterprise Architecture Document. This document will contain
an overview of the structure of the client's enterprise, including an analysis of the current software systems,
a description of the different business processes, and any other factors that may have an impact on the
project. This document can be used to develop a vision and scope of the project that suits the current state
of the enterprise, instead of creating a solution that is separate from the current system. In our discussion of
the envisionment phase, we will give a detailed discussion of how to create the Enterprise Architecture
Document.

In the envisionment stage, the product manager primarily works with the stakeholders and the sponsors to
help create a project vision and scope that fulfills the critical business goals of the corporation. They will
also make sure that the expectations of the stakeholders and sponsors are documented, realistic and
understood by the entire team. Product management also creates the Total Cost of Ownership (TCO) and
Return On Investment (ROI) estimates with the help of the logisticians, negotiates the contract, and makes
any client demonstrations that are required.

Chapter 2

38

The final contribution of the product manager in this stage will be the documentation of the risks of
building the product. All team members will contribute to the risk document and be able to review the risk
document; each member will also need to be fully acquainted with the potential pitfalls described in the
document.

Design Phase
The product manager will be in charge of the conceptual stage of the design phase. The product manager,
working with the educators, will determine the different types of end users that will be using the final
project defined within the scope document, set up interviews with representatives of these groups, and
either perform the interviews or assign another team member to perform them. When the end-user
interviews are complete, the product manager will put all of the use cases together in one document, review
them for accuracy, and then make arrangements for them to be reviewed by all members of the project
(including the end users).

Development Phase
During the development phase, the product manager will help answer any questions the developers may
have about the client's requirements. They will also give reports to the stakeholders and the sponsors on the
current status of the project. The product manager will be the customer advocate, and help negotiate the
removal (or addition) of goals to the scope of the project.

Deployment Phase
In this phase the product manager will find end-users who will perform beta testing (testing of the software
before it is officially released). They will do this with the educators. Once the end users for beta testing
have been identified, the product manager will coordinate between the testers and the end users doing the
beta tests. The product manager will also get the final acceptance of the project from the client.

Component Managers
The component manager's responsibilities will focus on overseeing the development process. A component
manager will be in charge of a component team that will include developers, educators, testers and
logisticians. The testers, educators and logisticians may belong to more than one team. The project manager
will coordinate the component managers within the project.

The component manager will make sure there is open communication within their team, and communicate
directly with the product manager. The component manager's responsibilities include: managing the master
schedule for the team, keeping the project on time and within budget, and overseeing any design changes.
The component manager is the leader of the development process, the facilitator of communication, and the
coordinator of the component teams. The product manager must oversee the risks documented by the team
and make sure that resources are properly allocated to reduce or eliminate the risks.

Teams

39

Envisionment Phase
During envisionment, the component managers will work closely with the product manager to establish the
design goals of the project. The component manager will define what factors and metrics will be used to
determine the success of the project, help set up the project infrastructure, and help define the scope of the
project. During this time, component management will also set up schedules and determine the software
tools that will be used for the project. They will also be responsible for the project's risk management and
version control (allowing access to all versions of the code, even after changes have been made and a new
version has been created).

Design Phase
The component managers will be responsible for bringing the design phase to the final completed design
document milestone, which is at the end of this phase. The component managers will work with the product
managers during the conceptual design stage, and will also be responsible for working with the developers
to turn use cases into sequence diagrams in the logical stage. They will also oversee the developers creating
the final set of documents in the physical stage.

Development Phase
The most important job for the component managers during the development phase is keeping the project
on schedule by properly allocating resources. The component managers will keep the schedule for their
team, monitor the milestones to make sure they are being reached on schedule and report project status to
stakeholders and sponsors. Toward the end of the development phase, the component managers may begin
working out the beta testing plan. If there are many teams, each with its own component manager, the
project manager will act as a higher-level component manager, who will oversee all of the development
teams' component managers.

Deployment Phase
During deployment the component managers will oversee the beta testing program. They will work with the
end users that the product manager recommends for beta testing and with the educators and testers.

Developers
Developers take every critical goal of the client and find a programming solution for that goal. They work
closely with the component manager to design and build the final business solution. The ideal developer is
a person who is creative, is good at problem solving, and is also able to communicate with other members
on the team. Developers are the technical experts for the team. Of course, not all developers have these
qualities; the component managers and the project manager should encourage developers who do not meet
these standards to take courses to improve their technical and non-technical skills. Otherwise, they may
have to be assigned to other parts of the team, such as testing, user education or logistics.

Envisionment Phase
In the envisionment phase, developers will help identify possible risks in the development of the project,
research existing software components, and determine how feasible the goals of the client are. Risks to the
project will be placed into risk documents and recommendations will either be made at a meeting of the
whole team or passed on to the project manager.

Chapter 2

40

Design Phase
During the design phase, the developers will work together, coordinated by the component managers, to
convert the use cases into sequence diagrams in the logical stage, and convert the sequence diagrams into a
final design in the physical stage. The developers will also give estimates as to how long it will take for
them to build the components they are responsible for during the physical stage. Developers will also build
test applications to make sure that new technologies or new coding methods work correctly and efficiently.

Development Phase
Development will build the project during the development phase. They will do this based on the design
documents created in the design phase. Each developer will be responsible for building components or parts
of the components. The developers will be coordinated by the component manager, and complete their tasks
according to a schedule which they create themselves. If a developer falls behind in their schedule, he or
she will need to readjust their schedule. The component manager may then need to readjust the entire team's
schedule based on these changes, and this could mean that the schedule for the entire project will have to be
amended. Thus, when you are involved in this type of team, it is important that you make accurate time
estimates of your work.

Deployment Phase
During the deployment phase, developers will focus on fixing any bugs that are found by testing or beta
testers. Development will work with logistics to prepare for the final rollout.

Testing
Testing will make sure that all problems, bugs, and risks to the project are known and documented before
the final release of the project. Testers will develop a test plan, implement the test plan, track all bugs,
create bug reports, and maintain the bug-tracking database. The test plan must make sure all interfaces and
components work properly, and also make sure all of the goals of the project are being met. The bug-
tracking database will be used to determine risks to the project and create reports.

Quality Assurance (QA) is not testing. Testing is based on a test plan that is specific
to the project, whereas QA is concerned with complying with standards and is
usually a corporate function. QA may also create documents that illustrate best
practices for the corporation and develop standards for the development team.

Envisionment Phase
Testing will assess the goals with regard to how they can be tested, and what factors are critical for the
success of the product, as well as identify any major risks associated with testing. They will also raise any
issues connected with the vision or scope which may result in a risk to the project.

Teams

41

Design Phase
During the design phase, the testers will define testing strategies for every goal and create methods and
procedures to track problems, bugs and disagreements between members of the team (which includes the
client members of the team). We will discuss how to do this in more depth in the testing chapter. Based on
the testing strategies, a testing plan and schedule will be created and documented. Testing will also evaluate
the overall design, assist in building applications to test new methodologies or technologies, and select
appropriate testing software.

Development Phase
During the development phase, testing will make sure that all issues are documented, and known by the
entire team. Any bugs that are found by the testers must be documented so that the developers can fix them.
The primary focus of testing at this point will be documenting the specifications for testing and designing
tests for each goal of the project. The actual tests conducted during the development phase will consist of
testing all parts of the components, including private methods and properties, which are used only by the
component itself.

If there are enough testers, a one-to-one ratio of testers to developers can be used. In this case, the
developer and the tester will work together. The developer will write the code and the tester will test the
code as parts of the component are completed. Working with the developer, the tester can create individual
test functions for all of the parts of the component the developer is working on. Thus, if the developer is
creating a component built out of a two-class hierarchy, when the first class is complete, the tester will
create a function to test the class. When the second class is complete, another function can test the second
class, and a third function can test both classes together.

Even with the best planning and the most skilled developers, there will often be many small coding
mistakes that these tests will uncover. As each mistake is found and documented by the tester, the developer
can make the appropriate fixes to the code. Once the component has been completely tested, it will undergo
further testing as part of the entire application at the end of the development phase and in the beginning of
the deployment phase.

It is important to understand that testing of the component does not begin when the
component is completely coded and assembled. Testing occurs simultaneously with
development - as each part of the component is completed, it is tested. In addition,
the design of the components should also be tested, so testing really begins in the
design phase.

When there are not enough testers for a one-to-one ratio, one tester can be used by several developers.
Ideally, one should not go beyond a ratio of four developers to one tester, but of course in the real world
many teams are too small even for this ratio.

Deployment Phase
The deployment phase will be led by the testers and the logisticians. The testers will be responsible for
managing the final testing, the release of the product and making sure that the product meets the goals of
the project. The testing will focus on testing the goals of the project and stress-testing (performing tests
under stressful conditions, for example by simulating a large number of concurrent users) instead of testing
individual components.

Chapter 2

42

For example, during the development phase of an order entry application, the testing may focus on
components such as the order component, the customer component, etc. During the deployment phase, the
testing will focus on general goals (for example, placing an order), which will include a set of smaller
goals, such as being able to begin the order by selecting the customer, selecting a product, or adding a
customer, which will itself have a set of smaller goals.

Logistics
The logistician's role is to ensure that there is a smooth rollout and installation of the final project.
Logistics will work with the client's operations and support groups, and act as their advocate in the project
team. Operations and support will be focused on managing and supporting the final project. Therefore, the
logistician will be involved in the addition or removal of any goals that involve the maintainability or
supportability of the project. The logistician will help to transfer the project from the control of the
developers to the operations and support groups.

Envisionment Phase
The logistician will make a substantial contribution to the assessment of infrastructure for the Enterprise
Architecture Document. They will also provide documentation on how manageable and supportable the
goals of the project are. They will also work with the product manager to determine the TCO of the project;
in this process, those parts of the vision that will not be fulfilled by the end of the project will be included
in future maintenance plans.

Design Phase
Logistics will look at the completed design and will document what will be required to maintain and
support the project once it is complete. They will also refine the TCO estimates at this point.

Development Phase
During the development phase, the logistician will work as the operations and support advocate. They will
bring any issues that operations and support have to the attention of the team and provide reports to
operations and support on the status of the project. The logistician will negotiate any issues dealing with the
maintenance or support of the project. By the end of this phase, the logistician will make sure that any
infrastructure required for the release of the project has been procured.

Deployment Phase
During deployment the logistician will work closely with the testers to get the product through a series of
beta tests until a final release candidate is created. The logistician will help to organize the beta sites and
deploy the beta versions, and to prepare signoffs from the operations and support groups.

User Education
The educators will work with end users to make sure the final product improves their work performance.
Once the project is complete, the educators will help the end users understand how to use the final product
in the most efficient way possible. This will reduce the amount of support calls by educating the end users
on the appropriate use of the project.

Teams

43

Since the educators will act as an advocate for the end user, they will oversee the building of user interface
prototypes, the design of setup programs, and the creation of user documentation and training materials.
When making the user interface prototypes, the educator will work closely with the developers and the
component manager involved with these developers. They may also work with the product manager to
interview the users.

As changes are made to the goals of the project, the educators will make certain that these changes are
reflected in the user documentation. They will also make sure that the users are aware of these changes.

Envisionment Phase
The educators will work closely with the product manager to determine the different types of users during
the envisionment phase. The educators will also work with the end users to ascertain their general goals,
and to make sure that any recommendations from the end users on ways to improve their performance are
included in the goals of the project. Towards the end of the envisionment phase, the educators will provide
the component manager with an estimate of the cost for training and documentation of the project. Ideally,
these estimates should include a range of options so that the product manager, working with the
stakeholders and sponsors, can choose an option that fits within the budget and time constraints of the
project.

Design Phase
The educators will perform an analysis of the users' needs and create a document based on this analysis.
They will work on the design of the user interface with the users and developers. The educators will review
the design to determine how usable the project will be, and make recommendations on how to make the
final product more efficient for the end users. Towards the end of this phase, the educators will make a
more refined estimate of how long it will take to build the end-user documentation and training materials.

Development Phase
 During the development phase, the educators will make all of the end-user documentation and training
materials, including the online help files. It is important that the design is locked down before this is done,
so that nothing has to be redone.

Deployment Phase
In the deployment phase, the educators will be training the users and finishing the user documentation and
training materials.

End Users
The end users will contribute ways to improve the efficiency of any business processes that they work with
and which are included in the scope of the project. The educators will be the primary members of the
software team working with the end user.

Envisionment Phase
During the envisionment phase, the end users will discuss with the educators general goals for making a
business process more efficient. They may be involved with the creation of the Enterprise Architecture
Document. However, if it is necessary to re-engineer business processes, this will be carried out chiefly by
the stakeholders and high-level management.

Chapter 2

44

Design Phase
The end users will allow the educators, product or project manager or developers to interview them to
determine the best way to perform their business processes. The end users will also review user-interface
prototypes and make recommendations on how to make the interface more efficient. They will make sure
that the interface allows them to fulfill all of their goals for this project.

Development Phase
This stage will require beta testing of all the individual components and a review by the users to make sure
they meet the goals of the end users.

Deployment Phase
The end users will be involved in beta testing the final releases of the product.

Stakeholders and Sponsors
Stakeholders and sponsors will be responsible for creating the vision and scope of the project. The
stakeholder will determine the budget and will have the final say on disagreements that cannot be settled.

Envisionment Phase
Working with the product manager, stakeholders and sponsors will create the vision and scope of the
project. They will review the TCO estimates and determine what goals can be included within the project.
They will be involved with the creation of the Enterprise Architecture Document. Stakeholders and high-
level management may need to become involved in re-engineering business processes.

Design, Development and Deployment Phases
During the design phase, the stakeholders and sponsors will work with the product manager to work out any
conflicts over goals. They will also make the final decisions over any conflicts that cannot be resolved.

Team Skills and Abilities
While technical skills are an essential part of being a Visual Basic programmer and the one skill most
programmers focus on, it is not the only skill you need to succeed and advance. There is a wide range of
skills you need to possess to be a successful member of a software team. We will spend the rest of this
chapter going over some of the essential skills you will need to become an effective team member. We will
divide each of these skills into three levels: basic, intermediate and advanced.

Read through the skills, and determine what level you are for each of the skills. We indicate for each skill
the roles for which it is particularly important. First work toward mastering the basic skills for the roles that
you are in, or want to be in, and then work on the intermediate skills. Once you have mastered the
intermediate level skills, begin working on the advanced skills.

Teams

45

While the first level has been termed 'basic', this may include many skills that you
are not likely to have learned. It is unlikely that a current college graduate would
have most of the basic skills. It is important that your team provides an
environment where all team members, new and old alike, can work towards
improving themselves and their skills.

While it is important that every team member should strive for as high a level as possible on every skill, it
goes without saying that certain skills are more important to certain roles. All team members should try to
reach basic level for all skills, but I will indicate which team members really need a higher level for each
skill.

Communication
Without a doubt, one of the most essential skills you need to develop is the ability to communicate. You
must master both verbal and written communication. You should be able to create well-written documents,
as well as speak clearly and concisely to a group. Communication also includes the ability to listen to
others.

When working on a project, communication will be the most important skill for making a contribution to
the team and becoming part of the collective knowledge base. Communication will impact on your ability to
add risks to the risk document, to explain your ideas on design and development and make it possible for
you work directly with the client.

The three levels of communication are as follows:

Basic Intermediate Advanced

You can get a message across
to a listener

Your thoughts are organized
and you express ideas clearly

You are comfortable in front
of smaller audiences

You are a good listener

You are able to express your
viewpoint and the viewpoints
of others

You are able to be candid and
honest yet still show respect

You are able to speak or write
at the level of the intended
audience

You are capable of speaking to
small or large audiences, and
can answer questions easily

You are comfortable with
communicating with
management

You listen to the viewpoints of
others, and are not judgmental
if someone's viewpoint is
different

You help keep the topic of a
meeting focused

You do not make assumptions
and ask questions when you
are not sure

You can motivate other people
to contribute to the
conversation

You can give accurate answers
to difficult questions

You present material in a way
that makes the listener or
reader interested

You are able to take complex
subject matter and present it in
a manner that can be
understood by the listeners or
readers

You make people feel
comfortable to speak openly
and honestly

You can effectively and
concisely speak and write to
senior management

Chapter 2

46

All the roles will require good communication skills. Whether it is speaking to a client, another team
member, documenting risks, writing emails or contributing to a meeting, good communication skills will be
required.

This skill is perhaps the most important for all team members, and everyone in the team should try to reach
as high a level as possible. If every member of the team can reach at least the basic level skills for
communication, this will make the entire team more productive as information will flow freely. Those in
management roles in particular (the project manager, component managers and product managers) and the
user educators should aim to possess communication skills to an intermediate or advanced level.

Good communication involves being able to speak publicly with confidence and to write well, but also, in a
less formal context, ensuring that information flows smoothly between team members, so that each member
can contribute to the knowledge base of the entire team.

The following suggestions may help you to improve your speaking skills:

� Practise giving a talk to a friend and have the friend make suggestions.

� When asked questions, pause a moment to think about your answer, then begin your answer by
paraphrasing the question to give you time to think and make sure you understood the question.

� Show enthusiasm when speaking and do not talk in a monotone.

� Eliminate annoying words such as "um".

� Watch your audience, involve them in your talk, and be aware when they seem bored.

� When giving a presentation, anticipate the questions that may be asked and prepare answers to these
questions.

� Make eye contact when speaking or listening to someone.

� Rehearse any presentation you are going to give; if possible, videotape it and review it.

� Use visual aids as an addition to a presentation, but do not let them become the presentation.

� Keep the length of your answers between ten and forty seconds.

� Stay focused on the topic.

Being able to write effectively is also essential when you are part of a team. Whether it is writing an email,
adding a risk to the risk documentation or writing design documentation, you must be able to write clearly
and effectively. The following are some suggestions on how to improve your writing:

� When you are writing letters or emails, consider what the recipient already knows and concisely provide
them with information they do not yet know.

� No matter what you write, whether it is an important report or just a memo, read through it at least once,
preferably three times. As you read through it, check the flow of the sentences, the grammar, how clear
your sentences are, and whether the document actually means what is intended.

� Write on the level of your readers: do not use technical words when writing to someone who does not
have a technical background.

Teams

47

� Keep a dictionary handy (or have one on your computer or use Internet dictionaries); do not guess at
words and do not use words repetitively in a sentence.

� Organize the information in a way that is easy to read – lists of information can become bulleted lists,
structured information can be put into tables, etc.

� Use spelling and grammar checkers, but do not rely solely on them, as they can be wrong.

� Paragraphs should deal with one idea and not be too long.

� Keep a book on grammar close by when you have questions on sentence structure.

� Identify the mistakes you commonly make in grammar and spelling and watch out for them.

Communication must flow through the team. Following the suggestions below will help to ensure that
information is passed through the entire team:

� Encourage others to share information with you.

� When in a team meeting make people feel comfortable talking by expressing an interest in their ideas.

� Document all risks.

� When creating documents or emails, think who has expressed an interest in this type of information and
send them a copy if it is appropriate.

� Make sure the project, product or component manager has a copy of all correspondence sent to higher
management.

� Return important phone calls promptly.

� After you meet with someone, write a brief summary of the meeting and send a copy to the person to
make sure you properly understood what has been said.

� When you are assigned a task, add it to your schedule.

� Respond to important letters, email, etc. quickly.

� If you become aware of any changes, make sure the entire team also knows about the change.

Making Decisions
Making decisions is another essential skill you must have to work successfully on the team. We generally
think of management decisions as the major decisions that cause the project to succeed or fail, such as what
the vision and scope should be. However, in reality every person on a team is faced with making decisions
that can have a serious impact on the project's success.

For example, when you have a multitude of tasks that need to be performed, such as answering and reading
email, meeting the project goals, attending meetings, etc., deciding on how to manage your time will
determine whether you meet your goals or fail to meet them. We will discuss time management towards the
end of the chapter.

Every member of the team will have to make day-to-day decisions based on their roles. The developer will
have to decide the best way to code a module. The tester will have to decide what is the best way to test a
module. The educator will have to decide what is the best way to interview and work with the users. The
educator, the developer and the tester are not management roles, but they will have to make decisions that
can affect the success or failure of the project every day. Every member of the team assumes responsibility
for the success or failure of the project. Good decision-making skills are essential for every role and this is
something that the entire team should work on.

Chapter 2

48

Below are the three levels for the decision-making skill:

Basic Intermediate Advanced

You apply past experiences to
current problems

You choose a course of action
based on a set of alternative
solutions found by doing
research and conducting
interviews

You make appropriate
decisions even when under
pressure

You are able to evaluate risky
situations and come up with
the best solution

You involve other team
members in decisions

You come up with a solution
to complex, difficult problems
based on interviews, research,
and past experience

You can help other team
members find solutions to their
problems

You help others apply their
experiences to find solutions to
problems

You are able to make far-
reaching decisions that not
only affect your team, but also
beyond your team

You are capable of analyzing a
large amount of data and
finding and summarizing the
important information

You can make decisions that
affect the entire enterprise

You will consider the impact a
solution has on all levels of the
corporation, and all members
of the team before
implementing them

This skill is most important for the project manager, who will have the final say on most decisions in the
project, and therefore should aim to possess this skill to the advanced level. However, the component
managers will also have to make many decisions which affect only their team, and should possess this skill
to intermediate-to-advanced level. Imagine one of our developers, who is writing an ASP page which will
act as the client-side interface for our order entry application, falls ill. The component manager has to
decide whether to cover for the absent developer from within the component team, wait until he returns to
work, or ask for cover from outside the component team. To draft in cover may require another developer to
be trained in ASP, which could easily take longer than the ill developer's recovery. On the other hand, a
lengthy delay could set back the whole project. The project manager and component manager will therefore
need to find out if there is a developer who could take over this goal at short notice, without lengthy
training in ASP. They will need to consider the impact that removing a developer will have on that
developer (who may find it an annoying distraction) and on the team from which he or she is removed. To
find the best solution, they will therefore need decision-making skills to the most advanced level.

The first step in making a decision is to gather information and analyze the facts. To get some practice on
gathering information, you could try either of the following:

� Research your company's (or your client's) competitors, create a profile on each of them, and see what
you can learn from these companies to create improvements and to compete more effectively.

� Research your company's policies and procedures. If there is a policy that everyone complains about
because it is not efficient, try to find a better policy than the one currently in place.

Teams

49

There are a number of ways you can improve your decision-making:

� Do not jump to a solution. Take time to gather information and review the facts.

� Take time to get to know the people who are affected by your decisions and find out their opinions.

� Do not just accept the standard solution; ask if it makes sense and if it is the best solution to the problem.

� Determine what time of the day you are best at making decisions, and then schedule that time for making
your decisions.

� Write a summary of your research, read through the summary and organize the information. Write out
the possible solutions, create experiments to find which solution is best and then go with that solution.
Let others look at what you wrote to see if they could add anything.

� Get input from people who are familiar with the subject.

� Recognize when you do not have enough information to make a decision and take the time to gather
additional information so you can make a good decision.

� Recognize when you have enough information to make a decision so you do not waste time gathering
unneeded information.

� Discuss your ideas with another person. Often, when trying to explain the situation and what your
options are, you will get more insight into the situation.

� Create a list of what you need to do to gather the required information to make a decision.

� Focus on the critical decisions. Once the critical decisions are made, then spend time on the less
important issues.

� Try to look at the "big picture". Do not get lost in the finer details.

� Before you make a decision, think about how your decision will affect other people involved in the
decision.

Proper Planning
With the type of self-directed teams being discussed here, each member will be assigned a task and will
have to give an estimate as to how long it will take to complete the task. Therefore, each team member will
have to make a plan for the tasks to which they are assigned. Anyone who has not done this before will
probably need to get help from someone who has. Once you have made a few plans and estimated the time
to complete several tasks, you will start to make better and more accurate plans.

While planning is a skill learned with experience, one can learn a great deal by reviewing previous project
schedules. This is one of the reasons that proper documentation is so essential: it provides a library of
documents. Estimates usually work best when they start at a fine grain and work upward.

It may be very difficult to estimate the time to build and test a complete server component for an order
entry application. Imagine that the server component design is broken down into a design that includes
three classes. The class designs are broken down into a design for the methods and properties for the class.
Looking at the designs for the methods and properties, each developer should be able to estimate fairly
accurately how long it will take for them to code and test each method and property. By summing the times
for all of the methods and proprieties you have an estimate for the classes, and summing the times for the
classes gives you the components. Good design not only helps you build your project, but also helps you
plan it. Make sure you add some extra time for unexpected problems, as these are always going to happen.

Chapter 2

50

The three levels for the planning skill are as follows:

Basic Intermediate Advanced

You are capable of planning
your own schedule and can
stay within that schedule

You use your time efficiently
and can focus on essential
tasks

You make plans that result in
meeting goals within schedule

You properly identify risks
and take the appropriate action
to handle the risks

You accurately determine how
long it will take to achieve a
goal

You are able to see the big
picture and put all the pieces
of a complex project together

You perform accurate risk
analysis in complex problems

You are capable of creating
effective plans for groups of
individuals

You are able to adjust plans
according to time and budget
constraints

You are able to identify the
tasks required to reach a
milestone and reach the
milestones in the time
assigned.

You can adjust the time for
your tasks according to the
Estimated Time to Finish

You have a vision level view
that takes into account current
and future trends

You create enterprise-level
plans covering even the most
complex problems

You make plans that help the
entire team work effectively as
a cohesive unit

You determine what are the
most critical elements and base
a plan on these elements

Since all members of the team will need to create their own schedule, everyone will need this skill to at
least the basic level. The company should provide software, documentation or training, or a combination of
the three, for the members of the team. We will discuss products for drawing up schedules in later chapters.
If your company does not provide training, it would be well worth your time to read a few books or even
take a course. Several titles are listed at the end of the chapter.

Because the major end product of the project is the code produced by the developers, it is important that
this code is completed on time. For this reason, the developers who write the code and the testers who help
to ensure that it works as stated should all aim to be on the intermediate level. Even more importantly, the
component managers, who create the schedules for the component teams, and the project manager, who
draws up the master schedule for the entire project, must be on the intermediate level, and should aim for
the advanced level.

Teams

51

Tips for improving your planning skills include the following:

� Once you create a plan, periodically check to make sure the facts you based your plan on still apply. If
they do not, revise your plan.

� Break tasks into smaller tasks. Make a detailed plan for the tasks you will complete in the near future
and a fluid general plan for the tasks that are in the far future.

� Identify the three to six critical tasks that you must complete to meet your goals and focus on making
plans to achieve these.

� Have other people review your plans.

� Periodically review your plans and add more details as you gather more information.

� Set aside some time each day to review your plans.

There's no point in drafting an impeccable schedule if you don't adhere to it. The following guidelines on
how to manage your time more efficiently should help you ensure that you don't waste time needlessly:

� Include time in your schedule to do administrative tasks.

� Sort your work by priority and focus on the high priority tasks.

� When making a weekly plan, plan for forty hours.

� For one week write down everything you do in a workday. When the week is done, prioritize your tasks.
Non-critical tasks that are taking up a significant portion of your time should be automated, delegated to
someone else if possible or a more efficient way of doing these tasks should be found.

� Put some time to examine and adjust your schedule.

� Create folders for your email and try to set up rules with your email program (such as Microsoft
Outlook) so that mail will automatically go to the correct folder.

� Create folders for documents, research papers, etc.

� Use a calendar program, such as the one provided with Outlook, to put all your appointments and
deadlines in. Set them up so that you get reminders before they are scheduled.

� Read a book on time management or take a course.

� Use a planning tool (such as Microsoft Project 98).

� Begin meetings on time. Do not wait for people who are late unless they are critical to the meeting.

� Keep focused on the topic of the meeting, and ask questions that are only relevant to you after the
meeting.

� Try to reduce the amount of paperwork. Automate as many work processes as possible and convert as
many paper documents to computer based solutions.

� If you get someone's voice mail, leave a message with what you want from the person. If they get your
voice mail, they can leave the answer on your machine. That way you do not have to waste time playing
phone tag.

Chapter 2

52

� When you read a document, letter or email, etc. if a response is necessary, respond immediately, if it
needs to be filed, file it; you should strive to look at things only once.

� Evaluate your tasks in regards to how they will help you accomplish your goals, the goals of the client,
and the consequences of not doing the task. Critical tasks are ones that are necessary to accomplish your
goals and the goals of the client, and will have serious consequences, such as missing a deadline, if you
do not do them.

� Allocate a time in your schedule for returning phone calls.

� When responding to paper documents, if possible make a copy of the document and put your answers on
the document. When responding to email, include the sender's message in your response, but put your
answer at the top of the email, not mixed in with the sender's message.

� Every morning look at your schedule and create a set of tasks you will complete during the day.

� Do not keep useless documents.

� Arrange your office so that things that you use most often are within reach, things used less often are
further away.

Solving Problems
Solving problems is an essential skill for a member of a software team. Everyone can learn how to solve
problems.

As a member of a Visual Basic development team, you will find yourself constantly find yourself facing
problems that need to be solved. The typical questions facing developers include how to code a module or
how to ensure the best performance.

Some of the most intense problem solving is trying to figure out why something does not work, especially
when it should work. Trying to track down a problem requires a careful process of elimination until you
have found the cause of the problem. Sometimes you may find the cause, but there may be no logical
explanation. While searching for solutions may be fun, it can be very expensive in terms of time. If a
solution cannot be found in a reasonable time, contact Microsoft support. If it is a bug, they will not charge
you for the call. For the most part, a support call will cost one or two hours of a developer's time. It is not
just money, though. If you turn a problem over to support, while they are searching for a solution your
developer can now work on other parts of the project until a solution is found.

Often, the most difficult part of problem solving is not finding the solution, but finding the question.
Sometimes you will have to spend hours or even days doing enough research to understand what questions
you need to ask. Once you know the questions, it is usually not too difficult to find the answers. With new
technologies you usually know the questions only after you have written a few test applications to see how
the technology works.

Teams

53

The three levels of problem solving are:

Basic Intermediate Advanced

You do not always rely on
standard solutions, but instead
try to find a better ways of
doing tasks

You are able to come up with a
set of possible solutions and
can conduct experiments to
find the best one

You can solve fairly difficult
problems for yourself and
other group members

You conduct appropriate
research and interviews to
gather information to solve
problems

You are able to identify risks,
even those that are not obvious

You gather only the required
amount of information to solve
the problem

You find patterns and use them
to create solutions

You are a leader in making
decisions in group meetings

You develop creative solutions
that solve complex problems
that affect their group and
other groups

You create an environment
where other team members are
challenged to think creatively
and critically

You perform interviews that
can pull out all useful
information on the problem

You are capable of making
efficient plans for complex
problems that span the
enterprise

You can see a problem in ways
other people can not

You can not only find the right
answers, but also the right
questions

Obviously, the developers will need this skill to a particularly high level, since programming is essentially
a problem-solving activity: developers are presented with a problem (such as how to allow a customer to
enter an order over the Internet), and must find the best solution to it. They should therefore possess this
skill at least to intermediate level. The project and component managers should also possess this skill to
intermediate or advanced level, since they must be able to solve administrative and managerial problems.
Since the problems faced by the developers, if they are not solved, could cause the entire project to be
delayed, these problems are ultimately also issues for the project manager, and may have to be resolved by
finding more resources (such as a more experienced developer).

Some things you can do to improve your problem solving skills are:

� Write down the problem, all the information you have gathered on the problem, and then read through
everything you have written.

� Play strategy games such as chess or pinochle.

� Discuss the problem with others to help you define the problem.

� Seek advice from people who have had similar problems in the past.

� Work on puzzles or play games in your spare time that require you to solve problems.

Chapter 2

54

Creativity
Creativity is very important for the Visual Basic developer. From finding solutions to design problems to
determining the best way to code a module, creativity will help you come up with the answer.

I think that there's an expression, "Get out of the box". This means that you must not get stuck in the box of
standard solutions, but instead must look beyond what others have done, and what is usually done, and find
a new solution. Whenever you are stepping out of the box, you are being creative. Whenever you tell
yourself that this has not been done so I cannot do it, then you not being creative. Sometimes there is no
way out of the box, but often there is a way out, it's just that no one is creative enough to find the solution.

Creativity does, though, have to be within the scope of the project and resources. Solutions that create
unacceptable risks or break good standards should be avoided. Like everything, the risks of your creative
solutions should be investigated and you should determine whether they are within acceptable limits.

The three levels of creativity are as follows:

Basic Intermediate Advanced

You help others find new ways
of doing a task

You realize when a new
method is needed for a task
due to a change in technology
and find a new way to
accomplish the task

You find new ways to reach
both your goals and team goals

You are willing to take
creative ideas and work them
into new ways of doing a task

You question standard
practices to see if there is a
better way

You contribute good ideas to
group meetings

You learn new skills to keep
up with current technology

You brings good ideas forward

You see the "big picture" and
can find solutions others
missed

You turn ideas into working
solutions

You help other team members
be creative

You are always striving to find
the best way of achieving
goals

You analyze all aspects of a
problem and consistently come
up with innovative solutions,
even for complex problems

You are able to create vision
level solutions that solve
diverse, and often seemingly
unrelated, problems across the
enterprise

You motivate the entire team
to search for the best way to
achieve goals

Creativity is particularly essential for developers, who must devise the best solution for each situation,
rather than relying on the standard solution; they should therefore possess this quality to the intermediate-
to-advanced level. Testers will also need to think creatively in building functions to test components, and
should aim to reach the intermediate level.

Teams

55

Although we may usually think of creativity as an innate quality, which cannot be learned, there are in fact
a number of ways you can increase your creative potential:

� Believe in yourself and your ideas. Do not discard an idea until you have explored it and seen that it will
not work. Even then, you may find it works for a different problem.

� Learn to walk away from a problem for a while when you get stuck. An answer will often come to you
later.

� Create as many options as possible for each problem. If you are not good at this, take a problem, analyze
it by yourself, and then talk the problem over with other people and see how they would solve the
problem.

� Do not always just ask "Why?" but also sometimes ask "Why not?"

� Evaluate the risks and be willing to choose decisions that have a reasonable risk.

� Put some time aside where it is quiet and you can just think.

� Talk your ideas over with someone that will help you get more insight into a solution.

� The more senses you use to solve a problem, the easier it is to find a solution. Trying to just visualize a
solution in your mind is the hardest way to solve a problem. Drawing pictures and writing down
information adds vision, talking adds hearing. Doing all of these will help you find better solutions.

� Do not always accept your first ideas; try to see if you come up with other ideas, too. Try seeing the
problem from different perspectives.

� Talk to people to see if they have had a similar problem and can share with you how they solved the
problem.

� Record all of your ideas, even if you are not going to be using them currently.

� Try to find something that makes you relax and think creatively, such as music.

� Create imaginary problems and try to find solutions to them. Do not be afraid to come up with fantasy-
type questions, such as: "What will life be like in one hundred years?"

� Do things that use the creative part of your brain. For example, take a class in drawing even if you
cannot draw.

� Try to work in a creative environment. Often, when being creative you can get lost in your work and lose
your sense of time. Working where you have constant distractions prevents this. If you are working in
cubicles, see if there is any way you can get your company to relocate its "creative" workers, such as
developers, into quiet areas, preferably in offices.

Resolving Conflicts
Conflicts can arise in many different ways within a software team. The most common is the conflict caused
by the client's desire for as many features as possible versus the constraints of time and budget. Members of
the software team must diplomatically work with the client to determine the critical goals of the client and
remove the non-critical goals from the project scope.

Within a team there will often be differences in opinions. If you want to hear a heated discussion, put ten
Visual Basic programmers in a room and start a conversation on the best coding standards for a Visual
Basic project. Creating any standard will result in discussion and compromise.

Chapter 2

56

There will also be differences in personalities, viewpoints, etc. which can create tension between group
members. Learning how to resolve these conflicts is an important part of being a member of a team.

Basic Intermediate Advanced

You can mediate a disagreement
based on the situation and facts and
not emotion

You stop and think your responses
through

You express viewpoints to a
disagreement that can have a positive
outcome on the discussion

You are able to withdraw when your
viewpoint is not the best, or is wrong

You are able to resolve conflicts
within your group

You can resolve a conflict
without offending anyone

You are capable of
negotiating conflicts in a
fair manner, even in
controversial situations

You can foresee conflicts
and prevent unnecessary
conflicts

You can negotiate complex
agreements with high level
management

You can deal with difficult
conflicts in a calm, firm
and decisive manner

You can effectively prevent
tense arguments from
spiraling out of control

Everyone working in a team will need some ability to resolve conflicts. In our software team, those with
particular need for this skill are the product managers, who act as the link between the team and the client,
and who will have to resolve any conflict between functionality that the client would like to be provided
and what the developers believe is possible with the given resources. The project and component managers
will also need this skill to a high level, since they are the ones who must ultimately resolve the issue.
Making a decision without first resolving the conflict could fan the flames of any nascent personality clash.

The following tips will be useful for resolving - and even better, avoiding - conflicts:

� If you cannot resolve a conflict, get an impartial third party involved.

� Try to see things from the other person's perspective.

� Think before you speak.

� Clearly explain the areas you agree on and the areas you disagree on. Try to use the areas you agree on
as a starting point for resolving the conflict.

� Listen to what the other person's viewpoint is and find out exactly what they want. They may see
something that you do not.

� Make it clear to the person you are having a conflict with that you want to find a fair compromise.

� Make your point in a clear, succinct manner. Do not lecture.

� If you feel that you are losing your temper or control, ask for a break to regain your composure.

� Deal with the issues, not personal disagreements that you may have with a particular person.

� Discuss how you handle a conflict situation with others.

� If you feel frustrated, do not be afraid to say that.

� Try to find a reasonable compromise.

Teams

57

A Passion for Building Enterprise Solutions
Being a part of a Visual Basic team requires hard work. Visual Basic is constantly evolving, changing and
improving. You must constantly upgrade your skills and learn new programming methods and technologies.
To do this, you must constantly read, study and experiment to learn the latest innovations. This requires a
passion for building software solutions in the enterprise, as it takes time and dedication.

Perhaps one of the most difficult tasks for a project manager is to nurture a passion for developing solutions
in the team. There are many reasons why the team may lack enthusiasm. Team members who are not happy
in their job and are dissatisfied will rarely show a passion for anything work-related. The team can be
encouraged to give confidential evaluations of the team or team leader to see their perception of how well
the team is working. If the same problem is mentioned by a majority of team members, this is a problem
that needs to be resolved. One can also have regular discussions on ways to improve the team, or simply
have a place to post suggestions.

Another problem is that developers can easily feel isolated and separate. Most development teams get
together for short discussions on the project, but then will go off to their cubicles or offices and work alone.
Making the project a team effort and bringing the entire team together to find solutions builds team spirit
and helps reduce the isolation. The more the team members feel they are part of something and the more
they feel that their input is valuable, the more passionate they will become in accomplishing the team goals.

One other possibility is to get your team members to give classes on topics which are important to the team.
These classes should not be boring lectures, but should show innovative ways of using Visual Basic or the
latest technology, how the technology solves problems, etc. You can even have weekly or monthly contests
to see who can come up with the most innovative test project for a particular technology or Visual Basic
feature. An award should be given for all entries, and a special award for the best project. This motivates
the developers to learn new skills and to take an interest in the technology.

Some of the skills associated with this passion are as follows:

Basic Intermediate Advanced

You strive to stay current on
the latest technology

You understand new features
in the latest release of Visual
Basic

You have a drive to solve
problems and find solutions to
technical problems

You are motivated to try new
solutions, new technology, and
experiment to find the best
technology for each problem

You understand new features
in Microsoft Back Office
products such as SQL Server,
MTS, etc.

You motivate others to explore
new solutions and new
technologies

You try to use technology to
improve the individual or the
enterprise

You can get others excited
about current technology

You make major advances in
how technology is used

Chapter 2

58

It is of course particularly important for the developers to feel this passion, and they should strive to reach
the intermediate level, but all team members should reach a basic level with this skill. It is particularly
important that the project manager and component managers also feel this enthusiasm, since they should be
able to instill it into the other team members. Product managers should also emanate a passion for building
solutions in their dealings with the client: the client must see that the team is committed to finding the best
solution for them.

Visual Basic, combined with Microsoft Back Office, allows one to solve almost any type of enterprise
project. Often, the greatest limitation we face is not the Visual Basic language or the Microsoft products,
but our own imagination. Microsoft has provided us with a set of products that allows us to define the goals
of the client and then find ways to fulfill those goals. Putting together a solution for a client, regardless of
your role on the project, should be viewed as an exciting, creative process. If you find working on a Visual
Basic software team boring, you should perhaps reassess your role on the team, or try to spend some time
working on different aspects of development until you can find a niche that you enjoy.

The following suggestions may help to increase your passion for building enterprise solutions:

� Try to get involved in challenging projects that will require you to make significant contributions.

� Talk to others about the latest features in Visual Basic.

� Work with other team members to learn about new features in Visual Basic, Back Office or other
technologies that you work with.

� Become a specialist in developing Visual Basic applications, but also have understanding of the
Microsoft Back Office products.

� Try to work with someone who is an expert in the areas you want to learn about.

� Make contacts with people who will be able to give you advice.

� There is no better way to learn than to teach. Present a class on one of the new features in Visual Basic
or give a class on programming, such as optimizing Visual Basic middle tier components.

� Attend conferences such as VBITS (the Visual Basic Insiders' Technical Summit) whenever possible.

� Read magazines, such as Visual Basic Professional Journal (VBPJ), to keep up with the latest Visual
Basic versions.

� Work as a team to find the best way to build enterprise applications using Visual Basic and Microsoft
Back Office.

� Develop plans to incorporate the new Visual Basic features.

Focusing On the Client
The entire project should focus on the client and their business needs. Everyone on the team is working to
produce the most efficient product for the client. If a member of the team is simply building components
without any thought to how this component will improve the client's business processes, there is something
wrong. Through meetings with the client, all members of the team will get to know the client, their needs,
and their business processes.

Teams

59

Basic Intermediate Advanced

You can work with a client on a
one-to-one basis

You can work with a group of
clients

You work with the entire team to
make sure the client gets the best
product possible and that the
product fully meets the goals of
the client

You build long-lasting
relationships with the client

You follow up with the client

You respond to the needs of the
client and act as their advocate

You anticipate the needs of the
client

You act as a liaison between
the client and the rest of the
group

You focus on the client's
needs and goals

You can create product
designs based on the client's
needs and goals

You are able to get the client
to define their goals in a
clear manner

You are able to represent the
entire software team

You create long term vision
project plans for the client

You influence the entire team
to be client focused

While the product manager, educators, and logisticians are the primary liaisons to the client and should be
at the intermediate or advanced level for client focus, all members of the team should be able to discuss
issues relating to meeting the client's needs with the client when necessary, and should aim to reach the
basic level at least.

The following suggestions should help to ensure that you remain focused on the client and attentive to their
needs:

� Make it one of your goals to exceed the client's expectations.

� Explain to the team what the customer's goals are and how this project (or your portion of the project)
will help fulfill these goals.

� When reviewing your goals, ask yourself how these meet the client's goals.

� When speaking to a client, listen to what they say.

� Take notes when talking to a client.

� Create a questionnaire for your clients to see how satisfied they are with your work.

� Create a file on your clients.

� Find out what is important to the client.

� Make a list of the goals of the client and then ask the client to review them.

� After each conversation with a client, write a short (a paragraph or so) summary and send it to the client,
preferably through email to make sure you understood the client.

� Listen to problems the customer has had with you or your team and work to resolve them.

� Create a team document showing how to handle difficult customers.

Chapter 2

60

Team Spirit
Team spirit helps bind the team together and helps the team achieve its goals because of its members, not in
spite of them. Team spirit allows you to look beyond your own personal needs and work toward the goals of
the entire team. We have discussed a few possibilities in the section on passion for enterprise solutions.
While team spirit is not technically a skill, it is an essential requirement for anyone who has to work in a
team.

Other possibilities include activities that you do as a team outside of work, such as a picnic, conference,
etc. These can also be done during work hours.

Be careful with out-of-work plans. While some married people might enjoy some time away from the
family, the majority of people with families prefer to spend time with them. If possible, include family
members in out-of-work activities. I have known some large corporations to have morale-raising events in
one central location, flying all their employees into the event from around the world. While it may be fun
for some people, others have responsibilities and may find that this event is an inconvenience rather than a
morale booster. Make sure you are choosing activities that everyone will enjoy.

Also be sensitive to ethical, cultural and religious customs. Many people have special dietary needs. It may
seem like a great idea to order a pizza for a lunchtime meeting but some of the team members may for one
reason or another not be able to eat the pizza. Be sensitive to these issues when you plan such activities.

The three levels for team spirit are:

Basic Intermediate Advanced

You willingly participate in
helping the group achieve its
goals

You can lead or follow,
depending on what is required
at the moment

You look to help out other
group members

You help bond the group
together to achieve the goals
of the group

You help other group members
without being asked

You contribute to the success
of the entire group

You make sure the goals of the
team are being achieved

You work towards making
members of the team feel they
belong and are important

You contribute to the creation
of the goals of the team

You share credit for successes
with other team members

You help build the skills and
confidence of your team
members

You bring together diverse
teams across the enterprise

You create successful,
productive teams that include
all the teams in a software
project

You create teams that work
efficiently together and share
information

Teams

61

Everyone working in a team (and not just a software team) should aim to develop their team spirit skills,
and should have most of the basic level qualities. The project and component managers will need to foster
these skills in the other team members, so should strive to reach the intermediate or advanced level.

To improve team spirit you can try the following:

� Work with your team members to solve problems and achieve goals.

� Create a team vision.

� Make a list of the strengths of the members of your team and utilize them in these areas.

� Ask your team members which areas they feel they are not strong in and help them improve themselves
in these areas.

� Show appreciation to all the people you come in contact with, including those who are not on your team,
such as the administrative people.

� Show appreciation for team members who help achieve the team goals.

� Try to make shy members more comfortable and try to help them talk and contribute.

� Listen to your team members.

� Do not judge team members.

� Be open-minded about team members.

� Enjoy your job.

Leadership
While leadership is essential to be in a management role, it is also important for all team members.
Knowing how to lead is something that you can learn with experience. As you will be taking responsibility
for accomplishing your goals, it is important that you develop some leadership skills. The three levels of
leadership are as follows:

Basic Intermediate Advanced

You create a clear direction for
your group

You motivate the team to
accomplish the essential goals

You enthusiastically work with
team members

You lead according to the
current situation

You are able to create a vision
for the group

You involve the entire group
in decisions

You successfully get the
support of the entire team

You can inspire the entire
software team to achieve goals

You easily communicate your
vision

You can lead in good and bad
times

You can create new visions

Although not a traditional 'boss', the project manager has ultimate responsibility for the project, so should
aim to possess the advanced level for this skill. The other managerial roles, the component and product
managers, should also aim for a high (intermediate to advanced) level of leadership.

Chapter 2

62

Ways to improve your leadership skills:

� Set priorities for yourself and the team.

� Help create the team's vision.

� Talk with people who can break complex tasks into smaller, simpler tasks and learn how they do it.

� Determine the critical goals and focus on them.

� Stay focused on the client and their needs.

� Write down your most important convictions. Put them where you can see them and use them to guide
you.

� When in a meeting, mention any risks you may see in the topic being discussed.

� Think before you speak, and when you speak, talk in a clear, concise manner.

� Give feedback.

� Believe that you can make a difference and you will find that you will.

� If someone who has performed well in the past starts performing poorly, there may be personal
problems. Take time to talk to them and find what has caused the change.

� If someone has always performed poorly, try to find out what areas they are weak in and motivate them
to work on those areas.

� Do not be afraid of superiors; be honest with them when stating your views.

� Do not be afraid to identify and bring forward risks.

� Stand by your principles.

� Accept responsibility for your actions, even your failures.

� Learn from your mistakes and allow others to learn from theirs.

� Evaluate the risks involved and then make decisions that have reasonable risks.

� Do not ask someone to do something you would not do.

� Give credit to the appropriate people.

� Encourage your team members to set ambitious goals and acknowledge and reward them when they
achieve them.

� Find out what roles on the team people want to be in and help them gain the skills to be successful in
that role.

� Stand behind your team members.

� Perform at the best of your ability to set an example for the team.

Teams

63

Accomplishing Goals
Everyone on the software team needs to know how to accomplish goals, as each member is responsible for
accomplishing the goals that are assigned to them. The three levels of accomplishing goals are as follows:

Basic Intermediate Advanced

You stay focused on goals until
they are accomplished

You take pride in your work

You are willing to take on
difficult assignments to help the
team accomplish its goals

You take appropriate action
when you are diverted from
your goals

You accomplish the assigned
task even when it requires extra
time and energy to accomplish
the task

You turn all assigned tasks into
personal goals

You create realistic schedules
based on assigned tasks and
goals

You do not quit when things go
wrong or become difficult

You are able to help other team
members when they need
assistance

You are willing to do routine
tasks when they are required

You get other team members
to define their assigned tasks
in terms of goals to be
accomplished

You help other team
members to define critical
goals and stay focused on
accomplishing them

You help other team
members work through
difficulties

You acknowledge when other
team members fulfill their
goals within schedule

You create high but realistic
standards

You feel your work
represents you

You learn how to prioritize
your goals

You meet goals even when
there are difficult problems or
obstacles

You take responsibility for the
most difficult goals of the
group and complete them

You perform effective risk
analysis and prevent problems
from stopping the team from
achieving your goals.

You are always looking for
ways to improve the team

Since the project depends ultimately on the developers producing working code on schedule, this skill is
particularly vital for them, and they should aim for the intermediate to advanced level of this skill. The
code will also need to be tested on schedule, so the testers too should try to reach at least the intermediate
level. The component managers and the project manager will need to ensure that the goals of the entire
team are achieved, so should ideally possess this skill to the advanced level.

Chapter 2

64

Below are some suggestions which might help you to ensure that you accomplish the goals which are
assigned to you or which you set for yourself:

� Do not give up; often one must work hard and keep trying to accomplish a goal.

� Use the 80/20 rule, which states that you should try to accomplish 80% of your goals in 20% of your
time.

� Reevaluate your goals periodically and adjust your goals as circumstances change.

� Do not focus on the negative.

� Do not work the clock; work toward accomplishing tasks.

� Focus on how to do something; do not focus on why you think it cannot be done.

� Find the goals that are critical and focus on them.

� Create rewards for yourself when you accomplish your goals.

� Accomplish your goals so that you can take on more responsibilities.

System Management
Certain roles in the team, such as product management, require a good knowledge of enterprise systems.
The three levels for system management are:

Basic Intermediate Advanced

You are able to identify key goals
and properly access all risks to
the goals

You are able to oversee complex
systems and processes

You can re-evaluate information
on goals to determine risks to
goals

You can manage and design
complex processes and
systems

You know what metrics are
required to monitor and
improve a system

You create a vision level
design for the enterprise that
incorporates both current and
future technology

You are able to manage,
design and improve
enterprise-level systems

These skills are chiefly important for the product managers and logisticians, who should all aim for
intermediate to advanced level for this skill.

These are some ways to improve system management skills:

� When creating budgets, include only critical items.

� Understand how systems work within the entire enterprise.

� Learn any software products that will help you manage the system better.

� Be familiar with all aspects of the system; past, present and future.

� Look for ways of improving the system from new technological improvements.

� Understand how Visual Basic can fit into the enterprise.

� Do not accept anything that is not up to your standards; find a way to improve poorly working systems.

� Work with your team and peers to find better solutions.

Teams

65

General Team Skills

Finally, we will put together some general skills necessary to be a successful team member. We could
include many more skills in this list, but I've tried to focus on the more important ones. The three levels of
these general skills are:

Basic Intermediate Advanced

You remain calm and focused
during disagreements

You build good working
relationships with other
members of the team

You are focused on the goals
even when others are being
distracted by problems

You handle stress effectively

You are able to keep others
focused on the problem when
there are disagreements

You relate to people in a manner
that is appropriate for that
person

You treat other people in a
courteous manner

You are honest

You behave in a professional
manner

You know when and how to
respond to a risk

You respond to changes in
technology

You respect all people
regardless of their culture,
background or opinions

You identify business
opportunities and act on them

You can function even during
stressful periods

You show respect to all others
regardless of the situation

You do not blame others

You work towards
constructive solutions

You understand people and
can usually predict how they
will respond

You do not overreact to
problems

You can stabilize the team
during disagreements

You can identify new
opportunities and act on them

You can find solutions even
under highly stressful
circumstances

You build effective
relationships in the enterprise

Chapter 2

66

Below are some suggestions on how to improve your general team skills:

� When you make a mistake, admit it.

� Try to learn something from everyone you meet.

� Make realistic schedules and commitments.

� Be honest.

� Be consistent.

� Do not dwell on past mistakes; look towards the future.

� Finish what you start.

� Have a sense of humor.

� Do not get upset when others correct you; look at it as a way to improve yourself.

� Stand up for members of your team.

� Make lists of the things you want to learn.

� Do not bring the job home.

� Say what you think without offending anyone.

� Accept that problems are part of life and learn to adapt your plans when they arise.

� Create personal goals, such as mastering a new feature in Visual Basic, make a plan to achieve that goal,
and then accomplish the goal.

� Do not miss deadlines, if possible.

� Allow trust to develop between you and your co-workers, and realize that this may take some time.

� Do not make excuses.

Teams

67

Summary
A Visual Basic team should be comprised of a group of people who are assigned to roles based on their
skills and the responsibilities they can assume. The skills for each role should be well-defined, so that team
members can develop the necessary skills to succeed in their role and so they can work toward moving into
other roles.

Ideally, a company should put time aside for workshops with its employees to train them in non-technical
skills. These non-technical skills are as important as the technical ones. Team members should have the
skills to manage themselves and also be able to help the team reach its goals.

Chapter 2

68

Skills References
Below is a list of books on topics covered in this chapter. I would recommend that any large company
should have a library with both technical and non-technical books that can be borrowed by team members.
The following books should be part of any library for a Visual Basic team.

The Art of Communicating by Bert Decker. Crisp Publications, Inc., ISBN 156052409X

You've Got to Be Believed to Be Heard by Bert Decker, James Denney. St. Martin's Press, ISBN
0312099495

People Smarts: Bending the Golden Rule to Give Others What They Want by Tony Alessandra,
Michael J. O'Connor. Pfeiffer & Co, ISBN 0883904217

Communicating at Work by Tony Alessandra, Phillip Hunsaker. Fireside, ISBN 0671788558

The Human Touch : Today's Most Unusual Program for Productivity and Profit by William W.
Arnold, Jeanne M. Plas. John Wiley & Sons, ISBN 0471572918

Listen to Win: A Manager's Guide to Effective Listening by Curt Bechler, Richard L. Weaver. Master
Media, ISBN 1571010025

Basics of Business Writing (Worksmart Series) by Marty Stuckey. AMACOM, ISBN 0814477925

Getting It Done: How to Lead When You're Not in Charge. Harperbusiness, ISBN 0887308422

Discovering Common Ground: How Future Search Conferences Bring People Together to Achieve by
Marvin R. Weisbord. Berrett-Koehler Pub, ISBN 1881052087

Breakthrough Innovation, Empowerment, Shared Vision, and Leadership When the Heat's on by
Danny Cox, John Hoover. McGraw-Hill, ISBN 0070132674

Leading Self-Directed Work Teams: A Guide to Developing New Team Leadership Skills by Kimball
Fisher.

Empowered Teams: Creating Self-Directed Work Groups That Improve Quality, Productivity, and
Participation by Richard S. Wellins, William C. Byham. Jossey-Bass Publishers, ISBN 1555425542

Leading the Transition: Management's Role in Creating a Team-Based Culture by Wilbur L. Pike III.
AACC Press, ISBN 0527762474

Why Teams Don't Work: What Went Wrong and How to Make It Right by Harvey Robbins, Michael
Finley. HighBridge Company, ISBN 1565111923

Why Change Doesn't Work: Why Initiatives Go Wrong and How to Try Again-And Succeed by
Harvey Robbins, Michael Finley. Petersons Guides, ISBN 1560799447

Teams

69

Reaching the Peak Performance Zone: How to Motivate Yourself and Others to Excel by Gerald
Kushel. AMACOM, ISBN 0814402224

Patterns of High Performance: Discovering the Ways People Work Best by Jerry L. Fletcher. Berrett-
Koehler (Short Disc), ISBN 1881052338

Principle-Centered Leadership by Stephen R. Covey. Fireside, ISBN 0671792806

The 2,000 Percent Solution: Free Your Organization from 'Stalled' Thinking to Achieve Exponential
Success by Donald Mitchell, Carol Coles, Robert Metz.

Bringing Out the Best in People: How to Apply the Astonishing Power of Positive Reinforcement by
Aubrey C. Daniels

If It Ain't Broke, Break It : And Other Unconventional Wisdom for a Changing Business World by
Robert J. Kriegel, Louis Patler. Warner Books, ISBN 0446393592

Vision: How Leaders Develop It, Share It, and Sustain It by Joseph V. Quigely. McGraw-Hill, ISBN
0070510849

Building a Shared Vision: A Leader's Guide to Aligning the Organization by C. Patrick Lewis.
Productivity Press, ISBN 156327163X

The Confident Decision Maker: How to Make the Right Business and Personal Decisions Every Time.
Quill, ISBN 0688142281

Competing for the Future by Gary Hamel, C. K. Prahalad. Harvard Business School Press, ISBN
0875847161

The Profit Zone: How Strategic Business Design Will Lead You to Tomorrow's Profits by Adrian J.
Slywotzky, David J. Morrison. Times Books, ISBN 0812929004

Drawing on the Right Side of the Brain: A Course in Enhancing Creativity and Artistic Confidence by
Betty Edwards. J P Tarcher, ISBN 0874775132

Chapter 2

70

Creating Project Schedules

Now that we have a basic understanding of the cycles of a Visual Basic project, the goals for each cycle and
who is responsible for each goal, we can begin to look at making schedules. We will define a schedule as a
visual document that allows you to see how you will use the time resource towards accomplishing your
goals.

A schedule begins with a set of goals that need to be accomplished. Goals can be divided into three
priorities: high (critical), medium, and low. Each goal will have one or many milestones that will allow us
to measure whether we have accomplished this goal or not. We will have a set of resources, which includes
time, money, and human resources, which we can use to accomplish our goals.

Because there will almost always be limitations placed on what we can do with our resources (there is never
enough time!), we must balance our schedule so that the high priority goals are met within the limits of our
resources. Low priority goals may not get done, and medium priority goals may be done, but not
immediately. By using a schedule, we have a visual tool that allows us to adjust the amount of time allotted
for our goals until we arrive at a schedule that allows us to complete all of our critical goals, and hopefully
most, if not all, of our medium goals. If you can also accomplish your medium priority goals within your
normal workday, consider yourself very lucky.

If we are using a scheduling tool, we can extend the definition of a schedule to being a visual document that
allows us to see how we are using all of our resources, including time, people, money, and space, towards
accomplishing our goals. Using these scheduling tools, you can adjust the usage of all of the available
resources until you arrive at a schedule that efficiently uses the resources towards the accomplishment of
your goals.

We will use Microsoft Project 98 because it is easy to use and learn, the examples we use with Microsoft
Project 98 are useful for any project management software product, and it can be used to demonstrate all of
the important concepts of creating a schedule. If you do not have Project 98, you can download a free 60-
day trial version at:

Chapter 3

72

http://www.microsoft.com/office/98/project/trial/info.htm

This web site also contains links for Project 98 that can help answer even your most advanced questions
about how to use Project 98. I would highly recommend you taking the time to download Project 98 now if
you do not already have it.

This chapter is filled with important scheduling skills and will teach you the basics of how to create a
project schedule. Two of the visual aids provided by Project 98 are Gantt and Pert charts.

A Gantt chart represents each goal as a horizontal bar. The horizontal bar will be placed over a time scale,
which is situated at the top of the chart. The length of the horizontal bar shows how long it will take to
complete the goal. Using a Gantt chart, one can quickly determine the status of goals over time, the
relationship between goals if one exists, and resources associated with the goal.

In this book, I will be placing goals on the schedule. Normally, most people would
call these tasks, instead of goals. Tasks are defined as something that is assigned. In
our view of teams, we do not assign work. Goals are created for the team, and each
team member assumes the goals that fit with their role and their abilities. The word
task just does not fit in with our view of a team. Goals, on the other hand, fit in
perfectly with our team view. Project 98 uses the word 'tasks'. Just substitute 'goal'
for 'task' when working with Project 98.

A Gantt chart will look something like the following example:

http://www.microsoft.com/office/98/project/trial/info.htm

Creating Project Schedules

73

A Pert chart shows the relationships between goals. Goals that are dependent on other goals, for example,
one goal requiring another to be completed first or a goal that is a sub-goal of a second, can easily be seen
in a Pert chart. Pert charts are useful for visualizing the sequence of goals and they can also show the
progress of each goal as time goes on. More information can be found in the Project 98 help files.

Throughout the rest of the book, we will use a generic Visual Basic DNA project as an example to show
you how to manage a project. This project will contain the normal parts of a Visual Basic DNA project:
client components, server components and web components. If any of these components are not part of your
project, you can remove them from this schedule.

In this chapter, you will start out in the Visual Basic developer role. We will look at your personal schedule
for the beginning of a project. We will do this to introduce Project 98, show you some of the basics of this
tool and also discuss some special scheduling issues for Visual Basic developers.

Chapter 3

74

Using Project 98 to Schedule Your Goals
Open Project 98. Select View. You will see the following views:

Project 98 Views
Project 98 comes with twenty-six views. The eight most common views are listed in the dropdown menu by
default. They are:

Calendar: A view of goals by date. This view looks very much like the calendar in Microsoft

Outlook, except that you cannot set the hours for your goals. You can set the range
of dates you want to view.

Gantt: Goals are shown as a bar spanning the time it will take to complete the goal.
Pert: A diagram showing all goals and the relationship between goals.
Task Usage: A list of goals showing the resources assigned to each goal.
Tracking Gantt: Used to track the percentage a goal is completed.
Resource Graph: A graph showing resource allocation, cost or work.
Resource Sheet: A place to enter all the resources available to the project.
Resource Usage: A list of resources and the goals associated with the resource.
More Views: Additional ways of viewing the schedule.

We will only discuss the Gantt view in detail because it is one of the most popular views for project
management and the best one to manage your schedule and resources.

Creating Project Schedules

75

Project Starting Date
We will begin by creating a schedule for an individual developer. This means creating a new project. Open
Project 98, select File and then select New. You will see the Project Information box, as follows:

We would like our project to have dates in the future. I have chosen to begin this project on January 15,
2002. We need to tell Project 98 that we are beginning our schedule on this day. The project information
can also be seen at any time by selecting Project | Project Information Don’t worry about the Finish date:
Project 98 will automatically put that in for you.

Gantt View
Now that we have started a new project, we must make sure that we are in Gantt view - do this by selecting
View | Gantt Chart or by clicking the Gantt button on the left hand side of the screen.

If you don’t see these buttons, you can view them by selecting View | View Bar.

Chapter 3

76

On the left side of the screen, you will be able to assign each goal a name, a start and finish date, the
duration of the goal, any goals that must be completed before this goal is completed (the Predecessors
column), and a list of required resources. This information will be used by Project 98 to create the task bars
on the right hand side.

Gantt Chart Timescales
The view on the right hand side will have two timescales, a major timescale and a minor timescale, as
shown below.

You can change the major and minor timescales by placing the cursor over the timescales and right mouse
clicking. Select Zoom to increase or decrease the timescale.

Creating Project Schedules

77

When you select Zoom you will get the following form:

Select the range that you wish to see. You can also select Timescale in the dropdown menu to change both
the major and minor times. Selecting Timescale will give you the following form:

You can now adjust the major and minor time as you wish. Using this feature you can view your project
over hours or weeks, or whatever is most appropriate.

When adding goals, you can type the information directly into the left hand side of the screen. Let us begin
by making the schedule for our developer during the envisionment phase of our project. During this phase
the developer will have minimal input into the project. This is a perfect time for the developer to spend time
learning new skills or improving old ones.

When making a Gantt chart, you are showing how the time resource is being used by your goal. You are not
making an hourly working schedule. This means that you are not saying that on April 15th from 9 A.M. to
11:00 A.M. I will be working on goal 1 when using a Gantt chart. Instead, a Gantt chart will show that two
hours of the time resource have been allocated to working on goal 1 on April 15th without saying which two
hours.

Chapter 3

78

Once you have allocated the total time resource for the day to different goals, you can use a standard
scheduling program to assign what hours in the day will belong to each goal. Thus, the Gantt chart could
allocate one hour to goal 1, four hours to goal 2, and one hour to goal 3 on April 15th. You can then use a
calendar program such as the one in Outlook to assign 9 A.M. to 10 A.M. for goal 1, 10 A.M. to 11 A.M.
and 12 P.M. to 3 P.M. for goal 2, 3 P.M. to 4 P.M. for goal 3 and 4 P. M. to 5 P.M. for administrative tasks.

Creating the Schedule
Let us begin by typing the following into your schedule:

Task Name Duration Start Finish

Learn VB 6
New Features

0 hrs Tue

01/15/02

Tue

01/15/02

As soon as you type in the task name, Project 98 will assign it a duration of 1 day. Simply click on the
appropriate column and type in 0 hrs as above.

We have said that the duration of this goal is 0 hours - as we break down the goal into sub-goals, and assign
durations to them, this main goal will have a duration that is the sum of all the durations of its sub-goals.
Don’t worry about this for now, it will become clearer later.

Duration Field in a Gantt Chart
Duration can have any of the following values:

m minute
h hour
d day
w week
em elapsed minutes
eh elapsed hours
ed elapsed days
ew elapsed week

Creating Project Schedules

79

The elapsed times are used when your
goals run through non-working times.
Working times are defined in the
options. If you wish to change these, go
to the menu, select Tools | Options and
select the Calendar tab. You will see
the following:

You can set the time for the workday as you need to.

If a goal is to run Friday through Sunday, and you have the default workday as shown above, you can list it
as a 3 ed starting on Friday. This means that you were expecting it to run over 3 elapsed days - Friday,
Saturday and Sunday. If you used 3 d, Project 98 would see this as meaning 3 work days, and would make
the goal run over Friday, Monday and Tuesday of a regular work week.

Entering Goals Into Project 98
Once you have placed your goal into Project 98, your schedule should look as follows:

Chapter 3

80

There is another way to enter information into Project 98. Double click on any part of the row you have
created. You will now see the following form:

Select the Advanced tab: under Constrain task change the Type to As Soon As Possible:

Select the Notes tab and type in the following note:

I will be focusing on learning several of the new features in Visual Basic. The skills I will be focusing
on are the new data source classes, web classes and IIS classes. During the envisionment phase I will
spend a maximum of five hours on skills and drop to zero hours during the development phase.

Creating Project Schedules

81

This will look as follows:

Select OK. Notice a note icon has been added to the information column of the left of the goal name.

Some of you may be thinking that it is unrealistic to study at work. I once worked at a large
company that did not allow reading of any material at your work desk. I found out about this
policy because one of my coworkers spotted me reading a magazine at my cubicle and
reported me to my senior manager. I was immediately called into the manager's office. I
explained to my manager that I was reading an article in VBPJ and using the code sample in
the magazine for the current project I was working on. I was referring to the article as I
typed code into my project. I was told that reading any magazine at work was not allowed,
and if one of the company's vice presidents had seen me, I would have been fired on the spot.
I was advised to go to the cafeteria or step outside if I wanted to do research on my coding
during work hours. While this may seem like it came out of a Dilbert cartoon, this really
happened to me.

During times when programmers have slack time, such as during the envisionment phase or
between projects, team members should be allowed to study. I cannot emphasize this
enough. Visual Basic is a constantly evolving language, as is the entire Enterprise
technology. There is just too much to learn during off hours. If a company wants highly
skilled Visual Basic team members, then they must allow their full time Visual Basic
employees to spend some time improving their skills during work time. They should also be
willing to invest in training.

I would go as far as setting a quiet office aside and turning it into a study room. The room
should be made comfortable and also have one, preferably several, computers set up to work
with Visual Basic and Back Office. The computer should have as much source code as
possible, the MSDN and tech net loaded onto it, and as many study aids as possible. There
should be shelves loaded with good reference materials. A conference room should also be
set aside when several developers have downtime so that they can work together on learning
a topic. If someone has expertise in a field, they should give a talk on that topic. The
company can also pay to have experts in certain areas come in and give classes to the
developers.

Chapter 3

82

Learning new Visual Basic 6 skills is a goal that will be scheduled over a one-month period. We would like
to see how many hours we can devote to this goal each day. To do this with a Gantt chart we must divide
our goal into sub-goals. Each sub-goal can be accomplished within the number of hours you can spend on
the overall goal (learning new VB 6 skills in our example) in one day. On Tuesday, January 15 you can put
five hours towards learning the new features of Visual Basic 6. This is enough time to learn the basics of
Visual Basic 6’s new Data provider classes. We will make this a sub-goal for January 15 that will have a
duration of five hours.

Goal Name Duration Start Finish

Learn basic
skills of VB 6
data source class

5 hrs Tue
01/15/02

Tue
01/15/02

In our schedule we now have:

I have changed the major timescale to days and the minor timescale to hours - notice how there is now a bar
on the right hand side representing the length of this goal.

Creating Sub-goals

You want to make a sub-goal of the Learn VB 6 New Features goal. We can do this by
selecting goal 2 and clicking the arrow pointing to the right on the left hand side of the
toolbar:

The left arrow will move a goal up one level:

The plus and minus signs will show or hide the sub-goals:

Creating Project Schedules

83

After clicking the right arrow, you should now have the following:

Notice that there have been a few changes in goal 1. The duration of goal 1 is now 0.63 days. A day is
defined as 8 hours; 5 hours is thus 0.63 days. The finish time is now Tue 01/15/02. The main goal can only
have a duration that totals the combined durations of its sub-goals. Notice that on the right hand side there
is now a black bar indicating that goal 1 is divided up into sub-goals.

Time Estimates and Milestones
In chapter two I said that you should base your daily schedule on accomplishing goals, not on working a
certain number of hours. By breaking your larger goals down into daily goals, you can see what you need to
accomplish every day. Now, the important question is, ‘‘How do we know when we have successfully
accomplished the goal?’’ For the sub-goal, ‘‘Learn basic skills of VB data source classes,’’ you might want
to say the goal is accomplished when you have completed five hours of studying. Yet, this is not correct.
This is working the clock.

The time listed is an estimate of the time we expect this goal to take, not the amount of time we actually
must spend to do this goal (though hopefully the two will be nearly the same). We need a milestone here.
For example, the book, VB 6 UML, published by Wrox Press, covers data source classes in chapters 12, 13
and 14. Thus, we could create the following milestone for this sub-goal:

� Read chapters 12, 13 and 14 in the VB 6 UML book and enter the code from these chapters into a test
project.

When the chapters are read and the code is written, the goal is complete, regardless of how many hours it
takes to reach this point. Hopefully, though, our time estimate of five hours was accurate.

Chapter 3

84

The number of hours assigned to a goal is only an estimate of how long it will take to accomplish the goal.
The actual time to complete the goal may be longer or shorter. It is important that you work toward
accomplishing goals every day, and have a milestone that tells you when the goal has been reached. When
all of your milestones for the day have been reached, you have completed your day’s work. If you are new
at estimating the time it takes to accomplish a goal, talk to a co-worker who may have more experience.
Over time, your estimates should become more accurate and you should be able to properly estimate the
goals you can accomplish in a normal workday. Also, actual time spent on working towards a goal can be
stored against a goal so that developers and managers can see how accurate time estimates have been and
can learn and refine their estimates.

You can enter the milestone in two ways. You can either enter it as a comment or you can create a
milestone with Project 98 by entering a goal with a duration of 0, as follows. Enter the following into
Project 98:

Goal Name Duration Start Finish

Complete
chapters 12-14 in
VB6 UML

0 Tue
01/15/02

Tue
01/15/02

Your project should now look as follows:

Notice how Project 98 represents a milestone with a diamond.

Let us imagine that on Wednesday, January 16 we will spend the day in meetings so we will not allocate
any time to learning VB on this day. On Thursday, January 17 we will spend part of the day reviewing the
meeting but will still have two hours to spend working on our VB 6 skills. We will spend this time
reviewing MTS. Let us add the following to our schedule:

Goal Name Duration Start Finish

Learn MTS 2h Thu 01/17/02 Thu 01/17/02

Complete chapter 3 in Wrox
MTS MSMQ

0 Thu 01/17/02 Thu 01/17/02

Creating Project Schedules

85

Entering Project Information
Let us now imagine that we are working on a project with the Northwind Company called the Northwind
project. We now want to add the Northwind project into our schedule. Under Goal Name in row 6, type in
Northwind Project and click the left arrow, as we do not want this to be a sub-goal of Learn VB 6 New
Features.

The project should now look as follows:

Project 98 automatically gives this a duration of 1 day starting on the first day of the whole project - this
will change when we add sub-goals.

Under the Northwind Project on lines 7 and 8 we can add the following sub-goals (don’t
forget to click the indent arrow):

Goal Name Duration Start Finish

First Envisionment Meeting 7h Wed 01/16/02 Wed 01/16/02

Review Envisionment Meeting 5h Thu 01/17/02 Thu 01/17/02

Chapter 3

86

You may have noticed that when you try to enter the date for the First Envisionment Meeting, a wizard
pops up, looking like this:

For now, select the second option and press OK.

You should now have the following:

Creating Project Schedules

87

Our scale on the right is too large so we need to change it. Right mouse click on the timescale:

Under Minor scale, change the Count to 8:

Chapter 3

88

We now have the following:

Recurring Goals
Our schedule is beginning to fill out. We would like to allot one hour every day to administrative time,
which includes breaks and checking email. We will need to add this in for every day. Microsoft Project 98
allows us to add recurring goals.

Click on the next empty row (number 9) and go to Insert in the menu. Select Recurring Task:

Enter the following information in the Recurring Goal Information form:

Goal Name Duration From To This occurs Daily

Administrative 1h Tue
01/15/02

Wed
01/15/03

Daily Every

Workday

Creating Project Schedules

89

Press OK. Select goal 9 and click on the left arrow to move Administrative up one level. Your schedule
should now look as follows:

Links
Sometimes one goal is dependent on another goal. Project 98 allows you to set up four types of
dependencies:

Chapter 3

90

Finish To Start: One goal must be completed before the next one can start. If we needed to complete the
VB6 UML chapters before moving onto MTS, we could add this type of dependency. To make the link, we
need to select the first item on the Gantt chart on the right hand side and drag the mouse pointer to the next
goal. Select Goal 2 first and drag the mouse to Goal 4. As you do this, you should see the chain link
symbol, showing that a link has been made.

The default will be Finish to Start link. Your schedule with the link will look as follows (we have changed
the major time scale to week and the minor to day):

You could have also just typed in the number 2 in the Predecessors column for goal 4. Use whichever is
easiest for you.

Start to Start: One goal can start at the same
time the other goal starts. Double click on the
link and you should see the Task Dependency
window. Select Start-to-Start.

Creating Project Schedules

91

Your link should look as follows:

Notice the link has moved from the end of the first goal to the beginning of the first goal. When using start,
the link is attached at the beginning of the bar; for finish the link is attached to the end of the bar.

Finish to Finish: This is used when two groups finish at the same time.
Start to Finish: This is used when one group starts when one finishes. For example, you may be upgrading
a system. When the new system starts, the old system finishes.

Let us now link together some groups. Insert three new rows into your schedule before goal 9. Make sure
that goal 9 is selected, then select Insert | New Task three times:

Chapter 3

92

Add the following goals to the Northwind project:

Goal Name Duration Start Finish

Recommendations for Vision/Scope 7h Tue 01/22/02 Tue 01/22/02

Final Envisionment Meeting 7h Fri 01/25/02 Fri 01/25/02

First Team Development Meeting 3h Mon 01/28/02 Mon 01/28/02

Now link all of the Northwind goals together by selecting goals 7 to 11 and clicking the
chain link button on the toolbar:

Double click on each link and change it to a Finish to Start link. Your schedule should now look as follows:

Creating Project Schedules

93

Saving the Schedule
Go to File | Save and name the file DeveloperSchedule.

If you see the following screen just click OK:

This allows you to save backup copies of your schedule. We do not need to do this, so we select Save
'DeveloperSchedule' without a baseline. You can get rid of this by clicking in the box Don't tell me
about this again. The schedule will then be saved as DeveloperSchedule.mpp

Resources
Up to this point, we have only been working with the time resource. There are many other resources that are
available, including people, equipment, rooms, etc. In regards to the schedule we are creating for a
developer, some of the resources may be the availability of the study room and the study computer. Let us
add these two resources to our schedule.

Chapter 3

94

In the resource sheet add Study Room and Study Computer; Project 98 adds the extra information
automatically:

Creating Project Schedules

95

Click View and go back to Gantt view. Double click on the Learn basic skills of VB 6 data source class
goal to bring up the Task Information window. Select the resources tab, click on the dropdown combo and
select Study Room. Since the room can hold four people, you are using 25% (one quarter) of the total
resource. Enter 25 for Units. You should see the following:

Your schedule will now have the resource added:

Using this resource information, a master schedule can be put together to make sure that the team is not
overusing a resource. In this case, if five team members were trying to use the study room at the same time,
the resource would be over utilized and this would show up on the combined master schedule.

Chapter 3

96

Resource Management
What would happen if we did over allocate a resource? Let us deliberately add a conflict to our schedule to
see what would happen. We will do this by adding a second envisionment meeting and hold it on the same
day as we are reviewing the first envisionment meeting. Select goal 9 and insert a new row (Insert | New
Task) and then enter the following into the schedule:

Goal Name Duration Start Finish Predecessors Resource
name

Second
Envisionment
Meeting

7h Thu
01/17/02

Thu
01/17/02

8

When I was using Project 98, it wouldn’t allow me to enter the finish date as Thursday, January 17th 2002,
so we must make Project 98 let us do it. To do this, double click on the goal and bring up the task
information window.

Creating Project Schedules

97

Click on the Advanced tab and make sure that everything looks the same as the above. When you click on
OK, you may see this window pop up:

Click on the third option and press OK. This window may then pop up:

Chapter 3

98

Click on Continue and press OK. The schedule should then look something like this:

However, we have not yet told Project 98 where we are holding these meetings, so let’s add a new resource,
the meeting room. Select View | Resource Sheet and add Meeting Room to the list: it should look
something like this:

Creating Project Schedules

99

Now we need to tell Project 98 that the First Envisionment Meeting will take place in the meeting room.
Click View and go back to Gantt view. Double click on goal 7 to bring up the task information window. We
will be using the whole room, so enter the units as 100%. Task information should look as follows:

Repeat this for goal 8 and goal 9; the schedule should look like this:

Notice how the resource name appears on the right hand side of each goal in the schedule. As we are fully
utilizing the resource, there is no percentage mark beside it.

Chapter 3

100

Now that we have entered this information into our schedule, we would like to look it over and make sure
we have used our resources correctly. Go to the menu, select View, and then select Resource Graph. Put
the cursor over the time scale and right mouse click. Select Timescale from the dropdown menu. Make
sure the major scale is in weeks and the minor is in days. Scroll over to January 17 and make sure that you
select Meeting Room on the left hand side of the screen. You should see the following:

We can see that we have overscheduled our Meeting Room for Thursday, January 17.

Although I had to deliberately insert a conflict of resources into the schedule, you can see that the resource
graph tool can be a very powerful aid in helping you manage your project. As you begin to include all of
the resources relating to your project, there is an awful lot of room for errors in resource allocation. The
resource graph tool can help you keep a check on these, especially when you may not realize that conflicts
occur.

Changing the Look of your Schedule
You may have noticed above that the resources are listed on the right hand side of the goals in your
schedule. There may be times that you want to change this view, for example, to show the names of the
goals next to the bar representing their duration. To do this, you can use the Gantt Chart Wizard.

Creating Project Schedules

101

Right mouse clicking on a link will give us a dropdown list, which includes the Gantt chart wizard:

You can also click the Gantt wizard button on the standard Toolbar to open the Gantt wizard:

You must select the rows you want to format. Put the cursor over the numbers on the left column, hold the
left mouse button down and select the rows. You should now have:

Chapter 3

102

Open the Gantt chart wizard. The first screen of the wizard will look as follows:

Click next and you will see the following:

This brings up a very important part of a project, the critical path. At this point, all goals look the same.
Yet, some goals are much more important that other goals. Critical goals are the ones that must be
accomplished for the project to succeed. In our schedule, administrative time and studying Visual Basic are
not critical goals. If we do not accomplish these goals, the project should still succeed. It is essential to
identify which goals are critical. As this is just a sample project, we will include all goals in the Gantt
chart, so leave the Standard button checked. A complete, real schedule might only show the critical goals,
in which case we would check the Critical path option button.

Creating Project Schedules

103

Click Next and on the next screen select Custom task information.

Click Next. On the next screen, select Name in the Left box. You could add any fields you want, such as
the resources, but I am leaving them out to prevent the chart from becoming overcrowded.

Click Next. Step 11 allows us to add labels to our summary Gantt bars, which are the black bars that
represent the goals that have sub-goals. Step 12 gives us the option to include labels for milestones. The
next screen in the wizard, Step 13, asks us if we want to include link lines between dependent tasks; leave
this option as Yes, please. You should then see the final screen:

Chapter 3

104

Click the Format It button and your Gantt chart should be transformed: simply press the Exit Wizard
button to return to your schedule.

If you chose to follow these steps, your schedule should look like the following:

Creating Project Schedules

105

Project 98 Tables
Project 98 uses tables to display the information. Go back to the Gantt view. If you now go to the menu and
select View, then Table:, you will see the following:

This shows that you are currently viewing the Entry table. This is the table that you use by default to enter
information.

Cost Estimates
We can choose other tables to view information. Select Cost from the drop down list. The cost table view
should look as follows:

Chapter 3

106

We haven’t entered any costs for any of our goals, so our project isn’t costing us anything! However, you
can see that this can give us an estimate for the cost of each part of the project. The estimate at this stage
would be based on our estimates of the time we think the project will take: these are likely to be refined as
we go through the project, and so the costs are only as accurate as our estimates allow. Building a software
project is not cheap: this is where Visual Basic’s wide range of applications and object oriented
programming come to the rescue.

By building reusable components that can work in a wide range of environments, from the client exe to the
web class to the Office VBA macro, we can reduce the total number of components we need to build. If the
components we build in this project will be part of the next project, then we will eliminate a large portion
of the cost of the next project.

The cost of the envisionment phase can sometimes be seen as prohibitively high. Visual Basic projects are
very complex. The vision/scope document puts this project into a general Enterprise architecture that will
allow it to work with existing and future components. The vision/scope will also allow components of this
project to be reused in future projects. This in turn will save money. The vision/scope will give the project a
clear well defined purpose which will allow the project to have the maximum probability for success.

Creating Project Schedules

107

What happens when you skip this stage? Your project will end up with no well-defined goals or purpose.
The project will stumble along and discover its purpose along the way. The design will be in constant flux
and the code will be rewritten many times before the Visual Basic team comes close to delivering
something acceptable to the user. Let us say that our average VB developer is costing us $75 an hour (a
cheap rate in the current market). If we have four developers hacking away and skipping the envisionment
phase which results in only four weeks of extra development time, we come up with $75x40x4x4=$48,000.
Not too bad, but we must take into account debugging the code. Since the project was not well organized
prior to writing the code and many changes have been made in the middle of coding, it is highly unlikely
the code will be clean and have well-defined components. This in turn will be a debugging nightmare.
Finding a small bug may take days. So, let us add another four weeks of extra debugging time at a cost of
another $48,000. We now have reached $96,000.

Am I exaggerating my figures? In my experience, projects that lack an envisionment phase and have a poor
design phase will require about one month of extra time for coding and one month of extra time for
debugging for approximately every three to six months of the project than a project with an envisionment
and design phase. I am not saying this is a hard and fast rule, but this is about average. Besides the extra
time and expense, the code of these projects lacking an envisionment phase is almost always not built out of
components. They are code islands in which none of the code within them can be reused in future projects.
Of course, the argument of cost may be a moot point if the lack of envisionment and design phases results
in the complete failure of the project.

While it may seem like a large expense on the front of the project, it is an expense you cannot escape.
Either you pay for detailed envisionment and design phases that give you a project that fits in the Enterprise
and gives you reusable components or you can pay for a longer development time, unmanageable code and
code islands. This is an inescapable truth of managing a Visual Basic project and this must be made clear to
all senior managers.

Another point to be made here is that once a thorough vision statement is made for one project, it will be
reused in future projects that are fulfilling that vision. Thus, the initial project will incur the most cost and
future cycles will only need to define the scope. Therefore, this high cost will only occur during the first
cycle.

When you have read through the rest of this book, you will understand the different phases of the cyclic
methodology and what they entail. In Chapter 13 you will see an example schedule for the project we build
up during this book - here, you will see the complexity of Visual Basic projects and appreciate how a
scheduling tool can help you manage your projects. You will also be able to see more on how to make cost
estimates for your project and resource allocation.

Chapter 3

108

Creating an Export Table
In this book we will be working on making a Visual Basic project that can present project information on
the web. Project 98 allows you to export information from your schedule in HTML format. First though, we
must decide how we want to format the information. We do this by building a table. Go to the menu and
select View |Table | More Tables.

Creating Project Schedules

109

You will now see the following form:

Click the New… button. In the Table Definition form enter the Name as HTML Export. Click on the first
row in the Field Name column and the drop down list box of all of the field names will appear. Select
Name. In the next rows select Resource Names, Start and Finish. The form should look as follows:

Chapter 3

110

Unclick Lock first column. Change the Row height to 3. Click OK.
Close the More Tables dialog and then go to the menu and click File | Save As HTML:

Select a directory and click Save. Call the file DNA.html

Creating Project Schedules

111

The Export Format window will now come up. Click on the New Map... button.

Chapter 3

112

On the Define Import/Export window check the Tasks button. This will make the Task Mapping tab
accessible.

Creating Project Schedules

113

Click Task Mapping and click the Base on Table button.

Chapter 3

114

Select HTML Export, which is the table we just created.

Select OK on the Select Base table form, select OK on the Define Import/Export form and click Save
on the Export Format form. The table will now be built. Open the table in your web browser.

Creating Project Schedules

115

Your exported table should look something like the following:

We will use this feature later. If you use this feature, you can build a web application very easily which can
be viewed by all team members.

Chapter 3

116

Summary
Making an accurate schedule requires you to balance your resources so that all of your goals get
accomplished. Project 98 is an excellent tool that allows you to allocate your resources to your current
goals. Project 98 offers a wide range of views of the information that allows you to adjust, refine and
improve your schedule so that no resources are over utilized. Project 98 also allows you to export your
information into HTML format so that you can build web pages out of your schedule.

There are many more features in Project 98. You can go to the web site we mentioned at the beginning of
the chapter to explore some of the additional features. You can create workgroups to share project
information and resource information, set the importance of a goal, add additional resources, etc. Explore
some of the other views and tables. I really believe this is a product you will find valuable for your Visual
Basic projects.

Learn how to accurately estimate the time it takes to accomplish your goals. Keep a record of when you
make a mistake so you can learn from it. Keep old schedules as a reference for time estimates. Making an
accurate schedule is an essential part of being a team member of a Visual Basic goal-driven team. It is an
important skill to learn in order to succeed as a member of the team.

Creating Project Schedules

117

Chapter 3

118

Envisionment Phase

The creation of any new product or system must be driven by the needs of the client organization. The work
performed during the envisionment phase is, in broad terms, geared towards obtaining an understanding of
these needs. The team must obtain an understanding of exactly what the client requires, what is driving the
requirement and, therefore, what problems must be solved and what benefits the client expects to derive
from the solution of these problems. In this manner we can move towards a definition of exactly how these
requirements may be satisfied.

In this chapter we will:

� Demonstrate the assessment of a corporation’s current business processes and technological
infrastructure, as detailed in an Enterprise Architecture document.

� Define the vision for our E-commerce project, in terms of first level goals.

� Drill down into these goals to arrive at a level of analysis that will provide a firm basis for product
design.

Before we get into a full discussion of envisionment, let’s have a summary of the key deliverables from this
phase of the cyclic methodology:

� Vision/Scope Approved document

� Enterprise Architecture Document

� Total Cost of Ownership (TCO) and Return on Investment (ROI) estimates

� Risk assessment document

� Team responsibility definition

Chapter 4

120

Summary of Team Focus
As with every phase in the cyclic methodology, every member of the team will be expected to make a
significant contribution, fulfilling various tasks that ensure the completion of each deliverable and,
ultimately, attainment of the vision/scope milestone. However, the team focus for this phase revolves
largely around the product manager, who will liaise with the client organization and ensure that their needs
are being correctly visualized. It is the product manager who will bear ultimate responsibility for the
successful achievement of the phase milestone.

The testing members of the development team will be busy reviewing the initial goals of the project and
developing general testing scenarios. While the specifics of the components of the project are not defined
during this stage, the overall type of the project is known, that is, an E-commerce application or an intranet
application, and general methods of testing for different types of applications can be determined at this
point.

The component managers and project manager should be working towards building component teams and
creating a master schedule for their teams. These schedules will need to be rolled up into one large master
schedule(which will look like the schedule we made in the last chapter). By the end of the envisionment
phase, the schedule should be revised to give a detailed accurate schedule for the next phase, that is the
design phase.

The logistician will be the primary architect of the Enterprise Architecture document, which assesses client
infrastructure and business processes. The logistician will deal with infrastructure while the product
manager would answer corporate environment issues that would need to be addressed by the high-level
client management. The educator would answer any issues in the EAD relating to end users.

Overview of the Envisionment Phase
An entire project will be defined by the vision and scope created in the envisionment phase. The vision will
define the goal for the entire system, and the scope will define the goals we will accomplish in the different
project cycles that need to be completed in order to create the system. After completion of the first project
cycle, future cycles will almost certainly refine or even completely redefine their scope. Every goal that is
encompassed by a project cycle has three parts: why, what and how. The Vision/Scope document created in
the envisionment phase will define why we are trying to achieve the overall goals of the project, and in a
general broad manner, what we want the product to do. Until we understand why we are doing something
and what we are going to do, it is impossible to determine how we are going to do it.

Thus, the envisionment phase will:

� determine what problems we are trying to solve.

� determine what are the important goals of the senior management and end users.

� create goals for where the corporation wants to be in the future.

� determine what goals are worth pursuing.

� explain why the goals are important for the corporation.

� explain how the goals will change the corporation.

Envisionment Phase

121

� show what business processes will be affected by these goals and how these processes will be improved
by these goals.

To accomplish all of this during the envisionment phase will require a commitment to the project from the
entire team right from the very beginning of this phase. Working together, a consensus can be reached as to
what the higher-level goals of the project are. The business processes needed by the enterprise will drive
these goals. The available resources and creativity of the team members will shape them.

The conceptual stage of the design phase will redefine these goals from the user's
perspective and, in the logical and physical stages, these goals will be turned into an overall
design of the Visual Basic product.

The final Vision/Scope document, the main deliverable associated with the Vision/Scope Approved
milestone, will represent the goals that were arrived at by the entire team. The fact that the vision will
include a measurable result means that not only can we define why the goals need to be accomplished; we
can verify how successfully they have been accomplished.

There are many stages along the way to achieving the Vision/Scope Approved milestone. In this chapter our
main focus will be on the Enterprise Architecture document, the consensus meeting and estimation of the
Total Cost of Operations (TCO) and Return On Investment(ROI). The chapter will conclude with a listing
of each section that should be included in the Vision/Scope document.

The Enterprise Architecture Document
(EAD)

While it would be nice if there were one solution that would fit perfectly for every corporation, in the real
world such solutions do not exist. We can, and should, build templates that can be the starting point of our
Visual Basic applications, but they are only starting points. Every enterprise environment is unique. While
there may be similarities between two E-Commerce solutions in two corporations, there will also be major
differences that will require differences in their solutions. The existing hardware and software, the
corporate environment, the commitment to the project, and a whole range of other factors will influence the
final solution. Therefore, before we can begin to discuss where the enterprise needs to go, we need to
determine where the enterprise currently is. We will need to look at where the enterprise’s corporate
infrastructure and business processes currently are. The Enterprise Architecture document will document
both of these. The consensus meeting will determine how effective they are.

It is important to remember that, in order to gain a full picture of the organization,
business processes as well as technological processes must be assessed in the EAD. It
is very important to identify how a business operates now and how the business
processes might or should change in future. New computer technology affects the
corporation in a fundamental way: it changes the way in which people do their jobs.
Looking at the whole picture helps us create a technological solution that helps
people do their jobs in the most effective manner possible and supports the goals of
the organization.

Chapter 4

122

The corporate infrastructure is the technological foundation of the corporation and provides all of the
computing resources for the enterprise. Assessing every single aspect of the business of a huge corporation
is a formidable task. It is important that we focus on reviewing the part of the corporate infrastructure that
relates directly to our project, whilst giving due consideration to the system of which it forms a part. These
resources include hardware, software and people that allow the corporation to perform essential business
processes, including the essential functions of the corporation, communications, distribution of information,
reporting and achieving the corporate goals.

The Enterprise Architecture Document is a very thorough assessment of the current state of technology in a
corporation. It needs to be honest and accurate. There may be some areas in the Enterprise that may be
identified as being deficient and needing improvement. You must be professional when making remarks
that may be viewed as criticism. For example, you should say, "At this point, there is no effective system to
upgrade software and the current software is outdated by at least two years." instead of saying, "Their
software is extremely outdated, nearly useless. They do not even have any organized system to get new
versions of the software." Remember, everyone on the team, including the client, will see these documents.
You also have to be realistic that certain corporations may not be willing to accept the criticism. Yet, most
of the time, they will accept your opinion and use your Enterprise Architecture document as a tool to
improve their Enterprise Architecture. The investment in the envisionment phase can therefore extend far
beyond this project.

As noted earlier, the primary architect of the Enterprise Architecture Document will be the logistician and
the product manager with assistance in gathering information and creating the document from the project
manager. There will also be sections added at a later time by other members of the team.

In the following sections are the main questions that the EAD seeks to answer.

Evaluation of Technology

� Current Status of Technology: This section gives an overview of how current the computer technology
is in the enterprise. Is the hardware and software current or outdated? Has the software been updated on
a regular basis? Do the system administrators have the authority to release new software? How efficient
is their communications system? Do they have email and Internet access? Are they currently using
Visual Basic 6? Are they building object-oriented solutions with Visual Basic? Are they building DNA
projects with Visual Basic? Are they working with Visual Basic script in Interdev? Are they still
building two-tier applications?

� Flexibility: How easy or difficult is it for the corporation to change their technology? How flexible
are the people involved with the systems that may be changed by this project? How flexible is the entire
corporation? Have new technologies been quickly adapted?

� Technological Importance: How important is technology to the corporation? Is using new technology a
part of the corporation's strategy? Are the members of IT a part of the decision processes for the
corporation? Does the person in charge of IT report directly to the CEO? Is technology considered an
essential part of accomplishing the corporation's goals? Is technology used to remain competitive and
produce the best products?

� Methodologies: Is there any form of project planning in existence? Do projects run through a well-
defined methodology? (Do projects follow the four phases of the cyclic methodology?) Are the methods
used to manage projects successful? Have most of the corporation's products been successful or have
they failed? Are they open to new methodologies? Are any Visual Basic frameworks being used? Is
UML used to design projects? Are strict coding standards adhered to?

Envisionment Phase

123

� Component Resources: Are outside consultants used for building systems? Are pre-packaged solutions
commonly used? How much are the internal resources relied on? What role do custom solutions play in
the corporation?

� Network: What is the current bandwidth of the network? What is the total amount of storage space?
What types of systems exist: mainframe, UNIX, Microsoft? How much can the network currently
handle?

� Client Resources: What technology exists for the client computers? What systems exist on the client
site? Does the client site have Internet and email access?

Evaluation of Value of the Information

� Value of Information to the Corporation: Does the corporation value information? Are decisions
made when new information is presented, or is it ignored? Are decisions more based on time honored
traditions or are they based on accurate information? Is there a way to quickly get accurate information,
or does information move slowly through a hierarchy?

� Who Uses Information: Is information only available to senior management, or does everyone have
access to the information?

� Access to Information: How is information accessed? Where does the information come from?

Developer Resources

� Type of Developers: Are there currently Microsoft developers? Are there Visual Basic Developers?
What are the skill sets of the developers?

� Attitude: What is the attitude toward developing Microsoft solutions?

� Experience: Has anyone built Visual Basic object-oriented projects? Has anyone built 3-tier
applications? Are the team members open to learning new skills? Does anyone have Microsoft
certifications in Visual Basic?

� Number: Are there enough developers for the project? Can additional developers be added to the
project?

Geographical

� How is the corporation geographically located? Is there one central location? Is the corporation spread
across the continent or across the entire world? Are there many small offices, or are there only a few
smaller offices? What is the communication between corporate offices in different geographic locations?

Chapter 4

124

Financial Resources

� Hardware: What funds have been allocated for upgrade of hardware? Who is responsible for approvals?
What has been allocated for hardware upgrades for this project?

� Training: What funds are allocated to general training? What funds exist for training for this project?
Are there funds to train their developers for this project if it is needed? What training facilities are
available? Does training have a priority in the corporation?

� Continuing Support: How much money exists for future development?

� Software: What funds have been set aside for the development or purchase of new software systems?

� Overall: What is the current status of the corporation? Is their budget extremely tight or is there a large
financial surplus? How much money can be contributed to development of new technology?

Realistic Expectations

� General: How realistic are the expectations of the client? Are there realistic constraints or are the
constraints (such as time to complete the project) arbitrary?

The functionality of the project is proportional to the time and financial resources available. If you limit
either time or financial resources, functionality must also be limited. Clients often want full functionality
completed in a very short amount of time. This time limit is not based on an analysis of the project, but
based on when someone would like it done. These projects are bound to fail. If you want full functionality,
you need to allow sufficient time for the project as well as substantial financial resources. Time and budget
constraints may mean that some of the less important functionality must be left out, or put off until a later
date. The purpose of the envisionment phase is to determine what functionality is critical for the system and
must be implemented in the first few project cycles and what is not critical and can be left to later cycles.
The critical question is: can the highest priority goals be achieved within the financial and time constraints
of the project?

The Consensus Meeting-Creating
Vision/Scope

A consensus meeting is where a Visual Basic project really begins. This meeting, or series of meetings, will
define the goals of the project and define the vision and scope of the project. Consensus meetings for small
projects may actually be a series of small meetings or one to three all day meetings for very large projects.
To keep things simple, I will divide the consensus meeting into a
first and second meeting. The first meeting is with senior management and the second, if possible, is with
the entire team. Each of these meetings may actually consist of many meetings depending on the size of the
project.

Envisionment Phase

125

One could give many reasons to invest in a consensus meeting. Certainly getting input from everyone
involved will result in more ideas and a better set of goals. Yet, there is something far more important about
the consensus meeting. When people are assigned goals that they do not understand the purpose of, nor
where the goals come from, they will have little motivation to accomplish the goals. Involving the entire
team in the definition and refinement of the project’s goals ensures that everyone understands why we are
trying to achieve these goals and where these goals come from. The project manager can play a very
important role here. Team involvement also means that everyone feels that they had an input into the
creation of the goals. The goals therefore belong to every member of the team, and every team member
feels they are accomplishing goals they created. This gives a new meaning to achieving the goals and
maximizes the possibility that the goals will be successfully accomplished. One word of warning: the more
people you involve the more opinions you get and the more difficult it can become to make a final decision.
You need to ensure that there is always someone (probably the product manager) who can act as a mediator
when differences of opinions arise.

The First Consensus Meeting
In the initial meetings, the product and component managers will meet with the sponsors and stakeholders
to determine what their goals for the project are and what business processes will either be improved or
created. This is the conceptualization stage. The meetings with the sponsors and stakeholders should not
discuss how any of the goals will be achieved, only what the goals are and why they are important.
Milestones, which represent the accomplishment of goals, should define measures of success.

The questions that should be answered by the end of this process are:

� What are the needs of the business?

� What are the business processes that fulfill these business needs?

� What business processes might exist in the future to meet the business needs?

� Why are these business processes important to the corporation?

� How can these business processes be improved?

� What are the good and bad aspects of the business processes?

� What are the goals of the senior management?

The sponsor should lead the first meeting and begin with an explanation of the meeting and how it will be
run. Once this is done, everyone should introduce themselves and their roles in the project. Some means
should be provided to record the meeting in a way that all of the people attending can see summaries of
what has been discussed. Either use large white paper or some way to project the notes onto a screen visible
to all the participants. The product manager should assist the sponsor in running the meeting, keeping
things on track and moving along. Each meeting should not extend much beyond half a day.

The focus of this meeting is defining the project’s goals and prioritizing the goals. Prioritizing goals is not
as difficult as most people think. We will divide goals into three classifications of priority: high,
medium and low. High priority goals are the ones that we must do for the project to be successful. If we
cannot accomplish our high priority goals, there is no reason for doing the project. Medium level goals add
value to the project and make the business process more efficient, but they do not have to be in the scope of
the first few cycles of the project. Low priority goals usually are some unneeded feature someone would
like to be added on, and usually are not included in the project. Low priority goals will add little to the
efficiency of the business process.

Chapter 4

126

It is important to define goals at a high level at this stage, in order to keep the
process manageable.

When we are only comparing two goals it is fairly easily to decide which goal is more important than the
other. Yet, what do we do when we have dozens of goals? The easiest way to prioritize a large number of
goals is to perform comparisons of two goals at a time. This can be accomplished by building a table whose
columns and rows contain the goals. For example, if we have six goals we would have the following:

 Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6

Goal 1 −

Goal 2 −

Goal 3 −

Goal 4 −

Goal 5 −

Goal 6 −

The dashes (−) represent blocks that are to be ignored. Start at the first column and move down and
compare the goal associated with the column with the goals in the row. For example, as we move down the
Goal 1 column we will rank Goal 1 against Goals 2 through 6. If Goal 1 has a higher priority than one of
the other goals, we place an X in the cell. If it has a lower priority, we do not place a mark in the cell. In the
following table, for example, Goal 1 is voted to have a higher priority than Goals 3 and 4 but Goals 2, 5 and
6 are a higher priority than Goal 1:

 Goal 1 Goal 2 Goal 3 Goal 4 Goal 5 Goal 6

Goal 1 − X X X

Goal 2 −

Goal 3 X −

Goal 4 X −

Goal 5 −

Goal 6 −

Notice that since we have rated the priority of Goal 1 against all other goals then, logically, we have also
ranked all other goals against Goal 1. Thus, we can fill in these rankings in the Goal 1 row. This process of
filling in the chart by comparing two goals at a time is called a two-goal comparison. We must perform
this comparison for every established goal. Everybody present should be allowed to voice their opinion
when prioritizing goals in this manner.

Envisionment Phase

127

Once we have defined our goals in this manner, we will have our vision. Next, we have to define our scope.
To do this, we must begin to make a plan for how we are going to transition from where we are to where we
want to be. At this point, we must determine what goals will be accomplished in the first cycle, the second
cycle, etc. The goals that will be chosen for the first cycle will be the most critical goals, deliver the most
functionality, and fit within the constraints of the project. Once the cycles have been defined, we can focus
on the first cycle of the system development.

By the end of the meeting, the project’s goals should be defined and prioritized based on a consensus
agreement. The results of the meeting must be written up and used to prepare for the next set of consensus
meetings.

We will end this section by taking a look at a specific example of the above process. Let’s consider our
Northwind Company, who wish to establish a new E-commerce site. The company has studied its market
and the manner in which it conducts its business and has decided that in order to improve status and
profitability it must grab a share of the Internet market. This need has been analyzed and specific goals
identified. We join them at the stage where they are choosing the goals to be accomplished in the first
project cycle. The goals to be prioritized may be expressed in the following manner.

The product must enable Northwind to:

1. Increase number of orders (and ease and efficiency of ordering process) by transferring a substantial
proportion of its order processing from telephone to Internet.

2. Attract new customers

3. Regain customers lost to competition (who have already established this service)

4. Improve customer service (dealing with needs, complaints, problems)

5. Allow customers to link across to other companies in the group

6. Allow customers to see latest research and products due to hit the market in the future

These are all important goals but Northwind is anxious to get the site up and running within a reasonable
timescale and it may not be realistic to expect to achieve all of them in the first project cycle. Thus, the
goals are prioritized as described above and we end up with the following table:

 1 2 3 4 5 6

1 − X

2 X − X

3 −

4 X X X −

5 X X X X − X

6 X X X X −

Chapter 4

128

Looking at this chart, we can quickly see that Northwind’s top priority is to regain lost customers. This
along with Goal 1 may be considered high priority goals. Goals 2 and 4 would probably be assigned as
medium priority goals whilst Goals 5 and 6 would almost certainly be classed as low priority goals.

It is important to remember that low priority goals are not always unimportant goals. They
may be low priority only in the fact that they may be beyond the scope of the first project
cycle.

Thus, using this chart has given Northwind a measurable way of determining what goals are the most
important, instead of just a subjective opinion as to what is and is not high priority. Just as important as
identifying priority goals is defining measures by which we can determine whether or not the goal has been
achieved. This should be accomplished by the end of the first set of consensus meetings with senior
management. Thus Northwind’s list of prioritized measurable goals for the first project cycle may look as
follows:

1. Increase number of orders

� Capture 25% of market share of the Internet sales of our products within one year of going live.

� Achieve 50% of market share within two years of going live.

� Have 50% of orders taken over the Internet within two years.

2. Attract new customers

� Within one year of going live, 10% of our customers are new customers from the Internet.

� Within two years of going live, 20% of our customers are new customers from the Internet.

3. Regain customers lost to competition (who have already established this service)

� Regain 50% of the customers lost over the last two years.

� Regain 75% of the customers lost over the last year.

4. Improve customer service (dealing with needs, complaints, problems)

� Have 100% of customer problems resolved within 48 hours of the complaint.

� Have 90% of customer problems resolved within 24 hours of the complaint.

� Have 70% of customer problems resolved within 12 hours of the complaint.

Envisionment Phase

129

The Second Consensus Meeting
As we discussed earlier, we will simply call this the second consensus meeting, though it may actually
encompass several meetings. Ideally, these meetings should include the entire development team and the
client team members (primarily the end users). This is the analysis stage.

In practice this is sometimes difficult. Some of the current project's development team
members may be heavily involved in the latter stages of a different project. It is important
that they have access to the reports from these meetings and are allowed to submit their
input. There are many ways of doing this, as we will discuss shortly.

These meetings begin with a summary of the first meeting with senior management. The purpose of the
second consensus meeting is to take the goals identified by the stakeholders and sponsors to be included
within the scope of this cycle, which were defined at a high level, and drill down to the next level of
analysis to arrive at a set of second level goals. The stakeholders and sponsors do not need to attend, but
their attendance may be of benefit to the meeting. It is possible that upon looking more closely at one of the
broader goals of the senior management we may find that it needs to be redefined. We may also find
additional broad goals that should be included in the project but were not. If senior management is present,
these changes can be made at the meeting and the redefined goals can immediately be broken down into the
next level.

If senior management does not attend the later meetings, they should receive a synopsis of the meeting at
the end of the day. You could also set up a live hook-up for the senior management who do not attend so
that they can watch the meeting as it is happening. If they hear something at some point that they feel they
need to comment on, they can join the meeting by electronic media, telephone or by physically joining the
meeting. You could even set up a computer in the meeting to receive comments from those watching but not
present so the meeting flow is not interrupted by someone suddenly joining in. Today, there is a wide range
of technology that allows you to include people who are not physically at the meeting.

Another possibility is to record the meeting and then put the video on the web site. Everyone, including
those who did not attend, can review the meeting at their leisure. You can allow a one-day break between
meetings to allow everyone time to review the meeting. You can create a web page to submit comments,
thoughts and ideas on the meeting.

Use what is appropriate for the situation. If you are designing a large project that will go through many
cycles and will reengineer the corporation, then it would make sense for the senior management to be
involved in all of the consensus meetings. For example, a corporation that is doing business solely through
phone sales decides to build an E-commerce site. They are going to make a major new purchase in hardware
and hope to shift most of their business to the E-commerce site. When the E-commerce site becomes
functional the current order entry personnel will focus on customer service instead of taking orders. Such a
major change in the corporation should have senior management involved in all of the meetings.

On the other hand, we could have a large corporation that is always plagued by personnel shortages that
decides to build a special human resources web site. This site will list job openings, information on the
corporation, benefits, etc. This HR department is part of a large department that also includes the payroll
and benefits departments. The sponsor is the manager of the three departments. While it is important to
have this person’s commitment to the project and to know what their goals and
concerns are, it is unlikely they will have anything to contribute to the second consensus meetings. This is a
high level person with limited time resources. It is unlikely that you will be using their time wisely by
involving them in these meetings.

Chapter 4

130

If at all possible, the consensus meetings should not be held on site. It is too easy for people to return to
their desk at breaks and get caught up in work: people will be returning late, assistants waving at the door,
etc. will interrupt others. It is best to get an offsite room - make it a large one so that you can adorn the
walls with lots of paper.

The most difficult part of these meetings is defining how deep one should drill and what should be
discussed. If you start discussing how something is to be done, then you have strayed out of the
envisionment phase and into the design phase. You should be describing the goals in a fairly general way in
the envisionment phase. For example, an acceptable goal description for this phase may be: Have a
customer enter an order through the Internet using an easy-to-use web page. If the team starts to discuss
exactly how this will be done (the customer will navigate to the site, the customer will enter order
information etc.) then this would be going too far. At this stage the project manager must get the team back
on track. This final level of analysis will be done in the conceptual stage of the design phase.

Let’s now take an example of how we might drill down into the high level goals we identified for the
Northwind order entry project.

Drilling down into Goals
Following the first consensus meeting with senior management, we can express the established goals in a
vision statement, which we now classify as the primary goal. In the initial stages of this drilling down,
senior management may have the most input:

� Primary Goal:

� Building a customer Internet site that will handle fifty percent of all customer orders, increase orders,
regain lost customers, capture new customers, and improve customer service.

The goals expressed in this vision are first level goals. Iwill call the sub-goals of this first level goal the
second level goals. This is to make it easier to talk about the different sets of goals. I am not limiting the
goals defined by management to two levels. It will be necessary to drill down to third or even fourth level
goals in order to arrive at the level of analysis that can provide a foundation for the design of the product. I
am defining first level goals for the primary goal as defined by management, and second level goals for all
of the goals that management creates to support the first level goal.

Thus we may have something like:

1. First level goal: Increase orders and improve efficiency.

Second Level Goals:

i) Increase the effectiveness of the role of the customer representatives
� Have the customer service representatives spend 60% of their time taking orders within six months from

the start of the E-commerce site.

� Have the customer service representatives spend 40% of their time taking orders within twelve months
from the start of the E-commerce site.

ii) Reduce costs of taking orders.

� Have a 30% reduction in the costs of taking orders within six months.

Envisionment Phase

131

2. First level goal Regain customers that were lost to the Internet market.

Second Level Goals:

Make a better site than our competition.

� Create a site that is rated easier to navigate than the competitions'.

� Create a site that has more information than the competitions'.

3. First level goal: Make new customers through the internet.

Second Level Goals:

Make it easy for the customer to get information on our products.

� Have every aspect of product information available immediately for the customer.

4. First level goal: Improve customer service.

Second Level Goals:

i) Be able to respond to each customer’s needs.

� Get higher ratings for meeting customer needs on customer surveys.

ii) Be able to track customer’s needs, complaints and problems.

� Have 100% of customer problems resolved within 48 hours of the complaint.

� Have 90% of customer problems resolved within 24 hours of the complaint.

� Have 70% of customer problems resolved within 12 hours of the complaint.

iii) Improve customer representative’s jobs so that they devote more time improving customer service.

� Get higher ratings for providing customer service on customer surveys.

� See 1 i).

These are broad vision statements. There are no statements in here that describe how these goals will be
achieved, only what we want to achieve.

Just where did these vision statements come from? The term vision can be applied to a corporation in many
ways. We have been discussing the vision of the project. Each corporation will also have a vision (mission)
for the entire corporation. I will call this corporate vision to differentiate it from the project vision we have
been discussing thus far. In the best corporations, this corporate vision is documented and known to the
entire corporation. The corporate vision focuses on the goals of the entire corporation. Examples of
corporate visions are:

� Treat customers and employees with respect.

� Build the best product on the market.

� Offer the best customer services possible.

� Enable the workers to achieve their goals.

� Behave ethically, responsibly and honestly in everything we do.

Chapter 4

132

The vision statement for the project should not be a radical new rethinking of the corporate vision. Instead,
the project vision is a subset of the corporate vision. In this case it is clear that the project’s second level
goals could be considered a subset of the second, third and fourth corporate vision statements listed above.

Notice that not only are the first level goals associated with a way of measuring whether these goals have
been achieved, the second level goals are too. Either the corporation has achieved a 30% reduction in the
cost of taking orders within six months or they have not. While we have not shown this in our examples,
there should also be an explanation as to why a goal is important and what business processes will be
improved and/or affected by the achievement of a goal.

Deliverables of the Second Consensus Meeting
Once the second level goals have been defined these meetings will focus on delivering the following:

� An assessment of current business processes as set out in the EAD (notes from the meeting should be
added to the EAD)

� A set of third level goals to take forward to the Design phase (to be included in the Vision/Scope
Document)

� A definition of the scope for the project cycles (to be included in the Vision/Scope Document)

Business Processes

The meeting(s) should focus on three things: the past, the present and the future. The past and present
determine where the corporation currently is. It is important to have an understanding of the corporation’s
past and present before walking into the consensus meeting. This is why you should create an Enterprise
Architecture document prior to the consensus meeting. This document is a tool that can be used to build the
corporation’s future. When the consensus meeting is finished, the information gathered on the current state
of the corporation’s technology should be added to the Enterprise Architecture document.

Talking about current business processes also makes it easier for people to think about future business
processes they would like to see in the work place. Looking at current business processes, we can see what
works very well and what is not working at all.

When beginning the second set of meetings with the entire team, it is a good practice to make it easy to take
notes that the entire group can see, just as we did in the first meeting. One possibility is to cover the walls
with large sheets of paper and have someone with neat handwriting take notes during the meeting. A piece
of paper can be devoted to the current business processes that will be impacted by the project. On top of the
sheet should be the name of the business process, and the rest of the sheet should be divided horizontally
into three sections labeled Positive, Negative, Neutral. You can then have the group discuss the positive,
negative and neutral aspects of the business process. It is quite possible a business process will only have
one section filled out. Those processes that have the majority of entries in the Negative should be reworked.
The processes that are ranked positive should be used as examples to build new processes and should be
maintained if possible.

It is important that everyone is allowed to speak freely during the discussion of the present corporation. No
matter how tempting it may be to comment on someone’s suggestions, it is important that no comments are
made that inhibit people from speaking openly. It is also important that the meeting does not degenerate
into a session to air grievances or start running off track.

Envisionment Phase

133

It is the role of the product manager to be the facilitator, to control the meeting and to make sure everyone
stays on track. The product manager keeps the meeting moving, draws everyone in, makes sure all the
people are participating and are comfortable enough to be honest. The educator and logistician can assist
the product manager.

Once the present has been discussed, the meeting moves into the future. As you start to talk about the
future, there should be no constraints, such as budget or time, placed on the initial discussions. In the
beginning, the team members can express whatever ideas come to mind to allow a brainstorming session. If
a team member feels that, in the past, their job has been made difficult by deficient software, then their
input will be valuable in determining exactly the sort of functionality that the new product should embrace.
Therefore, it is vital that they are allowed a say as we start to drill down to the third level goals that will
provide the foundation for the design of the product.

Third Level Goals

By far, one of the most powerful tools in any brainstorming or consensus type meeting is a simple yellow
sticky pad. You can write each goal onto a separate piece of yellow sticky paper and stick it to a page based
on its ranking. If another goal is found that outranks this one, you can just stick it further down and place
the new goal above the old one. The yellow sticky pages allow you to move goals around until you find the
best ranking. You can do this with suggestions for solutions, for mapping out physical layouts of various
solutions or just about anything that requires some type of order or ranking. Sometimes the best tools are
the simplest. When working with large groups, you can break them into smaller groups and have the group
come up with their solutions using sticky paper. When everyone is done, the best solutions can be
consolidated onto one page. The final solution will be documented.

You can place on the top of a piece of paper the first and second level goals, as we defined them in the
previous section. Each of the second level goals may be expanded down one level further into what I will
call third level goals.

Remember, these goals do not necessarily have to be three levels deep, I am using
this term to make it easy to understand the different sets of goals defined at
different times. The first level goals are the primary goals of the project, or the
vision. The second level goals (defined largely by senior management) support the
primary goal. Third level goals are the ones created by the whole team to support
the second level goals. It will be necessary to drill down to a sufficient level of detail
that the goals can act as a "template" for the design phase. Just how deep we need
to drill is an important decision that must be made by the project management.

Again, no constraints. There will be time during the last part of the consensus meeting to sort out what fits
within the constraints of the project. When there are no constraints placed on what people can suggest, you
will be amazed at how much information flows. Place constraints on what can be suggested and people will
often withhold valuable ideas because they are afraid they may not fit within the constraints.
Following is a list of third level goals that may be identified during the second consensus meeting:

Chapter 4

134

� Document all customer complaints and route the complaint to someone who has the authority to handle
the complaint.

� Make it easier for the customer to submit a complaint.

� Make it easier for the customer to submit suggestions for improvement.

� Make it easier for the customer to place an order.

� Reduce the number of orders the sales people are handling so they can spend more time working with
customers.

� Make customer and product information quickly available to the salesperson.

� Allow customers to review the billing history.

� Let customers know about future discounts.

� Give customers discounts based on the items they buy.

� Give customers more detailed product information.

These third level goals are the ones that I can come up with immediately. In a real consensus meeting with
many people attending, each coming up with a few possible suggestions, this list could be very long. We
will need to prioritize the goals, choose the ones we will try to do in the first cycle, and then determine
which ones fit into the scope of this particular project.

There is one goal here that illustrates a very valuable point. Looking at the goal "make customer and
product information quickly available to the salesperson", we have a goal that seems to have nothing to do
with building an Internet site. Normally, this would be part of a regular EXE application that runs on the
sales person’s workstation, not something that runs over the Internet (though it could work over an
intranet). If the goal of the first cycle is to build the first version of the E-Commerce site containing only
the critical elements, what does building an EXE for the workstation have to do with this discussion?
Everything. Two of our other goals are:

� Allow customers to review the billing history.

� Give customers more detailed product information.

If we build a component that retrieves customer information for our Internet site, and another component to
retrieve product information for the Internet site, why couldn’t these components also be used to build an
EXE application for the sales person’s workstation? Both the Internet application and the EXE application
require identical information, that is customer and product information, so why not use the same
components for both applications? If we use the same components, we will substantially reduce the cost of
the EXE application. This brings out another major advantage of the consensus meeting (and of object
oriented development): we may find that the goals of the current project fulfill the goals of other projects or
other cycles.

When we create an Enterprise Architecture Document and review the goals in a consensus meeting, we get
to see the big picture: how everything fits together. We can see if goals in one cycle are similar to goals in
other cycles. Using this information, we can then see if the components we design to fulfill one set of goals
can be used to fulfill another set of goals.

Envisionment Phase

135

Component reuse reduces the overall costs of development, and will often more than
cover the costs of the initial envisionment phase. Without the envisionment phase,
these opportunities may be missed, and two or more teams may build components
performing the same function at the same time. This duplication is a waste of
resources.

At the end of this brainstorming session, the next task is to decide which of the identified goals fit into the
vision of the project. Those chosen will then need to be prioritized in order to determine the scope of the
first project cycles.

Defining Scope
The first part of this process will determine which of the suggested third level goals will be incorporated
into the vision of the project. What suggestions fit within the constraints of the system? Which ideas
contribute to the first and second level goals? What are the high, medium and low priority lower level
goals? Just as we did previously, making a chart and comparing two goals at a time can rank these goals.

If there are a large number of people participating in the meeting, then it is quite possible that you may
have a very large number of high priority third level goals. Even after comparing two goals at a time, you
may find that the number of high priority goals far exceeds the limitation of budget and time. There may
also be goals that did not rank very high, but may still need to be considered.

You can now start going through the goals that received the highest ratings in the two goal comparisons and
start rating them based on the following:

� Will accomplishing this goal be high or low risk?

� What business processes will be affected and/or improved by this goal?

� How critical to the business is the fulfillment of this goal?

� Who will be affected by this goal and why this goal affects them?

� Will this goal reduce the amount of effort required to complete the business process?

� Why is this goal important?

For example, if a critical daily report is currently generated using an Excel spreadsheet by cutting and
pasting information from one sheet to the next, a goal may be to create a Visual Basic application that
allows the information to be inputted and formatted without cutting and pasting. If we analyze this goal we
can see that there is a very low risk here. It will improve the accuracy and the speed to produce the critical
report, the person entering the information will be the one affected by having a more efficient way of
producing the report, and it will decrease the amount of effort by eliminating a repetitive task (cutting and
pasting) and replacing it with an automated process.

Most of the goals will be low to medium risk. We will discuss risk evaluation in detail in the next chapter.
For now, realize that risk is both in the process of building the application (not enough resources, time,
technology may not yet be available, etc.) and also the risk that the measurable results may not be achieved
(such as building an Internet site and getting customers through the site).

Chapter 4

136

Once the third levels goals are chosen, we will have to place the goals into the cycles that we will have to
go through to fulfill the vision. These brief summaries of the top ranking goals then can be reviewed by
senior management to make a final choice as to what goals form a part of the vision of the project.

The number of cycles there will be depends on the size of the project and what type of project it is. The
highest priority goals should be included in the first cycles. In our E-Commerce site we could have the
following three scopes: build the base Internet site with minimum order functionality, build the customer
suggestion and complaint portions of the web site, and build the product review portion of the web site.

In the development phase different teams can build all three of these parts of the project in
three different development cycles at the same time. When they are all complete, they can be
put together and implemented to become the first version of the E-Commerce site. Additional
functionality will be the scope of future cycles.

In a very large corporation where the project may affect thousands of people, it will be impossible to
include everyone in a consensus meeting. In this case, representatives of different groups should attend the
meeting. To make sure the final document includes the input of everyone, you can place the summaries of
the second consensus meetings on an intranet site. People from the entire corporation can view it and make
suggestions. After a period of time, the summary of the second consensus meeting and the comments
submitted through the intranet site can be given to senior management to make the final decisions.

Total Cost of Ownership(TCO) and Return
on Investment (ROI)

Corporations are becoming more cautious on how they spend their money and sponsors almost always
require TCO and ROI estimates. By the end of the envisionment phase, a detailed schedule for the design
phase should be created and the goals should be clearly defined. Using this information, we should be able
to estimate the total cost of the project.

Creating accurate estimates at this stage can be very difficult. We have no solution
yet, only goals. We may be able to quantify some of the benefits from the goals but
we will only know something about the magnitude of what we want to accomplish
once we've done our design and know how the product is going to be built. It is only
at this stage that we will be able to put together accurate development estimates.
Having said all this, it is unlikely that the sponsor will be willing to proceed to the
design phase with just a set of goals. Some estimation of the cost of the project will
have to be made.

In basic terms the TCO is the total cost of investment in an IT asset (such as an operating system). The ROI
compares the cost of the investment to the additional profit made by the investment. For example, for an e-
commerce site the cost of the investment will be the cost to build the e-commerce project and the TCO (cost
of licenses for the operating system, web server and the e-commerce software, the cost for maintaining the
site, etc.). Increased sales by having wider access to clients and a decrease in the number of operators
required to take orders are all ways the investment can increase profit. If the total cost of the investment is
less than the additional profit, it is a good investment.

Envisionment Phase

137

The Gartner Group does estimates for the cost of computers in a networked environment that can be used to
determine some of the hardware costs. There are some software tools that can provide estimates for
software, such as Price Systems. Creating a schedule with Microsoft Project 98 will also provide you with a
tool to estimate the cost of resources, such as team members. Microsoft provides a spreadsheet tool called
"TCO/ROI Desktop Advisor". It can be downloaded from the following site:

http://www.Microsoft.com/office/tco/

It allows you to perform TCO and
ROI estimates for desktop
applications and operating systems:

The wizard walks you through the
data entry process then performs
the calculations and produces a
report:

The larger a project is, and the longer it is expected to take, the more difficult it is to estimate the cost of
the project. If a project is not broken into cycles but consists of one long development phase extending over
several years, it is a much more complex task to estimate costs accurately. If you have
any doubt about this, go to your favorite computer dealer and get an estimate for the cost of one specific
computer. Check the price of the computer every two months. As new hardware comes out, you can watch
the price of the computer drop. Trying to estimate costs two years in advance is very difficult. Even worse,
the technology may have completely changed over a single year. New versions of software, or new types of
software such as SQL Server 7’s data warehouse may make a plan completely obsolete.

http://www.Microsoft.com/office/tco/

Chapter 4

138

By building the project in short cycles, it is unlikely that we will find ourselves using outdated technology
or methods in the middle of our project. Our estimates of the cost of the project should remain fairly
accurate over a short cycle. The estimate for the next cycle of the project will be the most accurate, the
estimate for the entire scope will be less accurate and the estimate for the entire system to be built
according to the vision will be the least accurate. Using the cyclic methodology will help us make fairly
accurate estimates of the costs of each project of the system.

When making an estimate of the costs of a project, you should make a detailed estimate of the cost of the
cycles you are about to design. Future cycles should only have a general estimate, which will be refined
when it comes time to actually begin the cycle.

There are also unexpected expenses, such as down times, equipment failures, etc. These should be taken
into consideration, included in the risk document, and figured into the total cost of the project.

It sounds like stating the obvious but the safest way of securing a positive ROI is to choose a project where
the estimates indicate that there will be a very high ROI. Even in cases where there are unexpected
expenses or additional costs, a project with a high ROI estimation will still usually give a significant return.
Projects that increase productivity, reduce costs, improve customer service, etc., are all projects that have
the potential for a high ROI.

The Vision/Scope Document
We will now list all of the sections that should be included in the Vision/Scope document. Many parts of
this document are actually smaller documents included within the larger Vision/Scope document, such as
the risk and Enterprise Architecture documents. Each of the sections listed should be included in your
Vision/Scope document. You can add or modify the sections according to the needs of your corporation.

Introduction
The introduction contains general information about the document, the project and the team.

Authors and Contributors
This section lists all of the people who wrote the document and which sections they wrote. It also lists all of
the people who provided information that was used to build this document. The project manager should put
the overall document together but other people will compile many of the additional documents.

Primary Goal
This section will contain the overall goal for the project. In our example above, the overall goal was:

� Building a customer Internet site that will handle fifty percent of all customer orders, increase orders,
regain lost customers, capture new customers, and improve customer service.

Current Enterprise Architecture
This section should include a brief summary of the full Enterprise Architecture document. Issues that are
relevant to the project should be listed. Any current problems in the enterprise that will be resolved by the
project should also be listed.

Envisionment Phase

139

Document History
When the first cycle is completed, and the scope of the first project has been implemented, it is time to
move to the next cycle with a new scope. This new scope will fulfill another part of the vision of the
project.

The initial Vision/Scope document will identify the scope of future cycles in broad terms, which will need
to be refined and clearly defined when it is time to begin a new cycle. This in turn will result in the addition
of extra information to the Vision/Scope document. It is also possible that the vision may have changed
since the last cycle began. New goals may have been established, new technologies may have emerged or
Visual Basic may have undergone another revision and offer new opportunities. Any of these will result in
an update of the vision statement. These changes should be documented in this section, including a reason
for the changes. Copies of the original documents should also be maintained. The Vision/Scope document is
a living document that may guide the corporation’s development for many years.

Change Control
Change control is necessary for every document in the project. Without this control, anyone could add and
remove information in the document. This section needs to identify the following:

� What types of changes are allowed in the document? Changes can include editorial corrections and
updating scope statements or goals.

� What is required to get approval for changes? For editorial changes, it is likely that these changes can be
made easily. Changes of goals may require a meeting with several or all of the team members.

Team Members
This section lists all of the roles for the team and who will be fulfilling the roles. This section should also
list responsibilities of each team member and the consequences if they do not fulfill their role. Listing
responsibilities and consequences is especially important for the client who may not know what these are.

Purpose of Vision/Scope Document
While the purpose of the document may be well known to the development team, the client team may not
know it. This is a living document that will evolve with the corporation. It needs to be written so that future
teams, who may not know the methodology used to build this project, can understand the importance of this
document. This section should list what is included in the document and also what is not included in the
document.

Project Cycles
This section will go through all of the different cycles that will be needed to complete the vision of the
document. Each cycle will have a certain scope associated with it, that is a set of goals that will be
accomplished in this cycle. Each goal should have a set of milestones associated with them and a set of
reasons why these goals need to be accomplished.

First Cycle

Summary
A general discussion of the scope of the current cycle. It will list what is to be included in this cycle, as
well as what will not be included in this cycle.

Chapter 4

140

Scope
This subsection will list all first and associated second level goals that will be completed within this cycle.
All of the goals that were identified in the consensus meeting will need to be ranked in terms of priority.
The highest priority goals will need to be accomplished first. The medium priority goals will be
accomplished in later cycles if the resources do not exist to do them during the first cycle. For instance, in
our above example we could consider the following goals as our high priority goals and include them in the
first cycle:

1. First level goal: Increase orders and improve efficiency.

Second Level Goals:

i) Increase the effectiveness of the role of the customer representatives
ii) Reduce costs of taking orders.

2. First level goal Regain customers that were lost to the Internet market.

Second Level Goals:

Make a better site than our competition.

3. First level goal: Make new customers through the internet.

Second Level Goals:

Make it easy for the customer to get information on our products.

4. First level goal: Improve customer service.

Second Level Goals:

i) Be able to respond to each customer’s needs.
ii) Be able to track customer’s needs, complaints and problems.
iii) Improve customer representative’s jobs so that they devote more time improving customer service.

These goals will not only define the initial design of the site, but also what we will need to do to design the
web site. Thus, meeting the second level goal "make a better site than the competition", will dictate that
during the design phase there will be research of competitor’s sites in order to define their strengths and
weaknesses along with additional research into very successful E-commerce sites.

The second level goal "track customers’ needs, complaints and problems" will also add definition to the
site. There will have to be HTML pages devoted to taking customer complaints, and some system
to process these complaints. These pages will also help achieve the goal "improve customer service". Of
course, there may be many more ways to improve customer service, and this is likely to be a topic that will
require a great deal of time in the second consensus meeting.

Envisionment Phase

141

The first level goal "getting back the customers that were lost to the Internet market" may require several
actions. One solution is to get a lost customer list that lists all customers that have not placed orders in the
last six months and create a special account for them. A promotion scheme may be devised whereby these
customers may have special discount prices for some period of time, probably one or two months. All of the
customers on the lost customer list can be sent a letter telling them about the scheme and how to access the
corporation’s new Internet site with their assigned ID and password. Of course, the site would need to be
able to display one set of prices for the special customers and other prices for other customers (that is a
promotion component would have to be designed that would function as part of the order entry system).
Thus, this goal will also define the features of the site and how it will work.

During the design phase we will take a more in-depth look at how the goals will affect the design of the
project.

The goals that are defined in the envisionment phase are the starting point for
designing the application. Without an envisionment phase, goals are missed,
improperly prioritized, or poorly defined. The end result is that the design will not
fulfill the primary goals of the corporation, and therefore the project will fail. In the
envisionment phase, the goals are defined based on a consensus. Every team member
may have important information to contribute and this information will become
part of the goals. A design based on these goals has the maximum possibility of
meeting the overall goals of the corporation.

Each goal should be listed separately. For each goal, you should have the following subsections:

Second Level Goals
This section simply states what the goal is, what goals of the corporation will be fulfilled by this goal and
the reasons why this goal is important.

Third Level Goals
These will be the additional goals associated with the second level goal identified in the second consensus
meeting. As before, we will also list: what goals of the corporation will be fulfilled by this goal, the
milestones that will indicate these goals have been accomplished, and the reason(s) why this goal is
important. We should also describe whom this goal is important to. Is this goal important to the entire
corporation? To the customers? Finally, we should list any resources that may be required to achieve this
goal and a list of the people who will need to accomplish the goal.

Putting this all together, the section should look as follows:

First Cycle

Scope
Introduction:
The scope of this cycle is to get the E-Commerce site live with the majority of the essential features. This
cycle will not include the building of any of the customer service workstation applications.

Chapter 4

142

Second Level Goal
Be able to respond to customers needs.

Third Level Goals
Allow customers to review the billing history.
Customers want the ability to review their orders and prior billing history online. This feature has been
ranked highly as a feature that our customers want in our customer surveys. The customers have also stated
concerns about keeping this information secure. Allowing customers to review orders through the Internet
will help them determine the status of pending orders without calling the customer service representatives,
thereby lessening the number of incoming phone calls. Thus, achieving this goal will achieve the corporate
goals of giving the customer the best service possible, improving the quality of work for the workers and
decreasing overall expenses. This goal will benefit the sales department.

Give customers more detailed product information.
Customers are interested in a wide range of information on a product. Price, quality, shipping time, options
such as color, etc., are all considered important to the customer. With the Internet the customer can
compare similar products from many different sources. If it is difficult for a customer to get information on
our products, it is likely they will make purchases elsewhere. We not only have to make the best products,
but also allow customers to see why our products are best. The customer needs to be able to quickly and
easily gather a wide range of information on our products so that they can compare our products to those of
our competitors. By allowing customers to gather information, it also ensures that all of the customers know
exactly what they are ordering. As a mail order business, we have a large loss of revenue due to customers
ordering the wrong product and returning them. By providing the customer with a detailed description of
the products, we can reduce the losses due to returns. This goal will improve customer service, allow us to
reduce the number of returns and make our service better for the customer. This goal will benefit the
shipping and sales departments.

Goal
Allow customers to review the billing history.

Sub Goals

Send the customer an order confirmation via email. Customer representatives and sales managers will
accomplish this goal.

Risk Analysis
Documenting potential risks is an essential part of the project. The next chapter will cover risk management
and how to create a risk document. The risks identified during the envisionment phase
should be listed in a risk document and included with the Vision/Scope document. At least the top ten risks
identified by the consensus of the team during the envisionment phase should be included in this section.

Envisionment Phase

143

Resources
This section will list all of the resources that are available to the project, including financial, time,
technological and any other resource that may be needed by the project. A summary of the current resources
available and the resources that will become available during the project should be mentioned.

Conflict resolution
It is critical to have some system in place to resolve potential conflicts. What happens when the
development team decides that they cannot possibly meet one of the goals of the project due to constraints
on finances or time? What if the end users demand that the goal still be met within the projected budget and
schedule? Who will resolve this issue? Ideally, there should be one final person to resolve such issues,
usually the sponsor. Yet, you do not want to bring every issue to this person, as they usually do not have
time. The product manager will be the liaison with the client and can also have the final say. Some system
should be put in place to resolve issues first. When every means of resolution fails, then it should be turned
over to the person who can make the final decision. This system of conflict resolution should be described
in this section.

TCO and ROI Documentation
The completed TCO and ROI documents should be attached. A summary of these initial estimates should be
included here. These estimates will be subject to review after the design phase is complete and a note could
be included to this effect. As the figures are refined, they can be updated in the Vision/Scope document.

Project Schedule
A copy of the overall schedule should be part of the document. The schedule would look like the template
we created in the last chapter, except the schedule for the design phase will be more detailed and complete.
The master schedule should be posted on the Internet or secured intranet so everyone can view it.

Definition of Important Terms
As many people of very different backgrounds may read the document, it is important you define all-
important terms. This will prevent misunderstandings.

Goals for Later Project Cycles
There will be goals discussed in the consensus meeting that may be medium priority goals that will not be
accomplished due to a lack of financial or time resources. While it may not be possible to accomplish these
goals at the time the document was created, perhaps at some later time they can be
done. Not documenting these goals could result in good suggestions, which may be very useful later on,
being lost. Goals that may have been considered medium priority goals may become high priority goals.
This process also makes people feel that their suggestions may be included in future cycles. This section
should list the medium priority goals and why they were excluded from the scope of all of the cycles.

Chapter 4

144

Business Processes
During the second consensus meeting the major business processes related to the project were discussed and
rated. These ratings, and the comments on the strong and weak points of the business processes should be
recorded in this section. The weaknesses will show where the project needs to make improvements. The
strengths will show how.

The Final Part of the Envisionment
Phase

Once the Vision/Scope document is complete, it should be reviewed in one final approval meeting. The
entire team should review the final documents, the vision statement and scope statements. Changes should
not be made in the approval meeting. Signing off the vision/scope document does not necessarily mean
signing off the project. Signing off the vision/scope document means that these documents represents the
best solution. Usually, it is after the design phase, when we know exactly what is involved in the project
and what the real costs will be in time and money, that a final decision is made to go ahead with the project.

Possible risks, errors or omissions should be found in this final meeting. It is also possible to simply post
the information onto an intranet site (or secure Internet site) and allow the team members to review it and
submit suggestions. The suggestions can also be put on the web so people can view them and perhaps come
up with solutions to potential problems.

Summary
The envisionment phase creates the Vision/Scope document that will guide the entire project. The
Enterprise Architecture document, TCO and ROI estimates, and an initial analysis of risks will also be done
in this phase of the project. The primary purpose of this meeting is to create the first and second level goals
of the senior management and break them down into a set of third level goals. These third level goals form
the basis for our product design in the conceptual stage of the design phase. This whole process is geared
towards ensuring we have a product designed according to the needs of the user.

There are many ways to redesign business processes. One way is to create a radical change in the way a
corporation is being run. According to this line of thought, if the corporation is not running successfully
now, the business processes are failures and need to be abandoned. Radically new business processes need
to be created without any regard to the old ones.

Personally, I feel there are many lessons to be learned from the failures of the current business processes, as
well as many lessons to be learned from their successes. I feel that one can still radically
reengineer the company based on a careful analysis of the past and current business processes as we did in
the Enterprise Architecture Document. This document not only gives an assessment of the current business
processes, but also the state of the technology in the enterprise. You cannot realistically restructure the
technological infrastructure without understanding what is currently in place.

Envisionment Phase

145

The reengineering can span across the entire corporation altering workflows, changing job descriptions and
roles, organizational structures and virtually the entire company. Everything from the production line in the
factory, to the structure of teams, the availability of information and the means of selling products to a
customer, can change to meet current market needs. A radical quick reworking of the corporation with a
complete disregard to the past is a dangerous undertaking: more than likely it will be too much, too fast and
go beyond the corporation‘s resources.

With a carefully prepared Enterprise Architecture Document, everything will be in black and white in front
of you and the entire team. Everyone can review the document in advance of the consensus meetings, look
at the available resources, the future needs of the company, and try to find the best ways to improve the
corporation’s processes.

I highly recommend reading Bill Gate’s new book, Business @ The Speed of Thought. You will read about
the corporations of the future, and get some insight into where the modern corporation needs to be going.
There are many valuable insights into restructuring the corporation in this book. It is definitely worth taking
the time to read this book if you intend to be part of reengineering a corporation.

Chapter 4

146

Risk Management

Considering the high rate of failure for software projects, we can certainly say that a Visual Basic project
has a great deal of risk associated with it. The size and complexity of an enterprise project, and the possible
impact the applications could have on the corporation, are two factors that by themselves make the projects
risky. By identifying possible risks and properly managing them, we can substantially increase the
probability that our project will succeed.

What do we consider to be a risk to our project? A risk is anything that may adversely affect our project.
Adversely affecting the project means that something could decrease the functionality of the project or
could reduce the probability that our project will succeed. This would include things such as an increase in
the cost of the project, an increase in the overall time to complete the project, the inability to complete the
project, the project not being able to meet the needs of the client, etc.

Most of the risks to our projects can be managed. Managing risks requires clear guidelines of how risks
should be documented and handled. Every member of the team must be able to easily add risks to the risk
document. Risk documents, which are documents that list all possible risks to the project, will be described
in detail in this chapter. Team members must also feel comfortable with reporting risks. Often it is the team
members in the trenches who will be the first to know when something is going wrong, which means that a
risk has been realized, and it is usually these people who are most often afraid of reporting bad news.
Everyone must be allowed to submit risks without consequences.

One can handle risks proactively by making assessments of possible risks, documenting them, and then
creating a plan to deal with them. This plan covers two aspects: the first part is how to reduce the likelihood
of a risk happening, and the second is how to deal with the consequences if the risk does happen.

Chapter 5

148

One can also handle risks reactively, waiting for something to happen. Reactive risk
handling results in crisis management, jumping from one disaster to another, until finally so
much has gone wrong, the project fails. Obviously reactive risk management is not very
useful and usually causes the entire team to suffer burnout.

Proper management of risks requires the following:

� Identification of possible risks

� Determination of how dangerous the risk is

� Creation of a plan to minimize the affects of the high probability, high level risks

� Careful tracking of the risk to make sure that it is under control

� Adjustment of the plan when the risk is not being properly handled

Identifying risks to the project will be the responsibility of every team member. While every team member
may play a role in managing the risks, it will be the component manager who will prioritize risks and
determine the probability that the risk will actually occur. The component manager will work with members
of the team to find solutions for high probability, high priority risks. Once solutions are found, the product
manager will make sure resources are properly allocated to reduce or eliminate the high probability, high
priority risks. This will be one of the key roles of the product manager in every part of the project.

Let us begin by looking at how we identify risks.

Identifying Possible Risks
Part of creating an effective Enterprise Architecture document is documenting the possible risks to the
project. There are many risks, such as risks related to the corporation, to personal resources, to the attitudes
of team members, and to the goals of the project and corporation. All of these risks need to be assessed for
every project. While conducting the research for the Enterprise Architecture document, you can research
these potential risks and rate their risk level as being high, medium or low.

To perform this assessment a document should be created that lists the standard risks to a project. The
senior developers, component and product managers can all come together to create one standard document
that lists a general set of risks that need to be ranked for every project.

To give you a place to begin, I have listed some risks to projects that can be included in your general risk
document. You can add to this list or modify it to suit the needs of your team.

Risk Assessment Document
These are just some of the standard risks that may affect your project: each comes with a description of how
to recognise if it is a high, medium or low risk.

Risk Management

149

Project Schedule
The risk of a project not being finished by the deadline is dependent on the schedule drawn up for the
project. If the project has been assigned an arbitrary schedule, based on the needs of the corporation rather
than on those of the project, this risk has a very high probability of being realized. At the other extreme, if
we have based the schedule on a detailed review of the project, the vision/scope document and the overall
design of the project, we can drastically reduce this risk, and, while we cannot guarantee that the project
will be completed on time, we will have a realistic timetable, which we ought to be able to meet. If the
schedule has been based on preliminary review of the project, but is determined prior to a detailed analysis
of the project, there will be a medium risk: there is a chance that our project will meet the deadline, but
unforeseen circumstances could easily cause the deadline to be missed.

Funds
The issue of funding for a project can prove to be a major headache. If funds are extremely limited, this is
very likely to cause the project to fail - without funding, there is no way the project can continue. However,
if there are sufficient funds available there is less of a risk that the project will fail due to running out of
money, and more of a chance that the project can continue as planned and be completed. If there have only
been some funds allocated, this is a medium risk: the project can continue, but there is a chance that the
project could go over budget.

Resources
A resource is anything that is used within the project to help bring the project to completion - examples are
people, money, time, computers, and meeting rooms. The risk to a project of varying availability of
resources is also another major consideration. If there are numerous constraints on project resources, the
risk is very high that the project will be under threat: if people do not have enough resources to do their job,
the project is very likely to fail. Also, if the sponsor is not in control of resources then resource availability
will suffer, bringing major flaws to the project. On the other hand, if the sponsor has responsibility for
allocating resources, and is committed to the project, there is a low risk: if the resources are made available
(for example, if meeting rooms, computers, or money is made available) people will be able to work on the
project. A medium risk would be if some resources were limited and some were flexible: the project could
continue, but if the limited resources applied to critical tasks, this would be a risk to the completion of the
project.

Personnel
The number and type of personnel available to a project can potentially threaten its chance of success. If
there aren’t enough people available, some may have to undertake conflicting roles (for example, testing
and development), or simply have too much work to do in the time available. This is a high risk to the
project, because if people are overscheduled, they will not be able to complete their given tasks - for
example, the project may not have full functionality as set out in the scope statement: if it doesn’t meet
expectations, the project could ultimately ‘fail’. However, if there are enough people available to fill the
different roles sufficiently, this is a low risk: each task will have somebody devoting their full time and
attention to it. If there were not enough people, but some people could double up team roles without
conflict, this is a medium risk: the tasks will still get done, but there will be less time available to spend on
them.

Chapter 5

150

Project Manager
You would be in trouble indeed if you did not have a project manager! Not having a project manager would
constitute a high risk, because there would be nobody to coordinate the efforts of the team, see that work
was being done and goals were being achieved, and seeing that the project was on time and on schedule. It
would be chaos! On the other hand, if there is a project manager with good planning skills, or experience in
object-oriented project design, this would pose a low risk - efforts would be coordinated and the project
kept on track. A medium risk would present itself if there were a project manager, but they didn’t have all
the skills needed to manage a project. Some areas of management would be lacking and could cause
problems for the project.

Cost Controls (Methods are in place to control costs)
In any large project, there is a danger that costs could spiral out of control. While this risk can be reduced
by proper planning and careful allocation of resources, there will always be a danger that unforeseen
problems could require additional resources. In order to manage this risk, the project should be subject to
tight cost controls. For example, if costs exceed an acceptable level, it may be necessary to abandon non-
critical functionality. If no such controls exist, there is a high probability that this risk will be realized. A
full set of cost controls combined with a detailed schedule and plan for the allocation of resources will
greatly reduce this risk.

Team Member Skills
There is potentially a high risk to the project if team members do not possess the skills needed to be part of
a project team. For example, without communication skills, there would be no transfer of information: if
things were going wrong, such as sections of code wouldn’t compile, but nobody knew about them, this
would be dangerous to the success of the project. This risk is low if people have reached competent levels
in the skills needed for being a team member: if everybody is aware of what it is they have to do, the
project will flow smoothly. If team members have only some of the skills needed, this could pose a medium
risk, for example, if some of the skills lacking were needed on critical tasks.

Client Expectations
The client's expectations of the project will have a direct bearing on the success of the project. If the client
has unrealistic expectations, such as full functionality in a very limited amount of time, this will pose a high
risk to the project: as you will probably not be able to meet these expectations, the client may lose interest
in the project and so jeopardize its success. If, however, the client fully understands the nature of the
project and what it can offer, this is a low risk. The client knows what the outcome of the project is likely to
be and accepts this. A medium risk, in this case, would be if the client still harbored some unrealistic
expectations for some parts of the project, but was willing to accept the rest.

Risk Management

151

Workflows
Workflow is simply a term used to describe the way in which work - information or documents, for example
- moves from person to person throughout the company. This movement, however, will adhere to a certain
set of rules. If new workflows are created by the project, this is a potential high risk to the success of the
project: people may not accept the new ways of working and, in turn, reject the project. If, however, the
project fits in with current workflows so that there are no changes to the way people will have to pass on
information, or training is implemented so that people know how to perform the new ways of working, this
is a low risk. A medium risk would occur if the project introduced only a few new workflows: these may
still cause the project to be rejected if opposition is strong enough.

Consensus on the Goals
It is important that all team members agree upon the goals of the project so that everybody can be working
towards the same target. Therefore, it is a high risk if management or the end users cannot reach a
consensus on the goals: this means that everybody will want the project to achieve different things, which,
quite obviously, is not going to make the project a success. If everybody agrees on the goals, and what to
expect from the project, this will pose a low risk. If only the critical goals are agreed upon, this will pose a
medium risk, as other goals will not have as much impact on the project, and so minor disagreements will
not cause a major upset.

Well-Defined Goals
In order to let people know exactly what it is they are supposed to be doing, the goals need to be very well
defined. The top-level goals will be broad in design, as by their very nature they encompass the whole
project. As you drill down, the goals need to be more detailed so that people can begin working towards
specific goals. If these lower level, or third level, goals are not well defined, it could result in poor product
design and people will be unsure as to what it is they are to do: this can pose a high risk to the success of
the project, as goals will not be able to be achieved. If the goals are well defined, this is a low risk, as
people will know what to work towards and what is expected of them. A medium risk would be posed by
the fact that, although the goals may have some clear definition, they are hard to accomplish.

Long-Term Results
The corporation needs to be looking towards the future and how it will survive in an ever-changing market
place. If the goals are created simply to address a problem the corporation is facing now, this is a high risk:
once the project is over, the corporation will still be in the position of having to catch up with the
competition, rather than lead it. On the other hand, if the goals are created with the long term future in
mind, this is a low risk: goals such as these would look towards utilizing evolving technology and building
systems that could easily have new functionality added if and when it was needed. A medium risk would be
posed by the fact that the goals were focused only on the short term, but they offered a creative solution to
business problems.

Chapter 5

152

Milestones
It is essential that goals have milestones to monitor progress, and also essential that these milestones can be
measured. A high risk presents itself when the milestones cannot be measured: there is no way to tell
whether the project is on schedule or what stage the project is currently going through. The opposite is also
true: if the milestones have binary measurements, these will serve to show exactly where the project is
currently and whether it is on schedule. This is a low risk. If the goals have measurements, but they are not
binary, this poses a medium risk.

Goals that Meet Corporate Needs
The needs of the corporation will translate into the goals of the project. If the first and second level goals
do not match corporate needs, there is a high risk that the project will not reach completion: If the project
isn’t doing anything for the business, it will not get much support. If the first and second level goals
accurately reflect corporate needs there is a low risk of failure, as the project will have the support of upper
management. If only the majority of the goals are in line with corporate needs, this is a medium risk: the
goals that are not directly related to the needs of the corporation should not adversely affect the success of
the project.

Corporate Standards and Vision Statement
Corporate standards lend unity to the team and the vision of the corporation will extend across all projects.
If there are no standards, or there isn’t a corporate vision, the team may feel as if they are not actually
working as one - this could be a high risk to the project, as team members may not feel totally committed to
the success of the project. If the standards and vision were well known by every member of the corporation,
this would be a low risk to the project, as everybody would feel that they are working together. A medium
risk, in this situation, would be if there were standards and a vision, but they weren’t widely known
throughout the corporation.

Changes in Corporate Vision
The corporate vision is what should drive the corporation in everything it undertakes. If the goals of the
project are radically different to the corporate vision, and they could potentially serve to change the
corporate vision, this is a high risk: senior management must accept the project in order to support it; if it is
going to radically alter the way they think, they are not going to like it! If the goals of the project stick
closely to the corporate vision, as they should, this is a low risk. There is a medium risk if the goals of the
project make minor changes to the corporate vision: senior management may object to even the slightest
change, and so could potentially withdraw their support from the project.

Well-Tested Technology
Well-tested technology means that its functions and methods are widely known and understood. If the
project is not based on well-tested technology, and the technology used has not been formally tested, this is
a high risk to the success of the project: the ‘untested’ technology could prove to be unreliable or
untrustworthy and the project could fail. If well-tested technology is used, it poses a low risk, as people
know and understand how to use it. If untested technology is used, but there are plans to formally test it,
this would pose a medium risk: the functionality and methods would be investigated, then understood.

Risk Management

153

Testing
The project needs to be tested throughout the development phase to ensure that it works as expected without
any errors. Developers are not the best people to test their own code. There is a high risk of failure if testing
is not carried out until the end of the development phase and it is carried out by the developers. This means
that errors will not be found until the last minute, some may be missed because the developers are checking
their own code, and any errors found are very expensive and time consuming to correct. If, however, there
is a designated tester and testing is performed throughout the development phase, there is a good chance
that errors will be found, and corrected, early, presenting a low risk. A medium risk would be posed by the
fact that testing is carried out throughout the development phase, but the developers test their own code.

Unit and System Testing
A good testing plan is to test each component on its own - unit testing - and also test it within the whole
system - system testing. This is a slightly different risk to the previous testing section. A high risk would
present itself if only system testing was carried out: if an error was found, there would be no way to
ascertain where the error occurred, as everything would be tested at once. If, however, unit testing had been
carried out, this poses a low risk to the project. The components would already have been tested and, if
necessary, corrected. System testing would then simply test how the components worked together: if unit
testing was carried out properly, there should be few major errors found at this stage: errors here would
relate more to the way in which the different components interact with each other than to the functionality
and workings of the components themselves. A medium risk would be testing large sections of the project,
but not all of it, at once: again, there could be no way to tell where any errors originated.

Stakeholders and Sponsors
The stakeholders and sponsors provide the funding and reason for the project. If they are not committed to
the project, or do not see, after defining high level goals, any worth in the project, this is a high risk. In
fact, the project would probably never have been undertaken if this were the case! On the other hand, if the
stakeholders and sponsors are interested and enthusiastic about the project, and can see how it would
benefit them, there is a low risk of failure: they will want the project to succeed. If, however, the
stakeholders and sponsors were committed to the project, but didn’t fully understand the resource
requirements, or didn’t fully control the resources available, this would be a medium risk.

Team Members Commitment
It is essential that team members are committed to the project. It is a high risk if they are not, especially
with non-self directed work teams where the management imposes a new project, because they may not
fully understand why they are working on the project and so will be reluctant to spend time on it.
Obviously, the opposite is true: if all team members are committed and there is a consensus on goals, there
is a low risk of the project failing, as people will be willing to make the project work. A medium risk would
be where some goals were not agreed upon and senior management had to intervene: this may still be seen
as solutions being imposed from above.

Chapter 5

154

Roles and Responsibilities
It is important for everybody to know and understand exactly what role they are in and what is expected of
them. If the roles and responsibilities are not clearly defined, this could be a high risk to the project: team
members may duplicate the work of others, because they don’t know that other people are doing the same as
them; worse still, no work could be done at all! A low risk ensues when roles and responsibilities are
clearly defined: people will know what they are to do, and there is less chance of duplication. If, however,
there are roles and responsibilities, but no way of knowing whether people are fulfilling them, this is a
medium risk.

User Contribution
It is very important to involve the users and keep their needs in mind throughout the project. If, however,
they are not available for interview during the conceptual design phase, they will not be able to make their
needs known, and this will be a high risk to the project: how can you keep the users’ needs in mind if you
don’t know what they are? A low risk is presented when the users are available at every stage of the project
and are representative of all the users of the system: a medium risk would be when some of the users are
available throughout the project, but are not necessarily a representative sample.

User Interest
It is paramount that users are interested in the project to ensure its success. There is a high risk of failure of
the project if the users do not see any positive impact of the project on their working life: the project is
supposed to focus on the needs of the user; if they don’t want it, how can there be a project? If the users can
see how the project will improve their working life, and actually want the project, this is a low risk: after
all, this is what we are working towards. A medium risk would be if the users could see a potential benefit
of the project, but do not fully understand the positive impact it could have on their working life.

Built With Cycles
Building in cycles is a good way to ensure that all functionality is included within a system. There is a high
risk of failure if the project is attempted all at once without a design phase - it will more than likely be a
monolithic collection of spaghetti code. A low risk situation would be when the project is built in cycles,
with each cycle being properly designed. If the project was not built in cycles, but it did have a good design
phase, this would pose a medium risk, as there is always a chance that some functionality would have been
missed out.

Scope
The scope of a project defines what is to be achieved in one particular cycle. There is a high risk of project
failure if there is no project scope: more than likely, the project will try to achieve all the high level goals at
once, which, in most cases, cannot be done. A high risk would also be when the scope is unrealistic within
the constraints of the project. A low risk would occur when the scope is well defined and realistic in its
expectations. If the project has a scope, but it is not clearly defined, feature creep may occur, which would
pose a medium risk to the success of the project.

Risk Management

155

Building Reusable Components
One feature of a modern software project is building components with the aim of being able to reuse them
in future projects. There is a high risk that code cannot be reused if the project is not properly designed, or
the project is not even built in components at all. The lowest risk occurs when the project is built from
components that can be used in future projects: this can save on future development time and investment
costs. A medium risk presents itself if the project is built from components, but they do not lend
themselves well to being used in future projects.

Change Control
Throughout the life of a project, there is the potential for many things to change - this is not entirely bad,
but it must be controlled. A high risk would ensue if there were no guidelines for recording changes to any
stage of the project, or if the design was not locked at the start of the development phase: in this way, any
part of the project could change without anybody being notified, and nobody would know the correct state
of the project. If there are clear guidelines, however, this is a low risk: it is also a low risk if the design has
been locked at the start of the development phase - this eliminates feature creep, and everybody knows what
he or she is supposed to be developing. A medium risk is when the design may be locked down, but there
are unclear guidelines on what to do if a part of the project changes.

Documentation
Documentation is an essential part of any project - it shows exactly how the project progressed and is a
reference for future teams. There is a high risk if there is no documentation at all - how will you know what
steps you have taken, or what changes have been made, or how the project is progressing if no records are
kept? The opposite poses a low risk: if there is detailed documentation for every step of the project,
showing how things are changing and progressing (especially the risk document), then it is easier to rectify
a mistake if the project should go wrong. There is a medium risk if there is some documentation, but it only
covers limited aspects of the project.

Definition of Goals
Goals must be clearly defined. If they are not, this is a high risk, as team members will not know what it is
they are working towards. If, however, the goals are detailed and have been drilled down to the correct
level for design of the project to commence then this is a low risk. A medium risk would be if the goals
were defined, but they were still vague and unachievable: people would have an idea of what they were
supposed to achieve, but no detailed way of how to go about it.

Methodologies
Using a methodology is a good way to provide structure to a project. If there isn’t a methodology, or any
standard way of carrying out the project, there is a high risk that the project will fail: if there are no
guidelines, how do you know that what you are doing is correct, or if you are missing out anything
important? If, however, a defined methodology is adopted, people will know whether they are doing things
in the right order, or in the right way, and this poses a low risk to the project. A medium risk would be if
there was a methodology available, but people didn’t know how to use it or follow it effectively.

Chapter 5

156

Example Risk Document
In the following, I have selected a few of the most major risks to demonstrate how you could tailor the
standard risk document to create a risk document specific to your own project.

Change Control
Rating: Low
Comments: There are very clear guidelines as to how change should be introduced. The design

has already been locked down.

Funds
Rating: High
Comments: Funds are extremely limited and it is difficult to see how we will be able to achieve

any of the goals set out. In its current state, the project is very likely to go over
budget.

Goal Measurement (Milestones)
Rating: Medium
Comments: All goals have milestones that can be measured, but some measurements are not

binary. This will need addressing.

User Contribution
Rating: Low
Comments: Every user group is represented and the representatives have attended every

meeting. They seem to grasp the underlying concepts of the project and understand
and accept what it is we are aiming to do.

This document will give insight into possible risks that may exist within the corporation. Once this
document is completed for a particular project, it should be available to the entire team and become part of
Vision/Scope document. These risks should be assessed as early as possible, as you may discover that the
risks to a project are so great that you may not want to do the project. In addition to the standard risks, there
may be risks that are specific to the situation or to the type of the project that should also be added. A
review of the Enterprise Architecture document should also reveal risks to the project.

Looking at the master schedule you built with Project 98, you can also find many risks to the project. Are
resources (especially personnel) overscheduled? Do you have team members in roles that they are not
adequately trained for? Are the cost estimates you arrived at using Project 98 far more than the amount of
money allocated to the project? Can you accomplish the items in the critical path in the allotted amount of
time? What would happen to the project if one of the key resources left the project (a team member
becomes ill or leaves the company)? If there are goals that are dependent on many other goals first
becoming accomplished, are all goals in this critical path based on reasonable time estimates, or is likely
that some of these goals will take longer than expected and delay all of the dependent tasks? Are there goals
that will take a very long time (these tend to have inaccurate time estimates)?

Risk Management

157

In addition to this risk document, you should also be keeping a separate risk-tracking document with the
highest priority critical risks to the project. This second risk document will be discussed below. First, we
must determine how critical a risk is.

Creating Risk Metrics
There are many ways to measure the probability of a risk. These are usually subjective measurements, so
you should be careful how you view these measurements. For the most part, the measurement of a risk is
based on experience with projects. It is useful for junior members of the team to work with the more senior
members to learn how to evaluate risk metrics. There are, however, some ways to get a good estimate.

To begin with, you must determine whether the consequences can be tolerated should a particular risk be
realized. This will depend on the project. For example, is a possible one million dollar over run in costs in
the overall project acceptable? Most people would say no, and in a project that is projected to cost two
million dollars this is certainly not acceptable. But, what if you are doing a major Enterprise project that is
estimated to cost two hundred million dollars? A one million dollar overrun could be acceptable in this
situation.

We must determine what is and what is not acceptable for each project. These issues
should be discussed with the stakeholders and the sponsors at the beginning of the
project and documented.

Determining the likelihood that a risk will occur is usually something you can only do by experience and
research. At first it may not seem so bad not to include a component manager for a small team of four or
five developers. Yet, with experience, you will know that a project will require a constant adjustment in
resources. A developer working on critical path goals may get sick and another developer working on
another non-critical goal gets assigned to the sick developer’s goals. A critical component is taking too long
to complete and may throw off the entire schedule, so a developer working on a non-critical goal is
reassigned to help with the critical goal. A goal will require additional financial resources to complete so
features are removed from another goal. All of these changes must be coordinated, and without someone
overseeing the project, these adjustments will not be made. Small issues that could have been easily
handled will not be dealt with, and soon the project is running over time and over budget. Through
experience, you can know what effect a risk can have on a project. The overall effect of the risk is perhaps
one of the most important criteria for determining how critical a risk is.

Another source of information on the effect a risk can have on a project is prior project documents such as
status reports, risk documents, etc. This is another reason to document everything. By reviewing previous
projects you can see how risks impacted these projects and then make an assessment on how these risks will
affect your current project.

Once you have documented and quantified all of the risks, you need to create a plan for each significant
risk.

Chapter 5

158

Creating Plans to Eliminate or Reduce
Risks

Once we know something is a risk to the project, we must create a plan to either reduce the risk or eliminate
it. Some risks are easy to fix. For example, if there is no system of change control then create a system and
propose it to the team.

Other risks are far more complicated. If you are building a project that will completely reengineer the
corporation, many users may feel resentment toward the project. The end users may not appreciate that the
new system will completely change the way they do their job. Many people are afraid of change. It is
critical that your end users support your project, so you may find yourself working with management to find
a way to help get acceptance for the project. You could build an Intranet site that contains information on
the new corporate structure, how old skills and jobs will map to new skills and jobs, etc. The development
team’s educator can work with the client’s education department to conduct training classes. While all of
this might seem to have very little to do with building your Visual Basic project, you will quickly see the
relevance when users will not work with you.

Each risk will require its own solution. This solution will depend on the corporation, the structure of the
corporation and the particular situation. Our initial risk assessment, combined with the Enterprise
Architecture document, will tell us what resources we need to make plans to reduce or eliminate the risks to
our projects. We will have to make a plan to get access to these resources.

Risks that Cannot be Eliminated or Reduced
Dealing with a risk that cannot be eliminated, and that is almost certainly going to result in the project
failing, is perhaps one of the hardest parts of working on a Visual Basic project. What if the stakeholder is
not committed to the project? What if there are not enough resources to complete the project? What if the
deadlines are impossible? The answer depends on many factors. If you are a contractor you can refuse to
take the contract because the risk of failure is too great. If you are a manager, you can recommend the
project not be done because of the risks.

It is better to be honest than to take on a project you know cannot succeed. Ideally, the solution is to create
a plan to correct the problems and to carry the plan out. Unfortunately, sometimes in the corporate world,
creating change simply cannot be done. If you see there is a problem with a project, it is likely that you
came to this realization after careful analysis. The rest of the people involved with the project will need to
go through the same steps you did to arrive at your conclusions. This may take time and careful
explanation. Try to work with the other members of the team and take them through the steps that you took
to arrive at the conclusion that the project will not succeed. That is the best way to make someone
understand your viewpoint. Sometimes, as you go through the process of explaining, you all get a new
insight and find new solutions.

Risk Management

159

The most difficult position is when you are a developer in a non-self-directed team and are ordered to write
Visual Basic code in a manner that is bound to fail. A familiar situation is where the project manager orders
a developer to begin writing code without any formal design phase. One of my favorite stories is about the
manager who would take the developers to lunch whenever there was a new project. The manager would
grab a stack of napkins and start drawing pictures of how the project was supposed to work. After the lunch,
the developers would return to their desks with a stack of napkins and start coding. I cannot say if this is a
true story, as I heard it second hand, but I would not doubt it. I have seen many projects begun with only
that amount of design. This does not only happen to developers. Team leaders will often get orders from
much higher to do a project that they know will fail. In the case of the team leader, the responsibility is
even worse than for the developer, as accepting this type of project not only means that the team leader
must do this, but the entire team as well. I have always viewed it as my responsibility as a leader to protect
those I am in charge of, and would try everything in my power to find a way to redefine the project, so it
can be completed, or end it.

It is difficult to decide what to do when your manager orders you to do something that is bound to fail. You
must evaluate the situation based on your situation. For the most part, it is best to be honest with your
manager, explain your concerns and ask if steps can be taken to reduce the risks. Go through the steps that
led you to realize this is not the best way of doing things. Your manager does not want the project to fail
any more than you do. If you can convince your manager that your way will improve the chances of success
of the project, your manager might agree with you. Remember also that your boss is most likely following
orders from higher up and the problems may lie with a larger bureaucracy.

Most importantly, when you present your ideas, do not be closed to your manager’s viewpoint. Sometimes
they have information that you do not. Occasionally, what seems like madness is actually the best solution;
it only seems that way to the worker because they do not see the big picture. Before going ahead, do your
research and get the best understanding of the situation that you can. Get your facts straight, and when you
present your case to your manager, start off by making sure that you both agree on the basic information
before getting into the problems and solutions.

It is very easy to be part of the problem. I will admit that there have been times when I have complained
about a manager who was leading a project off a cliff. I would make an attempt to steer the project the right
way. Sometimes I succeeded and sometimes I did not. In retrospect, I wonder whether I had spent time
working on solutions instead of complaining, if I would have succeeded. Now, I focus on finding solutions
and not on complaining, and I find that there is almost always a way to reach a mutual consensus that will
be acceptable to everyone and will insure the success of the project.

Once we have identified the risks and created a plan, we must monitor them. Let us look at how we can
monitor our risks during our projects.

Chapter 5

160

Risk Tracking
Simply defining the risks at the beginning of the project is not enough. You must actually do something
about the risks. The best way to do this is to create a tracking document, or use a risk-tracking program.

A risk-tracking document is a living document. Every member of the team should submit a risk document at
some interval, usually once a week, to his or her component manager. The component manager will review
these risks and make an assessment of the priority of the risks and the probability the risks will occur. High
priority, high probability risks must be taken care of immediately. Working with the entire team, the
component manager will find ways of reducing or eliminating the risks. If there is a risk caused by a
conflict with the client and the development team, the component manager will go to the product manager
for help on resolving this issue. If resources are needed, such as a copy of a database for testing and the
client is not willing to give this data, the logistician and the product manager will work towards a solution
with the component manager. If the problem concerns a bug in one of the primary components of the
project, the component manager will work with the developers, testers and even possibly other component
managers to find a solution. The component manager manages the resources to find ways of reducing any
possible risks to the project.

A typical risk-tracking document could have the following sections:

Name: A unique name used to identify the risk.

Description: This is a detailed description of what the risk is, which parts of the project could be affected
by the risk, and the consequences of the risk occurring.

Scenario: The sequence of steps that would need to happen for this risk to affect the project.

Results: What could be the consequences of the scenario occurring.

Probability: The probability that the scenario could actually occur, usually rated high, medium and low.

Resources Affected: What resources will be affected if the scenario occurs? Will there be financial loss?
Scheduling delays?

Comments: Additional information on the risk.

Related Risks: Other risks that may be related to this risk.

Plan: The plan to prevent the scenario from happening, or at least to reduce its likelihood of occurring or
decreasing the negative consequences to the project, if the scenario occurs.

Risk Metrics: What we will use to determine if the risk is occurring and to determine if the risk has been
reduced.

Risk Management

161

Current Responsibilities: What actions must be taken by team members to reduce the risk and which team
members are responsible for these actions.

Trigger: At some point if the risk is not reduced, or the scenario starts and cannot be stopped, we must
switch to an alternate plan. This section will explain what must occur for us to switch to the alternate plan.

Alternate Plan: A description of the alternate plan if the first plan is not successful.

Current Risk Assessment: This section should be added to periodically, at the minimum weekly, stating
what the assessment of the risk is on that day.

Example Risk Tracking Document
For example, if there was a risk to the project due to a lack of support from the end user, the risk-tracking
document may look as follows:

Name: Users not committed.

Description: The users have no interest in the outcome of the project. They see no practical benefits of the
system and do not understand the impact it can have on their daily life. This affects all project areas.

Scenario: Vision is defined - users do not agree. Consensus cannot be reached. Negotiations break down
and users retract their support from the project.

Results: Without end-user support, the project will no longer be allowed to continue. Work will stop
immediately.

Probability: High - the end users see no real benefit to the system and are reluctant to offer their support.

Resources Affected: All resources will be affected - if user support is withdrawn, there is no justification
for the project and resources will also be withdrawn. If negotiations continue, this could cause financial
loss and scheduling delays.

Comments: We are appointing a new user educator, whom we hope will be able to convince the users that
the project will bring many benefits to their working environment.

Related Risks: Sponsors and shareholders might lose interest if we cannot provide a system that is wanted
by the users.

Plan: There will be a detailed user education guide to show the users the benefits of the system. This will
hopefully allay their fears of change. If the scenario does occur, the plan is to halt work immediately, notify
everybody involved and release resources and funds to other projects.

Risk Metrics: We will know if the risk is occurring if the vision and scope cannot be determined or a
consensus is continuing to prove difficult to reach. We can see that the risk has been reduced when a
consensus is reached and design can begin.

Chapter 5

162

Current Responsibilities: Team members must work to ensure that the end users understand what is
happening and the benefits the change can bring to them. This will primarily be the task of the team
members occupying the user education role.

Trigger: If the users will not offer their support to the project and a consensus cannot be reached, no matter
how much negotiation occurs, we will switch to the alternate plan.

Alternate Plan: If user education cannot describe the benefits to the end users so that they fully understand
the benefits the system can bring to them, we must enroll the help of the stakeholders. If the stakeholders
see the benefits of the project, the responsibility for the acceptance of the end users must ultimately depend
on them. User education will work closely with the stakeholders to make sure they fully understand and
accept the benefits the system can bring.

Current Risk Assessment:

May 24, 1999: This risk still has a high probability of occurring. We have begun to educate the users
on the importance of the project, but many users still feel resentment because of the attitude that the
project could result in layoffs. We have been working with management to create an internal web page
showing the future restructuring of the company...(etc.)

May 31, 1999: This risk has dropped to a medium level risk. Our education program has been
successful. The users are beginning to see that this project will enhance their jobs and allow some
employees to move into other positions, rather than being laid off. We have accomplished this
by…(etc.)

Each risk that was labeled high or medium should have a page like this devoted to the risk. Periodically, at
the very least every week, the Current Risk Assessment section should be updated. Once these updates are
done, the document should be reviewed. Periodically, all the team members should review this document to
see what risks may impact their portion of the project, which risks have been missed, and which risks may
have been improperly assessed.

Summary
One of the most important parts of creating a successful Visual Basic project is the proper management of
risks. Assessing the risks at the beginning of the project, developing a plan for medium and high risks, and
finally carrying the plan out and monitoring the risk can mean that you can almost guarantee the success of
your projects.However, not all risks will be able to be identified at the beginning of the project: risk
assessment and risk tracking should carry through the whole of the project to determine whether new risks
have presented themselves, or make sure that low risks have not been ignored and allowed to escalate into
high risks, almost without notice.

You can use a wide range of resources to find possible risks to the project. You can create a general
resource document, as we did above. You can analyze your master schedule in Project 98 for possible
resource conflicts. You can create a copy of your master schedule and test ‘what if’ scenarios and see how
they will impact the entire project. You can review documentation from previous projects or speak to senior
members of the team. Using all of these techniques, you can assess possible risks to your project and
manage them appropriately.

Risk Management

163

Chapter 5

164

Design Phase: Conceptual Stage

In the conceptual design stage we begin to give some structure to our envisioned solution. We will define
how our users will interact with our application and we will step into the roles of the users of our
application and find out how they want to accomplish the goals of our application as they are defined in the
Vision/Scope Document. In this way, we end up building an application that meets the needs of the
customer and of the business, allows the users to accomplish their goals in the way they view as most
efficient and makes easy and complicated tasks simple to perform. When the conceptual design milestone
has been reached there will be a clearly defined description of the product, the functionality it will include
and the manner in which the users will interact with the system

In this chapter we will:

� Create scenarios for third level goals, built upon the needs of the user.

� Discuss roles, workflows, business processes and incorporate this information into our scenarios.

� Create use case documents and diagrams based around our scenarios.

� Identify exactly who the "users" of our application might be.

The key deliverables of this phase are:

� Scenarios for each third level goal identified in the Vision/Scope Document.

� A library of use case documents to take forward into the logical design stage.

Chapter 6

166

Summary of Team Focus
The project and component managers bear responsibility for bringing the whole design phase to the final
“Design Approved” milestone. However, during the conceptual design stage the team focus centers very
much on the product manager. The ultimate goal of the product manager is to have satisfied clients so they
will work very hard during this stage to ensure that the design basis is very much geared towards achieving
client goals, as set out in the envisionment phase. The educators will analyze users’ needs and create a
document based on this analysis. The product manager will work with the educators to determine the
different types of end users and set up interviews with representatives of these groups. The product manager
or educator will generally perform these interviews, although other team members may help out. The
product manager will be responsible for compiling, reviewing and distributing the use case documents.

Overview of the Conceptual Design Stage
In the envisionment phase we began our search for goals. We started with the first level goal of the
stakeholders and sponsors and fashioned them into a vision statement (primary goal). We saw how senior
management identified first and second level goals, based on the business processes and the needs of the
business. We drilled down a level deeper with the client and development team to create the third level
goals. The high priority second and third level goals were placed into the Vision/Scope Document and
placed into different cycles each with their own scope (this document provides the foundation for the
conceptual design stage). The third level goals, though, are still not what we need to design our Visual
Basic application. We still have to do some further transformations of the third level goals to arrive at
something we can use to design our Visual Basic application. The purpose of the conceptual stage is to
make this transformation.

The conceptual stage will allow us to take the third level goals in the Vision/Scope Document and turn them
into scenarios.

A scenario is an outline of a sequence of events. It provides a step-by-step guide to the
procedure that must occur in order to perform an action. A scenario can be used to set out,
in clear non-technical language, the exact requirements for a system or component.

Essentially, we are transforming the third level goals into a set of requests for services from the system.

We will build a Visual Basic application based on a very detailed set of goals that
are defined by scenarios built upon the needs of the user.

When we eventually build our Visual Basic application in the development phase, we will create methods
(functions and subs) that allow a user to make a request to our application to perform some service. Thus,
redefining our goals in terms of services will allow us to create methods in our Visual Basic application to
fulfill the goals.

Design Phase: Conceptual Stage

167

Based on these scenarios, we will build the UML use cases, the ultimate deliverable of the conceptual stage.
These use cases form the foundation of the design of our Visual Basic application. This type of application
is a user-centered application - it will be built to fulfill the goals of the users in the way they feel is best.
The users can feel as if the application belongs to them and is a result of their input. This will make the
users more productive. In many cases, systems developed in this way make the work more enjoyable and
create a better work atmosphere.

UML is a highly effective methodology for the successful design of object-oriented
projects. It will allow us to design components in an efficient manner, which will
make for easier addition, refinement and upgrading in later projects. We are
looking to design our application in the best way possible whilst ensuring that user
requirements are paramount in our thoughts and that business requirements are
effectively managed (for example, ability to adapt to changes in technology and
market). It is only natural that UML should be an integral part of the design phase
in the cyclic methodology.

The conceptual stage does not necessarily have to begin at the exact end of the envisionment phase. The
conceptual stage is the link between defining the goals of the application and the actual designing of the
application. Being a bridge between the two, it usually spans from the envisionment phase into the design
phase. Since it is easier to define the beginning of the stage by a milestone, I have defined the beginning of
the conceptual stage to be the point where the third level goals start to be transformed into a set of service
requests and a set of inputs.

Other methodologies, such as the Microsoft Solution Framework, do not create such a well-defined
boundary between envisionment and conceptual design. Much of the information gathering and
determination of goals are included as part of the conceptual stage. I feel it is easier to define the
envisionment phase and conceptual stage as I have done in this book.

Moving from Third Level Goals to
Scenarios

Let’s take a look at one of the third level goals we arrived at in the consensus meeting: “Make it easier for
the customer to submit a complaint”. We recognize that this is still a very general goal - there is no clear way to
design a Visual Basic application from this goal. We need to break this goal down into a series of steps that are
required to fulfill the goal. These steps will be requests to the system to perform various services or steps that will
input information into the system. For example, we can arrive at the following series of steps that a customer could
follow to submit a complaint over the Internet:

1. The customer navigates to the complaint page.

2. The customer inputs the type of complaint they want to make into the complaint form and clicks a
button to navigate to a page for the complaint they selected.

3. A form specific for the type of complaint will load in the browser.

4. The customer can (optionally) enter their name, address and phone.

5. The customer enters his email address (if logged into site, this is automatically put into the form).

Chapter 6

168

6. The customer selects checkboxes to choose ratings and make the complaint.

7. The customer optionally types information into the form.

8. The customer selects submit.

9. The complaint is routed to the person who handles this type of complaint

10. The complaint is dealt with, and a response is sent to the customer through email.

In these steps we are still not answering how. There is no mention of how the complaint page will be
created, how the specific form will be built, how the form gets to the appropriate person, etc. We are only
describing what we want the system to do at a finer level of detail. The conceptual stage simply transforms
the goals into a series of requests for services from the system or the input of information into the system.
This chapter will show how this is achieved using user interviews, surveys and other techniques. The
logical design stage will then form the bridge between what we want to do and how we are actually going to
do it. The physical design stage will complete the definition of how.

In the conceptual stage, we will view each goal from the perspective of the person who will fulfill the goal
(which will be listed in the Vision/Scope document). In our example above, the customer’s goal is to easily
submit a complaint. We have stepped into their role and found the steps they will want to take to
accomplish this goal. Don’t forget though, that we will want to create and improve processes for employees
as well as customers. A goal, in this regard, might be “improve the efficiency and ease-of-use of the order
processing procedure”. In the Vision/Scope document we may find that it is the goal of Sales
Representatives and Sales Managers to easily process orders. We can step into their role in the same way.

Defining the Different Types of Users
In the previous section we looked at a two examples of the third level goals (which become requests for
services) that certain users would want to accomplish. The “customer” is a very broad term and refers to a
group of individuals who buy products or services from the corporation. This illustrates an important point:
we must build our application to work for entire groups of people and not for individuals.

It would simply be impossible to define a different technique of fulfilling the same goal for every possible
user, especially if we have thousands or tens of thousands of users. Therefore, we look at all of the users of
the system, place them in groups, and then create a certain type of functionality for the group. The system
may have one set of functionality for the “customer” and another set of functionality for an “order entry”
group. In other words, we will group people together based on how they interact with the system. For
example, anyone entering orders into a database will interact with the system in the same way so we can
define an order entry clerk role. Sales Representatives and Sales Manager will use this role to enter
orders.

In the order processing application we will have many roles besides the order entry clerk role. There will
be an inside sales role for entering new products and updating the inventory along with a manager role that
will enter employee information and review reports, etc. Since this is an Internet application where the
customer can enter orders directly, or directly review product information, there will also be a customer
role.

Design Phase: Conceptual Stage

169

It is clear that roles define the set of tasks that a group of users need to perform. With this information we
can identify the components of the system that the role will need to access. Thus, we can use roles to help
us build the security in our system by limiting the services each role is allowed to request. For example, we
would not want to allow someone in the order entry clerk role to attempt to triple his or her own salary.
Only someone in, say, a manager role can request the “change an employee’s salary” service.

Every role will have certain goals associated with the job, and certain goals that the user in that role is not
allowed to perform. Goals the order entry clerk role cannot accomplish with the system may be deleting
customers, editing employee information and editing product information. Someone who can delete
customers cannot be in the order entry clerk role.

It is important to remember that the role a person is in has nothing to do with their job title. If a person who
is a manager is filling in for a sales representative while they are on a break, and the manager is using the
system to accomplish the goals of the order entry clerk role, then the manager is in the order entry clerk
role. The role a person is in is determined only by the goals they are requesting the system to accomplish.

So, we now have roles that will need to accomplish certain goals. The series of steps that are required to
accomplish a goal will form our scenario, which is a set of requests for services. How do we know what
services each role will request? Are there different routes that may be taken to achieve the same goal? Put
another way, these questions mean: How do we know exactly what functionality each group of users needs?
In order to find out we need to step into the shoes of a user who will use one of our identified roles. The
best way to do that is to talk to them.

Interviewing Users
Basically, once you have identified the roles for your system, you need to interview users who will be in
these roles. These interviews will determine what services a person in the role requests from the system, the
level of technical expertise a person in this role usually has, their work responsibilities, and their view of
the new system you are building.

The best way to learn what a user does is to spend time with the user as they are doing their daily work.
Have the user teach you their job. Usually, it will be the educator who will be conducting these interviews,
though other team members can help out if need be. The sorts of questions that may be asked are as
follows:

� What is their current job description?

� What business processes do they contribute to?

� What systems do they work with, and what requests for services do they request from these systems?

� What services will they be requesting from the new system?

� What business rules are associated with their job?

� What role do they play?

� What information do they need to perform their job?

Chapter 6

170

Of course, you are not going to ask these specific questions. You will need to ask questions based on the
user’s level of expertise. It is unlikely that a user would understand what you mean by “What services do
you request from the system?” On the other hand, they should understand you asking them what tasks they
perform and what tasks they ask the computer to do. You will need to talk to the user in terminology they
understand.

Following is an example of the sort of interview that might take place with a Northwind Sales Representative,
who will use the role of order entry clerk:

Interviewer: Valerie, why don’t you start by telling me what you’re currently doing and how you do it?

Valerie: Basically I’m an Order Entry Clerk - so I enter the new orders. We’ve got a computer system,
which is supposed to make things easier. It’s like a database that I can get information from and add things
to. Everything I need should be in the database. A customer calls in with an order and I take their details.
Then I take their order – which is tells us how many of our products they want.

Interviewer: So could you tell me what customer details you need and why?

Valerie: Well first I need their company name and address so that I can tell whether they’re a new or an old
customer. We have a list of customers to check from. Each customer has an ID number but I’m not allowed
to change that. We have different customers with the same name so that’s why we need their address. Also,
if we have a new customer call in, I need to set up a new account for them. At this point I also check that
the details on our list are correct - maybe the customer’s moved.

Interviewer: OK, so what do you do next?

Valerie: Well, then I just take the details of their order, what they want from our catalog and how much.
The products are stored in the database too. I confirm these details and the computer works out how much
it’s all going to cost and then I make sure the customer is happy with the price. Of course, I can’t give them
a deal or anything, but sometimes they haven’t realized how much their order is going to come to. So
anyway once the order is taken, I save it to the database and wait for the next one.

Interviewer: Right, so could you tell me how the customer receives his goods?

Valerie: Oh yes, sorry I have to do that too. From another list I select a suitable shipper depending on the
company’s address and add the cost of shipping to the cost of their goods and then check if the price is OK.

Interviewer: So adding new customers is one of your responsibilities. Could you tell me how you go about
setting up an account for a new customer?

Design Phase: Conceptual Stage

171

Valerie: Yes that is one of my responsibilities. I’m supposed to be adding new customers or changing a
customer’s details. To check if a customer is new I have to search through our list. If the customer is new I
take the customer’s company name and address and add it to our list on the database. The computer then
generates the customer ID number. Also a customer may call up and say that their address has changed and
so one of my responsibilities will be changing the customer’s address. I have to get the customer
information from the database and modify it. All this can take some time because we have loads of
customers. What I would really like is an easier way to check customers – like if I just typed in the
company name and it knew if the customer existed or not. Or even if it gave me a list of customers with that
name straight away rather than me having to find it myself.

Interviewer: Are there any possible errors that can occur while you are doing this?

Valerie: Yeah, each field can only be a certain length, but the program will allow you to type in as many
letters as you want. If you type too much, the program will just chop off the extra letters.

Interviewer: How long can the fields be?

Valerie: Umm, here. I’ve written it down. The company name can be 40 letters; the contact name, 30
letters; the contact title, 30; the address, 60; city, 15; region, 15; postal code, 10; country, 15; and the phone
and fax, 24 digits. I have to remember these.

Interviewer: Do you have any other responsibilities besides taking orders? Can you edit orders or change
orders or do things like that?

Valerie: No, I can’t change an order. Once I’ve entered an order, if there’s an error in the order, the Sales
Manager has to take care of it and she is responsible for modifying the orders.

Interviewer: Can you tell me about the products?

Valerie: No, I don’t have anything to do with them, the inside sales person handles that.

Interviewer: Does any one else handle orders?

Valerie: Yeah, sometimes when we are shorthanded or really busy, the Sales Manager will step in and take
orders.

Interviewer: Can you think of anything else that you like or dislike about your current system?

Valerie: Well we have loads of products and different products clearly belong to different categories.
Sometimes it takes me ages to find the right product because they are all in one long list. I could find each
product much more easily if they were split up into the different categories. Another thing that can be
frustrating is that if someone else is changing a customer record, I won’t be able to modify it until they are
done. I understand why this is, but sometimes I can’t get a record for an hour or so and you just know that
they have gone to lunch leaving the connection open. Also the system can sometimes be very slow.

Chapter 6

172

Interviewer: Thank you for your time.

There is a lot of information here. We found out what Valerie does:

� Places orders

� Creates new customers

� Updates customer information

� Arranges for orders to be shipped

We found out what she doesn’t do: deal with product information; change order information after it has
been placed. We found out what she disliked about the current system and what improvements she would
like to see. Thus, we can begin to see the sort of things we need to accomplish in order to achieve our
“improve the efficiency and ease-of-use of the order processing procedure” goal.

In addition, Valerie confirmed that the business manager would occasionally use the order entry clerk
role. We even obtained some information about business processes - she couldn’t change a customer record
while someone else was accessing it (we will discuss business processes again later in the chapter). When
we have conducted a series of interview such as these, we will have enough information to start capturing
our scenarios.

Creating Scenarios
The four tasks we identified for the order entry clerk role (place order, create customer, update customer,
arrange to ship order) can be considered sub-goals of our “improve the efficiency and ease-of-use of the
order processing procedure” goal. We must look to improve the efficiency of each sub-goal in order to
achieve our overall goal. We are now in a position to convert these sub-goals into scenarios:

Order Entry

Place an Order
� Customer telephones order or places order via web site

� If customer is ordering by telephone, request company name

� Request customer information from system

� If customer does not exist, Create Customer

� Check customer address, if customer is in system

� If incorrect, Update Customer Information

� Select product customer wants

� Enter the number of the product customer wants

� Calculate total bill

� Submit order

Design Phase: Conceptual Stage

173

Create Customer
� Enter customer name

� Enter customer address

� Enter customer telephone number

� Enter customer fax number

� Enter customer credit card number and expiration date

� Verify customer information is correct

� Save customer information

Update Customer Information
� Retrieve customer information

� Replace incorrect information with new information

� Save Customer

Ship Order

� Shipping gets order

� Shipping fills order

� Shipping ships order

We have now transformed our original goals into scenarios. By talking to the users, we can find out all the
possible scenarios that may occur when trying to accomplish their goals. We have put several scenarios
together by using if statements in our scenario. This if statement means that we could have one scenario
where the customer is new and we need to add a new customer, another scenario where we have an existing
customer who has moved and requires their information to be updated, and a third scenario where it is an
existing customer whose information is correct.

When interviewing users you will want to find out every possible scenario, and then try to put them
altogether into one scenario using if statements.

In this example we are gathering detailed information on existing processes. If we are going to completely
redefine the way a goal is accomplished then matters get more complicated. It is harder trying to invent a
scenario for something the user doesn’t yet do. You may have to propose something and get comments back
before the user will be able to envision the new scenario. Also note that when creating scenarios for the
customer role you may not be able to have access to real customers and will have to work with a “customer
representative” instead (someone from the organization who thinks they know how a customer role would
work).

Once again, an intranet can provide a resource for recommendations on how to optimize scenarios. Once a
set of scenarios is developed based on the Vision/Scope Document and user interviews, you can post them
on the company intranet so that everyone can review them. A form to offer suggestions, improvements and
additional scenarios should be provided.

Chapter 6

174

Workflows
Now we have defined our scenarios we need to consider workflows. Essentially, a workflow is a
component part of a business process. A “create new customer” workflow, for example, is part of our
“processing an order” business process. Different roles may perform each workflow. It could even be that
parts of a business process are not supported by the system – they could be manual activities, be performed
by other software tools or even be performed by different organizations.

The workflows in our “processing an order” business process include:

� Add a Customer if this is a new customer

� Update customer information if customer information is incorrect

� Place the order

� Ship Order

Placing an order, adding a new customer and updating a customer, are all workflows that will be
accomplished by someone in the order entry role. Since these workflows are all performed by the same role,
we should group them together (perhaps call them the “order entry” goal). In the logical and physical
design stages we will see how these three requests will also be grouped in our Visual Basic application.
Someone in the shipping role will accomplish the final goal, ship order.

It is useful to group scenarios by workflow. We start to see how everything fits
together. We start to consider the possibility that an improvement to one process
may improve another processes and that we can improve the overall workflow by
improving communication between different parts of a workflow.

When we design our application, it will make it easier for a user if a set of scenarios that are usually done
together by the same user can all be done at one time. This may have implications for the design of the
Graphical User Interface. In this case, we would design our application so that enter orders, add customers
and edit customers are all on one form. When a person in the order entry clerk role is entering orders, they
can accomplish all the goals they normally do in their job by accessing one form. This is much easier than
if we had separate forms to accomplish each goal, thus making the user jump from form to form to do their
job (see Chapter 7).

Design Phase: Conceptual Stage

175

Use Cases
We now begin the process of converting our scenarios into a set of use case models that we can take on to
the logical design phase. A use case model has numerous sections. We will start by creating a use case Flow
of Events. Our scenarios represent every step and every possible flow of events that can occur as a user
attempts to achieve a particular goal. The use case Flow of Events encompasses this type of information but
there are other important differences:

Use cases define the behavior of the system from the standpoint of the user requesting the
service.

We use the generic term actor for the user requesting the service. An actor is someone or something that
makes a request to the system to perform a set of services. The actor will always be external to the system.

In order to transform our create customer scenario into a use case flow of events, we would make the
following alterations:

Create Customer
� Primary Actor: Sales Representative

� Actor enters customer name

� Actor enters customer address

� Actor enters customer telephone number

� Actor enters customer fax number

� Actor enter customer credit card number and expiration date

� Actor saves customer information

We have defined a primary actor and we have defined each step from the point of view of the actor. You
may also have noticed that we no longer have a “Verify customer information is correct” step. This is not a
request to the system or input into the system, it is a manual step, identifying that the information is correct.

Requests to the system to perform a service or the inputting of information into the
system are the only statements placed into the use case.

Thus the second point to note is that:

Use cases allow the definition of a system's boundaries

This can be further demonstrated by another example. When we consider the system boundaries, we have to
modify our ship order scenario as follows:

Chapter 6

176

Ship Order
� Primary Actor: Shipping Clerk

� Actor requests new orders

� If order is shipped, actor marks order as complete

Shipping the order is not something we actually request the system to do. This is done outside of the
system.

This information will not be lost, though. The services that the system performs internally
will be placed into business rules, which we discuss in the next section.

You may have noticed earlier how I referred to someone or something requesting services. It is quite
possible that the actor may not be a person. You may have external computer programs that make requests
for services to other programs. If you make a Visual Basic application that validates credit card information
that is a separate application, this credit card system may be called by an order entry system. The order
entry system would be an actor for the credit card system, as it is external to the credit card validating
system and requests it to perform services.

At the moment there is still a lot of information that is missing from our use case - they contain many terms
that should be defined. Exactly what is a customer? What defines a product, an order, a bill or a customer
address? How do we calculate the total bill? Are we allowed to have a customer with no billing address?
We will need to include this information in our list of service requests. Essentially, what are missing are
our business rules. Business rules define how the business is run. They can be rules governing the
definition of business terms, such as “customer” or “billing address”. They can be the formulae to calculate
a business value such as total bill, or rules that tell us what is allowed, what is not allowed, and what
happens when something that is not allowed actually happens.

Business Rules
There are five types of business rules that, generally speaking, place restrictions on the possible outcome of
our flow of events.

Requirement Business Rules
This is the most general type of Business Rule. The Requirement can represent any part of the system’s
operation or any business policy that needs to be taken into consideration when designing the system.
Requirements are generally phrased in pure business language, and usually can be broken down into smaller
rules.

Example: “Customers are billed on the last day of the month.” This rule would be derived from several
other rules, such as: “customer’s bills include new charges and unpaid balances, calculation of customer’s
unpaid balance, calculation of unpaid charges, etc.”

Design Phase: Conceptual Stage

177

Definition Business Rules
A Definition defines a business term found in a use case. A business term usually refers to a piece of
information that’s stored (usually in a database) or displayed (such as a calculated value). Business terms
usually become classes.

Format: The <business term> has a(n) <attribute>

Example: The customer has a customer billing address where the customer prefers all billing
correspondence to be sent. It can be different from the shipping address.
In this example the “customer” is the business term and the “customer billing address” is the attribute.

Factual Business Rules
A Fact relates one business term to another business term. Facts are often relationships, attributes, or
generalizations between two business terms.

Format: Every (Each) <business term> <relationship to> <another business term>

Example: “Every ordered item is a product” or “Every customer has a billing address.”

Constraint Business Rules
This is a Constraint on the behavior of the system. Any rule that only allows a certain range of values can
be considered a constraint. When Constraint Business Rules are applied to terms whose values are inputted
by the user, these values are usually checked with an If statement. Errors are a result of Constraint Business
Rules and code must be written to follow an alternative flow that results from this violation. There should
be at least one Constraint Business Rule for every alternative flow of events.

Format: <business term> must <constraint>

Example: “A customer’s state must be one of the 50 states” or “The state name must be two letters”.

Derivation Business Rules
A Derivation represents any information that is derived from other information in the system. Derivation
Business Rules will result in a block of code that performs a task, such as calculating the sales tax. Often
Derivations become separate functions or sub-procedures.

Format: <derived item> <rules for derivation>

Example: Net Pay is calculated by subtracting deductions from Gross Pay.

Thus a Requirement business rule that will affect our “Place an Order” flow of events may be: If another
user is accessing customer record, system will inform requesting user (remember the information we
obtained from Valerie?).

Business rules have a big impact on object-oriented design and on our coding. They can determine what
properties an object will have, the correct values for the properties and methods of deriving the information
needed by a class.

Chapter 6

178

The Constraint, Fact and Derivation Business Rules are essential elements for converting UML diagrams
into a Visual Basic application. It’s important to make sure that all of the Fact, Constraint and Derivation
Business Rules are implemented in our code.

The easiest way to do this is to put a comment into the code with the name of the Business
Rule that the code is based on. We can later do a search on the code for every one of these
rules; if we do not find a reference to the Business Rule in our comments, then we know we
forgot to implement a rule.

Furthermore:

� Definition and Fact Business Rules can be used to determine the properties of our objects, and which
objects contain other objects, i.e. object hierarchies.

� Constraint rules will define what users can do, and will form the basis for the type of application errors
that may be raised in our code (IF billing_address is NULL THEN….).

� The derivation business rule defines the formulae we will use in our code to derive calculated fields.

We are now ready to look at the full use case model.

Design Phase: Conceptual Stage

179

The Full Use Case Model
Let’s take a look at an actual use case document that describes the process of creating a new customer:

USE CASE: CREATE NEW CUSTOMER

Overview
The main purpose of this use case is to create a new Customer

Primary Actor
Sales Representative

Secondary Actor
None

Starting Point
The use case starts when the actor makes a request to create a new Customer

End Point
The actor's request to create a Customer is either completed or cancelled

Flow of Events
The actor is prompted to enter information that defines the Customer, such as Name,
Address, etc. The actor will then enter the information on the Customer.

The actor can choose to save the information or cancel the operation. If the actor decides
to save the information the new Customer is created in the system, and the list of
Customers is updated.

Alternative Flow of Events
The actor attempts to add a Customer that already exists. The system will notify the user
and cancel the create operation. The actor enters an improper value for one of the fields.
The system will not allow the update until a proper value for the field is entered.

Measurable Result
A Customer is added to the system

Business Rules
Customer
Customer Fields
Restrict Customer Create

Use Case Extensions
None

Chapter 6

180

There are some new terms here. The only non self-explanatory one is “Use Case Extensions”. Occasionally,
use cases exist that are a variation of another use case and extend the functionality of the original use case
(e.g. create customer and create VIP customer). These extensions are listed here. We also include a
Business Rules section. The “Restrict Customer Create” Constraint business rule, for example, has been
added to the design of the project to ensure that nobody will be able to create a customer who already exists
on the system:

BUSINESS RULE: RESTRICT CUSTOMER CREATE

Overview
This rule is for when a Customer is added to the system

Business Rule Type
Requirement

Business Rule
Each Customer must have a unique CustomerID

Each Customer should only be listed once in the system

Derived Business Rules
None

Business rules are highly contextual to the actual business environment in which the program is being
written, but this is a good way to present them clearly and professionally.

We can see that, basically, our final use case documents are a verbal description of what happens when
someone using the program we want to design needs to create a new customer. Actors are identified (sales
representatives), start and end points are located (in this case, a sales representative asking to create a new
customer, and successfully having created a new customer) and a flow of events is drawn up to explain how
the system can get from the start point to the end point (information obtained from our scenarios). Further
to this, some alternative sequences are identified (perhaps the user decides they don’t want to add a
customer half way through the process), measurable results are defined, and some business rules are
created.

The use case model describes exactly how the goal of the user can be achieved. It
provides a comprehensive definition of how a user will interact with the system.

Once a use case is complete, the relevant users should review the document. Once again, the documents can
be posted on an intranet or Internet site where all the users can review it and make suggestions. Surveys can
also be put on the web site for users to fill out, though it is better to create these after spending some time
with some of the users. After everyone has been given time to review the documents, a final set of
documents should be physically signed off by members of each group.

Design Phase: Conceptual Stage

181

It may have seemed like a fairly long road to get here, but we have finally hammered and shaped the
original level one and two goals, based on the needs of the business from management, down into a set of
user-centered use cases that will form the basis of our Visual Basic project. Before we can move onto the
logical design stage, we must talk about how we get information from the user and who the user is.

Who are the Users?
At first, the question “Who are the users?” seems very simple. The initial answer is the people who use the
system. Yet, who uses the system becomes a very complex question in our current Enterprise Visual Basic
applications. The traditional view of a worker hammering away at a keyboard using a custom built Visual
Basic exe application is only one possibility today. With the Internet, we have a new set of users for our
applications, the customer.

The customer may be someone we never see and never speak to. If we were building a new Internet site, we
could send surveys out to current customers to see what they may want on our new Internet site. Yet, if all
of your customers use phone or mail order, it is quite possible that your current customers are not the
people who would use the new Internet site and therefore could not give you any useful information.

Even worse, the Internet application creates a whole new group of users who you have no way of contacting
prior to building your web site: the potential customer. There is a big difference between the customer, who
is someone who is loyal to a corporation and their products, and the potential customer who is trying to
decide whether the corporation deserves their business. The Internet application must satisfy the needs of
both the loyal and potential customer. Even the loyal customers may have different shopping patterns. Some
may like to come and browse through the web pages and take their time selecting goods, others will want to
go directly to the product they want, order and leave.

We can begin to see the benefit of creating roles that define the services requested from the system by the
user. By creating a potential customer role, a leisure customer role (for the customer who likes to
browse) and a fast customer role (for the customer who likes to enter, order and leave) we can define a
unique set of use cases for each of these types of customer. Using these use cases, we can then add
functionality into our web site for each user. We can even customize the web site so that people in different
roles see different web pages and have different options.

One of the most interesting things about building web applications is that we really cannot accurately define
the different scenarios a user of the site will use until the site is up and running and people are using it.
What we can do is research the best web sites currently in operation, research the potential users of the sites
(most likely customers), research successful business patterns, send interviews to potential users, etc. Based
on this we can create our first design. Once the site is running, we have users log in and then track what
they do. We will see patterns emerging on how users move through the site and place orders (if placing
orders is part of the site). Based on these patterns, we can refine the different types of roles that the web
application has and what scenarios are associated with these roles. From this we can build and refine our
use cases, which in turn will allow us to revise and upgrade the design of our site. This brings up a critical
point. When building a web site, you cannot design and build it in one development cycle.

Chapter 6

182

The very nature of web sites requires that they be built in iterative cycles. The first cycle creates the initial
site with the basic functionality of the site. Based on how the site is used the roles are refined or new ones
created and scenarios are revised or created. These new roles and scenarios will be the basis of the next
cycle of development. Once this cycle is complete, the site usage will lead to new refinements of roles and
scenarios leading to the next stage. As the market and the Internet itself evolve, so must a good Internet
site. The cyclic methodology allows the site to be continuously refined so that it is always the most efficient
for the users.

When building a web site, one fundamental question you have to ask is whether to allow users of the site
full access without logging in or to require them to log in. By having them fill out a login form and then
logging in each time, you can track how users within different categories use your site. Thus, a travel site
may be able to compare the difference between how business customers and regular tourists use the site or
what pages and what items people in different income brackets order. This information is extremely
valuable and can allow you to customize your site for each user type (role). The problem is that many
people do not want to give personal information, do not want to waste time logging in, and may simply
move on to another site that does not require logins. You can make logging in optional and offer benefits to
those who log in, without excluding those users who choose not to log in. You can even use this option to
make comparisons between those who log in and those who do not

Many sites use cookies to store account and session information that is maintained
at the client (system) level. When a customer returns to the site the cookie(s) can
relate information about how the customer used the site, which can in turn be used
to customize the site for the customer experience. However, some customers are
reluctant to store cookies on their computer.

As we said, some of your users may not be people. As everything starts to become automated, we are now
starting to pass information from computer system to computer system. This means that a user of your
Visual Basic application may be another computer system. Currently, this may mean that you have to
produce output in some standard format, such as EDI (Electronic Data Interchange). With the new emerging
XML standard, it is likely that XML will soon become a major part of communications between computer
systems.

XML is a language similar to HTML. One can make XML files to store data such as a
recordset (a set of table from a data source usually held in memory). XML files have tags
within the file that identify the structure of the data in the file. As the file is self-defining, it
is an excellent choice for sending files across different operating systems and environments.
These files also can be easily sent across the Internet and used as a data source for the
client.

Just as you need to determine how a human user of your system will use the system, you will need to do the
same for how systems use your computer. These other computer systems will be actors in your use cases,
and you can build scenarios based on how they will use your system. You will also need to carefully define
how information will be formatted and transferred using business rules.

Design Phase: Conceptual Stage

183

Your Visual Basic application may need to pass information in disconnected recordsets for a Visual Basic
EXE application, in the format of HTML to an ASP page for a web application, and also in the format of
XML to transfer information to another system. All of this functionality may be in one component.

Disconnected recordsets are copies of information from the database, but once the records
have been retrieved into the recordsets, the connection to the database is severed. Later,
once the information in the disconnected recorset is updated, it can be reconnected to the
database

For example, if we build an order entry application we could build a product component. For the order entry
clerks this product component would be in a Visual Basic EXE application using disconnected ADO
recordsets, in the E-Commerce site it would be in an ASP page being controlled by server side Visual Basic
script and need to return an HTML page, and finally it could be used in a Visual Basic application that
automatically reorders products, when the total items in stock falls below a certain number by sending a
message in XML format to the supplier. One product component will be producing information in three
formats.

Some of you may be thinking that it is not good design to make one component that performs so many
functions. We could just as easily build all of our components so that they only use disconnected ADO
recordsets. We can then build another component that takes a disconnected ADO recordset and converts it
into either HTML or XML format. In this way, we build all our components to work with disconnected
ADO recordsets, and have one component that provides the additional formats when they are needed. This
saves us putting the same conversion routines into every component but still allows us to reuse our
components in many environments. The best solution depends on the available resources and the
requirements of the system.

An application built from the envisionment phase will include the big picture. Between the Enterprise
Architecture Documents, the Vision/Scope Document and the use cases, we will have a broad view of how
our Visual Basic application will fit into the Enterprise. With this view, we can build reusable components
that fit into many projects and diverse situations.

Once the user is identified, we should create a profile of the user and what services they will be requesting
our system to perform. The educator and the project manager, assisted by the rest of the team if necessary,
should make these profiles. Once the profiles are complete, they should be added to the Enterprise
Architecture Document under a new section called User Profiles. The use cases should form their own
separate document.

Chapter 6

184

Iterative Cycles
In our schedule template (Chapter 13), we have placed a clear boundary between the different phases of the
project and clear boundaries between the stages of the design phase. In reality, though, parts of one cycle or
stage may end prior to the cycle or stage being complete, resulting in parts of the next cycle or phase
beginning. In this way, there is overlap between the different stages and phases. We have already said that
the conceptual stage will usually extend from the envisionment phase to the design phase. It is quite
possible that a set of use cases will be completed by the educator and handed over to the developers who
will start turning them into the UML sequence diagrams. Building sequence diagrams is part of the logical
stage, yet the educator may still have many other use cases they need to complete so the conceptual stage is
not actually done. Even when all the use cases are complete and the conceptual stage is complete we may
find, while creating a sequence diagram, that something from our use case is missing and have to go back
and correct it.

The design of the project is an iterative process. We start with our initial view of the design and then
present it to the users who suggest modifications. We make these modifications, show them to the users and
again make necessary corrections. We begin to make sequence diagrams, find a few other areas that need to
be polished in our use cases and finally, after many iterations, arrive at the correct use cases. While we are
doing our sequence diagrams, we will show them to the development team and the users and once again
polish them. When the sequence diagrams are complete, we will again go through many iterations until they
are complete. We will go through this iterative process with the UML diagrams in the physical stage, too.
While our schedule has clear boundaries for the phases, in reality there may be a blurring of the lines
between phases and stages.

Summary
In order to design a successful enterprise solution, you must not just look at an individual scenario, you
must see the big picture. How does everything fit together? Can one process be improved by improving
another process? Does improving communication between different parts of a workflow improve the overall
workflow? Be creative, use your imagination. Perhaps one of the best sources of ideas is the brainstorming
sessions in the second consensus meeting. Many great ideas will come out of this meeting. The reason I
suggested writing down all suggestions, even ones that did not get a high ranking, is that sometimes an idea
that seems stupid or just too risky at first, may turn out to be the best solution. The suggestions you gather
at the consensus meeting are the creative ideas of the entire team, and more importantly, the people most
familiar with the business processes. These are the people who are most likely to come up with the best
solutions.

Design Phase: Conceptual Stage

185

In the conceptual stage we take this a step further. We interview users to find out exactly what goals they
need to achieve, how they currently achieve them and exactly how we can improve the ease and efficiency
with which they can achieve them. The users are a great source for recommendations on how to improve
processes. By reviewing their reasons why a process is poor, we can often see how to improve it. Based on
this information we create scenarios and use case models for every third level goal identified in our
Vision/Scope Document.

Thus we have a set of use case models based on the goals identified by the client and management (and
refined by the whole team) along with detailed information about how exactly the user would interact with
the system. By proceeding in this manner, we are well on our way to creating an application that will satisfy
both business and user requirements. It is very important that the entire team stops focusing only on
building components. Instead, they need to start viewing their coding as the fulfillment of one or more
goals of the client. This shift in thinking is critical to producing Visual Basic applications that meet the
expectations of the client.

In the next chapter the use cases will be analyzed for a description of the services the system must provide
(identified by the verbs in our use case Flow of Events, such as create, update etc.) and in order to start to
identify system components (prime candidates are the nouns in our use cases, such as Customer, Order
etc.). However, we will see that before we can really identify which components we will need, we need to
consider the framework within which they will operate.

Chapter 6

186

Design Phase: Logical Stage

The logical stage is the point at which the developers really become the focus of the project. Up to here, the
focus has been on defining the goals of the client and extracting from those a set of UML use cases. At this
point, therefore, we know what the application is going to do, but not how that will be achieved. During this
stage, the developers will convert the use cases into a set of sequence diagrams, which define more
explicitly the components that the product will contain and the services and properties that these
components will require. In order to identify what components we need, it will be necessary to determine
the system architecture which will be the most suitable for the product. This stage will also require the user
interface to be prototyped and feedback on this prototype to be obtained from the end users.

Therefore, in this chapter we will:

� Refresh and expand on what we've already learned about object-oriented programming

� Examine some of the considerations we need to make in order to choose the framework for our
application

� Consider how to convert UML use cases into sequence diagrams

� Take a quick look at prototyping a user-friendly interface for the end user

The logical stage may thus have the following deliverables:

� A set of UML sequence diagrams

� A user interface prototype

� An evaluation of the user interface prototype

� A user interface specification

� Small test applications to test new technology and new solutions

� An evaluation of the test applications

Chapter 7

188

Summary of Team Focus
The most obvious activity during this stage will be the creation of sequence diagrams by the developers.
This activity will be coordinated by the project manager and by the component managers, who will be
responsible for ensuring that the project remains on schedule. Developers will also be occupied in creating
the prototype graphical user interface (GUI).

The testing group will be involved in devising a strategy for testing the components. This will include
designing functions to test each component, and every method and property of the components. They will
also cooperate with the user educators and the end users in beta testing the GUI prototype. The end users
will be interviewed by the educators and invited to give feedback on the prototype.

Overview of the Logical Stage
By the end of the conceptual stage, we have transformed the goals of the client into a set of UML use cases.
Each use case will represent a single goal (task) that the user needs the system to accomplish for them.
Within these use cases, there will be many services that the user will need the system to perform. It will be
the job of our Visual Basic application to perform the services found in these use cases.

During the envisionment phase and conceptual stage, the development team will be working closely with
the client to define the goals and services of the system. The logical stage begins when the users and the
development team have defined these goals and services and the scope of this current project.

In the logical stage, there is a shift of focus: up to now, the client has been our primary resource for
designing the project; from this stage onwards, the members of the software team will take over most of the
design work. They will work together to turn the user’s goals into objects and to define the interfaces (the
methods and properties) for these objects. These interfaces will define the services and attributes of the
system’s components. The developers will also create a description of the interaction between these
components.

Therefore, the logical stage centers on defining the components that will accomplish the business goals of
the user. This stage will determine what services these components will perform, what attributes
(properties) they will need to perform these services and how they will communicate with each other and
with the user. There will be no discussion on how the components will be coded, only what the interfaces
will be. Thus, the components designed in the logical phase could be built with any development tool. In
the physical stage we will actually begin to look at how our design can be optimized for the development
tool we are using, which in our case, is Visual Basic.

The Scope of the Logical Stage
Perhaps one of the most common questions about the cyclic methodology is, “How detailed should I get in
each stage?” For the most part, each stage should focus on accomplishing a set of tasks. The conceptual
design stage defined the goals of the users. The logical stage will define the interfaces of the components
needed to fulfill the user’s goals. The physical stage will be used to define the way we will need to code
these components.

Design Phase: Logical Stage

189

If we go beyond defining the public properties and methods of our objects in the logical stage, we are
probably going too far. If we need to test new methods or techniques and you have to define the private
methods and properties in the logical stage, this is fine. Otherwise, in the logical stage it is better just to
define the component’s interface.

Before the logical stage, we have been viewing the project from the outside. We were not concerned with
how the system would fulfill our goals or even what components would exist inside the system. During the
logical stage, we take our first peek inside the system. We will not look too deep; we are only going to look
at what components are needed to enable our system to accomplish its goals. In the physical stage, we will
take a closer look and define how these components will look. Let us a look at an example to get a better
idea of what this means.

Imagine we were designing a car with the cyclic methodology. During the envisionment phase and the
conceptual stage, we would describe how we want the car to look, the features we want in the car, the way
the gauges will look, how the car will drive, etc. Essentially, we would describe every detail about how the
car will look and drive by the end of the conceptual stage. In the logical stage, we would lift the hood and
start describing the engine and all of the mechanical components.

Every component that we need to make the car perform and function the way we described it in the
envisionment phase and conceptual stage will be defined in the logical stage. We will not say how these
components will work; only what they must do (what services they must perform) and what characteristics
(properties) they will have. Thus, we can say that we will build an engine that will have a certain color,
have a certain range of revs per minute, etc. We will need an alternator that will produce a certain voltage,
turn at a given rpm, etc. Once we know what components are needed for our car, we can describe how each
component will communicate with each other and with the driver.

When we have finished describing the components and how they communicate, we will move on to the
physical stage, where we will actually start defining the design of the components. In the physical stage, we
would make blueprints of the engine specifying every characteristic of the engine. Finally, in the
development phase we would choose the metal, mold it and actually build the engine.

In summary, we will start with the most general goal for the project (the first level goal) in the
envisionment phase. We will expand this first level goal into a set of detailed goals that will be used to
build the use cases in the conceptual stage. The use cases will be written in the language of application
design (that is, we will talk about services and information input and output). In the logical stage, we will
expand the use cases into a more detailed design of our application, i.e. a description of the components, the
communication between the components, the communication between the components and the user, and the
framework for the application, using sequence diagrams. Once we have done this, we will expand our
sequence diagrams into a set of pseudo-code instructions in activity diagrams in the physical stage.

Pseudo-code involves summarizing the code you will write in a set of descriptive sentences.
For example, the following lines illustrate how we might write pseudo-code instructions for
opening a connection to a database:

Initialize ADO Connection

Open ADO Connection

Each step will become one or more lines of actual Visual Basic code.

Chapter 7

190

The flow of a project from the defining of the general goals to the creating of activity diagrams can be
represented as follows:

All the way through the envisionment phase, the conceptual stage and the logical stage we are just looking
at the system from the outside. In the physical stage we will be looking at the inside of the system. We are
doing this because we are designing an object-oriented Visual Basic project. As we will discuss in this
chapter, when we are using an object, we are not concerned with how an object does something, only what
services it will need to perform and what properties it will have. We will therefore only be concerned with
identifying the objects of the system and the properties and services they will have all the way through the
logical stage. By the end of the logical stage, we will have a detailed description of the objects we will need
to build for our system. These objects can be built from any programming language as long as they can
perform the required services. To design an object-oriented Visual Basic application properly, we will need
to take a look at some essential properties of objects.

Object Attributes
We met two of the most important attributes shared by objects in Chapter 1: abstraction and
encapsulation. It is worth refreshing and expanding on our definitions of these concepts, since they are
vital for a proper understanding of object-oriented programming.

Abstraction
Abstraction is the process of representing a related group of items by a general term that classifies them
into one group. For example, the word car is a general classification for something with four wheels, an
engine and used to get you from one location to another location. When I say the word car, you immediately
know what I am talking about. You do not need a description of what a car is; you immediately know what
one is. Abstraction is essentially classification: grouping together things with similar properties
(characteristics) and behaviors (things they are capable of doing, such as performing a service) and giving
that group a name.

Design Phase: Logical Stage

191

We will want to perform abstraction with the descriptions in the use case. When we look into the use cases,
we will find groups that all share the same characteristics and perform the same services. Thus, we could
have many customers that share similar characteristics such as having a credit card number, billing address
or orders on record. Customers will also have certain behaviors, such as placing orders or changing their
address. Thus, I can group all the people with these behaviors (placing orders, changing orders…) and
characteristics (a billing address, orders on record, a credit card number…) into one group called customers.
Creating abstractions will be the first step in creating objects and this is the first thing we will do in the
logical stage.

Abstractions not only help us build our objects, but they also help us view our systems in a simpler manner.
By creating these classifications, we will reduce our complicated system into a group of objects. We will
find it much easier to talk about abstractions, especially to the client.

Encapsulation
As we have said, we were only interested in what the system is supposed to do (what services it provides)
throughout the logical stage. How the system performs these services is something we are not concerned
with until we get to the physical design stage. This is encapsulation. Essentially, encapsulation is the
process of building components that perform a set of services and have a set of properties. These
components will hide how they perform these services.

Encapsulation is one of the fundamental concepts of building objects when working in Windows. Windows
9x and NT all use the Component Object Model (COM). We could write entire books on COM, and indeed,
many have been written. Essentially, COM allows components running under Windows to communicate to
other components. COM acts as a translator between components. One component will make a request to a
second component to perform some service or one component will make a request to set a property on a
second component. COM will transfer this request from the first component to the second component, the
second component will perform this service or set the appropriate property and COM will carry any
messages back to the first component, if necessary.

For more information about COM from a Visual Basic perspective, see VB COM: A Visual
Basic Programmer's Introduction to COM, ISBN 1-861002-13-0, from Wrox Press.

The great thing about COM components is that they can be built from any development tool that works with
COM. As long as the component exposes its methods (the services it can perform) and properties in a way
that COM has access to them, it makes absolutely no difference how they are built. In other words, it does
not matter how the object performs its services, only what services it has to offer. Which, of course, is what
encapsulation is all about.

Visual Basic components are COM components. Encapsulation and COM allow us to build our Visual Basic
components so that they can be used by any other COM component. Our Visual Basic components can also
use any other COM component regardless of the development tool which was used to build the component.
However, for this all to work, we need to design our Visual Basic components properly. To do this, we need
to start with a focus on what the components will do, and not how they will do it. This is exactly what we
have done.

Chapter 7

192

Encapsulation offers us other advantages, too. Since we are only concerned with the methods and properties
that the object makes available (that is, public properties and methods) we can change the internal workings
of our component, keep the external methods and properties the same and not have to change the code in
the components which use this component.

For example, imagine we have a Customers component and an Orders component. The Orders
component has two public methods, CreateOrder and DeleteOrder and one property, OrderID. The
Customers component uses both these methods and also the property. Let us imagine that the Orders
component starts off as a COBOL program accessible through COM. Perhaps this is a very old legacy
program running on the mainframe that functions as a Windows COM component through the magic of
SNA Server (a Microsoft server that allows communication between the Windows world and the mainframe
world). Our first cycle is to get the Customers component up and running and to see how it works. Once
we have completed this, we now decide it’s time to upgrade our old COBOL component, Orders. We
rewrite this using Visual C++. Our new C++ component still has CreateOrder, DeleteOrder and
OrderID, which all work exactly as they did in the COBOL program. As for the Customers component,
we may have to make a few changes in how it references Orders, but any code that calls the methods or
properties of Orders can remain unchanged. This is one of the wonderful features of encapsulated objects.
Because we don’t care how an object performs its services, it makes no difference if it changes how it
functions internally as long as the public methods and properties do not change.

This is one of the fundamental concepts of object-oriented programming. The public properties and
methods, which we will call the object’s interface, that you include in the design of your project, must not
be altered. You can change the internal, private methods and properties as much as you like, but you had
better not change the public ones. If you are building objects with Visual Basic, consider your final object
design as an irrevocable contract between you and the developers that will use your object. You will create
total havoc to schedules if you initially design your object with a certain set of public properties and
methods, give this design to other developers who design other components based on this design, and then
later change your design. All the components using your component will have to be redesigned. If the other
components are built, they will have to be rebuilt. Doing this will not only make you rather unpopular, but
also destroy the integrity of the entire project. This is why it is so important that you take the time to
properly design your object right from the start.

If you should need to add functionality to your object after you have designed it, this will not affect any of
the objects dependent on your object if you only change internal properties or methods. If you start adding
new public properties or methods though, you risk walking into a potential landmine.

Imagine that I have created Version 1 of a Customers component with method CreateCustomer. I
release to dozens of developers who use this component in dozens of Visual Basic applications. Later, one
of the developers tells me that they really need another function, DeleteCustomer added onto my
component. So, I create and release a new version, Customers 2.0, with the CreateCustomer and
DeleteCustomer methods. Now, some developers have applications using Version 1 and some using
Version 2. What happens if someone installs an application that uses Version 2, which overwrites Version
1? If there are still applications on the machine that use Version 1, there is no problem as the
CreateCustomer method is still supported by Version 2. But what happens if we install a Version 2
application, which puts Customers 2.0 on the machine and then someone installs an application on the
same computer which installs Customers 1.0? Now there is a problem, as the Version 2 component will
be looking for the DeleteCustomer method and it will not be there. Version 2 will probably no longer
work.

Design Phase: Logical Stage

193

In an ideal world, this would not be a problem: it is for this very reason that we assign
version numbers to components. Setup applications should not install older versions of a
component over more recent ones. In reality, however, it is a problem, and it is impossible
to guarantee that a newer version won't be overwritten if your component is to be released
to other developers and installed by many setup applications.

Thus, you can add public methods and properties to your components without changing the GUID (an
identifier that uniquely identifies your component), but you should only do this when you are certain that an
earlier version of the component will never overwrite a later version. If you have a Visual Basic server
component that only runs on one server, and there is a strict control of what components are placed on that
server, it is safe to add public methods and properties, as it is not likely that the older version will be
installed. If you are distributing your components over the Internet or over an intranet and you increment
your version numbers, you should also try to make sure that the newer version is always installed over the
older version. Thus, when you have strict control over the component, it is safe to add public methods or
properties. It is a very bad idea to add public methods or properties when you do not have strict control
over a component, such as when a component is used by many developers and placed in many setup
programs. When you do not have control, it is better to recompile the component with a new name and a
new GUID.

We can see that we can adapt our objects to new requirements by adding new private methods or properties
or by changing them. Any changes to the internal workings of an object will have no affect on your
component. This is all possible because of COM and because encapsulated objects perform services without
us caring about how they actually perform these services. As for adding public properties and methods, this
can be done when there is strict control over the component. If we do not have strict control, then the
component should be renamed and recompiled as a new component.

Encapsulation and abstraction work together. Objects will represent a certain group of things that all share
similar properties and methods. Thus, the customers Smith, Jones and Williams will all be objects in an
order entry system. They are all customers and a customer is an abstraction. By creating encapsulated
objects that contain an interface with public properties and methods, we have found the perfect way to
create our abstractions in Visual Basic.

To summarize, encapsulation brings the following benefits:

� It gives users of the object an interface to work with that defines the public property and methods.

� It provides a way of hiding the complexity by creating abstractions.

� It creates an independent, self-contained unit whose internal workings are not important.

Cohesion and Coupling
When working with objects, we can look at how closely the different internal parts of the system are related
to each other and we can also look at how closely each object is related to other objects in the system.
Cohesion is the internal binding of a component, and coupling is the external binding of components.

Chapter 7

194

For example, if we consider the computer object we discussed in Chapter 1, we can see that each computer
is made up of processors, memory boards, sound cards, etc., that are tightly bound together. There are many
different types of internal chips that together create a very tightly bound system. This is a tight form of
cohesion. A number of computers can be linked together in an intranet, which forms a much looser
coupling. This arrangement - a very tight cohesion associated with a loose coupling - is very common.

Cohesion and coupling do not only refer to our Visual Basic objects. Coupling and cohesion also refer to
our methods, the entire application, and essentially any part of the system we are building. Our goal will be
to use tight cohesion and loose coupling. Let us look at cohesion and coupling to see why this is the best
solution.

Cohesion
There are four types of cohesion that are beneficial to Visual Basic components:

� Functional Cohesion. Functional cohesion creates the tightest binding within a component. A
component that has functional cohesion only does one thing. If a component performed more than one
function, than the component would be doing two separate things, which means the component is not
tightly bound. All of your Visual Basic methods, both private and public, should have functional
cohesion; that is, they should only do one thing. This makes it very clear what the function does and
makes it easy to debug.

� Sequential Cohesion. A component that has sequential cohesion will have internal components that
must work in a specific order. The internal components will also share internal data. Several internal
methods that pass data from method to method through parameters, and work in a specific order, would
be considered sequential cohesion. This is common when you create functions or subs in your Visual
Basic code that perform some operations on the data. Sequential cohesion makes it easy to follow the
flow of the code. Debugging is easier as you can check the parameters which are passed into a method
'by reference'; this means that a variable itself (rather than its value) is passed into the method, so the
value of the variable can be changed within the procedure.

� Temporal Cohesion. Temporal cohesion means that internal operations are combined so that they can
be done at the same time. For example, when you update an order, you will update the Orders, Order
Details and Products tables in the database at the same time.

Components with these types of cohesion are tightly bound, perform a clear set of services and are easy to
debug and understand.

� Communicational Cohesion. In communicational cohesion, the internal operations of the component
share the same data but do not communicate with each other. For example, if you create a global
connection variable that is used independently by all of your methods, this would be communicational
cohesion. You must be careful with global variables, though, as these are not always the best coding
technique for Visual Basic. You should be very careful when working with communicational cohesion
always to set and retrieve the values of global variables through methods and properties (rather than
accessing them directly), even when the variables are only used privately.

Design Phase: Logical Stage

195

All of these types of cohesion result in Visual Basic code that is easy to read and debug. Because
components with these types of cohesion are tightly bound, they can easily be tested in isolation from the
rest of the project. This means that if an error is found during the testing of an individual component, the
error can only be in that component. If each function has a single clear purpose, it should be fairly easy to
see what is wrong and find the function in which the error occurred.

On the other hand, there are three other types of cohesion that result in Visual Basic code that is poorly
written. These are:

� Procedural Cohesion. This is what happens when a series of operations are grouped together because
they occur in a specific order. This differs from sequential order in that the operations do not share data.
When two routines manipulate different data, they must be performing two completely different
functions, so they are very loosely cohesive. There will be no clear logic in the order of the operations
and consequently it will be difficult to follow the code. As functions are grouped together without having
logical cohesion, it becomes difficult, if not impossible, to test individual functions and components.
Often, entire sections of code must be tested at once. If a bug is found, you must search through
mountains of code to find it, which could take a very long time.

� Coincidental Cohesion: This is simply a worse case of procedural cohesion. In procedural cohesion,
there is at least some logic in the order of the procedures, but there is no sharing of data. In coincidental
cohesion, there is simply no reason for the order of the code. Code jumps from one module to the next
with no obvious pattern or reason. The common term for this is 'spaghetti code'. It is unreadable, un-
maintainable and impossible to debug. Visual Basic has evolved to a level where the developers should
be professionals. Professional developers should never be writing this type of code. It does not matter
how many great features of Visual Basic a developer may know or how deep their knowledge of the
language is if they write code that is a tangled, unmanageable mess.

� Logical Cohesion: The routines have a logical parameterpassed in that determines what the routine will
do. Inside the routine will be a huge Select Case (or, even worse, an If ... ElseIf statement)
that will determine what the routine will do. These routines can stretch to hundreds of lines of codes and
become completely unmanageable.

The most common reason for procedural and coincidental cohesion is a total lack of a design phase. During
the design phase, and specifically the physical stage, you can see the big picture and organize your
components so that there is a logical flow of the internal components. Being given a set of properties and
methods that your component is supposed to have, and then just start hacking out code, will result in code
that does not have a clear organization. Sometimes a very carefully designed project can end up with
spaghetti code because of feature creep. As new features are added in the middle of coding, modules have
to be hacked and changed. New modules suddenly need to be stuck in to add this new functionality and all
order is soon lost. This is why it is so essential to create a good design and get all team members, especially
the stakeholders and sponsors, to sign off on the final design. A clear agreement has to be made that once
the design is final, new features will be added in the next cycle. Because there is a documented design, even
new team members will be able to work within the existing design and to add features in ways that continue
“clean” design in the next cycle.

Chapter 7

196

Coupling
Ideally, we want to be able to test components by themselves first. To do this, each component must be
loosely bound to other components. Loose coupling also means that we can remove one component, replace
it with another that performs the same services and has the same public properties, and the rest of the
project will be unaffected. The connections between components are defined by their interfaces, which
gives us maximum flexibility in building components.

Components should have interfaces that are simple to understand. It should be clear what each method and
property is. The interface should not be too complicated, and should be kept as small as possible. If the
interface begins to get too large, it may be better to break the component into a hierarchy or into smaller
components. Nothing should be hidden: everything should be very straightforward. The one exception to
this is passing parameters into the initialization event of a class (this occurs when an instance of the object
is created). As this cannot be done in Visual Basic, we must initialize our class without passing in any
parameters and either have an additional method or use properties to initialize variables that need to be set
at the creation of the object. Interfaces should also be as generic as possible to allow the component the
maximum amount of flexibility.

Composition and Emergence
Components that are loosely coupled and also have tight cohesion can be thought of as a set of children’s
building blocks. These blocks will come in many colors and sizes. We can create many different buildings
with the same set of blocks. In some cases, we can pull a block out and replace it with another block to
create a completely different building. Our components will be like these blocks, usable in many different
projects to create applications with different functionality. To add functionality to our applications, we can
add methods or properties to our components (but we may never remove them) or remove a component and
replace it with a new component that has this new functionality.

The composition of a system is the arrangement of the components within the system. A set of components
may come together to define a single entity. For example, a set of components may work together to fulfill
a particular goal: we can combine Customers, Orders and Products components to allow the user to
enter an order, etc.

Associated with composition is the concept of emergence. Emergence is the creation of something which is
different to the sum of its parts. For example, we can take pasta, tomato sauce, spices, meat, mozzarella and
ricotta cheese and put them all together to make baked lasagna. Separately, these ingredients do not make
lasagna; it is only when they are all combined that we get lasagna.

Composition and emergence are perhaps two of the most difficult aspects of building a Visual Basic object-
oriented application. They require you to look very carefully at all of the components in the system to see
how they communicate to each other and what services they will perform. Once we do this, we can build a
system from these components, other systems from these components, and different objects from these
components. To put all of these pieces together, we will have to place all of the information into some type
of model.

Design Phase: Logical Stage

197

Building a system like this is simply too complex to visualize mentally. We can see how components fit
together within the entire system more clearly if we create models of the system that allow us to visualize
the components. The best tool for doing this is UML. In the conceptual stage, we used UML use cases to
create a formal description of each of the users’ goals. In the logical stage, we turn these use cases into
UML sequence diagrams. Sequence diagrams will show how our objects must communicate to each other,
what services they must provide and where in the system they will be located. Just how do we convert UML
use cases into sequence diagrams? Once again, there is no black magic. We begin with a careful review of
our use cases to define the objects that will be needed by our system. Once we have done this, we will map
the communication between our objects using sequence diagrams.

Defining Components from Use Cases
Well, that concludes our refresher of some of the theory behind object-oriented programming. We can now
start to think about how we will recognize the components which we need for our application. Finding the
components in our use cases that will be performing the basic services for our system is usually not too
difficult. When looking at the text in the use cases, we will find that objects will usually be nouns and the
things that describe these objects will be properties. We should look for real world objects, such as
customer, order, etc. However, some objects will not have any counterparts in the real world; we will
discuss these later in the chapter.

The objects that we will define in the logical stage, which will become Visual Basic components in the
development phase, should fulfill one or more goals of the user, be loosely coupled and tightly cohesive,
encapsulate its functionality, and provide a component that can be easily used by other components.
Looking at our use cases, we will usually find that the services our objects will need to perform are verbs.
We can either identify the verbs and then ask, “What object will perform this service?” or identify the
nouns and ask, “What services (verbs) are associated with this noun?”

To do this, let’s take a look at the goal of placing an order. In our initial interview with the user we got
what is called a scenario, which is a broad, general description of how something is done. We then removed
from this anything which should be placed in a business rule or which was outside the system. By following
these steps we created a use case, which describes how the user will interact with the system; that is, it
describes exactly how the application will function from the user’s perspective.

We will just look at the sequence of events part of the use case, as we have gone into detail about the other
sections in the previous chapter. We will underline the nouns that are good candidates for becoming objects
in our application and place the verbs that may become services in italics. We will bold anything that can
become a separate use case, such as creating a customer:

Order Entry
Place Order

� Primary Actor: Sales Representative

� Actor begins new Order

� Actor requests Customer information from the system

� Actor will Create Customer if the customer does not exist

Chapter 7

198

� Actor will Update Customer Information if the information is incorrect

� Actor selects the Product Customer wants

� Actor enters the quantity of the Product the customer wants

� (Repeat for each product the customer wishes to order)

� Actor submits the Order

Looking at this use case, we can identify three objects that will be required by our order entry application:
Order, Customer and Product. Clearly, we don’t want to underline every noun in the use case: objects
must provide services (so they must have methods) and have certain attributes (properties). There’s no point
in making an object out of ‘quantity’, for example. This doesn’t have any attributes, nor does it provide any
services. Rather, it is descriptive of the product, so it will become a property of the Product object.

We can further see that we have italicized seven verbs, which will give rise to the methods exposed by
these components. Three of our verbs - place, create and update - are amongst the goals of the primary
actor, the sales representative; these all require a separate use case. ‘Place order’ is the current use case, and
we have to define use cases for ‘create customer’ and ‘update customer’. From this we can see that we will
need an Order component that has an Add New method to allow us to add new orders. Before we can
actually use the Add New method, though, we will have to perform all the steps listed in the use case. As
for the Customer component, it will need an Add New method to create a customer and an Edit method
to update a customer. These methods will also require the steps listed in those use cases to be completed.

This leads us to an important observation: the steps listed in the use cases are either a request for
information needed to set a property for one of the objects of the use case, the actual setting of the property,
or a request for a service from the system. In our example, the Order object is the main object of the use
case. Note that an object’s property can hold another object, so, for example, our Order object will have a
Customer property that will identify who placed the order - this will be one of our Customer objects.
The following steps will identify the value of that Customer property:

� Actor takes a call from the customer

� Actor requests customer information

� If customer does not exist, actor will Create Customer

� Actor checks customer address

� If incorrect, actor will Update Customer Information

An order will also require a list of the products ordered and the following step will determine the value of
the Products property:

� Actor selects product customer wants

� Actor enters the quantity of the product customer wants

In a real system, we would probably have an Order Details object, too, that would hold
the list of products. I have left it out to keep the example simple.

Design Phase: Logical Stage

199

Once we have set all the properties, we can actually submit the order. Notice that only the steps required to
get information to set a property of the objects in the use case, actually to set the property or a direct
request for a service from the system belong in the use case. If other objects are descended from the main
object, as the Customer and Product objects are derived from the Order object, we can include steps
to set properties for these objects. However, if setting these properties can be grouped together to form
another goal of the user, such as adding a new customer or editing the information on an existing customer,
these steps should be moved into a separate use case.

When we reach the point where we are actually trying to identify the objects and the properties and methods
of these objects, we might find that we must refine our use cases. A large use case may contain steps that
fulfill a goal, such as adding or editing a customer, that need to be separated out into another use case. In
our above example, we would probably alter the use case so that it also had an Order Details object to
hold the product information. Design is an iterative process and often requires many revisions before we
reach the best design for our system.

Now that we have identified our objects, we are almost ready to start to define their interfaces - their
methods and properties. However, first we must give some consideration to the framework for our
application, and think about how to decide where our various components will be located. What we decide
will have a significant effect on how we must define our components.

Choosing a Framework
While our choice of programming language may not be a central part of the logical stage, how we are going
to distribute the application will have a large impact on our logical stage design. Whether we choose to
build an application on a two-tier or three-tier framework will have a major impact on the logical design
stage because it directly affects how we will design the component’s interfaces.

We have three primary alternatives how to build our systems. These options are the monolithic (single-
tiered) model, the two-tier and the three-tier models. Each of these types of applications has its place, but
using an inappropriate model could have a serious performance cost to the application. It is vital that
everyone in the team understands the implications of choosing a specific architecture, so we will spend
some time considering this question.

Single-Tier Applications
One-tier systems run completely from one machine. They tend to be monolithic systems that do not have
separate components. If they are monolithic and not built from components, they can only be tested as a
single component. Because of the incredible difficulty in testing and maintaining non-modular monolithic
system, single-tier systems sometimes have a bad reputation. There are still situations, though, where it
makes sense to build this type of application.

An application that runs on a computer and does not need to access data on another machine should use the
one-tier model. Examples of such applications are screensaver programs or an appointment scheduler. If
you were writing an application that controlled an assembly line that puts caps on bottles and then checks
the caps, there would not be enough time to communicate to another computer between each cap. A
program that needs response time in milliseconds will probably be one-tier.

Chapter 7

200

Creating one-tier systems is still a large part of what Visual Basic programmers are doing. If you are
building these systems, they should be built from components. An excellent example of this is the Microsoft
Office suite of products. For the most part, Word, Excel and PowerPoint are one-tier applications.

Two-Tier Applications
However, what if we have a number of order entry clerks, who all need to access the same database from
their computers? We will need more than one tier: an order entry application on each clerk’s computer
(called the ‘client’) which will retrieve and update data from a database on a server which serves the whole
company. Systems with two or more tiers are usually called client-server applications. Two-tier systems
usually consist of a database server and a client application which retrieves and updates data on the server.
This allows a number of people using different client computers to access the same database concurrently.

Data Conflicts and Locking
However, this causes a problem of its own. Suppose we have two users both accessing our products
database. If both only want to read the data, there probably won’t be a problem. However, if one client
wants to change some data and the other wants to read the same data, we will have to step in and do
something. Otherwise we may have a situation where one user changes a field a value (say, reducing the
stock level of Ipoh Coffee from 20 to 15 when a customer phones in an order) while another is reading the
field and sees the original value of 20. Alternatively, one user may change the field value from 20 to 15 and
then cancel the change, but another user may view the field and see a value of 15. Finally, two users could
access the same field for editing at the same time. One user changes the field value from 20 to 15 and saves
it while another (responding to another phoned order) changes it from 20 to 17 and saves it, overwriting the
value of 15, instead of further reducing the stock level to 12.

The usual solution to all of these problems is locks. While locks can solve the problem, we will see that
they too have some serious problems. If you create a lock that does not now allow a client to look at or
change a record when another client is changing a record, all of the problems with client-server go away.
Unfortunately, though, locks introduce their own set of problems. Locks can lock more than one record;
sometimes they can lock many records. If someone else needs one of these locked records to do their job,
they will not be able to do their job until the lock is released. Thus, you will have periods of time where the
users are waiting for a record to become unlocked. Sometimes this is not a problem; sometimes this can
become a major problem and slow down work performance.

This type of locking, which prevents a record being edited by more than one user at a time, is called
pessimistic locking. There is another type of locking, called optimistic locking, which avoids this problem
by locking the record(s) only when the user attempts to update the database. However, as you will
appreciate, this has the drawback that two users can still edit the same record concurrently and won’t be
informed of any conflict until they attempt to update the database. Without going into too much detail, I
think you can begin to see that things can get very complicated with client-server and locking records.

Design Phase: Logical Stage

201

Scalability
Another significant problem with two-tier applications is their lack of scalability: we can suffer enormous
loss of performance as more and more users are added. Imagine we write an order entry application as a
two-tier application. The client application will enter the order and the database will have stored procedures
to perform the updating and retrieving of records. The initial two-tier application has about ten users. The
company later starts selling over the web, and suddenly the database has to run stored procedures for
thousands of clients. Scaling a database is not very easy and we can reach a point where we run out of
connections. Thus, a two-tier architecture is not very good for web applications or for large-scale enterprise
applications that will need to be scaled.

The solution to this problem is to add an extra tier - we can take any business processing that does not
directly produce what the users see on their screens and place it into a middle tier that sits between the
client application and the database. The middle tier is then responsible for managing the network traffic and
the load on the database. Furthermore, we can decide to have a separate, dedicated machine for our middle
tier, which serves our several hundred users. Any updates that need to be made to our business processing
can be done quickly and easily - on the middle-tier machine only and not on the many client machines.

However, two-tier is ideal for building small department-size applications. An application that needs to
have a central data store used by a few dozen people is perfect for a two-tier application. Most
recommendations specify fewer than 100 users, but personally I would consider even 100 users high for a
two-tier Visual Basic application. If you are building an application to move graphics into a database that
will be used by one user, this is a good candidate for a simple two-tier Visual Basic application.

Three-Tier Applications
In a three-tier model, we separate out the data services, the business services and the client services into
separate components. The data services are services that deal with direct communication with the database.
Data services would include getting all of the customers and returning them to a system object such as a
customer object, or getting an updated record from a system object and saving the new information to the
database. The business services are services that deal with the maintenance of the system’s objects.
Business services related to a customer object would be retrieving a specific customer, moving to the next
customer, adding a customer, etc. The business services are usually in components that encapsulate a
business object, such as a customer object or an order object. The client services are services that deal with
getting information to the user and usually make up the user interface.

In the three-tier framework, we will usually have components for each set of services. The interfaces for
these components will be affected by what services these components perform. As we will see below, this
three-tier framework will need special server objects for the data services that have no memory of what they
did the last time they were called. (This persistence of values between sessions is termed state; components
that lack this memory are said to be stateless.) These server objects will need very special interfaces to
work this way. We will describe these in the next chapter.

Chapter 7

202

Physical and Logical Models
Before we move on to discuss some of the considerations we will need to make when we choose the
framework for our application, we must first distinguish between two different models for a three-tier
application: the logical and the physical.

Physical Three-Tier Model
When people talk about the three-tier model, they almost always mean the physical three-tier model. In this
model, we have a client computer, a server middle-tier computer that runs some part of the application, and
a database server. Often, the middle tier actually resides on more than one computer. There may also be
more than one database server. Because of the possibility for multiple database and middle-tier servers,
three-tier is often called n-tier or multi-tier, as there may actually be a number of physical computers. A
simple three-tier solution would look as follows:

There are many advantages to placing the application onto the third tier. The primary advantage is
scalability. If we build our application from components, we can easily divide these components across
multiple servers. If we build Component1, which is used by several of our applications to get data from
the database, we can place this on its own server. If the server cannot handle the number of requests to use
Component1, we can upgrade it, and when the server reaches its maximum capacity, we can add another
server and place Component1 on two servers. In this way, we can easily increase the capacity of our
system by adding hardware and not by rewriting applications. Applications take one or two years to build
and can be very costly. Hardware can be bought for a reasonable price and shipped overnight.

Logical Three-Tier Model
While the physical three-tier framework divides the application across three physical entities (the client
computer, the middle tier server and the database server), in the logical model, we divide our application
into components that perform client services, business services and data services. The actual location of
these three services can be anywhere on the three physical tiers.

The data services element of the logical three-tier model is not the database; it is where the components that
communicate directly with the data source reside. This could consist of a middle-tier component on a server
that retrieves and updates data for the client, or it could be a set of stored procedures in the database. In our
application, the data services component will be the server component. The data services can also be a
combination of both middle-tier components and stored procedures.

Design Phase: Logical Stage

203

Business services are components that service the client application and usually encapsulate business logic,
which validates the data being passed to or from the server. In our application, the business services will be
the client components such as the Order, Customer, Products and Order Details components.
These components can reside on the client computer or on the middle tier. For example, the Products
component could provide product information to an order entry application on the client. The same business
services component could also reside on a web server and retrieve data for a products page to be viewed by
potential customers surfing the web. Thus, in the logical three-tier model there is no restriction on where
the components will reside, only a placement of the services into three categories according to the functions
that the components perform.

Microsoft Transaction Server
One critical part of a three-tier Visual Basic solution is Microsoft Transaction Server (MTS). MTS is
essentially a component-based run-time environment that makes it easy to develop and deploy scalable
enterprise applications. Its key goals are to relieve the pain of developing the basic infrastructure required
for such applications, whilst helping to shield the developer from the many complexities of multi-user
development such as concurrent access to resources and distributed transaction processing.

The end result of using MTS is that we can focus on developing middle-tier business objects to solve our
business problems, rather than spending 40% of our development time implementing the framework
required just to host our objects. Indeed, writing a truly scalable system in Visual Basic is probably not
possible without MTS. Even in C++, creating our own scalable infrastructure would be fairly silly, given
that somebody else has already done the hard work and is giving it away for free!

MTS is built entirely around COM, and you should think of it as an extension of existing functionality that
COM provides. Probably one of the most important features of Windows 2000 is the unification of the
COM and MTS programming models (as COM+), bringing context and activity-based concurrency
management directly into the COM runtime. The unification means that investment today in MTS won’t be
wasted with the advent of the next generation of Windows operation systems.

Since the decision whether or not to use MTS will have a major impact on the way we design and code our
components, it is worth looking at this topic in some detail.

Transaction Processing
The most powerful feature of MTS is transaction processing (hence its name). If you’ve ever used a
relational database, when you read the word transaction your mind probably interprets it to think of
database transactions. Whilst this interpretation is correct in many ways, it’s important to realize that MTS
is designed to deal with transactions for many types of data sources, and not just databases.

What Is a Transaction?
A transaction is best described as one or more actions that are either all performed as a whole or none of
them are performed at all. To see why we might want to do this, consider the following scenario.

Chapter 7

204

A customer enters our Northwind e-commerce site and places an order. He enters his name, address, credit
card number etc., and the appropriate sum of money is duly removed from his bank account. So far so good,
but suppose the system unexpectedly crashes at this point, and all record of the deal is lost. The customer
has already paid, and the money been deducted from his account, but we haven’t yet updated our database
of products to be shipped, so he won’t get his goods.

Using MTS, we could place both operations within a transaction. This will ensure that both succeed, or both
fail. So, if the system crashes before our database is updated, the transaction will fail and no money will be
removed from his account. Similarly, there’s no danger that a computer crash will cause the goods to be
sent without the customer having to pay.

As in this example, transactions are a vital part of any system which involves the exchange of goods or
money, so we really should consider using transactions in any e-commerce site we wish to create.

ACID Properties
A transaction must have four properties, which are known from their initials as the ACID properties. These
four requirements are:

Atomicity

Atomicity dictates that a transaction must execute completely, or not at all. If the process breaks down in
the middle, based on atomicity, everything that occurred before the breakdown should be rolled back. So in
the example above, our customer wouldn’t lose his money.

Consistency

Consistency dictates that the persistent state reflects that which the business rules had intended. In other
words, the transaction must not break any rules laid down in the environment by the business rules. That
means in our above example, that once the transaction occurred, there should be goods sent to the customer,
and money removed from his account. We wouldn’t expect goods to be sent to anyone else.

Isolation

Isolation refers to how concurrent transactions are not aware of what each other is doing. The end point of
the transaction would be the same no matter what the outcome of the individual transactions. In the above
example, imagine if another customer was also purchasing something from our site at the same time. The
two transactions would be unaware of each other, but would still successfully result in two orders being
dispatched, and a set of funds being removed from both customers’ accounts.

Durability

Durability states that when updates have occurred to a resource, only then should the client be notified that
a transaction has occurred. If the system failed for any reason after the notification, then the changes would
still be reflected once the system was restarted. This allows the user to know that a transaction has been
successfully completed even if there is an error later. So relating to the above example, our customer would
not think that the money had been transferred when in fact it hadn’t.

Design Phase: Logical Stage

205

When Should MTS Be Used?
Besides managing transactions, MTS can be a valuable resource for scaling three-tier Visual Basic
applications. If we have Visual Basic middle tier components running on a server, we can run them under
MTS. While MTS offers both transaction management and object management, there are times when MTS
is not appropriate for our Visual Basic component. Before we discuss the 3-tier solution, let us look at what
MTS offers our Visual Basic components and when we should use MTS for our Visual Basic middle tier
components.

Visual Basic does a lot of work for us developers. Most of the complicated Windows programming that
must be done by C++ developers in their code is already done for us by Visual Basic. Visual Basic allows
us to code to our hearts content without ever knowing some of the deeper Windows concepts, such as what
a thread is. While we can make working components if we do not understand these things, it is very likely
that we will be coding inefficient components without some knowledge of what is going on under the
covers. With regards to MTS, the most important Windows concept is that of threading. Let us take a quick
look at this.

MTS, Visual Basic and Threading
Imaginethat your application has a small plastic block for every step of code. These blocks are made to snap
together. When the blocks are snapped together, they must go in a particular order as specified by the code
you write. Each block has only two connectors, which means that as the blocks are snapped together they
form a single strand, i.e. a thread. You cannot form a branch in the chain: one block must follow another.
These threads made up of programming blocks are used to run your code. One step must always follow
another: you cannot place two blocks next to each other on the same thread.

Single-Threading and Multi-Threading

Prior to Windows 95 and Windows NT 3.51, everything in the Windows world ran on a single thread.
When a program runs on a single thread, you can only place one block on at a time (run one code step at a
time). Since it would be useful to do more than one thing at a time, and a thread is only capable of doing
one sequence of steps at one time, later Versions of Windows allowed applications to create more than one
thread. Each thread can only do one sequence of events, but you can have many sequences of events
running at the same time using more than one thread. This is called multi-threading or free-threading.
Unfortunately, Visual Basic is not one of the programming languages that can create multiple threads
(Visual C++ is).

Chapter 7

206

Threading Apartments

Now, threads do not just float around inside your computer’s processor. They need to be put somewhere,
ideally isolated from other threads. It could be a serious problem if the sequence of steps of one thread was
suddenly replaced by a sequence of steps from another thread. To prevent this, threads are placed in
apartments. To keep one apartment separated from another apartment, apartments are placed inside a
process. This looks as follows:

When a client makes a call to a component, COM will create the component in an apartment in a process,
and run the code steps on a thread. If we have two clients, Client1 and Client2 and one component
called Object1, what happens when Client1 calls Object1 and then Client2 also calls Object1?
If Client2 makes a call to Object1 on the same machine as Client1, and Client1 is still using
Object1, the second client must wait. Client2 cannot get access into the apartment until Client1 is
done:

Design Phase: Logical Stage

207

Prior to the current releases of Windows, this is how everything worked. As you can imagine, this does not
scale very well. As more and more clients make requests for the component, the queue gets longer and
longer. Eventually the computer runs out of memory. In Visual Basic, this is called single-threaded, which
is a very poor choice for a name, as all Visual Basic components are single-threaded in the sense that there
is only one thread in an apartment. Single-threaded really means that there is a single apartment.

Apartment Threading

The only other option available to Visual Basic programmers is to have COM create multiple apartments
within one process, each with a thread in it for each call to a component. Each apartment still has one
thread, so this is not multi-threading. This would look as follows:

This solution became available in the recent versions of Windows. As you can see, each instance of
Object1 is still not multi-threaded, but now there can be multiple instances of Object1. Since there is
no waiting for Object1 to finish servicing Client1, all three clients can be serviced at the same time. In
Visual Basic and COM, this is called apartment threading. If you look at the Properties dialog of a
Visual Basic ActiveX DLL, you will see the following options:

Chapter 7

208

MTS will manage our Visual Basic apartment-threaded components: it will have an apartment waiting for
our component when a client is called and will handle the management of creating multiple instances of our
Visual Basic apartment-threaded components. This allows our component to be scalable and to be used by
multiple clients. If we code our components correctly, we can use this to make our components run faster
and scale better. MTS will also create multiple instances of our Visual Basic apartment-threaded
components so multiple clients can use the component.

Now that we understand MTS and Visual Basic, let us turn our attention to the 3-tier solution. Perhaps one
of the most confusing aspects of the three-tier solution is DNA. Microsoft replaced the term three-tier with
n-tier, and now n-tier has now been replaced by DNA. It is important to understand what DNA is if we are
going to develop a three-tier application.

Just What is DNA?
In the beginning, DNA was an abbreviation for Distributed interNet Applications, although some
documents referred to it as Distributed interNet Architecture. Eventually it mutated to Distributed interNet
Application Architecture. Today it stands for Windows Distributed interNet Application Architecture. The
name is appropriate, even if the abbreviation is not. DNA is an architecture on which we can build
Windows applications.

People are often confused because of the word Internet; in fact, DNA does not necessarily involve building
internet applications. Actually, it is about building applications using internet programming techniques.

Design Phase: Logical Stage

209

Internet applications can have thousands of users and require components to handle hundreds of
simultaneous requests. This means that internet programming techniques must include some methods to
make components on the server scalable. One such technique centers around the idea that only the client
maintains state between calls to the server, i.e. the client has a memory of what is happening between calls
and the server does not. If we maintain state on the server, our server component will need to persist
variables for every client currently connected; this could clearly become very costly in terms of resources if
we have thousands of users. Performance considerations therefore force us to make our server components
stateless. For scalable web applications, information is therefore usually stored on the client in cookies
which can be read by the server. Of course, if we are moving information around in cookies, this
information should be limited to the smallest size to prevent delays.

From our discussion of MTS, we know that we can build stateless Visual Basic components that run on a
server. If we build the components correctly, they will be scalable. Thus, including MTS server components
in our application can fulfill the basic requirements of creating an Internet type of application. The best way
to use a Visual Basic middle-tier component is to build a three-tier solution.

Another way to make an application scalable is to build the component out of smaller components. We can
scale the application by redistributing the components across different servers. Internet-style applications
also need the ability to evolve as business requirements and technology change. By building our application
with components, we will be able to update or replace individual components over time, without having to
rebuild the entire application.

Thus, DNA is about building internet-like applications - applications that can evolve and that have a
scalable server component that does not maintain state and a client that does maintain state. DNA could
include building an Internet application, an intranet application, or a three-tier solution with a Visual Basic
executable on the client.

Defining the Composition of the System
Well, that concludes our diversion into application architecture. It might have seemed a little tough-going,
but it is important for all team members to understand the basic issues here. This information will have a
major impact on how we design our components. So, now we’ve got all that under our belt, we can move on
to see how to design our object interfaces from the use cases.

Remember that we looked earlier in the chapter at the use case for entering an order and identified three
objects: Product, Order and Customer. This use case included the line:

� Actor will Create Customer if the customer does not exist

This operation contains a series of steps of its own, and can be expanded into another use case, which will
specify exactly what these steps are:

Chapter 7

210

Create Customer
� Primary Actor: Order Entry Clerk

� Actor requests to add new customer

� Actor enters customer name

� Actor enters customer address

� Actor enters customer phone number

� Actor enters customer fax number

� Actor enter customer credit card number and expiration date

� Actor saves customer information

We are going to take this use case to create a sequence diagram mapping out the sequence of events that are
required to fulfill this goal. Before we even begin, you will notice that we are missing two important
objects. Our use case says “Actor enters”, which implies that the actor has some way to enter information
into the system. In a Visual Basic application, the way for human actors to enter information will be
through a user interface. We will therefore, need an additional object to perform services for the user, the
User Interface, which will allow information to pass from the user to the system and from the system to the
user. All of the client services will be performed by the user interface.

The other object we are missing is the object that will actually perform the updates to the database: our data
services object. When building a three-tier project, the middle tier acts as a middleman between the client
component and the database. The middle tier will receive requests to retrieve information from or update
information to the database from the client component. The client component will gather the information
and then send the request to the middle tier. The middle tier will then communicate to the database and
perform the request. We therefore need a middle-tier object that will perform these services.

The middle-tier component and the user interface are two objects that are implied in the use case.
Remember, the users are more concerned with the goals they want the system to accomplish for them and
the services the system must perform than the actual components of the system. The developers must
review the use cases, begin to draw out sequence diagrams and find the implied objects.

While we can see that the data services were separated out so that they can be placed into an MTS
component for maximum efficiency, scalability and sharing of these services, you may be wondering why
we separate out the business services and the client services. The client services will be very specific to the
application and will generally not be very reusable. Thus, if I make an order entry application from a Visual
Basic executable and remake a similar application for customers to place orders over the Internet, it is
unlikely that much of my executable interface code will be reusable for my Internet application. On the
other hand, the business objects that I create for my executable, such as the Customers, Orders, Order
Details and Products objects, will all be easily reused in my internet application. By creating separate
components that perform business services and client services, we have actually separated out the reusable
components (the components that perform business services) from those that are probably not reusable
(client service components, i.e. user interfaces).

Design Phase: Logical Stage

211

The ability to upgrade the application is another reason we separate the business services and the client
services. It is likely that our application will also have to be upgraded at some point to fulfill new business
requirements that have resulted from the changes in technology and the market. It is likely that most of
these changes will not affect the external methods and properties of the business components, but instead
affect the internal rules of these objects. Thus, a change in tax laws may alter the way the order object
internally calculates the sales tax, but externally there will still be the same Save Order method that will
trigger the sales tax calculation. Thus, for the most part, when we have separate business objects we can
upgrade our applications by creating internal changes to these objects that will not have any affect on the
rest of the system.

When we actually change the way business is done and the interface of the business object must be
changed, we can make these changes and plug these business objects into a new interface. The vast majority
of the code will be reusable. Usually, only one or two objects will have to change resulting in the change of
only a few interfaces. If we needed to make this change in an application where there was no separation of
the business and client-service components, we would probably end up rewriting the entire application.
Thus, the separation of business and client services allows us to reuse business components and easily
upgrade the application.

Because the primary purpose of creating separate components that contain the business logic is for the
ability to reuse and upgrade these components, their location in the physical system is usually not that
important. Thus, we could place the business logic on the client computer or on a physical server. As these
components do not make any direct connections to the database and they will probably maintain state, there
is no requirement to place them on a server or to make them MTS components. The factors that will
influence the location of the business components will usually be how often they will need to be upgraded
(a continually changing component would probably be best on a server since it will only need to be replaced
on one machine, rather than on every client), how easy it is to deploy the components to the client and the
type of application being built.

The use case has provided us with detailed information on the interaction between the user and the client
services object (the user interface). When we look at our use case, we see that it specifies that the actor will
request a new Customer from the system. The actor will then enter the customer name, address, phone
number, fax number and card number and expiration date. Finally, the actor will save customer information.
Thus, the use case has given us all of the information for the communication between the user and the
client-services component. Each of these operations represents a ‘message’ sent from the actor to the user
interface, and will be represented in the sequence diagram by a line from the user to the interface.

When we reviewed the nouns in our use case, we saw that we needed a Customers business services
component. We can see from the use case that this component will need to perform two tasks: creating a
new customer (AddNew) and saving the customer information (Save).

The services that will be performed by the data services do not directly come from the use case. The
developers will review the services that the business services components will need to perform, and based
on these services they will decide what services the data services component will have to perform. In this
case, the data services component will save a new customer and indicate whether the save was successful.

Chapter 7

212

Our sequence diagram for creating a customer will thus look as follows:

There is really an incredible amount of information in this diagram. We can now see that we will need some
additional methods in our customer component. Each arrow represents a request for some object in the
system to perform a service. As we said, most of these requests will center on getting information to set
properties or will be the actual setting of the properties. Luckily, Visual Basic will allow us to make user
interfaces that do not require us to write complicated code to allow the user to enter information into the
user information. Most of the requests to the user interface for services will actually be fulfilled simply by
creating a text box for the actor to type the information in (or a list or combo box to select the correct
information). Other requests, such as ‘Request to Create a New Order’ will actually require the customer
object to have a special object to perform the service (in this case Add New): an object cannot create itself
out of nothing, so we need to have an object which has already been created to which we can make the
request for a new Customers object. We will see how to do this in the next chapter.

Design Phase: Logical Stage

213

Services performed by the user interface will usually involve adding text boxes or list or combo boxes. The
services performed by components will involve setting properties of the object and/or calling methods. Our
sequence diagram allows us to see exactly what objects we need, what methods and properties these objects
will need, which objects request services from other objects, what information must be supplied to perform
the service and what information has to be returned when the service is complete, and what information
must be inputted by the user and returned to the user by the system. So there is really a great deal of
information in our sequence diagram.

From our ‘Add New Customer’ diagram, we can see the following:

� The customers component will require an AddNew method (request to create new customer).

� The AddNew method will not require any information passed in (no parameters) but it must return a new
Customers object (thus it must be a function and have a Customer object as its return value).

� The user interface will need a text box or similar control to enter customer name, address, phone and fax
numbers, and credit card number and expiration date.

� While it is not explicitly stated, the information placed into the user interface will need to be passed to
the customer object before the save occurs. Thus, our Customers object will need properties for
customer name, address, phone and fax numbers, and credit card number and expiration date.

� The Customers object will need to have a method to save a new customer record. This request to save
the information will be passed onto the middle-tier component. This Save method will take one
parameter, a Customers object.

� The middle-tier component will need a method actually to save the information to the database. This
Save method will also take a Customers object as a parameter. The database was not listed in this
diagram as a separate component, but we could have also included it, as the database is an object of the
system. This was not included to keep the diagram simple, but we will show it in a more detailed
diagram below.

� The physical location of these components (what tier they will be placed on) could also be placed on the
diagram.

Chapter 7

214

When we add the database component to the diagram, we can see that the application is spread across three
tiers. The refined sequence diagram looks as follows:

This diagram now tells us that there is a database component. The request to save a customer will be passed
from the user interface to the client customer component, to the middle tier component and finally to a
stored procedure in the database. We can also see where the components will be placed in our three-tier
application. The developer has added numerous components and messages that the user is unaware of, such
as the database, middle-tier and user-interface components, and the methods associated with these
components. This is the normal process of making a sequence diagram: we begin with the information in
the use case and then expand the information to include implied objects and the methods and properties of
these implied objects. The sequence diagram may go through many revisions until it reaches its final
version. Some of the revisions may force a rethinking of a use case and force it to be redesigned. This is the
nature of iterative design.

From these sequence diagrams, we can begin to define our component’s public interface. In fact, we have
already identified most of the methods and properties we need. As an example, let’s look quickly at the
interface for the Customers component. We have already seen that our Customers component will need
the following methods:

� AddNew, to create a new customer

� Save, to save the information about a customer

� Edit, to update the customer information

Design Phase: Logical Stage

215

We will also need a way of retrieving a specific instance of our Customers object. To do this, we will add
methods for moving through the collection of existing customers and retrieving a given Customers
object:

� MoveFirst, to retrieve the first customer

� MovePrevious, to retrieve the last customer

� MoveNext, to retrieve the next customer

� MoveLast, to retrieve the last customer

The Customers object will also need properties that contain information about each of our customers. We
can see from the use case and sequence diagram that the information we need to store requires the following
properties:

� Name

� Address

� Phone

� Fax

� CreditCardNumber

� ExpiryDate

Sequence diagrams can be built using sophisticated tools such as the UML tools built by Riverton (HOW),
Rational (Rational Rose or Visual Modeler) or Visio. You can also hand-draw them on pieces of paper to
see the flow of your system, or use graphic programs such as SmartDraw. Use whatever works best for you
and the situation you are in. If you are in a meeting with a client and need to show quickly how the
components of the system may interact, a sequence diagram quickly hand-drawn can provide an easy way to
view the interaction of the different components. If you are preparing documentation for your design
document, you should probably use a professional tool.

The advantage of using UML is that there is no longer any guesswork involved. We still have not identified
how the methods are going to work - we have not designed a detailed map of what the Visual Basic code
will look like in each method, but we will do that in the physical stage. However, we have identified all of
our objects and the methods and properties that will belong to these objects. We have also identified where
our components will be located, how they will communicate to other objects in the system and how they
will communicate to the user.

Before one line of code is actually written we know exactly what the system will do and have a very clear
set of documents (the use cases and sequence diagrams) that can be shown to the user. The user can review
these documents to make sure that all of the goals that the user needs the system to accomplish can be
fulfilled by the system and that the system fulfills these goals in the manner that the user finds most
efficient. As the more detailed diagrams may be confusing to the user, it may be best to show them
diagrams that only show the interaction between the user and the user services object. When an agreement
has been reached on the following items, the developers and users can sign off on the design documents:

Chapter 7

216

� A list of the objects that will be required to fulfill the services of the system.

� The public methods and properties of these objects.

� How the objects will communicate to each other and to the users.

The user will know exactly what the system will do, and the developers will know exactly what they have
to build. The testers will know what modules will need to be tested so that they can begin a detailed set of
test plans. The educators will know exactly how the system will function so they can begin putting together
user documentation and planning training for the new system.

Without use cases and sequence diagrams, there often is nothing more than a list of things the user would
like the system to do. From this list, objects are identified and methods and properties for these objects are
created. The developer will begin to start coding these objects, putting in the necessary methods and
properties. They will then begin to build a user interface based on the developer’s concept of what is
needed. Once the interface is coded, the developer will begin to write code to pass information into the
object. This process may result in the discovery of new methods and properties that the object will need,
and these will be added. As the object is coded, the developer will discover that he needs to pass
information to the middle-tier component, so methods will be added to the component. This style of coding
is much like a man walking into a labyrinth in the dark with a flashlight that only produces a light beam
that shines two inches out. In this situation, the person takes a step, examines the next two inches, and
depending on what he sees in front of him, makes a decision where his next step will be. It is quite possible
that three inches to his right, just outside of the range of the flashlight, is the exit to the labyrinth. But he
will not see it unless he is lucky enough to take a turn to the right. He can only make decisions based on
what the next immediate step is. He cannot look at the next fifteen steps and see how these fifteen steps
may affect his next step.

However, with a detailed set of use cases and sequence diagrams, we can map out the entire system from
beginning to end. We can see how changing one component of the system will affect the entire project. In
our final sequence diagram, we included a final step that involved saving the customer to the database using
a stored procedure. It is also possible that we could use SQL code in our middle-tier component to save the
information directly to the database. Which is better? Well, what if we already had a set of stored
procedures in our database to save customers? If we did not use stored procedures, we would have to write
extra code in our middle-tier component. This could add one day of development time for the component.
Adding this functionality into all of the Update methods in the middle-tier component may add several
weeks to coding this project. Even if we had the time and financial resources to do this, is there any
advantage to be gained by not using the stored procedures? That would allow us to do batch updates with
disconnected recordsets in the middle tier and to check for records that failed to update due to
inconsistencies. These inconsistent records can then be made consistent by the middle-tier component.
Thus, by not using the stored procedures and placing the update functionality in the middle-tier component,
we can move to a more flexible three-tier architecture. While this was a fairly simple example, we can
investigate completely different scenarios by simply redrawing the sequence diagram.

One thing you must be careful about is not stopping once you find a solution to your problem. Once an
initial set of use cases and sequence diagrams have been drawn up, the developers should come together for
a brainstorming session. They should review the diagrams and try to find alternative ways of accomplishing
the goals of the system. Alternative use cases and sequence diagrams should be created. Once several
possible solutions have been arrived at, if this is possible (some systems only have one workable solution),
the best solution should be chosen.

Design Phase: Logical Stage

217

Often, the best solutions are never found because the people looking for a solution
stopped at the first workable solution they came to.

There is another advantage to using sequence diagrams: they show the details of the services performed by
the user, and we can use these to make sure we have a well-designed graphical user interface (GUI). The
user interface is the most important part of the system to the user. We can create an application that solves
all of the problems of the business, but has a lousy user interface so no one will ever use it. Thus, once the
sequence diagrams have been completed, we should go into a detailed design of the user interface. We shall
see how this is done in the next section.

Creating a Prototype User Interface
To make our GUI truly user-friendly interface, we must tailor it to the needs of the user and ensure that the
processes they follow require as few steps as possible. To illustrate this, let’s think about designing a form
that the Sales Representative will use to enter an order when a customer phones in. Rather than jumping
straight in and designing a GUI, we need first look at the sequence diagram for this task. This will show us
exactly what steps the Sales Representative has to carry out, so we can design the GUI to facilitate this
goal.

To see how a use case and sequence diagram can help us to prototype a GUI, we will first build the
sequence diagram for Entering an Order. Since this diagram is going to be used to build a GUI prototype,
we will not be interested in the middle and data tier objects. We only want to see how the user interacts
with the client side objects, so these are the only ones we will include here.

Building the Order Entry Sequence Diagram
We know that the first thing the actor (in this case the Sales Representative) will have to do is make a
request to the retrieve the record for a customer who has just phoned in to place an order. This request will
be made to the Customers object via the Interface object. There is, as we know the possibility that the
customer may not exist in our Customers object or that their details may need amending. This is shown
on the diagram as a dotted line from the Customers object back to itself. If this is indeed the case, we
know that the flow of events will be somewhat more complicated than shown in this diagram.

As I mentioned earlier, the purpose of this diagram is to help us visualize the communication
between our components. We could make a more detailed diagram showing all of these
possibilities in full, but for the moment we should just be trying to get an overview of the
process of making an order. Editing and creating a customer are not important to our
overview of creating an order. For these reasons, we should leave these possibilities out of
the diagram.

Chapter 7

218

The Customers component then passes the CustomerID onto the Orders object, as this object will need
to know which customer this Orders belongs to. The Orders object will also need to create an OrderID.
Once the Customers object has returned the details about a particular customer, the Sales Representative
requests the user interface to get products that belong to a certain category. The Interface passes this
message along to the Products component, which returns the products to the user. Let’s take a look and
see how our sequence diagram is coming along:

The Sales Representative will then choose a particular product and add it to the Order Detail component.
The Sales Representative can then select more products from this category or make another request for
products from a different one. The Sales Representative will repeat this process until they have completed
the Order that the customer desires. A dashed line at the Interface object shows this iterative process.

Once the Sales Representative has finished, they can tell the Interface to save the order. This request is
passed to the Orders component and the Order Details components, which will then add this new record
to the disconnected recordset and send the recordset to the middle tier. From here, it is passed to the
database so that the database can be updated. As this final part of the operation is outside the realm of our
client objects, it will not be shown in our diagram:

Design Phase: Logical Stage

219

From this we can see that the first thing that happens is a customer will ring in to place an order. Then the
Sales Representative will take their name and details. At this point there are three possible things that can
be happening:

� The customer already exists and their details are correct.

� The customer is new and the Sales Representative will need to add them to the system.

� The customer's details have changed and the Sales Representative will need to amend them.

Since the customer information is only modified or added while adding an order, it would make sense to
add and modify customers on the Order Entry form. Now a customer can be added or edited without
interrupting the flow of the order by moving in and out of several forms. This part of the GUI could look
like this:

Chapter 7

220

Everything that the Sales Representative needs to carry out this initial part of her task is available to him or
her on this form. There is no need to swap between forms to complete this part of the task.

The next part of the Order Entry task is to pick out the products that the customer wants and to add them to
the order. This sub-task is quite distinct from taking the customer details and so should occupy a separate
part of the form. It could look as follows:

Using Tabs
We have chosen to use tabs in this section. Using tabs on a form can prevent the form from becoming
overcrowded and difficult to follow. Here, our user needs to check information about a product, such as
cost and availability. So there is a tab to display this general information about the product. Sometimes,
particularly when new products have been entered into the system the Sales Representative is not sure to
which category the products belong. Therefore we have provided a tab to perform a product search. For
most of the time this option will not be used and the tab would not be selected. When it is needed it can be
pulled up quickly with a single click of the tab.

The alternative is to open a special product form that allows the user to search for a product. The Sales
Representative would then have to close this form when they had finished and return to the Order Entry
form. If the user needs to do this a number of times while taking an order, the solution would involve
moving back and forth between the forms a lot of times. This doesn’t seem very efficient.

We could improve the situation by linking the product in the Product Search form to the
Order Entry form. Now we can open the Product Search form, find the product we want
and choose whether or not to add it to the current order. While this is not a bad solution, it
is still easier to click on a tab in the Order Entry form.

The final part of the Order Entry task is to select a shipper, check the order details with the customer and
that they find the total price for the order acceptable and then to cancel the order or go ahead and save it.
This information should therefore be grouped together and the final part of the form would probably look as
follows:

Design Phase: Logical Stage

221

Putting All the Tabs on One Form
Putting all the separate parts together the Order Entry prototype GUI would create one large form as
follows:

The Sales Representative can spend the entire day using this one form and never have to
move away from it.

Most of the information we used to create this GUI came from the use case Create New Order. However,
there is at least one aspect of the GUI that follows from the sequence diagram. We have learnt that
sequence diagrams place a temporal emphasis on an interaction. They give us the order in which events
occur. Bearing that in mind, take another look at the sequence diagram that we created earlier. You can see
that the user first selects a customer, then a category and then a product. Once the product is selected, the
user enters the required quantity of that product. If you look at the form it is arranged in this order from the
top down:

Chapter 7

222

� First comes the customer information section

� Next, is a product category dropdown listbox

� Next, is a product dropdown listbox

� Finally, the order details and order information

This allows the user to easily perform the task without having to move all over the form. We are not only
using our UML diagrams to keep a user within a single form to perform a single task, but we are also using
our diagrams to arrange the sections on the form in the order the user is going to use them.

The flexibility of the Visual Basic user interface will allow there to be many different ways to enter
information into the system and make requests for services to the system. Ideally, though, we want to find
the most efficient flow of events and design our form around this scenario.

By the time we reach the logical design stage we have already put together a great deal of information on
the corporation and their goals for the project. During our consensus meetings, we will have reviewed and
rated all of the business processes related to the project, listing their good, neutral and poor qualities. From
these ratings we should get a good idea of what is working and what is not working.

For example, if a company currently has a custom designed Visual Basic EXE application for entering
orders, used by people in the order entry clerk role; we can look at the features of this system to help design
an order entry web application for customers. If the forms for entering order information are rated as highly
efficient and easy to use (see our last form!), we should consider using similar forms on the web page for
the customer to enter the orders. If the order entry system has a highly efficient set of forms for reviewing
product information, once again we could use this as a basis for the product pages on the web site. Of
course, there may be some essential differences between the way we design a web page and the way we
design a regular Visual Basic form, but it is a starting point. There is no reason to be constantly reinventing
the wheel.

On the other hand, if the product forms received a very poor rating, and there is a general consensus that
these forms are difficult to understand or use, then we need a new way of presenting product information
for the web page. The users are a great source for recommendations on how to improve processes. By
reviewing their reasons why a process is poor, we can often see how to improve it.

Are Two Forms better than One?
So far, we’ve been extolling the virtues of a single form where the actor can perform all the duties
associated with his particular role. If some of these duties are identical for different actors we need to ask
the question “Are two forms for the same activity better than one?”

To address this issue, let’s imagine that there is another use case called Review All Customers performed
by the Sales Manager actor. Part of this Review All Customers use case is to check if a customer’s
information is correct. If the information is incorrect, then the Sales Manager has to modify the customer
record. If the only place to modify customer information were on the Order Entry form, the Sales Manager
would have to perform this task in the Order Entry form, which would make no sense, as this task has
nothing to do with Order Entry.

Design Phase: Logical Stage

223

We could make a separate form that is specifically for Customer Review. While this may seem redundant,
as there are now two places to edit information, there are advantages to doing this. What if the Sales
Manager needed to look at a customer’s past sales history, balance information, and products purchased as
part of the customer review? Now it makes sense to have one individual form to handle customer review.

Most likely the top half of the form will have customer information on it, the bottom half will be a tab
control: one tab for sales history, a second for balance information, and a third for products purchased:

Security
An application that has different actors with different responsibilities will usually have a log in screen and
some form of security. If our application employs the Review All Customers use case, the application
should have security added and only allow a person logged in as a Sales Manager to view the Customer
Review form. The Customer Review form would not be accessible to a Sales Representative.

The Sales Representative has one main role, entering orders. There will only be one form she should have
access to, the Order Entry form. The Sales Representative would come in at the beginning of the day and
log in as a Sales Representative. The application would go directly to the Order Entry form, as this is the
only form a person in this role can access.

As for our Sales Manager, when he logs in there will either be special forms related to his role, such as the
Customer Review form, or one form which will provide different functionality for different users, such as
the Order Entry form.

Chapter 7

224

Internet Applications
There is one other advantage to this single user interface style of programming. Building Internet and
intranet applications is becoming more and more common. While we do have the ability to create dynamic
web pages that can build new pages on the fly, these only work with certain browsers. Users are usually not
too happy when they are constantly waiting for new pages to load. In this case, the usual standard is to
minimize the number of pages and try to complete a single task on one page. Internet solutions seem to
work best with a single user interface such as the one we have built above.

If we wanted to use an Internet browser to run this application on an intranet, we would not have to make
any major changes in the design of my user interface. As this application is being built from the three-tier
model, moving the entire project to an intranet solution would be fairly easy.

We must build our applications with a focus not only on current needs but also on future
needs. The technology is definitely moving toward building Internet and intranet solutions,
and our Visual Basic applications should be able to adapt to these changes.

A Form in Many Guises
In our example, the Order Entry form allowed the Sales Representative to add orders, but not to edit or
delete them. This same form could also provide the ability to edit an order for someone logged in as a Sales
Manager. We can create one application, which presents each user with forms that are appropriate for the
tasks they need to perform. Each form will provide the actor with everything they need to complete a task
in the most efficient manner possible.

This approach does not mean that two different actors may not use the same forms.

In our example, the Sales Representative is allowed to create an order, but not to delete or modify them.
The Sales Representative is also allowed to create and modify customers, but not delete them. The Sales
Manager, on the other hand, can modify and delete the orders and delete customers. It makes sense that the
Sales Manager uses the same form to edit and delete orders as the Sales Representative uses to create them,
as both of them will require the same information to perform their task, i.e. order details and customer
information.

Even though they are using the same form, the form may present itself differently to the two actors. When a
Sales Representative views the Order Entry form, they would only have the ability to add a new order, and
edit or add a customer. The buttons to delete or modify an order or delete a customer will be invisible to the
Sales Representative. However, when a Sales Manager logs into the system and accesses the same form,
they will have the command buttons allowing them to edit and delete orders, and delete customers - as these
are tasks this actor can do.

Thus, we have one form that performs several different tasks for two different actors, but this form is
designed to perform these tasks in the most efficient manner. This one form will add, delete, and modify
both customers and orders.

With this type of form there is always the possibility that it will become quite complex. This is something
to take account of when deciding the best way to create the GUI for a particular application.

Although this choice may be guided by the amount of coding that it requires, the main criterion when
creating forms should be the user requirements.

Design Phase: Logical Stage

225

Summary
The logical stage is the bridge between defining the goals of the users and defining components, and the
services and attributes they will need, to fulfil these goals. In this stage we define the interface for our
components, i.e. the public properties and methods of the components.

Our choice of framework will have a major influence on the interfaces that we will choose for our system.
We saw that a three-tier architecture is more scalable and makes it easier to upgrade our application; this
will result in us dividing the system services into three types: client, business and data. The client services
will interact with the user and usually not be reusable. The business services will be easily upgradeable,
reusable and allow for a design that can evolve as the needs of the business change. The internet-style
techniques of DNA, using stateless server-side components, allow our solution to be scalable. We can
further improve scalability by using Microsoft Transaction Server, which provides support for apartment
threading, allowing instances of each object to be created on the server, so more than one client can access
our server-side objects. MTS has the added advantage of providing support for transactions, which are a
prerequisite for any e-commerce application.

The primary tools used in the logical stage are the use cases and sequence diagrams that are built from the
use cases. In addition to these, the initial class diagrams can be created with public properties and methods.
This stage ends with a set of documents that will allow us to move on to the detailed design of our
components.

Finally, this stage also requires the prototype for the user interface to be built, so we also looked at some of
the principles behind building a user-friendly GUI, and saw how we should base the design of our GUI on
the sequence diagrams we created earlier in this stage.

Chapter 7

226

Design Phase: Physical Stage

In the logical stage we explicitly defined the components that the product will contain and the methods and
properties that they would require. These definitions were based on the information derived from UML use
cases and from the set of framework technologies that would support the product. The logical design was
totally independent of programming language. In the physical design stage we will translate this “abstract”
design into a concrete physical design for every component in the system and the means by which these
components communicate. Essentially, we will define exactly how the system will be implemented.

Thus, in this chapter we will:

� Demonstrate how to allocate services (methods and properties) to components for initial class diagrams.

� Reach a final decision on the framework within which our product will operate.

� Discuss the impact of the technological framework on component design.

� Discuss communication between physically separated components

� Fully specify a component interface.

� Map out the Visual Basic code for selected services.

Thus the primary deliverables for the physical design stage are:

� A library of class diagrams defining the properties and methods of each component. This represents the
final interface design of all system components.

� A library of activity diagrams mapping out the Visual Basic code for each component.

Chapter 8

228

The final milestone for this stage represents the completion of the whole design. The team must reach a
consensus decision that the final solution embraces the required functionality and will operate at an
acceptable performance level. The final approved design will provide a complete functional specification
for the development phase.

Summary of Team Focus
The team focus during the physical design phase very much lies with the developers. They, and thus
ultimately the component manager, will bear the responsibility for designing components that ensure that
the integrity of the logical design is maintained within the physical constraints of the chosen technology.
The component managers must carefully co-ordinate the efforts of the developers in their teams. The
project manager will coordinate the efforts of each team and liaise with the product manger so that
everybody is working towards a common goal. The developers will give estimates as to how long it will
take for them to build the components and a development phase schedule will be produced.

As the design phase nears completion the solution will be comprehensively defined so that TCO and ROI
can be more accurately estimated. The logistician will be responsible for this.

The product manager will continue to work with the stakeholders and sponsors and will need to ensure that
their requirements, as defined by the use cases and sequence diagrams are carried through into the actual
physical design.

Testers will play a vital role in this stage. They will develop testing strategies and define criteria by which
to measure the product performance. They will create methods and procedures to track problems and bugs.
Based on the testing strategies, a testing plan and schedule will be created and documented. Testing will
also evaluate the overall design, assist in building applications to test new methodologies or technologies,
and select appropriate testing software.

Educators will review the design to determine how usable the project will be, and make recommendations
on how to make the final product more efficient for the end users. Towards the end of this phase, the
educators will make a more refined estimate of how long it will take to build the end-user documentation
and training materials

Overview of the Physical Design Stage
In the previous stages we saw that a component encapsulates certain services, which are accessed through
its interface. In the logical design stage we defined these public interfaces. The physical design stage will
reveal the internal design of these components.

When it comes to the components we will be creating with Visual Basic, the physical stage is where we
map out the code of all of the internal and external properties and methods of these components. This will
complete the design of these components.

The physical stage will form a bridge from the interfaces we designed in the logical stage to the actual
implementation of the objects with Visual Basic code in the development phase. How you make this
mapping will be a topic of this chapter. We will also discuss the most efficient way to build our components
and give information on making the decisions that need to be made during this stage.

Design Phase: Physical Stage

229

There will be no coding done in the physical design stage, except to test various techniques or technologies.
The physical design stage will be about deciding how the components will be coded, what should be used to
code different parts of the system and a choice of technologies.

The physical stage will be based on three steps. The first step is performing research on the best way to
implement a component, the second step is evaluating the research material and choosing the best option
and the third step is mapping out the solution that has been chosen. This chapter will focus on these three
steps. Before we look at these three steps, we must first look at one of the most important concepts of
design: designing the product as a team.

Designing as a Team
One of the major advantages of using UML documents to design our components is that they give the
development team the ability to design the project as a team. In many organizations, once the initial design
of the interfaces is completed, the design is handed off to the developers. The developers will then divide
the components amongst themselves and then lock themselves away for a few days or weeks and hammer
out mountains of code. The result will be components that will all be coded differently, according to the
skill, style and experience of the developer who wrote the individual code module. Testing and debugging
will be difficult, as each component will be coded differently. Difficulties will be exacerbated by the lack
of clear, coordinated documentation showing how the code was written and how it all fits together.

Using a single set of coding standards is the first step towards solving this problem. One set of standards
will allow the testing team members to move from one developer’s code module to another developer’s code
module without having to spend time figuring out how the code was written. Yet, this still does not solve
the problem of different skill levels and different styles. Wouldn’t it be great if you could take the
combined knowledge and talent of the entire team to arrive at the best way to code each module? With
UML you can.

It becomes much easier to understand the code if there are design documents, such as activity diagrams, that
clearly map it out. Component managers should implement practices that encourage their team to clearly
map out the optimum coding solution in such diagrams. How do we arrive at the best solution? Meetings
can be arranged whereby the whole team decides the best way to code a particular component. When a
consensus as to the best solution is achieved, this can be documented in an activity diagram. Alternatively,
individual team members can work out the way to code a module and document their solution in an activity
diagram. These diagrams can be circulated to the rest of the team, who can review the coding techniques
outlined in the diagrams and comment on alternatives or better methods.

When the design process becomes a collective activity the solution will represent the
collective knowledge and experience of the entire team.

Chapter 8

230

It is important to remember that there will often be significant overlap between each stage of the design
phase. The physical stage does not wait for every sequence diagram to be complete before commencing.
When code mapping and testing begins, design faults or new ideas may emerge that mean a particular
component revisits the logical, or even conceptual, stage. Designing an effective solution requires a
significant amount of work and requires planning, creativity and a real commitment to finding the best
possible solution. I think it is safe to say that a team of peers working together, rather than a team of
individuals working separately, will achieve the best design.

We now need to discuss exactly what is involved in choosing the best solution for your product.

Choosing the Best Solution
The first logical stage in deciding on the best solution for the physical design of your components is to
research your options.

Researching the Best Solution
Researching a solution consists of first gathering information from all of the available resources on the
issue, and then using that research to create test applications to find the best solution. Finding information
is not very difficult with Visual Basic.

One editorial in Visual Basic Programmers Journal commented that one of the major reasons developers
chose Microsoft products to build their applications was the wealth of available information. With regard to
Visual Basic, this is especially true. A “Visual Basic” search on the Wrox Press site brings up 115 books.
The Amazon site lists over 90 books with Visual Basic in the title. Visual Basic has become an extremely
complex programming language but, no matter what the topic, there will almost certainly be a book or
article on it.

While the MSDN library (Microsoft’s library of information on their products - available on their web site
and on CD) has received quite a few complaints, it is still an incredibly valuable resource. There are also
many additional SDKs (Software Development Kits - special informational files for Microsoft products)
that provide additional help. One example is MDAC (Microsoft Data Access Components) that provides
information on data access technologies such as ADO, OLE DB, ODBC and ADO MD.

The MSDN allows you to do searches on key words. Unfortunately, the search often brings up dozens of
possible titles. Finding the right title might be difficult. Sometimes it is easier to highlight the word in your
code that you want help on and click F1 than it is to type the word into the MSDN and search.

In addition to the MSDN and books, we have magazines such as Visual Basic Professional Journal, dozens
of web sites such as devx.com and various groups around the world that provide assistance with Visual
Basic. If you still can’t find the answer, there are still more resources to turn to. Microsoft has the
Microsoft Consulting Services for solving the problems of large corporations and the Microsoft Solution
Providers for solving the problems of smaller corporations. Of course, if you have a coding problem, there
is always Microsoft Support.

Design Phase: Physical Stage

231

When approaching any new project, it is always best to start by searching through the MSDN,
Microsoft.com and the Visual Basic web sites. While you may not find the specific answer you are
looking for, you will often gather code samples and articles that give you enough information to experiment
and find the right answer for your problem.

Once information has been gathered from every available resource, you start testing in the environment that
your project will run under. You create small prototype testing applications that will test the code to see
what its limitations will be. How long will it take to return 1,000 records from a middle tier component
running under MTS with 50 simultaneous requests to the component? The answer to such questions depends
on the network, the server, the client and a host of other factors. Only through testing can you find the
answers for your physical configuration. Based on those answers, you can decide if the solution fits within
the constraints of the system. You can test your own coding solutions, third party solutions and your own
code that exists from previous projects. Your tests should see how well these solutions meet your project’s
requirements.

You should carefully document all of your research and your testing. You will use this information to
decide what is the best solution for your project. You can also use the results of your tests to determine
what are the best methods to code your components

Once you have performed a series of tests and gathered information, you must determine the best solutions
for your project. There will be many choices. The first choice is what are we going to use to build each
component. Let us look at this issue.

Build, Buy or Reuse?
When deciding how a component should be created you have three choices. The first is to build the
component from the ground up. The second is to reuse existing code written by your development team (or
another team within your company). The third is to use third party components.

Writing code from the ground up is usually the most costly and difficult. Writing code requires time,
training and expertise. Writing your own code also means first performing tests to find the best way to code
your component, then performing unit testing of each portion of the component and finally, testing the
component as part of the whole system. All of this takes considerable time and money. There is one major
advantage to writing your own component: you can customize the component to meet the exact needs of
your project.

Using existing components has several advantages. If the component was properly built, it has been
documented and tested as an individual component. Therefore, you can save a great deal of time and
expense. The usual problem with using existing components is that they usually cannot do exactly what you
need them to do. If it is code written with components and you only need to modify a few components, it
may be well worth reusing the code.

The greatest danger of code reuse is that the code may not have been properly written. There is an old story
about someone using someone else’s code, completing a project with it, and then finding out that the code
does not work properly. When the person who used the code in the project goes to the person who wrote the
code and asks them about the problem, the person who wrote the code says that they had that problem with
the code, too. Make sure any code you are reusing or buying has been thoroughly tested and works properly
before using it. Also, make sure that you will not spend more time modifying it to your needs than the time
that it would take to build it from the ground up.

Chapter 8

232

Using third party components can save a great deal of time. Just be careful to get your components from a
reliable source and to use them in the way in the manner in which they were intended. Most third party
components are precompiled. This means that you cannot modify them, and that they often have many extra
methods and properties that you do not need for your application. This can bloat your application.

Each choice has positive and negative attributes. Which is best will depend on the application and the
components you are building. By choosing to build your application with components, you can choose the
best solution for each component.

Each choice you make during design has a set of risks. Each choice must be made based on the business
requirements of the application, the constraints on resources such as time, number of developers and costs,
and what is considered an acceptable risk. One choice Visual Basic programmers seem to hate to make is to
use something other than Visual Basic for any part of their Visual Basic application. Sometimes, though,
Visual Basic may not be the best choice.

When is Visual Basic not the Right Choice?
There have been endless articles on how to do things with Visual Basic that the language was never meant
to do. There are articles and books devoted to using pointers in Visual Basic, changing the functionality of
controls and making them do things they never were designed to do, and even how to multi thread Visual
Basic components. While we can do these things in Visual Basic, the question really is, “Should we do
these things in Visual Basic?”

An interesting story revolves around a book that is one of the better books on Visual Basic 5. This book
gave a great deal of detailed information on how to do some of the more difficult things in Visual Basic,
such as using API functions in Visual Basic. The book also showed how to make Visual Basic do all sorts
of things with pointers and other things that the language was never meant to do. This book came with a
very useful code library that thousands of people used in their projects.

Everything worked fine until the next release of Visual Basic. The author (and the users of his code)
discovered that some of the functions in the code library from the book did not work with the new version
of Visual Basic. It turned out that Microsoft plugged a few holes and changed a few things, and some of the
tricks the author used to work around Visual Basic no longer worked with Visual Basic 6.

He complained to Microsoft. Microsoft explained that he was doing things that were unsupported and that
Microsoft could not be expected to make sure that every unsupported technique people use with Visual
Basic is compatible from one version to the next. Microsoft spends a great deal of time and work making
sure that supported options work from one version to the next. The author was outraged that Microsoft
would not make a minor change in the next release of Visual Basic so that his unsupported techniques
would still work. The author published a letter and said that he was disappointed with Visual Basic and
would not program with the language anymore.

This situation, which really happened, led me to think about how I programmed in Visual Basic. I had made
Visual Basic do some intense things, such as using memory mapping and using pointers to get the parent in
class hierarchies.

Design Phase: Physical Stage

233

A pointer is a variable that you can use to store a memory address. The address stored in a
pointer usually corresponds to the position in memory where a variable is located, but it can
also be the address of a function.

I began to realize that there were other solutions than bending Visual Basic so that it could do things it was
not meant to do. I developed a simple set of rules to use when I found that Visual Basic could not do
something I needed. They are as follows:

� If I need a control to do something that the control cannot do, I will first investigate third party controls.
If someone else has already built a control that does what I need, it makes sense to use it instead of
forcing a control to work in a way it was not designed to. If you want a control to do something that is
reasonable, you can almost be certain that many people needed the same thing. Where there is a need,
there is a market, and where there is a market, there usually is a solution. If no control exists that has this
functionality, I will try to find another way of doing it. Only when there is no third party alternative, and
there is no other solution, will I make a control do something it was not designed to do.

� If Visual Basic cannot do a task and C or C++ can, write a C or C++ Dynamic Link Library (DLL). A
DLL is a COM-enabled file with a .dll extension. Generally, DLLs are made up of a set of classes that
that are blueprints for the creation of COM objects. The DLL will be used by Visual Basic to do the task
Visual Basic cannot do. Because we have designed COM components, and not a monolithic application,
we can choose to make any component from whatever is the best development tool. Thus, I can write
95% of my application using Visual Basic, but the last 5%, which consists of a few components, can be
written in C++. I can also write 75% of my code in Visual Basic, 5% in C++ and 20% using third party
add-ins. The goal of the physical stage is to choose the best option for each component, not find a way to
use Visual Basic for every part of your application no matter what it takes.

� Using pointers in Visual Basic makes sense when it comes to using the AddressOf function to work
with the Windows API functions that require pointers as parameters. This is the one area in which Visual
Basic pointer use is supported by Microsoft and a great deal of work has gone into the language to make
it compatible with the Windows API functions. Other than accessing a Windows API function, if you are
thinking of using pointers in Visual Basic, you probably should be thinking about using a C++ DLL.

In general, any large Visual Basic development team should have at least one C/C++ programmer who can
write small DLLs to do the jobs Visual Basic cannot handle. If you are a smaller team and cannot afford a
C++ programmer, train one of your Visual Basic programmers to work in both languages. If you cannot get
or train a C++ programmer, look into third party solutions.

Using unsupported methods is not wrong - it’s just risky and time consuming. When I wrote the memory
map program (a program that stores data in an area of memory to be used by components in different
processes), I used a code sample from a reliable source. It worked sometimes and other times it did not. We
tried everything we could to get it to be stable, but we never made it work properly. Finally, we called
Microsoft Support. Microsoft Support helped us even though technically we were doing something we
should not have been doing. It turned out that the code sample had a number 2 in one of the pointer
formulas that should not have been there, so we were writing in memory somewhere we shouldn’t have. It
took us about two weeks to straighten it all out. I am certain that a C DLL could have been written in a few
days.

Chapter 8

234

For the most part, when you try to make Visual Basic do something it should not be doing, you end up
spending a long time making it work. Doing pointers in Visual Basic usually means creating a General
Protection Fault (i.e. a fatal error) in the Visual Basic IDE a few dozen times until you get it right. Even
worse, unsupported techniques may not work in the next release of Visual Basic. If you need to upgrade
your application, you may find yourself rewriting your entire application to work with the new version of
Visual Basic if you are using unsupported techniques. Finally, unsupported techniques may work on some
platforms, but fail on others.

Some of these techniques allow you to do very powerful things with Visual Basic, but you really need to
consider the possible consequences of using these methods in an Enterprise- wide application.

For the parts of your application that you do choose to use Visual Basic for, you should map out how they
will be coded in the physical stage.

Resource Estimates
Once the choices have been made, you can give an accurate estimate of what the total cost of the project is
going to be. You can also give a good estimate of how long the project will take and the number of people
that will be required to build the project.

You can use a tool such as Microsoft Project 98 to map out different solutions to help you find the best
project plan. For example, you may be considering how it will affect the overall project if you use three in-
house developers or if you hire a consultant for a fourth developer on the team. Will the extra time required
to develop with three in house developers be great enough to justify the expense of the consultant? What
will the consultant cost? Another question might be, “How much extra time and cost will be added to the
project if we use a third party component versus building the component ourselves?” All of these types of
questions can be answered by making different schedules and resource plans for each possible situation.

You can make a copy of the Microsoft Project 98 template we created earlier for each solution you want to
investigate. Using the templates, you can then map out each solution in terms of time and resources. Doing
this can give you a good estimate as to what will be required for each solution. These different solutions
can be shown to the client so they can see how each solution affects the available resources.

When the final solution is chosen, it should be documented. The risks associated with this solution should
also be documented as well as the resources required for this final solution.

Allocating Services to Components
One of the first tasks of the physical stage is to create class diagrams, which will allocate services to our
business services and data services components. The aim is to arrive at a simple static view of the classes
that will make up our system. The methods and properties defined in these class diagrams define the
component interface. Ultimately, when component design has been completed, the interface defined by
these class diagrams become a contract as to the public methods and functions that the classes will provide
in their interface. As we stated earlier, this interface should not change.

Design Phase: Physical Stage

235

Designing the Business Services Component

When we analyzed our use cases for the order processing procedure, in the previous chapter, we identified a
few of our business services components: Orders, Customers and Products. When we developed our
sequence diagram we added two more components: the DB Business Logic object (enabling other
objects to communicate with the database) and the Interface object (visual interface of the system).
These sequence diagrams mapped out the communication between components and showed the services
these components will need to perform. With this information, combined with that in our use cases, we can
start to identify the components of the system and their public properties and methods.

Let's have another look at our Create Customer sequence diagram:

From this diagram we identified two methods for our Customers object: AddNew and Save. Our Update
Customer sequence diagram must include a request to return an existing customer. Thus we identified the
need for methods to navigate through the collection of existing customers to select the appropriate one:
Move Previous, Move Next, Move First and Move Last, Get Item, along with an Edit method.
In addition we will need a Delete method (we did not discuss the Delete Customer use case since this was
not a valid goal in the order entry clerk role).

We are building the customer component so that it has the ability to return a customer object thus the
component must contain all of the properties of a customer - Name, address etc. - that we defined in the
previous chapter.

Chapter 8

236

OK, we have identified methods and properties for our Customers component using our sequence
diagrams and use cases. We have to stop and think here. The first question we must ask ourselves is: “Does
it make sense to put all of these methods and properties into one class, say clsCustomers?” The answer,
as I’m sure you knew, is no.

For example, our Customers component needs to perform the service of returning an empty Customers
object when requested to create a new customer, that is, it must execute the AddNew method. If the
AddNew method were part of our clsCustomers class, we would first have to create the
clsCustomers object and then we would need to call the AddNew method in this object to make a new
clsCustomers object. We would be asking the customer object to make itself once it already existed!

Another property we might like to have is a Count property that gives us the total number of customer
objects in the Customers collection. Once again, it would make little sense to add the property to
clsCustomers. Each object in the Customers collection should be independent of any other object. If
an object has no knowledge of the other objects then it cannot perform a count. What we need to do here is
put all of these sorts of methods into a separate class: we need to create a class hierarchy.

Class Hierarchies
In the real world, objects are made somewhere. If we want a new car, we go to the dealer and have them
order us one from the factory. The factory will build our new car for us, and the dealer will deliver it. If we
want to change something on the car, then we must take the car back to the dealer, who will then arrange
for the repair. If we want to get some information on this type of car, such as how many were sold, we
would ask the dealer. The dealer manages all of the services we will need performed on the car. Just like the
car needs someone to manage all of the services related to the car, our components need a manager to
manage all of the services related to the component. In the case of our components, this manager will be
another class that performs these services on the clsCustomers class. Thus, in our two-class hierarchy
we would have a managed (bottom) class, clsCustomers, containing all of the relevant properties that
describe a customer:

Design Phase: Physical Stage

237

Normally when we list the properties and methods of a component in a class diagram, a plus
sign (+) means the method or property is public, a minus sign (-) means that the property or
method is private and a pound sign (#) is used for friend properties (properties that can be
seen by everything within the component but cannot be seen outside it). All of our customer
properties and methods are public, so in this case we have omitted these signs.

The managing (top) class, clsCustomersManager, will contain all of the
methods and properties that will be performed on clsCustomers:

We can perform this process for all of our components. Our Products component, for example, will have
different properties but the same methods as the Customers component. Thus we will find that
clsProductsManger may well be identical to clsCustomersManager.

When designing a Visual Basic class, all of the methods in the class should be
services that the object created from the class will perform. If you have a method
that performs a service on the object, such as AddNew, then it belongs in a separate
managing class. Any property that belongs only to the object, such as customer
name, should be in the class that belongs to the object. Any property that is shared
amongst all of the objects, such as Count, belongs in a managing class.

Not all classes on the bottom of the hierarchy have only properties in their
interface. If we wanted to build an animation program with an animated cat, the
cat component might look as follows:

Walk, Meow and WagTail are all services that are performed by the cat object, not services performed on
the cat object. Our managed class does not perform any services, so it will not have any public methods.

Chapter 8

238

OK, so we have a two-class hierarchy consisting of a managed class (clsCustomers) and a managing
class (clsCustomersManager). Together, the two classes would make up our Customers component.
What happens, however, if we have more than one type of customer? Consider the following hypothetical
situation. Different users at Northwind may actually need to look at different types of customers. For
instance, a Sales Representative may need to view all customers during their working day; but a Sales
Analyst at Northwind might need to look at all the customers who have made orders very recently. Or a
rather interested Sales Manager somewhere may need to view all customers who are regularly spending
over $1000 an order, say. In other words, each different user may need to view a different Customers
collection. In this situation we would have to deal with three collections of customers. The best way to
handle this would be to create a three-level class hierarchy:

So what’s happening in this diagram? Well, if you think back to our two-level class hierarchy, you’ll recall
that we had a managing class and a managed class. In the diagram above, our managed class is represented
by the rightmost collections of actual customer details. And our managing class is in the middle of the
diagram, managing those collections of customer details. We’ve now introduced a third level class (the top
class) - which itself manages what was our original managing class.

This is a fairly complex hierarchy. To actually build this component we would need to map out what each
class would do and how it would communicate with the other classes. Bearing this in mind, you should not
use hierarchies unless you have a need for them. If you find yourself building a hierarchy and the methods
and properties all belong to one object, it is likely you should be building a single class. If all of the
methods act on one class, and all of the properties belong to that class, then it is unlikely that you need a
hierarchy.

A final point to note before we move on is that we can create, for example, a Products class hierarchy in
a similar manner. If you recall, we noted that the public methods for this class would be the same as for the
Customers class but the public properties would be different. When public properties are moved in to the
bottom class, then clsProuductsManager will be virtually identical to clsCustomersManager.

Design Phase: Physical Stage

239

We are still not at a stage where we know the exact design of our components. In Chapter 7 we discussed
our reasons for choosing a three-tier framework for our project: scalability and upgradability. We now have
to choose how to distribute our objects in within this framework.

Distributing the Business Services Objects
In our discussion of the logical three-tier model in Chapter 7, we classified components according to the
services they provided:

� Data services tier - where the components that communicate directly with the data source reside.

� Business services tier - components that service the client application and usually encapsulate business
logic, which validates the data being passed to or from the server (see discussion on Business Rules in
Chapter 6).

� Client service tier - the user interface.

How clear cut is this classification? The main responsibility of our top class
(clsCustomersCollectionManager) is simply to retrieve a particular Customers collection. This
functionality could be incorporated into a user control on the user interface. Thus, in effect we are logically
spreading our component over two tiers. The next question is: should we physically locate the managing
and managed classes on a separate server? With regard to our order processing application executable, the
answer is almost certainly “No”. Our managing class contains no methods for directly retrieving and
manipulating data on a database server, as this is handled by our data services component.

The presence of such methods would be a good reason for putting them on a separate server,
where they would be most effective in dealing with data manipulation and transactions. The
managed class could be placed on the client, where its responsibility would be to maintain
state.

Therefore it makes most sense for the Customers component to reside entirely on the client. When the
data services component receives a request from clsCustomersManager to update a Customers
object, a disconnected recordset will be passed from the data services server to the client. The managed
class objects will contain a disconnected recordset object that will be used to view and update that object’s
information. We could represent this as follows:

Of course, the “data tier” in our order processing application is simply an mdb file that will reside on the
data services server. Thus in a physical sense this is two-tier architecture.

Chapter 8

240

We must bear in mind what we are building here is a fairly fat client. The client will have numerous
components that will communicate with the interface and the data services tier. These client components
will not have a connection with the database and, since we don’t want them to be constantly communicating
with the database to get data, they will store data on the client-side. The client can read the records and
return the records to the data services tier to make changes to the database. Yet, having records on the
client-side makes this an even fatter client. If this is an order processing application being used by order
entry clerks connected to the server through the network, this is a good solution. You want the information
to be readily available. As long as you place limits on the amount of information on the client and don’t
allow huge amounts of data on the client, this will work efficiently.

Yet, this is not a very workable solution for the Internet, which requires a thin client. If we wanted a thin,
dynamic, interactive Internet client, we could only allow very small sets of data to reside on the client. To
resolve this we could place the client-side objects onto a web server. These objects could pass the data to an
ASP page, which properly formats the information and passes it back to the client in a standard HTML
page.

An ASP page is a web page associated with Internet Information Server (IIS), that allows a
request to be passed to a server, be processed, and return an HTML page built on the fly.

In this way, we could create a Products object that works in our order-processing project on the client,
but resides on the web server in an Internet application, which allows customers to view the products. The
Internet application will pass back HTML pages with product information to the client. Therefore, we can
use one object to build two applications that have completely different requirements, i.e. a thin and a fat
client.

Our Server object has no properties and so it will have no history and no memory of what was requested,
i.e. the server does not have any state. The middle-tier objects are simply performing a task. When the task
is done they have no memory that they did it.

Designing the Data Services Class
The data services class will contain methods for retrieving and updating recordsets for objects. We will
discuss designing a data services class for a 3-tier solution. A data services component in a 3-tier solution
will run on a server. We will call this component a server object. A general class diagram for the data
services server object would look as follows:

Design Phase: Physical Stage

241

As we stated in the last chapter, there are no properties in the data services component because it is
stateless - every call the client application makes to the Server object is viewed as a new client. Afterwards,
the Server object has no memory of the client and the property values would not persist from one call to the
next.

This works the same way as an HTML page: using a browser you connect to a server, which
returns the page you are requesting. Once the data has been returned to the client, the
server and the browser have no knowledge of each other.

In the case of this component, all of the data resides on a single database and there are only two public
methods for each business component: Return and Update. We could further divide this into separate
classes so that we have one class for every business component, but there is no need to do that with only
two methods per object. Since all of the components will share the same databases they will have the same
internal code for connecting to the database.

Chapter 8

242

What would happen, though, if this data were contained in several databases? Perhaps the employee
information is in a completely different database than the rest of the data. In this case, if we were to keep
the employee information in the Visual Basic class with the rest of the components, we would need two
separate sets of database information. For those of you familiar with the ADO, this means that we will need
two connection strings and two connection objects. We would need to place Select Case statements in
our code to check which database we are connecting to. None of these are good coding techniques. Thus,
when it comes to the server component, it may make sense to create separate classes to service different
business components if the data comes from different databases. This will make a component that has tight
cohesion, as each component will be working from one database.

We’ve covered a lot of ground in defining the design of our components and their interfaces. However, we
are not finished yet. We know that our data services and business services components will reside on
different servers but we have not discussed how they will communicate. We have talked about passing data
between the two servers in disconnected recordsets, but we have not discussed in any detail the technology
that will facilitate this, namely ADO. These framework technologies, along with MTS, will have
considerable impact on the way in which we design our components.

ActiveX Data Objects (ADO)
ADO is a set of ActiveX controls (effectively COM objects) that provide programmatic access to
Microsoft’s latest underlying data access technology - OLE DB. This is a defined set of interfaces that all
data sources (relational databases, E-mail, Directory Services, to name but a few) can implement through
special drivers, known as providers, and thereby expose their data content in a uniform manner. OLE-DB
relies on a low-level Application Programming Interface (API) designed for use with languages such as
C++. ADO wraps these interfaces into ActiveX objects that can be used within a far wider range of
languages (Visual Basic, Java, VBScript etc.).

The main reasons that we have chosen ADO is so that we can retrieve data from our data source (an .mdb
file) and pass it in a disconnected recordset from our data services server to our client, where it can be
manipulated locally (when the recordset is later reconnected, the server can be updated). ADO allows
applications to work in disconnected and stateless environments such as the Internet. Thus ADO is the
perfect method of data access in a Windows DNA environment. One of the major benefits we will derive
from the use of ADO, is the ability to pool connection objects.

Connection Pooling
The Connection object is what connects the consumer to the provider. That is, it’s the link between the
program and the data. You actually don’t need to explicitly create a connection object to do this (you pass a
Connection String directly to a Command or a Recordset object). However, establishing a connection to
a data source is a time-consuming event. If you are going to be getting data from the data source more than
once it is well worth creating a connection object because, as you will see, the connection won’t have to be
established each time.

Design Phase: Physical Stage

243

Connection Pooling means that ADO will not actually destroy Connection objects unless it really needs
to (this is subject to a timeout value - if the connection hasn’t been reused within this time, it will be
destroyed). So, you open a connection, perform some data access, close the connection and from your point
of view, the connection is closed. However, underneath OLEDB keeps the connection in a pool, ready for it
to be used again. If you then decide that you need to open the same connection again, you will be given a
Connection object from the pool of connections, and ADO doesn’t actually have to perform all of the
expensive data store stuff again. You may not necessarily get your original object back, but may get one
that matches the same connection details. In fact, existing objects will be given to anyone who requests
them, so this is even better in a multi-user system.

One important point to note about connection pooling is that connections will only be reused if they match
the exact connection details. So on multi-user systems, if you specify the same data store, but different user
names and passwords, then you will create a new connection, rather than having one reused from the pool.
This may seem a disadvantage, but pooling must be done this way to avoid breaking security.

Communication Between Components
The manner in which we distribute our components and how they will be connected will affect the way we
code our components, the interfaces we will create and the type of security we will implement (see later). If
we were placing all of our components on one computer, then our components would communicate using
COM. However, COM objects can communicate directly only if they are running in the same process space.
Since we are placing our data and business services components on different machines, we will need to
choose some other method of communication. The most common choices for connecting client and server
components are Distributed COM (DCOM) and Remote Data Services (RDS).

With regard to our project, RDS is the perfect choice. For our web application, we
can use RDS to make the connection between the server object and the client
through a Microsoft Internet Information Server (IIS), using HTTP. RDS also
supports DCOM, so for our order processing application this can be our means of
communication across a local network.

OK, let’s find out how this works.

RDS and DCOM
RDS is a powerful technology that allows us to retrieve recordsets from remote databases and manipulate
these databases in client-side script, in a way that minimizes network traffic. Using RDS, an entire set of
data can be returned to the client. The client can then filter and manage the recordset without the server.

Chapter 8

244

This is an ideal scenario for our E-commerce site. Let’s think again about this application, which allows
customers to view the products on a web site. Say a customer is browsing through one range of products
and then decides to look at a completely different range. Without RDS, the browser would have to request
new data, wait for a response from the server, receive the new data and then reload the page. With RDS, all
of the data is on the client so the speed of the web application approaches that of more traditional desktop
applications.

The data is held on the client in an ADOR Recordset object. This is a smaller, lightweight version of the
full ADO Recordset object (it doesn’t have the explicit Command and Connection objects). The
ADOR Recordset object is designed for transmission over the relatively low-bandwidth connections of
the Internet and so has a smaller footprint in memory. Our application won’t require a constant data
connection because the connection is severed without affecting the data. This is because RDS is very
closely associated with ADO, which, as we know, provides disconnected recordsets.

How does all this work? Essentially, RDS works by making the connection between the server object and
the client through a Microsoft Internet Information Server (IIS) web server. As we discussed earlier, COM
objects cannot communicate directly if they are not running in the same process space, therefore there needs
to be a mechanism by which they can communicate when they are running in different processes. A full
description of how this comes about would include a detailed discussion of the RDS object model. This is
beyond the scope of this book.

For a full description, I would refer you to Professional ADO RDS Programming with ASP,
ISBN 1861001649, published by Wrox Press.

However, we must briefly mention the RDS.DataSpace object. This object runs on the web client,
creates COM objects on an IIS server and returns an object reference from the server to the web client
application. These references are called proxies and are a bit like your television remote control. In a
similar manner that you can press a button on your remote control to make something happen on your
television, a client-side proxy object is the remote control that can be used to make something happen on a
server side object across the Internet.

A proxy is an object that provides a pointer to another object in another process.
The other object in the other process is known as a stub.

RDS will make a proxy of the Server object on the client. The proxy will look exactly like the Server
object, that is, it will have the same public properties and methods as the Server object. As far as the client
application is concerned, the Proxy object is identical to the Server object. The client will make requests to
the Proxy object, and the RDS will pass this request to and from the Server object on the server. This is
called marshalling.

Design Phase: Physical Stage

245

Marshaling, through an IIS Web Server, is done using HyperText Transport Protocol (HTTP) - the
standard Web protocol. The following diagram may help to explain how marshalling works:

Marshaling is the process that must occur when a proxy communicates with a stub. When they communicate
with one another, the message must be packaged for transport across process boundaries. After the message
is packaged, it is sent (copied) form the proxy to the stub. When the stub receives the message, it must be
unpackaged and sent on to the server object. Marshaling does not include the instantiation or destruction of
objects, but is the activity of passing data across process boundaries.

Chapter 8

246

The connection to a Server object using RDS would look as follows:

The major advantage of this technique is that the client only has to be configured to have an Internet or an
intranet connection. RDS using HTTP allows users to access the database on any client via an Internet
connection. The connection to the server may be made through a Domain Server Name (DSN). Therefore,
the client needs no knowledge of the server’s actual address or, in fact, any information on the server
whatsoever. This allows the DSN address to act as a gateway that may actually represent any number of
actual Web Servers.

The really great thing about RDS is that as well as supporting HTTP - it also supports DCOM.

DCOM is a Microsoft technology that enables COM components to communicate with each
other across a network. DCOM extends COM in a transparent fashion, such that any
existing COM component can be remotely used without ever changing a single line of code
(although it is important to remember that a COM component written without any
consideration to DCOM specific issues, probably won't be efficient or scalable). DCOM is
language neutral. This means that any language that can produce COM components can
have these components run over DCOM. A very good introduction to DCOM can be found in
the book VB COM, published by Wrox Press.

ADO disconnected recordsets are optimized for use with COM/DCOM so DCOM is the perfect means of
communication between remote COM components on a local area network, without HTTP. This is a perfect
solution for our order processing application!

Design Phase: Physical Stage

247

DCOM can be difficult to configure when there are thousands of clients (such as for
a web application) but is an excellent choice for Intranet or internal applications.

Below is a summary list of components required for an RDS project:

� ADO

� Visual Basic ActiveX DLL: You can actually build your server components as a Visual Basic ActiveX
DLL or as a Visual Basic IIS application. The ActiveX DLL will give you a greater degree of control
over who can access your data over the Internet than an IIS application. IIS applications, though, give
you more flexibility and perform better when there are dozens of forms.

� Microsoft Internet Information Server: This is required for RDS to connect to the server using the
HTTP protocol and the Internet. This must be an NT 4.0 Web Server with the Option Pack installed
(RDS is installed with the Option Pack by default).

� Database: A database for which there is an OLE DB provider.

� Client Machine: This computer must also be connected to the Internet - usually through an Internet
service provider (ISP). To deploy the client application, use the Visual Basic Package and Deployment
wizard, which will ensure that both ADO and RDS are installed on the client machine.

Effect of MTS
Finally, before we start creating our activity diagrams we need to consider how the use of MTS will affect
the design of our components. Running our components in MTS will add some activities to our diagrams
and we at least need to discuss these MTS activities. As we discussed previously, MTS offers two main
advantages to our product:

� It provides scalability by managing object lifetimes.

� It provides support for transactions.

Object Lifetimes
One of the principal reasons that MTS can easily allow many users to access our objects is that they are
only around as long as we need them. When we create an object that is being hosted in MTS, which requires
transactional support, the request is intercepted by MTS, which creates an MTS Context Wrapper object
for our object. Note that our ‘real’ object is not actually created.

It is only when we actually call a routine on the object that an instance of our object is actually created.
This is known as Just In Time (JIT) activation. This saves on resources because we don’t actually have an
instance of the object hanging around until we actually need it. Finally, when the routine ends the ‘real’
object is destroyed. This is known as As Soon As Possible (ASAP) deactivation. The client is completely
unaware of any of this happening because it’s holding a reference to the Context Wrapper object and not the
‘real’ object.

Chapter 8

248

Managing Transactions
In order for us to take advantage of many of the features that MTS offers, we need tell MTS when we have
finished a transaction and whether it was successful or something went wrong. In order to do this, we need
to use the context object (also referred to as the ObjectContext object). Each of our objects created
under MTS has its own context object. This object contains information about the ‘real’ object’s execution
environment, such as transactional status and security information.

More importantly, the context object also has two methods:

� SetComplete

� SetAbort

If the transaction was successful then we need call SetComplete, and the changes will be committed. If
for any reason an error occurred, then we need to call SetAbort and all changes will be rolled back.

We only have to call SetComplete and SetAbort in public routines before we exit. In private methods
or properties, we don’t have to worry about finishing the transaction because we are not ready to destroy the
server object. When the private method or property is done, control will be passed back to the calling
routine, which will be responsible for telling MTS to SetAbort or SetComplete. Remember this rule
for making MTS properties and methods:

Every public method or property must end the transaction, one way or another,
before they finish.

Think of our public methods as the entry and exit points of our object. When we enter, MTS will create the
object; when we leave, we’ll be good guests and let our host know we are leaving, by calling
SetComplete or SetAbort.

If we need to call several properties or methods, there should be one method that starts the
transaction, calls all of the other private routines, and (if everything is successful) the initial
method will close the transaction when it is done.

MTS and Database Transactions
MTS also allows us to perform our database updates under transactions. MTS will do this by using an
additional component installed with MTS, or SQL Server, called the Distributed Transaction Coordinator
(DTC). All communication to the database will occur through the DTC. Because all updates to the
databases go through the DTC, it can control these updates, committing or rolling them back when
necessary.

The language that DTC uses to communicate with databases is based on a standard, and
most databases conform to this standard.

Design Phase: Physical Stage

249

When a method or property of an object hosted in MTS makes a connection to the database, the DTC will
automatically start a database transaction. Yet, to end or cancel the transaction, the component must send a
message to the DTC through MTS that the transaction is complete, or has failed.

Non-Transactional Objects
The best part of MTS is that it can manage any object, even one that is not participating in a transaction.
MTS does not care if our component does not have any transactions: it will still manage our component so
that many clients can access it efficiently. When our non-transactional component tells MTS that is done,
MTS will destroy our component at the appropriate time, just like it did with transactional components. The
only difference is that MTS will not pass any messages onto the DTC.

The Managing Class Revisited
I’ve said several times that the choice of technological framework will have a fundamental impact on the
way we design our components and thus the resulting component interfaces. Just to prove a point, let’s
compare the class diagram for the managing class as we defined it from analysis of the sequence diagrams:

with how it looks now that we have taken into consideration the environment in which our components
must work(don’t forget, the managing class will be common to the Customers, Products, Orders
classes etc.):

Chapter 8

250

It is clear that we have now gone way beyond our initial interface, comprised exclusively of public
properties and methods. We have now defined some friend and private properties and methods. We are not
going to get into a full discussion of exactly what every property and method actually does but from our
previous discussion of our technological framework, you should have some understanding of where some of
them came from. The GetProxy() and SetProxyInformation(…) methods, for example, relate to
our component communication technology, RDS. The BOFAction and EOFAction properties will
describe what should happen if we go beyond the first and last records when navigating through our ADO
Recordset object. Hopefully, more of this will become clear in the Development phase, when I will show
you exactly how class diagrams (and the activity diagrams we will produce shortly) translate into actual
Visual Basic code.

One of the goals of this book is to bridge the gap between project management, who may not have extensive
coding experience, and developers. Hopefully it will give a much fuller appreciation of the amount of work
and consideration that must go in to designing a successful enterprise system and of how technical issues,
such as choice of a particular framework technology, can have a fundamental impact on the way in which a
component is coded, testing procedure etc.

Mapping Out the Code using Activity Diagrams
We are now (at last!) ready to start mapping out the code for our Visual Basic components. Writing the
code out in pseudo code is one solution, yet it can be difficult to read all of the written steps. Activity
diagrams are visual and thus make it easier to view the flow of the code.

Design Phase: Physical Stage

251

Before we start I would just like to re-emphasize the importance of creating and documenting UML
diagrams at every stage of the design process.

Every code module should be traceable back to the original user goal that the
module will help fulfill. By creating use cases, sequence diagrams, class diagrams
and activity diagrams one can trace back every code module. This allows the
developer to easily understand what the purpose of the code is and to optimize the
code to fulfill the goals of the user.

Just as we make code libraries, we can create libraries of UML activity diagrams. These diagrams can be
used to show the flow of the code and be used as teaching aids for junior developers or as a starting point
for code modules that perform a similar function. As we discussed earlier, activity diagrams can easily be
shown to different members of the team for suggestions on ways of improving the coding techniques. It will
only take a few seconds to understand the diagram and changes can be made easily and quickly.

Activity diagrams will have a black dot to mark the beginning of the diagram and a black dot with a circle
around it to mark the end of the diagram. A lozenge shaped box marks each activity in the diagram. If there
are decision points, they are marked by diamonds. First, let us take a look at a relatively simple activity
diagram, describing a very important event, that of creating a connection to our data source.

Activity Diagram For Creating an ADO
connection

An activity diagram for a method that sets
(initializes) the ADO connection for a data
services component would look as follows:

Chapter 8

252

Since this is a fairly straightforward example, we will walk through the code associated with this activity
diagram :

 Private Sub SetADOConnection(v_strDatabasePath As String)

 Dim objADOConnection As Object
 Dim ADOConnection As ADODB.Connection

 ' Set the error handler
 On Error GoTo SetADOConnectionError

 ' Initialize the ADO Connection object
 Set objADOConnection = CreateObject("ADODB.Connection")

 ' For disconnected recordsets, set ADO cursor location to client
 With objADOConnection
 .CursorLocation = adUseClient

 ' Set the ADO connection string
 .ConnectionString = "Provider=Microsoft.Jet.OLEDB.3.51;Persist " & _
 "Security Info=False;Data Source=" & v_strDatabasePath

 ' Open the connection
 .Open
 End With

 Exit Sub

 'Build the error string
 SetADOConnectionError:

 Dim lngErrorCounter As Long
 Dim strErrors As String

 strErrors = Err.Number & ": " & Err.Description

 If objADOConnection.Errors.Count > 0 Then

 For lngErrorCounter = 0 To objADOConnection.Errors.Count - 1
 strErrors = strErrors & _
 objADOConnection.Errors(lngErrorCounter).Number & _
 ": " & objADOConnection.Errors(lngErrorCounter).Description & _
 vbCrLf
 Next lngErrorCounter

 End If

 ' Rasie the error
 Err.Raise 2000 + vbObjectError, "SetADOConnection " & Err.Source, _
 strErrors

 End Sub

Design Phase: Physical Stage

253

Even for a simple module such as this, it is much easier to understand the flow of the code and what is
going on in the code by looking at the activity diagram. This diagram can lead to discussions on the design.
To begin with, why do we need a special method to set the ADO connection? From our discussion on the
last chapter on ADO connection objects we know that these objects are pooled. We said that we wanted to
use them and then throw them back in the pool. This means that we will be opening our connection, using it
closing, and then opening it again, etc. Thus, every time we need to connect we will need to open a
Connection object. Because of connection object pooling, we are not actually opening a connection but
taking an existing connection out of the pool.

We can also see there are a few properties that will need to be set on the connection object. One of these is
the cursor location. The cursor location can be on the server or on the client. A detailed discussion of these
is beyond the level of this book, but they both are used in different situations for different types of data
access. The activity diagram makes it clear that we need to set this property, and that we must find the best
setting for our particular project.

Retrieve Customer Activity Diagram
How do we take the message Retrieve a Customer, which is being sent to the server component, out from
the Modify Customer sequence diagram and expand this message into an activity diagram? Let’s create a
new activity diagram called Retrieve Customer recordset and find out.

There will be variables for a private ADO connection object and a private customer
recordset variable in our server component.

The necessary steps for retrieving a customer recordset are as follows:

� Initialize the recordset variable

� Set the properties of the recordset so that it will contain all of the customer records

� Connect the recordset to the database

� Retrieve the customer records from the database

� Disconnect from the database

� Return the recordset variable filled with customer records to the client

These steps are very high-level. They do not really get into any discussion of the ADO or how the ADO
works. They are just a logical series of steps that we need to perform to get information from the database
and return it to the client. The next step is to determine exactly how we do each of these steps using ADO.

Following is a table of the steps required to perform the general tasks we listed above using ADO. These
are the specific steps our server component must perform to get a customer recordset and pass back a
disconnected recordset with the client information in it using ADO. Each step also includes the framework
that places this requirement on the system, so you can see where you might have found information on how
to perform this step.

Chapter 8

254

Activity
Framework that
requires this activity Requirement

Create ADO connection ADO Framework You must make a connection to the
database by either creating a
Connection object prior to retrieving
data or passing in a connection string in the
open method of the recordset.

 Three-Tier framework No information can be stored from one call
to the next. Therefore a Connection
object must be created first for every
request to get information to the data

If there is an error getting
the connection, raise an
error and end

ADO Framework All errors must be handled

If there is no error, initialize
the customer recordset
object

Three-Tier framework No information can be stored from one
Call to the next; must initialize Recordset
for each request

Set customer recordset
cursor location to the client

ADO/RDS framework Updateable disconnected recordsets are
required; these recordsets need a cursor
location to be on the client

Set customer recordset
source equal to the
appropriate query string

ADO framework If a recordset is going to retrieve data from
the database, there must be a Query string
that specifies what information from which
tables will be retrieved (a query string is
not required if you accessing a stored
procedure).

Set customers recordset
connection

ADO framework To connect a recordset variable to a
database you must set the recordset
variable’s connection property to a valid
connection string.

If there is an error getting
the connection, raise an
error and end

ADO Framework All errors must be handled

Design Phase: Physical Stage

255

Activity
Framework that
requires this activity Requirement

If there is no error, set
the customer recordset
LockType to the
appropriate lock type
and set the Recordset's
Connection object to
the Connection
object.

ADO framework Must set LockType of a recordset
before retrieving data from the database
(not required for the default optimistic
lock)

Open the customer
recordset object

ADO framework
requirement

Must open a recordset to retrieve the
data into the recordset

If there is an error
opening the recordset,
raise an error

ADO framework
requirement

All errors must be handled

If there is no error,
return the recordset

Three-Tier
framework

Return disconnected recordsets

Close the ADO recordset
and set the recordset and
Connection object to
nothing.

ADO framework Failing to close the Connection
object leaves it open until it times out.
There is a limited number of
Connection objects, so letting them
close by timing out ties up valuable
resources.

This table says a great deal about programming in Visual Basic. To make this chart, I had to understand
three frameworks (RDS, ADO and Three-Tier). Programming Visual Basic goes beyond knowing just the
language syntax. To make Visual Basic projects, we now have to understand the frameworks that our
projects are going to work under. We therefore need to do the following:

� Map out the general steps a message requires

� Determine what frameworks you will be using to perform these steps

� Get out your reference books on these frameworks, and find for each framework the specific sub-steps
that are required for each general step

Chapter 8

256

From this table, we can now draw out our activity diagram. Each activity in the chart above will map to
some element of the activity diagram:

Design Phase: Physical Stage

257

The simultaneous flows that have arisen due to the possibility of errors will come back together at the thick
horizontal bar or concurrent join. Of course, as with any activity diagram, the ending point must be shown.

If we were to create a similar diagram for Retrieve Product, it would look very similar.

Update Recordset Activity Diagrams
Lastly we will look at some activity diagrams for updating a recordset in the database. If you cast your
mind back to Chapter 6 you may recall that our interview with Valerie, the Northwind Sales Representative,
highlighted a problem with the old order processing system - if another user was accessing the database
table that Valerie wanted to use, she was simply prevented from having access to it until the other user had
finished with it. With our ADO disconnected recordsets we have overcome this problem. Each user can
work with a recordset on the client machine. The user can then request to update the database. MTS also
allows us to perform our database updates under transactions. During this process the system must check
for any conflicting records (another user may have been making conflicting changes to the same data),
attempt to reconcile any differences then either accept the transaction or rollback the changes. This is not a
straightforward process and we will not explore it in all its gory detail. Let’s have a look at an activity
diagram describing a generic UpdateRecordset method:

Chapter 8

258

If the transaction was successful we call SetComplete, and the changes will be committed. If for any
reason an error occurred (such as conflicting records being found) then we need to call SetAbort and all
changes will be rolled back:

Of course, the Reconcile step is a whole complicated activity diagram on its own. Also the steps that would
occur when determining the type of recordset and preparing to send it back would be the focus of yet
another activity diagram. As I said, not a simple process.

Benefits of Activity Diagrams
Before we move on let’s review the benefits of using activity diagrams.

Listing all of the steps of each of our methods gives a clear, readable way of seeing everything your code
must do to perform this task. As such, an activity diagram provides a very useful learning tool. With an
activity diagram, a junior developer can go to a more senior developer and ask them “In this diagram, what
should I set the cursor property to and how should I raise the error?” Without the diagram, a junior
developer may not even know that they are supposed to set the cursor property to a value or that there is
any need to build a special error string. Activity diagrams make sure that all of the critical steps are
included in the code.

Design Phase: Physical Stage

259

Finding the best solution is usually an iterative process. First you have your initial concept, refine it, test it,
then you refine it more and test it more, etc. Activity diagrams will let us go through many refinements of
our object’s methods before we even write one line of code. Removing something from an activity diagram,
means deleting a graphic image. This takes about a second. Changing code means deleting lines of code that
may have taken hours to create and adjusting the rest of the code to deal with the deletion. Which one
would you rather do?

Effective Testing
We saw in the previous sections that, for example, Retrieve Recordset is a task that is required by nearly
every client component. Therefore the majority of the tasks the client will be performing will depend on
this task functioning correctly. Establishing an ADO connection is a key task performed by the server
object. Tasks that are essential to the entire system, such as these two tasks, should always be thoroughly
tested during the design phase. If either one of these tasks fails to work, or works inefficiently, the entire
project will fail.

With regard to retrieving recordsets from and updating recordsets to the server component, we will need to
answer these questions:

� How efficiently will disconnected recordsets work for the Northwind order processing application? How
efficiently will they work for the web application?

� Does RDS actually work? If so, how efficiently?

� If RDS works, does it work efficiently enough for this system?

� Can we quantify the benefits to our system derived from MTS?

The testing team should create small test projects to ensure that the chosen technology actually does
represent an effective solution for a particular system.

Other Features to be Determined in the Physical
Stage

In addition to designing components, there are several other features of your project that need to be
determined in the physical stage.

Security
When designing the security for your application, you have many choices. The basic four basic choices are:
component- based security, database-based security, MTS security and operating system-based security.
You can choose any of these security methods by themselves or you can use a combination of security
types.

MTS, database and system security are similar in that they require an administrator to physically add every
user into either a group or a role. Because NT system security information is placed in memory on the
server, there are limitations on the number of users that can be stored in this type of memory. These three
security types were designed prior to the Internet and are not designed to hold information on tens of
thousands of users.

Chapter 8

260

MTS security works on top of DCOM security. DCOM security can provide a high grain of security, that is,
it can limit access to a complete component such as a DLL. Often, one needs to limit security down to
particular parts of a component. For example, you may have an employee component, which has interfaces
that can be viewed by anyone within the corporation (such as name and department) and another interface
for payroll and personal information that is only available to the human resources and payroll department.
With DCOM, we can only create separate security by creating separate components. MTS, though, does
allow us to get down to a finer grain of security.

With MTS you can define roles for the users of your components. This will give us a much finer grain of
security. Each role can be allowed access to specific interfaces or methods. If you have designed your
application with UML and created use cases, you will have defined roles for your users. Based on these
roles associated with use cases we can determine the roles for our components, and what these roles are
allowed to do. Thus, building applications with UML and using MTS for role-based security go hand in
hand. For an excellent discussion of MTS security read Visual Basic 6 MTS Programming by Wrox press.

While DCOM and MTS provide excellent security models for intranet sites and internal distributed
applications, they do not provide a practical solution for large-scale web applications. If you are going to
need a way of keeping track of thousands of users, your best choice is using a directory service.

A directory service can hold information on each user, including their ID and their password. When
developing e-commerce web sites with Site Server, you can use Site Server membership directory to store
information. Information can be placed into the membership directory and retrieved from the directory
using LDAP (Lightweight Directory Access Protocol). Using the membership directory, we can keep track
of thousands of users. Based on the roles we define in our system, we will create different sets of users with
different access rights. Ideally, we will be able to tell programmatically what rights a user has, so we can
automate adding users to the directory instead of doing it manually. For example, on a web site we could
have three levels of membership, each with a different price and different type of access to the site. We can
place users into different roles depending on the type of site membership they pay for. This can be done
within our code and does not have to be done manually by an administrator. We can see that a directory
service will provide the ideal security solution for our large web sites. For more information on Site Servers
membership directory read Site Server 3.0 Personalization and Membership from Wrox press.

With Windows 2000, which is to be released sometime in mid 2000, the directory will be part of the
operating system. The active directory will allow you to identify both users and resources on the network
that can be managed at a single point. At this time there are no books out on the subject, but there certainly
will be many of them as we come close to the release of Windows 2000.

Component-based security places the responsibility of validating the user on the components we build. In a
data services component that does not maintain state, this type of security requires us to have a userID and
password as parameters of every method of the component. In this case, our component would need to have
code to actually check to see if the userID and password are valid for each method call. We could then
verify the userID and password against a directory.

Design Phase: Physical Stage

261

The userID and password can also be stored in a database or one can simply have regular security on the
database and check a user by trying to make a connection to the database. Any of these techniques will
work. Since the responsibility of validating users is now taken on by your component, it is important that
you code it carefully. This type of security is found in Internet applications and some 3-tier solutions that
have a stateless data services component. The Internet applications will usually use a directory. An Intranet
application using component security will probably also use either database security or operating system
security. If you use Remote Data Services, it is likely you will be using this type of security.

Regardless of the method you choose to use for security, your use cases can help you define roles for your
users. In the conceptual stage, we defined a set of roles for our users. These roles can form the basis of our
security. Our use cases also tell us what tasks each user is allowed to do.

Error Handling
By the end of the physical stage, you must have documented all of the error statements for your Visual
Basic application. The possible errors for your application can be found in the constraint business rules and
the alternative flows of the use cases.

Visual Basic allows you to use error numbers ranging from 512 to 32768. You should give each of your
components their own range of numbers. If each of your components has 100 possible user-defined errors,
this will allow you to make over 300 applications with no conflict of the error numbers. If you set a range
of numbers for each component, then you will know exactly which component raised an error when an error
occurs in your application. This will make debugging much easier, especially when there are dozens of
components that make up the application. For the situations where the same error message may be
presented in many different components, you should create a standard for the message, but each component
should have their own number assigned to this standard message.

Visual Basic now allows you to use resource files. Resource files are a great place to store error messages.
To use a resource file, you will need to add a method into your Visual Basic application to retrieve the
string associated with an error. Let us look at how this is done.

Chapter 8

262

In Visual Basic, go to the menu and select Add-Ins|Add-In Manager. The Add-in manager will come up.
Double click the VB 6 Resource Editor:

Click OK. Now you can edit resource files in Visual Basic. Go to the menu and select Tools|Resource
Editor to open up the resource editor.

Design Phase: Physical Stage

263

Click on the abc on the toolbar to open the string editor. You can assign each error number to a string that
gives a description of the error. It could look as follows:

Once you have created your error message strings, you must save them using the VB Resource Editor. The
.res file that is created can be shared by all of the components in your project. This .res file should be
made during the physical stage.

You can create a function that uses the LoadResString Visual Basic function to retrieve the correct
error string:

 Public Function GetErrorText(ByVal v_lngErrorNumber As Long) as String

 On Error GoTo GetErrorText_Error

 GetErrorText = LoadResString(v_lngErrorNumber)

 Exit Function

 GetErrorText_Error:

 If Err.Number <> 0 Then
 GetErrorText = "An unknown error has occurred, the error was not found"
 End If

 End Function

If the error number is not in the resource file, it will return the default unknown error message. Just to make
things a little easier for the Visual Basic programmer, we can make an enumerated type with the error
messages. This way the developer does not have to remember all of the error numbers. The enumerated type
would look as follows:

Chapter 8

264

 Private Enum ErrorCollection
 e_UserMustLogin = 2000
 e_UserEnteredInvalidID = 2001
 e_UserEnteredInvalidPassword = 2002
 e_CanNotDeleteCustomerPendingOrder = 2003
 End Enum

These enumerated types should also be made in the physical stage. This type would look as follows to a
developer if they hit control-space bar and typed the letter e_ :

This makes it easy to find the correct error. I do realize this is a bit different than the way most error
messages are created. For the most part, developers start coding and as they find they need an error message
they add one to the list. This can lead to duplicate numbers and a lack of uniformity in the numbering and
content of the error messages.

By defining the errors in the physical stage and designing your technique of coding with activity diagrams
before the code is written, developers will know exactly where errors should be placed and which error
should be placed there. This is a much cleaner and easier way to code.

One final comment on error messages: try to word your error messages in a way that any user can
understand them and understand what has gone wrong. Try to build some intelligence into your applications
so that when an error occurs, not only does the user get an error message, but also suggestions on how they
may correct the error. Doing this will substantially reduce the number of help desk calls.

Design Phase: Physical Stage

265

Risk Assessment
Once the final design is put together, there will be risks associated with the choices that were made. Each of
these risks should be placed in the risk document so that they can be monitored. While risk assessment
should be part of every phase of a project, you will have the clearest understanding of the project’s risks at
the end of the physical stage. A careful review of all of the proposed risks should be done at this time.

Publishing the Final Interface
Once you have completed the design of the interfaces for each component, they should be documented in
class diagrams. These diagrams then become a contract as to the public methods and functions that the
classes will provide in their interface. As we stated earlier, this interface should not change.

The final interface design of all of your components is one of the final deliverables for the physical stage.
When all of your components have been designed and all of the issues, such as security and component
distribution have been resolved, the design of the project is complete.

Summary
The physical design stage will first focus on researching the best way to build the components defined in
the logical stage. Once the research is completed, you must weigh the options and choose the best solution
for each component. Once a solution is chosen, a way to implement that solution must be created and
documented.

The physical stage will focus around finding the best possible components for our system. Visual Basic has
a wide range of capabilities and can provide us with a wide range of solutions for our enterprise system.
When Visual Basic does not provide us with the solutions that we need, we can use other languages or third
party components. We can also use third party components when we want to save resources by not
reinventing the wheel.

By the end of the physical stage we have mapped out everything we need for our development phase. It is
like a play in which the entire script has been written. It is only a matter of the actors acting out their parts.
Just as a good actor can bring life to a good script, the skilled developer can take a good design and create a
powerful, efficient system.

Chapter 8

266

Development Phase

The development phase will focus on converting the design created in the physical stage into a working
application. This phase begins when the design has been frozen and locked into place. The key players in
this phase will be the developers and testers, but the entire team will have work to do in the phase. The two
most important activities will be building and testing the solution. This phase is complete when the first
release of the project is made.

It is impossible to give a detailed description here of the procedure for creating Visual Basic code from
UML activity and class diagrams. However, this can be found in Appendix B. Instead, we will cover some
of the issues facing developers in this phase and take an overview of the coding of our DNA application.
We will also look at the issue of code reusability, identifying patterns within code and seeing how we can
use these to help us write code - even to the extent of automating some code generation.

So, in this chapter we will see:

� How we can identify patterns which will be repeated within our code

� How we can use these patterns to cut development time and costs

� An overview of coding the project

� How we can automate code generation

Since this phase concentrates chiefly on writing code, the deliverables will be:

� Internal code releases

� Versioned source code

� Compiled code

� Updated risk management documents

Chapter 9

268

The final milestone for this phase will be the completion of all the source code, including the testing both
of each component individually and of the product as a whole.

Summary of Team Focus
The project manager will be in charge of the master schedule, monitoring risks, generating status reports
and handling any changes to the functional specifications. One of the most important jobs of the project
manager is adjusting resources so that the critical path tasks get accomplished on time. Thus, if a developer
who is working on a critical path task becomes ill and cannot report to work for a week, it is the job of the
project manager to make the decision to reassign personnel, if this is the best option. It is important that the
critical path tasks are accomplished. Thus, the project manager plays the role of monitoring the project and
adjusting resources when necessary to make sure that the project stays on time and on schedule.

The product manager will be responsible for keeping the client informed on the progress of the project, the
status of the schedule and costs, and an assessment of the current risks to the project. If there are any issues
the client has with the project, the product manager will act as the negotiator between the client and the
development team.

The component managers perform the same tasks as the project manager, within each component team.
They are responsible for managing the resources within their team and ensuring that the components written
by their team are completed on schedule. If personnel need to be reassigned within a component team, that
will be the responsibility of the component manager rather than the project manager.

The development team will be driving this phase of the project. They will be building and assembling the
components of the system. Development will have numerous deliverables as the code is built in stages from
components. These components, whether they are classes, complete business objects built from hierarchies
or completed user interfaces, must be thoroughly tested prior to being considered complete.

The testers will be testing the components that the development team is creating. As each component is
completed and tested, it will be added to the system and tested within the system. We will discuss the
different types of testing in the next chapter.

User education will be busy putting together documentation on the project, based on the design. Because
the design has been finalized by this phase, the educators are able write accurate support materials in the
knowledge that the system will work as designed. The educators could also be working on creating a web
site to support the new product, designing plans to educate the new users or even working with the users on
existing portions of the project.

Logistics will be working on procuring the physical components needed for the project and building the
required infrastructure for the project. They will work closely with the support groups and bring any issues
support may have back to the development team.

Development Phase

269

Overview of Development Phase
First of all, let's have a quick look at where we are in the project cycle. In the logical stage of the design
phase, we identified the components which will be required for our application, and the public methods and
properties that each component will need to expose. We also considered some of the possible frameworks
for the application. This process continued into the physical stage, where we refined our class diagrams to
include friend and private properties and methods which are internal to the component, and cannot be
accessed by any other components. This distinction is important because the public methods and properties
- the component's public interface - should not be altered once the design has been finalized and signed off
by all team members. The internal methods and properties, however, may be altered if this proves
necessary.

In the last chapter, we also saw that each component will need to consist of more than one class. For
example, as well as a clsCustomers class, which will represent an individual customer, we saw that we
will need a class to manage the customers: an object from which we will be able to create instances of our
customer object. Moreover, if we want to be able to group certain customers together (such as those who
spend more than $1,000 dollars a year), we will need yet another object to manage these different
collections of customers. We thus saw that we need a three-class system for our business components.

In the development phase, all this design work will be translated into Visual Basic source code. Code will
be written to implement all of the methods and properties exposed by our objects, which we identified in
the design phase. In other words, it is by this stage absolutely fixed what the application is going to do, but
there is still much leeway with regards to how it will perform those services.

The other major activity of this phase is testing. Each routine must be tested as it is written; then each
component must be tested as it is completed. Finally, the entire application must be thoroughly tested when
all of the code has been written. Bugs will be reported as they are found by the testers, and ranked
according to priority. When the code has been completed, the entire product will be beta-tested by end
users. This process of testing and debugging overlaps between the development and deployment stage, and
will be treated in more detail in the next chapter.

Most of this chapter will focus on the issues facing developers in this phase, but let's first take a quick look
at the most important task of the project and component managers: managing risks to the project and
ensuring that the project is completed to schedule and on budget.

Risk Management
Risk management is critically important in the development phase. Any risks that go unnoticed can result in
the project falling hopelessly behind schedule or over budget. A small problem that could easily be taken
care of in its initial stages can quickly snowball into a problem that can destroy an entire project. It is
amazing how a project that is properly planned and carefully designed can fall apart very quickly because
risks were not properly monitored. A problem that delays a critical task can cause this task to be delayed for
weeks. All of the tasks dependent on this critical task must now wait. If some of the dependent tasks are
also critical path tasks, then more tasks will wait. One critical task falling behind can cause a chain of
events that delay the entire project.

Chapter 9

270

It is the job of the project manager to watch the project and make sure that the risks are being managed
properly. It is the job of every single member of the team to document risks and make sure that they are
being dealt with. Every week, team members should be submitting a form listing all of the possible risks to
their project. Each team member can list risks to the goals they are trying to accomplish. The project
manager will then go through these reports from the team members and create a list of risks. Working with
team members, a ranking of the risks will be done.

It is likely that a risk will be reduced by the combined efforts of many members of the team, so it is also the
team's responsibility to eliminate the risks. The project and component managers should find solutions to
risks and divide the responsibility of eliminating the risk amongst the team members.

Another important role of the project manager is change control. If there is any need to make a change to
the plan after it is frozen, the component manager will assess the risks. The product manager will bring
these risk documents to the client and discuss the consequences of making a change. If the change is put
into effect, the project manager will make the necessary changes to the schedule and allocate resources to
compensate for this change.

Writing Visual Basic Code
Writing Visual Basic code can be considered an art. A good artist will work hard at developing the best
possible solution. The rules of good coding have been discussed throughout this book. Perhaps the most
important aspect of team development of a Visual Basic project is having a set of standards. There should
be coding standards, standards for documentation, and standards for design. These standards should be
understood and followed by the whole team. Coding standards can be made to fit the needs of the team.
Coding standards includes all standards related to writing code. This can include naming conventions, error
handling, use of go to statements, comments, versioning, etc.

The basic rule for naming variables is that all variable names should indicate what the
variable does, what the variable's type is and what the variable's scope is. It does not
matter what specific naming convention you use, as long as it meets this rule.

It is critical that you create standards for your project, as the code will be passed from the developers to the
testers. If the testers must spend days trying to understand each person's code, they will spend little time
testing. The code a Visual Basic team writes must be capable of being passed from one Visual Basic
developer to another and be understood within a reasonable time. The only way to accomplish this is by
using a set of standards, having a detailed design of the project and using deliverables that determine
exactly what has and what has not been done in the code. This can all be accomplished by the techniques
outlined in this book. Another very useful technique for ensuring that the code is standardized is to use
code reiviews.

Code Reviews
Code reviews serve many purposes. One can either review general techniques, such as how to code a
module, or review actual code. When reviewing techniques, activity diagrams can be used. A code review
can be used for the following:

Development Phase

271

� To find ways to make the code more maintainable

� To teach new members the best way to code and what the team's coding standards are

� To help find problems in code that is not working properly

� To help understand the best way to code a difficult section of code

Code reviews should never become personal. While I am promoting standards, I am not saying that each
person cannot write code in their own personal style. I am saying that a person's individual style should
work within the team's standards. Issues that need to be raised at a code review should be things that affect
the performance, readability and maintainability of the code. Issues that revolve around personal
preference, that have nothing to do with improving the code or working within the team's standards, should
not be included in code reviews.

An impartial moderator should oversee the review and make sure the review does not deteriorate into an
attack on the person who wrote the code. The moderator should make sure that comments are constructive
and geared towards making the code, and therefore the project, better. If there are mistakes in the code
someone writes, the code review should be a learning tool for this person.

In general, the developer or developers who wrote the code should walk through the code and explain the
function of the code and how it is supposed to work. The code is then reviewed by the reviewers. In
general, one should not try to fix problems during the review, only identify them. If there is time to discuss
solutions once all of the problems have been found, then solutions can also be discussed.

All suggestions for change should be logged. It is best to have someone taking notes and keeping a record
of all suggestions.

Coding the DNA Visual Basic Project
Now that we have considered some of the ways of managing the process of writing code, we can look at the
outline of our Visual Basic DNA project. As we saw, this will be a three-tier application using poolable
ADO Connection objects, transaction processing with MTS and stateless server components. The
application is based on the Northwind database, since this comes supplied with Visual Basic. We won't give
all of the code here, although it can be found on our web site, and it is given in 'VB6 UML Design and
Development', ISBN 1-861002-51-3.

We made the comment in the last chapter that the client services component is not very reusable. The client
services component, which usually consists of the user interface, is very specific to each application. We
will therefore not examine this component in great detail; however, some guidelines for creating a user-
friendly user interface were given in Chapter 7.

The Business Services Components
The business services components, though, tend to be good candidates for being reusable components. We
saw in the last chapter that it is a good strategy to divide our business components into a three-class
hierarchy. The middle class will be a managing class, and the bottom class a managed class. The top class
manages groups of the objects.

Chapter 9

272

These business services objects are built so that they can provide the attributes of the managed object, such
as a customer or order object, by either using a recordset or the properties of the managed object. The
properties of the managed class are public. The recordset can only be accessed by binding a control, such as
a grid box or text box, to the managed object or to the managing object. This binding is done using Visual
Basic's new data source classes (which I call data provider classes, because they provide data).

Bottom Class
The bottom class, which represents objects such as customer, order or employee objects, has a public
interface that consists only of properties; these are the attributes of the object that we want to store. For a
Customer object, for example, we would find attributes such as Name, Address, City, etc. For this
application, we will connect to the Northwind database, so we will add a property for each of the fields of
the Customers table in that database. The class diagram looks as follows:

Notice that as well as the properties taken from the database, which we use to store the customer
information, we have three extra properties - EditMode, ItemsDataMember and ItemsRecordset -
and one friend method, ValidateFields.

For each of the properties, we need to write two routines - one for reading the value of the property
(Property Get) and one for setting it (Property Let). However, if the property contains an object
(rather than, say, a string or a numeric value), Visual Basic requires us to use Property Set instead of
Property Let.

Remember that we said that we would allow the attributes of the object to be accessed either through
properties or through a recordset? That means we need a property which contains a Recordset object.
The ItemsRecordset property holds an ADO recordset which contains this information. This recordset
has a field for each of our Customer object's properties, so when we want to read or set one of these
properties, we will actually access the appropriate field in this recordset. For example, the routine for
getting the value of the Address property looks like this:

Development Phase

273

Public Property Get Address() As String
 On Error Resume Next
 Address = ItemsRecordset.Fields(g_cstrFieldAddress)
 If Err.Number <> 0 Then
 If Err.Number <> 3265 Then
 Err.Raise Err.Number, "AddressGet", Err.Description
 End If
 End If
End Property

The variable g_cstrFieldAddress is simply a constant (a variable whose value is set when the class is
initialized and cannot be changed) which is set to the name of the Address field in the database (i.e.
"Address"). The key line of this routine is therefore equivalent to:

 Address = ItemsRecordset.Fields("Address")

So when the managing class attempts to read the value of the Address property, this routine will be
executed and the value of the Address field in ItemsRecordset will be returned. The managing class
can thus access the customer's address in two ways: by reading the property directly (that is, by calling
objCustomer.Address) or by accessing all the customer information by calling
objCustomer.ItemsRecordset. Similarly, when we wish to set the value of this property, we will set
the value of the appropriate field in ItemsRecordset:

Public Property Let Address(ByVal v_strNewAddress As String)
 On Error GoTo AddressLetError
 If m_blnValidatingFieldChange = True Then
 Exit Property
 End If
 If m_eEditMode = adEditInProgress Or m_eEditMode = adEditAdd Then
 m_blnIgnoreFieldChange = True
 ItemsRecordset.Fields(g_cstrFieldAddress) = v_strNewAddress
 ElseIf m_eEditMode = adEditNone Then
 Err.Raise 1001, "Address Let:", GetErrorText(errChangeFieldNoEdit)
 End If
 Exit Property

AddressLetError:
 Err.Raise Err.Number, "Address Let " & Err.Source, Err.Description
End Property

This code is considerably more complex than that for the corresponding Property Get because of the
need to ensure that we don't allow data conflicts if more than one user is accessing the same record. Firstly,
we check whether a change to the property is still being validated; if so, we abandon execution of this
routine. Then we check our EditMode property; this contains the value of an ADO constant which
indicates whether a record is currently being edited, or whether it is being added or deleted. We can use this
property to keep track of what operation is being performed, or to check whether a record is being edited by
another user. If the record to be changed is being edited or added to the recordset, then we set the field in
the recordset in order to set the property; otherwise, we raise an error.

The final property, ItemsDataMember, returns a reference to the set of data or 'data member' for the
object's attributes, in case the data source is exposing more than one set of data.

Chapter 9

274

The ValidateFields method is used to validate a field in our recordset. All of the validation of the
fields is done in the properties. However, we can change a field either by using a property or by using the
recordset, so we will also need a way to validate the fields when they have been changed using the
recordset. ValidateFields will be called any time a field changes using the recordset. Since the code to
validate a field is already in the properties, the ValidateFields method will pass the new field value
into the property.

Middle Class
As we noted earlier in the chapter, the middle class of each component will have an identical interface,
because the middle class is used not to store data but to manage instances of the bottom class. Each of these
objects will therefore require exactly the same functionality. In fact, almost the only difference in the
coding of these classes is that we will need a reference to the corresponding bottom class. We will need to
declare the reference in the General Declarations section of the code. For example,
clsCustomersManager will need a reference to clsCustomers:

Private WithEvents m_objManagedObject As clsCustomers

And clsOrdersManager will need a reference to clsOrders:

Private WithEvents m_objManagedObject As clsOrders

Then, when the class is initialized, we will have to create an instance of the appropriate object:

Set m_objManagedObject = New clsCustomers

The only other difference occurs when we use the Item property to return a specific instance of the class.
Since this property returns an instance of the managed object, it will have to be declared As
clsCustomers or As clsOrders, etc.:

Public Property Get Item() As clsCustomers
 Set Item = m_objManagedObject
End Property

With the exception of these three minor differences, the code will be identical (so long as we give the same
name to our managed object).

Development Phase

275

The class diagram for the middle class looks as follows:

The methods and properties of this class are used mostly to retrieve a specific object of the bottom class, or
to obtain information about the collection as a whole; we have seen most of these, so we will just look at
those which we have not yet covered. Also, some of the properties are identical to those of the managed
objects, such as ItemsRecordset. This property returns the ItemsRecordset property for the current
managed object:

Friend Property Get ItemsRecordset() As ADODB.Recordset
 Set ItemsRecordset = m_objManagedObject.ItemsRecordset
End Sub

One consequence of using RDS is that we must create a 'proxy' of the server component in our middle-tier
object. That is, we must create an object which looks to our middle-tier object like the server component,
but will in fact only be a means for the two objects to communicate with each other. We need two methods
to handle this: the SetProxyInformation method will set up the information that the proxy needs.
Then, the GetProxy method will create the proxy object itself:

Chapter 9

276

Public Sub GetProxy()
 Set m_objDataSpace = New RDS.DataSpace
 m_objDataSpace.InternetTimeout = 30000
 Set m_objProxy = m_objDataSpace.CreateObject("prjServer.clsServer", "")
End Sub

There are two things to notice here: first we must create an instance of the RDS DataSpace object. Just as
we needed a managing object from which we could create our clsCustomers object, so we need an
object from which we can create our proxy server object; we can't just wish it out of thin air. The
DataSpace object fills this function.

The second point to note is that two parameters are passed into the DataSpace object's CreateObject
method (this is the function we use actually to create our proxy server object). The first is the ProgID of the
class we want to create: a string which identifies the sort of object of which we want to create an instance.
The second indicates the server on which the object itself exists. This can be in any of four formats:

� HTTP (HyperText Transport Protocol, the usual format for transferring information over the Internet). In
this case the parameter will be an HTTP address, such as "http://www.northwind.com".

� HTTPS (HTTP over Secure Sockets Layer - a secure form of HTTP). For example:
"https://www.northwind.com".

� DCOM (Distributed COM, which works in a similar way to COM, but can operate over a network). The
parameter will be the name of the machine on which the server component resides, e.g.
"Northwind1".

� In-process, which we use when the client-side and server-side components are on the same machine. In
this case, the parameter will be an empty string, as in the example above.

This illustrates the ease with which an RDS connection can be adapted to different circumstances, and
shows why RDS is a good choice for reusable components: all we have to do is change this one parameter,
and we can adapt a component used by our order entry application running over an intranet via DCOM to
run over the Internet via HTTP.

The UpdateManagedObjects method is called to update all of the components that are bound to the
object. This will happen any time the recordset changes, such as during a MoveNext or after an Edit or
AddNew has been saved.

Top Class
We will place the top class into a user control. This allows us to add the control to a form in the client
application; we consequently don't need to instantiate a separate component.

The top class will only have two methods, a Get... function to retrieve an instance of the corresponding
middle class and a ChangedManagedObjects method to refresh the bound controls when the recordset
changes. There is also one property, based on the primary key of the table. The class diagram for
ctlCustomers, for example, looks like this:

http://www.northwind.com
https://www.northwind.com

Development Phase

277

In addition to the object, each component will have a .bas module with a CreateErrorFunc for error
handling and various constants and enumerated types that will be needed for the component.

The Server Component
As we noted in the last chapter, our DNA approach requires us to keep our server component stateless in
order to achieve maximum scalability, and this in turn dictates that the component will have only methods:
since we are creating an instance of the component only when needed and destroying it afterwards, the
values of any properties would not persist from one call to the object to the next.

The following class diagram shows the methods for our clsServer class. Because our server component
contains only one class, there are no friend methods; all methods which are not public can be accessed only
by this class, so will be private:

For each of our middle-tier components, we will need two specific methods: a public
Return...Recordset method and a private Update...RS method. The class diagram above shows,
as examples of these, ReturnCustomersRecordset and UpdateCustomersRS methods; we would
also need a ReturnOrdersRecordset and an UpdateOrdersRS method, and so on. The
Return... methods are public, and can be called directly from our managing class to retrieve a recordset
for a specific object from the database. However, the Update... methods are private, because we have a
generic public UpdateRecordset method, which calls the appropriate specific function.

Chapter 9

278

Our decision to use MTS for transaction processing means that we must have some way of telling MTS
whether or not the operations within the transaction have succeeded. If all operations succeed, we can
'commit' the transaction: that is, we can tell the database that all the operations within the transaction can
actually be performed. We do this through an MTS object known as the ObjectContext object. Every
object running under MTS has an associated ObjectContext object, and it provides methods for
committing a transaction:

Public Sub SetComplete()
 If Not m_objContext Is Nothing Then
 m_objContext.SetComplete
 End If
End Sub

Similarly, we need to inform MTS if anything goes wrong and the transaction needs to be aborted or 'rolled
back', canceling all the operations within it. Again, we must use the ObjectContext object:

Public Sub SetAbort()
 If Not m_objContext Is Nothing Then
 m_objContext.SetAbort
 End If
End Sub

The other methods are used mostly for handling our ADO connection to the database: we have separate
methods for opening and closing the connection, and for retrieving an existing Connection object.
Extracting this functionality into separate methods avoids having to write the same code for each of the
Update... and Return... methods. We can just call the method whenever we need to open or close a
connection. These methods are all private, because only our server component may have direct access to the
database.

Reusing Our Visual Basic Code
We saw in Chapter 8 that for each component you will have decided on one of three possible options: to
buy a third party compiled component, to reuse a component, or to build a component from the ground up.
If you are choosing a third party component, you will probably only have to test the component to make
sure it meets your project's needs, and then add the component into your project. When it comes to code
reuse, hopefully you will find that most of the work has been already done.

Building Visual Basic components from the ground up can be a daunting task. Even when the design is
created, everything documented, it still takes a long time actually to write and test the code. By reusing
code, one can substantially cut costs and time of development.

We can identify two general forms of code reuse. The first form is where we build a component and use the
same component in many different applications. An example of this would be building a product component
that can be used in an internet application, a Visual Basic EXE application and a Dynamic HTML
application. We will see an example of this in the next section.

The second form of reuse is where we identify a pattern, and reuse the same pattern (and coding techniques)
to build many different components. We will look at patterns in the next section.

Development Phase

279

Patterns
We saw in the previous chapters how sequence diagrams can help us to define the public interfaces for our
objects and to design a user-friendly GUI. Another great reason for creating sequence diagrams is that they
can help us identify patterns.

Patterns are becoming the hottest new idea in OOP. There is good reason for this. A pattern can provide us
with a basic blueprint that we can use to design our project.

A pattern is a common solution to a common design problem within a project.

Patterns can allow us to build our components in an assembly line manner. Patterns help a project stay
within time deadlines, keep costs down and significantly reduce the amount of coding that needs to be done.
Without a pattern telling us how to build our components, we will find ourselves asking questions such as,
“Will we build our customer object for the client as a single class or do we build it as a class hierarchy
from one, two or perhaps three classes?” Having a well-defined pattern, which shows exactly how we
should build a component, provides us with the answers to questions like these.

I see patterns being classified as either general or specific.

General Patterns
These apply to a general system and have nothing to do with choices of operating systems, programming
languages, or technologies. An example of this type of pattern would be a general pattern for making an
Order Entry application. Every order entry application will have certain features regardless of what you use
to build it. This type of pattern is useful because it can guide you in a general design of your project.
However, in this phase we're more concerned with specific patterns.

Specific Patterns
These can be used to build a particular component of a system, and they are dependent upon the system that
we're using. For example, if I were building a three-tier project, I might need to build dozens of client
components. It would be really helpful if I could find a pattern to build this type of component. I could then
reuse this pattern over and over again, to design and build all of my client components.

UML diagrams will not only provide us with the patterns that exist within our project's components, but
also show us how to code these objects. If we are fortunate, there will already be a coding solution for the
patterns we find in our UML diagrams. If there isn't already a pattern, we will need to create activity
diagrams in order to map out the coding solution.

Unfortunately, you see very little discussion of patterns in the Visual Basic literature, so there are very few
patterns for Visual Basic components. Visual Basic has only recently moved toward being object-oriented,
and I believe that many developers are still trying to write OO programs using non-OOP techniques. As the
Visual Basic community moves more toward using OOP techniques, I think they will also be jumping onto
the pattern bandwagon.

Chapter 9

280

Finding Your Own Patterns
Patterns that show how a component will actually perform its required task are not so obvious and are
rarely already defined. For example, the three-tier framework dictates that there will be client components
with certain properties, but how we actually make this client component have these properties is completely
up to us.

There are many resources that can guide us in finding these patterns, but for the most part we will end up
designing the patterns for the individual components ourselves. This is especially true because many of the
frameworks are so new that there are often very few, if any, patterns created for the framework's
components. In addition, since these frameworks are new, they usually have not been thoroughly tested
either.

This means that before we use any framework we will have to first create our own patterns and thoroughly
test them. While this may sound difficult, it really is not.

These patterns can be found quite easily if we design our components with UML models. The patterns we
will use to design our project will be based on object-oriented principles, good coding techniques, and
sound project management.

Why Are Patterns So Useful?
Project design really comes from two sides: the inside and the outside. The outside is based on our user
requirements, and the inside is based on the programming language, technologies, and server components
that we choose.

If we are using the same internal system for all of our projects, then once we've designed and built the
internal components for the first time, we can reuse them for all of our projects based on this internal
system. By the same reasoning, once we've designed and coded our Enterprise patterns, in order to build
future Enterprise projects, we only need to be concerned with the user requirements and building the
external part of our project; the patterns will provide everything else.

If we take all of these patterns and put them together, we can build what can be considered our own Visual
Basic 6 Enterprise framework. This framework will have a set of rules that must be followed, and will
shape how we build the rest of our project, i.e. the external part built from the user requirements (and use
cases).

Creating entire frameworks to build a particular type of project is perhaps one of the most
efficient ways of building projects. Many companies and third-party software vendors are
working late hours trying to make frameworks like this for Visual Basic 6 Enterprise
projects.

We can think of this as building prefabricated houses. Every prefabricated house is built from a similar
structure, a basic framework that will underlie every house. This doesn't mean that the houses will all look
identical. Once we move beyond the basic framework, each house will have certain things added to make it
unique: landscaping, color arrangement, bathroom fixtures, carpeting, etc. While the framework of each
house is identical, we can place different things within this framework to make completely different houses.

Development Phase

281

When it comes to our Visual Basic projects, the idea is to make “prefabricated” projects. We make our
basic framework and then, based on the users' requirements and the needs of the particular project, we will
add the features to make the application unique.

Building the framework is usually the most difficult part of a project. From design to implementation, it can
take six months to a year. However, once these frameworks have been established, we don't have to worry
about things like making connections to databases. As long as we follow the rules of our Visual Basic
Enterprise framework, the framework will handle all of these things. We only need to be concerned with
adding features that are required by our project.

Finding Patterns in our Sequence Diagrams
Look at the Create New Customer sequence diagram below. Now look at the Create New Product
sequence in conjunction with Create New Customer diagram. It is easy to see that these diagrams are
similar. In fact, they are practically identical.

Chapter 9

282

If we were to look at the properties of these customer and product components, they would all seem very
different. A sequence diagram, though, only looks at the messages being passed back and forth, which
means that it only looks at the object's public methods. When we view these three objects' methods, we
see that they are all very similar. We can also see that the DB Business Logic component works in an
identical manner for all three objects. What does it mean when things have the same methods but different
properties?

To answer this question, let's step back for a moment and use cars for our next example. Each car is an
object with its own set of properties, but every car shares the same underlying functionality.

It might be worth just stopping and thinking about this for a moment. Every car has a unique set of
properties that helps us to identify them: color, shape, type of wheels, manufacturer, etc. Yet, even though
cars have different properties, they all perform pretty much the same activities: accelerating, braking,
turning corners, indicating at junctions, etc. Although every car has a different set of properties that makes
it unique, they all function in largely the same manner. We do not have to find a whole new way of making
a car each time we want to make a new, unique car. We can use the same technique to build a car whether it
is going to be red or metallic silver, four seats or two. Since the way every car works is essentially the
same, we only need one way to build an infinite number of unique cars. The way a car is put together
(wheels, steering wheel, lights, dashboard…) is a pattern. It is because of this pattern that we can use the
same technique to build an infinite number of unique cars (just look down your street).

Development Phase

283

Components work in the same way. Even though they may have different properties, they can still work in
exactly the same way. If we know how to design or build one of these objects, we know how to build all of
them. Once I figure out how to build my Customer object, I will also know how to build my order and
product objects, too. By building similar sequence diagrams from our Modify and Delete use cases, we will
find that these tasks are also alike for our Customer, Order and Product objects.

How Can We Take Advantage of Patterns?
Let's take this one step further and try to see how this will affect our Northwind project. If Visual Basic had
true inheritance, this certainly would be a place we could use it. We could build one base class that had all
of our methods (remember, the methods are the same for all our objects). We could then inherit this class
into our Customer, Order and Product objects. We would then have the same methods within each of our
classes but would only have coded these methods once (in the base class). Unfortunately, we don't have
inheritance in Visual Basic so let us snap back to the real world and find a way to take advantage of this
pattern in Visual Basic.

Interfaces

There's a lot of confusion about Visual Basic interfaces. A Visual Basic interface is a class with methods
and properties with no code. Another Visual Basic class can then implement this interface. The class that
implements an interface will get all of the methods and properties that are in the interface. These interfaces
allow you to have one standard set of methods and properties for a group of similar components.

For example, I could create an Animal interface that has a Move and a Sleep method. I could then
implement this interface into a Rabbit component. I would then have to write the code to make the
Rabbit object move or sleep the correct way for a rabbit when these methods are called. I could also make
a Cat component that implemented the Animal interface, and write the appropriate code for that object. If
I had an object built from the Animal interface, I could call the Move method and that object would
respond in the way that was appropriate; that is, the rabbit would jump and the cat would walk. This is a
form of polymorphism.

While this form of polymorphism could be useful in our current example (since we do want all of our
components to have the same methods), it will not offer us any advantage in actually coding our
components. Remember: an interface has no code within it, the classes that implement the interface must
write all of the code for the methods and properties in the interface. We are looking for a solution where we
can write code once, and reuse it for all of our components. Interfaces will not provide this type of solution.

While interfaces could apply here, they will greatly complicate the code and offer only a small
improvement in our coding solution. It is for this reason we will not discuss them any further.

Chapter 9

284

Object Hierarchies

The other option is to use an object hierarchy to build our
objects. The hierarchy would look something like the
following:

 The hierarchy here is between the Managing Class and the Managed Class.

On the bottom of this hierarchy is a class that could contain the properties of the object (the Managed
Class). As all of these objects have different properties, this class will be completely different for each of
our objects.

Next up in the hierarchy, is a class that will manage the bottom class, which we will call the Managing
Class. This class will contain all of our client-side methods, such as Move to the Next Customer,
Add a New Product, Count Customers, Update Products, etc.

When considering this hierarchy, we discover one amazing fact: the Managing Class would be 99%
identical for every one of our objects! This is really something - a few hours of work talking to our users,
converting this information into use cases and sequence diagrams, has helped us find a pattern within our
system. Once we have the middle class coded, we can then build all of the rest of our client side objects by
simply making the upper and lower classes - which is a relatively easy task.

The Managing Class performs the same basic tasks for all of these objects.

We can see that our client components will have many methods that will be the same for all the
components. Using Visual Basic, we can build one of these client components, such as the Customer
component, and use it as a code template to build the other client components – such as the Order
component, the Product component, etc. When we look at the sequence diagrams for different components
and find patterns like this, we can turn these patterns into code templates. The relationship between patterns
and code templates is very similar to the relationship between a component and a class.

Without this ability to identify patterns, we would have been making these components separately… almost
certainly we have saved time and development funds by identifying patterns.

The time spent using UML has already paid off.

Development Phase

285

Exploiting Patterns for Code Reuse
We can use patterns when we find that we are building the same types of components, yet they are different
enough to prevent reuse of the code from one component to the next. A Customer component and an
Employee component will have similar functionality but be very different components. Both of these
could have a managing class that would allow you to move through either a collection of customers or
employees. The methods of the managing class would be identical for the two components. Each component
would have methods such as AddNew, Edit, Delete, MoveNext, MoveLast, etc. in their managing
class.

As we have seen, the managed class of an Employee and Customer component would be very different,
as each component would have a different set of properties. In general, we will find that any component
that we are building that is based on a managing class and a managed class will have a basic set of
functionality that will be identical in every component. Thus, we will find a pattern in all of our
components that have a managing class managing a collection of objects belonging to some managed class.

This form of code reuse allows one to build the foundation of your project using code generation. Code
generation is where the basic code for a project is generated based on a set of information. The information
to generate code can be UML class diagrams or a database. Once I define how to code a particular pattern, I
can reuse that code to generate code for any other component built from that pattern. Thus, if I find a way
to code my Customer component, I can use that method to also build my Employee, Order and Order
Details components. While we can do this manually (i.e. cut and paste code and rewrite the code for the
new components), we can also write Visual Basic code to generate the required code.

In this way, the basic components of our system can be generated with a Visual Basic code generation
project. While this may sound futuristic, it is not. The code for building a simple Visual Basic code
generator to create a DNA three-tier project is included in Appendix C. Whenever you find that you are
building components from a pattern, you should design and build a code generator. Once the generator is
built, the code that is generated can go through rigorous testing. Once the generated code has passed the
testing phase, future components should move through testing with a minimum of bugs. Ideally, once the
generator creates bug-free code, all future components built from the generator will be bug-free.
Realistically, there will always be one or two small things that will need to be adjusted. However, there will
be far less time debugging and cleaning the components from a tested code generator than if each
component is built from the ground up by developers.

Even if a pattern is found you will still have to write the initial code that will be used to generate future
components. Components that are reused in multiple applications will also have to be initially built. You
will also have components that cannot be built from either the first or second form of code reuse. In all of
these cases, you will have to build your component from the ground up. This will always be an expensive
process in terms of time and cost.

Chapter 9

286

If you have followed the rules of good design writing the actual code will be a matter of translating the
design into actual code. Providing you have performed thorough testing of your design by creating small
testing components, the majority of the hard work has been done. You will need to translate the UML
diagrams, in particular the sequence and class diagrams, to code.

Now that we have looked a little at code reuse with patterns, let's see how we can reuse components even in
a very different environment. We will take our Products component from a fat-client order entry
application and reuse it in a thin-client Internet application.

Using an ASP page
It has become common practice to call Visual Basic components from ASP pages. By placing code in the
Visual Basic component, many pages can use the same component. If you need several ASP pages to do the
same thing, without a Visual Basic component you will have to write the same code in every ASP page. If
you need to change something in the code, you will have to go through all of your ASP pages and manually
make the changes.

You could include files in your ASP pages for shared code, but this can be complicated. Another problem
with ASP pages is that they do not work as efficiently as a Visual Basic component. ASP pages do not have
typed variables so everything is a variant. In general, the more complicated the code is, the greater the
difference in performance between running the code in a Visual Basic component and running it in ASP
pages.

It is also easier to test and debug Visual Basic components. By writing your business logic into a Visual
Basic component, you can test the component using standard Visual Basic techniques. When you have
worked out all of the bugs in the code, you can integrate it with an ASP page.

Let us now take a look at this example.

Using a Visual Basic Component and an ASP Page
We will use the Products component from our DNA application and the VB6 UML book to generate
product information for an HTML page. The first question we must ask is, “Is this component appropriate
for doing this?” We talked about reusing components so the question is, “Does it make sense to reuse the
Products component for this application?”

The Products component was originally built for a Visual Basic EXE order entry application. The service
this component was to perform was to review, update and add product records by either using a recordset
bound to a control or by using properties of the object.

In our ASP application, we want a user to be able to submit a request to view all of the products of a
particular group. The information will be returned in a standard HTML table. This information is dynamic,
so the table must be made for each request.

We could build an ASP page that calls a Visual Basic component, which calls the Products component.
The Visual Basic component will then use this component to retrieve all of the products for all a particular
category.

Development Phase

287

In this scenario, we would not need the part of our Products component that binds to interface
components. We could though use the properties of our products component to get the information.
Thus, the products component can be used for our purposes.

Another possibility would be to create a stored procedure. For an application like this, a stored procedure
would be the usual choice, though it may not be the best choice. SQL Server 7.0 comes with a web wizard
that converts a recordset into an HTML page. With a few modifications, you could use this wizard to build
any HTML page you needed from the data. The problem with stored procedures is scalability. What if our
web site becomes very popular and we start having hundreds of requests a second? Eventually, our server
will reach a point where it will no longer be able to keep up with the requests to build web pages. Scaling
databases can be done, but it is difficult.

Let us go back to our original solution, where we had a Visual Basic web component being called from the
ASP page that called the products component. Let us place the Visual Basic web component and the
products component on the web server. As the demand for the site increases, you can create a web farm;
that is, you can use multiple identical web servers to share the load. Each web server will have the Visual
Basic web component and the products component on it. This solution will easily scale to be as large as
needed. Thus, using a Visual Basic component to build the HTML page makes sense. However, this still
does not justify using the Products component.

The Products component calls a server component that then requests the data from the database. Our
Visual Basic component could call the database directly and request the data from the database, or it could
also directly call the server component for the data. With regards to efficiency, it is possible that calling the
Products component, then calling the server component, which retrieves the data, is slightly slower than
calling the database directly. The actual difference will depend on the system and the load on the system.
There is one advantage, though, to using the Products component.

If, instead of having to create just one set of data, we had to write code to return hundreds of different data
sets, writing directly to the database would fill our Visual Basic web component with code to connect and
retrieve data from the database. We would need programmers who are experts in ADO and in using stored
procedures. We would also be mixing our business services logic with our data services logic. The code
could quickly become confusing and hard to maintain and upgrade. If there were a change in the database, it
would mean we would have to change our Visual Basic web component. Thus, using the Products
component means that the Visual Basic developer creating the component will not have to know anything
about ADO and, furthermore, the web component will not be affected by changes to the database. You
would have to perform tests comparing performance with and without the Products component to see if
the difference in performance is significant. It is very likely that under heavy loads the difference will be
very small between using the server component and directly connecting to the database.

Before I would make any decision, I would create small applications (prototypes) for all three methods
(using the Products component, calling the server component directly from the web component and
connecting directly to the database from the web component). I would then test each of the three solutions
under various loads. Based on the performance of each solution, I would make my final choice for the
project. Below we will show the code for the solution using the products component. The other two
solutions could be written by making minor changes to this application, i.e. by just changing how the data is
retrieved.

Chapter 9

288

It is likely that if we were going to use the Products component, we would probably not use our original
component. We only need to use the properties; all of the code for binding a recordset is excess code. In a
production environment, we would probably reuse all of the code from the products component that is
needed for the properties, and remove all of the code related to binding the recordset. Thus, we would reuse
the code and not the component. Because I want to show how to use a Visual Basic component from an
ASP page and not how to rewrite the Products component, I will only make a few modifications to the
Products component so that it will work with this project. We will begin our project with the page that
the user will use to make a request for product information.

The following sections will look quickly at the coding techniques involved in reusing
a component in a different environment. If you are not familiar with coding in
Visual Basic, you may find it advisable to skip to the section on 'The Future'
towards the end of the chapter.

The Client HTML Page
We need a web page with a listbox listing all of the categories. The
user selects a category and submits the form. The server will then
return a list of all of the products in that category. The HTML page
will appear as follows:

The code for this HTML page will look as follows:

<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE></TITLE>
</HEAD>

<BODY>
<FORM action=GetProductsByCategory.asp>
<P>Select A Category
<P></P>
<P>
<P>
<SELECT id=select1 name=select1 style="HEIGHT: 22px; WIDTH: 150px">
<OPTION Value="0" selected>Beverages Category</OPTION>
<OPTION Value="1" >Condiments Category</OPTION>
<OPTION Value="2" > Confections Category</OPTION>
<OPTION Value="3" >Dairy Products Category</OPTION>
<OPTION Value="4" > Grains/Cereals Category</OPTION>
<OPTION Value="5" > Meat/Poultry Category</OPTION>
<OPTION Value="6" >Produce Category</OPTION>
<OPTION Value="7" >Seafood Category</OPTION>
</SELECT></P>
<P><INPUT id=submit1 name=submit1 type=submit value=Submit></P>
<P></P>
</FORM>
</BODY>
</HTML>

Development Phase

289

When the user selects a category and clicks on the button, a request will be submitted to an ASP page
named GetProductsByCategory.asp in the same directory as the HTML page we just built. So, our
next task is to build this GetProductsByCategory.asp page.

Building the ASP Page
The ASP page will take the request and pass it on to a Visual
Basic component called prjRetrieveWebInfo.clsWeb.
This will create an HTML page containing a table with a list
of the products in the selected category:

The code for the ASP page looks as follows:

<%@ Language=VBScript %>
<%
Dim objGetProducts
Set objGetProducts=CreateObject("prjRetrieveWebInfo.clsWeb")
objGetProducts.GetCategoryInformation "","",Response,Request
%>
<HTML>
<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
</HEAD>
<BODY>

<P> </P>

</BODY>
</HTML>

The ASP code for this page is fairly simple. All this page does is call the Visual Basic component. There is
another very interesting thing to notice about this code. The method GetCategoryInformation takes
four parameters. The first two are the password and user ID, which are empty. The next two are the ASP
Response and Request objects. We are going to pass these into our Visual Basic component so that our
Visual Basic component can get all of the request information from the Request object. Our Visual Basic
component can send information back to the client using the Response object. First, though, let us look at
the Products component and see how we will have to modify it.

Chapter 9

290

Modifying the Products Component
The only change we have to make to the Products component is to change the top class from a Visual
Basic user control to a Visual Basic class. This change means that we have to change the control's
Initialize or ReadProperties and Terminate events to Class_Initialize and
Class_Terminate events. Open a new Visual Basic ActiveX DLL project. Add a reference to the server
component from the VB6 UML example or from the code generated by the code generator in Appendix C
(if you have not compiled the server DLL, you will have to do that before you can set the reference). Call
the project prjWebProduct. Add the clsProduct and clsProductManager classes (these are
named clsProducts and clsProductsManager respectively in the code generated by the code
generator, and will need to be renamed) and the ctlProduct control into the project. Select all of the
code in the ctlProduct component, copy it and then remove the control. Add a new class called
clsProducts. Move the code from the control's Initialize or ReadProperties and Terminate
events into the class's Initalize and Terminate events. These two events should now look as follows:

Private Sub Class_Initialize()
 Set ProductCollectionCatalogID = New clsProductManager
 m_lngCategoryIDEquals = m_def_CategoryIDEquals
 ReDim m_acolDataMembersArray(m_def_NumberOfProductCollections)
 ReDim m_blnDataMembersInitialized(m_def_NumberOfProductCollections)
 Set m_acolDataMembersArray(e_ProductsCategoryID) = ProductCollectionCatalogID
 m_blnDataMembersInitialized(e_ProductsCategoryID) = False
End Sub

Private Sub Class_Terminate()
 Set ProductCollectionCatalogID = Nothing
End Sub

Compile the new project with a new GUID (that is, with no version compatibility) into a new component.

Building the Visual Basic Component
We will now see how to build the VB component, which will be called from our ASP page. This component
will return an HTML page containing a table with the products in the selected category.

Create a new Visual Basic ActiveX DLL project
called prjRetrieveWebInfo. Add references to
the Microsoft Active Server Pages Object
Library and to the prjWebProduct we just
created. Make a reference to the MTS library. We
will make this an MTS component, though there
may not be too much gained by doing this.
However, since we are using the Response object
and Request object from the ASP page, and the
ASP page is running under MTS, we will choose to
run this component under MTS. My computer is
using Windows 2000 Beta, so the MTS library is
now replaced by COM+ Services Type Library.

Development Phase

291

Change the class name to clsWeb. Add the following code to the class:

Option Explicit
Private m_objContext As ObjectContext
Implements ObjectControl

We have implemented the ObjectControl interface so that our control can run under MTS. This means
we must implement all of the methods of the ObjectControl, so we need to add the following code to
the ObjectControl methods. When our object is instantiated, the ObjectControl_Activate event
will be fired. We can use this event to get a reference to the ObjectContext object:

Private Sub ObjectControl_Activate()
 Set m_objContext = GetObjectContext
End Sub

When the object is destroyed, the ObjectControl_Deactivate event will be raised, and we must
destroy the ObjectContext object:

Private Sub ObjectControl_Deactivate()
 Set m_objContext = Nothing
End Sub

Finally, we will also have to implement the ObjectControl_CanBePooled function, although this
does not actually have any functionality at present. However, we may get an error if we don't implement the
entire ObjectControl interface:

Private Function ObjectControl_CanBePooled() As Boolean
 ObjectControl_CanBePooled = False
End Function

We will use a custom function called CreateInstance to create our components. If the current
component is running under MTS, the CreateInstance function will use the MTS ObjectContext
object's CreateInstance function. Otherwise, we will use the New keyword:

Private Function CreateInstance(ProgID As String) As Object
 On Error GoTo CreateInstanceError

 If Not m_objContext Is Nothing Then
 Set CreateInstance = m_objContext.CreateInstance(ProgID)
 Else
 Select Case ProgID
 Case "prjWebProducts.clsProducts"
 Set CreateInstance = New prjWebProduct.clsProducts
 End Select
 End If

 Exit Function

CreateInstanceError:

 Err.Raise Err.Number, Err.Source & " CreateInstance", Err.Description

End Function

Chapter 9

292

We will also create sub routines for SetComplete and SetAbort to commit or abort the transaction if
MTS is running:

Public Sub SetComplete()
 If Not m_objContext Is Nothing Then
 m_objContext.SetComplete
 End If
End Sub

Public Sub SetAbort()
 If Not m_objContext Is Nothing Then
 m_objContext.SetAbort
 End If
End Sub

We will create a function called BuildProductsByCategoryTable. This function takes the
CategoryID as a parameter and will return a string with HTML tags to place the product information into
a table,

Public Function BuildProductsByCategoryTable _
 (ByVal v_vCategoryID As Variant) As Variant
Dim lngCategoryCounter As Long
Dim strHTML As String
Dim strQuery As String
Dim objProduct As prjWebProduct.clsProducts
Dim lngProductCounter As Long

This function will use the Products object to retrieve the data, so we will create the Products
component:

Set objProduct = CreateInstance("prjWebProducts.clsProducts")

We can use the GetProductCollection method of this object to build a collection of products with the
ProductID that was passed into the function:

objProduct.GetProductCollection(e_ProductsCategoryID)

We will now build an HTML page to place this information into a table using the properties of the product
object. We will begin by building the header of the page:

strHTML = "<HTML>" & vbCrLf & _
 "<HEAD>" & vbCrLf & _
 "<TITLE>" & "Products by Category" & "</TITLE>" & vbCrLf & vbCrLf & _
 "</HEAD>" & vbCrLf & vbCrLf & _
 "</HEAD>" & vbCrLf & vbCrLf & _
 "<BODY TEXT=" & Chr(34) & "#000000" & Chr(34) & _
 " BGCOLOR=" & Chr(34) & "#FFFFFF" & Chr(34) & " LINK=" & Chr(34) & _
 "#0000FF" & Chr(34) & " VLINK=" & Chr(34) & "#6600CC" & Chr(34) & _
 " ALINK=" & Chr(34) & "#FF0000" & Chr(34) & " TOPMARGIN=" & Chr(34) & _
 "0" & Chr(34) & " LEFTMARGIN=" & Chr(34) & "0" & Chr(34) & ">" & _
 vbCrLf & vbCrLf & vbCrLf & "
" & vbCrLf

Development Phase

293

We have hard coded the category options into the page as there are only a few of them and we did not build
a Category object in the VB6 UML book (though you can generate one with the code generator in a few
seconds). If there were only a few categories then it might save time to create an array of the product names
upon initialization to eliminate the need to look up the products every time. This array could then be looped
through in the code to get the category names. If a new category were added, only the code for initializing
the array would have to be changed. If the categories changed frequently, we would have to get the names
dynamically.

Select Case v_vCategoryID
 Case 0
 strHTML = strHTML & " Beverages Category " & "
" & vbCrLf
 Case 1
 strHTML = strHTML & " Condiments Category " & "
" & vbCrLf
 Case 2
 strHTML = strHTML & " Confections Category " & "
" & vbCrLf
 Case 3
 strHTML = strHTML & " Dairy Products Category " & "
" & vbCrLf
 Case 4
 strHTML = strHTML & " Grains/Cereals Category " & "
" & vbCrLf
 Case 5
 strHTML = strHTML & " Meat/Poultry Category " & "
" & vbCrLf
 Case 6
 strHTML = strHTML & " Produce Category " & "
" & vbCrLf
 Case 7
 strHTML = strHTML & " Seafood Category " & "
" & vbCrLf
End Select

Now we will build the HTML table to put the product information in:

strHTML = strHTML & "<TABLE BORDER=1 CELLSPACING=1 CELLPADDING=1 WIDTH=" & _
 Chr(34) & Str(25) & Chr(34) & ">" & vbCrLf & _
 "<CAPTION>" & "Products By Category" & "</CAPTION>" & vbCrLf

Next, we put in the headers for the table:

strHTML = strHTML & vbCrLf & "<TH>" & _
 "Product Name" & _
 "</TH>"
strHTML = strHTML & vbCrLf & "<TH>" & _
 "Product Quantity Per Unit" & _
 "</TH>"
strHTML = strHTML & vbCrLf & "<TH>" & _
 "Unit Price" & _
 "</TH>"
strHTML = strHTML & vbCrLf & "<TH>" & _
 "Units In Stock" & _
 "</TH>"

strHTML = strHTML & "</TR>" & vbCrLf

Then we set the CategoryID of the Product object and refresh the object:

objProduct.CategoryIDEquals = v_vCategoryID + 1
objProduct.GetProductCollection(e_ProductsCategoryID).Refresh

Chapter 9

294

We can then use the object to retrieve the information we need:

With objProduct.GetProductCollection(e_ProductsCategoryID).Item
 objProduct.GetProductCollection(e_ProductsCategoryID).MoveFirst
 For lngProductCounter = 1 To _
 objProduct.GetProductCollection(e_ProductsCategoryID).RecordCount

Now we add the products into the table:

 strHTML = strHTML & "<TR>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & .ProductName & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & .QuantityPerUnit & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & "$" & .UnitPrice & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & .UnitsInStock & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"

Move to the next record and loop:

 objProduct.GetProductCollection(e_ProductsCategoryID).MoveNext
 strHTML = strHTML & "</TR>" & vbCrLf
 Next
End With

End the table and return the HTML string:

strHTML = strHTML & " </TABLE> " & vbCrLf & "
"
BuildProductsByCategoryTable = strHTML
End Function

We will use the BuildProductsByCategoryTable function in other functions. For example, we
could return all of the products in a function called GetGeneralProductInformation. This will be
called from the ASP page. We will use an ASP Response object as a parameter for this function. This
function will loop through all of the products. To keep it simple, I am hardcoding the number of products,
but in production code we would use a long constant for the number of categories. We will use the Write
method of the Response object in our Visual Basic web component to return the string:

Public Sub GetGeneralProductInformation(ByVal v_vUserID As Variant, _
 ByVal v_vPassword As Variant, ByVal v_oResponse As ASPTypeLibrary.Response)
Dim lngCategoryCounter as Long
For lngCategoryCounter = 0 to 7
 v_oResponse.Write BuildProductTable()
Next
End Sub

We can also build another function that reads from the HTML page we initially created, with the combo
box with categories. In this case, we will need the ASP Request object so we can know which category
they selected. The code would look as follows:

Development Phase

295

Public Sub GetCategoryInformation(ByVal v_vUserID As Variant, _
 ByVal v_vPassword As Variant, _
 ByVal v_oResponse As ASPTypeLibrary.Response, _
 ByVal v_oRequest As ASPTypeLibrary.Request)

v_oResponse.Write BuildProductsByCategoryTable(v_oRequest.QueryString("select1"))

End Sub

We can create an entire range of pages using Visual Basic. For example, we could create an error page as
follows:

Private Function BuildLoginErrorPage(ByVal v_sErrorDetails As String) As Variant
Dim strHTML As String

strHTML = "<HTML>" & vbCrLf & _
 "<HEAD>" & vbCrLf & vbCrLf & _
 " <TITLE>Introduction Page</TITLE>" & vbCrLf & vbCrLf & _
 "</HEAD>" & vbCrLf & _
 "<BODY TEXT=" & Chr(34) & "#000000" & Chr(34) & " BGCOLOR=" & Chr(34) & _
 "#FFFFFF" & Chr(34) & "LINK=" & Chr(34) & "#0000FF" & Chr(34) & _
 " VLINK=" & Chr(34) & "#6600CC" & Chr(34) & " ALINK=" & Chr(34) & _
 "#FF0000" & Chr(34) & " TOPMARGIN=" & Chr(34) & "0" & Chr(34) & _
 " LEFTMARGIN=" & Chr(34) & "0" & Chr(34) & ">" & vbCrLf & vbCrLf & vbCrLf & _
 "<!------MAIN INFO---->" & vbCrLf & vbCrLf & _
 "

" & vbCrLf & vbCrLf & _
 "<CENTER>" & vbCrLf & _
 "" & vbCrLf & _
 "Please try again...login Failed" & vbCrLf & _
 "" & vbCrLf & _
 "</CENTER>" & vbCrLf & vbCrLf & _
 "
" & vbCrLf & _
 "
" & vbCrLf & _
 "
" & vbCrLf & vbCrLf & _
 "<CENTER>" & vbCrLf & _
 "<FONT FACE=" & Chr(34) & "Arial, Helvetica" & Chr(34) & " FONT SIZE=" & _
 Chr(34) & "2" & Chr(34) & ">" & Chr(34) & vbCrLf & vbCrLf & _
 v_sErrorDetails & vbCrLf & vbCrLf & _
 "</center>" & vbCrLf & _
 "" & vbCrLf & _
 "<FONT FACE=" & Chr(34) & "Arial, Helvetica" & Chr(34) & " FONT SIZE=" & _
 Chr(34) & "1" & Chr(34) & ">" & Chr(34) & vbCrLf & vbCrLf & _
 "All contents ©1999, Northwind, All Rights Reserved." & vbCrLf & _
 "</center>" & vbCrLf & _
 "" & "</BODY>" & vbCrLf & "</HTML>" _
 BuildLoginErrorPage = strHTML
End Function

There are many different options when it comes to building HTML pages. You could also store the HTML
as text in a database and create a component to retrieve and save the HTML pages. There would, however,
be extra overhead to connect to the database to get the HTML text. It is only through testing that you could
tell if this was a workable solution for your system. If the HTML pages were in the database, hackers could
not alter them. You would, though, have to create a staging area where your developers would first place
the pages for initial testing. Once the text was correct, they could be moved into the database.

Chapter 9

296

The process of moving pages could be automated. The only pages that could be accessed by a hacker would
be the ASP pages that call your Visual Basic components. Even these could be protected by placing the
ASP pages in a database and pushing the correct ASP pages out onto the web server periodically. If you
needed to make a change to the ASP pages, you would place the new ASP page into the database and when
the next push came the new version would go out onto the web server. In this way, no one would have
permission to change the ASP pages directly. If someone did find a way to hack into the system and change
the ASP pages, the hacked pages would automatically be replaced during the next refresh of the pages.
Unfortunately, we must take these things into consideration.

While ASP pages can be replaced without shutting the server down, the same is not true of Visual Basic
web classes. Because web classes are DLLs, they will require the web server to be stopped before you can
replace them. This is a serious limitation and one of the reasons why ASP is still a better option than web
classes.

Let us now turn to a different example where our products component can be used.

Using DHTML
Dynamic HTML is a great tool for the intranet. Unfortunately, Netscape Navigator 4.0 and Microsoft
Internet Explorer 4.0/5.0 differ considerably in their implementations of DHTML, so DHTML solutions are
not useful on the Internet (unless you do not mind creating solutions only for people with current releases
of one or the other major browser). On an intranet, you can control what browsers are on the client
machines and make sure that everyone has a DHTML-compliant machine.

In this example, we will again use the original Products component. We will create the same HTML
page with a combo box on it. In addition to the HTML code for the combo box, we will now also have
VBScript code in our HTML page. This VBScript code will use the Products component to retrieve the
products for the category selected and insert a table with those products into the HTML page. This means
that we will get the product information directly and rebuild the page without ever going to the web server.
This eliminates delay times and makes the web application run just like a Visual Basic EXE application.

Coding the DHTML HTML Page
You can create this page in Microsoft Visual Interdev or any text editor (such as the perennial favorite,
Notepad). We will begin by putting the tag in that says we are about to write Visual Basic Script:

<HTML>
<SCRIPT LANGUAGE=VBSCRIPT>

We will later place a list box onto the page. We will call that list box lstCategory. When that list box
has been clicked, we will want to place a table with the current products into our HTML page without
calling the web server. We will place our code into the OnPropertyChange event of the lstCategory
list box. Add this to your HTML page:

Development Phase

297

Sub lstCategory_OnPropertyChange

Dim strHTML
Dim strQuery
Dim lngProductCounter
Dim e_ProductsCategoryID
e_ProductsCategoryID=1

Notice that in VBScript all variables are late-binding variants. With DHTML, you do not create your
components with the New keyword. You will create the object in the HTML section of your code. The
HTML code later in the page will create an object called objProduct, which is a reference to the product
object. We will first initialize the product collection:

objProduct.GetProductCollection(e_ProductsCategoryID)

We want to place the name of the category selected above our product table. We can access the value of the
item selected in the listbox using the expression lstCategory.value.

Select Case lstCategory.value
 Case 0
 strHTML = strHTML & " Beverages Category " & "
" & vbCrLf
 Case 1
 strHTML = strHTML & " Condiments Category " & "
" & vbCrLf
 Case 2
 strHTML = strHTML & " Confections Category " & "
" & vbCrLf
 Case 3
 strHTML = strHTML & " Dairy Products Category " & "
" & vbCrLf
 Case 4
 strHTML = strHTML & " Grains/Cereals Category " & "
" & vbCrLf
 Case 5
 strHTML = strHTML & " Meat/Poultry Category " & "
" & vbCrLf
 Case 6
 strHTML = strHTML & " Produce Category " & "
" & vbCrLf
 Case 7
 strHTML = strHTML & " Seafood Category " & "
" & vbCrLf
 End Select

We now initialize our table:

strHTML = strHTML & "<TABLE BORDER=1 CELLSPACING=1 CELLPADDING=1" & _
 "WIDTH=" & Chr(34) & "25" & Chr(34) & ">" & vbCrLf & _
 "<CAPTION>" & "Products By Category" & "</CAPTION>" & vbCrLf

strHTML = strHTML & vbCrLf & "<TH>" & _
 "Product Name" & _
 "</TH>"
strHTML = strHTML & vbCrLf & "<TH>" & _
 "Product Quantity Per Unit" & _
 "</TH>"
strHTML = strHTML & vbCrLf & "<TH>" & _
 "Unit Price" & _
 "</TH>"
strHTML = strHTML & vbCrLf & "<TH>" & _
 "Units In Stock" & _
 "</TH>"

strHTML = strHTML & "</TR>" & vbCrLf

Chapter 9

298

We need to set the CategoryIDEquals property of the Products component. The CategoryID field
is one-based, but lstCategory.value is zero-based, so we will have to add one first:

objProduct.CategoryIDEquals = lstCategory.value + 1

Next, we refresh the Products component and move through the items. You will notice this is the same
code we used in the Visual Basic web component:

objProduct.GetProductCollection(e_ProductsCategoryID).Refresh
With objProduct.GetProductCollection(e_ProductsCategoryID).Item
 objProduct.GetProductCollection(e_ProductsCategoryID).MoveFirst
 For lngProductCounter = 1 To _
 objProduct.GetProductCollection(e_ProductsCategoryID).RecordCount
 strHTML = strHTML & "<TR>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & .ProductName & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & .QuantityPerUnit & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & "$" & .UnitPrice & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 strHTML = strHTML & .UnitsInStock & "</TD>"
 strHTML = strHTML & "<TD align =" & Chr(34) & "center" & Chr(34) & ">"
 objProduct.GetProductCollection(e_ProductsCategoryID).MoveNext
 strHTML = strHTML & "</TR>" & vbCrLf
 Next
 End With
strHTML = strHTML & " </TABLE> " & vbCrLf & "
"

We will use something that is called a <DIV> element. A <DIV> element is one of the most important
parts of a DHTML application. We can place a <DIV> element into our HTML code, and then we can insert
text between the element's opening and closing tags. We can also replace text between the <DIV> tags.
This allows you to add, remove or change sections of your HTML page using script code. In this case, we
are inserting strHTML, which contains our table in HTML format, into our <DIV> element, which we will
call "proddiv". The innerhtml property contains everything between the opening <DIV> tag and the
closing </DIV> tag, including any other HTML tags. Thus, using the innerhtml property, we can insert
text between the two tags.

document.all.tags("div").Item("proddiv").innerhtml=strHTML
End Sub

Finally, we have the closing </SCRIPT> tag, and we begin the regular HTML part of our HTML page:

</SCRIPT>

<HEAD>
<META NAME="GENERATOR" Content="Microsoft Visual Studio 6.0">
<TITLE></TITLE>
</HEAD>

<BODY>

Development Phase

299

To get a reference to our object, we will use an <OBJECT> element in our HTML page. The object tag has
a classid attribute, which must be set to the GUID of a public creatable class. Notice that there is the
word clsid included with the GUID. The id attribute gives the object a name that can be referenced in
code. CODEBASE gives us the location of the object if it is not on the client machine. You should create a
package called a Cab file to distribute your files through the Inter/Intranet. The Visual Basic Package and
Deployment wizard can make your Cab files for you (see Chapter 11). In this case, I have created a Cab file
called prjProducts.cab that is located in the same directory as this HTML file. The string
"1,0,0,0" is the version number. If there is a copy of prjProducts on the client and the version
number is higher or equal to this number, the file will not be downloaded. If there is no copy of
prjProducts on the computer or a copy with a lower version number, the file will be downloaded. We
have also set CategoryIDEquals to a default of 1.

<object classid="clsid:C49C5681-37CC-11D3-A807-009027887C34" id="objProduct"
 CODEBASE="prjProducts.cab#Version=1,0,0,0">
 <param NAME="CategoryIDEquals" = "1">
</object>

Next, we build the listbox:

<P>Select A Category
<P></P>
<P>
<P>
<SELECT id=LstCategory name=lstCategory style="HEIGHT: 22px; WIDTH: 150px">
<OPTION Value="0" selected>Beverages Category</OPTION>
<OPTION Value="1" >Condiments Category</OPTION>
<OPTION Value="2" >Confections Category</OPTION>
<OPTION Value="3" >Dairy Products Category</OPTION>
<OPTION Value="4" >Grains/Cereals Category</OPTION>
<OPTION Value="5" >Meat/Poultry Category</OPTION>
<OPTION Value="6" >Produce Category</OPTION>
<OPTION Value="7" >Seafood Category</OPTION>
</SELECT></P>
<P><INPUT id=ChooseCatagory name=ChooseCatagory Onclick=ChooseCategory type=Button
value=Submit></P>
<P></P>
<INPUT id=text1 name=text1>

We will now put our <DIV> tag in. We are placing it below the listbox so we can insert the data directly
below the list box.

<div ID="proddiv">

</div>
</BODY>
</HTML>

There are many possibilities with DHTML. For example, you could bring over information in the form of
XML and use that data to create a dynamic application on the client that does not need to communicate to a
server. We have only had a glimpse of its potential for use with Visual Basic components.

Chapter 9

300

The Future
Looking at what we have discussed in this book leads us to ask a simple question: “What will be the best
way to develop our projects over the next few years?” There will be fundamental principles that will not
change in the near future. The basic concept of the logical three-tier model is not likely to change for some
time. Building components based on client, business and data services will form the foundation of our
object-oriented projects regardless of changes in technology, coding techniques and Visual Basic. Even
more importantly, building components based on these three services will shield us from the changes by
encapsulating the components of the system.

What we will find changing and becoming more fluid is where we place these components in the physical
three-tier model, that is whether these components belong on the client, middle tier server or database
server. Technology such as 64 processor NT machines and Windows 2000 with COM + (essentially the next
version of MTS) on workstation and server versions will completely rewrite where we place the various
components of our system. All assumptions must be assumed false. Never believe what is written or assume
that an old technique still applies until you have tested if for yourself and seen that it is really true.

You will have to test every assumption.

Just because you should get maximum efficiency from one solution does not mean you will. The newer
technology may have made something else more efficient, or rendered a previously efficient solution
useless. The point is, writing testing applications during the development phase will become one of the
critical elements in creating an efficient system that fulfills the goals of the client.

This brings out another advantage of using patterns and the second form of code reuse. Imagine that your
team develops a set of five workable patterns for a DNA project. For each of the five patterns, you could
create a set of testing applications that will test the efficiency of each of the five solutions.

The testing applications could be based on a set of benchmarks that you create, such as the time taken to
retrieve or update a recordset or the response time with different numbers of simultaneous users. You can
place these testing applications in different arrangements on either the real system or a test system that
simulates the production system. You can run the test applications and see how each of the five solutions
performs in the real system. Based on these tests, you can determine which solution meets the needs of the
system. Using the code generators, you can then generate the framework of your code based on the best
solution.

Another vision I have of the future is the inclusion of UML diagrams with code samples. Every developer
can relate the story of spending hours stepping through a coding sample trying to figure out what it was
doing and how it worked. A simple sequence diagram can explain in a few minutes what could take hours or
days to understand by stepping through the code. I would like to see class diagrams and sequence diagrams
become a standard for code samples.

Development Phase

301

Of course, UML diagrams should also become an essential part of every project. Just as it can be very
frustrating to step through a code sample, it can be twice as frustrating to spend days trying to understand
someone else's code that you must upgrade or debug. A simple sequence diagram could save hours and even
days of work when code must pass from one developer to the next. I would hope that the future of Visual
Basic development will include the usage of UML and good documentation practices, as outlined in this
book.

These are a few of the things I believe will happen over the next few years. We need to reduce the risks of
our projects, reduce the amount of time to develop our projects and reduce the costs of our projects. Good
project management, proper documentation, a team that manages the project, documentation and managing
risks, the usage of UML to perform a thorough design of the system and testing of any assumptions with
testing applications will all help our Visual Basic projects meet these requirements. Part of my vision is that
through proper project management, Visual Basic projects will begin to reach a 100% success rate.

Summary
In the previous stage of the project, the final decisions were made as to what components will be used.
There were many decisions to make in this stage. Do you buy a third party component, reuse existing code
or write the code from the ground up? Is using a component the most logical choice or should you use
stored procedures? Often, questions can only be answered by creating test applications and finding what
solution fits within the parameters of the project. This chapter has shown how these choices can affect your
final coding in the development phase.

Visual Basic offers the developer many different ways of doing the same thing. Our Visual Basic order
entry application can be built as an EXE with the business and client services on the client machine, as an
EXE with the client services on the client and business services on the server (running under MTS or
without MTS), or we could make a DHTML application using components. We could also make DHTML
applications with XML or a regular Internet application. The choices can make you dizzy. Yet this is what
Microsoft Visual Basic is all about: choices. Because we have all of these options, we can choose the best
one for our project in the physical design stage.

If you choose to build your components, you have three choices: the first and second form of reuse or
building from the ground up. Code reuse in both forms is the best option as it will reduce costs and time.
When components are built from the ground up, UML diagrams provide an indispensable tool to allow you
to turn the goals of the user into Visual Basic code.

Chapter 9

302

Testing

This chapter will provide details of techniques - some general, some specific - for testing and debugging
Visual Basic components and products. The testing team can begin to implement some of these techniques
as early of the envisionment phase. By carrying out continuous and rigorous testing, with detailed
documentation, the team has the best chance of ensuring that the quality of the final product is high and that
it meets all requirements.

The testing that is carried out on the completed product during the "stabilization" stage,
leading to product release, is discussed in Chapter 11.

There are two broad categories of testing: usability testing and functional testing. Usability testing gives
the team an idea of how well their solution meets the users’ requirements and expectations. Of course,
usability testing is performed on the finished product, in order to ensure that it lives up to the expectations
of the business and users, but it should be a continuous process starting as early as the envisionment phase.
The testing team should create prototype applications to test user interfaces, different methodologies,
techniques or technologies and thus arrive at the most effective solution, within the constraints of budget,
time and the goals defined in the scope of the project cycle.

Functional testing is the testing of the components of the system, or the system as a whole, to make sure it
functions as it is supposed to. Any prototype built for usability testing should first go through functional
testing, in order to be sure that the poor performance is not due to a bug in the code. Functional testing will
therefore begin in the design phase and extend into the deployment phase (all of the components built in the
development phase must undergo functional testing).

We will look at both types of testing in this chapter and also discuss debugging MTS components.

Chapter 10

304

Usability Testing
Usability testing is a very important step in proper design of the project and one of the most often skipped
steps of design. I have seen entire projects run for over one year and reach the deployment phase before it is
realized that the design that was chosen would not work in the environment in which the application was
being deployed. One week of usability testing in the design phase would have found these problems and
saved a year of wasted development. Often, there are many possible ways to build a product. The only sure
way of finding the one that is best for your project is to build prototypes and usability test each solution.

For the most part, usability testing is divided into two subcategories. The first is testing how usable the user
interface is and the second is testing to find the best solution for the business or data services.

User Interface Testing
The user interface needs to be tested for ease of use, to make sure the overall system can accomplish the
goals the user needs the system to accomplish and to make sure that the tasks are properly grouped on the
forms. User education will be heavily involved in user interface testing. User education may bring user
interface prototypes to the end user, and observe them using the prototype with as little interference as
possible. User education will take careful notes on any problems the user may have with the interface and
any solutions proposed by the user. By a process of improvement and refinement, we can arrive at a GUI
that allows the user to harness the product functionality in an easy-to-understand manner.

The developers and testers may also be involved in making the prototypes, and ensuring that they allow the
user to perform all necessary services. In order to do this, testers can go through the use cases and make
sure every use case can be performed with the user interface prototype. Testers must also make sure that
objects on the form and tasks that the forms perform are grouped according to the roles and the tasks
performed by people in those roles.

Screenshots of the interfaces can be passed amongst the entire team for suggestions for improvement. Just
as we suggested passing around activity diagrams to the entire team to find the best design, we can pass
screenshots around to find the best user interface design. You can also post screenshots on an Intranet or
build a web application with a user interface prototype and have the entire team (including the users) test
the interface.

There are specialized applications that create user interface prototypes or, alternatively, you can just use
Visual Basic. The important thing is to remember that a prototype is not the final application and may not
be put together in exactly the same way. For this reason, all of the code in the prototype should be
discarded and the final product GUI should be built from the ground up based on the best design found by
prototyping.

Testing

305

Testing of Business and Data Services
Components

As we discussed in Chapter 8, when we considered the best way to implement the data and business
services components, there will often be a multitude of questions that can only be answered by testing:

� Should the business services go on the client machine or on the middle-tier server?

� Should you use MTS on server components?

� Does an existing component work efficiently enough or does it need to be redesigned for this
application?

The testing of business and data services will either be the testing of component solutions or the testing of
infrastructure. The component manager should oversee the component solution testing. Testing the
infrastructure is the responsibility of the logistician. Our first task is to identify the data and business
services that our application will have to perform, and then we can begin searching for the best way for our
application to perform these services. For each service, one should document the best way of fulfilling the
service. When there are multiple solutions, it is time to do usability testing.

Test Applications
Any development team that is developing more than a few products a year or is developing large enterprise
systems, should have a test lab available to test the latest technologies and coding solutions. Ideally, a lab
should not only have servers available for testing but also have a repository of information. Each test
application should be carefully documented with UML diagrams and text explaining what was tested and
what the outcome was. The final conclusions of the tests, such as what was the best way of doing something
and why, should be carefully documented. This will provide an invaluable source of information as
products evolve in later cycles or new products are designed.

Ideally, the lab should recreate the final production environment as closely as possible. The best situation is
to have the same servers and client machines in the lab as in the production environment. The tests should
be exhaustive and cover every possible real case scenario.

Test applications can either be structured or unstructured and we will have a brief look at each type.

Unstructured Test Applications

Unstructured test applications are those exploring solutions. These tests answer questions such as, “How do
we use the ADO disconnected recordset to handle conflicts?” These tests are performed when trying to find
the most efficient way to code a module. It is important to explore different options, coding one way, then a
different way until eventually you find the best solution. Along the way you will create a graveyard of
unused code modules, variables and methods. The tight cohesion of the components and the loose coupling
of the overall project were not there - in a sense you can never truly know where you were going until you
arrive. Once you have hit upon the best solution with your test application, you will know how to do it right
for the final application design.

Just as we should discard the user interface prototype, we should also discard our unstructured test
applications. These test applications are used to find the best solutions and are not intended for use in the
final applications. We can use activity diagrams to map out the best coding solutions, and document the
best technology, but, ultimately, we should not reuse these test applications.

Chapter 10

306

Structured Test Applications

Structured test applications explore each of several well-defined options that are available for our product.
In this case, you would design each of the test applications just as you would design the final application.
Again, careful documentation of the results should be kept. It is possible that with this type of test
application that you may be able to reuse parts of the test application, but only if you built the test
application properly and with reusability in mind.

Creating test applications and exploring options are essential to the success of the project and should be
allotted adequate time in the project schedule. You should make a plan for usability testing just as you
would for any other part of the project. The weeks you spend finding the best solution, or proving a coding
solution, can prevent months of time that could be lost doing the wrong thing.

Functional Testing
Every component that will become part of your system, whether it is a precompiled third party component,
a Visual Basic class (or class hierarchy) should be thoroughly tested by itself (unit testing) and within the
system. Functional testing begins as soon as components are being built (including components for usability
testing). Such testing provides an essential monitor of a project’s progress and ensures that, at each step
along the way, all of the code modules can be successfully integrated. Functional testing and development
occur at the same time, with the testing continuing into the deployment phase.

We should start creating our testing plan in the logical design phase and have it completed by the physical
design stage. Complete documentation of the testing plan should be created. Testers should develop testing
modules and the development team should develop further modules in the development phase.

Let’s consider how we could functionally test our three-level class hierarchy that comprises our Customer
component in the Northwind project. We could write a sub-routine to test each of the three classes
separately, a module to test the middle and bottom classes together and a class to test all three classes
together.

To function properly, the bottom class (clsCustomer) requires a customer recordset, which is retrieved
from the database by the middle class (clsCustomerManager,) to be passed in. If we are to test the
bottom class separately, our test module will need to retrieve this recordset and then pass it into the bottom
class.

Often, when we are testing individual components, we will have to create values for variables that, under
normal operating conditions, would be passed into the component.

We may only know the exact values for these variables once the design is complete.

We should test the component with values that are within the boundary conditions of the variable, at
boundary conditions of the variable and outside the acceptable range for the variable. For example, our
variable might be the index for a 1-based array that has 10 members.

Testing

307

A one based array variable named strArray with ten members will have the following
members: strArray(1), strArray(2), strArray(3), strArray(4), strArray(5), strArray(6),
strArray(7), strArray(8), strArray(9), strArray(10).

We should pass in variable values:

� At the boundaries: 1 and 10

� Within the boundaries: for example 5

� Outside the boundaries: for example at 0, 11, -2 and 50.

Test performed outside the boundary conditions will ensure that we have proper error handling within our
code to handle these errors.

Types of Functional Testing
We have already discussed unit testing, i.e. testing individual components. Below is a list of other types of
tests that can be performed on your components:

Coverage Testing: This type of test aims to thoroughly test each major feature of the project. Component
coverage testing (white box testing) follows every code path. System or product coverage testing (black box
testing) attempts to perform every service without knowing what code is being executed beneath the
surface.

Usage Testing: Usage testing is different than coverage testing in that you make each component perform
its services. As we said before, you will want to use boundary conditions and values within and out of the
range of acceptable values.

Compatibility Tests: These tests make sure that each component is compatible with the other components
of the project. As each component is added to other components, compatibility tests must be made to make
sure that all of the components work properly together.

Stress Tests: These tests place either the project or components under severe conditions. These are
commonly used for the middle tier data services components to see if they can handle the expected loads.
They are also commonly used with web components to see if they can handle the expected load of the web
server. You can write your own stress tests or, alternatively, there are many programs available that can
perform stress testing of your application.

Performance Tests: These tests will see how well a component performs critical tasks. These are
commonly used to see if a component will meet the required specifications.

There are other tests, but these are the most important for the Visual Basic development team. Tools such as
Radview, which comes with the Interdev Web solutions kit, are essential tools for planning web sites.
Testing with automated tools is sometimes useful. Creating your own customized tests may take some time,
but if they are carefully planned, they will give you the most accurate testing of your project.

Chapter 10

308

The ultimate goal of all this testing should always be to have no defects in the code. When designing our
application with use cases and business rules, we will have a clear set of guidelines as to how our
application is supposed to perform. A defect or bug is any system performance that is a deviation from the
design of the project. Our use cases should define not only how the system should operate when everything
is done correctly, but also how the system handles incorrect input. Any deviation from this is a bug.

Bug Tracking
There are many ways to find bugs. In addition to writing test modules, we can create special programs that
test our applications (these are often called test drivers). For example, when writing the code to generate the
HTML page for our Northwind project (see Chapter 9), I added a second Visual Basic project. Using this
project, I called the function to build product tables. I took the HTML code that was returned and put it into
a file with an .HTM file extension. I then opened the file with Explorer and viewed the HTML code in the
browser. If there were mistakes, I went back and made the corrections. I often test DLLs by adding an EXE
Visual Basic project and using this second project to test the first.

No matter how carefully you program there will always be bugs in your code. Using Option Explicit
at the beginning of all of your code modules makes sure all variables in a project have been properly
declared and is a good way of reducing typing errors. Declaring all of your variables and using variants
very sparingly will also help the compiler find type errors. In a large project, these two activities can save
countless hours of debugging.

Bugs that are trivial to fix, or bugs that are found and fixed during unit testing do not need to be
documented or tracked (unless it is an issue that may occur again, such as a bug in Visual Basic,
documented knowledge of which could help future development).

However, all non-trivial bugs found by the testing team should be carefully documented and tracked. A
non-trivial bug is one whose source is not readily identifiable. These bugs are usually found during
integration testing versus component testing. This tracking serves as a communication between the testers
and the developers. There are several good products on the market to help you track and prioritize bugs.
Three of them are PVCS Tracker by Microfocus (InterSolv), Track/TrackWeb by Soffront and Visual
Intercept by Elsinore. It is possible to create your own bug tracking documents but, when you have a large
project, use of a commercial bug-tracking tool probably represents a better solution.

In general, the following procedure should be followed for every nontrivial bug found by the testing team:

� Create a Bug Report: A report on the bug should be made. This report should list the steps that are
needed to reproduce the bug, what should happen and what does happen, the severity of the bug (see
Chapter 11), the priority of the bug, the component the bug is in, and a name assigned to the bug.

Testing

309

� Create a Plan to Resolve the Bug: Once the bug has been reported, you should create and document a
plan to fix the bug. It is possible that a certain reported bug was known about when the project was
designed and was considered minor enough to ignore. These bugs will be labeled as "By Design". There
may also be bugs reported that are actually minor enough to ignore and will be labeled "Will Not Fix".
Usually "Will Not Fix bugs" are ones that would require a large amount of time and money to repair and
will have little effect on the performance of the project. A minor bug that will be fixed when there is
time or in the next release will be called "Postponed". Labeling any bug as Will Not Fix, By Design or
Postponed should require the signature of the senior members of the team, usually the component
manager and the product manager. The stakeholder may also be informed of these decisions if it will
have any significant impact on functionality or performance. If the bug has been previously noted, it will
be labeled "Duplicate" and closed. If the bug cannot be reproduced, it is labeled "Cannot Reproduce".
For the most part, all non-trivial bugs should be taken care of as soon as they are discovered.

� Repair the Bug: The developers must find the cause of the bug and repair it.

� Retest the components when the bug is fixed: Once the bug has been fixed, the testers need to retest
the components to make sure that the repair did not affect another part of the code.

A bug found in a smaller component is usually easy to find. Testing done on assembled components tends
be more complicated and usually requires a standardized, careful method of debugging. There is often a lot
of work involved in debugging/testing components and it is often not possible to rely on just one method of
debugging. Some testing techniques might require test drivers etc. that have to be planned for and built.
This should be taken into account when estimating time and other resource requirements for component
testing.

Some of the most difficult components to debug are MTS components. For this reason, we are now going to
walk through some specific techniques for debugging MTS components. It will illustrate some of these
points and act as an illustration of how we debug assembled components in general. Hopefully, for those
not experienced with Visual Basic code, Chapter 8 will have given you a firm enough understanding of
ADO and MTS to follow through the code and gain some valuable insight into the complexities involved in
the debugging process. Of course, it will also give you some valuable code that you can use in your
projects.

Debugging Visual Basic MTS Components
There are several techniques for debugging a Visual Basic MTS component. Each of these techniques has
their place, and so they all need to be understood by someone working with MTS. As long as you have
Service Pack 2 installed, you can debug directly from the Visual Basic IDE. Ideally though, you should
have Service pack 3 installed.

If service pack 3 is installed, you can go to Help | About and you should see Service Pack
3 in the About box.

Let us take a look at an example that shows how this works. We are going to make a request for an ADO
recordset from a MTS middle tier component. As we want our MTS component to be stateless, we will
make this a disconnected recordset. This example will illustrate perfectly things do not always work in the
debugger as they do when the application is compiled.

Chapter 10

310

Begin by creating a new ActiveX DLL project. Add a reference to ADO 2.x. Name the project prjLog.
You should have one class, which you should name LogFile. In the properties of the class, set the
MTSTransactionMode property to 3-UsesTransaction. Save the class as Logging and the project as
prjLog. We are now ready to start adding code.

We want to see how the context object looks under the debugger, so we will definitively want a reference to
the object context.

As you may recall from Chapter 8, the context object can be thought of as a wrapper MTS
places around our components. The context object allows us to share security and a
transaction across several objects.

We will need to have a private variable that references the ObjectContext object. We will also
implement the ObjectControl interface. The ObjectControl interface will give us access to two
events associated with the object context: Activate and Deactivate. The ObjectControl will also
give us a property, CanBePooled, which we do not really need but will have to implement.

We must implement all of the methods and properties of an interface, even the ones
we may not need.

We will need to retrieve an ADO Connection object, so we will also need a private variable for it.
Finally we declare a constant that contains the path and filename of our database. Thus we have the
following declarations in our LogFile class:

 Option Explicit

 Private m_objADOConnection As ADODB.Connection
 Private m_objContext As ObjectContext
 Private Const m_cstrDatabasePath As String = “c:\Northwind.mdb”
 Implements ObjectControl

Don’t forget to add a reference to the Microsoft Transaction Server Type library. As we discussed
earlier, the ObjectControl interface will give us three events. Go to the Object drop down list box in
the code window, and select ObjectControl. You should now have the Activate event listed in the
Procedure list box. Add the following code to this event:

Private Sub ObjectControl_Activate()
 Set m_objContext = GetObjectContext
End Sub

With this line of code we are setting a reference to the instance of the ObjectContext object that MTS
has automatically created for us. Our ADO Connection object, though, does not exist until we initialize
it. If we initialize it as soon as the component is created, there may be some amount of time before that
Connection object is actually used. As there are a limited number of connections that can be made to the
database, Connection objects are a valuable resource that we want to quickly use, and then destroy.
Thus, we do not want to initialise our ADO Connection object until we are ready to use it.

Testing

311

Go to the drop down Procedure window and select CanBePooled for the ObjectControl object.
We will need to fill out this code as all parts of the interface must be coded:

Private Function ObjectControl_CanBePooled() As Boolean
 ObjectControl_CanBePooled = False
End Function

Finally, we want to deactivate our ADO Connection object as well as our ObjectContext object. We
should destroy our ADO connection as soon as we are done using it, but just in case we forget we include a
line of code to set the ADO connection to nothing. If it is already set to nothing, then no harm done. Better
to be cautious than take a chance that something is overlooked:

Private Sub ObjectControl_Deactivate()
 Set m_objADOConnection = Nothing
 Set m_objContext = Nothing
End Sub

We will want to see how MTS works with and without an ObjectContext object. When there is an
ObjectContext object, we will want to use its CreateInstance method to create our objects. When
we use CreateInstance, MTS will create the new object within the ObjectContext object. Using
CreateInstance allows security and transactions to be shared over the different objects.

If for some reason something has gone wrong and we do not have an ObjectContext object, we would
still like our component to function so we can see how an MTS component works without an
ObjectContext object. Thus, we want the ability to create objects with the New keyword. Thus, we will
create a function called CreateInstance that will allow us to create objects under MTS. Using the
CreateInstance method when we do have an ObjectContext object, and the New keyword when we
do not have one.

We will need to pass in an identifier for the component we want to build. The ID for a Recordset object
is ADODB.Recordset, and for a Connection object it is ADODB.Connection. These will be the
only two objects we will be creating in our MTS component. Add the following code to your project:

 Private Function CreateInstance(ProgID As String) As Object
 On Error GoTo CreateInstanceError
 If Not m_objContext Is Nothing Then
 Set CreateInstance = m_objContext.CreateInstance(ProgID)
 Else
 Select Case ProgID
 Case "ADODB.Connection"
 Set CreateInstance = New ADODB.Connection
 Case "ADODB.Recordset"
 Set CreateInstance = New ADODB.Recordset
 End Select
 End If

 Exit Function

 CreateInstanceError:

 Err.Raise Err.Number, Err.Source & " CreateInstance", Err.Description
 End Function

Chapter 10

312

We now want to add three functions to open an ADO connection, close an ADO connection and finally one
to set a reference to the ADO connection. Let us begin with the function to set a reference to the ADO
connection, which I will call SetADOConnection. Each component - Customers, Orders etc. - will have
its own function for calling an ADO connection in the Server component so it makes sense to have one
routine which defines and opens the ADO connection, which each function can call (instead of having each
function opening connections individually). We will need parameters for the userID and the password in
order to make a connection to the database. We will also include an optional parameter for the connection
string in case we want to use something other than the default:

 Private Sub SetADOConnection(ByVal v_strUserID As String, _
 ByVal v_strPassword As String, Optional ByVal _
 v_sConnectionString As String = "Empty")

We would like some way of knowing when our variable value has been passed in. The IsMissing
function is used to tell if an optional parameter is passed but it only works with variants. As we have made
our v_sConnectionString a string, the IsMissing function will not work. Therefore, we have set a
default value of Empty for v_sConnectionString so we can know when it actually has a value passed
in. We will now put in our error handler:

 On Error GoTo SetADOConnectionError

Next we want to use our CreateInstance function to create our ADO connection:

 Set m_objADOConnection = CreateInstance("ADODB.Connection")

We then set the properties of our Connection object.

 With m_objADOConnection
 .CursorLocation = adUseServer
 If v_sConnectionString = "Empty" Then
 .ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Persist Security Info=False;Data Source=" & _
 m_cstrDatabasePath
 Else
 .ConnectionString = v_sConnectionString
 End If

Finally, we will open the ADO connection:

 .Open
 End With

 Exit Sub

Testing

313

The ADO has its own collection of errors, so we will loop through this error collection to get any errors in
this collection:

 SetADOConnectionError:

 Dim lngErrorCounter As Long
 Dim strErrors As String

 strErrors = Err.Number & ": " & Err.Description

 If m_objADOConnection.Errors.Count > 0 Then

 For lngErrorCounter = 0 To m_objADOConnection.Errors.Count - 1
 strErrors = strErrors & _
 m_objADOConnection.Errors(lngErrorCounter).Number & _
 ": " & m_objADOConnection.Errors(lngErrorCounter).Description & _
 vbCrLf
 Next lngErrorCounter

 End If
 Err.Raise Err.Number, "SetADOConnection", strErrors
 End Sub

We will create a function to retrieve an ADO connection. We will first make sure the function has been set
before we actually return a connection:

 Private Function GetADOConnection() As ADODB.Connection
 If m_objADOConnection Is Nothing Then
 Err.Raise 2001, "GetADOConnection", _
 "Trying to Get Connection prior to setting it"
 Else
 Set GetADOConnection = m_objADOConnection

 End If
 End Function

Finally, we will close the connection. As an error would be raised if the connection were not open, we will
first check to see if the connection is open:

 Private Sub CloseADOConnection()
 With GetADOConnection
 If .State = adStateOpen Then
 .Close
 End If

 End With
 End Sub

Now that we have everything set up to get a connection, we can retrieve a disconnected recordset. Let us
create a function called GetRecordset, which will return a Customer recordset from the Northwind
database:

 Public Function GetRecordset() As ADODB.Recordset

Chapter 10

314

We will need a string variable to store the connection string, and a recordset variable to build the
disconnected recordset:

 Dim strADOConnection As String
 Dim objCustomersRS As ADODB.Recordset

Now we will set the connection string:

 On Error GoTo GetRecordsetError

 strADOConnection = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 "Data Source=C:\Program Files\Microsoft Visual " & _
 "Studio\VB98\Nwind.mdb;Persist Security Info=False"

Next we will set the ADO connection, and set all of the properties of the recordset:

 SetADOConnection "", "", strADOConnection
 Set objCustomersRS = New ADODB.Recordset
 objCustomersRS.CursorLocation = adUseClient
 objCustomersRS.CursorType = adOpenStatic
 objCustomersRS.LockType = adLockPessimistic
 objCustomersRS.Source = "Customers"
 Set objCustomersRS.ActiveConnection = GetADOConnection

We will open the Recordset object, and disconnect it by setting the ActiveConnection to nothing:

 ObjCustomersRS.Open
 Set objCustomersRS.ActiveConnection = Nothing

Finally we will return the recordset and create an error handler:

 Set GetRecordset = objCustomersRS

 CloseADOConnection
 Exit Function
 GetRecordsetError:
 CloseADOConnection
 Err.Raise Err.Number, Err.Source & " GetRecordset", Err.Description
 End Function

The final part of our middle tier component will be a sub that will change the value of one of the fields of
the recordset:

 Public Sub ChangeRecordset(ByVal v_oCustomerRS As ADODB.Recordset)
 v_oCustomerRS.Fields("ContactTitle") = "NewValue"
 End Sub

Notice that we intend to pass in the parameter v_oCustomerRS by value (the actual value represented by the
variable), as we want to test if the recordset is really going to be passed in by value or by reference.

Testing

315

If a variable is passed into the middle tier by reference, then any changes to the
parameter v_oCustomerRS made here will also change the variable value on the
client. If we pass it in by value, any changes made on the middle tier will not affect
the values of the recordset on the client.

This completes our middle tier
component. Go to File | Make
PrjLog.dll. Once you do this, go to
Project | prjLog Properties. From the
Project Properties form select
the Component tab, and select binary
compatibility (which means that the
component will recompile with the
same GUID):

Now we need to build a client component that will
test this middle tier component. Go to File|Add
Project, and add an EXE project. Call this new
project prjTest, the form frmTest. Your project
explorer should look as follows:

Add a reference to the ADO 2.x library, the Microsoft Transaction Server Type library and to the
prjLog project. Open up the code window for frmTest and put this in the declarations:

 Option Explicit
 Dim WithEvents m_oCustomerRS As ADODB.Recordset

Chapter 10

316

We have created a recordset with events so we can use the events associated with the recordset. The event
we are interested in is the WillChangeField event. If we pass this recordset into the middle tier object
by value, and the middle tier changes a field on the recordset, the field event should not be raised on the
client. If the recordset is passed in by reference, and we try to change a field value in the recordset on the
middle tier component, the field change event should be raised. Go to the Object drop down of the code
window, select m_oCustomerRS and type the following code into the WillChangeField event, by
way of notification if the event is raised:

Private Sub m_oCustomerRS_WillChangeField(ByVal cFields As Long, ByVal Fields As
Variant, adStatus As ADODB.EventStatusEnum, ByVal pRecordset As ADODB.Recordset)
 Beep
End Sub

Add a command button onto the form and call it cmdTest. Add the following code to the click event of the
button:

 Private Sub cmdTest_Click()
 Dim oLog As LogFile
 Dim sReturnValue As String
 Set oLog = New LogFile

 Set m_oCustomerRS = New ADODB.Recordset
 m_oCustomerRS.CursorLocation = adUseClient
 m_oCustomerRS.CursorType = adOpenStatic

 Set m_oCustomerRS = oLog.GetRecordset
 oLog.ChangeRecordset m_oCustomerRS

 End Sub

Set prjTest to be the start up project by placing the
cursor over prjTest in the project explorer, and select
Set As Start Up:

Testing

317

Place a breakpoint in the
cmdTest click event:

Run the project and click the cmdTest button. When you get to the break point, step through the code
using the F8 key on your keyboard. This project runs even though we did not set up the package in MTS.
You should notice a few very strange things happen. To begin with, you should not have entered into the
ObjectControl event. You will not enter the middle tier component until you reach the Set
m_oCustomerRS = oLog.GetRecordset line of code.

Step through the code
until you get to the
SetADOConnection
function. Put the cursor
over the m_objConext
variable in the If Not
m_objContext Is
Nothing Then line of
code. You should see the
following that the variable
m_objContext is equal
to nothing:

This is why we did not get the ObjectControl events; there is no ObjectContext object. Thus, we
have found out something interesting about the Visual Basic debugger: If you do not register the component
in MTS, you do not have a reference to the ObjectContext object.

Keep stepping through the code until you reach the point where the client calls the ChangeRecordset
sub of the middle tier component. In theory, when we call the ChangeRecordset sub, and the sub
changes the value of the field, the FieldChanged event of the recordset on the client should not be
raised. Step through the code and you will discover that the FieldChanged event is raised. This means
that the parameter has not been passed by value, but actually by reference.

Chapter 10

318

The reason this happens is not important, it has to do with the properties of the ADO recordset. What is
important to realize is that very strange things happen in the debug environment that will probably not
happen with the final, compiled DLL. In this case, a by value parameter became by reference and we did
not get an ObjectContext object for our MTS component. If you were not careful, you may think the
problem is with your code, and not with the debugger. This in turn could result in hours of wasted testing
and rewriting of your code.

This perfectly illustrates the point we made earlier: we need to have several methods of debugging to test
our components. The Visual Basic IDE is great for finding errors cause by typos, improper logic (setting the
wrong path to the database, not initialising an object, etc.). Yet, it is not our definitive test, as things may
behave very differently in the compiled component than in the Visual Basic IDE.

Before we look at some other debugging
methods, let us stop for a moment and
find out how to improve the situation
with our component. The first thing we
need to do is add the component to
MTS. Open up the Transaction Server
Explorer. Drill down until you get to the
package explorer. Select Packages
Installed right-click on the mouse.
Select New|Package then click the
Create an empty package button.
Call the package Log, click Next and
Finish. Expand the new Log package,
click on Components, right mouse
click on Components and select
New|Component. Click the Install
New Component button, and select the
prjLog DLL you made earlier. Your
MTS explorer should look as follows:

Now run your project again. You will notice that nothing has changed, we are still referencing the ADO
recordset by reference and we are still not getting an ObjectContext object. What is wrong here? The
answer to this question is simple: we are running the client and server components together. When we do
this, we will never get an ObjectContext object, nor will our by value ADO objects be by value.

Testing

319

To fix this problem, all you have to do is run the
two projects in separate instances of Visual
Basic. Go to the project explorer; place the
cursor over PrjTest and right mouse click.
Select Remove Project:

Now, run the prjLog project. You will
see the following screenshot:

Click OK. Open another instance of the Visual Basic IDE, open the prjTest project. Put the break point
in the cmdTest click event again. Run prjTest, click the command button and step through the code.
This time you will find that your ADO recordset is actually passed in by value (the FieldChanged event
on the client will not be raised when you change the field). You may not actually enter the
ObjectControl events, but when you go into the CreateInstance function you can check and you
will see that m_objContext is no longer Nothing.

Thus, we have discovered that to properly debug our MTS component using the Visual Basic IDE we need
to run our client and server component in two different instances of the Visual Basic IDE, and the
component needs to be registered in MTS. Once we do this, we can actually get the behaviour we expect.

Chapter 10

320

You can play around with the code here. You will something very interesting: now that the parameter is
behaving properly, that is, it is now being passed by value, Visual Basic still allows you to change the
values of the parameter in the sub. These changes, though, are not passed back to the client.

By the way, if you are wondering why we are concerned with using by reference parameters versus using by
value parameters, remember that the communication between the client and server is over the network. This
means that every change you make to a by reference parameter on the server needs to be passed back to the
client. This is not very efficient and limits the scalability of your MTS component. Let us now take a look
at some other ways of debugging our component.

Logging Information from an MTS
Component

We can now see that even when things work perfectly in the Visual Basic IDE, we still will want to test the
final compiled component to make sure that everything works in the compiled component as it does in the
IDE. There are other reasons we would not use the Visual Basic IDE. After all of the tests have been
completed in the test environment, it is a good practice to run a series of test on the production server. It is
unlikely that the production server would have Visual Basic on it, so you will have to use a compiled
version of the component. There are basically three ways to test a compiled component: write information
to a text file, a database or the NT event log. It is unlikely you would put testing information into the event
log, so for testing you would want functions to write to a database or a text file.

If a database is available, such as SQL Server 7, and is legally available (has the proper licensing), it is
usually the best option for testing. Test information can be placed into the database. Specialized
applications can be written to analyse the data, and these applications can be run from anywhere on the
network. This allows everyone from management to development to see the results of the tests. It is
possible that something could go wrong, and your component may not be able to write to the database. In
this case, you should write to a text file so the information on why this happened is not lost.

Writing to the event log is a good choice for when the final application is rolled out. The event log can keep
track of errors, or provide information on how your component is functioning. The major problem with the
event log is that someone needs to be looking into the log to find an error. As this may be forgotten, or not
done at all, it is advisable to have an additional function that would send an alert to a system administrator.
This can be accomplished by creating a function that will e-mail the system administrator, or send a
message through the Internet to the system administrator’s beeper. Building these components goes beyond
the level of this text, but I will show you how to make a function to write to the event log.

We will expand our existing class so that it has the ability to write to a database, a text file and the event
log. We will begin by creating a database that will allow us to log information from our MTS component.

Testing

321

The Log Database
We will create two tables. One table, called ApplicationLog, will be used for logging general
information, and a second table, called ErrorLog, will be used for logging errors.

Create a table in a database called ApplicationLog with the following fields and data types:

Field Name Data Type Size

DateLogged Date/Time

Message Text 100

Level Integer 5

MethodProperty Text 15

Class Text 15

Application Text 15

Create a second table called ErrorLog with the same fields. Call the database log.

Let us now code our component, starting with the declarations.

Declarations
We will now add an enumerated type to our declaration for the different types of error levels we may have.
The standard levels for the event log are Informational, Warning and Error and we will use these
for our enumerated type. We will also make private constants for all of the field names. We will add a
constant for the path to the database, for example C:\log.mdb:

 Public Enum e_ErrorLevels
 Informational = 4
 Warning = 2
 Error = 1
 End Enum
 Private Const m_cstrDatabasePath As String = "C:\log.mdb"
 Private m_objADOConnection As ADODB.Connection
 Private m_objContext As ObjectContext
 Private Const m_cDateField As String = "DateLogged"
 Private Const m_cMessageField As String = "Message"
 Private Const m_cLevelField As String = "Level"
 Private Const m_cMethodPropertyField As String = "MethodProperty"
 Private Const m_cClassField As String = "Class"
 Private Const m_cApplicationField As String = "Application"
 Implements ObjectControl

Now, let us add a function called WriteToDatabase to log information to the database. We will need to
pass in as parameters the name of the application that has requested this log, the name of the class (module,
form etc.) that has made the log, the name of the method or property that has made the log, the actual
message, and the level of error:

Public Function WriteToDatabase(ByVal v_sAppName, ByVal v_sClass, _
 ByVal v_sMethodProperty, ByVal v_sMessage As String, _
 ByVal v_eLevel As e_ErrorLevels) As String

Chapter 10

322

We will need a local Recordset object to get a reference to the table we need in the logging database and
we need to include our usual error handler:

 Dim recLogRS As ADODB.Recordset
 On Error GoTo WriteToDatabaseError

We will call SetADOConnection and we will not need to pass the path in as we will use the default path:

 SetADOConnection "", ""

Next, we need to set the properties of the ADO recordset:

 Set recLogRS = New ADODB.Recordset
 recLogRS.CursorLocation = adUseServer
 recLogRS.CursorType = adOpenDynamic
 recLogRS.LockType = adLockPessimistic

If the level is informational, we will put in the ApplicationLog table. Otherwise, the log is an error and
will go into the ErrorLog table:

 If v_eLevel = Informational Then
 recLogRS.Source = "ApplicationLog"
 Else
 recLogRS.Source = "ErrorLog"
 End If

We will set the ActiveConnection of the recordset next, and then open it. Once the recordset is open,
we can call an AddNew method:

 Set recLogRS.ActiveConnection = GetADOConnection
 recLogRS.Open
 recLogRS.AddNew

Next we will set all of the fields to the values that have been passed in. In a final production version, you
would probably want to make sure the parameters have actual values passed in:

 recLogRS.Fields(m_cApplicationField) = v_sAppName
 recLogRS.Fields(m_cClassField) = v_sClass
 recLogRS.Fields(m_cDateField) = Now
 recLogRS.Fields(m_cLevelField) = v_eLevel
 recLogRS.Fields(m_cMessageField) = v_sMessage
 recLogRS.Fields(m_cMethodPropertyField) = v_sMethodProperty

Finally we update our recordset, exit our function and close the connection:

 recLogRS.Update
 ExitWriteToDatabase:
 CloseADOConnection
 Exit Function

 WriteToDatabaseError:

Testing

323

In our error handler, we will set the return value of our function to a string showing the errors. This
information can then be written to a text file. You could also write to a text file in the error handler:

 WriteToDatabase = "Error Description: " & Err.Description & vbCrLf & _
 "Error Number: " & Err.Number & vbCrLf & _
 "Error Source: " & Err.Source

Finally, we want to clear the error and go to the exit routine:

 Err.Clear
 GoTo ExitWriteToDatabase

 End Function

Writing to a Text File
We will create our function to write to a text file with the same parameters as our database function:

 Public Function WriteToTextFile(ByVal v_sAppName, ByVal v_sClass, _
 ByVal v_sMethodProperty, ByVal v_sMessage As String, _
 ByVal v_eLevel As e_ErrorLevels) As Boolean

We will create a text file that has fields of a uniform length so it will be easier to read the text file with an
application. To do this, we will create string fields for each of the parameters. We will also need a file
number for the log file we are about to open:

 Dim intFileNumber As Integer
 Dim strAppName As String * 15
 Dim strClass As String * 15
 Dim strMethodProperty As String * 15
 Dim strMessage As String * 100
 Dim strLevel As String * 5

Notice that we have made the fields the same size as they are in the database. We will now set the local
strings equal to the parameters that were passed in:

 strLevel = str(v_eLevel)
 strAppName = v_sAppName
 strClass = v_sClass
 strMethodProperty = v_sMethodProperty
 strMessage = v_sMessage

Chapter 10

324

We will now use the standard text file methods. We will get a file number using FreeFile. If it is
Informational, we will write to a log file, otherwise we will write to an error file:

 intFileNumber = FreeFile
 If v_eLevel = Informational Then
 Open "c:\" & v_sAppName & "Log.txt" For Append As #intFileNumber
 Write #intFileNumber, intFileNumber & Chr(34) & _
 strAppName & Chr(34) & _
 strClass & Chr(34) & _
 strMethodProperty & Chr(34) & _
 strMessage
 Else
 strLevel = Str(v_eLevel)
 Open "c:\" & v_sAppName & "ErrLog.txt" For Append As _
 #intFileNumber
 Write #intFileNumber, intFileNumber & Chr(34) & _
 strAppName & Chr(34) & _
 strClass & Chr(34) & _
 strMethodProperty & Chr(34) & _
 strMessage & Chr(34) & _
 strLevel
 End If
 Close #intFileNumber

 End Function

We have not put any error handling in this function, for a final production version you should do this. In
this case, it is likely you would raise an error back to the calling application.

Writing to the Event Log
You can write to the event log using the App object that comes with Visual Basic. The App object has a
function called LogEvent. You can also set the App.Title that will also be written into the event log.
Once again, we will use the same parameters:

 Public Sub WriteToEventLog(ByVal v_sAppName, ByVal v_sClass, _
 ByVal v_sMethodProperty, ByVal v_sMessage As String, _
 ByVal v_eLevel As e_ErrorLevels)

If App.LogMode is vbLogAuto or vbLogToNT then we are logging to the event log in NT. If we are in
Windows 95 or 98, we will log to a text file:

 If App.LogMode = vbLogAuto Or vbLogToNT Then
 App.Title = v_sAppName
 App.LogEvent v_sMessage & "(" & v_sClass & "/" & v_sAppName & ")", _
 v_eLevel
 Else
 If WriteToDatabase(v_sAppName, v_sClass, v_sMethodProperty, _
 v_sMessage, v_eLevel) <> "" Then
 WriteToTextFile v_sAppName, v_sClass, v_sMethodProperty, _
 v_sMessage, v_eLevel
 End If
 End If

 End Sub

Testing

325

We will now modify some of our previous functions and procedures so that we have a log of any critical
errors, such as failing to retrieve an ADO connection.

Modifying the CreateInstance Function
When our MTS component is not able to get the ObjectContext object we will write to the event log so
we know about it:

 Private Function CreateInstance(ProgID As String) As Object
 On Error GoTo CreateInstanceError
 If Not m_objContext Is Nothing Then
 Set CreateInstance = m_objContext.CreateInstance(ProgID)
 Else
 WriteToEventLog App.EXEName, "LogFile", "CreateInstance", "Can not get" & _
"reference to context", Warning
 Select Case ProgID
 Case "ADODB.Connection"
 Set CreateInstance = New ADODB.Connection
 Case "ADODB.Recordset"
 Set CreateInstance = New ADODB.Recordset
 End Select
 End If

 Exit Function

 CreateInstanceError:

 Err.Raise Err.Number, Err.Source & " CreateInstance", Err.Description
 End Function

Modifying the SetADOConnection Procedure
If we have an error getting the Connection object, we will want to write this to a text file as it is a
critical error. We cannot write to the database if there is something wrong with our connection to the
database. If we had the e-mail or beeper function, it is likely we would use it in the error handler of this
function.

 Private Sub SetADOConnection(ByVal v_strUserID As String, _
 ByVal v_strPassword As String, _
 Optional ByVal v_sConnectionString As String = "Empty")

 On Error GoTo SetADOConnectionError

 Set m_objADOConnection = CreateInstance("ADODB.Connection")

 With m_objADOConnection
 .CursorLocation = adUseServer
 If v_sConnectionString = "Empty" Then
 .ConnectionString = "Provider=Microsoft.Jet.OLEDB.4.0;" & _
 Persist Security Info=False;Data Source=" & m_cstrDatabasePath
 Else
 .ConnectionString = v_sConnectionString
 End If
 .Open
 End With

Continued on following page.

Chapter 10

326

 Exit Sub

 SetADOConnectionError:

 Dim lngErrorCounter As Long
 Dim strErrors As String

 strErrors = Err.Number & ": " & Err.Description

 If m_objADOConnection.Errors.Count > 0 Then

 For lngErrorCounter = 0 To m_objADOConnection.Errors.Count - 1
 strErrors = strErrors & _
 m_objADOConnection.Errors(lngErrorCounter).Number & _
 ": " & m_objADOConnection.Errors(lngErrorCounter).Description & _
 vbCrLf
 Next lngErrorCounter

 End If
 WriteToTextFile App.EXEName, "LogFile", "SetADOConnection", _
 "Connection Failed", Informational
 End Sub

Now, go to frmTest and add another command button called cmdTest2. In the click event for
cmdTest2 add the following code:

 Private Sub CmdTest2_Click()
 Dim oLog As LogFile
 Dim sReturnValue As String
 Set oLog = New LogFile
 oLog.WriteToEventLog "Test", "FrmMain", "FormLoad", _
 "This is a test", Informational
 oLog.WriteToEventLog "Test", "FrmMain", "FormLoad", _
 "This is a test", Error
 oLog.WriteToEventLog "Test", "FrmMain", "FormLoad", _
 "This is a test", Warning
 oLog.WriteToTextFile "Test", "FrmMain", "FormLoad", _
 "This is a test", Informational
 sReturnValue = oLog.WriteToDatabase("Test", "FrmMain", _
 "FormLoad", "This is a test", Informational)
 If sReturnValue <> "" Then
 oLog.WriteToTextFile "Test", "FrmMain", "FormLoad", _
 sReturnValue, Informational
 End If

 End Sub

You will notice something rather interesting about this code. Our MTS object is created and held open until
the end of the sub. This means we are holding our server component for a long time, and also maintaining
state across many calls. This will not scale, and is not how we should build our components. A better way
to code this would be as follows:

Testing

327

 Private Sub CmdTest2_Click()
 Dim oLog As LogFile
 Dim sReturnValue As String
 Set oLog = New LogFile
 oLog.WriteToEventLog "Test", "FrmMain", "FormLoad", _
 "This is a test", Informational
 Set oLog = Nothing
 Set oLog = New LogFile
 oLog.WriteToEventLog "Test", "FrmMain", "FormLoad", _
 "This is a test", Error
 Set oLog = Nothing
 Set oLog = New LogFile
 oLog.WriteToEventLog "Test", "FrmMain", "FormLoad", _
 "This is a test", Warning
 Set oLog = Nothing
 Set oLog = New LogFile
 oLog.WriteToTextFile "Test", "FrmMain", "FormLoad", _
 "This is a test", Informational
 Set oLog = Nothing
 Set oLog = New LogFile

 sReturnValue = oLog.WriteToDatabase("Test", "FrmMain", "FormLoad", _
 "This is a test", Informational)
 If sReturnValue <> "" Then
 oLog.WriteToTextFile "Test", "FrmMain", "FormLoad", _
 sReturnValue, Informational
 End If
 Set oLog = Nothing
 End Sub

This is still not too readable, though. It would be best to make a log object for each situation: oLogText,
oLogDatabase etc. If you are concerned about the work to create the MTS component, MTS will not
completely destroy the object when you set it to nothing. It will keep a copy around for the next call, so you
are not losing any performance by doing this.

Before you can run this, you will need to
remove your component from the MTS
package:

Chapter 10

328

Next recompile the DLL and then add the DLL back into MTS. You will not need to make any changes in
prjTest as you are adding to the interface and you set binary compatibility (which means that the
component will recompile with the same GUID).

As a final comment, you may find that the event log will not work when you debug your component. But,
when you compile the component, it will work fine. Once again, things do not always work the same in the
debugger as they do in the compiled component.

Conclusion
Testing is an essential part of creating a successful Visual Basic project. Testing begins in the design phase
as you build prototypes to find the best way to build your project. Testing continues in the development
phase as individual components are tested. In the deployment phase the finished system is beta tested.

There are many different types of testing and many aspects of testing. Smaller problems discovered while
testing individual components can usually be fixed quickly without documentation. More complex bugs
found during beta testing may require thorough documentation and testing to reveal their causes.

The most essential parts of testing are good coding standards, accurate documentation and a means for
excellent communication between team members, including the end users. With these in place, your testing
should go smoothly, and it should be easy to find and fix bugs.

Testing

329

Chapter 10

330

Deployment Phase

The deployment phase is where the completed components are deployed. During this phase, the system will
be prepared for handover to the end users. Up to this phase, the focus has been on building the components
and making sure that the functionality is according to specifications. At this point, the coding and
components are complete, but they still need to be prepared for giving to the user. Testing in the final
environment, including Beta testing, can occur at this time. The end users must be shown how to use the
new application before it goes live. The infrastructure must be in place and the compiled Visual Basic
project must be placed on this infrastructure. The documentation for the project must also be completed and
given to the users. The final performance of the system must also be determined. The whole team will be
heavily involved in the process of deploying the project. The main aim of this phase is to release the system
to the users, making sure that all components function accordingly and that users have the backup of good
support, should they need it. The end result of this phase is that the system goes live.

In this chapter, we will:

� Examine team member involvement in the deployment phase.

� Investigate the issues of testing in the final environment.

� Look at training the user.

� Examine documentation and support issues.

The deliverables for the deployment phase are:

� Full project documentation

� The release of the system to the users.

� Comprehensive support structure for the users.

Chapter 11

332

Summary of Team Focus
During the deployment phase the product manager assists the educators with setting up beta test sites. The
product manager will work closely with the client's senior management, making all of the preparations for
final testing and the final installation of the project. Any issues, such as bugs or design flaws, will be
passed from the client to the product manager. The product manager will document these bugs or flaws and
work with the development team to resolve these issues. The product manager and project manager
supervise the whole process of deploying the completed components into the system. Once the system is in
place, the product manager and project manager will work with the client to sign off the project.

The component manager continues to manage the schedule, create status reports and oversee debugging of
the components. If new risks for the project present themselves, the appropriate team members will report
them to the team leaders; the component manager will manage them and balance resources so that the
schedule is met and costs stay within budget.

The developers will work closely with testers and the users to identify flaws or bugs in the project, and fix
them. Logistics will also be involved, helping to deploy the components, prepare the infrastructure and set
up the data stores. Any conflicts between the users and the development team will be handled by the
educators. If the educators cannot resolve the issue, the product manager will resolve the issue with the
stakeholders. If beta testing is done, logistics will prepare the infrastructure required for the beta test. The
educator will find the appropriate testers.

The educators will complete all of the documentation for the user. The documentation will include all help
and support files. If a web page is to be used for documenting the application, the educators need to get the
page completed and live at this time. The educators will also perform training based on a training plan
developed in the design phase.

The entire team, including the client, must work together to deploy the project. Good communication will
be essential. The deployment phase is one of the most hectic times of the project. This phase requires
constant adjustments to the schedule and a reassignment of resources to deal with serious bugs. If good
design is used, as well as many components that have already been thoroughly tested, there should be a
minimum of bugs and the adjustments to the schedule should be minimal.

Overview of the Deployment Phase
By the end of the development phase, all code should be written and all components should have been unit
and system tested. The focus of this phase shifts from getting the system built to getting the system
delivered to the end users. However, the transition from finished code to finished product can be a long and
fraught journey.

You have to be very careful during the final deployment phase. As the pace picks up, and the need to fix
bugs becomes more urgent, there is a tendency to forget formal procedures and to just start making fixes.
There is no better way to destroy Visual Basic code than to perform haphazard fixes. Of course, there are
many other issues in the deployment phase, as we shall now see.

Deployment Phase

333

Activities in the Deployment Phase
There are a number of things that must be done in this phase: in this section, I will explain the complexity
of the different activities within the deployment phase.

Determine the Rollout Schedule
First of all, it must be decided how rollout, or the process of preparing the system for final release, is going
to be carried out, and also how long it is going to take. This is a concern for the product and project
managers and logistics, in conjunction with the end users and client management. It is important to have
some structure for rollout - this means that all goals are coordinated to finish at an appropriate time so that
the system is complete and ready for a predetermined date.

It is important also to communicate this schedule to the end users - although they may only be concerned
with getting their new system, it must be explained that testing still has to be done and some repairs will
have to be made before the system is of a satisfactory level. The system also has to be prepared for
deployment, an issue that I will talk more about later.

Beta Testing
Beta testing will involve the testing of the completed system in the production environment by a limited
number of people before the final 'usable' version is handed over to the end users. While the key players
will be the testers, logisticians and the educators, beta testing will involve the entire team. The educators
will meet with the users who will do the beta testing, prepare and train the testers on the new system and
help choose appropriate users. The logisticians will be involved in installing the new system. Part of the
beta testing may be to see if the software is successfully installed onto the servers and the beta tester's
computers. The testers will monitor the end users and, with the educators, document the end users'
comments.

One part of beta testing is usability testing. Usability testing is the process of making certain that the
system is usable by the end users. Testers and educators should find out what is confusing to the users, and
if there are ways of solving these problems without changing the system. If there are problems with how
usable the system is that may require a change to the system, these problems will be evaluated and go
through change control.

Every change should be carefully evaluated. Even the smallest changes can require a
large amount of resources.

Depending on the cost of making the change and the urgency of the change, a decision will be made by the
stakeholder, product, project and component managers whether or not to make a usability change.
Hopefully, with good user interface prototyping there should not be any usability issues.

Communication is one of the most important parts of a successful beta test. Communication should flow
between all team members in this phase. A clear set of tasks for the end users should be developed and be
part of the testing plan. Testing may also include automated testing, using testing modules and performing
stress tests. Feedback will be essential, and there should be a simple communication system, such as email,
intranet or verbal, in place to allow information to flow through the team.

Chapter 11

334

The system is ready for beta testing when it is stable and the testers have tested the entire system. A beta
test should have a plan and be documented.

Beta testing allows the whole system to be tested from the viewpoint of a user, rather than a developer. If
there are any bugs, or errors, or missing functionality, these can be reported, the system can be refined, and
there is a greater likelihood of the system actually representing what the end users expect of it.

Finding bugs during testing should not be difficult if your tests are done properly. Each test should only test
one part of your project. In this way, you can find where the problem comes from. This is why we start by
testing each component separately. We also test each time we add a component to the system. This helps us
limit the places where bugs can be. Unfortunately, when bugs are found in the finished application, it can
be difficult to pin down their exact location. If clicking a command button causes an error, did the error
come from the command button, the business services component, the data services component or
somewhere else? Fortunately, this dilemma can easily be solved by using proper error handling.

Some of the most difficult problems are the ones where something worked perfectly in the testing
environment but did not work properly in the production environment. Commonly, these are performance
related issues. When the system is actually deployed and used by a multitude of users in different ways, we
often find that the system does not perform as expected. The worst situations are where the problems are
hard to reproduce. A common example is where some service of the system, such as retrieving data, will
normally occur within a second, but occasionally it will take ten or fifteen seconds. Trying to recreate this
can be very difficult. Sometimes a component will work flawlessly a certain number of times, but it will
fail once in a while. These are all very difficult problems to track down. These are all reasons that Beta
testing the components in the production environment is critical.

Every property, function and sub should have error handling. The most important part of your error
handling is including the name of the module in the err.raise statement. This would look as follows:

Err.Raise Err.Number, Err.Source & ''ComponentName.ModuleName'', _
Err.Description

If you had a class named clsServer and a module called RetrieveCustomer you would have:

Err.Raise Err.Number, Err.Source & ''clsServer.RetrieveCustomer'', _
Err.Description

If you place this code in an error handler for every single code module, then when an error is raised the
place where the error was initially raised will be in the error string. What will also be in the error message
is the name of every code module that the error was passed through. Thus, if frmMain has a command
button called cmdGetCustomer that calls a method called GetCustomer in a business component called
clsCustomer, and there is an error in GetCustomer, our error source would include the following
information:

FrmMain.cmdGetCustomer clsCustomer.GetCustomer

Deployment Phase

335

Thus, we know where the error occurred and what the calling module is. This information can save you
hours and hours of searching to find the source of a bug. Placing error handling in every code module does
not take much time and it can save you days of frustration.

Ranking Bugs
Bugs can be a serious problem with any application. If an application has already been deployed and is
being used by the client, any serious bugs must be taken care of immediately. If the deadline for deploying
the application is quickly approaching, it will also be necessary to begin working on the high priority bugs.

Bugs can be ranked two ways. The first way is by how severe the bug is. The second is how reproducible
the bug is. Severity can be ranked as follows:

Level 1: System Failure:
A level 1 bug will crash the entire system. A level 1 will require a reboot of the system. For the most part,
if you are not playing with pointers in Visual Basic you should rarely see a Level 1 failure. Anything that
would cause inconsistent data in the database would also be considered a level 1 failure.

Level 2: Application Failure:
A level 2 is where the application has a major failure. This will result in either a General Protection Fault
(GPF) or the application locking up. If a GPF occurs, your application will close unexpectedly and without
warning.

Level 3: Incorrect Performance:
A level 3 is where the application does not perform the way it is supposed to, but the application continues
functioning normally. A level 3 would be any performance not according to the project's specifications.

Level 4: Cosmetic:
A level 4 is where one or more users do not like the way something looks, but it in no way affects
performance.

Level 1 and 2 must be taken care of immediately. They are severe. They can be difficult to debug if the
problem does not exist in the test environment and does exist in the production environment as you usually
will not have any error messages before the system fails. In this case, you will have to create logs to track
the bug. A thorough testing phase should catch any level 1 or 2 bugs, but sometimes components perform
differently in the production environment than in the development environment. This is one reason that a
beta test should be done before a critical application is installed into an entire corporation. If the application
is critical for business, and there is a major bug that prevents the application from running, the corporation
can lose a great deal of money.

Even level 3 bugs sometimes can be a serious problem. Imagine building a Visual Basic component that
bills credit cards for an E-Commerce site. What happens if this component has a bug such that the
component does not actually bill the card; it only appears to bill the card. Thousands of dollars of business
may occur and thousands of orders may go out before anyone realizes that the company has been giving out
free merchandise. This can happen a lot easier than you would imagine. It might be that testing was done
with dummy credit card numbers, as you would not want to really charge your credit card when you are
testing. These are real issues and this is why beta testing in the production environment is important.

Chapter 11

336

Some level 3 bugs may not be serious enough to fix in this release. Most level 4 bugs will not be fixed,
unless they are very easy to fix. Reproducibility is broken into three categories:

Category 1: Completely Reproducible Simple - The bug can be reproduced every time by following a set of
simple steps. Usually, the user would normally perform these steps. It is possible this bug only occurs on
one type of computer.

Category 2: Completely Reproducible Complex - This is a bug that can be reproduced, but it takes a very
complex set of steps to create the bug. A user will rarely do these steps.

Category 3: Intermittently Reproducible – This is a bug that occurs sometimes, but cannot always be
reproduced.

These categories must be combined with the levels to determine the priority of fixing the bug. Category 2
bugs are usually not a high priority, unless they are a level 1 or 2. Category 3 bugs can be very frustrating. I
can recall spending days trying to hunt down one of these flaky bugs with Visual Basic 5. It turned out that
we had an object hierarchy that we were referencing down to the bottom level in one line, such as:

Object1.Object2.Object3. Object4. Object5.Method

Using the With statement and breaking up the hierarchy fixed the problem, though I never once saw the
error while debugging and only saw it once every twenty or so runs through the application. The working
version looked as follows:

With Object1.Object2.Object3
 . Object4. Object5.Method
End With

If you are using pointers in Visual Basic, it is easy to get these types of intermittent bugs as you will
sometimes write to a safe place in memory and other times not.

User Training
The clearer the interface to the application is, the less training the user will require to learn how to use it.
The first step in achieving this is a good user prototype and good user interface design. If every form is
centered on accomplishing a single task and the controls on the form follow the flow of the task, there
should be a minimum of training required. Similarly, if the nature of each form reflects the business process
it is supporting, it will be easier for the user to understand what they should do, and in what order. If you
have spent time creating user interface prototypes and properly testing them, you will save time and money
during training.

However, if your project has introduced a new business process then there are a number of other issues that
need addressing. Of course, you will have to tell the users how the new business process is going to work,
and how the application follows the new process. There could also be the added difficulty of trying to
integrate the new system with the old system - if the new system only covers some functionality, the users
will have to know when to use the old system and when to use the new system.

Deployment Phase

337

It is very useful to create an internal web site that explains the application and how it functions and answers
some of the common questions you would expect to be asked. It can save the help desk people a great deal
of work if questions asked to the help desk personnel are posted to a web page with answers. Each question
should then only be asked once, which prevents the same question from being asked repeatedly.

User training should use as many different mediums and self-service tools as possible, such as placing
information about the application on an Intranet site. The more the user can do on their own, the easier it
will be for them to use the application. If the users can teach themselves, it can serve to give them greater
confidence in their ability to use the application, and so therefore they will feel more at ease using it.

The educators will work closely with the users on the user education program. If the educators do not have
any programming experience, they may need the assistance of the developers to make web pages or help
files, which will assist the users in their understanding of the application and how they are supposed to use
it.

Prepare Infrastructure
The amount of work the logistician will have to do in preparing the infrastructure depends on what is
currently in place in the corporation. There may be large amounts of data in legacy systems that will have to
be moved. The Visual Basic programmer may find themselves writing applications to perform these
transformations using SQL Server 7's Data Transformation Services. Visual Basic developers may also be
called on to create test applications for new systems and to assist in stress testing or performance testing.

Assemble Project Documentation
By the end of the project, there should be a complete set of final documents. These documents will include
the Vision / Scope document, the EAD, risk documents, all of the design documents, bug tracking
documents, test plans, and test results etc. This collection of documents serves not only as a useful tool for
future versions of the project, but also as a valuable resource for any future project that is similar. These
documents show what works and what does not work. The project schedule will show how long each
component took to build, which can be used as a basis for an estimate for future projects. The development
team and the client should keep a copy of these documents.

When the project is done, the development team should have a review meeting to discuss the project's
successes and failures. This information should be included in the developer's documentation and used for
future projects. Knowledge is one of the most valuable resources; keeping accurate records allows you to
pass knowledge from one project to the next. This is not only important if your project was a failure; future
project teams can also learn from the success of this project and incorporate the goal-oriented teams and
cyclic methodology into their working life. In this way, good design will become the norm and future
projects have a greater chance of success.

Chapter 11

338

Creating Changes in the Code
One of the greatest challenges to the Visual Basic programmer is to keep the design documents up-to-date
as changes are made to the code. As changes are made, it is easy for design documents to quickly become
out of date. Eventually, there is no accurate documentation for the project. This must be prevented at all
costs.

Changes to the code should result in the updating of the design documents and the addition of comments in
your code. One easy way to document your code is by adding a comment in the beginning of the module
such as the following:

'20-06-99-01 Bug Fix: #15-06-99-23.
'Developer: Jake Sturm

In the code where changes are made you would add a comment with '20-06-99. You should also have some
form of document control, such as SourceSafe, that has the original version of the code prior to the changes.
This should be part of the coding standards.

By adding these comments into your code, it becomes easy to see what changes were made, why and by
whom. If a change results in additional problems, it will be easy to track down where the changes were
made.

Physically Deploying the Application
Once everything has been built and tested, you must actually get the application out onto the desktops.
There are many issues involved in this. Do you need to first deploy the server components before you
deploy the client components? Do you manually place components on the computers or do you push
components onto the computers? What time will you deploy the components, during work hours or after
hours? During the development and design phase it will be the job of the logistician to find answers to these
questions. Often, it is only through thorough testing and the creation of labs to simulate the production
environment that answers to these questions can be found. These answers are not simple, and this is one of
the reasons the logistician should be a separate role on your team. To develop a good deployment plan for a
large scale deployment could take up to six months.

Deployment Strategies
One thing to consider is how to get your system or application onto the computers of the end users.
However, there is not just your application to think about, but also any other files that are needed to make
your application work. You cannot be sure that each user computer will have the necessary secondary files
needed to make your application work. Some extra files needed to ensure that your application can be used
might be:

Deployment Phase

339

Any ActiveX controls used in the application. Many computers will already have a copy of the controls;
however, if any of them are missing, the application will generate an error. These controls will need to be
registered during the setup process when users install them onto their computer.
The Visual Basic Runtime library. For Visual Basic 6.0, the file is MSVBM60.DLL.
Any supporting files. If the application is to have its own version of a database, such as Access, you'll
need to distribute a copy of it. Don't forget any text files, data files, report files or registry files.
Other Dependency Files. These include DLLs, which are called by the application.
Documentation and Help Files. Many products are available to assist you in creating help files. One of the
most popular is RoboHelp.

Of course, some of these files may have to reside in specific directories, and it cannot always be assumed
that the user will have read the installation instructions correctly, or that they know how to install a product
at all. For this reason, we create a setup program, which will install all included necessary files into the
correct subdirectories on the target computer. This is one way of preparing your application for deployment
and, luckily, Visual Basic provides us with a Package and Deployment Wizard to help us do just this. Let us
look at this facility in more detail.

Visual Basic Deployment Wizard
Visual Basic supplies you with a wizard for almost every task. In this case, it will take your final version of
working code and package it so that it can be deployed to the end users. This is useful for every member of
the team to know - even if you are not too technically minded, you will still be able to make sure that the
application is available to be handed over to the end user.

Open the package and Deployment Wizard from the Visual Basic folder (or the Visual Studio 6.0 Tools
folder if you have Visual Studio) from the Programs menu. The Package and Deployment Wizard will
open and prompt you to select the project you want to deploy. Locate the project file on your computer that
you wish to deploy.

Chapter 11

340

This first screen shows us options for creating, deploying and maintaining application setup files. For now,
the only option we are interested in is the Package function, which allows us to create a setup facility, so
click on the Package button.

This stage allows us to specify the type of package we wish to create: as you can see, we can say that we
want a standard executable package, an Internet package or we can specify it as a dependency file. A
dependency file is a file that our application, or components within our application, requires in order to run.
It might consist of a DLL, for example, that is used by many clients. If we made revisions to our
dependency file, we would want to redistribute it to all users; this utility allows us to do this. We want to
create a standard executable file, so select Standard Setup Package and click the Next button.

Deployment Phase

341

This dialog allows us to specify where we want the setup files to be saved once they have been created.
Select where you want them to be saved and then click the Next button

The Included Files dialog shows us what files will be automatically included in the package by Visual
Basic. This list is created from the references and components we added to the project. If there are any that
we are sure are not needed, we can uncheck the boxes and exclude them from the package. Similarly, if
there are any missing, we can make sure they are included by clicking on the Add button and locating the
appropriate files.

Dependency Files
A dependency file, which ends in the extension.dep, contains information about what additional files are
needed for an application, how these files are to be registered for use and into which specific directories the
installed files must be placed on the user's computer. The '.dep' files are what the Package and
Deployment Wizard looks for when packaging the application - this file gives the wizard the information it
needs to be able to include all of the relevant files in a setup file.

A standard packaged application will have its dependency information stored in a file called Setup.1st,
which is separate to the package. An Internet package will store its dependency information in a file ending
with the extension '.ini', which is part of the packaged application.

There are two types of file that can contain dependency information:

Component '.dep' files; thesefiles list all of the files that are needed for an individual component to work.
If a component you have developed can be used in another project, you would create one of these '.dep'
files to tell the next user what information they need and where to find it.

Chapter 11

342

VB6dep.ini file; this file contains the dependency information for the whole environment of Visual Basic
and can be found in the '\Wizards\PDWizard' subdirectory of the main Visual Basic directory. This file also
contains information on what files are not to be included with your packaged application - this may be
because the files need another component to install them.

This dialog allows us to specify whether we wish to distribute our application in a single file or in several
smaller files. The application will be distributed in Cabinet (Cab) files. These are compressed files, which
work similarly to Zip files; each Cab file can contain a number of files which must be extracted before they
can be used. In this dialog, we can specify the number of Cab files we want to create and the size of each
file. If we plan to distribute this application on floppy disks, then we will want to select the Multiple Cabs
option and limit the size of each Cab to 1.44 megabytes. Do this and click on the Next button.

Deployment Phase

343

This step asks us what we would like the title of our setup package to be. Click the Next button.

Chapter 11

344

The Start Menu Items dialog allows us to place files in the startup folder, or in the folder that will be
created specifically for your application, so that they will be accessible from the Start button. This is a
great place to put other executables or help files that are part of your application. Click on the Next button
to accept the default values. This takes us to the Install Locations dialog, where we can specify the folders
where our individual files will be saved:

For the most part, Visual Basic knows where the associated files need to be placed, but the Install
Locations dialog gives us the option of changing the defaults and placing files in a specific directory. If,
for example, we want to place a specific DLL in the application path rather than the Windows Directory, we
can change this here. Click on the Next button to accept the defaults.

Deployment Phase

345

We now have just one final decision to make before the package is created. Visual Basic will identify any
applications or DLLs that might be candidates to be shared by other applications. In this case, VB has
identified the CodeGenerator.dll and the MDAC_TYP.exe file. If you want to share the file, click in
the box next to the filename. In this case, just click on the Next button, since we don't want any other
applications using our program!

Chapter 11

346

The last dialog is the Finished dialog. Here we can save the script by name so that we can re-use it if we
want to make any modifications later. It is quite common to want to modify the setup utility later, so always
choose a name that is logical to the project. Finally, click on the Finish button.

It may take a few minutes to build and copy the files to your drive. When this process has been completed,
the dialog shown above will appear, giving us detailed information about the package. This information will
change from application to application. Be sure to read the comments closely then click on the Close
button. You will be brought back to the original dialog. Click on the Close button unless you want to build
another setup utility.

So, now that you have your packaged application, how do you make sure that your end users will be able to
install it onto their machines? There are a number of ways that you can do this, as I will now go on to
explain.

Floppy Disk or CD-ROM?
The original method of deployment was by floppy disk. In this way, the application could be distributed to
many computers by simply making copy after copy and handing over a number of floppy disks.

This method has today been superceded by the CD-ROM. CD-ROMs are easier for the user to utilize - it
carries more information than a huge number of floppy disks, and there is no frantic swapping of disks
before installation can continue. However, although this may ease the installation technique for some, you
must bear in mind that some users will not have a CD-ROM drive on their computer. So, although floppy
disks may appear to be a little outdated in this technological age, they are the only way that some of your
end users will be able to install your application.

Deployment Phase

347

Intranet / Internet Solution
If you have built an Intranet application, then you can use the cab files, perhaps created for you by the
Visual Basic Deployment Wizard, to deploy the components. You may, though, want to open the CAB files
and verify that the inf file in the CAB file has the correct version number. This is usually a good method
of deployment, but there can be many factors preventing the successful installation of files over the
Intranet. The wrong security settings on the browser can cause endless problems. If the client machines do
not all have the same browser settings that cannot be altered by the user, an Intranet cab file download can
result in serious problems.

Systems Management Server (SMS) is Microsoft's solution to mass deployment of regular files, such as
exes and DLLs, onto thousands of client machines. While it is beyond the level of this book to explain
SMS, it is important to make a few comments about this product. In general, if you are using SMS server to
deploy to thousands of clients, you need to first assemble a team of one or more people. These people will
need to begin by using SMS to determine every type of computer in the company. Once this is done, a lab
will need to be set up with client computers that are identical to the client computers that the software will
be installed upon. The software should first be installed onto the lab computers. Any problems with the
installation should be researched. This entire process can take up to six months. If this is done, SMS server
should work very efficiently and successfully install on the client machines.

If you try to push software out onto untested clients do not be surprised if the installation fails. This is not
only true with SMS server; this is also true with any method of deployment. I cannot stress enough that you
must test everything you do. Getting the software out onto the clients and servers is no trivial matter; it
requires a great deal of work to make a successful deployment plan.

The logistician should be working closely with the educators. It would be disastrous to change the client
machines if the users have not been trained or prepared for the new system. You must coordinate
deployment of the system with the training of the users.

Final Sign Off
When the project is complete, the Beta tests are done and the final application is deployed, the client must
sign off the project. By defining the scope of the project in the envisioning phase we can determine exactly
what should be delivered in this stage of building the system. Whether it is one part of the system, or the
entire system, a well-defined scope will make it clear what should be delivered in the deployment phase.
Once these deliverables have been completed and all milestones for the scope have been reached, then the
client should sign off the project.

It is important that the project is signed off after completion. The signing off of a project indicates that the
client accepts what has been delivered and is happy with the outcome of the project. If the project did not
deliver all agreed functionality, meaning that it did not fulfill its scope, it is up to the client whether they
accept what work has been done or not. If they are happy that the missing functionality can be delivered in
the next project, then they may well sign off the current project and accept the application. More often than
not, however, if the project has not fulfilled its scope it will not be accepted by the client, they will not sign
off the project, the application is not handed over, and they will definitely not pay up! It is important,
therefore, to strive to meet the scope so that the final sign off is merely a formality.

Chapter 11

348

With the final sign off a copy of all documents relevant to the project should be given to the client: these
documents will tell the client what their organization was like before the project, what the project aimed to
achieve, how it achieved its aims, and also provide any user guides that it is felt necessary to provide. The
client will use these documents for future upgrades and maintenance of the system. The development team
should also keep a copy of the documents for reference in future projects.

Summary
The deployment phase is the final stage of your project. It is a time of intensive final testing and debugging.
All project team members must continue to follow the guidelines of good project management during this
stage. Bugs should be documented and changes in code should be made properly and documented in the
code. Old versions of the project should be saved.

If the project has been properly designed and built, the final result will fulfill the business needs of the user.
Using the cyclic methodology means that we will end up with a user centered application that is built from
the best components within the limitations of the project.

Deployment of the application created by the project is not difficult, but there are a number of issues that
must be considered, such as including additional necessary files and deciding in which format the
application will be sent out. Once the application has been successfully deployed and accepted by the client,
all concerned can officially sign off the project.

Deployment Phase

349

Chapter 11

350

Versioning and Sharing Project
Files

Nothing can destroy a Visual Basic project faster than creating changes in the source code without properly
documenting these changes in the code and in the design documents. Combine these missing updates with a
failure to maintain old copies of the source code, and you will quickly find that you have lost all control of
your project. Because documentation and code become out of sync, it will be impossible to ensure that our
code continues to follow our carefully planned design. And, of course, the best design and plan are useless
if not followed.

The process of debugging code must be done scientifically, carefully and with purpose. I cannot tell you
how often I have seen developers being told there is a bug in the code, and then watched them start hopping
through code sections making random changes. When they have finished hacking, they say, “Try it now and
see if it works.” More often than not, several other bugs have been introduced. If the original source code is
not stored somewhere, there is no going back, as no one can figure out what changes have been made.
Changes need to be made in an orderly, organized manner. Using a tool such as Visual SourceSafe allows
one to track changes made to the code, and roll back to the previous code. Of course, one should make
changes in a careful, organized manner and have a standard for making changes to the code. But it’s
important to have access to the earlier versions if this doesn’t happen.

Chapter 12

352

When a tester identifies a bug, the team will look for a solution to the bug, and this should be found and
documented. At this point, a change will have to be made in the code. Prior to making any change, a copy
of the original files should be stored. In this chapter, we will look at a tool which can be used to implement
change control (the process of ensuring that any changes made to the product are authorized), and to
maintain a history of your Visual Basic project files (and other documents, too) so that you can retrieve
older versions.

A Look at Visual SourceSafe
Visual SourceSafe is a useful tool supplied with Visual Studio which helps developers share Visual Basic
files (called Source Control) and maintain different versions of files (Version Tracking). Source control is
used to try to prevent two copies of the same file being changed at the same time. This can occur when two
developers try to change the same file at the same time or when one developer accidentally opens two
copies of the same file and tries to edit both of them. While this cannot be entirely prevented (source
control will allow any number of developers to open the files as read-only, and these can then be changed
and saved under a different file name), using a tool such as Visual SourceSafe (VSS) ensures that there is
only one official version. Version tracking enables us to keep a history of the code’s development by saving
backup copies of the files. These backup copies can be used to recreate the original files exactly as they
were at some previous point in time. We can also compare two different versions and see the differences in
the two files. This allows us to pull out the precise lines of codes that have been changed.

Visual SourceSafe is a project-oriented version control system. Visual SourceSafe supports any type of
Visual Basic project, including web and non-web applications, and it can keep track of changes to both text
and binary files so we can use it with all of our project files. We can also use Visual SourceSafe to keep
track of the relationships between files. Visual SourceSafe works with groups of files.

In addition, Visual SourceSafe has a report generator, a history tool for showing history of projects or
individual files, tools to identify differences between versions of files, a tool for finding strings in text files
and a tool for viewing files.

Visual SourceSafe is a tool which allows a team to work cooperatively on code and documents. However,
since many readers will not have access to an entire network to explore Visual SourceSafe with, we will
create an example on a single machine.

In a real implementation of a change management system, there must be a great deal of planning. It is
unlikely the entire team will need access to all files. There must be a decision made on what files and
documents each component team will have access to, and what files and documents each member of the
team should have access to. The Visual SourceSafe database must be placed where all the team members
can have access to it and check out files for editing. There must be enough disk space for the Visual
SourceSafe database, and there must be enough room to allow for the expansion of the database as Visual
SourceSafe begins to maintain a history of the files. A clear set of rules must be established on when and
how files are checked, how they are updated and how they are changed and checked back in. All of these
factors take time, planning and research. A good change management system cannot be created without first
reviewing these issues.

Versioning and Sharing Project Files

353

Adding a Project to Visual SourceSafe
If you have not installed Visual SourceSafe onto a computer and you want to do the examples, install it
now; it is supplied with Visual Studio. Once Visual SourceSafe has been installed, you will need to create
users who are allowed to use it. To do this, go to the Windows Start menu, select Microsoft Visual Studio
6/Visual SourceSafe/Visual SourceSafe Administrator 6.0. You should begin by changing the
administrator password: the default password for the administrator is blank. You can also add additional
users if you need to. Once you have done this, you can go to the Windows Start menu, select Microsoft
Visual Studio 6/Visual SourceSafe/Visual SourceSafe 6.0. Enter a valid user ID and password. Now
open up Visual Basic and create a new project; when you save the project, you will now be asked if you
want to add it to Visual SourceSafe. Save the project and add it to SourceSafe.

You will be prompted to log in when you choose to add the
project to SourceSafe:

The next screen will require you to select a
project to include this in. This is not the name
of the Visual Basic project (though it can be
the same): it is the name of the Visual
SourceSafe project. If you are building an
application out of many Visual Basic projects,
you may want to group all of the projects into
a single VSS project or give each one its own
separate Visual SourceSafe project. In this
screenshot, I have no VSS projects yet, so I
will just save it to Project1:

You may be wondering where this file is physically saved. Usually, Microsoft Visual SourceSafe is
installed on a server in a development environment. Visual SourceSafe manages all of the documents it
stores (these documents can be code, forms, UML diagrams, etc.). Visual SourceSafe will place these files
in a special Visual SourceSafe database. The files will also be temporarily placed on one or more of the
developer’s hard drives as the developers check out the files for editing.

Chapter 12

354

You will next be prompted to choose which files you
want to save:

Save all of them. If
you close the Visual
SourceSafe manager
and reopen it, you
will see the
following:

While anyone using Visual SourceSafe can use the manager, most Visual Basic developers will actually
never use the Visual SourceSafe Manager or Administrator. These tools will usually be used only by the
project manager. In a large corporation with many projects, the change management system would become
a library that could be used by many developers. In this case, it is best if a librarian is placed in charge of
the database and the change management system. The librarian will establish user rights, locations of
databases and procedures and policies for the change management system. In this way the documents and
code will belong to the corporation and can be available for reuse, maintenance and future upgrades.

Versioning and Sharing Project Files

355

If you return to our Visual Basic project and
right mouse click on the program window,
you will see the following:

Checking Files Out of Visual SourceSafe
You can see that we now have a few items added to the project menu. Selecting Get Latest Version will
retrieve a read-only copy of the latest version of the module, so we cannot make any changes to the file. We
will want to do this before we start testing. When we want to edit the module, we must remove or Check
Out the file from the Visual Source Safe library. When we check out a module, a copy is written to the
local hard drive. If we try to open the module before we have checked it out, we will get an error message
and will not be allowed to edit. While one developer has checked it out, no other developer can also check
it out for editing. However, other people can still look at the file in read-only mode, or make a copy and add
a new file to the database for editing (this is called branching, which will be discussed below). This
prevents two people from editing an official version of the same module. Check In saves the new edited
code module back into the database and deletes the local copy. This differs from Undo Check Out, which
allows us to stop editing without saving any changes.

If a code module is checked out for editing, as we discussed, the last saved version can still be viewed by
another developer and even run. The second person cannot, though, change any of the code. This means that
while the development team is working on a module, the testing team can be testing completed portions of
the module. Thus, Visual SourceSafe allows development and testing to occur together.

Chapter 12

356

Configuring VSS

Many Visual SourceSafe options can be
changed. If you go to the Visual SourceSafe
menu and select Tools | Options you will
see the SourceSafe Option tabs:

This option tab allows us to adjust many of the SourceSafe configuration settings, such as what action will
be taken if an unchanged file is checked in, and what action to take when we double-click on a file in VSS
Explorer. It is worth taking some time to look through the tabs and see what options are available.

Merging Files
Using the cyclic methodology will allow us to complete the project in steps. Each step will complete a
portion of the project and will have milestones associated with it. Once the milestone is reached, we move
onto the next portion of our code. When it comes to writing Visual Basic code, it is best if each step creates
and completes a set of functionality of a Visual Basic component. Thus, in our first step we make the
Customer component and code the properties of the bottom class. Our milestone will be the writing of the
code and the debugging and testing of this code. Once this milestone is reached, we begin work in the next
stage, which may include writing the methods for this class. The next stage should not be adding additional
functionality to the properties written in the last stage, as this makes it difficult to update changes.

If we are adding methods or properties to a class from one stage to the next, we may run into the situation
where a bug is found in an earlier stage while working in a later stage. To fix this, we will have to go back
to the code from the earlier stage, fix the bug, and then merge the new version of the earlier phase into the
later phase. Visual SourceSafe can do this automatically, but it is recommended to use the Visual Merge
tool supplied with VSS. This works a little like Compare Documents in Microsoft Word, and allows us to
view each difference between two files:

Versioning and Sharing Project Files

357

Ideally, we would want to complete the bottom class in the first phase and then build other classes that used
the bottom class in the second phase. This is the best way to build a project and the easiest way to maintain
and debug the code.

Versioning Files
The standard project version numbers have used a Dewey decimal notation consisting of numbers separated
by periods. The format of a version number appears as major.minor.revision, where

� Major version numbers identify significant functional changes.

� Minor version numbers identify smaller extensions to functionality.

� Revision version numbers signify even finer grained changes such as bug fixes.

You can extend this scheme if you need to. Visual SourceSafe’s archiving functionality allows you to
retrieve any prior version of existing code. This can happen if changes are made to the code that create a
serious problem in the functionality of the project. Using the archived versions, you can rollback to the
version that did not have the changes.

Versioning with VSS
Visual SourceSafe also allows you to create custom versions of the same application. This could happen if
you needed two slightly different versions of a project. In our discussion of reusing the product component
for the ASP page, we mentioned that it would be best to create a new application using some of the old code
for the product component. In this case, we would want a copy of the original project to become a new
project that we could modify according the specifications of the ASP project. Let us look at how Visual
SourceSafe allows us to do versioning.

Chapter 12

358

One approach for tracking versions or builds of projects or applications in Visual SourceSafe is to use
labels. By placing a label on the parent project of a program, all of the child projects and files will inherit
that label. Labels are simply descriptive strings that we can apply to any version of a project. A label is a
free-form string which can contain up to 31 characters. The following are all examples of valid labels:
"1.0", "2.01b", "Beta 3" and "Approved by Tester1". Visual SourceSafe tracks the history of
the project, allowing us to label a project when we have reached a certain level of development (for
example, version 3.05.234). Later on, we can refer back to the files in the project, as they existed at the
time you labeled the project.

We can label a
project by going
into the SourceSafe
Explorer, right
mouse clicking on
the project and
selecting Label:

Visual SourceSafe Scenarios
There are two common scenarios with Visual Basic projects. In the first case, we do not expect to change
many files. In the second case, we may be changing several files, potentially several times. Visual
SourceSafe has two different features to cope with these scenarios. In the first case, we would use Visual
SourceSafe’s label-promotion feature. In the second case, we would use Share/Pin/Branch.

Label Promotion is the best method to use when your development is done in the same project tree and bug
fixes are routinely performed before other changes have been made in the project. A common example is
when working on a major release with several milestones, such as Beta 1 and Beta 2. In this instance, we
would label the project when we believe we have completed Beta 1, then continue working toward Beta 2.
If few fixes are needed for Beta 1, use the label-promotion feature.

Share/Pin/Branch is the best method to use for parallel development on a project over an extended period of
time. A common example is when we are working on two releases that share code, both of which have
milestones. For example, we have shipped Version 1.0 and now we are working on Version 2.0; however,
an interim patch for several bug fixes is needed. This patch will be released as Version 1.1. In this instance,
we would work on Version 2.0 and Version 1.1 in different project trees, then merge changes between them
as necessary.

Versioning and Sharing Project Files

359

The following are three scenarios using the label-promotion feature. For completeness, a fourth scenario
using share, pin, and branch is described. These scenarios are presented as a guide.

Scenario #1: Component Development
In this scenario, we are building the project from components. At each release, a component is completed
and will not be changed in the next release. Thus, Release 2 does not change Release 1 code; it only adds
additional modules to the project.

� Develop and test the project in the drive toward Release 1.

� At the point where Release 1 is completely tested, label the project, for example: "Release 1".

� Begin working on Release 2.

Scenario #2: Changing Files in an Unchanged Previous Release
We will be developing as in Scenario 1, i.e. building separate components in each release. After we have
moved to Release 2, we discover there is a major flaw in Release 1 in files that have not been changed
while working on Release 2. Release 1 could be in use by the client or the flaw may prevent proper testing
of Release 2. Release 1 needs to be fixed and recompiled.

� Develop and test the project in the drive toward Release 1.

� At the point where we are ready to go to Release 1, label the project "Release 1" (or something
similar).

� Begin working on Release 2.

� At this point, we realize that the file included in Release 1 has a bug in it that must be fixed. No other
files in the project have yet changed.

� Check out the file, make the changes, then check it back in.

� Label the project "Release 1" again. (You'll be asked to confirm that you want to remove the old
label). Projects using version 1 files will not have to be changed. If you want to maintain the original
version, rename it Release 1.1 and include the new Release 1.1 files in all of the projects using the
Release 1 files.

Scenario #3: Changing Files in an Altered Previous Release
We will be developing as in Scenario 1, i.e. building separate components in each release. After we have
moved to Release 2, we discover there is a major flaw in Release 1 in files that have been changed while
working on Release 2 (for example: a class may have had additional methods or properties added). Release
1 could be in use by the client, or the flaw may prevent proper testing of Release 2. Release 1 needs to be
fixed and recompiled.

� Develop and test the project in the drive toward Release 1.

� At the point where we are ready to go to Release 1, give the project an appropriate label, such as
"Release 1".

� Begin working on Release 2.

� As in Scenario#2, we now realize that the file included in Release 1 has a bug in it that must be fixed.
However, this time other files in the project have also been changed and those changes have been
checked in.

Chapter 12

360

� Check out the original Release 1 copy of the files that need to changed, make the required changes, and
then check the files back in, creating a new version.

� Label the file "Release 1" (the same label we gave to the project). This promotes the new version of
that file into the project with the label "Release 1".

� Now, if we retrieve the Release 1 project, we will get the project the way it was at the date and time
when we labeled it "Release 1", except that we will retrieve the newer version of the file we just
labeled individually as "Release 1". This allows us to update specific files in an old version, even
after changes have been made to other files.

Scenario #4: Share, Pin and Branch to Create Service Pack Projects to Fix Major Bugs
If the need arises for a bug fix after a project has been labeled and further developed, we can use the
following share, pin and branch scenario.

Sharing allows one file or set of files to belong to multiple projects. Unless the file is branched after
sharing, each project will have a reference to the shared file: if the file is changed in one project, it will also
be changed in the other.

Branching is the process of sharing a file with another project and then separating it into two or more
branches. Once a branch has been created, two files (the file in the project and its counterpart in another
project) will have a shared history up to a certain point and divergent histories after that time. Branching a
file breaks the shared link, making the file in that project independent of all other projects.

Pinning is generally used with shared files, although it is not limited to shared files: we can pin any file.
When we pin a shared file, we cannot make any further changes to it. Pinning is like sticking a pin into the
file so that a particular version of the file becomes the version that is part of the project. If a pinned version
of a file is shared, the projects sharing the file cannot change it. If a file is shared first and then pinned in
one project, other projects can still change and update the file.

� In the drive toward Version 1.0, develop and test your project (e.g. $/Application).

� When Version 1.0 has been achieved, label the project "Version 1.0".

� Begin changing files in the project in the drive toward Version 2.0 of the project, which will introduce
new features.

� If we now realize that an interim Version 1.1 is

needed for bug fixes, select the project in
SourceSafe Explorer. Then, on the Tools menu,
click Show History to display the History Options
dialog box:

Versioning and Sharing Project Files

361

� Select the Include
Labels box and click
on OK to display the
History of Project
dialog box:

� Select the version labeled
"Version 1.0" and click
Share. The Share from Project
dialog box will appear:

� Select the project you want the new
project to be part of. This will
usually be $/project. We want to
fix the bugs in both projects, so
ensure that the Branch after Share
box is not be checked; otherwise, we
will have to make the changes
independently to both projects. Now
click on OK to display the Share
Project dialog box:

Chapter 12

362

� Give the project a New Name (e.g., $/Application V 1.1). If the project has subprojects, select
Recursive; this will ensure that all subprojects are also shared. Add any comments in the Comment
box as needed, then click OK. Click Close to exit the History of Project dialog box.

� Select the newly created project $/Application V 1.1. All files in this project will now be
pinned:

� Select only those files that need to be changed to address bug fixes, then branch the file(s). Leave pinned
any files that do not need to be changed. You can later merge bug fix changes back into your Version 2.0
project.

Building a SourceSafe Project
Most Visual Basic components are built from many different components. Before we start compiling the
complete project, we should make sure that none of the files in the entire system are checked out. However,
if development is ongoing and the last saved version of a checked out file is acceptable for the build, then
we do not need to check these files in. Visual SourceSafe can create a list of all the checked-out files in a
project. We can use this recursively to include all subprojects in the current project. Visual SourceSafe will
check every file in every relevant project and generate a list including every checked-out file. We thus
know immediately whether we can proceed with the build, or who to talk to if we are not able to continue.

Versioning and Sharing Project Files

363

File Histories
Visual SourceSafe has the ability to build file history reports. File histories list each version of a file, from
the most recent to the oldest, with information such as what happened to the file, who did it, when it was
done, and what comment was made.

To tackle this with Visual SourceSafe, we generate a report on the project itself. For instance, it might
report that a file named COMMON.BAS has just been modified; before that, OPENALL.FRM was changed;
before that, FILESUPP.BAS was added to the project, and so on. Visual SourceSafe collates the changes
that we would otherwise have to sort through manually, enabling us to view the order of changes over the
last week. This can save us a lot of time and help us avoid dead ends.

Maintaining Reusable Code
We will usually find that there are parts of our code that are reusable. In the case of the ASP page
Product component and the Visual Basic EXE we saw in Chapter 9, both of them share the non-data
provider code. We could have developed this first, shared the project and created two branches at this point.
Or, we could have error handling code that is used in all of our applications. Files such as this usually
evolve over time because of bug fixes, performance improvements or new features. The benefits of reusing
existing code are enormous, but so are the headaches when managing the organizational issues. You have to
remember which applications are using each file and propagate every change to all the appropriate places.
This is only a minor annoyance when five applications are reusing one file but when twenty applications are
mixing and matching fifty different reusable files, the situation can become complicated.

Visual SourceSafe can automate the process completely. Within its database, Visual SourceSafe stores each
file only once. Each project that contains a file has a pointer to the location of the file in the database. All
versions of the file are available to each project, and a project may “freeze” the version of a file to avoid
introducing errors while another development team works on the reused code.

Summary
Visual SourceSafe is a tool that allows a team of developers to share source code. It also provides an easy-
to-use versioning system. In this chapter, we outlined some of the more basic features of SourceSafe and
discussed how it can be used in managing your Visual Basic project.

We haven’t been able to look at all of the features provided by VSS, but this whirlwind tour of this tool has
given us the chance to look at some of the issues connected with version tracking and source control. We
saw how a tool such as VSS can help us keep track of who is editing which files, and how it can help us
maintain a library of previous versions of our code. This means that if we have to fix bugs in an old release,
we will still have the appropriate files. We also saw how VSS can help us manage and maintain code
modules which are shared by a number of different projects or releases.

Chapter 12

364

Creating a Project Schedule

We are now going to take all of the information we have learned throughout the book about our Visual Basic
project and goal oriented Visual Basic teams and create an example schedule for the whole project. Although
you can download this schedule from the Wrox Press site, I would recommend you taking the time out to
actually input the information into the schedule. This will help you understand the goals of each cycle, and
whose responsibility it is to fulfill that goal. We will discuss some ways of improving it at the end of the
chapter.

Project Resources
Create a new Project 98 schedule called DNA. You will need to add resources to your project. We will allow
for a large development team that incorporates three small teams. Team 1 will focus on server components,
Team 2 will work with client side components, and Team 3 will be the web experts. Go to the menu and select
View | Resource Sheet.

Resource Name is the label we are going to give to our resource; in this case, our resources are our team
members, so their titles will be entered as the resource label. In order for us to make a cost estimate for the
project, we must enter the rates of pay for each team member, or the Std. Rate: the total cost of employing
each team member will be seen after all the information has been entered into the schedule.

Chapter 13

366

Enter the information from the following table into the resource sheet.

Resource Name Std. Rate

Component Manager 1 $70.00/h

Developer 1a $50.00/h

Tester 1a $45.00/h

Developer 1b $60.00/h

Tester 1b $45.00/h

Component Manager 2 $75.00/h

Developer 2a $50.00/h

Tester 2a $50.00/h

Developer 2b $60.00/h

Tester 2b $45.00/h

Component Manager 3 $70.00/h

Developer 3a $50.00/h

Developer 3b $45.00/h

Tester $40.00/h

Product Management $75.00/h

Project Manager $85.00/h

Educator $40.00/h

Logistics $40.00/h

End Users $0.00/h

Client Management $0.00/h

Creating a Project Schedule

367

Your resource list should look as follows:

The table is full of zeros because the resources have not yet been assigned to any goals, and so have not yet
started costing you any money!

Throughout this chapter, you will see that as you add goals to your schedule, you assign resources to them. In
some cases, the resources will have a percentage mark next to them - this is to indicate how much of the
resource is being utilized for this particular goal. However, as our resources are all people, we will take the
percentage mark to mean the percentage of time each person is spending on the particular goal.

In an ideal world, we would have every member of the project team fully dedicated to only one project at a
time; however, this schedule tries to reflect a real life situation, so it must be understood that our team
members may sometimes have other, non-project related work to do. Although this may add some length of
time to our duration estimates, these responsibilities and prior engagements must be accepted and
accommodated.

Chapter 13

368

Envisionment Phase Schedule
Go back to the Gantt view and enter the information below into the schedule. The numbers in parentheses
represents how far you should indent the item. Each time the indentation changes, we will list it in the first
column in parentheses. A 0 means the item is all the way to the left, a 1 means it is indented once, etc. Make
sure that all constraints are set as soon as possible.

 Name Start Date Duration Resources Predecessors

1 (0) Notes about this
template

Mon 01/17/00 0 days

When you are entering the following information, please bear in mind that the durations I have given to the
goals here are only estimates, based on showing you what a realistic schedule may look like. In real life, the
durations will vary according to the size and complexity of the project, the number of people available, what
else team members may be working on at the same time, and lots of other factors. This schedule merely serves
as an example for the project we have been looking at throughout the book.

 Name Start
Date

Duration Resources Predecessors

2 Envisionment Mon
01/17/00

3 (1) Evaluate current
systems / meet
with client mgmt

Mon
01/17/00

5 days Client
Management,
Product
Management,
Component
Manager 1,
Component
Manager 2,
Component
Manager 3

4 Create Enterprise
Architecture
Document

Fri
01/21/00

0 days 3

Creating a Project Schedule

369

 Name Start Date Duration Resources Predecessors

5 Initial
Consensus
Meeting

Mon 01/24/00 1 day Component Manager 1,
Developer 1a, Tester
1a, Developer 1b,
Tester 1b, Component
Manager 2, Developer
2a, Tester 2a,
Developer 2b, Tester
2b, Component
Manager 3, Developer
3a, Developer 3b,
Tester, Product
Management, Project
Manager, Educator,
Logistics, End
Users, Client
Management

4

In the first part of the envisionment phase, we must evaluate how the client’s current Enterprise system works
and what their current business processes are. This is essential to give us a good idea of the background of the
client. We must then determine how that system will be integrated, or migrated, into the current project.

It is important that every team member attends the initial consensus meeting: everybody should understand the
aims of the project and the impact it will have on the client.

It is quite obvious that the Enterprise Architecture Document cannot be created until you have evaluated the
current system. Similarly, the initial consensus meeting cannot take place until the current status of the
business is known and can be communicated to all.

 Name Start Date Duration Resources Predecessors

6 Define Vision /
Scope

7 (2) Determine ROI
and TCO

Tue 01/25/00 6 days Logistics[50%) 5

8 Initial ROI and
TCO estimates

Tue 02/01/00 0 days 7

This part of the envisionment phase allows you to make an initial estimate of the Total Cost of Ownership and
Return On Investment for the project. At this stage, estimates will be just that - it is only after completing the
other phases of the project that these estimates can be refined.

The ROI and TCO cannot be determined until after the initial consensus meeting. Similarly, the milestone
cannot be reached until the ROI and TCO have been determined.

Chapter 13

370

 Name Start Date Duration Resources Predecessors

9 Define Client
Requirements

Tue 01/25/00 4 days Educator 5

10 Define content
requirements

Tue 01/25/00 2 days Component
Manager 3

5

11 Define system
requirements

Tue 01/25/00 6 days Logistics[50%] 5

12 Define client /
server
requirements

Tue 01/25/00 2 days Component
Manager 1,
Developer 1a,
Developer 1b

5

13 Define specific
functionality

Tue 01/25/00 1 day Component
Manager 2,
Developer 2a,
Developer 2b

5

As you are undertaking the project to deliver some specific functionality to the user, it would be very useful to
find out what it is that they require! This cannot take place until after the initial consensus meeting. To define
client requirements, you must decide not only what information the users require, but also how they prefer to
access that information. From this, you should be able to determine exactly what information each user
requires.

Your clients may have strict rules about the configuration of their computers. This may put restrictions on the
way that the project can be designed and developed. It is imperative that information such as this is uncovered
before any design or development takes place - knowing the restrictions beforehand will save a lot of money
and effort in the long run.

To define the specific functionality, you must take the user requirements and translate them into goals for the
developers; this will give them more of an idea of what it is they are expected to do when design and
development actually take place.

Creating a Project Schedule

371

 Name Start Date Duration Resources Predecessors

14 Define risks and
risk management
approach

Wed
02/02/00

4 days Component
Manager 1,
Developer 1a,
Tester 1a,
Developer 1b,
Tester 1b,
Component
Manager 2,
Developer 2a,
Tester 2a,
Developer 2b,
Tester 2b,
Component
Manager 3,
Developer 3a,
Developer 3b,
Tester,
Product
Management,
Project Manager,
Educator,
Logistics,
End Users,
Client
Management

5,7,9,10,11,
12,13

It is important to analyze your concept, the environment you are working in and the potential problems that
could arise. These areas of risk should be documented and a plan formulated to mitigate the risk where
possible, and manage the risk where necessary. Depending on the degree of risk inherent in the project, you
may want to add contingencies to the durations in the project plan. This step would form the basis of the Risk
Assessment Document.

This step cannot take place until all the preceding steps have been completed: the risks identified will be
specific to what the user wants the system to do. Until the specific functionality and requirements have been
defined, the risks cannot be identified.

Chapter 13

372

 Name Start
Date

Duration Resources Predecessors

15 Develop
project
plan

Tue
02/08/00

2 days Component Manager 1,
Developer 1a, Tester 1a,
Developer 1b, Tester 1b,
Component Manager 2,
Developer 2a, Tester 2a,
Developer 2b, Tester 2b,
Component Manager 3,
Developer 3a, Developer
3b, Tester, Product
Management, Project
Manager, Educator,
Logistics, End
Users, Client
Management

14

16 Develop
Testing
Plan for
project

Thu
02/10/00

4 days Tester 1a, Tester 1b,
Tester 2a, Tester 2b,
Tester

15

17 Create
Master
Schedules

Thu
02/10/00

1 day Component Manager 1,
Component Manager 2,
Component Manager 3

15

The project plan should answer the following questions:

� What is the business problem being addressed by this project?

� Who are the users and what are their specific goals?

� Who are the stakeholders and sponsors and what are their specific goals?

� What will the client gain as a result of this project?

� What will be the ROI?

It should also take account of potential risks, so this step cannot take place until the risks and risk approach
have been defined.

A testing plan should also be developed to ensure that all code is tested systematically and thoroughly. The
master schedule should also be created; this gives an idea as to how long the project will last and can also
provide initial cost estimates for the project. These two steps will follow on from the project plan.

Creating a Project Schedule

373

 Name Start
Date

Duration Resources Predecessors

18 (1) Final
Consensus
Meeting

Wed
02/16/00

1 day Component Manager 1,
Developer 1a, Tester
1a, Developer 1b,
Tester 1b, Component
Manager 2, Developer
2a, Tester 2a,
Developer 2b, Tester
2b, Component
Manager 3, Developer
3a, Developer 3b,
Tester, Product
Management, Project
Manager, Educator,
Logistics, End
Users, Client
Management

16,17,15

19 Vision /
Scope
Document
Complete

Wed
02/16/00

0 days 18

The final consensus meeting, again attended by every team member, will give the green light for the project.
All items should have been agreed upon, and the Vision / Scope document created, becoming the milestone for
this phase. The completed Vision / Scope document will be used as a tool to communicate with the
development team, whether they are an internal development team or an external vendor. As a result of the
briefing you should have committed development resources for the project. Quite obviously, this step cannot
take place until all preceding steps are complete.

The Vision / Scope document should include:

� Vision statement

� Scope statement

� Assessment of resources

� Team responsibilities

� Risk Assessment

� ROI / TCO

Chapter 13

374

The schedule for the Envisionment phase will look as follows in Project 98:

To make the schedule more readable, you can change the color of the goals that are divided into smaller goals.
Select an entire row and then go to Format | Font and select a color.

Creating a Project Schedule

375

The Gantt chart will look as follows:

Design Phase Schedule
Add these into the schedule for the design phase:

 Name Start
Date

Duration Resources Predecessors

20 (0) Design Thu
02/17/00

 19

21 (1) Conceptual Thu
02/17/00

 19

22 (2) Interview End
Users

Thu
02/17/00

2 days Educator,
Product
Management,
End Users

Chapter 13

376

 Name Start
Date

Duration Resources Predecessors

23 Documentation of
User Interviews

Fri
02/18/00

0 days 22

24 Create Use Cases Mon
02/21/00

2 days Product
Management,
Component
Manager 1

23

25 Review Use
Cases with End
Users

Wed
02/23/00

1 day Educator,
Product
Management,
End Users

24

26 Complete set of
Use Cases

Wed
02/23/00

0 days 25

Design cannot begin until the Vision / Scope document is complete.

The conceptual design phase is all about adding structure to the ideas from the envisionment phase. Here, we
will find out from the users how they would like the system to work, and how the system can work in the most
efficient way to meet business needs. When the conceptual design milestone has been reached - a complete set
of finalized Use Cases - there will be a clearly defined description of the product, the functionality it will
include and the manner in which the users will interact with the system.

These steps occur in a logical order, each needing to be complete before the next step can begin.

 Name Start
Date

Duration Resources Predecessors

27 (1) Logical Thu
02/24/00

 26

28 (2) Design User
Interface

Thu
02/24/00

29 (3) Determine end-
user requirements
for the forms

Thu
02/24/00

30 (4) Create User
Interface
Prototype

Thu
02/24/00

2 days Educator

Creating a Project Schedule

377

 Name Start
Date

Duration Resources Predecessors

31 Review Prototype
with Users

Mon
02/28/00

1 day Educator,
End Users

30

32 (3) Completed User
Interface
prototype

Mon
02/28/00

0 days 30,31

33 User Interface
designed

Mon
02/28/00

0 days 32

34 For the web
component,
determine links

Thu
02/24/00

1 day Developer 3a

35 (2) Proof of Concept
Testing

Thu
02/24/00

5 days Component
Manager 2 [50%],
Developer 2a
[50%],
Tester 2a

This stage of the design phase cannot begin until there is a complete set of finalized use cases - otherwise, there
would be nothing to build upon!

The logical stage of the design phase is where a prototype of the user interface will be developed; this will
allow the developers to ascertain how the users want to interact with the system. Form design will also take
place, so that the user’s interaction with the system is optimized and both easy and complex tasks are simple to
perform.

For the web component, you must figure out conceptually what you want the look and feel of the site /
application to be. If the site is large you will want to determine the design and layout of the site. Design should
be decided on first and agreed on by all team members. You should also determine conceptually what your ‘hot
spots’ will be and what they will link to.

 Name Start
Date

Duration Resources Predecessors

36 Decide how to
implement
functionality

Tue
02/29/00

 32

Chapter 13

378

 Name Start
Date

Duration Resources Predecessors

37 (3) Create Sequence
Diagrams

Tue
02/29/00

3 days Component
Manager 1,
Developer 1a,
Developer 1b,
Component
Manager 2 [50%],
Developer 2a
[50%],
Developer 2b,
Component
Manager 3,
Developer 3a,
Developer 3b,
Product
Management[33%
]

38 Determine what
components are
required

Fri
03/03/00

1 day Component
Manager 1,
Developer 1a,
Developer 1b,
Component
Manager 2,
Developer 2a,
Developer 2b,
Component
Manager 3,
Developer 3a,
Developer 3b,
Product
Management[33%
]

37

Creating a Project Schedule

379

 Name Start
Date

Duration Resources Predecessors

39 Determine service
for components

Mon
03/06/00

1 day Component
Manager 1,
Developer 1a,
Developer 1b,
Component
Manager 2,
Developer 2a,
Developer 2b,
Component
Manager 3,
Developer 3a,
Developer 3b,
Product
Management[33%
]

38

40 Completed
Sequence
Diagrams

Mon
03/06/00

0 days 38,39

This stage of the design phase is where the developers convert the use cases into sequence diagrams, which
indicate which components the project will need, and which properties and services each component will need.

After you have defined the specific functionality in the Conceptual phase, you must decide how to implement
it. The decision on how to implement functionality cannot be made until there is a complete user interface
prototype - before this, the detailed functionality will not be known. This decision entails whether you will
have in-house developers do the work, hire vendor development services, or you will buy a product off-the-
shelf to implement the functionality.

For example, functionality important to the users may be the ability to give feedback directly from the website
to the content owners. This can be done by implementing a link that sends email to the content owners, or by
creating a page that puts the feedback into a database. Creating a hotlink to email needs very little
development, but there must be a scheme set up to maintain whom that mail goes to. Creating the direct-
feedback page takes more development, but you have greater control over how the feedback is formulated and
can be reported on. These types of tradeoffs need to be considered when designing functionality. In this stage
you need to perform some cost benefit analysis as to whether it is more beneficial to develop the function in-
house, hire vendor development services or buy the product in the form of an off-the-shelf product.

Chapter 13

380

 Name Start
Date

Duration Resources Predecessors

41 (1) Physical Tue
03/07/00

 40

42 (2) Design
Components for
the project

Tue
03/07/00

43 (3) Create Activity
Diagrams

Tue
03/07/00

1 day Component
Manager 1[50%],
Developer
1a[50%],
Developer
1b[50%],
Component
Manager 2[50%],
Developer
2a[50%],
Developer
2b[50%],
Developer
3a[50%],
Developer
3b[50%],
Component
Manager 3[50%]

44 Create Class
Diagrams

Tue
03/07/00

1 day Component
Manager 1[50%],
Developer
1a[50%],
Developer
1b[50%],
Component
Manager 2[50%],
Developer
2a[50%],
Developer
2b[50%],
Component
Manager 3[50%],
Developer
3a[50%],
Developer
3b[50%]

Creating a Project Schedule

381

 Name Start
Date

Duration Resources Predecessors

45 Create
Consolidated
Design Document

Tue
03/07/00

0 days Component
Manager 1,
Developer 1a,
Developer 1b,
Component
Manager 2,
Developer 2a,
Developer 2b,
Component
Manager 3,
Developer 3a,
Developer 3b

43,44

The physical stage of the design phase is where the actual properties and services of each component are
defined: this means that there is a concrete design for each component, and also for the way in which the
component will interact. The physical design stage of the design phase cannot begin until all sequence
diagrams are completed. The logical stage was still very general; the physical stage translates the earlier
designs into the programming language of the project, in our case Visual Basic.

In this step of the physical stage, the activity and class diagrams are created - these relate directly to the Visual
Basic programming language and will show exactly how each component should work in Visual Basic. The
milestone for this step is the completed consolidated design document - it is essential that the design for Visual
Basic be agreed upon, as this is what will be developed in the next phase. However, this milestone is dependent
on the class and activity diagrams being completed.

 Name Start
Date

Duration Resources Predecessors

46 (2) Design Server
Setup

Tue
03/07/00

 40

47 (3) Determine
estimated disk
space utilization

Tue
03/07/00

1 day Logistics[33%]

48 Determine
estimated traffic

Tue
03/07/00

1 day Logistics[33%]

49 Design access
permission

Tue
03/07/00

1 day Logistics[33%]

50 Design testing /
staging area
scheme

Wed
03/08/00

3 days 47,48,49

Chapter 13

382

 Name Start
Date

Duration Resources Predecessors

51 Communicate
with server
operations

Mon
03/13/00

2 days 50

52 Server site live Tue
03/14/00

0 days 51

There are many things to consider when designing the setup of the server, not least the fact that all sequence
diagrams must be complete. First of all, you must determine how much data you will have so that you know
how much space it will take up on the server - this is quite important, as vast amounts of data may cause vast
increases in total project cost.

You will also want to ensure that, after developing the site, people will be able to view it. You need to
determine how much estimated traffic there will be: for example, how many people will visit your site and how
often will they visit it? For middle tier components, how many users will try to access the server
simultaneously? This will help you figure out what server (hardware and software) configuration you should
use.

Security is also an issue when developing a site: who has access to what information on the intranet? Access to
information will be based on the roles that were created in the Use Cases.

Since you do not want to make content changes to your application while users are working on it, you need to
define how changes will be made and how those changes will be propagated to the server components. You
must also communicate all server requirements to the personnel responsible for server operations so that they
can prepare and set up the production server. Only after this is complete can server site go live.

 Name Start
Date

Duration Resources Predecessors

53 (2) Develop Server
Support
Infrastructure

Mon
03/13/00

54 (3) Determine
network impact

Mon
03/13/00

2 days 50

55 Determine what
changes need to
be made

Wed
03/15/00

3 days Logistics 54

56 Communicate
with support staff

Mon
03/20/00

1 day Logistics 55

Creating a Project Schedule

383

 Name Start
Date

Duration Resources Predecessors

57 Support
Requirements
Documented

Mon
03/20/00

0 days 56

58 (2) Completed
Design Document

Mon
03/20/00

0 days 45,52,57

Ideally, a lab should be set up to simulate the production network (bandwidth and traffic). Since this is not
always feasible, your best guess on impact to the network is important so that different potential solutions to
problems can be identified. If your system’s speed, reliability or response time will be compromised because of
network issues, you must determine what steps need to be taken to address those issues.

Keep your support personnel abreast of any issues you think relevant (network, server or content related) so
that they can prepare to staff accordingly. This is important because you want your support staff and intranet
site to go live simultaneously. The deliverable for the design phase is a completed design document - dependent
on there being a completed consolidated design document, a live server site and full documentation of support
requirements - detailing exactly what the system is to include and how this should be developed.

Chapter 13

384

The schedule for the design phase will look as follows:

Creating a Project Schedule

385

Chapter 13

386

The Gantt chart will look as follows:

Creating a Project Schedule

387

Development Phase Schedule
Add the following information into the schedule for development:

 Name Start
Date

Duration Resources Predecessors

59 (0) Development Tue
03/21/00

 58

60 (1) Build Server
Component 1

Tue
03/21/00

61 (2) Create Server
Component 1
Class 1

Tue
03/21/00

62 (3) Complete Server
Component 1
Class 1

Tue
03/21/00

5 days Component
Manager 1,
Developer 1a,
Tester 1a,
Developer 1b,
Tester 1b

Chapter 13

388

 Name Start
Date

Duration Resources Predecessors

63 Unit Test Server
Component 1
Class 1

Tue
03/28/00

1 day Component
Manager 1,
Developer 1a,
Tester 1a,
Developer 1b,
Tester 1b

62

64 Create Bug
Report for Server
Component 1
Class 1

Wed
03/29/00

1 day Component
Manager 1,
Developer 1a,
Tester 1a,
Developer 1b,
Tester 1b

63

Development cannot take place until the final design document is complete - only when the design is locked
down is it beneficial to move into development. This means that the project should not suffer from feature
creep.

The development phase is where the design from the previous phase is turned into an actual working product.
As I said before, three separate development teams will undertake the development of the system. Component 1
is split into two different classes, which was a decision made in the design phase. Here, you can see how the
design and testing of Component 1 Class 1 takes place.

 Name Start
Date

Duration Resources Predecessors

65 (2) Create Server
Component 1
Class 2

Thu
03/30/00

66 (3) Complete Server
Component 1
Class 2

Thu
03/30/00

5 days Component
Manager 1,
Developer 1a,
Tester 1a,
Developer 1b,
Tester 1b

64

67 Unit Test Server
Component 1
Class 2

Thu
04/06/00

1 day Component
Manager 1,
Developer 1a,
Tester 1a,
Developer 1b,
Tester 1b

66

Creating a Project Schedule

389

 Name Start
Date

Duration Resources Predecessors

68 Create Bug
Report for Server
Component 1
Class 2

Fri
04/07/00

1 day Component
Manager 1,
Developer 1a,
Tester 1a,
Developer 1b,
Tester 1b

67

69 (2) Server
Component 1
Completed and
Unit Tested

Fri
04/07/00

0 days 64,68

As the same group of people is working on the above two components, it makes sense to schedule the
development of Component 1 Class 2 to take place after the completion of Component 1 Class 1. However, it is
not enough to simply build the component: it must also be tested to make sure that it functions according to
specifications. After unit testing has taken place on the completed component, a bug report must be made,
showing any errors that were found, how they were rectified (if a solution was available!) and who was
responsible for making the changes. After this has been completed for each individual class of Component 1,
the component is complete.

 Name Start
Date

Duration Resources Predecessors

70 (1) Build Client
Component 1

Tue
03/21/00

71 (2) Create Client
Component 1
Class 1

Tue
03/21/00

72 (3) Complete Client
Component 1
Class 1

Tue
03/21/00

5 days Component
Manager 2,
Developer 2a,
Developer 2b,
Tester 2a,
Tester 2b

73 Unit Test Client
Component 1
Class 1

Tue
03/28/00

1 day Component
Manager 2,
Developer 2a,
Developer 2b,
Tester 2a,
Tester 2b

72

Chapter 13

390

 Name Start
Date

Duration Resources Predecessors

74 Create Bug
Report for Client
Component 1
Class 1

Wed
03/29/00

1 day Component
Manager 2,
Developer 2a,
Developer 2b,
Tester 2a,
Tester 2b

73

The development of this component is able to take place at the same time as the development of the server
component, because different team members are involved in the development of each component. Here, we see
that it is now Class 1 of the Client Component that is being developed.

 Name Start
Date

Duration Resources Predecessors

75 (2) Create Client
Component 1
Class 2

Thu
03/30/00

76 (3) Complete Client
Component 1
Class 2

Thu
03/30/00

5 days Component
Manager 2,
Developer 2a,
Developer 2b,
Tester 2a,
Tester 2b

74

77 Unit Test Client
Component 1
Class 2

Thu
04/06/00

1 day Component
Manager 2,
Developer 2a,
Developer 2b,
Tester 2a,
Tester 2b

76

78 Create Bug
Report for Client
Component 1
Class 2

Fri
04/07/00

1 day Component
Manager 2,
Developer 2a,
Developer 2b,
Tester 2a,
Tester 2b

77

79 (2) Client
Component 1
Completed and
Unit Tested

Fri
04/07/00

0 days 74,78

Creating a Project Schedule

391

Again, the component must be unit tested and a bug report created before the milestone for this step of the
development phase has been reached.

 Name Start
Date

Duration Resources Predecessors

80 (1) Develop pages
and links

Tue
03/21/00

81 (2) Create HTML
style ‘template’

Tue
03/21/00

3 days Component
Manager 3[50%],
Developer
3a[50%],
Developer
3b[50%],
Tester[50%]

82 Build Visual
Basic Web
Classes

Fri
03/24/00

7 days Component
Manager
3[50%],
Developer
3a[50%],
Developer
3b[50%],
Tester[50%]

81

83 Test and Debug
Web Classes

Tue
04/04/00

3 days Component
Manager 3,
Developer 3a,
Developer 3b,
Tester

82

The third development group is working on this particular step of the project, so this can be scheduled to take
place at the same time as the development of Component 1 and Component 2.

This is the stage in which you create the HTML source code. If you do not have developers assigned to this
goal, Microsoft FrontPage, Internet Assistant for Word, and other HTML editors can perform this function
quickly and easily.

If development is being done in-house, it is useful to have certain standards followed for HTML coding. This
makes the code easier to maintain in the long run. Creating a template for your developers will help this effort.

Building the Visual Basic Web Classes can only take place once the template has been created. The size of this
goal depends on the amount of content your web site will contain. The more detailed design work done up
front, the quicker this goal will be accomplished. Only then can appropriate testing and debugging take place.

Chapter 13

392

 Name Start
Date

Duration Resources Predecessors

84 (1) Develop
Functionality

Tue
03/21/00

85 (2) Develop any
custom
functionality

Tue
03/21/00

5 days Component
Manager
3[50%],
Developer
3a[50%],
Developer
3b[50%],
Tester[50%]

86 Integrate into web
site

Fri
04/07/00

4 days Component
Manager 3,
Developer 3a,
Developer 3b,
Tester

83,85

87 (1) Code Completed Wed
04/12/00

0 days 69,79,80,84

After you have designed the functionality, you must develop it or buy it, depending on the cost-benefit analysis
performed in the design phase. If custom development is the way you want to proceed with getting the
functionality you need, you must determine who will be responsible and plug them into this goal.

Once the functionality you need for your web site is complete, either by your own development or by
purchasing some third party software, integrate it into the other pages to complete the site. This can only be
done when the Visual Basic Web Classes have been tested and debugged and any custom functionality has been
developed.

Only after all the components have been developed and tested, and the web pages integrated, can you say that
the coding is finished and the code completed milestone has been reached. This is a very important milestone -
any delays in reaching this milestone will have a knock-on effect throughout the rest of the project.

 Name Start
Date

Duration Resources Predecessors

88 Content
Migration /
Integration

Tue
03/21/00

Creating a Project Schedule

393

 Name Start
Date

Duration Resources Predecessors

89 (2) Determine what
content will be
moved /
integrated

Tue
03/21/00

3 days Logistics

90 Prioritize content
conversion

Fri
03/24/00

2 days Logistics 89

91 Set content
conversion
standards

Tue
03/28/00

2 days Logistics 90

92 Implement
content migration
and conversion

Thu
03/30/00

5 days Logistics 91

93 Test conversion
formats

Thu
04/06/00

5 days Logistics 92

This step concerns defining what specific content will be converted to HTML to be viewed directly on the site
and which content will remain in its native file form and linked to from the intranet. You also need to
determine the source and location of each type of content. Each goal follows in a logical order.

It can be beneficial to create a content site map detailing where each content type resides today and where it
will reside on the new web server. Prioritize the content migration; that is, determine in what order content will
be moved to the web and, if appropriate, what content should be archived. You should also define how you
want the content to appear on each page.

Convert necessary content to HTML either manually or by utilizing a set of conversion utilities. The choice is
dependent upon the quantity of content requiring conversion.

Once the content has been converted, either manually or with the aid of conversion utilities, an editor should
double check the quality of conversion to make sure that standard formats are in place.

 Name Start
Date

Duration Resources Predecessors

94 (1) Testing Thu
04/13/00

95 (2) Page Testing Thu
04/13/00

1 day Tester[50%] 87

Chapter 13

394

 Name Start
Date

Duration Resources Predecessors

96 Link Testing Thu
04/13/00

1 day Tester[50%] 87

97 Usability Testing Fri
04/14/00

8 days Tester 1a[50%],
Tester 1b[50%],
Tester 2a[50%],
Tester 2b[50%]

83,86,93,95, 96,
87

98 Stress Testing Fri
04/14/00

8 days Tester 1a[50%],
Tester 1b[50%],
Tester 2a[50%],
Tester 2b[50%]

83,86,93,95, 96,
87

Testing is very important; if you do not test your system you could run into insurmountable difficulties when
the system goes live, because you won’t know what to expect. There are a number of tests you need to perform:
first of all, you should test each individual web page. You then need to test the links / connections of all pages
of the site, to ensure that users can find the information they want. Quite obviously, testing cannot take place
until the code completed milestone has been reached.

Usability testing means that you have the users use the site and conduct testing to see if the site meets the
requirements defined in the conceptual phase. Stress testing means that you simulate the load on the system to
test the performance of the site according to the predetermined requirements.

Creating a Project Schedule

395

The schedule for the development phase should look as follows:

Chapter 13

396

Creating a Project Schedule

397

The Gantt chart will look as follows:

Chapter 13

398

Deployment Phase Schedule
Deployment is the final phase in the cyclic methodology. During this phase, the system is prepared to be
handed over to the user.

Enter the following into the schedule:

 Name Start
Date

Duration Resources Predecessors

99 (0) Deployment Thu
04/13/00

 87

100 (1) Beta Testing Thu
04/13/00

101 Roll Out Thu
04/13/00

 100

102 (2) Move site and
server
components to
production server

Fri
04/14/00

1 day Logistics[50%] 83,86,93,95,96

Creating a Project Schedule

399

 Name Start
Date

Duration Resources Predecessors

103 Determine roll
out schedule

Thu
04/13/00

3 days Product
Management
[33%],
Educator[33%],
Logistics[50%],
End Users [50%],
Client
Management
[50%]

59FS-20days

For the system to be prepared for handover, it is quite obvious that development must have been completed.
However, as much of this phase is concerned with planning for the handover, there is no reason why it cannot
start while development is still taking place: the design and functionality of the system are known, and the
duration of development can be estimated. This is why the deployment and development phases overlap.

It is quite plain to see why there are so many predecessors for goal 102 - obviously, the components cannot be
moved to the production server unless they are completed, tested and debugged.

 Name Start
Date

Duration Resources Predecessors

104 Communicate roll
out plan to users

Tue
04/18/00

10 days Educator[25%],
Logistics,
Project Manager
[50%]

103

105 Conduct User
Training

Tue
04/18/00

10 days Educator[25%] 103

106 Release internal
PR

Tue
04/18/00

10 days Component
Manager 1,
Developer 1a,
Developer 1b,
Component
Manager 2,
Developer 2a,
Developer 2b,
Component
Manager 3,
Developer 3a,
Developer 3b

103

Chapter 13

400

 Name Start
Date

Duration Resources Predecessors

107 Rollout Mon
05/08/00

0 days Product
Management,
Project Manager,
Educator,
Logistics,
Component
Manager 1,
Component
Manager 2,
Component
Manager 3

104,105,106,
112

The users will obviously need to know when they are going to get their system, so you must let them know the
rollout schedule - this will also help them understand why they cannot have their system yesterday!

It is imperative that the users understand how to use the system before it goes live: not only will this save
money in the long run, but it also means that the time taken for the system to become operative and efficient
will be shortened.

It is also important to publicize the release of the system internally. Not only can this generate interest in the
system, but it might also generate interest in the project team, meaning that (if the project is successful!) their
skills are in demand.

The milestone for this step of the deployment phase is the actual handover of the system to the users, otherwise
known as rollout. It is clear that this is dependent on all other goals preceding it being completed and all
milestones reached.

 Name Start
Date

Duration Resources Predecessors

108 (1) Support Thu
04/13/00

 100

109 (2) Determine what
support resources
are needed

Thu
04/13/00

4 days Educator [33%],
End Users [50%],
Client
Management
[50%],
Product
Management
[33%], Project
Manager [75%]

57

Creating a Project Schedule

401

 Name Start
Date

Duration Resources Predecessors

110 Make appropriate
staffing changes

Wed
04/19/00

5 days Educator [25%],
End Users,
Client
Management,
Product
Management
[50%], Project
Manager [50%]

109

Although after rollout the project may have officially ended, it is by no means over. It is crucial that the users
receive support and guidance in how to use the system, especially if it radically alters business processes or
introduces totally new ways of doing things. This step ascertains what support the user will need and makes
sure that there are people available to provide it. The level of resources needed relates directly to the
documentation of Support Requirements that took place in the physical design stage of the design phase.

 Name Start
Date

Duration Resources Predecessors

111 Determine
method that users
will attain
support

Wed
04/26/00

3 days Educator [33%],
End Users,
Client
Management,
Product
Management
[75%], Project
Manager [50%]

110

112 Determine
support process

Tue
05/02/00

5 days Educator,
End Users,
Client
Management,
Product
Management,
Project Manager

111,104,105,
106

113 Support goes live Mon
05/08/00

0 days 107SS,112

It is important to know how users will seek support: this could be by telephone, by email, over the Internet, or
even by post(!). If it is decided that there will be one main way in which users seek support, most of the focus
will be given to this; however, the other methods available should not be ignored.

Chapter 13

402

It should also be determined how the process of support takes place - this could include, for example, the
description of a hierarchy of support, where increasingly technical queries are passed up the hierarchy to
people who are able to deal with them. This process can only be determined after user training has been carried
out and the rollout plan communicated to them: before this point, it is unlikely that the users will realize that
they may need support with the system.

This phase ends with another milestone - support goes live on the same day as rollout.

The Project 98 schedule for the deployment phase will look as follows:

Creating a Project Schedule

403

The Gantt chart for deployment should look like the following:

Improvements to the Schedule
As you have entered the goals, resources and durations for each phase, you have seen the schedule expand -
you have seen how some goals can be worked on simultaneously and also how some phases can be worked on
in parallel. The schedule now represents the timescale for the whole project, looking as follows:

Chapter 13

404

As I said at the beginning of the chapter, there are many ways in which this schedule could be improved. One
such area is the fact that some team members aren’t always fully dedicated to the project, through no fault of
their own. Although this isn’t fully under our control, it would be nice to have 100% of resources available to
allocate to each goal.

Room for improvement is also available regarding duration estimates. As has already been mentioned,
experience is needed when time estimates are being made. As you progress through your project management
career, you will become more proficient at estimating the time needed for each goal: therefore, with experience,
your schedules will become increasingly more accurate.

Creating a Project Schedule

405

Summary
We saw in Chapter 3 how to use Project 98 to make schedules for your projects. This chapter has built on this
knowledge to create an entire schedule for a sample project that you can adapt and modify to suit your needs.

This schedule has followed the cyclic methodology detailed in this book. Drawing up an approximate schedule
at the beginning of a project will allow us to estimate the resources needed for each phase of the project, and
thus the duration and cost of the project. Of course, the schedule will need constant refinement as the project
progresses through each phase; as you gain a full appreciation for the complexity of the project, and the effort
involved in bringing it to completion, you will be able to make a progressively more accurate assessment of the
resources required.

Remember, though, that in real life you will be constrained by a time limit or a set budget - making sure that
your project is successful within these constraints is a valuable skill. Hopefully, this skill has been strengthened
by the understanding you have gained of the different issues involved in the successful management of a
modern-day Visual Basic Enterprise project.

Chapter 13

406

A Brief Overview of UML

For those of you unfamiliar with Unified Modeling Language (UML), this appendix provides a quick tour
of some of the terms, concepts and diagrams that are used throughout the book.

What Exactly is a Model?
UML is a set of standard models that we use to design object-oriented programming projects. But what do
we mean by a model, and what, accordingly, does that mean a modeling language is?

A model is a description of the problem we are set to solve. It simplifies the reality by capturing a subset of
entities and relationships in the problem domain.

A problem domain describes not only a particular problem but also the conditions under
which the problem occurs. It's therefore a description of a problem and the relevant context
of that problem.

A model shows us what the problem is and how we are going to tackle it. We may use diagrams, text, or
any other agreed form of communication to present the model.

Models visualize the system we are about to build.

A modeling language, therefore, is a language for describing models. Modeling languages generally use
diagrams to represent various entities and their relationships within the model.

Appendix A

408

UML was created to fulfill these tasks:

� To represent all parts of a project being built with object-oriented techniques

� To establish a way to connect ideas, concepts and general design techniques with the creation of object-
oriented code

� To create a model that can be understood by humans and also by computers - so that a computer can
generate a major portion of the application automatically

UML accomplishes these tasks by having a series of different models. Each model represents a different
view of the project. Some models are built from others, so there is a logical sequence in which the models
are built.

The building blocks of the UML are things and relationships:

� Things in the UML describe conceptual and physical elements in the application domain

� Relationships connect things together

These two elements are brought together in UML diagrams to help us visualize things and their
relationships in a well-structured format.

UML Diagrams
There are quite a few UML diagrams that we can use when designing our applications, and we can pick and
choose those which will be of most use to us. However, there is a basic core set of diagrams that we will
almost certainly use. This core set of diagrams includes:

� Use Case Models

� Interaction Diagrams

� Activity Diagrams

� Class Diagrams

We’ll now run through these types of diagram at whirlwind pace. You’ll notice, as we run through them,
that some diagram types have sub-types themselves (such as collaboration and sequence diagrams). This
may be your first clue as to the richness and diversity of UML as an analytical design tool.

Notice that as we progress through this sequence of UML diagrams, we will also be
progressing towards an ever more focused and clearly defined idea of the project we
are designing and planning to develop. This is one of the fundamental points of the
UML approach.

A Brief Overview of UML

409

Use Case Models
This is the first step on our journey towards a clear definition of the project we are designing with UML.
We go straight to the people who will use the system we’re building. The use case model translates the
user’s needs into an easy to understand model. The user may be an individual or an external system and is
known as an actor. So in a nutshell, the use case model is a representation of how the system, or part of the
system, works from the actor’s point of view.

Use case models can be built from interviews with the user, and are the first step in converting the user’s
needs and requirements into a useful model.

Use cases are more like a model than a diagram because they describe the system, or parts
of the system, with words rather than with pictures.

Use cases are detailed enough to include all of the information on the project, but simple enough for even
the most technically challenged user to understand. Use cases can also be associated with business rules,
which explain special rules, related to the use case.

Let’s take an example. In an order entry application, the use cases could include descriptions of various
sub-parts of the system. These sub-parts, that together could make up the whole system, could be such
things such as Taking an Order, Creating a New Customer, etc. For the use case Create New
Customer, there could be a verbal description of the process of creating a new customer that looked as
follows:

USE CASE: CREATE NEW CUSTOMER

Overview
The main purpose of this use case is to create a new Customer

Primary Actor
Sales Representative

Secondary Actor
None

Starting Point
The use case starts when the actor makes a request to create a new Customer

End Point
The actor's request to create a Customer is either completed or cancelled

Flow of Events
The actor is prompted to enter information that defines the Customer, such as Name,
Address, etc. The actor will then enter the information on the Customer.

The actor can choose to save the information or cancel the operation. If the actor decides
to save the information the new Customer is created in the system, and the list of
Customers is updated.

Appendix A

410

Alternative Flow of Events
The actor attempts to add a Customer that already exists. The system will notify the user
and cancel the create operation.

Measurable Result
A Customer is added to the system

Business Rules
Customer
Customer Fields
Restrict Customer Create

Use Case Extensions
None

Without getting too heavily involved right in the details of this use case, what we’re seeing here is a verbal
description of what happens when a potential user of the program we want to design needs to create a new
customer. Possible flows of events are identified to explain how the system can get from the start point to a
definite end point. Measurable results are defined, and some business rules are created. One of these
business rules is called Restrict Customer Create and might be written as follows:

BUSINESS RULE: RESTRICT CUSTOMER CREATE

Overview
This rule is for when a Customer is added to the system

Business Rule Type
Requirement

Business Rule
Each Customer must have a unique CustomerID

Each Customer should only be listed once in the system

Derived Business Rules
None

Depending on the size of the system we’re working one, we may actually need to create quite a few of these
use case statements and business rules before we have captured the key aspects of the system we’re
designing. It’s crucial, however, that we draw up these statements from the people who will be using the
system, and the people who want to see the system in place. It’s the first step in our design process.

A Brief Overview of UML

411

Interaction Diagrams
Interaction diagrams are the next step of the UML design process. Interaction diagrams concentrate on
showing how objects or things in the system interact with each other to give a dynamic view of the system.
There are two basic types of interaction diagram:

� sequence diagrams

� collaboration diagrams

Essentially these both model the same information, except that sequence diagrams emphasize time ordering
whereas collaboration diagrams spatial or structural organization.

For the most part, you choose to create either collaboration diagrams or sequence
diagrams. For the sake of completeness, this appendix discusses both but we only use
sequence diagrams in this book.

Sequence Diagrams

This type of diagram can be used to convert the written use case models that we saw in the previous section
into a clearer visual model. This visual model will show how the objects associated with a particular use
case communicate with each other and with users over time. Sequence diagrams are very general. For
example, they may show that some Object 1 passes a message to some other Object 2, and that Object 2
then performs some operation within itself and finally returns the message back:

The internal workings of Object 1 that led to the creation of the message, and the internal workings of
Object 2 that led to the return message, are not shown in sequence diagrams. (Details of the inner workings
of the objects are represented in another type of diagram called an activity diagram - which we’ll see in the
next phase of the UML design process.)

Sequence diagrams map out every possible sequence of events that can be performed within each use case,
including correct and incorrect paths. The correct paths in the sequence diagrams can be used to design the
GUI of the project as they show what the user will need to do to interact with the application. Incorrect
sequences will later be used to map out errors and how to handle these errors.

Appendix A

412

Sequence diagrams also show what public methods and properties our components must have. You can
compare the sequence diagrams for one or more components and attempt to find patterns that exist that can
be used to simplify the coding of the components.

Collaboration Diagrams

Collaboration diagrams are also built from the use cases - but this time the emphasis is on the spatial
distribution of the objects involved. This is not to say that there are no temporal elements in collaboration
diagrams, since the sequence of events is mapped using numbers:

Personally, I often find this type of diagram quite confusing in comparison with the equivalent sequence
diagrams. This particular collaboration diagram presents the same situation as the sequence diagram we just
looked at - Object 1 and Object 2 with exactly the same relationships as before. However, it should be said
that there are times when collaboration diagrams can make good sense - especially if we find that we want
to emphasize a set of objects themselves rather than any sequence of events between them.

Activity Diagrams
Activity diagrams take the information available from the collaboration and sequence diagrams that we’ve
just looked at, and present that information in a more detailed fashion. The purpose of activity diagrams is
now to show the inner workings for a particular object.

As you may have noticed, we are gradually moving towards more and more detail
about our project design as we proceed through the different UML diagrams.

A Brief Overview of UML

413

Activity diagrams can map out a method or
property showing what that method or property
has to do in a step-by-step manner. Activity
diagrams will look very similar to mapping out a
method or property using pseudo-code. This
detailed map can then be used to explore the best
method of coding a method or property, check for
missing or unnecessary sections, and as a guide to
writing the code. Here is a sample activity
diagram:

This activity diagram simply specifies what Activity is to be initiated at a certain Decision point,
depending on the outcome of that Decision. This is a step-by-step definition of certain situations that
pertain to the project we are designing and about to develop in VB, and is a considerable way forward in
our journey towards defining a project and preparing it for development and implementation. We’re still not
finished yet though - the final stage in the overall UML design process is to move on to our class diagrams.

Class Diagrams
Class diagrams ultimately represent the classes that we will build in Visual Basic. They are the most
detailed part of the whole UML design definition, inasmuch as they begin to map directly to code objects
that we will be writing in Visual Basic. This is where we’ve been heading all along, and demonstrates how
well UML maps our design considerations to the programming language we’re using.

A Class diagram is a simple static picture of a class; as such, it will include all of the public and private
methods and properties of that class. Class diagrams are, of course, built from use cases, sequence and
activity diagrams that we’ve been developing throughout the UML design process.

Appendix A

414

Here’s a sample class diagram:

This sample class diagram is simply a schematic layout of the relevant information that we would need to
go away and create the objects we’ve developed in our UML design process straight into the VB
programming environment.

Naturally, for a larger project we would probably need to derive many such class diagrams
in order to complete the design of all the objects involved in our system.

Other Diagrams
The diagrams we’ve looked at so far (use cases-sequence-activity-class diagrams) form the essential parts
of UML that we need to build a Visual Basic project, and are the ones we use in this book. There are,
however, other models that I will mention now for sake of completeness for the interested reader. These
other diagrams include:

� Statechart Diagrams: A model of the different possible states of a system's objects

� Component Diagrams: A model showing how different objects will be combined to make a component

� Deployment Diagrams: A model showing how each component will be placed on various hardware

� Object Diagrams: A simplified collaboration diagram.

UML Notation
We have covered the fundamental terms and most important diagrams, but before we move on to
demonstrate how to map the UML constructs into VB code (Appendix B) we need to have a look at some
more advanced UML notation, including how to depict relationships between classes.

Classes and Objects
As we saw previously, a class is represented in UML
like this:

The rectangle representing the class is divided into three compartments, the top one showing the class
name, the second showing the attributes and the third showing the methods.

A Brief Overview of UML

415

If the class is abstract, then the class name in the first compartment is italicized.

An object looks very similar to a class, except that its name is
underlined:

Relationships
Relationships between classes are generally represented in class diagrams by a line or an arrow joining the
two classes. UML can represent the following, different sorts of object relationships.

Dependency

If A depends on B, then this is shown by a dashed arrow
between A and B, with the arrowhead pointing at B:

Association

An association between A and B is shown by a line joining
the two classes:

If there is no arrow on the line, the association is taken to
be bi-directional. A unidirectional association is indicated
like this:

Aggregation

An aggregation relationship is indicated by placing a white
diamond at the end of the association next to the aggregate
class. If B aggregates A, then A is a part of B, but their
lifetimes are independent:

Composition

Composition, on the other hand, is shown by a black
diamond on the end of association next to the composite
class. If B is composed of A, then B controls the lifetime of
A.

Appendix A

416

Multiplicity

The multiplicity of a relationship is indicated by a number (or *) placed at the end of an association.

The following diagram indicates a one-to-one relationship
between A and B:

This next diagram indicates a one-to-many relationship:

A multiplicity can also be a range of values. Some examples are shown in the table below:

1 One and only one

* Any number from 0 to infinity

0..1 Either 0 or 1

n..m Any number in the range n to m inclusive

1..* Any positive integer

Naming an Association

To improve the clarity of a class diagram, the association
between two objects may be named:

Inheritance

An inheritance (generalization/specialization) relationship is indicated in the UML by an arrow with a
triangular arrowhead pointing towards the generalized class.

If A is a base class, and B and C are classes derived from A, then
this would be represented by the following class diagram:

Multiple Inheritance

The next diagram represents the case where class C is derived
from classes A and B:

A Brief Overview of UML

417

States

States of objects are represented as rectangles with rounded
corners. The transition between different states is represented as
an arrow between states, and a condition of that transition
occurring may be added between square braces. This condition is
called a guard.

Object Interactions

Interactions between objects are represented by
interaction diagrams — both sequence and
collaboration diagrams. An example of a
collaboration diagram is shown here: Objects are
drawn as rectangles and the lines between them
indicate links — a link is an instance of an
association. The number at the head of the
message indicates the order of the messages
along the links between the objects.

Sequence diagrams show essentially the same
information, but concentrate on the time-ordered
communication between objects, rather than their
relationships. An example of a sequence diagram
is shown here:
The dashed vertical lines represent the lifeline of
the object (starting at the top).

Appendix A

418

Use Cases

A use case is a description of an interaction between an actor
(person or external system) and system under design. In UML it is
denoted like this:

Design Patterns

Design patterns are represented in the UML notation by
collaborations (shown as dotted elipses) between classes. Each class
that is part of the pattern is joined to it by a dotted line labeled with
the particular role played by the class:

A Brief Overview of UML

419

Appendix A

420

UML to VB Mapping

Purpose of the VB Mapping
UML is a wonderful thing - it allows us to 'see' the design of a system. However the diagrams we take
trouble to create are only useful if they directly contribute to our final system. Developers who are new to
modeling can understandably wonder whether all the extra effort is worth it. Therefore the point of this
mapping is simple: to help the VB developer understand how to map the UML constructs into VB code.

UML Version Covered
The current version of UML as supported by most tools is 1.1.

As of writing, version 1.3 was in draft, although there are no major changes to this version that VB
developers need to be aware to.

The current UML documentation can be found on http://www.rational.com/uml/

It is recommended that VB Developers visit this site and review the official documents before trying to
understand the mapping in detail.

How the Mapping is Structured
The official UML specification is very detailed and precise but is also very abstract! Most VB developers
will find a great deal of the detail unimportant in getting up to speed with mapping the UML.

http://www.rational.com/uml/

VB6 UML

422

Therefore, the mapping that follows concentrates on the concrete elements from the UML that have notation
and appear on diagrams. These are also the artifacts that the VB Developer will have the most contact with.
These include class, attribute, operation, interface, etc. Each of these elements will be discussed in turn
and references will be made to the more abstract elements in the UML semantics document that they derive
from, so that the developer can choose to cross-reference with the official specification.

So to reiterate, the mapping focuses essentially on how the diagrams you draw and communicate with relate
to the code you write.

Please refer to the Mapping Guide at the beginning of the mapping itself for a breakdown of
the sections therein.

How Well Does the UML Map to VB?
The UML allows you to capture both the static knowledge about your application (packages, classes,
associations, etc.) and also the dynamic behavior (operation calls, events, etc.). We will see that most
diagrams have a very close mapping to VB but a few are more vague. Class diagrams for instance, are key
diagrams to us and it will be quite straightforward to see how these map to VB. The coincidence between
'class' in the UML and 'class' in VB is not a coincidence! These are essentially the same things.

Statechart diagrams, on the other hand, are not so clear. This is because the standard VB language does not
come with a 'standard' statechart implementation (often called a 'finite state machine'). This is also partly
because of the many different ways we can write them. Nonetheless, some guidelines are provided to help
get you started.

UML and Components
It is rather ironic that although the UML is rich and powerful for modeling classes, their relationships and
the logical packaging of such things, it is not so good at modeling components, as VB developers know
them. This is something that hopefully later revisions of the UML might cover more clearly.

Fortunately for us, we can come up with conventions that developers can follow to help us define
components. A further discussion of this can be found in the mapping.

Concrete Or By Convention?
Some mappings from the UML to VB are plain and concrete - there is no debate as to its correctness. Some
mappings, on the other hand, are purely by convention because VB simply doesn't support the construct.
When convention is used, developers should use their judgment as to whether they follow the convention or
invent their own. Remember, though, that the suggestions given are tried and tested.

UML to VB Mapping

423

Upgrade to at Least VB5
If you are currently using a version of VB prior to version 5, I suggest you upgrade immediately! There
were some significant features added to VB5 that are key to writing solid components in VB. These include
the ability to 'implement' an interface and also the support for 'events' from classes. The features added in
VB6 are not so important but there are better storage mapping facilities provided (ADO support).

The mapping assumes that you are using VB5 or later.

Styles Used in the Mapping
Concepts that refer to UML will be stated in Italics.

VB Code fragments that are presented in this style:

Public m_Car As Car

While sections of VB code that are provided as context, but are not directly relevant to the topic under
discussion are presented like this:

Public m_Car As Car

How to Use this Mapping
The mapping is a reference rather than something you would read end-to-end, however it might be worth
giving it the 'once over' just to get a feeling for things.

As you become more familiar with the UML, you will soon only need to refer to this Appendix periodically,
as the core mappings are very intuitive and easy to remember.

Building Your Diagrams
To help you design your diagrams, it is recommended that you enlist the help of a tool.

There are many choices here from general symbol tools like Visio (UML templates are available for this on
the web) to a full-blown repository-based CASE tool that will also ensure your diagrams are in-sync' with
each other. Of course never underestimate the power of a whiteboard and marker!

So, without further ado, let's start to look at the VB to UML mapping.

VB6 UML

424

Mapping Guide
These are the sections that are included in this mapping.

� 1.0 General Extension Mechanisms
� 1.1 Constraints and Comments
� 1.2 Element Properties
� 1.3 Stereotypes
� 2.0 Model Management
� 2.1 Packages
� 2.1.1 External Libraries as Packages
� 2.1.2 Nested Packages
� 2.1.3 Packages and the File System
� 2.1.4 Package Stereotypes
� 2.1.5 Package Dependencies
� 3.0 Static Structure Diagrams
� 4.0 Classifiers
� 4.1 General
� 4.1.1 Name
� 4.1.2 Features
� 4.1.3 Inheritance and Stereotypes
� 4.1.4 Implementation Inheritance
� 4.1.5 Static Members
� 4.1.6 Parameterized Classes (Templates)
� 4.1.7 Class Mapping Advice
� 4.2 Interfaces
� 4.3 Attributes
� 4.3.1 Visibility
� 4.3.2 Name
� 4.3.3 Type
� 4.3.4 Initial Value
� 4.4 Operations
� 4.4.1 Visibility
� 4.4.2 Name
� 4.4.3 Return Type
� 4.4.4 The Operation and Method Distinction
� 4.4.6 Parameters
� 4.4.7 Polymorphic Operations
� 4.4.8 Stereotypes

� 4.5 Utilities

� 4.6 Associations

� 4.6.1 Multiplicity

UML to VB Mapping

425

� 4.6.2 Qualifiers

� 4.6.3 N-ary Associations

� 4.6.4 Aggregation and Composition

� 4.6.5 Implementing Associations

� 4.6.6 Basic 1-to-1 Unidirectional Associations

� 4.6.7 Basic 1-to-Many Unidirectional Associations

� 4.6.8 Implementing Qualifiers

� 4.6.9 Bi-directional Associations and Referential Integrity

� 4.6.10 Problems with Simple Associations

� 4.6.11 Link Management Routines

� 4.6.12 Association Classes and Link Management

� 4.6.13 Bi-directional 1-to-Many Association with Link Management and Qualifier

� 4.6.14 Miscellaneous Advice

� 5.0 Use Case Diagrams

� 5.1 A Word of Warning

� 5.2 Use Cases and Transactions

� 5.3 Use Cases and Controllers

� 6.0 Behavioral Diagrams

� 7.0 Sequence & Collaboration Diagrams

� 7.1 Object Instances and Context

� 7.2 Interactions

� 7.3 Pseudo-Code

� 7.4 Collaboration Diagrams

� 8.0 Statechart Diagrams

� 8.1 Mapping States and Transitions

� 8.2 Implementing State

� 8.3 An Example

� 8.4 Implicit Implementation

� 8.5 Explicit Implementation: A Finite State Machine (FSM)

� 9.0 Activity Diagrams

� 10.0 Implementation Diagrams: Component & Deployment Diagrams

� 10.1 UML Components and Visual Basic

� 10.2 Logical components

� 10.3 Physical Components

� 10.4 Stereotypes

VB6 UML

426

1.0 General Extension Mechanisms

1.1 Constraints and Comments
A UML constraint generally maps to a fragment of code in VB that checks the constraint. The location and
style of such code depends on the type of constraint. For instance, a UML constraint might suggest that an
object be only associated with one object at a time - not two.

In VB, this would translate into validation code inside the procedures of the VB class, such as an Order
class:

'Set the customer related to the order
'Constraints:
'A customer is not already associated

Public Sub SetCustomer(ByVal aCustomer As Customer)

 'we can only be associated with one customer
 'it is an error to set a customer twice
 Debug.Assert m_myCustomer Is Nothing

 Set m_myCustomer = aCustomer
End Sub

With this example, an order can only be associated with one customer. It is a constraint that only one
customer can be associated at a time. (Assume a separate routine is available to disassociate the customer.)

One useful feature of VB is to make copious use of Debug.Assert. This build-in library feature allows
us to make assertions in our code that must always be satisfied. If you are running in design mode and an
assertion fails, then VB will take you straight to the place where the assertion failed. This is very effective
way of catching logic bugs in your code, early.

Sometimes it is not always possible to translate a constraint to code. In these situations, the best you can do
is place an appropriate comment into the code to remind yourself and your colleagues that the constraint
exists.

1.2 Element Properties
The UML defines element properties as values that can be tagged on to arbitrary model elements. In VB,
these simply become comments against the related item. A typical property might be the name of the author
who created the model. If this property was tagged to a particular diagram, then we would include a author
comment inside the definition of each class on the diagram:

UML to VB Mapping

427

::Account

Balance: Currency
Withdraw (in Funds)

::Customer11 Owned By

Author: Joe Bloggs

Corresponding Code in Account.cls:

'Account - defines a single account in the accountancy system
'
'Author: Joe Bloggs

Private m_theBalance As Currency

Public Sub Withdraw(ByVal theFunds As Currency)

 '....
End Sub

1.3 Stereotypes
Most UML elements come with a set of standard stereotypes. Some CASE Tools also extend the range of
stereotypes to match the languages targeted. Here are examples of two class stereotypes:

«type»

::Document
«interface»

::IPersistent

Stereotypes have a big impact on how we map UML to VB. In some cases, they affect only the properties of
the target VB item and sometimes it will completely change the mapping.

When we discuss each UML construct, the standard stereotypes of that item will also be covered.

2.0 Model Management

UML Notation VB Notes

Package

::Accountancy

None A file system mapping by convention only.

VB6 UML

428

2.1 Packages
Packages in the UML are a logical grouping of related items such as classes. A Package has no direct
mapping to VB so conventions are used instead.

A convention typically used is to include the package name in the name of contained elements. For
instance, an Accountancy Package may contain a class called Account. Therefore, the class will have a
name in VB of Accountancy_Account. This will ensure that classes with similar names in different
packages will not collide. This activity is usually called Name Mangling.

::Accountancy

Account

Balance: Currency
Withdraw (in Funds)

Account

Balance: Currency
Withdraw (in Funds)

::User Profiles

Account

Access Permissions

Account

Access Permissions

The corresponding class names in VB would look like this:

2.1.1 External Libraries as Packages
During modeling, it is also useful to model popular VB libraries as packages. For instance, we can model
popular services like RDO as a package:

::RDO

Recordset

Database

Recordset

Database

UML to VB Mapping

429

2.1.2 Nested Packages
Packages can be nested. If you choose to map packages to a naming convention, you will need to define
'short' names for the packages so that the class names don't get too long!

2.1.3 Packages and the File System
When deciding how to structure your source code it is a good idea to choose a directory in your file-system
that acts as the root for your source code. Each logical package defined can be created as a sub-directory
underneath this root. Classes in a particular package are placed in the corresponding directory:

::Order Processing

Orders Customers

Invoicing

The Nested Packages The Nested Folder Structure

This technique will not only keep the source code files manageable, but also help partition the work up
between developers. For instance, one developer may be working on an Accountancy package, whilst
another is working on a User interface package.

2.1.4 Package Stereotypes
The <<system>> package stereotype denotes the complete system that is being built in VB. Usually the
<<system>> package maps to a VB Project group, i.e. the VB project group contains all packages and the
elements that define the whole VB application.

A <<façade>> package indicates that the package is present to provide a façade on to other packages in
the system. In VB terms, this could represent a set of related classes that are providing a simple, more high-
level interface onto another set of more detailed classes. Again, because package is a logical grouping of
items, there is no explicit language feature in VB that you can use. It is all defined by convention.

A <<framework>> package indicates that the package contains a framework of items. In VB terms, we
might design a set of related classes that perform a certain framework service, e.g. generic database access.
The <<framework>> constraint simply implies that the package would be used as part of a complete
system, together with the extra classes that complement the framework and make it complete.

VB6 UML

430

2.1.5 Package Dependencies
A package can have dependencies to others. A dependency of stereotype <<import>> maps to a reference
in a VB project's references list.

::RDO

::Order Processing

<<imports>>

A Package Reference A VB Reference

3.0 Static Structure Diagrams
The static structure diagrams like the Class Diagram are a fundamental tool in the UML toolbox and are
used more in practice than any other diagram.

UML Notation VB Notes

Association

::Car1

Transport

Class
Mapping varies. See
Association notes.

Attribute

- Balance : Currency

Variable

UML to VB Mapping

431

UML Notation VB Notes

Class

::Car

Class, Module or Form Derived from Classifier

Classifier

(no notation)

Class
Abstract class of Class,
DataType and Interface

Constraint

{ ordered }

Assert statement, comment
or validation code.

Interface

or –

 «interface»
::IPersistent

Class

A specialization of Classifier.
For an ActiveX component,
Instancing =
PublicNotCreatable

Operation

Withdraw()

Procedure without body Typically on a VB interface

4.0 Classifiers

4.1 General
A UML Classifier is the abstract definition of a Class, DataType or Interface in the UML. All of these
elements map to a VB Class, Standard Module or Form.

(Classifiers are defined in the UML to simply capture the similarities between Classes, DataTypes and
Interfaces. They are abstract however and don't appear directly on diagrams. Consult the UML semantics
document for further details about them.)

IPersistent

VB6 UML

432

UML classes are the most used of all the Classifier types and these map straight to VB Classes or Forms as
shown:

Account

Balance: Currency
Withdraw (in Funds)

A Class In UML A Class In Visual Basic

4.1.1 Name
The name of the UML classifier becomes the name of the VB item.

4.1.2 Features
All UML classifiers have features, which are further defined as attributes and operations and these map to
VB Member Variables and Procedures, respectively. These are discussed later.

4.1.3 Inheritance and Stereotypes
Most VB developers know that VB doesn't support full inheritance. However, VB does support the ability
to 'implement' an interface. This is an extremely useful facility that makes regular inheritance 'not so
important'.

The first thing we must do is distinguish between two types of inheritance:

� Inheritance of interface (sub-typing)

� Inheritance of implementation (class extension or code reuse)

If we consider these two forms of inheritance, it is important to realize that the first form is more important
for building components that exhibit good qualities of design like low coupling. (A component with low
coupling means that the component has few dependencies on other parts of a system. This means that the
component could be used easily in other systems without too much work). The details of this are beyond the
scope of this book and I suggest you read the 'VB Books On-line' for a background on interfaces and the
Implements construct.

In UML terminology, a class can realize many interfaces. This directly maps to the meaning of
Implements, in VB.

UML to VB Mapping

433

4.1.4 Implementation Inheritance
Implementation inheritance or code reuse, as it is often called, is a very useful feature and time saver.
However it is not so essential in providing the system your users want. Also code reuse can be achieved by
'aggregating' or 'composing' the object that contains the services (methods) you want to reuse instead.

::Customers

AddCustomer
GetCustomer

::Collection

Add
Item
Remove

<<extends>>

::Customer
s

AddCustome
r GetCustome
r

::Collectio
n

Add

Item

Remove

1 1

Code reuse via Inheritance Code reuse via composition (the VB way)

In this situation, any operations you want to reuse, involves writing delegation code to delegate to the
reused object. Here is an example 'customers' collection:

'this is my hidden implementation of the collection
Private m_myCollection As New Collection

Public Sub AddCustomer(ByVal theCustomer As Customers)

 'delegate to my collection
 m_myCollection.Add theCustomer
End Sub

Public Sub RemoveCustomer(ByVal theCustomer As Customers)

 'delegate to my collection
 m_myCollection.Remove theCustomer
End Sub

Of course this can be very tedious when there are many services involved. This is where CASE tools are
useful for doing the 'grunge work'. VB Developers may wish to develop their own VB 'add-in' that performs
this task.

So to recap, if you are turning an <<extends>> inheritance relationship into containment, do the following:

� Add an Implements statement for the class being reused.

� Add a Private variable that holds a reference to the reused object (the aggregation)

� Add the set of methods (procedures) that delegate to their counterparts on the aggregated object.

VB6 UML

434

If the stereotype is <<implements>> then this maps simply to the VB construct 'implements':

::Employee

GetValue
Load
Save

«interface»
::CompanyAsset

GetValue

«interface»
::PersistentObject

Load
Save

Implements Implements

The VB code for the above model could look like this: -

'Employee Class

Implements CompanyAsset
Implements PersistentObject

'my implementation of GetValue
Private Property Get CompanyAsset_GetValue() As Variant
 'return asset value of this employee
End Property

'my implementation of load
Private Sub PersistentObject_Load()
 'load employee details from disk
End Sub

Private Sub PersistentObject_Save()
 'save employee details to disk
End Sub

4.1.5 Static Members
The UML allows features to be either part of each class instance or part of the class itself. This means that
the feature, whether it is an attribute or an operation is part of the class and not each instance of the class.
These are often called 'static' in VB. VB does not support features that are only part of the class so, if we
wish to model them, we need to define a convention to support them.

One convention we can use is to create a standard (.bas) module for each class that has static members.
All static operations and attributes can then be added as members of this module. When naming the module,
try to pick a name that relates the module to the VB class. For instance, if we have a class called Account,
we may choose to name the module AccountClass.

UML to VB Mapping

435

The Overdraft attribute would be placed in AccountClass.bas:

'AccountClass - the Account class object
'holds all static features

'the percentage that all overdafts are charged at
'applies to *all* overdrawn accounts
Public OverdraftRate As Double

4.1.6 Parameterized Classes (Templates)
VB does not support parameterized classes. This is a tradeoff that VB developers must accept in return for a
simpler programming model.

If you include parameterized classes in your design then this is OK but remember that you will have to
manually write the specific versions yourself. It may be better to avoid modeling with them to start with.

4.1.7 Class Mapping Advice
If you are using the package to name mapping convention, then the class name will also include the names
of its containing packages.

It is good practice to choose a filename for the class that is similar to the class name.

4.2 Interfaces
An interface, which is a specialized Classifier in the UML maps directly to a class in VB.

This mapping is not explicitly stated and checked in VB - it is only apparent that a VB class is an interface
by the way it is used by other classes and the fact that the VB class contains empty procedures.

'IPersistent - responsibilities that must be provided by persistent objects

Public Sub Save()
 'abstract operation
End Sub

Public Sub Load()
 'abstract operation
End Sub

Account

Balance: Currency
OverdraftRate: double {static}
Withdraw (in Funds)

VB6 UML

436

Interfaces are crucial when building components in VB. To expose an interface from a VB ActiveX
Component, the Instancing property of the VB class should be set to PublicNotCreatable.

In all other respects, an interface has a similar mapping to a UML class in that is also has features that can
be operations, attributes, associations, etc.

Note: Developers should not confuse interface with user-interface or user-interface class. Refer to the UML
documentation for a precise definition of interface.

4.3 Attributes
An attribute of a UML classifier maps to a VB variable.

Account

- Balance: Currency
+Withdraw (in Funds)

'Account class
'
Private Balance As Currency

A UML Attribute on Account A Variable definition in a VB Class

A UML attribute has the following form: -

visibility name : type = { initial-value }

4.3.1 Visibility
The visibility of the attribute has a partial mapping to the access of the VB attribute as captured in this
table:

UML Visibility UML Notation VB Access Notes

Public + Public Same meaning

Protected # None Due to VB not supporting
implementation inheritance.

Private - Private Same meaning.

4.3.2 Name
The name of the attribute simply maps to the name of the VB variable.

4.3.3 Type
The type specified for the attribute will be the name of either a built-in VB type such as an Integer or a
Long, a user-defined type or a VB object type such as a Class or Form.

UML to VB Mapping

437

4.3.4 Initial Value
An attribute in the UML can be given an initial-value. In VB, we achieve this by adding initial assignments
inside the Initialize routine of the class:

Account

- Balance: Currency = 10
+Withdraw (in Funds)

'Account class
'

Private m_theBalance As Currency

Private Sub Class_Initialize()

 'this generous bank gives you a tenner to
 'start!

 m_theBalance = 10
End Sub

An initialized UML Attribute Variable initialized inside the class initializer

If the attribute is tagged as {frozen} then this implies that the attribute is constant. Constant attributes are
easily represented in VB as Const variables. For example:

Private Const PI As Double = 3.1412

Note: VB does not allow classes to declare public constants. This is more of a nuisance rather that a logical
restriction. It is recommended that constants that relate to a class be placed in module that is closely related
to either the class or the package containing the class. For instance, if you have a package called
Accountancy that contains the related classes, Account and Ledger, then you might want to place your
constants in a bas module that is related to the package called, say, Accountancy
(Accountancy.bas).

4.4 Operations
An operation on a UML class maps to a VB Procedure.

A UML operation has the following form:

visibility name (parameters) : return-type { property string }

4.4.1 Visibility
The visibility of the operation has a partial mapping to the access of the VB procedure as captured in this
table:

UML Visibility UML Notation VB Access Notes

Public + Public Same meaning

Protected # Friend See notes

Private - Private Same meaning

The actual meaning of public, protected and private really comes down to the language you are using to
implement your models in. In C++ for instance, public, protected and private all have quite distinct
meanings that are different to VB.

VB6 UML

438

In VB, the visibility options provided in the UML will map to different things in VB. When we are building
VB components, we are interested in three levels of access:

� Things that are visible only to the inside of a class (Private)

� Things that are visible only to the inside of a the component (Friend)

� Things that are visible to all other components and classes (Public)

So when using the UML we should choose the mapping as shown in the table.

4.4.2 Name
The name of the operation simply maps to the name of the procedure in VB.

4.4.3 Parameters
 (see below)

4.4.4 Return Type
The return-type specified for the operation will be the name of either a built-in VB type such as an
Integer or a Long, a user-defined type or a VB object type such as a Class or Form.

If a return type is present then we map the item to a VB Function, otherwise we map it to a Subroutine:

Account

- Balance: Currency = 10
+ Withdraw (in Funds)
+ IsOverdrawn: Boolean

'Account class
Private m_theBalance As Currency

Public Sub Withdraw(ByVal theFunds As Currency)
 m_theBalance = m_theBalance - theFunds
End Sub

Public Function IsOverdrawn() As Boolean
 IsOverdrawn = (m_theBalance < 0)
End Function

4.4.5 The Operation and Method Distinction
The UML often refers to both operations and methods, which many VB developers may consider to be the
same thing. The UML offers a distinction whereby operations define a service, and the method is the
implementation of that operation. In VB terms, the distinction is very subtle as both concepts are
implemented with the same language constructs, i.e. as functions or subroutines.

If we really want to make a distinction in VB, then we can say that the empty procedures defined in a VB
interface are the operations and the methods are the actual implementations in each of the VB classes that
implement the interface.

4.4.6 Parameters
Each parameter in UML has the following form:

kind name : type = default value

UML to VB Mapping

439

Kind

The kind of the operation is either in, out or inout, and indicates how the parameter is passed to the
operation's body. VB has an approximate mapping for these:

UML kind VB Notes

in ByVal

out ByRef Not really supported but a compatible mapping

inout ByRef

Type

The type specified for the parameter will be the name of either a built-in VB type such as an Integer or a
Long, a user-defined type or a VB object type such as a Class or Form.

Default Value

If a parameter is given a default value then this can be implemented in VB too. For a VB parameter to have
a default value, the Optional keyword must be present:

::Document

PrintOut(in Orient : PageOrientation = Portrait
)

Public Sub PrintOut(Optional ByVal Orient As PageOrientation = Portrait)
 'print out
End Sub

4.4.7 Polymorphic Operations
If a UML Operation is marked as polymorphic (isPolymorphic = True), then this signifies that the
operation can be overridden in subclasses and thus has many implementations. In VB, this property only
applies to operations (procedures) defined on a VB interface. (All operations defined on a VB interface are
automatically polymorphic because the operation will have many implementations in the classes that
implement the interface.)

4.4.8 Stereotypes
A <<get>> or <<set>> operation stereotype is an operation whose role is to provide access to a value on
the object. In VB terms, Property procedures are good examples of these types of operations.

4.5 Utilities
A UML utility class represents just a cohesive group of global procedures or variables. These are usually
mapped to standard (.bas) modules in VB because they don't have multiple instances like a regular class
does. Examples of utility classes are the standard procedure libraries that come with VB. It is convenient to
show them in this way to make a model easier to understand. These are shown as a stereotype of class:

VB6 UML

440

«utility»
::WINAPI

SendMessage

PostMessage

GetDlgItem

CreateWindow

 The Windows API as a <<utility>>

4.6 Associations

4.6.1 Multiplicity

The multiplicity of an association determines how we implement the association. If the multiplicity is 1,
then we may choose to implement the association using an object reference. If the multiplicity is a fixed
number then we might employ the use of VB arrays. If the multiplicity is unbounded, e.g. 1+ then a
collection may be used instead. See the implementation section for examples of this.

4.6.2 Qualifiers

A UML qualifier in is effectively a key for navigating to the object at the other end of an association. For
instance, we may initially model that a Person owns many Cars. However in later design revisions, we
may state that a Person owns a single Car when qualified by a particular registration plate. See the
following examples for more about this.

4.6.3 N-ary Associations

Most associations involve just two objects - one at each end. However there are occasions when three or
more classes are involved in the association. When considering how to map these, look at the example of
how we implement link classes. These effectively represent an association of three objects.

4.6.4 Aggregation and Composition

Aggregation and composition are implemented in the same way in VB. This is because unlike some
languages such as C++, you cannot physically contain one VB object within another. However VB does
allow you to achieve a similar effect by ensuring your composed objects are created at the same time. We
achieve this by adding the 'new' keyword to the Private variable that holds the sub-object:

'Class Car
'My engine – this will be created when I get created
Dim m_theEngine As New Engine

'code for class..

UML to VB Mapping

441

4.6.5 Implementing Associations
Because associations are not part of the Visual Basic Language it can be hard for Developers to know how
to map them. The follow section provides some techniques and examples for implementing associations in
VB.

Let's first look at how we might implement simple associations in VB.

4.6.6 Basic 1-to-1 Unidirectional Associations
The most common way to implement a unidirectional association is to use an object reference embedded in
the source class. In the following example, a Person owns a single Car:

::Person ::Car11 Owns

Owner

Here is the code for a simple unidirectional association (note that the example actually holds a link from
Car to Person).

First, let's create a simple definition of the Car (Car.cls):

'our private implementation
Private m_Make As String 'make of car

'our hidden link implementation to person
Private m_theOwner As Person

'get the car owner
Public Property Get Owner() As Person
 Set Owner = m_theOwner
End Property

'set the car owner
'note: this makes the owner changeable during
'the car's lifetime
Public Property Set Owner(ByVal theOwner As Person)
 Set m_theOwner = theOwner
End Property

'get the make of the car
Public Property Get Make() As String
 Make = m_Make
End Property

'set the make of the car
Public Property Let Make(ByVal newMake As String)
 m_Make = newMake
End Property

VB6 UML

442

Now let's create a simple Person class:

'private implementation of person
Private m_myName As String

'return person's name
Public Property Get Name() As String
 Name = m_myName
End Property

'set person's name
Public Property Let Name(ByVal newName As String)
 m_myName = newName
End Property

To test the association, we will place some code in the main routine of the application:

Sub Main()
 'simple 1 to 1 unidirectional association

 '1. create some objects to connect
 Dim aPerson As New Person
 aPerson.Name = "Russell"

 Dim aCar As New Car
 aCar.Make = "Ferrari"

 '2. set the person as the owner of the car
 Set aCar.Owner = aPerson

 '3. print the owner's name via the car
 Debug.Print aCar.Owner.Name + " is driving a " + aCar.Make
End Sub

4.6.7 Basic 1-to-Many Unidirectional Associations
If the Person gets rich then we might want to model the person owning many cars, as shown:

::Person ::Car*1 Owns

Owner Transport

A basic implementation of this is to embed a collection of Cars into Persons and then allow client code
to add Cars to Person at will.

Here is some rudimentary code from Person:

'private implementation of person
Private m_myName As String

Private m_myTransport As New Cars

'return person's name
Public Property Get Name() As String
 Name = m_myName
End Property

UML to VB Mapping

443

'set person's name
Public Property Let Name(ByVal newName As String)
 m_myName = newName
End Property

Public Property Get Transport() As Cars
 Set Transport = m_myTransport
End Property

Note the embedded, hidden Cars collection in Person. This holds the references to the associated Car
objects. The code for Car follows. (This was generated by the class builder add-in.)

The Cars collection code:

Option Explicit

'local variable to hold collection
Private mCol As Collection

Public Function Add(Make As String, Owner As Person, Optional sKey As String) _
 As Car
 'create a new object
 Dim objNewMember As Car
 Set objNewMember = New Car

 'set the properties passed into the method
 objNewMember.Make = Make
 If IsObject(Owner) Then
 Set objNewMember.Owner = Owner
 Else
 objNewMember.Owner = Owner
 End If
 If Len(sKey) = 0 Then
 mCol.Add objNewMember
 Else
 mCol.Add objNewMember, sKey
 End If

 'return the object created
 Set Add = objNewMember
 Set objNewMember = Nothing

End Function

Public Property Get Item(vntIndexKey As Variant) As Car
 'used when referencing an element in the collection
 'vntIndexKey contains either the Index or Key to the collection,
 'this is why it is declared as a Variant
 'Syntax: Set foo = x.Item(xyz) or Set foo = x.Item(5)
 Set Item = mCol(vntIndexKey)
End Property

Public Property Get Count() As Long
 'used when retrieving the number of elements in the
 'collection. Syntax: Debug.Print x.Count
 Count = mCol.Count
End Property

VB6 UML

444

Public Sub Remove(vntIndexKey As Variant)
 'used when removing an element from the collection
 'vntIndexKey contains either the Index or Key, which is why
 'it is declared as a Variant
 'Syntax: x.Remove(xyz)

 mCol.Remove vntIndexKey
End Sub

Public Property Get NewEnum() As IUnknown
 'this property allows you to enumerate
 'this collection with the For...Each syntax
 Set NewEnum = mCol.[_NewEnum]
End Property

Private Sub Class_Initialize()
 'creates the collection when this class is created
 Set mCol = New Collection
End Sub

Private Sub Class_Terminate()
 'destroys collection when this class is terminated
 Set mCol = Nothing
End Sub

To test the collection, we can write some code for the main application routine
like this:

Sub Main()
 'simple 1 to many unidirectional association

 '1. create some objects to connect
 Dim aPerson As New Person
 aPerson.Name = "Russell"

 Dim aFastCar As New Car
 aFastCar.Make = "Ferrari"

 Dim aSlowCar As New Car
 aSlowCar.Make = "Reliant"

 '2. associate the cars with the person
 aPerson.Transport.Add "Ferrari", aPerson, "R999 ICH"
 aPerson.Transport.Add "Reliant", aPerson, "S111 LOW"

 '3. print the makes of car the person owns
 Debug.Print aPerson.Name + " owns the following car makes: - "
 Dim aCar As Car
 For Each aCar In aPerson.Transport
 Debug.Print "A " + aCar.Make
 Next
End Sub

The example code assumes that the collection is not ordered in any way.

UML to VB Mapping

445

Building collection classes can be tedious so it is recommended that developers take a look at the Class
Builder add-in, which provides collection-building features.

4.6.8 Implementing Qualifiers
As we elaborate our design model, associations that start off as 1-to-many, often turn out to be 1-to1 when
qualified by some index. If we take our Person-to-Car example, we could refine the model to get the
following:

::Person ::CarRegistration
11

Owner Transport

Owns

As mentioned in the mapping, a qualifier becomes an index when traversing the association. If we are using
property procedures, then the qualifier will become a parameter of that procedure. So, to access a single
Car that the Person owns, we must provide a registration number. Clients wishing to access an individual
car would supply the registration number of the car of interest:

Dim aCar As Car
Set aCar = aPerson.Transport(“R999 ICH”) 'get a particular car

4.6.9 Bi-directional Associations and Referential
Integrity

Implementing unidirectional associations with just pointers is just about workable and is quite common.
However, in business models, we often need to traverse in both directions. Now we could just implement
the above techniques on both ends, i.e. each object has a reference to the other:

First, here is the Car with an Owner link:

'our private implementation
Private m_Make As String 'make of car

'our hidden link implementation to person
Private m_theOwner As Person

'get the car owner
Public Property Get Owner() As Person
 Set Owner = m_theOwner
End Property

'set the car owner
'note: this makes the owner changeable during
'the car's lifetime
Public Property Set Owner(ByVal theOwner As Person)
 Set m_theOwner = theOwner
End Property

VB6 UML

446

'get the make of the car
Public Property Get Make() As String
 Make = m_Make
End Property

'set the make of the car
Public Property Let Make(ByVal newMake As String)
 m_Make = newMake
End Property

Here is the code for Person also with a link back to Car:

'private implementation of person
Private m_myName As String

'our hidden link implementation to the car
Private m_Transport As Car

'get the person's sole transport
Public Property Get Transport() As Car
 Set Transport = m_Transport
End Property

'set the person's transport
Public Property Set Transport(ByVal someTransport As Car)
 Set m_Transport = someTransport
End Property

'return person's name
Public Property Get Name() As String
 Name = m_myName
End Property

'set person's name
Public Property Let Name(ByVal newName As String)
 m_myName = newName
End Property

Here is some simple client code to associate the respective objects:

Option Explicit

Sub Main()
 '1 to 1 bidirectional association
 'with *no* referential integrity

 '1. create some objects to connect
 Dim aPerson As New Person
 aPerson.Name = "Russell"

 Dim aCar As New Car
 aCar.Make = "Ferrari"

 '2. set the person as the owner of the car
 Set aCar.Owner = aPerson

UML to VB Mapping

447

 '3. set the person's means of transport
 Set aPerson.Transport = aCar

 '4. print the car owner's name
 Debug.Print aCar.Owner.Name + " is driving a ";

 '5. print the owner's transport
 Debug.Print aPerson.Transport.Make
End Sub

4.6.10 Problems with Simple Associations
Now, it is very difficult to ensure the integrity of these models so far. It would be very easy to accidentally
set one end of the association and not the other at run-time. This will ultimately lead to the infamous 'error
91 – object variable or with block not set', when we later try to traverse the association.

If we want to build more robust bi-directional associations, we must build referential integrity into our
models. We can do this in a number of ways.

4.6.11 Link Management Routines
These routines are separate routines often placed in standard (.bas) modules and are responsible for
attaching both ends of an association at the same time. They are also responsible for disconnecting an
association. By performing the connection at the same time, at the same place, we have a better chance of
maintaining referential integrity.

So let's revisit our original 1-to-1 bi-directional association between Person and Car but this time, we
will add some association link management.

The code for Person and Car is almost the same as before but we have a new module to add which
contains the link management:

The code for the PersonOwnsCar_Manager module:

'associate a person and car
Public Sub LinkPersonAndCar(ByVal aPerson As Person, ByVal aCar As Car)
 'ensure we are not breaking an existing association
 Debug.Assert aPerson.Transport Is Nothing
 Debug.Assert aCar.Owner Is Nothing

 'link up in both directions
 Set aPerson.Transport = aCar
 Set aCar.Owner = aPerson
End Sub

'cater for removal of person from model
Public Sub UnlinkPerson(ByVal aPerson As Person)
 'ensure we have a valid person to begin with
 Debug.Assert Not aPerson Is Nothing

 Set aPerson.Transport.Owner = Nothing
 Set aPerson.Transport = Nothing
End Sub

VB6 UML

448

'cater for removal of car from model
Public Sub UnlinkCar(ByVal aCar As Car)
 'ensure we have a valid car to begin with
 Debug.Assert Not aCar Is Nothing

 Set aCar.Owner.Transport = Nothing
 Set aCar.Owner = Nothing
End Sub

We also have one new procedure to add to Car:

'Destroy the car from the model
Public Sub Destroy()
 'get link manager to sort out the integrity
 PersonOwnsCar_Manager.UnlinkCar Me
End Sub

Finally, let's look at some code that tests the association:

Option Explicit

Sub Main()
 '1 to 1 bidirectional association
 'with referential integrity

 '1. create some objects to link
 Dim aPerson As New Person
 aPerson.Name = "Russell"

 Dim aCar As New Car
 aCar.Make = "Ferrari"

 '2. Link up the two
 PersonOwnsCar_Manager.LinkPersonAndCar aPerson, aCar

 '3. Test: print the car owner's name
 Debug.Print aCar.Owner.Name + " is driving a ";

 '4. Test: print the owner's transport
 Debug.Print aPerson.Transport.Make

 '5. now write off the car
 '(this will disassociate the person too)
 aCar.Destroy

 '6. check the association no longer exists in both directions
 If aCar.Owner Is Nothing Then
 Debug.Print aPerson.Name + " no longer owns the car."
 End If

 If aPerson.Transport Is Nothing Then
 Debug.Print aPerson.Name + " no longer has transport!"
 End If
End Sub

UML to VB Mapping

449

4.6.12 Association Classes and Link Management
If we have a design that incorporates an association class, then we have an alternative home for the link
management that Developers may find is more cohesive.

Let's assume that association between Person and Car is supplemented with a 'Log Book' that records the
Car's history:

::Person ::Car

::Log Book

Milage

Registration
11

Owner Transport

Owns

We will now want to ensure that when a Person is associated to a Car, a LogBook is also associated. We
will assume that the LogBook already exists. If we do this, we can end up with the following
implementation.

(Note that some properties in the code have been omitted from the model to make it easier to read. In fact,
we can see that the LogBook in the code actually has a number of {derived} attributes that get their
information from the Car.)

Firstly, here is the LogBook association class, which also contains the link management code:

'LogBook Association Class
'My associations

Private m_theLoggedCar As Car
Private m_theOwner As Person

Private m_myIssueDate As Date

'to check we have entered an 'initialized state'
Private m_blnInitialized As Boolean

'attributes ------------------------------------

'When was I issued?
Public Property Get IssueDate() As Date
 IssueDate = m_myIssueDate
End Property

'set issue date
Public Property Let IssueDate(ByVal aDate As Date)
 m_myIssueDate = aDate
End Property

'you can only get the milage - you can't set it
'that would be illegal!
Public Property Get Milage() As Long
 Debug.Assert m_blnInitialized = True

VB6 UML

450

 'derived property - get from the car
 Milage = m_theLoggedCar.Milage
End Property

'who owns the car?
Public Property Get RegisteredOwner() As String
 Debug.Assert m_blnInitialized = True

 'derived property - get from the person
 RegisteredOwner = m_theOwner.Name
End Property

'operations ---------------------------------
'Register the log book for use
Public Sub Register(ByVal aPerson As Person, ByVal aCar As Car)
 'delegate to link
 Link aPerson, aCar
End Sub

'Unregister the log book from use
Public Sub UnRegister()
 'destroy the asociation
 'just delegate to unlink
 UnLink
End Sub

Private Sub Link(ByVal aPerson As Person, ByVal aCar As Car)
 Debug.Assert Not aPerson Is Nothing
 Debug.Assert Not aCar Is Nothing

 'link up in both directions
 Set aPerson.Transport = aCar
 Set aCar.Owner = aPerson

 'set my links too
 Set m_theLoggedCar = aCar
 Set m_theOwner = aPerson

 m_blnInitialized = True
End Sub

Private Sub UnLink()
 'destroy the asociation

 'deal with person first
 Set m_theOwner.Transport = Nothing 'person looses transport
 Set m_theOwner = Nothing 'log book looses person

 'unlink car now
 Set m_theLoggedCar.Owner = Nothing 'car looses owner
 Set m_theLoggedCar = Nothing 'log book looses car
End Sub

Here is the Car source code now (some extra attributes have been added to spice things up):

'Car Class
'our private implementation
Private m_Make As String 'make of car
Private m_myRoadMilage As Long 'My Milage

UML to VB Mapping

451

'our hidden link implementation to person
Private m_theOwner As Person

'attributes ---------------------------

'get the car owner
Public Property Get Owner() As Person
 Set Owner = m_theOwner
End Property

'set the car owner
'note: this makes the owner changeable during
'the car's lifetime
Public Property Set Owner(ByVal theOwner As Person)
 Set m_theOwner = theOwner
End Property

'get the make of the car
Public Property Get Make() As String
 Make = m_Make
End Property

'set the make of the car
Public Property Let Make(ByVal newMake As String)
 m_Make = newMake
End Property

'get the car's milage so far
Public Property Get Milage() As Long
 Milage = m_myRoadMilage
End Property

'operations ---------------------------
'Bump up the car milage
Public Sub BumpMilageBy(ByVal someMiles As Long)
 m_myRoadMilage = m_myRoadMilage + someMiles
End Sub

When we now want to associate Person and Car, we first create a LogBook and then get the LogBook
to associate all three objects together. In the example client code we first associate the objects and then
iterate over the assocation and list the information:

(Code in App.bas)

Option Explicit

Sub Main()
 '1 to 1 bidirectional association with association class

 '1. create some objects to link
 Dim aPerson As New Person
 aPerson.Name = "Russell"

 Dim aCar As New Car
 aCar.Make = "Ferrari"
 aCar.BumpMilageBy 50

VB6 UML

452

 Dim aLogBook As New LogBook
 aLogBook.IssueDate = Now

 '2. Link everything up
 aLogBook.Register aPerson, aCar

 '3. Print out the ownership details
 'We can do this solely via the LogBook
 Debug.Print "Car Registration Details:"
 Debug.Print "Registration Date : " + CStr(aLogBook.IssueDate)
 Debug.Print "Owned By : " + aLogBook.RegisteredOwner
 Debug.Print "Milage on Clock : " + CStr(aLogBook.Milage)

 '4. Let’s give the car to someone else
 '(I must be mad!)
 'let’s take it out for the weekend first!
 aCar.BumpMilageBy 200

 'a new owner gets lucky
 Dim aLuckyPerson As New Person
 aLuckyPerson.Name = "Dave"

 aLogBook.Register aLuckyPerson, aCar

 '5. Print out the new ownership details
 'car should now be registered to Dave:
 Debug.Print "Car Registration Details:"
 Debug.Print "Registration Date : " + CStr(aLogBook.IssueDate)
 Debug.Print "Owned By : " + aLogBook.RegisteredOwner
 Debug.Print "Milage on Clock : " + CStr(aLogBook.Milage)

 '6. finally, write off the car
 'Unregistering the log book is as good as writing off the car
 'so let's do that instead
 aLogBook.UnRegister
End Sub

4.6.13 A Final Example: Bi-directional 1-to-Many
Association with Link Management and Qualifier

As a final example, here is an implementation of a bi-directional 1-to-many association with association
class and qualifier, which is built upon our earlier example. The design model of the implementation looks
like this:

The code in LogBook, which now deals with multiple Cars:

'LogBook association class
'
'My associations
Private m_theLoggedCar As Car
Private m_theOwner As Person

Private m_myIssueDate As Date

'to check we have entered an 'initialized state'
Private m_blnInitialized As Boolean

UML to VB Mapping

453

'attributes ------------------------------------

'When was I issued?
Public Property Get IssueDate() As Date
 IssueDate = m_myIssueDate
End Property

'set issue date
Public Property Let IssueDate(ByVal aDate As Date)
 m_myIssueDate = aDate
End Property

'you can only get the milage - you can't set it
'that would be illegal!
Public Property Get Milage() As Long
 Debug.Assert m_blnInitialized = True

 'derived property - get from the car
 Milage = m_theLoggedCar.Milage
End Property

'who owns the car?
Public Property Get RegisteredOwner() As String
 Debug.Assert m_blnInitialised = True

 'derived property - get from the person
 RegisteredOwner = m_theOwner.Name
End Property

'operations ---------------------------------
'Register the log book for use
Public Sub Register(ByVal aPerson As Person, ByVal aCar As Car)
 'delegate to link
 Link aPerson, aCar
End Sub

'Unregister the log book from use
Public Sub UnRegister()
 'destroy the asociation
 'just delegate to unlink
 UnLink
End Sub

Private Sub Link(ByVal aPerson As Person, ByVal aCar As Car)
 Debug.Assert Not aPerson Is Nothing
 Debug.Assert Not aCar Is Nothing

 'link up in both directions
 Set aPerson.Transport(aCar.Registration) = aCar
 Set aCar.Owner = aPerson
 Set aCar.LogBook = Me

 'set my links too
 Set m_theLoggedCar = aCar
 Set m_theOwner = aPerson

 m_blnInitialised = True
End Sub

VB6 UML

454

Private Sub UnLink()
 'destroy the asociation

 'deal with owner first
 Set m_theOwner.Transport(m_theLoggedCar.Registration) = Nothing
 'person looses transport
 Set m_theOwner = Nothing 'log book looses person

 'now loose the car
 Set m_theLoggedCar.Owner = Nothing 'car looses owner
 Set m_theLoggedCar.LogBook = Nothing 'car looses log book (me!)
 Set m_theLoggedCar = Nothing 'log book looses car
End Sub

Here is the revised Person class. Note that the Transport property is now qualified with a registration
plate:

'Person Class with qualified Transport()
'private implementation of person
Private m_myName As String

'our hidden link implementation to the cars
Private m_Transport As Cars

'attributes -------------------------------

'get the person's transport qualified by registration plate
Public Property Get Transport(ByVal theReg As String) As Car
 Set Transport = m_Transport.Item(theReg)
End Property

'set the person's transport
'note we could have got the registration from the car
'but it makes it easier to understand the client code
'
'If the car passed is nothing then this means we want to drop the
'associated car
Public Property Set Transport(ByVal theReg As String, ByVal someTransport As Car)
 If someTransport Is Nothing Then
 m_Transport.Remove thReg
 Else
 m_Transport.Add someTransport
 End If
End Property

'return person's name
Public Property Get Name() As String
 Name = m_myName
End Property

'set person's name
Public Property Let Name(ByVal newName As String)
 m_myName = newName
End Property

UML to VB Mapping

455

Public Property Get Cars() As Cars
 Set Cars = m_Transport
End Property

'operations ---------------------------------
Private Sub Class_Initialize()
 Set m_Transport = New Cars
End Sub

We also have a slightly revised implementation of the Cars collection. This is the same as the previous
version except that it has been changed to accept an existing object rather than creating it itself. Here is the
revised Add operation.

'add a car
Public Function Add(ByVal aCar As Car) As Car
 mCol.Add aCar, aCar.Registration

 'return the car for convenience
 Set Add = aCar
End Function

Finally, here is the client code to test the whole association:

Option Explicit

Sub Main()
 '1 to many, bidirectional association with association class

 '1. create some objects to link

 'an owner
 Dim aPerson As New Person
 aPerson.Name = "Russell"

 'the cars
 Dim aFastCar As New Car
 aFastCar.Make = "Ferrari"
 aFastCar.Registration = "R999 ICH"
 aFastCar.BumpMilageBy 50

 Dim anEconomicCar As New Car
 anEconomicCar.Make = "Ford"
 anEconomicCar.Registration = "E123 ECO"
 anEconomicCar.BumpMilageBy 10

 'the log books
 Dim theFerrariLogBook As New LogBook
 theFerrariLogBook.IssueDate = Now

 Dim theFordLogBook As New LogBook
 theFordLogBook.IssueDate = Now

 '2. Link everything up
 theFerrariLogBook.Register aPerson, aFastCar
 theFordLogBook.Register aPerson, anEconomicCar

VB6 UML

456

 '3. Print out the car details
 'We can do this via the person's cars
 Debug.Print "Car Registration Details for " + aPerson.Name; " : "
 Dim aCar As Car
 For Each aCar In aPerson.Cars
 Debug.Print "Registration Date : " + CStr(aCar.LogBook.IssueDate)
 Debug.Print "Make of Car : " + CStr(aCar.Make)
 Debug.Print "Milage on Clock : " + CStr(aCar.Milage)
 Next
End Sub

Points to note:

� Car objects can now navigate to their associated LogBooks. This was because I wanted to report the issue
date of the log book via the car.

� This is also a good example of how the UML can help you understand quite a complex code structure.
Consider redrawing the model with the extra operations and attributes added and then review the design
visually.

� I have used the Registration Plate of the Car as the qualifier from Person to Car. This makes sense because
the Registration Plate will always identify a single Car.

� I have chosen in this example to continue to give the LogBook class the link management responsibilities. In
practice this responsibility will vary depending on your model. The objective is usually to produce a simpler
model that other developers can pick up easier later.

4.6.14 Miscellaneous Advice
There are many ways to implement associations. Here are some tips on writing good associations.

Associations Advice: Always Hide Your Implementation

Make sure you always hide the implementation of your association behind a Property Get procedure. If
you do this, you will benefit in many ways:

� It allows you to vary the way you store the reference to the associated object. This hidden reference may
change over the lifetime of the system.

� It allows you to provide an association that is created “on-demand”, to improve performance. For instance,
you might have an association to a large collection of objects. By hiding the association behind a property
procedure, you could build the collection when the property is first called (which of course may never happen
for the object's lifetime).

� It allows you to provide a "Derived" association. Because your implementation of the association is hidden, it
may never actually take up any fixed storage at all. In other words, you have an algorithm behind the property
procedure that calculates the associated object by traversing many other objects.

Associations Advice: Avoid Cyclic Dependencies

Try to avoid cyclic dependencies. Whenever you implement a bi-directional association, you are effectively
introducing a cyclic dependency between the two related objects.

UML to VB Mapping

457

For example, given two classes, Person and Car, Person has a reference to Car, and Car has a
reference to Person. If you introduce such a cycle, the VB run-times are often unable to clean up the
objects, even after you released the objects:

How should you avoid this? There are a number of solutions to this. The first suggestion is to allow cyclic
references but make sure you explicitly break the cycles when releasing a model. The technique is to add
explicit Destroy() routines to classes which are called when the object is ready to be released.

Here is the Destroy operation on Car:

'Car Class
Private m_Engine As Engine
Private m_Alarm As Alarm

'other operations.......

Public Sub Destroy()
 'Destroy all my aggregate objects
 Set m_Engine = Nothing
 Set m_Alarm = Nothing
End Sub

Associations Advice: "Keyed" References

Another solution is to avoid cycles to begin with. The technique here is to hold a reference on one object
only and an 'object id' on the other (a kind of 'Keyed' pointer, if you like).

So, given the Person-Owns-Car example, we might choose to hold a reference from the Person to the
Car, but on the Car we place an ID that uniquely identifies the Person. To support this implementation,
we will need to introduce a 'registry object' that keeps a track of Persons and their associated ID. When
the Car wants to traverse to its owner, it now consults the registry.

Both techniques have their merits and different performance tradeoffs. It is a judgment call as to which
technique is better for a particular situation.

Associations Advice: Use Property Procedures to Provide Read-Only
Associations

It is often useful to provide associations that can be traversed but not changed. You can do this by just
providing only a property 'Get', without a 'Let' or 'Set'. This will further ensure that your model stays intact
for its lifetime.

m_Car

m_Pers

Russell:
Person

Ferrari:Car

VB6 UML

458

Associations Advice: Build Type-Safe Collections

As previously mentioned, it is now possible in VB to build fully type-safe collections. Prior to VB5, it was
only possible to create collections based on the standard 'Collection' object that comes in the standard VB
library. When you build collections of an object, feel free to use Collection as your implementation but
ensure you wrap up the collection inside your own abstraction. For instance, here's the final version of the
type-safe Cars collection:

'local variable to hold collection
Private mCol As Collection

'add a car
Public Function Add(ByVal aCar As Car) As Car
 mCol.Add aCar, aCar.Registration

 'return the car for convenience
 Set Add = aCar
End Function

Public Property Get Item(vntIndexKey As Variant) As Car
 'used when referencing an element in the collection
 'vntIndexKey contains either the Index or Key to the collection,
 'this is why it is declared as a Variant
 'Syntax: Set foo = x.Item(xyz) or Set foo = x.Item(5)
 Set Item = mCol(vntIndexKey)
End Property

Public Property Get Count() As Long
 'used when retrieving the number of elements in the
 'collection. Syntax: Debug.Print x.Count
 Count = mCol.Count
End Property

Public Sub Remove(vntIndexKey As Variant)
 'used when removing an element from the collection
 'vntIndexKey contains either the Index or Key, which is why
 'it is declared as a Variant
 'Syntax: x.Remove(xyz)

 mCol.Remove vntIndexKey
End Sub

Public Property Get NewEnum() As IUnknown
 'this property allows you to enumerate
 'this collection with the For...Each syntax
 Set NewEnum = mCol.[_NewEnum]
End Property

Private Sub Class_Initialize()
 'creates the collection when this class is created
 Set mCol = New Collection
End Sub

Private Sub Class_Terminate()
 'destroys collection when this class is terminated
 Set mCol = Nothing
End Sub

UML to VB Mapping

459

Associations Advice: Use "Debug.Assert" to Firm up the "Contract" of
Your Operations

By using Debug.Assert, we can ensure that the objects passed are always valid before you try to build
the association. By inserting these assertions, we are doing just that - asserting that the client code must
provide a valid object to create a valid association.

Associations Advice: Consider Using Events to Trigger Link Management

Consider using custom class events to trigger link management routines. For instance, if the Car was
destroyed, it could fire an event to say 'Hey, I'm a going' without caring who handles it. The LogBook
could respond by cleaning up the association. The Car would never need to explicitly tell the LogBook. If
the Car never needs to know about the LogBook, then this is one dependency you could drop, which is
also a good thing.

5.0 Use Case Diagrams

UML Notation VB Notes

 Actor

None

See below

<name>

 Use Case

Class
By Convention only.
(See below.)

Use case diagrams are basically an analysis tool - they are created to help all parties involved in a
development understand what is being delivered rather than how it is to be built. Therefore it is not usual to
map the artifacts from these diagrams to actual source code.

VB6 UML

460

5.1 A Word of Warning
In fact we are actually touching on an area of use cases that is often misunderstood. Often, Developers from
a non-object-oriented background will view use cases as just a wordy representation of what the system
should do in code. As the development cycle moves into the first design phase, the developer then turns the
use cases into separate procedures, where the <<uses>> relationship between two use cases ends up as a
procedure call between the two respective procedures. This is wrong and should be avoided!

This is wrong because the use cases are there to help the potential users of the system understand what the
system will do for them – not how the system should be written.

5.2 Use Cases and Transactions
With the previous comments accepted and understood, there are times when turning use cases into code is
beneficial and as long as we know what we are doing and trying to achieve.

The useful thing about use cases is that they clearly define the boundaries of candidate transactions, (where
a transaction is defined as a distinct, logical unit of work that our system might perform). 'Create Order' is a
good example of a transaction. In other words, the use case 'Create Order' must run to completion or not at
all. If we 'half' created an Order, that simply wouldn't do and could leave our system is a nasty state.
Therefore it would be useful if we could help ensure that transactions are cleanly defined and applied in our
system.

5.3 Use Cases and Controllers
In considering how we might map use cases to VB, one useful way is to map them to <<controller>> class
stereotypes that are responsible for 'controlling' the overall use case and also responsible for the transaction
as a whole.

(A <<controller>> class stereotype is a class that is mainly responsible for controlling and coordinating
the implementation of a use case but doesn't actually perform any of the use case-specific detail, itself.)

Let's start by looking at a use case model of the example use case:

Bank
Customer

Transfer
Funds

The use case will be performed by the following classes. Note the presence of the use case controller:

«controller»

TransferFunds ::Account
2 1

UML to VB Mapping

461

This is a high-level model. The two accounts will be the source and target accounts.

As previously stated, the controller is just acting as a coordinator but also knows about the whole
transaction. Therefore the lifetime of the controller is synonymous to the lifetime of the transaction and use
case. When we discuss collaboration diagrams, we will show how the controller performs the use case.

6.0 Behavioral Diagrams
In contrast to the static diagram mapping that is dealing with the static aspects of your design, the
behavioral diagram mappings deal with how to translate the dynamic aspects of your design into VB code.

The UML offers four different diagrams for capturing your design dynamics and these are detailed in two
parts: The first part looks at how we map sequence and collaboration diagrams. They are focused on object
instances and the messages and events that travel between them.

In the second part we look at statechart and activity diagrams. These are closely tied in with Collaboration
Diagrams but are focused more on states that an item such as an object can be in and how external and
internal events change that state.

7.0 Sequence & Collaboration Diagrams
Here is a typical sequence diagram showing some object instances connected by the messages they pass to
each other. This is the 'Transfer Funds' use case that was previously discussed:

Description UI Source Account:TransferFunds :TransactionManager

User requests to transfer funds TransferFund
sUser chooses to transfer

funds ChooseSourc
eUser chooses target

account
ChooseTarg
etUse Case Controller

created
Create

Controller started PerformUseCase
Start new transaction BeginTransacti

onSource account
loaded

Load
Target account
loaded

Load
Withdraw funds from source
account Withdraw(Funds)Deposit Funds in target
account Deposit(Fund

s)If no
errorsCommit

transaction Commit
else

Abort the
transaction Abort

End

UI Target Account

TransferFund
sUser chooses to transfer funds

ChooseSourc
eUser chooses target

account
ChooseTarg
etUse Case Controller

created
Create

BeginTransacti
onSource account

loaded
Load

Target account
loaded

Load
Withdraw funds from source
accountDeposit Funds in target
account Deposit(Fund

s)If no
errorsCommit

transaction Commit
else

Abort the
transaction Abort

End

TransferFund
sChooseSourc

e
ChooseSource

User chooses target account ChooseTarg
etUse Case Controller

created
Create

BeginTransacti
onSource account

loaded
Load

Target account
loaded

Load
Withdraw funds from source
accountDeposit Funds in target
account Deposit(Fund

s)If no
errorsCommit

transaction Commit
else

Abort the
transaction Abort

End

ChooseTarget
Use Case Controller created Create

BeginTransacti
onSource account

loaded
Load

Target account
loaded

Load
Withdraw funds from source
accountDeposit Funds in target
account Deposit(Fund

s)If no
errorsCommit

transaction Commit
else

Abort the
transaction Abort

End

Create

BeginTransacti
onSource account loaded Load

Target account
loaded

Load
Withdraw funds from source
accountDeposit Funds in target
account Deposit(Fund

s)If no
errorsCommit

transaction Commit
else

Abort the
transaction Abort

End

BeginTransacti
on
BeginTransaction

LoadLoad
Target account loaded LoadLoad
Withdraw funds from source

Deposit Funds in target
Deposit(Fund
s)
Deposit(Funds)

If no errors

Commit
transaction Commit

else

Abort the
transaction Abort

End

Commit transaction
CommitCommit

else

Abort the
transaction Abort
Abort the transaction

AbortAbort
End

VB6 UML

462

The first thing to note about sequence diagrams (and collaboration diagrams, for that matter) is that they are
usually drawn with a context in mind. The first time we use these diagrams is when we are designing how
our use cases will be handled. In this case the context is just the system as a whole. Later in the design we
will use sequence diagrams to understand how a particular object method behaves. In this case the context
is the method.

7.1 Object Instances and Context

This context is important because the object instances we place on the diagram (the columns) are usually
named relative to the context. If we are doing the former kind of diagrams, then the objects will usually be
given their full names in the system. In the latter case, the object names may relate to local variable names
within the method.

Here is an example of a sequence diagram scoped to a method together with the resultant code:

Description
theSource
:Account

theTarget
:Account

theTransManager
:TransactionManger

Start a new transaction CreateTransaction
Withdraw funds Withdraw(Funds)
Deposit Funds Deposit(Funds)
If no error

Commit Transaction Commit
Else

Abort Transaction Abort
End

theSource
:Account

theTarget
:Account

theTransManager
:TransactionManger

Start a new transaction CreateTransactionCreateTransaction
Withdraw funds Withdraw(Funds)Withdraw(Funds)
Deposit Funds Deposit(Funds)Deposit(Funds)
If no error

Commit Transaction Commit
Else

Abort Transaction Abort
End

Commit Transaction CommitCommit
Else

Abort Transaction AbortAbort Transaction AbortAbort
End

Here is the VB code on the use case controller TransferFunds:

Public Sub PerformUseCase(ByVal theSource As Account, ByVal theTarget _
 As Account, ByVal theFunds As Currency)
 On Error GoTo TransferError:

 Dim theTransManager As New TransactionManager

 'Start a new transaction
 theTransManager.CreateTransaction

 'Withdraw funds
 theSource.WithdrawFunds theFunds

 'Deposit Funds
 theTarget.DepositFunds theFunds

 'commit
 theTransManager.Commit

 Exit Sub

TransferError:

UML to VB Mapping

463

 'Abort Transaction
 theTransManager.Abort
End Sub

Notice that we have slightly changed the logic so that we can make use of VB's built in error system. This
is OK as long as we don't impact the core interaction design.

7.2 Interactions
The horizontal interactions connecting the object instances tell us what operations on the objects need to be
called (they also tell us what extra operations we need to add to our static model). The order of these
interactions is crucial– this is the main point behind (message) sequence diagrams. Each horizontal line
represents a single message and this represents an actual operation call. So we need to map this call into an
actual VB operation call. The next question is 'which VB method makes the call?'

By studying the diagram it is usually easy to see which previous operation is making the call.

7.3 Pseudo-Code
The left-hand side of a sequence diagram usually contains pseudo-code that provides more clues about how
the operations used on the diagram are actually behaving. This code is usually stated in three basic control
constructs: sequence, selection and iteration. The Developer can use these constructs to write the skeleton
of the related method's logic. So the mapping here is quite straightforward. Once the Diagram has matured
somewhat, the Developer will use the pseudo-code as the basis for the body of the related VB method.

7.4 Collaboration Diagrams
In terms of mapping, collaboration diagrams have a lot in common with sequence diagrams. They differ of
course, because they are in network form but we are still mapping the interactions between object instances.

Collaboration diagrams do however allow us to show which associations between two objects are being
used to perform the interaction. This will be reflected in the names of the objects being manipulated in the
procedure, i.e. if the objects have a 'm_' naming prefix, then it implies that the objects are defined at class
scope – not the procedure scope.

VB6 UML

464

8.0 Statechart Diagrams

UML Notation VB Notes

state

Depends on
implementation

Abstract – see notes

 Transition

Depends on
implementation

Abstract – see notes

State modeling is one of the more specialized areas of the UML. Although all objects in your system have
state, many applications such as client-server applications don't contain objects with very much state so the
need to model state is less important.

If you are using VB in a real-time systems environment, then understanding how to map statecharts to VB
will be very useful to you.

As was suggested in the introduction, statecharts have no straight mapping to VB. The main use behind
statecharts is to understand clearly how objects with complex state behave. Looking at the source code of a
complex object isn't very intuitive. So, once you've created your statechart and you are happy with it, what
comes next?

8.1 Mapping States and Transitions
Although it is possible to explain where states and transitions are in a VB program, it can be almost
impossible to point them out in code. This is because they are usually implicit in the design of a class and
how visible they are depends on how you implement your object's state.

8.2 Implementing State
There are generally two ways of implementing statecharts in VB (or any other language for that matter).
The first way is just to code the object's state just like any other. In other words, the member variables of
the class implicitly define the state of the object. To understand what state the object is at any particular
time involves inspecting the member's variables. This could be termed an implicit implementation of state.

UML to VB Mapping

465

Alternatively, if the object in question is going to have a particularly complex state, then it is sometimes
worthwhile implementing an explicit 'Finite State Machine' inside the object. What we do here is create a
machine that is driven from a table loaded with information about what to do for a particular combination
of state and event. It is also possible with this technique to change this data at run-time thus altering the
dynamic behavior of the object. (This technique is akin to data-driven programming, where the data is
partially controlling the program flow.)

8.3 An Example
As always, the best way to understand the difference in implementation is to see some examples.

Let's start by defining a simple statechart for a car's security system. Here is the Car's static class model,
showing the objects involved in the state machine activities:

::Car

- Locked : Boolean
- AlarmOn : Boolean
+StartEngine
+StopEngine
- SoundAlarm
+ResetAlarm
+<<get>> CentralLocking

::Alarm

TurnOn
TurnOff

::CentralLocking

ToggleLock

::RemoteKey

PressButton
TuneToCar(in aCar : Car)

11

myAlarm

11

myCentralLocking

1

1

CarLock

Now, the part we are interested in is the state of the Car object as shown:

Unlocked

Alarm Sounding

Locked

Initial

LockSignal / LockCar

UnlockSignal / UnlockCar
StartEngineSignal / SoundAlarm

UnlockSignal / UnlockCar, ResetAlarm

Create

VB6 UML

466

8.4 Implicit Implementation
Let's first take a look at an implicit implementation, where the member variables of the Car define the
Car's state:

Firstly, here is the Car implementation:

Private m_Locked As Boolean
Private m_AlarmOn As Boolean

Private m_myAlarm As Alarm
Private WithEvents m_myCentralLocking As CentralLocking
'an artifical way to get the car's central locking objects
'this is just to simlate the radio connection between
'the central locking and the remote key
Public Property Get CentralLocking() As CentralLocking
 Set CentralLocking = m_myCentralLocking
End Property

'initialise self
Private Sub Class_Initialize()
 'create my composite objects
 Set m_myAlarm = New Alarm
 Set m_myCentralLocking = New CentralLocking

 'set initial state
 m_Locked = False 'initially unlocked
 m_AlarmOn = False 'alarm is off
End Sub

'start the car
'you can't do this unless you're inside!!
Public Sub StartEngine()
 If m_Locked Then
 'uh oh - break in!
 SoundAlarm
 Else
 Debug.Print "Engine started. Brmmmm"
 End If
End Sub

'here for completeness
Public Sub StopEngine()
 Debug.Print "Engine Stopped"
End Sub

'I have been locked
Private Sub m_myCentralLocking_Locked()
 m_Locked = True
 Debug.Print "Car locked"
End Sub

'I have been unlocked
Private Sub m_myCentralLocking_Unlocked()
 m_Locked = False
 If m_AlarmOn Then
 ResetAlarm
 End If
 Debug.Print "Car unlocked, alarm reset"
End Sub

UML to VB Mapping

467

Private Sub SoundAlarm()
 m_myAlarm.TurnOn
 m_AlarmOn = True
 Debug.Print "alarm sounding..."
End Sub

Private Sub ResetAlarm()
 m_myAlarm.TurnOff
 m_AlarmOn = False
 Debug.Print "alarm cancelled"
End Sub

Next, let's look at the code for the Alarm (quite simple):

'The Car Alarm
Public Sub TurnOn()
 Debug.Print "BEEP! BEEP! BEEP! BEEP! BEEP!"
End Sub

Public Sub TurnOff()
End Sub

Next, we have the code for the CentralLocking object:

'Central Locking Class
Private m_Locked As Boolean
Public Event Unlocked()
Public Event Locked()

'this is called by the receiver hardware
'when the driver sends the unlock signal
Public Sub ToggleLock()
 If m_Locked Then
 'locked - now unlock
 Debug.Print "Click"
 m_Locked = False 'set locked state

 RaiseEvent Unlocked
 Else
 'unlocked - now lock
 Debug.Print "Click"
 m_Locked = True 'set unlocked state

 RaiseEvent Locked
 End If
End Sub

Finally, we have the code for the RemoteKey fob:

'Remote Key class
'this is our artificial way of communicating with the
'car. In reality this would be achieved by a radio link
Public CarLock As CentralLocking

VB6 UML

468

Public Sub TuneToCar(ByVal aCar As Car)
 Set CarLock = aCar.CentralLocking
End Sub

Public Sub PressButton()
 CarLock.ToggleLock
End Sub

Here is some client code to test the state machine:

Public Sub Main()
 Dim aCar As New Car
 Dim aKey As New RemoteKey 'to open the car

 '1. (artificially) connect key to car for the demo
 aKey.TuneToCar aCar

 '2. lock car
 aKey.PressButton 'lock

 '3. first use the car legally :)
 aKey.PressButton 'unlock
 aCar.StartEngine
 aCar.StopEngine
 aKey.PressButton 'locked

 '4.someone doesn't have the key....
 aCar.StartEngine 'uh oh!

 '5.owner resets the alarm
 aKey.PressButton 'Unlocked
End Sub

Considering the complexity of the statechart (low!) the example is quite easy to follow. If the Car had
more states and events (which it could be if we considered the whole Car), then an explicit version might
be preferable.

8.5 Explicit Implementation: A Finite State
Machine

To contrast the implicit implementation, here is the code for the explicit version where we build an explicit
state machine to manage the state of the Car object, starting with the Car class again:

'Car Class – external state machine version
Option Explicit

Private m_myAlarm As Alarm
Private WithEvents m_myCentralLocking As CentralLocking
Private m_MyFSM As CarFSM

Private m_CurrentState As CarState

'an artifical way to get the car's central locking objects
'this is just to simlate the radio connection between
'the central locking and the remote key
Public Property Get CentralLocking() As CentralLocking

UML to VB Mapping

469

 Set CentralLocking = m_myCentralLocking
End Property

'initialise self
Private Sub Class_Initialize()
 'create my composite objects
 Set m_myAlarm = New Alarm
 Set m_myCentralLocking = New CentralLocking
 Set m_MyFSM = New CarFSM
 m_MyFSM.LinkCar Me

 'set initial state
 m_CurrentState = Unlocked
End Sub

'start the car (requested by client)
'remember you can't do this unless you're inside!!
Public Sub StartEngine()
 m_CurrentState = m_MyFSM.ProcessEvent(m_CurrentState, EngineStarted)
End Sub

'here for completeness
Public Sub StopEngine()
 Debug.Print "Engine Stopped"
End Sub

'I have been locked
Private Sub m_myCentralLocking_Locked()
 m_CurrentState = m_MyFSM.ProcessEvent(m_CurrentState, LockSignal)
End Sub

'I have been unlocked
Private Sub m_myCentralLocking_Unlocked()
 m_CurrentState = m_MyFSM.ProcessEvent(m_CurrentState, UnlockSignal)
End Sub

'actions ---

'actually start the engine
Friend Sub InternalStartEngine()
 Debug.Print "Engine started. Brmmmm"
End Sub

Friend Sub LockCar()
 Debug.Print "Car locked"
End Sub

Friend Sub UnlockCar()
 Debug.Print "Car unlocked"
End Sub

Friend Sub SoundAlarm()
 m_myAlarm.TurnOn
 Debug.Print "alarm started"
End Sub

Friend Sub ResetAlarm()
 m_myAlarm.TurnOff
 Debug.Print "alarm reset"
End Sub

VB6 UML

470

The CentralLocking, Alarm, and RemoteKey classes are the same but we have now introduced a
separate state machine that will drive the Car object:

'The Car FSM
Option Explicit

Private m_myActionTable(MAX_STATE, MAX_EVENT) As ActionEntry

Private m_theCar As Car

Public Sub LinkCar(ByVal aCar As Car)
 Debug.Assert Not aCar Is Nothing
 Set m_theCar = aCar
End Sub

'build up state table
Private Sub Class_Initialize()
 ' (in state, on event) = do actions and then go to [NextState]

 'lock and car is unlocked - just lock car
 m_myActionTable(Unlocked, LockSignal).ActionsToPerform(0) = LockCar
 m_myActionTable(Unlocked, LockSignal).ActionsToPerform(1) = NoAction
 m_myActionTable(Unlocked, LockSignal).NextState = LockedAndIdle

 'unlock and car is already unlock - do nothing
 m_myActionTable(Unlocked, UnlockSignal).ActionsToPerform(0) = NoAction
 m_myActionTable(Unlocked, UnlockSignal).NextState = Unlocked

 m_myActionTable(Unlocked, EngineStarted).ActionsToPerform(0) = _
 InternalStartEngine
 m_myActionTable(Unlocked, EngineStarted).ActionsToPerform(1) = NoAction
 m_myActionTable(Unlocked, EngineStarted).NextState = Unlocked

 'lock signal and car's already locked - do nothing
 m_myActionTable(LockedAndIdle, LockSignal).ActionsToPerform(0) = NoAction
 m_myActionTable(LockedAndIdle, LockSignal).NextState = LockedAndIdle

 'unlock signal and car is locked - unlock and reset alarm
 m_myActionTable(LockedAndIdle, UnlockSignal).ActionsToPerform(0) = UnlockCar
 m_myActionTable(LockedAndIdle, UnlockSignal).ActionsToPerform(1) = ResetAlarm
 m_myActionTable(LockedAndIdle, UnlockSignal).ActionsToPerform(2) = NoAction
 m_myActionTable(LockedAndIdle, UnlockSignal).NextState = Unlocked

 'car is locked but engine started!
 m_myActionTable(LockedAndIdle, EngineStarted).ActionsToPerform(0) = SoundAlarm
 m_myActionTable(LockedAndIdle, EngineStarted).ActionsToPerform(1) = NoAction
 m_myActionTable(LockedAndIdle, EngineStarted).NextState = AlarmSounding

 'unlock and alarm is sounding
 m_myActionTable(AlarmSounding, UnlockSignal).ActionsToPerform(0) = UnlockCar
 m_myActionTable(AlarmSounding, UnlockSignal).ActionsToPerform(1) = ResetAlarm
 m_myActionTable(AlarmSounding, UnlockSignal).ActionsToPerform(2) = NoAction
 m_myActionTable(AlarmSounding, UnlockSignal).NextState = Unlocked
End Sub

Public Function ProcessEvent(ByVal currentState As CarState, ByVal anEvent _
 As CarEvent) As CarState
 'first perform all actions for the current state and event combination
 Dim iActionIndex As Integer
 Dim iActionID As Integer

UML to VB Mapping

471

 'get first action to perform
 'stop on first "NoAction"
 iActionID = m_myActionTable(currentState _
 nEvent).ActionsToPerform(iActionIndex)
 Do While NoAction <> iActionID
 'translate action ID into the actual action call
 Select Case iActionID
 Case Is = LockCar
 m_theCar.LockCar
 Case Is = UnlockCar
 m_theCar.UnlockCar
 Case Is = SoundAlarm
 m_theCar.SoundAlarm
 Case Is = ResetAlarm
 m_theCar.ResetAlarm
 Case Is = InternalStartEngine
 m_theCar.InternalStartEngine
 End Select

 'get next action ID
 iActionIndex = iActionIndex + 1
 iActionID = m_myActionTable(currentState, _
 anEvent).ActionsToPerform(iActionIndex)
 Loop

 'move to next state (might be the same)
 ProcessEvent = m_myActionTable(currentState, anEvent).NextState
End Function

The state machine data structures are held in a separate module:

'data for Car FSM

Public Type ActionEntry
 ActionsToPerform(2) As CarAction 'currently allow max 3 actions per event
processed
 NextState As CarState 'state to transition to
End Type

'things the car can do in response to state/event combinations
Public Enum CarAction
 NoAction 'used as a placeholder to mark end of actions for an entry
 LockCar
 UnlockCar
 SoundAlarm
 ResetAlarm
 InternalStartEngine
End Enum

'events that a car can receive
'these will be either be sourced from the client or sub components of car
Public Enum CarEvent
 LockSignal
 UnlockSignal
 EngineStarted
 MAX_EVENT
End Enum

VB6 UML

472

'states that a car can be in
Public Enum CarState
 none 'intial state
 Unlocked
 LockedAndIdle
 AlarmSounding
 MAX_STATE
End Enum

The state/event/action information has been stored in a two-dimensional table. To find out what actions
need to be performed on a given event, the state machine just indexes into this table using the current state
and event just received.

Each entry in the table contains a list of actions to perform in sequence, terminated by the special action
"NoAction". Each entry also contains "Next State", which is the state that the Car to enter after performing
the actions.

Note that the finite state machine (FSM) is part of the Car's implementation. The client code has remained
the same in both the examples. Clients shouldn't be aware of how you have implemented the state of the
object. (This is the power of object encapsulation.)

In the example it was decided that the state machine should be a separate abstraction. By doing this we have
made the Car class simpler to understand. However this decision has introduced some compromises. For
instance, the actions that Car can perform can no longer be private as the state machine (CarFSM class)
needs to call these procedures. These procedures now have 'Friend' access to at least ensure that they are
not visible outside of the component - only inside.

9.0 Activity Diagrams
These diagrams have a lot in common with Statechart diagrams in terms of the symbols used and their
underlying meaning. However, instead of concentrating on the state of an object, they generally focus on
the dynamic behavior of individual methods and the flow of actions within.

In VB terms, a single activity diagram usually maps to a single VB method. You should use activity
diagrams only when dealing with complex operations that are easier to understand visually than in code.

The interesting items on activity diagrams are action and transitions. An action usually maps to either a
single VB statement or a cohesive group of statements. We can see how this relates to our previous
example. The procedure call to SoundAlarm can be treated as a single action in an activity diagram.
Transitions are simply the invisible transition from one VB statement to the next so they don't have any
concrete mapping to deal with.

The text associated with an action, can also be conveniently mapped to a comment near to the statements,
particularly when the statements themselves aren't self-explanatory.

UML to VB Mapping

473

For completeness, here is an example activity diagram. This is the PerformUseCase operation on the
<<controller>> class TransferFunds we looked at earlier:

Begin Transaction

Withdraw Funds

Deposit Funds

Rollback Transaction Commit Transaction

End

Begin

[Error Occured] [No Errors]

Note that the code mapped from this is identical to that produced from the sequence diagram for the same
operation, so we won't repeat it.

10.0 Implementation Diagrams: Component
& Deployment Diagrams

UML Notation VB Notes

Component

Project
The stereotype of the
component determines the
type of VB project.

Interface

'PublicNotCreatable' Class

Table Continued on Following Page

VB6 UML

474

UML Notation VB Notes

Node

None

Outside the scope of the language. Relates
to a process such as a machine or a process
inside that machine that is capable of
running a program binary.

10.1 UML Components and Visual Basic

Components are hot stuff at the moment. However, the terminology of components can get very confusing
at times. A component could be defined as any software artifact that is reusable. This could be a class, a
user control or even a design document.

Still, when developers talk about components, we are usually referring to either physical components, i.e.
Active X components, DLLs, etc. or logical components, i.e. Business Objects, such as Account, Sale,
etc., contained and exposed from these physical components.

It's important to make a distinction here.

� Logical components expose services that applications can use, e.g. Account exposes the service Withdraw
Cash.

� Physical components, on the other hand, are the packaging and deployment of these logical components and
their partitioning is influenced by the technical requirements of the target system.

This is what Component Diagrams help us visualize.

10.2 Logical components

A logical component is simply a class in UML terms that expose a number of interfaces.

Document

IDocument
IPersistent
IPrintable

UML to VB Mapping

475

For mapping purposes, it is probably easier to look at an alternative but more familiar representation:

::Word Processing

Document

«interface»
IDocment

«interface»
IPersistent

«interface»
IPrintable

IPersistent

IPrintable

Implements

Implements

Implements

Components also have a private implementation, which typically involves one or more private classes that
carry out the work for the component. The client code using the component via interfaces is completely
unaware of how the services requested are being handled internally. This is the key strength of component
development.

Any VB class in a Project that has an instancing property that is not private can be treated as a logical
component. The classes in the project that have an instancing property of 'Private' are usually there to
provide the implementation of the exposed components.

If we consider the Car example introduced in the Statechart mapping, the Car could be exposed as a
logical component and the CarFSM would be part of the private implementation.

10.3 Physical Components
A physical component in UML is mapped to a VB Project, i.e. the project builds the component.

The UML can show a component offering many interfaces to its prospective users. Here is an example

IApplication

IDocument

IPersist

IParagraph

::<<ActiveX EXE>>Word

Application

Document

Paragraph

Indexer

Dictionary

VB6 UML

476

physical component together with exposed logical components and two hidden implementation classes:

However VB Developers should note that it isn't really the UML component that is offering interface -
rather the classes within the component (project) that are marked as public. This is something that the UML
is not clear about. It is likely that the distinction will be clarified in later drafts.

10.4 Stereotypes
The UML comes with a standard set of stereotypes for components:

An <<executable>> stereotype of component simply states that the item represents an executable file, such
as 'program.exe', and can be individually deployed onto a node on a network.

A <<file>> component stereotype is nothing more than a physical file. However, this notation gives us the
opportunity to model files and more importantly, show where files live on a network of nodes in the system
we are building.

Most CASE tools extend the range of stereotypes available for components to cover those supported by
target programming languages. Visual Basic, for instance, is capable of creating the following component
stereotypes:

Stereotype Meaning

<<ActiveX DLL>> An ActiveX server packaged as a dynamic link library.

<<ActiveX EXE>> An ActiveX server packaged as an executable program.

<<EXE>> A regular Win32 executable (without COM).

<<DLL> A regular Win32 dynamic link library.

UML to VB Mapping

477

VB6 UML

478

Creating a VB Code Generator
Add-In

In this appendix I will show you how to create a Visual Basic application that will read from a database and
generate code for a three-tier DNA application which will connect to this database. This code generator can
be used to create the basis of any Visual Basic application, including the ones you are currently building.
As you have all of the code here, you can customize the code generator for your needs.

When building a Visual Basic code generator application, you will actually have two projects, the
application to generate the code and the application that will be generated. The application that is to be
generated must be built from patterns so that we can use these patterns to generate the code.

We will covered the basic functioning of the code and provided UML class diagrams for all of the modules
that are generated in Chapter 9, and the workings of this code are covered in detail in the VB6 UML book.

I have chosen to use an Access database for generating the code. I made this choice because most Visual
Basic programmers are familiar with working with Access databases. We will generate an object for each
table in the database. The field names in the tables will become the properties of the objects. The methods
will be the standard methods for a recordset.

Instead of using an Access database, we could use the Microsoft Repository as the source of information for
the code generator. The Microsoft Repository is a file that allows information, such as certain UML
diagrams, to be stored in a universal format. Thus, regardless of the UML tool I am using, I can export my
diagrams to the repository in one standard format. Using this standard format, I can read the data out.

Appendix C

480

If you wanted to use the repository for my code generator instead of the Access database, you would have
to write one extra code module that reads the repository and adds tables to an Access database. The table
names would be the names of the classes you want to generate and the table fields would be the names of
the attributes you want the class to have. Thus, the following project I am providing can easily be expanded
to generate code from any source; you just have to convert the information into Access tables.

Before we look at code generator itself, we must first look at the Visual Basic add-in object hierarchy. You
might imagine that there would be tons of information on how to this, but actually, there is very little
information out there. We will start by building a Visual Basic add-in and then move onto getting
information on an Access database.

Building a Visual Basic Add-in
Being able to build your own add-ins is one of the more powerful features of Visual Basic. To make it
work, you will need to do a few things. The first thing you must do is add your application into the .ini
file that contains a list of Visual Basic add-ins. You may find it hard to imagine that we are still using an
.ini file, but we are. If you do not remember what an .ini file is, it is simply a text file that contains
information for a particular program. For the most part, it has been replaced by the registry.

The most critical piece of information that we put into the add-in .ini file is the identifier for the add-in.
We will be using the standard project name dot class name. Let us begin by creating a function to add the
information into the .ini file. Create a new Visual Basic ActiveX DLL project and call it
CodeGenerator. Call the default class CodeGeneratorClass. Add a .bas module to the project and
call it basMain. We are going to use an API function called WritePrivateProfileString to write
to the .ini file. If you are not familiar with API functions, they are functions that are provided by
Windows. We can use these functions in our Visual Basic application by declaring the function in our
Visual Basic application in a .bas module using the Declare keyword. Add the following code to
basMain to declare the windows function WritePrivateProfileString in your Visual Basic
project:

Public Declare Function WritePrivateProfileString _
 Lib "kernel32" _
 Alias "WritePrivateProfileStringA" _
 (ByVal ApplicationName As String, _
 ByVal KeyName As Any, _
 ByVal KeyDefault As Any, _
 ByVal FileName As String) As Long

If you are wondering what all of this means, kernel32 is the DLL where the function resides. The alias,
WritePrivateProfileStringA, is the real name of the function (there are usually two versions, one
for Unicode strings and one for regular strings). WritePrivateProfileString is the name we give it
and which we will use in our code. ApplicationName is the name of the section that you want to add
this information to KeyName is the information you want to put into the ApplicationName section
KeyDefault is the default value of ApplicationName, and FileName is the name of the .ini file
you want to put the information in. In our case, ApplicationName is Add-Ins32, the KeyName is
CodeGenerator.CodeGeneratorClass, the KeyDefault is 0 and the name of the file is
VBADDIN.INI. You can probably find VBADDIN.INI in your Windows directory. My VBADDIN.INI
has the following entries:

Creating a VB Code Generator Add-In

481

[Add-Ins32]
MTxAddIn2.RegRefresh=3
DTCFrameWork.AddIn=0
RVBAddInMenus.Connector=0
RVBAddIn.Connector=0
vbscc=3
VBObjTest.Application.1=0
VisioUMLSolution.VisioUMLSolution=3

Of course, we could manually enter the name of our component into the .ini file, but it is safer to use the
Windows API function.

Fortunately, Visual Basic now comes with a
tool that allows us to get the proper
declarations for all our Windows API
functions. If you go to the Windows
Start/Programs/Microsoft Visual Studio
6/Microsoft Visual Studio 6 Tools/API
Text Viewer you will pull up the API text
viewer. If it is the first time you are using it,
you will have to load the information first.
To do this, in the API Text Viewer Select
File/Load Text File:

Select Win32API.txt. If you select
Declares from the dropdown list, you will
find our API function.

Appendix C

482

I have changed the names of the parameter in the function declaration. You can do this as long as you have
the right number of parameters and each parameter has the correct data type.

API functions can extend the Visual Basic language. For the most part these functions have been wrapped
by functions within Visual Basic. Sometimes, though, using an API function is the only way to get the
information you require or to do what you need to do.

Next we will add a function that uses our Windows API, called AddToIni, to basMain:

Public Sub AddToINI()
 Dim lngReturn As Long
 lngReturn = WritePrivateProfileString("Add-Ins32", _
 "CodeGenerator.CodeGeneratorClass", "0", "VBADDIN.INI")
 MsgBox "Add-in is now entered in VBADDIN.INI file."
End Sub

We will show an easy way to use this sub later. The next step is to get access to the Visual Basic IDE object
hierarchy so that we can manipulate objects in the Visual Basic IDE. To do this, we will need access to the
extensibility object.

Visual Basic Extensibility Object
For our purposes we will be interested in two parts of the extensibility object. The most important is the
VBIDE object, which contains everything we need to fully manipulate the Visual Basic IDE. The VBIDE
main object is the Visual Basic Editor or VBE. The VBE has many objects with many properties and
methods. We will only look at a few of the properties and methods. First, let us consider what we want to
do. To generate a project we will need to do the following:

� We will make an ActiveX control project for each table in the database. We will therefore need to add a
new project to the group for each table.

� As we will discuss in more detail below, each project will consist of two classes, the control and a .bas
module. Therefore, we will need the ability to add modules to our Visual Basic projects.

� We will need to add references to our project.

� We will need to change the names of the project and the parts of the project.

The VBE object hierarchy looks as
follows:

Creating a VB Code Generator Add-In

483

We have included the methods that we will be using with the objects.

You can see that the VBE object is the main managing object of the Visual Basic IDE. The VBProjects
object manages VBProject objects, the References object manages Reference objects and the
VBComponents object manages VBComponent objects. As you can see, this object hierarchy is built just
like the business services components we discussed in Chapter 8, except that this hierarchy is a little more
complex and it has more objects and levels. If you look at the managing classes in the Visual Basic object
browser, you will see that they consist primarily of methods. The managed classes are primarily properties.

The methods that we will need to use are:

� The Add method of the VBProjects object, which will return a new VBProject object.

� The AddFromGUID method of the References object, which will add a new reference object to the
project object based on the GUID of the reference.

� The Item method of the VBComponents object which will return one of the project's components,
such as a class or a form.

� The AddFromString method of the CodeModule object that allows you to use a string to add code
to a module.

Now let us take a look at the CodeGenerator project that we will use to create this project.

Finishing BasMain
We will need some information from the database so we can know how to write our functions properly.
Remember, we are using tables from an Access database as the basis for our components. Therefore, we
will need to know the table name so that we can set the name of our component to it. We will also have to
know the names of the fields for our properties and we will have to know the data types for each property.
We will also need to store information on the queries that will be used to get the information from the
database. To help keep track of all of this information, we will add the following enumerated types to the
declarations section of the basMain module:

Public Type FieldInformation
 FieldName As String
 PropertyName As String
 DataType As String
End Type

Public Type TableInformation
 TableName As String
 FieldInfo() As FieldInformation
 PrimaryKey As String
End Type

It is possible that the field names may have spaces or other characters that will have to be removed if they
are going to be used as names of classes, .bas modules or variables in Visual Basic. To do this, we will
need a function that strips out these characters. Add this function to basMain:

Appendix C

484

Public Sub CleanFields(ByRef r_uFieldInfo() As FieldInformation, _
 ByRef r_sFieldNames() As String)
Dim lngFieldCounter As Long
ReDim r_sFieldNames(1 To UBound(r_uFieldInfo))
For lngFieldCounter = 1 To UBound(r_uFieldInfo)
 r_sFieldNames(lngFieldCounter) = r_uFieldInfo(lngFieldCounter).FieldName
 Do While InStr(1, r_sFieldNames(lngFieldCounter), " ") > 0
 If InStr(1, r_sFieldNames(lngFieldCounter), " ") > 0 Then
 Dim lngLocationSpace As Long
 Dim lngLengthString As Long
 Dim strFieldName As String
 strFieldName = r_sFieldNames(lngFieldCounter)
 lngLocationSpace = InStr(1, strFieldName, " ")
 lngLengthString = Len(strFieldName)
 r_sFieldNames(lngFieldCounter) = _
 Left(strFieldName, lngLocationSpace - 1) & _
 Right(strFieldName, lngLengthString - lngLocationSpace)
 End If
 Loop
Next
End Sub

This function takes the string array parameter r_sFieldNames() and places names into the array that do
not have spaces. The r_uFieldInfo parameter is filled with all of the field names from the table that a
business object is currently being built from. The For loop enumerates through all of the fields that are in
the r_uFieldInfo variable. Within the For loop we set the current r_sFieldNames() array member
equal to the current r_uFieldInfo array member. The Do loop enumerates through the name of the field
until all of the spaces have been removed. The Left and Right statements simple divide the string up into
two pieces, the section before the space and the section after the space, and then join the two pieces
together again.

Writing the Code for the Code Generator
We will use .bas modules to hold the code needed to generate the different modules. For each section, we
will build the code modules with a single string. Then, using the Visual Basic IDE, we will add these
strings into projects to build our components. Thus, we must take the code from our project and convert it
into strings that can be placed into the Visual Basic IDE to generate the code for the project.

Coding the Bas Module
Add a module called BuildBas to your project. This module will be used to build the .bas module
associated with each business component. We will begin with a General Declarations section to create
enumerated types and constants needed for the project.

In our generated code, the declarations in the .bas module for the customer component will look as
follows:

Creating a VB Code Generator Add-In

485

Option Explicit

Public Enum CustomerErrors
 errChangeFieldNoEdit = 1001
 errEditPrimaryKey = 1002
 errPrimaryKeyLength = 1003
 errCustomerTitleType = 1004
End Enum

Public Const g_cstrFieldCustomerID As String = "CustomerID"
Public Const g_cstrFieldAddress As String = "Address"
Public Const g_cstrFieldCity As String = "City"
Public Const g_cstrFieldCompanyName As String = "CompanyName"
Public Const g_cstrFieldContactName As String = "ContactName"
Public Const g_cstrFieldContactTitle As String = "ContactTitle"
Public Const g_cstrFieldCountry As String = "Country"
Public Const g_cstrFieldFax As String = "Fax"
Public Const g_cstrFieldPhone As String = "Phone"
Public Const g_cstrFieldPostalCode As String = "PostalCode"
Public Const g_cstrFieldRegion As String = "Region"
Public Const g_cstrFieldProductName As String = "ProductName"

Public Const g_cdmAllCustomers As String = "AllCustomers"
Public Const g_cdmCustomersContactTitleEquals As String = _
 "CustomersContactTitleEquals"

For our code generator, we need to find a way to generate these declarations for any component we are
generating. Looking at the error-enumerated type, we can see the first three are general errors. We can
include these three errors in all of the classes to give the developer a place to add the rest of the errors.

The constants are based on the names of the fields. Thus, if we move through the fields, we can create a
template string that will give us all of the public constants. The template for these would look as follows:

Public Const g_cstrField & FieldName As String = "FieldName"

The last two constants are used for the where clause to create groups. In the case of customer, we can
choose all customers or customers whose contact title equals some value. To simplify things, we will only
create a where clause from the primary key. If the developer needs additional where clause items, they can
add them.

Begin by creating a function called CreateDeclarations. The basis for this code module is the
following code:

Public Enum CustomerErrors
 errChangeFieldNoEdit = 1001
 errEditPrimaryKey = 1002
 errPrimaryKeyLength = 1003
End Enum

Public Const g_cstrFieldCustomerID As String = "CustomerID"
Public Const g_cdmAllCustomers As String = "AllCustomers"

Appendix C

486

Put the following code into the BuildBas module:

Public Function CreateDeclarations _
 (ByRef v_uFieldInfo() As FieldInformation, _
 ByVal v_sPrimaryKey As String, _
 ByVal v_sTableName As String)

The first parameter is a FieldInformation object which will have information on the fields in the table
that is currently being used to build a business object. The primary key will be used to make where clauses.
The table name is needed to make constants.

We will need to declare the following variables:

Dim lngFieldCounter As Long
Dim strCode As String
Dim strFieldNames() As String

The strFieldNames variable will be passed into the CleanFields function so it will hold the names
of the fields without spaces. The strCode variable will be the variable we will use to hold the string with
all of the declarations.

Next, send strFieldNames and v_uFieldInfo into the CleanFields function:

CleanFields v_uFieldInfo, strFieldNames

Now, we can actually start building the code for the module. We want to create an enumerated type with
possible errors for this object. We want the enumerated type’s name to be based on the table name so we
will add that into the name of the enumerated type. First, though, we need to remove any spaces from the
name:

Dim strTableName As String
strTableName = v_sTableName
Do Until InStr(strTableName, " ") = 0
 Dim lngSpace As Long
 lngSpace = InStr(strTableName, " ")
 strTableName = Left(strTableName, lngSpace - 1) & _
 Right(strTableName, Len(strTableName) - lngSpace)
Loop
strCode = strCode & "Public Enum " & strTableName & "Errors" & _
 Chr(13) & Chr(10)

We will add the three standard errors to our modules:

strCode = strCode & " errChangeFieldNoEdit = 1001" & Chr(13) & Chr(10)
strCode = strCode & " errEditPrimaryKey = 1002" & Chr(13) & Chr(10)
strCode = strCode & " errPrimaryKeyLength = 1003" & Chr(13) & Chr(10)
strCode = strCode & "End Enum" & Chr(13) & Chr(10)

We want the names of the fields to all be placed into one place. To do this, we will create constants for each
field name using the names stored in the strFieldNames array. Each constant will begin with
g_cstrField followed by the name of the field:

Creating a VB Code Generator Add-In

487

For lngFieldCounter = 1 To UBound(v_uFieldInfo)
 strCode = strCode & "Public Const g_cstrField" & _
 strFieldNames(lngFieldCounter) & " As String = " & _
 Chr(34) & v_uFieldInfo(lngFieldCounter).FieldName & _
 Chr(34) & Chr(13) & Chr(10)
Next

Finally, we will make a constant that will be used to make a where clause based on the primary key and set
the function to the string we have built.

strCode = strCode & "Public Const g_cdm" & v_sPrimaryKey & _
 " As String = " & Chr(34) & v_sPrimaryKey & "Equals" & _
 Chr(34) & Chr(13) & Chr(10)
CreateDeclarations = strCode
End Function

The final result of this function for the Northwind database for the Customers class would look as
follows:

Public Enum CustomersErrors
 errChangeFieldNoEdit = 1001
 errEditPrimaryKey = 1002
 errPrimaryKeyLength = 1003
End Enum
Public Const g_cstrFieldAddress As String = "Address"
Public Const g_cstrFieldCity As String = "City"
Public Const g_cstrFieldCompanyName As String = "CompanyName"
Public Const g_cstrFieldContactName As String = "ContactName"
Public Const g_cstrFieldContactTitle As String = "ContactTitle"
Public Const g_cstrFieldCountry As String = "Country"
Public Const g_cstrFieldCustomerID As String = "CustomerID"
Public Const g_cstrFieldFax As String = "Fax"
Public Const g_cstrFieldPhone As String = "Phone"
Public Const g_cstrFieldPostalCode As String = "PostalCode"
Public Const g_cstrFieldRegion As String = "Region"
Public Const g_cdmCustomerID As String = "CustomerIDEquals"

When making a code generator, you would start with the coded project. Using this and the UML diagrams
as a template, you can find the patterns that you will need to build your code. We will be doing this with the
rest of the code from the project in the VB6 UML book. You can compare the generalized code in the
generator with the code in the VB6 UML book. Where the code sample used generic terms, we will copy it
exactly. Where specific names are used, such as customer or address, we will need to create generic strings
and create loops.

Appendix C

488

Let us now add the function to read errors. Add the following code to BuildBas:

Public Function CreateErrorFunc()

Dim strCode as String
strCode = "Public Function GetErrorText" & _
 " (ByVal v_lngErrorNumber As Long)" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo GetErrorText_Error" & Chr(13) & Chr(10)
strCode = strCode & " GetErrorText = LoadResString(v_lngErrorNumber)" & _
 Chr(13) & Chr(10)
strCode = strCode & " Exit Function" & Chr(13) & Chr(10)
strCode = strCode & "GetErrorText_Error:" & Chr(13) & Chr(10)
strCode = strCode & " If Err.Number <> 0 Then" & Chr(13) & Chr(10)
strCode = strCode & " GetErrorText =" & Chr(34) & _
 "An unknown error has occurred, the error was not found" & _
 Chr(34) & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
CreateErrorFunc = strCode

End Function

Let us now move on to coding the bottom class.

Coding the Bottom Class
For the bottom class we need to take the fields from each Access table and make them into properties in the
bottom class. Once again we will need to make the General Declarations section. Add a new .bas
module to the CodeGenerator project and call it BuildBottom and add the following sections to the
BuildBottom class:

Bottom Class Declarations

Public Function CreateDeclarations() As String
Dim strCode As String
strCode = strCode & " Private m_blnValidatingFieldChange As Boolean" & _
 Chr(13) & Chr(10)
strCode = strCode & " Private m_eEditMode As ADODB.EditModeEnum" & _
 Chr(13) & Chr(10)
strCode = strCode & " Private m_strErrorDetails As String" & Chr(13) & _
 Chr(10)
strCode = strCode & " Private m_blnIgnoreFieldChange As Boolean" & _
 Chr(13) & Chr(10)
strCode = strCode & " Private m_blnInFieldChange As Boolean" & _
 Chr(13) & Chr(10)
strCode = strCode & " Private m_avarAcceptableValuesTitle As Variant" & _
 Chr(13) & Chr(10)
strCode = strCode & " Private m_strManagedObjectDataMember As String" & _
 Chr(13) & Chr(10)
strCode = strCode & " Private WithEvents m_recManagedObjects As " & _
 " ADODB.Recordset" & Chr(13) & Chr(10)
strCode = strCode & " Public Event RefreshDataMember()" & Chr(13) & _
 Chr(10)
strCode =strCode & " Public Event EditInProgress(ByVal v_strEditMode)" & _
 Chr(13) & Chr(10)
CreateDeclarations = strCode
End Function

Creating a VB Code Generator Add-In

489

The code that we will generate will have a disconnected Recordset object that can be accessed by this
class and also by the managing class. This recordset will be passed to controls such as textboxes or
gridboxes. The recordset will also be used to retrieve the values of the properties, instead of keeping private
variables for all of the properties. The event RefreshDataMember will alert the managing class that it
needs to refresh the bound controls. EditInProgress will alert the managing class that an edit has been
started by changing a field value. Let us now add the class Initialize event.

Class Initialize
We will have to initialize our objects in the Class_Initialize event. Add the function
CreateInitialize to the BuildBottom .bas module to generate the Class_Intialize event:

Public Function CreateInitialize() As String
Dim strCode As String

strCode = " Private Sub Class_Initialize()" & Chr(13) & Chr(10)
strCode = strCode & " m_blnValidatingFieldChange = False" & Chr(13) & Chr(10)
strCode = strCode & " m_blnIgnoreFieldChange = False" & Chr(13) & Chr(10)
strCode = strCode & " m_blnInFieldChange = False" & Chr(13) & Chr(10) & _
 Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo InitializeError" & Chr(13) & Chr(10)
strCode = strCode & " m_eEditMode = adEditNone" & Chr(13) & Chr(10)
strCode = strCode & " Set m_recManagedObjects = New ADODB.Recordset" & _
 Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "InitializeError:" & Chr(13) & Chr(10)
strCode = strCode & " MsgBox " & Chr(34) & "Error In Class Initialize" & _
 Chr(34) & Chr(13) & Chr(10)
strCode = strCode & "End Sub"
CreateInitialize = strCode
End Function

Class Terminate
We will also need to clean up when the class is done. Add the following code to make our
Class_Terminate event:

Public Function CreateTerminate()

Dim strCode As String
strCode = strCode & "Private Sub Class_Terminate()" & Chr(13) & Chr(10)
strCode = strCode & " If Not m_recManagedObjects Is Nothing Then" & Chr(13) & _
 Chr(10)
strCode = strCode & " With ItemsRecordset" & Chr(13) & Chr(10)
strCode = strCode & " If .State = adStateOpen Then" & Chr(13) & Chr(10)
strCode = strCode & " If Not .BOF And Not .EOF Then" & Chr(13) & Chr(10)
strCode = strCode & " If .EditMode <> adEditNone Then" & Chr(13) & Chr(10)
strCode = strCode & " .CancelUpdate" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " .Close" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " End With" & Chr(13) & Chr(10)
strCode = strCode & " Set m_recManagedObjects = Nothing" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
CreateTerminate = strCode
End Function

Appendix C

490

Creating the ValidateFields Function
We will need a function to validate the fields if they are changed in the recordset by a bound control. Add
this function to BuildBottom:

Public Function CreateValidateFields(ByRef r_uFieldInfo() As _
 FieldInformation) As String
Dim strCode As String
Dim lngFieldsCounter As Long
Dim strFieldNames() As String

CleanFields r_uFieldInfo, strFieldNames

strCode = "Friend Function ValidateFields(ByVal v_vFields As Variant, _" & _
 Chr(13) & Chr(10)
strCode = strCode & " ByVal v_recRecordset As ADODB.Recordset) " & _
 " As Boolean" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo ValidateFieldsError" & Chr(13) & _
 Chr(10)
strCode = strCode & " m_blnValidatingFieldChange = True" & Chr(13) & _
 Chr(10)
strCode = strCode & " Select Case LCase(v_vFields(0).Name)" & Chr(13) & _
 Chr(10)
For lngFieldsCounter = 1 To UBound(r_uFieldInfo)
 strCode = strCode & " Case g_cstrField" & _
 strFieldNames(lngFieldsCounter) & Chr(13) & Chr(10)
 strCode = strCode & " " & strFieldNames(lngFieldsCounter) & _
 " = v_recRecordset.Fields(g_cstrField" & _
 strFieldNames(lngFieldsCounter) & ")" & Chr(13) & Chr(10)
Next
strCode = strCode & " Case Else" & Chr(13) & Chr(10)
strCode = strCode & " ValidateFields = False" & Chr(13) & Chr(10)
strCode = strCode & " End Select" & Chr(13) & Chr(10)
strCode = strCode & " m_blnValidatingFieldChange = False" & Chr(13) & _
 Chr(10)
strCode = strCode & " ValidateFields = True" & Chr(13) & Chr(10)
strCode = strCode & " Exit Function" & Chr(13) & Chr(10)
strCode = strCode & "ValidateFieldsError:" & Chr(13) & Chr(10)
strCode = strCode & " ValidateFields = False" & Chr(13) & Chr(10)
strCode = strCode & " m_blnValidatingFieldChange = False" & Chr(13) & _
 Chr(10)
strCode = strCode & " Err.Clear" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
CreateValidateFields = strCode
End Function

Changed Field Event
We created our recordset variable with events. We want to be able to capture any changes to the recordset
using the change field event. When a field has changed, we will want to validate this change if it was made
through the recordset. If the change was made through the properties or by the recordset, we want to refresh
the controls bound to the bottom and managing objects. We will add the code for this method into our
BuildBottom module:

Public Function CreateChangedField() As String

Creating a VB Code Generator Add-In

491

We will begin by coding the event exactly as an ADO recordset would create it:

Dim strCode As String
strCode = strCode & "Private Sub " & _
 "m_recManagedObjects_FieldChangeComplete(ByVal cFields As Long," & _
 "ByVal Fields As Variant, ByVal pError As ADODB.Error," & _
 "adStatus As ADODB.EventStatusEnum, " & _
 "ByVal pRecordset As ADODB.Recordset)" & Chr(13) & Chr(10)

Next we will set up error handling and check to see if the flag that tells us to not validate field changes has
been set:

strCode = strCode & " On Error GoTo FieldChangeError" & Chr(13) & Chr(10)
strCode = strCode & " If m_blnIgnoreFieldChange = True Then" & Chr(13) & _
 Chr(10)

If the flag is set to true, this change occurred by a property changing the field. In this case, we want to reset
it to false, refresh all controls bound to this object and the managing object and exit the function without
validating the fields:

strCode = strCode & " m_blnIgnoreFieldChange = False" & Chr(13) & _
 Chr(10)

When using data provider classes, we must call the DataMemberChanged function to refresh the controls
bound to this object:

strCode = strCode & " DataMemberChanged ItemsDataMember" & Chr(13) & _
 Chr(10)

We must now pass a message up to the managing class that it must refresh all of the controls that it is
bound to:

strCode = strCode & " RaiseEvent RefreshDataMember" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

If this field change is being called because this routine has made a change to the field value, we will end up
in an infinite loop. To check this we check the m_bInFieldChange flag. If it is true, this routine has
been called by a change in a previous call to this routine and we should exit the function:

strCode = strCode & " If m_blnInFieldChange = True Then" & Chr(13) & _
 Chr(10)
strCode = strCode & " m_blnInFieldChange = False" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

Appendix C

492

If there are no records to validate or the recordset is not open, there is nothing to check, so we should exit:

strCode = strCode & " If m_recManagedObjects.RecordCount = 0 _" & _
 Chr(13) & Chr(10)
strCode = strCode & " Or m_recManagedObjects.State <> adStateOpen Then" & _
 Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

If we are in the middle of deleting a record, we do not need to validate a field change:

strCode = strCode & " If EditMode = adEditDelete Then" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

If an edit has been started by changing a field in the recordset, we need to set the EditMode property:

strCode = strCode & " If EditMode = adEditNone Then" & Chr(13) & Chr(10)
strCode = strCode & " EditMode = adEditInProgress" & Chr(13) & Chr(10)
strCode = strCode & " RaiseEvent EditInProgress(adEditInProgress)" & _
 Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

Finally, if we get to this point it means that we are doing an AddNew or Edit and we need to now validate
the field. To do this we will pass the fields and the recordset into the ValidateFields function. If this
function returns false, the record change is not valid:

strCode = strCode & "If ValidateFields(Fields, pRecordset) = False Then" & _
 Chr(13) & Chr(10)

If ValidateFields comes back false, this was an invalid change and we must set the value back to the
original field value:

strCode = strCode & " m_blnInFieldChange = True" & Chr(13) & Chr(10)
strCode = strCode & " m_recManagedObjects.Fields(Fields(0).Name).Value" & _
 " = _ " & Chr(13) & Chr(10)
strCode = strCode & " pRecordset.Fields(Fields(0).Name).UnderlyingValue" & _
 Chr(13) & Chr(10)
strCode = strCode & " m_blnInFieldChange = False" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

As before, we must refresh the bound controls:

strCode = strCode & " DataMemberChanged ItemsDataMember" & Chr(13) & _
 Chr(10)
strCode = strCode & " RaiseEvent RefreshDataMember" & Chr(13) & Chr(10)

Creating a VB Code Generator Add-In

493

Finally, we write the error trap:

strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "FieldChangeError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "FieldChange " & _
 Chr(34) & " & Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
CreateChangedField = strCode
End Function

As you can see, this is no different than coding the real module, except everything is wrapped in quotes and
has a Chr(13) & Chr(10) at the end to add a carriage return and line feed.

Get and Let Functions
We will now need to add the properties to our bottom class. Add the following function to the
BuildBottom module:

Public Function CreateGetLet(ByRef r_uFieldInfo() As FieldInformation) _
 As String

Dim strCode As String
Dim lngFieldsCounter As Long
Dim strFieldNames() As String

We will need to use the CleanFields function again as we want to use names without spaces for our
property names:

CleanFields r_uFieldInfo, strFieldNames

For each member in the fields array, we will need to add a property. To get the total number of items in a
one-based array (an array that starts with item 1) we can use Ubound. We will show you later how we built
our arrays to be one-based instead of zero-based.

For lngFieldsCounter = 1 To UBound(r_uFieldInfo)

We will now create the Property Get using the field name without spaces and the data type parameter
of the r_uFieldInfo user-defined type:

strCode = strCode & "Public Property Get " & _
 strFieldNames(lngFieldsCounter) & "() As " & _
 r_uFieldInfo(lngFieldsCounter).DataType & Chr(13) & Chr(10)

We will use the recordset to get the value of the field:

strCode = strCode & " On Error Resume Next" & Chr(13) & Chr(10)
strCode = strCode & " " & strFieldNames(lngFieldsCounter) & _
 "= ItemsRecordset.Fields(g_cstrField" & _
 strFieldNames(lngFieldsCounter) & ")" & Chr(13) & Chr(10)
strCode = strCode & " If Err.Number <> 0 Then" & Chr(13) & Chr(10)

Appendix C

494

We will ignore errors caused by a field not being found:

strCode = strCode & " If Err.Number <> 3265 Then" & Chr(13) & _
 Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & _
 strFieldNames(lngFieldsCounter) & "Get" & Chr(34) & _
 ", Err.Description" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)

Our Let Property routines will be built in a similar manner:

strCode = strCode & "Public Property Let " & _
 strFieldNames(lngFieldsCounter) & "(ByVal v_strNew" & _
 strFieldNames(lngFieldsCounter) & " As " & _
 r_uFieldInfo(lngFieldsCounter).DataType & ")" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo " & _
 strFieldNames(lngFieldsCounter) & "LetError" & Chr(13) & Chr(10)
strCode = strCode & " If m_blnValidatingFieldChange = True Then" & _
 Chr(13) & Chr(10)
strCode = strCode & " Exit Property" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " If m_eEditMode = adEditInProgress " & _
 "Or m_eEditMode = adEditAdd Then" & Chr(13) & Chr(10)
strCode = strCode & " m_blnIgnoreFieldChange = True" & Chr(13) & _
 Chr(10)
strCode = strCode & " ItemsRecordset.Fields(g_cstrField" & _
 strFieldNames(lngFieldsCounter) & ") = v_strNew" & _
 strFieldNames(lngFieldsCounter) & "" & Chr(13) & Chr(10)
strCode = strCode & " ElseIf m_eEditMode = adEditNone Then" & _
 Chr(13) & Chr(10)
strCode = strCode & " Err.Raise 1001," & Chr(34) & _
 strFieldNames(lngFieldsCounter) & " Let:" & Chr(34) & _
 ", GetErrorText(errChangeFieldNoEdit)" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Property" & Chr(13) & Chr(10)
strCode = strCode & strFieldNames(lngFieldsCounter) & "LetError:" & _
 Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & _
 strFieldNames(lngFieldsCounter) & " Let " & Chr(34) & _
 " & Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)

Next
CreateGetLet = strCode
End Function

Creating a VB Code Generator Add-In

495

Miscellaneous Properties
We still have several properties, such as EditMode, that need to be created. We will lump these together
into one function:

Public Function CreateMiscProps(ByVal v_sTableName As String) As String

Dim strCode As String
strCode = "Public Property Get EditMode() As ADODB.EditModeEnum" & _
 Chr(13) & Chr(10)
strCode = strCode & " EditMode = m_eEditMode" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)
strCode = strCode & "Friend Property Let EditMode" & _
 " (ByVal v_eNewEditMode As ADODB.EditModeEnum)" & Chr(13) & Chr(10)
strCode = strCode & " m_eEditMode = v_eNewEditMode" & Chr(13) & Chr(10)
strCode = strCode & " RaiseEvent EditInProgress(v_eNewEditMode)" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)
strCode = strCode & "Friend Property Let ItemsDataMember(ByVal v_strNew" & _
 v_sTableName & "DataMember As String)" & Chr(13) & Chr(10)
strCode = strCode & " m_strManagedObjectDataMember = v_strNew" & _
 v_sTableName & "DataMember" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)
strCode = strCode & "Private Property Get ItemsDataMember() As String" & _
 Chr(13) & Chr(10)
strCode = strCode & " ItemsDataMember = m_strManagedObjectDataMember" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)
strCode = strCode & "Friend Sub RefreshDataMember()" & Chr(13) & Chr(10)
strCode = strCode & " DataMemberChanged ItemsDataMember" & Chr(13) & _
 Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Friend Property Get ItemsRecordset() As " & _
 " ADODB.Recordset" & Chr(13) & Chr(10)
strCode = strCode & " Set ItemsRecordset = m_recManagedObjects" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)
strCode = strCode & "Friend Property Set ItemsRecordset" & _
 " (ByVal v_recNewRecordset As ADODB.Recordset)" & Chr(13) & Chr(10)
strCode = strCode & " Set m_recManagedObjects = v_recNewRecordset" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub Class_GetDataMember" & _
 " (DataMember As String, Data As Object)" & Chr(13) & Chr(10)
strCode = strCode & " Set Data = m_recManagedObjects" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
CreateMiscProps = strCode
End Function

This completes the code to generate the bottom class.

Generating the Middle Class
The middle class will be made up of mostly methods to manage the bottom class. We will begin by adding
another .bas module to our project and call it BuildMiddle.

Appendix C

496

Creating the Declarations
We will begin with code to create the declarations section of our code. Add a function called
CreateDeclartions. It will be coded in a similar manner as the previous component. The
r_TableInfo will be a string array of table names with the spaces removed. We will use r_TableInfo
to build the following enumerated type:

Enum TableName
 e_Categories = 0
 e_Customers = 1
 e_Employees = 2
 e_Order Details = 3
 e_Orders = 4
 e_Products = 5
 e_Shippers = 6
 e_Suppliers = 7
End Enum

The v_sTableName parameter is the name of the table without spaces of the component it is being built
from:

Public Function CreateDeclarartions(ByRef r_TableInfo() As String, ByVal _
 v_sTableName As String) As String
Dim strCode As String
Dim lngTableCounter As Long
Dim strTempTableName As String

We will build our enumerated type first:

strCode = strCode & "Enum TableName" & Chr(13) & Chr(10)
For lngTableCounter = 1 To UBound(r_TableInfo)
 strTempTableName = r_TableInfo(lngTableCounter)
 strCode = strCode & " e_" & r_TableInfo(lngTableCounter) & _
 "=" & lngTableCounter - 1 & Chr(13) & Chr(10)
Next
strCode = strCode & "End Enum" & Chr(13) & Chr(10)

We will now build the BOFActionType and EOFActionType enumerated types to determine the
behaviour at the end of file and beginning of file:

strCode = strCode & "Public Enum BOFActionType" & Chr(13) & Chr(10)
strCode = strCode & " adMoveFirst = 0" & Chr(13) & Chr(10)
strCode = strCode & " adStayBOF = 1" & Chr(13) & Chr(10)
strCode = strCode & "End Enum" & Chr(13) & Chr(10)
strCode = strCode & "Public Enum EOFActionType" & Chr(13) & Chr(10)
strCode = strCode & " adMoveLast = 0" & Chr(13) & Chr(10)
strCode = strCode & " adStayEOF = 1" & Chr(13) & Chr(10)
strCode = strCode & " adAddNew = 2" & Chr(13) & Chr(10)
strCode = strCode & "End Enum" & Chr(13) & Chr(10)

Creating a VB Code Generator Add-In

497

Finally, we add the constants and variables needed by the managing class:

strCode = strCode & "Private m_eRecordsetName As TableName" & Chr(13) & _
 Chr(10)
strCode = strCode & "Private m_strWhereClause As String" & Chr(13) & Chr(10)
strCode = strCode & "Private m_strDataMember As String" & Chr(13) & Chr(10)
strCode = strCode & "Private m_strPrimaryKey As String" & Chr(13) & Chr(10)
strCode = strCode & "Private m_eBOFAction As BOFActionType" & Chr(13) & _
 Chr(10)
strCode = strCode & "Private m_eEOFAction As EOFActionType" & Chr(13) & _
 Chr(10)
strCode = strCode & "Private m_strUserName As String" & Chr(13) & Chr(10)
strCode = strCode & "Private m_strPassword As String" & Chr(13) & Chr(10)
strCode = strCode & "Private m_eEditMode As ADODB.EditModeEnum" & _
 Chr(13) & Chr(10)
strCode = strCode & "Private WithEvents m_objManagedObject As cls" & _
 v_sTableName & Chr(13) & Chr(10)
strCode = strCode & "Public Event ChangeManagedObjects()" & Chr(13) & _
 Chr(10)
strCode = strCode & "Const m_def_BOFAction = BOFActionType.adMoveFirst" & _
 Chr(13) & Chr(10)
strCode = strCode & "Const m_def_EOFAction = EOFActionType.adMoveLast" & _
 Chr(13) & Chr(10)
strCode = strCode & "Const m_def_UserName = " & Chr(34) & Chr(34) & _
 Chr(13) & Chr(10)
strCode = strCode & "Const m_def_Password = " & Chr(34) & Chr(34) & _
 Chr(13) & Chr(10)
strCode = strCode & "Private m_objDataSpace As RDS.DataSpace" & _
 Chr(13) & Chr(10)
strCode = strCode & "Private m_objProxy 'As clsServer" & Chr(13) & Chr(10)
CreateDeclarartions = strCode
End Function

Intialize and Terminate Functions
To simplify things, we will start grouping some of the code modules together. The following code will
create the Terminate and Initialize events:

Public Function CreateInitTerm(ByVal v_sTableName As String) As String
Dim strCode As String
strCode = strCode & "Private Sub Class_Initialize()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo IntitializeError" & Chr(13) & Chr(10)
strCode = strCode & " Set m_objManagedObject = New cls" & v_sTableName & _
 Chr(13) & Chr(10)
strCode = strCode & " GetProxy" & Chr(13) & Chr(10)
strCode = strCode & " 'Set m_objProxy = New clsServer" & Chr(13) & Chr(10)
strCode = strCode & " m_eBOFAction = m_def_BOFAction" & Chr(13) & Chr(10)
strCode = strCode & " m_eEOFAction = m_def_EOFAction" & Chr(13) & Chr(10)
strCode = strCode & " m_strUserName = m_def_UserName" & Chr(13) & Chr(10)
strCode = strCode & " m_strPassword = m_def_Password" & Chr(13) & Chr(10)
strCode = strCode & " m_eEditMode = adEditNone" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "IntitializeError:" & Chr(13) & Chr(10)
strCode = strCode & " MsgBox " & Chr(34) & _
 "Collection Managing Class cannot be initialized" & Chr(34) & _
 Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)
strCode = strCode & "Private Sub Class_Terminate()" & Chr(13) & Chr(10)
strCode = strCode & " If Not m_objManagedObject Is Nothing Then" & _

Continued…

Appendix C

498

 Chr(13) & Chr(10)
strCode = strCode & " Set m_objManagedObject = Nothing" & Chr(13) & _
 Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
CreateInitTerm = strCode
End Function

Non-Data Methods and Properties
We will separate the rest of the properties and methods into those that are related to the recordset, such as
MoveNext or BOF, and those that are non-data methods and properties. These properties have no
references to property names, so they can all be wrapped exactly as they were in the VB6 UML code, with a
few exceptions as noted below. The one thing that we will have to be customizing is the code that is written
for the primary key. The primary key is used to determine what record the recordset is on prior to an update
and then used to return the recordset to that record. The primary key may be a string or a long. We will use
the Boolean, parameter v_bPrimKeyNum, to tell if it is a long primary key (the Boolean is True) or a
string (the Boolean is False). Add the following code into the BuildMiddle .bas module:

Public Function CreateGeneral(ByVal v_sTableName As String, _
 ByVal v_bPrimKeyNum As Boolean) As String
Dim strCode As String
strCode = "Private Sub Class_GetDataMember " & _
 "(DataMember As String, Data As Object)" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo GetDataMemberError" & Chr(13) & Chr(10)
strCode = strCode & " If ItemsDataMember <> DataMember Then" & _
 Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Set Data = m_objManagedObject.ItemsRecordset" & _
 Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "GetDataMemberError:" & Chr(13) & Chr(10)
strCode = strCode & " Set Data = Nothing" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Sub GetProxy()" & Chr(13) & Chr(10)
strCode = strCode & " Set m_objDataSpace = New RDS.DataSpace" & _
 Chr(13) & Chr(10)
strCode = strCode & " m_objDataSpace.InternetTimeout = 30000" & _
 Chr(13) & Chr(10)
strCode = strCode & " Set m_objProxy = m_objDataSpace.CreateObject _" & _
 Chr(13) & Chr(10)
strCode = strCode & " (" & Chr(34) & "prjServer.clsServer" & _
 Chr(34) & ", " & Chr(34) & Chr(34) & ")" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Friend Function SetProxyInformation " & _
 " (ByVal v_eRecordsetName As TableName, _" & Chr(13) & Chr(10)
strCode = strCode & " ByVal v_strWhereClause As String, " & _
 " ByVal v_strPrimaryKey As String, _" & Chr(13) & Chr(10)
strCode = strCode & " ByVal v_eDataMember As String)" & Chr(13) & _
 Chr(10)
strCode = strCode & " m_eRecordsetName = v_eRecordsetName" & _
 Chr(13) & Chr(10)
strCode = strCode & " m_strWhereClause = v_strWhereClause" & _

Creating a VB Code Generator Add-In

499

 Chr(13) & Chr(10)
strCode = strCode & " m_strPrimaryKey = v_strPrimaryKey" & _
 Chr(13) & Chr(10)
strCode = strCode & " m_strDataMember = v_eDataMember" & _
 Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsDataMember = " & _
 "v_eDataMember" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Friend Property Get ItemsDataMember() As String" & _
 Chr(13) & Chr(10)
strCode = strCode & " ItemsDataMember = m_strDataMember" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)
strCode = strCode & "Private Property Get PrimaryKey() As String" & _
 Chr(13) & Chr(10)
strCode = strCode & " PrimaryKey = m_strPrimaryKey" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)
strCode = strCode & "Private Property Get RecordsetName() As TableName" & _
 Chr(13) & Chr(10)
strCode = strCode & " RecordsetName = m_eRecordsetName" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Private Property Get WhereClause() As String" & _
 Chr(13) & Chr(10)
strCode = strCode & " WhereClause = m_strWhereClause" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

The next property gets the bottom class. As the name of the bottom class will be based on the table name,
we will need to use the v_sTableName parameter to build the next line of code:

strCode = strCode & "Public Property Get Item() As cls" & v_sTableName & _
 Chr(13) & Chr(10)
strCode = strCode & " Set Item = m_objManagedObject" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Property Get ItemCount() As Long" & Chr(13) & _
 Chr(10)
strCode = strCode & " ItemCount =" & _
 " m_objManagedObject.ItemsRecordset.RecordCount" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Private Sub UpdateManagedObjects()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo UpdateManagedObjectsError" & _
 Chr(13) & Chr(10)
strCode = strCode & " Set m_objManagedObject.ItemsRecordset = _" & _
 Chr(13) & Chr(10)

Appendix C

500

Again, we will need to use the table name in the retrieve methods used with the data services component:

strCode = strCode & " m_objProxy.Return" & v_sTableName & _
 "RecordSet(UserName, Password, WhereClause)" & Chr(13) & Chr(10)
strCode = strCode & " DataMemberChanged ItemsDataMember" & Chr(13) & _
 Chr(10)
strCode = strCode & " m_objManagedObject.RefreshDataMember" & Chr(13) & _
 Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)
strCode = strCode & "UpdateManagedObjectsError:" & Chr(13) & Chr(10)
strCode = strCode & " MsgBox Err.Description & Err.Source" & Chr(13) & _
 Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Friend Property Get ItemsRecordset() As " & _
 "ADODB.Recordset" & Chr(13) & Chr(10)
strCode = strCode & " Set ItemsRecordset = " & _
 "m_objManagedObject.ItemsRecordset" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode=strCode & "Public Property Get EditMode() As ADODB.EditModeEnum" & _
 Chr(13) & Chr(10)
strCode = strCode & " EditMode = m_eEditMode" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Friend Property Let EditMode" & _
 "(ByVal v_eNewEditMode As ADODB.EditModeEnum)" & Chr(13) & Chr(10)
strCode = strCode & " m_eEditMode = v_eNewEditMode" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.EditMode <> " & _
 " v_eNewEditMode Then" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.EditMode = v_eNewEditMode" & _
 Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Sub Refresh()" & Chr(13) & Chr(10)

We are now starting the code that will require the v_bPrimKeyNum Boolean:

If v_bPrimKeyNum Then
 strCode = strCode & " Dim strPrimaryKeyValue As Long" & Chr(13) & Chr(10)
Else
 strCode = strCode & " Dim strPrimaryKeyValue As String" & Chr(13) & Chr(10)
End If
strCode = strCode & " If m_objManagedObject.ItemsRecordset.State = " & _
 "adStateOpen Then" & Chr(13) & Chr(10)
strCode = strCode & " If Not m_objManagedObject.ItemsRecordset.BOF " & _
 " And _" & Chr(13) & Chr(10)
strCode = strCode & " Not m_objManagedObject.ItemsRecordset.EOF " & _
 " And _" & Chr(13) & Chr(10)
strCode = strCode & " Not IsNull(m_objManagedObject.ItemsRecordset." & _
 "Fields(PrimaryKey)) Then" & Chr(13) & Chr(10)
strCode = strCode & " strPrimaryKeyValue = _" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.Fields " & _
 " (PrimaryKey)" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " UpdateManagedObjects" & Chr(13) & Chr(10)

Creating a VB Code Generator Add-In

501

Again, we must check the primary key:

If v_bPrimKeyNum Then
 strCode = strCode & " If strPrimaryKeyValue <> 0 Then" & Chr(13) & Chr(10)
 strCode = strCode & " m_objManagedObject.ItemsRecordset.Find " & _
 "PrimaryKey & " & Chr(34) & "=" & Chr(34) & " & _" & _
 Chr(13) & Chr(10) & _
 "strPrimaryKeyValue " & ", , , 1" & Chr(13) & Chr(10)
Else
 strCode = strCode & " If strPrimaryKeyValue <> " & Chr(34) & _
 Chr(34) & " Then" & Chr(13) & Chr(10)
 strCode = strCode & " m_objManagedObject.ItemsRecordset.Find " & _
 " PrimaryKey & " & Chr(34) & "='" & Chr(34) & " & _" & _
 Chr(13) & Chr(10) & "strPrimaryKeyValue & " & Chr(34) & "'" & _
 Chr(34) & ", , , 1" & Chr(13) & Chr(10)
End If
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & "Public Sub Update()" & Chr(13) & Chr(10)

Another primary key check:

If v_bPrimKeyNum Then
 strCode = strCode & " Dim strPrimaryKeyValue As Long" & Chr(13) & Chr(10)
Else
 strCode = strCode & " Dim strPrimaryKeyValue As String" & Chr(13) & Chr(10)
End If

strCode = strCode & " On Error GoTo UpdateError" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset.State = " & _
 "adStateOpen And _" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.EditMode " & _
 " <> adEditDelete And (Not IsNull(m_objManagedObject." & _
 "ItemsRecordset.Fields(PrimaryKey))) Then" & Chr(13) & Chr(10)
strCode = strCode & " If " & " m_objManagedObject.ItemsRecordset." & _
 "RecordCount <> 0 Then" & Chr(13) & Chr(10)
strCode = strCode & " strPrimaryKeyValue = _" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.Fields" & _
 " (PrimaryKey)" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " If EditMode <> adEditNone Then" & Chr(13) & Chr(10)
strCode = strCode & " Set m_objManagedObject.ItemsRecordset = " & _
 "m_objProxy.UpdateRecordset(UserName, _" & Chr(13) & Chr(10)
strCode = strCode & " Password, m_objManagedObject.ItemsRecordset," & _
 "m_eRecordsetName, _" & Chr(13) & Chr(10)
strCode = strCode & " WhereClause)" & Chr(13) & Chr(10)
strCode = strCode & " EditMode = adEditNone" & Chr(13) & Chr(10)
strCode = strCode & " RaiseEvent ChangeManagedObjects" & Chr(13) & _
 Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

Appendix C

502

Another primary key check:

If v_bPrimKeyNum Then
 strCode = strCode & " If strPrimaryKeyValue <> 0 Then" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.Find " & _
 " PrimaryKey & " & Chr(34) & "=" & Chr(34) & " & _" & Chr(13) & _
 Chr(10) & "strPrimaryKeyValue " & ", , , 1" & Chr(13) & Chr(10)
Else
 strCode = strCode & " If strPrimaryKeyValue <> " & Chr(34) & _
 Chr(34) & " Then" & Chr(13) & Chr(10)
 strCode = strCode & " m_objManagedObject.ItemsRecordset.Find " & _
 "PrimaryKey & " & Chr(34) & "='" & Chr(34) & " & _" & _
 Chr(13) & Chr(10) & "strPrimaryKeyValue & " & Chr(34) & "'" & _
 "Chr(34) & , , , 1" & Chr(13) & Chr(10)
End If
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "UpdateError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "Update: " & _
 Chr(34) & " & Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Function Find(ByVal v_strPrimaryKey As " & _
 "String)" & Chr(13) & Chr(10)

If v_bPrimKeyNum Then
 strCode = strCode & " Dim strPrimaryKeyValue As Long" & Chr(13) & Chr(10)
 strCode = strCode & " If v_strPrimaryKey = 0 Then" & Chr(13) & Chr(10)
Else
 strCode = strCode & " Dim strPrimaryKeyValue As String" & Chr(13) & Chr(10)
 strCode = strCode & " If v_strPrimaryKey = " & Chr(34) & Chr(34) & _
 "Then" & Chr(13) & Chr(10)
End If

strCode = strCode & " Exit Function" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)

Another primary key check:

If v_bPrimKeyNum Then
 strCode = strCode & " If InStr(v_strPrimaryKey, " & Chr(34) & "'" & _
 Chr(34) & ") > 0 Then" & Chr(13) & Chr(10)
 strCode = strCode & " v_strPrimaryKey = " & _
 "Mid(v_strPrimaryKey, 1, InStr(v_strPrimaryKey, " & Chr(34) & _
 "'" & Chr(34) & ") - 1)" & Chr(13) & Chr(10)
 strCode = strCode & " Else" & Chr(13) & Chr(10)
 strCode = strCode & " v_strPrimaryKey = v_strPrimaryKey" & _
 Chr(13) & Chr(10)
 strCode = strCode & " End If" & Chr(13) & Chr(10)
End If

Creating a VB Code Generator Add-In

503

Another primary key check:

If v_bPrimKeyNum Then
 strCode = strCode & " ItemsRecordset.Find PrimaryKey & " & _
 Chr(34) & "=" & Chr(34) & " & _" & Chr(13) & Chr(10) & _
 "v_strPrimaryKey " & ", , , 1" & Chr(13) & Chr(10)
Else
 strCode = strCode & " ItemsRecordset.Find PrimaryKey & " & Chr(34) & _
 "='" & Chr(34) & " & _" & Chr(13) & Chr(10) & _
 "v_strPrimaryKey & " & Chr(34) & "'" & _
 Chr(34) & ", , , 1" & Chr(13) & Chr(10)
End If

strCode = strCode & " Refresh" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
CreateGeneral = strCode
End Function

Generate Recordset Methods

Public Function CreateDataMethods() As String

Dim strCode As String

strCode = "Public Sub Edit()" & Chr(13) & Chr(10)
strCode = strCode & " If EditMode = adEditNone Then" & Chr(13) & Chr(10)
strCode = strCode & " EditMode = adEditInProgress" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Sub Delete()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo DeleteError" & Chr(13) & Chr(10)
strCode = strCode & " If EditMode = adEditNone Then" & Chr(13) & Chr(10)
strCode = strCode & " m_objProxy.UpdateRecordset UserName, " & _
 " Password, _" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset, " & _
 " m_eRecordsetName, WhereClause, True" & Chr(13) & Chr(10)
strCode = strCode & " RaiseEvent ChangeManagedObjects" & Chr(13) & _
 Chr(10)
strCode = strCode & " Else" & Chr(13) & Chr(10)
strCode = strCode & " GetErrorText " & Chr(34) & _
 "CanNotDeleteDuringEdit/AddNew" & Chr(34) & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "DeleteError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "Delete " & _
 Chr(34) & "& Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Sub AddNew()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo AddNewError" & Chr(13) & Chr(10)
strCode = strCode & " If EditMode = adEditNone Then" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.AddNew" & _
 Chr(13) & Chr(10)
strCode = strCode & " EditMode = adEditAdd" & Chr(13) & Chr(10)
strCode = strCode & " Else" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "AddNewError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "AddNew " & _
 Chr(34) & "& Err.Source, Err.Description" & Chr(13) & Chr(10)

Appendix C

504

strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & "Public Sub Cancel()" & Chr(13) & Chr(10)
strCode = strCode & " If EditMode = adEditAdd Or EditMode = " & _
 "adEditInProgress Then" & Chr(13) & Chr(10)
strCode = strCode & " ItemsRecordset.CancelUpdate" & Chr(13) & Chr(10)
strCode = strCode & " EditMode = adEditNone" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & "Public Property Get RecordCount() As Long" & _
 Chr(13) & Chr(10)
strCode = strCode & " RecordCount = m_objManagedObject.ItemsRecordset." & _
 "RecordCount" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)

strCode = strCode & "Public Sub MoveFirst()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo MoveFirstError" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset Is Nothing " & _
 "Then" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode =strCode & " If m_objManagedObject.ItemsRecordset.RecordCount " & _
 "> 0 Then" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.MoveFirst" & _
 Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "MoveFirstError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "Move First " & _
 Chr(34) & "& Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Sub MoveLast()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo MoveLastError" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset Is Nothing " & _
 "Then" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset.RecordCount " & _
 "> 0 Then" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.MoveLast" & _
 Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "MoveLastError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "Move Last " & _
 Chr(34) & "& Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Sub MoveNext()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo MoveNextError" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset " & _
 "Is Nothing Then" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset.EOF = False " & _
 " Then" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.MoveNext" & _
 Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset.EOF = " & _

Creating a VB Code Generator Add-In

505

 "True Then" & Chr(13) & Chr(10)
strCode = strCode & " Select Case EOFAction" & Chr(13) & Chr(10)
strCode = strCode & " Case EOFActionType.adAddNew" & Chr(13) & _
 Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.AddNew" & _
 Chr(13) & Chr(10)
strCode = strCode & " Case EOFActionType.adMoveLast" & Chr(13) & _
 Chr(10)
strCode = strCode & _
 " m_objManagedObject.ItemsRecordset.MoveLast" & Chr(13) & Chr(10)
strCode = strCode & " Case EOFActionType.adStayEOF" & Chr(13) & _
 Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " Case Else" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End Select" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "MoveNextError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "Move Next " & _
 Chr(34) & " & Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & "Public Sub MovePrevious()" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo MovePreviousError" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset Is Nothing " & _
 "Then Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " If m_objManagedObject.ItemsRecordset.BOF Then" & _
 Chr(13) & Chr(10)
strCode = strCode & " Select Case BOFAction" & Chr(13) & Chr(10)
strCode = strCode & " Case BOFActionType.adMoveFirst" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.MoveFirst" & _
 Chr(13) & Chr(10)
strCode = strCode & " Case BOFActionType.adStayBOF" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " Case Else" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & " End Select" & Chr(13) & Chr(10)
strCode = strCode & " Else" & Chr(13) & Chr(10)
strCode = strCode & " m_objManagedObject.ItemsRecordset.MovePrevious" & _
 Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "MovePreviousError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & _
 "Move Previous Error" & Chr(34) & "& Err.Source, _" & _
 Chr(13) & Chr(10)
strCode = strCode & " Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & "Public Property Get UserName() As String" & _
 Chr(13) & Chr(10)
strCode = strCode & " UserName = m_strUserName" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Property Let UserName" & _
 " (ByVal New_strUserName As String)" & Chr(13) & Chr(10)
strCode = strCode & " m_strUserName = New_strUserName" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Property Get Password() As String" & _

Appendix C

506

 Chr(13) & Chr(10)
strCode = strCode & " Password = m_strPassword" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Property Let Password " & _
 " (ByVal New_strPassword As String)" & Chr(13) & Chr(10)
strCode = strCode & " m_strPassword = New_strPassword" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)

strCode = strCode & "Public Property Get BOFAction() As BOFActionType" & _
 Chr(13) & Chr(10)
strCode = strCode & " BOFAction = m_eBOFAction" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)

strCode = strCode & "Public Property Let BOFAction" & _
 " (ByVal New_BOFAction As BOFActionType)" & Chr(13) & Chr(10)
strCode = strCode & " m_eBOFAction = New_BOFAction" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Property Get EOFAction() As EOFActionType" & _
 Chr(13) & Chr(10)
strCode = strCode & " EOFAction = m_eEOFAction" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Public Property Let EOFAction" & _
 " (ByVal New_EOFAction As EOFActionType)" & Chr(13) & Chr(10)
strCode = strCode & " m_eEOFAction = New_EOFAction" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10) & Chr(13) & Chr(10)

strCode = strCode & "Private Sub m_objManagedObject_EditInProgress" & _
 " (ByVal v_strEditMode As Variant)" & Chr(13) & Chr(10)
strCode = strCode & " EditMode = v_strEditMode" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & "Private Sub m_objManagedObject_RefreshDataMember()" & _
 Chr(13) & Chr(10)
strCode = strCode & " DataMemberChanged ItemsDataMember" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
CreateDataMethods = strCode

End Function

Generating the Top Class
We will put all of the code for the top class into one function, as there are only a few methods in the top
function. Create another .bas module called BuildTop and put the following code into the module:

Public Function BuildClass(ByRef r_uTableInfo As TableInformation, _
 ByVal v_sTableName As String) As String
Dim strCode As String
Dim lngWhereCounter As Long
Dim lngQueryKey As Long
Dim lngQueryCounter As Long
strCode = strCode & "Public Enum ClientDataMember" & Chr(13) & Chr(10)
strCode = strCode & "e_" & r_uTableInfo.PrimaryKey & "=" & 1 & Chr(13) & _
 Chr(10)
strCode = strCode & "End Enum" & Chr(13) & Chr(10)

Creating a VB Code Generator Add-In

507

strCode = strCode & "Const m_def_" & r_uTableInfo.PrimaryKey & _
 " As String =" & Chr(34) & Chr(34) & Chr(13) & Chr(10)
strCode = strCode & "Private WithEvents m_col" & r_uTableInfo.PrimaryKey & _
 " As cls" & v_sTableName & "Manager" & Chr(13) & Chr(10)

strCode = strCode & "Const m_def_NumberOf" & v_sTableName & _
 Collections =" & 1 & Chr(13) & Chr(10)

strCode = strCode & "Private m_colDataMembersArray() As cls" & _
 v_sTableName & "Manager" & Chr(13) & Chr(10)
strCode = strCode & "Private m_blnDataMembersInitialized() As Boolean" & _
 Chr(13) & Chr(10)
strCode = strCode & "Private m_str" & r_uTableInfo.PrimaryKey & _
 "Equals As String" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub m_col" & r_uTableInfo.PrimaryKey & _
 "_ChangeManagedObjects()" & Chr(13) & Chr(10)
strCode = strCode & " ChangeManagedObjects g_cdm" & _
 r_uTableInfo.PrimaryKey & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & _
 "Private Sub UserControl_ReadProperties" & _
 "(PropBag As PropertyBag)" & Chr(13) & Chr(10)
strCode = strCode & "If UserControl.Ambient.UserMode = " & _
 "False Then Exit Sub" & Chr(13) & Chr(10)

strCode = strCode & " Set m_col" & r_uTableInfo.PrimaryKey & _
 " = New cls" & v_sTableName & "Manager" & Chr(13) & Chr(10)

strCode = strCode & " m_str" & r_uTableInfo.PrimaryKey & "Equals=" & _
 "m_def_" & r_uTableInfo.PrimaryKey & Chr(13) & Chr(10)

strCode = strCode & " ReDim m_colDataMembersArray(1 To m_def_NumberOf" & _
 v_sTableName & "Collections)" & Chr(13) & Chr(10)
strCode = strCode & "ReDim m_blnDataMembersInitialized" & _
 "(1 To m_def_NumberOf" & v_sTableName & "Collections)" & _
 Chr(13) & Chr(10)
strCode = strCode & " Set m_colDataMembersArray(e_" & r_uTableInfo." & _
 PrimaryKey & ") = m_col" & r_uTableInfo.PrimaryKey & _
 Chr(13) & Chr(10)
strCode = strCode & " m_blnDataMembersInitialized(e_" & _
 r_uTableInfo.PrimaryKey & ") = False" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub UserControl_Terminate()" & Chr(13) & _
 Chr(10)
strCode = strCode & " Set m_col" & r_uTableInfo.PrimaryKey & _
 " = Nothing" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)

strCode = strCode & "Public Function Get" & v_sTableName & _
 "Collection(ByVal v_eDataMember As ClientDataMember) _" & _
 Chr(13) & Chr(10)
strCode = strCode & " As cls" & v_sTableName & "Manager" & Chr(13) & Chr(10)
strCode = strCode & " If m_blnDataMembersInitialized" & _
 "(v_eDataMember) = False Then" & Chr(13) & Chr(10)
strCode = strCode & " Select Case v_eDataMember" & Chr(13) & Chr(10)
strCode = strCode & " Case e_" & r_uTableInfo.PrimaryKey & _
 Chr(13) & Chr(10)
strCode = strCode & " m_colDataMembersArray(e_" & _
 r_uTableInfo.PrimaryKey & ").SetProxyInformation _" & Chr(13) & _
 Chr(10)

Appendix C

508

strCode = strCode & " e_" & v_sTableName & " , " & Chr(34) & _
 Chr(34) & ", g_cstrField" & r_uTableInfo.PrimaryKey & ", g_cdm" & _
 r_uTableInfo.PrimaryKey & Chr(13) & Chr(10)
strCode = strCode & "End Select" & Chr(13) & Chr(10)
strCode = strCode & " m_colDataMembersArray(v_eDataMember).Refresh" & _
 Chr(13) & Chr(10)
strCode = strCode & " m_blnDataMembersInitialized" & _
 "(v_eDataMember) = True" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Set Get" & v_sTableName & _
 "Collection = m_colDataMembersArray(v_eDataMember)" & Chr(13) & _
 Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)

strCode = strCode & "Private Sub ChangeManagedObjects" & _
 " (ByVal v_sDataMember As String)" & Chr(13) & Chr(10)
strCode = strCode & " Dim lng" & v_sTableName & "CollNumber As Long" & _
 Chr(13) & Chr(10)
strCode = strCode & " Dim lngIgnore" & v_sTableName & "Number As Long" & _
 Chr(13) & Chr(10)
strCode = strCode & " Select Case v_sDataMember" & Chr(13) & Chr(10)
strCode = strCode & " Case g_cdm" & r_uTableInfo.PrimaryKey & _
 Chr(13) & Chr(10)
strCode = strCode & " lngIgnore" & v_sTableName & "Number =" & _
 lngWhereCounter & Chr(13) & Chr(10)
strCode = strCode & " End Select" & Chr(13) & Chr(10)
strCode = strCode & " For lng" & v_sTableName & _
 "CollNumber = 1 To m_def_NumberOf" & v_sTableName & _
 "Collections" & Chr(13) & Chr(10)
strCode = strCode & " If lng" & v_sTableName & "CollNumber <> lngIgnore" & _
 v_sTableName & "Number Then" & Chr(13) & Chr(10)
strCode = strCode & " If m_blnDataMembersInitialized(lng" & _
 v_sTableName & "CollNumber) = True Then" & Chr(13) & Chr(10)
strCode = strCode & " m_colDataMembersArray(lng" & _
 v_sTableName & "CollNumber).Refresh" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Next" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Public Property Get " & r_uTableInfo.PrimaryKey & _
 "Equals() As String" & Chr(13) & Chr(10)
strCode = strCode & " " & r_uTableInfo.PrimaryKey & "Equals = m_str" & _
 r_uTableInfo.PrimaryKey & "Equals" & Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)

strCode = strCode & "Public Property Let " & r_uTableInfo.PrimaryKey & _
 "Equals(ByVal v_strNew" & r_uTableInfo.PrimaryKey & "Equals" & _
 " As _" & Chr(13) & Chr(10)
strCode = strCode & " String)" & Chr(13) & Chr(10)
strCode = strCode & " m_str" & r_uTableInfo.PrimaryKey & _
 "Equals = v_strNew" & r_uTableInfo.PrimaryKey & "Equals" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Property" & Chr(13) & Chr(10)
BuildClass = strCode
End Function

Creating a VB Code Generator Add-In

509

Generating the Data Services Class
The functions to save and retrieve records can also be generated. Add a new .bas module called
BuildServer. Add the following code to the module:

Public Function CreateServer(ByRef r_TableInfo() As String, _
 ByRef r_Tables() As TableInformation) As String
Dim strCode As String
Dim lngTableCounter As Long
Dim strTempTableName As String
Dim lngFieldCounter As Long
Dim lngQueryKeyCounter As Long
Dim strTableName As String

strCode = strCode & "Enum TableName" & Chr(13) & Chr(10)
For lngTableCounter = 1 To UBound(r_TableInfo)
 strCode = strCode & " e_" & r_TableInfo(lngTableCounter) & _
 "=" & lngTableCounter - 1 & Chr(13) & Chr(10)
Next
strCode = strCode & "End Enum" & Chr(13) & Chr(10)
For lngTableCounter = 1 To UBound(r_TableInfo)
 Dim strCleanFields() As String
 CleanFields r_Tables(lngTableCounter).FieldInfo, strCleanFields
 Dim strFields As String
 strFields = ""
 For lngFieldCounter = 1 To UBound(r_Tables(lngTableCounter).FieldInfo)
 If lngFieldCounter = 1 Then
 strFields = " [" & r_Tables(lngTableCounter)." & _
 "FieldInfo(lngFieldCounter).FieldName & "]"

 Else
 strFields = strFields & ",[" & r_Tables(lngTableCounter)." & _
 "FieldInfo(lngFieldCounter).FieldName & "]"
 End If
 Next
 strCode = strCode & " Private Const m_cstr" & _
 r_TableInfo(lngTableCounter) & "Query =" & Chr(34) & _
 "Select " & strFields & Chr(34) & " & _" & Chr(13) & Chr(10)
 strCode = strCode & Chr(34) & " From " & _
 r_Tables(lngTableCounter).TableName & Chr(34) & Chr(13) & Chr(10)
 strTableName = r_Tables(lngTableCounter).TableName
 strCode = strCode & " Private Const m_cstr" & _
 r_TableInfo(lngTableCounter) & _
 r_Tables(lngTableCounter).PrimaryKey & " As String = " _
 & Chr(34) & r_Tables(lngTableCounter).PrimaryKey & _
 Chr(34) & Chr(13) & Chr(10)
Next

strCode = strCode & " Private Const m_cstrDatabasePath As String = " & _
 Chr(34) & "C:\Program Files\Microsoft Visual Studio" & _
 "\VB98\NWIND.MDB" & Chr(34) & Chr(13) & Chr(10)
strCode = strCode & " Private m_objADOConnection As ADODB.Connection" & _
 Chr(13) & Chr(10)
strCode = strCode & " Private m_strErrorDetails As String" & Chr(13) & Chr(10)
strCode = strCode & " Private m_strQueryString As String" & Chr(13) & Chr(10)
strCode = strCode & " Private m_objContext As ObjectContext" & Chr(13) & _
 Chr(10)
strCode = strCode & " Implements ObjectControl" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub ObjectControl_Activate()" & Chr(13) & Chr(10)
strCode = strCode & " Set m_objContext = GetObjectContext" & Chr(13) & Chr(10)

Appendix C

510

strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Private Function ObjectControl_CanBePooled()" & _
 " As Boolean" & Chr(13) & Chr(10)
strCode = strCode & " ObjectControl_CanBePooled = False" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub ObjectControl_Deactivate()" & Chr(13) & _
 Chr(10)
strCode = strCode & " Set m_objADOConnection = Nothing" & Chr(13) & Chr(10)
strCode = strCode & " Set m_objContext = Nothing" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Private Function CreateInstance(ProgID As String)" & _
 " As Object" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo CreateInstanceError" & Chr(13) & Chr(10)
strCode = strCode & " If Not m_objContext Is Nothing Then" & Chr(13) & Chr(10)
strCode = strCode & " Set CreateInstance = m_objContext." & _
 CreateInstance(ProgID)" & Chr(13) & Chr(10)
strCode = strCode & " Else" & Chr(13) & Chr(10)
strCode = strCode & " Select Case ProgID" & Chr(13) & Chr(10)
strCode = strCode & " Case " & Chr(34) & "ADODB.Connection" & _
 Chr(34) & Chr(13) & Chr(10)
strCode = strCode & " Set CreateInstance = New ADODB.Connection" & _
 Chr(13) & Chr(10)
strCode = strCode & " Case " & Chr(34) & "ADODB.Recordset" & Chr(34) & _
 Chr(13) & Chr(10)
strCode = strCode & " Set CreateInstance = New ADODB.Recordset" & _
 Chr(13) & Chr(10)
strCode = strCode & " End Select" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Exit Function" & Chr(13) & Chr(10)
strCode = strCode & "CreateInstanceError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, Err.Source & " & Chr(34) & _
 "CreateInstance" & Chr(34) & ", Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
strCode = strCode & "Public Sub SetComplete()" & Chr(13) & Chr(10)
strCode = strCode & " If Not m_objContext Is Nothing Then" & Chr(13) & _
 Chr(10)
strCode = strCode & " m_objContext.SetComplete" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Public Sub SetAbort()" & Chr(13) & Chr(10)
strCode = strCode & " If Not m_objContext Is Nothing Then" & Chr(13) & _
 Chr(10)
strCode = strCode & " m_objContext.SetAbort" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub SetADOConnection(ByVal v_strUserID" & _
 " As String, _" & Chr(13) & Chr(10)
strCode = strCode & " ByVal v_strPassword As String)" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo SetADOConnectionError" & Chr(13) & Chr(10)
strCode = strCode & " Set m_objADOConnection = CreateInstance(" & _
 Chr(34) & "ADODB.Connection" & Chr(34) & ")" & Chr(13) & Chr(10)
strCode = strCode & " With m_objADOConnection" & Chr(13) & Chr(10)
strCode = strCode & " .CursorLocation = adUseClient" & Chr(13) & Chr(10)
strCode = strCode & " .ConnectionString = " & Chr(34) & _
 "Provider=Microsoft.Jet.OLEDB.3.51;Persist Security Info=False;" & _
 Chr(34) & " & _ " & Chr(13) & Chr(10)
strCode = strCode & " " & Chr(34) & "Data Source=" & Chr(34) & " & " & _
 "m_cstrDatabasePath" & Chr(13) & Chr(10)
strCode = strCode & " .Open" & Chr(13) & Chr(10)
strCode = strCode & " End With" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)

Creating a VB Code Generator Add-In

511

strCode = strCode & "SetADOConnectionError:" & Chr(13) & Chr(10)
strCode = strCode & " Dim lngErrorCounter As Long" & Chr(13) & Chr(10)
strCode = strCode & " Dim strErrors As String" & Chr(13) & Chr(10)
strCode = strCode & " strErrors = Err.Number & " & Chr(34) & ": " & _
 Chr(34) & " & Err.Description" & Chr(13) & Chr(10)
strCode = strCode & " If m_objADOConnection.Errors.Count > 0 Then" & _
 Chr(13) & Chr(10)
strCode = strCode & " For lngErrorCounter = 0 To m_objADOConnection." & _
 "Errors.Count - 1" & Chr(13) & Chr(10)
strCode = strCode & " strErrors = strErrors & _" & Chr(13) & Chr(10)
strCode = strCode & " m_objADOConnection.Errors(lngErrorCounter)." & _
 "Number & _" & Chr(13) & Chr(10)
strCode = strCode & " " & Chr(34) & ": " & Chr(34) & " & " & _
 "m_objADOConnection.Errors(lngErrorCounter).Description" & _
 " & vbCrLf" & Chr(13) & Chr(10)
strCode = strCode & " Next lngErrorCounter" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise 2000 + vbObjectError, " & Chr(34) & _
 "SetADOConnection " & Chr(34) & " & Err.Source, strErrors" & _
 Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Private Function GetADOConnection() " & _
 "As ADODB.Connection" & Chr(13) & Chr(10)
strCode = strCode & " If m_objADOConnection Is Nothing Then" & _
 Chr(13) & Chr(10)
strCode = strCode & " Err.Raise 2001, " & Chr(34) & _
 "GetADOConnection" & Chr(34) & ", _" & Chr(13) & Chr(10)
strCode = strCode & " " & Chr(34) & _
 "Trying to Get Connection prior to setting it" & _
 Chr(34) & Chr(13) & Chr(10)
strCode = strCode & " Else" & Chr(13) & Chr(10)
strCode = strCode & " Set GetADOConnection = m_objADOConnection" & _
 Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub CloseADOConnection()" & Chr(13) & Chr(10)
strCode = strCode & " With GetADOConnection" & Chr(13) & Chr(10)
strCode = strCode & " If .State = adStateOpen Then" & Chr(13) & Chr(10)
strCode = strCode & " .Close" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " End With" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
strCode = strCode & "Public Function ValidUserIDPassword" & _
 "(ByVal v_strUserID As String, _" & Chr(13) & Chr(10)
strCode = strCode & " ByVal v_strPassword As String," & _
 " Optional ByRef r_strErrorDetails As String _" & Chr(13) & Chr(10)
strCode = strCode & " = " & Chr(34) & "Empty" & Chr(34) & ") As Boolean" _
 & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo ValidUserIDPasswordError" & Chr(13) & _
 Chr(10)
strCode = strCode & " SetADOConnection v_strUserID, v_strPassword" & _
 Chr(13) & Chr(10)
strCode = strCode & " ValidUserIDPassword = True" & Chr(13) & Chr(10)
strCode = strCode & " SetComplete" & Chr(13) & Chr(10)
strCode = strCode & " Exit Function" & Chr(13) & Chr(10)
strCode = strCode & "ValidUserIDPasswordError:" & Chr(13) & Chr(10)
strCode = strCode & " If r_strErrorDetails <> " & Chr(34) & "Empty" & _
 Chr(34) & "Then" & Chr(13) & Chr(10)
strCode = strCode & " r_strErrorDetails = " & _
 Chr(34) & "Error Details:" & Chr(34) & " & " & _
 "Err.Description & vbCrLf & _" & Chr(13) & Chr(10)

Appendix C

512

strCode = strCode & " " & Chr(34) & "Error Number:" & _
 Chr(34) & " & " & "Err.Number & vbCrLf & " & Chr(34) & _
 "Error Source: " & Chr(34) & " & _" & Chr(13) & Chr(10)
strCode = strCode & " " & Chr(34) & "ValidUserIDPassword " & _
 Chr(34) & " & Err.Source" & Chr(13) & Chr(10)
strCode = strCode & " End If" & Chr(13) & Chr(10)
strCode = strCode & " SetAbort" & Chr(13) & Chr(10)
strCode = strCode & " ValidUserIDPassword = False" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
strCode = strCode & "Private Sub GetRecordSet(ByRef r_recRecordset As " & _
 "ADODB.Recordset, _" & Chr(13) & Chr(10)
strCode = strCode & " ByVal v_strSource)" & Chr(13) & Chr(10)
strCode = strCode & " On Error GoTo GetRecordSetError" & Chr(13) & Chr(10)
strCode = strCode & " Set r_recRecordset = New ADODB.Recordset" & _
 Chr(13) & Chr(10)
strCode = strCode & " r_recRecordset.CursorLocation = adUseClient" & _
 Chr(13) & Chr(10)
strCode = strCode & " r_recRecordset.Open _" & Chr(13) & Chr(10)
strCode = strCode & " v_strSource , GetADOConnection, adOpenStatic, " & _
 " adLockOptimistic" & Chr(13) & Chr(10)
strCode = strCode & " Exit Sub" & Chr(13) & Chr(10)
strCode = strCode & "GetRecordSetError:" & Chr(13) & Chr(10)
strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & "ValidUserID" & _
 Chr(34) & " & Err.Source, Err.Description" & Chr(13) & Chr(10)
strCode = strCode & "End Sub" & Chr(13) & Chr(10)
For lngTableCounter = 1 To UBound(r_TableInfo)
 strCode = strCode & "Public Function Return" & _
 r_TableInfo(lngTableCounter) & _
 "RecordSet(ByVal v_strUserID As String, ByVal _" & _
 Chr(13) & Chr(10)
 strCode = strCode & " v_strPassword As String, Optional ByVal " & _
 "v_strParameter As String) As _" & Chr(13) & Chr(10)
 strCode = strCode & " ADODB.Recordset" & Chr(13) & Chr(10)
 strCode = strCode & " Dim rec" & r_TableInfo(lngTableCounter) & _
 " As ADODB.Recordset" & Chr(13) & Chr(10)
 strCode = strCode & " On Error GoTo Return" & _
 r_TableInfo(lngTableCounter) & "RecordSetError" & _
 Chr(13) & Chr(10)
 strCode = strCode & " SetADOConnection v_strUserID, v_strPassword" & _
 Chr(13) & Chr(10)
 strCode = strCode & " GetRecordSet rec" & _
 r_TableInfo(lngTableCounter) & ", m_cstr" & _
 r_TableInfo(lngTableCounter) & "Query & v_strParameter" & _
 Chr(13) & Chr(10)
 strCode = strCode & " Set Return" & r_TableInfo(lngTableCounter) & _
 "RecordSet = rec" & r_TableInfo(lngTableCounter) & _
 Chr(13) & Chr(10)
 strCode = strCode & " Set rec" & r_TableInfo(lngTableCounter) & _
 ".ActiveConnection = Nothing" & Chr(13) & Chr(10)
 strCode = strCode & " SetComplete" & Chr(13) & Chr(10)
 strCode = strCode & " CloseADOConnection" & Chr(13) & Chr(10)
 strCode = strCode & " Set rec" & r_TableInfo(lngTableCounter) & _
 " = Nothing" & Chr(13) & Chr(10)
 strCode = strCode & " Exit Function" & Chr(13) & Chr(10)
 strCode = strCode & "Return" & r_TableInfo(lngTableCounter) & _
 "RecordSetError:" & Chr(13) & Chr(10)
 strCode = strCode & " CloseADOConnection" & Chr(13) & Chr(10)
 strCode = strCode & " SetAbort" & Chr(13) & Chr(10)
 strCode = strCode & " Err.Raise Err.Number, " & Chr(34) & _
 " Return" & r_TableInfo(lngTableCounter) & Chr(34) & " " & _
 " , Err.Source " & " & _" & Chr(13) & Chr(10)

Creating a VB Code Generator Add-In

513

 strCode = strCode & " m_strErrorDetails" & Chr(13) & Chr(10)
 strCode = strCode & " End Function" & Chr(13) & Chr(10)

 strCode = strCode & "Private Function Update" & _
 r_TableInfo(lngTableCounter) & _
 "RS(ByVal v_recClientRecordSet As _" & Chr(13) & Chr(10)
 strCode = strCode & _
 " ADODB.Recordset, Optional ByVal v_bolDelete " & _
 " As Boolean = False) As ADODB.Recordset" & Chr(13) & Chr(10)
 strCode = strCode & " Dim rec" & r_TableInfo(lngTableCounter) & _
 " As ADODB.Recordset" & Chr(13) & Chr(10)
 strCode = strCode & " Dim lngFieldCounter As Long" & Chr(13) & Chr(10)
 strCode = strCode & " Dim lngRowCounter As Long" & Chr(13) & Chr(10)
 strCode = strCode & " On Error GoTo Update" & _
 r_TableInfo(lngTableCounter) & "RSError" & Chr(13) & Chr(10)
 strCode = strCode & " If v_recClientRecordSet.EditMode = adEditAdd " & _
 "Then" & Chr(13) & Chr(10)
 strCode = strCode & " Set rec" & r_TableInfo(lngTableCounter) & _
 " = CreateInstance(" & Chr(34) & "ADODB.Recordset" & Chr(34) & _
 ")" & Chr(13) & Chr(10)
 strCode = strCode & " With rec" & r_TableInfo(lngTableCounter) & _
 "" & Chr(13) & Chr(10)
 strTableName = r_Tables(lngTableCounter).TableName

 strCode = strCode & " .Source = m_cstr" & _
 "r_TableInfo(lngTableCounter) & "Query & " & Chr(34) & _
 " Where " & Chr(34) & " & m_cstr" & _
 r_TableInfo(lngTableCounter) & _
 r_Tables(lngTableCounter).PrimaryKey & " & " & Chr(34) & _
 " = " & Chr(34) & " & _ " & Chr(13) & Chr(10)
 strCode = strCode & " 0" & Chr(13) & Chr(10)
 strCode = strCode & " .ActiveConnection = GetADOConnection" & _
 Chr(13) & Chr(10)
 strCode = strCode & " .LockType = adLockPessimistic" & Chr(13) & Chr(10)
 strCode = strCode & " .CursorLocation = adUseServer" & Chr(13) & Chr(10)
 strCode = strCode & " .CursorType = adOpenKeyset" & Chr(13) & Chr(10)
 strCode = strCode & " .Open" & Chr(13) & Chr(10)
 strCode = strCode & " .AddNew" & Chr(13) & Chr(10)
 strCode = strCode & " For lngFieldCounter = 0 To v_recClientRecordSet." & _
 "Fields.Count - 1" & Chr(13) & Chr(10)
 strCode = strCode & " If Not " & "IsNull(v_recClientRecordSet.Fields" & _
 "(lngFieldCounter).Value) Then" & Chr(13) & Chr(10)
 strCode = strCode & ".Fields(v_recClientRecordSet.Fields" & _
 "(lngFieldCounter).Name) _" & Chr(13) & Chr(10)
 strCode = strCode & " = v_recClientRecordSet.Fields" & _
 "(lngFieldCounter).Value" & Chr(13) & Chr(10)
 strCode = strCode & " End If" & Chr(13) & Chr(10)
 strCode = strCode & " Next" & Chr(13) & Chr(10)
 strCode = strCode & " .Update" & Chr(13) & Chr(10)
 strCode = strCode & " End With" & Chr(13) & Chr(10)
 strCode = strCode & " Else" & Chr(13) & Chr(10)
 strCode = strCode & " Set rec" & r_TableInfo(lngTableCounter) & _
 " = v_recClientRecordSet" & Chr(13) & Chr(10)
 strCode = strCode & " Set rec" & r_TableInfo(lngTableCounter) & _
 ".ActiveConnection = GetADOConnection" & Chr(13) & Chr(10)
 strCode = strCode & " If v_bolDelete = True Then" & Chr(13) & Chr(10)
 strCode = strCode & " rec" & r_TableInfo(lngTableCounter) & _
 ".Delete" & Chr(13) & Chr(10)
 strCode = strCode & " Else" & Chr(13) & Chr(10)
 strCode = strCode & " On Error Resume Next" & Chr(13) & Chr(10)
 strCode = strCode & " rec" & r_TableInfo(lngTableCounter) & _

Appendix C

514

 ".Filter = adFilterPendingRecords" & Chr(13) & Chr(10)
 strCode = strCode & " rec" & r_TableInfo(lngTableCounter) & _
 ".UpdateBatch" & Chr(13) & Chr(10)
 strCode = strCode & " rec" & r_TableInfo(lngTableCounter) & _
 ".Filter = adFilterConflictingRecords" & Chr(13) & Chr(10)
 strCode = strCode & " If rec" & r_TableInfo(lngTableCounter) & _
 ".RecordCount > 0 Then" & Chr(13) & Chr(10)
 strCode =strCode & " Err.Raise 2002, " & Chr(34) & "Update" & _
 r_TableInfo(lngTableCounter) & "RS" & Chr(34) & "," & Chr(34) & _
 " & Conflicting Errors" & Chr(34) & Chr(13) & Chr(10)
 strCode = strCode & " End If" & Chr(13) & Chr(10)
 strCode = strCode & " rec" & r_TableInfo(lngTableCounter) & _
 ".Filter = adFilterNone" & Chr(13) & Chr(10)
 strCode = strCode & " End If" & Chr(13) & Chr(10)
 strCode = strCode & " End If" & Chr(13) & Chr(10)
 strCode = strCode & " Set Update" & r_TableInfo(lngTableCounter) & _
 "RS = rec" & r_TableInfo(lngTableCounter) & "" & _
 Chr(13) & Chr(10)
 strCode = strCode & " Set rec" & r_TableInfo(lngTableCounter) & _
 " = Nothing" & Chr(13) & Chr(10)
 strCode = strCode & " Exit Function" & Chr(13) & Chr(10)
 strCode = strCode & "Update" & r_TableInfo(lngTableCounter) & _
 "RSError:" & Chr(13) & Chr(10)
 strCode = strCode & " Err.Raise Err.Description, " & Chr(34) & _
 " & Error Update" & r_TableInfo(lngTableCounter) & "RS" & _
 Chr(34) & " & Err.Source, _" & Chr(13) & Chr(10)
 strCode = strCode & " Err.Description" & Chr(13) & Chr(10)
 strCode = strCode & "End Function" & Chr(13) & Chr(10)
Next
strCode = strCode & "Public Function UpdateRecordset" & _
 "(ByVal v_strUserID As String, _" & Chr(13) & Chr(10)
strCode = strCode & " ByVal v_strPassword As String, _" & _
 Chr(13) & Chr(10)
strCode = strCode & " ByVal v_recClientRecordSet As ADODB.Recordset, _" & _
 Chr(13) & Chr(10)
strCode = strCode & " ByVal v_eName As TableName, Optional ByVal " & _
 " v_strWhereClause As String, " & _
 " Optional ByVal v_bolDelete As Boolean = False) " & _
 "As ADODB.Recordset" & Chr(13) & Chr(10)
strCode = strCode & "On Error GoTo UpdateRecordsetError" & Chr(13) & Chr(10)
strCode = strCode & "SetADOConnection v_strUserID, v_strPassword" & _
 Chr(13) & Chr(10)
strCode = strCode & "Select Case v_eName" & Chr(13) & Chr(10)
For lngTableCounter = 1 To UBound(r_TableInfo)
 strCode = strCode & "Case e_" & r_TableInfo(lngTableCounter) & _
 Chr(13) & Chr(10)
 strCode = strCode & "Set UpdateRecordset = Update" & _
 r_TableInfo(lngTableCounter) & _
 "RS(v_recClientRecordSet, v_bolDelete)" & Chr(13) & Chr(10)
Next
strCode = strCode & "End Select" & Chr(13) & Chr(10)
strCode = strCode & "SetComplete" & Chr(13) & Chr(10)
strCode = strCode & "CloseADOConnection" & Chr(13) & Chr(10)
strCode = strCode & "Exit Function" & Chr(13) & Chr(10)
strCode = strCode & "UpdateRecordsetError:" & Chr(13) & Chr(10)
strCode = strCode & "CloseADOConnection" & Chr(13) & Chr(10)
strCode = strCode & "SetAbort" & Chr(13) & Chr(10)
strCode = strCode & "Err.Raise Err.Number, " & Chr(34) & _
 "UpdateRecordset" & Chr(34) & " & Err.Source" & Chr(13) & Chr(10)
strCode = strCode & "End Function" & Chr(13) & Chr(10)
CreateServer = strCode
End Function

Creating a VB Code Generator Add-In

515

Getting the Information From the Access
Database

Add a form into your Visual Basic
project. Call the form frmMain. Add the
Microsoft ActiveX Data Objects 2.x
Library and the Microsoft Visual Basic
6.0 Exensibility Object to your project
references:

We will need to get the names of the tables and the fields from the Access database. To do this we will use
the OpenSchema method of the connection object. The OpenSchema method will give us access to the
structure of the database by returning ADO recordsets with information on the database’s schema
(structure). Some of the schema information is stored as integers and we will need to convert that to
something that is useful. For example, the data types of the fields are stored as numeric values. We will
need to convert these numeric values to Visual Basic types. After some digging around I discovered what
each of the numbers represented and wrote the following function to convert the numbers to Visual Basic
data types:

Private Function GetDataType(ByVal v_lngValue As Long) As String

Select Case v_lngValue
 Case 2
 GetDataType = "Integer" '"Short"
 Case 3
 GetDataType = "Long"
 Case 4
 GetDataType = "Single"
 Case 5
 GetDataType = "Double"
 Case 6
 GetDataType = "Currency"
 Case 7
 GetDataType = "Date" '"DateTime"
 Case 11
 GetDataType = "Boolean" '"Bit"
 Case 17
 GetDataType = "Boolean" '"Byte"
 Case 72
 GetDataType = "GUID"
 Case 128
 GetDataType = "Long" '"LongBinary"
 Case 129
 GetDataType = "String" '"Text"
End Select

Appendix C

516

End Function

Creating a VB Code Generator Add-In

517

The types commented out are the actual types listed.

The ADO OpenSchema method has the following syntax:

Set recordset = connection.OpenSchema (QueryType, [Criteria], [SchemaID])

The Criteria and SchemaID parameters are optional and we will not use them. QueryType is the type
of schema information we want on the database. The values of QueryType are in the MSDN Library. We
will only be using three values for QueryType. If we choose a QueryType adSchemaTables, we will
get back a recordset filled with information on all of the tables. If you look in MSDN at the values for
criteria for OpenSchema, you will see some of the field names for the recordset that will be returned. For
adSchemaTables, the values listed for criteria are:

� TABLE_CATALOG

� TABLE_SCHEMA

� TABLE_NAME

� TABLE_TYPE

We will want to use TABLE_NAME to get the names of all of the tables. There are additional fields that are
available. If you are curious about them, you can write a small application that loops through all of the
fields and writes to a text file the field names and values for the fields.

We will also use adSchemaColumns as a QueryType to retrieve the information on the columns (fields)
of the table. The final QueryType we will use is adSchemaConstraintColumnUsage to get the
names of the primary key fields.

On your form add a textbox named
txtConnection with a text value of
"C:\Program Files\Microsoft Visual
Studio\VB98\Nwind.mdb". Add two command
buttons to the form called cmdRetrieveTables
with a caption "Retrieve Table Info" and
cmdGenerate with a caption "Generate". Add a
listbox called lstAvailableTables. Your form
should look as follows:

In the declarations section of this form add the following:

Private m_oVBInstance As VBIDE.VBE
Private m_uTables() As TableInformation

We will use the m_oVBInstance variable to get access to the instance of Visual Basic. The IDE
m_uTables will be used to hold the information on the tables that will be collected when
cmdRetreiveTables is clicked.

Appendix C

518

We will add a property to access m_oVBInstance:

Friend Property Get VBInstance() As VBIDE.VBE
 Set VBInstance = m_oVBInstance
End Property

Friend Property Set VBInstance(ByVal v_oNewVBInstance As VBIDE.VBE)
 Set m_oVBInstance = v_oNewVBInstance
End Property

Other modules will use VBInstance as we will show later, so it must be a Friend. We cannot include a
property for m_uTables as it is an array and we cannot use properties for arrays. We can create a function
to retrieve and set array members, but we will not do this to simplify the code. In a real project, you should
create such a function.

In the cmdRetrieveTables add the following code:

Private Sub cmdRetrieveTables_Click()
Dim objConnection As New ADODB.Connection
Dim objTableInfo As New ADODB.Recordset
Dim objFieldInfo As New ADODB.Recordset
Dim objPrimaryKey As New ADODB.Recordset
Dim lngRecordCounter As Long, lngFieldCounter As Long
Dim lngDisplacement As Long

The objTableInfo variable will be used to hold the recordset with the table information returned by
OpenSchema. The objFieldInfo variable will hold the field information returned by OpenSchema,
and objPrimaryKey will have the detailed field information that will include the primary key
information.

If there is no connection string in txtConnection we will exit out, otherwise we will try to open a
connection to the database:

Screen.MousePointer = vbHourglass
If txtConnection.Text <> "" Then
 On Error Resume Next
 With objConnection
 .Open "Provider=Microsoft.Jet.OLEDB.3.51; " & _
 "Persist Security Info=False;Data Source=" & txtConnection.Text
 If Err.Number <> 0 Then
 MsgBox "The following Error Occurred when trying to connect:" & _
 vbCrLf & "Error Description: " & Err.Description & vbCrLf & _
 "Error Number: " & Err.Number & vbCrLf & _
 "Error Source: " & Err.Source
 Screen.MousePointer = vbDefault
 Exit Sub
 End If

If we have successfully opened the database, we will then get a recordset with the table information in it
using OpenSchema:

Set objTableInfo =.OpenSchema(adSchemaTables)

Creating a VB Code Generator Add-In

519

We will now move through the records. Each record contains information on a table in the database. This
recordset not only holds information on the regular tables, but also the views and the system tables. We are
only interested in the regular tables, so we must skip over the views and system tables. In an Access
database, MSYS will be in the name of system tables, so we can eliminate system tables by looking for
MSYS in the table name. The recordset returned by OpenSchema will have a field called TABLE_TYPE,
which identifies the type of table, i.e. TABLE or VIEW. We can use this to eliminate the views.

lngRecordCounter = 1
Do Until objTableInfo.EOF
 If InStr(1, UCase(objTableInfo.Fields("TABLE_NAME")), "MSYS") = 0 _
 And objTableInfo.Fields("TABLE_TYPE") = "TABLE" Then

We will want to add each table into the m_uTables array. Since we do not know how many tables there
are (the RecordCount of objTableInfo contains the count of regular tables, system tables and views)
we must increase the size of the m_uTables array before we add each table. To increase the size of an
array, use ReDim. Since we want to keep the information in the array from the previous times through this
loop, we use ReDim Preserve, which allows us to increase the size of the array without deleting the
current values in the array.

ReDim Preserve m_uTables(1 To lngRecordCounter)

Now, we can add the table name into m_uTables and into the listbox:

m_uTables(lngRecordCounter).TableName = _
 objTableInfo.Fields("Table_Name")
LstAvailableTables.AddItem objTableRecordset.Fields("Table_Name")

We will get the primary key next:

Set objPrimaryKey = _
 .OpenSchema(adSchemaConstraintColumnUsage)

The recordset that is returned contains primary key information on all of the tables, not just the table we
want. Therefore, we will have to move through this recordset until we come to the record for the table we
are currently working with. Unfortunately, this table holds all of the constraint information on all of the
tables. We can have constraints other than the primary key constraint, so we must check to see if this is the
primary key constraint, also. If it is the correct table but the wrong constraint, we will ignore it.

Do While Not objPrimaryKey.EOF
 If LCase(objPrimaryKey.Fields("TABLE_NAME")) = _
 LCase(objTableInfo.Fields("TABLE_NAME")) Then
 If LCase(objPrimaryKey.Fields("CONSTRAINT_NAME")) = "primarykey" Then
 m_uTables(lngRecordCounter).PrimaryKey = _
 objPrimaryKey.Fields("COLUMN_NAME")
 Exit Do
 End If
 End If
 objPrimaryKey.MoveNext
Loop

Appendix C

520

Next, we will get the field information:

Set objFieldInfo =.OpenSchema(adSchemaColumns)

Finally, we will loop through the fields and add them to m_uTables:

objFieldInfo.MoveFirst
lngFieldCounter = 1
Do Until objFieldInfo.EOF
 If objTableInfo.Fields("Table_Name") = _
 objFieldInfo.Fields("Table_Name") Then

We will also have to ReDim the FieldInfo array:

ReDim Preserve m_uTables(lngRecordCounter).FieldInfo(1 To lngFieldCounter)
m_uTables(lngRecordCounter).FieldInfo(lngFieldCounter).FieldName = _
 objFieldInfo.Fields("COLUMN_NAME")
m_uTables(lngRecordCounter).FieldInfo(lngFieldCounter).PropertyName = _
 objFieldInfo.Fields("COLUMN_NAME")

To get the data type we will use the GetDataType function we created:

m_uTables(lngRecordCounter).FieldInfo(lngFieldCounter).DataType = _
 GetDataType(objFieldInfo.Fields("DATA_TYPE"))
lngFieldCounter = lngFieldCounter + 1
End If

objFieldInfo.MoveNext
Loop

lngRecordCounter = lngRecordCounter + 1
End If

objTableInfo.MoveNext
Loop

End With

End If

cmdRetrieveTables.Enabled = False
Screen.MousePointer = vbDefault

End Sub

Once we have stored all of the schema information that we require into the m_uTables array, we can use
this to generate our Visual Basic application based on this schema.

Creating a VB Code Generator Add-In

521

Generating the Code into the Visual Basic
IDE

Now that we have all of the information we need from the database and we have all of our code that we
want to generate wrapped up in functions, we need to start generating the code. Go to the
CmdGenerate_Click event and add the following code:

Private Sub CmdGenerate_Click()
Dim lngTableCounter As Long
Dim objVBproj As VBProject
Dim objVBClass As vbext_ComponentType
Dim strTempTableName As String

We will use the objVBproj variable to hold a reference to a Visual Basic project, objVBClass will
hold a reference to a Visual Basic component, such as a class, control or module, and
strTempTableName will be used to parse spaces out of the table name. We will loop through all of the
tables contained in the m_uTables array:

For lngTableCounter = 1 To UBound(m_uTables)

We will now create a temporary variable with the name of the table. We will remove spaces from the table
name.

If m_uTables(lngTableCounter).TableName <> "" Then
 strTempTableName = m_uTables(lngTableCounter).TableName
 Do While InStr(1, strTempTableName, " ") > 0
 If InStr(1, strTempTableName, " ") > 0 Then
 strTempTableName = _
 Mid(strTempTableName, 1, InStr(1, strTempTableName, " ") - 1) & _
 Mid(strTempTableName, InStr(1, strTempTableName, " ") + 1, _
 Len(strTempTableName))
 End If
 Loop

Next, we will use the Add method of VBProjects to create a new project in the Visual Basic IDE and
store a reference to this new project in the objVBProj variable:

Set objVBproj = VBInstance.VBProjects.Add(vbext_pt_ActiveXControl)

We can now start setting the properties of the project:

objVBproj.Name = "prj" & strTempTableName

We will use the GUIDs to set the proper references. To get these references, I created a Visual Basic EXE
project, added the references I needed, saved the project, opened the project in Notepad, and copied the
references. We will need references to the ADO 2.x library and remote data services.

objVBproj.References.AddFromGUID "{00000200-0000-0010-8000-00AA006D2EA4}", _
 2, 0
objVBproj.References.AddFromGUID "{BD96C556-65A3-11D0-983A-00C04FC29E30}", _
 1, 5

Appendix C

522

Next, we will use the Add method of VBComponents to add a class module:

objVBproj.VBComponents.Add (vbext_ct_ClassModule)

This will be the top class so we will name it after the table:

objVBproj.VBComponents.Item(1).Name = "ctl" & strTempTableName

We will call the Activate method to make sure the class is the active code module in the Visual Basic
IDE:

objVBproj.VBComponents.Item("ctl" & strTempTableName).Activate

At this point, we can insert the code into the class code module by using the AddFromString method of
the CodeModule object. We will call the BuildClass method of BuildTop to get the string containing
the code and insert it into the code module:

objVBproj.VBComponents.Item("ctl" & strTempTableName)._
 CodeModule.AddFromString _
 BuildTop.BuildClass(m_uTables(lngTableCounter), strTempTableName)

Now we will build the bottom class:

objVBproj.VBComponents.Item(objVBproj.VBComponents.Count).Name = _
 "cls" & strTempTableName
objVBproj.VBComponents.Item("cls" & strTempTableName).Activate

Because we want the bottom and middle classes to be data providers, we must set the
DataSourceBehavior to 1. After that, we will use our functions to get the code:

objVBproj.VBComponents.Item("cls" & _
 strTempTableName).Properties.Item("DataSourceBehavior").Value = 1
objVBproj.VBComponents.Item("cls" & _
 strTempTableName).CodeModule.AddFromString _
 BuildBottom.CreateDeclarations
objVBproj.VBComponents.Item("cls" & _
 strTempTableName).CodeModule.AddFromString _
 BuildBottom.CreateIntialize
objVBproj.VBComponents.Item("cls" & _
 strTempTableName).CodeModule.AddFromString BuildBottom.CreateTerminate
objVBproj.VBComponents.Item("cls" & _
 strTempTableName).CodeModule.AddFromString _
 BuildBottom.CreateChangedField
objVBproj.VBComponents.Item("cls" & _
 strTempTableName).CodeModule.AddFromString _
 BuildBottom.CreateMiscProps(strTempTableName)
objVBproj.VBComponents.Item("cls" & _
 strTempTableName).CodeModule.AddFromString _
 BuildBottom.CreateValidateFields(m_uTables(lngTableCounter).FieldInfo)
objVBproj.VBComponents.Item("cls" & _
 strTempTableName).CodeModule.AddFromString _
 BuildBottom.CreateGetLet(m_uTables(lngTableCounter).FieldInfo)

Creating a VB Code Generator Add-In

523

Next, we will add the middle class:

objVBproj.VBComponents.Add (vbext_ct_ClassModule)

objVBproj.VBComponents.Item(objVBproj.VBComponents.Count).Name = _
 "cls" & strTempTableName & "Manager"
objVBproj.VBComponents.Item("cls" & strTempTableName & _
 "Manager").Properties.Item("DataSourceBehavior").Value = 1
objVBproj.VBComponents.Item("cls" & strTempTableName & _
 "Manager").Activate

We want to create a string array of the table names without spaces:

Dim strTempTable() As String
ReDim strTempTable(1 To UBound(m_uTables))
Dim lngTableCount As Long
For lngTableCount = 1 To UBound(m_uTables)
 strTempTable(lngTableCount) = m_uTables(lngTableCount).TableName
 Do While InStr(1, strTempTable(lngTableCount), " ") > 0
 If InStr(1, strTempTable(lngTableCount), " ") > 0 Then
 Dim lngSpace As Long
 lngSpace = InStr(1, strTempTable(lngTableCount), " ")
 strTempTable(lngTableCount) = _
 Left(strTempTable(lngTableCount), lngSpace - 1) & _
 Right(strTempTable(lngTableCount), _
 Len(strTempTable(lngTableCount)) - lngSpace)
 End If
 Loop
Next

We will use AddFromString as before:

objVBproj.VBComponents.Item("cls" & strTempTableName & _
 "Manager").CodeModule.AddFromString _
 BuildMiddle.CreateDeclarartions(strTempTable, strTempTableName)

We need to find if the primary key field is numeric:

Dim bolPrimKeyNum As Boolean
Dim lngFieldCounter As Long
For lngFieldCounter = 1 To UBound(m_uTables(lngTableCounter).FieldInfo)
 If LCase(m_uTables(lngTableCounter).PrimaryKey) = _
 LCase(m_uTables(lngTableCounter).FieldInfo(lngFieldCounter) _
 .FieldName) Then
 If LCase(m_uTables(lngTableCounter) _
 .FieldInfo(lngFieldCounter).DataType) = "string" Then
 bolPrimKeyNum = False
 Else
 bolPrimKeyNum = True
 End If
 Exit For
 End If
Next

Appendix C

524

Again, we will use AddFromString:

objVBproj.VBComponents.Item("cls" & strTempTableName & _
 "Manager").CodeModule.AddFromString BuildMiddle.CreateDataMethods
objVBproj.VBComponents.Item("cls" & strTempTableName & _
 "Manager").CodeModule.AddFromString _
 BuildMiddle.CreateGeneral(strTempTableName, bolPrimKeyNum)
objVBproj.VBComponents.Item("cls" & strTempTableName & _
 "Manager").CodeModule.AddFromString _
 BuildMiddle.CreateInitTerm(strTempTableName)
objVBproj.VBComponents.Add (vbext_ct_StdModule)
objVBproj.VBComponents.Item(objVBproj.VBComponents.Count).Name = _
 "basMain"
objVBproj.VBComponents.Item("basMain").Activate
objVBproj.VBComponents.Item("basMain").CodeModule.AddFromString _
 BuildBas.CreateDeclarations(m_uTables(lngTableCounter).FieldInfo, _
 m_uTables(lngTableCounter).PrimaryKey, _
 m_uTables(lngTableCounter).TableName)
objVBproj.VBComponents.Item("basMain").CodeModule.AddFromString _
 BuildBas.CreateErrorFunc

End If

Next

Finally, we will add our data service class, clsServer:

Set objVBproj = VBInstance.VBProjects.Add(vbext_pt_ActiveXDll)
objVBproj.Name = "prjServer"

We will need references to the ADO 2.0 Library, MTS and remote data services:

objVBproj.References.AddFromGUID _
 "{00000200-0000-0010-8000-00AA006D2EA4}", 2, 0
objVBproj.References.AddFromGUID _
 "{BD96C556-65A3-11D0-983A-00C04FC29E30}", 1, 5
objVBproj.References.AddFromGUID _
 "{74C08640-CEDB-11CF-8B49-00AA00B8A790}", 1, 0
objVBproj.VBComponents.Item(objVBproj.VBComponents.Count).Name = _
 "clsServer"
objVBproj.VBComponents.Item("clsServer").Activate
objVBproj.VBComponents.Item("clsServer").CodeModule.AddFromString
BuildServer.CreateServer(strTempTable, m_uTables)

End Sub

While all of our code up to this point is perfectly correct, it will not work. While we have created a
reference to the Visual Basic IDE, we have not pointed the reference to the current instance of the Visual
Basic IDE that is using our add-in. We still need to get a reference to the Visual Basic IDE that called our
Code Generator add-in. Luckily, there are events that are raised that can be used to get this reference.

Creating a VB Code Generator Add-In

525

Getting a Reference to the Current Visual
Basic IDE

In the beginning, we named the class associated with this project CodeGeneratorClass. We need to put
some code into this class. Add the following into the CodeGeneratorClass:

Option Explicit
Implements IDTExtensibility

IDTExtensibility will give us the events that we will need to get a reference to the Visual Basic IDE.
Remember, when you use an interface you will need to use all of the methods in the interface. If you look in
the object drop down of the Visual Basic IDE (the left drop down box) you will see that the
IDTExtensibility has been added.

We will use OnConnection event to get a copy of the Visual Basic IDE. Go to the object drop down of
the Visual Basic IDE and select IDTExtensibility. OnConnection will include a parameter called
VBInst, which is a copy of the Visual Basic IDE. We will pass this to the frmMain VBInstance
property:

Private Sub IDTExtensibility_OnConnection(ByVal _
 VBInst As Object, ByVal ConnectMode As _
 VBIDE.vbext_ConnectMode, ByVal AddInInst As _
 VBIDE.AddIn, custom() As Variant)
Set frmMain.VBInstance = VBInst
frmMain.Show
End Sub

We will now just fill in the rest of the events of the interface with comments:

Private Sub IDTExtensibility_OnDisconnection(ByVal _
 RemoveMode As VBIDE.vbext_DisconnectMode, _
 custom() As Variant)
' Comment to prevent procedure from being
' deleted on compilation.

End Sub

Private Sub IDTExtensibility_OnStartupComplete _
 (custom() As Variant)
' Comment to prevent procedure from being
' deleted on compilation.
End Sub

Private Sub IDTExtensibility_OnAddInsUpdate _
 (custom() As Variant)
' Comment to prevent procedure from being
' deleted on compilation.
End Sub

Appendix C

526

Using the Code Generator
Now that we have gone through all of this work, let us use our code generator. Begin by compiling the
project into a DLL. Next, without Visual Basic running, open the Immediate Window and type in
AddToIni and hit return. You should see our message, “Add-in is now entered in VBADDIN.INI file”.

Open up another instance of Visual Basic 6 with a new standard exe project. If you want to step through the
code in the code generator, place break points in the code generator project and run it.

Go to the menu of the new standard exe
project and select AddIns. You should
see our new code generator project listed:

Double-click on
CodeGenerator.CodeGeneratorClass and select
OK. This will bring up the form from our add-in:

Click Retrieve Table Info and then click Generate. Set the path to the correct path for your computer.
The code generator should now generate the entire project for you.

The generated code for the business services components can form the framework for coding these
components. There will be many business rules, such as a customer must have a billing address or a state
must be two letters, that will have to be added to this code. We can see that our business components are
built from a basic pattern that has specific rules added to them. While we will have to do some refinement
to our business services components, the majority of the code can be created from a pattern. This can save a
great deal of time in the development phase. Let us now see how to test the generated code.

Creating a VB Code Generator Add-In

527

Testing the Generated Code
You can create as complicated a test as you like. We will offer a very simple one. Go to Form1 and add a
text box and name the text box txtCategoryName. Add a command button and call it cmdMoveNext
with a caption "Move Next". Add a category control onto the form and call it ctlCategories. Add
the following code to the form:

Private Sub cmdMoveNext_Click()
 ctlCategories.GetCategoriesCollection(e_CategoryID).MoveNext
End Sub

Private Sub Form_Load()
 txtCategoryName.DataField = "CategoryName"
 txtCategoryName.DataMember = "CategoryIDEquals"
 Set txtCategoryName.DataSource = _
 ctlCategories.GetCategoriesCollection(e_CategoryID).Item
End Sub

Run the generated project. You should see the
following:

You can now try the project with other Access databases.

Appendix C

528

Creating a VB Code Generator Add-In

529

Index

<DIV> elements
DHTML, 298

<OBJECT>, 299
abstraction, 12, 190
Active Data Objects (ADO)

activity diagram for ADO connection, 251
connection object, 310, 312
connection, destroying, 311
OLE-DB, 242

Active X controls
deployment phase, 339

activity diagrams, 250
activity, 413
ADO connection, 251
benefits, 258
decision points, 413
defined, 412
deliverables, 21
libraries, 251
physical design stage, 381
retrieve customer, 253
update recordset, 257

actors
computers as, 182
defined, 409
design phase, 175

ADOR recordset, 244
aggregations

UML representation, 415
apartment threading, 207
applications

deployment, 338
internet, 209
scalability, 209
single tier, 199
test applications, 305

structured, 306
unstructured, 305

three tier, 201
client services, 201
data services, 201

two tier, 200
data conflicts, 200
locks, 200
scalability, 201
web applications, 201

upgrading, 211

As Soon As Possible (ASAP) deactivation
MTS, 247

ASP pages, 240
ASP Request object, 289, 294
ASP Response object, 289, 294
building, 289
protecting from hackers, 296
VB component, building, 290
Visual Basic, 286
with VB component, 286

associations
UML representation, 415

atomicity
transaction processing, 204

autocratic managers, 30
problems, 31

beta testing
bugs

ranking, 335
reproducibility, 336

communication, 333
deployment phase, 331, 333
documentation, 334
error handling, 334
performance, 334
usability testing, 333

bug reports, 308, 389
bugs

documentation, 308
General Protection Fault (GPF), 335
Microsoft Transaction Server (MTS), 309

instances XE, 319
non-trivial, 308
Option Explicit, 308
ranking, 335

level 1-4, 335
reproducibility, 336
tracking, 308

procedure, 308
PVCS Tracker, 308
Track/TrackWeb, 308
Visual Intercept, 308

business case
vision/scope document, 17

business processes
consensus meetings, 132
user training, 336

Table of Contents

2

vision/scope document, 144
business rules, 409

business term, 177
Constraints, 177, 180
Definition, 177
Derivation, 177
design phase, 176
extensions, 180
Facts, 177
OOP, 177
Requirement, 176
UML, 178

business services, 203
bottom class, 272

methods, 274
properties, 272

class diagrams, 234
component design, 235
component reuse, 210, 271
fat clients, 240
instance management, 274
middle class, 274
objects distribution, 239
testing, 305
thin clients, 240
three-tier applications, 201
top class, 276

methods, 276
C++ programmers

developers team, 233
cabinet files, 299

dependency files, 342
Category object, 293
change control

development phase, 270
risk management, 155

class diagrams, 234, 265
bottom class, 272
code samples, 300
defined, 413
deliverables, 21
middle class, 275

methods and properties, 275
physical design stage, 381
server component, 277
top class, 276

class hierarchies
managed class, 236
managing class, 237
Northwind example, 238
three level, 238
two level, 236

classes, 12
bottom class, 272

instances, 12
middle class, 274
top class, 276
UML representation, 414

client services
component reuse, 210
three-tier applications, 201

clients
expectations

risk management, 150
fat, 240
requirements, 370
thin, 240

code
code generation, 285
reuse, 278

patterns, 279, 285
reviews, 270
samples

sequence diagrams, 300
templates, 284

coding standards, 229, 270
cohesion, 193

coincidental, 195
communicational, 194
functional, 194
logical, 195
procedural, 195
sequential, 194
temporal, 194

collaboration diagrams
defined, 412

COM
See Component Object Model, 191

communication, 45
beta testing, 333
between components, 243
improving speaking, 46
improving writing, 46
information flow, 47

compatability tests
functional testing, 307

component '.dep' files, 341
component diagrams

defined, 414
component managers

component solution testing, 305
component teams, 120
conflict resolution, 56
consensus meeting, 125
decision making, 34, 48
deployment phase, 39, 332
design phase, 39
development phase, 39, 268

Table of Contents

3

envisionment phase, 39
goals, accomplishing, 63
logistics, 35
passion for work, 58
planning, 50
problem solving, 53
risk management, 270
risk tracking document, 160
roles, 38
team spirit, 61

Component Object Model (COM)
apartment threading, 207
encapsulation, 191
Microsoft Transaction Server (MTS), 203

Component Object Model [COM]
distributed, 243
Dynamic Link Library (DLL), 233

component reuse
consensus meeting, 134

component teams, 26, 120
clients, meetings, 33
members, 35
members' equality, 26
product managers, 37

components
build, buy or reuse, 231
building, 13
buliding, 231
business services, 271
cohesion, 194
communication, 243
Component Object Model (COM), 191
composition, 196
coupling, 196
CreateInstance, 291
frameworks, 249
GUIDs, 193
interfaces, 196

frameworks, 199
public, 214

location, 211, 300
logical design stage, 188
methods, 213
modifying, 231
MTS, effects of, 247
MTS, registering in, 317
overwriting, 192
physical design stage, 228
reuse, 106, 210, 231

RDS, 276
risk management, 155

scalability, 209
security, 260
server, 277

state/stateless, 201
testing, 22

database, writing to, 320
NT event log, writing to, 320
text file, writing to, 320

UML, use cases, 197
example, 197

version numbers, 193
with ASP page, 286

composition, 196
compositions

UML representation, 415
computer systems

as users, 176, 182
XML, 182

concensus meeting
client requirements, 370
ROI / TCO, 369

conceptual design stage
actors, 175
business rules, 176

business term, 177
Constraints, 177, 180
Definition, 177
Derivation, 177
extensions, 180
Facts, 177
Requirement, 176

design phase, 19, 165
information formats, 183
iterative design, 20
overview, 166
requests for services, 168
scenarios, 166, 167, 172

if statements, 173
schedule, 376
starting point, 167
team focus, 166
UML, use cases, 175

example, 179
users, 181

cookies, 182
defining different types, 168
defining roles, 169
interviewing, 169, 170
login, 182
systems as, 176, 182
types, 181

vision/scope documents, 166
workflows, 174

roles, 174
XML, 182

conflict resolution, 55

Table of Contents

4

guidelines, 56
vision/scope documents, 143

connection objects
Active Data Objects (ADO), 310

connection pooling, 242
consensus meeting

envisionment phase, 18
consensus meetings

allowing free speech, 132
avoiding constraints, 133
business processes, 132
component reuse, 134
defining scope, 127
defining vision, 126
discussion depth, 130
electronic access, 129
Enterprise Architecture Document, 134
first

conceptualization stage, 125
goals

drilling down, 130
first level, 130
frst level

Northwind example, 130
high priority, 125
low priority, 125
medium level, 125
prioritization, 126
risk, 135
second level, 130

Northwind example, 130
third level, 133
third level, 133

importance, 125
Northwind example, 127
notes, 132
product managers, 132
scope, defining, 135
second

analysis stage, 129
deliverables, 132
purpose, 129

senior management, involvement, 129
two-goal comparison, 126, 135
venue, 130
vision statements, 131
vision/scope, 124

consistency
transaction processing, 204

Constraint Business Rule, 177
constraints

consensus meetings, 133
content site maps, 393
Context object, 278, 310

MTS, 248
SetAbort method, 248
SetComplete method, 248

context wrapper
MTS, 247

controls, 233
corporate infrastructure, assessing

Enterprise Architecture Document, 122
corporate standards

risk management, 152
corporate vision, 131

risk management, 152
vision statements, 132

cost controls
risk management, 150

cost estimates
Project 98, 106

costs, projects
TCO/ROI, 136

coupling
components, 196
OOP, 193

coverage testing
functional testing, 307

CreateInstance
component creation, MTS, 291
Microsoft Transaction Server (MTS), 325

creativity, 54
developers, 11, 54
increasing, 55
testers, 54

customer component, 235
customer object, 197, 209, 213

methods, 214, 235
properties, 198, 215, 235

cyclic methodology, 8
advantages, 15, 138
creativity of developers, 11
deliverables, 15
deployment phase, 14, 23
design phase, 14, 19
development phase, 14, 22
envisionment phase, 14, 17
goals, 136
milestones, 15
number of cycles, 136
OOP, 14
overview, 14
Return of Investment (ROI), 138
risk management, 154
stage and phase overlap, 184
team roles, 24
Total Cost of Ownership (TCO), 138
vision/scope document, 139

Table of Contents

5

data conflicts, 200
locks, 200
Property Set, 273

data services
class diagrams, 234
recordsets, 240
three-tier applications, 201

data services object, 210
databases

testing, 320
DataSpace object

proxy server creation, 276
DCOM

See Distributed COM (DCOM), 243
debugging

See bugs, 309
decision making, 47

gathering information, 48
improving, 49

decision points
UML activity diagrams, 413

declarations
testing, 321

Definition Business Rule, 177
deliverables

activity diagrams, 21
class diagrams, 21
cyclic methodology, 15
deployment phase, 23
envisionment phase, 119
second consensus meeting, 132
sequence diagrams, 21

dependencies
UML representation, 415

dependency files, 341
cabinet files, 342
component '.dep' files, 341
VB6dep.ini files, 342
Visual Basic deployment wizard, 340

deployment diagrams
defined, 414

deployment phase
Active X controls, 339
applications, deployment, 338
beta testing, 331, 333, 336
CD-ROM, 346
component managers, 39
cyclic methodology, 14
deliverables, 23
developers, 40
development phase overlap, 399
documentation, 337

code changes, 338
end users, 44

floppy disks, 346
Gantt chart, 403
help files, 339
infrastructure preparation, 337
intranet, 347
logisticians, 42
overview, 332
product managers, 38
project manager, 37
review meeting, 337
rollout, 333, 400
schedule, 398

Project 98, 402
signing off, 347
stabilization, 23
strategies, 338
Systems Management Server (SMS), 347
team focus, 332
team member involvement, 25
testers, 41
user educators, 43
user training, 336
Visual Basic deployment wizard, 339

dependency files, 341
Derivation Business Rule, 177
design patterns

UML representation, 418
design phase, 19

component managers, 39
conceptual design stage, 19

actors, 175
business rules, 176, 178
information formats, 183
scenarios, 166, 167, 172, 173
UML, use cases, 175, 179, 181
users, 168, 169, 172, 181, 183
workflows, 174, 175

conceptual stage, 165
cyclic methodology, 14
developers, 40
end users, 44
Gantt chart, 386
iterative design, 20
logical design stage, 19

components, 189
components, defining, 197
DNA, 208
frameworks, 199
Microsoft Transaction Server (MTS), 203
object interfaces, 209
overview, 188
scope, 189
sequence diagrams, 211, 214, 216
User Interfaces, 212, 217, 220, 221

Table of Contents

6

logisticians, 42
milestone, 22
physical design stage, 19, 265, 381

Active Data Objects (ADO), 242
activity diagrams, 250
class hierarchies, 236
error handling, 261
overview, 228
RDS and DCOM, 243
risk assessment, 265
security, 259

product managers, 38
project manager, 37
schedule, 375

Project 98, 384
team member involvement, 25
testers, 41
testing, 259
UML, 167
user educators, 43
XML, 182

developers
creativity, 11
deployment phase, 40, 332
design phase, 40
development phase, 40, 268
Enterprise Architecture Document, 123
envisionment phase, 39
goals, accomplishing, 63
passion for work, 58
planning, 50
problem solving, 53
risk management, 153
roles, 39
testers, 41
usability testing, 304

developers team
C++ programmers, 233
component management, 24
development, 24
logistics, 24
product management, 24
size, 26
testing, 24
user education, 24

development phase, 22, 267
ASP pages, 286
business service components, 271
change control, 270
client HTML page, 288
code reuse, 278

patterns, 279, 285
code reviews, 270
coding standards, 270

component managers, 39, 268
component testing, 22
cyclic methodology, 14
deployment phase overlap, 399
developers, 40, 268
DHTML, 296, 299
DNA, coding, 271
end users, 44
frameworks, 280
Gantt chart, 397
logisticians, 42, 268
milestone, 22
overview, 269
product managers, 38, 268
project manager, 37, 268
risk management, 269
schedule, 387

Project 98, 395
server component, 277
team focus, 268
team member involvement, 25
testers, 41, 268
user educators, 43, 268
VB component with ASP page, 286

DHTML
<DIV> elements, 298
coding page, 296
creating objects, 297
intranet, 296
listboxes, 299
tables, initializing, 297

diagrams
activity diagrams

activities, 413
decision points, 413
defined, 412

class diagrams
defined, 413

collaboration diagrams
defined, 412

component diagrams
defined, 414

deployment diagrams
defined, 414

interaction diagrams
defined, 411

object diagrams
defined, 414

sequence diagrams
defined, 411

statechart diagrams
defined, 414

use case models, 409
directory services

Table of Contents

7

security, 260
disconnected recordsets, 183
Distibruted interNet Applications (DNA)

See DNA, 208
Distributed COM (DCOM), 243, 246

ADO recordsets, 243
security, 260

Distributed Transaction Coordinator (DTC), 248
DNA, 3, 208

coding, 271
scalable components, 209

documentation
bugs, 308
code changes, 338
deployment phase, 337
desgining as a team, 229
research, 231
risk management, 155, 157
signing off, 348
testing, 231

Domain Name Servers (DNS)
marshalling, 246

durability
transaction processing, 204

duration fields
Gantt charts, 79

Dynamic Link Library (DLL), 233
EAD

See Enterprise Architecture Document, 121
educator

consensus meetings, 133
role, 120

elapsed times
Gantt charts, 79

emergence, 196
encapsulation, 12, 191

Component Object Model (COM), 191
object interfaces, 192

end users
deployment phase, 44
design phase, 44
development phase, 44
envisionment phase, 43
risk management, 154
role, 43

Enterprise Architecture Document, 132
consensus meetings, 134
content

client resources, 123
component resourses, 123
developers, attitudes, 123
developers, experience, 123
developers, number, 123
developers, types, 123

expectations, 124
funds, current status, 124
funds, future development, 124
funds, hardware, 124
funds, software, 124
funds, training, 124
geographical locations, 123
information, access, 123
information, availability, 123
information, corporation's value, 123
methodologies, 122
network, 123
technology, current status, 122
technology, flexibility, 122
technology, importance, 122

corporate infrastructure, assessing, 122
criticizing, 122
envisionment phase, 18, 121
logisitician, 122
logisticians, 42
product managers, 37, 122
risks, 148

enterprise system, 64
enthusiasm, 57

generating, 57
enumerated type

error messages, 263
envisionment phase, 369

component managers, 39
consensus meeting, 18
consensus meetings, 124

first, 125
second, 129

costs, 106
cyclic methodology, 14
deliverables, 119
developers, 39
end users, 43
Enterprise Architecture Document, 18, 121
Gantt chart, 375
goals, 141
importance, 107
logisticians, 42
overview, 120
product managers, 37
project cost estimates

TCO/ROI, 136
project manager, 37
Return on Investment (ROI), 369
risks, 142
schedules, 368

Project 98, 374
scope statements, 17
sponsors, commitment, 17

Table of Contents

8

study time, 81
team focus, 120
team member involvement, 25
testers, 40
testing, 303
Total Cost of Ownership (TCO), 369
user educators, 43
vision and scope, identifying, 17
vision statements, 17
vision/scope documents, 17, 138

sections, 138
err.raise statement, 334
error handling

beta testing, 334
err.raise statement, 334
physical design stage, 261

error messages
enumerated type, 263
resource files, 261
wording, 264

estimates
resources, 234
time

goals, 84
evaluation reports

reporting manager, 29
event log

testing, 320, 324
extensibility, 14
Factual Business Rule, 177
fat clients, 240
field validation

recordsets, 274
financial resources

Enterprise Architecture Document, 124
Finish to Finish

Project 98, 91
Finish To Start

Project 98, 90
focus, 58

remaining focused, 59
forms

actors, multiple, 224
security, 223
several, 223
tabs, 220

on one form, 221
frameworks

component design, 249
component interfaces, 199
development phase, 280
logical three-tier model, 202
Microsoft Transaction Server (MTS), 203
patterns, 280

physical three-tier model, 202
single-tier applications, 199
three-tier applications, 201

business services, 201
client services, 201
data services, 201

two-tier applications, 200
applications, 201
data conflicts, 200
locks, 200

free-threading, 205
friend properties, 237
functional testing, 303, 306

boundary conditions, 307
compatability tests, 307
coverage testing, 307
customized tests, 307
Northwind example, 306
performance tests, 307
stress tests, 307
unit testing, 306

functionality
defining, 370
development, 392
User Interfaces, 379

functionality, projects
time and budget constraints, 124

Gantt charts
appearance, changing, 100
deployment phase, 403
design phase, 386
development phase, 397
duration fields, 79
envisionment phase, 375
schedules, 72
time resources, 77

Gantt view
Project 98, 75

General Protection Fault (GPF), 335
geographical location

Enterprise Architecture Document, 123
goals

accomplishing, 63, 64
consensus

risk assessment document, 151
corporate

risk management, 152
cycles, 136
definition

risk management, 155
drilling down, 130
envisionment phase, 141
first level, 130

Northwind example, 130

Table of Contents

9

high priority
consensus meeting, 125

low priority
consensus meetings, 125

measuring achievements, 132
medium level

consensus meeting, 125
prioritization, 126, 133, 135

Northwind example, 127
recurring

schedules, 88
risk, 135
schedules, 71, 79, 367

goal dependencies, 89
goals, critical, 102
links, 89

second level, 130
Northwind example, 130
vision/scope documents, 141

third level, 133
Northwind example, 133
scenarios, 167
vision/scope documents, 141

time estimates, 84
well-defined

risk assessment document, 151
GUIDs, 193
help files

deployment phase, 339
high priority goals

consensus meeting, 125
HOW

sequence diagrams, 215
HTML

client page, 288
coding, 391

standards, 391
conversion, 393
editors, 391
objects, references to, 299
protecting pages from hackers, 295
recordsets, in building pages, 287
requests, submitting, 289
SQL Server 7.0, 287

HTTP
Remote Data Services (RDS), 246

information
Enterprise Architecture Document, 123

infrastructure preparation
logisticians, 337

inheritance
UML representation, 416

instances
classes, 12

middle class, instance management, 274
interaction diagrams

defined, 411
interfaces

components, 196
ObjectControl interface, MTS, 291
objects, 192
polymorphism, 283
Visual Basic, 283

internet applications, 209
Active Data Objects (ADO), 242
Remote Data Services (RDS), 244
security, 260
User Interfaces, 224

interviewing users, 169
isolation

transaction processing, 204
iterative design

design phase, 20
Just In Time (JIT) activation

MTS, 247
leadership, 61

improving, 62
listboxes, 299
locks

data conflicts, 200
optimistic, 200
pessimistic, 200

log database
testing, 321

logical design stage
applications, upgrading, 211
components, 188, 189

interface, 214
location, 211
reuse, 210
UML, use cases, 197

deliverables, 21
design phase, 19
DNA, 208
frameworks, 199

logical model, 202
physical model, 202
scability, 201
single-tier applications, 199
three-tier applications, 201
two-tier applications, 200

interfaces, changing, 211
iterative design, 20
Microsoft Transaction Server (MTS), 203
object interfaces, 209
overview, 188
pseudo-code, 189
schedule, 377

Table of Contents

10

scope, 189
sequence diagrams, 188, 210, 211, 216

developer review, 216
iterative design XE, 214
order entry, 217
User Interfaces, 217
user review, 215

team focus, 188
testing plan, 306
use cases, 210
User Interfaces

actors, multiple, 224
forms, several, 223
internet applications, 224
order entry, 221
security, 223
tabs, 220

logical model
frameworks, 202

login
web applications, 182

logisticians
applications, deployment, 338
component management, 35
consensus meetings, 133
deployment phase, 42, 332
design phase, 42
development phase, 42, 268
Enterprise Architecture Document, 42, 122
envisionment phase, 42
focus, 59
infrastructure preparation, 337
role, 42, 120
TCO/ROI estimates, 228
testing infrastructure, 305

low priority goals
consensus meetings, 125

maintenance
projects, 16

managed class
object hierarchies, 284

management
autocratic, 30

problems, 31
goals, 24
senior

involvement, 129
managing class

address access, 273
object hierarchies, 284

marshalling, 244
master schedule, 372
medium level goals

consensus meeting, 125

methodologies
risk management, 155

methods, 12
bottom class, 274
components, 213
middle class, 275
server component, 277
top class, 276

Microsoft Project 98
See Project 98, 71

Microsoft Transaction Server (MTS), 203
ACID properties, 204
apartment threading, 208
As Soon As Possible (ASAP) deactivation, 247
component design, effect on, 247
Component Object Model (COM), 203
components, non-transactional, 249
components, registering, 317
Context object, 248, 311
context wrapper, 247
CreateInstance, 291
debugging, 309

client and server in separate instances, 319
databases, 320
declarations, 321
event log, 320, 324
log database, 321
SetADOConnection, 325
text file, 323

debuggingCreateInstance, 325
Distributed Transaction Coordinator (DTC), 248
Just In Time (JIT) activation, 247
object lifetimes, 247
ObjectContext object, 278
ObjectControl interface, 291
Reconcile step, 258
security, 260
threading, 205
transaction processing, 203
transactions, committing, 278
when to use, 205

milestones
cyclic methodology, 15
design phase, 22
development phase, 22
risk management, 152
schedules, 83
UML, use cases, 20

model
defined, 407

modeling language
defined, 407

modularity, 9
MSDN, 230

Table of Contents

11

MTS
See Microsoft Transaction Server (MTS), 203

multiplicities
UML representation, 416

multi-threading, 205
not supported by Visual Basic, 205

network
traffic, 383

Northwind example
ADO disconnected recordsets, 257
bug tracking, 308
class diagrams

bottom class, 272
middle class, 275

class hierarchies, 238
functional testing, 306
goal prioritization, 127
goals, first level, 130
goals, second level, 130
goals, third level, 133
interviewing users, 170
patterns, 283
recordsets, returning, 313
schedules, Project 98, 85

goal linking, 92
testing, 259
transaction processing, 204
vision/scope documents

project cycles, 140, 141
object diagrams

defined, 414
object hierachies

managed class, 284
managing class, 284

object hierarchies, 284
Object Oriented Programming

see OOP, 12
ObjectControl interface

MTS, 291
objects, 12

As Soon As Possible (ASAP) deactivation, 247
attributes, 190

accessing by recordset, 272
classes, 12
HTML, 299
in DHTML, 297
interaction

UML representation, 417
Just In Time (JIT) activation, 247
methods, 12
MTS, 247
ObjectContext object, 278
properties, 12
UML representation, 415

OLE-DB
Active Data Objects (ADO), 242

one-based arrays, 307
OOP

abstraction, 12, 190
business rules, 177
classes, 12
cohesion, 193, 195
composition, 196
coupling, 193
cyclic methodology, 14
emergence, 196
encapsulation, 12, 191
extensibility, 14
instances, 12
methods, 12
object design, 192

versions, 192
object interfaces, 192

use cases, 209
objects, 12
patterns, 279
properties, 12

Option Explicit
variable declarations, 308

order object, 198
parameters

passing by reference, 315
passing by value, 314

passion for work, 57
increasing, 58
nurturing, 57

patterns
application efficiency, 300
code generation, 285
code reuse, 279, 285
frameworks, 280
general, 279
sequence diagrams, 282
specific, 279
usefulness, 280

performance tests
functional testing, 307

personnel
risk management, 149

Pert charts
goal dependencies, 73
schedules, 73
sub-goals, 73

physical design stage
Active Data Objects (ADO), 242
activity diagrams, 250, 381

ADO connection, 251
benefits, 258

Table of Contents

12

retrieve customer, 253
update recordset, 257

business service componet, 235
class diagrams, 265, 381
class hierarchies, 236
communication between components, 243
components, 228
connection pooling, 242
data services class, 240
deliverables, 21
design phase, 19
Distributed COM, 243
educators, 228
error handling, 261
fat clients, 240
iterative design, 20
marshalling, 244
MTS, 247
overview, 228
product managers, 228
proxies, 244
Remote Data Services (RDS), 243
resource estimates, 234
risk assessment, 265
schedule, 381
security, 259
team focus, 228
testers, 228
thin clients, 240
Visual Basic, when not to use, 232

physical three-tier model, 202
planning, 49

documentation, 49
improving, 51
time management, 51

pointers, 233
bugs, 336
Visual Basic, 233

polymorphism
interfaces, 283

private properties, 237
problem domain

defined, 407
problem solving, 52

improving, 53
product managers, 37

component teams, 37
conflict resolution, 56
consensus meeting, 125
consensus meetings, 133
decision making, 34
deployment phase, 38, 332
design phase, 38
development phase, 38, 268

Enterprise Architecture Document, 37, 122
enterprise system, 64
envisionment phase, 37
focus, 59
mediator, 125
physical design stage, 228
TCO/ROI, 37
user education role, 35

product object, 198
products

defined, 8
Products component

ASP page, 286
modifying, 290

Project 98
appearance, changing, 101
cost estimates, 105
deployment phase schedule, 402
design phase schedule, 384
development phase schedule, 395
envisionment phase schedule, 374
Gantt chart timescales, 76
Gantt Chart Wizard, 100
Gantt view, 75
goal dependencies, 89

Finish to Finish, 91
Finish To Start, 90
Start to Finish, 91
Start To Start, 90

goals
critical, 102
entering, 77, 79
recurring, 88
sub dividing, 82

HTML exports, 108
links, 89
milestones, 84
project information, 85
project starting date, 75
resource estimates, 234
resource management, 96
resources, 93
Resourch Graph, 100
schedules, 71, 365
schedules, creating, 78
sub-goals, 82
tables, 105

exporting, 108
views, 74

project management, 9
component teams, 120
cyclic methodology, 8
modularity, 9
myths, 10, 11, 30

Table of Contents

13

team, 32
project manager, 25, 26

conflict resolution, 56
coordination, 36
decision making, 34, 48
deployment phase, 37
design phase, 37
development phase, 37, 268
envisionment phase, 37
goals, accomplishing, 63
leadership, 61
passion for work, 57, 58
problem solving, 53
responsibilities, 29
risk management, 150, 270
role, 36
team spirit, 61

project schedule
risk management, 149

projects
communication, 22
components, 13
cost

TCO/ROI, 136
defined, 8
desgining as a team, 229

coding standards, 229
design documents, 229

design work, importance of, 11
failing, 158
failure rates, 10
functionality, 124
iterative design, 184
maintenance, 16
research, 230
schedules, 71, 115, 404
scope, 14
success, reasons for, 10
team roles, 24
total cost estimates, 136

properties, 12
bottom class, 272
friend, 237
middle class, 275
private, 237
Property Get, 272
Property Let, 272
Property Set, 272

data conflicts, 273
public, 237

prototypes
code, discarding, 304
testing, 231
VB with ASP pages, 287

proxies
DataSpace object, 276
marshalling, 244
RDS.DataSpace object, 244, 276
Remote Data Services (RDS), 275

pseudo-code
logical design stage, 189

public properties, 237
PVCS Tracker

bug tracking, 308
Rational

sequence diagrams, 215
RDS.DataSpace object

proxies, 244, 276
Reconcile step

Microsoft Transaction Server (MTS), 258
recordsets, 240

Active Data Objects (ADO), 242
ADOR, 244
field validation, 274
HTML pages, building, 287
object attributes, accessing, 272
Remote Data Services (RDS), 243

recordsets, disconnected, 183
relationships

UML, 408
UML representation, 415

Remote Data Services (RDS), 243
component reuse, 276
DCOM, 246
HTTP, 246
marshalling, 244
proxy servers, 275
recordsets, 243

reporting manager, 25
evaluation, 29
role, 30

reproducibility, bugs
categories, 336

requests for services
conceptual design stage, 168

Requirement Business Rule, 176
research

documentation, 231
MSDN, 230
Visual Basic, 230

resource files
error messages, 261

resources
estimates, 234
management, 96
risk management, 149
schedules, 93, 96
time

Table of Contents

14

Gantt charts, 77
Resourch Graph

Project 98, 100
results, long-term

risk management, 151
Return on Investment (ROI), 136

cyclic methodology, 138
envisionment phase, 369
logisticians, 228
product managers, 37
vision/scope documents, 143

Return... methods, 277
review meeting

deployment phase, 337
risk assessment

physical design stage, 265
vision/scope documents, 18, 142

Risk Assessment Document, 371
risk evaluation

goals, 135
risk management

component managers, 270
development phase, 269
documentation, 157
project manager, 270
projects, failing, 159
requirements, 148
risk assessment document, 148

change control, 155
client expectations, 150
corporate standards, 152
corporate vision, 152
cost controls, 150
cyclic methodology, 154
documentation, 155
example, 156
funds, 149
goal definition, 155
goals, consensus, 151
goals, corporate needs, 152
goals, well-defined, 151
methodologies, 155
milestones, 152
personnel, 149
project manager, 150
project schedule, 149
resources, 149
results, long-term, 151
reusable components, 155
roles, 154
scope, 154
sponsors, 153
stakeholders, 153

team member commitment, 153
team member skills, 150
technology, reliability, 152
testing, 153
testing, unit and system, 153
users, 154
vision/scope documents, 156
workflows, 151

risk metrics, 157
risk tracking document, 157, 160

example, 161, 162
sections, 160
updates, 162

risks
determining effect, 157
reducing, 158
tolerable, 157
unavoidable, 158, 159

risks, identifying, 148
ROI

See Return on Investment, 136
rollout schedule, 400

deployment phase, 333
scalability, 201

internet, 209
web farms, 287

scenarios, 172
design phase, 166
goals, third level, 167
if statements, 173
UML, use cases, 167, 175
workflows, 174

schedules
accuracy, 404
bug reports, 389
conceptual design stage, 376
creating, 78
deployment phase, 398
design phase, 375
development phase, 387
envisionment phase, 368
Gantt charts, 72

duration fields, 79
elapsed times, 79

goal dependencies, 89
goals, 367

critical, 102
recurring, 88
sub dividing, 82

HTML
coding, 391
converting to, 393

improvements, 403
links, 89

Table of Contents

15

logical design stage, 377
master, 120
milestones, 83
Pert charts, 73
physical design stage, 381
Project 98, 71

appearance, changing, 101
cost estimates, 105
Gantt chart timescales, 76
Gantt Chart Wizard, 100
Gantt view, 75
goals

entering, 77, 79
tables, 105

exporting, 108
views, 74

project information, 85
resource management, 96
resources, 93
rollout, 400
security, 382
server setup, 382
site traffic, 382
sub-goals, 82
testing, 372, 394
time estimates, 83
user support, 401
vision/scope document, 373
web applications, 115

scope
defining, 127, 135
risk management, 154

scope statements
envisionment phase, 17
purpose, 17
vision/scope documents, 17, 18

security, 382
component based, 260
database, 259
directory services, 260
hackers, 296
MTS, 259
operating system, 259
physical design stage, 259
UML, use cases, 261
User Interfaces, 223

self-directed work teams, 32
sequence diagrams, 197, 211

code samples, 300
code templates, 284
defined, 411
deliverables, 21
developer review, 216
iterative design, 184

logical design stage, 188
order entry, 217
patterns, 282
UML tools

HOW, 215
Rational, 215
Visio, 215

UML, use cases, 210
user interfaces, 217

protoype, 217
user review, 215

sequence diagrams XE, 213
server

component, 277
class diagram, 277
methods, 277

formats, 276
proxy

DataSpace object, 276
RDS, 275

setup, 382
production network simulation, 383

SetAbort method, 258
Context object, 248

SetADOConnection
Microsoft Transaction Server (MTS), 325

SetComplete method, 258
Context object, 248

single-threading, 205
single-tier applications, 199
software team, 33, 35

team members, 24
speaking skills, 46
spirit

improving, 61
spirit, team, 60
sponsors, 25

consensus meeting, 125
envisionment phase, 44
other phases, 44
resources, 149
risk management, 153
roles, 44
vision and scope, 17

SQL Server 7.0
HTML pages, 287

stakeholders, 25
consensus meeting, 125
decision making, 34
envisionment phase, 44
other phases, 44
risk management, 153
roles, 44

Start to Finish

Table of Contents

16

Project 98, 91
Start To Start

Project 98, 90
state/stateless

components, 201
statechart diagrams

defined, 414
states

UML representation, 417
stress testing, 394

functional testing, 307
structured test applications, 306
study, at work, 81
system management, 64
systems

as users, 182
defined, 8

Systems Management Server (SMS)
deployment phase, 347

TCO
See Total Cost of Ownership (TCO), 136

team focus
conceptual design stage, 166
deployment phase, 332
development phase, 268
envisionment phase, 120
logical design stage, 188
physical design stage, 228

team members
commitment

risk management, 153
component groups, 26, 33, 35, 37
component managers, 35, 39, 48, 50, 53, 56, 58,

61, 63
development phase, 39
risk tracking document, 160
roles, 38

component managers, 34
conflicting roles, 34
developers, 39, 40, 63

passion for work, 58
planning, 50
problem solving, 53
roles, 39

developers team
component management, 24
development, 24
logistics, 24
product management, 24
testing, 24

end users, 25, 43, 44
involvement in four phases, 25
logisticians, 42, 59

envisionment phase, 42

role, 42
logistics, 35
meeting responsibilities XE, 30
numbers, 33
product managers, 34, 35, 37, 38, 59, 64

conflict resolution, 56
project management, 32
project manager, 25, 34, 36, 37, 48, 53, 56, 58, 61,

63
passion for work, 57

ratios, 26, 33
reporting manager, 25, 29
roles, filled by same person, 34
skills

communication, 45, 46, 47
conflict resolution, 55, 56
creativity, 54, 55
decision making, 47, 48, 49
enterprise system management, 64
focus, 58, 59
general, 65, 66
goals, accomplishing, 63, 64
leadership, 61, 62
passion for work, 57, 58
planning, 49, 51
problem solving, 52, 53
risk management, 150
team spirit, 60, 61

software teams, 24, 33, 35
sponsors, 25, 44

roles, 44
stakeholders, 25, 34

envisionment phase, 44
other phases, 44
roles, 44

testers, 40, 41, 63
training, 32
user education, 35
user educators, 43, 59

role, 42
teams

autocratic managers, 30
problems, 31

involvement, 125
roles, 29
skills, 44
work teams, 32

technology, evaluation
client resources, 123
component resources, 123
current status, 122
Enterprise Architecture Document, 122
flexibility, 122

Table of Contents

17

importance, 122
methodologies, 122
network, 123

technology, reliability
risk management, 152

testers, 40
coding standards, 270
deployment phase, 41, 332
design phase, 41
developers, 41
development phase, 41, 268
envisionment phase, 40
goals, accomplishing, 63
physical design stage, 228

testing, 394
benchmarks, using, 300
beta testing, 333
business services, 305
databases, 320
declarations, 321
design phase, 259
documentation, 231
envisionment phase, 303
event log, 320, 324
functional, 303, 306

boundary conditions, 307
compatability tests, 307
coverage testing, 307
customized tests, 307
performance tests, 307
stress tests, 307
unit testing, 306

log database, 321
logisticians

infrastructre, 305
MTS debugging, 309, 328
plan, 372

logical design stage, 306
prototypes, 231
risk management, 153
stress, 394
test applications, 305

structured, 306
unstructured, 305

text files, writing to, 323
unit and system

risk management, 153
usability, 303, 304, 333, 394

user interface testing, 304
text files

debugging, 323
thin clients, 240
things

UML, 408

third level goals, 133
threading

apartments, 206
Microsoft Transaction Server (MTS), 205
multiple apartments, 207
multi-threading, 205

three-tier applications, 201
business services, 201
client services, 201
data services, 201

three-tier model, 202
time estimates

schedules, 83
time resources

Gantt charts, 77
timescales

Project 98, 76
Total Cost of Ownership (TCO), 136

cyclic methodology, 138
envisionment phase, 369
logisticians, 228
product managers, 37
vision/scope documents, 143

Track/TrackWeb
bug tracking, 308

training
team members, 30, 32

transaction processing, 203
ACID properties, 204

atomicity, 204
consistency, 204
durability, 204
isolation, 204

Northwind example, 204
ObjectContext object, 278

two-goal comparison, 126, 135
two-tier applications, 200

data conflicts, 200
locks, 200
scalability, 201
web, 201

UML
activity diagrams, 21, 408, 412
actors, 409
aggregations, representation, 415
associations, representation, 415
business rules, 178
class diagrams, 21, 408, 413
classes, representation, 414
collaboration diagrams, 412
component diagrams, 414
compositions, representation, 415
defined, 7
dependency, representation, 415

Table of Contents

18

deployment diagrams, 414
desgining as a team, 229
design patterns, representation, 418
design phase, 167
diagrams, 408
inheritance, representation, 416
interaction diagrams, 408, 411
modeling language

defined, 407
multiplicities, representation, 416
notation, 414
object diagrams, 414
object interactions, 417
objects, representation, 415
patterns, 279
relationships, 408
relationships, representation, 415
sequence diagrams, 21, 197, 411
statechart diagrams, 414
states, representation, 417
things, 408
Use Case Models, 408
use cases, representation, 418

UML, use cases
components from, 197

example, 197
example, 179
milestones, 20
object interfaces, 209
scenarios, 167, 175
security, 261
sequence diagrams, 210
UML representation, 418
use case models, 409
user review, 215

Unified Modeling Language
see UML, 7

unit testing
functional testing, 306

unstructured test applications, 305
discarding, 305

Update... methods, 277
usability testing, 303, 304, 394

beta testing, 333
prototypes, 304
screenshots, 304
user educators, 304
user interface testing, 304

use cases
see UML, use cases, 175

user education role
product management, 35

user educators, 337
deployment phase, 43, 332

design phase, 43
development phase, 43, 268
envisionment phase, 43
focus, 59
physical design stage, 228
role, 42
usability testing, 304

User Interfaces, 210
actors, multiple, 224
functionality, 379
internet, 224
order entry, 217
protoype, 217
security, 223
sequence diagrams, 217
tabs, 220

on one form, 221
usability testing, 304
user training, 336

users, 181, 183
business processes, 336
cookies, 182
defining different types, 168
defining roles, 169
deployment phase, 44
design phase, 44
development phase, 44
envisionment phase, 43
interviewing, 169

Northwind example, 170
login, 182
risk management, 154
role, 43
rollout schedule, 400
sequence diagrams, reviewing, 215
support, 401
systems as, 182
training, 336
types, 181
web applications, 181

version numbers
components, 193

Visio
sequence diagrams, 215

vision statements, 131
corporate vision, 132
envisionment phase, 17
purpose, 17
risk management, 152
vision/scope documents, 17, 18

vision/scope
consensus meetings, 124
defining scope, 127
defining vision, 126

Table of Contents

19

two-goal comparison, 126
vision/scope documents, 138, 373

business case, 17
conceptual design stage, 166
Northwind example, 140, 141
project success, 106
risk assessment, 18
risk management, 156
scope statement, 18
sections

authors and contributors, 138
business processes, 144
change control, 139
conflict resolution, 143
current enterprise architecture, 138
document history, 139
first cycle, 139
future goals, 143
glossary, 143
goals, 141
primary goal, 138
project schedule, 143
purpose, 139
resources, 143
risk analysis, 142
TCO and ROI documentation, 143
team members, 139

team responsibilities, 18
vision statement, 18

Visual Intercept
bug tracking, 308

Visual Basic
apartment threading, 207
ASP pages, 286, 290

prototypes, 287
classes, 236
code generation, 285
controls, 233
deployment wizard, 339

component '.dep' files, 341
dependency files, 340, 341
VB6dep.ini files, 342

Dynamic Link Library (DLL), 233

error handling, 261
history, 7
IDE

debugging, 309
interfaces, 283
magazines, 230
Microsoft Transaction Server (MTS), 203
MSDN, 230
multi-threading, cannot support, 205
object attributes, 190
pointers, 233

bugs, 336
resource files, 261
runtime library, 339
scalability, 287
threading, 205
user interfaces, 212
when not to use, 232

web applications, 209
Active Data Objects (ADO), 242
cookies, 182
functionality, 392
iterative design, 182
login, 182
Remote Data Services (RDS), 244
schedules, 115
security, 260
two-tier architecture, 201
users, 181

web farms
scalability, 287

Windows Distributed interNet Application
Architecture
See DNA, 208

workflows
design phase, 174
risk management, 151
roles, 174
scenarios, 174

writing skills, 46
XML, 182
Error! Cannot open file referenced on page 1

Table of Contents

20

	Introduction
	Why Do We Need To Know About Project Management?
	Who Is This Book For?
	What You Need To Use This Book
	What's Covered In This Book
	Conventions Used
	Source Code
	Tell Us What You Think

	Introduction to Project Management
	Project Management Myths
	Myth 1: Software Projects are Bound to Fail
	Myth 2: We Don't Need to Design Visual Basic
	Projects
	Myth 3: Methodologies Stifle Creativity

	Programming with Objects
	Encapsulation and Abstraction
	Building Components
	Why Do We Need Object-Oriented Programming?

	The Cyclic Methodology
	The Four Phases of the Cyclic Methodology
	Team Roles for the Cyclic Methodology

	Summary

	Teams
	The Big Development Team Myth
	The Autocratic Manager
	Self-Directed Work Teams

	Team Structure
	Visual Basic Software Team Roles
	Project Manager
	Product Managers
	Component Managers
	Developers
	Testing
	Logistics
	User Education
	End Users
	Stakeholders and Sponsors

	Team Skills and Abilities
	Communication
	Making Decisions
	Proper Planning
	Solving Problems
	Creativity
	Resolving Conflicts
	A Passion for Building Enterprise Solutions
	Focusing On the Client
	Team Spirit
	Leadership
	Accomplishing Goals
	System Management
	General Team Skills

	Summary
	Skills References

	Creating Project Schedules
	Using Project 98 to Schedule Your Goals
	Project 98 Views
	Project Starting Date

	Gantt View
	Gantt Chart Timescales
	Creating the Schedule

	Resources
	Resource Management
	Changing the Look of your Schedule
	Project 98 Tables
	Cost Estimates
	Creating an Export Table

	Summary

	Envisionment Phase
	Summary of Team Focus
	Overview of the Envisionment Phase

	The Enterprise Architecture Document (EAD)
	Evaluation of Technology
	Evaluation of Value of the Information
	Developer Resources
	Geographical
	Financial Resources
	Realistic Expectations

	The Consensus Meeting-Creating Vision/ Scope
	The First Consensus Meeting
	The Second Consensus Meeting

	Total Cost of Ownership(TCO) and Return on Investment (ROI)
	The Vision/Scope Document
	Introduction
	Project Cycles
	First Cycle
	Scope
	Risk Analysis
	Resources
	Conflict resolution
	TCO and ROI Documentation
	Project Schedule
	Definition of Important Terms
	Goals for Later Project Cycles
	Business Processes

	The Final Part of the Envisionment Phase
	Summary

	Risk Management
	Identifying Possible Risks
	Risk Assessment Document
	Example Risk Document

	Creating Risk Metrics
	Creating Plans to Eliminate or Reduce Risks
	Risks that Cannot be Eliminated or Reduced

	Risk Tracking
	Example Risk Tracking Document
	Summary

	Design Phase: Conceptual Stage
	Summary of Team Focus
	Overview of the Conceptual Design Stage
	Moving from Third Level Goals to Scenarios
	Defining the Different Types of Users
	Interviewing Users
	Creating Scenarios
	Workflows

	Use Cases
	Business Rules
	The Full Use Case Model

	Who are the Users?
	Iterative Cycles
	Summary

	Design Phase: Logical Stage
	Summary of Team Focus
	Overview of the Logical Stage
	The Scope of the Logical Stage

	Object Attributes
	Abstraction
	Encapsulation
	Cohesion and Coupling
	Composition and Emergence

	Defining Components from Use Cases
	Choosing a Framework
	Single-Tier Applications
	Two-Tier Applications
	Three-Tier Applications
	Physical and Logical Models

	Microsoft Transaction Server
	Transaction Processing
	When Should MTS Be Used?

	Just What is DNA?
	Defining the Composition of the System
	Creating a Prototype User Interface
	Building the Order Entry Sequence Diagram
	Using Tabs
	Are Two Forms better than One?
	A Form in Many Guises

	Summary

	Design Phase: Physical Stage
	Summary of Team Focus
	Overview of the Physical Design Stage
	Designing as a Team
	Choosing the Best Solution
	Researching the Best Solution
	Build, Buy or Reuse?
	When is Visual Basic not the Right Choice?
	Resource Estimates

	Allocating Services to Components
	Designing the Business Services Component
	Designing the Data Services Class

	ActiveX Data Objects (ADO)
	Connection Pooling

	Communication Between Components
	RDS and DCOM
	Effect of MTS

	The Managing Class Revisited
	Mapping Out the Code using Activity Diagrams
	Activity Diagram For Creating an ADO
	connection
	Retrieve Customer Activity Diagram
	Update Recordset Activity Diagrams
	Benefits of Activity Diagrams

	Effective Testing
	Other Features to be Determined in the Physical Stage
	Security
	Error Handling
	Risk Assessment
	Publishing the Final Interface

	Summary

	Development Phase
	Summary of Team Focus
	Overview of Development Phase
	Risk Management
	Writing Visual Basic Code
	Code Reviews

	Coding the DNA Visual Basic Project
	The Business Services Components
	The Server Component

	Reusing Our Visual Basic Code
	Patterns
	Using an ASP page
	Using DHTML

	The Future
	Summary

	Testing
	Usability Testing
	User Interface Testing
	Testing of Business and Data Services
	Components
	Functional Testing
	Bug Tracking

	Debugging Visual Basic MTS Components
	Logging Information from an MTS Component
	The Log Database
	Declarations
	Writing to a Text File
	Writing to the Event Log
	Modifying the CreateInstance Function
	Modifying the SetADOConnection Procedure

	Conclusion

	Deployment Phase
	Summary of Team Focus
	Overview of the Deployment Phase
	Activities in the Deployment Phase
	Determine the Rollout Schedule
	Beta Testing
	User Training
	Prepare Infrastructure
	Assemble Project Documentation

	Physically Deploying the Application
	Deployment Strategies

	Final Sign Off
	Summary

	Versioning and Sharing Project Files
	A Look at Visual SourceSafe
	Adding a Project to Visual SourceSafe
	Checking Files Out of Visual SourceSafe
	Configuring VSS
	Merging Files

	Versioning Files
	Versioning with VSS

	Visual SourceSafe Scenarios
	Building a SourceSafe Project
	File Histories
	Maintaining Reusable Code
	Summary

	Creating a Project Schedule
	Project Resources
	Envisionment Phase Schedule
	Design Phase Schedule
	Development Phase Schedule
	Deployment Phase Schedule
	Improvements to the Schedule
	Summary

	A Brief Overview of UML
	What Exactly is a Model?
	UML Diagrams

	UML Notation

	UML to VB Mapping
	Purpose of the VB Mapping
	UML Version Covered
	How the Mapping is Structured
	How Well Does the UML Map to VB?
	UML and Components
	Concrete Or By Convention?
	Upgrade to at Least VB5
	Styles Used in the Mapping
	How to Use this Mapping
	Building Your Diagrams
	Mapping Guide
	General Extension Mechanisms
	Constraints and Comments
	Element Properties
	Stereotypes

	Model Management
	Packages

	Static Structure Diagrams
	Classifiers
	General
	Interfaces
	Attributes
	Operations
	Utilities
	Associations

	Use Case Diagrams
	A Word of Warning
	Use Cases and Transactions
	Use Cases and Controllers

	Behavioral Diagrams
	Sequence & Collaboration Diagrams
	Object Instances and Context
	Interactions
	Pseudo-Code
	Collaboration Diagrams

	Statechart Diagrams
	Mapping States and Transitions
	Implementing State
	An Example
	Implicit Implementation
	Explicit Implementation: A Finite State
	Machine

	Activity Diagrams
	Implementation Diagrams: Component & Deployment Diagrams
	UML Components and Visual Basic
	Logical components
	Physical Components
	Stereotypes

	Creating a VB Code Generator Add- In
	Building a Visual Basic Add-in
	Visual Basic Extensibility Object

	Writing the Code for the Code Generator
	Coding the Bas Module
	Coding the Bottom Class
	Generating the Middle Class
	Generating the Top Class
	Generating the Data Services Class
	Getting the Information From the Access Database
	Generating the Code into the Visual Basic
	IDE
	Getting a Reference to the Current Visual
	Basic IDE
	Using the Code Generator
	Testing the Generated Code

