
Beginning Visual C++ 6
Ivor Horton

Wrox Press Ltd.

Copyright © 1998 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embodied in critical articles or reviews.

The authors and publisher have made every effort in the preparation of this book to ensure the
accuracy of the information. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, Wrox Press nor its dealers or
distributors will be held liable for any damages caused or alleged to be caused either directly or
indirectly by this book.

First Published August 1998

Latest Reprint March 2003

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acock's Green, Birmingham B27 6BH, UK.
Printed in Canada

22 23 TRI 04 03

ISBN 1-861000-88-X

ISBN 0764543881

Trademark Acknowledgements

Wrox has endeavoured to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits

Author
Ivor Horton

Managing Editor

John Franklin

Editors

Daniel Maharry

Chris Hindley

Ian Nutt

Adrian Young

Victoria Hudgson

Julian Templeman

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Technical Reviewers
Claus Loud

Curt Krone

Tim Nelson

Gavin Smyth

Cover/Design/Layout
Andrew Guillaume

Copy Edit
George Briggs

Alex Zoro

Barney Zoro

Index
Seth Maislin

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

A Note From the Author

In all my Beginning... books, my objective is to minimize what, in my judgment, are the three
main hurdles the aspiring programmer must face: getting to grips with the jargon that pervades
every programming language and environment, understanding the use of the language
elements (as opposed to what they are), and appreciating how the language is applied in a
practical context.

Jargon is an invaluable and virtually indispensable means of communication for the competent
amateur as well as the expert professional, so it can't be avoided. My approach is to ensure that
the beginner understands what the jargon means and gets comfortable with using it in context.
In that way, they can use the documentation that comes along with most programming products
more effectively, and can also feel competent to read and learn from the literature that
surrounds most programming languages.

Comprehending the syntax and effects of the language elements are obviously essential to

learning a language, but I believe illustrating how the language features work and how they are
used are equally important. Rather than just use code fragments, I always try to provide the
reader with practical working examples that show the relationship of each language feature to
specific problems. These can then be a basis for experimentation, to see at first hand the
effects of changing the code in various ways.

The practical context needs to go beyond the mechanics of applying individual language
elements. To help the beginner gain the competence and confidence to develop their own
applications, I aim to provide them with an insight into how things work in combination and on a
larger scale than a simple example with a few lines of code. That's why I like to have at least
one working example that builds over several chapters. In that way it's possible to show
something of the approach to managing code as well as how language features can be applied
together.

Finally, I know the prospect of working through a book of doorstop proportions can be quite

daunting. For that reason it's important for the beginner to realize three things that are true for
most programming languages. Firstly, there is a lot to it, but this means there will be a greater
sense of satisfaction when you've succeeded. Secondly, it's great fun, so you really will enjoy it.
Thirdly, it's a lot easier than you think, so you positively will make it.

Ivor Horton

Introduction

Welcome to Beginning Visual C++ 6. With this book you will become a competent C++ and
Windows programmer.

I have revised and updated the best-selling Beginning Visual C++ 5 , to cover what's new in
version 6.0 of Visual C++ and to improve the tutorial as a whole, based on the feedback I have
received from many readers, for which I'm grateful.

Who's This Book For?

Beginning Visual C++ 6 is designed to teach you how to write useful programs as quickly and
as easily as possible using Microsoft's Visual C++ compiler. This is the tutorial for you, if:

§ You've done a little bit of programming before, so you understand the concepts behind
it — maybe you've used BASIC or Pascal. Now you're keen to learn C++ and develop
practical Windows programming skills using the most powerful tools available. This book
will give you the solid foundation you're looking for, but will move along fast enough to keep
you excited.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ You're a newcomer to programming, but you don't want to mess around with toy
languages — you want to plunge straight in at the deep end. That's fine: you need to learn
the basics of C++ quickly and then be prepared to work hard to use that knowledge, in real
Windows programming. That's exactly what this book does.

§ You have some knowledge of C++, but you need a refresher course using a visual
development environment. You realize that further progress in computing hinges upon your
experience of Windows, MFC and component programming. What you already know will be
reinforced, letting you get to the real meat in the sandwich: MFC and Windows.

What's Covered in This Book

Practically everything, to be frank. I've aimed to take you from an introduction to C++ right up to

the cutting edge of Windows programming: developing ActiveX controls. The book is actually
split into two halves. The first half covers the C++ language, while the second covers Windows
programming with Microsoft Foundation Class & Templates (MFC&T).

The first half of the book is a complete tutorial to the C++ programming language. It starts with
an introduction to the integrated development environment (IDE) provided with Visual C++,
briefly covering the main components of the interface. The next five chapters cover the basics of
the C++ language (data types and program flow) before we break for a brief interlude in Chapter
7 where you will write your first Windows program. Chapters 8 to 11 develop the concept and
syntax of object-oriented programming with C++, culminating with the design and
implementation of a challenging project. Chapter 12, meanwhile, gives you important advice on
how to successfully debug your applications. The lessons you learn here provide a solid
foundation for the chapters to follow.

In the second half of the book, you'll get to grips with Microsoft Foundation Classes &

Templates and Windows programming for real. We'll look at AppWizard and ClassWizard, two
tools to speed up your application development. We'll cover building applications with menus,
dialogs and scrollbars. Saving and reading data to and from the disk will be discussed, along
with how to print documents and write dynamic-link libraries. All these new topics are reinforced
through the progressive development of a simple drawing application which grows in
functionality as your knowledge increases.

Chapters 20 and 21 demonstrate how to connect to, and interact with, databases using Visual

C++, showing you how easy it is to produce a dialog-based database interface using the
classes provided by MFC for the purpose.

The last three chapters of the book form an introduction to one of the most important areas of
development now and in the future: custom controls. We'll start by explaining the concept of
object linking and embedding (OLE), and produce a version of our drawing application which
allows you to edit your drawings inside other applications — Microsoft Word, for example. After
that, we take the next step and use MFC to produce an ActiveX control, which as well as being
embeddable inside other applications can also communicate with them. Finally, we use the ATL
Object Wizard, newly updated for Visual C++6, to create two more ActiveX controls without
MFC.

Every chapter is concluded with a summary and a set of exercises which can form part of a
course, or serve simply to consolidate the new things you've learned during the chapter.

What You Need to Use This Book

To use this book you need Visual C++ 6.0, the latest version of Microsoft's best-selling C++

compiler. This version is 32-bit only, so you'll need to install it on Windows 95, Windows 98 or
Windows NT 4 (with service pack 3). For Windows 95 and 98, your computer needs to have at
least a 486 CPU and a minimum 16Mb of memory. NT4 requires at least a 486 DX4 with 32 Mb
of memory.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

For Visual C++, you'll need quite a lot of hard disk space — a typical installation is 270 Mb. You
can do a minimal installation which takes up around 70 Mb, but this will mean longer compile
times as the CD-ROM will be utilized more often.

More importantly however, to get the most out of this book you need a willingness to learn, a

desire to succeed and the determination to master the most powerful tool there is to program
Windows. You might believe that doing all this is going to be difficult, but I think you'll be
surprised by how much you can achieve. I'll help you to start experimenting on your own and,
from there, to become a successful programmer.

Conventions Used

We use a number of different styles of text and layout in the book to help differentiate between
the different kinds of information. Here are examples of the styles we use and an explanation of
what they mean:

Important

These boxes hold important, not-to-be forgotten, mission critical details
which are directly relevant to the surrounding text.

FYI

Extra details, For Your Information, come in boxes like
this.

Background information, asides and references appear in text like this.

§ Important Words are in a bold type font.
§ Words that appear on the screen, such as menu options, are in a similar font to the one

used on screen, for example, the File menu.
§ Keys that you press on the keyboard, like Ctrl and Enter, are in italics.
§ All filenames are in this style: Videos.mdb.

§ Function names look like this: main().

§ Code which is new, important or relevant to the current discussion, will be presented
like this:

§ void main()

§ {

§ cout << "Beginning Visual C++";

§ }

§ whereas code you've seen before, or which has little to do with the matter at hand,
looks like this:

§ void main()

§ {

§ cout << "Beginning Visual C++";

§ }

Tell Us What You Think

We have tried to make this book as accurate and enjoyable for you as possible, but what really
matters is what the book actually does for you. Please let us know your views, whether positive
or negative, either by returning the reply card in the back of the book or by contacting us at
Wrox Press using either of the following methods:

E-mail: <feedback@wrox.com>

Internet: http://www.wrox.com/

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Source Code and Keeping Up-to-date

We try to keep the prices of our books reasonable, even when they're as big as this one, and so
to replace an accompanying disk, we make the source code for the book available on our web
sites:

http://www.wrox.com/

The code is also available via FTP:

ftp://ftp.wrox.com

ftp://ftp.wrox.co.uk

If you don't have access to the Internet, then we can provide a disk for a nominal fee to cover

postage and packing.

Errata & Updates

We've made every effort to make sure there are no errors in the text or the code. However, to

err is human and as such we recognize the need to keep you informed of any mistakes as
they're spotted and amended.

While you're visiting our web site, please make use of our Errata page that's dedicated to fixing
any small errors in the book or, offering new ways around a problem and its solution. Errata
sheets are available for all our books — please download them, or take part in the continuous
improvement of our tutorials and upload a 'fix' or pointer.

For those without access to the net, call us on 1–800 USE WROX and we'll gladly send errata

sheets to you. Alternatively, send a letter to:
§ Wrox Press Inc.,

1512 North Fremont,
Suite 103
Chicago,
Illinois 60622
USA

§ Wrox Press Ltd,
30, Lincoln Road,
Olton,
Birmingham,
B27 6PA
UK

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 1: Programming with Visual C++

Overview

Windows programming isn't difficult. In fact, Microsoft Visual C++ Version 6.0 makes it
remarkably easy, as you'll see throughout the course of this book. There's just one obstacle in
our path: before we get to the specifics of Windows programming, we have to be thoroughly
familiar with the capabilities of the C++ programming language, particularly the object-oriented
aspects of the language. Object oriented techniques are central to the effectiveness of all the
tools provided by Visual C++ for Windows programming, so it's essential that you gain a good
understanding of them. That's exactly what this book will provide.

In this chapter, as a base for tackling the C++ language, we're going to take a rapid tour of the

Integrated Development Environment (IDE) that comes with Visual C++. Becoming reasonably
fluent with the IDE will make the whole process of developing your applications much easier.

The IDE is very straightforward, and generally intuitive in its operation, so you'll be able to pick
up most of it as you go along. The best approach to getting familiar with it is to work through
creating, compiling and executing a simple program. You'll get some insight into the philosophy
and mechanics of the IDE as you use it. We'll take you through this process and beyond, so that
by the end of this chapter, you will have learned about:
§ The principal components of Visual C++

§ Projects and how you create them
§ How to create and edit a program
§ How to compile, link and execute your first C++ program

§ How to create a basic Windows program

So power up your PC, start Windows, load the mighty Visual C++ and we can begin our
journey.

Learning C++ and Windows Programming

With this book, you'll learn how to write programs in C++ and how to write Windows programs.
We'll approach the topics in that order, insulating C++ from Windows considerations until you're
comfortable with the language. You should find that it's a natural progression from
understanding C++ to applying it to the development of Windows applications.

To give you a feel for where we are ultimately headed, we can take look at the characteristics of
a typical Windows program. We can also introduce the development context that we will use
while you're grappling with C++.

Introducing Windows Programming

Our approach to Windows programming will be to use all the tools that Visual C++ provides.
AppWizard, which (as you will see) can generate a basic Windows program automatically, will
be the starting point for all the Windows examples later in the book, and we'll be using
ClassWizard in the process of developing what AppWizard produces into something more
useful. To get a flavor of how AppWizard works, later in this chapter we'll look at the mechanics
of starting a Windows program.

A Windows program has quite a different structure to that of the typical DOS program, and it's
rather more complicated. There are two reasons for this. First, in a DOS program you can get
input from the keyboard or write to the display directly, whereas a Windows program can only
access the input and output facilities of the computer by way of Windows functions; no direct
access to these hardware resources is permitted. Since several programs can be active at one
time under Windows, Windows has to determine which application a given input is destined for

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

and signal the program concerned accordingly. Windows has primary control of all
communications with the user.

Second, the nature of the interface between a user and a Windows application is such that a
range of different inputs are possible at any given time. A user may key some data, select any
of a number of menu options, or click the mouse somewhere in the application window. A well-
designed Windows application has to be prepared to deal with any type of input at any time,
because there is no way of knowing in advance which type of input is going to occur.

These user actions are all regarded by Windows as events, and will typically result in a
particular piece of your program code being executed. How program execution proceeds is
therefore determined by the sequence of user actions. Programs that operate in this way are
referred to as event-driven programs.

Therefore, a Windows program consists primarily of pieces of code that respond to events
caused by the action of the user, or by Windows itself. This sort of program structure can be
represented as illustrated:

Each block in the illustration represents a piece of code written specifically to deal with a
particular event. Although the program may appear to be somewhat fragmented, the primary
factor welding the program into a whole is Windows itself. You can think of your Windows
program as customizing Windows to provide a particular set of capabilities. Of course, the
modules servicing various external events, such as selecting a menu or clicking the mouse, will
all typically have access to a common set of application-specific data in a particular program.
This application data will contain information that relates to what the program is about — for
example, blocks of text in an editor, or player scoring records in a program aimed at tracking
how your baseball team is doing — as well as information about some of the events that have
occurred during execution of the program. This shared collection of data allows various parts of
the program which look independent to communicate and operate in a coordinated and
integrated fashion. We will, of course, go into this in much more detail later in the book.

Even an elementary Windows program involves quite a few lines of code, and with AppWizard-

based Windows programs, 'quite a few' turns out to be rather a lot. To make the process of
understanding how C++ works easy, you really need a context which is as simple as possible.
Fortunately, Visual C++ comes with an environment that is ready-made for the purpose.

Console Applications

As well as developing Windows applications, Visual C++ also allows you to write, compile, and
test C++ programs that have none of the baggage required for Windows programs — that is,
applications that are essentially character-based DOS programs. These programs are called

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

console applications in Visual C++ because you communicate with them through the
keyboard and the screen in character mode.

Writing console applications might seem as though you are being sidetracked from the main
objective, but when it comes to learning C++ (which you do need to do before embarking on
Windows-specific programming) it's the best way to proceed. As we said earlier, there's a lot of
code in even a simple Windows program, and it's very important not to be distracted by the
complexities of Windows when learning the ins and outs of C++. Therefore, in the early
chapters of the book where we are concerned with how C++ works, we'll spend time walking
with a few lightweight console applications before we get to run with the heavyweight sacks of
code in the world of Windows.

While you're learning C++, you'll be able to concentrate on the language features without
worrying about the environment in which we're operating. With the console applications that
we'll write, we only have a text interface, but this will be quite sufficient for understanding all of
C++. There's no graphical capability within the definition of the language. Naturally, we will
provide extensive coverage of graphical user interface programming when we come to write
programs specifically for Windows using Microsoft Foundation Classes and Templates
(MFC&T).

What is the Integrated Development Environment?

The IDE that comes with Visual C++ version 6.0 is a completely self-contained environment for
creating, compiling, linking and testing Windows programs. It also happens to be a great
environment in which to learn C++ (particularly when combined with a great book).

Visual C++ incorporates a range of fully integrated tools designed to make the whole process of
writing Windows programs easy. We will see something of these in this chapter, but rather than
grind through a boring litany of features and options in the abstract, we will first take a look at
the basics to get a view of how the IDE works and then pick up the rest in context as we go
along.

Components of the System

The fundamental parts of Visual C++, provided as part of the IDE, are the editor, the compiler,
the linker and the libraries. These are the basic tools that are essential to writing and executing
a C++ program. Their functions are as follows:

The Editor

The editor provides an interactive environment for creating and editing C++ source code. As
well as the usual facilities, such as cut and paste, which you are certainly already familiar with,
the editor also provides color cues to differentiate between various language elements. The
editor automatically recognizes fundamental words in the C++ language and assigns a color to
them according to what they are. This not only helps to make your code more readable, but also
provides a clear indicator of when you make errors in keying such words.

The Compiler

The compiler converts your source code into machine language, and detects and reports errors
in the compilation process. The compiler can detect a wide range of errors that are due to
invalid or unrecognized program code, as well as structural errors, where, for example, part of a
program can never be executed. The output from the compiler is known as object code and is
stored in files called object files, which usually have names with the extension .obj.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Linker

The linker combines the various modules generated by the compiler from source code files,
adds required code modules from program libraries supplied as part of C++, and welds
everything into an executable whole. The linker can also detect and report errors — for
example, if part of your program is missing, or a non-existent library component is referenced.

The Libraries

A library supports and extends the C++ language by providing routines to carry out operations

that are not part of the language. For example, libraries can contain routines such as calculating
a square root, comparing two character strings or obtaining date and time information. There
are several kinds of library provided by Visual C++.

The first kind contains routines that aren't platform-specific. There is a basic set of routines
common to all C++ compilers which make up the Standard C++ Library. There are also
extensions to the standard set, which will be supported in many other C++ compilers, but their
universality isn't guaranteed. You'll get to know quite a number of these as you develop your
knowledge of C++.

The other libraries provided by Visual C++ are collectively known as the Microsoft Foundation
Classes and Templates library (or MFC&T). We'll see a lot more of the MFC&T when we get to
the details of Windows programming. For now, it suffices to say that MFC&T is made up of three
parts. One of these is the Microsoft Foundation Class library (MFC), which is the cornerstone
of Windows programming with Visual C++. The MFC provides the basis for many of the
Windows programs you'll write. The MFC is also referred to as an application framework
because it provides a set of structured components that provide a ready-made basis for almost
any Windows program. The Active Template Library (ATL) provides structures for writing
specialized windows programs; we'll look at the ATL much later in the book. Finally, something
called Object Linking and Embedding DataBase Template Library (OLE DB) comes into
play when creating databases; but OLE DB is really beyond the scope of this book.

Other Tools

Visual C++ also includes two important tools which work in a wholly integrated way to help you
write Windows programs. These are the AppWizard and the ClassWizard. They aren't
essential to the process of writing Windows programs, but provide such immense advantages in
simplifying the development process, reducing the incidence of errors, and shortening the time
to completing a program, that we will use them for all of our major examples. Read on for an
idea of the services that these tools provide.

AppWizard

The AppWizard automatically generates a basic framework for your Windows program. In fact,

the framework is itself a complete, executable Windows program, as we shall see later in this
chapter. Of course, you need to add the specific functionality necessary to make the program
do what you want, which is an essential part of developing a Windows program.

ClassWizard

Classes are the most important language feature of C++ and are fundamental to Windows
programming with Visual C++. The ClassWizard provides an easy means of extending the
classes generated by AppWizard as part of your basic Windows program and also helps you to
add new classes based on classes in the MFC to support the functionality you want to include in
your program. Note that ClassWizard neither recognizes nor deals with classes that are not
based on MFC classes.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Wizard Bar

A further capability for managing, modifying, and extending your code is provided by the Wizard
Bar, which is optionally displayed in the toolbar area of the Visual C++ window. It's particularly
useful in the context of MFC- and ATL-based Windows programs, so we'll see more of it then.
For now, let's just say that its particular forte is adding code to your programs to deal with the
Windows events we discussed earlier.

Using the IDE

All our program development and execution will be performed from within the IDE. When you

start Visual C++, assuming no project was active when you shut it down last (we'll see what a
project is, exactly, in a moment), you will see the window shown below:

The window to the left is the project workspace window, the window to the right is the editor
window, and the window at the bottom is the output window. The workspace window provides
access to the on-line documentation and enables you to navigate through your program files,
the editor window is where you enter and modify source code and other components of your
application, and the output window displays messages that result from compiling and linking
your program.

If you're using Visual C++ for the first time, you may find that the output window is missing.
Don't worry about that — it will appear the first time you compile a program.

The toolbars below the main menu that you see above, provide icons which act as an instant
route to some of the functions available from the main menus. Just clicking on a toolbar icon will
directly perform the function that it corresponds to. Visual C++ offers a whole range of dockable
and customizable toolbars that you can use.

Toolbar Options

It may be that your Visual C++ window doesn't show the toolbars that appear above. If this is
the case, just right click with the mouse in the toolbar area. You will see a pop-up with a list of
toolbars, some of which have check marks alongside:

This is where you decide which toolbars are visible at any one time. You can make your set of

toolbars the same as those shown by making sure the Output, Workspace, Standard, Build MiniBar
and WizardBar menu items are checked.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You needn't clutter up the application window with all the toolbars you think you might need at

some time. Other toolbars will appear automatically when required, so you'll probably find the
default toolbar selections are perfectly adequate most of the time. As you develop your
applications, from time to time you might think it would be more convenient to have access to
toolbars that aren't displayed. You can change the set of toolbars that are visible whenever it
suits you by right clicking in the toolbar area and choosing from the pop-up.

important

Like many other Windows applications, the toolbars that make up Visual
C++ come complete with tooltips. Just let the mouse pointer linger over
a button for a second or two and a little white label will provide you with
the function and shortcut key combination of that button.

Dockable Toolbars

A dockable toolbar is one that you can drag around with the mouse to position it at a
convenient place in the window. When it is placed in any of the four borders of the application, it
is said to be docked and will look like the toolbars that you. see at the top of the application
window. The toolbar on the upper line of toolbar buttons which contains the disk icons and the
text box to the right of a pair of binoculars is the Standard toolbar. You can drag this away from
the toolbar by placing the cursor on it and dragging it with the mouse while you hold down the
left mouse button. It will then appear as a separate window that you can position anywhere.

If you drag any dockable toolbar away from its docked position, it will look like the Standard
toolbar that you see above, enclosed in a little window — but, of course, with a different caption.
In this state, it is called a floating toolbar. All the toolbars that you see above are dockable and

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

can be floating, so you can experiment with dragging any of them around. You can position
them in docked positions where they will revert to their normal toolbar appearance. You can
dock a dockable toolbar at any side of the main window.

You'll be familiar with many of the toolbar icons that Visual C++ uses from other Windows

applications, but you may not appreciate exactly what these icons do in the context of Visual
C++, so we'll describe them as we use them.

Since we'll use a new project for every program we develop, looking at what exactly a project is,
and understanding how the mechanism for defining a project works, is a good place to start
finding out about Visual C++.

Documentation

There will be plenty of occasions when you will want to find out more information about Visual
C++. If you're new to C++, then it's handy to have a ready reference for checking syntax (apart
from this book, of course!). If you are using Visual C++ for the first time, you'll probably want to
learn about the facilities and capabilities offered by Visual C++, the tools offered and how to
make the most of them.

All this and more is offered in the Microsoft Development Network (MSDN) Library. When
you install Visual C++ onto your machine, there is an option to install part or all of the MSDN
documentation. It's highly recommended that you do install the MSDN Library — if Visual C++ is
the only part of the Visual Studio you're using, then choose a custom installation, and check
only the VC++ Documentation box in the MSDN Library Visual Studio 6.0 - Custom window.

To browse the MSDN Library, you can click on the Search button on the Standard
toolbar. As well as offering general guidance, the MSDN Library is a useful tool when dealing
with errors in your code, as we shall see later in this chapter.

Projects and Project Workspaces

A project is simply a program of some kind — it might be a console program, a Windows
program, or some other kind of program. A project workspace is a folder in which all the
information relating to a project is stored. When you create a project, a project workspace is
created automatically, and Visual C++ will maintain all of the source code and other files in the
project workspace folder. This folder will also contain other folders, which will store the output
from compiling and linking your project. When you have created a project along with its project
workspace, you can add further projects to the same workspace. These are referred to as
subprojects of the original project. Where a project has one or more subprojects, you can work
on any of the files for the project or its subprojects.

Any kind of project can be a subproject of another, but you would usually only create a

subproject in a project workspace where the subproject depends on the project in some way —
for example, sharing source code, or some operational interdependency. Generally, unless you
have a good reason to do otherwise, each of your projects should have its own project
workspace. This ensures you only access the files that belong to your project within Visual C++,
and that there is no possibility of confusion with files for other projects which might have similar
names. All the examples we will create will have their own workspace.

Defining a Project

The first step in writing a Visual C++ program is to create a project for it using the File | New...
menu option from the main menu. As well as containing files that define and keep track of all the
code that goes to make up your program, the project workspace also holds files that record the
Visual C++ options you're using. The workspace folder will hold the project definition files and all
your source code. A project definition includes:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ A project name
§ A list of all the source files
§ A definition of what sort of program is to be built from the source files, for example, a

Windows .exe program, or a console application

§ The options set for the editor, the compiler, the linker and other components of Visual
C++ that might be involved

§ The windows to be displayed in Visual C++ when the project is opened

The basic definition of a project is actually stored on disk in a file with the extension .dsp (in
some previous versions of Visual C++ this was a .mak file). This contains information about

how your program is to be created from the files in the project workspace and is produced when
you create a project workspace. Your project workspace will also contain a file with the
extension .opt which contains the settings for the project workspace. This will include

information about the appearance of the project workspace so that this can be restored when
you open a project you have worked on previously. Another file, with the extension .dsw, is

used to store further information about the workspace, such as what projects it contains.

All of these files are created and maintained automatically by Visual C++ and the IDE, so you

shouldn't attempt to edit or amend them directly yourself. If you want to make any changes —
for example, to the options in effect for a program — then you should introduce them using the
menus for that purpose in the Visual C++ IDE.

Debug and Release Versions of Your Program

You can set a range of options for a project through the Project | Settings... menu. These options
determine how your source code is to be processed during the compile and link stages. The set
of options that produces a particular executable version of your program is called a
configuration. When you create a new project workspace, Visual C++ will automatically create
configurations for producing two versions of your application. One includes information which
will help you to debug the program, and is called the Debug version. With the debug version of
your program you can step through the code when things go wrong, checking on the data
values in the program. The other, called the Release version, has no debug information included
and has the code optimization options for the compiler turned on to provide you with the most
efficient executable module. These two configurations will be sufficient for our needs throughout
the book, but when you need to add other configurations for an application, you can do so
through the Build | Configurations... menu. Note that this menu won't appear if you haven't got a
project loaded. This is obviously not a problem, but might be confusing if you're just browsing
through the menus to see what's there.

You can choose which configuration of your program to work with by selecting the Build | Set

Active Configuration... menu option:

You just select the configuration you want to work with from the list, and click on the OK button.
You can display the Build toolbar, which will provide a drop down list box on the toolbar from
which you can select a configuration. While you're developing an application, you'll be working
with the debug configuration. Once your application has been tested using the debug

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

configuration and appears to be working correctly, you would typically rebuild the program as a
release version — since this produces optimized code without the debug and trace capability,
which will run faster and occupy less memory.

Try it Out: - Creating a New Project

Let's take a look at creating a project for a console application. First select New... from the File
menu to bring up the list of items shown below:

The default tab shown is the Projects tab, which displays the kinds of project that you can create.

The selection that you make from the list determines what kind of program you are creating. For
many of these options, a basic set of program source modules will be created automatically.

For the project we are creating, you should select Win 32 Console Application as the project's
type. This won't generate any code, but will set the options for this kind of application. You can
now enter a suitable name for your project by typing into the Project name: edit box — for
instance, you could call this one TrialRun, or you can use any other name that takes your fancy.
Visual C++ supports long file names, so you have a lot of flexibility.

This dialog also allows you to enter the location for your project, as well as the platforms upon
which you'd like it to run, where this is applicable. (We won't need to change the platform setting
at all for the examples in this book.) If you simply enter a name for your project, the workspace
folder will automatically be set to a folder with that name, with the path shown in the Location:
edit box. The folder will be created for you if it doesn't already exist. If you want to specify a
different path, just enter it in the Location: edit box.

Alternatively, you can use the button to select another folder and path for your project's
files.

When you click on the OK button, this list will appear:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This dialog allows you to select the file support you want in the project. For this project, we will

need only the very basic support, so select An empty project and click on the Finish button. You
should get an information window, which tells you the specifications of your new project:

You can confirm that you're happy with the specifications by clicking OK (there's also an option
to Cancel, if the specifications aren't what you need). A new project workspace folder will be
created in the folder that you have specified as the Location: entry. The folder will have the
name that you supplied as the project name and will store all the files making up the project
definition. If you use Explorer to look in the project folder, you will see there are just three files
initially: the .dsp and .dsw files that we mentioned earlier, plus the file TrialRun.ncb, which

stores browse information from your program which is used by several components of Visual
C++. So what's browse information? It's information that records where each entity in your
program is defined, and where it's used. With the browse information available, you can right
click on anything in your source code in the editor window and by selecting the appropriate
menu item from the pop-up, go directly to the definition of the item, or find out where it is used in
your program.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you're wondering about the .opt file at this point — Visual C++ creates the .opt file when

you close the project down.

The new workspace will automatically be opened in Visual C++. You will see that two tabs have
been added to the Project Workspace window, showing a ClassView and a FileView for your
project. You can switch between these windows by clicking the tab for the window you want to
see. The tabs are shown below:

Although these views are looking rather empty at the moment, you'll see later that they provide
a quick and convenient way of viewing and accessing various aspects of your project.

The ClassView displays the classes defined in your project and will also show the contents of
each class. We don't have any classes in this application, so the view is empty. When we get
into discussing classes, you will see that you can use ClassView to move around the code
relating to the definition and implementation of all your application classes very quickly and
easily.

The FileView shows the source program files that make up your project. You can display the
contents of any of your project files by double clicking on a file name in FileView. This will open
a window for the file and automatically invoke an editor to enable you to modify the file contents.
At the moment we have no source program files.

Projects for Windows applications will also have a tab to display a ResourceView which will
display the dialogs, icons, menus and toolbars that are used by the program.

Like most elements of the Visual C++ IDE, the Project Workspace window provides context-
sensitive pop-up menus when you right click in the window. If you find that the Project
Workspace window gets in your way when writing code, you can hide and show it most easily

by using the Project Workspace button provided on the Standard toolbar.

Entering Your First Program

Since a project workspace isn't really a great deal of use without a program file, it's time we
entered our first program. Select File then New... from the main menu again. Visual C++ knows
that we've already created a project, and this time offers the Files tab by default:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

As the name suggests, this dialog lets you choose to create one from a range of different kinds

of file. Make your dialog look like the one above, by selecting the type of file from the list as C++
Source File and unchecking the Add to project: box. Then click on OK. This will open a new
editor window to display the file, which will have the default name Cpp1.

You'll see that the file name is displayed in the editor window title bar. You can maximize the

size of the editor window by clicking on the middle of the three buttons on the editor window title
bar — the file name then appears in the Visual C++ title bar at the top. If you type anything into
the editor window, then an asterisk will appear following the file name, indicating that the
contents of the file displayed in the window have been modified.

Because you chose to open the file as a C++ source file, the editor is already prepared to

accept source code, so go right ahead and type in the program code exactly as shown in the
window below. Don't worry about what it does. This is a very simple program which outputs
some lines of text and is just meant to exercise the Visual C++ facilities.

FYI

The keyword end1, appears four times in the above program. Notice that the
last character is the letter 1, not the number 1. It can sometimes be difficult to

tell the difference between the two!

Note the automatic indenting that occurs as you type in the code. C++ uses indenting to make

programs more readable, and the editor automatically indents each line of code that you enter,
based on what was in the previous line. You can also see the syntax color highlighting in action
as you type. Some elements of the program are shown in different colors as the editor
automatically assigns colors to language elements depending on what they are.

All the executable code is contained between the curly braces. The block of code here is called
a function and has the name main. Every C++ console program has this function, and

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

execution of the program starts at the beginning of main. Windows programs, on the other

hand, are very different in structure. We will come back to the structure of console programs in
the next chapter and will look at the structure of a Windows program in Chapter 7.

Having entered the program, you need to save it with a suitable file name. C++ source
programs are usually assigned a name with the extension .cpp, so, using the Save option from
the File menu (or the corresponding toolbar button), save this file as TrialRun.cpp. Files with

the extensions .cpp or .cxx are recognized as C++ source files, whereas files with the
extension .c are assumed to be C source files. If you don't use one of these extensions, Visual

C++ won't recognize the file as a source file. It's best to stick to the .cpp extension for C++ as

this is most commonly used in the PC environment. You can save a file in any folder that you
feel like, but since we intend this file to be part of the TrialRun project that we just created, it's a
good idea to store it in the same directory as the project files, which will be the default option.

Adding a Source File to a Project

Now that we have a program source file, we need to add it to our project (saving it in the project
directory doesn't do that, it just stores it on disk). The easiest way to do this is to right click in the
text file window and select the Insert File into Project item from the pop-up. Alternatively, you
could have chosen Add to Project from the Project menu on the main menu bar, selected Files...
from the pop-up, and browsed for the file that you wished to add.

You could also have created the file as part of the project at the outset. By selecting Add to

Project from the Project menu, and then choosing New... from the pop-up, the C++ file would
automatically have been part of the project. In this case you are obliged to supply the name of
the file in the New dialog, before Visual C++ creates the file. Once the file is part of the project,
the file name appears on the FileView tab in the Project Workspace window, under TrialRun files
| Source Files.

Notice that your files are grouped into sub-folders of the TrialRun folder: Source Files, Header

Files and Resource Files. FileView does this to make it easier for you to access your files; this is
a useful facility when you're creating a large console application with a number of files. These
three sub-folders aren't real folders, and you won't be able to see them if you view the contents
of TrialRun through Explorer.

Building a Project

The combined process of compiling the source files in a project to produce object code modules
and then linking these to produce an executable file is referred to as building a project. The
project file with the extension .dsp is used by Visual C++ in the build process to set the options

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

for the compiler and linker to create the executable file. You can build a project in a number of
ways:

§ Click the button on the Build toolbar

§ Choose the Build item from the menu that appears when you right click the TrialRun files
folder in the FileView

§ Choose the Build TrialRun.exe item from the Build menu on the main menu bar
§ Press F7

Important

Note that open source files are automatically saved when a build is
performed.

When you build the executable file, the Output window, which provides you with status and error
information about the process, will appear.

Dealing with Errors

Of course, if you didn't type in the program correctly, you'll get errors reported. To show how this

works, we could deliberately introduce an error into the program. If you already have errors of
your own, you can use those to perform this exercise. Go back to the Text Editor window and
delete the semicolon at the end of the second-to-last line and then recompile the source file.
The Output window should appear like this:

The error message here is very clear. It specifically states that a semicolon is missing and, if

you double click on the error message you will be taken directly to the line in error. You can
then correct the error and rebuild the executable file.

Using Help with the Output Window

Sometimes, the cause of an error may not be quite so obvious, in which case some additional
information can be very helpful. You can get more information about any error reported by
placing the cursor in the output window, anywhere in the line containing the error code (in this
case C2143). You can position the cursor just by clicking with the mouse anywhere in the line. If
you now press the function key F1, you will automatically bring up a help page from the MSDN
Library with more information on the particular error in question, often containing examples of
the sort of incorrect code that can cause the problem.

The build operation works very efficiently because the project definition keeps track of the status
of the files making up the project. During a normal build, Visual C++ only recompiles the files
that have changed since the program was last compiled or built. This means that if your project
has several source files and you've edited only one of the files since the project was last built,
only that file is recompiled before linking to create a new .exe file.

You also have the option of rebuilding all files from the start if you want, regardless of when they
were last compiled. You just need to use the Rebuild All menu option instead of Build
TrialRun.exe (or whatever the name of the executable file is).

Files Created by Building a Console Application

Once the example has been built without error, if you take a look in the project folder, you'll see
a new subfolder called Debug. This folder contains the output of the build that you just
performed on the project. You will see that this folder contains seven new files.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Other than the .exe file, which is your program in executable form, you don't need to know

much about what's in these files. However, in case you're curious, let's do a quick run-through
of what the more interesting ones are for:

File
Extension

Description

.exe This is the executable file for the program. You only get this file if both the
compile and link steps are successful

.obj The compiler produces these object files containing machine code from your
program source files. These are used by the linker, along with files from the
libraries, to produce your .exe file.

.ilk This file is used by the linker when you rebuild your project. It enables the
linker to incrementally link the object files produced from the modified source
code into the existing .exe file. This avoids the need to re-link everything

each time you change your program.

.pch This is a pre-compiled header file. With pre-compiled headers, large tracts
of code which are not subject to modification (particularly code supplied by
Visual C++) can be processed once and stored in the .pch file. Using the

.pch file substantially reduces the time needed to build your program.

.pdb This file contains debugging information that is used when you execute the
program in debug mode. In this mode, you can dynamically inspect
information that is generated during program execution.

.idb Contains additional debug information

If you have a .exe file for the TrialRun project, you can take it for a trial run, so let's see how to

do that.

Executing Your First Program

We can, of course, execute the program in the normal way by double-clicking the .exe file from

Explorer, but we can also execute it without leaving the Visual C++ development environment.
You can do this by selecting Execute TrialRun.exe from the Build menu, or by clicking on the
toolbar button for this menu item. Our example will produce the output shown:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

FYI

The text Press any key to continue wouldn't normally appear in the
console window - you can verify that by double-clicking the .exe file. Visual

C++ is lending a helping hand by letting you peruse the output from your
application at your leisure.

If we had changed any of the source files since the last build of the executable, or if we hadn't
built the executable at all, we would be prompted to rebuild the project when we clicked the

Execute Program button.

You could also run your program from a DOS window under Windows 95. You just start a DOS
session, change the current directory to the one that contains the .exe file for your program,

then enter the program name to run it. You can leave the DOS session running while you are
working with Visual C++ and just switch back to it when you want to run a console program.

Setting Options in Visual C++

There are two sets of options you can set. First, you can set options that apply to the tools

provided by Visual C++, which will apply in every project context. Second, you can set options
that are specific to a project, which determine how the project code is to be processed when it is
compiled and linked.

Setting Visual C++ Options

Visual C++ options are set through a dialog that's displayed when you select Tools | Options...
from the main menu.

On each tab you'll see a range of options that you can select or deselect by clicking the check
boxes. You can get an explanation of any of the options on a tab by clicking on the question
mark at top right, and then clicking on the check box you're interested in. You only need
concern yourself with a couple of these at this time, but it will be useful to explore the range of
options available to you.

If you want to choose a path to be used as a default when you create a new project, select the

Directories tab, and then Source files from the drop-down list box on the right. If you then click on
the empty line at the bottom of the list of paths that is displayed, you can type in your own path
that you want used for new projects.

The Workspace tab allows you to set up which toolbars are dockable and which are not. It also
has a range of other options relating to the way a workspace is handled. You may like to check
the box for Reload last workspace at startup; then you will automatically pick up precisely where
you left off when you closed Visual C++ last.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Tools | Customize... menu option will display a dialog where you can change the contents of
the toolbars in Visual C++:

By selecting from the Category: list box on the Commands tab, you can view the toolbar buttons
for any of the menus. You can see what any toolbar button on the Commands tab does by
clicking it, and you can add any of the buttons shown to any toolbar by dragging it to where you
want while holding down the left mouse button. You can also remove a button from an existing
toolbar while this dialog is displayed simply by dragging the button that you want to remove off
the toolbar.

If you're a keyboard fan, then through the Keyboard tab you can define your own shortcut key for

any of the menu options on the main menu.

Setting Project Options

To set the options for a project, you select Project | Settings... from the main menu. This will

display another dialog with a variety of tabs. Most of this you can ignore for now, but one thing
you'll find very useful for a project of any significant size is to create a browse information file.
This will enable you to find out where in your source code any item is used, and where it is
defined, just by right clicking it and selecting from the pop-up menu. You can get a browse
information file generated by switching to the C/C++ tab.

Just click on the Generate browse info check box to get the compiler to generate browse
information for each source file. Then switch to the Browse Info tab and click on the Build browse
info file check box. This will cause a composite of all the browse information to be assembled
into a file with the extension .bsc, which will be used when you're browsing your source code.

The .bsc file is updated when you build your project.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Creating and Executing a Windows Program

Just to show how easy it's going to be, we'll now create a working Windows program, although
we'll defer discussion of the program that we generate until we've covered the necessary
ground for you to understand it in detail. You will see, though, that the process really is very
straightforward.

To start with, if an existing project is active — this will be indicated by the project name
appearing in the title bar of the Visual C++ main window — you can select Close Workspace from
the File menu. Alternatively, you can just go ahead and create a new project.

To create the Windows program we're going to use AppWizard, so select New... from the File
menu, then select the Projects tab in the dialog. Select the project type as MFC AppWizard (exe)
and enter TrialWin as the project's name.

If you didn't close the previous project workspace, you'll need to check the Create new workspace
radio button, otherwise the project will be created in the current workspace.

When you click on the OK button, the MFC AppWizard window will be displayed. The AppWizard
consists of a number of dialog pages with options that let you choose which features you'd like
to have included in your application, and we'll get to use most of these in examples later on.

We'll ignore all these options and just accept the default settings, so click the Finish button.
Another window will be displayed:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This is to advise you of what AppWizard is about to do and provides you with an opportunity to

abort the whole thing if it doesn't seem to be what you want. It defines a list of the classes that
it's going to create, and what the basic features of the program are going to be. We won't worry
about what all these signify—we'll get to them eventually. It also indicates the folder that it will
use to store the project and program files. Just click on the OK button and let AppWizard out of
its cage. AppWizard will spend a few moments generating the necessary files and then
eventually return to the main window. If you now expand the FileView in the project workspace
window, you'll see the file list shown:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The list shows a large number of files that have been created. You need plenty of space on your
hard drive when writing Windows programs! The files with the extension .cpp contain
executable C++ source code, and the .h files contain C++ code consisting of definitions which

are used by the executable code. The .ico files contain icons. FileView groups the files into the

sub-folders you can see for ease of access. These aren't real folders, though, and they won't
appear in the project folder on your disk.

If you now take a look at the Trialwin folder using Explorer, or whatever else you may have

handy for looking at the files on your hard disk, you will see that we have generated a total of 23
files (24, if you've closed the project), four of which are in a sub-folder, res. The files in this sub-

folder contain the resources used by the program — these are such things as the menus and
icons used in the program. We get all this as a result of just entering the name we want to
assign to the project. You can see why, with so many files and file names being created
automatically, a separate directory for each project becomes more than just a good idea.

One of the files in the Trialwin subdirectory, ReadMe.txt, provides an explanation of the

purpose of each of the files that AppWizard has generated. You can take a look at it if you wish,
using Notepad, WordPad, or even the Visual C++ editor. To view it in the editor window just
double click on it in FileView.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Executing a Windows Program

Before we can execute our program, we have to compile and link the program modules. You do
this in exactly the same way that you did with the console application example. To save time,

just select the Execute TrialWin.exe item from the Build menu or the toolbar button:

Since you haven't built the executable yet, you'll be asked whether you want to do so. Click Yes.

Compiling and linking the project will take a little time, even if you have a fast machine, since we

already have quite a complex program. Once the project has been built, the Output window will
indicate that there were no errors and the executable will start running. The window for the
program we've generated is shown here:

As you see, it's complete with menus and a toolbar. Although there is no specific functionality in
the program — that's what we need to add to make it our program — all the menus work. You
can try them out. You can even create further windows by selecting the New item from the File
menu.

I think you'll agree that creating a Windows program with AppWizard hasn't really stressed too
many brain cells. We'll need to get a few more ticking away when we come to developing the
basic program we have here into a program that does something more interesting, but it won't
be that hard. Certainly, for many people, writing a serious Windows program the old-fashioned
way, without the aid of Visual C++, required at least a couple of months on a fish diet before
making the attempt. That's why so many programmers used to eat sushi. That's all gone now
with Visual C++. However, you never know what's around the corner in programming
technology. If you like sushi, it's best to continue with it to be on the safe side.

Summary

In this chapter, we've run through the basic mechanics of using Visual C++. We used the Studio
to enter and execute a console application program and, with the help of AppWizard, we
created a complete Windows program.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Every program should have a project defined for it. The project will store information as to the
kind of program it is, what files need to be combined to construct the program and the options in
effect for the program. All programs in this book will have a project defined.

Starting with the next chapter, we'll be using console applications extensively throughout the

first half of the book. All the examples illustrating how C++ language elements are used will be
executed using console applications. We will return to AppWizard as soon as we have finished
delving into the secrets of C++.

Exercises

It's not easy to set exercises for this chapter, because we haven't got much new knowledge to
exercise yet, so we'll use this opportunity to familiarize ourselves with the basics of the Visual
C++.

1. List as many different ways as possible to build (i.e. compile and link) a project.

2. List the three types of file used to store information about a project and describe the
role of each.

3. Describe the use of the following file types produced by the Visual C++ compiler:
.obj, .pch, .pdb, .exe.

4. Edit the TrialRun program to introduce various errors—miss out or put in the wrong

curly braces, misspell names like main or iostream. Build the project, and use the
help system to look at the error messages produced. Don't worry too much for now if
you don't understand exactly what they mean; the idea is to get some practice in
using the compiler and the help system.

5. Read about the IDE in the MSDN Library. A good place to start is under Visual C++
\Visual C++ User's Guide.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 2: Data, Variables and Calculations

Overview

In this chapter, we'll get down to the essentials of programming in C++. By the end of the
chapter you will be able to write a simple C++ program of the traditional form: input — process
— output.

As we explore aspects of the language using working examples, you'll have an opportunity to
get some additional practice with the Visual C++ Development Environment. You should create
a project for each of the examples before you build and execute them. Remember that when
you are defining a project, they are all console applications.

In this chapter you will learn about:

§ C++ program structure
§ Namespaces

§ Variables in C++
§ Defining variables and constants
§ Basic input from the keyboard and output to the screen

§ Performing arithmetic calculations
§ Casting Operands
§ Variable scope

The Structure of a C++ Program

Programs which will run as console applications under Visual C++ are text-based MS-DOS
programs. All the examples that we'll write to understand how C++ works will be MS-DOS
programs, so let's look at how such programs are structured.

A program in C++ consists of one or more functions. In Chapter 1, we saw an example
consisting simply of the function main(), where main is the name of the function. This was an
MS-DOS program. Every C++ program in the DOS environment contains the function main()

and all C++ programs of any size consist of several functions. A function is simply a self-
contained block of code with a unique name which is invoked by using the name of the function.

A typical DOS program might be structured as shown in the figure:

The figure above illustrates that execution of the program shown starts at the beginning of the
function main(). From main(), execution transfers to a function input_names() which
returns execution to the position immediately following the point where it was called in main().

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The function sort_names() is then called from main() and, once control returns to main(),
the final function output_names() is called. Eventually, once output has been completed,

execution returns once again to main() and the program ends.

Of course, different programs under DOS may have radically different functional structures, but
they all start execution at the beginning of main(). The principal advantage of having a

program broken up into functions is that you can write and test each piece separately. There is
a further advantage in that functions written to perform a particular task can be re-used in other
programs. The libraries that come with C++ provide a lot of standard functions that you can use
in your programs. They can save you a great deal of work.

We'll see more about creating and using functions in Chapter 5 .

Try it Out: - A Simple Program

Let's look at a simple example to understand the elements of a program a little better. Start by
creating a new project from the range of alternatives offered on the Projects tab when you click
the New... item in the File menu. When the dialog appears, select Win 32 Console Application and
name the project Ex2_01.

Note that the Create new workspace option is selected by default. A workspace is a directory that
can contain one or more projects and in this case it will have the same name as the project. A
project corresponds to a single program and is always contained in a workspace.

We could have created a new empty workspace first using the Workspaces tab and given it a

name. We could then have added the project to the workspace using the File/New... menu
option and supplied a separate name for the project. In this case the workspace directory would
have a project sub-directory that would contain the program files for the project. This allows you
to have several projects in a single workspace, each of which is a separate program, but will
typically be related to the others in some way - part of a suite of programs perhaps. When you
click on OK, the Console Application dialog appears. We'll start from the very basic project
structure, so choose An empty project, and click on the Finish button.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The New Project Information tells you about the project you're about to create; it should look

something like this:

The project directory at the foot of the screen may be slightly different on your machine;

everything else should be identical. Once you're happy with it, click on OK.

We'll start by adding a new source file to the project, so select New... from the File menu (or just

press Ctrl+N) and select the Files tab. Choose C++ Source File from the list and enter the file
name as shown below.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The file will automatically be given the extension .cpp, so you don't have to enter it. There is no

problem having the name of the file the same as the name of the project. The project file will
have the extension .dsp so that will differentiate it. Make sure the Add to project checkbox is

checked and then click on OK to create the file. You can then type the following code in the
editor window:

 // EX2_01.CPP

 // A Simple Example of a Program

 #include <iostream>

 using namespace std;

 int main()

 {

 int apples, oranges; // Declare two integer variables

 int fruit; // ...then another one

 apples = 5; oranges = 6; // Set initial values

 fruit = apples + oranges; // Get the total fruit

 cout << end1; // Start output on a new line

 cout << "Oranges are not the only fruit... " << end1

 << "- and we have " << fruit << " fruits in all.";

 cout << end1; // Start output on a new line

 return 0; // Exit the program

 }

FYI

The above example is intended to illustrate some of the ways in which you can
write C++ statements, rather than to be a model of good programming style.

Since the file is identified by its extension as a file containing C++ code, the keywords in the
code that the editor recognizes will be colored their colors. You will be able to see if you have
entered Int where you should have entered int, since the two will be different colors.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you look at the FileView tab for your new project, you'll see the newly created source file in the
FileView. FileView will always show all the files in a project. The main() function will appear

under the Globals section of the ClassView. We'll consider the meaning of this later.

If you now build this program by using the Build button on the Build toolbar, and
execute it using the Execute Ex2_01.exe item in the Build menu, you should get the following
output:

Program Comments

The first two lines in the program are comments. Comments are an important part of any

program, but they're not executable code — they are there simply to help the human reader. All
comments are ignored by the compiler. On any line of code, two successive slashes // that are

not contained within a text string (we shall see what text strings are later) indicate that the rest
of the line is a comment.

You can see that several lines of the program contain comments as well as program
statements. You can also use an alternative form of comment bounded by /* and */. For

example, the first line of the program could have been written:

 /* EX2_01.CPP */

The comment using // only covers the portion of the line following the two successive slashes,

whereas the /*...*/ form defines whatever is enclosed as a comment and can span several

lines. For example, we could write:

 /*

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 EX2_01.CPP

 A Simple Program Example

 */

All four lines are comments. If you want to highlight some particular comment lines, you can

always embellish them with a frame of some description:

 /******************************

 * EX2-01.CPP *

 * A Simple Program Example *

 ******************************/

As a rule, you should always comment your programs comprehensively. The comments should

be sufficient for another programmer, or you at a later date, to understand the purpose of any
particular piece of code, and to understand how it works.

The #include Directive — Header Files

Following the comments, we have the #include directive,

 #include <iostream>

which makes the compiler insert the contents of the file iostream into the program before

compilation. This file is called a header file because it's usually brought in at the beginning

of a program file. This particular header file contains definitions that are necessary for you to be
able to use input and output statements in C++. If we didn't include iostream in our program, it

wouldn't compile because we use output statements that depend on some of the definitions in
this file. There are many different header files provided by Visual C++ that cover a wide range of
capabilities. We shall be seeing more of them as we progress through the language facilities.

A #include statement is one of several preprocessor directives. The Visual C++ editor

recognizes these and highlights them in blue in your edit window. Preprocessor directives are
commands executed by the compiler that generally act on your source code in some way before
it is compiled. They all start with the # character. We'll be introducing other preprocessor

directives as we need them.

The using Directive — Namespaces

As we saw in Chapter 1, the standard library is an extensive set of routines which have been
written to do many common tasks: for example, dealing with input and output, performing basic
mathematical calculations, etc. Since there are a very large number of these routines, it is quite
possible that you might accidentally use the same name as one of the library routines for your
own purposes. A namespace is a mechanism in C++ for avoiding problems that can arise with
duplicate names being used in a program. All the names used in code that appears within a
namespace also have the namespace name associated with them. All standard library routines
are contained within the namespace std, so every routine in it has its own name, plus the

namespace name, std. This is why we have the line following the #include directive for
<iostream>:

 using namespace std;

This is a using directive that tells the compiler that we intend to use names from the

namespace std without specifying the namespace name - names from the standard library in

other words. The compiler will then look out for names from the standard library in the program
so the connection with the routine in the standard library can be established. We will discuss
namespaces further at the end of this chapter.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Function main()

The function main() in our example consists of the function header defining it as main() plus

everything from the first opening curly brace ({) to the corresponding closing curly brace (}).

The curly braces enclose the executable statements in the function, which are referred to
collectively as the body of the function.

As we shall see, all functions consist of a header which defines (amongst other things) the

function name, followed by the function body which consists of a number of program statements
enclosed between a pair of curly braces. The body of a function may contain no statements at
all, in which case it doesn't do anything.

A function that doesn't do anything may seem somewhat superfluous, but when you're writing a
large program, you may map out the complete program structure in functions but, initially, leave
the code for many of them with empty bodies. Doing this means that you can compile and
execute the whole program with all its functions at any time, but add detailed coding for the
functions incrementally.

Program Statements

The program statements making up the function body of main() are each terminated with a

semicolon. The program statement is the basic unit in defining what a program does. This is a
bit like a sentence in a paragraph of text, where each sentence stands by itself in expressing an
action or an idea, but relates to and combines with the other sentences in the paragraph in
expressing a more general idea. A statement is a self-contained definition of an action that the
computer is to carry out, but which can be combined with other statements to define a more
complex action or calculation.

The action of a function is always expressed by a number of statements, each ending with a
semicolon. Let's take a quick look at each of the statements in the example that we have just
written, just to get a general feel for how it works. We will discuss each type of statement more
fully later in this chapter.

The first statement in the program,

 int apples, oranges; // Declare two integer variables

declares two variables, apples and oranges. A variable is a named bit of computer memory

that you can use to store data. A statement introducing the names of variables is called a
variable declaration. The keyword int indicates that the variables are to store values that are
whole numbers, or integers. The next statement declares another integer variable, fruit.

While you can declare several variables in the same statement, as we did for apples and
oranges, it is generally a good idea to declare them separately. This enables you to comment

them individually.

In the example, the line

 apples = 5; oranges = 6; // set initial values

contains two statements, each terminated by a semicolon. While it isn't obligatory, it's good
programming practice to write only one statement on a line. The two statements store the
values 5 and 6 in the variables apples and oranges respectively. These statements are

called assignment statements because they assign a new value to a variable.

The next statement,

 fruit = apples + oranges; // Get the total fruit

is also an assignment statement. This one adds the values stored in the variables apples and
oranges and stores the result in the variable fruit.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The next three statements are:

 cout << end1; // Start output on a new line

 cout << "Oranges are not the only fruit... " << end1

 << "- and we have " << fruit << " fruits in all.";

 cout << end1; // Start output on a new line

These are all output statements. The first sends a newline character, denoted by the word
end1, to the screen. In C++, a source of input or a destination for output is referred to as a

stream. The word cout specifies the 'standard' output stream, and the operator << indicates
that what appears to the right of the operator is to be sent to the output stream, cout. The

operator << 'points' in the direction that the data flows — from the variable or string on the right

to the output destination on the left.

The meaning of the word cout and the operator << are defined by the contents of the header
file iostream, which you'll remember we added to our program code in the #include

directive at the beginning of the program. cout is a name in the standard library, and therefore
is within the namespace std. Without the using directive it would not be recognized. The

name cout represents your display screen and it is a standard destination for output. Because
cout has been defined for this purpose, you shouldn't use the word cout for other purposes —

for example, as a variable in your program.

The second statement sends a text string (defined between quotes) to the screen, followed by
another newline character (end1), then another text string, followed by the value stored in the
variable fruit, then finally another text string. There is no problem stringing together a

sequence of things that you want to output in this way. The statement executes from left to right,
with each item being sent to cout in turn. Note that each item is preceded by its own <<

operator.

The third statement sends another newline character to the screen. These statements produce

the output from the program that you see. Note that the second statement runs over two lines.
The successive lines are combined into a single statement until the compiler finds the
semicolon that defines the end of the statement. This means that if you forget a semicolon for a
statement, the compiler will assume the next line is part of the same statement and join them
together. This usually results in something the compiler cannot understand, so you'll get an
error.

The last statement in our program,

 return 0; // Exit the program

stops execution of the program and returns control to the operating system. We will be

discussing all of these statements in more detail later on.

The statements in a program are executed in the sequence in which they are written, unless a

statement specifically causes the natural sequence to be altered. In Chapter 3, we will look at
statements that alter the sequence of execution.

Whitespace

Whitespace is the term used in C++ to describe blanks, tabs, newline characters and
comments. A whitespace separates one part of a statement from another and enables the
compiler to identify where one element in a statement, such as int, ends and the next element

begins. Therefore, in the statement,

 int fruit; // ...then another one

there must be at least one whitespace character (usually a space) between int and fruit for

the compiler to be able to distinguish them. On the other hand, in the statement

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 fruit = apples + oranges; // Get the total fruit

no whitespace characters are necessary between fruit and =, or between = and apples,

although you are free to include some if you wish. This is because the = is not alphabetic or

numeric, so the compiler can separate it from its surroundings. Similarly, no whitespace
characters are necessary either side of the + sign.

Apart from its use as a separator between elements in a statement that might otherwise be
confused, whitespace is ignored by the compiler (except, of course, in a string of characters
between quotes). You can therefore include as much whitespace as you like to make your
program more readable, as we did when we spread our output statement in the last example
over several lines. In some programming languages the end of a statement is at the end of the
line, but in C++ the end of a statement is wherever the semicolon occurs.

Since variable names must be made up of single words, you must not put whitespace
characters in the middle. If you do, the single variable name won't be seen by the compiler as
such, and it won't be interpreted correctly.

Statement Blocks

We can enclose several statements between a pair of curly braces, in which case they become

a block, or a compound statement. The body of a function is an example of a block. Such a
compound statement can be thought of as a single statement (as we shall see when we look at
the decision making possibilities in C++ in Chapter 3). In fact, wherever you can put a single
statement in C++, you could equally well put a block of statements between braces. As a
consequence, blocks can be placed inside other blocks. In fact, blocks can be nested, one
within another, to any depth.

Important

A statement block also has important effects on variables, but we will
defer discussion of this until later in this chapter when we discuss
something called variable scope.

Defining Variables

Now that we are beyond our first program, we are going to want to manipulate some meaningful
information and get some answers. An essential element in this process is having a piece of
memory that we can call our own, that we can refer to using a meaningful name and where we
can store an item of data. Each individual piece of memory so specified is called a variable.

Each variable will store a particular kind of data that is fixed when we define the variable in our

program. One variable might store whole numbers (that is, integers), in which case it couldn't be
used to store numbers with fractional values. The value that each variable contains at any point
is determined by the instructions in our program and, of course, its value will usually change
many times as the program calculation progresses.

Let's look first at the rules for naming a variable when we introduce it into a program.

Naming Variables

The name we give to a variable is called an identifier, or more conveniently a variable name.
Variable names can include the letters A–z (upper or lower case), the digits 0–9 and the
underscore character. All other characters are illegal. Variable names must also begin with
either a letter or an underscore. Names are usually chosen to indicate the kind of information to
be stored.

In Visual C++, variable names can be up to 255 characters long, which gives you a reasonable
amount of flexibility. In fact, as well as variables, there are quite a few other things that have
names in C++. We shall see that they too can have names of up to 255 characters, with the
same definition rules as a variable name. Using names of the maximum length can make your

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

programs a little difficult to read and, unless you have amazing keyboard skills, they are the
very devil to type in. A more serious consideration is that not all compilers support such long
names. If you anticipate compiling your code in other environments, names with up to 31
characters are usually adequate and will not cause problems in most instances.

Although you can use variable names that begin with an underscore, for example _this and
_that, this is best avoided because of potential clashes with standard system variables which

have the same form. You should also avoid using names starting with a double underscore for
the same reason.

Examples of good variable names are:
§ Price

§ discount

§ pShape

§ Value_

§ COUNT

8_Ball, 7Up, and 6_pack are not legal. Neither is Hash! or Mary-Ann. This last example is

a common mistake, although Mary_Ann would be quite acceptable. Of course, Mary Ann

would not be, because blanks are not allowed in variable names. Note that the variable names
republican and Republican are quite different, as upper- and lower-case letters are

differentiated.

A convention that is often adopted in C++ is to reserve names beginning with a capital letter for
naming classes. We shall discuss classes in Chapter 8.

Keywords in C++

There are reserved words in C++, also called keywords, which have special significance within
the language. They will be highlighted with a particular color by the Visual C++ editor as you
enter your program. If the keywords you type do not appear highlighted, then the keyword has
been entered incorrectly.

Important

Remember that keywords, like the rest of the C++ language, are case-
sensitive.

For example, the program that you entered earlier in the chapter contained the keywords int

and return. You will see many more as you progress through the book. You must ensure that

the names you choose for entities in your program, such as variables, are not the same as any
of the keywords in C++. A complete list of keywords used in Visual C++ appears in Appendix A.

Declaring Variables

A variable declaration is a program statement which specifies the name of a variable and the

sort of data that it can store. For example, the statement,

 int value;

declares a variable with the name value that can store integers. The type of data that can be
stored in the variable value is specified by the keyword int. Because int is a keyword, you

can't use int as a name for one of your variables.

Important

Note that a declaration always ends with a
semicolon.

A single declaration can specify the names of several variables but, as we have said, it is

generally better to declare variables in individual statements, one per line. We will deviate from
this from time to time in this book, but only in the interests of not spreading code over too many
pages.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

A variable name alone can't store anything, so it's not much use on its own. In order to store
data (for example, the value of an integer), we need to assign a piece of the computer's memory
to the variable. This process is called variable definition.

In C++, a variable declaration is also a definition (except in a few special cases, which we shall

come across during the book). In the course of a single statement, we introduce the variable
name, and also tie it to an appropriately-sized piece of memory. So, the statement

 int value;

is both a declaration and a definition. We use the variable name value that we declared, to

access the piece of the computer's memory that we defined.
Important

We use the term declaration when we introduce a name into our
program, with information on what the name will be used for. The term
definition refers to the allotment of computer memory to the name. In
the case of variables, we can declare and define in a single statement,
as in the line above.

You must declare a variable at some point between the beginning of your program and when
the variable is used for the first time. In C++, it is good practice to declare variables close to
their first point of use.

Initial Values for Variables

When you declare a variable, you can also assign an initial value to it. A variable declaration

that assigns an initial value to a variable is called an initialization. To initialize a variable when
you declare it, you just need to write an equals sign followed by the initializing value after the
variable name. We can write the following statements to give each of the variables an initial
value:

 int value = 0;

 int count = 10;

 int number = 5;

In this case, value will have the value 0, count will have the value 10 and number will have

the value 5.

There is another way of writing the initial value for a variable in C++ called functional notation.

Instead of an equals sign and the value, you can simply write the value in parentheses following
the variable name. So we could rewrite the previous declarations as:

 int value(0);

 int count(10);

 int number(5);

If you don't supply an initial value for a variable, then it will usually contain whatever garbage

was left in the memory location it occupies by the previous program you ran (there is an
exception to this which we shall see later). Wherever possible, you should initialize your
variables when you declare them. If your variables start out with known values, it makes it
easier to work out what is happening when things go wrong. And one thing you can be sure of
— things will go wrong.

Data Types in C++

The sort of information that a variable can hold is determined by its data type. All data and
variables in your program must be of some defined type. C++ provides you with a range of
standard data types, specified by particular keywords. We have already seen the keyword int

for defining integer variables. As part of the object-oriented aspects of the language, you can

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

also create your own data types, as we shall see later. For the moment, let's take a look at
elementary numerical data types that C++ provides.

Integer Variables

As we have said, integer variables are variables that can only have values that are whole
numbers. The number of players in a football team is an integer, at least at the beginning of the
game. We already know that you can declare integer variables using the keyword int. These

are variables which occupy 4 bytes in memory and can take both positive and negative values.
FYI

The upper and lower limits for the values of a variable of type int correspond

to the maximum and minimum signed binary numbers which can be
represented by 32 bits. The upper limit for a variable of type int is 2

31
-1, and

the lower limit is -(2
31

).

In Visual C++, the keyword short also defines an integer variable, this time occupying two
bytes. The keyword short is equivalent to short int.

C++ also provides another integer type, long, which can also be written as long int. In this

case, we can write the statement,

 long bigNumber = 1000000L, largeValue = 0L;

where we declare the variables bigNumber and largeValue with initial values 1000000 and
0 respectively. The letter L appended to the end of the values specifies that they are long

integers. You can also use the small letter 1 for the same purpose, but it has the disadvantage
that it is easily confused with the numeral 1.

Important

We don't include commas when writing large numeric values in a
program.

Integer variables declared as long occupy 4 bytes and can have values from -2,147,483,648 to
2,147,483,647. This is the same as variables declared as int using Visual C++ 6.0.

FYI

With other C++ compilers, long and long int may not be the same as int,
so if you expect your programs to be compiled in other environments, don't
assume that long and int are equivalent. For truly portable code, you should
not even assume that an int is 4 bytes (for example, under older 16-bit

versions of Visual C++ an int was 2 bytes).

The char Data Type

The char data type serves a dual purpose. It specifies a one-byte variable that you can use to

store integers, or to store a single ASCII character, which is the American Standard Code for
Information Interchange.

The ASCII character set appears in Appendix B. We can declare a char variable with this

statement:

 char letter = 'A';

This declares the variable letter and initializes it with the constant 'A'. Note that we specify

a value which is a single character between single quotes, rather than the double quotes which
we used previously for defining a string of characters to be displayed. A string of characters is a
series of values of type char, that are grouped together into a single entity called an array. We

will discuss arrays and how strings are handled in C++ in Chapter 4.

Because the character 'A' is represented in ASCII by the decimal value 65 (have a look at

Appendix B if you don't believe me), we could have written this:

 char letter = 65; // Equivalent to A

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

to produce the same result as the previous statement. The range of integers that can be stored
in a variable of type char is from -128 to 127.

We can also use hexadecimal constants to initialize char variables (and other integer types). A

hexadecimal number is written using the standard representation for hexadecimal digits: 0 to 9,
and A to F (or a to f) for digits with values from 10 to 15. It's also preceded by Ox (or OX) to
distinguish it from a decimal value. Thus, to get exactly the same result again, we could rewrite
the last statement as follows:

 char letter = 0x41; // Equivalent to A

Important

Don't write decimal integer values with a leading zero. The compiler will
interpret such values as octal (base 8), so a value written as 065 will be
equivalent to 53 in normal decimal notation.

Integer Type Modifiers

Variables of the integral types char, int, short or long, which we have just discussed,

contain signed values by default. That is, they can store both positive and negative values, as
we have just seen. This is because these types are assumed to have the default type modifier
signed. So, wherever we wrote char, int, or long, we could have written signed char,
signed int, or signed long respectively.

If you are sure that you don't need to store negative values in a variable (for example, if you
were recording the number of miles you drive in a week), then you can specify a variable as
unsigned:

 unsigned long mileage = 0UL;

Here, the minimum value that can be stored in the variable mileage is zero, and the maximum

value is 4,294,967,295 (that's 2
32

-1). Compare this to the range of -2,147,483,648 to
2,147,483,647 for a signed long. The bit which is used in a signed variable to determine the
sign, is used in an unsigned variable as part of the numeric value instead. Consequently, an

unsigned variable has a larger range of positive values, but it can't take a negative value. Note
how a U (or u) is appended to unsigned constants. In the above example we also have L

appended to indicate that the constant is long. You can use either upper or lower case for U
and L and the sequence is unimportant, but it's a good idea to adopt a consistent way of

specifying such values.

Of course, both signed and unsigned are keywords, so you can't use them as variable

names.

Floating Point Variables

Values which aren't integral are stored as floating point numbers. A floating point number can
be expressed as a decimal value such as 112.5, or with an exponent such as 1.125E2 where
the decimal part is multiplied by the power of 10 specified after the E (for Exponent). Our
example is, therefore, 1.125x10

2
, which is 112.5.

Important

A floating point constant must contain a decimal point, or an exponent,
or both. If you write neither, you have an integer.

You can specify a floating point variable using the keyword double, as in this statement:

 double in_to_mm = 25.4;

A double variable occupies 8 bytes of memory and stores values accurate to 15 decimal digits.

The range of values stored is much wider than that indicated by the 15 digits accuracy, being
from 1.7×10

-308
 to 1.7×10

308
, positive and negative.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you don't need 15 digits precision, and you don't need the massive range of values provided
by double variables, you can opt to use the keyword float to declare floating point variables

occupying 4 bytes. For example, the statement,

 float pi = 3.14159f;

defines a variable pi with the initial value 3.14159. The f at the end of the constant specifies it

to be a float type. Without the f, the constant would have been of type double. Variables
declared as float are of 7 decimal digits precision and can have values from 3.4×10

-38
 to

3.4×10
38

, positive and negative.
FYI

You can find a complete summary of the various data types in the MSDN
online documentation, provided with Visual C++ 6.0.

Logical Variables

Logical variables can only have two values: a value called true and a value called false. The
type for a logical variable is bool, named after George Boole, who developed Boolean

algebra. Variables of type bool are used to store the results of tests which can be either true
or false, such as whether one value is equal to another.

You can declare a variable of type bool with the statement:

 bool testResult;

Of course, you can also initialize them when you declare them:

 bool colorIsRed = true;

You will find that the values true and false are used quite extensively with variables of

numeric type, and particularly of type int. This is a hangover from the time before variables of
type bool were implemented in C++ when integer variables were typically used to represent

logical values. In this case a zero value is treated as false and a non-zero value as true. The
symbols TRUE and FALSE are still used within the MFC where they represent the integers 1 and
0 respectively. Note that TRUE and FALSE are not keywords in C++, and they are not legal

bool values.

Variables with Specific Sets of Values

You will sometimes be faced with the need for variables that have a limited set of possible
values which can be usefully referred to by labels — the days of the week, for example, or
months of the year. There is a specific facility in C++ to handle this situation, called an
enumeration. Let's take one of the examples we have just mentioned — a variable that can
assume values corresponding to days of the week. We can define this as follows:

 enum Week {Mon, Tues, Wed, Thurs, Fri, Sat, Sun} this_week;

This declares an enumeration type called Week and the variable this_week, which is an

instance of the enumeration type Week that can only assume the values specified between the
braces. If you try to assign to this_week anything other than one of the set of values specified,

it will cause an error. The symbolic names listed between the braces are known as
enumerators. In fact, each of the names of the days will be automatically defined as

representing a fixed integer value. The first name in the list, Mon, will have the value 0, Tues will

be 1, and so on.

By default, each successive enumerator is one larger than the value of the previous one, but if
you would prefer the implicit numbering to start at a different value, you can just write

 enum Week {Mon = 1, Tues = 1, Wed, Thurs, Fri, Sat, Sun} this week;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

and they will be equivalent to 1 through 7. The enumerators don't even need to have unique
values. You could define Mon and Tues as both having the value 1 for example, with the

statement:

 enum Week {Mon = 1, Tues = 1, Wed, Thurs, Fri, Sat, Sun} this week;

As it's the same as an int, the variable this_week will occupy four bytes, as will all variables

which are of an enumeration type.

Having defined the form of an enumeration, you can define another variable thus:

 enum Week next_week;

This defines a variable next_week as an enumeration that can assume the values previously

specified. You can also omit the keyword enum in declaring a variable, so, instead of the

previous statement, you could write:

 Week next_week;

If you wish, you can assign specific values to all the enumerators. For example, we could define
this enumeration:

 enum Punctuation {Comma = ',', Exclamation = '!', Question = '?'}
things;

Here we have defined the possible values for the variable things as the numerical equivalents

of the appropriate symbols. If you look in the ASCII table in Appendix B, you will see that the
symbols are 44, 33 and 63 respectively in decimal. As you can see, the values assigned don't
have to be in ascending order. If you don't specify all the values explicitly, each enumerator will
be assigned a value incrementing by 1 from the last specified value, as in our second Week

example.

You can omit the enumeration type if you don't need to define other variables of this type later.
For example:

 enum {Mon, Tues, Wed, Thurs, Fri, Sat, Sun} thisWeek, nextWeek,
lastWeek;

Here we have three variables declared that can assume values from Mon to Sun. Since the

enumeration type is not specified we cannot refer to it. Note that you cannot define other
variables for this enumeration at all, since you would not be permitted to repeat the definition.
Doing so would imply that you were redefining values for Mon to Sun, and this isn't allowed.

Defining Your Own Data Types

The typedef keyword enables you to define your own data type specifier. Using typedef, you

could define the type name BigOnes as equivalent to the standard long int type with the

declaration:

 typedef long int BigOnes; // Defining BigOnes as a type name

This defines BigOnes as an alternative type specifier for long int, so you could declare a
variable mynum as long int with the declaration:

 BigOnes mynum = 0; // Define a long int variable

There's no difference between this declaration and the one using the built-in type name. You

could equally well use:

 long int mynum = 0; // Define a long int variable

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

for exactly the same result. In fact, if you define your own type name such as BigOnes, you can

use both type specifiers within the same program for declaring different variables that will end
up as having the same type.

Since typedef only defines a synonym for an existing type, it may appear to be a bit

superficial. We will see later that it can fulfill a very useful role in enabling us to simplify more
complex declarations than we have met so far. We will also see later that classes provide us
with a means of defining completely new data types.

Literals

In C++, fixed values of any kind are referred to as literals. Values such as 23, 3.14159 or

"Samuel Clemens" are examples of integer, floating point and string literals respectively.
You will often need to use a literal within a program, for example, to convert feet into inches, or
to specify an error message. However, you should avoid using literals within programs explicitly
where their significance is not obvious. It is not necessarily apparent to everyone that when you
use the value 2.54, it is the number of centimeters in an inch. It is better to declare a variable
with a fixed value corresponding to your literal instead - you might name the variable
inchesToCentimeters for example. Then wherever you use inchesToCentimeters in your code it
will be quite obvious what it is. We will see how to fix the value of a variable a little later on in
this chapter.

Basic Input/Output Operations

Here, we will only look at enough of C++ input and output to get us through learning about C++.
It's not that it's difficult — quite the opposite in fact — but for Windows programming we won't
need it at all.

C++ input/output revolves around the notion of a data stream, where we can insert data into an

output stream or extract data from an input stream. We have already seen that the standard
output stream to the screen is referred to as cout. The input stream from the keyboard is

referred to as cin.

Input from the Keyboard

We obtain input from the keyboard through the stream cin, using the extractor operator for a

stream >>. To read two integer values from the keyboard into integer variables num1 and
num2, you can write this:

 cin >> num1 >> num2;

The operator 'points' in the direction that data flows — in this case, from cin to each of the two

variables in turn. Any leading whitespace is skipped and the first integer value you key in is read
into num1. This is because the input statement executes from left to right. Whitespace following
num1 is ignored and the second integer value that you enter is read into num2. There has to be

some whitespace between successive values though, so that they can be differentiated. The
stream input operation ends when you press the Enter key and execution then continues with
the next statement. Of course, errors can arise if you key in the wrong data, but we will assume
that you always get it right!

Floating point values are read from the keyboard in exactly the same way as integers and, of

course, we can mix the two. The stream input and operations automatically deal with variables
and data of any of the basic types. For example, in the statements,

 int num1 = 0, num2 = 0;

 double factor = 0.0;

 cin >> num1 >> factor >> num2;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the last line will read an integer into num1, then a floating point value into factor and, finally,
an integer into num2.

Try it Out: - Output to the Display

Writing information to the display operates in a complementary fashion to input. The stream is
called cout and we use the insertion operator <<. This also 'points' in the direction of data

movement. We have already used this operator to output a text string between quotes. We can
demonstrate the process of outputting the value of a variable with a simple program. We'll
assume that you've got the hang of creating a new project and a new source file, adding the
source file to the project and building it into an executable. Here's the code:

 // EX2_02.CPP

 // Exercising output

 #include <iostream>

 using namespace std;

 int main()

 {

 int num1 = 1234, num2 = 5678;

 cout << endl; // Start on a new line

 cout << num1 << num2; // Output two values

 cout << endl; // End on a new line

 return 0; // Exit program

 }

How It Works

The first statement in the body of main() declares and initializes two integer variables, num1
and num2. This is followed by two output statements, the first of which moves the screen cursor

position to a new line. Because output statements execute from left to right, the second output
statement displays the value of num1 followed by the value of num2.

When you compile and execute this, you will get the output:

This is correct, but not exactly helpful. We really need the two output values separated by at
least one space. The default for stream output is to just output the digits in the output value,
which doesn't provide for spacing different values out nicely so they can be differentiated. As it
is, we have no way to tell where the first number ends and the second number begins.

Try it Out: - Manipulators

We can fix this quite easily, though, just by outputting a space between the two values. We can

do this by replacing the following line in our original program:

 cout << num1 << num2; // Output two values

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

with the statement:

 cout << num1 << ' ' << num2; // Output two values

Of course, if we had several rows of output that we wanted to align in columns, we would need
some extra capability as we do not know how many digits there will be in each value. We can
take care of this situation by using what is called a manipulator. A manipulator modifies the
way in which data output to (or input from) a stream is handled.

Manipulators are defined in the header file iomanip, so we need to add an #include
statement for it. The manipulator that we will use is setw(n) which will output the following

value right-justified in a field n spaces wide, so setw(6) puts the output in a field with a width

of six spaces. To get something more like the output we want, we can change our program to
the following:

// EX2_03.CPP

// Exercising output #include <iostream> #include <iomanip>

using namespace std;

int main()

{

int num1 = 1234, num2 = 5678;

cout << endl; // Start on a new line cout << setw(6) << num1 <<
setw(6) << num2; // Output two values cout << endl; // Start on a new
line

return 0; // Exit program

}

How It Works

The only changes from the last example are the addition of the #include statement for the file

iomanip, and the insertion of the setw() manipulator in the output stream preceding each

value, to output the values in a field six characters wide. Now we get nice neat output where we
can actually separate the two values:

Note that the setw() manipulator only works for the single output value immediately following

it. We have to insert it into the stream immediately preceding each value that we want to output
within a given field width. If we put only one setw(), it would apply to the first value to be

output after it was inserted. Any following value would be output in the default manner. You
could try this out by deleting the second setw(6) and its insertion operator in our example.

Escape Sequences

When we write a character string between quotes, we can include special characters called
escape sequences. They are called escape sequences because they allow characters to be
included in a string that otherwise could not be represented. An escape sequence starts with a
backslash character, \. For example, a tab character is written as \t, so these two output

statements

 cout << endl << "This is output.";

 cout << endl << "\tThis is output after a tab.";

will produce these lines:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This is output.
§ This is output after a tab.

In fact, instead of using end1, we could include the escape sequence for the newline character,

\n, in each string, so we could rewrite the statements above as follows:

 cout << "\nThis is output.";

 cout << "\n\tThis is output after a tab.";

Here are some escape sequences which may be particularly useful:

Escape sequence What it does

\a sounds a beep

\n newline

\ ' single quote

\ \ backslash

\b backspace

\t tab

\ " double quote

\? question mark

Obviously, if you want to be able to include a backslash or a double quote as a character to be
output in a string between quotes, you must use the escape sequences to represent them.
Otherwise, the backslash would be interpreted as another escape sequence and a double quote
would indicate the end of the character string.

You can also use characters specified by escape sequences in the initialization of char

variables. For example:

 char Tab = '\t'; // Initialize with tab character

That gives us enough of a toehold in input/output. We will collect a few more bits as and when
we need them.

Calculating in C++

This is where we actually start doing something with the data that we enter. We are beginning
the 'processing' part of a C++ program. Almost all of the computational aspects of C++ are fairly
intuitive, so we should slice through this like a hot knife through butter.

The Assignment Statement

We have already seen examples of the assignment statement. A typical assignment statement
would look like this:

 whole = part1 + part2 + part3;

The assignment statement enables you to calculate the value of an expression which appears
on the right hand side of the equals sign, in this case the sum of part1, part2 and part3,
and store the result in the variable specified on the left hand side, in this case whole. In this

statement, the whole is exactly the sum of its parts, and no more.

FYI

Note how the statement, as always, ends with a
semicolon.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can also write repeated assignments such as,

 A = B= 1;

where this is equivalent to assigning the value 1 to B, then assigning the value of B to A.

Understanding Lvalues

An lvalue is something that refers to an address in memory, and is so-called because it can
appear on the left of an equals sign in an assignment. Most variables are lvalues, since they
specify a place in memory. However, as we shall see, there are variables which aren't lvalues
and can't appear on the left of an assignment because their values have been defined as
constant. The variables A and B appearing in the preceding paragraph are lvalues, whereas the

expression A+B would not be, since its result doesn't determine an address in memory where a

value might be stored.

Lvalues will pop up at various times throughout the book, sometimes where you least expect
them, so keep the idea in mind.

Arithmetic Operations

The basic arithmetic operators we have at our disposal are addition, subtraction, multiplication
and division, represented by the symbols +, -, * and / respectively. These operate generally as

you would expect, with the exception of division which has a slight aberration when working with
integer variables or constants, as we'll see. You can write statements such as the following:

 netPay = hours * rate - deductions;

Here, the product of hours and rate will be calculated, then deductions subtracted from the

value produced. The multiply and divide operators are executed before addition and subtraction.
We will discuss the order of execution more fully later in this chapter. The overall result of the
expression will be stored in the variable netPay.

The minus sign used in the last statement applies to two operands — it subtracts one from

another. This is called a binary operation because two values are involved. The minus sign can
also be used with one operand to change the sign of its value, in which case it is called a unary
minus. You could write this:

 int A = 0;

 int B = -5;

 A = -B; // Changes the sign of the operand

Here, A will be assigned the value +5 because the unary minus changes the sign of the value of
the operand B.

Note that an assignment is not the equivalent of the equations you saw in high school algebra. It
specifies an action to be carried out rather than a statement of fact. The statement

 A = A + 1;

means, 'add 1 to the current value stored in A and then store the result back in A'. As a normal

algebraic statement it wouldn't make sense.

Try it Out: - Exercising Basic Arithmetic

We can exercise basic arithmetic in C++ by calculating how many standard rolls of wallpaper
are needed to paper a room. This is done with the following example:

 // EX2_04.CPP

 // Calculating how many rolls of wallpaper are required for a room

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include <iostream>

 using namespace std;

 int main()

 {

 double height = 0.0, width = 0.0, length = 0.0; // Room
dimensions

 double perimeter = 0.0; // Room perimeter

 const double rollwidth = 21.0; // Standard roll
width

 const double rolllength = 12.0*33.0; // Standard roll
length(33ft.)

 int strips_per_roll = 0; // Number of
strips in a roll

 int strips_reqd = 0; // Number of
strips needed

 int nrolls = 0; // Total number
of rolls

 cout << endl // Start a new
line

 << "Enter the height of the room in inches: ";

 cin >> height;

 cout << endl // Start a new
line

 << "Now enter the length and width in inches: ";

 cin >> length >> width;

 strips_per_roll = rolllength / height; // Get number of
strips per roll

 perimeter = 2.0*(length + width); // Calculate room
perimeter

 strips_reqd = perimeter / rollwidth; // Get total strips
required

 nrolls = strips_reqd / strips_per_roll; // Calculate number
of rolls

 cout << endl

 << "For your room you need " << nrolls << " rolls of
wallpaper."

 << endl;

 return 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

Unless you are more adept than me at typing, chances are there will be a few errors when you

compile this for the first time. Once you have fixed the typos, it will run just fine.

How It Works

One thing needs to be clear at the outset. No responsibility is assumed for you running out of

wallpaper as a result of using this program! As we shall see, all errors in the estimate of the
number of rolls required are due to the way C++ works and to the wastage that inevitably occurs
when you hang your own wallpaper — usually 50%+!

We can work through the statements in this example in sequence, picking out the interesting,
novel, or even exciting features. The statements down to the start of the body of main() are

familiar territory by now, so we will take those for granted.

A couple of general points worth noting are about the layout of the program. First, the
statements in the body of main() are indented to make the extent of the body easier to see

and, second, various groups of statements are separated by a blank line to indicate that they
are functional groups. Indenting statements is a fundamental technique in laying out program
code in C++. You will see that this is applied universally to provide visual cues for various
logical blocks in a program.

The const Modifier

We have a block of declarations for the variables used in the program right at the beginning of
the body of main(). These statements are also fairly familiar, but there are two which contain

some new features:

 const double rollwidth = 21.0; // Standard roll
width

 const double rolllength = 12.0*33.0; // Standard roll
length(33ft.)

They both start out with a new keyword const. This is a type modifier which indicates that the
variables are not just of type double, but are also constants. Because we effectively tell the

compiler that these are constants, the compiler will check for any statements which attempt to
change the values of these variables and, if it finds any, it will generate an error message. This
is relatively easy since a variable declared as const is not an lvalue and, therefore, can't legally

be placed on the left of an assignment operation.

You could check this out by adding, anywhere after the declaration of rollwidth, a statement

such as:

 rollwidth = 0;

You will find the program no longer compiles, returning 'error C2166: I-value specifies const object'.

It can be very useful defining constants by means of const variable types, particularly when

you use the same constant several times in a program. For one thing, It is much better than
sprinkling literals throughout your program. For another, if you need to change the value of a
const variable that you are using, you will only need to change its definition at the beginning to

ensure that the change automatically appears throughout. We'll see this technique used quite
often.

Constant Expressions

The const variable rolllength is also initialized with an arithmetic expression (12.0*33.0).

Being able to use constant expressions to initialize variables saves having to work out the value
yourself, and can also be more meaningful, as 33 feet times 12 inches is much clearer than

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

simply writing 396. The compiler will generally evaluate constant expressions accurately,
whereas if you do it yourself, depending on the complexity of the expression and your ability to
number-crunch, there is a finite probability that it may be wrong.

You can use any expression that can be calculated as a constant at compile time, including
const objects that you have already defined. So, for instance, if it was useful in the program to

do so, we could declare the area of a standard roll of wallpaper as:

 const double rollarea = rollwidth*rolllength;

Obviously, this statement would need to be placed after the declarations for the two const

variables used in the initialization of rollarea.

Program Input

After declaring some integer variables, the next four statements in the program handle input:

 cout << endl // Start a new
line

 << "Enter the height of the room in inches: ";

 cin >> height;

 cout << end1 // Start a new
line

 << "Now enter the length and width in inches: ";

 cin >> length >> width;

Here we have used cout to prompt for the input required and then read the input from the

keyboard using cin. We first obtain the room height and then read the length and width

successively. In a practical program, we would need to check for errors and possibly make sure
that the values that are read are sensible, but we don't have enough knowledge to do that yet!

Calculating the Result

We have four statements involved in calculating the number of standard rolls of wallpaper
required for the size of room given:

 strips_per_roll = rolllength / height; // Get number of
strips in a roll

 perimeter = 2.0*(length + width); // Calculate room

perimeter

 strips_reqd = perimeter / rollwidth; // Get total strips
required

 nrolls = strips_reqd / strips_per_roll; // Calculate number
of rolls

The first statement calculates the number of strips of paper with a length corresponding to the

height of the room that we can get from a standard roll, by dividing one into the other. So, if the
room is 8 feet high, we divide 96 into 396, which would produce the floating point result 4.125.
There is a subtlety here, however. The variable where we store the result, strips_per_roll,
was declared as int, so it can only store integer values. Consequently, any floating point value

to be stored as an integer is rounded down to the nearest integer, 4 in our case, and this value
is stored. This is actually the result that you want here since, although they may fit under a
window or over a door, fractions of a strip are best ignored when estimating.

The conversion of a value from one type to another is called casting. This particular example is
called an implicit cast, because the code doesn't explicitly state that a cast is needed, and the
compiler has to work it out for itself. You should beware when using implicit casts. The compiler

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

does not always supply a warning that an implicit cast is being made, and if you are assigning a
value of one type to a variable of a type with a lesser range of values, then there is a danger
that you will lose information. If there are implicit casts in your program which you don't know
about, then they may represent bugs that may be difficult to locate.

Where such an assignment is unavoidable, you can specify the conversion explicitly to
demonstrate that it is no accident and that you really meant to do it. We do this by making an
explicit cast of the value on the right of the assignment to int, so the statement would

become:

 strips per roll = static_cast<int>(rolllength / height); // Get
number of strips

 // in a
roll

The addition of static_cast<int> with the parentheses around the expression on the right
tells the compiler explicitly that we want to convert the value of the expression to int.

Although this means that we still lose the fractional part of the value, the compiler assumes that
we know what we are doing and does not issue a warning. We'll see more about
static_cast<>(), and other types of explicit casting, later in this chapter.

Note how we calculate the perimeter of the room in the next statement. In order to multiply the
sum of the length and the width by two, we enclose the expression summing the two

variables between parentheses. This ensures that the addition is performed first and the result
is multiplied by 2.0 to give us the correct value for the perimeter. We can use parentheses to
make sure that a calculation is carried out in the order we require since expressions in
parentheses are always evaluated first. Where there are nested parentheses, the expressions
within the parentheses are evaluated in sequence, from the innermost to the outermost.

The third statement, calculating how many strips of paper are required to cover the room, uses
the same effect that we observed in the first statement: the result is rounded down to the
nearest integer because it is to be stored in the integer variable, strips_reqd. This is not

what we need in practice. It would be best to round up for estimating, but we don't have enough
knowledge of C++ to do this yet. Once you have read the next chapter you can come back and
fix it!

The last arithmetic statement calculates the number of rolls required by dividing the number of
strips required (integer) by the number of strips in a roll (also integer). Because we are dividing
one integer by another, the result has to be integer and any remainder is ignored. This would
still be the case if the variable nrolls were floating point. The resulting integer value would be

converted to floating point form before it was stored in nrolls. The result that we obtain is

essentially the same as if we had produced a floating point result and rounded down to the
nearest integer. Again, this is not what we want, so if you want to use this, you will need to fix it.

Displaying the Result

The result of the calculation is displayed by the following statement:

 cout << endl

 << "For your room you need " << nrolls << " rolls of
wallpaper."

 << endl;

This is a single output statement spread over three lines. It first outputs a newline character,
then the text string "For your room you need ". This is followed by the value of the
variable nrolls, and finally the text string " rolls of wallpaper.". As you can see,

output statements are very easy in C++.

Finally, the program ends when this statement is executed:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return 0;

The value zero here is a return value which, in this case, will be returned to the operating

system. We will see more about return values in Chapter 5.

Calculating a Remainder

We have seen in the last example that dividing one integer value by another produces an

integer result which ignores any remainder, so that 11 divided by 4 gives the result 2. Since the
remainder after division can be of great interest, particularly when you are dividing cookies
amongst children, for example, C++ provides a special operator, %, for this. So we can write the
statements,

 int residue = 0, cookies = 19, children = 5;

 residue = cookies % children;

and the variable residue will end up with the value 4, the number left after dividing 19 by 5. To

calculate how many each of them received, you just need to use division, as in the statement:

 each = cookies / children;

Modifying a Variable

It's often necessary to modify the existing value of a variable, such as incrementing it or
doubling it. We could increment a variable called count using the statement:

 count = count + 5;

This simply adds 5 to the current value stored in count, and stores the result back in count,
so if count started out at 10, it would end up as 15. You have an alternative, shorthand way of

writing the same thing in C++:

 count += 5;

This says, 'Take the value in count, add 5 to it and store the result back in count'. We can

also use other operators with this notation. For example,

 count *= 5;

has the effect of multiplying the current value of count by 5 and storing the result back in
count. In general, we can write statements of the form,

lhs op= rhs;

where op is any of the following operators:

+ - * / %

<< >> & ^ |

The first five of these we have already met, and the remainder, which are shift and logical
operators, we will see later in this chapter. lhs stands for any legal expression for the left-hand

side of the statement, and is usually (but not necessarily) a variable name. rhs stands for any

legal expression on the right-hand side of the statement.

The general form of the statement is equivalent to this:

lhs = lhs op (rhs);

This means that we can write statements such as

 A /=B+C;

which will be identical in effect to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 A = A/ (B + C);

The Increment and Decrement Operators

We will now take a brief look at some unusual arithmetic operators called the increment and

decrement operators, as we will find them to be quite an asset once we get further into
applying C++ in earnest. These are unary operators, which are used to increment or decrement
a variable. For example, assuming the variable count is of type int, the following three

statements all have exactly the same effect:

 count = count + 1; count += 1; ++count;

They each increment the variable count by 1. The last form, using the increment operator, is

clearly the most concise. If this action is contained within another expression then the action of
the operator is to first increment the value of the variable, then use the incremented value in the
expression. For example, if count has the value 5, and the variable total is of type int, then

the statement,

 total = ++count + 6;

results in count being incremented to 6, while total is then assigned the value 12.

So far, we have written the increment operator, ++, in front of the variable to which it applies.

This is called the prefix form. The increment operator also has a postfix form, where the
operator is written after the variable to which it applies; the effect of this is slightly different. The
variable to which the operator applies is only incremented after its value has been used in
context. For example, let's reset count to the value 5, and rewrite the previous example as,

 total = count++ + 6;

Then total is assigned the value 11, since the initial value of count is used to evaluate the
expression before the increment by 1 is applied. The statement above is equivalent to the two
statements:

 total = count + 6;

 ++count;

The clustering of '+' signs, in the example of the postfix form above, is likely to lead to

confusion. Generally, it isn't a good idea to write the increment operator in the way that we have
here. It would be clearer to write:

 total = 6 + count++;

Where we have an expression such as a++ + b, or even a+++b, it becomes less obvious what

is meant or what the compiler will do. They are actually the same, but in the second case you
might really have meant a + ++b, which is different. It evaluates to one more than the other

two expressions.

Exactly the same rules that we have discussed in relation to the increment operator apply to the
decrement operator, --. For example, if count has the initial value 5, then the statement,

 total = --count + 6;

results in total having the value 10 assigned, whereas,

 total = 6 + count--;

sets the value of total to 11. Both operators are usually applied to integers, particularly in the

context of loops, as we shall see in Chapter 3. We shall also see in later chapters that they can
be applied to other data types in C++.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - The Comma Operator

The comma operator allows you to specify several expressions where normally only one might
occur. This is best understood by looking at an example that demonstrates how it works:

 // EX2_05.CPP

 // Exercising the comma operator

 #include <iostream>

 using namespace std;

 int main()

 {

 long num1 = 0, num2 = 0, num3 = 0, num4 = 0;

 num4 = (num1 = 10, num2 = 20, num3 = 30);

 cout << endl

 << "The value of a series of expressions "

 << "is the value of the right most: "

 << num4;

 cout << endl;

 return 0;

 }

How It Works

If you compile and run this program you will get this output:

which is fairly self-explanatory. The variable num4 receives the value of the last of the series of

three assignments, the value of an assignment being the value assigned to the left-hand side.
The parentheses in the assignment for num4 are essential. You could try executing this without

them to see the effect. Without the parentheses, the first expression separated by commas in
the series will become:

 num4 = num1 = 10

So, num4 will have the value 10.

Of course, the expressions separated by the comma operator don't have to be assignments. We
could equally well write the following:

 long num1 = 1, num2 = 10, num3 = 100, num4 = 0;

 num4 = (++num1, ++num2, ++num3);

The effect of this assignment would be to increment the variables num1, num2 and num3 by 1,
and to set num4 to the value of the last expression which will be 101. This example is aimed at

illustrating the effect of the comma operator, and is not an example of how to write good code.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Sequence of Calculation

So far, we haven't talked about how we arrive at the sequence of calculations involved in
evaluating an expression. It generally corresponds to what you will have learnt at school when
dealing with basic arithmetic operators, but there are many other operators in C++. To
understand what happens with these we need to look at the mechanism used in C++ to
determine this sequence. It's referred to as operator precedence.

Operator Precedence

Operator precedence orders the operators in a priority sequence. In any expression, operators
with the highest precedence are always executed first, followed by operators with the next
highest precedence, and so on, down to those with the lowest precedence of all. The
precedence of the operators in C++ is shown in the following table:

Operators Associativity

:: Left

() [] -> . Left

! ~ +(unary) -(unary) ++ -- &(unary) Right

*(unary) (typecast) static_cast Right

const_cast dynamic_cast reinterpret_cast Right

sizeof new delete...typeid Right

.*(unary) ->* Left

* / % Left

+ - Left

 >> Left

 <= > >= Left

== ! = Left

& Left

^ Left

| Left

&& Left

|| Left

?:(conditional operator) Right

= *= /= %= += -= Right

&= ^= |= <<= >>= Right

, Left

There are a lot of operators that you haven't seen yet, but you will know them all by the end of
the book. Rather than being spread around, they all appear in the precedence table here so that
you can always refer back to it if you are uncertain about the precedence of one operator
relative to another.

Operators with the highest precedence appear at the top of the table. The compound operators
have casting equal precedence. If there are no parentheses in an expression, operators of
equal precedence are executed in a sequence determined by their associativity. Thus, if the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

associativity is 'left', the left-most operator in an expression is executed first, progressing
through the expression to the right-most. This means that an expression such as a + b + c +

d is executed as though it was written (((a + b) + c) + d) because binary + is left

associative.

Note that where an operator has a unary (working with one operand) and a binary (working with
two operands) form, the unary form is always of a higher precedence and is, therefore,
executed first.

Important

You can always override the precedence of operators by using
parentheses. Since there are so many operators in C++, it's sometimes
hard to be sure what takes precedence over what. It is a good idea to
insert parentheses to make sure. A further plus is that parentheses often
make the code much easier to read.

Variable Types and Casting

Calculations in C++ can only be carried out between values of the same type. When you write

an expression involving variables or constants of different types, for each operation to be
performed the compiler has to convert the type of one of the operands to match that of the
other. This conversion process is called casting. For example, if you want to add a double
value to an integer, the integer value is first converted to double, after which the addition is

carried out. Of course, the variable which contains the value to be cast is itself not changed.
The compiler will store the converted value in a temporary memory location which will be
discarded when the calculation is finished.

There are rules which govern the selection of the operand to be converted in any operation. Any
expression to be calculated breaks down into a series of operations between two operands. For
example, the expression 2*3-4+5 amounts to the series 2*3 resulting in 6, 6-4 resulting in 2,
and finally 2+5 resulting in 7. Thus, the rules for casting operands where necessary only need

to be defined in terms of decisions about pairs of operands. So, for any pair of operands of
different types, the following rules are checked in the order that they are written. When one
applies, that rule is used.

Rules for Casting Operands
1. If either operand is of type long double, the other is converted to long double.
2. If either operand is of type double, the other is converted to double.

3. If either operand is of type float, the other is converted to float.
4. Any operand of type char, signed char, unsigned char, short, or

unsigned short is converted to type int.
5. An enumeration type is converted to the first of int, unsigned int, long, or

unsigned long that accommodates the range of the enumerators.
6. If either operand is of type unsigned long, the other is converted to unsigned

long.
7. If one operand is of type long and the other is of type unsigned int, then both

operands are converted to type unsigned long.
8. If either operand is of type long, the other is converted to type long.

This looks and reads as though it is incredibly complicated, but the basic principle is to always
convert the value that has the type that is of a more limited range to the type of the other value.
This maximizes the likelihood of being able to accommodate the result. We could try these rules
on a hypothetical expression to see how they work. Let's suppose that we have a sequence of
variable declarations as follows:

 double value = 31.0;

 int count = 16;

 float many = 2.0f;

 char num = 4;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Let's also suppose that we have the following rather arbitrary arithmetic statement:

 value = (value - count)*(count - num)/many + num/many;

We can now work out what casts the compiler will apply. The first operation is to calculate
(value - count). Rule 1 doesn't apply but Rule 2 does, so the value of count is converted
to double and the double result 15.0 is calculated. Next (count - num) must be evaluated,

and here the first rule in sequence which applies is Rule 4, so num is converted from char to
int and the result 12 is produced as a value of type int. The next calculation is the product of

the first two results, a double 15.0 and an int 12. Rule 2 applies here and the 12 is converted
to 12.0 as double, and the double result 180.0 is produced. This result now has to be divided

by many, so Rule 2 applies again and the value of many is converted to double before
generating the double result 90.0. The expression num/many is calculated next, and here Rule

3 applies to produce the float value 2.0f after converting the type of num from char to float.
Lastly, the double value 90.0 is added to the float value 2.0f for which Rule 2 applies, so

after converting the 2.0f to 2.0 as double, the final result of 92.0 is stored in value.

In spite of the last paragraph reading a bit like The Auctioneer's Song , I hope you get the

general idea.

Casts in Assignment Statements

As we saw in example Ex2_04.cpp earlier in this chapter, you can cause an implicit cast by

writing an expression on the right-hand side of an assignment that is of a different type to the
variable on the left-hand side. This can cause values to be changed and information to be lost.
For instance, if you assign a float or double value to an int or a long variable, the
fractional part of the float or double will be lost and just the integer part will be stored. (You

may lose even more information, if your floating point variable exceeds the range of values
available for the integer type concerned.)

For example, after executing the following code fragment,

 int number = 0;

 float decimal = 2.5f;

 number = decimal;

the value of number will be 2. Note the f at the end of the constant 2.5. This indicates to the

compiler that this constant is single precision floating point. Without the f, the default would
have been double. Any constant containing a decimal point is floating point. If you don't want it

to be double precision, you need to append the f. A capital F would do the job just as well.

Explicit Casts

With mixed expressions involving the basic types, your compiler automatically arranges casting
where necessary, but you can also force a conversion from one type to another by using an
explicit cast. To cast the value of an expression to a given type, you write the cast in the form:

static_cast<the_type_to_convert_to >(expression)

The keyword static_cast reflects the fact that the cast is checked statically — that is, when

your program is compiled. No further checks are made when you execute the program to see if
this cast is safe to apply. Later, when we get to deal with classes, we will meet dynamic_cast,

where the conversion is checked dynamically — that is, when the program is executing. There
are also two other kinds of cast, const_cast for removing the const-ness of an expression
and reinterpret_cast, which is an unconditional cast, but we'll say no more about these

here.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The effect of static_cast is to convert the value that results from evaluating expression to
the type that you specify between the angled brackets. The expression can be anything from

a single variable to a complex expression involving lots of nested parentheses.

Here's a specific example of the use of static_cast<>():

 double value1 = 10.5;

 double value2 = 15.5;

 int whole_number = static_cast<int>(value1) +
static_cast<int>(value2);

The initializing value for the variable whole_number is the sum of the integral parts of value1

and value2, so they are each explicitly cast to type int. The variable whole_number will
therefore have the initial value 25. The casts do not affect the values stored in value1 and

value2, which will remain as 10.5 and 15.5 respectively. The values 10 and 15 produced by

the casts are just stored temporarily for use in the calculation, and then discarded. Although
both casts cause a loss of information in the calculation, the compiler will always assume that
you know what you are doing when you explicitly specify a cast.

Also, as we described in Ex2_04.cpp when relating to assignments with different types, you

can always make it clear that you know the cast is necessary by making it explicit:

 strips_per_roll = static_cast<int> (rolllength / height); //Get
number of strips

 // in
a roll

You can write an explicit cast for any standard type, but you should be conscious of the
possibility of losing information. If you cast a float or double value to long, for example,

you will lose the fractional part of the value converted, so if the value started out as less than
1.0, the result will be 0. If you cast double to float, you will lose accuracy because a float

variable has only 7 digits precision, whereas double variables maintain 15. Even casting

between integer types provides the potential for losing data, depending on the values involved.
For example, the value of an integer of type long can exceed the maximum that you can store
in a variable of type short, so casting from a long value to a short may lose information.

In general, you should avoid casting as far as possible. If you find that you need a lot of casts in
your program, the overall design of your program may well be at fault. You need to look at the
structure of the program and the ways in which you have chosen data types to see whether you
can eliminate, or at least reduce, the number of casts in your program.

Old-Style Casts

Prior to the introduction of static_cast<>() (and the other casts: const_cast<>(),
dynamic_cast<>() and reinterpret_cast<>(), which we'll discuss later in the book)

into C++, an explicit cast of the result of an expression to another type was written as:

(the_type_to_convert_to) expression

The result of expression is cast to the type between the parentheses. For example, the
statement to calculate strips_per_roll in our previous example could be written:

 strips per_ roll = (int)(rolllength / height); //Get number
of strips

 //in a roll

Essentially, there are four different kinds of casts, and the old-style casting syntax covers them

all. Because of this, code using the old-style casts is more error prone — it is not always clear
what you intended, and you may not get the result you expected. Although you will still see the
old style of casting used extensively (it's still part of the language and you will see it in MFC

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

code for historical reasons), I strongly recommend that you stick to using only the new casts in
your code.

The Bitwise Operators

The bitwise operators treat their operands as a series of individual bits rather than a numerical
value. They only work with integer variables or constants as operands, so only data types
short, int, long and char can be used. They are useful in programming hardware

devices, where the status of a device is often represented as a series of individual flags (that is,
each bit of a byte may signify the status of a different aspect of the device), or for any situation
where you might want to pack a set of on-off flags into a single variable. You will see them in
action when we look at input/output in detail, where single bits are used to control various
options in the way data is handled.

There are six bitwise operators:

The Six Bitwise Operators

& bitwise AND | bitwise OR ^ bitwise exclusive OR

~ bitwise NOT >> shift right << shift left

Let's take a look at how each of them works.

The Bitwise AND

The bitwise AND, &, is a binary operator that combines corresponding bits in its operands. If

both corresponding bits are 1, the result is a 1 bit, and if either or both operand bits are 0, the
result is a 0 bit.

The effect of a particular binary operator is often shown using what is called a truth table. This
shows, for various possible combinations of operands, what the result is. The truth table for & is

as follows:

Bitwise AND 0 1

0 0 0

1 0 1

For each row and column combination, the result of & combining the two is the entry at the

intersection of the row and column. Let's see how this works in an example:

 char letter1 = 'A', letter2 = 'Z', result = 0;

 result = letter1 & letter2;

We need to look at the bit patterns to see what happens. The letters 'A' and 'Z' correspond to

hexadecimal values 0x41 and 0×5A respectively (see Appendix B for ASCII codes). The way in
which the bitwise AND operates on these two values is shown below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can confirm this by looking at how corresponding bits combine with & in the truth table.

After the assignment, result will have the value 0x40, which corresponds to the character
'@'.

Because the & produces zero if either bit is zero, we can use this operator to make sure that

unwanted bits are zero in a variable. We achieve this by creating what is called a 'mask' and
combining with the original variable using &. We create the mask by putting 1 where we want to

keep a bit, and 0 where we want to set a bit to zero. The result will be 0s where the mask bit is
0, and the same value as the original bit in the variable where the mask is 1. Suppose we have
a char variable letter where, for the purposes of illustration, we want to eliminate the high

order 4 bits, but keep the low order 4 bits. This is easily done by setting up a mask as 0x0F and
combining it with the letter using & like this,

 letter = letter & 0x0F;

or, more concisely:

 letter &= 0x0F;

If letter started out as 0x41, it would end up as 0x01 as a result of either of these statements.

This operation is shown in the illustration below:

The 0 bits in the mask cause corresponding bits in letter to be set to 0, and the 1 bits in the

mask cause corresponding bits to be kept.

Similarly, you can use a mask of 0xF0 to keep the 4 high order bits, and zero the 4 low order
bits. Therefore, this statement,

 letter &= 0xF0;

will result in the value of letter being changed from 0x41 to 0x40.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Bitwise OR

The bitwise OR, |, sometimes called the inclusive OR, combines corresponding bits such that
the result is a 1 if either operand bit is a 1, and 0 if both operand bits are 0. The truth table for
the bitwise OR is:

Bitwise OR 0 1

0 0 1

1 1 1

We can exercise this with an example of how we could set individual flags packed into a
variable of type int. Let's suppose that we have a variable called style, of type short, which

contains 16 individual 1-bit flags. Let's suppose further that we are interested in setting
individual flags in the variable style. One way of doing this is by defining values that we can

combine with the OR operator to set particular bits on. To use in setting the rightmost bit, we
can define:

 short vredraw = 0x01;

For use in setting the second-to-rightmost bit, we could define the variable hredraw as:

 short hredraw = 0x02;

So we could set the rightmost two bits in the variable style to 1 with the statement:

 style = hredraw | vredraw;

The effect of this statement is illustrated in the diagram below:

Because the OR operation results in 1 if either of two bits is a 1, ORing the two variables

together produces a result with both bits set on.

A very common requirement is to be able to set flags in a variable without altering any of the

others which may have been set elsewhere. We can do this quite easily with a statement such
as:

 style |= hredraw | vredraw;

This statement will set the two rightmost bits of the variable style to 1, leaving the others at

whatever they were before the execution of this statement.

The Bitwise Exclusive OR

The exclusive OR, ^, is so called because it operates similarly to the inclusive OR but

produces 0 when both operand bits are 1. Therefore, its truth table is as follows:

Bitwise EOR 0 1

0 0 1

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Bitwise EOR 0 1

1 1 0

Using the same variable values that we used with the AND, we can look at the result of the
following statement:

 result = letter1 * letter2;

This operation can be represented as:

letter1 0100 0001

letter2 0101 1010

EORed together produce:

result 0001 1011

The variable result is set to 0x1B, or 27 in decimal notation.

The ^ operator has a rather surprising property. Suppose that we have two char variables,
first with the value 'A', and last with the value 'z', corresponding to binary values 0100

0001 and 0101 1010. If we write the statements,

 first ^= last; // Result first is 0001 1011

 last ^= first; // Result last is 0100 0001

 first ^= last; // Result first is 0101 1010

the result of these is that first and last have exchanged values without using any

intermediate memory location. This works with any integer values.

The Bitwise NOT

The bitwise NOT, ~, takes a single operand for which it inverts the bits: 1 becomes 0, and 0

becomes 1. Thus, if we execute the statement,

 result = ~letter1;

if letter1 is 0100 0001, the variable result will have the value 1011 1110, which is 0xBE, or

190 as a decimal value.

The Bitwise Shift Operators

These operators shift the value of an integer variable a specified number of bits to the left or
right. The operator >> is for shifts to the right, while << is the operator for shifts to the left. Bits
that 'fall off' either end of the variable are lost. The illustration below shows the effect of shifting
the 2 byte variable left and right, with the initial value shown.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We declare and initialize a variable called number with the statement:

 unsigned int number = 16387U;

As we saw earlier in this chapter, we should write unsigned integer literals with a letter U or u

appended to the number. We can shift the contents of this variable with the statement:

 number <<= 2; // Shift left two bit positions

The left operand of the shift operator is the value to be shifted, and the number of bit positions
that the value is to be shifted is specified by the right operand. The illustration shows the effect
of the operation. As you can see, shifting the value 16,387 two positions to the left produces the
value 12. The rather drastic change in the value is the result of losing the high order bit.

We can also shift the value to the right. Let's reset the value of number to its initial value of

16,387. Then we can write:

 number >>= 2; // Shift right two bit positions

This shifts the value 16,387 two positions to the right, storing the value 4,096. Shifting right two

bits is effectively dividing the value by 4 (without remainder). This is also shown in the
illustration.

As long as bits are not lost, shifting n bits to the left is equivalent to multiplying the value by 2, n
times. In other words, it is equivalent to multiplying by 2". Similarly, shifting right n bits is
equivalent to dividing by 2". But beware: as we saw with the left shift of the variable number, if

significant bits are lost, the result is nothing like what you would expect. However, this is no
different from the multiply operation. If you multiplied the two-byte number by four you would get
the same result, so shifting left and multiply are still equivalent. The problem of accuracy arises
because the value of the result of the multiplication is outside the range of a two-byte integer.

You might imagine that confusion could arise with the operators that we have been using for
input and output. As far as the compiler is concerned, the meaning will always be clear from the
context. If it isn't, the compiler will generate a message, but you need to be careful. For
example, if you want to output the result of shifting a variable number left by two bits, you could

write:

 cout << (number << 2);

Here, the parentheses are essential. Without them, the shift operator will be interpreted by the

compiler as a stream operator, so you won't get the result that you intended.

In the main, the right shift operation is similar to the left shift. For example, if the variable
number has the value 24, and we execute the statement,

 number >>= 2;

it will result in number having the value 6, effectively dividing by 4. However, the right shift

operates in a special way with signed integer types that are negative (that is, the sign bit,

which is the leftmost bit, is 1). In this case, the sign bit is propagated to the right. For example,
let's declare and initialize a variable number, of type char, with the value -104 in decimal:

 char number = -104; // Binary representation is 1001 1000

Now we can shift it right 2 bits with the operation:

 number >>= 2; // Result 1110 0110

The decimal value of the result is -26, as the sign bit is repeated. With operations on unsigned

integer types, of course, the sign bit is not repeated and zeros appear.
FYI

These shift operations can be faster than the regular multiply or divide
operations on some computers — on an Intel 80486, for example, a multiply is
slower than a shift left by at least a factor of 3. However, you should only use
them in this way if you are sure you are not going to lose bits that you can ill

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

afford to be without.

Understanding Scope

All variables have a finite lifetime when your program executes. They come into existence from
the point at which you declare them and then, at some point, they disappear — at the latest,
when your program terminates. How long a particular variable lasts is determined by a property
called its storage duration. There are three different kinds of storage duration that a variable
can have:

automatic storage duration

static storage duration

dynamic storage duration

Which of these a variable will have depends on how you create it. We will defer discussion of

variables with dynamic storage duration until Chapter 4, but we will look into the characteristics
of the other two in this chapter.

Another property that variables have is scope. The scope of a variable is simply that part of
your program in which the variable name is valid. Within a variable's scope, you can legally refer
to it, to set its value or use it in an expression. Outside of the scope of a variable, you cannot
refer to its name — any attempt to do so will cause a compiler error. Note that a variable may
still exist outside of its scope, even though you cannot refer to it by name. We will see examples
of this situation a little later in this discussion.

All of the variables that we have declared up to now have had automatic storage duration, and
are therefore called automatic variables. Let's take a closer look at these first.

Automatic Variables

The variables that we have declared so far have been declared within a block — that is, within
the extent of a pair of curly braces. These are called automatic variables and are said to have
local scope or block scope. An automatic variable is 'in scope' from the point at which it is
declared until the end of the block containing its declaration.

An automatic variable is 'born' when it is declared and automatically ceases to exist at the end
of the block containing the declaration. This will be at the closing brace matching the first
opening brace that precedes the declaration of the variable. Every time the block of statements
containing a declaration for an automatic variable is executed, the variable is created anew, and
if you specified an initial value for the automatic variable, it will be reinitialized each time it is
created.

There is a keyword, auto, which you can use to specify automatic variables, but it is rarely

used since it is implied by default. Let's put together an example of what we've discussed so far.

Try it Out: - Automatic Variables

We can demonstrate the effect of scope on automatic variables with the following example:

 // EX2_06.CPP

 // Demonstrating variable scope

 #include <iostream>

 using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int main()

 { // Function scope starts here

 int count1 = 10;

 int count3 = 50;

 cout << end1

 << "Value of outer count1 = " << count1

 << end1;

 { // New scope starts here...

 int count1 = 20; // This hides the outer
count1

 int count2 = 30;

 cout << "Value of inner count1 = " << count1

 << endl;

 count1 += 3; // This affects the inner
count1

 count3 += count2;

 } //...and ends here

 cout << "Value of outer count1 = " << count1

 << endl

 << "Value of outer count3 = " << count3

 << endl;

 // cout << count2 << endl; // uncomment to get an error

 return 0;

 } // Function scope ends here

How It Works

The output from this example will be:

The first two statements declare and define two integer variables, count1 and count3, with

initial values of 10 and 50 respectively. Both these variables exist from this point to the closing
brace at the end of the program. The scope of these variables also extends to the closing brace
at the end of main().

Remember that the lifetime and scope of a variable are two different things. It's important not to

get these two ideas confused.

Following the variable definitions, the value of count1 is output to produce the first of the lines

shown above.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There is then a second curly brace which starts a new block. Two variables, count1 and
count2, are defined within this block, with values 20 and 30 respectively. The count1

declared here is different from the first count1. The first count1 still exists, but its name is

masked by the second count1. Any use of the name count1 following the declaration within
the inner block refers to the count1 declared within that block.

The variable name count1 has been duplicated here only to illustrate what happens. Although

this code is legal, it isn't a good approach to programming in general. It's confusing, and it's very
easy to hide variables defined in an outer scope accidentally.

The value shown in the second output line shows that within the inner block, we are using the
count1 in the inner scope — that is, inside the innermost braces:

 cout << "Value of inner count1 = " << count1

 << endl;

Had we still been using the outer count1, then this would display the value 10. The variable
count1 is then incremented by the statement:

 count1 += 3; // This affects the inner
count1

The increment applies to the variable in the inner scope, since the outer one is still hidden.
However, count3, which was defined in the outer scope, is incremented in the next statement

without any problem:

 count3 += count2;

This shows that the variables which were declared at the beginning of the outer scope are
accessible from within the inner scope. (Note that if count3 had been declared after the second

of the inner pair of braces, then it would still be within the outer scope, but in that case count3

would not exist when the above statement is executed.)

After the brace ending the inner scope, count2 and the inner count1 cease to exist. The
variables count1 and count3 are still there in the outer scope and the values displayed show

that count3 was indeed incremented in the inner scope.

If you uncomment the line:

 // cout << count2 << endl; // uncomment to get an error

the program will no longer compile correctly because it attempts to output a non-existent

variable. You will get an error message something like,

d:\program files\microsoft visual studio\myprojects\ex2_06\ex2_06.cpp(29) : error C2065: 'count2' :
undeclared identifier

since count2 is out of scope at this point.

Positioning Variable Declarations

You have great flexibility in where you place the declarations for your variables. The most

important aspect to consider is what scope the variables need to have. Beyond that, you should
generally place a declaration close to where the variable is to be first used in a program. You
should write your programs with a view to making them as easy as possible for another
programmer to understand, and declaring a variable at its first point of use can be helpful in
achieving that.

It is possible to place declarations for variables outside of all of the functions that make up a
program. Let's look what effect that has on the variables concerned.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Global Variables

Variables which are declared outside of all blocks and classes (we will discuss classes later in
the book) are called globals and have global scope (which is also called global namespace
scope or file scope). This means that they are accessible throughout all the functions in the
file, following the point at which they are declared. If you declare them at the very top of your
program, they will be accessible from anywhere in the file.

Globals also have static storage duration by default. Global variables with static storage

duration will exist from the start of execution of the program, until execution of the program
ends. If you do not specify an initial value for a global variable, it will be initialized with 0 by
default. Initialization of global variables takes place before the execution of main() begins, so

they are always ready to be used within any code that is within the variable's scope.

The illustration below shows the contents of a source file, Example.cpp, and the arrows

indicate the scope of each of the variables.

The variable value1, which appears at the beginning of the file, is declared at global scope, as
is value4, which appears after the function main(). The scope of each global variable extends

from the point at which it is defined to the end of the file. Even though value4 exists when
execution starts, it cannot be referred to in main() because main() is not within the variable's

scope. For main() to use value4, you would need to move its declaration to the beginning of
the file. Both value1 and value4 will be initialized with 0 by default, which is not the case for

the automatic variables. Note that the local variable called value1 in function() hides the

global variable of the same name.

Since global variables continue to exist for as long as the program is running. This might raise
the question in your mind, 'Why not make all variables global and avoid this messing about with
local variables that disappear?' This sounds very attractive at first, but as with the Sirens of
mythology, there are serious side effects which completely outweigh any advantages you may
gain.

Real programs are generally composed of a large number of statements, a significant number
of functions and a great many variables. Declaring all variables at the global scope greatly
magnifies the possibility of accidental erroneous modification of a variable, as well as making
the job of naming them sensibly quite intractable. They will also occupy memory for the duration

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

of program execution. By keeping variables local to a function or a block, you can be sure they
have almost complete protection from external effects, they will only exist and occupy memory
from the point at which they are defined to the end of the enclosing block, and the whole
development process becomes much easier to manage.

If you take a look at ClassView for any of the examples that you have created so far, and extend
the class tree for the project by clicking on the +, you will see an entry called Globals. If you
extend this, you will see a list of everything in your program that has global scope. This will
include all the global functions, as well as any global variables that you have declared.

Try it Out: - The Scope Resolution Operator

As we have seen, a global variable can be hidden by a local variable with the same name.

However, it's still possible to get at the global variable using the scope resolution operator (::).
We can demonstrate how this works with a revised version of the last example:

 // EX2_07.CPP

 // Demonstrating variable scope

 #include <iostream>

 using namespace std;

 int count1 = 100; // Global version of
count1

 int main()

 { // Function scope
starts here

 int count1 = 10;

 int count3 = 50;

 cout << endl

 << "Value of outer count1 = " << count1

 << endl;

 cout << "Value of global count1 = " << ::count1 //
From outer block

 << endl;

 { // New scope starts
here...

 int count1 = 20; //This hides the
outer count1

 int count2 = 30;

 cout << "Value of inner count1 = " << count1

 << endl;

 cout << "Value of global count1 = " << ::count1 //

From inner block

 << endl;

 count1 += 3; // This affects the
inner count1

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 count3 += count2;

 } // ...and ends here.

 cout << "Value of outer count1 = " << count1

 << endl

 << "Value of outer count3 = " << count3

 << endl;

 //cout << count2 << endl; // uncomment to get
an error

 return 0;

 } // Function scope
ends here

How It Works

If you compile and run this example, you'll get the following output:

The shaded lines indicate the changes we have made to the previous example; we just need to
discuss the effects of those. The declaration of count1 prior to the definition of the function
main() is global, so in principle it is available anywhere through the function main(). This

global variable is initialized with the value of 100:

 int count1 = 100; // Global
version of count1

However, we have two other variables called count1, which are defined within main(), so
throughout the program the global count1 is hidden by the local count1 variables. The first

new output statement is:

 cout << "Value of global count1 = " << ::count1 // From outer
block

 << endl;

This uses the scope resolution operator (::) to make it clear to the compiler that we want to
reference the global variable count1, not the local one. You can see that this works from the

value displayed in the output.

In the inner block, the global count1 is hidden behind two variables called count1: the inner

count1 and the outer count1. We can see the global scope resolution operator doing its stuff

within the inner block, as you can see from the output generated by the statement we have
added there:

 cout << "Value of global count1 = " << ::count1 // From inner
block

 << endl;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This outputs the value 100, as before — the long arm of the scope resolution operator used in
this fashion always reaches a global variable.

We mentioned namespaces earlier in this chapter, when discussing the namespace std — we

accessed the namespace std by employing the using directive. Alternatively, we can access a
namespace by using the scope resolution operator — for example, we can write std::end1 to

access the end-of-line operator in the standard library. In the example above, we are using the
scope resolution operator to search the global namespace for the variable count1 . By not

specifying a namespace in front of the operator, the compiler knows that it must search the
global namespace for the name that follows it.

We'll be seeing a lot more of this operator when we get to talking about object-oriented

programming, in which context it is used extensively. We'll talk further about namespaces,
including how to create your own, shortly.

Static Variables

It's conceivable that you might want to have a variable that's defined and accessible locally, but
which also continues to exist after exiting the block in which it is declared. In other words, you
need to declare a variable within a block scope, but to give it static storage duration. The
static specifier provides you with the means of doing this, and the need for this will become

more apparent when we come to deal with functions in Chapter 5.

In fact, a static variable will continue to exist for the life of a program even though it is declared
within a block and only available from within that block (or its sub-blocks). It still has block
scope, but it has static storage duration. To declare a static integer variable called count you

would write:

 static int count;

If you don't provide an initial value for a static variable when you declare it, then it will be
initialized for you. The variable count declared here will be initialized with 0. The default initial

value for a static variable is always 0, converted to the type applicable to the variable.
Remember that this is not the case with automatic variables.

Important

If you don't initialize your automatic variables, they will contain junk
values left over from the program that last used the memory they
occupy.

Namespaces

We have mentioned namespaces several times, so it's time we got a better idea of what they
are about. They are a new and important addition to the C++ language so you need to have an
idea of how they work. They are not used in MFC so far, so you won't see much of them in this
book, but it is probable that they will be used within MFC at some point.

You know already that all the names used in the standard library are defined in the namespace
std. This means that all the names used in the standard library have an additional qualifying
name, std, so cout for example is really std::cout. We could show this with a trivial

example. This will use a variable at global scope only because we want to see how
namespaces work:

 // EX2_08.CPP

 // Demonstrating namespace names

 #include <iostream>

 int value = 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int main()

 {

 std::cout << "enter an integer: ";

 std::cin >> value;

 std::cout << "\nYou entered " << value

 << std:: endl;

 return 0;

 }

Note the absence of the using directive for std. It isn't necessary here because we are fully

qualifying the names we are using from the namespace std. It would be silly to do so, but we
could use cout as the name of our integer variable here and there would be no confusion

because cout by itself is different from std::cout. Thus namespaces provide a way to

separate the names used in one part of a program from those used in another. This is
invaluable with large project involving several teams of programmers working on different parts
of the program. Each team can have its own namespace name, and worries about two teams
accidentally using the same name for different functions disappears.

Of course, you can define your own namespace that has your own namespace name. Let's see
how that's done.

Declaring a Namespace

You use the keyword namespace to declare a namespace - like this:

 namespace myStuff

 {

 // Code that I want to have in the namespace myStuff...

 }

You can't declare a namespace inside a function, it's intended to be used the other way round.
you use it to contain functions, variables, and other entities in your program. You mustn't put
main in a namespace though. The function main() where execution starts must always be at

global namespace scope, otherwise the compiler won't recognize it.

We could put the variable value in the previous example in a namespace:

 // EX2_09.CPP

 // Declaring a namespace

 #include <iostream>

 namespace myStuff

 {

 int value = 0;

 }

 int main()

 {

 std::cout << "enter an integer: ";

 std::cin >> myStuff::value;

 std::cout << "\nYou entered " << myStuff::value

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << std:: endl;

 return 0;

 }

The myStuff namespace defines a scope and everything within the namespace scope is

qualified with the namespace name. To refer to a name declared within a namespace from
outside, you must qualify it with the namespace name. Inside the namespace scope any of the
names declared within it can be referred to without qualification - they are all part of the same
family. Now we must qualify the name value with myStuff, the name of our namespace. If not
the program will not compile. The function main() now refers to names in two different

namespaces, and in general you can have as many namespaces in your program as you need.
We could remove the need to qualify value, by adding a using directive:

 // EX2_10.CPP

 // Using a using directive

 #include <iostream>

 namespace myStuff

 {

 int value = 0;

 }

 using namespace myStuff; // Make all the names in
myStuff available

 int main()

 {

 std::cout << "enter an integer: ";

 std::cin >> value;

 std::cout << "\nYou entered " << value

 << std:: endl;

 return 0;

 }

You could also have a using directive for std as well, so you wouldn't need to qualify standard

library names either, but this is defeating the whole point of namespaces. Generally, if you use
namespaces in your program, you should not add using directives all over your program since

you might as well not bother with namespaces in the first place. Having said that, we will add a
using directive for std in all our examples to keep the code less cluttered and easier for you to

read. When you are starting out with a new programming language you can do without clutter,
no matter how useful it is in practice.

Multiple Namespaces

A real-world program is likely to involve multiple namespaces. You can have multiple

declarations of a namespace with a given name and the contents of the block for each
namespace with a given name is within the same namespace. For example, you might have a
program file with two namespaces:

 namespace sortStuff

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Everything in here is within sortStuff namespace

 }

 namespace calculateStuff

 {

 // Everthing in here is within calculateStuff namespace

 // To refer to names from sortStuff they must be qualified

 }

 namespace sortStuff

 {

 // This is a continuation of the namespace sortStuff

 // so from here you can refer to names in the first sortStuff
namespace

 // without qualifying the names

 }

A second declaration of a namespace with a given name is just a continuation of the first, so
you can reference names in the first namespace block from the second without having to qualify
them. They are all in the same namespace. Of course, you would not usually organize a source
file in this way deliberately, but it can arise quite naturally with header files that you include into
a program. For example, you might have something like this:

 #include <iostream> // Contents in namespace std

 #include "myheader.h" // Contents in namespace myStuff

 #include <string> // Contents in namespace std

 // and so on...

We'll explain the different #include directives later in the book. Here, iostream and string
are standard library headers, and myheader.h represents a header file that contains our

program code. We have a situation with the namespaces that is an exact parallel of the
previous illustration.

This has given you a basic idea of how namespaces work. There is a lot more to namespaces
than we have discussed here, but if you grasp this bit you should be able to find out more about
it without difficulty, if the need arises.

Summary

In this chapter, we have covered the basics of computation in C++. We have learnt about all of
the elementary types of data provided for in the language, and all the operators that manipulate
these types directly. The essentials of what we have discussed up to now are as follows:
§ A DOS program in C++ consists of at least one function called main().

§ The executable part of a function is made up of statements contained between curly
braces.

§ A statement in C++ is terminated by a semicolon.
§ Named objects in C++, such as variables or functions, can have names that consist of a

sequence of letters and digits, the first of which is a letter, and where an underscore is
considered to be a letter. Upper and lower case letters are distinguished.

§ All the objects, such as variables, that you name in your program must not have a name
that coincides with any of the reserved words in C++. The full set of reserved words in
Visual C++ appears in Appendix A.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ All constants and variables in C++ are of a given type. The basic types are char, int,
long, float, and double.

§ The name and type of a variable is defined in a declaration statement ending with a
semicolon. Variables may also be given initial values in a declaration.

§ You can protect the value of a variable of a basic type by using the modifier const.

This will prevent direct modification of the variable within the program and give you
compiler errors everywhere that a constant's value is altered.

§ By default, a variable is automatic, which means that it only exists from the point at
which it is declared to the end of the scope in which it is defined, indicated by the
corresponding closing brace after its declaration.

§ A variable may be declared as static, in which case it continues to exist for the life of

the program. It can only be accessed within the scope in which it was defined.
§ Variables can be declared outside of all blocks within a program, in which case they

have global namespace scope. Variables with global namespace scope are accessible
throughout a program, except where a local variable exists with the same name as the
global variable. Even then, they can still be reached by using the scope resolution operator.

§ The Standard Library contains functions and operators which you can use in your
program. They are contained in the namespace std. This namespace is usually accessed

with the using directive; individual objects in the namespace can be accessed by using

the scope resolution operator.

§ A namespace defines a scope where each of the names declared within it are qualified
by the namespace name. Referring to names from outside a namespace requires the
names to be qualified.

§ An lvalue is an object that can appear on the left-hand side of an assignment. Non-
const variables are examples of lvalues.

§ You can mix different types of variables and constants in an expression, but they will be
automatically converted to a common type where necessary. Conversion of the type of the
right hand side of an assignment to that of the left-hand side will also be made where
necessary. This can cause loss of information when the left-hand side type can't contain
the same information as the right-hand side: double converted to int, or long converted
to short, for example.

§ You can explicitly cast the value of an expression to another type. You should always
make an explicit cast to convert a value when the conversion may lose information. There
are also situations where you need to specify an explicit cast in order to produce the result
that you want.

The keyword typedef allows you to define synonyms for other types.

Although we have discussed all the basic types, don't be misled into thinking that's all there is.

There are more complex types based on the basic set as we shall see, and eventually you will
be creating original types of your own

Exercises

1. Write a program which asks the user to enter a number and then prints it out, using
an integer as a local variable. We'll build on this example in chapters to come, so
save it as [Prg1].

2. Write a program which inputs a variable of type int, and uses one of the bitwise
operators (i.e. not the % operator!) to determine the positive remainder when divided

by 8. For example, 29 = (3x8)+5 and -14 = (-2x8)+2 have positive remainder 5 and 2
respectively.

3. Fully parenthesize the following expressions, in order to show the precedence and
associativity:

 1 + 2 + 3 + 4

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 16 * 4 / 2 * 3

 a > b? a: c > d? e: f

 a & b && c & d

4. Suppose we try to calculate the aspect ratio of our computer screen, given the width
and height in pixels:

 int width = 640;

 int height = 480;

 double aspect = width / height;

What answer will we get? Is it satisfactory — and if not, how could you modify the
code, without adding any more variables?

5. (Advanced) Without running it, can you work out what the following code is going to
print, and why?

 unsigned s = 555;

 int i = (s >> 4) & ~(~0 << 3);

 cout << i;

Answers

1. [Prg1]

 #include <iostream>

 using namespace std;

 int main()

 {

 int number = 0;

 cout << "Enter a number: ";

 cin >> number;

 cout << "\nThank you. Your number was " << number;

 cout << endl;

 return 0;

 }

2. Use of BIT operators to calculate a remainder:

 // Use the bitwise AND operator. For example:

 // 29 = (3x8)+5 -14 = (-2x8)+2

 // 29 = 0000 0000 0001 1101 -14 = 1111 1111 1111 0010

 // 7 = 0000 0000 0000 0111 7 = 0000 0000 0000 0111

 // ======================== =========================

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // 0000 0000 0000 0101 = rem 5 0000 0000 0000 0010 = rem
2

 #include <iostream>

 using namespace std;

 int main()

 {

 int number1 = 0;

 int seven = 0x7;

 cout << "Type in an integer: ";

 cin >> number1;

 cout << endl

 << "The remainder when "

 << number1

 << " is divided by eight is "

 << (number1 & seven)

 << endl;

 return 0;

 }

3. Precedence and associativity:

 (((1 + 2) + 3) + 4)

 (((16 * 4) / 2) * 3)

 (a > b) ? a : ((c > d) ? e : f)

 (a & b) && (c & d)

4. As it stands, the division will produce an integer result that is unlikely to be satisfactory. You
need to cast one of the arguments to a double in order to force the division to be done
correctly:

 double aspect = static_cast<double> (width)/height;

5. The value printed should be 2. Let's look at the statement:

 int i = (s >> 4) & ~(~0 << 3);

What we're doing here is bit manipulation on s. The first clause, (s >> 4), shifts s right by
four bits; because 555 is 1000101011 in binary, a four-bit shift leaves it as 100010. In the
second clause, ~0 is composed of all 1s, and it gets shifted left 3 bits, and then the second ~

complements all the bits to leave us with 111 in the bottom three bits. Doing a bitwise AND
on 100010 and 111 gives 010, or 2, as the result.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 3: Decisions and Loops

Overview

In this chapter, we will look at how to add decision-making capabilities to your C++ programs.
You will also learn how to make your programs repeat a set of actions until a specific condition
is met. This will enable you to handle variable amounts of input, as well as make validity checks
on the data that you read in. You will also be able to write programs that can adapt their actions
depending on the input data, and to deal with problems where logic is fundamental to the
solution. By the end of this chapter you will have learnt:

§ How to compare data values
§ How to alter the sequence of program execution based on the result
§ What logical operators and expressions are and how you can apply them

§ How to deal with multiple choice situations
§ How to write and use loops in your programs

We will start with one of the most powerful programming tools: the ability to compare variables
and expressions with other variables and expressions and, based on the outcome, execute one
set of statements or another.

Comparing Values

Unless we want to make decisions on a whim for the rest of our lives, we need a mechanism for
comparing things. This involves some new operators called relational operators. Because all
information in your computer is ultimately represented by numerical values (we saw in the last
chapter how character information is represented by numeric codes), comparing numerical
values is the essence of practically all decision making. We have six fundamental operators for
comparing two values:

< less than

> greater than

== equal to

<= less than or equal to

>= greater than or equal to

!= not equal to
Important The 'equal to' comparison operator has two successive '=' signs. This is

not the same as the assignment operator, which only consists of a
single '=' sign. It's a pretty common mistake to use the assignment
operator instead of the comparison operator, so watch out for this
potential cause of confusion.

Each of these operators compares two values and returns one of the two possible Boolean
values: true if the comparison is true, or false if it is not. We can see how this works by
having a look at a few simple examples of comparisons. Suppose we have integer variables i

and j with the values 10 and -5 respectively. Then the expressions,

 i > j i != j j > -8 i <= j + 15

all return the value true.

Let's further assume that we have the following variables defined:

 char first = 'A', last = 'Z';

We can now write some examples of comparisons using character variables. Take a look at
these:

first == 65 first < last 'E' <= first first != last

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

All four of these involve comparing ASCII code values. The first expression returns true since
first was initialized with 'A', which is the equivalent of decimal 65. The second expression

checks whether the value of first, which is 'A', is less than the value of last, which is 'Z'.

If you check the ASCII codes for these characters in Appendix B, you will see that the capital
letters are represented by an ascending sequence of numerical values from 65 to 90, 65
representing 'A' and 90 representing 'Z', so this comparison will also return the value true.

The third expression returns the value false, since 'E' is greater than the value of first.
The last expression returns true, since 'A' is definitely not equal to 'Z'.

Let's consider some slightly more complicated numerical comparisons. With variables defined
by the statements,

 int i = -10, j = 20;

 double x = 1.5, y = -0.25E-10;

take a look at the following:

-1 < y j < (10 - i) 2.0*x >= (3 + y)

As you can see, we can use expressions resulting in a numerical value as operands in

comparisons. If you check with the precedence table that we saw in Chapter 2, you will see that
none of the parentheses are strictly necessary, but they do help to make the expressions
clearer. The first comparison is true and so returns the bool value true. The variable y has a

very small negative value, -0.000000000025, and so is greater than -1. The second comparison
returns the value false. The expression 10 - i has the value 20 which is the same as j. The

third expression returns true since the expression 3 + y is slightly less than 3.

We can use relational operators to compare values of any of the basic types, so all we need

now is a practical way of using the results of a comparison to modify the behavior of a program.
Let's look into that right now.

The if Statement

The basic if statement allows your program to execute a single statement, or a block of

statements enclosed within curly braces, if a given condition returns the value true. This is

illustrated in this figure:

A simple example of an if statement is:

 if(letter == 'A')

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << "The first capital, alphabetically speaking.";

The condition to be tested appears in parentheses immediately following the keyword, if. Note

the position of the semicolon here. It goes after the statement following the if; there shouldn't

be a semicolon after the condition in parentheses. You can also see how the statement
following the if is indented, to indicate that it is only executed when the if condition returns
the value true. The indentation is not necessary for the program to execute, but it helps you to

recognize the relationship between the if condition and the statement that depends on it.

The output statement will only be executed if the variable letter has the value 'A'. We could
extend this example to change the value of letter if it contains the value 'A':

 if(letter == 'A')

 {

 cout << "The first capital, alphabetically speaking.";

 letter = 'a';

 }

Here we execute the statements in the block only if the condition (letter == 'A') returns
the value true. Without the curly braces, only the first statement would be the subject of the

if, and the statement assigning the value 'a' to letter would always be executed. Note that

there is a semicolon after each of the statements in the block, and not after the closing brace at
the end of the block. There can be as many statements as you like within the block. Now, as a
result of letter having the value 'A', we change its value to 'a' after outputting the same
message as before. If the condition returns false, then neither of these statements will be

executed.

Nested if Statements

The statement that is to be executed when the condition in an if statement is true can also be
an if. This arrangement is called a nested if. The condition for the inner if is only tested if

the condition for the outer if is true. An if that is nested inside another can also contain a
nested if. You can generally continue nesting ifs one inside the other like this for as long as

you know what you are doing.

Try it Out: - Using Nested Ifs

We can demonstrate the nested if with a working example:

 // EX3_01.CPP

 // A nested if demonstration

 #include <iostream>

 using namespace std;

 int main()

 {

 char letter = 0; // Store input in here

 cout << endl

 << "Enter a letter: "; // Prompt for the input

 cin >> letter; // then read a character

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if(letter >= 'A') // Test for 'A' or larger

 if(letter <= 'Z') // Test for 'Z' or smaller

 {

 cout << endl

 << "You entered a capital letter."

 << endl;

 return 0;

 }

 if(letter >= 'a') // Test for 'a' or larger

 if(letter <= 'z') // Test for 'z' or smaller

 {

 cout << endl

 << "You entered a small letter."

 << endl;

 return 0;

 }

 cout << endl << "You did not enter a letter." << endl;

 return 0;

 }

How It Works

This program starts with the usual comment lines, then the #include statement for the header

file supporting input/output, and the using directive because those input/output routines belong
to the namespace std. The first action in the body of main() is to prompt for a letter to be

entered. This is stored in the char variable letter.

The if statement that follows the input checks whether the character entered is 'A' or larger.

Since the ASCII codes for lower case letters (97 to 122) are greater than those for upper case
letters(65 to 90), entering a lower case letter causes the program to execute the first if block,
as (letter >= 'A') will return true for all letters. In this case, the nested if, which checks

for an input of 'Z' or less is executed. If it is 'Z' or less, we know that we have a capital letter,
the message is displayed and we are done, so we execute a return statement to end the

program. Both statements are enclosed between braces, so they are both executed when the
nested if condition returns true.

The next if checks whether the character entered is lower case, using essentially the same

mechanism as the first if, displays a message and returns.

If the character entered is not a letter, then the output statement following the last if block will

be executed. This displays a message to the effect that the character entered was not a letter.
The return is then executed.

You can see that the relationship between the nested ifs and the output statement is much

easier to follow because of the indentation applied to each.

A typical output from this example is:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You could easily arrange to change upper case to lower case by adding just one extra
statement to the if, checking for upper case:

 if(letter >= 'A') // Test for 'A' or larger

 if(letter <= 'Z') // Test for 'Z' or smaller

 {

 cout << endl

 << "You entered a capital letter.";

 << endl;

 letter += 'a' - 'A'; // Convert to lower case

 return 0;

 }

This involves adding one additional statement. This statement for converting from upper to
lower case increments the letter variable by the value 'a' - 'A'. It works because the

ASCII codes for 'A' to 'Z' and 'a' to 'z' are two groups of consecutive numerical codes, so

the expression 'a' - 'A' represents the value to be added to an upper case letter to get the

equivalent lower case letter.
FYI

You could equally well use the equivalent ASCII values for the letters here, but
by using the letters we've ensured that this code would work on computers
where the characters were not ASCII, as long as both the upper and lower
case sets are represented by a contiguous sequence of numeric values.

There is a library function provided with Visual C++ to convert letters to upper case, so you don't
normally need to program for this yourself. It has the name toupper() and appears in the

standard library file ctype. You will see more about standard library facilities when we get to

look specifically at how functions are written.

The Extended if Statement

The if statement that we have been using so far executes a statement if the condition specified
returns true. Program execution then continues with the next statement in sequence. We also

have a version of the if which allows one statement to be executed if the condition returns
true, and a different statement to be executed if the condition returns false. Execution then

continues with the next statement in sequence. As we saw in Chapter 2, a block of statements
can always replace a single statement, so this also applies to these ifs.

Try it Out: - Extending the If

Here's an extended if example:

 // EX3_02.CPP

 // Using the extended if

 #include <iostream>

 using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int main()

 {

 long number = 0; // Store input here

 cout << endl

 << "Enter an integer number less than 2 billion: ";

 cin >> number;

 if(number % 2L) // Test remainder after division
by 2

 cout << endl // Here if remainder 1

 << "Your number is odd." << endl;

 else

 cout << endl // Here if remainder 0

 << "Your number is even." << endl;

 return 0;

 }

Typical output from this program is:

How It Works

After reading the input value into number, the value is tested by taking the remainder after
division by two (using the remainder operator % that we saw in the last chapter) and using that

as the condition for the if. In this case the condition of the if statement returns an integer, not
a Boolean. The if statement interprets a non-zero value returned by the condition as true,

and interprets zero as false. In other words, the if statement:

 if(number % 2L)

is interpreted as follows: if the remainder is 1 then the condition is true, and the statement

immediately following the if is executed. If the remainder is 0 then the condition is false, and
the statement following the else keyword is executed.

FYI

The relational operators return only the values true or false. In an if
statement, the condition may also take the form of any of the basic data types
that we saw in Chapter 2. In such a case, the if statement always interprets a
non-zero value returned by the condition as true, and a zero as false.

Inversely, the bool value true has the value 1 when converted to an integer,
while false has the value 0.

Since the remainder of a division of an integer by two can only be one or zero, we have
commented the code to indicate this fact. After either outcome, the return statement is

executed to end the program.
Important

The else keyword is written without a semicolon, similar to the if part
of the statement. Again, indentation is used as a visible indicator of the
relationship between various statements. You can clearly see which
statement is executed for a true or non-zero result, and which for a

false or zero result. You should always indent the statements in your

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

programs to show their logical structure.

The if-else combination provides a choice between two options. The general logic of the if-
else is shown here:

The arrows in the diagram indicate the sequence in which statements are executed, depending
on whether the if condition returns true or false.

Nested if-else Statements

As we have seen, you can nest if statements within if statements. You can also nest if-

else statements within ifs, ifs within if-else statements, and if-else statements within
if-else statements. This provides us with considerable room for confusion, so let's look at a

few examples. Taking the first case first, an example of an if-else nested within an if might

be:

 if(coffee == 'y')

 if(donuts == 'y')

 cout << "We have coffee and donuts.";

 else

 cout << "We have coffee, but not donuts";

The test for donuts is executed only if the result of the test for coffee returns true, so the

messages reflect the correct situation in each case. However, it is easy to get this confused. If
we write much the same thing with incorrect indentation, we can be trapped into the wrong
conclusion:

 if(coffee == 'y')

 if(donuts == 'y')

 cout << "We have coffee and donuts.";

 else // This else is indented
incorrectly

 cout << "We have no coffee..."; // Wrong!

This mistake is easy to see here, but with more complicated if structures we need to keep in
mind the rule about which if owns which else.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Important

An else always belongs to the nearest preceding if which is not
already spoken for by another else .

Whenever things look a bit complicated you can apply this rule to sort things out. When you are

writing your own programs you can always use braces to make the situation clearer. It isn't
really necessary in such a simple case, but we could write the last example as follows:

 if(coffee == 'y')

 {

 if(donuts == 'y')

 cout << "We have coffee and donuts.";

 else

 cout << "We have coffee, but not donuts";

 }

and it should be absolutely clear. Now that we know the rules, understanding the case of an if

nested within an if-else becomes easy:

 if(coffee == 'y')

 {

 if(donuts == 'y')

 cout << "We have coffee and donuts.";

 }

 else

 if(tea == 'y')

 cout << "We have tea, but not coffee";

Here the braces are essential. If we leave them out, the else would belong to the if which is
looking out for donuts. In this kind of situation, it is easy to forget to include them, and hence

create an error which may be hard to find. A program with this kind of error will compile fine, and
even produce the right results some of the time.

If we removed the braces in this example, we'd get the right results only as long as coffee and
donuts are both equal to 'y' so that the if (tea == 'y') check wouldn't be executed.

Here we'll look at if-else statements nested in if-else statements. This can get very

messy, even with just one level of nesting. Let's beat the coffee and donuts analysis to death by
using it again:

 if(coffee == 'y')

 if(donuts == 'y')

 cout << "We have coffee and donuts.";

 else

 cout << "We have coffee, but not donuts";

 else

 if(tea == 'y')

 cout << "We have no coffee, but we have tea, and maybe
donuts...";

 else

 cout << "No tea or coffee, but maybe donuts...";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The logic here doesn't look quite so obvious, even with the correct indentation. No braces are
necessary, as the rule you saw earlier will verify that this is correct, but it would look a bit clearer
if we included them:

 if(coffee == 'y')

 {

 if(donuts == 'y')

 cout << "We have coffee and donuts.";

 else

 cout << "We have coffee, but not donuts";

 }

 else

 {

 if(tea == 'y')

 cout << "We have no coffee, but we have tea, and maybe
donuts...";

 else

 cout << "No tea or coffee, but maybe donuts...";

 }

There are much better ways of dealing with this kind of logic in a program. If you put enough
nested ifs together, you can almost guarantee a mistake somewhere. The following section

will help to simplify things.

Logical Operators and Expressions

As we have just seen, using ifs where we have two or more related conditions can be a bit

cumbersome. We have tried our if talents on looking for coffee and donuts, but in practice you

may want to check much more complex conditions. You could be searching a personnel file for
someone who is over 21 but under 35, female with a college degree, unmarried and speaks
Hindi or Urdu. Defining a test for this could involve the mother of all ifs.

Logical operators provide a neat and simple solution. Using logical operators, we can combine a
series of comparisons into a single expression, so we end up needing just one if, virtually

regardless of the complexity of the set of conditions.

We have just three logical operators:

&& Logical AND

|| Logical OR

! Logical negation (NOT)

We'll first consider what each of these is used for in general terms, then we'll look at an
example.

Logical AND

You would use the AND operator, &&, where you have two conditions that must both be true

for a true result. You want to be rich and healthy. For example, you could use the && operator

when you are testing a character to determine whether it's an upper case letter. The value being
tested must be both greater than or equal to 'A' AND less than or equal to 'Z'. Both

conditions must return true for the value to be a capital letter.

FYI

As before, these conditions may return numerical values. Remember that a
non-zero value is treated as true, while zero is treated as false.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Taking the example of a value stored in a char variable letter, we could replace the test
using two ifs for one that uses only a single if and the && operator:

 if((letter >= 'A') && (letter <= 'Z'))

 cout << "This is a capital letter.";

The parentheses inside the if expression ensure that there is no doubt that the comparison

operations are executed first, which makes the statement clearer. Here, the output statement
will be executed only if both of the conditions combined by the operator && are true.

Just as with binary operators in the last chapter, we can represent the effect of a particular
logical operator using a truth table. The truth table for && is as follows:

&& false true

false false false

true false true

The row headings of the left and the column headings at the top represent the value of the
logical expressions to be combined by the operator &&. Thus, to determine the result of
combining a true condition with a false condition, select the row with true at the left and the

column with false at the top and look at the intersection of the row and column for the result
(false). With the && operation, the result is true only if both operands are true.

Logical OR

The OR operator, ||, applies when you have two conditions and you want a true result if either

or both of them are true. For example, you might be considered creditworthy for a loan from the
bank if your income was at least $100,000 a year, or you had $1,000,000 in cash. This could be
tested using the following if:

 if((income >= 100000.00) || (capital >= 1000000.00))

 cout << "How much would you like to borrow, Sir (grovel,
grovel)?";

The ingratiating response emerges when either or both of the conditions are true. (A better

response might be, "Why do you want to borrow?" It's strange how banks will only lend you
money if you don't need it.)

We can also construct a truth table for the || operator:

|| false true

false false true

true true true

As you can see, you only get a false result if both conditions are false.

Logical NOT

The third logical operator, !, takes one operand with a logical value, true or false, and
inverts its value. So if the value of test is true then !test is false; and if test is false

then !test is true. To take the example of a simple expression, if x has the value 10, the

expression:

 !(x > 5)

is false, since x > 5 is true.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We could also apply the ! operator in an expression that was a favorite of Charles Dickens:

!(income > expenditure)

If this expression is true, the result is misery, at least as soon as the bank starts bouncing your

checks.

Finally, we can apply the ! operator to other basic data types. Suppose we have a variable
rate of type float, which has the value 3.2. For some reason we might want to use the

expression:

 !(rate)

The value 3.2 is non-zero, and converts to the Boolean true: so the result of this expression is
false.

Try it Out: - Combining Logical Operators

You can combine conditional expressions and logical operators to any degree that you feel
comfortable with. For example, we could construct a test for whether a variable contained a
letter just using a single if. Let's write it as a working example:

 // EX3_03.CPP

 // Testing for a letter using logical operators

 #include <iostream>

 using namespace std;

 int main()

 {

 char letter = 0; // Store input in
here

 cout << endl

 << "Enter a character: ";

 cin >> letter;

 if(((letter >= 'A') && (letter <= 'Z')) ||

 ((letter >= 'a') && (letter <= 'z'))) // Test for
alphabetic

 cout << endl

 << "You entered a letter." << endl;

 else

 cout << endl

 << "You didn't enter a letter." << endl;

 return 0;

 }

How It Works

This example starts out in the same way as Ex3_01.cpp by reading a character after a prompt

for input. The interesting part of the program is in the if statement condition. This consists of

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

two logical expressions combined with the || (OR) operator, so that, if either is true, the condition
returns true and the message:

You entered a letter.

is displayed. If both logical expressions are false, then the else statement is executed which

displays the message:

You didn't enter a letter.

Each of the logical expressions combines a pair of comparisons with the operator && (AND), so
both comparisons must return true if the logical expression is to be true. The first logical

expression returns true if the input is an upper case letter, and the second returns true if the

input is a lower case letter.

The Conditional Operator

The conditional operator is sometimes called the ternary operator because it involves three
operands. It is best understood by looking at an example. Suppose we have two variables, a

and b, and we want to assign the maximum of a and b to a third variable c. We can do this with

the statement:

 c = a > b ? a : b; // Set c to the maximum of a and b

The first argument of the conditional operator is a logical expression, in this case a > b. If this
expression returns true then the second operand — in this case a — is selected as the value

resulting from the operation. If the first argument returns false then the third operand — in this
case b — is selected as the value. Thus, the result of the conditional expression a > b ? a :

b is a if a is greater than b, and b otherwise. This value is stored in c. The use of the conditional
operator in this assignment statement is equivalent to the if statement:

 if(a > b)

 c = a;

 else

 c = b;

The conditional operator can be written generally as:

condition ? expression1 : expression2

If the condition evaluates as true, then the result is the value of expression1 , and if it

evaluates to false, then the result is the value of expression2 .

Try it Out: - Using the Conditional Operator with Output

A common use of the conditional operator is to control output, depending on the result of an
expression or the value of a variable. You can vary a message by selecting one text string or
another depending on the condition specified.

 // EX3_04.CPP

 // The conditional operator selecting output

 #include <iostream>

 using namespace std;

 int main()

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int nCakes = 1; // Count of number of cakes

 cout << endl

 << "We have " << nCakes << " cake" << ((nCakes > 1) ? "s."
: ".")

 << endl;

 ++nCakes;

 cout << endl

 << "We have " << nCakes << " cake" << ((nCakes > 1) ? "s."
: ".")

 << endl;

 return 0;

 }

The output from this program will be:

How It Works

First we initialize the nCakes variable with the value 1, then perform an output statement that

shows us the number of cakes. The part that uses the conditional operator simply tests the
variable to determine whether we have a singular cake or plural cakes:

 ((nCakes>1) ? "s." : ".")

This expression evaluates to "s." if nCakes is greater than 1, or "." otherwise. This allows us

to use the same output statement for any number of cakes. We show this in the example by
incrementing the nCakes variable and repeating the output statement.

There are many other situations where you can apply this sort of mechanism; selecting between
"is" and "are", for example.

The switch Statement

The switch statement enables you to select from multiple choices based on a set of fixed

values for a given expression. It operates like a physical rotary switch in that you can select one
of a fixed number of choices; some makes of washing machine provide a means of choosing an
operation for processing your laundry in this way. There are a given number of possible
positions for the switch, such as cotton, wool, synthetic fiber, and so on, and you can select any
one of them by turning the knob to point to the option that you want.

In the switch statement, the selection is determined by the value of an expression that you
specify. You define the possible switch positions by one or more case values, a particular one

being selected if the value of the switch expression is the same as the particular case value.
There is one case value for each possible choice in the switch — the case values must be

distinct.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If the value of the switch expression does not match any of the case values, then the switch
automatically selects the default case. You can, if you wish, specify the code for the default

case, as we will do below; otherwise, the default is to do nothing.

Try it Out: - The Switch Statement

We can examine how the switch statement works with the following example:

 // EX3_05.CPP

 // Using the switch statement

 #include <iostream>

 using namespace std;

 int main()

 {

 int choice = 0; // Store selection value
here

 cout << endl

 << "Your electronic recipe book is at your service." <<
endl

 << "You can choose from the following delicious dishes: "

 << endl

 << endl << "1 Boiled eggs"

 << endl << "2 Fried eggs"

 << endl << "3 Scrambled eggs"

 << endl << "4 Coddled eggs"

 << endl << endl << "Enter your selection number: ";

 cin >> choice;

 switch(choice)

 {

 case 1: cout << endl << "Boil some eggs." << endl;

 break;

 case 2: cout << endl << "Fry some eggs." << endl;

 break;

 case 3: cout << endl << "Scramble some eggs." << endl;

 break;

 case 4: cout << endl << "Coddle some eggs." << endl;

 break;

 default: cout << endl <<"You entered a wrong number, try raw
eggs."

 << endl;

 }

 return 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

How It Works

After defining your options in the stream output statement, and reading a selection number into
the variable choice, the switch statement is executed with the condition specified as simply
choice in parentheses, immediately following the keyword switch. The possible options in the

switch are enclosed between braces and are each identified by a case label. A case label is
the keyword case, followed by the value of choice that corresponds to this option, and

terminated by a colon.

As you can see, the statements to be executed for a particular case are written following the

colon at the end of the case label, and are terminated by a break statement. The break
transfers execution to the statement after the switch. The break isn't mandatory, but if you

don't include it, all the statements for the cases following the one selected will be executed,
which isn't usually what you want. You can demonstrate this by removing the break statements

from this example and seeing what happens.

If the value of choice doesn't correspond with any of the case values specified, the statements
preceded by the default label are executed. A default case isn't essential. In its absence, if

the value of the test expression doesn't correspond to any of the cases, the switch is exited
and the program continues with the next statement after the switch.

Try it Out: - Sharing a Case

Each of the case constant expressions must be constant and unique. The reason that no two
case constants can be the same is that the compiler would have no way of knowing which case
statement should be executed for that particular value. However, different cases don't need to
have a unique action. Several cases can share the same action, as shown here:

 // EX3_06.CPP

 // Multiple case actions

 #include <iostream>

 using namespace std;

 int main()

 {

 char letter = 0;

 cout << endl

 << "Enter a small letter: ";

 cin >> letter;

 switch(letter*(letter >= 'a' && letter <= 'z'))

 {

 case 'a':

 case 'e':

 case 'i':

 case 'o':

 case 'u': cout << endl << "You entered a vowel.";

 break;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 case 0: cout << endl << "That is not a small letter.";

 break;

 default: cout << endl << "You entered a consonant.";

 }

 cout << endl;

 return 0;

 }

How It Works

In this example, we have a more complex expression in the switch. If the character entered

isn't a lower case letter, then the expression:

 (letter >= 'a' && letter <= 'z')

will result in the value 0. Then, letter is multiplied by this expression, so the switch

expression would be set to 0 if a lower case letter wasn't entered. This will then cause the
statements following the case label case 0 to be executed.

If a lower case letter was entered, the expression above will result in the value 1. Multiplying
letter by one results in the switch expression having the same value as letter. For all

values corresponding to vowels, the same output statement is executed since we haven't used
break statements to separate these case labels. You can see that a single action can be taken

for a number of different cases by writing each of the case labels one after the other before the
statements to be executed. If a lower case letter that is a consonant is entered as program
input, the default case label statement is executed.

Unconditional Branching

The if statement provides you with the flexibility to choose to execute one set of statements or

another, depending on a specified condition, so the statement execution sequence is varied
depending on the values of the data in the program. The goto statement, in contrast, is a blunt

instrument. It enables you to branch to a specified program statement unconditionally. The
statement to be branched to must be identified by a statement label which is an identifier
defined according to the same rules as a variable name. This is followed by a colon and placed
before the statement requiring labeling. Here is an example of a labeled statement:

 myLabel: cout << "myLabel branch has been activated" << endl;

This statement has the label myLabel, and an unconditional branch to this statement would be

written as follows:

 goto myLabel;

Whenever possible, you should avoid using gotos in your program. They tend to encourage

very convoluted code that can be extremely difficult to follow.
FYI

As the goto is theoretically unnecessary — there's always an alternative

approach to using goto — a significant cadre of programmers say you should
never use it. I don't subscribe to such an extreme view. It is a legal statement
after all, and there are occasions when it can be convenient. However, I do
recommend that you only use it where you can see an obvious advantage over
other options that are available.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Repeating a Block of Statements

The ability to repeat a group of statements is fundamental to most applications. Without this
ability, an organization would need to modify the payroll program every time an extra employee
was hired, and you would need to reload Tetris every time you wanted to play another game. So
let's first understand how a loop works.

What is a Loop?

A loop executes a sequence of statements until a particular condition is true (or false). We can
actually write a loop with the C++ statements that we have met so far. We just need an if and

the dreaded goto. Look at this example:

 // EX3_07.CPP

 // Creating a loop with an if and a goto

 #include <iostream>

 using namespace std;

 int main()

 {

 int i = 0, sum = 0;

 const int max = 10;

 i = 1;

 loop:

 sum += i; // Add current value of i to sum

 if(++i <= max)

 goto loop; // Go back to loop until i = 11

 cout << endl

 << "sum = " << sum

 << endl

 << "i = " << i

 << endl;

 return 0;

 }

This example accumulates the sum of integers from 1 to 10. The first time through the
sequence of statements, i is 1 and is added to sum which starts out as zero. In the if, i is
incremented to 2 and, as long as it is less than or equal to max, the unconditional branch to

loop occurs and the value of i, now 2, is added to sum. This continues with i being
incremented and added to sum each time, until finally, when i is incremented to 11 in the if,

the branch back will not be executed. If you run this example, you will get this output:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This shows quite clearly how the loop works. However, it uses a goto and introduces a label

into our program, both of which are things we should avoid if possible. We can achieve the
same thing, and more, with the next statement which is specifically for writing a loop.

Try it Out: - Using the for Loop

We can rewrite the last code fragment as a working example using what is known as a for

loop:

 // EX3_08.CPP

 // Summing integers with a for loop

 #include <iostream>

 using namespace std;

 int main()

 {

 int i = 0, sum = 0;

 const int max = 10;

 for(i = 1; i <= max; i++) // Loop specification

 sum += i; // Loop statement

 cout << endl

 << "sum = " << sum

 << endl

 << "i = " << i

 << endl;

 return 0;

 }

How It Works

If you compile and run this, you will get exactly the same output as the previous example, but
the code is much simpler here. The conditions determining the operation of the loop appear in
parentheses after the keyword for. There are three expressions that appear within the

parentheses:
§ The first sets i to 1

§ The second determines that the loop statement on the following line is executed as long
as i is less than or equal to max

§ The third increments i each iteration

Actually, this loop is not exactly the same as the version in Ex3_07.cpp. You can demonstrate
this if you set the value of max to 0 in both programs and run them again. Then, you will find that

the value of sum is 1 in Ex3_07.cpp and 0 in Ex3_08.cpp, and the value of i differs too. The
reason for this is that the if version of the program always executes the loop at least once,

since we don't check the condition until the end. The for loop doesn't do this because the

condition is actually checked at the beginning.

The general form of the for loop is:

for (initializing_expression; test_expression; increment_expression)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

loop_statement ;

Of course, loop_statement can be a block between braces. The sequence of events in

executing the for loop is shown here:

As we have said, the loop statement shown in the diagram can also be a block of statements.
The expressions controlling the for loop are very flexible. You can even put multiple

expressions for each, separated by the comma operator. This gives you a lot of scope in
applying the for loop.

Variations on the for Loop

Most of the time, the expressions in a for loop are used in a fairly standard way: the first for

initializing one or more loop counters, the second to test if the loop should continue, and the
third to increment or decrement one or more loop counters. However, you are not obliged to use
these expressions in this way and quite a few variations are possible.

The initialization expression in a for loop can also include a declaration for a loop variable.

Using our previous example, we could have written the loop to include the declaration for the
loop counter i:

 for(int i = 1; i <= max; i++) // Loop specification

 sum += i; // Loop statement

Naturally, the original declaration for i would need to be omitted in the program. If you make

this change to the last example, you will find that it runs exactly as before, but there is
something odd about this. A loop has a scope which extends from the for expression to the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

end of the body of the loop, which of course can be a block of code between braces, as well as
just a single statement. The counter i is now declared within the loop scope, but we are still

able to refer to it in the output statement, which is outside the scope of i. This is because a

special extension has been allowed for loop counters to extend their scope to the scope
enclosing the loop.

FYI

In Visual C++ 6.0, a counter which is declared within a for loop expression
remains in scope after the loop has finished executing. However, I recommend
that you don't write programs that rely on the scope of the counter extending
beyond the end of the loop. This is because the recently released ANSI
standard for C++ recommends that this should not be supported by future C++
compilers. If you need to use the value in the counter after the loop has
executed, then declare the counter outside the scope of the loop.

You can also omit the initialization expression altogether. If we initialize i appropriately in the

declaration, we can write the loop as:

 int i = 1;

 for(; i <= max; i++) // Loop specification

 sum += i; // Loop statement

You still need the semicolon that separates the initialization expression from the test condition

for the loop. In fact, both semicolons must be in place. If you omit the first semicolon, the
compiler will be unable to decide which expression has been omitted.

This flexibility also applies to the contents of the increment expression. For example, we can
place the loop statement in the last example inside the increment expression — the loop
becomes:

 for(i = 1; i <= max; sum += i++); // The whole loop

We still need the semicolon after the closing parentheses, to indicate that the loop statement is
now empty. If you omit this, the statement immediately following this line will be interpreted as
the loop statement.

Try it Out: - Using Multiple Counters

You can use the comma operator to include multiple counters in a for loop. We can show this

in operation in the following program:

 // EX3_09.CPP

 // Using multiple counters to show powers of 2

 #include <iostream>

 #include <iomanip>

 using namespace std;

 int main()

 {

 long i = 0, power = 0;

 const int max = 10;

 for(i = 0, power = 1; i <= max; i++, power += power)

 cout << endl

 << setw(10) << i << setw(10) << power; // Loop
statement

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl;

 return 0;

 }

How It Works

We initialize two variables in the initialization section of the for loop, separated by the comma

operator, and increment each of them in the increment section. Clearly, you can put as many
expressions as you like in each position.

FYI

You can even specify multiple conditions, separated by commas, in the test
part of the for loop; but only the right-most condition will affect when the loop

ends.

Note that the assignments defining the initial values for i and power are expressions, not

statements. A statement always ends with a semicolon.

For each increment of i, the value of the variable power is doubled by adding it to itself. This

produces the powers of two that we are looking for and so the program will produce the
following output:

The setw() manipulator that we saw in the previous chapter is used to align the output nicely.

We have included iomanip so that we can use setw().

Try it Out: - The Infinite for Loop

If you omit the test condition then the value is assumed to be true, so the loop will continue

indefinitely unless you provide some other means of exiting from it. In fact, if you like, you can
omit all the expressions in the parentheses after for. This may not seem to be very useful, but

in fact, quite the reverse is true. You will often come across situations where you want to
execute a loop a number of times, but you do not know in advance how many iterations you will
need. Have a look at this:

 // EX3_10.CPP

 // Using an infinite for loop to compute an average

 #include <iostream>

 using namespace std;

 int main()

 {

 double value = 0.0; // Value entered stored here

 double sum = 0.0; // Total of values accumulated
here

 int i = 0; // Count of number of values

 char indicator = 'n'; // Continue or not?

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 for(;;) // Infinite loop

 {

 cout << endl

 << "Enter a value: ";

 cin >> value; // Read a value

 ++i; // Increment count

 sum += value; // Add current input to total

 cout << endl

 << "Do you want to enter another value (enter n to end)?
";

 cin >> indicator; // Read indicator

 if ((indicator == 'n') || (indicator == 'N'))

 break; // Exit from loop

 }

 cout << endl

 << "The average of the " << i

 << " values you entered is " << sum/i << "."

 << endl;

 return 0;

 }

How It Works

This program will compute the average of an arbitrary number of values. After each value is
entered you need to indicate whether you want to enter another value, by entering a single
character y or n. Typical output from executing this example is:

After declaring and initializing the variables that we're going to use, we start a for loop with no

expressions specified, so there is no provision for ending it here. The block immediately
following is the subject of the loop which is to be repeated.

The loop block performs two basic actions:
1. It reads a value
2. It checks whether you want to continue to enter values

The first action within the block is to prompt you for input and then read a value into the variable
value. The value that you enter is added to sum and the count of the number of values, i, is
incremented. After accumulating the value in sum, you are prompted to enter 'n' if you have

finished. The character that you enter is stored in the variable indicator for testing against

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

'n' or 'N' in the if statement. If neither is found, the loop continues, otherwise a break is
executed. The effect of break in a loop is similar to its effect in the context of the switch

statement. In this instance, it exits the loop immediately by transferring to the statement
following the closing brace of the loop block.

Finally, we output the count of the number of values entered and their average, calculated by
dividing sum by i. Of course, i will be promoted to double before the calculation, as you will

remember from the casting discussion in Chapter 2.

The continue Statement

There is another statement, besides break, that is used to affect the operation of a loop: the
continue statement. This is written simply as:

 continue;

Executing continue within a loop starts the next loop iteration immediately, skipping over any

statements remaining in the current iteration. We can demonstrate how this works with the
following code fragment:

 #include <iostream>

 using namespace std;

 int main()

 {

 int i = 0, value = 0, product = 1;

 for(i = 1; i <= 10; i++)

 {

 cin >> value;

 if(value == 0) //If value is zero

 continue; // skip to next iteration

 product *= value;

 }

 cout << "Product (ignoring zeros): " << product

 << endl;

 return 0; // Exit from loop

 }

This loop reads 10 values with the intention of producing the product of the values entered. The
if checks each value entered, and if it is zero, then the continue statement skips to the next

iteration. This is so that we don't end up with a zero product if one of the values is zero.
Obviously, if a zero value occurred on the last iteration, the loop would end. There are clearly
other ways of achieving the same result, but continue provides a very useful capability,

particularly with complex loops where you may need to skip to the end of the current iteration
from various points in the loop.

The effect of the break and continue statements on the logic of a for loop is illustrated here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Obviously, in a real situation, the break and continue statements are used with some

condition-testing logic to determine when the loop should be exited, or when an iteration of the
loop should be skipped. The break and continue statements can also be used with the other

kinds of loop which we'll discuss later on in this chapter, where they work in exactly the same
way.

Try it Out: - Using Other Types in Loops

So far, we have only used integers to count loop iterations. You are in no way restricted as to

what type of variable you use to count iterations. Look at this example:

 // EX3_11.CPP

 // Display ASCII codes for alphabetic characters

 #include <iostream>

 #include <iomanip>

 using namespace std;

 int main()

 {

 for(char capital = 'A', small = 'a'; capital <= 'Z'; capital++,
small++)

 cout << endl

 << "\t" << capital //
Output capital as

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //
character

 << hex << setw(10) << static_cast<int>(capital) //
Output capital as

 // hex

 << dec << setw(10) << static_cast<int>(capital) //
Output capital as

 //
decimal

 << " " << small //
Output small as

 //
character

 << hex << setw(10) << static_cast<int>(small) //
Output small as

 // hex

 << dec << setw(10) << static_cast<int>(small); //
Output small as

 //

decimal

 cout << endl;

 return 0;

 }

How It Works

The loop in this example is controlled by the char variable capital which we declare along

with the variable small in the initializing expression. We also increment both variables in the
increment part, so that the value of capital varies from 'A' to 'Z', and the value of small

correspondingly varies from 'a' to 'z'.

The loop contains just one output statement spread over seven lines. The first line:

 cout << endl

starts a new line on the screen. On each iteration, after outputting a tab character, the value of
capital is displayed three times: as a character, as a hexadecimal value and as a decimal

value. We insert the manipulator hex which causes succeeding data values to be displayed as
hexadecimal values for the second output of capital, and we then insert the manipulator dec

to cause succeeding values to be output as decimal once more. We get the char variable
capital to output as a numeric value by casting it to int, using the static_cast<> ()

which we saw in the last chapter. The value of small is output in a similar way. As a result, the

program will generate the following output:

 A 41 65 a 61 97

 B 42 66 b 62 98

 C 43 67 c 63 99

 D 44 68 d 64 100

 E 45 69 e 65 101

 F 46 70 f 66 102

 G 47 71 g 67 103

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 H 48 72 h 68 104

 I 49 73 i 69 105

 J 4a 74 j 6a 106

 K 4b 75 k 6b 107

 L 4c 76 1 6c 108

 M 4d 77 m 6d 109

 N 4e 78 n 6e 110

 O 4f 79 o 6f 111

 P 50 80 p 70 112

 Q 51 81 q 71 113

 R 52 82 r 72 114

 S 53 83 s 73 115

 T 54 84 t 74 116

 U 55 85 u 75 117

 V 56 86 v 76 118

 W 57 87 w 77 119

 X 58 88 x 78 120

 Y 59 89 y 79 121

 Z 5a 90 z 7a 122

You can also use a floating point value as a loop counter. An example of a for loop with this

kind of counter is:

 double a = 0.3, b = 2.5;

 for(double x = 0.0; x <= 2.0; x += 0.25)

 cout << "\n\tx = " << x

 << "\ta*x + b = " << a*x + b;

This calculates the value of a*x+b for values of x from 0.0 to 2.0 in steps of 0.25. However, you

need to take care when using a floating point counter in a loop. Many decimal values are not
represented exactly in binary floating point, so discrepancies can build up with accumulative
values.

The while Loop

A second kind of loop in C++ is the while loop. Where the for loop is primarily used to repeat
a statement or a block for a prescribed number of iterations, the while loop will continue as

long as a specified condition is true. The general form of the while loop is:

while(condition)

 loop_statement;

where loop_statement will be executed repeatedly as long as the condition expression

has the value true. Once the condition becomes false, the program continues with the

statement following the loop. Of course, a block of statements between braces could replace
the single loop_statement . The logic of the while loop can be represented like this:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - Using the while Loop

We could rewrite our program to compute averages (Ex3_10.cpp) to use the while loop:

 // EX3_12.CPP

 // Using a while loop to compute an average

 #include <iostream>

 using namespace std;

 int main()

 {

 double value = 0.0; // Value entered stored here

 double sum = 0.0; // Total of values accumulated
here

 int i = 0; // Count of number of values

 char indicator = 'y'; // Continue or not?

 while(indicator == 'y') // Loop as long as y is entered

 {

 cout << endl

 << "Enter a value: ";

 cin >> value; // Read a value

 ++i; // Increment count

 sum += value; // Add current input to total

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl

 << "Do you want to enter another value (enter n to end)?
";

 cin >> indicator; // Read indicator

 }

 cout << endl

 << "The average of the " << i

 << " values you entered is " << sum/i << "."

 << endl;

 return 0;

 }

How It Works

For the same input, this version of the program will produce the same output as before. One

statement has been updated, and another has been added — they are highlighted above. The
for loop statement has been replaced by the while statement and the test for indicator in

the if has been deleted, as this function is performed by the while condition. You need to
initialize indicator with 'y' in place of the 'n' which appeared previously — otherwise the

while loop will terminate immediately. As long as the condition in the while returns true,
then the loop continues. You can put any expression resulting in true or false as the loop

condition. The example would be a better program if the loop condition were extended to allow
'Y' to be entered to continue the loop as well as 'y'. Modifying the while to the following:

 while((indicator == 'y') || (indicator == 'Y'))

would do the trick.

You can also create an infinite while loop by using a condition that is always true. This can

be written as follows:

 while(1)

 {

 ...

 }

Here, as elsewhere, the integer value 1 is converted to the bool value true. Naturally, the

same requirement applies here as in the case of the infinite for loop: namely, that there must
be some way of exiting the loop within the loop block. We'll look at other ways to use the while

loop in Chapter 4.

The do-while Loop

The do-while loop is similar to the while loop in that the loop continues as long as the
specified loop condition remains true. The main difference is that the condition is checked at

the end of the loop — in the case of the while loop and the for loop, the condition is checked
at the beginning of the loop. Thus, the do-while loop statement is always executed at least

once. The general form of the do-while loop is:

 do

 {

 loop_statements ;

 }while(condition) ;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The logic of this form of loop is shown here:

We could replace the while loop in the last version of the program to calculate an average with

a do-while loop:

 do

 {

 cout << endl

 << "Enter a value: ";

 cin >> value; // Read a value

 ++i; // Increment count

 sum += value; // Add current input to total

 cout << "Do you want to enter another value (enter n to
end)?";

 cin >> indicator; // Read indicator

 } while((indicator == 'y') || (indicator == 'Y'));

There's little to choose between them, except that this version doesn't depend on the initial
value set in indicator for correct operation. As long as you want to enter at least one value,

which is not unreasonable for the calculation in question, this version of the loop is preferable.

Nested Loops

You can nest one loop inside another. In Chapter 4, the usual application of this will become
more apparent — it's typically applied to repeating actions at different levels of classification. An

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

example might be calculating the total marks for each student in a class, then repeating the
process for each class in a school.

Try it Out: - Nested Loops

We can illustrate the effects of nesting one loop inside another by calculating a simple formula.
A factorial of an integer is the product of all the integers from 1 to the integer in question; so the
factorial of 3, for example, is 1 times 2 times 3, which is 6. The following program will compute
the factorial of integers that you enter (until you've had enough):

 EX3_13.CPP

 // Demonstrating nested loops to compute factorials

 #include <iostream>

 using namespace std;

 int main()

 {

 char indicator = 'n';

 long value = 0,

 factorial = 0;

 do

 {

 cout << endl

 << "Enter an integer value: ";

 cin >> value;

 factorial = 1;

 for(int i = 2; i <= value; i++)

 factorial *= i;

 cout << "Factorial " << value << " is " << factorial;

 cout << endl

 << "Do you want to enter another value (y or n)? ";

 cin >> indicator;

 } while((indicator == 'y') || (indicator == 'Y'));

 return 0;

 }

How It Works

If you compile and execute this example, the typical output produced is:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Factorial values grow very fast. In fact, 12 is the largest input value for which this example

produces a correct result. The factorial of 13 is actually 6,227,020,800 and not 1,932,053,504
as the program will tell you. If you run it with even larger input values, leading digits will be lost
in the result stored in the variable factorial, and you may well get negative values for the

factorial as you do when you ask for the factorial of 22.
Important

This situation doesn't cause any error messages, so it is of paramount
importance that you are sure that the values you're dealing with in a
program can be contained in the permitted range of the type of variable
you're using. You also need to consider the effects of incorrect input
values. Errors of this kind, which occur silently, can be very hard to find.

The outer of the two nested loops is the do-while loop which controls when the program ends.

As long as you keep entering y or Y at the prompt, the program will continue to calculate
factorial values. The factorial for the integer entered is calculated in the inner for loop. This is

executed value times to multiply the variable factorial (with an initial value of 1) with
successive integers from 2 to value.

Try it Out: - Another Nested Loop

If you haven't dealt much with nested loops they can be a little confusing, so let's try another
example. This program will generate a multiplication table of a given size:

 // EX3_14.CPP

 // Using nested loops to generate a multiplcation table

 #include <iostream>

 #include <iomanip>

 using namespace std;

 int main()

 {

 const int size = 12; // Size of table

 int i = 0, j = 0; // Loop counters

 cout << endl // Output table title

 << size << " by " << size

 << " Multiplication Table" << endl << endl;

 cout << endl << " |";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 for(i = 1; i <= size; i++) // Loop to output column
headings

 cout << setw(3) << i << " ";

 cout << endl; // Newline for underlines

 for i = 0; i <= size; i++)

 cout << "_____"; // Underline each heading

 for(i = 1; i <= size; i++) // Outer loop for rows

 {

 cout << endl

 << setw(3) << i << " |"; // Output row label

 for(j = 1; j <= size; j++) // Inner loop to output the
rest of

 // the row

 cout << setw(3) << i*j << " "; // End of inner loop

 } // End of outer loop

 cout << endl;

 return 0;

 }

How It Works

If you build this example and execute it, you will see the output shown in the figure below. This

shows the output window when execution is complete:

The table title is produced by the first output statement in the program. The next output
statement, combined with the loop following it, generates the column headings. Each column
will be five characters wide, so the heading value is displayed in a field width of three specified
by the setw(3) manipulator, followed by two blanks. The output statement preceding the loop

outputs four spaces and a vertical bar above the first column which will contain the row
headings. A series of underline characters is then displayed beneath the column headings.

The nested loop generates the main table contents. The outer loop repeats once for each row,
so i is the row number. The output statement,

 cout << endl

 << setw(3) << i << " |"; // Output row label

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

goes to a new line for the start of a row and then outputs the row heading given by the value of
i in a field width of three, followed by a space and a vertical bar.

A row of values is generated by the inner loop:

 for(j = 1; j <= size; j++) // Inner loop to output
the rest of

 // the row

 cout << setw(3) << i*j << " "; // End of inner loop

This loop outputs values i*j corresponding to the product of the current row value i, and each

of the column values in turn by varying j from 1 to size. So for each iteration of the outer loop,
the inner loop executes size iterations. The values are positioned in the same way as the

column headings.

When the outer loop is completed, the return is executed to end the program.

Summary

In this chapter, we've assembled all of the essential mechanisms for making decisions in C++
programs. We've also gone through all the facilities for repeating a group of statements. The
essentials of what we've discussed are as follows:

§ The basic decision-making capability is based on the set of relational operators, which
allow expressions to be tested and compared, and yield a bool value true or false.

§ We can also make decisions based on conditions that return non-bool values. Any
nonzero value will be interpreted as true when a condition is tested, while zero is

interpreted as false.

§ The primary decision-making capability in C++ is provided by the if statement. Further

flexibility is provided by the switch statement, and by the conditional operator.

§ There are three basic methods provided for repeating a block of statements: the for

loop, the while loop and the do-while loop. The for loop allows the loop to repeat a
given number of times. The while loop allows a loop to continue as long as a specified

condition returns true. Finally, do-while executes the loop at least once and allows
continuation of the loop as long as a specified condition returns true.

§ Any kind of loop may be nested within any other kind of loop.
§ The keyword continue allows you to skip the remainder of the current iteration in a

loop and go straight to the next iteration.
§ The keyword break provides an immediate exit from a loop. It also provides an exit

from a switch at the end of a group of case statements.

Exercises

1. Write a program which reads numbers from cin, and adds them, stopping when 0
has been entered. Construct three versions of this program, using the while, do-

while and for loops.

2. Write a program to input characters from the keyboard and count the vowels. Stop
counting when a Q (or a q) is encountered. Use a combination of an infinite loop to
get the characters, and a switch statement to count them.

3. Write a program to print out the multiplication tables from 2 to 12 in columns.

4. Imagine that in a program we want to set a 'file open mode' variable based on two

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

attributes: the file type (text or binary), and the way in which we want to open the file
(read, write or append). Using the bitwise operators (& and |) and a set of flags,

devise a method to allow an integer variable to be set to any combination of the two
attributes. Write a program which sets such a variable and then decodes it, printing
out its settings.

5. Take [Prg1], and modify it so that you continue asking the user for numbers and
printing them, until zero is entered. Save this as [Prg2].

Answers

1. The while version:

 #include <iostream>

 using namespace std;

 int main()

 {

 int val = 0;

 int total = 0;

 cout << "Enter numbers, one per line:\n";

 cin >> val;

 while (val != 0)

 {

 total += val;

 cin >> val;

 }

 cout << "\nThank you. The total was " << total;

 cout << endl;

 return 0;

 }

The do-while version:

 #include <iostream>

 using namespace std;

 int main()

 {

 int val = 0;

 int total = 0;

 cout << "Enter numbers, one per line:\n";

 do

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 cin >> val;

 total += val;

 } while (val ! = 0);

 cout << "\nThank you. The total was " << total;

 cout << endl;

 return 0;

 }

The for version:

 #include <iostream>

 using namespace std;

 int main()

 {

 int val = 0;

 int total = 0;

 cout << "Enter numbers, one per line:\n";

 cin >> val;

 // We don't need the initialization or increment expressions

 for (; val! = 0;)

 {

 total += val;

 cin >> val;

 }

 cout << "Thank you. The total was " << total;

 cout << endl;

 return 0;

 }

2. Counting characters.

 #include <iostream>

 using namespace std;

 int main()

 {

 char c = ' ';

 int nVowels = 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int nChars = 0;

 cout << "Type some characters and q or Q to stop counting
followed by

 ENTER.\n";

 for (;;)

 {

 cin >> c;

 if (C =='q' || c == 'Q')

 break;

 switch(c)

 {

 case 'A'; case 'a';

 case 'E'; case 'e';

 case 'I'; case 'i';

 case 'O'; case 'o';

 case 'U'; case 'u';

 nVowels++;

 defaults

 nChars++;

 }

 }

 cout << "Total chars=" << nChars << ", vowels=" << nVowels;

 cout << endl;

 return 0;

 }

3. Multiplication tables.

 #include <iostream>

 #include <iomanip>

 using namespace std;

 int main()

 {

 cout << " 2 3 4 5 6 7 8 9
10 11 12\n";

 cout << "--

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 --\n";

 for (int i-1; i<13; i++) // rows

 {

 for (int j=2; j<13; j++) // columns

 {

 cout << setw(6) << j*i;

 }

 cout << '\n';

 }

 return 0;

 }

4. Flags and bitwise operators.

 #include <iostream>

 using namespace std;

 const int text = 0x01;

 const int binary = 0x02;

 const int read = 0x10;

 const int write = 0x20;

 const int append = 0x40;

 int main()

 {

 int mode = text | append;

 if (mode & text)

 cout << "mode is (text,";

 else if (mode & binary)

 cout << "mode is (binary,";

 if (mode & read)

 cout << "read)\n";

 else if (mode & write)

 cout << "write)\n";

 else if (mode & append)

 cout << "append)\n";

 return 0;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

5. [Prg2]

 #include <iostream>

 using namespace std;

 int main()

 {

 int number = 0;

 for (;;)

 {

 cout << "Enter a number: ";

 cin >> number;

 if (number == 0)

 break;

 cout << "Thank you. Your number was " << number << "\n";

 cout << endl ;

 }

 return 0;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 4: Arrays, Pointers and References

Overview

So far, we've covered all the basic data types of consequence and have accumulated a basic
knowledge of how to perform calculations and make decisions in a program. This chapter is
about broadening the application of the basic programming techniques that we have covered so
far, from using single data elements to working with whole collections of data items. In this
chapter, you will learn:
§ What an array is and how you can use it

§ How to declare and initialize arrays of different types
§ How to declare and use multidimensional arrays
§ What a pointer is and how you can use it

§ How to declare and initialize pointers of different types
§ The relationship between arrays and pointers
§ What a reference is, how it is declared, and some initial ideas on its uses

§ How to create and allocate memory for variables dynamically

Handling Multiple Data Values of the Same Type

We already know how to declare and initialize variables of various types, which each hold a
single item of information and which we will refer to as data elements. We know how to create
a single character in a char variable, a single integer in a variable of type int or of type long,
or a single floating point number in a variable of type float. The most obvious extension to

these ideas is to be able to reference several data elements of a particular type with a single
variable name. This would enable you to handle applications of a much broader scope.

Let's think about an example of where you might need this. Suppose that you needed to write a
payroll program. Using a separately-named variable for each individual's pay, tax liability, and
so on, would be an uphill task to say the least. A much more convenient way to handle such a
problem would be to reference an employee by some kind of generic name — EmployeeName

to take an imaginative example — and to have other generic names for the kinds of data related
to each employee, such as Pay, Tax, and so on. Of course, you would also need some means

of picking out a particular employee from the whole bunch, together with the data from the
generic variables associated with them. This kind of requirement arises with any collection of
like entities that you want to handle in your program, whether they're baseball players or
battleships. Naturally, C++ provides you with a way to deal with this.

Arrays

The basis for the solution to all of these problems is provided by the array in C++. An array is
simply a number of memory locations, each of which can store an item of data of the same data
type and which are all referenced through the same variable name. The employee names in a
payroll program could be stored in one array, the pay for each employee in another, and the tax
due for each employee could be stored in a third array.

Individual items in an array are specified by an index value which is simply an integer
representing the sequence number of the elements in the array, the first having the sequence
number 0, the second 1, and so on. You can also envisage the index value of an array element
as an offset from the first element in an array. The first element has an offset of 0 and therefore

an index of 0, and an index value of 3 will refer to the fourth element of an array. For our payroll,
we could arrange our arrays so that if an employee's name was stored in the EmployeeName

array at a given index value, then the arrays Pay and Tax would store the associated data on

pay and tax for the same employee in the array positions referenced by the same index value.

The basic structure of an array is illustrated in the figure below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This shows an array, called Height, with six elements, each storing a different value. These

might be the heights of the members of a family, for instance, recorded to the nearest inch. As
there are six elements, the index values run from 0 through 5. To refer to a particular element,

you write the array name, followed by the index value of the particular element between square
brackets. The third element is referred to as Height[2], for example. Some people like to

think of the index as the offset from the first element, so for example, the fourth element is offset
by 3 from the first element.

The amount of memory required to store each element will be determined by its type, and all the

elements of an array will be stored in a contiguous block of memory.

Declaring Arrays

You declare an array in essentially the same way as you declared the variables that we have

seen up to now, the only difference being that the number of elements in the array is specified
between square brackets immediately following the array name. For example, we could declare
the integer array Height, shown in the previous figure, with the following declaration statement:

 long Height[6];

Since each long value occupies 4 bytes in memory, the whole array requires 24 bytes. Arrays

can be of any size, subject to the constraints imposed by the amount of memory in the
computer that your program will be running on.

You can declare arrays to be of any type. For example, to declare arrays intended to store the

capacity and power output of a series of engines, you could write the following:

 double cubic_inches[10];

 double horsepower[10];

If auto mechanics are your thing, this would enable you to store the cubic capacity and power
output of up to 10 engines, referenced by index values from 0 to 9. As we have seen before

with other variables, you can declare multiple arrays of a given type in a single statement, but in
practice it is better to declare variables in separate statements.

Try it Out: - Using Arrays

As a basis for an exercise in using arrays, let's imagine that we have kept a record of both the

amount of gas we have bought for the car and the odometer reading on each occasion. We can
write a program to analyze this data to see how the gas consumption looks on each occasion
that we bought gas:

 // EX4_01.CPP

 // Calculating gas mileage

 #include <iostream>

 #include <iomanip>

 using namespace std;

 int main()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 const int MAX = 20; // Maximum number of
values

 double gas[MAX]; // Gas quantity in
gallons

 long miles[MAX]; // Odometer readings

 int count = 0; // Loop counter

 char indicator = 'y'; // Input indicator

 while((indicator == 'y' || indicator == 'Y') && count < MAX)

 {

 cout << endl

 << "Enter gas quantity: ";

 cin >> gas[count]; // Read gas quantity

 cout << "Enter odometer reading: ";

 cin >> miles[count]; // Read odometer value

 ++count;

 cout << "Do you want to enter another(y or n)? ";

 cin >> indicator;

 }

 if(count <= 1) // count = 1 after 1
entry

 { // completed - we need at
least 2

 cout << endl

 << "Sorry - at least two readings are necessary.";

 return 0;

 }

 // Output results from 2nd entry to last entry

 for(int i = 1; i < count; i++)

 cout << endl

 << setw(2) << i <<"." // Output sequence number

 << "Gas purchased = " << gas[i] << " gallons" // Output gas

 << " resulted in " // Output miles per
gallon

 << (miles[i] - miles[i - 1])/gas[i] << " miles per gallon.";

 cout << endl;

 return 0;

 }

How It Works

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Since we need to take the difference between two odometer readings to calculate the miles
covered for the gas used, we only use the odometer reading from the first pair of input values —
we ignore the gas bought in the first instance. The typical output produced by this example is
shown in the figure below:

During the second period shown in the output, the traffic must have been really bad — or
maybe the parking brake was always on.

The dimensions of the two arrays gas and miles used to store the input data are determined
by the value of the constant variable MAX. By changing the value of MAX, you can change the

program to accommodate a different maximum number of input values. This technique is
commonly used to make a program flexible in the amount of information that it can handle. Of
course, all the program code must be written to take account of the array dimensions, or of any
other parameters being specified by const variables. However, this presents little difficulty in

practice, so there's no reason why you should not adopt this approach. We'll also see later how
to allocate memory for storing data as the program executes, so that we don't need to fix the
amount of memory allocated for data storage in advance.

Inputting the Data

The data values are read in the while loop. Since the loop variable count can run from 0 to

MAX - 1, we haven't allowed the user of our program to enter more values than the array can
handle. We initialize the variables count and indicator to 0 and 'y' respectively, so that

the while loop is entered at least once. There's a prompt for each input value required and the

value is read into the appropriate array element. The element used to store a particular value is
determined by the variable count, which is 0 for the first input. The array element is specified

in the cin statement by using count as an index, and count is then incremented ready for the

next value.

After you enter each value, the program prompts you for confirmation that another value is to be
entered. The character entered is read into the variable indicator and then tested in the loop

condition. The loop will terminate unless 'y' or 'Y' is entered and the variable count is less

than the specified maximum value, MAX.

Once the input loop ends (by whatever means), the value of count contains one more than the

index value of the last element entered in each array. (Remember, we increment it after we
enter each new element). This is checked in order to verify that at least two pairs of values were
entered. If this wasn't the case, the program ends with a suitable message, since two odometer
values are necessary to calculate a mileage value.

Producing the Results

The output is generated in the for loop. The control variable i runs from 1 to count-1,
allowing mileage to be calculated as the difference between the current element, miles[i]

and the previous element, miles[i - 1]. Note that an index value can be any expression

evaluating to an integer that represents a legal index for the array in question.

If the value of an index expression lies outside of the range corresponding to legitimate array
elements, you will be referencing a spurious data location that may contain other data, garbage,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

or even program code. If the reference to such an element appears in an expression, you will be
using some arbitrary data value in the calculation, which will certainly produce a result that you
did not intend. If you are storing a result in an array element using an illegal index value, you will
overwrite whatever happens to be in that location. When this is part of your program code, the
results will be catastrophic. If you use illegal index values, there are no warnings produced
either by the compiler or at run-time. The only way to guard against this is to code your program
to prevent it happening.

The output is generated by a single cout statement for all values entered, except for the first. A
line number is also generated for each line of output using the loop control variable i. The miles

per gallon is calculated directly in the output statement. You can use array elements in exactly
the same way as any other variables in an expression.

Initializing Arrays

To initialize an array, the initializing values are enclosed within curly braces in the declaration
and placed following an equals sign after the array name. An example of a declaration and
initialization of an array would be this:

 int cubic_inches[5] = { 200, 250, 300, 350, 400 };

The values in the initializing list correspond to successive index values of the array, so in this
case cubic_inches[0] will have the value 200, cubic_inches[1] the value 250,
cubic_inches[2] the value 300, and so on.

You mustn't specify more initializing values than there are elements in the list, but you can

include fewer. If there are fewer, the values are assigned to successive elements, starting with
the first element which has the index 0. The array elements for which you didn't provide an

initial value will be initialized with zero. This isn't the same as supplying no initializing list.
Without an initializing list, the array elements will contain junk values. Also, if you include an
initializing list, there must be at least one initializing value in it, otherwise the compiler will
generate an error message. We can illustrate this with the following, rather limited, example.

Try it Out: — Initializing an Array
 // EX4_02.CPP

 // Demonstrating array initialization

 #include <iostream>

 #include <iomanip>

 using namespace std;

 int main()

 {

 int value[5] = { 1, 2, 3 };

 int Junk [5];

 cout << endl;

 for(int i = 0; i < 5; i++)

 cout << setw(12) << value[i];

 cout << endl;

 for(i = 0; i < 5; i++)

 cout << setw(12) << Junk[i];

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl;

 return 0;

 }

In this example we declare two arrays, the first of which, value, is initialized in part, and the

second, Junk, is not initialized at all. The program generates two lines of output which on my

computer look like this:

The second line (corresponding to values of Junk[0] to Junk[4]) may well be different on

your computer.

How It Works

The first three values of the array value are the initializing values and the last two have the

default value of 0. In the case of Junk, all the values are spurious since we didn't provide any

initial values at all. The array elements will contain whatever values were left there by the
program which last used these memory locations.

A convenient way to initialize a whole array to zero is simply to specify a single initializing value

as 0. For example, the statement,

 long data[100] = {0}; // Initialize all elements to zero

declares the array data, with all one hundred elements initialized with 0.

You can also omit the dimension of an array of numeric type, providing you supply initializing
values. The number of elements in the array will be determined by the number of initializing
values. For example, the array declaration,

 int value[] = { 2, 3, 4 };

defines an array with three elements which will have the initial values 2, 3, and 4.

Character Arrays and String Handling

An array of type char is called a character array and is generally used to store a character

string. A character string is a sequence of characters with a special character appended to
indicate the end of the string. The string terminating character is defined by the escape
sequence '\0', and is sometimes referred to as a null character, being a byte with all bits

as zero. The representation of a string in memory is shown in the figure below:

This illustrates how a string looks in memory and shows a form of declaration for a string that
we will get to in a moment.

Important

Each character in the string occupies one byte, so together with the null
character, a string requires a number of bytes that is one greater than
the number of characters contained in the string.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We can declare a character array and initialize it with a string literal between quotation marks.
For example:

 char movie_star[15] = "Marilyn Monroe";

Note that the terminating '\0' will be supplied automatically by the compiler. If you include one

explicitly in the string literal, you will end up with two of them. You must, however, include space
for the terminating null in the number of elements that you allot to the array.

You can let the compiler work out the length of an initialized array for you, as we saw in the
previous illustration. Have a look at the following declaration:

 char President[] = "Ulysses Grant";

Because the dimension is unspecified, the compiler will allocate space for enough elements to
hold the initializing string, plus the terminating null character. In this case it allocates 14
elements for the array President. Of course, if you want to use this array later for storing a

different string, its length (including the terminating null character) must not exceed 14 bytes. In
general, it is your responsibility to ensure that the array is large enough for any string you might
subsequently want to store.

You may well have heard of Unicode , or seen references to it in the Visual C++ documentation,
so we'll just outline it here so that you know what it refers to. For supporting international
character sets, a character type wchar_t is supported, which uses 2 bytes for each character.

This allows 65,536 different characters to be represented, which makes it possible for all the
national character sets to be given unique 16-bit codes, so they can coexist within a single 2-
byte character set. This makes creating applications intended for multinational markets much
easier.

The definition of the 2-byte character set which incorporates all national character sets, as well
as all other standard technical and publishing symbols, is called Unicode . The MFC provides
facilities for using the Unicode character set in your Windows programs. We won't be going into
any further detail on Unicode in this book, not because it's difficult — it isn't — but simply
because we have to stop somewhere!

String Input

The header file iostream contains definitions of a number of functions for reading characters

from the keyboard. The one that we shall look at here is the function getline(), which reads a

string into a character array. This is typically used with statements such as this:

 const int MAX = 80;

 char name[MAX];

 ...

 cin.getline(name, MAX, '\n');

Note

Some readers have asked for clarification regarding the use and behavior of
cin.getline() as it compares to using the << operator. In particular, a problem
can arise when the former is used immediately after the latter.

These two techniques of obtaining input differ in the way they deal with the
carriage return that typically terminates text entered by the user. Specifically,
<< doesn't remove the carriage return from the input stream, but cin.getline()
does. A potential consequence of this is that when cin.getline() is called after
using <<, it finds the carriage return that's been left in the input buffer and
returns immediately, offering the user no opportunity to provide the input you
were seeking.

If you need to use cin.getline() after using <<, one option available to you is to
call cin.ignore() before doing so, as this will remove the stray carriage return
from the input buffer.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

These statements first declare a char array name with MAX elements and then read characters
from cin using the function getline(). The source of the data, cin, is written as shown, with

a period separating it from the function name. The significance of various parts of the input
statement is shown below:

Characters are read from cin until the '\n' (newline or end line character) character is read,

or when MAX - 1 characters have been read (plus the terminating '\0' is appended),
whichever occurs first. The '\n' character is generated when you press the Return key on your

keyboard, and is therefore usually the most convenient character to end input. You can,
however, specify something else if you wish by changing the last argument. The '\n' isn't
stored in the input array name, but a '\0' is added at the end of the input string in the array.

We will learn more about this form of syntax when we discuss classes later on. Meanwhile, we

can take it for granted, and use it in an example.

Try it Out: — Programming With Strings

We now have enough knowledge to write a simple program to read a string, and then count how
many characters it contains.

 // EX4_03.CPP

 // Counting string characters

 #include <iostream>

 using namespace std;

 int main()

 {

 const int MAX = 80; // Maximum array dimension

 char buffer[MAX]; // Input buffer

 int count = 0; // Character count

 cout << "Enter a string of less than 80 characters:\n";

 cin.getline(buffer, MAX, '\n'); // Read a string until \n

 while(buffer[count] != '\0') // Increment count as long as

 count++; // the current character is

not null

 cout << endl

 << "The string \"" << buffer

 << "\" has " << count << " characters.";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl;

 return 0;

 }

Typical output from this program is illustrated below:

How It Works

This program declares a character array buffer and reads a character string from the

keyboard after displaying a prompt for the input. Reading from the keyboard ends when the
user presses Return, or when MAX-1 characters have been read.

A while loop is used to count the number of characters read. The loop continues as long as

the current character referenced with buffer[count] is not '\0'. This sort of checking on

the current character (while stepping through an array) is a common technique in C++. The only
action in the loop is to increment count for each non-null character.

There is also a library function, strlen(), that can save you the trouble of coding it yourself. If
you use it, you need to include the cstring header file in your program.

Finally in our example, the string and the character count is displayed with a single output
statement. Note how we need to use the escape character '\"' to output a quote.

Multidimensional Arrays

The arrays that we have defined so far with one index are referred to as one-dimensional
arrays. An array can also have more than one index value, in which case it is called a
multidimensional array. Suppose we have a field in which we are growing bean plants in rows
of 10, and the field contains 12 such rows (so there are 120 plants in all). We could declare an
array to record the weight of beans produced by each plant using the following statement:

 double beans[12][10];

This declares the two-dimensional array beans, the first index being the row number, and the

second index the number within the row. To refer to any particular element requires two indices.
For example, we could set the value of the element reflecting the fifth plant in the third row with
the following statement:

 beans[2][4] = 10.7;

Remember that the index values start from zero, so the row index value is 2 and the index for
the fifth plant within the row is 4.

Being successful bean farmers, we might have several identical fields planted with beans in the
same pattern. Assuming that we have eight fields, we could use a three-dimensional array,
declared thus:

 double beans[8][12][10];

This will record production for all of the plants in each of the fields, the leftmost index
referencing a particular field. If we ever get to bean farming on an international scale, we will be
able to use a four-dimensional array, with the extra dimension designating the country.
Assuming that you're as good a salesman as you are a farmer, growing this quantity of beans to
keep up with the demand may start to affect the ozone layer.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Arrays are stored in memory such that the rightmost index value varies most rapidly. You can
visualize the array data[3][4] as three one-dimensional arrays of four elements each. The

arrangement of this array is illustrated below:

Initializing Multidimensional Arrays

To initialize a multidimensional array, you use an extension of the method used for a one-
dimensional array. For example, you can initialize a two-dimensional array, data, with the

following declaration:

 long data[2][4] = {

 { 1, 2, 3, 5 },

 { 7, 11, 13, 17 }

 };

Thus, the initializing values for each row of the array are contained within their own pair of curly
braces. Since there are four elements in each row, there are four initializing values in each
group, and since there are two rows, there are two groups between braces, each group of
initializing values being separated from the next by a comma.

You can omit initializing values in any row, in which case the remaining array elements in the

row will be zero. For example, in the declaration:

 long data[2][4] = {

 { 1, 2, 3 },

 { 7, 11 }

 };

the initializing values have been spaced out to show where values have been omitted. The
elements data[0] [3], data[1] [2], and data[1] [3] have no initializing values and

will therefore be zero.

If you wanted to initialize the whole array with zeros you could simply write:

 long data[2][4] = {0};

If you are initializing arrays with even more dimensions, remember that you need as many

nested braces for groups of initializing values as there are dimensions in the array.

Try it Out: — Storing Multiple Strings

We can use a single two-dimensional array to store several strings. We can see how this works

with an example:

 // EX4_04.CPP

 // Storing strings in an array.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include <iostream>

 using namespace std;

 int main()

 {

 char stars[6][80] = { "Robert Redford",

 "Hopalong Cassidy",

 "Lassie"

 "Slim Pickens",

 "Boris Karloff",

 "Oliver Hardy"

 };

 int dice = 0;

 cout << endl

 << " Pick a lucky star!"

 << " Enter a number between 1 and 6: ";

 cin >> dice;

 if(dice >= 1 && dice <= 6) // Check input
validity

 cout << endl // Output star name

 << "Your lucky star is " << stars[dice - 1];

 else

 cout << endl // Invalid input

 << "Sorry, you haven't got a lucky star.";

 cout << endl;

 return 0;

 }

How It Works

Apart from its incredible inherent entertainment value, the main point of interest in this example
is the declaration of the array stars. It is a two-dimensional char array, which can hold up to 6

strings, each of which can be up to 80 characters (including the terminating null character that is
automatically added by the compiler). The initializing strings for the array are enclosed between
braces and separated by commas.

One disadvantage of using arrays in this way is the memory that is almost invariably left
unused. All of our strings are less than 80 characters and the surplus elements in each row of
the array are wasted.

You can also let the compiler work out how many strings you have by omitting the first array
dimension and declaring it as follows:

 char stars[][80] = { "Robert Redford",

 "Hopalong Cassidy",

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 "Lassie",

 "Slim Pickens",

 "Boris Karloff",

 "Oliver Hardy"

 };

This will cause the compiler to define the first dimension to accommodate the number of

initializing strings that you have specified. Since we have six the result is exactly the same, but
it avoids the possibility of an error. Here you can't omit both array dimensions. The rightmost
dimension must always be defined.

Important

Note the semicolon at the end of the declaration. It's easy to forget it
when there are initializing values for an array.

Where we need to reference a string for output in the following statement, we need only specify
the first index value:

 cout << endl // Output star
name

 << "Your lucky star is " << stars[dice - 1];

A single index value selects a particular 80-element sub-array, and the output operation will
display the contents up to the terminating null character. The index is specified as dice - 1 as

the dice values are from 1 to 6, whereas the index values clearly need to be from 0 to 5.

Indirect Data Access

The variables that we have dealt with so far provide you with the ability to name a memory
location in which you can store data of a particular type. The contents of a variable are either
entered from an external source, such as the keyboard, or calculated from other values that are
entered. There is another kind of variable in C++ which does not store data that you normally
enter or calculate, but greatly extends the power and flexibility of your programs. This kind of
variable is called a pointer.

What is a Pointer?

Each memory location that you use to store a data value has an address. The address provides

the means for your PC hardware to reference a particular data item. A pointer is a variable that
stores an address of another variable of a particular type. A pointer has a variable name just like
any other variable and also has a type that designates what kind of variables its contents refer
to. Note that the type of a pointer variable includes the fact that it's a pointer. A variable that is a
pointer, that can contain addresses of locations in memory containing values of type int, is of

type 'pointer to int'.

Declaring Pointers

The declaration for a pointer is similar to that of an ordinary variable, except that the pointer

name has an asterisk in front of it to indicate that it's a variable which is a pointer. For example,
to declare a pointer pnumber of type long, you could use the following statement:

 long* pnumber;

This declaration has been written with the asterisk close to the type name. If you wish, you can
also write it as:

 long *pnumber;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The compiler won't mind at all. However, the type of the variable pnumber is 'pointer to long',

which is often indicated by placing the asterisk close to the type name.

You can mix declarations of ordinary variables and pointers in the same statement. For
example:

 long* pnumber, number = 99;

This declares the pointer pnumber of type 'pointer to long' as before, and also declares the
variable number, of type long. On balance, it's probably better to declare pointers separately

from other variables, otherwise the statement can appear misleading as to the type of the
variables declared, particularly if you prefer to place the * adjacent to the type name. The

following statements certainly look clearer and putting declarations on separate lines enables
you to add comments for them individually, making for a program that is easier to read.

 long number = 99; // Declaration and initialization of long
variable

 long* pnumber; // Declaration of variable of type pointer to
long

It's a common convention in C++ to use variable names beginning with p to denote pointers.

This makes it easier to see which variables in a program are pointers, which in turn can make a
program easier to follow.

Let's take an example to see how this works, without worrying about what it's for. We will come
on to how this is used very shortly. Suppose we have the long integer variable number, as we
declared it above containing the value 99. We also have the pointer, pnumber, of type pointer

to long, which we could use to store the address of our variable number. But how can we

obtain the address of a variable?

The Address-Of Operator

What we need is the address-of operator, &. This is a unary operator which obtains the address

of a variable. It's also called the reference operator, for reasons we will discuss later in this
chapter. To set up the pointer that we have just discussed, we could write this assignment
statement:

 pnumber = &number; // Store address of number in pnumber

The result of this operation is illustrated below:

You can use the operator & to obtain the address of any variable, but you need a pointer of the

same type to store it. If you want to store the address of a double variable for example, the
pointer must have been declared as double*, which is type 'pointer to double'.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using Pointers

Taking the address of a variable and storing it in a pointer is all very well, but the really
interesting aspect is how you can use it. Fundamental to using a pointer is accessing the data
value in the variable to which a pointer points. This is done using the indirection operator, *.

The Indirection Operator

The indirection operator, *, is used with a pointer to access the contents of the variable

pointed to. The name 'indirection operator' stems from the fact that the data is accessed
indirectly. It is also called the de-reference operator, and the process of accessing the data in
the variable pointed to by a pointer is termed de-referencing the pointer.

One aspect of this operator that can seem confusing is the fact that we now have several
different uses for the same symbol, *. It is the multiply operator, the indirection operator, and it
is used in the declaration of a pointer. Each time you use *, the compiler is able to distinguish

its meaning by the context. When you multiply two variables, A*B for instance, then there's no

meaningful interpretation of this expression for anything other than a multiply operation.

Why Use Pointers?

A question that usually springs to mind at this point is, "Why use pointers at all?" After all, taking
the address of a variable you already know and sticking it in a pointer so that you can de-
reference it seems like an overhead you can do without. There a several reasons why pointers
are important.

First of all, as you will see shortly, you can use pointer notation to operate on data stored in an
array, which often executes faster than if you use array notation. Secondly, when we get to
define our own functions later in the book, you will see that pointers are used extensively for
enabling access within a function to large blocks of data, such as arrays, that are defined
outside the function. Thirdly and most importantly, you will also see later that you can allocate
space for variables dynamically, that is, during program execution. This sort of capability allows
your program to adjust its use of memory depending on the input to the program. Since you
don't know in advance how many variables you are going to create dynamically, the only way
you can do this is by using pointers — so make sure you get the hang of this bit.

Try it Out: — Using Pointers

We can try out various aspects of pointer operations with an example:

 //EX4 05.CPP

 // Exercising pointers

 #include <iostream>

 using namespace std;

 int main()

 {

 long* pnumber = NULL; // Pointer declaration &
initialization

 long number1 = 55, number2 = 99;

 pnumber = &number1; // Store address in pointer

 *pnumber += 11; // Increment number1 by 11

 cout << endl

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << "number1 = " << number1

 << " &number1 = " << hex << pnumber;

 pnumber = &number2; // Change pointer to address of
number2

 number1 = *pnumber*10; // 10 times number2

 cout << endl

 << "number1 = " << dec << number1

 << " pnumber = " << hex << pnumber

 << " *pnumber = " << dec << *pnumber;

 cout << endl;

 return 0;

}

On my computer, this example generates the following output:

How It Works

There is no input to this example. All operations are carried out with the initializing values for the
variables. After storing the address of number1 in the pointer pnumber, the value of number1

is incremented indirectly through the pointer in this statement:

 *pnumber += 11; // Increment number1 by 11

Note that when we first declared the pointer pnumber, we intialized it to NULL. We'll discuss

pointer initialization in the next section .

The indirection operator determines that we are adding 11 to the contents of the variable
pointed to, number1. If we forgot the *, we would be attempting to add 11 to the address stored

in the pointer.

The values of number1, and the address of number1 stored in pnumber, are displayed. We

use the hex manipulator to generate the address output in hexadecimal notation.

You can obtain the value of ordinary integer variables as hexadecimal output by using the
manipulator hex. You send it to the output stream in the same way that we have applied endl,

with the result that all following output will be in hexadecimal notation. If you want the following
output to be decimal, you need to use the manipulator dec in the next output statement to

switch the output back to decimal mode again.

After the first line of output, the contents of pnumber are set to the address of number2. The
variable number1 is then changed to the value of 10 times number2:

 number1 = *pnumber*10; // 10 times number2

This is calculated by accessing the contents of number2 indirectly through the pointer. The

second line of output shows the results of these calculations

The address values you see in your output may well be different from those shown in the
screenshot above since they reflect where the program is loaded in memory, which depends on

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

how your operating system is configured. The address values are hexadecimal numbers. Note
that the addresses &number1 and pnumber (when it contains &number2) differ by four bytes.

This shows that number1 and number2 occupy adjacent memory locations, as a long variable

requires four bytes. The output demonstrates that everything is working as we expect.

Initializing Pointers

Just as with arrays, using pointers that aren't initialized is extremely hazardous. If you do this,
you can overwrite random areas of memory. The resulting damage just depends on how
unlucky you are, so it's more than just a good idea to initialize your pointers. It's very easy to
initialize a pointer to the address of a variable that has already been defined. Here you can see
that we have initialized the pointer pnumber with the address of the variable number just by

using the operator & with the variable name:

 int number = 0; // Initialized integer variable

 int* pnumber = &number; // Initialized pointer

When initializing a pointer with another variable, remember that the variable must already have
been declared prior to the pointer declaration.

Of course, you may not want to initialize a pointer with the address of a specific variable when
you declare it. In this case, you can initialize it with the pointer equivalent of zero. For this,
Visual C++ provides the symbol NULL that is already defined as 0, so you can declare and

initialize a pointer using the following statement, rather like we did in the last example:

 int* pnumber = NULL; // Pointer not pointing to anything

This ensures that the pointer doesn't contain an address that will be accepted as valid, and
provides the pointer with a value that you can check in an if statement, such as:

 if(pnumber == NULL)

 cout << endl << "pnumber is null.";

Of course, you can also initialize a pointer explicitly with 0, which will also ensure that it is
assigned a value that doesn't point to anything. No object can be allocated the address 0, so in
effect 0 used as an address indicates that the pointer has no target. In spite of it being arguably
somewhat less legible, if you expect to run your code with other compilers, it is preferable to use
0 as an initializing value for a pointer that you want to be null.

This is also more consistent with the current 'good practice' in C++, the argument being that if
you have an object with a name in C++, it should have a type. However, NULL does not have a

type — it's an alias for 0.

To use 0 as the initializing value for a pointer you would simply write:

 int* pnumber = 0; // Pointer not pointing to
anything

To check whether a pointer contains a valid address, you could use the statement:

 if(pnumber == NULL) // or pnumber == 0

 cout << endl << ''pnumber is null.";

Equally well, you could use the statement,

 if(!pnumber)

 cout << endl << "pnumber is null.";

which does exactly the same as the previous example.

Of course, you can also use the form:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if(pnumber != 0)

 // Pointer is valid, so do something useful

Important

The address pointed to by the NULL pointer contains a junk value. You
should never attempt to de-reference a null pointer as it will cause your
program to end immediately.

Pointers to char

A pointer of type char* has the interesting property that it can be initialized with a string literal.

For example, we can declare and initialize such a pointer with the statement:

 char* proverb = "A miss is as good as a mile.";

This looks very similar to initializing a char array but it's slightly different. This will create a

string literal (actually an array of type const char) with the character string appearing
between the quotes and terminated with \0, and store the address of the literal in the pointer

proverb. The address of the literal will be the address of its first character. This is shown in the

figure below:

Try it Out: — Lucky Stars With Pointers

We could rewrite our lucky stars example using pointers instead of an array to see how that
would work:

 // EX4_06.CPP

 // Initializing pointers with strings

 #include <iostream>

 using namespace std;

 int main()

 {

 char* pstr1 - "Robert Redford";

 char* pstr2 = "Hopalong Cassidy";

 char* pstr3 = "Lassie";

 char* pstr4 = "Slim Pickens";

 char* pstr5 = "Boris Karloff";

 char* pstr6 = "Oliver Hardy";

 char* pstr = "Your lucky star is ";

 int dice = 0;

 cout << endl

 << " Pick a lucky star!"

 << " Enter a number between 1 and 6: ";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cin >> dice;

 cout << endl;

 switch(dice)

 {

 case 1: cout << pstr << pstrl;

 break;

 case 2: cout << pstr << pstr2;

 break;

 case 3: cout << pstr << pstr3;

 break;

 case 4: cout << pstr << pstr4;

 break;

 case 5: cout << pstr << pstr5;

 break;

 case 6: cout << pstr << pstr6;

 break;

 default: cout << "Sorry, you haven't got a lucky star.";

 }

 cout << endl;

 return 0;

 }

How It Works

The array in Ex4_04.cpp has been replaced by the six pointers, pstr1 to pstr6, each

initialized with a name. We have also declared an additional pointer, pstr, initialized with the

phrase that we want to use at the start of a normal output line. Because we have discrete
pointers, it is easier to use a switch statement to select the appropriate output message than
to use an if as we did in the original version. Any incorrect values that are entered are all taken

care of by the default option of the switch.

Outputting the string pointed to by a pointer couldn't be easier. As you can see, you simply write
the pointer name. It may cross your mind at this point that in Ex4_05.cpp we wrote a pointer

name in the output statement and the address that it contained was displayed. Why is it
different here? The answer lies in the way the output operation views a pointer of type 'pointer
to char'. It treats a pointer of this type as a string (which is an array of char), and so outputs

the string itself, rather than its address.

Using pointers has eliminated the waste of memory that occurred with the array version of this

program, but the program seems a little long-winded now — there must be a better way. Indeed
there is — using an array of pointers.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: — Arrays of Pointers

With an array of pointers of type char, each element can point to an independent string, and

the lengths of each of the strings can be different. We can declare an array of pointers in the
same way that we declare a normal array. Let's go straight to rewriting the previous example
using a pointer array:

 // EX4_07.CPP

 // Initializing pointers with strings

 #include <iostream>

 using namespace std;

 int main()

 {

 char* pstr[] = { "Robert Redford", //
Initializing a pointer array

 "Hopalong Cassidy",

 "Lassie",

 "Slim Pickens",

 "Boris Karloff",

 "Oliver Hardy"

 };

 char* pstart = "Your lucky star is ";

 int dice = 0;

 cout << endl

 << " Pick a lucky star!"

 << " Enter a number between 1 and 6: ";

 cin >> dice;

 cout << endl;

 if(dice >= 1 && dice <= 6) // Check
input validity

 cout << pstart << pstr[dice - 1]; // Output
star name

 else

 cout << "Sorry, you haven't got a lucky star."; // Invalid
input

 cout << endl;

 return 0;

 }

How It Works

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

In this case, we are nearly getting the best of all possible worlds. We have a one-dimensional
array of char pointers declared such that the compiler works out what the dimension should be

from the number of initializing strings. The memory usage that results from this is illustrated
below:

Compared to using a 'normal' array, the pointer array carries less overhead in terms of space.
With an array, we would need to make each row the length of the longest string, and six rows of
seventeen bytes each is 102 bytes, so by using a pointer array we have saved a whole... -1
bytes! What's gone wrong? The simple truth is that for this small number of relatively short
strings, the size of the extra array of pointers is significant. You would make savings if you were
dealing with more strings that were longer and had more variable lengths.

Space saving isn't the only advantage that you get by using pointers. In a lot of circumstances
you save time too. Think of what happens if you want to move 'Oliver Hardy' to the first position
and 'Robert Redford' to the end. With the pointer array as above you just need to swap the
pointers — the strings themselves stay where they are. If we had stored these simply as strings,
as we did in Ex4_04.cpp, a great deal of copying would be necessary — we would need to

copy the whole string 'Robert Redford' to a temporary location while we copied 'Oliver Hardy' in
its place, and then we would need to copy 'Robert Redford' to the end position. This would
require significantly more computer time to execute.

Since we are using pstr as the array name, the variable holding the start of the output
message needs to be different, so we have called it pstart. We select the string that we want

to output by means of a very simple if statement, similar to that of the original version of the

example. We either display a star selection, or a suitable message if the user enters an invalid
value.

One weakness of the way we have written the program is that the code assumes there are six
options, even though the compiler is allocating the space for the pointer array from the number
of initializing strings that we supply. So if we add a string to the list, we have to alter other parts
of the program to take account of this. It would be nice to be able to add strings and have the
program automatically adapt to however many strings there are.

The sizeof Operator

A new operator will help us here. The sizeof operator produces an integer constant that gives

the number of bytes occupied by its operand. For example, with the variable dice from the

previous example, the expression,

 cout << sizeof dice;

will output the value 4, since dice was declared as int and therefore occupies 4 bytes.

The sizeof operator can be applied to an element in an array or to the whole array. When the

operator is applied to an array name by itself, it produces the number of bytes occupied by the
whole array, whereas when it is applied to a single element with the appropriate index value or

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

values, it results in the number of bytes occupied by that element. Thus, in the last example, we
could output the number of elements in the pstr array with the expression:

 cout << (sizeof pstr) / (sizeof pstr[0]);

The expression divides the number of bytes occupied by the whole pointer array by the number
of bytes occupied by the first element of the array. Since all elements of the array occupy the
same amount of memory, the result is the number of elements in the array.

Important

Remember that pstr is an array of pointers — using the sizeof
operator on the array or on individual elements will not tell us anything
about the memory occupied by the text strings.

The sizeof operator can also be applied to a type name rather than a variable, in which case

the result is the number of bytes occupied by a variable of that type. The type name should be
enclosed between parentheses. For example, after executing the statement,

 long_size = sizeof(long);

the variable long_size will have the value 4.

The result returned by sizeof is obviously an integer and you can always treat it as such. Its

precise type is actually size_t, which is used for values measured in bytes. The type size_t,

which will pop up in various contexts from time to time, is defined in various standard libraries in
Visual C++ and is equivalent to unsigned int.

Try it Out: — Using the sizeof Operator

We can use this to amend the last example so that it automatically adapts to an arbitrary

number of string values from which to select:

 // EX4_08.CPP

 // Flexible array management using sizeof

 #include <iostream>

 using namespace std;

 int main()

 {

 char* pstr[] = { "Robert Redford", // Initializing a
pointer array

 "Hopalong Cassidy",

 "Lassie",

 "Slim Pickens",

 "Boris Karloff",

 "Oliver Hardy"

 };

 char* pstart = "Your lucky star is ";

 int count = (sizeof pstr) / (sizeof pstr[0]); // Number of
array elements

 int dice = 0;

 cout << endl

 << " Pick a lucky star!"

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << " Enter a number between 1 and " << count << ": ";

 cin >> dice;

 cout << endl;

 if(dice >= 1 && dice <= count) // Check
input validity

 cout << pstart << pstr[dice - 1]; // Output
star name

 else

 cout << "Sorry, you haven't got a lucky star."; // Invalid
input

 cout << endl;

 return 0;

 }

How It Works

As you can see, the changes required in the example are very simple. We just calculate the
number of elements in the pointer array pstr and store the result in count. Then, wherever the

total number of elements in the array was referenced as 6, we just use the variable count. You

could now just add a few more names to the list of lucky stars and everything affected in the
program will be adjusted automatically.

Constant Pointers and Pointers to Constants

The array pstr in the last example is clearly not intended to be modified in the program, nor

are the strings being pointed to, nor the variable count. It would be a good idea to ensure that

these didn't get modified in error in the program. We could very easily protect the variable
count from accidental modification by writing this:

 const int count = (sizeof pstr) / (sizeof pstr[0]);

However, the array of pointers deserves closer examination. We declared the array like this:

 char* pstr[] = { "Robert Redford", // Initializing a pointer
array

 "Hopalong Cassidy",

 "Lassie",

 "Slim Pickens",

 "Boris Karloff",

 "Oliver Hardy"

 };

Each pointer in the array is initialized with the address of a string literal, "Robert Redford",
"Hopalong Cassidy" and so on. The type of a string literal is 'array of const char' so we are

storing the address of a const array in a non-const pointer. The reason the compiler allows us

to assign a string literal to an array of char* is for reasons of backwards compatibility with

existing code. If you try to alter the character array with a statement like this,

 *pstr[0] = 'X';

then the program will crash when you try to run it.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We don't really want to have unexpected behavior like the program crashing at run time, and we
can prevent it. A far better way of writing the declaration is as follows:

 const char* pstr[] = { "Robert Redford", // Array of pointers

 "Hopalong Cassidy", // to constants

 "Lassie",

 "Slim Pickens",

 "Boris Karloff",

 "Oliver Hardy"

 };

In this case, there is no ambiguity about the const-ness of the objects pointed to by the

elements of the pointer array. If you now attempt to change these objects, the compiler will flag
this as an error at compile time.

However, we could still legally write this statement:

 pstr[0] = pstr[1];

Those lucky individuals due to be awarded Mr. Redford would get Mr. Cassidy instead, since
both pointers now point to the same name. Note that this isn't changing the values of the objects
pointed to by the pointer array element — it is changing the value of the pointer stored in
pstr[0]. We should therefore inhibit this kind of change as well, since some people may

reckon that good old Hoppy may not have the same sex appeal as Robert. We can do this with
the following statement:

 // Array of constant pointers to constants

 const char* const pstr[] = { "Robert Redford",

 "Hopalong Cassidy",

 "Lassie",

 "Slim Pickens",

 "Boris Karloff",

 "Oliver Hardy"

 };

To summarize, we can distinguish three situations relating to const, pointers and the objects to

which they point:
§ A pointer to a constant object
§ A constant pointer to an object

§ A constant pointer to a constant object

In the first situation, the object pointed to cannot be modified but we can set the pointer to point
to something else:

 const char* pstring = "Some text";

In the second, the address stored in the pointer can't be changed, but the object pointed to can
be:

 char* const pstring = "Some text";

Finally, in the third situation, both the pointer and the object pointed to have been defined as
constant and, therefore, neither can be changed:

 const char* const pstring = "Some text";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Important

Of course, all this applies to pointers of any type. Type char is used
here purely for illustrative purposes.

Pointers and Arrays

Array names can behave like pointers under some circumstances. In most situations, if you use
the name of a one-dimensional array by itself, it is automatically converted to a pointer to the
first element of the array. Note that this is not the case when the array name is used as the
operand of the sizeof operator.

If we have these declarations,

 double* pdata;

 double data[5];

then we can write this assignment:

 pdata = data; // Initialize pointer with the array address

This is assigning the address of the first element of the array data to the pointer pdata. Using

the array name by itself refers to the address of the array. If we use the array name data with

an index value, it refers to the contents of the element corresponding to that index value. So, if
we want to store the address of that element in the pointer, then we have to use the address-of
operator:

 pdata = &data[1];

Here, the pointer pdata will contain the address of the second element of the array.

Pointer Arithmetic

You can perform arithmetic operations with pointers. You are limited to addition and subtraction
in terms of arithmetic, but you can also perform comparisons using pointers to produce a logical
result. Arithmetic with a pointer implicitly assumes that the pointer points to an array, and that
the arithmetic operation is on the address contained in the pointer. For the pointer pdata for
example, we could assign the address of the third element of the array data to a pointer with

this statement:

 pdata = &data[2];

In this case, the expression pdata+1 would refer to the address of data[3], the fourth
element of the data array, so we could make the pointer point to this element by writing this

statement:

 pdata += 1; // Increment pdata to the next element

This statement has incremented the address contained in pdata by the number of bytes

occupied by one element of the array data. In general, the expression pdata+n, where n can
be any expression resulting in an integer, will add n*sizeof(double) to the address

contained in the pointer pdata, since it was declared to be of type pointer to double. This is

illustrated below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

In other words, incrementing or decrementing a pointer works in terms of the type of the object
pointed to. Increasing a pointer to long by one changes its contents to the next long address,

and so increments the address by four. Similarly, incrementing a pointer to short by one will

increment the address by two. The more common notation for incrementing a pointer is using
the increment operator. For example, this,

 pdata++; // Increment pdata to the next element

is equivalent to (and more common than) the += form. However, the += form was used above to

make it clear that while the increment value is actually specified as one, the effect is usually an
increment greater than one, except in the case of a pointer to char.

Important

The address resulting from an arithmetic operation on a pointer can be a
value ranging from the address of the first element of the array to the
address which is one beyond the last element. Outside of these limits,
the behavior of the pointer is undefined.

You can, of course, de-reference a pointer on which you have performed arithmetic (there
wouldn't be much point to it otherwise). For example, assuming that pdata is still pointing to

data[2], then this statement,

 *(pdata + 1) = *(pdata + 2);

is equivalent to this:

 data[3] = data[4];

When you want to de-reference a pointer after incrementing the address it contains, the

parentheses are necessary as the precedence of the indirection operator is higher than that of
the arithmetic operators, + or -. If you write the expression *pdata + 1, instead of * (pdata

+ 1), this would add one to the value stored at the address contained in pdata, which is
equivalent to executing data [2] + 1. Since this isn't an lvalue, its use in the assignment

statement above would cause the compiler to generate an error message.

We can use an array name as though it were a pointer for addressing elements of an array. If

we have the same one-dimensional array as before, declared as

 long data[5];

then using pointer notation, we can refer to the element data[3] for example as *(data +

3). This kind of notation can be applied generally so that, corresponding to the elements
data[0], data[1], data[2], we can write *data, *(data + 1), *(data + 2), and

so on.

Try it Out: — Array Names as Pointers

We could exercise this aspect of array addressing with a program to calculate prime numbers (a

prime number is a number divisible only by itself and one).

 // EX4_09.CPP

 // Calculating primes

 #include <iostream>

 #include <iomanip>

 using namespace std;

 int main()

 {

 const int MAX = 100; // Number of primes
required

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 long primes[MAX] = { 2,3,5 }; // First three primes
defined

 long trial = 5; // Candidate prime

 int count = 3; // Count of primes
found

 int found = 0; // Indicates when a
prime is found

 do

 {

 trial += 2; // Next value for

checking

 found = 0; // Set found
indicator

 for(int i = 0; i < count; i++) // Try division by
existing primes

 {

 found = (trial % *(primes + i)) == 0; // True for exact

 // division

 if(found) // If division is
exact

 break; // it's not a prime

 }

 if (found == 0) // We got one...

 *(primes + count++) = trial; // ...so save it in
primes array

 }while(count < MAX);

 // Output primes 5 to a line

 for(int i = 0; i < MAX; i++)

 {

 if(i % 5 == 0) // New line on 1st, and
every 5th line

 cout << endl;

 cout << setw(10) << *(primes + i);

 }

 cout << endl;

 return 0;

 }

If you compile and execute this example you should get the output shown:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

How It Works

We have the usual #include statements for iostream for input and output, and for iomanip

since we will be using a stream manipulator to set the field width for output.

We use the constant MAX to define the number of primes that we want the program to produce.
The primes array, which stores the results, has the first three primes already defined to start

the process off. All the work is done in two loops, the outer do-while loop, which picks the
next value to be checked and adds the value to the primes array if it is prime, and the inner

for loop that actually checks the value to see whether it's prime or not.

The algorithm in the for loop is very simple and is based on the fact that if a number is not a

prime, then it must be divisible by one of the primes found so far — all of which are less than
the number in question, since all numbers are either prime or a product of primes. In fact, only
division by primes less than or equal to the square root of the number in question need to be
checked, so this example isn't as efficient as it might be.

 found = (trial % *(primes + i)) == 0; // True for
exact division

This statement sets the variable found to be 1 if there's no remainder from dividing the value in
trial by the current prime * (primes + i) (remember that this is equivalent to primes

[i]), and 0 otherwise. The if statement causes the for loop to be terminated if found has
the value 1, since the candidate in trial can't be a prime in that case.

After the for loop ends (for whatever reason), it's necessary to decide whether or not the value

in trial was prime. This is indicated by the value in the indicator variable found.

 *(primes + count++) = trial; // ... so save it in
primes array

If trial does contain a prime, this statement stores the value in primes[count] and then

increments count through the postfix increment operator.

Once MAX number of primes have been found, they are output with a field width of 10

characters, 5 to a line, as a result of this statement:

 if(i % 5 == 0) // New line on 1st, and
every 5th line

 cout << endl;

This starts a new line when i has the values 0, 5, 10, and so on.

Try it Out: — Counting Characters Revisited

To see how handling strings works in pointer notation, we could produce a version of the

program we looked at earlier for counting the characters in a string:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // EX4_10.CPP

 // Counting string characters using a pointer

 #include <iostream>

 using namespace std;

 int main()

 {

 const int MAX = 80; // Maximum array dimension

 char buffer[MAX]; // Input buffer

 char* pbuffer = buffer; // Pointer to array buffer

 cout << endl // Prompt for input

 << "Enter a string of less than "

 << MAX << " characters:"

 << endl;

 cin.getline(buffer, MAX, '\n'); // Read a string until \n

 while(*pbuffer) // Continue until \0

 pbuffer++;

 cout << endl

 << "The string \"" << buffer

 << "\" has " << pbuffer - buffer << " characters.";

 cout << endl;

 return 0;

 }

How It Works

Here the program operates using the pointer pbuffer rather than the array name buffer. We
don't need the count variable since the pointer is incremented in the while loop until \0 is

found. When the \0 is found, pbuffer will contain the address of that position in the string.

The count of the number of characters in the string entered is therefore the difference between
the address stored in the pointer pbuffer and the address of the beginning of the array
denoted by buffer.

We could also have incremented the pointer in the loop by writing the loop like this:

 while(*pbuffer++); // Continue until \0

Now the loop contains no statements, only the test condition. This would work adequately,
except for the fact that the pointer would be incremented after \0 was encountered, so the

address would be one more than the last position in the string. We would therefore need to
express the count of the number of characters in the string as pbuffer - buffer - 1.

Note that here we can't use the array name in the same way that we have used the pointer. The
expression buffer++ is strictly illegal since you can't modify an array name — it isn't a pointer.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using Pointers with Multidimensional Arrays

Using a pointer to store the address of a one-dimensional array is relatively straightforward, but
with multidimensional arrays, things can get a little complicated. If you don't intend to do this,
you can skip this section as it's a little obscure, but if your previous experience is with C, this
section is worth a glance.

If you have to use a pointer with multidimensional arrays, you need to keep clear in your mind
what is happening. By way of illustration, we can use an array beans, declared as follows:

 double beans[3][4];

We can declare and assign a value to the pointer pbeans as follows:

 double* pbeans;

 pbeans = &beans[0][0];

Here we are setting the pointer to the address of the first element of the array, which is of type
double. We could also set the pointer to the address of the first row in the array with the

statement:

 pbeans = beans[0];

This is equivalent to using the name of a one-dimensional array which is replaced by its
address. We used this in the earlier discussion. However, because beans is a two-dimensional

array, we cannot set an address in the pointer with the following statement:

 pbeans = beans; // Will cause an error!!

The problem is one of type. The type of the pointer you have defined is double*, but the array

is of type double[3][4]. A pointer to store the address of this array must be of type double*
[4]. C++ associates the dimensions of the array with its type and the statement above is only

legal if the pointer has been declared with the dimension required. This is done with a slightly
more complicated notation than we have seen so far:

 double (*pbeans)[4];

The parentheses here are essential, otherwise you would be declaring an array of pointers.

Now the previous statement is legal, but this pointer can only be used to store addresses of an
array with the dimensions shown.

Pointer Notation with Multidimensional Arrays

You can use pointer notation with an array name to reference elements of the array. You can
reference each element of the array beans that we declared earlier, which had three rows of

four elements, in two ways:

§ Using the array name with two index values.
§ Using the array name in pointer notation

Therefore, the following two statements are equivalent:

 beans[i][j]

 ((beans + i) + j)

Let's look at how these work. The first line uses normal array indexing to refer to the element
with offset j in row i of the array.

We can determine the meaning of the second line by working from the inside, outwards. beans
refers to the address of the first row of the array, so beans + i refers to row i of the array.

The expression *(beans + i) is the address of the first element of row i, so * (beans +

i) + j is the address of the element in row i with offset j. The whole expression therefore

refers to the value of that element.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you really want to be obscure — and it isn't recommended that you do so — the following two
statements, where we have mixed array and pointer notation, are also legal references to the
same element of the array:

 *(beans[i] + j)

 (*(beans + i))[j]

There is yet another aspect to the use of pointers which is really the most important of all: the

ability to create variables dynamically. We will look into that next.

Dynamic Memory Allocation

Working with a fixed set of variables in a program can be very restrictive. The need often arises
within an application to decide the amount of space to be allocated for storing different types of
variables at execution time, depending on the input data for the program. With one set of data it
may be appropriate to use a large integer array in a program, whereas with a different set of
input data, a large floating point array may be required. Obviously, since any dynamically
allocated variables can't have been defined at compile time, they can't be named in your source
program. When they are created, they are identified by their address in memory which is
contained within a pointer. With the power of pointers and the dynamic memory management
tools in Visual C++, writing your programs to have this kind of flexibility is quick and easy.

The Free Store, Alias the Heap

In most instances, when your program is executed there is unused memory in your computer.
This unused memory is called the heap in C++, or sometimes the free store. You can allocate
space within the free store for a new variable of a given type using a special operator in C++
which returns the address of the space allocated. This operator is new, and it's complemented

by the operator delete, which de-allocates memory previously allocated by new.

You can allocate space in the free store for some variables in one part of a program, and then

release the allocated space and return it to the free store once you have finished with the
variables concerned. This makes the memory available for reuse by other dynamically allocated
variables, later in the same program.

You would want to use memory from the free store whenever you need to allocate memory for

items that can only be determined at run time. One example of this might be allocating memory
to hold a string entered by the user of your application. There is no way you can know in
advance how large this string will need to be, so you would allocate the memory for the string at
run time, using the new operator. Later, we'll look at an example of using the free store to

dynamically allocate memory for an array, where the dimensions of the array are determined by
the user at run time.

This can be a very powerful technique; it enables you to use memory very efficiently, and in
many cases, it results in programs that can handle much larger problems, involving
considerably more data than otherwise might be possible.

The Operators new and delete

Suppose that we need space for a double variable. We can define a pointer to type double

and then request that the memory be allocated at execution time. We can do this using the
operator new with the following statements:

 double* pvalue = NULL; // Pointer initialized with null

 pvalue = new double; // Request memory for a double variable

This is a good moment to recall that all pointers should be initialized. Using memory dynamically

typically involves a number of pointers floating around, so it's important that they should not

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

contain spurious values. You should try to arrange that if a pointer doesn't contain a legal
address value, it is set to 0.

The new operator in the second line of code above should return the address of the memory in

the free store allocated to a double variable, and this address will be stored in the pointer
pvalue. We can then use this pointer to reference the variable using the indirection operator as

we have seen. For example:

 *pvalue = 9999.0;

However, using a dynamic variable as shown here is very risky. The memory may not have
been allocated, because the free store had been used up. Alternatively, it could be that the free
store is fragmented by previous usage, meaning that there isn't a sufficient number of
contiguous bytes to accommodate the variable for which you want to obtain space. In this case,
the operator new will return a NULL pointer value, so before using it we should always test for a

valid address being returned and stored in our pointer. We could have done this by writing the
following:

 if(!(pvalue = new double))

 {

 cout << endl

 << "Out of memory.";

 exit(1);

 }

Here, we have called for the space to be allocated and the address to be stored in the pointer,
pvalue, all within the if statement. If a NULL pointer value was returned, the if expression

will be true, so the message will be displayed and the exit() function called to end the
program. The exit() function is used when you want to terminate a program abnormally. The

value between the parentheses is an integer (int) value that can be used to indicate the
circumstances under which the program was terminated. If you use the exit() function, you

should include the header file cstdlib in your program.

You can also initialize a variable created by new. Taking our example of the double variable
which was allocated by new and the address stored in pvalue, we could have set the value to

999.0 as it was created with this statement:

 pvalue = new double(999.0); // Allocate a double and initialize
it

When you no longer need a variable that has been dynamically allocated, you can free up the
memory that it occupies in the free store with the delete operator:

 delete pvalue; // Release memory pointed to by
pvalue

This ensures that the memory can be used subsequently by another variable. If you don't use
delete, and subsequently store a different address value in the pointer pvalue, it will be

impossible to free up the memory or to use the variable that it contains, since access to the
address will have been lost.

Allocating Memory Dynamically for Arrays

Allocating memory for an array dynamically is very straightforward. If we wanted to allocate an
array of type char, assuming pstr is a pointer to char, we could write the following statement:

 pstr = new char[20]; // Allocate a string of twenty characters

This allocates space for a char array of 20 characters and stores its address in pstr.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

To remove the array that we have just created in the free store, we must use the delete

operator. The statement would look like this:

 delete [] pstr; // Delete array pointed to by pstr

Important

Note the use of square brackets to indicate that what we are deleting is
an array. When removing arrays from the free store, you should always
include the square brackets or the results will be unpredictable. Note
also that you do not specify any dimensions here, simply [].

Try it Out: — Using Free Store

We can see how this works in practice by rewriting our program to calculate an arbitrary number
of primes, but this time using memory in the free store to store them.

 // EX4_11.CPP

 // Calculating primes using dynamic memory allocation

 #include <iostream>

 #include <iomanip>

 #include <cstdlib> // For the exit function

 using namespace std;

 int main()

 {

 long* pprime = 0; // Pointer to prime array

 long trial = 5; // Candidate prime

 int count = 3; // Count of primes found

 int found = 0; // Indicates when a prime is
found

 int max = 0; // Number of primes required

 cout << endl

 << "Enter the number of primes you would like (at least 4):
";

 cin >> max; // Number of primes required

 if(max < 5) // Test the user input, and if
less than 5

 max = 4; // change it to at least 4

 if(!(pprime = new long[max]))

 {

 cout << endl

 << "Memory allocation failed.";

 exit(1); // Terminate program

 }

 *pprime = 2; // Insert three

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 *(pprime + 1) = 3; // seed primes

 *(pprime + 2) = 5;

 do

 {

 trial += 2; // Next value for
checking

 found = 0; // Set found indicator

 for(int i = 0; i < count; i++) // Division by
existing primes

 {

 found =(trial % *(pprime + i)) == 0; // True for exact
division

 if(found) // If division is
exact

 break; // it's not a
prime

 }

 if (found == 0) // We got one...

 *(pprime + count++) = trial; // ...so save it in
primes array

 } while(count < max);

 // Output primes 5 to a line

 for(int i = 0; i < max; i++)

 {

 if(i % 5 == 0) // New line on 1st, and
every 5th line

 cout << endl;

 cout << setw(10) << *(pprime + i);

 }

 delete [] pprime; // Free up memory

 cout << endl;

 return 0;

 }

How It Works

Apart for the prompt for the number of primes required, the output from this example is the
same as the previous version (assuming that the same number of primes is being generated),
so we won't reproduce it again here.

In fact, the program is very similar to the previous version. We have an extra #include
statement for cstdlib because we are using the function exit() if we run out of memory.

After receiving the number of primes required in the int variable max, we allocate an array of
that size in the free store using the operator new. Note that we've made sure that max can be no

less than 4. This is because the program requires space to be allocated in the free store for at
least the three seed primes, plus one new one. We specify the size of the array required by
putting the variable max between the square brackets following the array type specification. The

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

pointer value, returned by new and stored in the pointer pprime, is validated in the if
statement. If it turns out to be NULL, a message is displayed and the program is exited.

 if(!(pprime = new long[max]))

 {

 cout << endl

 << "Memory allocation failed.";

 exit(1); // Terminate program

 }

Assuming that the memory allocation is successful, the first three array elements are set to the

values of the first three primes.
Important

We can't specify initial values for elements of an array allocated
dynamically. We have to use explicit assignment statements if we want
to set initial values for elements of the array.

The calculation of the prime numbers is exactly as before; the only change is that the name of
the pointer we have here, pprime, is substituted for the array name primes, used in the

previous version. Equally, the output process is the same. Acquiring space dynamically is really
not a problem at all. Once it has been allocated, it in no way affects how the computation is
written.

Once we have finished with the array, we remove it from the free store using the delete

operator, not forgetting to include the square brackets to indicate that it is an array we are
deleting.

 delete [] pprime; // Free up memory

Dynamic Allocation of Multidimensional Arrays

Allocating memory in the free store for a multidimensional array involves using the operator new

in only a slightly more complicated form than that for a one-dimensional array. Assuming that
we have already declared the pointer pbeans appropriately, to obtain the space for our array
beans [3][4] that we used earlier in this chapter, we could write this:

 pbeans = new double [3][4]; // Allocate memory for a 3x4
array

Allocating space for a three-dimensional array simply requires the extra dimension specified
with new, as in this example:

 pBigArray = new double [5][10][10]; // Allocate memory for a

5x10x10 array

However many dimensions there are in the array that has been created, to destroy it and

release the memory back to the free store you write the following:

 delete [] pBigArray; // Release memory for array

You use just one pair of square brackets regardless of the dimensionality of the array with which
you are dealing.

We have already seen that we can use a variable as the specification of the dimension of a one-
dimensional array to be allocated by new. This extends to two or more dimensions only in that

the leftmost dimension may be specified by a variable. All the other dimensions must be
constants or constant expressions. So we could write this,

 pBigArray = new double[max][10][10];

where max is a variable. However, specifying a variable for any other dimension will cause an

error message to be generated by the compiler.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using References

A reference appears to be similar to a pointer in many respects, which is why we've introduced

it here, but it isn't the same thing at all. Its real significance will only become apparent when we
get to discuss its use with functions, particularly in the context of object-oriented programming.
Don't be misled by its simplicity and what might seem to be a trivial concept. As you will see
later, references provide some extraordinarily powerful facilities, and in some contexts it will
enable you to achieve results that would be impossible without using them.

What is a Reference?

A reference is an alias for another variable. It has a name that can be used in place of the
original variable name. Since it is an alias, and not a pointer, the variable for which it is an alias
has to be specified when the reference is declared, and unlike a pointer, a reference can't be
altered to represent another variable.

Declaring and Initializing References

If we have a variable declared as follows,

 long number = 0;

we can declare a reference for this variable using the following declaration statement:

 long& rnumber = number; // Declare a reference to variable
number

The ampersand following the type long and preceding the name rnumber, indicates that a
reference is being declared and the variable name it represents, number, is specified as the

initializing value following the equals sign. Therefore, rnumber is of type 'reference to long'.

The reference can now be used in place of the original variable name. For example, this
statement:

 rnumber += 10;

has the effect of incrementing the variable number by 10.

Let's contrast the reference rnumber with the pointer pnumber, declared in this statement:

 long* pnumber = &number; // Initialize a pointer with an

address

This declares the pointer pnumber, and initializes it with the address of the variable number.

This then allows the variable number to be incremented with a statement such as:

 *pnumber += 10; // Increment number through a pointer

You should see a significant distinction between using a pointer and using a reference. The
pointer needs to be de-referenced and whatever address it contains is used to access the
variable to participate in the expression. With a reference there is no need for de-referencing. In
some ways, a reference is like a pointer that has already been de-referenced, although it can't
be changed to reference another variable. The reference is the complete equivalent of the
variable for which it is a reference. A reference may seem like just an alternative notation for a
given variable, and here it certainly appears to behave like that. However, we shall see when
we come to discuss functions in C++ that this is not quite true, and that it can provide some very
impressive extra capabilities.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Summary

You are now familiar with all of the basic types of values in C++, how to create and use arrays
of those types and how to create and use pointers. You have also been introduced to the idea
of a reference. However, we have not exhausted all of these topics. We'll come back to arrays,
pointers and references again later in the book. The important points that we have discussed in
this chapter are:

§ An array allows you to manage a number of variables of the same type using a single
name. Each dimension of an array is defined between square brackets following the array
name in the declaration of the array.

§ Each dimension of an array is indexed starting from zero. Thus the fifth element of a
one-dimensional array will have the index value 4.

§ Arrays can be initialized by placing the initializing values between curly braces in the
declaration.

§ A pointer is a variable that contains the address of another variable. A pointer is
declared as a 'pointer to type ', and may only be assigned addresses of variables of the
given type.

§ A pointer can point to a constant object. Such a pointer can be reassigned to another
object. A pointer may also be defined as const, in which case it can't be reassigned.

§ A reference is an alias for another variable, and can be used in the same places as the
variable it references. A reference must be initialized in its declaration.

§ A reference can't be reassigned to another variable.
§ The operator sizeof returns the number of bytes occupied by the object specified as

its argument. Its argument may be a variable or a type name between parentheses.
§ The operator new allocates memory dynamically in the free store. When memory has

been assigned as requested, it returns a pointer to the beginning of the memory area
provided. If memory cannot be assigned for any reason, a NULL pointer will be returned.
Memory allocated by new can only be freed using the delete operator with the address

originally returned by new as an argument.

The pointer mechanism is sometimes a bit confusing because it can operate at different levels

within the same program. Sometimes it is operating as an address, and at other times it can be
operating with the value stored at an address. It's very important that you feel at ease with the
way pointers are used, so if you find that they are in any way unclear, try them out with a few
examples of your own until you feel confident about applying them.

Exercises

1. Given the following declarations,

 int i = 3;

 int& j = i;

 int* pi;

 int array[10];

what are the types of the following expressions?
a. i
b. j

c. &i
d. pi

e. *pi
f. array

g. *array
h. pi[3]

i. pi + 3

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. Take [Prg2], and modify it so that it now has a 15-character string called name as a

local variable, in addition to an integer. Modify the loop to ask for and print a number
and a string. Save your solution as [Prg3].

3. Declare a character array, and initialize it to a suitable string. Use a loop to change
every other character to upper case.

Hint:
in the ASCII character set, values for upper case characters are 32 less than their
lowercase counterparts.

4. Given the following code,

 char c[] = "hello world!";

 char* pc = &c[2] ;

what would you expect the following statements to produce?
a. cout << c;
b. cout << c[3];

c. cout << pc;
d. cout << *(pc - 2);

e. cout << *pc - 2;

5. (Advanced) In the following declaration,

 int** ppi;

what type is ppi? (Its name is a clue!) From what you know of the relationship
between pointers and arrays, can you think of a way to construct a two-dimensional
array using ppi?

Answers

1. The types of the expressions are:
a. i // int

b. j // int

c. &i // int*
d. pi // int*

e. *pi // int
f. array // int*

g. *array // int
h. pi[3] // int

i. pi+3 // int*

2. [Prg3]

 #include <iostream>

 using namespace std;

 int main()

 {

 int number = 0;

 char name[15] = {'a'};

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 for (;;)

 {

 cout << "Enter a number: ";

 cin >> number;

 if (number == 0)

 break;

 cout << "And a name: ";

 cin >> name;

 cout << "Thank you. Your number and name were " << number

 << " and '" << name << "'\n";

 }

 return 0;

 }

3. Character arrays:

 #include <iostream>

 #include <cstring>

 using namespace std;

 int main()

 {

 char str[] = "Doctor Livingstone, I presume?";

 cout << str << '\n';

 for (unsigned int i=0; i<strlen(str); i+=2)

 {

 if (str[i] >= 'a' && str[i] <= 'z')

 str[i] -= 32;

 }

 cout << str << endl;

 return 0;

)

4. The statements produce:

a. cout << c; // hello world
b.

c. cout << c[3]; // 1

d.

e. cout << pc; // llo world

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

f.

g. cout << *(pc-2); // h

h.

i. cout << *pc-2; // 106
j.

Congratulations if you got the last one without trying it out first! The pointer expression *pc-2

takes what pc is pointing to, the character 1 with ASCII code 108, and takes two from it in an
integer subtraction operation (not a pointer operation), so the result is 106.

5. In the declaration given, ppi is a 'pointer to a pointer to int', and gives two levels of indirect
addressing. We can use it to construct a 2-D array dynamically by first creating a 'row vector'
to hold pointers to the rows, and then creating arrays for each row and storing their
addresses in the row vector. This gives us our two levels of addressing—row and column—
and because of the equivalence of array and pointer notation, we can treat our two-level
pointer as a 2-D array, as shown in the code below:

 #include <iostream>

 using namespace std;

 const int ROWS = 4;

 const int COLS = 4;

 int main()

 {

 int** ppi;

 // Create an array to hold the pointers to each row

 ppi = new int*[ROWS];

 // Create each row, and store it away

 for (int i=0; i<ROWS; i++)

 ppi[i] = new int[COLS];

 // Set all the elements to zero using a nested loop

 for (i=0; i<ROWS; i++)

 for (int j=0; j<COLS; j++)

 ppi[i] [j] = 0;

 // Set ppi to the identity matrix, and print it out as a test

 ppi[0] [0] = ppi [1][1] = ppi[2][2] = ppi[3][3] = 1;

 for (i=0; i<ROWS; i++)

 {

 for (int j=0; j<COLS; j++)

 cout << ppi[i][j] << ' ';

 cout << '\n';

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 // Delete it in reverse order...

 for (i=0; i<ROWS; i++)

 delete [] ppi[i];

 delete [] ppi;

 return 0;

 }

Chapter 5: Introducing Structure into Your
Programs

Overview

Up to now we haven't really been able to structure our program code in a modular fashion, since
we've only been able to construct a program as a single function, main(); but we have been

using library functions of various kinds. Whenever you write a C++ program, you should have a
modular structure in mind from the outset and, as we shall see, a good understanding of how to
implement functions is essential to object-oriented programming in C++. In this chapter, you'll
learn:
§ How to declare and write your own C++ functions

§ What function arguments are, and how they are defined and used
§ How arrays can be passed to and from a function
§ What pass-by-value means

§ How to pass pointers to functions
§ How to use references as function arguments, and what pass-by-reference means
§ How the const modifier affects function arguments

§ How to return values from a function
§ What recursion is and how it can be used

There's quite a lot to structuring your C++ programs, so to avoid indigestion, we won't try to
swallow the whole thing in one gulp. Once we've chewed over and gotten the full flavor of the
morsels listed above, we'll move on to the next chapter, where we shall get further into the meat
of the topic.

Understanding Functions

First let's look at the broad principles of how a function works. A function is a self-contained
block of code with a specific purpose. A function has a name that both identifies it and is used to
call it for execution in a program. The name of a function is global, but is not necessarily unique
in C++, as we shall see in the next chapter. However, functions which perform different actions
should generally have different names.

The name of a function is governed by the same rules as those for a variable. A function name
is, therefore, a sequence of letters and digits, the first of which is a letter, and where an
underscore counts as a letter. The name of a function should generally reflect what it does, so
for example, you might call a function that counts beans CountBeans().

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You pass information to a function by means of arguments specified when you invoke it. These
arguments need to correspond with parameters appearing in the definition of the function. The
arguments that you specify replace the parameters used in its definition when the function is
executed. The code in the function then executes as though it was written using your argument
values. The relationship between arguments in the function call and its parameters is illustrated
below:

In this example, the function returns the sum of the two arguments passed to it. In general, a

function returns either a single value to the point in the program where it was called, or nothing
at all, depending on how the function is defined. You might think that returning a single value
from a function is a constraint, but the single value returned can be a pointer which might
contain the address of an array, for example. We will see more about how data is returned from
a function a little later in this chapter.

Why Do You Need Functions?

One major advantage that a function offers is that it can be executed as many times as
necessary from different points in a program. Without the ability to package a block of code into
a function, programs would end up being much larger, since you would typically need to
replicate the same code at various points in them. But the real reason that you need functions is
to break up a program into easily manageable chunks.

Imagine a really big program, a million lines of code let's say. A program of this size would be
virtually impossible to write without functions. Functions allow a program to be segmented so
that it can be written piecemeal, and each piece tested independently before bringing it together
with the other pieces. It also allows the work to be divided among members of a programming
team, with each team member taking responsibility for a tightly specified piece of the program,
with a well defined functional interface to the rest of the code.

Structure of a Function

As we have seen when writing the function main(), a function consists of a function header

which identifies the function, followed by the body of the function between curly braces
containing the executable code for the function. Let's look at an example. We could write a
function to raise a value to a given power, that is, compute x

n
:

 double power(double x, int n) // Function header

 { // Function body starts
here...

 double result = 1.0; // Result stored here

 for(int i = 1; i <= n; i++)

 result *= x;

 return result;

 } // ...and ends here

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Function Header

Let's first examine the function header in this example. This is the first line of the function:

 double power(double x, int n) // Function header

It consists of three parts:
§ The type of the return value (double in this case)

§ The name of the function, power

§ The parameters of the function enclosed between parentheses

The return value is returned to the calling function when the function is executed, so when the
function is called, it will have a value of type double in the expression in which it appears.

Our function has two parameters: x, the value to be raised to a given power which is of type

double, and the value of the power, n, which is of type int. The computation that the function
performs is written using these parameter variables together with another variable, result,

declared in the body of the function.
Important

No semicolon is required at the end of the function
header.

The General Form of a Function Header

The general form of a function header can be written as follows:

return_type FunctionName(parameter_list)

The return_type can be any legal type. If the function does not return a value, the return type
is specified by the keyword void. The keyword void is also used to indicate the absence of

parameters, so a function that has no parameters and doesn't return a value would have this
header:

 void MyFunction(void)

An empty parameter list also indicates that a function takes no arguments, so you could omit
the keyword void between the parentheses as follows:

 void MyFunction()

Important

A function with a return type specified as void should not be used in an
expression in the calling program. Because it doesn't return a value, it
can't sensibly be part of an expression, so using it in this way will cause
the compiler to generate an error message.

The Function Body

The desired computation in a function is performed by the statements in the function body
following the function header. The first of these in our example declares a variable result
which is initialized with the value 1.0. The variable result is local to the function, as are all

automatic variables declared within a function body. This means that the variable result

ceases to exist after the function has completed execution.

The calculation is performed in the for loop. A loop control variable i is declared in the for

loop which will assume successive values from 1 to n. The variable result is multiplied by x
once for each loop iteration, so this occurs n times to generate the required value. If n is 0, the

statement in the loop won't be executed at all because the loop continuation condition will
immediately fail, and so result will be left as 1.0.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

As we've said, all the variables declared within the body of a function, as well as the
parameters, are local to the function. There is nothing to prevent you from using the same
names for variables in other functions for quite different purposes. Indeed, it's just as well this is
so, because it would be extremely difficult to ensure variables' names were always unique
within a program containing a large number of functions, particularly if the functions were not all
written by the same person.

The scope of variables declared within a function is determined in the same way that we have

already discussed. A variable is created at the point at which it is defined and ceases to exist at
the end of the block containing it. There is one type of variable that is an exception to this —
variables declared as static. We'll discuss static variables a little later in this chapter.

Important

Be careful about masking global variables with local variables of the
same name. We discussed this situation back in Chapter 2 and saw
how we could use the scope resolution operator :: to avoid any
problems.

The return Statement

The return statement returns the value of result to the point where the function was called.

What might immediately strike you is that we just said result ceases to exist on completing

execution of the function — so how is it returned? The answer is that a copy of the value being
returned is made automatically, and this copy is available to the return point in the program.

The general form of the return statement is as follows,

return expression;

where expression must evaluate to a value of the type specified in the function header for the

return value. The expression can be any expression you want, as long as you end up with a
value of the required type. It can include function calls — even a call of the same function in
which it appears, as we shall see later in this chapter.

If the type of return value has been specified as void, there must be no expression appearing

in the return statement. It must be written simply as:

 return;

Using a Function

At the point at which you use a function in a program, the compiler must know something about
it. It needs enough information to be able to identify the function, and to verify that you are using
it correctly. Unless the definition of the function that you intend to use appears earlier in the
same source file, you must declare the function using a statement called a function prototype.

Function Prototypes

A prototype of a function provides the basic information that the compiler needs to check that a

function is used correctly. It specifies the parameters to be passed to the function, the function
name, and the type of the return value — essentially, it contains the same information as
appears in the function header, with the addition of a semicolon. Clearly, the number of
parameters and their types must be the same in the function prototype as they are in the
function header in the definition of the function.

The prototypes for the functions called from within another function must appear before the
statements doing the calling, and are usually placed at the beginning of the program source file.
The header files that we've been including for standard library functions contain the prototypes
of the functions provided by the library, amongst other things.

For our power() example, we could write the prototype as follows:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 double power(double value, int index);

Important

Don't forget that a semicolon is required at the end of a function
prototype. Without it, you will get error messages from the compiler.

Note that we have specified different names for the parameters in the function prototype to

those we used in the function header when we defined the function. This is just to indicate that
it's possible. Most often, the same names are used in the prototype and in the function header
in the definition of the function, but this doesn't have to be so. The parameter names in the
function prototype can be selected to aid understanding of the significance of the parameters.

If you like, you can even omit the names altogether in the prototype, and just write the following:

 double power(double, int);

This is enough for the compiler to do its job. However, it's better practice to use some

meaningful name in a prototype, since it aids readability and, in some cases, makes all the
difference between clear code and confusing code. If you have a function with two parameters
of the same type (suppose our index was also of type double in the function power() for

example), the use of suitable names can indicate which parameter appears first and which
second.

Try it Out: - Using a Function

We can see how all this goes together in an example exercising our power() function:

 // EX5_01.CPP

 // Declaring, defining, and using a function

 #include <iostream>

 using namespace std;

 double power(double x, int n); // Function prototype

 int main(void)

 {

 int index = 3; // Raise to this power

 double x = 3.0; // Different x from that in

function power

 double y = 0.0;

 y = power(5.0, 3); // Passing constants as arguments

 cout << endl

 << "5.0 cubed = " << y;

 cout << endl

 << "3.0 cubed = "

 << power(3.0, index); // Outputting return value

 x = power(x, power(2.0, 2.0)); // Using a function as an
argument

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl // with auto conversion of 2nd
parameter

 << "x = " << x;

 cout << endl;

 return 0;

 }

 // Function to compute integral powers of a double value

 // First argument is value, second argument is power index

 double power(double x, int n)

 { // Function body starts here...

 double result = 1.0; // Result stored here

 for(int i = 1; i <= n; i++)

 result *= x;

 return result;

 } // ...and ends here

This shows some of the ways in which we can use the function power(), specifying the

arguments in a variety of ways. If you run this example, you'll get the following output:

How It Works

After the usual #include statement for input/output and the using directive, we have the
prototype for the function power(). If you tried deleting this and recompiling the program, the

compiler wouldn't be able to process the calls to the function in main() and would instead

generate two errors: error C2065: 'power' : undeclared identifier and error C2373: 'power' : redefinition;
different type modifiers

In a change to previous examples, we've used the new keyword void in the function main()

where the parameter list would usually appear to indicate that no parameters are to be supplied.
Previously, we left the parentheses enclosing the parameter list empty, which is also interpreted
in C++ as indicating that there are no parameters; but it's better to specify the fact by using the
keyword void. As we saw, the keyword void can also be used as the return type for a function
to indicate that no value is returned. If you specify the return type of a function as void, you

must not place a value in any return statement within the function — otherwise you'll get an

error message from the compiler.

You'll have gathered from some of our previous examples that using a function is very simple.
To use the function power() to calculate 5.0

3
 and store the result in a variable y in our

example, we've written this:

 y = power(5.0, 3);

The values 5.0 and 3 here are called arguments. They happen to be constants, but any
expression can be used as an argument, as long as a value of the correct type is ultimately
produced. The arguments substitute for the parameters x and n, which were used in the

definition of the function. The computation is performed using these values, then a copy of the
result, 125, will be returned to the calling function, main(), which will then be stored in y. You

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

can think of the function as having this value in the statement or expression in which it appears.
We then output the value of y to the screen:

 cout << endl

 << "5.0 cubed = " << y;

The next call of the function is used within the output statement,

 cout << endl

 << "3.0 cubed = "

 << power(3.0, index); // Outputting return value

so the value returned is transferred directly to the output stream. Since we haven't stored the

returned value anywhere, it is otherwise unavailable to us. The first argument in the call of the
function here is a constant, while the second argument is a variable.

The function power() is next used in this statement:

 x = power(x, power(2.0, 2.0)); // Using a function as an
argument

Here the function will be called twice. The first call to the function will be the rightmost in the

expression, appearing as an argument to the leftmost call. Although the arguments are both
specified as 2.0, the function will actually be called with the first argument as 2.0 and the
second argument as 2. The compiler will convert the double value specified for the second

argument to int, because it knows from the function prototype (shown again below) that the
type of the second parameter has been specified as int.

 double power(double x, int n); // Function prototype

Important

There's a possible loss of data in converting from a double to an int
and the compiler has instituted this conversion. This is a dangerous
programming practice, and it is not at all obvious from the code that this
conversion is intended. It is far better to be explicit in your code, and to
pass the argument as an int in the first place, if that is the type that the

function requires.

The double result 4.0 will be returned, and after converting this to int, the compiler will insert
this value as the second argument in the next call of the function, with x as the first argument.

Since x has the value 3.0, the value of 3.0
4
 will be computed and the result, 81.0, stored in x.

This sequence of events is illustrated below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Again, this involves an implicit conversion by the compiler from a double to an int. We could

write this code using static_cast to make absolutely clear that this conversion is intended:

 x = power(x, static _cast<int>(power(2.0, static_cast<int>(2.0))));

Using static_cast does not remove the possibility of losing data in the conversion of data

types. Since we specify it, though, it is clear that we recognize that data loss might occur.

Passing Arguments to a Function

It's very important to understand how arguments are passed to a function, as it will affect how

you write functions and how they will ultimately operate. There are also a number of pitfalls to
be avoided, so we'll look at the mechanism for this quite closely.

The arguments specified when a function is called should usually correspond in type and
sequence to the parameters appearing in the definition of the function. As we saw in the last
example, if the type of an argument specified in a function call doesn't correspond with the type
of parameter in the function definition, then (where possible) it will be converted to the required
type, obeying the same rules as those for casting operands that we discussed in Chapter 2. If
this proves not to be possible, you will get an error message from the compiler. However, even
if the conversion is possible and the code compiles, it could well result in the loss of data (for
example from type long to short) and should therefore be avoided.

There are two mechanisms used generally in C++ to pass parameters to functions. The first
mechanism applies when you specify the parameters in the function definition as ordinary
variables (not references). This is called the pass-by-value method of transferring data to a
function so let's look into that first of all.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Pass-by-value Mechanism

With this mechanism, the variables or constants that you specify as arguments are not passed
to a function at all. Instead, copies of the arguments are created and these copies are used as
the values to be transferred. We can show this in a diagram using the example of our function
power():

Each time you call the function power(), the compiler arranges for copies of the arguments

that you specify to be stored in a temporary location in memory. During execution of the
functions, all references to the function parameters will be mapped to these temporary copies of
the arguments.

Purely to help your understanding of the diagram, we have used pseudo-names for the copies
generated in the illustration. In reality, they do not exist in this form.

Try it Out: - Passing-by-value

One consequence of the pass-by-value mechanism is that a function can't directly modify the
arguments passed. We can demonstrate this by deliberately trying to do so in an example:

 // EX5_02.CPP

 // A futile attempt to modify caller arguments

 #include <iostream>

 using namespace std;

 int incr10(int num); // Function prototype

 int main(void)

 {

 int num = 3;

 cout << endl

 << "incr10(num) = " << incr10(num)

 << endl

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << "num = " << num;

 cout << endl;

 return 0;

 }

 // Function to increment a variable by 10

 int incr10(int num) // Using the same name might help...

 {

 num += 10; // Increment the caller argument -
hopefully

 return num; // Return the incremented value

 }

How It Works

Of course, this program is doomed to failure. If you run it, you will get this output:

This confirms that the original value of num remains untouched. The incrementing occurred on
the copy of num that was generated, and was eventually discarded on exiting from the function.

Clearly, the pass-by-value mechanism provides you with a high degree of protection from
having your caller arguments mauled by a rogue function, but it is conceivable that we might
actually want to arrange to modify caller arguments. Of course, there is a way to do this. Didn't
you just know that pointers would turn out to be incredibly useful?

Pointers as Arguments to a Function

When you use a pointer as an argument, the pass-by-value mechanism still operates as before.
However, a pointer is an address of another variable, and if you take a copy of this address, the
copy still points to the same variable. This is how specifying a pointer as a parameter enables
your function to get at a caller argument.

Try it Out: - Pass-by-pointer

We can change the last example to use a pointer to demonstrate the effect:

 // EX5_03.CPP

 // A successful attempt to modify caller arguments

 #include <iostream>

 using namespace std;

 int incr10(int* num); // Function prototype

 int main(void)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 int num = 3;

 int* pnum = # // Pointer to num

 cout << endl

 << "Address passed = " << pnum;

 cout << endl

 << "incr10(pnum) = " << incr10(pnum);

 cout << endl

 << "num = " << num;

 cout << endl;

 return 0;

 }

 // Function to increment a variable by 10

 int incr10(int* num) // Function with pointer
argument

 {

 cout << endl

 << "Address received = " << num;

 *num += 10; // Increment the caller
argument

 // confidently

 return *num; // Return the incremented
value

 }

How It Works

In this example, the principal alterations from the previous version relate to passing a pointer,
pnum, in place of the original variable, num. The prototype for the function now has the

parameter type specified as a pointer to int, and the main() function has the pointer pnum
declared and initialized with the address of num. The function main(), and the function

incr10(), output the address sent and the address received respectively, to verify that the

same address is indeed being used in both places.

If you run this program, you'll get output similar to this:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The address values produced by your computer may be different from those shown above, but
the two values should be identical to each other.

The output shows that this time the variable num has been incremented and has a value that's

now identical to that returned by the function.

In the rewritten version of the function incr10(), both the statement incrementing the value

passed to the function, and the return statement, now need to de-reference the pointer in

order to use the value stored.

Passing Arrays to a Function

You can also pass an array to a function, but in this case the array is not copied, even though a
pass-by-value method of passing arguments still applies. The array name is converted to a
pointer, and a copy of the pointer to the beginning of the array is passed by value to the
function. This is quite advantageous, as copying large arrays could be very time consuming.
However, as you may have worked out, elements of the array may be changed within a function
and thus an array is the only type that cannot be passed by value.

Try it Out: - Passing Arrays

We can illustrate the ins and outs of this by writing a function to compute the average of a
number of values that are passed to a function in an array.

 // EX5_04.CPP

 // Passing an array to a function

 #include <iostream>

 using namespace std;

 double average(double array[], int count); //Function

prototype

 int main(void)

 {

 double values[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,
10.0 };

 cout << endl

 << "Average = "

 << average(values, (sizeof values)/(sizeof values[0]));

 cout << endl;

 return 0;

 }

 // Function to compute an average

 double average(double array[], int count)

 {

 double sum = 0.0; // Accumulate total in here

 for(int i = 0; i < count; i++)

 sum += array[i]; // Sum array elements

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return sum/count; // Return average

 }

How It Works

The function average() is designed to work with an array of any length. As you can see from

the prototype, it accepts two arguments: the array and a count of the number of elements. Since
we want it to work with arrays of arbitrary length, the array parameter appears without a
dimension specified.

The function is called in main() in this statement,

 cout << endl

 << "Average = "

 << average(values, (sizeof values)/(sizeof values[0]));

with the first argument as the array name, values, and the second argument as an expression

which evaluates to the number of elements in the array.

You'll recall this expression, using the operator sizeof , from when we looked at arrays in

Chapter 4 .

Within the body of the function, the computation is expressed in the way you would expect.

There's no significant difference between this and the way we would write the same
computation if we implemented it directly in main().

If you run the example, it will produce the following output:

This confirms that everything works as we anticipated.

Try it Out: - Using Pointer Notation When Passing Arrays

However, we haven't exhausted all the possibilities here As we determined at the outset, the

array name is passed as a pointer — in fact, as a copy of a pointer, so within the function we
needn't necessarily deal with the data as an array at all. We could modify the function in the
example to work with pointer notation throughout, in spite of the fact that we are using an array.

 // EX5_05.CPP

 // Handling an array in a function as a pointer

 #include <iostream>

 using namespace std;

 double average(double* array, int count); //Function prototype

 int main(void)

 {

 double values[] = { 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0,

10.0 };

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl

 << "Average = "

 << average(values, (sizeof values)/(sizeof values[0]));

 cout << endl;

 return 0;

 }

 // Function to compute an average

 double average (double* array, int count)

 {

 double sum = 0.0; // Accumulate total in here

 for(int i = 0; i < count; i++)

 sum += *array++; // Sum array elements

 return sum/count; // Return average

 }

How It Works

As you can see, the program needed very few changes to make it work with the array as a

pointer. The prototype and the function header have been changed, although neither change is
absolutely necessary. If you change both back to the original version with the first parameter
specified as a double array, and leave the function body written in terms of a pointer, it will

work just as well. The most interesting aspect of this version is the for loop statement:

 sum += *array++; // Sum array elements

Here we apparently break the rule about not being able to modify an address specified as an
array name, because we are incrementing the address stored in array. In fact, we aren't

breaking the rule at all. Remember that the pass-by-value mechanism makes a copy of the
original array address and passes that, so we are just modifying the copy here — the original
array address will be quite unaffected. As a result, whenever we pass a one-dimensional array
to a function, we are free to treat the value passed as a pointer in every sense, and change the
address in any way we wish.

Naturally, this version produces exactly the same output as the original.

Passing Multidimensional Arrays to a Function

Passing a multidimensional array to a function is quite straightforward. The following line
declares a two dimensional array, beans:

 double beans[2][4];

You could then write the prototype of a hypothetical function, yield(), like this:

 double yield(double beans[2][4]);

Important

You may be wondering how the compiler can know that this is defining
an array of the dimensions shown as an argument, and not a single
array element. The answer is simple — you can't write a single array
element as a parameter in a function definition or prototype, although

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

you can pass one as an argument when you call a function. For a
parameter accepting a single element of an array as an argument, the
parameter would have just a variable name. The array context doesn't
apply.

When you are defining a multidimensional array as a parameter, you can also omit the first
dimension value. Of course, the function will need some way of knowing the extent of the first
dimension. For example, you could write this:

 double yield(double beans[] [4], int index);

Here, the second parameter would provide the necessary information about the first dimension.

Here the function can operate with a two-dimensional array with any value for the first
dimension, but with the second dimension fixed at 4.

Try it Out: - Passing Multi-Dimensional Arrays

We define such a function in the following example:

 // EX5_06.CPP

 // Passing a two-dimensional array to a function

 #include <iostream>

 using namespace std;

 double yield(double array[][4], int n);

 int main(void)

 {

 double beans[3][4] = { { 1.0, 2.0, 3.0, 4.0 },

 { 5.0, 6.0, 7.0, 8.0 },

 { 9.0, 10.0, 11.0, 12.0 } };

 cout << endl

 << "Yield = " << yield(beans, sizeof beans/sizeof
beans[0]);

 cout << endl;

 return 0;

 }

 // Function to compute total yield

 double yield(double beans[][4], int count)

 {

 double sum = 0.0;

 for(int i = 0; i < count; i++) // Loop through number of
rows

 for(int j = 0; j < 4; j++) // Loop through elements in
a row

 sum += beans[i][j];

 return sum;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

How It Works

Here, we have used different names for the parameters in the function header from those in the
prototype, just to remind you that this is possible — but in this case, it doesn't really improve the
program at all. The first parameter is defined as an array of an arbitrary number of rows, each
row having four elements. We actually call the function using the array beans with three rows.

The second argument is specified by dividing the total size of the array in bytes by the size of
the first row. This will evaluate to the number of rows in the array.

The computation in the function is simply a nested for loop with the inner loop summing

elements of a single row and the outer loop repeating this for each row. For what it's worth, the
program will display this result:

Using a pointer in a function rather than a multidimensional array as an argument doesn't really

apply particularly well. When the array is passed, it passes an address value which points to an
array of four elements (a row). This doesn't lend itself to an easy pointer operation within the
function. We would need to modify the statement in the nested for loop to the following,

 sum += *(*(beans + i) + j);

so the computation is probably clearer in array notation.

References as Arguments to a Function

We now come to the second of the two mechanisms for passing arguments to a function.

Specifying a parameter to a function as a reference changes the method of passing data for that
parameter. The method used is not pass-by-value, where an argument is copied before being
transferred to the function, but pass-by-reference where the parameter acts as an alias for the
argument passed. This eliminates any copying and allows the function to access the caller
argument directly. It also means that the de-referencing, which is required when passing and
using a pointer to a value, is also unnecessary.

Try it Out: - Pass-by-reference

Let's go back to a revised version of a very simple example, Ex5_03.cpp, to see how it would

work using reference parameters:

 // EX5_07.CPP

 // Using a reference to modify caller arguments

 #include <iostream>

 using namespace std;

 int incr10(int& num); // Function prototype

 int main(void)

 {

 int num = 3;

 int value = 6;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl

 << "incr10(num) = " << incr10(num);

 cout << endl

 << "num = " << num;

 cout << endl

 << "incr10(value) = " << incr10(value);

 cout << endl

 << "value = " << value;

 cout << endl;

 return 0;

 }

 // Function to increment a variable by 10

 int incr10(int& num) // Function with reference
argument

 {

 cout << endl

 << "Value received = " << num;

 num += 10; // Increment the caller
argument

 // - confidently

 return num; // Return the incremented
value

 }

How It Works

You should find the way this works quite remarkable. This is essentially the same as
Ex5_03.cpp, except that the function uses a reference as a parameter. The prototype has

been changed to reflect this. When the function is called, the argument is specified just as
though it was a pass-by-value operation, so it's used in the same way as the earlier version.
The argument value isn't passed to the function. Here, the function parameter is initialized with
the address of the argument, so whenever the parameter num is used in the function, it

accesses the caller argument directly.

Just to reassure you that there's nothing fishy about the use of the identifier num in main() as
well as in the function, the function is called a second time with the variable value as the

argument. At first sight this may give you the impression that it contradicts what we said was a
basic property of a reference — that once declared and initialized, it couldn't be reassigned to
another variable. The reason it isn't contradictory is that a reference as a function parameter is
created and initialized when the function is called, and destroyed when the function ends, so we
get a completely new reference each time we use the function.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Within the function, the value received from the calling program is displayed on the screen.
Although the statement is essentially the same as the one used to output the address stored in
a pointer, because num is now a reference, we obtain the data value rather than the address.

Important

This clearly demonstrates the difference between a reference and a
pointer. A reference is an alias for another variable, and therefore can
be used as an alternative way of referring to it. It is equivalent to using
the original variable name.

The output from this example is as follows:

This shows that the function incr10() is directly modifying the variable passed as a caller

argument.

You will find that if you try to use a numeric value, such as 20, as an argument to incr10() the

compiler will output an error message. This is because the compiler recognizes that a reference
parameter can be modified within a function, and the last thing you want is to have your
constants changing value now and again. This would introduce a kind of excitement into your
programs that you could probably do without.

This security is all very well, but if the function didn't modify the value, we wouldn't want the
compiler to create all these error messages every time we pass a reference argument that was
a constant. Surely there ought to be some way to accommodate this? As Ollie would have said,
'There most certainly is, Stanley!'

Use of the const Modifier

We can use the const modifier with a parameter to a function to tell the compiler that we don't

intend to modify it in any way. This will cause the compiler to check that your code indeed does
not modify the argument, and there will be no error messages when you use a constant
argument.

Try it Out: - Passing a const

We can modify the previous program to show how the const modifier changes the situation.

 // EX5_08.CPP

 // Using a reference to modify caller arguments

 #include <iostream>

 using namespace std;

 int incr10(const int& num); // Function prototype

 int main(void)

 {

 const int num = 3; // Declared const to test for
temporary

 // creation

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int value = 6;

 cout << endl

 << "incr10(num) = " << incr10(num);

 cout << endl

 << "num = " << num;

 cout << endl

 << "incr10(value) = " << incr10(value);

 cout << endl

 << "value = " << value;

 cout << endl;

 return 0;

 }

 // Function to increment a variable by 10

 int incr10(const int& num) // Function with const reference
argument

 {

 cout << endl

 << "Value received = " << num;

 // num += 10; // this statement would now be
illegal

 return num+10; // Return the incremented value

 }

How It Works

We declare the variable num in main() as const to show that when the parameter to the

function incr10() is declared as const, we no longer get a compiler message when passing
a const object.

It has also been necessary to comment out the statement which increments num in the function

incr10(). If you uncomment this line, you'll find the program will no longer compile, because
the compiler won't allow num to appear on the left-hand side of an assignment. When you

specified num as const in the function header and prototype, you promised not to modify it, and

so the compiler checks that you kept your word.

Everything works as before, except that the variables in main() are no longer changed in the

function, so the program produces the following output:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Now, by using reference arguments, we have the best of both worlds. On one hand, we can
write a function that can access caller arguments directly, and avoid the copying that is implicit
in the pass-by-value mechanism. On the other hand, where we don't intend to modify an
argument, we can get all the protection against accidental modification we need by using a
const modifier with a reference.

Returning Values from a Function

All the example functions that we have created have returned a single value. Is it possible to

return anything other than a single value? Well, not directly, but as we said earlier, the single
value returned needn't be a numeric value; it could also be an address, which provides the key
to returning any amount of data. You simply use a pointer. Unfortunately, here is where the
pitfalls start, so you need to keep your wits about you for the adventure ahead.

Returning a Pointer

Returning a pointer value is very easy. A pointer value is just an address, so if you want to
return the address of some variable value, you can just write the following:

 return &value; // Returning an address

As long as the function header and function prototype indicate the return type appropriately, we
have no problem — or at least no apparent problem. Assuming that the variable value is of
type double, the prototype of a function called treble, which might contain the above

return statement, could be as follows:

 double* treble(double data);

The parameter list has been defined arbitrarily here.

So let's look at a function that will return a pointer. It's only fair that I warn you in advance — this
function doesn't work. Let's assume that we need a function which will return a pointer to three
times its argument value. Our first attempt might look like this:

 // Function to treble a value - mark 1

 double* treble(double data)

 {

 double result = 0.0;

 result = 3.0*data;

 return &result;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - Returning a Bad Pointer

We could create a little test program to see what happens (remember that the treble function

won't work as expected):

 //EX5_09.CPP

 #include <iostream>

 using namespace std;

 double* treble(double); // Function prototype

 int main(void)

 {

 double num = 5.0; // Test value

 double* ptr = 0; // Pointer to returned
value

 ptr = treble(num);

 cout << endl

 << "Three times num = " << 3.0*num;

 cout << endl

 << "Result = " << *ptr; // Display 3*num

 cout << endl;

 return 0;

 }

 // Function to treble a value - mark 1

 double* treble(double data)

 {

 double result = 0.0;

 result = 3.0*data;

 return &result;

 }

How It Works (or Why It Doesn't)

The function main() calls the function treble() and stores the address returned in the

pointer ptr, which should point to a value which is three times the argument, num. We then
display the result of computing three times num, followed by the value at the address returned

from the function.

On my computer, I get this output:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Clearly, the second line doesn't reflect the correct value of 15, but where's the error? Well, it's

not exactly a secret, since the compiler gives fair warning of the problem with the message
Warning C4172: returning address of local variable or temporary.

The error arises because the variable result in the function treble() is created when the

function begins execution, and is destroyed on exiting from the function — so the memory that
the pointer is pointing to no longer contains the original variable value. The memory previously
allocated to result becomes available for other purposes, and here it has evidently been used

for something else.

A Cast Iron Rule for Returning Addresses

There is an absolutely cast iron rule for returning addresses:
Important

Never return the address of a local automatic variable from a
function.

Now that we have a function that doesn't work, we need to think about what to do to rectify that.

We could use a reference and modify the original variable, but that's not what we set out to do.
We are trying to return a pointer to some useful data so that, ultimately, we can return more
than a single item of data. One answer lies in dynamic memory allocation (we saw this in action
in the last chapter). With the operator new, we can create a new variable in the free store, which
will continue to exist until it is eventually destroyed by delete — or until the program ends. The

function would then look like this:

 // Function to treble a value - mark 2

 double* treble(double data)

 {

 double* result = new double(0.0);

 if(!result)

 {

 cout << "Memory allocation failed.";

 exit(1);

 }

 *result = 3.0*data;

 return result;

 }

Rather than declaring result as of type double, we now declare it as double* and store in it

the address returned by the operator new. We then have the necessary check that we received

a valid address, and exit the program if anything is wrong.

Since the result is a pointer, the rest of the function is changed to reflect this, and the address
contained in the result is finally returned to the calling program. You could exercise this by
replacing the function in the last working example with this version.

You need to remember that with dynamic memory allocation from within a function like this,
more memory is allocated each time the function is called. The onus is on the calling program to
delete the memory when it's no longer required. It's easy to forget to do this in practice, with the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

result that the free store is gradually eaten up until, at some point, it is exhausted and the
program will fail. This sort of problem is often referred to as a memory leak.

Here you can see how the function would be used. The two changes that we needed to make to
the original code, once the function was replaced, were to include the standard library header
file <cstdlib> for access to the exit() function and to use delete to free the memory as

soon as we finished with the returned pointer.

 #include <iostream>

 #include <cstdlib>

 using namespace std;

 // This is for the exit()

 // function

 double* treble(double); // Function prototype

 int main(void)

 {

 double num = 5.0; // Test value

 double* ptr = 0; // Pointer to returned
value

 ptr = treble(num);

 cout << endl

 << "Three times num = " << 3.0*num;

 cout << endl

 << "Result = " << *ptr; // Display 3*num

 delete ptr; // Don't forget to free
the memory

 cout << endl;

 return 0;

 }

 // Function to treble a value - mark 2

 double* treble(double data)

 {

 double* result = new double(0.0);

 if(!result)

 {

 cout << "Memory allocation failed.";

 exit(1);

 }

 *result = 3.0*data;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return result;

 }

Returning a Reference

You can also return a reference from a function. This is just as fraught with potential errors as

returning a pointer, so you need to take care with this too. Because a reference has no
existence in its own right (it's always an alias for something else), you must ensure that the
object it refers to still exists after the function completes execution. It's very easy to forget this
when you use references in a function, because they appear to be just like ordinary variables.

References as return types are of primary significance in the context of object-oriented

programming. As you will see later in the book, they will enable you to do things that would be
impossible without them. (This particularly applies to 'operator overloading' which we'll come to
in Chapter 9.) The principal characteristic of a reference-type return value is that it's an lvalue.
This means that you can use the result of a function on the left-hand side of an assignment
statement.

Try it Out: - Returning a Reference

Let's look at one example which illustrates the use of reference return types, and also
demonstrates how a function can be used on the left of an assignment operation when it returns
an lvalue. We will assume that we have an array containing a mixed set of values. Whenever
we want to insert a new value into the array, we want to replace the lowest value.

 // EX5_10.CPP

 // Returning a reference

 #include <iostream>

 #include <iomanip>

 using namespace std;

 double& lowest(double A[], int len); // Prototype of
function

 // returning a
reference

 int main(void)

 {

 double array[] = { 3.0, 10.0, 1.5, 15.0, 2.7, 23.0,

 4.5, 12.0, 6.8, 13.5, 2.1, 14.0};

 int len = sizeof array/sizeof array[0]; // Initialize to
number

 // of elements

 cout << endl;

 for(int i = 0; i < len; i++)

 cout << setw(6) << array[i];

 lowest(array, len) = 6.9; // Change lowest to

6.9

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 lowest(array, len) = 7.9; // Change lowest to 7.9

 cout << endl;

 for(i = 0; i < len; i++)

 cout << setw(6) << array[i];

 cout << endl;

 return 0;

 }

 double& lowest(double A[], int len)

 {

 int j = 0; // index of lowest
element

 for(int i = 1; i < len; i++)

 if(A[j] > A[i]) // Test for a lower
value...

 j = i; // ...if so update j

 return A[j]; // Return reference to
lowest

 // element

 }

How It Works

Let's first take a look at how the function is implemented. The prototype for the function
lowest() uses double& as the specification of the return type, which is therefore of type

'reference to double'. You write a reference type return value in exactly the same way as we've
already seen for variable declarations, appending the & to the data type. The function has two

parameters specified: a one-dimensional array A of type double, and an int parameter len,

which should specify the length of the array.

The body of the function has a straightforward for loop to determine which element of the array
passed contains the lowest value. The index, j, of the array element with the lowest value is

arbitrarily set to 0 at the outset, and then modified within the loop if the current element, A[i],
is less than A[j]. Thus, on exit from the loop, j will contain the index value corresponding to

the array element with the lowest value. The return statement is as follows:

 return A[j]; // Return reference to lowest
element

In spite of the fact that this looks identical to the statement which would return a value, because
the return type was declared as a reference, this returns a reference to A[j] rather than the
value that the element contains. The address of A[j] is used to initialize the reference to be

returned. This reference is created by the compiler, because the return type was declared as a
reference.

Don't confuse returning &A[j] with returning a reference. If you write &A[j] as the return
value, you are specifying the address of A[j], which is a pointer. If you do this after having

specified the return type as a reference, you will get an error message from the compiler.
Specifically, you'll get this: error C2440: 'return' : cannot convert from 'double *' to 'double &'. A
reference that is not to 'const' cannot be bound to a non-lvalue

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The function main(), which exercises our function lowest(), is very simple. An array of type
double is declared and initialized with 12 arbitrary values, and an int variable len is

initialized to the length of the array. The initial values in the array are output for comparison
purposes.

Again, we've used the stream manipulator setw() to space the values uniformly, requiring the

#include statement for iomanip

The function main() then calls the function lowest() on the left side of an assignment to

change the lowest value in the array. This is done twice to show that it does actually work and is
not an accident. The contents of the array are then output to the display again, with the same
field width as before, so corresponding values line up. If you run this example, you should see
the following output:

As you can see, with the first call to lowest(), the third element of the array, array[2],

contained the lowest value, so the function returned a reference to it and its value was changed
to 6.9. Similarly, on the second call, array[10] was changed to 7.9.

This demonstrates quite clearly that returning a reference allows the use of the function on the
left side of an assignment statement. The effect is as if the variable specified in the return

statement appeared on the left of the assignment.

Of course, if you want to, you can also use it on the right side of an assignment, or in any other
suitable expression. If we had two arrays, X and Y, with lenX and lenY elements respectively,

we could set the lowest element in the array X to twice the lowest element in the array Y with

this statement:

 lowest(X, lenX) = 2.0*lowest(Y, lenY);

This statement would call our function lowest() twice, once with arguments Y and lenY in the
expression on the right side of the assignment, and once with arguments X and lenX to obtain

the address where the result of the right-hand expression is to be stored.

A Teflon-Coated Rule: Returning References

A similar rule to the one concerning the return of a pointer from a function also applies to
returning references:

Important

Never return a reference to a local variable from a
function.

We'll leave the topic of returning a reference from a function for now, but we haven't finished
with it yet. We'll come back to it again in the context of user-defined types and object-oriented
programming, when we shall unearth a few more magical things that we can do with references.

Static Variables in a Function

There are some things you can't do with automatic variables within a function. You can't count
how many times a function is called, for example, because you can't accumulate a value from
one call to the next. There's more than one way to get around this if you need to. For instance,
you could use a reference parameter to update a count in the calling program, but this wouldn't
help if the function was called from lots of different places within a program. You could use a
global variable which you incremented from within the function, but globals are risky things to
use as they can be accessed from anywhere in a program, which makes it very easy to change
them accidentally.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

For a general solution, you can declare a variable within a function as static. You use exactly
the same form of declaration for a static variable that we saw in Chapter 2. For example, to

declare a variable count as static you could use this statement:

 static int count = 0;

This also initializes the variable to zero.

Important

Initialization of a static variable within a function only occurs the first
time that the function is called. In fact, on the first call of a function, the
static variable is created and initialized. It then continues to exist for the
duration of program execution, and whatever value it contains when the
function is exited is available when the function is next called.

Try it Out: - Using Static Variables in Functions

We can demonstrate how a static variable behaves in a function with the following simple

example:

 // EX5_11.CPP

 // Using a static variable within a function

 #include <iostream>

 using namespace std;

 void record(void); // Function prototype,. no arguments or
return value

 int main(void)

 {

 record();

 for(int i = 0; i <= 3; i++)

 record();

 cout << endl;

 return 0;

 }

 // A function that records how often it is called

 void record(void)

 {

 static int count = 0;

 cout << endl

 << "This is the " << ++count;

 if((count > 3) && (count < 21)) // All this....

 cout <<"th";

 else

 switch(count%10) // is just to get...

 {

 case 1: cout << "st";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 break;

 case 2: cout << "nd";

 break;

 case 3: cout << "rd";

 break;

 default: cout << "th"; // the right ending
for...

 } // 1st, 2nd, 3rd,
4th, etc.

 cout << " time I have been called";

 return;

 }

Our function here serves only to record the fact that it was called. If you build and execute it you
will get this output:

How It Works

The static variable count is initialized with 0, and is incremented in the first output statement in

the function. Because the increment operation is prefixed, the incremented value is displayed by
the output statement. It will be 1 on the first call, 2 on the second, and so on. Because the
variable count is static, it continues to exist and retain its value from one call of the function to

the next.

The remainder of the function is concerned with working out when 'st', 'nd', ' rd', or 'th'

should be appended to the value of count that is displayed. It's surprisingly irregular. (I guess

101 should be 101st rather than 101th, shouldn't it?)
Important

Note the return statement. Because the return type of the function is
void , to include a value would cause a compiler error. You don't
actually need to put a return statement in this particular case as

running off the closing brace for the body of the function is equivalent to
the return statement without a value. The program would compile and

run without error even if you didn't include the return .

Recursive Function Calls

When a function contains a call to itself it's referred to as a recursive function. A recursive
function call can also be indirect, where a function fun1 calls a function fun2, which in turn

calls fun1.

Recursion may seem to be a recipe for an infinite loop, and if you aren't careful it certainly can

be. An infinite loop will lock up your machine and require Ctrl-Alt-Del, which is always a
nuisance. A prerequisite for avoiding an infinite loop is that the function contains some means of
stopping the process.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Unless you have come across the technique before, the sort of things to which recursion may
be applied may not be obvious. In physics and mathematics there are many things which can
be thought of as involving recursion. A simple example is the factorial of an integer which for a
given integer N, is the product 1x2x3x...xN. This is very often the example given to show
recursion in operation. However, we shall look at something even simpler.

Try it Out: - A Recursive Function

At the start of the chapter (see Ex5_01.cpp) we produced a function to compute the integral

power of a value, that is, to compute x
n
. This is equivalent to x multiplied by itself n times. We'll

implement this as a recursive function as an elementary illustration of recursion in action.

 // EX5_12.CPP (based on EX5_01.CPP)

 // A recursive version of x to the power n

 #include <iostream>

 #include <cstdlib> // This is for the exit()
function

 using namespace std;

 double power(double x, int n); // Function prototype

 int main(void)

 {

 int index = 3; // Raise to this power

 double x = 3.0; // Different x from that in
function power

 double y = 0.0;

 y = power(5.0, 3); // Passing constants as arguments

 cout << endl

 << "5.0 cubed = " << y;

 cout << endl

 << "3.0 cubed = "

 << power(3.0, index); // Outputting return value

 x = power(x, power(2.0, 2.0)); // Using a function as an
argument

 cout << endl // with auto conversion of 2nd
parameter

 << "x = " << x;

 cout << endl;

 return 0;

 }

 // Recursive function to compute integral powers of a double value

 // First argument is value, second argument is power index

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 double power(double x, int n)

 {

 if(n < 0)

 {

 cout << endl

 << "Negative index, program terminated.";

 exit(1);

 }

 if(n)

 return x*power(x, n-1);

 else

 return 1.0;

 }

The function main() is exactly the same as the previous version so the output is also the

same:

We have added the #include statement for cstdlib, because we use the exit() function in
our revised function power(). Let's now look at how the function works.

How It Works

We only intend to support positive powers of x, so the first action is to check that the value for
the power that x is to be raised to, n, is not negative. With a recursive implementation this is

essential, otherwise we could get an infinite loop with a negative value for n because of the way
the rest of the function is written. The if statement provides for the value 1.0 being returned if n

is zero, and in all other cases it returns the result of the expression, x*power(x, n-1). This
causes a further call to the function power() with the index value reduced by 1.

Clearly, within the function power(), if the value of n is greater than zero, a further call to the

function power() will occur. In fact, for any given value of n greater than 0, the function will call
itself n times. The mechanism is illustrated in the figure below, assuming the value 3 for the

index argument.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

As you see, we need a total of four calls to the power() function to generate x
3
.

Using Recursion

Unless you have a problem which particularly lends itself to using recursive functions, or if you
have no obvious alternative, it's generally better to use a different approach, such as a loop.
This will be much more efficient than using recursive function calls. Think about what happens
with our last example to evaluate a simple product, x*x*... x, n times. On each call, the

compiler will generate copies of the two arguments to the function, and also has to keep track of
the location it must return to when each return is executed. It's also necessary to arrange to

save the contents of various registers in your computer so that they can be used within the
function power(), and of course these will need to be restored to their original state at each

return from the function. With a quite modest depth of recursive call, the overhead can be
considerably greater than if you use a loop.

This is not to say you should never use recursion. Where the problem suggests the use of
recursive function calls as a solution, it can be an immensely powerful technique, greatly
simplifying the code. We'll see an example where this is the case in the next chapter.

Summary

In this chapter, you've learned about the basics of program structure You should have a good

grasp of how functions are defined, how data can be passed to a function, and how results are
returned to a calling program. Functions are fundamental to programming in C++, so everything
we do from here on will involve using multiple functions in a program. The key points that you
should keep in mind about writing your own functions are these:
§ Functions should be compact units of code with a well-defined purpose. A typical

program will consist of a large number of small functions, rather than a small number of
large functions.

§ Always provide a function prototype for each function defined in your program,
positioned before you call that function.

§ Passing values to a function using a reference can avoid the copying implicit in the call-
by-value transfer of arguments. Parameters which are not modified in a function, should be
specified as const.

§ When returning a reference or a pointer from a function, ensure that the object being
returned has the correct scope. Never return a pointer or a reference to an object which is
local to a function.

The use of references as arguments is a very important concept, so make sure you are

confident about using them. We'll see a lot more about references as arguments to functions
when we look into object-oriented programming.

Exercises

1. The factorial of 4 (written as 4!) is 4*3*2*1 = 24, and 3! is 3*2*1 = 6, so it follows that
4! = 4*3!, or more generally:

§ fact(n) = n*fact(n - 1)

The limiting case is when n is 1, in which case 1! = 1. Write a recursive function which
calculates factorials, and test it.

2. Write a function which swaps two integers, using pointers as arguments. Write a
program which uses this function, and test that it works correctly.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

3. The trigonometry functions (sin(), cos() and tan()) in the standard math library

take arguments in radians. Write three equivalent functions, called sind(), cosd()
and tand(), which takes arguments in degrees. All arguments and return types

should be doubles.

4. Take [Prg3], and split the code into three, so that the data entry is done in one
function, and the printing in another. Keep the data in the main program. Think about
how you are going to pass the data between functions—by value, by pointer, or by
reference? The result of your efforts will be [Prg4].

5. (Advanced) Write a function which, when passed a string consisting of words
separated by single spaces, will return the first word; calling it again with an argument
of NULL will return the second word, and so on, until the string has been processed

completely, when NULL will be returned. This is a simplified version of the way the
run-time library routine strtok() works. So, when passed the string 'one two

three', the function will return you 'one', then 'two', and finally 'three'.
Passing it a new string results in the current string being discarded before the
function starts on the new string.

Answers

1. Recursion. You could also add an if clause here to check that the number entered is greater
than zero. This is left as a further exercise for you.

 #include <iostream>

 using namespace std;

 long fact(long n)

 {

 if (n == 1)

 return 1;

 else

 return n * fact(n-1);

 }

 int main()

 {

 long val = 0;

 long result = 0;

 cout << "Give me a integer greater than 1: ";

 cin >> val;

 result = fact(val);

 cout << "\n" << val << "! = ' << result << "\n";

 return 0;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. Swap two integers.

 #include <iostream>

 using namespace std;

 void swap(int* pa, int* pb)

 {

 int temp;

 cout << "Now we swap them.\n";

 temp = *pa;

 *pa = *pb;

 *pb = temp;

 }

 int main()

 {

 int a=6;

 int b=4;

 cout << "Before: a= " << a << ", b= " << b << "\n";

 swap(&a, &b);

 cout << "After: a= " << a << ", b= " << b << "\n">>;

 return 0;

 }

3. Trig functions. There are 2*pi radians or 360 degrees in a circle. Thus the ratio between
radians and degrees is 1:57.2957795.

 #include <iostream>

 #include <cmath>

 using namespace std;

 const double DEG_TO_RAD = 57.2957795;

 double sind(double d)

 {

 return sin(d/DEG_TO_RAD);

 }

 double cosd(double d)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 return cos(d/DEG_TO_RAD);

 }

 double tand(double d)

 {

 return tan(d/DEG_TO_RAD);

 }

 int main()

 {

 cout << "cos(30)=" << cosd(30.0) << "\n";

 cout << "sin(30)=" << sind(30.0) << "\n";

 cout << "tan(30)=" << tand(30.0) << "\n";

 return 0;

 }

4. [Prg4]

 #include <iostream>

 using namespace std;

 void GetData(int& number, char name[])

 {

 cout << "Enter a number: ";

 cin >> number;

 if (number ! = 0)

 {

 cout << "And a name: ";

 cin >> name;

 }

 }

 void PutData(int number, char name[])

 {

 cout << "Thank you. Your number and name were " << number

 << " and '" << name << "'\n";

 }

 int main()

 {

 int number = 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 char name[15] = {' '};

 for (;;)

 {

 GetData(number, name);

 if (number == 0)

 break;

 PutData(number, name);

 }

 return 0;

 }

5. Parsing function.

 #include <iostream>

 #include <cstring>

 using namespace std;

 char* parse(const char* str)

 {

 static char* pStr = 0;

 static int len = 0;

 static int start = 0;

 int pos = 0;

 char* pReturn = 0;

 // First time through, save the string

 if (str)

 {

 delete pStr; // in case it was allocated

 len = strlen(str);

 pStr = new char[len+1];

 strcpy(pStr,str);

 }

 if (start >= len)

 return 0;

 // Walk the string from 'start' till we find a blank or the
end

 for (pos = start; pStr[pos] != ' ' && pStr[pos] != '\0';
pos++);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Copy the string if we've a word to return, otherwise return
NULL

 if (pos != start)

 {

 pReturn = new char[pos - start + 1];

 int i=0;

 for (int j=start; j<pos; i++, j++)

 pReturn[i] = pStr[j];

 pReturn[i] = '\0';

 start = pos+1;

 return pReturn;

 }

 else

 return 0;

 }

 int main()

 {

 char s1[] = "seventy-one fruit balls, please Doris";

 cout << "string is '= << s1 << "'\n\nParsing...\n";

 char* p = parse(s1);

 while (p)

 {

 cout << p << endl;

 delete p;

 p = parse(NULL);

)

 return 0;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 6: More About Program Structure

Overview

In the previous chapter, you learned about the basics of defining functions and the various ways
in which data can be passed to a function. You also saw how results are returned to a calling
program.

In this chapter, we will cover the further aspects of how functions can be put to good use,
including:

§ What a pointer to a function is
§ How to define and use pointers to functions
§ How to define and use arrays of pointers to functions

§ What an exception is, and how to write exception handlers that deal with them.
§ How to write multiple functions with a single name to handle different kinds of data

automatically

§ What function templates are and how you define and use them
§ How to write a substantial program example using several functions

Pointers to Functions

A pointer stores an address value which, up to now, has been the address of another variable
with the same basic type as the pointer. This has provided considerable flexibility in allowing us
to use different variables at different times through a single pointer. A pointer can also point to
the address of a function. This enables you to call a function through a pointer, which will be the
function at the address that was last assigned to the pointer.

Obviously, a pointer to a function must contain the memory address of the function that you
want to call. To work properly, however, the pointer must also maintain information about the
parameter list for the function it points to, as well as the return type. Therefore, when you
declare a pointer to a function, you have to specify the parameter types and the return type of
the functions that it can point to, in addition to the name of the pointer. Clearly, this is going to
restrict what you can store in a particular pointer to a function. If you have declared a pointer to
functions that accept one argument of type int and return a value of type double, then you

can only store the address of a function that has exactly the same form. If you want to store the
address of a function that accepts two arguments of type int and returns type char, then you

must define another pointer with these characteristics.

Declaring Pointers to Functions

Let's declare a pointer pfun that we can use to point to functions that take two arguments, of

type char* and int, and return a value of type double. The declaration would be as follows:

 double (*pfun)(char*, int); // Pointer to function
declaration

The parentheses may make this look a little weird at first. This declares a pointer, pfun, which

can point to functions which accept two arguments of type pointer to char and of type int, and
which return a value of type double. The parentheses around the pointer name, pfun, and the

asterisk, are necessary: without them, it would be a function declaration rather than a pointer
declaration. In this case, it would look like this:

 double *pfun(char*, int); // Prototype for a function

 // returning type double*

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This is a prototype for a function pfun() which has two parameters, and returns a pointer to a
double value. Since we were looking to declare a pointer, this is clearly not what we want at

the moment.

The general form of a declaration of a pointer to a function is given here:

return_type (*pointer_name)(list_of_parameter_types);

Important

The pointer can only point to functions with the same return_type
and list_of_parameter_types specified in the declaration.

This shows that the declaration breaks down into three components:

§ The return type of the functions that can be pointed to
§ The pointer name preceded by an asterisk to indicate it is a pointer

§ The parameter types of the functions that can be pointed to
Important

If you attempt to assign a function to a pointer that does not conform to
the types in the pointer declaration, the compiler generates an error
message.

You can initialize a pointer to a function with the name of a function within the declaration of the
pointer. This is what it might look like:

 long sum(long num1, long num2); // Function prototype

 long (*pfun)(long, long) = sum; // Pointer to function points
to sum()

Here, the pointer can be set to point to any function that accepts two arguments of type long,
and also returns a value of type long.

Of course, you can also initialize a pointer to a function by using an assignment statement.
Assuming the pointer pfun has been declared as above, we could set the value of the pointer

to a different function with these statements:

 long product(long, long); // Function prototype

 ...

 pfun = product; //Set pointer to function

product()

As with pointers to variables, you must ensure that a pointer to a function is initialized before

you use it to call a function. Without initialization, catastrophic failure of your program is
guaranteed.

Try it Out: - Pointers to Functions

To get a proper feel for these newfangled pointers and how they perform in action, let's try one
out in a program:

 // EX6_01.CPP

 // Exercising pointers to functions

 #include <iostream>

 using namespace std;

 long sum(long a, long b); // Function prototype

 long product(long a, long b); // Function prototype

 int main(void)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 long (*pdo_it)(long, long); // Pointer to function
declaration

 pdo_it = product;

 cout << endl

 << "3*5 = " << pdo_it(3, 5); // Call product thru a
pointer

 pdo_it = sum; // Reassign pointer to
sum()

 cout << endl

 << "3*(4 + 5) + 6 = "

 << pdo_it(product(3, pdo_it(4, 5)), 6); // Call thru a

pointer,

 // twice

 cout << endl;

 return 0;

 }

 // Function to multiply two values

 long product(long a, long b)

 {

 return a*b;

 }

 // Function to add two values

 long sum(long a, long b)

 {

 return a + b;

 }

How It Works

This is hardly a useful program, but it does show very simply how a pointer to a function is
declared, assigned a value, and subsequently used to call a function.

After the usual preamble, we declare a pointer to a function, pdo_it, which can point to either

of the other two functions that we have defined, sum() or product(). The pointer is given the
address of the function product() in this assignment statement:

 pdo_it = product;

When initializing an ordinary pointer, the name of the function is used in a similar way to that of
an array name in that no parentheses or other adornments are required. The function name is
automatically converted to an address which is stored in the pointer.

The function product() is then called indirectly through the pointer pdo_it in the output

statement.

 cout << endl

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << "3*5 = " << pdo_it(3, 5); // Call product thru a
pointer

The name of the pointer is used just as if it were a function name, and is followed by the

arguments between parentheses exactly as they would appear if the original function name
were being used directly.

Just to show that we can do it, we change the pointer to point to the function sum(). We then

use it again in a ludicrously convoluted expression to do some simple arithmetic. This shows
that a pointer to a function can be used in exactly the same way as the function that it points to.
The sequence of actions in the expression is shown here:

A Pointer to a Function as an Argument

Since 'pointer to a function' is a perfectly reasonable type, a function can also have a parameter
that is a pointer to a function. The function can then call the function pointed to by the argument.
Since the pointer can be made to point at different functions in different circumstances, this
allows the particular function that is to be called from inside a function to be determined in the
calling program. In this case, you can pass a function explicitly as an argument.

Try it Out: - Passing a Function Pointer

We can look at this with an example. Suppose we need a function that will process an array of
numbers by producing the sum of the squares of each of the numbers on some occasions, and
the sum of the cubes on other occasions. One way of achieving this is by using a pointer to a
function as an argument.

 //EX6_02.CPP

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // A pointer to a function as an argument

 #include <iostream>

 using namespace std;

 // Function prototypes

 double squared(double);

 double cubed(double);

 double sumarray(double array[], int len, double (*pfun)(double));

 int main(void)

 {

 double array[] = { 1.5, 2.5, 3.5, 4.5, 5.5, 6.5, 7.5 };

 int len = sizeof array/sizeof array[0];

 cout << endl

 << "Sum of squares = "

 << sumarray(array, len, squared);

 cout << endl

 << "Sum of cubes = "

 << sumarray(array, len, cubed);

 cout << endl;

 return 0;

 }

 // Function for a square of a value

 double squared(double x)

 {

 return x*x;

 }

 // Function for a cube of a value

 double cubed(double x)

 {

 return x*x*x;

 }

 // Function to sum functions of array elements

 double sumarray(double array[], int len, double (*pfun)(double))

 {

 double total = 0.0; // Accumulate total in here

 for(int i = 0; i < len; i++)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 total += pfun(array[i]);

 return total;

 }

If you compile and run this code, you should see the following output:

How It Works

The first statement of interest is the prototype for the function sumarray(). Its third parameter

is a pointer to a function which has a parameter of type double, and returns a value of type
double.

 double sumarray(double array[], int len, double (*pfun)(double));

The function sumarray() processes each element of the array passed as its first argument

with whatever function is pointed to by its third argument. The function then returns the sum of
the processed array elements.

We call the function sumarray() twice in main(), the first time with squared as the third

argument, and the second time using cubed. In each case, the address corresponding to the

function name used as an argument, will be substituted for the function pointer in the body of
the function sumarray(), so the appropriate function will be called within the for loop.

There are obviously easier ways of achieving what this example does, but using a pointer to a
function provides you with a lot of generality. You could pass any function to sumarray() that
you care to define as long as it takes one double argument and returns a value of type

double.

Arrays of Pointers to Functions

In the same way as with regular pointers, you can declare an array of pointers to functions. You

can also initialize them in the declaration. An example of declaring an array of pointers would
be:

 double sum(double, double); // Function prototype

 double product(double, double); // Function prototype

 double difference(double, double); // Function prototype

 double (*pfun[3])(double,double) =

 { sum, product, difference }; // Array of function
pointers

Each of the elements in the array is initialized by the corresponding function address appearing
in the initializing list between braces. To call the function product() using the second element

of the pointer array, you would write:

 pfun[1](2.5, 3.5);

The square brackets which select the function pointer array element appear immediately after
the array name and before the arguments to the function being called. Of course, you can place
a function call through an element of a function pointer array in any appropriate expression that

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the original function might legitimately appear in, and the index value selecting the pointer can
be any expression producing a valid index value.

Initializing Function Parameters

With all the functions we have used up to now, we have had to take care to provide an
argument corresponding to each parameter in a function call. It can be quite handy to be able to
omit one or more arguments in a function call, and have some default values for the arguments
that you leave out supplied automatically. You can arrange this by initializing the parameters to
a function in its prototype.

For example, let's suppose that we write a function to display a message, where the message to
be displayed is to be passed as an argument. Here is the definition of such a function:

 void showit(const char message[])

 {

 cout << endl

 << message;

 return;

 }

We can initialize the parameter to this function by specifying the initializing string value in the

function prototype, as follows:

 void showit(const char message[] = "Something is wrong.");

Here, the parameter message is initialized with the string (literal) shown. If you've initialized a

parameter to a function in the prototype, and if you leave out that argument when you call the
function, the initializing value is used in the call.

Try it Out: - Omitting Function Arguments

Leaving out the function argument when you call the function will execute it with the default

value. If you supply the argument, it will replace the default value. We can use the previous
function to output a variety of messages.

 //EX6_03.CPP

 // Omitting function arguments

 #include <iostream>

 using namespace std;

 void showit(const char message[] = "Something is wrong.");

 int main(void)

 {

 const char mymess[] = "The end of the world is nigh.";

 showit(); // Display the basic
message

 showit("Something is terribly wrong!"); // Display an
alternative

 showit(); // Display the default
again

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 showit(mymess); // Display a predefined
message

 cout << endl;

 return 0;

 }

 void showit(const char message[])

 {

 cout << endl

 << message;

 return;

 }

If you execute this example, it will produce the following apocalyptic output:

How It Works

As you can see, we get the default message specified in the function prototype whenever the
argument is left out. Otherwise, the function behaves normally.

If you have a function with several arguments, you can provide initial values for as many of
them as you like. If you want to omit more than one argument to take advantage of a default
value, all arguments to the right of the leftmost argument that you omit must also be left out. For
example, if you have this function,

 int do_it(long arg1 = 10, long arg2 = 20, long arg3 = 30, long
arg4 = 40);

and you want to omit one argument in a call to it, you can omit only the last one, arg4. If you
want to omit arg3, you must also omit arg4. If you omit arg2, arg3 and arg4 must also be

omitted, and if you want to use the default value for arg1, you have to omit all of the arguments

in the function call.

You can conclude from this that you need to put the arguments which have default values in the
function prototype together in sequence at the end of the parameter list, with the argument most
likely to be omitted appearing last.

Exceptions

If you've had a go at the exercises we've left at the end of the chapters so far, you're more than

likely to have come across compiler errors and warnings, as well as errors that occur while the
program is running. Exceptions are a way of flagging errors or unexpected conditions that have
occurred in your C++ programs.

So far, we have typically handled error conditions by using an if statement to test some

expression, and then executing some specific code to deal with the error. C++ also provides

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

another, more general mechanism for handling errors that allows you to separate the code that
deals with these conditions from the code that executes when such conditions do not arise. It is
important to realize that exceptions are not intended to be used as an alternative to the normal
data checking and validating that you might do in a program. The code that is generated when
you use exceptions carries quite a bit of overhead with it, so exceptions are really intended to
be applied in the context of exceptional, near catastrophic conditions that might arise, but are
not normally expected to occur in the normal course of events. An error reading from a disk
might be something that you use exceptions for. An invalid data item being entered is not a
good candidate for using exceptions.

The exception mechanism uses three new keywords:

§ try — identifies a code block in which an exception can occur

§ throw — causes an exception condition to be originated

§ catch — identifies a block of code in which the exception is handled

Let's see how they work in practice.

Try it Out: - Throwing and Catching Exceptions

We can see how exception handling operates by working through an example. Let's use a very

simple context for this. Suppose we write a program to read the height of a person in inches,
and then display the height in meters. Let's also suppose that we want to validate the height
entered so that we won't accept any values greater than 100 inches, or less than 9 inches. This
is contrary to what was said earlier about the situations in which exceptions fit, but we need
something simple and reproducible just to show the mechanism. Looking for a disk read error
wouldn't cut it.

We could code this using exception handling as follows:

 // EX6_04.CPP Using exception handling

 #include <iostream>

 using namespace std;

 int main(void)

 {

 int Height = 0;

 const double InchesToMeters = 0.0254;

 char ch = 'y';

 while(ch == 'y' || ch == 'Y')

 {

 cout << "Enter a height in inches: ";

 cin >> Height; // Read the height to
be

 // converted

 try // Defines try block
in which

 { // exceptions may be
thrown

 if(Height > 100)

 throw "Height exceeds maximum"; // Exception thrown

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if(Height < 9)

 throw "Height below minimum"; // Exception thrown

 cout << static_cast<double>(Height)* InchesToMeters <<
" meters"

 << endl;

 cout << "Do you want to continue (y or n)?";

 cin >> ch;

 }

 catch(const char aMessage[]) // Start of catch
block which

 { // catches exceptions
of type

 // const char[]

 cout << aMessage << endl;

 }

 }

 return 0;

 }

If you run this example, typical output will be as shown below:

How It Works

The code in the try block is executed in the normal sequence. The try block serves to define

where an exception can be raised. You can see from the output that when an exception is
thrown, the catch block is executed, and execution continues with the statement following the

catch block. When no exception is thrown, the catch block is not executed. Because the try
block encloses the statement to output the converted value of Height and read a value for ch,

and because these follow the throw statements, they are not executed when an exception is

thrown. When a throw statement is executed, control passes immediately to the first statement
in the catch block.

Throwing Exceptions

Exceptions can be thrown anywhere within a try block. In our example, we throw two

exceptions in the throw statements that you see. The operand of the throw statements

determines a type for the exception — both the exceptions thrown here are string literals and
therefore of type const char[]. The operand following the throw keyword can be any

expression and the type of the result of the expression determines the type of exception thrown.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Exceptions can also be thrown in functions called from within a try block and caught by a
catch block following the try block. You could add a function to the previous example to

demonstrate this, with the definition:

 void TestThrow(void)

 {

 throw "An exception from within a function!";

 }

If you place a call to this function after the statement reading the value for ch, this exception will
be thrown and caught by the catch block on every iteration when no other exception is thrown.

Don't forget the function prototype if you add the definition of TestThrow() to the end of the

source code.

Catching Exceptions

The catch block following the try block in our example catches any exception of type const
char[]. This is determined by the exception declaration that appears in parentheses following

the keyword catch. You must supply at least one catch block for a try block, and the catch
blocks must immediately follow the try block. A catch block will catch all exceptions (of the

correct type) that occur anywhere in the code in the immediately preceding try block, including
those thrown in any functions that are called directly or indirectly within the try block.

If you want to specify that a catch block is to handle any exception that is thrown in a try

block, you must put an ellipsis, ..., between the parentheses enclosing the exception

declaration:

 catch (...)

 {

 // code to handle any exception

 }

This catch block must appear last if you have other catch blocks defined for the try block.

Try it Out: - Nested try Blocks

You can nest try blocks one within another. With this situation, if an exception is thrown from
within an inner try block which is not followed by a catch block corresponding to the type of

exception thrown, the catch handlers for the outer try block will be searched. You can

demonstrate this by modifying the previous example as follows:

 // EX6_05.cpp

 // Nested try blocks

 #include <iostream>

 using namespace std;

 int main(void)

 {

 int Height = 0;

 const double InchesToMeters = 0.0254;

 char ch = 'y';

 try // Outer try block

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 while(ch == 'y'||ch =='Y')

 {

 cout << "Enter a height in inches: ";

 cin >> Height; // Read the height to
be converted

 try // Defines try block
in which

 { // exceptions may be
thrown

 if(Height > 100)

 throw "Height exceeds maximum"; // Exception thrown

 if(Height < 9)

 throw Height; // Exception thrown

 cout << static_cast<double>(Height)*InchesToMeters

 << " meters" << endl;

 cout << "Do you want to continue(y or n)?";

 cin >> ch;

 }

 catch(const char aMessage[]) // start of catch

block which

 { // catches exceptions
of type

 cout << aMessage << endl; // const char[]

 }

 }

 }

 catch(int BadHeight)

 {

 cout << BadHeight << " inches is below minimum" << endl;

 }

 return 0;

 }

Here, there is an extra try block enclosing the while loop and the second exception thrown in

the inner try block has been changed to throw the value of Height when this value is below
the minimum. If you run this version of the program, the exception of type const char[] is

caught by the catch block in the inner try block. The exception of type int has no catch

handler for exceptions of this type, so the catch handler in the outer try block is executed. In this
case, the program ends immediately because the statement following the catch block is a
return.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Exception Handling in the MFC

This is a good point to raise the question of MFC and exceptions, since they are used to some
extent. If you are browsing the documentation that came with Visual C++, you may come across
TRY, THROW, and CATCH in the index These are macros defined within MFC that were created

before exception handling was implemented in the C++ language. They mimic the operation of
try, throw and catch in the C++ language, but the language facilities for exception handling

really obsolete these so you should not use them. However, they are still there for two reasons.
Firstly, there are large numbers of programs still around that use these macros, and it is
important to ensure that old code still compiles as far as possible. Secondly, most of the MFC
that throws exceptions was implemented in terms of these macros. In any event, any new
programs should use the try, throw and catch keywords in C++ since they will work with the

MFC.

There is one slight anomaly you need to keep in mind when we come to using MFC functions
that throw exceptions. The MFC functions that throw exceptions, generally throw exceptions of
class types - you will find out about class types before we get to using the MFC. Even though
the exception that an MFC function throws is of a given class type - CDBException say, you

need to catch the exception as a pointer, not as the type of the exception. So with the exception
thrown being of type CDBException, the type that would appear as the catch block
parameter would be CBDException*. We will see examples where this is the case in context

later in the book.

Handling Memory Allocation Errors

When we used the operator new to allocate memory for our variables (as we saw in Chapters 4
and 5), we had to test the value of the pointer returned for NULL, since new returns NULL if the

memory was not allocated. If the memory wasn't allocated, we used the exit() function to quit

the execution of our program. This is quite adequate in most situations, as having no memory
left is usually a terminal condition for a program. However, there can be circumstances where
you might be able to do something about it if you had the chance. For instance, you might be
allocating several blocks of memory for different purposes, and if the program ran out, you could
conceivably delete one of the blocks to allow the program to stagger on for a bit. Under these
circumstances there is something you can do which depends on the ability to define a pointer to
a function.

Visual C++ supplies a function called _set_new_handler() which accepts a pointer to a

function as an argument. The function name begins with an underscore, which is used to
distinguish system functions in Visual C++. This enables you to avoid naming functions that
clash with system functions — all you need to do is ensure that the names of your own
functions do not begin with an underscore. The pointer argument to _set_new_handler()

should point to a function that you supply, which will handle the problem of the operator new not

being able to allocate memory . This is how the function gets its name. The function that you
write will then be called whenever new fails to allocate the memory requested. Once you have
called the function _set_new_handler() with a pointer to your function as an argument, the

problem of dealing with the failure of new to work properly is fixed for the entire program,

assuming that the action in your function is effective. To use the function
_set_new_handler(), you must include the header file <new> into your program.

The function that you supply to handle out-of-memory conditions must have a prototype of the

form:

 int mem_error(size_t space); // Function to handle memory
depletion

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can give the function any name you like, but the parameter list and return type must
correspond to that shown above. The argument passed to your function will be a count of the
number of bytes required. Its type, size_t, is defined in the new header file and, as we saw in
Chapter 4, is the same as that of values returned by the operator sizeof. It is generally used

for values which are a count of a number of bytes. With this value available, you may have a
chance to scrape up enough memory to carry on. The statement to set the function
mem_error() to be called when memory is exhausted might be:

 _set_new_handler(mem_error);

The function _set_new_handler() actually returns a pointer to the previous handler (which
would be the default function if you haven't called _set_new_handler() previously). Most of

the time, you'll find that it's a good idea to store the pointer returned by the function in a variable
so that you can restore the old handler when you no longer need your handler to be active. You
can do this by calling _set_new_handler() once more, using the pointer to the old handler

as the argument.

The header file, new, also defines a type _PNH (for Pointer to New Handler) which you can use

to declare a pointer to store the address of the previous handler. So, the statement,

 _PNH pOldHandler = _set_new_handler(mem_error);

declares the pointer pOldHandler, sets mem_error() as the function to handle out of

memory conditions, and stores the address of the old handler in the pointer pOldHandler. If
you want to restore the old handler, you just call _set_new_handler() once more:

 _set_new_handler (pOldHandler);

Having done whatever you feel is necessary to free up memory in your mem_error function,

you may want to try again to allocate the memory which previously caused a failure. To do this,
you should return a positive value from your function, in which case the new operator will

automatically retry the failed memory allocation. Of course, if it fails again, it will call your
function again. To avoid this, you should make sure that your function doesn't keep returning
positive values if it hasn't freed up enough memory. Otherwise, you risk being trapped in an
infinite loop. If you return zero from your function, the operator new will terminate.

To implement a function to handle the out-of-memory situations with some positive effect,
clearly you must have some means of returning memory to the free store. This implies that
some dynamically allocated memory must be accessible at the global scope in order that you
can make sure that the function is able to release it using delete. In most practical cases, this

involves some serious work on the program to manage memory, unless you're just setting some
memory aside for a rainy day.

Function Overloading

Suppose we have a function which generates the maximum value of an array of values of type
double:

 // Function to generate the maximum value in an array of type
double

 double maxdouble(double array[], int len)

 {

 double max = array[0];

 for(int i = 1; i < len; i++)

 if(max < array[i])

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 max = array[i];

 return max;

 }

We now want to create a function which produces the maximum value from an array of type
long, so we write another function very similar to the first, with this prototype:

 long maxlong(long array[], int len);

We now have to be careful to choose the appropriate function name to match the particular task
in hand. We may also need the same function for other types of argument. It seems a pity that
we have to keep inventing new names. Ideally, we would want to use the function max() for

whatever type, and have the appropriate version executed.

The mechanism which enables you to do this is called function overloading.

What is Function Overloading?

Function overloading allows you to use the same name in different functions and, in each
instance, to have the compiler choose the correct version for the job. There has to be a clear
method for the compiler to decide which function is to be called in any particular instance. The
key to this is the parameter list. A series of functions with the same name, but differentiated by
their parameter lists, is a set of overloaded functions. So, following on from our max() function

example, we could have overloaded functions with the following prototypes:

 int max(int array[], int len); // Prototypes for

 long max(long array[], int len); // a set of overloaded

 double max(double array[], int len); // functions

Each of the functions that share a common name must have a different parameter list. Note that

a different return type does not distinguish a function adequately. You can't add the function,

 double max(long array[], int len);

to the above set as it would clash with this prototype,

 long max(long array[], int len);

causing the compiler to complain with error C2556: 'long __cdecl max(long array[], int len)' :
overloaded function differs only by return type from 'double __cdecl max(long array[], int len)' and the
program not to compile. This may seem slightly unreasonable, until you remember that you can
write statements such as these:

 long numbers[] = {1, 2, 3, 3, 6, 7, 11, 50, 40};

 int len = sizeof numbers/sizeof numbers[0];

 ...

 max(numbers, len);

If the return type were permitted as a distinguishing feature, the version of max() taking a long

array as an argument and returning a double value would be allowed, along with the original

three. In the instance of the code above, the compiler would be unable to decide whether to
choose the version with a long return type or a double return type. You could however

replace the long function with the double function in the set, as the parameter list for each

function in the set would still be unique.

Each function in a set of overloaded functions is sometimes said to have a unique signature,
which is determined by the parameter list.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - Using Overloaded Functions

We can exercise the overloading capability with the function max() that we have already
defined. Let's try an example that includes the three versions for int, long and double arrays.

 // EX6_06.CPP

 // Using overloaded functions

 #include <iostream>

 using namespace std;

 int max(int array[], int len); // Prototypes for

 long max(long array[], int len); // a set of overloaded

 double max(double array[], int len); // functions

 int main(void)

 {

 int small[] = {1, 24, 34, 22};

 long medium[] = {23, 245, 123, 1, 234, 2345);

 double large[] = {23.0, 1.4, 2.456, 345.5, 12.0, 21.0};

 int lensmall = sizeof small/sizeof small[0];

 int lenmedium = sizeof medium/sizeof medium[0];

 int lenlarge = sizeof large/sizeof large[0];

 cout << endl << max(small, lensmall);

 cout << endl << max(medium, lenmedium);

 cout << endl << max(large, lenlarge);

 cout << endl;

 return 0;

 }

 // Maximum of ints

 int max(int x[], int len)

 {

 int max = x[0];

 for(int i = 1; i < len; i++)

 if(max < x[i])

 max = x[i];

 return max;

 }

 // Maximum of longs

 long max(long x[], int len)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 long max = x[0];

 for(int i = 1; i < len; i++)

 if(max < x[i])

 max = x[i];

 return max;

 }

 // Maximum of doubles

 double max(double x[], int len)

 {

 double max = x[0];

 for(int i = 1; i < len; i++)

 if(max < x[i])

 max = x[i];

 return max;

 }

How It Works

We have three prototypes for the three overloaded versions of the function max(). In each of

the three output statements, the appropriate version of the function max() is selected by the

compiler based on the argument list types. The example works as expected and produces this
output:

When to Overload Functions

Function overloading provides you with the means of ensuring that a function name describes
the function being performed, and is not confused by extraneous information such as the type of
data being processed. This is akin to what happens with basic operations in C++. To add two
numbers you use the same operator, regardless of the types of the operands. Our overloaded
function max() has the same name, regardless of the type of data being processed. This helps

to make the code more readable and makes these functions easier to use.
Important

The intent of function overloading is clear: to enable the same operation
to be performed with different operands using a single function name.
So, whenever you have a series of functions that do essentially the
same thing, but with different types of arguments, you should overload
them and use a common function name.

Function Templates

The last example was somewhat tedious in that we had to repeat essentially the same code for
each function, but with different variable and parameter types. We also have the possibility of

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

having a recipe for automatically generating functions of various types. The code to do this for a
particular group of functions is called a function template.

The functions generated by a function template all have the same basic code, but have one or
more types defined as parameters to the template. As you use a particular form of a template
function, a version is automatically generated to support the type of arguments that you use. We
can demonstrate this by defining a function template for the function max() in the previous

example.

Using a Function Template

We can define a template for the function max() as follows:

 template<class T> T max(T x[], int len)

 {

 T max = x[0];

 for(int i = 1; i < len; i++)

 if(max < x[i])

 max = x[i];

 return max;

 }

The template keyword identifies this as a template definition. The angled brackets following
the template keyword enclose the type parameters that are used to create a particular

instance of the function. The keyword class before the T indicates that the T is the type

parameter for this template, class being the generic term for type. We shall see later in the

book that defining a class is essentially defining your own data type. Consequently, you have
basic types in C++, such as int and char, and you also have the types that you define

yourself.

Wherever T appears in the definition of the template, it is to be replaced by a specific type, such
as long, when an instance of the template is created. If you try this out manually, you'll see that

this will generate a perfectly satisfactory function for calculating the maximum value from an
array of type long. The creation of a particular function instance is referred to as instantiation.
In our case, we have just one type parameter, T, but in general, there can be more.

Each time you use the function max() in your program, the compiler will check to see if a

function corresponding to the type of arguments that you have used in the function call already
exists. If the function required does not exist, the compiler will create one by substituting the
argument type that you have used in place of the parameter T throughout the source code in the
template definition. You could exercise this template with the same function main() that we

used in the previous example:

 // EX6_07.CPP

 // Using function templates

 #include <iostream>

 using namespace std;

 // Template for function to compute the maximum element of an array

 template<class T> T max(T x[], int len)

 {

 T max = x[0];

 for(int i = 1; i < len; i++)

 if(max < x[i])

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 max = x[i];

 return max;

 }

 int main(void)

 {

 int small[] = { 1, 24, 34, 22};

 long medium[] = { 23, 245, 123, 1, 234, 2345};

 double large[] = { 23.0, 1.4, 2.456, 345.5, 12.0, 21.0};

 int lensmall = sizeof small/sizeof small[0];

 int lenmedium = sizeof medium/sizeof medium[0];

 int lenlarge = sizeof large/sizeof large[0];

 cout << endl << max(small, lensmall);

 cout << endl << max(medium, lenmedium);

 cout << endl << max(large, lenlarge);

 cout << endl;

 return 0;

 }

If you run this program, it will produce exactly the same output as the previous example. For
each of the statements outputting the maximum value in an array, a new version of max() is

instantiated using the template. Of course, if you add another statement calling the function
max() with one of the types used previously, no new version of the code is generated.

Note that using a template doesn't reduce the size of your compiled program in any way. A

version of the source code is generated for each function that you require. In fact, using
templates can generally increase the size of your program, as functions can be created
automatically even though an existing version might satisfactorily be used by casting the
argument accordingly. You can force the creation of particular instances of a template by
explicitly including a declaration for it. For example, if you wanted to ensure that an instance of
the template for the function max() was created corresponding to the type float, you could

place the following declaration after the definition of the template:

 float max(float, int);

This will force the creation of this version of the function template. It does not have much value

in the case of our program example, but it can be useful when you know that several versions of
a template function might be generated, but you want to force the generation of a subset that
you plan to use with arguments cast to the appropriate type where necessary.

An Example Using Functions

We have covered a lot of ground in C++ up to now, and a lot on functions in this chapter alone.
After wading through a varied menu of language capabilities, it's not always easy to see how
they relate to one another. Now would be a good point to see how some of this goes together to
produce something with more meat than a simple demonstration program.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Let's work through a more realistic example to see how a problem can be broken down into
functions. The process will involve defining the problem to be solved, analyzing the problem to
see how it can be implemented in C++, and finally writing the code. The approach here is aimed
at illustrating how various functions go together to make up the final result, rather than a tutorial
on how to develop a program.

Implementing a Calculator

Suppose we need a program that will act as a calculator; not one of these fancy devices with
lots of buttons and gizmos designed for those who are easily pleased, but one for people who
know where they are going, arithmetically speaking. We can really go for it and enter a
calculation from the keyboard as a single arithmetic expression, and have the answer displayed
immediately. An example of the sort of thing that we might enter is:
§ 2*3.14159*12.6*12.6 / 2 + 25.2*25.2

To avoid unnecessary complications for the moment, we won't allow parentheses in the

expression and the whole computation must be entered in a single line. However, to allow the
user to make the input look attractive, we will allow blanks to be placed anywhere. The
expression entered may contain the operators multiply, divide, add, and subtract represented by
*, /, + and - respectively, and should be evaluated with normal arithmetic rules, so that

multiplication and division take precedence over addition and subtraction.

The program should allow as many successive calculations to be performed as required, and
should terminate if an empty line is entered. It should also have helpful and friendly error
messages.

Analyzing the Problem

A good place to start is with the input. The program will read in an arithmetic expression of any
length on a single line, which can be any construction within the terms given. Since nothing is
fixed about the elements making up the expression, we will have to read it as a string of
characters and then work out within the program how it's made up. We can decide arbitrarily
that we will handle a string of up to 80 characters, so we could store it in an array declared
within these statements:

 const int MAX = 80; // Maximum expression length
including '\0'

 char buffer[MAX]; // Input area for expression to be
evaluated

To change the maximum length of the string processed by the program, we will only need to
alter the initial value of MAX.

We need to determine the basic structure of the information in the input string, so let's break it
down step-by-step.

The first thing to do is to make sure that it is as uncluttered as possible, so before we start
analyzing, we will get rid of all the blanks in the input string. Let's call the function we use to do
this eatspaces(). This can work by moving through the input buffer — which will be the array
buffer[] — using two indexes to it, i and j, and shuffling elements up to overwrite any blank

characters. The indexes i and j start out at the beginning of the buffer, and we store element j
at position i. As we progress through the elements, each time we find a blank we don't

increment i, so it will get overwritten by the next element. We can illustrate the logic of this in

the following figure:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This process is one of copying the contents of the array buffer[] to itself, but not copying any

blanks. The diagram shows the array buffer before the copying process and after it has been
completed.

The next thing we need to do is to evaluate the expression. We will define the function expr()

which will return the value of the whole expression in the input buffer. To decide what goes on
inside the function, we need to look into the structure of the input in more detail. The add and
subtract operators have the lowest precedence and so are evaluated last. We can envisage the
string as one or more terms, each of which we can refer to as a term, connected by operators

which can be either the operator + or the operator -. We can refer to either operator as an
addop. With this terminology, we can represent the general expression like this:

 expression: term addop term ... addop term

The expression will contain at least one term and can have an arbitrary number of following
addop term combinations. In fact, assuming that we've removed all the blanks, there are only

three legal possibilities for the character following each term:

§ The next character is '\0', so we are at the end of the string

§ The next character is '-', in which case we should subtract the next term from the

value accrued for the expression up to this point
§ The next character is '+', in which case we should add the value of the next term to

the value of the expression accumulated so far

If anything else follows a term, the string is not what we expect, so we'll display a message and

exit from the program. The structure of an expression is illustrated here:

The next thing that we need to know about an input expression is a more detailed and precise
definition of a term. A term is simply a series of numbers that are connected by either the
operator * or the operator /. Therefore, a term (in general) will look like this:

 term: number multop number ... multop number

By multop we mean either multiply or divide. What we need is a function term() to return the
value of a term. This will need to progress through the string first by finding a number and then

looking for a multop followed by another number. If a character is found that isn't a multop,
we'll assume that it is an addop and return the value that we have found up to that point.

The last thing that we need to understand before writing the program is what a number is. To
avoid unnecessary complications, we'll only allow a number to be unsigned. Therefore, a

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

number consists of a series of digits that may be followed by a decimal point and some more
digits. To determine the value of a number we move through the buffer finding digits. If we find
anything that isn't a digit, we check whether it's a decimal point. If it's not a decimal point it has
nothing to do with a number, so we return what we have got. If it is a decimal point, we look for
more digits. As soon as we find anything that's not a digit, we have the complete number and
we return that. Imaginatively, we'll call the function to sort this out number().

We now have enough understanding of the problem to write some code. We can work through
the functions we need, then write a main() function to tie them all together. The first and
perhaps easiest function to write is eatspaces() which is going to eliminate the blanks from

the input string.

Eliminating Blanks from a String

We can write the prototype for eatspaces() as follows:

 void eatspaces(char* str); // Function to
eliminate blanks

It doesn't need to return any value since the blanks can be eliminated from the string in situ,
modifying the original string directly through the pointer provided as an argument. The process
for eliminating blanks is a very simple one. We need to copy the string to itself, but overwriting
any blanks as we saw earlier in this chapter.

We can define the function to do this as follows:

 // Function to eliminate blanks from a string

 void eatspaces(char* str)

 {

 int i = 0; // 'Copy to' index to
string

 int j = 0; // 'Copy from' index
to string

 while((*(str + i) = *(str + j++)) != '\0') // Loop while
character

 { // copied is not \0

 if(*(str + i) != ' ') // Increment i as

long as

 i++; // character is not a
blank

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

How the Function Functions

All the action is in the while loop. The loop condition copies the string by moving the character
at position j to the character at position i, and then increments j to the next character. If the

character copied was '\0', we have reached the end of the string, and we're done.

The only action in the loop statement is to increment i to the next character if the last character
copied was not a blank. If it is a blank, i will not be incremented and the blank will therefore be

overwritten by the character copied on the next iteration.

That wasn't hard, was it? Next, we can try writing the function providing the result of evaluating

the expression.

Evaluating an Expression

The function expr() needs to return the value of the expression specified in the string that is

supplied as an argument, so we can write its prototype as follows:

 double expr(char* str); // Function evaluating
an expression

The function declared here accepts a string as an argument and returns the result as type
double. Based on the structure for an expression that we worked out earlier, we can draw a

logic diagram for the process of evaluating an expression as shown below:

Using this basic definition of the logic, we can now write the function:

 // Function to evaluate an arithmetic expression

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 double expr(char* str)

 {

 double value = 0.0; // Store result here

 int index = 0; // Keeps track of current character
position

 value = term(str, index); // Get first term

 for(;;) // Infinite loop, all exits inside

 {

 switch(*(str + index++)) // Choose action based on current
character

 {

 case '\0': // We're at the end of the
string

 return value; // so return what we have got

 case '+': // + found so add in the

 value += term(str, index); // next term break;

 case '-': // - found so subtract

 value -= term(str, index); // the next term break;

 default: // If we reach here the
string

 cout << endl // is junk

 << "Arrrgh!*#!! There's an error"

 << endl;

 exit(1);

 }

 }

 }

How the Function Functions

Considering this function is analyzing any arithmetic expression that you care to throw at it (as
long as it uses our operator subset), it's not a lot of code. We define a variable index of type

int, which is intended to keep track of the current position in the string where we're working,

and we initialize it to 0 which corresponds to the index position of the first character in the string.
We also define a variable value of type double in which we'll accumulate the value of the
expression passed to the function in the char array str.

Since an expression must have at least one term, the first action in the function is to get the
value of the first term by calling the function term(), which we have yet to write. This actually

places three requirements on the function term():
1. It should accept a char* pointer and an int variable as parameters, the second

parameter being an index to the first character of the term in the string supplied.
2. It should update the index value passed to position it at the character following the last

character of the term found.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

3. It should return the value of the term as type double.

The rest of the program is an infinite for loop. Within the loop, the action is determined by a
switch statement which is controlled by the current character in the string. If it is a '+', we call

the function term() to get the value of the next term in the expression and add it to the variable
value. If it is a '-', we subtract the value returned by term() from the variable value. If it is a

'\0', we are at the end of the string, so we return the current contents of the variable value to

the calling program. If it is any other character, it shouldn't be there, so after remonstrating with
the user we end the program!

If either a '+' or a '-' was found, the loop continues. Each call to term() will have moved the
value of the variable index to the next character after the last term, which should be either

another '+' or '-', or the end of string character '\0'. Thus, the function either terminates
normally when '\0' is reached, or abnormally by calling exit(). We need to remember the

#include for cstdlib to provide the prototype for the function exit() when we come to put

the whole program together.

It would also be possible to analyze an arithmetic expression using a recursive function. If we
think about the definition of an expression slightly differently, we could specify it as being either
a term, or a term followed by an expression. The definition here is recursive (i.e. the definition
involves the item being defined), and this approach is very common in defining programming
language structures. This definition provides just as much flexibility as the first, but using it as
the base concept, we could arrive at a recursive version of expr() instead of using a loop as

we did in the implementation above. You might wish to try this alternative approach as an
exercise, once we have completed the first version.

Getting the Value of a Term

The function term() needs to return a double value and receive two arguments: the string

being analyzed and an index to the current position in the string. There are other ways of doing
this, but this arrangement is quite straightforward. We can, therefore, write the prototype of the
function term() as follows:

 double term(char* str, int& index); // Function analyzing a
term

We've specified the second parameter as a reference. This is because we want the function to
modify the value of the variable index in the calling program to position it at the character
following the last character of the term found in the input string. We could return index as a

value but then we would need to return the value of the term in some other way, so the
arrangement we've chosen seems quite natural.

The logic for analyzing a term is going to be similar in structure to that for an expression. It is a
number, potentially followed by one or more combinations of a multiply or a divide operator and
another number. We can write the definition of the function term() as follows:

 // Function to get the value of a term

 double term(char* str, int& index)

 {

 double value = 0.0; // Somewhere to
accumulate

 // the result

 value = number(str, index); // Get the first
number in the term

 // Loop as long as we have a good operator

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 while((*(str + index) == '*') || (*(str + index) == '/'))

 {

 if(*(str + index) == '*') // If it's multiply,

 value *= number(str, ++index); // multiply by next
number

 if(*(str + index) == '/') // If it's divide,

 value /= number(str, ++index); // divide by next
number

 }

 return value; // We've finished, so
return what

 // we've got

 }

How the Function Functions

We first declare a local double variable value in which we'll accumulate the value of the current

term. Since a term must contain at least one number, the first action in the function is to obtain
the value of the first number by calling the function number() and storing the result in the
variable value. We implicitly assume that the function number() will accept the string and an

index to the string as arguments, and will return the value of the number found. Since the
function number() must also update the index to the string to the position after the number that

was found, we'll again specify the second parameter as a reference when we come to define
that function.

The rest of the function is a while loop, which continues as long as the next character is '*'

or '/'. Within the loop, if the character found at the current position is '*', we increment the
variable index to position it at the beginning of the next number, call the function number() to

get the value of the next number, and then multiply the contents of the variable value by the
value returned. In a similar manner, if the current character is '/', we increment the variable

index and divide the contents of value by the value returned from number(). Since the

function number() automatically alters the value of the variable index to the character following
the number found, index is already set to select the next available character in the string on

the next iteration.

The loop terminates when a character other than a multiply or divide operator is found,
whereupon the current value of the term accumulated in the variable value is returned to the

calling program.

The last analytical function that we require is number(), which needs to determine the

numerical value of any number appearing in the string.

Analyzing a Number

Based on the way we've used the function number() within the function term(), we need to

declare it with this prototype:

 double number(char* str, int& index); // Function to recognize a
number

The specification of the second parameter as a reference will allow the function to update the
argument in the calling program directly, which is what we require.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We can make use of a function provided in a standard C++ library here. The header file cctype

provides declarations for a range of functions for testing single characters. These functions
return values of type int - positive values (corresponding to true) or zero (false). Four of

these functions are shown below:

Functions in cctype for Testing Single Characters

int isalpha(int
c)

Returns true if the argument is alphabetic, false otherwise.

int isupper(int
c)

Returns true if the argument is an upper case letter, false

otherwise.

int islower(int
c)

Returns true if the argument is a lower case letter, false
otherwise.

int isdigit(int
c)

Returns true if the argument is a digit, false otherwise.

There are also a number of other functions provided by cctype, but we won't grind through all

the detail. If you're interested, you can look them up in the MSDN Library Help. Simply do a
search on 'is routines' or look at Visual C++ Documentation\Using Visual C++\Visual C++
Programmer's Guide\Run-Time Library Reference\Alphabetic Function Reference\I Through K for a
fuller listing.

We only need the last of the functions shown above in our program. Remember that
isdigit() is testing a character, such as the character '9' (ASCII character 57 in decimal

notation) for instance, not a numeric 9, because the input is a string.

We can define the function number() as follows:

 // Function to recognize a number in a string

 double number(char* str, int& index)

 {

 double value = 0.0; // Store the resulting
value

 while(isdigit(*(str + index))) // Loop accumulating
leading digits

 value = 10*value + (*(str + index++) - 48);

 // Not a digit when we get
to here

 if(*(str + index) != '.') // so check for decimal
point

 return value; // and if not, return value

 double factor = 1.0; // Factor for decimal

places

 while(isdigit(*(str + (++index)))) // Loop as long as we have
digits

 {

 factor *= 0.1; // Decrease factor by
factor of 10

 value = value + (*(str + index) - 48)*factor; // Add
decimal place

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 return value; // On loop exit we are done

 }

How the Function Functions

We declare the local variable value as double which will hold the value of the number. We

initialize it with 0.0 because we will add in the digit values as we go along.

As the number in the string is a series of digits as ASCII characters, the function will walk

through the string accumulating the value of the number digit by digit. This will occur in two
steps, accumulating digits before the decimal point, and then if we find a decimal point,
accumulating the digits after it.

The first step is in the while loop that continues as long as the current character selected by

the variable index is a digit. The value of the digit is extracted and added to the variable value

in the loop statement:

 value = 10*value + (*(str + index++) - 48);

The way this is constructed bears a closer examination. A digit character will have an ASCII

value between 48, corresponding to the digit 0, and 57 corresponding to the digit 9. Thus, if we
subtract 48 from the ASCII code for a digit, we will convert it to its equivalent numeric value,
which is the actual digit. We have put parentheses around the sub-expression *(str +
index++) - 48 to make what's going on a little clearer. The contents of the variable value

are multiplied by 10 in order to shift the value one decimal place to the left before adding in the
digit, since we'll find digits from left to right—that is, the most significant digit first. This process
is illustrated here:

As soon as we come across something other than a digit, it is either a decimal point, or
something else. If it's not a decimal point, we've finished, so we return the current contents of
the variable value to the calling program. If it is a decimal point, we accumulate the digits

corresponding to the fractional part of the number in the second loop. In this loop, we use the
variable factor, which has the initial value 1.0, to set the decimal place for the current digit,

and consequently it is multiplied by 0.1 for each digit found. Thus, the first digit after the decimal
point will be multiplied by 0.1, the second by 0.01, the third by 0.001, and so on. This process is
illustrated here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

As soon as we find a non-digit character, we are done, so after the second loop we return the
value of the variable value. We now almost have the whole thing. We just need a main()

function to read the input and drive the process.

Putting the Program Together

The first thing we need to do is to collect the #include statements together and assemble the

function prototypes at the beginning of the program for all the functions used in this program:

 // EX6_08.CPP

 // A program to implement a calculator

 #include <iostream> // For stream input/output

 #include <cstdlib> // For the exit() function

 #include <cctype> // For the isdigit() function

 using namespace std;

 void eatspaces(char* str); // Function to eliminate
blanks

 double expr(char* str); // Function evaluating an
expression

 double term(char* str, int& index); // Function analyzing a term

 double number(char* str, int& index); // Function to recognize a

number

 const int MAX = 80; // Maximum expression length,

 // including '\0'

We've also defined a global variable MAX, which is the maximum number of characters in the

expression processed by the program (including the terminating NULL).

Now all we need to define is the function main() and our program is complete. It needs to read

a string and exit if it is empty, otherwise call the function expr() to evaluate the input and

display the result. This process should repeat indefinitely. That doesn't sound too difficult, so
let's give it a try.

 int main()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 char buffer[MAX] = {0}; // Input area for expression
to be evaluated

 cout << endl

 << "Welcome to your friendly calculator."

 << endl

 << "Enter an expression, or an empty line to quit."

 << endl;

 for(;;)

 {

 cin.getline(buffer, sizeof buffer); // Read an input line

 eatspaces(buffer); // Remove blanks from
input

 if(!buffer[0]) // Empty line ends
calculator

 return 0;

 cout << "\t= " << expr(buffer) // Output value of

expression

 << endl << endl;

 }

 }

How the Function Functions

In main(), we set up the char array buffer to accept an expression up to 80 characters long

(including the terminating NULL). The expression is read within the infinite for loop using the
input function getline(), and after obtaining the input, blanks are eliminated from the string

by calling the function eatspaces().

The only other things that the function main() provides for are within the loop. They are to
check for an empty string which will consist of just the null character, '\0', in which case the

program ends, and to output the value of the string produced by the function expr().

Once you've typed in all the functions, you should get output similar to that shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can enter as many calculations as you like, and when you are fed up with it you just press

Enter to end the program.

Extending the Program

Now that we've got a working calculator, we can start to think about extending it. Wouldn't it be

nice to be able to handle parentheses in an expression? It can't be that difficult, can it? Let's
give it a try. We need to think about the relationship between something in parentheses which
might appear in an expression, and the kind of expression analysis that we have made so far.
Let's look at an example of the kind of expression we want to handle:
§ 2*(3 + 4) / 6 - (5 + 6) / (7 + 8)

The first thing to notice is that the expressions in parentheses always form part of a term in our

original parlance. Whatever sort of computation you come up with, this is always true. In fact, if
we could substitute the value of the expressions within parentheses back into the original string,
we would have something that we can already deal with. This indicates a possible approach to
handling parentheses. Why don't we treat an expression in parentheses as just another number,
and modify the function number() to sort out the value of whatever appears between the

parentheses?

That sounds like a good idea, but 'sorting out' the expression in parentheses requires a bit of
thought: the clue to success is in our terminology. The expression that appears within
parentheses is a minute replica of a full-blown expression, and we already have a function
expr() which will return the value of an expression. All we need to do is to get the function
number() to work out what the contents of the parentheses are and extract those from the

string to be passed to the function expr(), so recursion really simplifies the problem. What's

more, we don't need to worry about nested parentheses. Since any set of parentheses will
contain what we've defined as an expression, they will be taken care of automatically.
Recursion wins again.

Let's have a stab at rewriting the function number() to recognize an expression between

parentheses.

 // Function to recognize an expression in parentheses

 // or a number in a string

 double number(char* str, int& index)

 {

 double value = 0.0; // Store the resulting value

 if(*(str + index) == '(') // Start of parentheses

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 char* psubstr = 0; // Pointer for substring

 psubstr = extract(str, ++index); // Extract substring in
brackets

 value = expr(psubstr); // Get the value of the
substring

 delete[]psubstr; // Clean up the free store

 return value; // Return substring value

 }

 while(isdigit(*(str + index))) // Loop accumulating leading
digits

 value = 10*value + (*(str + index++) - 48);

 // Not a digit when we get
to here

 if(*(str + index) != '.') // so check for decimal
point

 return value; // and if not, return value

 double factor = 1.0; // Factor for decimal places

 while(isdigit(*(str + (++index)))) // Loop as long as we have
digits

 {

 factor *= 0.1; // Decrease factor by factor
of 10

 value = value + (*(str + index) - 48)*factor; // Add decimal
place

 }

 return value; // On loop exit we are done

 }

How the Function Functions

Look how little has changed to support parentheses. I suppose it is a bit of a cheat, since we
use a function (extract()) that we haven't written yet, but for one extra function you get as

many levels of nested parentheses as you want. This really is icing on the cake, and it's all
down to the magic of recursion!

The first thing that the function number() does now is to test for a left parenthesis. If it finds one,
it calls another function, extract() to extract the substring between the parentheses from the
original string. The address of this new substring is stored in the pointer psubstr, so we then

apply the function expr() to the substring by passing this pointer as an argument. The result is

stored in value, and after releasing the memory allocated on the free store in the function
extract() (as we will eventually implement it), we return the value obtained for the substring

as though it were a regular number. Of course, if there is no left parenthesis to start with, the
function number() continues exactly as before.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Extracting a Substring

We now need to write the function extract(). It's not difficult, but it's also not trivial. The main

complication comes from the fact that the expression within parentheses may also contain other
sets of parentheses, so we can't just go looking for the first right parenthesis we can find. We
need to watch out for more left parentheses as well, and for every one we find, ignore the
corresponding right parenthesis. We can do this by maintaining a count of left parentheses as
we go along, adding one to the count for each left parenthesis we find, and if the count is not
zero, subtracting one for each right parenthesis. Of course, if the count is zero, and we find a
right parenthesis, we're at the end of the substring. The mechanism is illustrated in the following
figure:

Since the string extracted here contains sub-expressions enclosed within parentheses,
eventually extract() will be called again to deal with those.

The function extract() will also need to allocate memory for the substring and return a

pointer to it. Of course, the index to the current position in the original string will need to end up
selecting the character following the substring, so the parameter for that will need to be
specified as a reference. The prototype of extract() will, therefore, be as follows:

 char* extract(char* str, int& index); //Function to extract a
substring

We can now have a shot at the definition of the function.

 // Function to extract a substring between parentheses

 // (requires cstring)

 char* extract(char* str, int& index)

 {

 char buffer[MAX]; // Temporary space for
substring

 char* pstr = 0; // Pointer to new string for
return

 int numL = 0; // Count of left parentheses
found

 int bufindex = index; // Save starting value for
index

 do

 {

 buffer[index - bufindex] = *(str + index);

 switch(buffer[index - bufindex])

 {

 case ')':

 if(numL == 0)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 buffer[index - bufindex] = '\0'; // Replace ')'
with '\0'

 ++index;

 pstr = new char[index - bufindex];

 if (!pstr)

 {

 cout << "Memory allocation failed,"

 << " program terminated.";

 exit(1);

 }

 strcpy(pstr, buffer); // Copy substring to new
memory

 return pstr; // Return substring in new
memory

 }

 else

 numL--; // Reduce count of '(' to be
matched

 break;

 case '(':

 numL++; // Increase count of '(' to
be

 // matched

 break;

 }

 } while(*(str + index++) != '\0'); // Loop - don't overrun end
of string

 cout << "Ran off the end of the expression, must be bad input."

 << endl;

 exit(1);

 }

How the Function Functions

We declare a char array to hold the substring temporarily. We don't know how long the
substring will be, but it can't be more than MAX characters. We can't return the address of

buffer to the calling function, because it is local and will be destroyed on exit from the

function. Therefore, we will need to allocate some memory on the free store when we know how
long the string is. We do this by declaring a variable, pstr, of type 'pointer to char', which we

will return by value when we have the substring safe and sound in the free store memory.

We also declare a counter numL, to keep track of left parentheses in the substring (as we
discussed earlier). The initial value of index (when the function begins execution) is stored in

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the variable bufindex. This will be used in combination with incremented values of index to
index the array buffer.

The executable part of the function is basically one big do-while loop. Within the loop, the

substring is copied from str to buffer one character at each iteration, with a check for left or
right parentheses each cycle. If a left parenthesis is found, numL is incremented, and if a right

parenthesis is found and numL is non-zero, it is decremented. When we find a right parenthesis
and numL is zero, we have found the end of the substring. The ')' in the substring in buffer

is then replaced by '\0', and sufficient memory is obtained on the free store to hold the
substring. The substring in buffer is then copied to the memory obtained through the operator

new by using the function strcpy(), which is defined in the header file cstring. This function
copies the string specified by the second argument, buffer, to the address specified by the

first argument, pstr.

If we fall through the bottom of the loop, it means that we hit the NULL at the end of the
expression in str without finding the complementary right bracket, so we display a message

and terminate the program.

Running the Modified Program

After replacing the function number() in the old version of the program, adding the #include
statement for cstring, and incorporating the prototype and the definition for the new

extract() function we have just written, you're ready to roll with an all-singing, all-dancing

calculator. If you have assembled all that without error, you will get output something like this:

The friendly and informative error message in the last output line is due to the use of the comma
instead of the decimal point in the expression above it, in what should be 2.5. As you can see,
we get nested parentheses to any depth with a relatively simple extension of the program, all
due to the amazing power of recursion.

Summary

You now have a reasonably comprehensive knowledge of writing and using functions. You've

used a pointer to a function in a practical context for handling out-of-memory conditions in the
free store, and you have used overloading to implement a set of functions providing the same
operation with different types of parameters. We'll see more about overloading functions in the
following chapters.

The important bits that you learned in this chapter are:

§ A pointer to a function stores the address of a function, plus information about the
number and types of parameters and return type for a function.

§ You can use a pointer to a function to store the address of any function with the
appropriate return type, and number and types of parameters.

§ You can use a pointer to a function to call the function at the address it contains. You
can also pass a pointer to a function as a function argument.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ An exception is a way of signaling an error in a program so that the error handling code
can be separated from the code for normal operations.

§ You throw an exception with a statement that uses the keyword throw.

§ Code that may throw exceptions should be placed in a try block, and the code to

handle a particular type of exception is placed in a catch block immediately following the
try block. There can be several catch blocks following a try block, each catching a

different type of exception.
§ Overloaded functions are functions with the same name, but with different parameter

lists.

§ When you call an overloaded function, the function to be called is selected by the
compiler based on the number and types of the arguments that you specify.

§ A function template is a recipe for generating overloaded functions automatically.
§ A function template has one or more arguments that are type variables. An instance of

the function template — that is, a function definition — will be created by the compiler for
each function call that corresponds to a unique set of type arguments for the template.

§ You can force the compiler to create a particular instance from a function template by
specifying the function you want in a prototype declaration.

You also got some experience of using several functions in a program by working through the
calculator example. But remember that all the uses of functions up to now have been in the
context of a traditional procedural approach to programming. When we come to look at object-
oriented programming, we will still use functions extensively, but with a very different approach
to program structure, and to the design of a solution to a problem.

Exercises

1. Consider the following function:

 int ascVal(int i, const char* p)

 {

 // print the ASCII value of the char

 if (!p || i > strlen(p))

 return -1;

 else

 return static_cast<int>(p[i]);

 }

Write a program which will call this function through a pointer and verify that it works.
You'll need to include <cstring> in your program in order to use strlen().

2. Write a family of overloaded functions called equal(), which take two arguments of
the same type, returning true if they are equal, and false otherwise. Provide versions
having char, int, double and char* arguments. (Use the strcmp() function from
the runtime library to test for equality of strings. If you don't know how to use
strcmp(), search for it in the online help. You'll need to include <cstring> in your
program.) Write test code to verify that the correct versions are called.

3. At present, when the calculator hits an invalid input character, it prints an error
message, but doesn't show you where the error was in the line. Write an error routine
which will print out the input string, putting a caret (^) below the offending character,
like this:

12 + 4,2*3

 ^

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

4. Add an exponentiation operator, ^, to the calculator, fitting it in alongside * and /.

What are the limitations of implementing it in this way, and how can you overcome
them?

5. (Advanced) Extend the calculator so it can handle trig and other math functions,
allowing you to input expressions such as

2 * sin(0.6)

The math library functions all work in radians; provide versions of the trig functions so
that the user can use degrees, e.g.

2 * sind(30)

Answers

1. Calling function via a pointer.

 #include <iostream>

 #include <cstring>

 using namespace std;

 int ascVal(int i, const char* p)

 {

 // print the ASCII value of the char

 if (!p || i > strlen(p))

 return -1;

 else

 return static_cast<int>(p[i]);

 }

 int main()

 {

 char* str = "a bunch of bananas";

 int (*fp)(int, const char*);

 fp = ascVal;

 int i = (*fp)(3,str);

 cout << "value of '" << str[3] << "' is " << i << end1;

 return 0;

 }

2. Overloaded functions.

 #include <iostream>

 #include <cstring>

 using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 bool equal(int a,int b)

 {

 return (a==b) ? true : false;

 }

 bool equal(double a, double b)

 {

 return (a==b) ? true : false;

 }

 bool equal(char a,char b)

 {

 return (a==b) ? true : false;

 }

 bool equal(char* a,char* b)

 {

 return (!strcmp(a,b)) ? true : false;

 }

 int main()

 {

 int iA=3, iB=5;

 if (equal(iA,iB))

 cout << "iA and iB are the same" << endl;

 else

 cout << "iA and iB are different" << endl;

 char* pA = "hello";

 char* pB = "mickey";

 if (equal(pA,pB))

 cout << "pa and pB are the same" << endl;

 else

 cout << "pA and pB are different" << endl;

 char* pC << "mickey";

 if (equal (pB,pC))

 cout << "pB and pC are the same" << endl;

 else

 cout << "pB and pC are different" << endl;

 return 0;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

3. Adding error reporting to the calculator.

 void error(char* str, int index);

 double expr(char* str)

 {

 // ...

 for(;;)

 {

 switch(*(str+index++))

 {

 case '\0' :

 // ...

 case '+':

 // ...

 case '-':

 // ...

 default:

 cout << "Arrrgh!*#!! There's an error"

 << endl;

 error(str, index-1);

 exit(1);

 }

 }

 }

 void error(char* str, int index)

 {

 cout << str << endl;

 for (int i=0;| i<index; i++)

 cout << ' ';

 cout << '^' << endl;

 }

4. Adding an exponentiation operator needs a simple extension to the term() function:

 #include <cmath>

 double term(char* str, int& index)

 {

 double value = 0;

 value = number(str, index);

 while((*(str+index)=='*') || (*(str+index)=='/') ||
(*(str+index)=='^'))

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 if (*(str+index)=='*')

 value *= number(str, ++index);

 if (*(str+index)=='/')

 value /= number(str, ++index);

 if (*<str+index)=='^')

 value = pow(value, number(str, ++index));

 }

 return value;

 }

Notice the use of the pow() function from the math library. The limitation of this approach is

that ^ should have higher precedence than * or /, but the calculator only gives us two levels:
the plus-and-minus level, and the multiply-and-divide level. Without redesigning the calculator
from the ground up, the best way to make exponentiation work properly is to always use
parentheses, so that instead of 3*3^3, you type 3*(3^3). This is what programmers call a
'feature'...

5. Adding math functions. The place to do this is in the number() function, which currently

checks whether the next item in the string is a number or an opening bracket. Since all math
functions are going to be followed by an opening bracket, it is quite simple to collect
alphabetic characters into a string until we hit an opening bracket, then process the contents
of the brackets, and apply the operation on the way out. This version is pretty simple-minded,
and errors (such as not putting the function argument in brackets) tend to get silently ignored.

 double doOperation(char* op, double value);

 double number(char* str, int& index)

 {

 double value = 0.0;

 char op[6]={0};

 int ip = 0;

 while (isalpha(*(str+index)))

 op[ip++] = *(str+index++);

 op[ip] = '\0';

 if (*(str+index) == '(')

 {

 char* psubstr = 0;

 psubstr = extract(str, ++index);

 value = expr(psubstr);

 // If we have an operation saved, go and do it

 if (op[0])

 value = doOperation(op, value);

 delete [] psubstr;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return value;

 }

 // the rest of the function is as before...

 }

The doOperation() function is pretty simple:

 const double degToRad = 57.295779;

 double doOperation(char* op, double value)

 {

 if (!stricmp(op, "sin"))

 return sin(value);

 else if (!stricmp(op, "sind"))

 return sin(value / degToRad);

 else if (!stricmp(op, "cos"))

 return cos(value);

 else if (!stricmp(op, "cosd"))

 return cos(value / degToRad);

 else if (!stricmp(op, "tan"))

 return tan(value);

 else if (!stricmp(op, "tand"))

 return tan(value / degToRad);

 else if (!stricmp(op, "sqrt"))

 return sqrt(value);

 else

 {

 cout << "Error: unknown operation '" << op << "'" << endl;

 exit(1);

 }

 return 0;

 }

You could code this up in a more efficient way—maybe driven by a table—but this simple
version shows how it works.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 7: A Taste of Old-Fashioned Windows

Overview

In this chapter, we're going to take a break from delving into C++ language features. Instead,
we're going to take a look at the nuts and bolts of a Windows program to see how you can put
one together without the assistance of the AppWizard and MFC.

In later chapters, you will be using MFC for your Windows application development, so that you
can take advantage of its object-oriented approach and have the application framework set up
for you by the AppWizard. In this chapter, you'll see how Windows operates behind the scenes
— knowledge that will be useful to you even when you are developing applications using MFC.

Believe it or not, you can almost write a Windows program with the knowledge that you have of
C++ so far. However, before we can go any further in our quest for Windows enlightenment,
there is one other feature of the language that you need to understand: the struct. So, after
first taking a look at how to define and use a struct, we will write a simple Windows program

to display text in a window.

By the end of this chapter you will have learnt:

§ What a struct is and how it is used in Windows programming

§ What the basic structure of a window is
§ What the Windows API is and how it is used

§ What Windows messages are and how you deal with them
§ What notation is commonly used in Windows programs
§ What the basic structure of a Windows program is

The struct in C++

Before we start programming in Windows, there is one language feature that we need to

understand because it is used so extensively in the programming interface to Windows. It is
called a structure and is defined using the keyword struct. The struct is something of a

hangover from the C language, and C++ incorporates and expands on the C struct, which is

functionally replaceable by a class. However, because Windows was written in C before C++
became widely used, the struct appears pervasively in Windows programming. We'll take a

look at (C-style) structs in this chapter, and examine some of the additional capabilities

offered by C++, in the form of classes, in the next chapter.

What is a struct?

All the variables and data types that we have seen up to now have consisted of a single type of
entity — a number of some kind, a character, or a string. Life, the universe and everything are
usually a bit more complicated than that, unless you are among those who believe that the
answer is 42, in which case all you ever need is an int.

Describing virtually anything requires you to define several values, in order that the description
is of practical use in a program. Think about the information that might be needed to describe
something as simple as a book. You might consider title, author, publisher, date of publication,
number of pages, price, topic or classification and ISBN number just for starters, and you can
probably come up with a few more without too much difficulty. You could specify separate
variables to contain each of the parameters that you need to describe a book, but ideally you
would want to have a single data type, BOOK say, which embodied all of these parameters. I'm

sure you won't be surprised to hear that this is exactly what a struct can do for you.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Defining a struct

Let's stick with the notion of a book, and suppose that we just want to include the title, author,
publisher and year of publication within our definition of a book. We could declare a structure to
accommodate this as follows:

 struct BOOK

 {

 char Title[80];

 char Author[80];

 char Publisher[80];

 int Year;

 };

This doesn't define any variables, but it actually creates a new variable type, called BOOK. The

keyword struct defines BOOK as such, and the elements making up a struct of this type are
defined within the curly braces. Note that each line defining an element in the struct is

terminated by a semicolon, and that a semicolon also appears after the closing brace. The
elements of a struct can be of any type, except the same type as the struct being defined.

We couldn't have an element of type BOOK included in the structure definition for BOOK, for

example. You may think this to be a limitation, but note that we could include a pointer to a
variable of type BOOK, as we shall see a little later on.

The elements Title, Author, Publisher, and Year enclosed between the braces in the

definition above may also be referred to as members or fields of the structure BOOK. Each
variable of type BOOK will contain the members Title, Author, Publisher, and Year. We

can now create variables of type BOOK in exactly the same way that we create variables of any

other type:

 BOOK Novel; // Declare variable Novel of type
BOOK

This declares a variable Novel which we can now use to store information about a book. All we

need now is to understand how we get data into the various members that make up a variable
of type BOOK.

Initializing a struct

The first way to get data into the members of a struct is to define initial values in the
declaration. Suppose we wanted to initialize the variable Novel to contain the data for one of

my favorite books, Paneless Programming , published in 1981 by the Gutter Press. This is a
story of a guy performing heroic code development while living in an igloo, and as you probably
know, inspired the famous Hollywood box office success, Gone with the Window. It was written
by I.C. Fingers, who is also the author of that seminal three volume work, The Connoisseur's
Guide to the Paper Clip . With this wealth of information we can write the declaration for the
variable Novel as:

 BOOK Novel =

 {

 "Paneless Programming", // Initial value for Title

 "I.C. Fingers", // Initial value for
Author

 "Gutter Press", // Initial value for
Publisher

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 1981 // Initial value for Year

 };

The initializing values appear between braces, separated by commas, in much the same way
that we defined initial values for members of an array. As with arrays, the sequence of initial
values obviously needs to be the same as the sequence of the members of the struct in its
definition. Each member of the structure Novel will have the corresponding value assigned to

it, as indicated in the comments.

Accessing the Members of a struct

To access individual members of a struct, you can use the member selection operator,

sometimes referred to as the member access operator, which is a period. To refer to a
particular member, you write the struct variable name, followed by a period, followed by the

name of the member that you want to access. To change the member Year of our structure,
Novel, we could write,

 Novel.Year = 1988;

which would set the value of this particular member to 1988. You can use a member of a

structure in exactly the same way as any other variable of the same type as the member. To
increment the member Year by two, for example, we can write:

 Novel.Year += 2;

This increments the value of the member Year just like any other variable.

Try it Out: - Using structs

Let's use another console application example to exercise a little further how referencing the
members of a struct works. Suppose we want to write a program to deal with some of the

things you might find in a yard, such as those that are illustrated in the professionally
landscaped yard below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We have arbitrarily assigned the coordinates 0,0 to the top left corner of the yard. The bottom

right corner has the coordinates 100,120. Thus, the first coordinate value is a measure of the
horizontal position relative to the top left corner, with values increasing from left to right, and the
second coordinate is a measure of the vertical position from the same reference point, with
values increasing from top to bottom. The illustration also shows the position of the pool and
that of the two huts relative to the top left-hand corner of the yard. Since the yard, the huts and
the pool are all rectangular, we could define a struct which will be convenient for us to use in

their representation:

 struct RECTANGLE

 {

 int Left; // Top left point

 int Top; // coordinate pair

 int Right; // Bottom right point

 int Bottom; // coordinate pair

 };

The first two members of the RECTANGLE structure type correspond to the coordinates of the

top left point of a rectangle, and the next two to the coordinates of the bottom right point. We
can use this in an elementary example dealing with the objects in the yard as follows:

 // EX7_01.CPP

 // Exercising structures in the yard

 #include <iostream>

 using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Definition of a struct to represent rectangles

 struct RECTANGLE

 {

 int Left; // Top left point

 int Top; // coordinate pair

 int Right; // Bottom right point

 int Bottom; // coordinate pair

 };

 // Prototype of function to calculate the area of a rectangle

 long Area(RECTANGLE& aRect);

 // Prototype of a function to move a rectangle

 void MoveRect(RECTANGLE& aRect, int x, int y);

 int main(void)

 {

 RECTANGLE Yard = { 0, 0, 100, 120 };

 RECTANGLE Pool = { 30, 40, 70, 80 };

 RECTANGLE Hut1, Hut 2;

 Hut1.Left = 70;

 Hut1.Top = 10;

 Hut1.Right = Hut1.Left + 25;

 Hut1.Bottom = 30;

 Hut2 = Hut1; // Define Hut2 the same as
Hut1

 MoveRect(Hut2, 10, 90); // Now move it to the right
position

 cout << endl

 << "Coordinates of Hut2 are "

 << Hut2.Left << "," << Hut2.Top << " and "

 << Hut2.Right << "," << Hut2.Bottom;

 cout << endl

 << "The area of the yard is "

 << Area(Yard);

 cout << endl

 << "The area of the pool is "

 << Area(Pool)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << endl;

 return 0;

 }

 // Function to calculate the area of a rectangle

 long Area(RECTANGLE& aRect)

 {

 return (aRect.Right - aRect.Left)*(aRect.Bottom - aRect.Top);

 }

 // Function to Move a Rectangle

 void MoveRect(RECTANGLE& aRect, int x, int y)

 {

 int length = aRect.Right - aRect.Left; // Get length of
rectangle

 int width = aRect.Bottom - aRect.Top; // Get width of
rectangle

 aRect.Left = x; // Set top left point

 aRect.Top = y; // to new position

 aRect.Right = x + length; // Get bottom right
point as

 aRect.Bottom = y + width; // increment from new
position

 return;

 }

How It Works

Note that the struct definition appears at global scope in this example. You'll be able to see it

in the ClassView of the Project Workspace window. This allows us to declare a variable of type
RECTANGLE anywhere in our .cpp file of source code. In a program with a more significant
amount of code, such definitions are normally stored in a .h file and then added to each .cpp

file where necessary by using a #include directive.

We have defined two functions to process RECTANGLE objects. The function Area() calculates
the area of a RECTANGLE passed as a reference argument as the product of the length and the

width, where the length is the difference between the horizontal positions of the defining points,
and the width is the difference between the vertical positions of the defining points. By passing a
reference, the code runs a little faster because the argument is not copied. The function
MoveRect() modifies the defining points of a RECTANGLE object to position it at the
coordinates x, y which are passed as arguments. The position of a RECTANGLE object is

assumed to be the position of the Left, Top point. Since the RECTANGLE variable is passed
as a reference, the function is able to modify the members of the RECTANGLE object directly.

After calculating the length and width of the RECTANGLE object passed, the Left and Top
members are set to x and y respectively, and the new Right and Bottom members are

calculated by incrementing x and y by the length and width of the original RECTANGLE object.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

In the function main(), we initialize the Yard and Pool RECTANGLE variables with their
coordinate positions as shown in the illustration. The variable Hutl represents the hut at the top

right in the illustration and its members are set to the appropriate values using assignment
statements. The variable Hut2, corresponding to the hut at the bottom left of the yard, is first

set to be the same as Hut1 in the assignment statement

 Hut2 = Hut1; // Define Hut2 the same as Hut1

This statement results in copying the values of the members of Hut1 to the members of Hut2.

You can only assign a struct of a given type to another of the same type. You can't increment
a struct directly, or use a struct in an arithmetic expression.

To alter the position of Hut2 to its place at the bottom left of the yard, we call the MoveRect()

function with the coordinates of the required position as arguments. This roundabout way of
getting the coordinates of Hut2 is totally unnecessary and serves only to show how we can use

a struct as an argument to a function.

After displaying the coordinates of the final version of Hut2, we display the area of the

RECTANGLE objects Yard and Pool using the function Area(). If you build and execute this

example, you should see the output shown below:

The values displayed are what you would expect from the positions and dimensions shown in
the illustration of the yard.

Intellisense Assistance with Structures

You may already have noticed that the editor in Visual C++ is quite intelligent - it knows the
types of variables for instance. If you hover the mouse cursor over a variable name in the editor
window, it will pop-up a little box showing its definition. It also can help a lot with structures (and
classes, as we will see) since, not only does it know the types of ordinary variables, it knows the
members that belong to a variable of a particular structure type. If your PC is reasonably fast, as
you type the member selection operator following a structure variable name, the editor will pop
up a window showing the list of members. If you click on one of the members, it will show the
comment that appeared in the original definition of the structure, so you know what it is. This is
shown below using a fragment of the previous example.

Now there's a real incentive to add comments, and to keep them short and to the point. If you

double click on a member in the list, it will be automatically inserted after the member selection
operator, thus eliminating one source of typos in your code. Great, isn't it?

You can turn this off if you want to via the Tools/Options... menu item, but I guess the only
reason you would want to is if your machine is too slow to make it useful. If you turn it off, you
can still call it up when you want too, either through the Edit menu or through the keyboard.
Pressing Ctrl+Alt+T will pop-up the members for an object under the cursor. The editor will also
show the parameter list for a function when you are typing the code to call it - it pops up as soon
as you enter the left parenthesis for the argument list. This is particularly helpful with library
functions as its tough to remember the parameter list for all of them. Of course, the #include

directive for the header file must already be there in the source code for this to work. Without it

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the editor will have no idea what the library function is. You will see more things that the editor
can help with as you learn more about classes.

After that interesting little diversion, let's get back to structures.

The struct RECT

Rectangles are used a great deal in Windows programs. For this reason, there is a RECT
structure predefined in the header file windows.h. Its definition is essentially the same as the

structure that we defined in the last example:

 struct RECT

 {

 int left; // Top left

 int top; // coordinates

 int right; // Bottom right

 int bottom; // coordinates

 };

As we shall see, this struct is usually used to define rectangular areas on your display for a

variety of purposes. Since RECT is used so extensively, windows.h also contains prototypes

for a number of functions to manipulate and modify rectangles. For example, windows.h
provides the function InflateRect() to increase the size of a rectangle and the function

EqualRect() to compare two rectangles. MFC also defines a class called CRect, which is the
equivalent of a RECT structure. Once we understand classes, we will be using this in preference

to the RECT structure. The CRect class provides a very extensive range of functions for

manipulating rectangles, and you will be using a number of these when we are writing Windows
programs using MFC. You can find the complete list of functions for manipulating RECT

structures by looking up Platform SDK\Graphics and Multimedia Services\GDI\Rectangles in the help
contents.

Using Pointers with a struct

As you might expect, you can create a pointer to a variable of a structure type. In fact, many of
the functions declared in windows.h that work with RECT objects require pointers to a RECT as

arguments because this avoids the copying of the whole structure when a RECT argument is
passed to a function. To define a pointer to a RECT object for example, the declaration is what

you might expect:

 RECT* pRect = NULL; // Define a pointer to RECT

Assuming that we have defined a RECT object, aRect, we can set our pointer to the address of

this variable in the normal way, using the address-of operator:

 pRect = &aRect; // Set pointer to the address of
aRect

As we saw when we introduced the idea of a struct, a struct can't contain a member of the
same type as the struct being defined, but it can contain a pointer to a struct, including a

pointer to a struct of the same type. For example, we could define the structure:

 struct ListElement

 {

 RECT aRect; // RECT member of structure

 ListElement* pNextListElement; // Pointer to a list element

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 };

The first element of the ListElement structure is of type RECT, and the second element is a

pointer to a structure of type ListElement — the same type as that being defined. (Remember

that this element isn't of type ListElement, it's of type 'pointer to ListElement'.) This allows
elements to be daisy-chained together, where each element of type ListElement can contain

the address of the next ListElement object in a chain, the last in the chain having the pointer

as zero. This is illustrated in the diagram:

Each box in the diagram represents an object of type ListElement. This kind of arrangement

is usually referred to as a linked list. It has the advantage that as long as you know the first
element in the list, you can find all the others. This is particularly important when variables are
created dynamically, since a linked list can be used to keep track of them all. Every time a new
one is created, it's simply added to the end of the list. We will see this sort of thing in operation
in a Windows programming example later on.

Accessing Elements Through a Pointer

Consider the following statements:

 RECT aRect = { 0, 0, 100, 100 };

 RECT* pRect = &aRect;

The first declares and defines the RECT object, aRect, with the first pair of members initialized

to (0, 0) and the second pair to (100, 100). The second statement declares the pointer to RECT,
pRect, and initializes it with the address of aRect. We can now access the members of

aRect through the pointer with a statement such as:

 (*pRect).Top +=10; // Increment the Top member by 10

The parentheses to de-reference the pointer here are essential since the member access
operator takes precedence over the de-referencing operator. Without the parentheses, we
would be attempting to treat the pointer as a struct and to de-reference the member, so the
statement would not compile. After executing this statement, the Top member will have the

value 10 and, of course, the remaining members will be unchanged.

The Indirect Member Selection Operator

The method that we used to access the member of a struct through a pointer looks rather

clumsy. Since this kind of operation crops up very frequently in C++, the language includes a
special operator to enable you to express the same thing in a much more readable and intuitive
form. It is specifically for accessing members of a struct through a pointer and is called the

indirect member selection operator, also referred to as the indirect member access
operator. We could use it to rewrite the statement to access the Top member of aRect through

the pointer pRect, as follows:

 pRect->Top += 10; // Increment the Top member by 10

The operator looks like a little arrow and is formed from a minus sign followed by the symbol for
'greater than'. It's much more expressive of what is going on, isn't it? This operator is also used
with classes, and we'll be seeing a lot more of it throughout the rest of the book.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Windows Programming Basics

Now that we've seen how structs can be used in C++, let's move on to Windows

programming. You have already created a Windows program in Chapter 1 with the aid of the
AppWizard and without writing a single line of code. The user interface that was created was
actually very sophisticated — we are going to create a much more elementary window for our
example in this chapter — but we'll use the window generated by our example in Chapter 1 to
illustrate the various elements that go to make up a window.

Elements of a Window

You will inevitably be familiar with most, if not all, of the principal elements of the user interface
to a Windows program. However, we will go through them anyway, since we will be concerned
with programming them as elements rather than just using them. The best way for us to
understand what the elements of a window can be is to look at one. An annotated version of the
window displayed by the example that we saw in Chapter 1 is shown below:

The example actually generated two windows. The larger window with the menu and the tool
bars is the main, or parent window, and the smaller window is a child window of the parent. If
you ran the example you will have seen that, while the child window can be closed by double-
clicking the title bar icon without closing the parent window, closing the parent window
automatically closes the child window as well. This is because the child window is owned by,
and dependent upon, the parent window. In general, a parent window may have a number of
child windows, as we shall see.

The most fundamental parts of a typical window are its border, the title bar icon, the title bar
showing the name that you give to the window, and the client area (the area in the center of the
window not used by the title bar or borders). We can get all of these for free in a Windows
program. As you will see, all we have to do is provide some text for the title bar.

The border defines the boundary of a window and may be fixed or sizable. If the border is

sizable, you can drag it to alter the size of the window. The window may also possess a size
grip, which you can use to alter the size of a window while maintaining its aspect ratio — the
ratio of the width to the height. When we define a window, if we need to, we can modify how the
border behaves and appears. Most windows will also have the maximize, minimize and close
buttons in the top right corner of the window. These allow the window to be increased to full
screen size, reduced to an icon or closed.

When you click on the title bar icon with the left mouse button, it provides a standard menu for
altering or closing the window called the 'system menu' or 'control menu'. The system menu also
appears when you right-click on the title bar of a window. While it is optional, it's a good idea
always to include the title bar icon in any main windows that your program generates. It can be
a very convenient way of closing the program when things don't work as you anticipated.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The client area is the part of the window where you will usually want your program to write text
or graphics. You address the client area for this purpose in exactly the same way as the yard
that we saw in the example earlier in this chapter. The top left corner of the client area has the
coordinates (0, 0), with x increasing from left to right, and y increasing from top to bottom.

The menu bar is optional, but is probably the most common way to control an application. The
contents of a menu and the physical appearance of many objects that are displayed in a
window, such as the icons on the toolbar that appear above, the cursor and many others, are
defined by a resource file. We will see a lot more of resource files when we get to write some
more sophisticated Windows programs.

The toolbar provides a set of icons that usually act as alternatives to the menu options that you
use most often. Because they give a pictorial clue to the function provided, they can often make
a program easier and faster to use.

A little note about terminology before we move on. One tends to think of a window as the thing
that appears on the screen with a border round it, and of course it is, but it is only one kind of
window. However, in Windows a window is a generic term covering a whole range of entities. In
fact almost any entity that is displayed is a window - for example, a dialog is a window and each
button is also a window. We will generally use terminology to refer to objects that describe what
they are, buttons, dialogs, and so on, but you need to have tucked in the back of your mind that
they are windows too, because you can do things to them that you can do with a regular window
- you can draw on a button for instance.

Comparing DOS and Windows Programs

When you write a program for DOS, the operating system is essentially subservient. When you
want some service to be provided, you call an operating system function. You can even bypass
the operating system and provide your own function to communicate with your PC hardware if
you want. You can address any of the hardware in your machine directly, and for some
application areas where the ultimate performance is required — games programs, for example
— this is how programs are regularly implemented.

With Windows, it's all quite different. Here your program is subservient and Windows is in

control You must not deal directly with the hardware and all communications with the outside
must pass through Windows. When you use a Windows program you are interacting primarily
with Windows, which then communicates with the application program on your behalf. Your
Windows program is the tail, Windows is the dog, and your program wags only when Windows
tells it to.

There are a number of reasons why this is so. First and foremost, since you are potentially
always sharing the computer with other programs that may be executing at the same time,
Windows has to have primary control in order to manage the sharing of machine resources. If
one application was allowed to have primary control in a Windows environment this would
inevitably make programming more complicated because of the need to provide for the
possibility of other programs, and information intended for other applications could be lost. A
second reason for Windows being in control is that Windows embodies a standard user
interface and needs to be in charge to enforce that standard You can only display information
on the screen using the tools that Windows provides, and then only when authorized.

Event-driven Programs

We have already seen, in Chapter 1, that a Windows program is event-driven. A significant part
of the code required for a Windows application is dedicated to processing events caused by
external actions of the user. Activities that are not directly associated with your application can
nonetheless require that bits of your program code are executed. For example, if the user drags
the window of another application that is active alongside yours, and this action uncovers part of
the client area of the window devoted to your application, your application will need to redraw
that part of the window.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Windows Messages

Events are occurrences such as the user clicking the mouse or pressing a key, or a timer
reaching zero. Windows records every event in a message and places the message in a
message queue for the program for which the message is intended. If your program is properly
organized, then by sending a message Windows can tell it that something needs to be done, or
that some information has become available, or that an event such as a mouse click has
occurred. There are many different kinds of messages and they can occur very frequently —
many times per second when the mouse is being dragged, for example.

A Windows program must contain a function specifically for handling these messages. The
function is often called WndProc() or WindowProc(), although it doesn't have to be, since

Windows accesses the function through a pointer to a function that you supply. So the sending
of a message to your program boils down to Windows calling a function that you provide,
typically called WindowProc(), and passing any necessary data to your program by means of
arguments to this function. Within your WindowProc() function it is up to you to work out what

the message is from the data supplied and what to do about it.

Fortunately, you don't need to write code to process every message. You can filter out those
that are of interest in your program, deal with those in whatever way you want, and pass the
rest back to Windows. Passing a message back to Windows is done by calling a standard
function provided by Windows called DefWindowProc(), which provides default message

processing.

The Windows API

All of the communications between a Windows application and Windows itself use the Windows

application programming interface, otherwise known as the Windows API. This consists of
literally hundreds of functions that are provided as standard with Windows to be used by your
applications. Structures are often used for passing some kinds of data between Windows and
your program, which is why we needed to look at them first.

The Windows API covers all aspects of the dialog necessary between Windows and your

application. Because there is such a large number of functions, using them in the raw can be
very difficult — just understanding what they all are is a task in itself. This is where Visual C++
comes in. Visual C++ packages the Windows API in a way that structures the functions in an
object-oriented manner, and provides an easier way to use the interface with more default
functionality. This takes the form of the Microsoft Foundation Classes (MFC).

Visual C++ also provides an application framework in the form of code generated by the
AppWizard, which includes all of the boilerplate code necessary for a Windows application,
leaving you just to customize this for your particular purposes. The example in Chapter 1
illustrated how much functionality Visual C++ is capable of providing without any coding effort at
all on our part. We will discuss this in much more detail when we get to write some examples
using AppWizard.

Before we go any further however, you should note that MFC defines many more variable types
on top of the basic types we have seen so far in this book. For example, MFC has its own
Boolean variable type BOOL. A variable of type BOOL contains one of the values TRUE or
FALSE. This is different from a variable containing either the value true or false, as it would

do if it were of type bool, one of the standard C++ types, which you have already met. MFC

also introduces handles and long pointers, both of which we'll meet in a few pages time.

Notation in Windows Programs

In many Windows programs, variable names have a prefix which indicates what kind of value
the variable holds and how it is used. There are quite a few prefixes and they are often used in

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

combination. For example, the prefix lpfn signifies a long pointer to a function. A sample of the

prefixes you might come across is:

Prefix Meaning

b a logical variable of type BOOL, equivalent to int

by type unsigned char; a byte

c type char

dw type DWORD, which is unsigned long

fn a function

h a handle, used to identify something (usually an int value)

i type int

1 type long

lp long pointer

n type int

p a pointer

s a string

sz a zero terminated string

w type WORD, which is unsigned short

This use of these prefixes is called Hungarian notation. It was introduced to minimize the

possibility of misusing a variable by interpreting it differently from how it was defined or intended
to be used. Such misinterpretation was easily done in the C language, a precursor of C++. With
C++ and its stronger type checking, to avoid such problems you don't need to make such a
special effort with your notation. The compiler will always flag an error for type inconsistencies in
your program, and many of the kinds of bugs that plagued earlier C programs can't occur with
C++.

On the other hand, Hungarian notation can still help to make programs easier to understand,

particularly when you are dealing with a lot of variables of different types that are arguments to
Windows API functions. Since a lot of Windows programs are still written in C, and of course
since parameters for Windows API functions are still defined using Hungarian notation, the
method is still widely used.

You can make up your own mind as to the extent to which you want to use Hungarian notation;

it is by no means obligatory. You may choose not to use it at all, but in any event, if you have an
idea of how it works, you will find it easier to understand what the arguments to the Windows
API functions are. There is a small caveat, however. As Windows has developed, the types of
some of the API function arguments have changed slightly, but the variable names that are
used remain the same. As a consequence, the prefix may not be quite correct in specifying the
variable type.

The Structure of a Windows Program

For a minimal Windows program, written using just the Windows API, we will write two
functions. These will be a WinMain() function, where execution of the program begins and
basic program initialization is carried out, and a WindowProc() function, which will be called by

Windows to process messages for the application. Usually, the WindowProc() part of a

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Windows program is the larger portion because this is where most of the application-specific
code will be, responding to messages caused by user input of one kind or another.

While these two functions make up a complete program, they are not directly connected.
WinMain() does not call WindowProc(), Windows does. In fact, Windows also calls

WinMain(). This is illustrated in the diagram:

The function WinMain() communicates with Windows by calling some of the Windows API
functions. The same applies to WindowProc (). The integrating factor in your Windows

program is Windows itself, which links to both WinMain() and WindowProc(). We will take a
look at what the pieces are that make up WinMain() and WindowProc(), and then assemble

the parts into a working example of a simple Windows program.

The WinMain() Function

The WinMain() function is the equivalent of the main() function in a DOS (console) program.

It's where execution starts and where the basic initialization for the rest of the program is carried
out. To allow Windows to pass data to it, WinMain() has four parameters and a return value of

type int. Its prototype is:

 int WINAPI WinMain(HINSTANCE hInstance,

 HINSTANCE hPrevInstance,

 LPSTR lpCmdLine,

 int nCmdShow

);

Following the return type specifier, int, we have a specification for the function, WINAPI, which

is new to us. This is a Windows-defined specifier that causes the function name and the
arguments to be handled in a special way, which happens to correspond to the way that a
function is handled in the Pascal and Fortran languages, which is different from the way
functions are normally handled in C++. The precise details are unimportant — this is simply the
way Windows requires things to be, so we need to put the WINAPI specifier in front of the

names of functions called by Windows.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You may wonder why there are types, such as HINSTANCE and others, defined by Windows.

This is to provide for implementations of Windows in different machine environments. By
defining its own, specific Windows types, Windows can control how these types are interpreted
and how they can be adjusted to suit the needs of different computers. All the types used by
Windows, as well as the prototypes of the Windows API functions, are contained in the header
file windows.h, so we will need to include this header file when we put our basic Windows

program together.

The four arguments passed by Windows to your WinMain() function contain important data.

The first argument, hInstance, is of type HINSTANCE which is a handle to an instance, an

instance here being a running program. A handle is a 32-bit integer value which identifies an
object of some kind — in this case the instance of the application. The actual integer value of a
handle is not important. The hInstance handle allows for the possibility of multiple copies of a

Windows program being active simultaneously and individually identifiable. As we will see
shortly, handles are also used to identify all sorts of other things. Of course, all handles in a
particular context — application instance handles for example — need to be different from one
another.

With DOS, only one program can be executed at one time; with Windows, on the other hand,
there can be several. This raises the possibility of several copies of the same application being
active at once, and this needs to be recognized. Hence, the hInstance handle needs to

identify a particular copy. If you start more than one copy of the program, each one will have its
own unique hInstance value.

The next argument, hPrevInstance, is a legacy from 16-bit days. Under Windows 3.x, this

parameter gave you the handle to the previous instance of the program, if there was one. If
hPrevInstance was NULL, you knew that there was no previous instance of the program, so

this must be the only copy of the program executing (at the moment, anyway). This information
was necessary in many cases, because programs running under Windows 3.x share the same
address space and multiple copies of a program executing simultaneously could cause
complications. For this reason, programmers often limited their applications to only one running
instance at a time, and having the hPrevInstance argument passed to WinMain() allowed

them to provide for this very easily by testing it in an if statement.

Under 32-bit systems (Windows 95 and Windows NT) the hPrevInstance parameter is

completely irrelevant since each application runs in its own address space, and one application
has no direct knowledge of the existence of another that is executing concurrently. This
parameter is always NULL, even if another instance of an application is running.

The next argument, lpCmdLine, is a pointer to a string containing the command line that

started the program. For instance, if you started it using the Run... command from the Start
button menu of Windows 95, the string will contain everything that appears in the Open box.
Having this pointer allows you to pick up any parameter values that may appear in the
command line. The type LPSTR is another Windows type, specifying a 32-bit (long) pointer to a

string.

The last argument, nCmdShow, indicates how the window is to look when it is created. It could

be displayed normally or it might need to be minimized; for example, the shortcut for the
program might specify that the program should be minimized when it starts. This argument can
take one of a fixed set of values that are defined by symbolic constants such as
SW_SHOWNORMAL and SW_SHOWMINNOACTIVE. There are a number of other constants like
these which define the way a window is to be displayed and they all begin SW_. Other examples

are SW_HIDE or SW_SHOWMAXIMIZED. You don't usually need to examine the value of
nCmdShow. You typically pass it directly to the Windows API function responsible for displaying

your application window.

If you want to know what all the other constants are that specify how a window will be displayed,
you can find a complete list of the ten possible values if you search on WinMain in the MSDN

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Library. The function reference can be found at Platform SDK/User Interface
Services/Windowing/Windows/Window Reference/Window Functions/WinMain

The function WinMain() in our Windows program needs to do three things:

§ Tell Windows what kind of window the program requires

§ Create and initialize the program window
§ Retrieve Windows messages intended for the program

Let's take a look at each of these in turn, and then create a complete WinMain() function.

Specifying a Program Window

The first step in creating a window is to define just what sort of window it is that we want to
create. Windows defines a special struct called WNDCLASS to contain the data specifying a

window. This data defines a window class, which determines the type of window. Do not
confuse this with a C++ class, which we will learn about in the next chapter. We need to create
a variable from the struct, WNDCLASS, and give values to each of its members (just like

filling in a form). Once we've filled in the variables, we can pass it to Windows (via a function
that we'll see later) in order to register the class. When that's been done, whenever we want to
create a window of that class, we can tell Windows to look up the class that we've already
registered.

The definition of the WNDCLASS structure is as follows:

 struct WNDCLASS

 {

 UINT style; // Window style

 WNDPROC lpfnWndProc; // Pointer to message processing
function

 int cbClsExtra; // Extra byte after the window class

 int cbWndExtra; // Extra bytes after the window
instance

 HINSTANCE hInstance; // The application instance handle

 HICON hIcon; // The application icon

 HCURSOR hCursor; // The window cursor

 HBRUSH hbrBackground; // The brush defining the background
color

 LPCTSTR lpszMenuName; // A pointer to the name of the menu
resource

 LPCTSTR lpszClassName; // A pointer to the class name

 };

The style member of the struct determines various aspects of the window's behavior, in

particular, the conditions under which the window should be redrawn. You can select from a
number of options for this member's value, each defined by a symbolic constant beginning
CS_.

You'll find the eleven possible constant values for style if you search for WNDCLASS in the

MSDN Library. Alternatively, the information can be found under Platform SDK/User Interface
Services/Windowing/Window Classes/Window Class Reference/Window Class
Structures/WNDCLASS

Where two or more options are required, the constants can be combined to produce a
composite value using the bitwise OR operator, |. For example, assuming that we have declared
the variable WindowClass of type WNDCLASS, we could write:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 WindowClass.style = CS_HREDRAW | CS_VREDRAW;

The option CS_HREDRAW indicates to Windows that the window is to be redrawn if its horizontal

width is altered, and CS_VREDRAW indicates that it is to be redrawn if the vertical height of the

window is changed. In the statement above we have elected to have our window redrawn in
either case. As a result, Windows will send a message to our program indicating that we should
redraw the window whenever the width or height of the window is altered by the user. Each of
the possible options for the window style is defined by a unique bit in a 32-bit word being set to
1. That's why the bitwise OR is used to combine them. These bits indicating a particular style
are usually called flags. Flags are used very frequently, not only in Windows, but also in C++,
because they are a very efficient way of representing and processing features that are either
there or not, or parameters that are either true or false.

The member lpfnWndProc stores a pointer to the function in your program which will handle
messages for the window that we will create. The prefix to the name signifies that this is a long

pointer to a function. If you followed the herd and called the function to handle messages for the
application WindowProc(), you would initialize this member with the statement:

 WindowClaas.lpfnWndProc = WindowProc;

The next two members, cbClsExtra and cbWndExtra, allow you to ask for some extra space

internal to Windows for your own use. An example of this could be when you want to associate
additional data with each instance of a window to assist in message handling for each window
instance. Normally you won't need extra space allocated for you, in which case you must set the
cbClsExtra and cbWndExtra members to zero.

The hInstance member holds the handle for the current application instance, so you should

set this to the hInstance value passed to WinMain() by Windows.

The members hIcon, hCursor and hbrBackground, are handles which in turn define the icon

that will represent the application when minimized, the cursor the window is to use and the
background color of the client area of the window. (As we saw earlier, a handle is just a 32-bit
integer used as an ID to represent something.) These are set using Windows API functions. For
example:

 WindowClass.hIcon = LoadIcon(0, IDI_APPLICATION) ;

 WindowClass.hCursor = LoadCursor(0, IDC_ARROW);

 WindowClass.hbrBackground =
static_cast<HBRUSH>(GetStockObject(GRAY_BRUSH));

All three members are set to standard Windows values by these function calls. The icon is a

default provided by Windows and the cursor is the standard arrow cursor used by the majority of
Windows applications. A brush is a Windows object which is used to fill an area, in this case the
client area of the window. The function GetStockObject() returns a generic type for all stock
objects, so we need to cast it to type HBRUSH. In the example above, it returns a handle to the

standard gray brush, and the background color for our window is thus set to gray. This function
can also be used to obtain other standard objects for a window, such as fonts for example.

The lpszMenuName member is set to the name of a resource defining the window menu, or to

zero if there is no menu for the window. We will be looking into creating and using menu
resources when we use the AppWizard.

The last member of the struct is lpszClassName. This member stores the name that you

supply to identify this particular class of window. You would usually use the name of the
application for this. You need to keep track of this name, because you will need it again when a
window is created. This member would therefore be typically set with the statements:

 static char szAppName[] = "OFWin"; // Define window class
name

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 WindowClass.lpszClassName = szAppName; // Set class name

In fact, the WNDCLASS structure has been obsoleted by another structure WNDCLASSEX. The

new structure adds a couple of members over those in WNDCLASS, one of which stores the
size of the structure in bytes, and the other is a pointer to an icon that is used to represent the
application window when it is minimized. Messing with icons is more complication than we really
need here, since we just want to understand the basic structure of a Windows program, so we'll
stick with the old-fashioned structure in our example.

Creating and Initializing a Program Window

After all the members of your WNDCLASS structure have been set to the values required, the

next step is to tell Windows about it. You do this using the Windows API function
RegisterClass().

Assuming that our structure is WindowClass, the statement to do this would be:

 RegisterClass(&WindowClass);

Easy, wasn't it? The address of the struct is passed to the function, and Windows will extract

and squirrel away all the values that you have set in the structure members. This process is
called registering the window class. The term class here is used in the sense of classification
and is not the same as the idea of a class in C++, so don't confuse the two. Each instance of

the application must make sure that it registers the window classes that it needs. If we were
using the WNDCLASSEX structure that we just discussed, we would have to use a different

function here, RegisterClassEx().

Once Windows knows the characteristics of the window that we want, and the function that is

going to handle messages for it, we can go ahead and create it. You use the function
CreateWindow() for this. The window class that we've already created determines the broad

characteristics of a window, and further arguments to the function CreateWindow() add

additional characteristics. Since an application may have several windows in general, the
function CreateWindow() returns a handle to the window created, which you can store to

enable you to refer to that particular window later. There are a lot of API calls that will require
you to specify the window handle as a parameter if you want to use them. We will just look at a
typical use of the CreateWindow() function at this point. This might be:

 HWND hWnd; // Window handle

 ...

 hWnd = CreateWindow(

 szAppName, // the window class name

 "A Basic Window the Hard Way", // The window title

 WS_OVERLAPPEDWINDOW, // Window style as
overlapped

 CW_USEDEFAULT, // Default screen position
of upper left

 CW_USEDEFAULT, // corner of our window as
x,y...

 CW_USEDEFAULT, // Default window size,
width...

 CW_USEDEFAULT, // ...and height

 0, // No parent window

 0, // No menu

 hInstance, // Program Instance handle

 0 // No window creation data

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

);

The variable hWnd of type HWND, is a 32-bit integer handle to a window. We'll use this variable to

record the value that identifies the window, returned from the function CreateWindow(). The

first argument that we pass to the function is the class name. This is used by Windows to
identify the WNDCLASS struct that we passed to it previously, in the RegisterClass()
function call, so that the information from this struct can be used in the window creation

process.

The second argument to CreateWindow() defines the text that is to appear on the title bar.

The third argument specifies the style that the window will have once it is created. The option
specified here, WS_OVERLAPPEDWINDOW, actually combines several options. It defines the

window as having the WS_OVERLAPPED, WS_CAPTION, WS_SYSMENU, WS_THICKFRAME,
WS_MINIMIZEBOX and WS_MAXIMIZEBOX styles. This results in an overlapped window, which

is a window intended to be the main application window, with a title bar and a thick frame, which
has a title bar icon, system menu and maximize and minimize buttons. A window specified as
having a thick frame has borders that can be resized.

The following four arguments determine the position and size of the window on the screen. The

first pair are the screen coordinates of the top left corner of the window, and the second pair
define the width and height of the window. The value CW_USEDEFAULT indicates that we want

Windows to assign the default position and size for the window. This tells Windows to arrange
successive windows in cascading positions down the screen. CW_USEDEFAULT only applies to
windows specified as WS_OVERLAPPED.

The next argument value is zero, indicating that the window being created is not a child window
(a window that is dependent on a parent window). If we wanted it to be a child window, we
would set this argument to the handle of the parent window. The next argument is also zero,
indicating that no menu is required. We then specify the handle of the current instance of the
program which was passed to the program by Windows, and the last argument for window
creation data is zero.

The window now exists but is not yet displayed on the screen. We need to call another

Windows API function to get it displayed:

 ShowWindow(hWnd, nCmdShow); // Display the window

Only two arguments are required here. The first identifies the window and is the handle returned
by the function CreateWindow(). The second is the value nCmdShow which was passed to
WinMain(), and which indicates how the window is to appear on screen.

Initializing the Client Area of the Window

After calling the function ShowWindow(), the window will appear on screen but will still have no

application content, so let's get our program to draw in the client area of the window. We could
just put together some code to do this directly in the WinMain() function, but this would be

most unsatisfactory: the contents of the client area cannot be considered to be permanent —
we can't afford to output what we want and forget about it. Any action on the part of the user
which modifies the window in some way, such as dragging a border or dragging the whole
window, will typically require that the window and its client area are redrawn.

When the client area needs to be redrawn for any reason, Windows will send a particular
message to our program and our WindowProc() function will need to respond by

reconstructing the client area of the window. Therefore, the best way to get the client area
drawn in the first instance is to get Windows to send the message requesting this to our
program. Indeed, whenever we know in our program that the window should be redrawn, when
we change something for example, we just need to tell Windows to send a message back to this
effect.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We can do this by calling another Windows API function, UpdateWindow(). The statement to

accomplish this is:

 UpdateWindow(hWnd); // Cause window client area to
be drawn

This function only requires one argument: the window handle hWnd, which identifies our

particular program window. (In general there can be several windows in an application.) The
result of the call is that Windows will send a message to our program requesting that the client
area be redrawn.

Dealing with Windows Messages

The last task that WinMain() needs to address is dealing with the messages that Windows

may have queued for our application. This may seem a bit odd, since we said earlier that we
needed the function WindowProc() to deal with messages.

Queued and Non-Queued Messages

There are, in fact, two kinds of Windows messages. Firstly, there are queued messages, which
Windows places in a queue and which the WinMain() function needs to extract from the queue

for processing. The code in WinMain() that does this is called the message loop. Queued

messages include those arising from user input from the keyboard, moving the mouse and
clicking the mouse buttons. Messages from a timer and the Windows message to request that a
window be repainted are also queued.

Secondly, there are non-queued messages which result in the WindowProc() function being

called directly by Windows. A lot of the non-queued messages arise as a consequence of
processing queued messages. What we are doing in the message loop in WinMain() is

retrieving a message that Windows has queued for our application and then asking Windows to
invoke our function WindowProc() to process it. Why can't Windows just call WindowProc()

whenever necessary? Well it could, but it just doesn't work this way. The reasons are to do with
how Windows manages multiple applications executing simultaneously.

The Message Loop

Retrieving messages from the message queue is done using a standard mechanism in
Windows programming called the message loop. The code for this would be:

 MSG msg; // Windows message
structure

 while(GetMessage(&msg, 0, 0, 0) == TRUE) // Get any messages

 {

 TranslateMessage(&msg); // Translate the message

 DispatchMessage(&msg); // Dispatch the message

 }

This involves three steps in dealing with each message:

§ GetMessage() — retrieves a message from the queue.

§ TranslateMessage() — performs any conversion necessary on the message

retrieved.
§ DispatchMessage() — causes Windows to call the WindowProc() function in our

application to deal with the message

The operation of GetMessage() is important since it has a significant contribution to the way

Windows works with multiple applications. Let's look into it in a little more detail.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The GetMessage() function will retrieve a message queued for our application window and will
store information about the message in the variable msg, pointed to by the first argument. The

variable msg, which is a struct of type MSG, contains a number of different members which we

will not be accessing here. Still, for completeness, the definition of the structure is:

 struct MSG

 {

 HWND hwnd; // Handle for the relevant window

 UINT message; // The message ID

 WPARAM wParam; // Message parameter (32-bits)

 LPARAM lParam; // Message parameter (32-bits)

 DWORD time; // The time when the message was
queued

 POINT pt; // The mouse position

 };

The wParam member is an example of a slightly misleading Hungarian notation prefix that we
mentioned was now possible. You might assume that it was of type WORD (which is int), which

used to be true in earlier Windows versions, but now it is of type WPARAM, which is a 32-bit

integer value.

The exact contents of the members wParam and lParam are dependent on what kind of

message it is. The message ID in the member message is an integer value and can be one of a
set of values that are predefined in the header file, windows.h, as symbolic constants. They all

start with WM_ and typical examples are WM_PAINT to redraw the screen and WM_QUIT to end
the program. The function GetMessage() will always return TRUE unless the message is

WM_QUIT to end the program, in which case the value returned is FALSE, or unless an error
occurs, in which case the return value is -1. Thus, the while loop will continue until a quit

message is generated to close the application or until an error condition arises. In either case,
we would then need to end the program by passing the wParam value back to Windows in a

return statement.

The second argument in the call to GetMessage() is the handle of the window for which we

want to get messages. This parameter can be used to retrieve messages for one window
separately from another. If this argument is 0, as it is here, GetMessage() will retrieve all

messages for an application, so this is an easy way of retrieving all messages for an application
regardless of how many windows it has. It is also the safest way, since you are sure of getting
all the messages for your application. When the user of your Windows program closes the
application window, for example, the window is closed before the WM_QUIT message is

generated. Consequently, if you only retrieve messages by specifying a window handle to the
GetMessage() function, you will not retrieve the WM_QUIT message and your program will not

be able to terminate properly.

The last two arguments to GetMessage() are integers that hold minimum and maximum

values for the message IDs you want to retrieve from the queue. This allows messages to be
retrieved selectively. A range is usually specified by symbolic constants. Using
WM_MOUSEFIRST and WM_MOUSELAST as these two arguments would select just mouse

messages, for example. If both arguments are zero, as we have them here, all messages are
retrieved.

Multitasking

If there are no messages queued, the GetMessage() function will not come back to our

program. Windows will allow execution to pass to another application and we will only get a
value returned from calling GetMessage() when a message appears in the queue. This

mechanism is fundamental in enabling multiple applications to run under Windows 3.x, and is

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

referred to as cooperative multitasking because it depends on concurrent applications giving
up their control of the processor from time to time. Once your program calls GetMessage(),

unless there is a message for your program, another application will be executed and your
program will only get another opportunity to do something if the other application releases the
processor, perhaps by a call to GetMessage() when there are no messages queued for it, but

this is not the only possibility.

With Windows 3.x, a program that does not call GetMessage(), or includes code for a heavy

computation that does not make provision for returning control to Windows from time to time,
can retain use of the processor indefinitely. With Windows 95, the operating system can
interrupt an application after a period of time and transfer control to another application. This is
called pre-emptive multitasking. However, you still need to program the message loop in
WinMain() using GetMessage() as before, and make provision for relinquishing control of

the processor to Windows from time to time in a long running calculation (this is usually done
using the PeekMessage() API function). If you don't do this, your application may be unable to

respond to messages to repaint the application window when these arise. This can be for
reasons that are quite independent of your application — when an overlapping window for
another application is closed, for example.

The conceptual operation of the GetMessage() function is illustrated below:

Within the while loop, the first function call to TranslateMessage() requests Windows to do

some conversion work for keyboard related messages. Then the call to the function
DispatchMessage() causes Windows to dispatch the message, or in other words, to call the

WindowProc() function in our program to process the message. The return from
DispatchMessage() will not occur until WindowProc() has finished processing the

message. The WM_QUIT message indicates that the program should end, so this results in
FALSE being returned to the application, which stops the message loop.

A Complete WinMain() Function

We have looked at all the bits that need to go into the function WinMain(). So now let's

assemble them into a complete function:

 // Listing OFWIN_1

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int WINAPI WinMain(HINSTANCE hInstance, HINSTANCE hPrevInstance,

 LPSTR lpCmdLine, int nCmdShow)

 {

 WNDCLASS WindowClass; // Structure to hold our
window's attributes

 static char szAppName[] = "OFWin"; // Define window class name

 HWND hWnd; // Window handle

 MSG msg; // Windows message structure

 // Redraw the window if the size changes

 WindowClass.style = CS_HREDRAW | CS_VREDRAW;

 // Define our procedure for message handling

 WindowClass.lpfnWndProc = WindowProc;

 WindowClass.cbClsExtra = 0; // No extra bytes after the
window class

 WindowClass.cbWndExtra = 0; // structure or the window
instance

 WindowClass.hInstance = hInstance; // Application instance
handle

 // Set default application icon

 WindowClass.hIcon = LoadIcon(0, IDI_APPLICATION);

 // Set window cursor to be the standard arrow

 WindowClass.hCursor = LoadCursor(0, IDC_ARROW);

 // Set gray brush for background color

 WindowClass.hbrBackground =
static_cast<HBRUSH>(GetStockObject(GRAY_BRUSH));

 WindowClass.lpszMenuName = 0; // No menu, so no menu
resource name

 WindowClass.lpszClassName = szAppName; // Set class name

 // Now register our window class

 RegisterClass(&WindowClass);

 // Now we can create the window

 hWnd = CreateWindow(

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 szAppName, // the window class
name

 "A Basic Window the Hard Way", // The window title

 WS_OVERLAPPEDWINDOW, // Window style as
overlapped

 CW_USEDEFAULT, // Default screen position
of upper left

 CW_USEDEFAULT, // corner of our window as
x,y...

 CW_USEDEFAULT, // Default window size

 CW_USEDEFAULT, //

 0, // No parent window

 0, // No menu

 hInstance, // Program Instance handle

 0 // No window creation data

);

 ShowWindow(hWnd, nCmdShow); // Display the window

 UpdateWindow(hWnd); // Cause window client area
to be drawn

 // The message loop

 while(GetMessage(&msg, 0, 0, 0) == TRUE) // Get any messages

 {

 TranslateMessage(&msg); // Translate the
message

 DispatchMessage(&msg); // Dispatch the
message

 }

 return msg.wParam; // End, so return to
Windows

 }

How It Works

After declaring the variables we need in the function, all the members of the WindowClass

structure are initialized and the window is registered.

The next step is to call the CreateWindow() function to create the data for the physical

appearance of the window, based on the arguments passed and the data established in the
WindowClass structure that was previously passed to Windows using the RegisterClass()
function. The call to ShowWindow() causes the window to be displayed according to the mode

specified by nCmdShow, and the UpdateWindow() function signals that a message to draw the

window client area should be generated.

Finally, the message loop will continue to retrieve messages for the application until a WM_QUIT

message is obtained, whereupon the GetMessage() function will return FALSE and the loop
will end. The value of the wParam member of the msg structure is passed back to Windows in

the return statement.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Message Processing Functions

The function WinMain() contained nothing that was application-specific beyond the general

appearance of the application window. All of the code that will make the application behave in
the way that we want is going to be included in the message processing part of the program.
This is the function WindowProc() that we identified to Windows in the WindowClass

structure. Windows will call this function each time a message for our main application window
is dispatched.

Our example is going to be very simple, so we will be putting all the code to process messages
in the one function, WindowProc(). More generally though, the WindowProc() function

would be responsible for analyzing what a given message was and which window it was
destined for, and then calling one of a whole range of functions, each of which would be geared
to handling a particular message in the context of the particular window concerned. However,
the overall sequence of operations, and the way in which the function WindowProc() analyses

an incoming message, will be much the same in most application contexts.

The WindowProc() Function

The prototype of our WindowProc() function is:

 long CALLBACK WindowProc(HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam);

Since the function will be called by Windows through a pointer (we set the pointer up in
WinMain() in the WNDCLASS structure), we need to qualify the function as CALLBACK. This is

another specifier defined by Windows that determines how the function arguments are handled.
The four arguments that are passed provide information about the particular message causing
the function to be called. The meaning of each of these arguments is described in the table
below:

Argument Meaning

HWND hWnd A handle to the window in which the event causing the message occurred.

UINT
message

The message ID, which is a 32-bit value indicating the type of message.

WPARAM
wParam

A 32-bit value containing additional information depending on what sort of
message it is.

LPARAM
lParam

A 32-bit value containing additional information depending on what sort of
message it is. Note — lparam has some slightly different uses to wparam,
but for our purposes the difference is negligible - so don't worry about it.

The window that the incoming message relates to is identified by the first argument, hWnd, that

is passed to the function. In our case, we only have one window, so we can ignore it.

Messages are identified by the value message that is passed to WindowProc(). You can test

this value against predefined symbolic constants, each of which relates to a particular message.
They all begin with WM_, and typical examples are WM_PAINT, which corresponds to a request
to redraw part of the client area of a window, and WM_LBUTTONDOWN, which indicates that the

left mouse button was pressed. You can find the whole set of these by searching for WM_ in the
MSDN Library.

Decoding a Windows Message

The process of decoding the message that Windows is sending is usually done using a switch
statement in the WindowProc() function, based on the value of message. Selecting the

message types that you want to process is then just a question of putting a case statement for

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

each case in the switch. The typical structure of such a switch statement, with arbitrary

cases included, is as follows:

 switch(message)

 {

 case WM_PAINT:

 // Code to deal with drawing the client area

 break;

 case WM_LBUTTONDOWN:

 // Code to deal with the left mouse button being pressed

 break;

 case WM_LBUTTONUP:

 // Code to deal with the left mouse button being released

 break;

 case WM_DESTROY:

 // Code to deal with a window being destroyed

 break;

 default:

 // Code to handle any other messages

 }

Every Windows program will have something like this somewhere, although it will be hidden
from sight in the Windows programs that we will write later using MFC. Each case corresponds
to a particular value for the message ID and provides suitable processing for that message. Any
messages that a program does not want to deal with individually are handled by the default
statement, which should hand the messages back to Windows by calling DefWindowProc().

This is the Windows API function providing default message handling.

In a complex program dealing specifically with a wide range of possible Windows messages,
this switch statement can become very large and rather cumbersome. When we get to use

AppWizard, we won't have to worry about this, because it is all taken care of for us and we will
never see the WindowProc() function. All we will need to do is to supply the code to process

the particular messages that we are interested in.

Drawing the Window Client Area

To signal that the client area of an application should be redrawn, Windows sends a WM_PAINT

message to the program. So in our example, we will need to draw the text in the window in
response to the WM_PAINT message.

We can't go drawing in the window willy nilly. Before we can write to our window, we need to tell
Windows that we want to do so, and get Windows' authority to go ahead. We do this by calling
the Windows API function BeginPaint(), which should only be called in response to a
WM_PAINT message. It is used as follows:

 HDC hDC; // A display context handle

 PAINTSTRUCT PaintSt; // Structure defining area to
be redrawn

 hDC = BeginPaint(hWnd, &PaintSt); // Prepare to draw in the
window

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The type HDC defines what is called a display context, or more generally a device context. A

device context provides the link between the device-independent Windows API functions for
outputting information to the screen or a printer, and the device drivers which support writing to
the specific devices attached to your PC. You can also regard a device context as a token of
authority which is handed to you on request by Windows and grants you permission to output
some information. Without a device context, you simply can't generate any output.

The BeginPaint() function provides us with a display context as a return value and requires

two arguments to be supplied. The window to which we want to write is identified by the window
handle, hWnd, which we pass as the first argument. The second argument is the address of a

PAINTSTRUCT variable PaintSt, in which Windows will place information about the area to be
redrawn in response to the WM_PAINT message. We will ignore the details of this since we are

not going to use it. We will just redraw the whole of the client area. We can obtain the
coordinates of the client area in a RECT structure with the statements:

 RECT aRect; // A working rectangle

 GetClientRect(hWnd, &aRect);

The GetClientRect() function supplies the coordinates of the upper-left and lower-right

corners of the client area for the window specified by the first argument. These coordinates will
be stored in the RECT structure aRect, which is passed through the second argument as a

pointer. We can then use this definition of the client area for our window when we write the text
to the window using the DrawText() function. Because our window has a gray background,

we should alter the background of the text to be transparent, to allow the gray to show through,
otherwise the text will appear against a white background. We can do this with the API function
call:

 SetBkMode(hDC, TRANSPARENT); // Set text background mode

The first argument identifies the device context and the second sets the background mode. The
default option is OPAQUE.

We can now write the text with the statement:

 DrawText(hDC, // Device context handle

 "But, soft ! What light through yonder window breaks?",

 -1, // Indicate null terminated
string

 &aRect, // Rectangle in which text is

to be drawn

 DT_SINGLELINE| // Text format - single line

 DT_CENTER| // - centered in
the line

 DT_VCENTER // - line centered
in aRect

);

The first argument is our certificate of authority, the display context hDC. The next argument is

the text string that we want to output. We could equally well have defined this in a variable and
passed the pointer to the text as the second argument in the function call. The next argument,
with the value -1, signifies our string is terminated with a null character. If it weren't, we would
put the count of the number of characters in the string here. The fourth argument is a pointer to
a RECT structure defining a rectangle in which we want to write the text. In our case it is the
whole client area defined in aRect. The last argument defines the format for the text in the

rectangle. Here we have combined three specifications with a bitwise OR (|). Our string will be a
single line, with the text centered on the line and the line centered vertically within the rectangle.
This will place it nicely in the center of the window. There are also a number of other options,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

which include the possibility to place text at the top or the bottom of the rectangle, and to left or
right justify it.

Once we have output all the text we want, we must tell Windows that we have finished drawing
the client area. For every BeginPaint() function call, there must be a corresponding

EndPaint() function call. Thus, to end processing the WM_PAINT message, we need the

statement:

 EndPaint(hWnd, &PaintSt); // Terminate window redraw
operation

The hWnd argument identifies our program window, and the second argument is the address of
the PAINTSTRUCT structure that was filled in by the BeginPaint() function.

Ending the Program

You might assume that closing the window will close the application, but to get this behavior we
actually have to add some code. The reason that our application won't close when the window
is closed is that we may need to do some clearing up. It is also possible that the application may
have more than one window. When the user closes the window by double-clicking the title bar
icon or clicking the close button, this causes a WM_DESTROY message to be generated.

Therefore, in order to close the application we need to process the WM_DESTROY message in
our WindowProc() function. We do this by generating a WM_QUIT message with the following

statement:

 PostQuitMessage(0);

The argument here is an exit code. This Windows API function does exactly what its name
suggests — it posts a WM_QUIT message in the message queue for our application. This will

result in the GetMessage() function in WinMain() returning FALSE and ending the message

loop, so ending the program.

A Complete WindowProc() Function

We have covered all the elements necessary to make up the complete WindowProc() function

for our example. The code for the function is as follows:

 // Listing OFWIN_2

 long CALLBACK WindowProc(HWND hWnd, UINT message, WPARAM wParam,

 LPARAM lParam)

 {

 HDC hDC; // Display context handle

 PAINTSTRUCT PaintSt; // Structure defining area to be

drawn

 RECT aRect; // A working rectangle

 switch(message) // Process selected messages

 {

 case WM_PAINT: // Message is to redraw
the window

 hDC = BeginPaint(hWnd, &PaintSt);// Prepare to draw the
window

 // Get upper left and lower right of client area

 GetClientRect(hWnd, &aRect);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SetBkMode(hDC, TRANSPARENT); // Set text background
mode

 // Now draw the text in the window client area

 DrawText(

 hDC, // Device context handle

 "But, soft! What light through yonder window breaks?",

 -1, // Indicate null terminated
string

 &aRect, // Rectangle in which text is to
be drawn

 DT_SINGLELINE| // Text format - single line

 DT_CENTER| // - centered in the
line

 DT_VCENTER); // - line centered
in aRect

 EndPaint(hWnd, &PaintSt); // Terminate window redraw
operation

 return 0;

 case WM_DESTROY: // Window is being destroyed

 PostQuitMessage(0);

 return 0;

 default: // Any other message - we don't

 // want to know, so call

 // default message processing

 return DefWindowProc(hWnd, message, wParam, lParam);

 }

 }

How It Works

The function consists wholly of a switch statement. A particular case will be selected, based
on the message ID passed to our function in the parameter message. Because our example is

very simple, we only need to process two different messages: WM_PAINT and WM_DESTROY.
We hand all other messages back to Windows by calling the DefWindowProc() function in the

default case for the switch. The arguments to DefWindowProc() are those that were
passed to our function, so we are just passing them back as they are. Note the return

statement at the end of processing each message type. For the messages we handle, a zero
value is returned.

A Simple Windows Program

Since we have written WinMain() and WindowProc() to handle messages, we have enough

to create a complete source file for our Windows program. The complete source file will simply
consist of an #include statement for the Windows header file, a prototype for the

WindowProc function and the WinMain and WindowProc functions that we've already seen:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // OFWIN.CPP Native windows program to display text in a window

 #include <windows.h>

 long CALLBACK WindowProc(HWND hWnd, UINT message, WPARAM wParam,
LPARAM lParam);

 // Insert code for WinMain() here (Listing OFWIN_1)

 // Insert code for WindowProc() here (Listing OFWIN_2)

Of course, you'll need to create a project for this program, but instead of choosing Win32
Console Application as you've done up to now, you should create this project as a Win32
Application.

Note that if you mistakenly create it as a Win32 Console Application, then when you try to link
the code, you'll see the error:

LIBCD.Iib(crt0.obj) : error LNK2001: unresolved external symbol_main

Try it Out: - Old-Fashioned Windows

If you build and execute the example, it will produce the window shown below:

Note that the window has a number of properties provided by Windows that require no
programming effort on our part to manage. The boundaries of the window can be dragged to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

resize it, and the whole window can be moved about on the screen. The maximize and minimize
buttons also work. Of course, all of these actions do affect the program. Every time you modify
the position or size of the window, a WM_PAINT message will be queued and our program will

have to redraw the client area, but all the work of drawing and modifying the window itself is
done by Windows.

The system menu and close button are also standard features of our window because of the
options that we specified in the WindowClass structure. Again, Windows takes care of the

management. The only additional effect on our program arising from this is the passing of a
WM_DESTROY message if you close the window, as we have previously discussed.

Summary

In this chapter, we have described the idea of a struct, because Windows uses structures for

passing data. However, all the capabilities of a struct are provided by a class in C++, which
we'll discuss in the next chapter. Since we can always use a class instead of a struct, , we

won't be elaborating on the struct any further. For the remainder of the book, we'll just use

classes.

The example that we developed in this chapter was designed to introduce you to the basic
mechanics of operating a program under Windows. As we said at the beginning of the chapter,
we don't actually need to know about this when using the full capabilities of Visual C++,
because all the details of creating and displaying a window, the message loop, and analyzing
messages passed to an application are all submerged in the code that Visual C++ can provide
automatically. However, you should find that the operation of programs generated by the
AppWizard is much easier to understand if you have plowed through the material in this
chapter, and this should make the AppWizard even easier to apply.

You may also be like me — never quite comfortable with taking things on trust, and not happy
about using things without understanding how they really work. This has its downside of course.
It can take a while to get comfortable with using something as mundane as a microwave oven,
or even taking a plane. With the latter, understanding the theory still doesn't make sitting in a
metal tube seven miles above the earth feel like a secure and natural thing to be doing!

We are back to C++ in the next chapter, this time looking into the basis for object-oriented

programming — the class.

Exercises

1. Define a struct X which contains two integer data items. Write a program which
declares two Xs, called a and b. Fill in the data items for a, and then check that you

can copy it into b by simple assignment.

2. Add a char* member to struct X, called sptr. When you fill in the data for a,
dynamically create a string buffer and make a.sptr point to it. Copy a into b. What

happens when you change the contents of the character buffer in a and then print it
from b? Explain what is happening. How would you get around this?

3. Create a function which takes a pointer to an X as an argument, and which prints out
the members of any X passed to it. Test this function using your existing program.

4. Take [Prg4], and create a struct item, to hold the name and the number. Modify the

program to work with items. Now you have [Prg5].

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

5. Code up the OFWin program from this chapter, and make sure it runs correctly. Can

you now modify it so that the program's main window is exactly in the center of your
screen, and measures 300 by 200 pixels? (Hint: look up the GetSystemMetrics()

API call in the help system to get the size of the screen.)

Answers

1. Simple structure:

 #include <iostream>

 using namespace std;

 struct X

 {

 int one;

 int two;

 };

 int main()

 {

 X a;

 X b;

 a.one = 1;

 a.two = 2;

 cout << "a=(" << a.one << "," << a.two << ")\n";

 // b contains junk values. Dont worry when compiler gives
warning

 cout << "b=(" << b.one << "," << b.two << ")\n";

 b = a;

 cout << "b=(" << b.one << "," << b.two << ")\n";

 return 0;

 }

2. Structure with char* member:

 #include <iostream>

 #include <cstring>

 using namespace std;

 struct X

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int one;

 int two;

 char* sptr;

 };

 int main()

 {

 X a;

 X b;

 char s[] = "hello world!";

 a.one = 1;

 a.two = 2;

 a.sptr = s;

 cout << "a=(" << a.one << "," << a.two << "," << a.sptr <<
")\n";

 b.one = a.one;

 b.two = a.two;

 b.sptr = new char[strlen(a.sptr)+1];

 strcpy(b.sptr,a.sptr);

 cout << "b=(" << b.one << "," << b.two << "," << b.sptr <<
")\n";

 a.sptr[0] = 'H';

 cout << "a=(" << a.one << "," << a.two << "," << a.sptr <<
")\n";

 cout << "b=(" << b.one << "," << b.two << "," << b.sptr <<
")\n";

 delete [] b.sptr;

 return 0;

 }

When you copy b into a, it is the pointer sptr which is copied, and not the string to which it

points. Thus, both a and b are pointing to the same string, so when you modify it via a.sptr,
you are also modifying b 's copy. To get around this, you need to manually make your own

copy of the string and assign it to b. This sort of problem can be greatly eased by using
classes instead of structs.

3. Using pointers to structures.

 #include <iostream>

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include <cstring>

 using namespace std;

 struct X

 {

 int one;

 int two;

 char* sptr;

 };

 void printX(X* pX)

 {

 cout << pX->one << "," << pX->two << "," << pX->sptr;

 }

 int main()

 {

 X a;

 X b;

 char s[] = "hello world!";

 a.one = 1;

 a.two = 2;

 a.sptr = s;

 cout << "a=("; printX(&a); cout << ")\n";

 b.one = a.one;

 b.two = a.two;

 b.sptr = new char[strlen(a.sptr)+1];

 strcpy(b.sptr,a.sptr);

 cout << "b=("; printX(&b); cout << ")\n";

 a.sptr[0] > 'H';

 cout << "a=("; printX(&a); cout << ")\n";

 cout << "b=("; printX(&b); cout << ")\n";

 delete [] b.sptr;

 return 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

4. [Prg5]

 #include <iostream>

 using namespace std;

 struct item

 {

 int number;

 char name[15];

 };

 void GetData(item& r)

 {

 cout << "Enter a number: ";

 cin >> r.number;

 if (r.number != 0)

 {

 cout << "And a name: ";

 cin >> r.name;

 }

 }

 void PutData(item r)

 {

 cout << "Thank you. Your number and name were " << r.number

 << " and '" << r.name << "'\n";

 }

 int main()

 {

 item rec;

 for (;;)

 {

 GetData(rec);

 if (rec.number == 0)

 break;

 PutData(rec);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 return 0;

 }

5. The GetSystemMetrics() API call can be used to get the width and height of the screen in
pixels, so you can use it to calculate the position and size of your window before you create it
in WinMain().

 int nXCenter = GetSystemMetrics(SM_CXSCREEN)/2;

 int nYCenter = GetSystemMetrics(SM_CYSCREEN)/2;

 int nWidth = 300;

 int nHeight = 200;

 hWnd = CreateWindow(

 szAppName, // The window class name

 "A Basic Window the Hard Way", // The window title

 WS_OVERLAPPEDWINDOW, // The window style

 nXCenter - nWidth/2, // Upper-left x position

 nYCenter - nHeight/2, // Upper-left y position

 nWidth, // The window width

 nHeight, // The window height

 0, // No parent window

 0, // No menu

 hInstance, // Program instance
handle

 0 // No window creation
data

);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 9: More on Classes

Overview

In this chapter, you will extend your knowledge of classes by understanding how to make your
class objects work more like the basic types in C++. You will learn:
§ What a class destructor is and when and why it is necessary

§ How to implement a class destructor
§ How to allocate data members of a class in the free store and how to delete them when

they are no longer required

§ When you must write a copy constructor for a class
§ What a union is and how it can be used
§ How to make objects of your class work with C++ operators such as + or *

§ What class templates are and how you define and use them
§ How to use classes in a practical example

Class Destructors

Although this section heading refers to destructors, it's also about dynamic memory allocation.
Allocating memory in the free store for class members can only be. managed with the aid of a
destructor, in addition to a constructor of course, and, as you'll see, using dynamically allocated
class members will require you to write your own copy constructor.

What is a Destructor?

A destructor is a function that destroys an object when it is no longer required or when it goes
out of scope. It's called automatically when an object goes out of scope. Destroying an object
involves freeing the memory occupied by the data members of the object (except for static
members which continue to exist even when there are no class objects in existence). The
destructor for a class is a member function with the same name as the class, preceded by a
tilde ~ . The class destructor doesn't return a value and doesn't have parameters defined. For
the class CBox, the prototype of the class destructor is:

 ~CBox(); // Class destructor prototype

Important

It's an error to specify a return value or parameters for a
destructor.

The Default Destructor

All the objects that we have been using up to now have been destroyed automatically by the
default destructor for the class. This is generated by the compiler in the absence of any explicit
destructor being provided with a class. The default destructor doesn't delete objects or object
members that have been allocated in the free store by the operator new. You must explicitly use

the delete operator to destroy objects that have been created using the operator new, just as

you would with ordinary variables. If you decide to allocate memory for members of an object
dynamically, you must use the operator delete to implement a class destructor which frees

any memory that was allocated by the operator new.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - A Simple Destructor

We need some practice in writing our own destructor. First, to show when the destructor is
called, we can include a destructor in the class CBox. The class definition in this example is

based on the last example in the previous chapter, Ex8_12.cpp.

 // EX9_01.CPP

 // Class with an explicit destructor

 #include <iostream>

 using namespace std;

 class CBox // Class definition at global scope

 {

 public:

 // Destructor definition

 ~CBox()

 { cout << "Destructor called." << endl; }

 // Constructor definition

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv)

 {

 cout << endl << "Constructor called.";

 }

 // Function to calculate the volume of a box

 double Volume() const

 {

 return m_Length*m_Breadth*m_Height;

 }

 // Function to compare two boxes which returns true

 // if the first is greater that the second, and false
otherwise

 int compare(CBox* pBox) const

 {

 return this->Volume() > pBox->Volume();

 }

 private:

 double m_Length; // Length of a box in inches

 double m_Breadth; // Breadth of a box in inches

 double m_Height; // Height of a box in inches

 };

 int main()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 CBox boxes[5]; // Array of CBox objects declared

 CBox cigar(8.0, 5.0, 1.0); // Declare cigar box

 CBox match(2.2, 1.1, 0.5); // Declare match box

 CBox* pB1 = &cigar; // Initialize pointer to cigar
object address

 CBox* pB2 = 0; // Pointer to CBox initialized to
null

 cout << endl

 << "Volume of cigar is "

 << pB1->Volume(); // Volume of obj. pointed to

 pB2 = boxes; // Set to address of array

 boxes[2] = match; // Set 3rd element to match

 cout << endl // Now access thru pointer

 << "Volume of boxes[2] is " << (pB2 + 2)->Volume();

 cout << endl;

 return 0;

 }

How It Works

The only thing that our destructor does is to display a message showing that it was called. The
output is:

We get one call of the destructor at the end of the program for each of the objects that exist. For
each constructor call that occurred, there's a matching destructor call. We don't need to call the
destructor explicitly here. When an object of a class goes out of scope, the compiler will arrange
for the destructor for the class to be called automatically. In our example, the destructors are
called after main() has finished executing, so if there's an error in a destructor, it's quite

possible for a program to crash after main() has safely terminated.

Destructors and Dynamic Memory Allocation

You will find that you often want to allocate memory for class data members dynamically. We
can use the operator new in a constructor to allocate space for an object member. In such a

case, we must assume responsibility for deleting the space by providing a suitable destructor.
Let's first define a simple class where we can do this.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Suppose we want a class where each object is a message of some description, for example, a
text string. We want the class to be as memory efficient as possible so, rather than defining a
data member as a char array big enough to hold the maximum length string that we might

require, we'll allocate memory in the free store for a message when an object is created. Here's
the class definition:

 //Listing 09_01

 class CMessage

 {

 private:

 char* pmessage; // Pointer to
object text string

 public:

 // Function to display a message

 void ShowIt() const

 {

 cout << endl << pmessage;

 }

 // Constructor definition

 CMessage(const char* text = "Default message")

 {

 pmessage = new char[strlen(text) + 1]; // Allocate space

for text

 strcpy(pmessage, text); // Copy text to
new memory

 }

 ~CMessage(); // Destructor
prototype

 };

This class has only one data member defined, pmessage, which is a pointer to a text string.

This is defined in the private section of the class, so that it can't be accessed from outside the

class.

In the public section, we have a function ShowIt() which will output a CMessage object to

the screen. We also have the definition of a constructor and we have the prototype for the class
destructor, ~CMessage(), which we'll come to in a moment.

The constructor for the class requires a string as an argument, but if none is passed, it uses the
default value specified. The constructor obtains the length of the string supplied as an
argument, excluding the terminating NULL, using the function strlen(). For the constructor to

use this library function, there must be a #include statement for the header file cstring. By
adding 1 to the value that the function strlen() returns, the constructor defines the number of

bytes of memory necessary to store the string in the free store.

We're assuming that we have our own function to handle out-of-memory conditions as sparked
off by _set_new_handler , so we don't bother to test the pointer returned for NULL . (See

Chapter 6 for information on handling out-of-memory conditions.)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Having obtained the memory for the string using the operator new, we use the strcpy()
function, which is also declared in the header file cstring, to copy the string supplied as an

argument into the memory allocated for it. This function copies the string specified by the
second pointer argument to the address contained in the first pointer argument.

We now need to write a class destructor that will free up the memory allocated for a message. If
we don't provide this, there's no way to delete the memory allocated for an object. If we use this
class in a program, where a large number of CMessage objects are created, the free store will

be gradually eaten away until the program fails. It's easy for this to happen almost invisibly. For
example, if you create a temporary CMessage object in a function which is called many times in

a program, you might assume that the objects are being destroyed at the return from the
function. You'd be right about that, of course, but the free store memory will not be released.

The code for the destructor is as follows:

 // Listing 09_02

 // Destructor to free memory allocated by new

 CMessage::~CMessage()

 {

 cout << "Destructor called." // Just to track what happens

 << endl;

 delete[] pmessage; // Free memory assigned to

pointer

 }

Because we're defining it outside of the class definition, we need to qualify the name of the
destructor with the class name, CMessage, and the scope resolution operator. All the destructor

does is to display a message so that we can see what's going on and use the operator delete
to free the memory pointed to by the member pmessage. Note that we must include the square

brackets with delete because we're deleting an array (of type char).

Try it Out: - Using the Message Class

We can exercise this class with a little example:

 // EX9_02.CPP

 // Using a destructor to free memory

 #include <iostream> // For stream I/O

 #include <cstring> // For strlen() and strcpy()

 using namespace std;

 // Put the CMessage class definition here (Listing 09_01)

 // Put the destructor definition here (Listing 09_02)

 int main()

 {

 // Declare object

 CMessage motto("A miss is as good as a mile.");

 // Dynamic object

 CMessage* pM = new CMessage("A cat can look at a queen.");

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 motto.ShowIt(); // Display 1st message

 pM->ShowIt(); // Display 2nd message

 cout << endl;

 // delete pM; // Manually delete object created
with new

 return 0;

 }

How It Works

At the beginning of main(), we declare and define an initialized CMessage object, motto, in
the usual manner. In the second declaration we define a pointer to a CMessage object, pM, and

allocate memory for the CMessage object pointed to by using the operator new. The call to new
invokes the CMessage class constructor, which has the effect of calling new again to allocate

space for the message text pointed to by the data member pmessage. If you build and execute

this example, it will produce this:

We have only one destructor call, even though we created two message objects. We said
earlier that the compiler doesn't take responsibility for objects created in the free store. The
compiler arranged to call our destructor for the object motto because this is a normal automatic

object, even though the memory for the data member was allocated in the free store by the
constructor. The object pointed to by pM is different. We allocated memory for the object in the
free store, so we have to use delete to remove it. You need to uncomment the statement,

 //delete pM; // Manually delete object created with
new

which appears just before the return statement in main(). If you run the code now, it will

produce this:

Now we get an extra call of our destructor. This is surprising in a way. Clearly, delete is only

dealing with the memory allocated by the call to new in the function main(). It only freed the
memory pointed to by pM. Since our pointer to pM is a pointer to a CMessage object (for which a

destructor has been defined), delete also calls our destructor to allow us to clean up the
details of the members of the object. So when you use delete for an object created

dynamically with new, it will always call the destructor for the object allocated on the free store.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Implementing a Copy Constructor

When you allocate space for class members dynamically, there are demons lurking in the free
store. For our class CMessage, the default copy constructor is woefully inadequate. If we have

these statements,

 CMessage motto1("Radiation fades your genes.");

 CMessage motto2(motto1);

the effect of the default copy constructor will be to copy the address in the pointer member from
motto1 to motto2. Consequently, there will be only one text string shared between the two

objects, as illustrated in the diagram below:

If the string is changed from either of the objects, it will be changed for the other as well. If
motto1 is destroyed, the pointer in motto2 will be pointing at a memory area which may now

be used for something else, and chaos will surely ensue. Of course, the same problem arises if
motto2 is deleted; motto1 would then contain a member pointing to a nonexistent string.

The solution is to supply a class copy constructor to replace the default version. This could be
implemented in the public section of the class as follows:

 CMessage(const CMessage& initM) // Copy Constructor
definition

 {

 // Allocate space for text

 pmessage = new char[strlen(initM.pmessage) + 1];

 // Copy text to new memory

 strcpy(pmessage, initM.pmessage);

 }

You will remember from the previous chapter that, to avoid an infinite spiral of calls to the copy
constructor, the parameter must be specified as a const reference. This copy constructor first
allocates enough memory to hold the string in the object initM, storing the address in the data

member of the new object, and then copies the text string from the initializing object. Now, our
new object will be identical to, but quite independent of, the old one.

Just because you don't initialize one CMessage class object with another, don't think that you're

safe and need not bother with the copy constructor. Another monster lurks in the free store.
Consider the following statements,

 CMessage thought("Eye awl weighs yews my spell checker.");

 DisplayMessage(thought); // Call a function to output a

message

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

where the function DisplayMessage() is defined as:

 void DisplayMessage(CMessage localMsg)

 {

 cout << endl << "The message is: ";

 localMsg.ShowIt();

 return;

 }

Looks simple enough doesn't it? What could be wrong with that? A catastrophic error, that's
what! What the function DisplayMessage() does is actually irrelevant. The problem lies with

the argument. The argument is a CMessage object which is passed by value. With the default

copy constructor, the sequence of events is as follows:
1. The object thought is created with the space for the message "Eye awl weighs

yews my spell checker" allocated in the free store.

2. The function DisplayMesaage() is called and, because the argument is passed by
value, a copy, localMsg, is made using the default copy constructor. Now the pointer in

the copy points to the same string in the free store as the original object.
3. At the end of the function, the local object goes out of scope, so the destructor for the

CMessage class is called. This deletes the local object (the copy) by deleting the

memory pointed to by the pointer pmessage.
4. On return from the function DisplayMessage(), the pointer in the original object,

thought, still points to the memory area that has just been deleted. Next time you try to

use the original object (or even if you don't, since it will need to be deleted sooner or
later) your program will behave in weird and mysterious ways.

Any call to a function that passes by value an object of a class that has a member defined

dynamically will cause problems. So, out of this, we have an absolutely 100 percent, 24 carat
golden rule:

Important

If you allocate space for a class member dynamically, always implement
a copy constructor.

Sharing Memory Between Variables

As a relic of the days when 64K was quite a lot of memory, we have a facility in C++ which

allows more than one variable to share the same memory (but obviously not at the same time).
This is called a union, and there are four basic ways in which you can use one:

§ First, you can use it so that a variable A occupies a block of memory at one point in a
program, which is later occupied by another variable B of a different type, because A is no

longer required. I recommend that you don't do this. It's not worth the risk of error that is
implicit in such an arrangement. You can achieve the same effect by allocating memory
dynamically.

§ Alternatively, you could have a situation in a program where a large array of data is
required, but you don't know in advance of execution what the data type will be — it will be
determined by the input data. I also recommend that you don't use unions in this case,
since you can achieve the same result using a couple of pointers of different types and
again allocating the memory dynamically.

§ A third possible use for a union is the one that you may need now and again — when
you want to interpret the same data in two or more different ways. This could happen when
you have a variable that is of type long, and you want to treat it as two values of type

short. Windows will sometimes package two short values in a single parameter of type
long passed to a function. Another instance arises when you want to treat a block of

memory containing numeric data as a string of bytes, just to move it around.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ Lastly you can use a union as a means of passing an object or a data value around
where you don't know in advance what its type is going to be. The union can provide for
storing any one of the possible range of types that you might have.

Defining Unions

A union is defined using the keyword union. It is best understood by taking an example of a

definition:

 union shareLD // Sharing memory between long
and double

 {

 double dval;

 long lval;

 };

This defines a union type shareLD which provides for the variables of type long and double

to occupy the same memory. The union type name is usually referred to as a tag name. This
statement is rather like a class definition, in that we haven't actually defined a union instance
yet, so we don't have any variables at this point. Once it has been defined, we can declare
instances of a union in a declaration. For example:

 shareLD myUnion;

This declares an instance of the union, shareLD, that we defined previously. We could also

have declared myUnion by including it in the union definition statement:

 union shareLD // Sharing memory between long

and double

 {

 double dval;

 long lval;

 } myUnion;

If we want to refer to a member of the union, we use the direct member selection operator (the

period) with the union instance name, just as we have done when accessing members of a
class. So, we could set the long variable lval to 100 in the union instance MyUnion with this

statement:

 myUnion.lval = 100; // Using a member of a union

Using a similar statement later in a program to initialize the double variable dval will overwrite
lval. The basic problem with using a union to store different types of values in the same

memory is that, because of the way a union works, you also need some means of determining
which of the member values is current. This is usually achieved by maintaining another variable
which acts as an indicator of the type of value stored.

A union is not limited to sharing between two variables. If you wish, you can share the same
memory between several variables. The memory occupied by the union will be that which is
required by its largest member. For example, if we define this union,

 union shareDLF

 {

 double dval;

 long lval;

 float fval;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 } uinst = {1.5};

it will occupy 8 bytes, as illustrated in the figure here:

In the example, we defined an instance of the union, uinst, as well as the tag name for the

union. We also initialized it with the value 1.5.
Important

You can only initialize the first member of the union when you declare
an instance.

Anonymous Unions

You can define a union without a union type name, in which case an instance of the union is
automatically declared. For example, if we define a union like this,

 union

 {

 char* pval;

 double dval;

 long lval;

 };

it defines both a union with no name and an instance of the union with no name. Consequently,
the variables that it contains may be referred to just by their names, as they appear in the union
definition. This can be more convenient than a normal union with a type name, but you need to
be careful that you don't confuse the members with ordinary variables. The members of the
union will still share the same memory. As an illustration of how the anonymous union above
works, to use the double member, you could write this statement:

 dval = 99.5; // Using a member of an

anonymous union

As you can see, there's nothing to distinguish the variable dval as a union member. If you need

to use anonymous unions, you could use a naming convention to make the members more
obvious.

Unions in Classes

You can include an instance of a union in a class. If you intend storing different types of value at
different times, this usually necessitates maintaining a class data member to indicate what kind
of value is stored in the union. There isn't usually a great deal to be gained by using unions as
class members.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Operator Overloading

Operator overloading enables you to make standard operators, such as +, -, * and so on, work

with objects of your own data types. It allows you to write a function which redefines a particular
operator so that it performs a particular action when it's used with objects of a class. For
example, you could redefine the operator > so that, when it was used with objects of the class
CBox (which we saw earlier), it would return true if the first CBox argument had a greater

volume than the second.

Operator overloading doesn't allow you to invent new operators, nor can you change the
precedence of an operator, so your overloaded version of an operator will have the same
priority in the sequence of evaluating an expression as the original base operator. The operator
precedence table can be found both in Chapter 2 of this book and in the MSDN Library.
Although you can't overload all the operators, the restrictions aren't particularly oppressive.
These are the operators that you can't overload:

The scope resolution operator, ::

The conditional operator, ?:

The direct member selection operator, .

The size-of operator, sizeof

The de-reference pointer to class member operator, .*

Anything else is fair game, which gives you quite a bit of scope. Obviously, it's a good idea to

ensure that your versions of the standard operators are reasonably consistent with their normal
usage, or at least reasonably intuitive in their operation. It wouldn't be a very sensible approach
to produce an overloaded + operator for a class that performed the equivalent of a multiply on

class objects. The best way to understand how operator overloading works is to work through
an example, so let's implement what we just referred to, the greater than operator, >, for the

CBox class.

Implementing an Overloaded Operator

If we want to implement an overloaded operator for a class, we have to write a special function.
Assuming that it is a member of the class CBox, the declaration for the function to overload the
> operator within the class definition will be as follows:

 class CBox

 {

 public:

 bool operator>(CBox& aBox) const; // Overloaded

'greater than'

 // Rest of the class definition...

 };

The word operator here is a keyword. Combined with an operator, in this case, >, it defines

an operator function. The function name in this case is operator>(). You can write an
operator function with or without a space between the keyword operator and the operator

itself, as long as there's no ambiguity. The ambiguity arises with operators using normal letters
such as new or delete. If they are written without a space, operatornew and

operatordelete, they are legal names for ordinary functions, so for operator functions with
these operators, you must leave a space between the keyword operator and the operator

itself. Note that we declare the function as const since it doesn't modify the data members of

the class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

With our operator function operator> (), the right operand of the operator is that which is
defined between parentheses. The left operand will be defined implicitly by the pointer this.

So, if we have the following if statement,

 if(box1 > box2)

 cout << endl << "box1 is greater than box2";

then the expression between parentheses in the if will call our operator function. It is

equivalent to this function call:

 box1.operator>(box2);

The correspondence between the CBox objects in the expression and the operator function

parameters is illustrated here:

Let's look at how the code for the operator>() function works:

 // Operator function for 'greater than' which

 // compares volumes of CBox objects.

 bool CBox::operator> (const CBox& aBox) const

 {

 return this->Volume() > aBox.Volume();

 }

We use a reference parameter to the function to avoid unnecessary copying when the function

is called. Since the function does not alter the object for which it is called, we can declare it as
const. If we don't do this, we could not use the operator to compare const objects of type

CBox at all.

The return expression uses the member function Volume() to calculate the volume of the

CBox object pointed to by this, and compares the result, using the basic operator > , with the
volume of the object aBox. > itself returns an int (not a bool) and thus, 1 is returned if the

CBox object pointed to by the pointer this has a larger volume than the object aBox passed as
a reference argument, and 0 otherwise.

Try it Out: - Operator Overloading

We can exercise this function with an example:

 //EX9_03.CPP

 // Exercising the overloaded 'greater than' operator

 #include <iostream> // For stream I/O

 using namespace std;

 class CBox // Class definition at
global scope

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 public:

 // Constructor definition

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv)

 {

 cout << endl << "Constructor called.";

 }

 // Function to calculate the volume of a box

 double Volume() const

 {

 return m_Length*m_Breadth*m_Height;

 }

 bool operator>(const CBox& aBox) const; // Overloaded
'greater than'

 // Destructor definition

 ~CBox()

 { cout << "Destructor called." << endl; }

 private:

 double m_Length; // Length of a box
in inches

 double m_Breadth; // Breadth of a box
in inches

 double m_Height; // Height of a box

in inches

 };

 // Operator function for 'greater than' that

 // compares volumes of CBox objects.

 bool CBox::operator>(const CBox& aBox) const

 {

 return this->Volume() > aBox.Volume();

 }

 int main()

 {

 CBox smallBox(4.0, 2.0, 1.0);

 CBox mediumBox(10.0, 4.0, 2.0);

 CBox bigBox(30.0, 20.0, 40.0);

 if(mediumBox > smallBox)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl

 << "mediumBox is bigger than smallBox";

 if(mediumBox > bigBox)

 cout << endl

 << "mediumBox is bigger than bigBox";

 else

 cout << endl

 << "mediumBox is not bigger than bigBox";

 cout << endl;

 return 0;

 }

How It Works

The prototype of the operator function operator>() appears in the public section of the
class. As the function definition is outside the class definition, it won't default to inline. This is

quite arbitrary. We could just as well have put the definition in place of the prototype in the class
definition. In this case, we wouldn't need to qualify the function name with CBox:: in front of it.

As you'll remember, this is needed in order to tell the compiler that the function is a member of
the class CBox.

The function main() has two if statements using the operator > with class members. These

automatically invoke our overloaded operator. If you wanted to get confirmation of this, you
could add an output statement to the operator function. The output from this example is:

The output demonstrates that the if statements work fine with our operator function, so being
able to express the solution to CBox problems directly in terms of CBox objects is beginning to

be a realistic proposition.

Implementing Full Support for an Operator

With our operator function operator>(), there are still lots of things that you can't do.

Specifying a problem solution in terms of CBox objects might well involve statements such as

the following:

 if(aBox > 20.0)

Our function won't deal with that. If you try to use an expression comparing a CBox object with a

numerical value, you'll get an error message. In order to support this, we would need to write
another version of the function operator>(), as an overloaded function.

We can quite easily support the type of expression that we've just seen. The declaration of the
member function within the class would be:

 // Compare a CBox object with a constant

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 bool operator>(const double& value) const;

This would appear in the definition of the class. The CBox object will be passed as the implicit

pointer this.

The implementation is also easy. It's just one statement in the body of the function:

 // Function to compare a CBox object with a constant

 bool CBox::operator>(const double& value) const

 {

 return this->Volume() > value;

 }

This couldn't be much simpler, could it? But we still have a problem with the operator > with

CBox objects. We may well want to write statements such as this:

 if(20.0 > aBox)

 ... // do something

You might argue that this could be done by implementing the operator function operator<()
and rewriting the statement above to use it, which is quite true. Indeed, the < operator is likely to

be a requirement for comparing CBox objects anyway, but an implementation of support for an

object type shouldn't artificially restrict the ways in which you can use the objects in an
expression.

The use of the objects should be as natural as possible. The problem is how to do it. A member
operator function always provides the left argument as the pointer this. Since the left
argument, in this case, is of type double, we can't implement it as a member function. That

leaves us with two choices: an ordinary function or a friend function. Since we don't need to
access the private members of the class it doesn't need to be a friend function, so we can

implement it as an ordinary function. The prototype, placed outside the class definition of course
since it isn't a member, would need to be:

 bool operator>(const double& value, const CBox& aBox);

The implementation would be this:

 // Function comparing a constant with a CBox object

 bool operator>(const double& value, const CBox& aBox)

 {

 return value > aBox.Volume();

 }

As we've seen already, an ordinary function (and a friend function too for that matter)

accesses the members of an object by using the direct member selection operator and the
object name. Of course, an ordinary function only has access to the public members. The
member function Volume() is public, so there's no problem using it here.

If the class didn't have the public function Volume(), we could either use a friend function

that could access the private data members directly, or we could provide a set of member
functions to return the values of the private data members and use those in an ordinary

function to implement the comparison.

Try it Out: - Complete Overloading of the > Operator

We can put all this together in an example to show how it works:

 //EX9_04.CPP

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Implementing a complete overloaded 'greater than' operator

 #include <iostream> // For stream I/O

 using namespace std;

 class CBox // Class definition at
global scope

 {

 public:

 // Constructor definition

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv)

 {

 cout << endl << "Constructor called.";

 }

 // Function to calculate the volume of a box

 double Volume() const

 {

 return m_Length*m_Breadth*m_Height;

 }

 // Operator function for 'greater than' that

 // compares volumes of CBox objects.

 bool operator>(const CBox& aBox) const

 {

 return this->Volume() > aBox.Volume();

 }

 // Function to compare a CBox object with a constant

 bool operator>(const double& value) const

 {

 return this->Volume() > value;

 }

 // Destructor definition

 ~CBox()

 { cout << "Destructor called." << endl;}

 private:

 double m_Length; // Length of a box in inches

 double m_Breadth; // Breadth of a box in
inches

 double m_Height; // Height of a box in inches

 };

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int operator>(const double& value, const CBox& aBox); // Function
prototype

 int main()

 {

 CBox smallBox(4.0, 2.0, 1.0);

 CBox mediumBox(10.0, 4.0, 2.0);

 if(mediumBox > smallBox)

 cout << endl

 << "mediumBox is bigger than smallBox";

 if(mediumBox > 50.0)

 cout << endl

 << "mediumBox capacity is more than 50";

 else

 cout << endl

 << "mediumBox capacity is not more than 50";

 if(10.0 > smallBox)

 cout << endl

 << "smallBox capacity is less than 10";

 else

 cout << endl

 << "smallBox capacity is not less than 10";

 cout << endl;

 return 0;

 }

 // Function comparing a constant with a CBox object

 int operator>(const double& value, const CBox& aBox)

 {

 return value > aBox.Volume();

 }

How It Works

Note the position of the prototype for the ordinary function version of operator>(). It needs to
follow the class definition, because it refers to a CBox object in the parameter list. If you place it

before the class definition, the example will not compile.

There is a way to place it at the beginning of the program file following the #include

statement: use an incomplete class declaration. This would precede the prototype and would
look like this:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 class CBox; // Incomplete
class declaration

 int operator>(const double& value, CBox& aBox); // Function
prototype

The incomplete class declaration identifies CBox to the compiler as a class and is sufficient to

allow the compiler to process the prototype for the function properly, since it now knows that
aBox is a variable of a user-defined type to be specified later.

This mechanism is also essential in circumstances such as those where you have two classes,
each of which has a pointer to an object of the other class as a member. They will each require
the other to be declared first. It's possible to resolve such an impasse through the use of an
incomplete class declaration.

The output from the example is:

After the constructor messages due to the declarations of the objects smallBox and

mediumBox, we have the output lines from the three if statements, each of which is working

as we expected. The first of these is calling the operator function that is a class member and
works with two CBox objects. The second is calling the member function that has a parameter
of type double. The expression in the third if statement calls the operator function that we

implemented as an ordinary function.

As it happens, we could have made both the operator functions which are class members
ordinary functions, since they only need access to the member function Volume(), which is
public.

Any comparison operator can be implemented in much the same way as we have implemented
these. They would only differ in the minor details and the general approach to implementing
them would be exactly the same.

Overloading the Assignment Operator

If you don't provide an overloaded assignment operator function for your class, the compiler will

provide a default. The default version will simply provide a member-by-member copying
process, similar to that of the default copy constructor. However, don't confuse the default copy
constructor with the default assignment operator. The default copy constructor is called by a
declaration of a class object that's initialized with an existing object of the same class, or by
passing an object to a function by value. The default assignment operator, on the other hand, is
called when the left hand side and the right hand side of an assignment statement are objects of
the same class.

For our CBox class, the default assignment operator works with no problem, but for any class

which has space for members allocated dynamically, you need to look carefully at the
requirements of the class in question. There may be considerable potential for chaos in your
program if you leave the assignment operator out under these circumstances.

For a moment, let's return to our message class that we used when talking about copy
constructors. You'll remember it had a member, pmessage, that was a pointer to a string. Now

consider the effect that the default assignment operator could have. Suppose we had two

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

instances of the class, motto1 and motto2. We could try setting the members of motto2
equal to the members of motto1 using the default assignment operator, as follows:

 motto2 = motto1; // Use default assignment
operator

The effect of using the default assignment operator for this class is essentially the same as
using the default copy constructor: disaster will result! Since each object will have a pointer to
the same string, if the string is changed for one object, it's changed for both. There's also the
problem that when one of the instances of the class is destroyed, its destructor will free the
memory used for the string and the other object will be left with a pointer to memory that may
now be used for something else.

What we need the assignment operator to do is to copy the text to a memory area owned by the

destination object.

Fixing the Problem

We can fix this with our own assignment operator, which we will assume is defined within the
class definition:

 // Overloaded assignment operator for CMessage objects

 CMessage& operator=(const CMessage& aMess)

 {

 // Release memory for 1st operand

 delete[] pmessage;

 pmessage = new char[strlen(aMess.pmessage) + 1] ;

 // Copy 2nd operand string to 1st

 strcpy(this->pmessage, aMess.pmessage);

 // Return a reference to 1st operand

 return *this;

 }

An assignment might seem very simple, but there's a couple of subtleties need further
investigation. First of all, note that we return a reference from the assignment operator function.
It may not be immediately apparent why this is so - after all, the function does complete the
assignment operation entirely, and the object on the right of the assignment will be copied to
that on the left. Superficially this would suggest that we don't need to return anything, but we
need to think a little more about how the operator might be used.

There is a possibility that we might need to use the result of the assignment operator on the
right hand side of an expression. Consider a statement such as,

 motto1 = motto2 = motto3;

Because the assignment operator is right associative, the assignment of motto3 to motto2 will

be carried out first, so this will translate into,

 motto1 = (motto2.operator=(motto3));

The result of the operator function call here is on the right of the equals sign, so the statement

will finally become this:

 motto1.operator=(motto2.operator=(motto3));

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If this is to work, we certainly have to return something. The operator=() between the

parentheses must return an an object that can be used as an argument to the other
operator=() call. In this case a return type of either CMessage or CMessage& would do it, so
a reference is not mandatory in this situation, but we must at least return a CMessage object.

However, consider the following example:

 (motto1 = motto2) = motto3;

This is perfectly legitimate code - the parentheses serve to make sure the leftmost assignment

is carried out first. This translates into,

 (motto1.operator=(motto2)) = motto3;

and ultimately becomes:

 (motto1.operator=(motto2)).operator=(motto3);

Now we have a situation where the object returned from operator= () is used to call the

operator=() member. If the return type is just CMessage, this will not be legal because a

temporary copy of the original object is actually returned, and the compiler will not allow a
member function call using a temporary object. In other words, the return value, when the return
type is Cmessage, is not an lvalue. The only way to ensure this sort of thing will compile and

work correctly is to return a reference, which is an lvalue, so the only possible return type is
CMessage&.

Note that the C++ language does not enforce any restrictions on the accepted parameter or
return types for the assignment operator, but it makes sense to declare the operator in the way
just described, if you want your assignment operator functions to support normal C++ usage of
assignment.

The second subtlety you need to remember is that each object already has memory for a string

allocated, so the first thing that the operator function has to do is to delete the memory allocated
to the first object and reallocate sufficient memory to accommodate the string belonging to the
second object. Once this is done, the string from the second object can be copied to the new
memory now owned by the first.

There's still a defect in this operator function. What if we were to write the following statement?

 motto1 = motto1;

Obviously, you wouldn't do anything as stupid as this directly, but it could easily be hidden
behind a pointer, for instance, as in the following statement,

 motto1 = *pMess;

where the pointer pMess points to motto1. In this case, the operator function as it stands would

delete the memory for motto1, allocate some more memory based on the length of the string

that has already been deleted and try to copy the old memory which, by then, could well have
been corrupted. We can fix this with a check at the beginning of the function, so now it would
become this:

 // Overloaded assignment operator for CMessage objects

 CMessage& operator=(const CMessage& aMess)

 {

 if(this == &aMess) // //Check addresses. If
equal, return a reference to the 1st operand

 // Release memory for 1st operand

 delete[] pmessage;

 pmessage = new char[strlen(aMess.pmessage) +1];

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Copy 2nd operand string to 1st

 strcpy(this->pmessage, aMess.pmessage);

 // Return a reference to 1st operand

 return *this;

 }

This assumes that the definition appears within the class definition.

Try it Out: - Overloading the Assignment Operator

Let's put this together in a working example. We'll add a function, called Reset(), to the class

at the same time. This just resets the message to a string of asterisks.

 // EX9_05.CPP

 // Overloaded copy operator perfection

 #include <iostream>

 #include <cstring>

 using namespace std;

 class CMessage

 {

 private:

 char* pmessage; // Pointer to

object text string

 public:

 // Function to display a message

 void ShowIt() const

 {

 cout << endl << pmessage;

 }

 //Function to reset a message to *

 void Reset()

 {

 char* temp = pmessage;

 while(*temp)

 (temp++) = '';

 }

 // Overloaded assignment operator for CMessage objects

 CMessage& operator=(const CMessage& aMess)

 {

 if(this == &aMess) // Check
addresses, if equal

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return *this; // return the 1st
operand

 // Release memory for 1st operand

 delete[] pmessage;

 pmessage = new char[strlen(aMess.pmessage) +1];

 // Copy 2nd operand string to 1st

 strcpy(this->pmessage, aMess.pmessage);

 // Return a reference to 1st operand

 return *this;

 }

 // Constructor definition

 CMessage(const char* text = "Default message")

 {

 pmessage = new char[strlen(text) +1]; // Allocate space
for text

 strcpy(pmessage, text); // Copy text to
new memory

 }

 // Destructor to free memory allocated by new

 ~CMessage()

 {

 cout << "Destructor called." // Just to track what
happens

 << endl;

 delete[] pmessage; // Free memory assigned
to pointer

 }

 };

 int main()

 {

 CMessage motto1("The devil takes care of his own");

 CMessage motto2;

 cout << "motto2 contains - ";

 motto2.ShowIt();

 cout << endl;

 motto2 = motto1; // Use new assignment
operator

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << "motto2 contains - ";

 motto2.ShowIt();

 cout << endl;

 motto1.Reset(); // Setting motto1 to *
doesn't

 // affect motto2

 cout << "motto1 now contains - ";

 motto1.ShowIt();

 cout << end1;

 cout << "motto2 still contains - ";

 motto2.ShowIt();

 cout << endl;

 return 0;

 }

You can see from the output of this program that everything works exactly as required, with no

linking between the messages of the two objects, except where we explicitly set them equal.

So let's have another golden rule out of all of this:
Important

Always implement an assignment operator if you allocate space
dynamically for a data member of a class.

Having implemented the assignment operator, what happens with operations such as +=? Well,

they don't work unless you implement them. For each form of op= that you want to use with

your class objects, you need to write another operator function.

Overloading the Addition Operator

Let's look at overloading the addition operator for our CBox class. This is interesting because it

involves creating and returning a new object. The new object will be the sum (whatever we
define that to mean) of the two CBox objects that are its operands.

So what do we want the sum to mean? Let's define the sum of two CBox objects as a CBox

object which is large enough to contain the other two boxes stacked on top of each other. We
can do this by making the new object have an m_Length member which is the larger of the

m_Length members of the objects being added, and an m_Breadth member derived in a
similar way. The m_Height member will be the sum of the m_Height members of the two

operand objects, so that the resultant CBox object can contain the other two CBox objects. This

isn't necessarily an optimal solution, but it will be sufficient for our purposes. By altering the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

constructor, we'll also arrange that the m_Length member of a CBox object is always greater
than or equal to the m_Breadth member.

The addition operation is easier to explain graphically, so it's illustrated below:

Since we need to get at the members of an object directly, we will make the operator+() a

member function. The declaration of the function member within the class definition will be this:

 CBox operator+(const CBox& aBox) const; // Function adding
two CBox objects

We define the parameter as a reference to avoid unnecessary copying of the right argument
when the function is called, and we make it a const reference because the function does not

modify the argument. If you don't declare the parameter as a const reference, the compiler will
not allow a const object to be passed to the function, so the right operand of + could not be a

const CBox object. We also declare the function as const as it doesn't change the object for
which it is called. Without this, the left operand of + could not be a const CBox object.

The operator+() function definition would now be as follows:

 // Function to add two CBox objects

 CBox CBox::operator+(const CBox& aBox) const

 {

 // New object has larger length and breadth, and sum of heights

 return CBox(m_Length > aBox.m_Length? m_Length:aBox.m_Length,

 m_Breadth > aBox.m_Breadth?
m_Breadth:aBox.m_Breadth,

 m_Height + aBox.m_Height);

 }

A local CBox object is constructed from the current object (*this) and the object passed as an

argument, aBox. Remember that the return process will make a temporary copy of the local

object and that is what is passed back to the calling function.

Try it Out: - Exercising Our Addition

We can see how this works in an example:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // EX9_06.CPP

 // Adding CBox objects

 #include <iostream> // For stream I/O

 using namespace std;

 class CBox // Class definition
at global

 scope

 {

 public:

 // Constructor definition

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):
m_Height(hv)

 {

 m_Length = lv > bv? lv: bv; // Ensure that

 m_Breadth = bv < lv? bv: lv; // length >=
breadth

 }

 // Function to calculate the volume of a box

 double Volume() const

 {

 return m_Length*m_Breadth*m_Height;

 }

 // Operator function for 'greater than' which

 // compares volumes of CBox objects.

 int CBox::operator>(const CBox& aBox) const

 {

 return this->Volume() > aBox.Volume();

 }

 // Function to compare a CBox object with a constant

 int operator> (const double& value) const

 {

 return Volume() > value;

 }

 // Function to add two CBox objects

 CBox operator+(const CBox& aBox) const

 {

 // New object has larger length & breadth, and sum of
heights

 return CBox(m_Length > aBox.m_Length?
m_Length:aBox.m_Length,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_Breadth > aBox.m_Breadth?
m_Breadth:aBox.m_Breadth,

 m_Height + aBox.m_Height);

 }

 // Function to show the dimensions of a box

 void ShowBox() const

 {

 cout << m_Length << " " << m_Breadth << " " << m_Height

 << endl;

 }

 private:

 double m_Length; // Length of a box
in inches

 double m_Breadth; // Breadth of a box
in inches

 double m_Height; // Height of a box
in inches

 };

 int operator>(const double& value, const CBox& aBox); // Function
prototype

 int main()

 {

 CBox smallBox(4.0, 2.0, 1.0);

 CBox mediumBox(10.0, 4.0, 2.0);

 CBox aBox;

 CBox bBox;

 aBox = smallBox + mediumBox;

 cout << "aBox dimensions are ";

 aBox.ShowBox();

 bBox = aBox + smallBox + mediumBox;

 cout << "bBox dimensions are ";

 bBox.ShowBox();

 return 0;

 }

 // Function comparing a constant with a CBox object

 int operator>(const double& value, const CBox& aBox)

 {

 return value > aBox.Volume();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

How It Works

In this example we've changed the CBox class members a little. The destructor has been

deleted as it isn't necessary for this class, and the constructor has been modified to ensure that
the m_Length member isn't less than the m_Breadth member. Knowing that the length of a

box is always at least as big as the breadth makes the add operation a bit easier. We've also
added the function ShowBox() to output the dimensions of a CBox object. This will enable us to

verify that our overloaded add operation is working as we expect.

The output from this program is:

This seems to be consistent with the notion of adding CBox objects that we have defined and,

as you can see, the function also works with multiple add operations in an expression. For the
computation of bBox, the overloaded addition operator will be called twice.

We could equally well have implemented the add operation for the class as a friend function.

Its prototype would then be this:

 friend CBox operator+(const CBox& aBox, const CBox& bBox);

The method to produce the result would be much the same, except that you'd need to use the
direct member selection operator to obtain the members for both the arguments to the function.
It would work just as well as the first version of the operator function.

Class Templates

We saw back in Chapter 6 that we could define a function template which would automatically

generate functions varying in the type of arguments accepted, or in the type of value returned.
C++ has a similar mechanism for classes. A class template is not in itself a class, it's a sort of
'recipe' for a class. As you can see from the diagram, it's like the function template — you
determine the class that you want generated by specifying your choice of type for the variable
parameter (T in this case) that appears between the angled brackets in the template. Doing this

generates a particular class that is referred to as an instance of the class template. The
process of creating a class from a template is described as instantiating the template.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

An appropriate class definition is generated when you instantiate an object of a template class
for a particular type, so you can generate any number of different classes from one class
template. We can see how this works in practice by looking at an example.

Defining a Class Template

We'll choose a simple example to illustrate how you define and use a class template, and we
won't complicate things by worrying too much about possible errors that can arise if it's misused.
Let's suppose we want to define classes which can store a number of data samples of some
kind, and each class is to provide a Max() function to calculate the maximum sample of those

stored. This function will be similar to the one we saw in the function template discussion in
Chapter 6. We can define a class template, which will generate a class CSamples for whatever

type we want:

 template <class T>

 class CSamples

 {

 public:

 // Constructor definition to accept an array of samples

 CSamples(const T values[], int count)

 {

 m_Free = count < 100? count:100; // Don't exceed the
array

 for(int i = 0; i < m_Free; i++)

 m._Values[i] = values[i]; // Store count number
of samples

 }

 // Constructor to accept a single sample

 CSamples(const T& value)

 {

 m_Values[0] = value; // Store the sample

 m_Free =1; // Next is free

 }

 // Default constructor

 CSamples(){ m_Free = 0; } // Nothing stored,
so first is free

 // Function to add a sample

 bool Add(const T& value)

 {

 bool OK = m_Free < 100; // Indicates there
is a free place

 if(OK)

 m_Values[m_Free++] = value; // OK true, so store
the value

 return OK;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Function to obtain maximum sample

 T Max() const

 {

 T theMax = m_Free ? m_Values[0] : 0; // Set first sample
or 0 as maximum

 for(int i = 1; i < m_Free; i++) // Check all the
samples

 if(m_Values[i] > theMax)

 theMax = m_Values[i]; // Store any larger
sample

 return theMax;

 }

 private:

 T m_Values[100]; // Array to store samples

 int m_Free; // Index of free
location in m_Values

 };

To indicate that we are defining a template rather than a straightforward class definition, we
insert the keyword template and the type parameter, T, between angled brackets, just before
the keyword class and the class name, CSamples. This is the same syntax that we used to

define a function template back in Chapter 6. The parameter T is the type variable that you'll
replace by a specific type when you declare a class object. Wherever the parameter T appears

in the class definition, it will be replaced by the type that you specify in your object declaration;
this creates a class definition corresponding to this type. You can specify any type (a basic data
type or a class type), but it has to make sense in the context of the class template, of course.
Any class type that you use to instantiate a class from a template must have all the operators
defined that the member functions of the template will use with such objects. If your class hasn't
implemented operator> (), for example, it will not work with our class template above. In

general, you can specify multiple parameters in a class template if you need them. We'll come
back to this possibility a little later in the chapter.

Getting back to our example, the type of the array in which to store the samples is specified as
T. The array will therefore be an array of whatever type you specify for T when you declare a

CSamples object. As you can see, we also use the type T in two of the constructors for the
class, as well as in the Add() and Max() functions. Each of these occurrences will also be

replaced when you instantiate a class object. The constructors we've defined support the
creation of an empty object, an object with a single sample, and an object initialized with an
array of samples. The Add() function allows samples to be added to an object one at a time.

You could also overload this function to add an array of samples. The class template includes
some elementary provision to prevent the capacity of the m_Values array being exceeded in

the Add() function, and in the constructor that accepts an array of samples.

As we said earlier, in theory you can create objects of CSamples classes that will handle any
data type: int, double, or any class type that you've defined. In practice, this doesn't mean it

will necessarily compile and work as you expect. It all depends on what the template definition
does, and usually a template will only work for a particular range of types. For example, the
Max() function implicitly assumes that the > operator is available for whatever type is being

processed. If it isn't, your program will not compile. Clearly, you'll usually be in the position of
defining a template that works for some types but not others, but there's no way you can restrict
what type is applied to a template.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Template Member Functions

You may want to place the definition of a class template member function outside of the
template definition. The syntax for this isn't particularly obvious, so let's look at how you do it.
The function declaration appears in the class template definition in the normal way. For
instance:

 template <class T>

 class CSamples

 {

 // Rest of the template definition...

 T Max() const; // Function to obtain maximum sample

 // Rest of the template definition. . .

 }

This declares the Max() function as a member of the class template but doesn't define it. You

now need to create a separate function template for the definition of the member function. You
must use the template class name plus the parameters in angled brackets to identify the class
template to which the function template belongs:

 template<class T>

 T CSamples<T>::Max() const

 {

 T theMax = m_Values[0]; // Set first sample as
maximum

 for(int i = 1; i < m_Free; i++) // Check all the samples

 if(m_Values[i] > theMax)

 theMax = m_Values[i]; // Store any larger sample

 return theMax;

 }

You saw the syntax for a function template back in Chapter 6. Since this function template is for
a member of the class template with the parameter T, the function template definition here

should have the same parameters as the class template definition. There's just one in this case
— T — but in general there can be several; a case we'll come to in a few pages time. If the

class template had two or more parameters, then so would each template defining a member
function.

Note how you only put the parameter name, T, along with the class name before the scope

resolution operator. This is necessary — the parameters are fundamental to the identification of
the class to which a function, produced from the template, belongs. The type will be
CSamples<T> with whatever type you assign to T when you create an instance of the class

template. Your type is plugged into the class template to generate the class definition, and into
the function template to generate the definition for the Max() function for the class. Each class
that's produced from the class template needs to have its own definition for the function Max().

Defining a constructor or a destructor outside of the class template definition is very similar. We
could write the definition of the constructor accepting an array as:

 template<class T>

 CSamples<T>::CSamples(T values[], int count)

 {

 m_Free = count < 100? count:100; // Don't exceed the array

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 for(int i = 0; i < m_Free; i++)

 m_Values[i] = values[i]; // Store count number of
samples

 }

The class to which the constructor belongs is specified in the template in the same way as for

an ordinary member function. Note that the constructor name doesn't require the parameter
specification - it's just CSamples, but it needs to be qualified by the class template type

CSamples<T>. You only use the parameter with the class template name preceding the scope

resolution operator.

Creating Objects from a Class Template

When we used a function defined by a function template, the compiler was able to generate the
function from the types of the arguments used. The type parameter for the function template
was implicitly defined by the specific use of a particular function. Class templates are a little
different. To create an object based on a class template, you must always specify the type
parameter following the class name in the declaration.

For example, to declare a CSamples object to handle samples of type double, you could write

the declaration as:

 CSamples<double> myData(10.0);

This defines an object of type CSamples<double> that can store samples of type double,

and the object is created with one sample stored with the value 10.0.

Try it Out: - Class Templating

You could create an object from our template that stores CBox objects. This will work because
the CBox class implements the operator>() function to overload the greater-than operator.

We could exercise the class template with the main() function in the following listing:

 // EX9_07.cpp

 // Trying out a class template

 #include <iostream>

 using namespace std;

 // Put the CBox class definition here

 // CSamples class template definition

 template <class T> class CSamples

 {

 public:

 // Constructors

 CSamples(const T values[], int count);

 CSamples(const T& value);

 CSamples(){ m_Free =0; }

 bool Add(const T& value); // Insert a value

 T Max() const; // Calculate maximum

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 private:

 T m_Values[100]; // Array to store
samples

 int m_Free; // Index of free
location in m_Values

 };

 // Constructor template definition to accept an array of samples

 template<class T> CSamples<T>::CSamples(const T values[], int
count)

 {

 m_Free = count < 100? count:100; // Don't exceed the
array

 for(int i = 0; i < m_Free; i++)

 m_Values[i] = values[i]; // Store count number of
samples

 }

 // Constructor to accept a single sample

 template<class T> CSamples<T>::CSamples(const T& value)

 {

 m_Values[0] = value; // Store the sample

 m_Free = 1; // Next is free

 }

 // Function to add a sample

 template<class T> bool CSamples<T>::Add(const T& value)

 {

 bool OK = m_Free < 100; // Indicates there is
a free place

 if(OK)

 m_Values[m_Free++] = value; //OK true, so store
the value

 return OK;

 }

 // Function to obtain maximum sample

 template<class T> T CSamples<T>::Max() const

 {

 T theMax = m_Free ? m_Values[0] : 0; // Set first sample or

0 as maximum

 for(int i = 1; i < m_Free; i++) // Check all the
samples

 if(m_Values[i] > theMax)

 theMax = m_Values[i]; // Store any larger
sample

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return theMax;

 }

 int main()

 {

 CBox boxes[] = { // Create an array of
boxes

 CBox(8.0, 5.0, 2.0), // Initialize the
boxes...

 CBox(5.0, 4.0, 6.0),

 CBox(4.0, 3.0, 3.0)

 };

 // Create the CSamples object to hold CBox objects

 CSamples<CBox> myBoxes(boxes, sizeof boxes / sizeof CBox);

 CBox maxBox = myBoxes.Max(); // Get the biggest box

 cout << endl // and output its
volume

 << "The biggest box has a volume of "

 << maxBox.Volume()

 << endl;

 return 0;

 }

You should replace the comment with the CBox class definition from EX9_06.cpp. With the

exception of the default constructor, all the member functions of the template are defined by
separate function templates, just to show you a complete example of how it's done.

In main() we create an array of three CBox objects and then use this array to initialize a

CSamples object that can store CBox objects. The declaration of the CSamples object is

basically the same as it would be for an ordinary class, but with the addition of the type
parameter in angled brackets following the template class name.

The program will generate the following output:

Note that when you create an instance of a class template, it does not follow that instances of
the function templates for function members will also be created. The compiler will only create
instances of templates for member functions that you actually call in your program. In fact, your
function templates can even contain coding errors, and as long as you don't call the member
function that the template generates, the compiler will not complain. You can test this out with
the example. Try introducing a few errors into the template for the Add() member. The program
will still compile and run since it doesn't call Add().

You could try modifying the example and perhaps seeing what happens when you instantiate
classes by using the template with various other types.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You might be surprised at what happens if you add some output statements to the class
constructors. The constructor for the CBox is being called 103 times! Look at what we are doing

in main() . First we create an array of 3 CBox objects, so that's 3 calls. We then create a
CSamples object to hold them, but a CSamples object contains an array of 100 variables of

type CBox , so we call the default constructor another 100 times, once for each element in the
array. Of course, the maxBox object will be created by the default copy constructor supplied by

the compiler.

Class Templates with Multiple Parameters

Using multiple type parameters in a class template is a straightforward extension of the example

using a single parameter, which we have just seen. You can use each of the type parameters
wherever you want in the template definition. For example, you could define a class template
with two type parameters:

 template<class T1, class T2>

 class CExampleClass

 {

 // Class data members

 private:

 T1 m_Value1;

 T2 m_Value2;

 // Rest of the template definition...

 };

The types of the two class data members shown will be determined by the types you supply for
the parameters when you instantiate an object.

The parameters in a class template aren't limited to types. You can also use parameters that

require constants or constant expressions to be substituted in the class definition. In our
CSamples template, we arbitrarily defined the m_Values array with 100 elements. We could,

however, let the user of the template choose the size of the array when the object is
instantiated, by defining the template as:

 template <class T, int Size> class CSamples

 {

 private:

 T m_Values[Size]; // Array to store
samples

 int m_Free; // Index of free
location in m_Values

 public:

 // Constructor definition to accept an array of samples

 CSamples(const T values[], int count)

 {

 m_Free = count < Size? count:Size; // Don't exceed the

array

 for(int i = 0; i < m_Free; i++)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_Values[i] = values[i]; // Store count number
of samples

 }

 // Constructor to accept a single sample

 CSamples(const T& value)

 {

 m_Values[0] = value; // Store the sample

 m_Free = 1; // Next is free

 }

 // Default constructor

 CSamples()

 {

 m_Free = 0; // Nothing stored, so
first is free

 }

 // Function to add a sample

 int Add(const T& value)

 {

 int OK = m_Free < Size; // Indicates there is
a free place

 if(OK)

 m_Values[m_Free++] = value; // OK true, so store

the value

 return OK;

 }

 // Function to obtain maximum sample

 T Max() const

 {

 T theMax = m_Free ? m_Values[0] : 0; // Set first sample
or 0 as maximum

 for(int i = 1; i < m_Free; i++) // Check all the
samples

 if(m_Values[i] > theMax)

 theMax = m_Values[i]; // Store any larger
sample

 return theMax;

 }

 };

The value supplied for Size when you create an object will replace the appearance of the
parameter throughout the template definition. Now we can declare the CSamples object from

the previous example as:

 CSamples<CBox, 3> MyBoxes(boxes, sizeof boxes / sizeof CBox);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Since we can supply any constant expression for the Size parameter, we could also have

written this as:

 CSamples<CBox, sizeof boxes / sizeof CBox>

 MyBoxes(boxes, sizeof boxes / sizeof CBox);

The example is a poor use of a template though - the original version was much more usable. A
consequence of making Size a template parameter is that instances of the template that store

the same types of objects but have different size parameter values are totally different classes
and cannot be mixed. For instance, an object of type CSamples<double, 10> cannot be

used in an expression with an object of type CSamples<double, 20>.

You need to be careful with expressions that involve comparison operators when instantiating
templates. A statement such as:

 CSamples<aType, x > y? 10:20> MyType(); // Wrong!

will not compile correctly because the > in the expression will be interpreted as a right angled

bracket. Instead, you should write this as:

 CSamples<aType, (x > y? 10:20)> MyType(); // OK

The parentheses make sure that the expression for the second template argument doesn't get
mixed up with the angled brackets.

Using Classes

We've touched on most of the basic aspects of defining a class, so maybe we should look at

how a class might be used to solve a problem. We'll need to keep the problem simple in order to
keep this book down to a reasonable number of pages, so we'll consider problems in which we
can use an extended version of the CBox class.

The Idea of a Class Interface

The implementation of an extended CBox class should incorporate the notion of a class

interface. What we're going to provide is a tool kit for anyone wanting to work with CBox

objects, so we need to assemble a set of functions that represents the interface to the world of
boxes. Since the interface will represent the only way to deal with CBox objects, it needs to be
defined to adequately cover the likely things one would want to do with a CBox object, and be

implemented, as far as possible, in a manner that protects against misuse or accidental errors.

The first question that we need to consider is the nature of the problem we intend to solve and,
from that, derive the kind of functionality we need to provide in the class interface.

Defining the Problem

The principal function of a box is to contain objects of one kind or another so, in a word, our
problem is packaging. We'll attempt to provide a class that eases packaging problems in
general and then see how it might be used. We'll assume that we'll always be working on
packing CBox objects into other CBox objects since, if you want to pack candy in a box, you

could always represent each of the pieces of candy as an idealized CBox object. The basic
operations that we might want to provide for our CBox class include:

§ Calculate the volume of a CBox. This is a fundamental characteristic of a CBox object

and we have an implementation of this already.
§ Compare the volumes of two CBox objects to determine which is the larger. We

probably should support a complete set of comparison operators for CBox objects. We

already have a version of the > operator.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ Compare the volume of a CBox object with a specified value and vice versa. We also
have an implementation of this for the > operator, but we will also need the other

comparison operators.
§ Add two CBox objects to produce a CBox object which will contain both the original

objects. Thus, the result will be at least the sum of the volumes, but may be larger. We
have a version of this already by overloading the + operator.

§ Multiply a CBox object by an integer (and vice versa) to provide a CBox object which

will contain a specified number of the original objects. This is effectively designing a carton.
§ Determine how many CBox objects of a given size can be packed in another CBox

object of a given size. This is effectively division, so we could overload the / operator.

§ Determine the volume of space remaining in a CBox object after packing it with the
maximum number of CBox objects of a given size.

We had better stop right there! There are undoubtedly other functions that would be very useful
but, in the interest of saving trees, we'll consider the set complete, apart from ancillaries such as
accessing dimensions, for example.

Implementing the CBox Class

We really need to consider the degree of error protection that we want to build into the CBox

class. The basic class that we defined to illustrate various aspects of classes is a starting point,
but we should also consider some points a little more deeply. The constructor is a little weak in
that it doesn't ensure that we have valid dimensions for a CBox, so perhaps the first thing we

should do is to ensure we always have valid objects. We could redefine the basic class as
follows:

 class CBox // Class definition at
global scope

 {

 public:

 // Constructor definition

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)

 {

 lv = lv <= 0? 1.0: lv; // Ensure positive

 bv = bv <= 0? 1.0: bv; // dimensions for

 hv = hv <= 0? 1.0: hv; // the object

 m_Length = lv > bv? lv: bv; // Ensure that

 m_Breadth = bv < lv? bv: lv; // length >= breadth

 m_Height = hv;

 }

 // Function to calculate the volume of a box

 double Volume() const

 {

 return m_Length*m_Breadth*m_Height;

 }

 // Function providing the length of a box

 double GetLength() const { return m_Length; }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Function providing the breadth of a box

 double GetBreadth() const { return m_Breadth; }

 // Function providing the height of a box

 double GetHeight() const { return m_Height; }

 private:

 double m_Length; // Length of a box in
inches

 double m_Breadth; // Breadth of a box in
inches

 double m_Height; // Height of a box in
inches

 };

Our constructor is now secure, since any dimension that the user of the class tries to set to a
negative number or zero will be set to 1 in the constructor. You might also consider displaying a
message for a negative or zero dimension, since there's obviously an error when this occurs,
and arbitrarily and silently setting a dimension to 1 might not be the best solution.

The default copy constructor is satisfactory for our class, since we have no dynamic memory
allocation for data members, and the default assignment operator will also work as we would
like. The default destructor also works perfectly well in this case so we don't need to define it.
Perhaps now we should consider comparisons of objects of our class.

Comparing CBox Objects

We should include support for >, >=, ==, < and <= to operate between two CBox objects, as
well between a CBox object and a value of type double. We should implement these as

ordinary global functions, since they don't need to be member functions. We can also write the
functions to compare the volumes of two CBox objects in terms of the functions to compare the

volume of a CBox object with a double value, so let's start with the latter. We can repeat the
operator>() function that we had before:

 // Function for testing if a constant is > a CBox object

 int operator>(const double& value, const CBox& aBox)

 {

 return value > aBox.Volume();

 }

We can now write the operator<() function in a similar way:

 // Function for testing if a constant is < CBox object

 int operator<(const double& value, const CBox& aBox)

 {

 return value < aBox.Volume();

 }

The implementation of the same operators, but with the arguments reversed, can now be
specified using these two functions:

 // Function for testing if CBox object is > a constant

 int operator>(const CBox& aBox, const double& value)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 { return value < aBox; }

 // Function for testing if CBox object is < a constant

 int operator<(const CBox& aBox, const double& value)

 { return value > aBox; }

We just use the appropriate overloaded operator function that we wrote before, with the

arguments from the call to the new function switched.

>= and <= will be the same as the first two functions but with the <= operator replacing each
use of <, and >= instead of >; there's little point in reproducing them at this stage. The

operator==() functions are also very similar:

 // Function for testing if constant is == the volume of a CBox
object

 int operator==(const double& value, const CBox& aBox)

 {

 return value == aBox.Volume();

 }

 // Function for testing if CBox object is == a constant

 int operator==(const CBox& aBox, const double& value)

 {

 return value == aBox;

 }

We now have a complete set of comparison operators for CBox objects. Keep in mind that

these will also work with expressions as long as the expressions result in objects of the required
type, so we will be able to combine them with the use of other overloaded operators.

Combining CBox Objects

Now we come to the question of overloading the operators +, *, /, and %. We will take them in
order. The add operation that we already have from Ex9_06.cpp has this prototype:

 CBox operator+(const CBox& aBox); // Function adding two
CBox objects

Although our original implementation of this isn't an ideal solution, we'll use it to avoid

overcomplicating our class. A better version would need to see if the operands had any faces
with the same dimensions and join along those faces, but coding that could get a bit messy. Of
course, if this were a practical application, a better add operation could be developed later and
substituted for the existing version, and any programs written using the original would still run
without change. The separation of the interface to a class from its implementation is crucial to
good C++ programming.

You'll have noticed that we conveniently forgot the subtraction operator. This is a judicious
oversight to avoid the complications inherent in implementing this. If you're really enthusiastic
about it, and you think it's a sensible idea, you can give it a try — but you need to decide what
to do when the result has a negative volume. If you allow the concept, you need to resolve
which box dimension, or dimensions, are to be negative, and how such a box is to be handled in
subsequent operations.

The multiply operation is very easy. It represents the process of creating a box to contain n
boxes, where n is the multiplier. The simplest solution would be to take the m_Length and

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

m_Breadth of the object to be packed and multiply the height by n to get the new CBox object.

We'll make it a little cleverer by checking whether or not the multiplier is even and, if it is,
stacking the boxes side by side by doubling the m_Breadth value and only multiplying the
m_Height value by half of n. This is illustrated here:

Of course, we don't need to check which is the larger of the length and breadth for the new
object, since the constructor will sort it out automatically for us. We'll write the version of the
operator function, operator*(), as a member function, with the left operand as a CBox object:

 // CBox multiply operator this*n

 CBox operator*(int n) const

 {

 if(n % 2)

 return CBox(m_Length, m_Breadth, n*m_Height); // n

odd

 else

 return CBox(m_Length, 2.0*m_Breadth, (n/2)*m_Height); // n
even

 }

Here, we use the % operator to determine whether n is even or odd. If n is odd, the value of n %

2 is 1 and the if statement is true. If it's even, n % 2 is 0 and the statement is false.

We can now use the function we've just written in the implementation of the version with the left

operand as an integer. We can write this as a non-member function:

 // CBox multiply operator n*aBox

 CBox operator*(int n, const CBox& aBox)

 {

 return aBox*n;

 }

This version of the multiply operation simply reverses the order of the operands so as to use the
previous version of the function directly. That completes the set of combinatorial operators for

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

CBox objects that we defined. We can finally look at the two analytical operator functions,
operator/() and operator%().

Analyzing CBox Objects

As we've said, the division operation will determine how many CBox objects, given by the right

operand can be contained in the CBox object specified by the left operand. To keep it relatively
simple, we'll assume that all the CBox objects are packed the right way up, that is, with the

height dimensions vertical. We'll also assume that they are all packed the same way round, so
that their length dimensions are aligned. Without these assumptions, it can get rather
complicated.

The problem will then amount to determining how many of the right-operand objects can be
placed in a single layer, and then deciding how many layers we can get inside the left-operand
CBox.

We'll code this as a member function as follows:

 int operator/(const CBox& aBox)

 {

 int tc1 = 0; // Temporary for number in horizontal plane
this way

 int tc2 = 0; // Temporary for number in a plane that way

 tc1 = static_cast<int>((m_Length / aBox.m_Length))*

 static_cast<int>((m_Breadth / aBox.m_Breadth)); // to fit
this way

 tc2 = static_cast<int>((m_Length / aBox.m_Breadth))*

 static_cast<int>((m_Breadth / aBox.m_Length)); // and
that way

 //Return best fit

 return static_cast<int>((m_Height / aBox.m_Height)) *(tc1 > tc2?

tc1:tc2);

 }

This function first determines how many of the right-operand CBox objects can fit in a layer with
their lengths aligned with the length dimension of the left-operand CBox. This is stored in tc1.

We then calculate how many can fit in a layer with the lengths of the right-operand CBoxes lying
in the breadth direction of the left-operand CBox. We then multiply the larger of tc1 and tc2 by

the number of layers we can pack in, and return that value. This process is illustrated here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We look at two possibilities: fitting bBox into aBox with the length aligned with that of aBox, and

then with the length of bBox aligned with the breadth of aBox. You can see from the illustration
that the best packing results from rotating bBox so that the breadth divides into the length of

aBox.

The other analytical operator function, operator%(), for obtaining the free volume in a packed
aBox is easier, since we can use the operator we've just written. We can write it as an ordinary

global function, since we don't need access to the private members of the class.

 // Operator to return the free volume in a packed box

 double operator%(const CBox& aBox, const CBox& bBox)

 {

 return aBox.Volume() - ((aBox / bBox) * bBox.Volume());

 }

This computation falls out very easily using existing class functions. The result is the volume of
the big box, aBox, minus the volume of the bBox boxes in it. The number of bBox objects

packed is given by the expression aBox / bBox, which uses the previous overloaded
operator. We multiply this by the volume of bBox objects to get the volume to be subtracted

from the volume of the large box, aBox.

That completes our class interface. Clearly, there are many more functions that might be

required for a production problem solver but, as an interesting working model demonstrating
how we can produce a class for solving a particular kind of problem, it will suffice. Now we
should go ahead and try it out on a real problem.

Try it Out: - A Multifile Project Using the CBox Class

Before we can actually start writing the code to use our CBox class and its overloaded

operators, the first thing we need to do is to assemble the definition for the class into a coherent
whole. We're going to take a rather different approach from what you've seen previously, in that
we're going to write multiple files for our project. We're also going to start using the facilities that
Visual C++ provides for creating and maintaining code for our classes. This will mean that you
do rather less of the work, but it will also mean that the code will be slightly different in places.

Start by creating a new project for a console application called Ex9_08. You'll see the left hand

window shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This appears on the ClassView tab, which shows a view of all the classes in a project. The other

tab is the FileView tab, which presents the files that go to make up the project. Although there
are no classes defined — or anything else for that matter — Visual C++ has already made
provision for including some. We can use Visual C++ to create a skeleton for our CBox class,

and the files that relate to it too. Right click anywhere on in

ClassView, and select New Class... from the pop-up menu that appears. You will then be able to
enter the name of the class that we want to create, CBox, in the New Class dialog as shown

here.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The name of the file that's indicated on the dialog, Box.cpp, will be used to contain the class

implementation, which consists of the definitions for the function members of the class. This is
the executable code for the class. You can change the name of this file by selecting the
Change... button if you want, but Box.cpp looks like a good name for the file in this case. The
class definition will be stored in a file called Box.h. This is the standard way of structuring a

program. Code which consists of class definitions is stored in files with the extension .h, and
code which defines functions is stored in files with the extension .cpp. Usually, each class

definition goes in its own .h file, and each class implementation goes in its own .cpp file.

When you click on the OK button in the dialog several things will happen:
1. A file Box.h will be created containing a skeleton definition for the class CBox
2. A file Box.cpp will be created containing a skeleton implementation for the class

3. The Wizard bar will be activated

The Wizard bar should already be displayed, but if it isn't, right click in the menu area of the

window and click on Wizard Bar in the pop-up. The Wizard Bar is used like this:

As you can see, the Wizard Bar provides a range of tools for accessing and modifying your
code. You can add classes, you can add members to classes, and you can switch between the
definition and the implementation of member functions. You can also get any global entity in
your program displayed in the editor window. Of course, you should only use the Wizard Bar
when it's convenient to do so — you always have the option of displaying a file and modifying
your source code directly in the editor window.

Let's start developing our CBox class based on what Visual C++ has provided automatically for

us.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Defining the CBox Class

If you click on the + to the left of in the ClassView, the tree will be
expanded and you will see that CBox is now defined for the project. All the classes in a project

are displayed in this tree. We can view the source code supplied for the definition of the class
by double clicking the class name in the tree, or by clicking on the button in the Wizard Bar. The
code is as follows:

 // Box.h: interface for the CBox class.

 //

//

 #if
!defined(AFX_BOX_H__EDB99605_15DB_11D2_B72E_CAA50F4F7106__INCLUDED_)

 #define AFX_BOX_H__EDB99605_15DB_11D2_B72E__CAA50F4F7106__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CBox

 {

 public:

 CBox();

 virtual ~CBox();

 };

 #endif // !defined

(AFX_BOX_H__EDB99605_15DB_11D2_B72E_CAA50F4F7106__INCLUDED_)

After the comment lines, there are some preprocessor directives. The first is a test whether the
symbol beginning AFX_BOX_H__... has not been defined — #if !defined is a directive that
implements an 'if not defined' test, and works rather like an ordinary if statement. If the symbol

in the directive doesn't already exist, all the text lines down to the #endif directive will be
included, including the #define directive. If the symbol has been defined, the lines down to the

#endif directive will be skipped.

The effect of this arrangement is to prevent the code in the file from being included into a file
more than once. The first time the code is included, the symbol beginning AFX_BOX_H__... gets

defined, thus preventing any further inclusions of the same code. This is pretty much standard
procedure in .h files, and you should write all your .h files with this sort of protection built in to

avoid the problems that duplicate definitions cause. Visual C++ will always include it
automatically in the files for class definitions that it creates. Don't worry that numbers and letters
in the symbol are different on your machine; this is done to make absolutely sure the symbol is
unique.

The second pair of #if - #endif directives performs a similar function, but one which is only

available on more recent compilers — that's what _MSC_VER denotes. If the compiler is
sufficiently recent (and Visual C++ 6 most certainly is!), the #pragma once directive is

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

executed, which means that this file doesn't even have to be opened again. You can see that
this is faster than opening the file and testing the symbol every time the compiler comes across
a #include for it.

Within the code we have an outline class definition including the default class constructor and
the destructor. The destructor has been declared as virtual, but we'll defer discussion of

what that means until the next chapter. You could delete the keyword if you want, as it isn't
needed here, but it will do no harm if you leave it in.

Note that the button on the Wizard Bar has changed. Clicking on the button while the class
definition is displayed will switch to the .cpp file. In fact, it does better than that, although the

full benefit isn't clear while your files are as short as they are at this stage. The button switches
you to the position in the .cpp file which contains the definition of the function at the current

cursor position, with the function header highlighted. Clicking on it again will toggle back to the
class definition.

Adding Data Members

First, we'll add the private data members m_Length, m_Breadth, and m_Height. Right click

on (in class view) and select Add Member Variable... from the pop-up menu. You can
then specify the first data member that we want to add to the class in the dialog.

The variable type appears in the upper edit box, and the access specifier is selected from the
three radio buttons at the bottom of the dialog. When you click on the OK button, the variable
will be added to the class definition. Repeat the process for the other two class data members.
You can then add comments to these directly in the editor window if you wish:

 // Box.h: interface for the CBox class.

 //

//

 #if
!defined(AFX_BOX_H__EDB99605_15DB_11D2_B72E_CAA50F4F7106__INCLUDED_)

 #define AFX_BOX_H__EDB99605_15DB_11D2_B72E_CAA50F4F7106__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CBox

 {

 public:

 CBox();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 virtual ~CBox();

 private:

 double m_Breadth; // Breadth of a box in inches

 double m_Height; // Height of a box in inches

 double m_Length; // Length of a box in inches

 };

 #endif //
!defined(AFX_BOX_H__EDB99605_15DB_11D2_B72E_CAA50F4F7106__INCLUDED_)

Of course, you're quite free to enter the declarations for these members manually, directly into

the code, if you want.

Defining the Constructor

We want to change the declaration of the constructor in the class definition, so modify it to:

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0);

Now we're ready to implement it. Open the file Box.cpp if it isn't open already and modify the

constructor definition to:

 CBox::CBox(double lv, double bv, double hv)

 {

 lv = lv <= 0.0? 1.0:lv; // Ensure positive

 bv = bv <= 0.0? 1.0:bv; // dimensions for

 hv = hv <= 0.0? 1.0:hv; // the object

 m_Length = lv > bv? lv:bv; // Ensure that

 m_Breadth = bv < lv; // length >= breadth

 m_Height = hv;

 }

Remember that the initializers for the parameters to a member function should only appear in
the member declaration in the class definition, not in the definition of the function. If you put
them in the function definition, your code will not compile. We've seen this code already, so we
won't discuss it again. It would be a good idea to save the file at this point by clicking on the
Save toolbar button. Get into the habit of saving the file you're editing before you switch to
something else. If we need to edit the constructor again, we can get to it easily by either double
clicking its entry in the ClassView window or by selecting it from the right hand drop down menu
in the Wizard Bar.

Another useful trick to learn at this stage is to get from a function's definition in a .cpp file to its

declaration in a .h file which we can get to in two ways.

§ With the class definition displayed in the editor window, position the cursor on the line

declaring the function and click on the magic wand button in the Wizard Bar. You
should find yourself looking at the function's definition. This works in the opposite direction
as well and applies to any function of any class, provided the function header reads the
same in both files.

§ In the ClassView window, right click on the function name you want to access. Clicking
on Go to Definition will place the cursor next to the function header in the relevant .cpp file

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

and clicking on Go to Declaration will take position the cursor at the top of the function's
header in the relevant .h file.

Adding Function Members

We need to add all the functions you saw earlier to the CBox class. Previously, we defined

several function members within the class definition, so that these functions were automatically
inline. However, if we just add code to the body of each function definition in the .cpp file, the
functions won't be inline, and for those that are very short, such as Volume(), GetLength(),

GetBreadth(), and GetHeight(), it really would be much better if they were.

You might think it was simply a question of adding the keyword inline to the function

definitions, but the problem here is that inline functions end up not being 'real' functions.
Because the code from the body of each function has to be inserted directly at the position it is
called, the definitions of the functions need to be available when the file containing calls to the
functions is compiled. If they're not, you'll get linker errors and your program will not run. If you
want member functions to be inline, you must include the function definitions in the .h file for

the class. They can be defined either within the class definition, or immediately following it in the
.h file. You should put any global inline functions you need into a .h file, and #include that
file into any .cpp file that uses them. We'll put the definitions for the functions we want to make

inline in the CBox class definition, so modify it to:

 class CBox

 {

 public:

 double GetHeight() const { return m_Height; } // Get box
height

 double GetBreadth() const { return m_Breadth; } // Get box
breadth

 double GetLength() const { return m_Length; } // Get box
length

 double Volume() const // Calculate

volume

 { return m_Length*m_Breadth*m_Height; }

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0);

 virtual ~CBox();

 private:

 double m_Height; // Height of a box in inches

 double m_Breadth; // Breadth of a box in inches

 double m_Length; // Length of a box in inches

 };

You could enter the other member functions we need directly in the editor window, but you can

also use the Wizard Bar to do it, and the practice will be useful. Click on the down arrow in the
Wizard Bar and select Add Member Function... from the pop-up. You can then enter the details of
the first function we want to add in the dialog that appears:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Here we've defined the operator+ () function as public with a return type of CBox. Note

the options to declare a function as static or virtual. As you know, a static member

function exists independently of any objects of a class. We'll get to virtual functions in Chapter
10. When you click on OK, the declaration for the function will be added to the class definition in
the Box.h file, and a skeleton definition for the function will be added to the Box.cpp file.

You need to repeat this process for each of the other member functions of CBox, so the class

definition will look like this:

 class CBox

 {

 public:

 int operator/(const CBox& aBox) const; // Divide one
box into another

 CBox operator*(int n) const; // Multiply a
box by an integer

 CBox operator+(const CBox& aBox) const; // Add two boxes

 double GetHeight() const { return m_Height; } // Get box
height

 double GetBreadth() const { return m_Breadth; } // Get box
breadth

 double GetLength() const { return m_Length; } // Get box
length

 double Volume() const // Calculate
volume

 { return m_Length*m_Breadth*m_Height; }

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0);

 virtual ~CBox();

 private:

 double m_Height;

 double m_Breadth;

 double m_Length;

 };

Of course, the comments were added manually here. The skeleton implementations of these
three functions have been placed in Box.cpp. Switch to the .cpp file for the class by clicking

on the button in the Wizard Bar, and define the functions with the implementations we've
already discussed. The .cpp file should then contain the following code (where the shaded

areas indicate the code that you need to add yourself):

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Box.cpp: implementation of the CBox class.

 //

 //

 #include "Box.h"

 //

 // Construction/Destruction

 //

 CBox::CBox(double lv, double bv, double hv)

 {

 lv = lv <= 0.0? 1.0:lv; // Ensure positive

 bv = bv <= 0.0? 1.0:bv; // dimensions for

 hv = hv <= 0.0? 1.0:hv; // the object

 m_Length = lv > bv? lv:bv; // Ensure that

 m_Breadth = bv < lv? bv:lv; // length >= breadth

 m_Height = hv;

 }

 CBox::~CBox()

 {

 }

 CBox CBox::operator +(const CBox& aBox) const

 {

 // New object has larger length and breadth of the two,

 // and sum of the two heights

 return CBox(m_Length > aBox.m_Length? m_Length:aBox.m_Length,

 m_Breadth > aBox.m_Breadth?
m_Breadth:aBox.m_Breadth,

 m_Height + aBox.m_Height);

 }

 CBox CBox::operator *(int n) const

 {

 if(n%2)

 return CBox(m_Length, m_Breadth, n*m_Height); // n
odd

 else

 return CBox(m_Length, 2.0*m_Breadth, (n/2)*m_Height); // n
even

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 int CBox::operator /(const CBox& aBox) const

 {

 // Temporary for number in horizontal plane this way

 int tc1 = 0;

 // Temporary for number in a plane that way

 int tc2 = 0;

 tc1 = static_cast<int>((m_Length / aBox.m_Length))*

 static_cast<int>((m_Breadth / aBox.m_Breadth)); //to
fit

 // this
way

 tc2 = static_cast<int>((m_Length / aBox.m_Breadth))*

 static_cast<int>((m_Breadth / aBox.m_Lengtn)); // and
that way

 //Return best fit

 return static_cast<int>((m_Height / aBox.m_Height))*(tc1 > tc2?

tc1:tc2);

 }

The very short functions, particularly those that just return the value of a data member, have
their definitions within the class definition so that they are inline. If you take a look at

ClassView by clicking on the tab, and then click on the + beside the CBox class name, you'll see

that all the members of the class are shown.

This completes the CBox class, but we still need to define the global functions that implement

operators to compare the volume of a CBox object with a numerical value.

Adding Global Functions

We need to create a .cpp file containing the definitions for the global functions supporting

operations on CBox objects. Click on the File/New... menu item, select the file type and enter the

file name on the Files tab, as shown below.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

When you click on OK the new empty file will be opened in the editor window, so you can enter
the following code:

 // BoxOperators.cpp

 // CBox object operations that don't need to access private members

 #include "Box.h"

 // Function for testing if a constant is > a CBox object

 bool operator>(const double& value, const CBox& aBox)

 { return value > aBox.Volume(); }

 // Function for testing if a constant is < CBox object

 bool operator<(const double& value, const CBox& aBox)

 { return value < aBox.Volume(); }

 // Function for testing if CBox object is > a constant

 bool operator>(const CBox& aBox, const double& value)

 { return value < aBox; }

 // Function for testing if CBox object is < a constant

 bool operator<(const CBox& aBox, const double& value)

 { return value > aBox; }

 // Function for testing if a constant is >= a CBox object

 bool operator>=(const double& value, const CBox& aBox)

 { return value >= aBox.Volume(); }

 // Function for testing if a constant is <= CBox object

 bool operator<=(const double& value, const CBox& aBox)

 { return value <= aBox.Volume(); }

 // Function for testing if CBox object is >= a constant

 bool operator>=(const CBox& aBox, const double& value)

 { return value <= aBox; }

 // Function for testing if CBox object is <= a constant

 bool operator<=(const CBox& aBox, const double& value)

 { return value >= aBox; }

 // Function for testing if a constant is == CBox object

 bool operator==(const double& value, const CBox& aBox)

 { return value == aBox.Volume(); }

 // Function for testing if CBox object is == a constant

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 bool operator==(const CBox& aBox, const double& value)

 { return value == aBox; }

 // CBox multiply operator n*aBox

 CBox operator*(int n, const CBox& aBox)

 { return aBox * n; }

 // Operator to return the free volume in a packed CBox

 double operator%(const CBox& aBox, const CBox& bBox)

 { return aBox.Volume() - (aBox / bBox) * bBox.Volume(); }

We have a #include directive for Box.h because the functions refer to the CBox class. When

you have completed this, the Wizard Bar will show the global functions in the right-hand drop-
down list box, and you can move between function definitions by selecting from this list. They
will also appear under the Globals folder in ClassView.

You have seen all these function definitions earlier in the chapter, so we won't discuss their
implementations again. When we want to use them in another .cpp file, we'll need to be sure

that we declare all the functions so the compiler will recognize them. We can achieve this by
putting a set of declarations in a header file. Select the File/New..: menu item again, but this time
choose the file type as C/C++ Header File, and enter the name as BoxOperators. After clicking

OK, an empty header file will be added to the project, and you can add the following code in the
editor window:

 // BoxOperators.h - Declarations for global box operators

 bool operator>(const double& value, const CBox& aBox);

 bool operator<(const double& value, const CBox& aBox);

 bool operator>(const CBox& aBox, const double& value);

 bool operator<(const CBox& aBox, const double& value);

 bool operator>=(const double& value, const CBox& aBox);

 bool operator<=(const double& value, const CBox& aBox);

 bool operator>=(const CBox& aBox, const double& value);

 bool operator<=(const CBox& aBox, const double& value);

 bool operator==(const double& value, const CBox& aBox);

 bool operator==(const CBox& aBox, const double& value);

 CBox operator*(int n, const CBox& aBox);

 double operator%(const CBox& aBox, const CBox& bBox);

Caution

Using Visual C++ Macros When you follow the book's instructions for
running macros, you may find yourself confronted by a blank Macro dialog
box. Should this happen to you, there's a relatively easy fix.

With no files open in Visual C++6, you need to click on Tools | Macro.
Then, in the Macro dialog box that appears, you have to click on Options |
Loaded Files. Finally, in the Add-ins and Macro Files tab of the Customize
dialog box that appears, you need to enable the Sample macro by clicking
on the check box. After you've closed the dialog, you can follow the book's
directions to run the macro.

Header files need some preprocessor directives to prevent them from being accidentally
included into a source file more than once. You can enter it yourself, but there is a macro in

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Visual C++ that will do it for you. Select the Tools/Macro... menu option and select the
OneTimeInclude macros from the list.

When you click on Run, the macros will insert the preprocessor directives that you need in the
current editor window.

We're now ready to start applying these functions, along with the CBox class, to a specific

problem in the world of boxes.

Using Our CBox Class

Let's suppose that we need to package candies. They are on the big side, real jaw breakers,

occupying an envelope 1.5 inches long by 1 inch wide by 1 inch high. We have access to a
standard candy box that is 4.5 inches by 7 inches by 2 inches, and we want to know how many
candies fit in the box so that we can set the price. We also have a standard carton that is 2 feet
6 inches long, by 18 inches wide and 18 inches deep, and we want to know how many boxes of
candy it can hold and how much space we're wasting.

In case the standard candy box isn't a good solution, we would also like to know what custom
candy box would be suitable. We know that we can get a good price on boxes with a length
from 3 inches to 7 inches, a breadth from 3 inches to 5 inches and a height from 1 inch to 2.5
inches, where each dimension can vary in steps of half an inch. We also know that we need to
have at least 30 candies in a box, because this is the minimum quantity consumed by our
largest customers at a sitting. Also, the candy box should not have empty space, because the
complaints from customers who think they are being cheated goes up. Further, ideally we want
to pack the standard carton completely so the candies don't rattle around. We don't want to be
too stringent about this, so let's say we have no wasted space if the free space in the packed
carton is less than the volume of a single candy box.

With our CBox class, the problem becomes almost trivial; the solution is represented by the
following main() function. Add a new C++ source file, Ex9_08 to the project, then type in the

code shown here:

 // EX9_08.CPP

 // A sample packaging problem

 #include <iostream>

 #include "Box.h"

 #include "BoxOperators.h"

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 using namespace std;

 int main()

 {

 CBox candy(1.5, 1.0, 1.0); // Candy definition

 CBox candyBox(7.0, 4.5, 2.0); // Candy box definition

 CBox carton(30.0, 18.0, 18.0); // Carton definition

 // Calculate candies per candy box

 int numCandies = candyBox / candy;

 // Calculate candy boxes per carton

 int numCboxes = carton / candyBox;

 // Calculate wasted carton space

 double space = carton % candyBox;

 cout << endl

 << "There are " << numCandies

 << " candies per candy box"

 << endl

 << "For the standard boxes there are " << numCboxes

 << " candy boxes per carton " << endl << "with "

 << space << " cubic inches wasted.";

 cout << endl << endl << "CUSTOM CANDY BOX ANALYSIS (No Waste)";

 // Try the whole range of custom candy boxes

 for(double length = 3.0; length <= 7.5; length += 0.5)

 for(double breadth = 3.0; breadth <= 5.0; breadth += 0.5)

 for(double height = 1.0; height <= 2.5; height += 0.5)

 {

 // Create new box each cycle

 CBox tryBox(length, breadth, height);

 if(carton%tryBox < tryBox.Volume() &&

 tryBox % candy == 0.0 && tryBox /
candy >= 30)

 cout << endl << endl

 << "Trial Box L = " << tryBox.GetLength()

 << " B = " << tryBox.GetBreadth()

 << " H = " << tryBox.GetHeight()

 << endl

 << "Trial Box contains " << tryBox / candy << "
candies"

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << " and a carton contains " << carton / tryBox

 << " candy boxes.";

 }

 cout << endl;

 return 0;

 }

We should first look at how our program is structured. We've divided it into a number of files,
which is common when writing in C++. You should be able to see them if you look at the
FileView:

The file Ex9_08.cpp contains our function main() and a #include directive for the file

BoxOperators. h, which contains the prototypes for the functions in BoxOperators.cpp
(which aren't class members). It also has a #include directive for the definition of the class

CBox in Box.h. So, a C++ console program is usually divided into a number of files that each

fall into one of three basic categories:
1. .h files containing library #include commands, global constants and variables, class

definitions and function prototypes — in other words, everything except executable code.
They also contain inline function definitions. Where a program has several class
definitions, they are often placed in separate .h files.

2. .cpp files containing the executable code for the program, plus #include commands

for all the definitions required by the executable code.
3. Another .cpp file containing the function main().

The code in our function main() really doesn't need a lot of explanation — it's almost a direct

expression of the definition of the problem in words, because the operators in the class interface
perform problem-oriented actions on CBox objects.

The solution to the question of the use of standard boxes is in the declaration statements, which
also compute the answers we require as initializing values. We then output these values with
some explanatory comments.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The second part of the problem is solved using the three nested for loops iterating over the
possible ranges of m_Length, m_Breadth and m_Height so that we evaluate all possible

combinations. We could output them all as well, but since this would involve 200 combinations,
of which we might only be interested in a few, we have an if which defines the options that

we're actually interested in. The if expression is only true if there's no space wasted in the

carton and the current trial candy box has no wasted space and it contains at least 30 candies.

Here's the output from this program:

We have a duplicate solution due to the fact that, in the nested loop, we evaluate boxes that
have a length of 5 and a breadth of 4.5, as well as boxes that have a length of 4.5 and a
breadth of 5. Because our class constructor ensures that the length is not less than the breadth,
these two are identical. We could include some additional logic to avoid presenting duplicates,
but it hardly seems worth the effort. You could treat it as a small exercise if you like.

}

Organizing your Program Code

In this last example, we distributed the code among several files for the first time. Not only is this
common practice with C++ applications generally, but with Windows programming it is essential.
The sheer volume of code involved in even the simplest program necessitates dividing it into
workable chunks.

As we discussed in the previous section, there are basically two kinds of source code file in a
C++ program, .h files and .cpp files. This is illustrated in this diagram:

First of all, there's the executable code which corresponds to the definitions of the functions that
make up the program. Second, there are definitions of various kinds that are necessary for the
executable code to compile correctly. These are global constants and variables, data types
which include classes, structures, and unions, and function prototypes. The executable source

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

code is stored in files with the extension .cpp, and the definitions are stored in files with the
extension .h.

From time to time, you might want to use code from existing files in a new project. In this case
you only have to add the .cpp files to the project, which you can do by using the Project | Add
To Project menu option, or by right-clicking in the editor window displaying a .cpp file and

selecting from the pop-up menu to add the file to your project. You don't need to add .h files to

your project, although you can if you want them to be shown in FileView immediately. The code
from .h files will be added at the beginning of the .cpp files that require them as a result of the
#include directives that you specify. You need #include directives for header files

containing standard library functions and other standard definitions, as well as for your own
header files. Visual C++ automatically keeps track of all these files, and enables you to view
them in FileView. As you saw in the last example, you can also view the class definitions and
global constants and variables in ClassView.

In a Windows program, there are other kinds of definitions for the specification of such things as
menus and toolbar buttons. These are stored in files with extensions like .rc and .ico. Just
like .h files, these do not need to be explicitly added to a project as they are tracked

automatically by Visual C++.

Naming Program Files

As we've already said, for classes of any complexity, it's usual to store the class definition in a
.h file with a filename based on the class name, and to store the implementation of the function
members of the class that are defined outside the class definition in a .cpp file with the same

name. On this basis, the definition of our CBox class appeared in a file with the name Box.h.
Similarly, the class implementation was stored in the file Box.cpp. We didn't follow this

convention in the earlier examples in the chapter because the examples were very short, and it
was easier to reference the examples with names derived from the chapter number and the
sequence number of the example within the chapter.

Segmenting a C++ program into .h and .cpp files is a very convenient approach, as it makes it

easy for you to find the definition or implementation of any class, particularly if you're working in
a development environment that doesn't have all the tools that Visual C++ provides. As long as
you know the class name, you can go directly to the file you want. This isn't a rigid rule,
however. It's sometimes useful to group the definitions of a set of closely-related classes
together in a single file and assemble their implementations similarly. However you choose to
structure your files, the ClassView will still display all the individual classes, as well as all the
members of each class, as you can see here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Here, you can see the details of the classes and globals for the last example. As I've mentioned

before, double-clicking on any of the entries in the tree will take you directly to the relevant
source code.

Summary

In this chapter, we've laid the foundations for object-oriented programming and the basis for
understanding how the Microsoft Foundation Classes (MFC) that are provided as part of Visual
C++ work, since MFC is based on a set of classes specially designed to make programming
Windows easy. In the same way as we defined a CBox class interface for working with CBox

objects, MFC implements a set of classes providing an easy-to-use set of tools for programming
Windows. You'll also be applying classes to the application-specific parts of your Windows
programs. For example, classes become extremely useful for managing application data that
subsequently needs to be displayed in response to a WM_PAINT message. The next chapter will

complete the knowledge of classes that you will need to understand how to apply classes to
your own applications, and how to use MFC.

The key points to keep in mind from this chapter are:

§ Objects are destroyed using functions called destructors. It is essential to define a
destructor to destroy objects that contain members that are allocated by new, as the default

destructor will not do this.
§ The compiler will supply a default copy constructor for your class if you do not define

one. The default copy constructor will not deal correctly with objects of classes that have
data members allocated on the free store.

§ When you define your own copy constructor, you must use a reference parameter.

§ If you do not define an assignment operator for your class, the compiler will supply a
default version. As with the copy constructor, the default assignment operator will not work
correctly with classes that have data members allocated on the free store.

§ It is essential that you provide a destructor, a copy constructor and an assignment
operator for classes that have members allocated by new.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ A union is a mechanism that allows two or more variables to occupy the same location
in memory.

§ Most basic operators can be overloaded to provide actions specific to objects of a class.
You should only implement operator functions for your classes that are consistent with the
normal interpretation of the basic operators.

§ A class template is a pattern that you can use to create classes with the same structure,
but which support different data types.

§ You can define a class template that has multiple parameters, including parameters that
can assume constant values rather than types.

§ You should put definitions for your program in .h files, and executable code — function
definitions — in .cpp files. You can then incorporate .h files into your .cpp files by using

#include directives.

§ By using the Visual C++ IDE and the Wizard Bar you can automate a lot of the work in
accessing and modifying your program code.

Exercises

1. Create a class to represent an estimated integer, such as 'about 40'. These are
integers whose value may be regarded as exact or estimated, so the class needs to
have as data members a value and an 'estimation' flag. The state of the estimation
flag affects arithmetic operations, so that '2 * about 40' is 'about 80'. The state of
variables should be switchable between 'estimated' and 'exact'.

Provide one or more constructors for such a class. Overload the + operator so that
these integers can be used in arithmetic expressions. Do you want the + operator to

be a global or a member function? Do you need an assignment operator? Provide a
Print() member function so that they can be printed out, using a leading 'E' to

denote that the 'estimation' flag is set. Write a program to test the operation of your
class, checking especially that the operation of the estimation flag is correct.

2. Implement a very simple string class, which holds a char* and an integer length as
private data members. Provide a constructor which takes a const char*, and

implement the copy constructor, assignment and destructor functions. Verify that your
class works. You will find it easiest to use the string functions from the cstring

header file.

3. What other constructors might you want to supply for your string class? Make a list,
and code them up.

4. (Advanced) Does your class correctly deal with cases such as this?

 string s1;

 ...

 s1 = s1;

If not, how should it be modified?

5. (Advanced) Overload the + and += operators of your class for concatenation.

6. Modify the stack example from the last chapter so that the size of the stack is
specified in the constructor and dynamically allocated. What else will you need to
add? Test the operation of your new class.

Answers

1. Estimated integer class:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include <iostream>

 using namespace std;

 #define ESTIMATED true

 #define EXACT false

 class CEstInt

 {

 private:

 int val;

 bool bEst;

 public:

 CEstInt(int i=0, bool e=EXACT) : val(i), bEst(e)

 {

 }

 // void SetEstimated(bool e)

 // {

 // bEst = (!e) ? EXACT : ESTIMATED;

 // }

 void Print();

 // Helper functions

 CEstInt Add(const CEstInt& b) const;

 };

 void CEstInt::Print()

 {

 if (bEst)

 cout << 'E';

 cout << val;

 }

 CEstInt CEstInt::Add(const CEstInt& b) const

 {

 CEstInt t(val+b.val);

 if (bEst || b.bEst)

 t.bEst = ESTIMATED;

 return t;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 CEstInt operator+(const CEstInt& a, const CEstInt& b)

 {

 return a.Add(b);

 }

 int main()

 {

 CEstInt a=3, c;

 CEstInt b(5,ESTIMATED);

 cout << "a=";

 a.Print();

 cout << '\n';

 cout << "b=";

 b.Print();

 cout << '\n';

 c = a + b;

 cout << "c=";;

 c.Print();

 cout << '\n';

 return 0;

 }

2. Simple string class:

 #include <iostream>

 #include <cstring>

 using namespace std;

 class CSimpString

 {

 private:

 int len;

 char* buff;

 public:

 CSimpString(const char* p = 0);

 CSimpString(const CSimpString& s);

 ~CSimpString();

 CSimpString() operator=(const CSimpString& rhs);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 void Print() const;

 };

 CSimpString::CSimpString(const char* p) : len(0), buff(0)

 {

 if (p != 0)

 {

 len = strlen(p);

 if (len > 0)

 {

 buff = new char[len+1];

 strcpy(buff,p);

 }

 }

 }

 CSimpString::CSimpString(const CSimpString& s)

 {

 len = s.len;

 buff = new char[len+1];

 strcpy(buff,s.buff);

 }

 CSimpString::~CSimpString()

 {

 delete [] buff;

 }

 CSimpString& CSimpString::operator=(const CSimpString& rhs)

 {

 len = rhs.len;

 delete [] buff;

 buff = new char[len+1];

 strcpy(buff,rhs.buff);

 return *this;

 }

 void CSimpString::Print() const

 {

 cout << buff;

 }

 int main()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 CSimpString s1 = "hello";

 CSimpString s2;

 s2 = s1;

 cout << "s1='";

 s1.Print();

 cout << "'\n";

 cout << "s2='";

 s2.Print();

 cout << "'\n";

 return 0;

 }

3. Extra constructors. Here are two suggestions—the first constructs a string from a repeated
single character, while the second uses an integer.

 #include <cstdlib>

 #include <iostream>

 #include <cstring>

 class CSimpString

 {

 public:

 CSimpString(char c, int count=1);

 CSimpString(int i);

 // rest of class as before

 };

 CSimpString::CSimpString(char c, int count) : len(0), buff(0)

 {

 len = count;

 if (len > 0)

 {

 buff = new char[len+1];

 memset(buff, c, len);

 buff[len] = '\0';

 }

 }

 CSimpString::CSimpString(int i) : len(0), buff (0)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 char sTmp[20];

 itoa(i, sTmp, 10);

 len = strlen(sTmp);

 if <len > 0)

 {

 buff = new char[len+1];

 strcpy(buff, sTmp);

 }

 }

4. As coded, our assignment operator won't cope with pathological cases such as s1=s1,
because we delete the buffer before doing the copy. If we're trying to copy the same object,
we'll have deleted the object's buffer before doing so. The simplest and easiest way around
this is to check that the object isn't copying itself:

 CSimpString& CSimpString::operator=(const CSimpString& rhs)

 {

 if (&rhs != this)

 {

 len = rhs.len;

 delete buff;

 buff = new char[len+1];

 strcpy(buff,rhs.buff);

 }

 return *this;

 }

5. Overloading the + and += operators for the simple string class. First, add these two functions

to the public section class declaration:

 CSimpString& operator+=(const CSimpString& rhs);

 CSimpString Concat(const CSimpString& s2) const;

Here's their implementation. The += operator is implemented as a member function, because
it will always be called by a string object. The + operator, on the other hand, may be called

upon to add string objects and string literals in any order, so it makes sense to make it a
global operator function.

 CSimpString& CSimpString::operator+=(const CSimpString& rhs)

 {

 char* t = buff;

 buff = new char[len + rhs.len + 1];

 strcpy(buff,t);

 strcpy(buff,rhs.buff);

 len += rhs.len;

 delete[] t;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return *this;

 }

 CSimpString CSimpString::Concat(const CSimpString& s2) const

 {

 char* tmp = new char[len + s2.len + 1];

 strcpy(tmp,buff);

 strcat(tmp,s2.buff);

 CSimpString_t(tmp);

 delete [] tmp;

 return t;

 }

 CSimpString operator+(const CSimpString& s1, const CSimpString&
s2)

 {

 return s1.Concat(s2);

 }

6. When you dynamically allocate space for the stack, you'll need to provide a destructor to free
the memory.

 #include <iostream>

 using namespace std;

 class CStack

 {

 private:

 int* list;

 int size;

 int next;

 public:

 CStack(int n = 10);

 ~CStack();

 void Push(int i);

 int Pop();

 int Peek() const;

 void Print() const;

 };

 CStack::CStack(int n) : next(0), size(n)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 list = new int[size];

 }

 CStacks::~CStack()

 {

 delete [] list)

 }

 void CStack::Push(int i)

 {

 if (next < size-1)

 list[next++] = i;

 else

 cout << "Error! Stack overflow\n";

 }

 int CStack::Pop()

 {

 if (next == 0)

 {

 cout << "Error! Stack underflow\n";

 return 0;

 }

 else

 return list[--next];

 }

 int CStack::Peek() const

 {

 if (next == 0)

 {

 cout << "Error! Stack underflow\n";

 return 0;

 }

 else

 return list[next-1];

)

 void CStack::Print() const

 {

 cout << '[';

 for (int i=next-1; i>=0; i--)

 cout << ' '<< list[i];

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << "]\n";

 }

 int main()

 {

 CStack s(20);

 s.Print();

 s.Push(5);

 s.Push(10);

 s.Push(8);

 s.Print();

 cout << "peek at top of stack=" << s.Peek() << '\n' ;

 s.Print();

 cout << "pop top of stack=" << s.Pop() << '\n';

 cout << "pop top of stack=" << s.Pop() << '\n';

 s.Print();

 cout << "pop top of stack=" << s.Pop() << '\n';

 cout << "pop top of stack=" << s.Pop() << '\n';

 return 0;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 10: Class Inheritance

Overview

In this chapter, we're going to look into a topic that lies at the heart of object-oriented
programming and that will enable you to use the facilities of MFC and AppWizard to program
Windows applications: inheritance. Simply put, inheritance is the means by which you can
define a new class in terms of one you already have. You will use this when programming for
Windows by redefining the classes provided by MFC to suit your own particular needs, so it's
important that you understand how inheritance works.

In this chapter you will learn about:

§ How inheritance fits into the idea of object-oriented programming

§ Defining a new class in terms of an existing one
§ The use of the keyword protected to define a new access specification for class

members
§ How a class can be a friend to another class
§ Virtual functions and how you can use them

§ Pure virtual functions
§ Abstract classes
§ Virtual destructors and when to use them

§ Multiple inheritance

Basic Ideas of OOP

As we have seen, a class is a data type that you define to suit your own application

requirements. Classes in object-oriented programming also define the objects to which your
program relates. You program the solution to a problem in terms of the objects that are specific
to the problem, using operations that work directly with those objects. You can define a class to
represent something abstract, such as a complex number, which is a mathematical concept, or
a truck, which is decidedly physical (especially if you run into one on the highway). So, as well
as being a data type, a class can also be a definition of a real-world object, at least to the
degree necessary to solve a given problem.

You can think of a class as defining the characteristics of a particular group of things that are
specified by a common set of parameters and share a common set of operations that may be
performed on them. The operations that are possible are defined by the class interface
contained in the public section of the class definition. The CBox class that we used in the last

chapter is a good example — it defined a box in the most elementary terms.

Of course, in the real world there are many different kinds of box: there are cartons, coffins,
candy boxes and cereal boxes, and you will certainly be able to come up with many others. You
can differentiate boxes by the kinds of things they hold, the materials they are made of, and in a
multitude of other ways, but even though there are many different kinds of box, they share some
common characteristics — the essence of boxiness perhaps — and, therefore, you can still
visualize them as actually being related to one another even though they have many
differentiating features. You could define a particular kind of box as having the generic
characteristics of all boxes — perhaps just a length, a breadth and a height — plus some
additional parameters which serve to differentiate your kind of box from the rest. You may also
find that there are new things you can do with your particular kind of box that you can't do with
other boxes.

Equally, some objects may be the result of combining a particular kind of box with some other
kind of object: a box of candy, or a crate of beer for example. You can, of course, define one
kind of box as a generic box plus some additional characteristics, and then specify another sort

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

of box as a further specialization of that. An example of the kinds of relationships you might
define between different sorts of boxes is illustrated below.

The boxes become more specialized as you move down the diagram. In this case, we have
defined three different kinds of box, based on the generic type. We also have beer crates
defined as a further refinement of crates designed to hold bottles.

You could deduce from this that a good way to approximate the real world relatively well, using

classes in C++, would be through the ability to define classes that are interrelated. A candy box
can be considered to be a box with all the characteristics of a basic box, plus a few
characteristics of its own. This precisely illustrates the relationship between classes in C++
when one class is defined based on another, and is shown in the diagram above. Let's look at
how this works in practice.

Inheritance in Classes

When one class is defined based on another class (or more generally, based on several
others), the former is referred to as a derived class. A derived class automatically contains all
the data members of the class or classes which are used to define it and, with some restrictions,
the function members as well. The class is said to inherit the data members and function
members of the classes on which it is based.

The only members of a base class which are not inherited by a derived class are the destructor,
the constructors and any member functions overloading the assignment operator. All other
function members, together with all the data members of a base class, will be inherited by a
derived class. Of course, the reason for certain base members not being inherited is that a
derived class will always have its own constructors and destructor. If the base class has an
assignment operator, the derived class provides a version of its own. When we say these
functions are not inherited, we mean that they don't exist as members of a derived class object.
However, they still exist for the base class part of an object, as we will see.

What is a Base Class?

A base class is any class that is used in the definition of another class. When, for example, a
class B is defined directly in terms of a class A, A is said to be a direct base class of B. In the

previous diagram, the class CCrate was a direct base class of CBeerCrate. When a class
such as CBeerCrate is defined in terms of another class CCrate, CBeerCrate is said to be

derived from CCrate. Because CCrate is itself defined in terms of the class CBox, CBox is
said to be an indirect base class of CBeerCrate. We shall see how this is expressed in the

class definition in a moment. The relationship between a derived class and a base class is
illustrated in the following figure:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Just because function members are inherited, doesn't mean that you won't want to replace them

in the derived class with new versions, and of course, you can do that when necessary.

Deriving Classes from a Base Class

Let's go back to the original CBox class with public data members that we had at the

beginning of the last chapter:

 // Listing 10_01-01

 class CBox

 {

 public:

 double m_Length;

 double m_Breadth;

 double m_Height;

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv){}

 };

We have included a constructor in the class so that we can initialize objects when we declare
them. Suppose we now need another class CCandyBox, which is the same as a CBox object,

but also has another data member — a pointer to a text string. We can define CCandyBox as a

derived class with the class CBox as the base class, as follows:

 // Listing 10 01-02

 class CCandyBox: CBox

 {

 public:

 char* m Contents;

 CCandyBox(char* str = "Candy") // Constructor

 {

 m_Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 ~CCandyBox() // Destructor

 { delete[] m_Contents; }

 }

The base class, CBox, appears after the class name for the derived class CCandyBox and is

separated from it by a colon. In all other respects, it looks like a normal class definition. We
have added the new member, m_Contents, and, since it is a pointer to a string, we need a

constructor to initialize it and a destructor to release the memory for the string. We have also
put a default value for the string describing the contents of a CCandyBox object in the

constructor. Objects of the class CCandyBox contain all the members of the base class, CBox,
plus the additional data member, m_Contents.

Try it Out: - Using a Derived Class

We can see how our derived class works in an example. Although we used the Wizard Bar to
manage our classes in the previous chapter, we will hold off doing that for the most part in this
chapter, because we are often combining fragments that we have been developing in
discussion. However, if you feel comfortable using the Wizard Bar to put the examples together,
it would be good experience to do it that way. In any event we will be using it extensively in later
chapters. Here is the code for our first example using a derived class:

 // EX10_01.CPP

 // Using a derived class

 #include <iostream> // For stream I/O

 #include <cstring> // For strlen()

and strcpy()

 using namespace std;

 // Insert CBox definition (Listing 10_01-01)

 // Insert CCandyBox definition (Listing 10_01-02)

 int main()

 {

 CBox myBox(4.0, 3.0, 2.0); // Create CBox
object

 CCandyBox myCandyBox;

 CCandyBox myMintBox("Wafer Thin Mints"); // Create
CCandyBox object

 cout << endl

 << "myBox occupies " << sizeof myBox // Show how much
memory

 << "bytes" << endl // the objects

require

 << "myCandyBox occupies " << sizeof myCandyBox

 << " bytes" << endl

 << "myMintBox occupies " << sizeof myMintBox

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << " bytes";

 cout << endl

 << "myBox length is " << myBox.m_Length;

 myBox.m_Length = 10.0;

 // myCandyBox.m_Length = 10.0; // uncomment this
for an error

 cout << endl;

 return 0;

 }

How It Works

After declaring a CBox object and two CCandyBox objects, we output the number of bytes

occupied by each object. Let's look at the output:

The first line is what we would expect from our discussion in the last chapter. A CBox object has
three data members of type double, each of which will be 8 bytes, making 24 bytes in all. Both

our CCandyBox objects are the same size: 32 bytes. The length of the string doesn't affect the

size of an object, as the memory to hold the string is allocated in the free store. The 32 bytes
are made up of 24 bytes for the three double members inherited from the base class CBox,
plus 4 bytes for the pointer member m_Contents, which makes 28 bytes... so where did the

other 4 bytes come from? This is due to the compiler aligning members at addresses that are
multiples of 8 bytes. You should be able to demonstrate this by adding an extra member of type
int, say, to the class CCandyBox. You will find that the size of a class object is still 32 bytes.

We also output the value of the m_Length member of the CBox object myBox. Even though we

have no difficulty accessing this member of the CBox object, if you uncomment the following
statement in the function main(),

 // myCandyBox.m_Length = 10.0; // uncomment this
for an error

the program will no longer compile. The compiler will generate a message,

error C2248: 'm_Length': cannot access public member declared in class 'CBox'

which means that the m_Length member from the base class is not accessible. In the derived

class, the member m_Length has become private.

The reason for this is that there is a default access specifier of private for a base class — it's

as if the first line of our class definition had been,

 class CCandyBox: private CBox

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There always has to be an access specification for a base class which will determine the status
of the inherited members in the derived class. Omitting an access specification when specifying
a base class causes the compiler to assume that it's private. If we change the definition of the
class CCandyBox to the following,

 class CCandyBox: public CBox

 {

 // Contents the same as in Listing 10_01-02

 };

then the member m_Length in the derived class will be inherited as public and will be

accessible in the function main(). With the access specifier public for the base class, all the
inherited members originally specified as public in the base class will have the same access

level in the derived class.

Access Control Under Inheritance

The whole question of the access of inherited members in a derived class needs to be looked at
more closely. Firstly, we should consider the private members of a base class in a derived

class.

There was a good reason for choosing the version of the class CBox with public data

members, rather than the later, more secure version with private data members that we
looked at. The reason was that although private data members of a base class are also

members of a derived class, they remain private to the base class in the derived class so

member functions added to the derived class cannot access them. They are only accessible in
the derived class through function members of the base class that are not in the private

section of the base class. You can demonstrate this very easily by changing all the CBox class
data members to private and putting a function Volume() in the derived class CCandyBox,

so that the class definitions become as follows:

 // Version of the classes that will not compile

 class CBox

 {

 public:

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv){}

 private:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

 class CCandyBox: public CBox

 {

 public:

 char* m_Contents;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Function to calculate the volume of a CCandyBox object

 double Volume() const // Error - members
not accessible

 { return m_Length*m_Breadth*m_Height; }

 CCandyBox(char* str = "Candy") // Constructor

 {

 m Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

 }

 ~CCandyBox() // Destructor

 { delete[] m_Contents; }

 };

A program using these classes will not compile. The function Volume() in the class
CCandyBox attempts to access the private members of the base class, which is not legal.

Try it Out: - Accessing Private Members of the Base Class

It is, however, legal to use the Volume() function in the base class, so if you move the
definition of the function Volume() to the public section of the base class, CBox, not only will

the program compile but you can use the function to obtain the volume of a CCandyBox object:

 // EX10_02.CPP

 // Using a function inherited from a base class

 #include <iostream> // For stream I/O

 #include <cstring> // For strlen() and strcpy()

 using namespace std;

 class CBox

 {

 public:

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv){}

 //Function to calculate the volume of a CBox object

 double Volume() const

 { return m__Length*m_Breadth*m_Height; }

 private:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

 class CCandyBox: public CBox

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 // Contents the same as in Listing 10_01-02

 };

 int main()

 {

 CBox myBox(4.0,3.0,2.0); // Create
CBox object

 CCandyBox myCandyBox;

 CCandyBox myMintBox("Wafer Thin Mints"); // Create
CCandyBox

 // object

 cout << endl

 << "myBox occupies " << sizeof myBox // Show
how much memory

 << " bytes" << endl // the

objects require

 << "myCandyBox occupies " << sizeof myCandyBox

 << " bytes" << endl

 << "myMintBox occupies " << sizeof myMintBox

 << " bytes";

 cout << endl

 << "myMintBox volume is " << myMintBox.Volume(); // Get
volume of a

 //
CCandyBox object

 cout << endl;

 return 0;

 }

How It Works

This example will produce the following output:

The interesting additional output is the last line. This shows the value produced by the function
Volume(), which is now in the public section of the base class. Within the derived class, it

operates on the members of the derived class that are inherited from the base. It is a full
member of the derived class, so it can be used freely with objects of the derived class.

The value for the volume of the derived class object is 1 because, in creating the CCandyBox
object, the default constructor CBox() was called first to create the base class part of the

object, and this sets default CBox dimensions to 1.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Constructor Operation in a Derived Class

Although we said that the base class constructor is not inherited in the derived class, it still
exists for the base part of the derived class object. This is because creating the base class part
of a derived class object is really the business of a base class constructor, not the derived class
constructor. After all, we have seen that private members of a base class are inaccessible in a
derived class object, even though they are inherited.

The default constructor for the base part of the derived class object was called automatically in

the last example, but this doesn't have to be the case. We can arrange to call a particular base
class constructor from the derived class constructor. This will enable us to initialize the base
class data members with a constructor other than the default, or indeed to choose one or other
base class constructor, depending on the data supplied to the derived class constructor.

Try it Out: - Calling Constructors

We can demonstrate this in action using a modified version of the last example. To make the
class usable, we really need to provide a constructor for the derived class which allows you to
specify the dimensions of the object. We can produce an additional constructor in the derived
class to do this, and call the base class constructor explicitly to set the values of the data
members inherited from the base class.

 // EX10_03.CPP

 // Calling a base constructor from a derived class constructor

 #include <iostream> // For stream I/O

 #include <cstring> // For strlen() and strcpy()

 using namespace std;

 class CBox

 {

 public:

 // Base class constructor

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv)

 { cout << endl << "CBox constructor called"; }

 //Function to calculate the volume of a CBox object

 double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 private:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

 class CCandyBox: public CBox

 {

 public:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 char* m_Contents;

 // Constructor to set dimensions and contents

 // with explicit call of CBox constructor

 CCandyBox(double lv, double bv, double hv, char* str =
"Candy")

 :CBox(lv,
bv, hv)

 {

 cout << endl <<"CCandyBox constructor2 called";

 m_Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

 }

 // Constructor to set contents

 // calls default CBox constructor automatically

 CCandyBox(char* str = "Candy")

 {

 cout << endl << "CCandyBox constructorl called";

 m_Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

 }

 ~CCandyBox() // Destructor

 { delete[] m_Contents; }

 };

 int main()

 {

 CBox myBox(4.0, 3.0, 2.0);

 CCandyBox myCandyBox;

 CCandyBox myMintBox(1.0, 2.0, 3.0, "Wafer Thin Mints");

 cout << endl

 << "myBox occupies " << sizeof myBox // Show how much

memory

 << " bytes" << endl // the objects
require

 << "myCandyBox occupies " << sizeof myCandyBox

 << " bytes" << endl

 << "myMintBox occupies " << sizeof myMintBox

 << " bytes";

 cout << endl

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 << "myMintBox volume is " // Get volume of a

 << myMintBox.Volume(); // CCandyBox
object

 cout << endl;

 return 0;

 }

How It Works

As well as adding the additional constructor in the derived class, we have put an output
statement in each constructor so we will know when either gets called. The explicit call of the
constructor for the CBox class appears after a colon in the function header of the derived class

constructor. You will have perhaps noticed that the notation is exactly the same as what we
have been using for initializing members in a constructor anyway:

 // Calling the base class constructor

 CCandyBox(double lv, double bv, double hv, char* str= "Candy"):
CBox(lv, bv, hv)

 {

 ...

 }

This is perfectly consistent with what we are doing here, since we are essentially initializing a
CBox sub-object of the derived class object. In the first case, we are explicitly calling the default

constructor for the double types m_Length, m_Breadth and m_Height in the initialization
list. In the second instance, we are calling the constructor for CBox. This causes the specific

CBox constructor we have chosen to be called before the CCandyBox constructor is executed.

If you build and run this example, it will produce the output shown below:

The calls to the constructors are explained in the table below:

Screen output Object being constructed

CBox constructor called myBox

CBox constructor called myCandyBox

CCandyBox constructor1 called myCandyBox

CBox constructor called myMintBox

CCandyBox constructor2 called myMintBox

The first line of output is due to the CBox class constructor call, originating from the declaration

of the CBox object, myBox. The second line of output arises from the automatic call of the base
class constructor caused by the declaration of the CCandyBox object myCandyBox.

Important

Notice how the base class constructor is always called before the
derived class constructor.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The following line is due to our version of the default derived class constructor being called for
the object myCandyBox. This constructor is invoked because the object is not initialized. The

fourth line of output arises from the explicit identification of the CBox class constructor to be
called in our new constructor for CCandyBox objects. The argument values specified for the

dimensions of the CCandyBox object are passed to the base class constructor. Next comes the

output from the new derived class constructor itself, so constructors are again called for the
base class first, followed by the derived class.

It should be clear from what we have seen up to now, that when a derived class constructor is

executed, a base class constructor is always called to construct the base part of the derived
class object. If you don't specify the base class constructor to be used, the compiler will call the
default.

The last line in the table shows that the initialization of the base part of the object myMintBox is

working as it should, with the private members having been initialized by the CBox class

constructor.

Having the private members of a base class only accessible to function members of the base
class isn't always convenient. There will be many instances where we want to have private

members of a base class that can be accessed from within the derived class. As you will surely
have anticipated by now, C++ provides a way to do this.

Declaring Protected Members of a Class

In addition to the public and private access specifiers for members of a class, you can also
declare members of a class as protected. Within the class, the keyword protected has the

same effect as the keyword private: members of a class that are protected can only be

accessed by member functions of the class, and by friend functions of the class (also by
member functions of a class that is declared as a friend of the class — we will look into friend
classes later in this chapter). Using the keyword protected, we could redefine our class CBox

as follows:

 // Listing 10_04-01

 class CBox

 {

 public:

 // Base class constructor

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv)

 { cout << endl << "CBox constructor called"; }

 // CBox destructor - just to track calls

 ~CBox()

 { cout << "CBox destructor called" << endl; }

 protected:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

Now the data members are still effectively private, in that they can't be accessed by ordinary

global functions, but they'll still be accessible to member functions of a derived class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - Using Protected Members

We can demonstrate the use of protected data members by using this version of the class
CBox to derive a new version of the class CCandyBox, which will access the members of the

base class through its own member function, Volume().

 // EX10_04.CPP

 // Using the protected access specifier

 #include <iostream> // For stream I/O

 #include <cstring> // For strlen() and strcpy()

 using namespace std;

 // Insert CBox class definition here (Listing 10_04-01)

 class CCandyBox: public CBox

 {

 public:

 char* m_Contents;

 // Derived class function to calculate volume

 double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 // Constructor to set dimensions and contents

 // with explicit call of CBox constructor

 CCandyBox(double lv, double bv, double hv, char* str =
"Candy")

 :CBox(lv, bv, hv) //
Constructor

 {

 cout << endl <<"CCandyBox constructor2 called";

 m_Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

 }

 // Constructor to set contents

 // calls default CBox constructor automatically

 CCandyBox(char* str = "Candy") //
Constructor

 {

 cout << endl << "CCandyBox constructor1 called";

 m_Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 ~CCandyBox() //
Destructor

 {

 cout << "CCandyBox destructor called" << endl;

 delete[] m_Contents;

 }

 };

 int main()

 {

 CCandyBox myCandyBox;

 CCandyBox myToffeeBox(2, 3, 4, "Stickjaw Toffee");

 cout << endl

 << "myCandyBox volume is " << myCandyBox.Volume()

 << endl

 << "myToffeeBox volume is " << myToffeeBox.Volume();

 // cout << endl << myToffeeBox.m_Length; // Uncomment this
for an error

 cout << endl;

 return 0;

 }

How It Works

In this example, the volumes of the two CCandyBox objects are calculated by invoking the

function Volume(), which is a member of the derived class. This function accesses the
inherited members m_Length, m_Breadth, and m_Height to produce the result. The

members were declared as protected in the base class and remain protected in the

derived class. The program produces the output shown below:

This shows that the volume is being calculated properly for both CCandyBox objects. The first
object has the default dimensions produced by calling the default CBox constructor, so the

volume is 1, and the second object has the dimensions defined as initial values in its
declaration.

The output also shows the sequence of constructor and destructor calls, and you can see how
each derived class object is destroyed in two steps.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Important

Destructors for a derived class object are called in the reverse order to
the constructors for the object. This is a general rule that always applies.
Constructors are invoked starting with the base class constructor and
then the derived class constructor, whereas the destructor for the
derived class is called first when an object is destroyed, followed by the
base class destructor.

You can demonstrate that the protected members of the base class remain protected in

the derived class by uncommenting the statement preceding the return statement in the
function main(). If you do this, you will get the following error message from the compiler,

error C2248: 'm_Length': cannot access protected member declared in class 'CBox'

which indicates quite clearly that the member m_Length is inaccessible.

The Access Level of Inherited Class Members

We know that if we have no access specifier for the base class in the definition of a derived
class, the default specification is private. This has the effect of causing the inherited public

and protected members of the base class to become private in the derived class. The
private members of the base class remain private to the base and therefore inaccessible

to member functions of the derived class. In fact, they remain private to the base class

regardless of how the base class is specified in the derived class definition.

We have also used public as the specifier for a base class. This leaves the members of the
base class with the same access level in the derived class as they had in the base, so public

members remain public and protected members remain protected.

The last possibility is to declare a base class as protected. This has the effect of making the
inherited public members of the base protected in the derived class. The protected (and

private) inherited members retain their original access level in the derived class.

This is summarized in the following illustration:

This may look a little complicated, but you can reduce it to the following three points about the

inherited members of a derived class:
§ Members of a base class that are declared as private are never accessible in a

derived class
§ Defining a base class as public doesn't change the access level of its members in the

derived class

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ Defining a base class as protected changes its public members to protected in

the derived class

Being able to change the access level of inherited members in a derived class gives you a
degree of flexibility, but remember that you can only make the access level more stringent. In no
way can you relax the level specified in the base class, which suggests that your base classes
need to have public members if you want to be able to vary the access level in derived

classes. This may seem to run contrary to the idea of encapsulating data in a class in order to
protect it from unauthorized access, but, as we shall see, it will often be the case that we
construct base classes in such a manner that their only purpose is to act as a base for other
classes, and they aren't intended to be used for instantiating objects in their own right.

The Copy Constructor in a Derived Class

You will remember that the copy constructor is called automatically when you declare an object

which is initialized with an object of the same class. Look at these statements:

 CBox myBox(2.0, 3.0, 4.0); // Calls constructor

 CBox copyBox(myBox); // Calls copy constructor

The first will call the constructor, accepting three double arguments, and the second will call

the copy constructor. If you don't supply your own copy constructor, the compiler will supply one
that copies the initializing object member by member to the corresponding members of the new
object. So that we can see what is going on during execution, let's add our own version of a
copy constructor to the class CBox. We can then use this class as a base for defining the class

CCandyBox.

 // Listing 10_05-01

 class CBox // Base class definition

 {

 public:

 // Base class constructor

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0):

 m_Length(lv), m_Breadth(bv), m_Height(hv)

 { cout << endl << "CBox constructor called"; }

 // Copy constructor

 CBox(const CBox& initB)

 {

 cout << endl << "CBox copy constructor called";

 m_Length = initB.m_Length;

 m_Breadth = initB.m_Breadth;

 m_Height = initB.m_Height;

 }

 // CBox destructor - just to track calls

 ~CBox()

 { cout << "CBox destructor called" << endl; }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 protected:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

You'll also recall that the copy constructor needs to have its parameter specified as a reference
in order to avoid an infinite number of calls to itself, caused by the need to copy an argument
that is transferred by value. When the copy constructor in our example is invoked, it will output a
message to the screen, so we'll be able to see from the output when this is happening.

We will use the CCandyBox class from Ex10_04.cpp, shown again here:

 // Listing 10_05-02

 class CCandyBox: public CBox

 {

 public:

 char* m_Contents;

 // Derived class function to calculate volume

 double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 // Constructor to set dimensions and contents

 // with explicit call of CBox constructor

 CCandyBox(double lv, double bv, double hv, char* str =
"Candy")

 :CBox(lv, bv, hv) //
Constructor

 {

 cout << endl <<"CCandyBox constructor2 called";

 m_Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

 }

 // Constructor to set contents

 // calls default CBox constructor automatically

 CCandyBox(char* str = "Candy") //
Constructor

 {

 cout << endl << "CCandyBox constructor1 called";

 m_Contents = new char[strlen(str) + 1];

 strcpy(m_Contents, str);

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 ~CCandyBox() //
Destructor

 {

 cout << "CCandyBox destructor called" << endl;

 delete[] m_Contents;

 }

);

This doesn't have a copy constructor added yet, so we'll rely on the compiler-generated version.

Try it Out: - The Copy Constructor in Derived Classes

We can exercise the copy constructor that we have just defined with the following example:

 // EX10_05.CPP

 // Using a derived class copy constructor

 #include <iostream> // For stream I/O

 #include <cstring> // For strlen() and strcpy()

 using namespace std;

 // Insert CBox class definition here (Listing 10_05-01)

 // Insert CCandyBox class definition here (Listing 10_05-02)

 int main()

 {

 CCandyBox chocBox(2.0, 3.0, 4.0, "Chockies"); // Declare and
initialize

 CCandyBox chocolateBox(chocBox); // Use copy
constructor

 cout << endl

 << "Volume of chocBox is " << chocBox.Volume()

 << endl

 << "Volume of chocolateBox is " << chocolateBox.Volume()

 << endl;

 return 0;

 }

How It Works (or why It doesn't)

When you run this example, in addition to the expected output, you'll see the following
message:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Press Abort to clear the dialog and you'll see the output in the console window that you might

expect. The output shows that the compiler-generated copy constructor for the derived class
automatically called the copy constructor for the base class.

However, as you've probably realized, all is not as it should be. In this particular case, the
compiler-generated copy constructor causes problems because the memory pointed to by the
m_Contents member of the derived class in the second object declared will point to the same

memory as the one in the first object. When one object is destroyed (when it goes out of scope
at the end of main()), it releases the memory occupied by the text. When the second object is

destroyed, the destructor attempts to release some memory that has already been freed by the
destructor call for the previous object.

The way to fix this is to supply a copy constructor for the derived class that will allocate some
additional memory for the new object.

Try it Out: - Fixing the Copy Constructor Problem

We can do this by adding the following code for the copy constructor to the public section of

the derived class:

 // Derived class copy constructor

 CCandyBox(const CCandyBox& initCB)

 {

 cout << endl << "CCandyBox copy constructor called";

 // Get new memory

 m_Contents = new chart strlen(initCB.m_Contents) + 1];

 // Copy string

 strcpy(m_Contents, initCB.m_Contents);

 }

We can now run this new version of the last example with the same function main() to see

how our copy constructor works.

How It Works

Now when we run the example, it behaves rather better and produces the output shown in the
screen below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

However, there is still something wrong. The third line of output shows that the default
constructor for the CBox part of the object chocolateBox is called, rather than the copy

constructor. As a consequence, the object has the default dimensions rather than the
dimensions of the initializing object, so the volume is incorrect. The reason for this is that when
you write a constructor for an object of a derived class, you are responsible for ensuring that the
members of the derived class object are properly initialized. This includes the inherited
members.

The fix for this is to call the copy constructor for the base part of the class in the initialization list
for the copy constructor for the CCandyBox class. The copy constructor would then become:

 // Derived class copy constructor

 CCandyBox(const CCandyBox& initCB): CBox(initCB)

 {

 cout << endl << "CCandyBox copy constructor called";

 // Get new memory

 m_Contents = new char[strlen(initCB.m_Contents) + 1];

 // Copy string

 strcpy(m_Contents, initCB.m_Contents);

 }

Now, the CBox class copy constructor is called with the initCB object. Only the base part of

the object will be passed to it, so everything will work out. If you modify the last example by
adding the base copy constructor call, the output will be as shown:

The output shows that all the constructors and destructors are called in the correct sequence
and the copy constructor for the CBox part of chocolateBox is called before the CCandyBox

copy constructor. The volume of the object chocolateBox of the derived class is now the

same as that of its initializing object, which is as it should be.

We have, therefore, another golden rule to remember:
Important

If you write any kind of constructor for a derived class, you are
responsible for the initialization of all members of the derived class
object, including all its inherited members.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Class Members as friends

We saw in Chapter 8 how a function could be declared as a friend of a class. This gave the
friend function the privilege of free access to any of the class members. Of course, there is no
reason why a friend function cannot be a member of another class.

Suppose we define a class CBottle to represent a bottle:

 class CBottle

 {

 public:

 CBottle(double height, double diameter)

 {

 m_Height = height;

 m_Diameter = diameter;

 }

 private:

 double m_Height; // Bottle height

 double m_Diameter; // Bottle diameter

 };

We now need a class to represent the packaging for a dozen bottles, that will automatically

have custom dimensions to accommodate a particular kind of bottle. We could define this as:

 class CCarton

 {

 public:

 CCarton(const CBottle& aBottle)

 {

 m_Height = aBottle.m_Height; // Bottle height

 m_Length = 4.0*aBottle.m_Diameter; // Four rows of
...

 m_Breadth = 3.0*aBottle.m_Diameter; // ...three
bottles

 }

 private:

 double m_Length; // Carton length

 double m_Breadth; // Carton breadth

 double m_Height; // Carton height

 };

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The constructor here sets the height to be the same as that of the bottle it is to accommodate,
and the length and breadth are set based on the diameter of the bottle so that twelve will fit in
the box.

As you know by now, this won't work. The data members of the CBottle class are private, so

the CCarton constructor cannot access them. As you also know, a friend declaration in the
CBottle class will fix it:

 class CBottle

 {

 public:

 CBottle(double height, double diameter)

 {

 m_Height = height;

 m_Diameter = diameter;

 }

 private:

 double m_Height; // Bottle height

 double m_Diameter; // Bottle diameter

 // Let the carton constructor in

 friend CCarton::CCarton(const CBottle& aBottle);

 };

The only difference between the friend declaration here, and what we saw in Chapter 8 is that

we must put the class name and the scope resolution operator with the friend function name to
identify it. For this to compile correctly, the compiler needs to have information about the
CCarton class constructor, so (if you were using multiple files) you would need to put an
#include statement for the file containing the CCarton class definition before the definition of

the CBottle class.

Friend Classes

You can also allow all the function members of one class to have access to all the data
members of another by declaring it as a friend class. We could define the CCarton class as a
friend of the CBottle class by writing a friend declaration in the CBottle class definition:

 friend class CCarton;

All function members of the CCarton class will now have free access to all the data members
of the CBottle class.

Limitations on Class Friendship

Class friendship is not reciprocated. Making the CCarton class a friend of the CBottle class

does not mean that the CBottle class is a friend of the CCarton class. If you want this to be
so you must add a friend declaration for the CBottle class to the CCarton class.

Class friendship is also not inherited. If you define another class with CBottle as a base,
members of the CCarton class will not have access to its data members, not even those that

are inherited from CBottle.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Virtual Functions

We need to look more closely at the behavior of inherited member functions and their
relationship with derived class member functions. Let's add a function to the class CBox to

output the volume of a CBox object. The simplified class would then become:

 // Listing 10_06-01

 class CBox // Base class

 {

 public:

 // Function to show the volume of an object

 void ShowVolume() const

 {

 cout << endl

 << "CBox usable volume is " << Volume();

 }

 // Function to calculate the volume of a CBox object

 double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 // Constructor

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)

 :m_Length(lv), m_Breadth(bv),
m_Height(hv) {}

 protected:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

Now we can output the usable volume of a CBox object just by calling the ShowVolume()

function of any object for which we require it. The constructor sets the data member values in
the initialization list, so no statements are necessary in the body of the function. The data
members are as before and are specified as protected, so they will be accessible to the

member functions of any derived class.

Now, let's suppose we want to derive a class for a different kind of box called CGlassBox, to

hold glassware. The contents are fragile, and because packing material is added to protect
them, the capacity of the box is less than the capacity of a basic CBox object. We therefore

need a different Volume() function to account for this, so we add it to the derived class:

 // Listing 10_06-02

 class CGlassBox: public CBox // Derived class

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 public:

 // Function to calculate volume of a CGlassBox

 // allowing 15% for packing

 double Volume() const

 { return 0.85*m_Length*m_Breadth*m_Height; }

 // Constructor

 CGlassBox(double lv, double bv, double hv): CBox(lv, bv,
hv){}

 };

There could conceivably be other additional members of the derived class, but we'll keep it

simple and concentrate on how the inherited functions work for the moment. The constructor for
the derived class objects just calls the base class constructor in its initialization list to set the
data member values. No statements are necessary in its body. We've included a new version of
the function Volume() to replace the version from the base class, the idea being that we can
get the inherited function ShowVolume() to call the derived class version of the member

function Volume() when we call it for an object of the class CGlassBox.

Try it Out: - Using an Inherited Function

Now we should see how our derived class works in practice. We can try this out very simply by
creating an object of the base class and an object of the derived class with the same
dimensions, and then verifying that the correct volumes are being calculated. The main()

function to do this would be as follows:

 // EX10_06.CPP

 // Behavior of inherited functions in a derived class

 #include <iostream>

 using namespace std;

 // Insert CBox class definition (Listing 10 06-01)

 // Insert CGlassBox class definition (Listing 10_06-02)

 int main()

 {

 CBox myBox(2.0, 3.0, 4.0); // Declare a base box

 CGlassBox myGlassBox(2.0, 3.0, 4.0); // Declare derived box -
same size

 myBox.ShowVolume(); // Display volume of
base box

 myGlassBox.ShowVolume(); // Display volume of
derived box

 cout << endl;

 return 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

How It Works

If you run this example, it will produce the following output:

This isn't only dull and repetitive, it's also disastrous. It isn't working the way we want at all, and

the only interesting thing about it is why. Evidently, the fact that the second call is for an object
of the derived class CGlassBox is not being taken into account. We can see this from the

incorrect result in the output. The volume of a CGlassBox object should definitely be less than
that of a basic CBox with the same dimensions.

The reason for the incorrect output is that the call of the function Volume() in the function

ShowVolume() is being set once and for all by the compiler as the version defined in the base

class. This is called static resolution of the function call since the function call is fixed before
the program is executed. This is also sometimes called early binding because the particular
Volume() function chosen is bound to the call from the function ShowVolume() during the

compilation of the program.

The function Volume() here in the derived class actually hides the base class version from the

view of derived class functions. If you wanted to call the base version of Volume() from a

derived class function, you would need to use the scope resolution operator to refer to the
function as CBox::Volume() .

What we were hoping for in this example was that the question of which Volume() function call

to use in any given instance would be resolved when the program was executed. This sort of
operation is referred to as dynamic linkage, or late binding. We want the actual version of the
function Volume() called by ShowVolume() to be determined by the kind of object being

processed, and not arbitrarily fixed by the compiler before the program is executed.

No doubt you'll be less than astonished that C++ does, in fact, provide us with a way to do this,
since this whole discussion would have been futile otherwise! We need to use something called
a virtual function.

What's a Virtual Function?

A virtual function is a function in a base class that is declared using the keyword virtual.

Defining in a base class a virtual function that has another version in a derived class signals to
the compiler that we don't want static linkage for this function. What we do want is the selection
of the function to be called at any given point in the program to be based on the kind of object
for which it is called.

Try it Out: - Fixing the CGlassBox

To make our example work as we originally hoped, we just need to add the keyword virtual

to the definitions of the Volume() functions:

 // EX10_07.CPP (based on EX10_06.cpp)

 // Using a virtual function

 #include <iostream>

 using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 class CBox // Base class

 {

 public:

 ...

 // Function to calculate the volume of a CBox object

 virtual double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 ...

 };

 class CGlassBox: public CBox

 {

 public:

 ...

 // Function to calculate volume of a CGIassBox

 // allowing 15% for packing

 virtual double Volume() const

 { return 0.85*m_Length*m_Breadth*m_Height; }

 ...

 };

 int main()

 {

 ...

 }

How It Works

If you run this version of the program with just the little word virtual added to the definitions
of Volume(), it will produce this output:

This is now clearly doing what we wanted in the first place. The first call to the function
ShowVolume() with the CBox object myBox calls the base version of volume(). The second
call with the CGlassBox object myGlassBox calls the version defined in the derived class.

Note that, although we have put the keyword virtual in the derived class definition of the

function Volume(), it's not essential to do so. The definition of the base version of the function
as virtual is sufficient. However, I recommend that you do specify the keyword for virtual

functions in derived classes since it makes it clear to anyone reading the derived class definition
that they are virtual functions and that they will be selected dynamically.

In order for a function to behave as virtual, it must have the same name, parameter list, and
return type in any derived class as the function has in the base class, and if the base class

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

function is const, the derived class function must be too. If you try to use different parameters
or return types, or declare one as const and the other not, the virtual function mechanism won't

work. The function will operate with static linkage established and fixed at compile time.

The operation of virtual functions is an extraordinarily powerful mechanism. You may have
heard the term polymorphism in relation to object-oriented programming, and this refers to the
virtual function capability. Something that is polymorphic can appear in different guises, like a
werewolf, or Dr. Jekyll, or a politician before and after an election for example. Calling a virtual
function will produce different effects depending on the kind of object for which it is being called.

Using Pointers to Class Objects

Using pointers with objects of a base class and of a derived class is a very important technique.
A pointer to a base class object can be assigned the address of a derived class object as well
as that of the base. We can thus use a pointer of the type 'pointer to base' to obtain different
behavior with virtual functions, depending on what kind of object the pointer is pointing to. We
can see how this works more clearly by looking at an example.

Try it Out: - Pointers to Base and Derived Classes

Let's use the same classes as in the previous example, but make a small modification to the
function main() so that it uses a pointer to a base class object.

 // EX10_08.CPP

 // Using a base class pointer to call a virtual function

 #include <iostream>

 using namespace std;

 class CBox // Base class

 {

 public:

 // Function to show the volume of an object

 void ShowVolume() const

 {

 cout << endl

 << "CBox usable volume is " << Volume();

 }

 // Function to calculate the volume of a CBox object

 virtual double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 // Constructor

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)

 :m_Length(lv), m_Breadth(bv),
m_Height(hv) {}

 protected:

 double m_Length;

 double m_Breadth;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 double m_Height;

 };

 class CGlassBox: public CBox // Derived class

 {

 public:

 // Function to calculate volume of a CGlassBox

 // allowing 15% for packing

 virtual double Volume() const

 { return 0.85*m_Length*m_Breadth*m_Height; }

 // Constructor

 CGlassBox(double lv, double bv, double hv): CBox(lv, bv,
hv){}

 };

 int main()

 {

 CBox myBox(2.0, 3.0, 4.0); // Declare a base box

 CGlassBox myGlassBox(2.0, 3.0, 4.0); // Declare derived box of
same size

 CBox* pBox = 0; // Declare a pointer to
base class

 // objects

 pBox = &myBox; // Set pointer to address

of base object

 pBox->ShowVolume(); // Display volume of base
box

 pBox = &myGlassBox; // Set pointer to derived
class object

 pBox->ShowVolume(); // Display volume of
derived box

 cout << endl;

 return 0;

 }

How It Works

The classes are the same as in example Ex10_07.cpp, but the function main() has been
altered to use a pointer to call the function ShowVolume(). Because we are using a pointer, we

use the indirect member selection operator, ->, to call the function. The function
ShowVolume() is called twice, and both calls use the same pointer to base class objects,

pBox. On the first occasion, the pointer contains the address of the base object, myBox, and on

the occasion of the second call, it contains the address of the derived class object,
myGlassBox.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The output produced is as follows:

This is exactly the same as that from the previous example where we used explicit objects in
the function call.

We can conclude from this example that the virtual function mechanism works just as well
through a pointer to a base class, with the specific function being selected based on the type of
object being pointed to. This is illustrated in the following figure.

This means that, even when we don't know the precise type of the object pointed to by a base
class pointer in a program (when a pointer is passed to a function as an argument, for
example), the virtual function mechanism will ensure that the correct function is called. This is
an extraordinarily powerful capability, so make sure you understand it. Polymorphism is a
fundamental mechanism in C++ that you will find yourself using again and again.

Using References With Virtual Functions

If you define a function with a reference to a base class as a parameter, you can pass an object
of a derived class to it as an argument. When your function executes, the appropriate virtual
function for the object passed will be selected automatically. We could show this happening by
modifying the function main() in the last example to call a function that has a reference as a

parameter.

Try it Out: - Using References with Virtual Functions

Let's move the call to ShowVolume() to a separate function, and call that separate function

from main():

 // EX10_09.CPP

 // Using a reference to call a virtual function

 #include <iostream>

 using namespace std;

 class CBox; // Incomplete class definition required for
prototype

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 void Output(const CBox& aBox); // Prototype of function

 // Insert class definitions for CBox and CGlassBox (as in
Ex10_08.cpp)

 int main()

 {

 CBox myBox(2.0, 3.0, 4.0); // Declare a base box

 CGlassBox myGlassBox(2.0, 3.0, 4.0); // Declare derived box of
same size

 Output(myBox); // Output volume of base
class object

 Output(myGlassBox); // Output volume of

derived class object

 cout << endl;

 return 0;

 }

 // Function to output a volume via a virtual function call using a
reference

 void Output(const CBox& aBox)

 {

 aBox.ShowVolume();

 }

How It Works

At the beginning of the program, we have an incomplete definition of the class CBox. This is
included so that the compiler will know of the existence of CBox as a class when it gets to the

prototype of the function Output(). Without this, the prototype would cause an error message
to be generated. We could have put the prototype for Output() after the definition of the CBox

class, but then you wouldn't be reminded about the use of the incomplete class definition.

The function main() now basically consists of two calls of the function Output(), the first with

an object of the base class as an argument and the second with an object of the derived class.
Because the parameter is a reference to the base class, Output() accepts objects of either
class as an argument and the appropriate version of the virtual function Volume() is called,

depending on the object that is initializing the reference.

The program produces exactly the same output as the previous example, demonstrating that
the virtual function mechanism does indeed work through a reference parameter.

Pure Virtual Functions

It's possible that you'd want to include a virtual function in a base class so that it may be
redefined in a derived class to suit the objects of that class, but that there is no meaningful
definition you could give for the function in the base class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

For example, we could conceivably have a class CContainer, which could be used as a base
for defining our CBox class, or a CBottle class, or even a CTeapot class. The CContainer

class wouldn't have data members, but you might want to provide a virtual member function
Volume() for any derived classes. Since the CContainer class has no data members, and

therefore no dimensions, there is no sensible Volume() definition that we can write. We can
still define the class, however, including the member function Volume(), as follows:

 // Listing 10_10-01

 class CContainer // Generic base class for specific
containers

 {

 public:

 // Function for calculating a volume - no content

 // This is defined as a 'pure' virtual function, signified by
'= 0'

 virtual double Volume() const = 0;

 // Function to display a volume

 virtual void ShowVolume() const

 {

 cout << endl

 << "Volume is " << Volume();

 }

 };

The statement for the virtual function Volume() defines it as having no content by placing the

equals sign and zero in the function header. This is called a pure virtual function. Any class
derived from this class must either define the Volume() function or redefine it as a pure virtual

function. Since we have declared Volume() as const, its implementation in any derived class
must also be const. Remember that const and non-const varieties of a function with the

same name and parameter list are different functions. In other words you can overload a
function using const.

The class also contains the function ShowVolume(), which will display the volume of objects of

derived classes. Since this is declared as virtual, it can be replaced in a derived class, but if

it isn't, the base class version that you see here will be called.

Abstract Classes

A class containing a pure virtual function is called an abstract class. It's called abstract
because you can't define objects of a class containing a pure virtual function. It exists only for
the purpose of defining classes which are derived from it. If a class derived from an abstract
class still defines a pure virtual function of the base as pure, it too is an abstract class.

You should not conclude, from the example of the CContainer class above, that an abstract

class can't have data members. An abstract class can have both data members and function
members. The presence of a pure virtual function is the only condition that determines that a
given class is abstract. In the same vein, an abstract class can have more than one pure virtual
function. In this case, a derived class must have definitions for every pure virtual function in its
base, otherwise it too will be an abstract class. If you forget to make the derived class version of
the Volume() function const, then the derived class will still be abstract since it will contain

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the pure virtual Volume() member function that is const, as well as the non-const
Volume() function.

Try it Out: - An Abstract Class

We could implement a CCan class, representing beer or cola cans perhaps, together with our

original CBox class. Both are derived from the CContainer class. The definitions of these two

classes would be as follows:

 // Listing 10_10-02

 class CBox: public CContainer // Derived class

 {

 public:

 // Function to show the volume of an object

 virtual void ShowVolume() const

 {

 cout << endl

 << "CBox usable volume is " << Volume();

 }

 // Function to calculate the volume of a CBox object

 virtual double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 // Constructor

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)

 :m_Length(lv), m_Breadth(bv),
m_Height(hv){}

 protected:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

 // Listing 10_10-03

 class CCan: public CContainer

 {

 public:

 // Function to calculate the volume of a can

 virtual double Volume() const

 { return 0.25*PI*m_Diameter*m_Diameter*m_Height; }

 // Constructor

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CCan(double hv = 4.0, double dv = 2.0): m_Height(hv),
m_Diameter(dv){}

 protected:

 double m_Height;

 double m_Diameter;

 };

The CBox class is essentially as we had it in the previous example, except this time we have

specified that it is derived from the CContainer class. The Volume() function is fully defined

within this class (as it must be if this class is to be used to define objects). The only other option
would be to specify it as a pure virtual function, since it is pure in the base class, but then we
couldn't create CBox objects.

The CCan class also defines a Volume() function based on the formula hπ r
2
, where h is the

height and r is the radius of the cross-section of a can. This is essentially the height multiplied
by the area of the base, to produce the volume. The expression in the function definition
assumes a global constant PI is defined, so we'll need to remember that. You will also notice
that we have redefined the ShowVolume() function in the CBox class, but not in the CCan

class. We will see what effect this has when we get some program output.

We can exercise these classes with the following main() function:

 // EX10_10.CPP

 // Using an abstract class

 #include <iostream> // For stream I/O

 using namespace std;

 const double PI= 3.14159265; // Global definition for PI

 // Insert definition of CContainer class (Listing 10_10-01)

 // Insert definition of CBox class (Listing 10_10-02)

 // Insert definition of CCan class (Listing 10_10-03)

 int main(void)

 {

 // Pointer to abstract base class

 // initialized with address of CBox object

 CContainer* pC1 = new CBox(2.0, 3.0, 4.0);

 // Pointer to abstract base class

 // initialized with address of CCan object

 CContainer* pC2 = new CCan(6.5, 3.0);

 pC1->ShowVolume(); // Output the volumes of the
two

 pC2->ShowVolume(); // objects pointed to

 cout << endl;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 delete pC1; // Now clean up the free
store

 delete pC2; //

 return 0;

 }

How It Works

In this program, we declare two pointers to the base class, CContainer. Although we can't

define CContainer objects (because CContainer is an abstract class), we can still define a
pointer to a CContainer, which we can then use to store the address of a derived class object.

The pointer pC1 is assigned the address of a CBox object created in the free store by the
operator new. The second pointer is assigned the address of a CCan object in a similar manner.

Important

Of course, because the derived class objects were created dynamically,
we need to use the operator delete to clean up the free store when we

have finished with them.

The output produced by this example is as follows:

Because we have defined ShowVolume() in the CBox class, the derived class version is called

for the CBox object. We did not define this function in the CCan class, so the base class version
that the CCan class inherits is invoked for the CCan object. Since Volume() is a virtual function

that is implemented in both derived classes (necessarily, because it is a pure virtual function in
the base class), the call to it is resolved when the program is executed by selecting the version
belonging to the class of the object being pointed to. Thus, for the pointer pC1, the version from

the class CBox is called and, for the pointer pC2, the version in the class CCan is called. In each

case, therefore, we obtain the correct result.

We could equally well have used just one pointer and assigned the address of the CCan object

to it (after calling the Volume() function for the CBox object). A base class pointer can contain

the address of any derived class object, even when several different classes are derived from
the same base class, and so we can have automatic selection of the appropriate virtual function
across a whole range of derived classes. Impressive stuff, isn't it?

Indirect Base Classes

At the beginning of this chapter, we said that one class's base could in turn be derived from

another, 'more' base class. A small extension of the last example will provide us with an
illustration of this, as well as demonstrating the use of a virtual function across a second level of
inheritance.

Try it Out: - More than One Level of Inheritance

All we need to do is add the class CGlassBox to the classes we have from the previous

example. The relationship between the classes we now have is illustrated below.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The class CGlassBox is derived from the CBox class exactly as before, but we will omit the

derived class version of ShowVolume() to show that the base class version still propagates
through the derived classes. With the class hierarchy shown above, the class CContainer is

an indirect base of the class CGlassBox, and a direct base of the classes CBox and CCan.

Our new example, with an updated function main() to use the additional class in the hierarchy,

will be as follows:

 // EX10_11.CPP

 // Using an abstract class with multiple levels of inheritance

 #include <iostream> // For stream I/O

 using namespace std;

 const double PI = 3.14159265; // Global definition
for PI

 class CContainer // Generic base class
for

 { // specific containers

 public:

 // Function for calculating a volume - no content

 // This is defined as a 'pure' virtual function, signified by
'= 0'

 virtual double Volume() const = 0;

 // Function to display a volume

 virtual void ShowVolume() const

 {

 cout << endl

 << "Volume is " << Volume();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 };

 class CBox: public CContainer // Derived class

 {

 public:

 // Function to calculate the volume of a CBox object

 virtual double Volume() const

 { return m_Length*m_Breadth*m_Height; }

 // Constructor

 CBox(double lv = 1.0, double bv = 1.0, double hv = 1.0)

 :m_Length(lv), m_Breadth(bv),
m_Height(hv){}

 protected:

 double m_Length;

 double m_Breadth;

 double m_Height;

 };

 class CCan: public CContainer

 {

 public:

 // Function to calculate the volume of a can

 virtual double Volume() const

 { return 0.25*PI*m_Diameter*m_Diameter*m_Height; }

 // Constructor

 CCan(double hv = 4.0, double dv = 2.0): m_Height(hv),
m_Diameter(dv){}

 protected:

 double m_Height;

 double m_Diameter;

 };

 class CGlassBox: public CBox // Derived class

 {

 public:

 // Function to calculate volume of a CGlassBox

 // allowing 15% for packing

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 virtual double Volume() const

 { return 0.85*m_Length*m_Breadth*m_Height; }

 // Constructor

 CGlassBox(double lv, double bv, double hv): CBox(lv, bv,
hv){}

 };

 int main()

 {

 // Pointer to abstract base class initialized with CBox object
address

 CContainer* pC1 = new CBox(2.0, 3.0, 4.0);

 CCan myCan(6.5, 3.0); // Define CCan object

 CGlassBox myGlassBox(2.0, 3.0, 4.0); // Define CGlassBox
object

 pC1->ShowVolume(); // Output the volume
of CBox

 delete pC1; // Now clean up the
free store

 // initialized with address of CCan object

 pC1 = &myCan; // Put myCan address
in pointer

 pC1->ShowVolume(); // Output the volume
of CCan

 pC1 = &myGlassBox; // Put myGlassBox
address in pointer

 pC1->ShowVolume(); // Output the volume
of CGlassBox

 cout << endl;

 return 0;

 }

How It Works

We have the three-level class hierarchy shown in the previous illustration, with CContainer as
an abstract base class, because it contains the pure virtual function, Volume(). The function

main() now calls the function ShowVolume() three times, using the same pointer to the base

class, but with the pointer containing the address of an object of a different class each time.
Since ShowVolume() is not defined in any of the derived classes we have here, the base class
version is called in each instance. A separate branch from the base CContainer defines the

derived class CCan.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The example produces the output above, showing that we execute the three different versions
of the function Volume() according to the type of object involved.

Important

Note that we need to delete the CBox object from the free store before

we assign another address value to the pointer. If we don't do this, we
wouldn't be able to clean up the free store, because we would have no
record of the original address. This is an easy mistake to make when
reassigning pointers and using the free store.

Virtual Destructors

One problem that arises when dealing with objects of derived classes by using a pointer to the

base class is that the correct destructor may not be called. We can show this effect by modifying
the last example.

Try it Out: - Calling the Wrong Destructor

We just need to add destructors to each of the classes so that we can track which destructor is

called when the objects are destroyed. Therefore, the program would be as follows:

 // EX10_12.CPP

 // Destructor calls with derived classes

 // using objects via a base class pointer

 #include <iostream> // For stream I/O

 using namespace std;

 const double PI = 3.14159265; // Global definition
for PI

 class CContainer // Generic base class

for containers

 {

 public:

 // Destructor

 ~CContainer()

 { cout << "CContainer destructor called" << endl; }

 // Insert other members of CContainer as in EX10_11.CPP

 };

 class CBox: public CContainer // Derived class

 (

 public:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Destructor

 ~CBox()

 { cout << "CBox destructor called" << endl; }

 // Insert other members of CBox as in EX10_11.CPP

 };

 class CCan: public CContainer

 {

 public:

 // Destructor

 ~CCan()

 { cout << "CCan destructor called" << endl; }

 // Insert other members of CCan as in EX10_11.CPP

 };

 class CGlassBox: public CBox // Derived class

 {

 public:

 // Destructor

 ~CGlassBox()

 { cout << "CGlassBox destructor called" << endl; }

 // Insert other members of CGlassBox as in EX10_11.CPP

 };

 int main()

 {

 // Pointer to abstract base class initialized with CBox object
address

 CContainer* pC1 = new CBox(2.0, 3.0, 4.0);

 CCan myCan(6.5, 3.0); // Define CCan object

 CGlassBox myGlassBox(2.0, 3.0, 4.0); // Define CGlassBox
object

 pC1->ShowVolume(); // Output the volume

of CBox

 cout << endl << "Delete CBox" << endl;

 delete pC1; // Now clean up the
free store

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pC1 = new CGlassBox(4.0, 5.0, 6.0); // Create CGlassBox
dynamically

 pC1->ShowVolume(); // ...output its
volume...

 cout << endl << "Delete CGlassBox" << endl;

 delete pC1; // ...and delete it

 pC1 = &myCan; // Get myCan address
in pointer

 pC1->ShowVolume(); // Output the volume

of CCan

 pC1 = &myGlassBox; // Get myGlassBox
address in pointer

 pC1->ShowVolume(); // Output the volume
of CGlassBox

 cout << endl;

 return 0;

 }

How It Works

Apart from adding a destructor to each class, which outputs a message to the effect that it was
called, the only other change is a couple of additions to the function main(). There are

additional statements to create a CGlassBox object dynamically, output its volume and then
delete it. There is also a message displayed to indicate when the dynamically created CBox

object is deleted. The output generated by this example is shown below:

You can see from this that, when we delete the CBox object pointed to by pC1, the destructor
for the base class CContainer is called but there is no call of the CBox destructor recorded.

Similarly, when the CGlassBox object that we added is deleted, again the destructor for the
base class CContainer is called but not the CGlassBox or CBox destructors. For the other

objects, the correct destructor calls occur with the derived class destructor being called first,
followed by the base class destructor. For the first CGlassBox object created in a declaration,

three destructors are called: first, the destructor for the derived class, followed by the direct
base destructor and, finally, the indirect base destructor.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

All the problems are with objects created in the free store. In both cases, the wrong destructor is
called. The reason for this is that the linkage to the destructors is resolved statically, at compile
time. For the automatic objects there is no problem — the compiler knows what they are and
arranges for the correct destructors to be called.

With objects created dynamically and accessed through a pointer, things are different. The only
information that the compiler has when the delete operation is executed is that the pointer

type is a pointer to the base class. The type of object the pointer is actually pointing to is
unknown. The compiler then simply ensures that the delete operation is set up to call the base

class destructor. In a real application, this can cause a lot of problems, with bits of objects left
strewn around the free store and possibly more serious problems, depending on the nature of
the objects involved.

The solution is simple. We need the calls to be resolved dynamically as the program is
executed. We can organize this by using virtual destructors in our classes. As we said when
we first discussed virtual functions, it's sufficient to declare the base class function as virtual to
ensure that all functions in any derived classes with the same name, parameter list and return
type are virtual as well. This applies to destructors just as it does to ordinary member functions.
We need to add the keyword virtual to the definition of the destructor in the class

CContainer, so that it becomes as follows:

 class CContainer // Generic base class for

containers

 {

 public:

 // Destructor

 virtual ~CContainer()

 { cout << "CContainer destructor called" << endl; }

 // Insert other members of CContainer as in Listing 10_10-01

 };

Now the destructors in all the derived classes are automatically virtual, even though you don't
explicitly specify them as such. Of course, you're free to specify them as virtual, if you want the
code to be absolutely clear.

If you rerun the example with this modification, it will produce the following output:

As you can see, all the objects are now destroyed with a proper sequence of destructor calls.
Destroying the dynamic objects produces the same sequence of destructor calls as the
automatic objects of the same type in the program.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The question may arise in your mind at this point, can constructors be declared as virtual? The
answer is no - only destructors and other member functions.

It's a good idea always to declare your base class destructor as virtual as a matter of course

when using inheritance. There is a small overhead in the execution of the class destructors, but
you won't notice it in the majority of circumstances. Using virtual destructors ensures that your
objects will be properly destroyed and avoids potential program crashes that might otherwise
occur.

Multiple Inheritance

This is the last major topic before we get to writing some Windows programs, so we are nearly

finished with C++ language specifics. This discussion is included because you are certain to
become aware of multiple inheritance but, in fact, we don't need to know about it to write
Windows programs using Visual C++, and we won't be using it in any of the examples in the
book. Multiple inheritance can get you into quite deep water, so we'll just outline the basic
considerations here.

All our derived classes so far have had a single direct base class, but we aren't limited to that. In
fact, a derived class can have several base classes; this is referred to as multiple inheritance.
This means, of course, that multiple indirect bases are also possible.

Multiple Base Classes

It's quite difficult to come up with an example of a class with multiple base classes that is based
on relationships in the real world. Defining a class, such as CBox, in terms of the class

CContainer reflects the real-world relationship between a box and a container. A box is a form

of container, so we are defining a more specific object from a more general one. With most real-
world objects, this unidirectional specialization pattern applies. Multiple base classes are often
used in practice for the convenience of implementation rather than to reflect any particular
relationships between objects.

However, we could consider the example of a CPackage, which might be a combination of a

CContainer, or some specialized form of container such as a CBox, together with the
contents of the container defined by a class CContents. We could define the class CPackage

as derived from both the class CBox and the class CContents. This could be represented like

so:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The definition of the class would look like this:

 class CPackage: public CBox, public CContents

 {

 ...

 };

The class CPackage will now inherit all the members of both classes, with the same access

specifiers as appear in the definitions of the base classes, since they are defined as public

base classes. There is no access to members of the base class declared as private, however;
the access limitations for inherited class members, which we discussed earlier in this chapter,
apply equally well to classes with multiple bases.

Things can get a little more complicated now. For example, it's conceivable that both base
classes could have a public member function, Show(), to display the contents of an object. If

so, a statement such as,

 myPackage.Show();

where myPackage is an object of the class CPackage, will be ambiguous, since the class
CPackage contains two members with the same name, Show(), one inherited from each of the

base classes. The compiler has no way of knowing which one should be called, so this will
result in an error message. If you need to call one or the other, you have to use the scope
resolution operator to specify which of the two functions you want to invoke. For example, you
could write this,

 myPackage.CContents::Show();

which makes it quite clear that you want to call the function that is inherited from the class
CContents.

Virtual Base Classes

A further complication can arise with multiple inheritance if the direct base classes are

themselves derived from another class or classes. The possibility arises that both base classes

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

could be derived from a common class. For instance, the classes CContents and CBox, which

we used in the definition of the class package, could be derived from another base called
CRockBottom. Their definitions could then be something like this:

 class CContents: public CRockBottom

 {

 ...

 };

 class CBox: public CRockBottom

 {

 ...

 };

Now the class CPackage will contain two copies of the members of the class CRockBottom,

as illustrated here:

In the class CPackage, we end up with two data members called x, and two function members
Show(). The duplication of the members of the indirect base can at best be confusing, and at

worst it can cause a lot of problems. However, it's easy to avoid by simply modifying the
definitions of the base classes CBox and CContents such that the class CRockBottom is

specified as a virtual base class. Their definitions in outline would then be as follows:

 class CContents: public virtual CRockBottom

 {

 ...

 };

 class CBox: public virtual CRockBottom

 {

 ...

 };

Now there will be only one instance of the members of the base class CRockBottom in any

class derived from these two classes, and any problems with the original definition of the class
CPackage disappear. Specifying the base class as virtual instructs the compiler to make sure

that the data members are not duplicated in a derived class, even where there are multiple
occurrences of the class as an indirect base.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Summary

In this chapter, we've covered all of the principal ideas involved in using inheritance. The
fundamentals that you should keep in mind are these:

§ A derived class inherits all the members of a base class except for constructors, the
destructor and the overloaded assignment operator.

§ Members of a base class which are declared as private in the base class are not

accessible in any derived class. To obtain the effect of the keyword private but allow
access in a derived class, you should use the keyword protected in place of private.

§ A base class can be specified for a derived class with the keyword public,
private, or protected. If none is specified, the default is private. Depending on the

keyword specified for a base, the access level of the inherited members may be modified.
§ If you write a derived class constructor, you must arrange for data members of the base

class to be initialized properly, as well as those of the derived class.
§ A function in a base class may be declared as virtual. This allows other definitions of

the function appearing in derived classes to be selected at execution time, depending on
the type of object for which the function call is made.

§ You should declare the destructor in a base class containing a virtual function as
virtual. This will ensure correct selection of a destructor for dynamically-created derived

class objects.
§ A class may be designated as a friend of another class. In this case, all the function

members of the friend class may access all the members of the other class. If class A is
a friend of B, class B is not a friend of A unless it has been declared as such.

§ A virtual function in a base class can be specified as pure by placing = 0 at the end of

the function declaration. The class will then be an abstract class for which no objects can
be created. In any derived class, all the pure virtual functions must be defined; if not, it too
becomes an abstract class.

§ A class may be derived from multiple base classes, in which case it inherits members
from all of its bases, with the exception of destructors, constructors and overloaded
assignment operator functions.

§ An indirect base class should be specified as virtual for derived classes when using

multiple inheritance, in order to avoid duplicate occurrences of its data members in a class
with multiple bases, two or more of which are derived from the indirect base.

You have now gone through all of the important language features of C++ and it's important that
you feel comfortable with the mechanisms for defining and deriving classes and the process of
inheritance. With the exception of multiple inheritance, Windows programming with Visual C++
will involve extensive use of all these concepts. If you have any doubts, go back over the last
three chapters and try playing around with the source code of the examples related to the areas
that you are unsure about. Just to make sure, the next chapter is devoted to a sizable complete
example using class inheritance. After that, we will be focusing solely on programming for
Windows.

Exercises

1. What's wrong with the following code?

 class CBadClass

 {

 private:

 int len;

 char* p;

 public:

 CBadClass(const char* str): p(str), len(strlen(p)) {}

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CBadClass(){} };

2. Suppose we have a class CBird, as shown below, which we want to use as a base
class for deriving a hierarchy of bird classes:

 class CBird

 {

 protected:

 int wingSpan;

 int eggSize;

 int airspeed;

 int altitude;

 public:

 virtual void fly() { altitude = 100; }

 };

Is it reasonable to create a CHawk by deriving from CBird? How about a COstrich?
Justify your answers. Derive an avian hierarchy which can cope with both of these
birds.

3. Given the following class:

 class CBase

 {

 protected:

 int m_anInt;

 public:

 CBase(int n): m_anInt(n) { cout << "Base constructor\n";
}

 virtual void Print() const = 0;

 };

What sort of class is CBase, and why? Derive a class from CBase which sets its
inherited integer value, m_anInt, when constructed, and prints it on request. Write a
test program to verify that your class is correct.

4. Create two classes CBase_A and CBase_B. CBase_A should contain two public

member functions fA() and fCommon(), while CBase_B contains fB() and
fCommon(). Each of these functions should do nothing but announce that it has

been called. Now create a class CMulti, which inherits publicly from both CBase_A
and CBase_B. Write a test program to demonstrate that CMulti inherits from both

classes. What syntax would you use to call the fCommon() function?

5. Now change the way in which CMulti inherits from its bases from public to
private. Try your test program — how can you make it work as it did before? Can

you think of a use for this technique?

Answers

1. The items in the initialization list will be processed in the 'wrong' order. In other words, len

won't contain the length of the string in p, since len will be initialized before p. Remember
that the members of a class are initialized in the order of their declaration, not in the order
that they appear in the initialization list. For this reason, it's a good idea to ensure that your
initialization lists are in the same order as the declarations.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. COstrich example. We were considering the CBird class:

 class CBird

 {

 protected:

 int wingSpan;

 int airSpeed;

 int altitude;

 public:

 virtual void fly() { altitude = 100; }

 };

It's reasonable to derive a CHawk from this class, but not a COstrich. This is because the
fly() function sets the altitude to 100, and (as we all know) ostriches can't fly. If we were to

derive COstrich from CBird, we'd provide a fly() function which returned 0, and this
might break existing code which relied on the altitude being 100.

A better derivation would be something like this:

 class CAvian

 {

 protected:

 int wingSpan;

 int eggSize;

 };

 class CFlyingBird : public CAvian

 {

 protected:

 int airSpeed;

 int altitude;

 public:

 virtual void fly() { altitude = 100; }

 };

 class CFlightlessBird : public CAvian

 {

 // ...

 };

 class CHawk: public CFlyingBird

 {

 // ...

 };

 class COstrich : public CFlightlessBird

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // ...

 };

Now there's no reason for a user of the bird classes to suppose that an COstrich might be

able to fly, and no need for us to bend the inheritance.

3. Class CBase is an abstract base class, because it contains a pure virtual function. In order to
derive a class from it, we need to provide a Print() method.

 #include <iostream>

 using namespace std;

 class CBase

 {

 protected:

 int m_anInt;

 public:

 CBase (int n) : m_anInt(n) { cout << "Base constructor\n"; }

 virtual void Print() const = 0;

 };

 class CDerived: public CBase

 {

 public:

 CDerived(int n) : CBase(n) {cout << "Derived constructor\n"; }

 void Print() const { cout << "value is " << m_anInt << '\n'; }

 };

 int main()

 {

 CDerived d(3);

 d.Print();

 return 0;

 }

4. Multiple inheritance.

 #include <iostream>

 using namespace std;

 class CBase_A

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 public:

 void fA() const { cout << "This is CBase_A::fA" << endl; }

 void fCommon() const { cout << "This is CBase_A::fCommon" <<
endl; }

 };

 class CBase_B

 {

 public:

 void fB() const { cout << "This is CBase_B::fB" << endl; }

 void fCommon() const { cout << "This is CBase_B::fCommon" <<
endl; }

 };

 class CMulti : public CBase_A, public CBase_B

 {

 };

 int main()

 {

 CMulti t;

 t.fA();

 t.fB();

 t.CBase-A::fCommon()

 return 0;

 }

5. Changing the inheritance access level. The program doesn't work as it did before, because
the functions that CMulti inherited from its base classes are no longer public in CMulti.

In order to get at them, you'll have to provide public access functions in CMulti, as shown
in the code below.

 #include <iostream>

 using namespace std;

 class CBase_A

 {

 public:

 void fA() const { cout << "This is CBase_A::fA" << endl; }

 void fCommon() const { cout << "This is CBase_A::fCommon" <<
endl; }

 };

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 class CBase_B

 {

 public:

 void fB() const { cout << "This is CBase_B::fB" << endl; }

 void fCommon() const { cout << "This is CBase_B::fCommon" <<
endl; }

 };

 class CMulti : private CBase_A, private CBase_B

 {

 public

 void call_fA() const { fA(); }

 void call_fB() const { fB(); }

 void call_fCommon() const { CBase_A::fCommon(); }

 };

 int main()

 {

 CMulti t;

 t.call_fA();

 t.call_fB();

 t.call_fCommon();

 return 0;

 }

You might use this to provide a 'firewall' class. For instance, if you've created a hierarchy of
classes, you might only want the class user to have access to the functions provided by
certain 'interface' classes, and not to the functions provided by their base classes. Private
inheritance will prevent use of inherited functionality, both directly and in further derived
classes.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 11: An Example using Classes

In this chapter, we're going to develop an application using a class-based approach to
programming. This will provide you with some insight into how to approach a problem from an
object-oriented point of view. The example we'll use is that of a calculator like the one we
developed in Chapter 6, but this time we're going to build it from an object-oriented perspective.

Although this isn't a perfect candidate for an object-oriented program, having two versions of the
calculator will give you a feel for the differences in approach to program design. You'll also see
how an object-oriented program looks in comparison to the same problem developed in a
traditional way. Our implementation here isn't necessarily ideal, since the objective is to
exercise the techniques that we've learnt in the previous chapters in a practical context. It is,
however, reasonably efficient and you can get some additional practice by trying out your own
ideas on how it should work or by adding functionality to it.

Using Classes

Before we can begin creating our calculator program, we need to decide what objects our
problem is concerned with and how they need to behave. Based on that, we'll decide what
classes to define to implement the calculator and what operations they'll need to support. Before
we get to that stage, however, and well before we get into coding at all, we need to make sure
that we have a clear understanding of the problem.

Defining the Problem

We'll aim to create a calculator with the same capabilities as our previous version. It should
handle any arithmetic expression involving the operators *, /, + and -, and also allow

parentheses to any depth. The only limitation on the complexity of an expression will be that it
must be entered on a single input line. Numerical values can be entered with or without a
decimal point. A typical expression which the calculator should handle might be:

 3.5*(2.45*7.1 - 4.7/1.25)*(3+1.5*(8.2-7*125/88.9)/5.7)

Spaces can appear anywhere in an expression, and an expression is terminated by pressing
the Enter key.

We'll also make sure that the calculator will act like a real calculator in that, once a result has
been computed, it is retained in the display. When one value has been calculated and
displayed, we can then just enter,

 *3

for example, to multiply it by 3.

Solely for the sake of brevity, we'll also assume that the expressions entered are well formed,
so we won't do any error checking. It's not that it's difficult, but it does tend to inflate the number
of lines of source code, and we'll have quite a few anyway.

Leaving out error checking is the last thing you would do in a real application. Dealing with error
conditions is as important as the rest of the program code.

Analyzing the Problem

Deciding what objects and classes suit a particular problem isn't a clear-cut process; there are
no hard and fast rules. Indeed, for many problems, there may be a number of alternative object
sets possible, each with their own advantages and disadvantages. However, we can set down
some general points about the process which might help:
§ You're not only looking for objects and classes, but also for relationships between them.

Representing class and object relationships in a diagram can be very helpful.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ Approach the problem top-down. Decide what candidates there are for the objects the
problem is concerned with and then break these down into their constituents.

§ You can define the outlines of classes as you go along, but you need to be prepared to
go back and modify existing classes from time to time, as getting to a final set of classes
will often be an iterative process.

§ Remember that classes will not all be representative of physical objects. You may find
that quite abstract ideas can be conveniently expressed as a class. Sometimes, the most
difficult thing to do is to start. Don't worry about making mistakes. Get some initial ideas
down, even if you know they are not quite right. It will give you something to modify and
improve.

§ You may find it helpful, as a first pass, to describe the problem and its solution by
writing down sentences. You'll often find that the nouns can give you a guide to the classes
needed, while the verbs help define the functionality required from the classes.

When you use this approach, you may need to alter your thinking slightly. For example, our
particular problem is not so much to perform calculations, but more to model a calculating
machine that will perform calculations for us.

Let's begin by modeling our classes on a real calculator. Using a top-down approach, we might
start by breaking a calculator into its constituent parts. The most obvious of these are a
keyboard for input, a logic unit for processing the input and a display for outputting the results of
the calculation. The logic unit will undoubtedly need to use registers, and it will process
operations of the kind supported by the calculator. Let's consider these as the initial set of things
we need to deal with in our problem. It may not turn out to be the final set, or even that all these
are included, but they constitute a reasonable base that we should be able to evolve into
something more solid. As mentioned above, developing an application is often an iterative
process.

Here you can see a diagram representing our initial thoughts. The blocks represent the main

elements of a calculator. Most of them will certainly translate into classes. We can envisage a
CCalculator class for the whole thing, a CKeyboard class, a CDisplay class and a

CLogicUnit class. 'Operations' doesn't seem a likely candidate for a class at the moment, as

those sound like actions rather than physical things, but we can't really be certain at this point
so let's wait and see. 'Registers' does look like a good prospect for a CRegister class, though.

The solid arrows in the diagram indicate an ownership relationship modeled on the real world. A
calculator has a keyboard, a logic unit and a display, so we'll give our CCalculator class a
member of type CKeyboard, one of type CLogicUnit and one of type CDisplay. The dashed

arrows indicate a communications requirement, so objects of type CKeyboard will need to pass
information to objects of type CLogicUnit, which in turn will need to communicate with

CDisplay objects. We'll see how we might take account of this when we get into the detail of

the classes.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Deciding Between Class Membership and Class Inheritance

Getting your classes defined with the proper relationships, and deciding when to define classes
in an inheritance hierarchy, rather than using class members to create an ownership hierarchy,
is of fundamental importance to good object-oriented programs. Unfortunately, this is not always
easy and there are no hard and fast rules which will guarantee the desired result. However, we
can identify some general guidelines that will help in many cases.

Generally, you should try to reflect the intent of the relationship between a base class and a
derived class. A derived class usually represents an object that is a form of the object described
by the base class so that, in deriving one class from another, you're going from the general to
the particular. In our example, a calculator isn't a type of logic unit, a type of keyboard, or even a
type of display, but rather has these things as components, so class derivation isn't appropriate.

Usually, if you can say that one object is a version of another, as a chicken is a type of bird, for
example, you have a situation where deriving one class from another is appropriate. You could
derive a class CChicken from a base class CBird. An object of class CChicken, Chukkie,

for example, would then be a particular instance of a chicken. You might want to differentiate
between birds that can fly, such as owls and eagles, and ones that can't, such as ostriches or
penguins. In this case, you could derive two classes, CFlyingBird and CNonFlyingBird,
from the more general class CBird, and then derive classes for types of birds from either of

these, depending on whether they can fly or not. Objects of each derived class then represent a
subset of the objects represented by the base class.

Where an object has another object as a component, as with a chicken having wings, for
example, you have a situation where defining objects as members of another class is
appropriate. So, a CChicken class might contain the member variables m_LeftWing and
m_RightWing of class CWing, for example.

This can be summarized by using the 'is a' versus 'has a' test:
§ A chicken is a bird, so it's reasonable to derive CChicken from the base class CBird

§ A chicken has a wing, so it makes sense for CChicken to have a member of type
CWing (and even more sense for it to have two!)

The 'is a' versus 'has a' test is quite a good way of deciding which way you should go in defining
your classes, particularly when you're starting out with C++. However, it's not a universal or a
cast iron method. Sometimes you may need to derive a class from more than one base class,
particularly when you're dealing with abstract and complex objects that don't have the simple
physical reality of birds. Experience is probably the single most important factor in enhancing
your ability to design effective classes in such circumstances.

Let the Coding Commence

It's time to get ourselves into a position where we can actually enter some code, so start a new
project workspace for a console application called Ex11_01, and we can begin.

We'll be storing the definition of each of our classes in a .h file, and the implementation of each

class in a .cpp file. Remember that in general we add the .cpp file to the project and then
incorporate the .h files into the program by using #include directives in the .cpp files as

necessary. This approach isn't as simple as it sounds with complicated projects, because the
sequence of the #include directives can affect whether your project compiles successfully.

Where a .h file refers directly to another class, you can #include the .h file for the class

required. This can reduce the number of errors arising from class definitions being omitted or
#include directives being in the wrong sequence, but it can bring problems of its own. By
putting #include directives in .h files, you can very easily have two .h files that include each

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

other, and this can cause compilation to fail. It's important that you keep clear in your mind
what's being included where in your project if you want to avoid these problems. On balance,
the best strategy for keeping your #include operations and your files straight involves doing

three things:
§ Always put an incomplete class declaration in your .h files for each class that's

referenced within the class definition in the .h file

§ Always use the OneTimeInclude macro with your header files that you create yourself to
get protection against multiple copies of the header being included in a source file. (The
macro adds an #ifndef/#endif combination of preprocessor directives that guarantees

that the contents of the header will only appear once in a source file. Note that ClassWizard
provides this in .h files automatically.

§ Always put your #include directives in the .cpp files in a sequence which ensures

that each class definition that's included is preceded by the .h files for any dependent

classes; these will be the classes for which you added incomplete class declarations

We'll be developing the code for our application incrementally, so for much of the time the
project files will be incomplete. We can create the outline code for a class and its
implementation as soon as we have a sufficiently clear view of how it's going to work, and then
extend and modify it as we go along. We'll also look at the question of what to include in a file
as the project progresses.

Defining the CCalculator Class

One kind of object that we definitely need is a calculator object, so CCalculator will be the

first class that we will define. Add this class to the project by selecting the menu item Insert | New
Class..., and entering the class name in the dialog as shown here.

When you click on the OK button, a new source file containing the skeleton class definition will
be created and saved in the project directory as Calculator.h. You'll also get

Calculator.cpp created and saved in the same directory, and automatically added to the

project. You can see that both of these are there if you switch to FileView by clicking on the tab.
You can see the contents of Calculator.h if you double click on the filename:

 // Calculator.h: interface for the CCalculator class.

 //

//

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #if
!deflned(AFX_CALCULATOR_H__FA599AA3_17DF_11D2_B731_BD7D79977406__INCLU
DED_)

 #define
AFX_CALCULATOR_H__FA599AA3_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CCalculator

 {

 public:

 CCalculator();

 virtual ~CCalculator();

 };

 #endif //

!defined(AFX_CALCULATOR_H__FA599AA3_17DF_11D2_B731_BD7D79977406__INCLU
DED_)

You can see that we've been provided with a comment describing the function of the file and a
definition for the CCalculator class that includes a constructor and the destructor. The

preprocessor commands surrounding the code (the lines beginning with #) will ensure that we

don't include duplicate definitions of this class; we saw these directives in action back in
Chapter 9. The destructor has been declared as virtual to cover the possibility that we might

use this as a base class. You will recall that if a base class does not have its destructor
declared as virtual, derived class objects may not be destroyed properly.

Double click on the filename Calculator.cpp to take a look at the contents of that:

 // Calculator.cpp: implementation of the CCalculator class.

 //

///

 #include "Calculator.h"

///

 // Construction/Destruction

///

 CCalculator::CCalculator()

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 CCalculator::~CCalculator()

 {

 }

Here we have a ready-made .cpp file for the class already in the project. It contains a comment
describing the function of the file, an #include statement for the class's header file, and

skeleton definitions for a destructor and the constructor. With the class definition in a .h file and
the definitions of the member functions in a .cpp file, we can make a clear separation between

the definition of the class and its implementation.

The class members specified as public within the .h file form the class interface. The

members not declared as public will comprise encapsulated data members of the class and

functions that are internal to the class's implementation, and therefore not for public
consumption. The .cpp file will contain the definitions of the function members of the class that

aren't defined within the class itself. Usually, only the function members that you want to make
inline are defined within the class. All the rest go in the .cpp file. Remember that functions you

explicitly declare as inline must have their definitions in the .h file if you are to avoid linker

errors.

Communicating Between Classes

Now we need to give a little more thought to the structure of the CCalculator class and how

we might use objects created from it. As shown in our diagram, a real calculator can be thought
of as containing a logic unit to perform individual calculations and control what goes on, a
keyboard for input, and a display to show results. We could implement our model from this
perspective, but there's something else we need to consider. The logic unit, the display and the
keyboard objects need to communicate with one another. We need to devise a way in which
information can be passed between the objects that the CCalculator owns.

One way in which we can do this is to use the CCalculator object itself as the link between

the objects it owns. We can store pointers to the objects that are the main components of the
calculator, and then create the objects dynamically in the calculator class constructor.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This will allow us to pass to the display, logic unit, and keyboard objects a pointer to the parent

calculator, when these objects are created. Any of the objects can then obtain a pointer to any
of the other objects through member functions of the CCalculator class. To implement this,

we'll need three member variables in the CCalculator class:

§ m_pDisplay — a pointer to an object of class CDisplay

§ m_pLogicUnit — a pointer to an object of class CLogicUnit

§ m_pKeyboard — a pointer to an object of class CKeyboard.

Adding Data Members to CCalculator

We'll add these variables using the context menu for CCalculator provided by the ClassView,

so right-click on the class icon for CCalculator in the ClassView: . This will bring up a
menu with many useful options relating to classes. You can ignore most of these for now; just
select Add Member Variable... from the menu.

This will bring up the Add Member Variable dialog, which allows you to add variables to your
classes easily. Start by adding the variable m_pDisplay by setting the dialog options as you

see below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Note that you should set the Access for this variable to private by selecting the Private option,

since it won't need to be accessible from outside the CCalculator class. Now repeat the
process to add the pointer variables m_pLogicUnit and m_pKeyboard, both of which should

also be specified as private. You'll be able to see the fruits of your labor if you expand the
view of the CCalculator class in ClassView. Double-clicking on any of the icons for the

member variables will take you to the corresponding declaration for the variable in
Calculator.h.

Since we've added member variables of other classes, we need to ensure that the compiler is

aware of those classes when it processes this class definition. We can do this by adding an
incomplete class declaration for each of the classes we reference in Calculator.h. So,

double-click on the CCalculator class name in ClassView and modify the .h file as follows:

 // Calculator.h: interface for the CCalculator class.

 //

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

///

 #if
!defined(AFX_CALCULATOR_H__FA599AA3_17DF_11D2_B731_BD7D79977406__INCLU
DED_)

 #define

AFX_CALCULATOR_H__FA599AA3_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CDisplay;

 class CLogicUnit;

 class CKeyboard;

 class CCalculator

 {

 public:

 CCalculator();

 virtual ~CCalculator();

 private:

 CKeyboard* m_pKeyboard;

 CLogicUnit* m_pLogicUnit;

 CDisplay* m_pDisplay;

 };

 #endif //

!defined(AFX_CALCULATOR_H__FA599AA3_17DF_11D2_B731_BD7D79977406__INCLU
DED_)

You don't get any comments with the Add Member Variable dialog; if you want some you must
add them yourself. We've decided that our CCalculator class will own a CKeyboard object, a

CLogicUnit object, and a CDisplay object, and we'll create these in the class constructor.

You can switch to the definition of the constructor in Calculator.cpp by clicking on the +
adjacent to the CCalculator class name in ClassView, and then double-clicking the

constructor name in the extended tree. We also need to add the #include directives to
Calculator.cpp for the classes that are referenced in the definition of the CCalculator

class. Since CCalculator depends on these classes, we should add the includes before the
existing #include directive for Calculator.h. With the definition of the constructor and the

#include directives added, Calculator.cpp will contain:

 // Calculator.cpp: implementation of the CCalculator class.

 //

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //

 #include "Keyboard.h"

 #include "LogicUnit.h"

 #include "Display.h"

 #include "Calculator.h"

 //

 // Construction/Destruction

 //

 CCalculator::CCalculator()

 {

 m_pDisplay = new CDisplay(this); // Create the display

 m_pLogicUnit = new CLogicUnit(this); // Create the logic
unit

 m_pKeyboard = new CKeyboard(this); // Create the keyboard

 }

 CCalculator::~CCalculator()

 {

 }

Here we call the constructors for the CDisplay, CLogicUnit and CKeyboard classes, and

pass the this pointer to each of them. The this pointer points to the current object, which will
be the CCalculator object that is being constructed.

Since we're allocating memory dynamically here, it would be a good time to make sure we
delete it properly when we've finished with it, so add the following to the definition of the
destructor:

 CCalculator::~CCalculator()

 {

 // Free up memory allocated in the constructor

 delete m_pDisplay;

 delete m_pLogicUnit;

 delete m_pKeyboard;

 }

Note that it's not necessary to test for a null pointer before using the delete operator. Applying
the delete operator to a null pointer is always harmless. This is perhaps the only situation in

C++ where you don't need to worry about the possibility of a pointer being null.

Outlining the CDisplay, CKeyboard, and CLogicUnit Classes

Because of our assumptions about the implementation of the CCalculator class, we know

that the display, keyboard and logic unit implementation classes must each have a data

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

member to store the pointer to the parent calculator object, and a constructor that accepts such
a pointer value as a parameter.

Add the CLogicUnit class in the same way as you added the CCalculator class. You can

then add a constructor to the class by right-clicking the class name in ClassView, selecting Add
Member Function... from the pop-up, and completing the dialog as shown:

This will add a constructor that accepts a pointer to a CCalculator object as an argument. We

omit the Function Type: entry here altogether — it's an error to specify a return type for a
constructor.

We can also add a data member to the class to store the pointer. Right click on the
CLogicUnit class name in ClassView and select Add Member Variable... from the pop-up. You

can then complete the dialog as shown:

Here we're declaring the member m_pCalc as type 'pointer to CCalculator', and it's
specified private as data members normally should be.

Since we've added our own constructor, and we don't really want the default constructor to be

used to create objects, we should delete the default constructor from the class definition. We
also need to delete its definition in the LogicUnit.cpp file. While we're about it we can also

add some comments to document the code a little. We can introduce the CCalculator class
name with an incomplete declaration in the header file. Modify the definition of CLogicUnit to:

 // LogicUnit.h: interface for the CLogicUnit class.

 //

///

 #if
!defined(AFX_LOGICUNIT_H__FA599AA6_17DF_11D2_B731_BD7D79977406__INCLUD
ED_)

 #define
AFX_LOGICUNIT_H__FA599AA6_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #pragma once

 #endif // _MSC_VER > 1000

 class CCalculator;

 class CLogicUnit

 {

 public:

 // Default constructor declaration deleted

 CLogicUnit(CCalculator* PCalc); // Constructor

 virtual ~CLogicUnit();

 private:

 CCalculator* m_pCalc; // Pointer to the parent
calculator

 };

 #endif //

!defined(AFX_LOGICUNIT_H__FA599AA6_17DF_11D2_B731_BD7D79977406__INCLUD
ED_)

Here we have defined our constructor with a pointer to a CCalculator object as a parameter.
The private data member m_pCalc will store the pointer to the parent calculator for use in the

member functions of the class. By removing the default constructor, we prevent its use since the
compiler will not supply it if we have defined our own constructor. Now if you forget the pointer
argument when calling our new constructor, you will get an error message from the compiler.
We've also added an incomplete declaration for the CCalculator class.

You can now update the LogicUnit.cpp file with the implementation of the new constructor,
plus the #include directive for Calculator.h. Remember that the CCalculator definition

also involves CDisplay and CKeyboard, so we need to add includes for those files too:

 // LogicUnit.cpp: implementation of the CLogicUnit class.

 //

//
///////

 #include "Calculator.h"

 #include "Display.h"

 #include "Keyboard.h"

 #include "LogicUnit.h"

//
////

 // Construction/Destruction

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

//
////

 // Default constructor definition deleted

 CLogicUnit::~CLogicUnit()

 {

 }

 CLogicUnit::CLogicUnit(CCalculator* pCalc): m_pCalc(pCalc)

 {

 }

All we have at the moment is the constructor, which stores the pointer to the parent calculator,
but you can be sure that we'll be adding a lot more member functions as we develop our
calculator model.

We can add the CDisplay class to the project and update the Display.h file similarly to the
CLogicUnit class:

 // Display.h: interface for the CDisplay class.

 //

//

 #if
!defined(AFX_DISPLAY_H__FA599AA7_17DF_11D2_B731_BD7D79977406__INCLUDED
_)

 #define

AFX_DISPLAY_H__FA599AA7_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CCalculator;

 class CDisplay

 {

 public:

 // Default constructor declaration deleted

 CDisplay(CCalculator* pCalc); // Constructor

 virtual ~CDisplay();

 private:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CCalculator* m_pCalc; // Pointer to the parent
calculator

 };

 #endif //
!defined(AFX_DISPLAY_H__FA599AA7_17DF_11D2_B731_BD7D79977406__INCLUDED
_)

You should then amend the Display.cpp file so that it contains:

 // Display.cpp: implementation of the CDisplay class.

 //

 ///

 #include "Calculator.h"

 #include "Keyboard.h"

 #include "LogicUnit.h"

 #include "Display.h"

//
//////

 // Construction/Destruction

//
//////

 // Default constructor definition dleted

 CDisplay::~CDisplay()

 {

 }

 CDisplay::CDisplay(CCalculator* pCalc): m_pCalc(pCalc)

 {

 }

When you've saved this file you can add the CKeyboard class, which will be virtually identical

to the other two at this stage. The .h file should end up as:

 // Keyboard.h: interface for the CKeyboard class.

 //

//

 #if
!defined(AFX_KEYBOARD_H__FA599AA8_17DF_11D2_B731_BD7D79977406__INCLUDE
D_)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #define
AFX_KEYBOARD_H__FA599AA8_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CCalculator;

 class CKeyboard

 {

 public:

 // Default constructor declaration deleted

 CKeyboard(CCalculator* pCalc);

 virtual ~CKeyboard();

 private:

 CCalculator* m_pCalc; // Pointer to the parent Calculator

 };

 #endif //

!defined(AFX_KEYBOARD_H__FA599AA8_17DF_11D2_B731_BD7D79977406__INCLUDE
D_)

and Keyboard.cpp:

 // Keyboard.cpp: implementation of the CKeyboard class.

 //

//

 #include "Calculator.h"

 #include "Display.h"

 #include "LogicUnit.h"

 #include "Keyboard.h"

//

 // Construction/Destruction

//

 // Default constructor definition deleted

 CKeyboard::~CKeyboard()

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 CKeyboard::CKeyboard(CCalculator* pCalc):m_pCalc(pCalc)

 {

 }

All the constructors in these classes are very short, so you could equally well have included
their definitions within the class definitions; they would then be inline functions.

We now have a stake in the ground for the objects that make up the calculator, but we need to
come back to the CCalculator class to deal with a very important aspect of its definition.

Making the CCalculator Class Safe to Use

We have created the three objects owned by the CCalculator object on the free store. We've

also added code to the class destructor to make sure they are deleted properly when a
CCalculator object is destroyed. Without this, the memory allocated would not be released

when a CCalculator object is destroyed and we would have a memory leak. However, this

isn't enough to ensure our class is safe to use.

We need to recall our golden rules for classes that allocate memory dynamically. We've
implemented the destructor, but we must also implement a copy constructor and the
assignment operator. We can't afford to allow the possibility of the default versions that the
compiler will supply being used, so we should add them now to make sure our class will be
safe. Since we don't anticipate needing them, we can just add them as private members of the
class. Then there is no possibility of them being called from outside the class, and we don't
have to worry about implementing them.

We can add the copy constructor by right-clicking the class name in ClassView, selecting Add
Member Function... again, and entering the declaration as CCalculator(const
CCalculator& rCalculator). You should make sure the Private radio button is checked.

We can add the assignment operator function to the class in the same way as we did the copy

constructor, selecting Private as the Access option:

We don't need to add the implementation since it can no longer be used outside of the class. If

you've used ClassWizard to add the operator funtion you will need to delete the implementation
as it is added automatically.

What we need now is a feel for what the internal operations are. In other words, how exactly is
our calculator going to work? We could start by thinking about how to start the calculator.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Starting the Calculator

Execution of our program is going to start in the function main(), where two things will need to

happen. A calculator must be created, and once created it will need to be switched on. So,
main() will need to create a CCalculator object, and then call a function member of the

object to start it going. We could call this function member Run() because it runs the calculator.
Add a C++ source file to the project with the name Ex11_01 that will contain main(). The

function main() is going to consist of at least:

 // EX11_01.CPP - the main() function

 #include "Calculator.h"

 int main()

 {

 CCalculator myCalculator; // Create a calculator

 myCalculator.Run(); // ...then run it

 return 0;

 }

For the moment at least we'll assume that everything else that needs to be done in the
calculator program will be handled within the function members of our classes.

The Run() function in the CCalculator class that start things off will need to signal the

keyboard to start the input process, but we can't say much more about it at this point. We can
add the Run() function to the class definition, though: just use the Wizard Bar to do it. The

class definition will then be:

 class CCalculator

 {

 public:

 void Run() const;

 CCalculator();

 virtual ~CCalculator();

 private:

 CCalculator(const CCalculator& rCalculator);

 CCalculator& operator=(const CCalculator& rhs);

 CKeyboard* m_pKeyboard;

 CLogicUnit* m_pLogicUnit;

 CDisplay* m_pDisplay;

};

The Run() function is public, of course, so we need to specify it as such. We can't define the

detail of the implementation of Run() yet, but we have a skeleton definition in the .cpp file. We

may well have to modify its arguments or its return type when we are a little clearer on how it
will work. Before we can make progress on that, we need to understand more about what
happens in the other classes, so let's start by digging a little into how the keyboard will work.

Calculator Input

The most obvious thing the keyboard object will do is read input from the keyboard of your
computer. Since the calculator is supposed to respond to the usual calculator keys, the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

CKeyboard object will need to identify and respond to these appropriately. The keys that need

to be recognized are shown in the table below:

Purpose Keys

For numerical values: digits 0 to 9, and a decimal point

For operations: the operators + - * /

For sub-expressions: left and right parentheses

For end of input: Enter key

To clear the calculator: The letters C or c

To quit the calculator: The letters Q or q

So what is an appropriate response? As the logic unit has overall responsibility for the operation
of the calculator, the CKeyboard object will need to send a message to the CLogicUnit

object indicating which key has been pressed.

We can handle this by having a function in the CKeyboard class that gets called by the Run()

function that starts the calculator. We can call this function GetKey(), on the basis that it will

get input from the keyboard one key press at a time. As well as reading input from the
keyboard, this function will need to signal the logic unit each time a legal calculator key is
pressed. The logic unit will then process each key entry appropriately.

We can deduce a couple of things relevant to the internals of our classes from this. The
CLogicUnit object must have a set of function members to receive the signals from the
CKeyboard object when different kinds of keys are pressed, and the CKeyboard object will

need to know about the CLogicUnit object that's owned by the CCalculator object.

Linking the Keyboard to the Logic Unit

Since we pass a pointer to the parent calculator to the keyboard object when it is created, we
just need a function in the CCalculator class that will return a pointer to the CLogicUnit
object. We can call this function GetLogicUnit(). Right-click on the CCalculator class

name in ClassView and select Add Member Function... from the context menu again. Complete
the dialog as shown here:

The return type is 'pointer to CLogicUnit' and no parameters are necessary. Of course, it

needs to have public access. We also should declare it as const as it doesn't change

anything. When you select the OK button you will be able to complete the code for the
implementation of the function:

 CLogicUnit* CCalculator::GetLogicUnit() const

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return m_pLogicUnit; // Return pointer to the
logic unit

 }

There's not a lot to it — it just returns the address stored in the m_pLogicUnit member. We

can use this in the CKeyboard function that will handle input for the calculator.

Handling Keyboard Input

Add the GetKey() function to the CKeyboard class using the context menu in ClassView. You

can specify a void return type and an empty parameter list for the moment, and the function
should have public access. Since it won't change any data members of CKeyboard, you can

declare it as const. We know what keys the keyboard is supposed to deal with, and that for
each kind of key press detected, the GetKey() function will need to send a message to the

CLogicUnit class.

Here, you can see the relationship between the classes:

We can assume that the CLogicUnit class will have a member function designed to process
each of the possible kinds of input. The GetKey() function will need to read one character at a

time and send a message to the logic unit appropriate to that character; we can store the
character read in a variable chKey. We'll continue reading characters in a loop until 'q' or 'Q'
is entered, so we'll use a flag variable bExit to control when to end the loop. On this basis, we

can implement GetKey() as:

 // Keyboard manager function

 void CKeyboard::GetKey() const

 {

 // Get a pointer to the logic unit

 CLogicUnit* pLogicUnit = m_pCalc->GetLogicUnit();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 char chKey = 0; // Key press stored here

 bool bExit = false; // Flag to end calculator
operation

 while(!bExit) // Get key presses until there's

 { // a reason not to...

 chKey = cin.get(); // Get a key depression

 switch (chKey) // Test key press

 {

 case '': // For blank...

 break; // ...do nothing

 case '0': case '1': case '2': case '3': case '4':

 case '5': case '6': case '7': case '8': case '9':

 // For any digit send numeric value of digit to the
logic unit

 pLogicUnit->OnDigit(chKey - '0');

 break;

 case '.' :

 // Send decimal point to the logic unit

 pLogicUnit->OnDecimalPoint();

 break;

 case '(': // Left
parenthesis

 pLogicUnit->OnLeftParenthesis();

 break;

 case ')': // Right

parenthesis

 pLogicUnit->OnRightParenthesis();

 break;

 case '*':

 pLogicUnit->OnMultiply(); // Send a multiply
message

 break;

 case '/':

 pLogicUnit->OnDivide(); // Send a divide
message

 break;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 case '+':

 pLogicUnit->OnAdd(); // Send an add
message

 break;

 case '-' :

 pLogicUnit->OnSubtract(); // Send a subtract
message

 break;

 case 'Q': case 'q': // Quit key
pressed

 bExit = true; // So set flag to

exit

 break;

 case 'c': case 'C': // Clear key
pressed

 pLogicUnit->Reset(); // so reset the
logic unit

 break;

 case '\n': // Enter key
pressed

 pLogicUnit->OnEnter(); // Send Enter
message

 break;

 default: // Wrong key

pressed

 bExit = true; // so set flag to
exit

 }

 }

 return;

 }

This looks like a lot of code, but it's actually very simple. The whole thing is a while loop
containing a big switch. The loop will continue until a 'Q' or 'q' is entered to quit the

calculator. The first line of the while loop,

 chKey = cin.get(); // Get a key depression

extracts a single character from the input stream and stores it in the variable chKey. Within the
while loop, the switch statement analyses this character and calls a corresponding function

member of the logic unit object, using the address that we store locally in pLogicUnit for that

purpose.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

When a legal key is pressed, the appropriate case statements are executed, we break out of
the switch statement, and go to another cycle of the while loop. Each of the cases simply

calls the relevant function of the CLogicUnit class, which will then do the real processing. If

the character read is a space, it's ignored and another character is read. For any digit key that's
pressed, the numeric value (not the ASCII value) is passed to the OnDigit() function of the
CLogicUnit object. We get the numeric value by subtracting the ASCII value of zero from the

digit character. A decimal point causes the OnDecimalPoint() function to be invoked. We call

a separate function for each arithmetic operation key that's pressed, and we also call separate
functions for left and right parentheses. If 'C' or 'c' is entered, then we want to clear the
calculator by calling the Reset() function.

When 'Q' or 'q' is entered, we set bExit to true to end the loop and return from the

function. Remember that the GetKey() function is called from the Run() member function of
CCalculator, which in turn is called from main(), so returning from GetKey() will eventually

get back to main() and the program will end. We will reach the default case in the switch if
any key other than the keys we recognize is pressed. For the moment we just set bExit to

true so that the loop terminates and the function returns as if the quit key was pressed, but we

will come back and look at this again later.

You need to add an #include directive to the top of the file,

 #include <iostream>

and the using directive:

 using namespace std;

This is to get access to the input capability we need in the function. We could dispense with the
using directive if we wrote the statement to read a character as:

 chKey = std::cin.get(); // Get a key depression

So that we don't forget it, we can add a statement to the definition of Run() in

Calculator.cpp to call GetKey():

 void CCalculator::Run()const

 {

 m_pKeyboard->GetKey(); // Start keyboard input

 }

This uses the pointer to the CKeyboard object to call its GetKey() member.

Implementing the Logic Unit

From our efforts with the GetKey() member of CKeyboard, we have established quite a lot of
the functionality required in CLogicUnit. You can add all the functions we assumed to be

available in CLogicUnit when we wrote the GetKey() function. The class definition will then

be:

 class CLogicUnit

 {

 public:

 // Process messages from the keyboard

 void Reset();

 void OnEnter();

 void OnAdd();

 void OnSubtract();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 void OnDivide();

 void OnMultiply();

 void OnDecimalPoint();

 void OnDigit(const int &digit);

 void OnLeftParenthesis();

 void OnRightParenthesis();

 CLogicUnit(CCalculator* pCalc); // Constructor

 virtual ~CLogicUnit(); // Destructor

 private:

 CCalculator* m_pCalc; // Pointer to the parent
Calculator

 };

You can either add these functions by using the context menu for CLogicUnit, or by using the

down arrow on the Wizard Bar. Either method will also add skeleton definitions for the functions
to the .cpp file. The OnDigit() function is the only one here that requires an argument — this

will communicate the digit that was entered.

Remember to add comments to your code to help you understand the code at a later date,
particularly when you use ClassView's context menus or the Wizard Bar to add members, as it's
easy to forget them when using these mechanisms.

Logic Unit Registers

We're obviously going to need somewhere to store values as they are passed to the logic unit,

so that means we need some member variables for the class. In order to maintain
correspondence with our conceptual model of a calculator, we won't implement these member
variables as simple data types; we'll give them their own functionality by creating them as
objects of a new class: CRegister.

What registers are we likely to need? We need a display register to hold the value of any result
that will appear on the display, and also at least two others. When we discussed arithmetic
expressions in the context of the previous calculator implementation in Chapter 6, we
determined that an expression breaks down into a series of terms connected by addition or
subtraction operators. The terms themselves are a series of numbers or parenthesized
expressions connected by multiply or divide operators. This suggests that we'll need a multiply
register to hold the value of a term, and an add register to hold any intermediate result that's a
combination of one or more terms. We can illustrate how these three registers will be used by
considering how an expression such as 2*3/4+5 would be evaluated:

Expression Action Registers

2 * 3 / 4 + 5
Enter

Put the operand in the display register Display = 2

Multiply = 0

Add = 0

2 * 3 / 4 + 5
Enter

Remember the multiply operation Execute any previous
multiply or divide Save the display register in the multiply
register

Display = 2

Multiply = 2

Add = 0

2 * 3 / 4 + 5
Enter

Put the operand in the display register Display = 3

Multiply = 2

Add = 0

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Expression Action Registers

2 * 3 / 4 + 5
Enter

Remember the divide operation Execute the previous
multiply — result in display register Save the display
register in the multiply register

Display = 6

Multiply = 6

Add = 0

2 * 3 / 4 + 5
Enter

Put the operand in the display register Display = 4

Multiply = 6

Add = 0

2 * 3 / 4 ± 5
Enter

Remember the add operation Execute the previous divide
— result in display register Execute any outstanding add
or subtract Save the display register in the add register

Display =
1.5

Multiply =
1.5

Add = 1.5

2 * 3 / 4 + 5
Enter

Put the operand in the display register Display = 5

Multiply =
1.5

Add = 1.5

2 * 3 / 4 + 5
Enter

Execute any outstanding multiply or divide Execute any
previous add—result in display register

Display =
6.5

Multiply =
1.5

Add = 6.5

As there is never more than one add/subtract and one multiply/divide operation outstanding,
three registers will be sufficient for any expression that doesn't involve parentheses. We'll worry
about parentheses as soon as we have simple arithmetic expressions working. We could call
the three registers we need in the CLogicUnit class m_DisplayReg, m_MultiplyReg, and
m_AddReg respectively.

A register is an electronic store for data, and is a component of a logic unit. Since a logic unit
'has a' register, defining CRegister objects as members of the CLogicUnit class, rather than

relating them by inheritance, is consistent with reality. You can add the three data members
representing the registers as variables of type CRegister, and make them private members

of the class. You'll need to add the data members to the CLogicUnit class definition using the
class context menu, and a partial definition of the CRegister class to the top of the file. You'll

also need to add an #include directive for the file that will contain the definition of CRegister
at the beginning of LogicUnit.cpp. Here's the current state of LogicUnit.h:

 // LogicUnit.h: interface for the CLogicUnit class.

 //

//

 #if
!defined(AFX_LOGICUNIT_H__FA599AA6_17DF_11D2_B731_BD7D79977406__INCLUD
ED_)

 #define
AFX_LOGICUNIT_H__FA599AA6_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #pragma once

 #endif // _MSC_VER > 1000

 class CCalculator;

 class CRegister;

 class CLogicUnit

 {

 public:

 // Process messages from the keyboard

 void Reset();

 void OnEnter();

 void OnAdd();

 void OnSubtract();

 void OnDivide();

 void OnMultiply();

 void OnDecimalPoint();

 void OnDigit(int& digit);

 void OnLeftParenthesis();

 void OnRightParenthesis();

 CLogicUnit(CCalculator* pCalc); // Constructor

 virtual ~CLogicUnit();

 private:

 CRegister m_DisplayReg; // Value to be displayed

 CRegister m_AddReg; // Result of add or
subtract

 CRegister m_MultiplyReg; // Result of divide or
multiply

 CCalculator* m_pCalc; // Pointer to the parent
calculator

};

 #endif //

!defined(AFX_LOGICUNIT_H__FA599AA6_17DF_11D2_B731_BD7D79977406__INCLUD
ED_)

Of course, we'll need to define the CRegister class, but in order to understand what

capabilities the class should provide, we should first investigate what the functions that handle
the keyboard messages for digits and a decimal point in CLogicUnit are going to do, since

these originate the initial content for a register. When we've done that, we can come back to
CRegister with a clearer idea of what is required.

A good thing to do at this point is to consider where we've included the CLogicUnit class
definition into other .cpp files, because we'll need an #include directive for Register.h in

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

each of them. The files affected are Calculator.cpp, Keyboard.cpp, and Display.cpp.
The #include for Register.h must precede the #include for LogicUnit.h, otherwise the

code won't compile. We're adding actual CRegister objects to the logic unit (rather than just

pointers to them), so the compiler needs to know exactly what they comprise before it can
process the CLogicUnit files.

Handling Digits

The OnDigit() function member of CLogicUnit will need to send the digit to the display

register, as that's normally how a calculator operates. It would be reasonable to assume that the
CRegister class will contain a function to accept a digit from somewhere, so we could write

this function as:

 // Send a digit to the display register

 void CLogicUnit::OnDigit(int& digit)

 {

 m_DisplayReg.OnDigit(digit);

 }

This function receives the digit as a reference and passes it on to the OnDigit() member

function of the m_DisplayReg object. The object will have responsibility for assembling the

input value from a succession of digits (and possibly a decimal point) that are passed to it.
There's no problem with having a function called OnDigit() in both the CRegister class and
the CLogicUnit class; they can only be called in the context of a particular object which will be

a member of one class or the other, so there's no risk of confusion. It's also reasonable to give
them the same name, since they do much the same sort of thing in context.

Handling a Decimal Point

To handle a decimal point in the CLogicUnit class, we can implement the function
OnDecimalPoint() so that it simply passes the message on to the appropriate CRegister

object. We can call the CRegister class function by the same name here as well:

 // Send a point to display register

 void CLogicUnit::OnDecimalPoint()

 {

 m_DisplayReg.OnDecimalPoint();

 }

This function and the previous one cover everything necessary in the CLogicUnit class to

handle numeric input. Because these functions are very simple, you could declare them as
inline to make the program run a little faster. This would mean adding an inline keyword and
transferring these definitions to the LogicUnit.h file, or putting the function definitions within

the class definition itself.

Since the onus is on the register to sort out the value of the input from a sequence of digits and
a decimal point, this perhaps is a good point for us to digress into the CRegister class. We'll
come back and fill in the rest of the detail of the CLogicUnit class later.

The CRegister Class

We've already identified two functions that we need a CRegister object to have, so we can put

a stake in the ground with a first stab at a definition for the class. You can add the class to the
project using the down arrow on the Wizard Bar and selecting New Class... from the menu. Next,
make sure that CRegister is displayed in the leftmost drop-down list box; you can then use

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the Add Member Function... option from the down arrow menu to add the OnDigit() and
OnDecimalPoint() members. Your class definition should then look like:

 // Register.h: interface for the CRegister class.

 //

//

 #if
!defined(AFX_REGISTER_H__FA599AA9_17DF_11D2_B731_BD7D79977406__INCLUDE
D_)

 #define
AFX_REGISTER_H__FA599AA9_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CRegister

 {

 public:

 void OnDecimalPoint(); // Function to handle a

decimal point

 void OnDigit(const int &digit); // Function to handle
a keyed digit

 CRegister();

 virtual ~CRegister();

 };

 #endif //

!defined(AFX_REGISTER_H__FA599AA9_17DF_11D2_B731_BD7D79977406__INCLUDE
D_)

A register will need somewhere to store a numeric value, so we can add a member m_Store of
type double using the class context menu. There's no reason to put the m_Store data

member in the public domain, so we'll put it in the private section of the class. Consequently,
all references to it and operations on it will be through interface functions in the public section.

Accepting a digit will involve doing different things depending on whether the digit precedes or
follows a decimal point. We should, therefore, first consider how we handle a decimal point.

Handling a Decimal Point in CRegister

The effect of receiving a decimal point is to change the way that a digit is handled. Before a
decimal point is received, processing a digit will involve multiplying the value of the m_Store

member by 10 (freeing up the 'units' position in the number), then adding the digit value to
m_Store. We're essentially adding the new digit at the right hand end of the number we are

creating.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

After a decimal point is received, we still add the digit on the right, but we need to keep track of
the current decimal place. For the first digit after the decimal point, we should multiply the digit
value by 0.1 before adding it to the member m_Store. For the second digit after a decimal
point, we multiply the digit by 0.01 before adding it to m_Store. For each additional digit after

the decimal point, the value that multiplies the digit before adding it to m_Store decreases by a

factor of 10.

To implement this process, we can declare a data member m_Factor of type double in the
CRegister class, which will act both as an indicator that we have received a decimal point and

as a factor by which to multiply a digit once a decimal point has been received. We'll initially set
m_Factor to zero. As long as it remains zero, we know that no decimal point has been

received. As soon as a decimal point is received, we'll set m_Factor to 1.0. For each
successive digit received after that, we'll multiply m_Factor by 0.1 before using it as a multiplier

for the digit received.

We also need to take account of the case when a decimal point is the first key press sent to a
CRegister object. This will necessitate using a bool indicator that we can name as
m_bBeginValue, which will signal when we're starting to enter a new value into a register.

We'll also use this to mark when we have come to the end of a value in a register by indicating
that a new value is being started. Initially, when the CRegister object is created, we'll set

m_bBeginValue to true to indicate that we're starting a new value. The first valid character
passed to a register will set the m_bBeginValue indicator to false, and the value in

m_Store to 0.0. When the end of an input value is found, m_bBeginValue will be set back to
true again.

Once you've added m_Factor of type double, and m_bBeginValue of type bool to the class

as private members, you can add code to the OnDecimalPoint() function to set the data
member m_Factor when a decimal point is keyed:

 // Handle a decimal point

 void CRegister::OnDecimalPoint()

 {

 if(m_bBeginValue) // Check if we are starting a new
number

 {

 m_bBeginValue = false; // If so, set the indicator to false

 m_Store = 0.0; // and reset the value in the member
m_Store

 }

 m_Factor = 1.0; // Set the decimal point indicator

 }

This function will be called by the CLogicUnit object when a decimal point is signaled to it by
the CKeyboard object. The function first checks the m_bBeginValue flag. This could be set if

the decimal point was the first key pressed when entering a number, as would be the case in an
expression such as 2*.75. If so, it sets the m_bBeginValue flag to zero and resets the

member m_Store. In any event, it will set the value of the data member m_Factor to 1.0,

which will trigger correct processing of digits to the right of a decimal point in the function
OnDigit() in the CRegister class.

Handling a Digit In CRegister

We can show the logic for handling a digit in the form of a flow chart. This is shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The first action is to test the m_bBeginValue flag, to check if we're starting a new value. If we

are, the flag is reset and the values of m_store and m_Factor are reset to zero. Otherwise,
we go straight to checking whether m_Factor is positive, which would indicate that we have

previously received a decimal point. If we have, we're adding the digit as the last decimal place
to the right of the decimal point. If we haven't, we're adding the digit at the 'units' position, after
multiplying the current value in m_Store by 10.

So, from the flowchart, the code for the OnDigit() function in the CRegister class will be:

 // Function to accept a keyed digit

 void CRegister::OnDigit(const int &digit)

 {

 if(m_bBeginValue) // Check if we are at the
start of a number,

 { // if so reset the CRegister
components

 m_bBeginValue = false; // Reset begin flag

 m_Store = 0.0; // Reset storage

 m_Factor = 0.0; // Reset decimal point factor

 }

 if(m_Factor > 0.0) // Test decimal point factor,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 { // positive value indicates
decimals

 m_Factor *= 0.1; // Shift decimal place

 m_Store += digit*m_Factor; // Add digit to
storage

 }

 else

 m_Store = 10.0 * m_Store + digit; // Add digit to
storage

 }

This is a straightforward implementation of the logic shown in the flowchart, so we won't spend
any more time on it. Just add the shaded lines to the function definition in the .cpp file for

CRegister.

Service Functions for a Register

We'll need interface functions to get and set the value of m_Store, as well as a 'set' capability

for the m_bBeginValue flag. The Get()/Set() combination of member functions —
sometimes in the form GetValue()/SetValue() when there are several data members —

comes up quite frequently in classes. Functions that return and set the values of class variables
are named in this way by convention. Data members accessed in this way are also referred to
as class properties. Since in general it is desirable to keep data members private, these

functions make the value of a data member accessible from outside the class. You might think
there's a bit of a contradiction in allowing the value of a private member to be set — after all,

you could just make the data member that can be altered from outside the class public — but
by using a Set() function to change it, you also have an opportunity to do some validity

checking on a new value.

We could also include a Reset() function in the CRegister class to reset the m_Factor and
m_bBeginValue members, as well as m_Store. A constructor that resets everything is also a

fairly fundamental requirement. We would also need to reset the registers if the user presses
'c' or 'C' to clear the calculator. We can extend the CRegister class by adding a

Get()/Set() pair of functions to operate on the m_Store member and a SetBeginValue()
function to set the value of m_bBeginValue. With these capabilities added, the class definition

will be:

 class CRegister

 {

 public:

 void Reset(); // Reset the data members

 void SetBeginValue(); // Set the m_BeginValue flag

 double Get() const; // Get the value of m_Store

 void Set(const double& value); // Set the value of m_Store

 void OnDecimalPoint(); // Function to handle a decimal

point

 void OnDigit(const int& digit); // Function to handle a keyed
digit

 CRegister();

 virtual ~CRegister();

 private:

 bool m_bBeginValue; // New value flag

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 double m_Factor; // Factor for digits after a
decimal point

 double m_Store; // Register value

 };

You can now complete the function member definitions in the .cpp file. If you used the context

menu or the Wizard Bar to add the new functions to the class, you will just need to add the code
to the body of each function:

 // Constructor

 CRegister::CRegister()

 {

 Reset(); // Initialize the data members

 }

 // initialize the flag indicating a new number

 void CRegister::SetBeginValue()

 {

 m_bBeginValue = true;

 }

 // Reset the register

 void CRegister::Reset()

 {

 m_Store = 0.0;

 m_Factor = 0.0;

 m_bBeginValue = true;

 }

 // Set the register value

 void CRegister::Set(const double& value)

 {

 m_Store = value;

 }

 // Get the register value

 double CRegister::Get() const

 {

 return m_Store;

 }

All the functions that we have implemented here are very simple, so they too are candidates to
be inline. Rather than duplicate perfectly good code, we use the Reset() function to provide

the initialization required in the constructor. Since we have no dynamically allocated members,
we don't need to worry about the destructor, or about writing a copy constructor.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Arithmetic Operations on Registers

A fundamental capability that we need to consider is arithmetic operations on CRegister
objects. The arithmetic operations in our calculator will always be between two CRegister

objects, with the result being placed in one of the CRegister objects, so we could implement
all of them as overloaded op= operators. You need to add four operator functions to the

public section of the class definition:

 CRegister& operator-=(const CRegister& rhs);

 CRegister& operator+=(const CRegister& rhs);

 CRegiater& operator/=(const CRegister& rhs};

 CRegister& operator*=(const CRegister& rhs);

Use either the class context menu or the Wizard Bar to add these. The prototypes of all these
functions are much the same; you'll be getting quite familiar with how they look by the time
we've finished this example!

You can switch to the .cpp file to fill out the code for these members. The definition of the +=

operator function is:

 // += operation

 CRegister& CRegister::operator+=(const CRegister& rhs)

 (

 m_Store += rhs.m_Store;

 return *this;

 }

This has a const reference parameter to avoid copying of the argument and, out of necessity,

returns a reference. You'll remember that returning a reference is essential if you want to be
able to use the result on the left of another assignment operation, because doing so returns an
lvalue. This is a model for all of the op= operator functions.

It's not required here, but if you needed to implement a function such as operator+() , for
example, you could use the operator+=() function to do it very neatly, as follows:

 // Addition operator function using += operator function

 CRegister operator+ (const CRegister& reg1, const CRegister& reg2)

 {

 CRegister temp(reg1); // Temporary object

 // initialized with reg1

 return temp += reg2; // Return reg1+reg2

 }

This will call the default copy constructor to create the object temp . If any data member of
CRegister was created dynamically, you would need to implement the copy constructor

yourself.

With the arithmetic operators for CRegister objects added, our class will be finished. The

three remaining functions you need to add are:

 // -= operation

 CRegister& CRegister::operator-=(const CRegister& rhs)

 {

 m_Store -= rhs.m_Store;

 return *this;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 // /= operation

 CRegister& CRegister::operator/=(const CRegister& rhs)

 {

 m_Store /= rhs.m_Store;

 return *this;

 }

 // *= operation

 CRegister& CRegister::operator*=(const CRegister& rhs)

 {

 m_Store *= rhs.m_Store;

 return *this;

 }

Now we need to come back to the CLogicUnit class for our calculator and decide how

arithmetic operations are going to be executed.

Handling Arithmetic Operations

The obvious approach to implementing arithmetic operations might seem to be to add a set of
interface functions to the CLogicUnit class to do them, but it isn't that straightforward. If we

consider what happens when an operation key is pressed, and the table we produced when we
first discussed the register class, we'll get a better idea of what's required. Look at the position
in the diagram here:

When the divide key is pressed, we can't actually execute a divide, as we haven't yet got the

right-hand operand value. At this point, we must execute the previous multiply or divide
operation (whichever it was), and then save the operation just entered. Note that we can't
execute any previous add or subtract at this time; that can only be triggered by the user
pressing another add or subtract key, or the Enter key. This situation is illustrated here:

A simple set of functions won't really hack it, since an operation is always deferred. There's

more than one way to deal with this, but we could use inheritance and polymorphism. So how
would that work?

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If we define an arithmetic operation as an object of a derived class, we could save the current
operation in a pointer, ready to be executed when the next triggering operation comes along.
Since we will be triggering the execution of an operation some time after the object was created,
we won't know what it was, but we can use a virtual function call through a pointer to sort it out
when the operation is ultimately executed. We'll need to add two data members to the
CLogicUnit class: one to be used to store an add or subtract operation object, and the other a

multiply or divide operation object. But let's look first at the classes that we need to define the
operations.

Defining a Base Class for Arithmetic Operations

The classes will represent arithmetic operations as objects. A base class for arithmetic
operations really only needs a virtual member function to execute an operation. Since an

operation will act on CRegister objects, an operation class won't need any data members at

all. The function to execute an operation will be redefined in each of the derived classes,
corresponding to a specific operation in each case.

First, create a new class, COperation, using the Wizard Bar. We want the function to execute

operations to be a pure virtual function in the base class, since there's no sensible
implementation here. Add the function by using the context menu with the dialog data entered
as shown here.

Clicking on the Virtual checkbox will insert the virtual keyword in the declaration, and since

you entered =0 after the parameter list, the generation of an implementation in the .cpp file will

be suppressed. A basic assumption we're making here is that the registers that an operation will
act on are owned by a CLogicUnit object. Because an operation object will need to know
about the CLogicUnit object involved, a pointer will be passed as an argument to the

DoOperation() function to identify the CLogicUnit object in question.

After adding a partial definition and a comment, the .h file for the base class for arithmetic

operations will contain the following:

 // Operation.h: interface for the COperation class.

 //

//
/

 #if
!defined(AFX_OPERATION_HL__FA599AAA_17DF_11D2_B731_BD7D79977406__INCLU
DED_)

 #define

AFX_OPERATION_H__FA599AAA_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #endif // _MSC_VER > 1000

 class CLogicUnit;

 class COperation

 {

 public:

 //Pure virtual function

 virtual void DoOperation(CLogicUnit* pLogicUnit) = 0;

 COperation();

 virtual ~COperation();

 };

 #endif //

!defined(AFX_OPERATION_H__FA599AAA_17DF_11D2_B731_BD7D79977406__INCLUD
ED_)

This is an abstract base class for the classes which will represent add, subtract, multiply and
divide operations. It's abstract because it contains a pure virtual function, and therefore objects
of this class can't be constructed.

The DoOperation() function will be used by the relevant interface function in the
CLogicUnit class (OnAdd(), OnDivide(), etc.) when an arithmetic operation is actually

carried out. Since it's declared as virtual, the derived class versions can be selected through

a pointer to this base class. Although we can't create objects of an abstract base class, we can
create pointers to it. The pointer will contain the address of an object of one of the derived
classes that will represent an add, a subtract, a multiply or a divide. This will allow us to save
any operation in a pointer and execute it properly later, without remembering explicitly what it
was. Since the DoOperation() function is specified as pure, it must be redefined in the

derived classes. They would otherwise be abstract, which would prevent objects being created
from them. However, since the function DoOperation() will be the only member of each

derived class, we're unlikely to overlook it!

The destructor in the COperation class is automatically declared as virtual to ensure that

the correct derived class destructor is called when dynamically created objects of the derived
classes are deleted. As we noted in the discussion on inheritance, it's always a good idea to
declare the destructor for a base class as virtual.

You need to add #include directives for Register.h and LogicUnit.h to
Operation.cpp.

Deriving Classes for Arithmetic Operations

The derived classes are going to be very simple — they will each just define their own version
of the virtual function DoOperation(). You can add these class definitions using the

Wizard Bar. Let's start with multiply. You need to enter the name of the base class in the New
Class dialog. Just click on the space below the Derived From heading in the dialog box and key it
in.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Notice how you get the access specifier for the base class set as public by default. That's fine

in this case, but if you did want to change it, clicking on the keyword will change the keyword
entry to a drop down list box from which you can select the other access specifiers.

When you've created the class, you can add the DoOperation() function using the class

context menu or the Wizard Bar. Complete the dialog as shown here:

Because we intend this to be a virtual function, the parameter list must be the same as that of
the base class function. You can check the Virtual box if you want, but it isn't essential —
declaring the base class function as virtual is sufficient to get polymorphism working. We'll
need an incomplete declaration of CLogicUnit before the class definition and we'll also need

#include directives for Register.h and LogicUnit.h in the .cpp file.

You need to repeat the whole process in exactly the same way for the classes CDivide, CAdd,
and CSubtract, with each having COperation as a base class plus the member

DoOperation(). Don't forget the #include directives for Register.h and LogicUnit.h
that you need in each of the .cpp files for the derived operation classes.

Making Friends

Of course, the DoOperation() function will need access to the CRegister objects that are

members of the CLogicUnit object to which the operation is being applied. We can make
these accessible to the classes derived from COperation by specifying the classes as

friends of CLogicUnit. Add the following statements to the CLogicUnit class definition,

just before the closing brace:

 // Operations classes need to be friends

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 friend class CMultiply;

 friend class CDivide;

 friend class CAdd;

 friend class CSubtract;

Of course, although any of the function members of these classes can access any member of
the CLogicUnit class, the converse is not true. In C++, friendship is a one-way relationship.

Implementing Operation Execution

We can now go back to complete the implementation of the DoOperation() function for

CMultiply in Multiply.cpp, as follows:

 void CMultiply::DoOperation(CLogicUnit* pLogicUnit)

 {

 pLogicUnit->m_MultiplyReg *= pLogicUnit->m_DisplayReg;

 pLogicUnit->m_DisplayReg = pLogicUnit->m_MultiplyReg;

 }

The DoOperation() function is passed a pointer to the CLogicUnit object belonging to a

calculator. The right operand for the multiply will have been stored in the display register
m_DisplayReg. This could be the last numeric value entered, or perhaps the result of a

parenthesized expression (although we have yet to figure out how parenthesized expressions
are going to work). The left operand will be in the register m_MultiplyReg. This could be the

result of a previous line of input, a parenthesized expression, or a numeric value that was keyed
in.

Because the register m_DisplayReg should always hold the last value generated, the product

of the values in the two registers is generated in m_MultiplyReg, and then copied to the
display register, m_DisplayReg. We could generate the result directly in m_DisplayReg, but

we still need to maintain a copy of the result in case another multiply or divide operation is
following. The left operand of another multiply or divide operation will be assumed to be in
m_MultiplyReg, and the next value entered or calculated will replace the value in

m_DisplayReg.

The implementation of DoOperation() for CDivide is almost identical to that of the
CMultiply class; the only difference is that the divide operation is used instead of multiply.

The derived classes for addition and subtraction operations are also very similar to one another
(and to those for multiplication and division), but this time it's the m_AddReg member we

combine with m_DisplayReg. A separate register is used to keep the left operand for an add or

subtract operation, since the triggering of add or subtract is separate from that of multiply or
divide, and it's quite possible to have a situation where left operands for both multiply/divide and
add/subtract operations are stored simultaneously.

The implementation of the DoOperation() member of CAdd will be:

 void CAdd::DoOperation(CLogicUnit* pLogicUnit)

 {

 pLogicUnit->m_AddReg += pLogicUnit->m_DisplayReg;

 pLogicUnit->m_DisplayReg = pLogicUnit->m_AddReg;

 }

The function in the CSubtract class is the same except that -= replaces the += that appears

here. We're now ready to add the final touches to CLogicUnit.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Completing the CLogicUnit Class

We'll need two data members in the CLogicUnit class to store the operations objects — in

other words, objects of the classes we derived from COperation. If we declare these members
as pointers to base class objects, which is type COperation*, we can use them to store the

address of any derived class object. We can add them as private members of the class using

the class context menu; this will add the following two lines to the class definition:

 COperation* m_pMultiplyDivide; // Pointer to CMultiply or
CDivide

 COperation* m_pAddSubtract; // Pointer to CAdd or
CSubtract

The comments are added manually, of course. Because we now reference the COperation

class, we need to add an incomplete declaration for the class in the LogicUnit.h file and an
#include directive for Operation.h to LogicUnit.cpp. We'll be able to use these new

pointers to call the corresponding version of the virtual function DoOperation() in the derived

operations classes, so the kind of operation that is to be executed will be sorted out
automatically. The function member of the CAdd class will be called for a CAdd object, the
function member of the CMultiply class will be called for a CMultiply object, and so on.

We should initialize these pointers in the constructor for CLogicUnit. Way back in this chapter,

we put the default constructor in the private section of the class, and specified the public
constructor as accepting a pointer to a calculator as a parameter. We can add to the public

constructor in LogicUnit.cpp like this:

 // Constructor

 CLogicUnit::CLogicUnit(CCalculator* pCalc): m_pCalc(pCalc)

 {

 m_pMultiplyDivide = 0; // Initialize pointer to NULL

 m_pAddSubtract = 0; // Initialize pointer to NULL'

 Reset(); // Reset the logic unit

 }

The Reset() function should reset the entire logic unit — this includes the registers as well as

the pointers to the queued arithmetic operations. Add the following implementation to the
skeleton function we created earlier:

 // Reset the logic unit

 void CLogicUnit::Reset:()

 {

 // Reset all the registers

 m_MultiplyReg.Reset();

 m_AddReg.Reset();

 m_DisplayReg.Reset();

 // Avoid memory leak when the user presses 'C' to clear the
calculator

 delete m_pMultiplyDivide;

 delete m_pAddSubtract;

 // Set operations pointers to null

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_pMultiplyDivide = 0;

 m_pAddSubtract = 0;

 }

Any memory associated with pointers stored in m_pMultiplyDivide or m_pAddSubtract

should be deleted when the operations are executed, but if the user presses 'C' or 'c' to clear

the calculator, then this may not necessarily occur. We should therefore call delete on these
pointers here in the Reset() function to make sure that this memory is released. Similarly, we
could add delete operations to the destructor:

 CLogicUnit::~CLogicUnit()

 {

 // Just to be on the safe side...

 delete m_pAddSubtract;

 delete m_pMultiplyDivide;

 }

If these pointers are already null at this point, it won't cause a problem. As we've said, applying
delete to a null pointer is always harmless.

We've already written the functions OnDigit() and OnDecimalPoint() for the CLogicUnit

class. Now we need to complete the functions for each of the arithmetic operations we're
supporting, and a function to deal with the Enter key.

Handling Multiply and Divide

To reiterate our discussion, when the user presses a key for a multiply or divide operation, two
things must be done. Any queued multiply or divide needs to be executed, and the current
operation should be saved so that it can be executed when the right-hand operand has been
received. We can implement the multiply operation to do this as follows:

 // Process a multiply message

 void CLogicUnit::OnMultiply()

 {

 if(m_pMultiplyDivide) // Check for
previous

 { // multiply or

divide.

 m_pMultiplyDivide->DoOperation(this); // If so, do it.

 delete m_pMultiplyDivide; // Now delete the

 } // operation object.

 else

 // No previous operation queued so save the display register

 m_MultiplyReg = m_DisplayReg;

 m_pMultiplyDivide = new CMultiply(); // Queue a new
operation.

 // Signal start of value in display

 m_DisplayReg.SetBeginValue();

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The first check is for a previous operation stored in the pointer m_pMultiplyDivide. If the
pointer is not NULL, there is an operation waiting, so the pointer is used to call the

corresponding DoOperation() function member of the derived operation class object. This

will carry out the operation on the registers of the CLogicUnit object. The pointer this
contains the address of the current object, so it is passed to DoOperation() to identify the

CLogicUnit object. The DoOperation() function will store the result in the m_MultiplyReg

data member as the left operand for the operation just received. When execution is complete,
the queued operation is deleted.

If there is no operation waiting, the display register m_DisplayReg must contain the left

operand for the operation just received, so this is saved in m_MultiplyReg. We do this to free

up the display register, since it will be used to store the next operand value.

Finally, a new CMultiply object is created in the free store and its address is saved in
m_pMultiplyDivide for next time around. Since receiving any operation key indicates the

end of an input value, the flag is set for the display register to record that this is the case.

The function to process division is virtually identical to the function above, so we won't explain it
again. The implementation of the OnDivide() member of CLogicUnit is:

 // Process a divide message

 void CLogicUnit::OnDivide()

 {

 if(m_pMultiplyDivide) // Check for
previous

 { // multiply or
divide.

 m_pMultiplyDivide->DoOperation(this); // If so, do it.

 delete m_pMultiplyDivide; // Now delete the

 } // operation
object.

 else

 // No previous operation queued so save the display register

 m_MultiplyReg = m_DisplayReg;

 m_pMultiplyDivide = new CDivide(); // Queue a new
operation.

 // Signal start of value in display

 m_DisplayReg.SetBeginValue();

 }

Of course, because we're creating objects of the CDivide and CMultiply classes, we must
now add #include directives for Multiply.h and Divide.h to the beginning of

LogicUnit.cpp.

Handling Add and Subtract

Processing addition is slightly more complicated than dealing with a multiply operation, because

it's possible that two previous operations may be queued: a multiply or a divide, as well as an
add or a subtract. The code for the function to handle an addition operator is as follows:

 // Process an add message

 void CLogicUnit::OnAdd()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 if(m_pMultiplyDivide) // m_pMultiplyDivide is a
pointer

 { // to any previous * or /
object

 // Execute * or / first if it exists

 m_pMultiplyDivide->DoOperation(this);

 delete m_pMultiplyDivide; // Now delete the object

 m_pMultiplyDivide = 0; // and set pointer in
logic unit

 } // to null

 if(m_pAddSubtract) // m_pAddSubtract is a

pointer to

 { // any previous + or -
object

 m_pAddSubtract->DoOperation(this); // Execute previous + or
-

 delete m_pAddSubtract; // Now delete object

 }

 else

 // If there was none, save the display register

 m_AddReg = m_DisplayReg;

 // Create a new operation object & signal start of value in
display

 m_pAddSubtract = new CAdd();

 m_DisplayReg.SetBeginValue();

 }

Like the last function, we check for a queued multiply or divide operation, and if we find one, we
set the pointer m_pMultiplyDivide to zero after the operation has been executed. We then

look for a previous add or subtract operation, and, if one is queued, we execute that too. We
don't need to set the pointer m_pAddSubtract to zero, because we will store the address of
the new operation to be queued in it. We finally set the flag in m_DisplayReg to indicate the

end of an input value, as we did in the previous member function.

Again, the process for handling subtraction is almost identical to that for addition, so we won't
go through it here. Only one line in the body of the function is different from that in the OnAdd()

function:

 // Process a subtract message

 void CLogicUnit::OnSubtract()

 {

 if(m_pMultiplyDivide) // m_pMultiplyDivide is

a pointer

 { // to any previous * or
/ object

 // Execute * or / first if it exists

 m_pMultiplyDivide->DoOperation(this);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 delete m_pMultiplyDivide; // Now delete the object
and set

 m_pMultiplyDivide = 0; // pointer in logic unit
to null

 }

 if(m_pAddSubtract) // m_pAddSubtract is a
pointer to

 { // any previous + or -

object

 m_pAddSubtract->DoOperation(this); // Execute previous + or
-

 delete m_pAddSubtract; // Now delete object

 }

 else

 // If there was none, save the display register

 m_AddReg = m_DisplayReg;

 // Create a new operation object & signal start of value in
display

 m_pAddSubtract = new CSubtract();

 m_DisplayReg.SetBeginValue();

 }

We now need to enlarge the growing list of #include directives in LogicUnit.cpp with

includes for Add.h and Subtract.h.

Handling the Enter Key

The last key we must handle to get the CLogicUnit class to evaluate arithmetic expressions is

the Enter key, which will be transmitted at the end of an input line. The code for this is as
follows:

 // Process an Enter message

 void CLogicUnit::OnEnter()

 {

 if(m_pMultiplyDivide) // m_pMultiplyDivide is
a pointer

 { //to any previous * or /
object

 m_pMultiplyDivide->DoOperation(this);// Execute previous * or
/

 delete m_pMultiplyDivide; // Now delete the object

 m_pMultiplyDivide = 0; // and set pointer in

logic

 } // unit to null

 if(m_pAddSubtract) // m_pAddSubtract is a
pointer to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 { // any previous + or -
object

 m_pAddSubtract->DoOperation(this); // Execute previous + or
-

 delete m_pAddSubtract; // Now delete object

 m_pAddSubtract = 0; // Set pointer to null

 }

 // Show result in display

 m_pCalc->GetDisplay()->ShowRegister(m_DisplayReg);

 m_DisplayReg.SetBeginValue(); // Set start of value
flag

 }

When the Enter key is received, all outstanding operations need to be executed and the final
result displayed on the screen. The function checks the pointers m_pMultiplyDivide and
m_pAddSubtract, performs any queued operations through the DoOperation() function,

and ensures the pointers are reset to NULL.

The message signaling that the Enter key was pressed is the only way that output is generated.
The value in the display register, m_DisplayReg, is output to the screen by sending it to the
CDisplay object using the function ShowRegister(). We will need to define the CDisplay

class so that this function outputs the value stored in the CRegister object that is passed to it.

The function is called in the statement:

 m_pCalc->GetDisplay()->ShowRegister(m_DisplayReg);

The pointer m_pCalc was initialized in the class constructor and points to the parent

CCalculator object. It's used to call the GetDisplay() member function of CCalculator,
which operates analogously to the GetLogicUnit() function we implemented earlier, in that it

returns a pointer to the CDisplay object that belongs to the calculator. This pointer to the
CDisplay object is then used to call the ShowRegister() function.

You can use the context menu to add the GetDisplay() function as a const member of the

CCalculator class with public access and returning type CDisplay*. This will add the

following line to the class definition:

 CDisplay* GetDisplay() const;

The implementation of GetDisplay() in Calculator.cpp will be simply:

 CDisplay* CCalculator::GetDisplay() const

 {

 return m_pDisplay;

 }

Finally in the OnEnter() function, the flag in m_DisplayReg is set to indicate the start of a

new input value. The value displayed will still be retained in m_DisplayReg so that the next

line entered can be applied to this value.

Using the Registers

Just to make sure that we understand what happens between registers when the calculator
operates, let's look at how a simple expression, 1+2*3+4, affects the contents of the registers
one step at a time. We can best understand this with a table, as shown below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Key Action Contents of
m_DisplayReg

Contents
of
m_AddReg

Contents of
m_MultiplyReg

1 Store in
m_DisplayReg

1 - -

+ Copy
m_DisplayReg to
m_AddReg

1 1 -

2 Store in
m_DisplayReg

2 1 -

* Copy
m_DisplayReg to
m_MultiplyReg

2 1 2

3 Store in
m_DisplayReg

3 1 2

+ m_DisplayReg *
m_MultiplyReg

3 1 6

 Copy
m_MultiplyReg to
m_DisplayReg

6 1 6

 m_DisplayReg +
m_AddReg

6 7 6

 Copy m_AddReg to
m_DisplayReg

7 7 6

4 Store in
m_DisplayReg

4 7 6

Enter m_DisplayReg +
m_AddReg

4 11 6

Copy m_AddReg to
m_DisplayReg

11 11 6

Each of the numeric values is just stored in the display register, m_DisplayReg. You should be
able to relate the CLogicUnit function members that we have just discussed to the actions

corresponding to the arithmetic operators. You can see how the receipt of each operator frees
up the display register for the next operand.

To get our calculator into basic operational shape, we just need to define the class for the
display.

Completing the CDisplay Class

The CDisplay class will be relatively simple, since all it needs is the capability to display the

result of a calculation. We already decided that this is to work through the member function
called ShowRegister() that we used in the OnEnter() member of the CLogicUnit class.
The function will accept one parameter of type CRegister, which we can make a reference,

and the return type will be void. The function will display the result on the standard output

device for a console application, the screen.

Add this function to the class using the Wizard Bar. After adding a comment and an incomplete
declaration for CRegister, the contents of the file Display.h will be as follows:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Display.h: interface for the CDisplay class.

//

 #if
!defined(AFX_DISPLAY_H__FA599AA7_17DF_11D2_B731_BD7D79977406__INCLUDED
_)

 #define
AFX_DISPLAY_H__FA599AA7_17DF_11D2_B731_BD7D79977406__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CRegister;

 class CCalculator;

 class CDisplay

 {

 public:

 void ShowRegister(CRegister& rReg) const;

 CDisplay(CCalculator* pCalc); // Constructor

 virtual ~CDisplay();

 private:

 CCalculator* m_pCalc; // Pointer to the parent
calculator

 };

 #endif //
!defined(AFX_DISPLAY_H__FA599AA7_17DF_11D2_8731_BD7D79977406__INCLUDED
_)

The implementation of the ShowRegister() function in Display.cpp will be:

 // Function to display calculated value

 void CDisplay::ShowRegister (CRegister& rReg) const.

 {

 cout << endl << setw(12) << rReg.Get() << endl;

 }

There is little to say about the detail here. The constructor saves the pointer to the parent
calculator, and the ShowRegister() function outputs the value stored in rReg with a field

width of 12. The value is obtained from the CRegister object by calling its Get() member. We
need to add #include directives to Display.cpp for the standard headers iostream and

iomanip for the output and the 'set width' capabilities. We also need to add the using directive
for the standard namespace, std.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The CDisplay class only supports output of values of type double, since that's all we'll be

using in our calculator program for the moment. If we needed to support output for other types,
it would be a simple matter of overloading the ShowRegister() member function to accept

different types of arguments.

Running the Calculator

If everything has been put together correctly, you should have a calculator which will handle any
expression that does not contain parentheses. So far, we have left the implementation of the
LeftParenthesis() and RightParenthesis() members of CLogicUnit as the empty

skeletons generated by the context menu for the class, so they do nothing at present.
Nevertheless, try the program out with a few expressions to see that it works.

The next step is to consider how we can support expressions containing parentheses (which
may also be nested).

Handling Parentheses

As it stands, the calculator will evaluate any properly formed arithmetic expression that doesn't
contain parentheses. What exactly is the content of a pair of parentheses? It's one of two things.
It's either a properly formed arithmetic expression, or it's a properly formed arithmetic
expression that contains a parenthesized expression. So if it's the former, our existing calculator
can handle it.

That's a very good clue as to how we can deal with parentheses. All we need to do when we
find a left parenthesis is to create a new calculator to handle the expression between the
parentheses. When the new calculator finds a right parenthesis, it's done, so it should end and
return the value of the expression. But what if the expression between parentheses contains
another pair of parentheses? The new calculator will take care of it, of course! We just said what
a calculator does when it finds a left parenthesis: it creates a new calculator to handle the
expression between parentheses...

The sequence of events in evaluating an arbitrary expression is illustrated here.

Each left parenthesis causes a new calculator to take over processing while the currently active

calculator is suspended, and each right parenthesis ends the currently active calculator.

All we need to do to make this mechanism work is:

§ Make the calculator return the value in the display register when it ends

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ Implement the OnLeftParenthesis() member of CLogicUnit to create a new

calculator
§ Implement the OnRightParenthesis() member of CLogicUnit to return the value

in the display register and end the calculator

The Enter key should never be recognized in a secondary calculator handling a parenthesized
expression, since a right parenthesis should be found, and this should end the calculator. If the
Enter key is recognized, it indicates we have an unmatched left parenthesis, so we could use
this event to identify the error in this case.

Returning a Calculator Value

We started a calculator running by calling its Run() member, so a calculator ends when this

function returns. This function should therefore return the value of the display register for the
calculator. We need to modify its declaration in Calculator.h to:

 double Run() const; // Starts the calculator

We then need to modify its implementation in Calculator.cpp to:

 double CCalculator::Run() const

 {

 return m_pKeyboard->GetKey(); // Start keyboard input

 }

This implies that the GetKey() member of CKeyboard must return the value of the display
register. We can alter the declaration in Keyboard.h for the function to return type double,

and we can modify its implementation to:

 // Keyboard manager function

 double CKeyboard::GetKey() const

 {

 // Get a pointer to the logic unit

 CLogicUnit* pLogicUnit = m_pCalc->GetLogicUnit();

 char chKey = 0; // Key press stored here

 bool bExit = false; // Flag to end
calculator

 // operation

 while(!bExit) // Get key presses until
there is

 { // a reason not to ...

 chKey = cin.get(); // Get a key depression

 switch (chKey) // Test key press

 {

 case ' ': // For blank...

 break; // ... do nothing

 case '0': case '1': case '2': case '3': case '4':

 case '5': case '6': case '7': case '8': case '9':

 // For any digit send numeric value of digit to the
logic unit

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pLogicUnit->OnDigit(chKey - '0');

 break;

 case '.':

 // Send decimal point to the logic unit

 pLogicUnit->OnDecimalPoint();

 break;

 case '(': // Left parenthesis

 pLogicUnit->OnLeftParenthesis();

 break;

 case ')': // Right parenthesis

 return pLogicUnit->OnRightParenthesis();

 case '*' :

 pLogicUnit->OnMultiply(); // Send a multiply
message

 break;

 case '/':

 pLogicUnit->OnDivide(); // Send a divide message

 break;

 case '+':

 pLogicUnit->OnAdd(); // Send an add message

 break;

 case '-':

 pLogicUnit->OnSubtract(); // Send a subtract
message

 break;

 case 'Q': case 'q': // Quit key pressed

 bExit = true; // So set flag to exit

 break;

 case 'c': case 'C': // Clear key pressed

 pLogicUnit->Reset(); // so reset the logic
unit

 break;

 case '\n': // Enter key pressed

 pLogicUnit->OnEnter(); // Send Enter message

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 break;

 default: // Wrong key pressed

 bExit = true; // so set flag to exit

 }

 }

 return pLogicUnit->GetDisplayValue(); // Return current display
value

 }

Apart from the declaration, there are just two lines changed here. First, the case in the switch

for ')' has been altered. The OnRightParenthesis() member of CLogicUnit is assumed
to return the value of the display register so that the GetKey() function can return it to the

Run() function for the CCalculator object. Second, when the while loop terminates, the
GetKey() function now returns the value in the display register by calling a function

GetDisplayValue() that we need to add to CLogicUnit.

You can add this function using the context menu for CLogicUnit. It should return a value of
type double, so it will be declared in the public section of the class as:

 double GetDisplayValue() const;

You can add the one line required in its implementation:

 double CLogicUnit::GetDisplayValue() const

 {

 return m_DisplayReg.Get();

 }

Handling a Right Parenthesis

When a right parenthesis is signaled to the logic unit, all outstanding operations must be
executed to produce the value of the expression. The implementation of the
OnRightParenthesis() member of CLogicUnit will therefore be:

 double CLogicUnit::OnRightParenthesis()

 {

 if(m_pMultiplyDivide) // m_pMultiplyDivide is
a pointer

 { // to any previous * or
/ object

 m_pMultiplyDivide->DoOperation(this);// Execute previous *
or / delete

 m_pMultiplyDivide; // Now delete the object

 m_pMultiplyDivide = 0; // and set pointer in
LU to null

 }

 if(m_pAddSubtract) // m_pAddSubtract is a
pointer to

 { // any previous + or -
object

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_pAddSubtract->Dooperation(this); // Execute previous + or
-

 delete m_pAddSubtract; // Now delete object

 m_pAddSubtract = 0; // Set pointer to null

 }

 return m_DisplayReg.Get(); // Return the register
value

 }

This is essentially the same code as that for the OnEnter() function, but without outputting the
result through the CDisplay object. When all operations are complete, the value stored in

m_DisplayReg is returned. Don't forget to amend the declaration in the LogicUnit.h file so
that the function returns type double!

Handling a Left Parenthesis

The function member of the CLogicUnit class that processes a left parenthesis is the last

piece we need to put in place to handle any expression. It is remarkably simple. All it needs to
do is to create a new calculator and run it. The implementation for this will be:

 // Process a left parenthesis message

 void CLogicUnit::OnLeftParenthesis()

 {

 CCalculator* pCalc = new CCalculator(); // Create a
calculator

 // Run the calculator and set the result in the display register

 m_DisplayReg.Set(pCalc->Run());

 delete pCalc; // Destroy the
calculator

 }

The new calculator is created dynamically and started using its Run() member. The new

calculator will process input until the corresponding right parenthesis is met, which will cause
the value of the expression between parentheses to be returned from the Run() function. This
value is passed as an argument to the Set() function of the display register for the current

calculator. Finally, the new calculator is deleted from the free store.

Try it Out: - Exercising the Calculator

You can now recompile the program and try some more complicated expressions. Some
examples that I tried it out on are shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The organization of this version of a calculator is quite different to that of our procedural
programming example. It seems like a lot more code too, but much of it is concerned with class
definitions and the house keeping around that. Generally, object-oriented programs may well
involve more lines of code than a procedural approach, but if the classes have been properly
designed, the program should be easier to extend to include new capability. Once you've built
the classes as a base for the kind of problem you want to solve, applying them to a variety of
problems should then be very easy.

Extending the Calculator

This example provides a lot of opportunities for you to exercise your C++ skills further if you

think you need it, or even just for fun. The first thing you might try is to build in some error
detection and recovery. Handling invalid characters is easy. You just need to change the
GetKey() member of the CKeyboard class. Replace the code for the default case in the
switch statement to display a suitable message (through the display object ideally), reset the

logic unit, then break to continue the loop. The reset is necessary to prevent spurious values
being left in the registers.

Detecting unmatched parentheses shouldn't be too difficult either. Remember that a calculator

will never meet a second left parenthesis, so too many left parentheses will result in one of the
secondary calculators processing the Enter key. Too many right parentheses will cause the
primary calculator to process a right parenthesis — an event which should never occur. All you
need to be able to sort these out is to distinguish between the primary calculator and any
secondaries that are created. A static member of CCalculator that counts how many objects

are around would do it.

Don't forget the possibility of a zero divisor. You could also add other operators, such as

remainder and exponentiation. Adding trigonometric function capability would also be
interesting.

Summary

In this chapter, we've exercised some of the principal ideas involved in using inheritance. The
discussion of the problem solution here is not a very precise reflection of how you would work in
practice. You wouldn't usually write all the code and then attempt to execute it. Building the
classes in an incremental fashion, adding and testing member functions one at a time would be
a more practical and productive approach, but space prohibits an exhaustive description of this
process.

Some of the key points we've covered in this chapter are:

§ When approaching a problem for the first time, try to sort out what the principal kinds of
objects are that the problem deals with.

§ Map out the relationships between the problem classes. Determine where inheritance is
appropriate versus ownership — try the 'is a' versus the 'has a' test.

§ Be prepared to go back and modify classes. In most instances you won't get the design
right first time around.

§ Don't forget to keep polymorphism in mind. This can often greatly simplify a problem.
§ When you implement a class that allocates memory on the free store, always implement

a destructor and a copy constructor, otherwise you will have memory leaks. Consider
whether you also need to implement the assignment operator.

§ Make sure the constructor initializes all the data members in a class. Uninitialized data
members can cause a lot of problems in unexpected places.

§ If a class object should always be created with a constructor that requires arguments,
then define the default constructor in the private section of the class to prevent its

accidental use.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you've followed along with the example in this chapter without major difficulty, you are ready
to try your hand at Windows programming. The programs in the remainder of the book get a bit
larger, but none of them are more difficult than the example we have just completed. We have
just one more topic before we get into Windows programming, and that's debugging.

Exercises

This chapter hasn't introduced anything new; we have been concentrating on a class-based
version of the calculator. For that reason, the exercises in this chapter are all aimed at
extending and improving the calculator application.

1. Add an exponentiation operator, using the caret (^) as the operator symbol.

2. Modify the calculator code so that it traps any attempt to divide by zero, displaying a
suitable error message.

3. How can you arrange for such an error to cause the rest of the current input string to
be thrown away and the accumulator set to zero, so that processing can commence
again with a new command? What is the main drawback with this method?

Answers

1. Adding an exponentiation operator. This operator fits in with the multiply and divide operators,
rather than add and subtract, so you need to create a CExp class, modeled on the

CMultiply class. The two new files you need to create are therefore very familiar. This is
Exp.h:

 // Exp.h: interface for the CExp class.

 //

 ///

 #ifndef __EXP_H__

 #define __EXP_H__

 #include "Operation.h"

 class CLogicUnit;

 class CExp : public COperation

 {

 public:

 void DoOperation(CLogicUnit* pLogicUnit);

 CExp();

 virtual ~CExp()

 };

 #endif //__EXP_H__

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The definition of the CExp class in Exp.cpp provides a suitable DoOperation() function to

perform the exponentiation on the registers:

 // Exp.cpp: implementation of the CExp class.

 //

///
///////

 #include "Register.h"

 #include "LogicUnit.h"

 #include "Exp.h"

///
///////

 // Construction/Destruction

///
///////

 CExp::CExp()

 {

 }

 CExp::~CExp()

 {

 }

 void CExp::DoOperation(CLogicUnit* pLogicUnit)

 {

 pLogicUnit->m_MultiplyReg ^= pLogicUnit->m_DisplayReg;

 pLogicUnit->m_DisplayReg = pLogicUnit->m_MultipleReg;

 return;

 }

This will require a new operator^=() function in the CRegister base class, which will

perform the real exponentiation. The easiest way to do this is to use the pow() function
declared in the <cmath> header file (look in Help for details on how to use pow()). You'll

need to add this line to Register.h:

 CRegister& operator^=(const CRegister& rhs);

and the following #include and function definition to Register.cpp:

 // Register.cpp: implementation of the CRegister class.

 //

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

///
////

 #include <cmath>

 #include "Register.h"

 // Rest of the function definitions as before...

 // ^= operation

 CRegister& CRegister::operator^=(const CRegister& rhs)

 {

 m_Store = pow(m_Store, rhs.m_Store);

 return *this;

 }

Then, add an OnExp() function to CLogicUnit:

 public:

 void OnExp();

and a case to the switch statement in CKeyboard::GetKey() which calls this function
when a ^ has been entered:

 case '^':

 pLogicUnit->OnExp(); // Send an exp
message

 break;

Now implement CLogicUnit::OnExp() itself; it'll be almost identical to
CLogicUnit::OnMultiply(), differing only in the fact that the new operation queued will

be a CExp rather than a CMultiply:

 // Process an exp message

 void CLogicUnit::OnExp()

 {

 if(m_pMultiplyDivide() // Check for previous
multiply/divide

 {

 m_pMultiplyDivide->DoOperation(this); // If so, do it

 delete m_pMultiplyDivide; // Now delete the operation
object

 }

 else

 // No previous operation queued so save the display register

 m_MultiplyReg = m_DisplayReg;

 m_pMultiplyDivide = new CExp(); // Queue a new operation

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Signal start of value in display

 m_DisplayReg.SetBeginValue();

 return;

 }

The other things you'll need to remember are to put a #include for Exp.h in

LogicUnit.cpp, and to make CExp a friend of the CLogicUnit class.

2. Trapping divide by zero errors. The easiest method is to make changes to the
CDivide::DoOperation() function. First of all, since we want to output a message, we

need to #include another header file in Divide.cpp:

 #include <iostream>

In DoOperation(), we check that the value in pLogicUnit->m_DisplayReg is not equal
to 0 before performing the division, and outputs an error message if it is:

 void CDivide::DoOperation(CLogicUnit* pLogicUnit)

 {

 if ((pLogicUnit->m_DisplayReg.Get())!=0)

 pLogicUnit->m_MultiplyReg /= pLogicUnit->m_DisplayReg;

 else

 {

 cout << endl

 << "Divide-by-zero error detected. Operation skipped."

 << endl;

 }

 pLogicUnit->m_DisplayReg = pLogicUnit->m_MultiplyReg;

 return;

 }

This is hardly ideal since despite detecting the error, the calculation will carry on regardless.
The offending operation is just passed over, but at least the calculator will keep going. The
next exercise provides a rather more satisfactory solution.

3. Arranging for divide-by-zero errors to terminate processing of the current line is actually quite
tricky because a new calculator is created for every pair of parentheses, and you have to
make sure all the instances are cleaned up correctly. We've already developed a method that
'rides out' a divide-by-zero error, so one method would be to extend it and add a global flag
variable.

Change the CDivide::DoOperation() function to this:

 void CDivide::DoOperation(CLogicUnit* pLogicUnit)

 {

 if (pLogicUnit->m_DisplayReg.Get() != 0)

 pLogicUnit->m_MultiplyReg /= pLogicUnit->m_DisplayReg;

 else

 ZeroErrorFlag = true;

 pLogicUnit->m_DisplayReg = pLogicUnit->m_MultiplyReg;

 return;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This time, rather than produce the error message here, we raise an error flag. That means the
header file we included in the last exercise is no longer required. We can now let the
calculator continue on its way, just like last time, and catch the error when the time comes for
output, which is in CDisplay::ShowRegister():

 void CDisplay::ShowRegister (CRegister& rReg)

 {

 if (ZeroErrorFlag == true)

 {

 cout << endl << "Divide by zero error. Calculator reset." <<
endl;

 m_pCalc->GetLogicUnit()->Reset();

 ZeroErrorFlag = false;

 }

 cout << endl << setw(12) << rReg.Get() << endl;

 return;

 }

The function now checks our error flag before outputting the result. If a divide-by-zero error
has been detected, it produces an error message, resets the calculator and resets the flag.
That just leaves the declarations required to make the flag available at global scope. The first
comes in Ex11_01.cpp,

 // EX11_01.CPP - the main() function

 #include "Calculator.h"

 bool ZeroErrorFlag = false;

 int main(void)

 {

 CCalculator myCalculator; // Create a calculator

 myCalculator.Run(); // ...then run it

 return 0;

 }

and to make ZeroErrorFlag available to the CDivide and CDisplay classes, you need to

add the line

 extern bool ZeroErrorFlag;

after the #include statements in Divide.cpp and Display.cpp. The extern keyword
forces the compiler to look outside the current source file for the definition of what follows it,
and since we've declared ZeroErrorFlag at global scope, everything compiles as it should.

The problem with this method is the very fact that it uses global variables, which are rather
inelegant and provide the opportunity for errors themselves—multiple definitions and the
like—if used carelessly.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 12: Debugging

Overview

If you have been doing the examples in the previous chapters, you will certainly have been
battling with bugs in your code. In this chapter we will explore how the basic debugging
capabilities built into Visual C++ can help with this. We will also investigate some additional
tools that you can use to find and eliminate errors from your programs. We will also see some of
the ways in which you can equip your programs with specific code to check for errors.

In this chapter you will learn:

§ How to run your program under the control of the Visual C++ debugger.
§ How to step through your program a statement at a time.

§ How to monitor or change the values of variables in your programs.
§ How to monitor the value of an expression in your program.
§ What the call stack is.

§ What an assertion is and how to use assertions to check your code.
§ How to add debugging specific code to a program.
§ How to detect memory leaks in a program.

Understanding Debugging

Bugs are errors in your program and debugging is the process of finding and eliminating them.

You are undoubtedly aware by now that debugging is an integral part of the programming
process — it goes with the territory as they say. The bald facts about bugs in your programs are
rather depressing:

§ Every program that you write that is more than trivial will contain bugs that you will need
to try to expose, find, and eliminate if your program is to be reliable and effective. Note the
three phases here — a program bug is not necessarily apparent; even when it is apparent
you may not know where it is in your source code; and even when you know roughly where
it is, it may not be easy to determine what exactly is causing the problem and thus eliminate
it.

§ Many programs that you write will contain bugs even after you think you have fully
tested them.

§ Program bugs can remain hidden in a program that is apparently operating correctly —
sometimes for years. They generally become apparent at the most inconvenient moment.

§ Programs beyond a certain size and complexity will always contain bugs, no matter how
much time and effort you expend testing them. (The measure here is not precisely defined,
but Visual C++ and your operating system certainly come into this category!)

It would be unwise to dwell on this last point if you are of a nervous disposition. Try not to think

about it if, for example, you fly a lot or are regularly in the position where a computer error could
cause you some harm. Such systems usually have a series of trusted tests for new code to
probe for errors. Of course, these tests could have bugs and then...

Many potential bugs will be eliminated during the compile and link phases, but there will still be
quite a few left even after you manage to produce an executable module for your program.
Unfortunately, despite the fact that program bugs are as inevitable as death and taxes,
debugging is not an exact science. However, you can still adopt a structured approach to
eliminating bugs. There are four broad strategies you can adopt to make debugging as painless
as possible:
§ Don't re-invent the wheel. Understand and use the library facilities provided as part of

Visual C++ (or other commercial software components you have access to) so that your
program uses as much pre-tested code as possible.

§ Develop and test your code incrementally. By testing each significant class and function
individually, and gradually assembling separate code components after testing them, you

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

will make the development process much easier, with fewer obscure bugs occurring along
the way.

§ Code defensively — which means writing code to guard against potential errors. For
example, declare member functions that don't modify an object as const. Use const
parameters where appropriate. Don't use 'magic numbers' in your code — define const

objects with the required values.
§ Include debugging code that checks and validates data and conditions in your program

from the outset. This is something we will be looking at in detail later in this chapter.

Because of the importance of ending up with programs that are as bug-free as is humanly

possible, Visual C++ provides you with a powerful armory of tools for finding bugs. The sad truth
though is that you may still end up beating your head against a wall trying to find that elusive
bug. A fresh set of eyes on the problem may spot the problem immediately, so don't feel obliged
to keep your bugs to yourself. Before we get into the detailed mechanics, let's look a little closer
at how bugs arise.

Program Bugs

Of course, the primary cause for bugs in your program is you and the mistakes you make.
These mistakes will range from simple typos — just pressing the wrong key — to getting the
logic completely wrong. I too find it hard to believe that I can make such silly mistakes so often,
but no-one has yet managed to come up with a credible alternative as to how bugs get into your
code — so it must be true! Humans are creatures of habit so you will probably find yourself
making some mistakes time and time again. Frustratingly, many errors will be glaringly obvious
to others, but invisible to you — this is just your computer's way of teaching you a bit of humility.
Of course, there are bugs in the system environment that you are using (Visual C++ included)
but this should be the last place you suspect when your program doesn't work. Even when you
do conclude that it must be the compiler or the operating system, nine times out of ten you will
be wrong. However, there are certainly bugs in Visual C++ and if you want to keep up with
those identified to date, together with any fixes available, you can search the information
provided on the Microsoft web site related to Visual C++ (http://www.microsoft.com/visualc/).
Better still, if you can afford a subscription to Microsoft Developer Network, you will get quarterly
updates on the latest bugs and fixes.

From the nature of programming, bugs are virtually infinite in their variety, but there are some
kinds that are particularly common. You may well be aware of most of these, but let's take a
quick look at them anyway.

Common Bugs

A useful way of cataloguing bugs is to relate them to the symptoms they cause, since this is

how you will experience them in the first instance. The following list of five common symptoms is
by no means exhaustive, and you will certainly be able to add to it as you gain programming
experience:

Symptom Possible Causes

Data corrupted Failure to initialize variable

Exceeding integer type range

Invalid pointer

Error in array index expression

Loop condition error

Error in size of dynamically allocated array.

Failing to implement class copy constructor, assignment
operator, or destructor.

Unhandled exceptions Invalid pointer or reference

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Symptom Possible Causes

Missing catch handler

Program hangs or
crashes

Failure to initialize variable

Infinite loop

Invalid pointer

Freeing the same free store memory twice

Failure to implement, or error in, class destructor

Stream input data
incorrect

Reading using the extraction operator and the getline()
function.

Incorrect results Typographical error: -= instead of ==, or i instead of j etc.

Failure to initialize variable

Exceeding integer type range

Invalid pointer

Omitting break in switch statement

Look at how many different kinds of errors can be caused by invalid pointers and the myriad

symptoms that bad pointers can generate. This is possibly the most frequent cause of those
bugs that are hard to find, so always double check your pointer operations. If you are conscious
of the ways in which bad pointers arise, you will avoid many of the pitfalls. The common ways in
which bad pointers arise are:
§ Failing to initialize a pointer when you declare it.
§ Failing to set a pointer to free store memory to null when you delete the space

allocated.
§ Returning the address of a local variable from a function.
§ Failing to implement the copy constructor and assignment operator for classes that

allocate free store memory.

Even if you do all this, there will still be bugs in your code, so let's look at the tools that Visual

C++ provides to assist debugging.

Basic Debugging Operations

So far, although we have been creating debug versions of our programs, we haven't been using
the debugger. The debugger is a program that controls the execution of your program in such a
way that you can step through the source code one line at a time, or run to a particular point in
the program. At each point in your code where the debugger stops, you can inspect or even
change the values of variables before continuing. You can also change the source code,
recompile and then restart the program from the beginning. You can even change the source
code in the middle of stepping through a program. When you move to the next step after
modifying the code, the debugger will automatically recompile before executing the next
statement.

To understand the basic debug capabilities of Visual C++, let's use the debugger on a program
that we are sure works. Then we can just pull the levers to see how things operate. We will take
a simple example that uses pointers from back in Chapter 4:

 // EX4_05.CPP

 // Exercising pointers

 #include <iostream>

 using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int main()

 {

 long* pnumber = NULL; // Pointer declaration &
initialization

 long number1 = 55

 long number2 = 99;

 pnumber = &number1; // Store address in pointer

 *pnumber += 11; // Increment number1 by 11

 cout << endl

 << "number1 = " << number1

 << " &number1 = " << hex << pnumber;

 pnumber = &number2; // Change pointer to
address of number2

 number1 = *pnumber*10; // 10 times number2

 cout << endl

 << "number 1 = " << dec << number1

 << " pnumber = " << hex << pnumber

 << " *pnumber = "<< dec << *pnumber;

 cout << endl;

 return 0;

 }

If you have this example on your system then just open the project, otherwise you will need to
enter it again.

When you have written a program that doesn't behave as it should, the debugger enables you
to inspect work through a program one step at a time to find out where and how it's going
wrong. It also allows you to inspect the state of your program's data at any time during
execution. We will arrange to execute our example one statement at a time and to monitor the
contents of the variables that we are interested in. In this case we want to look at pnumber, the

contents of the location pointed to by pnumber (which is *pnumber), number1, and number
2.

First we need to be sure that the build configuration for the example is set to Win32 Debug rather
than Win32 Release (it will be unless you've changed it). The build configuration selects the set of
project settings for the build operation on your program that you can see when you select the
Project/Settings... menu option. The current build configuration in effect is shown in the drop-
down list on the full Build toolbar (only the MiniBar is shown by default). To display it, select

Tools | Customize... and choose the Toolbars tab, or just right click on the toolbar. Check the box
against Build, and uncheck Build MiniBar. The Build toolbar looks like this:

You can change the build configuration by extending the drop-down list and choosing an
alternative to Win32 Debug. Alternatively, you can use the Build/Set Active Configuration... menu
option.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you find that the drop down list box showing the build configuration is using too much space in
the toolbar area, you can reduce its width. With the customize dialog displayed just click on the
right hand end of the list box. You will then be able to drag that side to the left to reduce it to a
more convenient width. You can find out what the toolbar buttons are for by letting the mouse
cursor linger over a toolbar button. A tooltip for that button will appear that identifies its function
and the status line will show a fuller description of what the button does.

The 'debug' configuration in a project causes additional information to be included in your

executable program so that the debugging facilities can be used. This extra information is
stored in the .pdb file that will be in the Debug folder for your project. The 'release'

configuration omits this information as it represents overhead that you wouldn't want in a fully
tested program. With the Professional or Enterprise versions of Visual C++, the compiler will
also optimize the code when compiling the release version of a program. Optimization is
inhibited when the debug version is compiled because the optimization process can involve
resequencing code to make it more efficient, or even omitting redundant code altogether. Since
this destroys the one to one mapping between the source code and corresponding blocks of
machine code, this would make stepping through a program potentially confusing to say the
least.

Right click on the toolbar again and select Debug to display the debugging toolbar. This will

appear automatically when the debugger is operating, but we should take a look at what it
contains before we get to start the debugger. The debug toolbar looks like this.

If you inspect the tooltips for the buttons on this toolbar you will get a preliminary idea of what
they do — we will be using some of them shortly. With the example from Chapter 4, we won't
use all the debugging facilities available to us, but we will consider some of the more important
features. Once we are familiar with stepping through a program using the debugger, we will
explore more of the features with a program that has bugs.

The debugger has two primary modes of operation — it works through the code by single
stepping (which is essentially executing one statement at a time), or runs to a particular point in
the source code. The point in the source where the debugger is to stop is determined either by
where you have placed the cursor or, more usefully, a designated stopping point called a
breakpoint. Let's see how we define breakpoints.

Setting Breakpoints

A breakpoint is a point in your program where the debugger will suspend execution
automatically. You can specify multiple breakpoints so that you can run your program, stopping
at points of interest that you select along the way. At each breakpoint you can look at variables
within the program and change them if they don't have the values they should. We are going to
execute our program one statement at a time, but with a large program this would be
impractical. Usually, you will only want to look at a particular area of the program where you
think there might be an error. Consequently, you would usually set breakpoints where you think
the error is and run the program so that it halts at the first breakpoint. You can then single step
from that point if you wish, where a single step implies executing a single source code
statement.

To set a breakpoint at the beginning of a line of source code, you simply place the cursor in the
statement where you want execution to stop and click the Insert/Remove Breakpoint button,

, on the Build toolbar, press F9, or right click in the left margin and select from the pop-
up.

When debugging, you would normally set several breakpoints, each chosen to show when the
variables that you think are causing a problem are changing. Execution will stop before the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

statement indicated by the breakpoint is executed. A breakpoint is indicated by a large circle at
the start of a line of code, as you can see from this screen shot:

You can set breakpoints by placing the cursor anywhere in a line of code, but the compiler can
only break before a complete statement and not halfway through it. The breakpoint is set at the
beginning of the line in which you have placed the cursor, so execution will stop before the line
is executed. If you place a cursor in a line that doesn't contain any code (for example, the line
above the one in the picture), the breakpoint will be set on that line, and the program will stop at
the beginning of the next executable line.

You can remove a breakpoint by positioning the cursor anywhere in the same line as an existing

breakpoint and clicking the Insert/Remove Breakpoint button (or pressing F9) again.
Alternatively, you can remove all the breakpoints in the active project by selecting the Remove
All button on the Edit | Breakpoints... dialog, or by pressing Ctrl-Shift-F9 . Note that this will
remove breakpoints from all files in the project, even if they're not currently open in Visual C++.

Advanced Breakpoints

A more advanced way of specifying breakpoints is provided through a dialog you can pop up by

selecting the Edit/Breakpoints... menu option. As well as setting a breakpoint at a location other
than the beginning of a statement, you can set a breakpoint when a particular Boolean
expression evaluates to true. This is a powerful tool but it does introduce very substantial
overhead in a program as the expression needs to be re-evaluated continuously. Consequently,
execution will slow to a crawl, even on the fastest machines.

The dialog also allows a breakpoint to be set when a particular type of Windows message
occurs. This is very useful in Windows programs where you might suspect a problem with
handling a particular kind of message.

Starting Debugging

There are four ways of starting your application in debug mode, which you can see if you look at
the options under Start Debug in the Build menu.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

1. The Go option (F5 or press on the Build toolbar) simply executes a program up

to the first breakpoint (if any) where execution will halt. After you've examined all you
need to at a breakpoint, selecting Go again will continue execution up to the next
breakpoint. In this way, you can move through a program from breakpoint to breakpoint,
and at each halt in execution have a look at critical variables, changing their values if you
need to. If there are no breakpoints, starting the debugger in this way will execute the
entire program without stopping.

Of course, just because you started debugging using Go doesn't mean that you have to
continue using it; at each halt in execution you can choose any of the possible ways of
moving through your code.

2. Step Into (F11 or press on the Debug toolbar) executes your program one
statement at a time, stepping into every code block — which includes every function that
is called. This would be something of a nuisance if we used it throughout the debugging
process because, for example, it would also execute all the code in the library functions
for stream output — we're not really interested in this, as we didn't write it. Quite a few of
the library functions are written in Assembler language — including some of those
supporting stream input/output. Assembler language functions will execute one machine
instruction at a time, which can be rather time consuming as you might imagine, so to
avoid having to step through all that code, we'll use the Step Over facility (F10 or press

on the Debug toolbar) once we are at the beginning of main(). This will simply
execute the statements in our function main() one at a time, and run all the code used

by the stream operations (or any other functions that might be called within a statement)
without stopping.

3. Run to Cursor (Ctrl+F10 or press on the Debug toolbar) does exactly what it

says — it executes the program up to the statement where you left the text cursor in the
Text Editor window. In this way you can set the position where you want the program to
stop as you go along.

4. Finally, the Attach to Process... option on the Start Debug menu enables you to debug a
program that is already running. This option will display a list of the processes that are
running on your machine and you can select the process you want to debug. This is
really for advanced users and you should avoid experimenting with it unless you are
quite certain that you know what you are doing. You can easily lock up your machine or
cause other problems if you interfere with critical operating system processes.

First, we'll start the program with Step Into, so click the button or press F11 to begin.

After a short pause (assuming that you've already built the project), Visual C++ will switch to

debugging mode. The configuration of the windows and which windows appear when the
debugger is started can be customized. The complete list of windows is shown on the View
Debug Windows menu dropdown, and the set you have active and their arrangement when you
close the debugger will be remembered for the next session. In the default configuration, when
you start the debugger the Project Workspace will disappear and two new windows will appear
below the editor window. The Variables window on the left shows values for variables in the
context of the function that is currently executing, and the Watch window on the right of the
screen monitors values of variables selected by you. The Build menu will be replaced by the

Debug menu and the Debug toolbar will appear, even if it was not enabled previously. This may
pop up as a window, in which case you can dock it in the toolbar area if you wish. If you look at
the Debug menu, you'll see that it contains an option for Step Over as well as a number of other

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

functions that are available as buttons on the Debug toolbar, plus some that are not. We will not
be going into all of these as some of them are applicable to advanced programming techniques
that are beyond the scope of this book.

In the Text Editor window you'll see that the opening brace of our main() function is highlighted

by an arrow to indicate that this is the current point in the program's execution.

At this point in the program, we can't choose any variables to look at because none exist at

present. Until a declaration of a variable has been executed, you cannot look at its value or
change it.

There is also a Call Stack window. If this isn't displayed, you can activate it from the View/Debug
Windows menu, or by pressing Alt+7. The Call Stack window displays a list of the functions or
calls that are currently executing — in other words, functions that have been entered but have
not yet executed a return statement. The most recently called function is at the top — main().

The others are system functions that execute prior to main().We will see more on the Call

Stack window later.

Inspecting Variable Values

Defining a variable that you want to inspect is referred to as setting a watch for the variable.
Before we set any watches, we should get some variables declared in the program. We can
execute the declaration statements by invoking Step Over three times. Use the Step Over menu
item, the toolbar icon, or press F10 three times so that the arrow now appears at the start of the
line:

 pnumber = &number1; // Store address in pointer

If you look at the Auto tab in the Variables window now, you should see the following (although
the value for &number1 may be different on your system as it represents a memory location).
Note that the values for &number1 and pnumber are not equal to each other since the line in

which pnumber is set to the address of number1 (the line that the arrow is pointing at) hasn't
yet been executed. We initialized pnumber as a null pointer in the first line of the function,

which is why the address it contains is zero. If we had not initialized the pointer, it would contain
a junk value — whatever was left by the last program to use these particular four bytes of
memory. Of course, this could be zero but it is basically a random value.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Variables window has three tabs, each representing a different view of some of the

variables in use in your program:
§ The Auto tab shows the automatic variables in use in the current statement and its

immediate predecessor (in other words, the statement pointed to by the arrow in the Editor
Window and the one before it).

§ The Locals tab shows the values of the variables local to the current function. In general,
new variables will come into scope as you trace through a program and then go out of
scope as you exit the block in which they are defined. In our case, this window will always
show values for number1, number2 and pnumber as we only have one function,

main(), consisting of a single code block.

§ The this tab shows information about the current this pointer that contains the address

of the current object when a non-static class member function is executing. We will use this
a little later in this chapter.

You'll have noticed that &number1 and pnumber both have plus signs next to their names in

the Variables window. Plus signs will appear for any variable for which additional information
can be displayed, such as for an array, or a pointer, or a class object. In our case you can
expand the view for each of the pointer variables by clicking the plus signs. If you press F10
once more and click on the + adjacent to pnumber, the debugger will display the value stored at

the memory address contained in the pointer, as shown below.

Integer values can be displayed as decimal or hexadecimal. To toggle between the two, right

click anywhere on the Auto tab and select (or deselect) Hexadecimal Display from the pop-up
menu. You can view the variables that are local to the current function by selecting the Locals
tab. There are also other ways that we can inspect variables using the debugging facilities of
Visual C++.

Viewing Variables in the Edit Window

If we need to look at the value of a single variable, and that variable is visible in the Text Editor

window, the easiest way to look at its value is to position the cursor over the variable for a
second. A tooltip will pop up showing the current value of the variable. You can also look at
more complicated expressions by highlighting them and resting the cursor over the highlighted
area. Again a tooltip will pop up to display the value. Try highlighting the expression
*pnumber*10 a little lower down. Hovering the cursor over the highlighted expression will

result in the current value of the expression being displayed. Note that this won't work if the
expression is not complete -— if you miss the * that dereferences pnumber out of the

highlighted text for instance, or you just highlight *pnumber*, the value won't be displayed.

Unfortunately, this method won't show the extended information that appears in the Variables

window, such as the data stored at the address contained in a pointer, but like all things in the
IDE, we can configure the debugger to show it. The key is a small file named autoexp.dat

which can be found in the Common\MSDev98\Bin directory of your Visual C++ installation. This

contains all the templates for expanding data within the data tips, watch and variable windows
and instructions on how to create your own. You can add rules for your types or change the
predefined rules as you wish.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Alternatively, there is yet another way to get at this information.

Watching Variables' Values

To instantly set a watch for the pointer pnumber, first position the cursor in the Text Editor
window in the middle of the pointer name, pnumber, then click on the Debug toolbar icon,

You should see this window:

This is called the QuickWatch window because it is a quick way of displaying the value of a
variable or an expression. You could enter an expression in place of pnumber, pnumber+10

say, click on the Recalculate button, and the new value will be displayed.

The QuickWatch window can only show a single variable or expression, and since the dialog is

modal, we can't continue stepping through our code while it is displayed. You must close the
dialog in order to continue stepping through your code. If you want to monitor the value of
variables or expressions on an ongoing basis, it is better to use the Watch window. You can
transfer the expression in the QuickWatch window to the Watch window by clicking on the Add
Watch button. Alternatively you can set a permanent watch directly by dragging a highlighted
variable or expression from the TextEditor window to the Watch window using the mouse.

In the QuickWatch and Watch windows, as well as in the Variables window, the variable
pnumber is automatically displayed in hexadecimal notation, because this is usually the most

convenient form for an address. The values for other variables and expressions will be
displayed in a notation appropriate to their type. As we said earlier in the context of the
Variables window, if you want integer values displayed as hexadecimal, you can right click
anywhere in the window, and select the hexadecimal option from the pop-up menu. This will set
how integers are displayed in both windows, as well as in the edit window when you hover
mouse cursor over a variable. You can also add variables or expressions to the Watch window
by typing the name of the variable or the expression into the Name field of a line in the Watch
window.

Try expanding the entry for pnumber in the Watch window by clicking the plus sign. Now, type

*pnumber into the Name field of the last blank line. Since *pnumber is the value stored at the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

address given by pnumber, the last two lines will always have the same value throughout the

execution of the program.

You could have achieved exactly the same result by highlighting the line under pnumber in the

Variables window (the line that is shown when you click the plus sign) and dragging it into the
Watch window. You could also highlight a variable or expression in the Edit window and drag it
to the Watch window. Now try adding the rest of the variables shown by dragging them from
either the Auto tab of the Variables window or from the Edit Window into the Watch window.
Remember to start your drag by clicking in the Name field of the Variables window, otherwise
you'll just drag the value. You can remove items from the Watch window by highlighting the line
that they're on and pressing the Delete key.

Now you can step through each line of code in the program using Step Over so that you don't

have to step through all the stream output code. If you do accidentally step into some code that
you don't recognize, you can always step out of it again by using the Step Out item from the

Debug menu, hitting Shift+F11 or clicking the button on the Debug toolbar. This will
complete execution of that code and halt at the beginning of the next statement.

At each stage, you can see that everything operates as described by looking at the values of
the variables in the Watch window. The program will end as soon as the last line of code has
been executed, but if you wish you can end debugging before that by choosing the Stop

Debugging item from the Debug menu, pressing Shift+F5 or hitting the button on the
Debug toolbar.

There are various options for watching variables that you can experiment with. You can use any
of the ways of stepping through a program in any combination, and when debugging a program
for real, this is exactly what you would do. Don't forget to try the Help menu if you get stuck.

Changing the Value of a Variable

Using Watch windows also allows you to change the values of the variables you are watching.
You would use this in situations where a value displayed is clearly wrong, perhaps because
there are bugs in your program, or maybe all the code is not there yet. If you set the 'correct'
value, your program will stagger on so that you can test out more of it and perhaps pick up a
few more bugs. If your code involves a loop with a large number of iterations, say 30000, you
could set the loop counter to 29995 to step through the last few to verify that the loop terminates
correctly. It sure beats pressing F10 30000 times! Another useful application of the ability to set
values for variable during execution is to set values that cause errors. This will enable you to
check out the error handling code in your program — something that is almost impossible
otherwise.

To change the value of a variable in a Watch window you double-click the variable value shown,
and type the new value. If the variable you want to change is an array element, you need to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

expand the array by clicking on the + box alongside the array name, then change the element

value. To change the value for a variable displayed in hexadecimal notation, you can either
enter a hexadecimal number, or enter a decimal value prefixed by On (zero followed by n), so
you could enter a value as A9, or as 0n169. If you just enter 169 it will be interpreted as a
hexadecimal value. Naturally, you should be cautious about flinging new values into your
program willy-nilly. Unless you are sure you know what effect your changes are going to have,
you may end up with a certain amount of erratic program behavior, which is unlikely to get you
closer to a working program.

You'll probably find it useful to run a few more of the examples we have seen in previous
chapters in debug mode. It will enable you to get a good feel for how the debugger operates
under various conditions. Monitoring variables and expressions is a considerable help in sorting
out problems with your code, but there's a great deal more assistance available for seeking out
and destroying bugs. Let's look at how we can add code to a program that will provide more
information about when and why things go wrong.

Adding Debugging Code

For a program involving a significant amount of code, you will certainly need to add code that is
aimed at highlighting bugs wherever possible, and providing tracking output to help you pin
down where the bugs are You don't want to be in the business of single stepping through code
before you have any idea of what bugs there are, or which part of the code is involved. Code
that does this sort of thing is only required while you are testing a program. You won't need it
once you believe the program is fully working, and you won't want to carry the overhead of
executing it or the inconvenience of seeing all the output in a finished product. For this reason,
code that you add for debugging only operates in the debug version of a program, not in the
release version — provided you implement it in the right way, of course.

The output produced by debug code should provide clues as to what is causing a problem, and
if you have done a good job of building debug code into your program, it will give you a good
idea of which part of your program is in error. You can then use the debugger to find the precise
nature and location of the bug, and fix it.

The first way of checking the behavior of your program that we will look at is provided by a C++
library function.

Using Assertions

The standard library header <cassert> declares a function assert() that you can use to
check logical conditions within your program when a special preprocessor symbol, NDEBUG, is

not defined. The function is declared as:

 void assert(int expression);

The argument to the function specifies the condition to be checked, but the effect of the
assert() function is suppressed if a special preprocessor symbol, NDEBUG, is defined. The

symbol NDEBUG is automatically defined in the release version of a program, but not in the

debug version. Thus an assertion will check its argument in the debug version of a program but
will do nothing in a release version. If you want to switch off assertions in the debug version of a
program, you can define NDEBUG explicitly yourself using a #define directive. To be effective,

you must place the #define directive for NDEBUG preceding the #include directive for the
<cassert> header in the source file:

 #define NDEBUG // Switch off assertions
in the code

 #include <cassert> // Declares assert()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If the expression passed as an argument to assert() is non-zero (i.e. true) the function does
nothing. If the expression is 0 (false in other words) and NDEBUG is not defined, a diagnostic

message is output showing the expression that failed, the source file name, and the line number
in the source file where the failure occurred. After displaying the diagnostic message, the
assert() function calls abort() to end the program. Here's an example of an assertion used

in a function:

 char* append(char* pStr, const char* pAddStr)

 {

 // Verify non-null pointers

 assert(pStr != 0);

 assert(pAddStr != 0);

 // Code to append pAddStr to pStr...

 }

Calling the append() function above with a null pointer argument in a simple program

produced the following diagnostic message on my machine:

Assertion failed: pStr != 0, file d:\program files\microsoft visual

studio\myprojects\ex4_05\debug\ex4_05.exe, line 10

The assertion also displays a message box offering you the three options shown below:

Selecting the Abort button will end the program immediately. The Retry button will start the
Visual C++ debugger so you can step through the program to find out more about why the
assertion failed. Note that this will start a separate copy of Visual C++ running on your machine,
in addition to the original from which you started program execution. In principle, the Ignore
button allows the program to continue in spite of the error, but this is usually an unwise choice
as the results are likely to be unpredictable.

Where the assertion diagnostic output appears depends on the kind of program you are
running. With a console program the message will be passed to stderr. If the program is

executing under control of Visual C++ it will appear in the console output window as well as in
the message box we saw above. If you are running the program in a separate MSDOS session,
the message will appear on the DOS command line. With Windows programs — and we will be
writing these throughout the remaining chapters of the book — the diagnostic message will be
displayed in a Windows message box with three buttons as we saw earlier with our console
program run from within Visual C++.

You can use any kind of logical expression as an argument to assert(). You can compare

values, check pointers, validate object types, or whatever is a useful check on the correct
operation of your code. Getting a message when some logical condition fails helps a little, but in
general we will need considerably more assistance than that to detect and fix bugs. Let's look at
how we can add diagnostic code of a more general nature.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Adding your own Debugging Code

Using preprocessor directives, you can arrange to add any code you like to your program so
that it is only compiled and executed in the debug version. Your debug code will be omitted
completely from the release version, so it will not affect the efficiency of the tested program at
all. You could use the absence of the NDEBUG symbol as the control mechanism for the

inclusion of debugging code — that's the symbol used to control the assert() function

operation in the standard library, as we discussed in the last section. Alternatively, for a better
and more positive control mechanism, you can use another preprocessor symbol, _DEBUG, that

is always defined automatically in Visual C++ in the debug version of a program, but is not
defined in the release version. You simply enclose code that you only want compiled and
executed when you are debugging between a preprocessor #ifdef/#endif pair of directives,
with the test applied to the _DEBUG the symbol, as follows:

 #ifdef DEBUG

 // Code for debugging purposes...

 #endif // _DEBUG

The code between the #ifdef and the #endif will only be compiled if the symbol _DEBUG is

defined. This means that once your code is fully tested, you can produce the release version
completely free of any overhead from your debugging code. The debug code can do anything
that is helpful to you in the debugging process, from simply outputting a message to trace the
sequence of execution (each function might record that it was called for example) to providing
additional calculations to verify and validate data, or calling functions providing debug output.

Of course, you can have as many blocks of debug code like this in a source file as you wish.
You also have the possibility of using your own preprocessor symbols to provide more
selectivity as to what debug code is included. One reason for doing this is if some of your debug
code produced voluminous output, so you would only want to generate this when it was really
necessary. Another is to provide a high level of granularity into your debug output, so you can
pick and choose which output will be produced on each run. But even in these instances it is still
a good idea to use the _DEBUG symbol to provide overall control, since this automatically

ensures that the release version of a program is completely free of the overhead of debugging
code.

Let's consider a simple case. Suppose you used two symbols of your own to control debug code
— MYDEBUG that managed 'normal' debugging code, and VOLUMEDEBUG that you use to control

code that produced a lot more output, and that you only wanted some of the time. You can
arrange that these symbols are only defined if _DEBUG is defined:

 #ifdef _DEBUG

 #define MYDEBUG

 #define VOLUMEDEBUG

 #endif

To prevent volume debugging output you just need to comment out the definition of
VOLUMEDEBUG, and neither symbol will be defined if _DEBUG is not defined. Where your

program has several source files, you will probably find it convenient to place your debug
control symbols together in a header file, and then #include the header into each file that

contains debugging code.

Of course, when there is a lot of debugging output, having it directed to the console window will

be quite inconvenient. One problem with this is that you can't browse the output afterwards. A

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

useful facility for console programs is provided on the Debug tab of the Project Settings dialog.
You can pop this up by right clicking on the project name in FileView (when the debugger is not
active) and selecting Settings..., or you can select Settings... from the Project menu or just press
Alt+F7. You can specify how output is to be redirected with a Program arguments: entry as shown
below.

The > symbol is the redirection symbol used with MS_DOS commands. The left argument for >

is the source of data and the right argument is the destination. If the left argument is omitted,
the default source is stdout, the destination for output from your program. Thus, >output.txt
redirects the standard output stream, stdout, to a file, output.txt, which will be created in

the current directory.

You can use the digits 1 and 2 to specify a data source to be redirected they correspond to
stdout and stderr respectively. Specifying a destination as &1 or &2 redirects data to the

same destination as the current stdout or stderr, respectively. Thus the second part, 2>&1,
redirects the standard error stream, stderr, to the same destination as stdout. You might

also find it useful to read input from a text file that you have prepared in advance. You can
redirect input from the standard input stream, stdin to be read from a file input.txt say, by

entering <input.txt here A further possibility is to append data to an existing stream using the >>
operator. If you append the data sent to stdout to a file with the entry >>output.txt, you will

accumulate output from successive program runs in the same file.

Let's look at a simple example to see how adding debugging code to a program might work in

practice.

Try it Out: - Adding Code for Debugging

In order to explore these and some general debugging approaches, we will take an example of
a program that, while simple, still contains quite a few bugs that we can find and eliminate. Thus
you must regard all the code in the remainder of this chapter as suspect, particularly since it will
not necessarily reflect good programming practice.

For experimenting with debugging operations, we will start by defining a class that represents a
person's name, and then proceed to test it in action. There will be a lot wrong with this code, so
resist the temptation to fix the obviously erroneous code here — the idea is to exercise the
debugging operations to find them. However, in practice a great many bugs are very evident as
soon as you run a program. You don't necessarily need the debugger or additional code to spot
them.

First of all we will create an empty console application. You can disable the pre-compiled

headers for this project since the example will be small. You do this on the C/C++ tab in the
Project Settings dialog — look for precompiled headers in the Category: drop down list. Next, let's
add a header file, Name.h, containing the definition of the Name class. We will represent a

name by two data members that are pointers to strings storing a person's first and second
names. If we want to be able to declare arrays of Name objects we must provide a default

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

constructor in addition to any other constructors. We will want to be able to compare Name

objects, so we should include overloaded operators in the class to do this. We will also want to
be able to retrieve the complete name as a single string for convenience. We can add a
definition of the Name class to the Name.h file with these capabilities as follows:

 // Name.h - Definition of the Name class

 #ifndef NAME_H

 #define NAME_H

 // Class defining a person's name

 class Name

 {

 public:

 Name(); // Default
constructor

 Name(const char* pFirst, const char* pSecond); //
Constructor

 char* getName(char* pName) const; // Get the complete

name

 int getNameLength() const; // Get the complete
name length

 // Comparison operators for names

 bool operator<(const Name& name) const;

 bool operator== (const Name& name) const;

 bool operator>(const Name& name) const;

 private:

 char* pFirstname;

 char* pSurname;

 };

 #endif //NAME_H

We can now add a .cpp file to the project to hold the definitions for the member functions of

Name. The constructor definitions are shown below:

 // Name.cpp - Implementation of the Name class

 #include "Name.h" // Name class
definitions

 #include "DebugStuff.h" // Debugging
code control

 #include <cstring> // For C-
style string functions

 #include <cassert> // For

assertions

 #include <iostream>

 using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Default constructor

 Name::Name()

 {

 #ifdef CONSTRUCTOR_TRACE

 // Trace constructor calls

 cerr << "\nDefault Name constructor called.";

 #endif

 pFirstname = pSurname = "\0";

 }

 // Constructor

 Name::Name(const char* pFirst, const char*
pSecond):pFirstname(pFirst),

pSurname(pSecond)

 {

 // Verify that arguments are not null

 assert(pFirst != 0);

 assert(pSecond != 0);

 #ifdef CONSTRUCTOR_TRACE

 // Trace constructor calls

 cout << "\nName constructor called.";

 #endif

 }

Of course, we don't particularly want to have Name objects that have null pointers as members,

so the default constructor assigns empty strings for the names. We have used our own debug
control symbol, CONSTRUCTOR_TRACE, which controls output that traces constructor calls. We
will add the definition of this symbol to the header, DebugStuff.h a little later. We could put

anything at all as debug code here, such as displaying argument values, but it is usually best to
keep it as simple as your debugging requirements will allow, otherwise your debug code may
introduce further bugs. Here we just identify the constructor when it is called.

We have two assertions in the constructor to check for null pointers being passed as
arguments. We could have combined these into one, but by using a separate assertion for each
argument we can identify which pointer is null — unless they both are, of course.

You might also want to check that the strings are not empty in an application, by counting the
characters prior to the terminating '\0' for instance. However, you should not use an assertion

to flag this. This sort of thing could arise as a result of user input, so ordinary program checking
code should be added to deal with errors that may arise in the normal course of events. It is
important to recognize the difference between bugs — errors in the code — and error conditions
that can be expected to arise during normal operation of a program. The constructor should
never be passed a null pointer, but a zero length name could easily arise under normal
operating conditions — from keyboard input for example. In this case it would probably be better
if the code reading the names were to check for this before calling the Name class constructor.

You want errors that will arise during normal use of a program to be handled within the release
version of the code.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The getName() function requires the caller to supply the address of an array that will

accommodate the name:

 // Return a complete name as a string containing first name,
space, surname

 // The argument must be the address of a char array sufficient to

hold the name

 char* Name::getName(char* pName) const

 {

 assert(pName != 0); // Verify non-null argument

 #ifdef FUNCTION_TRACE

 // Trace function calls

 cout << "\nName::getName() called.";

 #endif

 strcpy(pName, pFirstname); // copy first
name

 pName[strlen(pName)] = ' '; // Append a
space

 return strcpy(pName+strlen(pName)+1, pSurname); // Append
second name and

 // return
total

 }

Here we have an assertion to check that the pointer argument passed is not null. Note that we
have no way to check that the pointer is to an array with sufficient space to hold the entire
name. We must rely on the calling function to do that. We also have debug code to trace when
the function is called. Having a record of the complete sequence of calls up to the point where
catastrophe strikes can sometimes provide valuable insights as to why and how the problem
arose.

The getNameLength() member is a helper function that will enable the user of a Name object

to determine how much space must be allocated to accommodate a complete name:

 // Returns the total length of a name

 int Name::getNameLength() const

 {

 #ifdef FUNCTION_TRACE

 // Trace function calls

 cout << "\nName::getNameLength() called.";

 #endif

 return strlen(pFirstname)+strlen(pSurname);

 }

A function that intends to call getName() will be able use the value returned by

getNameLength() to determine how much space is needed to accommodate a complete

name. We also have trace code in this member function.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

In the interests of developing our class incrementally, we can omit the definitions for the
overloaded comparison operators. Definitions are only required for member functions that you
actually use in your program, and in our initial test program we will keep it very simple.

We can define the preprocessor symbols control whether or not the debug code is executed in
the DebugStuff.h header:

 // DebugStuff.h - Debugging control

 #ifndef DEBUGSTUFF_H

 #define DEBUGSTUFF_H

 #ifdef _DEBUG

 #define CONSTRUCTOR_TRACE // Output constructor call trace

 #define FUNCTION_TRACE // Trace function calls

 #endif

 #endif //DEBUGSTUFF_H

Our control symbols will only be defined if _DEBUG is defined, so none of the debug code will be

included in a release version of the program.

We can now try out the Name class with the following main() function:

 // Ex12_1.cpp : Including debug code in a program

 #include <iostream>

 using namespace std;

 #include "Name.h"

 int main(int argc, char* argv[])

 {

 Name myName("Ivor", "Horton"); // Try a single
object

 // Retrieve and store the name in a local char array

 char theName[10];

 cout << "\nThe name is " << myName.getName(theName);

 // Store the name in an array in the free store

 char* pName = new char[myName.getNameLength()];

 cout << " \nThe name is " << myName.getName (pName);

 cout << end1;

 return 0;

 }

Now that all the code has been entered, double-checked, and is completely correct, all we have
to do is run it to make sure. Hardly seems necessary really...

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

How It Works

Well it doesn't — it doesn't even compile, does it? The problem is the Name constructor. The

parameters are const — as they should be, but the data members are not. We could declare
the data members as const, but anyway, we should be copying the name strings, not just

copying the pointers. Let's amend the constructor definition to:

 // Constructor

 Name::Name(const char* pFirst, const char* pSecond)

 {

 // Verify that arguments are not null

 assert(pFirst != 0);

 assert(pSecond != 0);

 #ifdef CONSTRUCTOR_TRACE

 // Trace constructor calls

 cout << "\nName constructor called.";

 #endif

 pFirstname = new char[strlen(pFirst)+1];

 strcpy(pFirstname, pFirst);

 pFirstname = new char[strlen(pSecond)+1];

 strcpy(pSurname, pSecond);

 }

Now we are copying the strings so we should be OK now, shouldn't we?

Rebuild and rerun the program and it gets as far as execution, but fails at the second hurdle.
This time we have a message box telling us that the program has performed an illegal
operation. You can see from the console window that we got a message from the constructor,
so we know roughly how far the execution went. Select the Debug button in the dialog (Cancel if
you're running Windows NT) and we will see what happened. This starts a debug session with
our example that is separate from the original Visual C++ session.

Debugging a Program

When the debugger starts, we get another message box indicating we have an unhandled

exception. In the debugger, we have a comprehensive range of facilities for stepping through
our code and tracing the sequence of events. Click on OK in the dialog that indicates there is an
unhandled exception, and on the Cancel button in the dialog that follows asking the whereabouts
of STRCAT.ASM — we really don't want to get into assembler code at this point, and certainly
not that of the library function strcat().

The program is at the point where the exception occurred and the code currently executing is in

the editor window. The exception is caused by referring to a memory location way outside the
realm of the program, so a rogue pointer in our program is the immediate suspect.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Call Stack

The call stack stores information about functions that have been called and are still executing

because they have not returned yet. As we saw earlier, the Call Stack window shows the
sequence of function calls outstanding at the current point in the program. Remember that if it's
not visible, pressing Alt+7 will display it.

If you're running Windows NT, the internal workings of the operating system and its kernel mean
that you should see a different set of entries in the call stack window to that above and indeed
to those variable windows that are used to illustrate the rest of this chapter. However the
differences are not so major that you will be unable to follow the remainder of this chapter
through. For example, in Windows NT, the current Call Stack window should look like this:

The sequence of function calls outstanding runs from the most recent call at the top, the library
function strcat(), down to the KERNEL32 calls at the bottom. Each function was called

directly or indirectly by the one below it, and none of those displayed have yet executed a
return. The bottom four lines (two for NT) are both system routines that start executing prior to
our main() function. Our interest is the role of our code in this, and you can see from the
second line down in the window that the Name class constructor was still in execution (had not

returned) when the exception was thrown. If you double click on that line, the editor window will
display the code for that function, and place the cursor on the line in the source code being
executed when the problem arose, which should be the line below:

 strcpy(pSurname, pSecond);

This call caused the unhandled exception to be thrown, but why? The original problem is not

necessarily here — it just became apparent here. This is typical of errors involving pointers.
Take a look at the window showing the values in the variables in the context of the Name

constructor at the bottom left.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Because the context is a function that is a member of the Name class, the Variable window

displays the this pointer that contains the address of the current object. The pointer,
pSurname contains a weird address, 0×cccccccc, that corresponds to 3435973836 in decimal!

Since I have rather less than 3 billion bytes of memory, it looks a bit unlikely, so pSurname has
got to be the rogue pointer. If you look at pFirstname, this is also in a mess. At the point

where we are in the code (copying the surname) the first name should already have been
copied, but the contents are rubbish.

The culprit is in the preceding line. Hasty copying of code has resulted in allocating memory for
pFirstname for a second time, instead of allocating space for pSurname. The copy is to a

junk address, and this causes the exception to be thrown. Don't you wish you had checked what
you did, properly? The line should be:

 pSurname = new char[strlen(pSecond)+1];

It is typically the case that the code causing a bad pointer address is not the code where the

error makes itself felt. In general it may be very far away. Just examining the pointer or pointers
involved in the statement causing the error can often lead you directly to the problem, but
sometimes it can involve a lot of searching. You could always add more debug code if you get
really stuck.

You can go right ahead and change the statement in the editor window to what it should be. To

recompile the project with the change included, you can select the button on the Debug
toolbar, or just press Alt+F10.

We can restart the program inside the debugger once it has been recompiled by clicking on the

button on the Debug toolbar, but surprise, surprise — we get another unhandled
exception. This undoubtedly means more pointer trouble, and you can see from the output in
the console window that the last function call was to getNameLength():

Name constructor called.

Name::getName() called.

The name is Horton

Name::getNameLength() called.

The output for the name is definitely not right. However, we don't know where exactly the
problem is. Restarting and stepping through the program once more should provide some clues.

Step over to the Error

In the Call Stack window you can see that the program is in the getNameLength() function
member, which merely calls the strlen() library function to get the overall length of the name.

The strlen() function is unlikely to be at fault, so this must mean that there is something
wrong with part of the object. If you double click the getNameLength() function in the Call

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Stack window, the window showing the variables in the context of this function shows that the
current object has been corrupted.

The current object is pointed to by this, and by clicking on the plus symbol, you can see the

data members. It's the pSurname member that is the problem. The address it contains should

refer to the string "Horton" but it clearly doesn't.

On the assumption that this kind of error does not originate at the point where you experience
the effect, we can go back, restart the program and single step through, looking for where the

Name object gets messed up. You can select in the debug window to restart the
application, and single step through the statements by pressing F10. After executing the
statement that defines the myName object, the Variable window for the main() function shows

that it has been constructed successfully, as you can see below.

Executing the next statement that outputs the name corrupts the object, myName. You can see

that this is the case from the Variables window for main().

On the reasonable assumption that the stream output operations work OK, it must be our
getName() member doing something it shouldn't.

If you restart the debugger once more, but this time use when execution reaches the
output statement, you can step through the statement's getName() function. Watch the context

window as you progress through the function.

You will see that everything is fine until you execute the statement:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return strcpy(pName+strlen(pName)+1, pSurname); // Append
second name after

 // the space

This statement causes the corruption of pSurname for the current object, pointed to by this.

You can see this in the Variables window below.

How can copying from the object to another array corrupt the object, especially since pSurname

is passed as an argument for a const parameter? You need to look at the address stored in
pName for a clue. Compare it with the address contained in the this pointer. The difference is

only 12 bytes — they could hardly be closer really! The address calculation for the position in
pName is incorrect, simply because we forgot that copying a space to overwrite the terminating

'\0' in the pName array means that strlen(pName) can no longer calculate the correct
length of pName. The whole problem is caused by the statement:

 pName[strlen(pName)] = ' '; // Append a space

This is overwriting the '\0' and thus making the subsequent call to strlen() produce an
invalid result. This code is unnecessarily messy anyway - using the library function strcat()

to catenate a string is much better than using strcpy(), as it renders all this pointer

modification unnecessary. We should rewrite the statement as:

 strcat(pName, " "); // Append a space

Of course, the subsequent statement also needs to be changed to:

 return strcat(pName, pSurname); // Append second name and
return total

With these changes we can recompile and give it another go. The program appears to run
satisfactorily as you can see from the output:

Name constructor called.

Name::getName() called.

The name is Ivor Horton

Name::getNameLength() called.

Name::getName() called.

The name is Ivor Horton

Getting the right output does not always mean that all is well — and it certainly isn't in this case.

 int main(int argc, char* argv[])

 {

 Name myName("Ivor", "Horton"); // Try a single
object

 // Retrieve and store the name in a local char array

 char theName[10];

 cout << "\nThe name is " << myName.getName(theName);

 // Store the name in an array in the free store

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 char* pName = new char[myName.getNameLength()];

 cout << "\nThe name is " << myName.getName(pName);

 cout << endl;

 return 0;

 }

Both the shaded lines are in error. The first shaded line provides an array of 10 characters to
store the name. In fact 12 are required — 10 for the two names, one for the space, and one for
'\0' at the end. The more serious problem is in the definition getNameLength() member of

the class. It omits to add 1 for the space between the first and second names, so the value
returned will always be one short. The definition should be:

 int Name::getNameLength() const

 {

 #ifdef FUNCTION_TRACE

 // Trace function calls

 cout << "\nName::getNameLength() called.";

 #endif

 return strlen(pFirstname)+strlen(pSurname)+1;

 }

That's not the end of it by any means. You may have already spotted that our class still has
serious errors, but let's press on with testing to see if they come out in the wash.

Testing the Extended Class

Based on the output, everything is working, so it's time to add the definitions for the overloaded
comparison operators to the Name class. To implement these we can use the comparison
functions declared in the <cstring> header. Let's start with the 'less than' operator:

 // Less than operator

 bool Name::operator<(const Name& name) const

 {

 int result = strcmp(pSurname, name.pSurname);

 if(result < 0)

 return true;

 if(result == 0 && strcmp(pFirstname, name.pFirstname) < 0)

 return true;

 else

 return false;

 }

We can now define the > operator very easily in terms of the < operator:

 // Greater than operator

 bool Name::operator>(const Name& name) const

 {

 return name > *this;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

For determining equal names we use the strcmp() function from the standard library again:

 // Equal to operator

 bool Name::operator==(const Name& name) const

 {

 if(strcmp(pSurname, name.pSurname) == 0 &&

 strcmp(pFirstname,
name.pFirstname) == 0)

 return true;

 else

 return false;

 }

We must now extend the test program. We can create an array of Name objects, initialize them

in some arbitrary way, and then compare the elements of the array using our comparison
operators for a Name object. Here's main() along with a function, init(), to initialize a Name

array:

 // Ex12_2.cpp : Extending the test operation

 #include <iostream>

 using namespace std;

 #include "Name.h"

 // Function to initialize an array of random names

 void init(Name* names, int count)

 {

 char* firstnames[] = { "Charles", "Mary", "Arthur", "Emily",
"John"};

 int firstsize = sizeof (firstnames)/sizeof(firstnames[0]);

 char* secondnames[] = { "Dickens", "Shelley", "Miller",
"Bronte", "Steinbeck"};

 int secondsize = sizeof (secondnames)/sizeof(secondnames[0]);

 char* first = firstnames[0];

 char* second = secondnames[0];

 for(int i = 0 ; i<count ; i++)

 {

 if(i%2)

 first = firstnames[i%firstsize];

 else

 second = secondnames[i%secondsize];

 names[i] = Name(first, second);

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 int main(int argc, char* argv[])

 {

 Name myName("Ivor", "Horton"); // Try a single
object

 // Retrieve and store the name in a local char array

 char theName[12];

 cout << "\nThe name is " << myName.getName(theName);

 // Store the name in an array in the free store

 char* pName = new char[myName.getNameLength()+1];

 cout << "\nThe name is " << myName.getName(pName);

 const int arraysize = 10;

 Name names[arraysize]; // Try an
array

 // initialize names

 init(names, arraysize);

 // Try out comparisons

 char* phrase = 0; // Stores a
comparison phrase

 char* iName = 0; // Stores a

complete name

 char* jName = 0; // Stores a
complete name

 for(int i = 0; i < arraysize ; i++) // Compare
each element

 {

 iName = new char[names[i].getNameLength()+1]; // Array to
hold first name

 for(int j = i+1 ; j<arraysize ; j++) // with all
the others

 {

 if(names[i] < names[j])

 phrase = " less than ";

 else if(names[i] > names[j])

 phrase = " greater than ";

 else if(names[i] == names[j]) //
Superfluous - but it calls

 phrase = " equal to "; // the
operator function

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 jName = new char[names[j].getNameLength()+1]; // Array to
hold second name

 cout << endl << names[i].getName(iName) << " is" << phrase

 << names[j].getName(jName);

 }

 }

 cout << endl;

 return 0;

 }

The init() function picks successive combinations of first and second names from the array
of names to initialize the array Name objects. Names will be repeated after 25 have been

generated, but we only need 10 here.

Finding the Next Bug

It fails again. What's more there's a lot of output. With each element in the array being
compared with each of the others, we are going to get 45 lines of output just from that. We
could reduce the size of the array, but let's direct the output for the project to a file, as we
discussed earlier. Just specify >output.txt 2>&1 as the Program arguments: on the Debug tab of the

Project Settings dialog.

The Call Stack window tells you what is wrong. We have successive calls of the operator>()

function so it must be calling itself. If you look at the code you can see why — a typo. The single
line in the body of the function should be:

 return name < *this;

We can fix that, recompile, and try again. This time it works correctly but unfortunately the class
is still defective. Don't forget that all the output is now saved to a file called output.txt in your

project directory. It has a memory leak that exhibits no symptoms here, but in another context
could cause mayhem. Memory leaks are hard to detect ordinarily, but we can get some extra
help from Visual C++.

Debugging Dynamic Memory

Allocating memory dynamically is a potent source of bugs and perhaps the most common bugs
in this context are memory leaks. Just to remind you, a memory leak arises when you use the
new operator to allocate memory, but you never use the delete operator to free it again when

you are done with it. Apart from just forgetting to delete memory that you have allocated, you
should particularly be aware that non-virtual destructors in a class hierarchy can also cause the
problem — since it can cause the wrong destructor to be called when an object is destroyed, as
we have seen. Of course, when your program ends, all the memory is freed, but while it is
running it remains allocated to your program. Memory leaks present no obvious symptoms
much of the time, maybe never in some cases, but it is detrimental to the performance of your
machine since memory is being occupied to no good purpose. Sometimes, it can result in a
catastrophic failure of the program when all available memory has been allocated.

For checking your program's use of the free store, Visual C++ provides a range of diagnostic
routines — these use a special debug version of the free store. These are declared in the
header crtdbg.h. All calls to these routines are automatically removed from the release

version of your program, so you don't need to worry about adding preprocessor controls for
them.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Functions Checking the Free Store

Let's get an overview of what's involved in checking free store operations and then see how
memory leaks can be detected. The functions declared in crtdbg.h check the free store using
a record of its status stored in a structure of type _CrtMemState. This structure is relatively

simple, and is defined as:

 typedef struct _CrtMemState

 {

 struct _CrtMemBlockHeader* pBlockHeader; // Pointer to the
most recently

 // allocated block

 unsigned long lCounts[_MAX_BLOCKS]; // Counter for each
of the types of

 // block

 unsigned long lSizes[_MAX_BLOCKS]; // Total bytes
allocated in each

 // block type

 unsigned long lHighWaterCount; // The most bytes
allocated at a time

 // up to now

 unsigned long lTotalCount; // The total bytes

allocated at

 // present

 } _CrtMemState;

We won't be concerned directly with the details of the state of the free store because we will be

using functions that present the information in a more readable form. There are quite a few
functions involved in tracking free store operations but we will only look at the five most
interesting ones.

These provide you with the following capabilities:

§ To record the state of the free store at any point

§ To determine the difference between two states of the free store.
§ To output state information.
§ To output information about objects in the free store.

§ To detect memory leaks.

Here are the declarations of these functions together with a brief description of what they do:

void _CrtMemCheckpoint(_CrtMemState* state);

This stores the current state of the free store in a _CrtMemstate structure. The argument you
pass to the function is a pointer to a _CrtMemState structure in which the state is to be

recorded.

int _CrtMemDifference(_CrtMemState* stateDiff,

 const _CrtMemState* oldState,

 const _CrtMemState* newState);

This function compares the state specified by the third argument, with a previous state that you
specify in the second argument. The difference is stored in a _CrtMemState structure that you

specify in the first argument. If the states are different, the function returns a non-zero value
(true), otherwise 0 (false) is returned.

void _CrtMemDumpStatistics(const _CrtMemState* state);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This dumps information about the free store state specified by the argument to an output
stream. The state structure pointed to by the argument can be a state that you recorded using
_CrtMemCheckpoint() or the difference between two states produced by
_CrtMemDifference().

void _CrtMemDumpAllObjectsSince(const _CrtMemState* state);

This function dumps information on objects allocated in the free store since the state of the free
store specified by the argument — this will have been recorded by an earlier call in your
program to _CrtMemCheckpoint(). If you pass null to the function, it dumps information on

all objects allocated since the start of execution of your program.

int _CrtDumpMemoryLeaks();

This is the function we need for our example as it checks for memory leaks and dumps

information on any leak that is detected. You can call this function at any time, but a very useful
mechanism can cause the function to be called automatically when your program ends. If you
enable this mechanism, you will get automatic detection of any memory leaks that occurred
during program execution, so let's see how we can do that.

Controlling Free Store Debug Operations

You control free store debug operations by setting a flag, _crtDbgFlag, which is of type int.

This flag incorporates five separate control bits, including one to enable automatic memory leak
checking. You specify these control bits using the following identifiers:

Bit field Description

_CRTDBG_ALLOC_MEM_DF When this bit is on it turns on debug allocation so the
free store state can be tracked.

_CRTDBG_DELAY_FREE_MEM_DF When this is on it prevents memory from being freed
by delete, so that you can determine what happens

under low-memory conditions.

_CRTDBG_CHECK_ALWAYS_DF When this is on it causes the _CrtCheckMemory()
function to be called automatically at every new and

delete operation. This function verifies the integrity of
the free store, checking, for example, that blocks have
not been overwritten by storing values beyond the
range of an array. A report is output if any defect is
discovered. This slows execution, but catches errors
quickly.

_CRTDBG_CHECK_CRT_DF When this is on, the memory used internally by the
run-time library is tracked in debug operations.

_CRTDBG_LEAK_CHECK_DF Causes leak checking to be performed at program exit
by automatically calling _CrtDumpMemoryLeaks().

You only get output from this if your program has failed
to free all the memory that it allocated.

By default, the _CRTDBG_ALLOC_MEM_DF bit is on, and all the others are off. You must use the

bitwise operators to set and unset combinations of these bits. To set the _crtDbgFlag flag you
pass a flag of type int to the _CrtDbgFlag() function that implements the combination of

indicators that you require. This puts your flag into effect and returns the previous status of
_CrtDbgFlag. One way to set the indicators you want is to first obtain the current status of the
_crtDbgFlag flag. You would do this by calling the _CrtSetDbgFlag() function with the

argument _CRTDBG_REPORT_FLAG as follows:

 int flag = _CrtSetDbgFlag(_CRTDBG_REPORT_FLAG); //

Get current flag

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can then set or unset the indicators by combining the identifiers for the individual indicators
with this flag using bitwise operators. To set an indicator on, you OR the indicator identifier with
the flag. For example, to set the automatic leak checking indicator on, in the flag, you could
write:

 flag |= _CRTDBG_LEAK_CHECK_DF;

To turn an indicator off, you must AND the negation of the identifier with the flag. For example,
to turn off tracking of memory that is used internally by the library, you could write:

 flag &= ~_CRTDBG_CHECK_CRT_DF;

To put your new flag into effect, you just call _CrtSetDbgFlag() with your flag as the

argument:

 _CrtSetDbgFlag(flag);

Alternatively, you can OR all the identifiers for the indicators that you want, together, and pass
the result as the argument to _CrtSetDbgFlag(). If we just want to leak check when the

program exits, we could write:

 _CrtSetDbgFlag(_CRTDBG_LEAK_CHECK_DF|_CRTDBG_ALLOC_MEM_DF);

If you need to set a particular combinations of indicators, rather than setting or unsetting bits at
various points in your program, this is the easiest way to do it. We are almost at the point where
we can apply the dynamic memory debugging facilities to our example. We just need to look at
how we determine where free store debugging output goes.

Free Store Debugging Output

The destination of the output from the free store debugging functions is not the standard output
stream by default; they go to the debug message window. If we want to see the output on
stdout we must set this up. There are two functions involved in this, _CrtSetReportMode()

which sets the general destination for output, and _CrtSetReportFile() which specifies a
stream destination specifically. The _CrtSetReportMode() function is declared as:

int _CrtSetReportMode(int reportType, int reportMode);

There are three kinds of output produced by the free store debugging functions. Each call to the
_CrtSetReportMode() function sets the destination specified by the second argument for the

output type specified by the first argument. You specify the report type by one of the following
identifiers:

Report Type Description

_CRT_WARN Warning messages of various kinds. The output when a memory leak is
detected is a warning.

_CRT_ERROR Catastrophic errors that report unrecoverable problems.

_CRT_ASSERT Output from assertions (not that from the assert() function that we

discussed earlier).

The crtdbg.h header defines two macros, ASSERT and ASSERTE, that work in much the same
way as the assert() function in the standard library. The difference between these two

macros is that ASSERTE reports the assertion expression when a failure occurs, whereas the
ASSERT macro does not.

You specify the report mode by a combination of the following identifiers:

Report Mode _CrtDbgReport Behavior

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Report Mode _CrtDbgReport Behavior

_CRTDBG_MODE_DEBUG This is the default mode, which sends output to a debug string
that you will see in the debug window when running under
control of the debugger.

_CRTDBG_MODE_FILE Output is to be directed to an output stream.

_CRTDBG_MODE_WNDW Output is presented in a message box.

_CRTDBG_REPORT_MODE If you specify this, the _CrtSetReportMode() function just
returns the current report mode.

To specify more than one destination, you simply OR the identifiers using the | operator. You set
the destination for each output type with a separate call of the _CrtSetReportMode()

function. To direct the output when a leak is detected to a file stream, we can set the report
mode with the following statement:

 CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);

This just sets the destination generically as a file stream. We still need to call the
_CrtSetReportFile() function to specify the destination specifically.

The _CrtSetReportFile() function is declared as:

 _HFILE _CrtSetReportFile(int reportType, _HFILE reportFile);

The second argument here can either be a pointer to a file stream (of type _HFILE), which we

will not go into further, or can be one of the following identifiers:

Report File _CrtDbgReport Behavior

_CRTDBG_FILE_STDERR Output is directed to the standard error stream, stderr.

_CRTDBG_FILE_STDOUT Output is directed to the standard output stream, stdout.

_CRTDBG_REPORT_FILE If you specify this argument, the _CrtSetReportFile()

function will just return the current destination.

To set the leak detection output to the standard output stream, we can write:

 _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);

We now have enough knowledge of the free store debug routines to try out leak detection in our
example.

Try it Out: - Memory Leak Detection

Even though we have set the project settings to direct the standard output stream to a file, it
would be as well to reduce the volume of output, so we will reduce the size of the names array
to 5 elements. Here's the new version of main() to use the free store debug facilities in general

and leak detection in particular:

 int main(int argc, char* argv[])

 {

 // Turn on free store debugging and leak-checking bits

 _CrtSetDbgFlag(_CRTDBG_LEAK_CHECK_DF|_CRTDBG_ALLOC_MEM_DF);

 // Direct warnings to stdout

 _CrtSetReportMode(_CRT_WARN, _CRTDBG_MODE_FILE);

 _CrtSetReportFile(_CRT_WARN, _CRTDBG_FILE_STDOUT);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 Name myName("Ivor", "Horton"); // Try a
single object

 // Retrieve and store the name in a local char array

 char theName[12];

 cout << "\nThe name is " << myName.getName(theName);

 // Store the name in an array in the free store

 char* pName = new char[myName.getNameLength()+1];

 cout << "\nThe name is " << myName.getName(pName);

 const int arraysize = 5;

 Name names[arraysize]; // Try an
array

 // Initialize names

 init(names, arraysize);

 // Try out comparisons

 char* phrase = 0; // Stores a
comparison phrase

 char* iName = 0; // Stores a

complete name

 char* jName = 0; // Stores a
complete name

 for(int i = 0; i < arraysize ; i++) // Compare
each element

 {

 iName = new char[names[i].getNameLength()+1]; // Array to
hold first name

 for(int j = i+1 ; j<arraysize ; j++) // with all
the others

 {

 if(names[i] < names[j])

 phrase = " less than ";

 else if(names[i] > names[j])

 phrase = " greater than ";

 else if(names[i] == names[j]) // Superfluous
- but it calls

 // the
operator function

 phrase = " equal to ";

 jName = new char[names[j].getNameLength()+1]; // Array to
hold second name

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 cout << endl << names[i].getName(iName) << " is" << phrase

 << names[j].getName(jName);

 }

 }

 cout << endl;

 return 0;

 }

You need to add an #include directive for crtdbg.h to the file of course. To reduce output

further we could switch off the trace output by commenting out our control symbols in the
DebugStuff.h header:

 // DebugStuff.h - Debugging control

 #ifndef DEBUGSTUFF_H

 #define DEBUGSTUFF_H

 #ifdef _DEBUG

 //#define CONSTRUCTOR_TRACE // Output constructor call trace

 //#define FUNCTION_TRACE // Trace function calls

 #endif

 #endif //DEBUGSTUFF_H

You can recompile the example and run it again.

How It Works

It works just as expected. We get a report that our program does indeed have memory leaks,

and we get a list of the objects in the free store at the end of the program. The output generated
by the free store debug facility starts with:

Detected memory leaks!

Dumping objects ->

{55} normal block at 0x007A1FE0, 16 bytes long.

 Data: < > CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD CD

{54} normal block at 0x007A0030, 16 bytes long.

 Data: <Emily Steinbeck > 45 6D 69 6C 79 20 53 74 65 69 6E 62 65 63 6B 00

{53} normal block at 0x007A0070, 13 bytes long.

 Data: <Emily Miller > 45 6D 69 6C 79 20 4D 69 6C 6C 65 72 00

and ends with:

{32} normal block at 0x007A05B0, 8 bytes long.

 Data: <Dickens > 44 69 63 6B 65 6E 73 00

{31} normal block at 0x007A0C90, 8 bytes long.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 Data: <Charles > 43 68 61 72 6C 65 73 00

{30} normal block at 0x007A0CD0, 12 bytes long.

 Data: <Ivor Horton > 49 76 6F 72 20 48 6F 72 74 6F 6E 00

{27} normal block at 0x007A0F00, 7 bytes long.

 Data: <Horton > 48 6F 72 74 6F 6E 00

{26} normal block at 0x007A0F40, 5 bytes long.

 Data: <Ivor > 49 76 6F 72 00

Object dump complete.

The objects reported as being left in the free store are presented with the most recently
allocated first, and the earliest last. It is obvious from the output that the Name class is allocating

memory for its data members, and never releasing it. The last three objects dumped correspond
to the pName array allocated in main(), and the data members of the object, myName. The

blocks for the complete names are allocated in main(), and they too are left laying about. The

problem our class has is that we forgot the fundamental rules relating to classes that allocate
memory dynamically — they should always define a destructor, a copy constructor, and the
assignment operator. Our class should be declared as:

 class Name

 {

 public:

 Name(); // Default
constructor

 Name(const char* pFirst, const char* pSecond); // Constructor

 Name(const Name& rName); // Copy
constructor

 ~Name(); // Destructor

 char* getName(char* pName) const; // Get the
complete name

 int getNameLength() const; // Get the
complete name

 // length

 // Comparison operators for names

 bool operator<(const Name& name) const;

 bool operator==(const Name& name) const;

 bool operator>(const Name& name) const;

 Name& operator=(const Name& rName); // Assignment
operator

 private:

 char* pFirstname;

 char* pSurname;

 };

We can define the copy constructor as:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 Name:: Name(const Name& rName)

 {

 pFirstname = new char[strlen(rName.pFirstname)+1]; // Allocate
space for first

 // name

 strcpy(pFirstname, rName.pFirstname); // and copy
it.

 pSurname = new char[strlen(rName.pSurname)+1]; // Same for
the surname...

 strcpy(pSurname, rName.pSurname);

 }

The destructor just needs to release the memory for the two data members:

 Name::-Name()

 {

 delete[] pFirstname;

 delete[] pSurname;

 }

In the assignment operator we must make the usual provision for the left and right hand sides

being identical:

 Name& Name::operator=(const Name& rName)

 {

 if(this == &rName) // If lhs
equals rhs

 return *this; // just return
the object

 delete[] pFirstname;

 pFirstname = new char[strlen(rName.pFirstname)+1]; // Allocate
space for first

 // name

 strcpy(pFirstname, rName.pFirstname); // and copy
it.

 delete[] pSurname;

 pSurname = new char[strlen(rName.pSurname)+1]; // Same for
the surname...

 strcpy(pSurname, rName.pSurname);

 return *this;

 }

We also should make the default constructor work properly. If the default constructor doesn't
allocate memory in the free store, we have the possibility that the destructor will erroneously
attempt to delete memory that was not allocated in the free store. We need to modify it to:

 Name::Name()

 {

 #ifdef CONSTRUCTOR_TRACE

 // Trace constructor calls

 cout << "\nDefault Name constructor called.";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #endif

 // Allocate array of 1 for empty strings

 pFirstname = new char[1];

 pSurname = new char[l];

 pFirstname[0] = pSurname[0] = '\0'; // Store null
character

 }

If you add statements to main() to delete the memory that is allocated dynamically there, the

program should run without any messages relating to memory leaks.

Summary

Debugging is a big topic and Visual C++ provides many debugging facilities beyond what we

have discussed here. If you are comfortable with what we have covered in this chapter, you
should have little trouble expanding your knowledge of the debug capabilities through the Visual
C++ documentation. Searching on 'debugging' should generate a rich list of further information.

The essential points we introduced in this chapter were:

§ You can use the assert() library function declared in the <cassert> header to
check logical conditions in your program that should always be true. You should not use

assertion to check conditions that may be false in normal program operation.
§ The preprocessor symbol, _DEBUG, is automatically defined in the debug version of a

program. It is not defined in the release version.
§ You can add your own debugging code by enclosing it between an #ifdef/#endif

pair of directives testing for _DEBUG. Your debug code will then only be included in the

debug version of the program.
§ The crtdbg.h headers supplies declarations for functions to provide debugging of free

store operations.
§ By setting the _crtDbgFlag appropriately, you can enable automatic checking of your

program for memory leaks.

§ To direct output messages from the free store debugging functions, you call the
_CrtSetReportMode() and _CrtSetReportFile() functions.

With the basics of debugging added to your knowledge of C++, you are ready for the big one —
Windows programming!

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 13: Understanding Windows
Programming

Overview

This chapter is an overview of using Visual C++ for Windows programming. We'll look at how to

use Visual C++ to generate a Windows program, and how that program is organized. By the
end of this chapter, you will understand:
§ What the Microsoft Foundation Classes are

§ The basic elements of an MFC-based program
§ Single Document Interface (SDI) applications and Multiple Document Interface (MDI)

applications

§ What the AppWizard is and how to use it to generate SDI and MDI programs
§ What files are generated by the AppWizard and what their contents are
§ How an AppWizard-generated program is structured

§ The key classes in an AppWizard-generated program, and how they are interconnected
§ What the principal source files of an AppWizard program contain
§ The general approach to customizing an AppWizard-generated program

We'll expand the AppWizard programs that we generate in this chapter by adding features and
code incrementally in subsequent chapters. By the end of the book, you should end up with a
sizable, working Windows program that incorporates the basic user interface programming
techniques.

The Essentials of a Windows Program

In Chapter 7, we saw an elementary Windows program which displayed a short quote from the
Bard. It was unlikely to win any awards, being completely free of any useful functionality, but it
did serve to illustrate the two essential components of a Windows program: providing
initialization and setup, and servicing Windows messages. These are illustrated here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This structure is at the heart of all Windows programs. You can see the two essential pieces of
a Windows program: the function WinMain(), which is called by Windows at the start of

execution of the program, and a window procedure for each window class you've defined, often
referred to as WndProc() or WindowProc(), which will be called by the operating system

whenever a message is to be passed to your application's window.

The function WinMain() does any initialization that's necessary and sets up the window or

windows that will be the primary interface to the user. It also contains the message loop for
retrieving messages that have been queued for the application.

The function WindowProc() handles all the messages that aren't queued: this includes those
messages that were initiated in the message loop in WinMain(). WindowProc(), therefore,

ends up handling both kinds of messages. This is because the code in the message loop will
sort out what kind of message it has retrieved from the queue, and then dispatch it for
processing by WindowProc(). WindowProc() is where you code your application-specific
response to each Windows message: WindowProc() should handle all the communications

with the user by processing the Windows messages generated by user actions, such as moving
or clicking the mouse, or entering information at the keyboard.

The queued messages are largely those caused by user input from either the mouse or the
keyboard. The non-queued messages for which Windows calls your WindowProc() function

directly are either messages that your program created (typically as a result of obtaining a
message from the queue and then dispatching it), or messages that are concerned with window
management (such as handling menus and scrollbars, or resizing the window).

The Windows API

The example that you saw in Chapter 7 used the Windows Application Programming
Interface (or Windows API). The Windows API comes as part of every copy of Windows, and
consists of a large set of functions that provide all the services and communications with
Windows that are necessary for producing an application that is to run in the Windows
environment. The API actually contains over a thousand functions.

All the interactions between a program and the user are handled by Windows. Your program will
receive information from the user second-hand, through Windows messages. Every Windows
program uses the Windows API, regardless of how it is produced. All the programs we will write
using Visual C++ will ultimately use the Windows API, so there's no getting away from it.
Fortunately, we don't need to know very much about the Windows API in detail—as MFC does
a terrific job of packaging it up into a much more organized and friendly form.

Visual C++ and the Windows API

Remember that the Windows API was not written with Visual C++ in mind, or even considering
C++ in general, since it was written before C++ came into general use. Naturally, the Windows
API needs to be usable in programs written in a variety of languages, most of which aren't
object-oriented. The API functions don't handle or recognize class objects but, as we shall soon
see, MFC encapsulates the API in a way that makes using it a piece of cake.

Visual C++ lets you develop a Windows program in two stages. First, you use Visual C++'s set

of tools to generate code for a program automatically; then you modify and extend the code to
suit your needs. As the basis for doing this, Visual C++ uses a hierarchy of classes called the
Microsoft Foundation Classes (although they can also be used independently of the
development tools in Visual C++).

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Microsoft Foundation Classes

The Microsoft Foundation Classes, usually abbreviated to MFC, are a set of predefined classes
upon which Windows programming with Visual C++ is built. These classes represent an object-
oriented approach to Windows programming that encapsulates the Windows API. The process
of writing a Windows program involves creating and using MFC objects, or objects of classes
derived from MFC. In the main, we'll derive our own classes from MFC—we'll have considerable
assistance from the specialized tools in Visual C++ that make this even easier. The objects
created will incorporate member functions for communicating with Windows, for processing
Windows messages, and for sending messages to each other.

These derived classes will, of course, inherit all of the members of their base classes. These
inherited functions do practically all of the general grunt work necessary for a Windows
application to work. All we need to do is add the data and function members that customize the
classes; in this way, we can provide the application-specific functionality that we need in our
program. In doing this, we'll be applying most of the techniques that we've been grappling with
in the preceding chapters, particularly those involving class inheritance and virtual functions.

MFC Notation

All the classes in MFC have names beginning with C, such as CDocument or CView. If you use

the same convention when defining your own classes or deriving them from those in the MFC
library, your programs will be easier to follow. Data members of an MFC class are prefixed with
m_. We'll also follow this convention in the examples, just as we've been doing throughout the

book.

You'll find that MFC uses Hungarian notation for many variable names, particularly those that
originate in the Windows API. As you will recall, this involves using a prefix of p for a pointer, n

for an int, 1 for long, h for a handle, and so on. The name m_lpCmdLine, for example, would
refer to a data member of a class (because of the m_prefix) that is of type 'pointer to long'.

This practice of explicitly showing the type of a variable in its name was important in the C
environment because of the lack of type checking; since you could determine the type from the
name, you had a fair chance of not using or interpreting its value incorrectly. The downside is
that the variable names can become quite cumbersome, making the code look more
complicated than it really is. Since C++ has strong type checking, it will pick up the sort of
misuse that used to happen regularly in C; consequently this kind of notation isn't essential, so
we won't use it for our own variables in our examples in the book. However, we will retain the p
prefix for pointers, and some of the other simple type denotations, since this helps to make the
code more readable.

How an MFC Program is Structured

We know from Chapter 1 that we can produce a Windows program using the AppWizard without
writing a single line of code. Of course, this uses the MFC library, but it's quite possible to write
a Windows program which uses MFC without using AppWizard. If we first scratch the surface by
constructing the minimum MFC-based program, we can get a clear idea of the fundamental
elements involved.

The simplest program that we can produce using MFC is slightly less sophisticated than the
example that we wrote in Chapter 7, using the raw Windows API. The example we'll produce
here will have a window but no text displayed in it. This will be sufficient to show the
fundamentals, so let's try it out.

Try it Out: - An MFC Application Without AppWizard

First, create a new project workspace using the File | New... menu option, as you've done many
times before. We won't use AppWizard here, so select the type of project as Win32 Application,
as shown below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

After entering this information, the following dialog will appear:

We're going to create the simplest possible type of program here, so select An empty project,
and then hit Finish. The New Project Information dialog will confirm that you've chosen an empty
application; hit OK to confirm your choice.

With this choice of project type, we must ensure that the linker knows that we intend to use MFC
classes. If we don't do this, the wrong link options will be set and we will get some obscure
linker errors. Use the Project | Settings... menu item to bring up the Project Settings dialog. Go to
the General tab and make sure that the Microsoft Foundation Classes: option is showing Use MFC
in a Shared DLL.

Now you can create a new source file — call it Ex13_01.cpp — and insert it into the project.

So that you can see all the code for the program in one place, we'll put the class definitions we
need together with their implementations in this file. To achieve this, we won't use the Wizard
Bar; we'll just add the code manually — there isn't very much of it.

To begin with, add a statement to include the header file afxwin.h, as this contains the

definitions for many MFC classes. This will allow us to derive our own classes from MFC.

 #include <afxwin.h> // For the class library

To produce the complete program, we'll only need to derive two classes from MFC: an
application class and a window class. We won't even need to write a WinMain() function,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

as we did in the example in Chapter 7, because this is automatically provided by the MFC
library behind the scenes. Let's look at how the two classes that we need are defined.

The Application Class

The class CWinApp is fundamental to any Windows program written using MFC. An object of

this class includes everything necessary for starting, initializing, running and closing the
application. The first thing that we need to do to produce our application is to derive our own
application class from CWinApp. We will be defining a specialized version of the class to suit

our application needs. The code for this is as follows:

 class COurApp: public CWinApp

 {

 public:

 virtual BOOL InitInstance();

 };

As you might expect for a simple example, there isn't a great deal of specialization necessary in
this case. We've only included one member in the definition of our class: the function
InitInstance(). This function is defined as a virtual function in the base class, so it's not a

new function in our derived class. We're redefining the base class function for our application
class. All the other data and function members that we need in our class will be inherited from
CWinApp without changes.

Our application class will be endowed with quite a number of data members that are defined in

the base, many of which correspond to variables used as arguments in Windows API functions.
For example, the member m_pszAppName stores a pointer to a string that defines the name of

the application. The member m_nCmdShow specifies how the application window is to be shown

when the application starts up. Don't panic: we don't need to go into the inherited data members
now. We'll see how they are used as the need arises in developing our application-specific
code.

In deriving our own application class from CWinApp, we must override the virtual function
InitInstance(). Our version will be called by the version of WinMain() that's provided for

us, and we'll include code in the function to create and display our application window.

However, before we write InitInstance(), we need to look at a class, from the MFC library,

that defines a window.

The Window Class

Our MFC application will need a window as the interface to the user, referred to as a frame
window. We will derive a window class for our application from the MFC class CFrameWnd,
which is designed specifically for this purpose. Since CFrameWnd provides everything for

creating and managing a window for our application, all we need to add to our derived window
class is a constructor. This will allow us to specify a title bar for our window, to suit the
application context:

 class COurWnd: public CFrameWnd

 {

 public:

 // Class constructor

 COurWnd()

 {

 Create(0, "Our Dumb MFC Application");

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 };

The Create() function, which we call in our class constructor, is inherited from the base class

and will create the window and attach it to the COurWnd object being created. Note that the

COurWnd object is not the same thing as the window that will be displayed by Windows — the

class object and the physical window are distinct entities.

The first argument value for the Create() function, 0, specifies that we want to use the base

class default attributes for the window — you'll recall that we needed to define window attributes
in our example in Chapter 7. The second argument specifies the window name which will be
used in the window title bar. You won't be surprised to learn that there are other parameters to
the function Create(), but they all have default values which will be quite satisfactory, so we

can afford to ignore them here.

Completing the Program

Having defined a window class for our application, we can write the InitInstance() function

in our COurApp class:

 BOOL COurApp::InitInstance(void)

 {

 // Construct a window object in the free store

 m_pMainWnd = new COurWnd;

 m_pMainWnd->ShowWindow(m_nCmdShow); // ...and display it

 return TRUE;

 }

This will override the virtual function defined in the base class CwinApp, and (as we've already

mentioned) will be called by the WinMain() function that's automatically supplied by the MFC
library. The function InitInstance() constructs a main window object for our application in

the free store by using the operator new. We store the address returned in the variable
m_pMainWnd, which is an inherited member of our class COurApp. The effect of this is that the

window object will be owned by the application object. We don't even need to worry about
freeing the memory for the object we've created — the supplied WinMain() function will take

care of any clean-up necessary.

The only other item we need for a complete, albeit rather limited, program is to define an
application object. An instance of our application class, COurApp, must exist before
WinMain() is executed, so we should declare it at global scope with the statement:

 COurApp AnApplication; // Define an application object

The reason that this object needs to exist at global scope is that it is the application object —
the application must exist before it can start executing. The WinMain() function, provided by

MFC, calls the InitInstance() function member of the application object to construct the

window object, and thus implicitly assumes that the application object already exists.

The Finished Product

Now that you've seen all the code, you can add it to the project. In a Windows program, the
classes are usually defined in .h files, and the member functions not appearing within the class
definitions are defined in .cpp files. Our application is so short, though, that you may as well

put it all in a single .cpp file. The merit of this is that you can view the whole lot together. The

program code is structured as follows:

 // EX13_01.CPP

 // An elementary MFC program

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include <afxwin.h> // For the class library

 // Application class definition

 class COurApp:public CWinApp

 {

 public:

 virtual BOOL InitInstance();

 };

 // Window class definition

 class COurWnd:public CFrameWnd

 {

 public:

 // Class constructor

 COurWnd()

 {

 Create(0, "Our Dumb MFC Application");

 }

 };

 // Function to create an instance of the main window

 BOOL COurApp::InitInstance(void)

 {

 // Construct a window object in the free store

 m_pMainWnd = new COurWnd;

 m_pMainWnd->ShowWindow(m_nCmdShow); // ...and display it

 return TRUE;

 }

 // Application object definition at global scope

 COurApp AnApplication; // Define an application
object

That's all we need. It looks a bit odd because no WinMain() function appears but, as we noted
above, the WinMain() function is supplied by the MFC library.

Now we're ready to roll, so build and run the application. Select the Build | Build Ex13_01.exe
menu item, click on the appropriate toolbar button, or just press F7 to build the project. You
should end up with a clean compile and link, in which case you can select Build | Execute
Ex13_01.exe or press Ctrl-F5 to run it. Our minimum MFC program will appear as shown:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We can resize the window by dragging the border, we can move the whole thing around, and

we can also minimize and maximize it in the usual ways. The only other function that the
program supports is 'close', for which you can use the system menu, the close button at the top
right of the window, or just key Alt-F4. It doesn't look like much but, considering that there are so
few lines of code, it's quite impressive — particularly when you think of how much code is
needed to achieve something like this in the old DOS world.

FYI

If you find that the linker throws some errors about the symbols
__beginthreadex and __endthreadex, then you need to change the
Microsoft Foundation Classes: list box on the General tab of the Project
Settings dialog to use MFC, either statically or with the DLL. The Project
Settings dialog is accessed by selecting the Project | Settings... menu item, or
by pressing Alt-F7.

The Document/View Concept

When you write applications using MFC, it implies acceptance of a specific structure for your
program, with application data being stored and processed in a particular way. This may sound
restrictive, but it really isn't for the most part — in fact, you gain benefits in speed and ease of
implementation that far outweigh any conceivable disadvantages. The structure of an MFC
program incorporates two application-oriented entities — a document and a view. Let's look at
what they are and how they're used.

What is a Document?

A document is the name given to the collection of data in your application with which the user
interacts. Although the word 'document' seems to imply something of a textual nature, a
document isn't limited to text. It could be the data for a game, a geometric model, a text file, a
collection of data on the distribution of orange trees in California or, indeed, anything you want.
The term 'document' is just a convenient label for the application data in your program, treated
as a unit.

You won't be surprised to hear that a document in your program will be defined as an object of a
document class. Your document class will be derived from the class CDocument in the MFC

library, and you'll add your own data members to store items that your application requires, and
member functions to support processing of that data.

Handling application data in this way enables standard mechanisms to be provided within MFC,

for managing a collection of application data as a unit, and for storing and retrieving data
contained in document objects to and from disk. These mechanisms will be inherited by your
document class from the base class defined in the MFC library, so you will get a broad range of
functionality built in to your application automatically, without having to write any code.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Document Interfaces

You have a choice as to whether your program deals with just one document at a time, or with
several. The Single Document Interface, referred to as SDI, is supported by the MFC library
for programs that require only one document to be open at a time. A program using this
interface is referred to as an SDI application.

For programs that need several documents to be open at one time, you use the Multiple

Document Interface, which is usually referred to as MDI. With the MDI, as well as being able to
open multiple documents of one type, your program can also be organized to handle documents
of different types simultaneously. Of course, you will need to supply the code to deal with
processing whatever different kinds of documents you intend to support.

What is a View?

A view always relates to a particular document object. As we've seen, a document contains a

set of application data in your program: a view is an object which provides a mechanism for
displaying some or all of the data stored in a document. It defines how the data is to be
displayed in a window and how the user can interact with it. Similar to the way that you define a
document, you'll define your own view class by deriving it from the MFC class CView. Note that

a view object and the window in which it is displayed are distinct. The window in which a view
appears is called a frame window. A view is actually displayed in its own window that exactly
fills the client area of a frame window. The general relationship between a document, a view
and a frame window is illustrated here:

In this illustration, the view displays only part of the data contained in the document, although a
view can display all of the data in a document if that is what's required.

A document object can have multiple view objects associated with it. Each view object can
provide a different presentation or subset of the same document data. If you were dealing with
text, for example, different views could be displaying independent blocks of text from the same
document. For a program handling graphical data, you could display all of the document data at
different scales in separate windows, or in different formats, such as a textual representation of
the elements that form the image.

Linking a Document and its Views

MFC incorporates a mechanism for integrating a document with its views, and each frame

window with a currently active view. A document object automatically maintains a list of pointers
to its associated views, and a view object has a data member holding a pointer to the document
that it relates to. Also, each frame window stores a pointer to the currently active view object.
This is similar to the mechanism we used to link objects in our calculator program. The

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

coordination between a document, a view and a frame window is established by another MFC
class of objects called document templates.

Document Templates

A document template manages the document objects in your program, as well as the windows
and views associated with each of them. There will be one document template for each different
kind of document that you have in your program. If you have two or more documents of the
same type, you only need one document template to manage them.

To be more specific about the use of a document template: document objects and frame

window objects are created by a document template object. A view is created by a frame
window object. The document template object itself is created by the application object that is
fundamental to any MFC application, as we saw in the last example. You can see a graphical
representation of these interrelationships here:

The diagram uses dashed arrows to show how pointers are used to relate objects. These
pointers enable function members of one class object to access the public data or function

members in the interface of another object.

Document Template Classes

MFC has two classes for defining document templates. For SDI applications, the MFC library
class CSingleDocTemplate is used. This is relatively straightforward, since an SDI

application will have only one document and usually just one view. MDI applications are rather
more complicated. They have multiple documents active at one time, so a different class,
CMultiDocTemplate, is needed to define the document template. We'll see more of these

classes as we progress into developing application code.

Your Application and MFC

MFC covers a lot of ground and involves a lot of classes. It provides classes that, taken
together, are a complete framework for your applications, only requiring the customization
necessary to make your programs do what you want them to do. It would be fruitless to try to go
through a laundry list of all the classes that are provided; we can learn about them much more
easily and naturally by exploring their capabilities as we use them.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

However, it's worth taking a look at how the fundamental classes in an SDI application relate to
MFC. This is illustrated in the diagram below:

This shows the four basic classes that are going to appear in virtually all your Windows
applications:
§ The application class, CMyApp.

§ The frame window class, CMyWnd.

§ The view class, CMyView, which will define how data contained in CMyDoc is to be
displayed in the client area of a window created by a CMyWnd object.

§ The document class, CmyDoc, defining a document to contain the application data.

The actual names for these classes will be specific to a particular application, but the derivation

from MFC will be much the same — although there can be alternative base classes, particularly
with the view class. As we'll see a bit later, MFC provides several variations of the view class
that provide a lot of functionality pre-packaged for you, saving you lots of coding. The class
defining a document template for your application will (typically) not need to be extended, so the
standard MFC class CSingleDocTemplate will usually suffice in an SDI program. When

you're creating an MDI program, your document template class will be CMultiDocTemplate,
which is also derived from CDocTemplate.

Each arrow in the diagram points to a derived class from its base class. The MFC library
classes shown here form quite a complex inheritance structure, but in fact these are just a very
small part of the complete MFC structure You need not be concerned about the details of the
complete MFC hierarchy in the main; however, it is important to have a general appreciation of
the hierarchy if you want to understand what the inherited members of your classes are You will
not see any of the definitions of the base classes in your program, but the inherited members of
a derived class in your program will be accumulated from the direct base class, as well as from
each of the indirect base classes in the MFC hierarchy. To determine what members one of
your program's classes has, you therefore need to know from which classes it inherits. Once
you know that, you can look up its members using the Help facility.

Another thing you don't need to worry about is remembering what classes you need to have in
your program and what base classes to use in their definition. As you'll see next, all of this is
taken care of for you by Visual C++.

Windows Programming with Visual C++

You'll be using three tools in the development of your Windows programs:

1. AppWizard — for creating the basic program code. You use this when you create a
project.

2. ClassWizard — for extending and customizing the classes in your programs. You

access this through the Wizard Bar, or the context menu for a class from ClassView, or
the View | ClassWizard menu item.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

3. Resource Editor — for creating or modifying such things as menus and toolbars.

There are, in fact, several resource editors; in any given situation, the resource editor used is
dependent on the kind of resource that you're editing. We'll look at editing resources in the next
chapter, but for now let's take a look at what AppWizard can do for us.

What is the AppWizard?

AppWizard is a programming tool that creates a complete skeleton Windows program using the
MFC library. We'll be using AppWizard for the rest of the examples in the book. It's an
extraordinarily powerful aid to Windows programming since, in order to produce your
application, all you have to do is customize a ready-made program. AppWizard automatically
defines all of the classes needed by your program that we have discussed. It even provides
hooks and explanations on where you should add your application-specific code.

As we've already seen, you can invoke AppWizard when you create a new project workspace

by selecting MFC AppWizard (exe) as the project type. Do this now and name the project
TextEditor, as shown here:

As you know, the name that you assign to the project (TextEditor in this case) will be used

as the name of the folder which will contain all the project files, but it will also be used as a basis
for creating names for classes generated in the application by AppWizard. When you click on
OK, you'll find yourself at the first step in the AppWizard dialog that helps you to create the
application. Initially, AppWizard allows you to choose an SDI, an MDI or a dialog-based
application. Let's concentrate on the first two options. We'll generate both an SDI and an MDI
application and see what the resulting programs look like.

Using AppWizard to Create an SDI Application

When you're in the AppWizard dialog, you can always go back to the previous step by clicking
on the button labeled < Back. Try it out now. If you felt like it, you could now rename the project
and then click on OK again to return to Step 1 of the AppWizard dialog.

Step 1

In this step we choose our application type: SDI, MDI or dialog-based. The default option
selected is MDI, and the appearance of an MDI application is shown so that you'll know what to
expect. Select the SDI option — the representation for the application shown (top left) will
change to a single window, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The drop-down list box shows the default language supported. Other languages will only appear

in the list if your Visual C++ installation has been set up to support them.

To move on to the next step in the dialog, you should click on Next >.

Step 2

Step 2 gives you choices about the database support in your application. We don't need any in
this application, so we'll stick with the default setting, None, and click on Next > once again to
move on.

Step 3

This step gives you a range of choices relating to OLE (Object Linking and Embedding), under

the label of compound document support. OLE enables you to write programs that can import
objects from other programs, or to import your program into another application. We'll see more
about this in Chapter 22. There is also a default selection for the ActiveX Controls option. This
means that AppWizard will include code that allows the possibility of using ActiveX controls in
our application if we want. An ActiveX control is a reusable program component that you can
apply in a program or in an Internet web page. We won't be using ActiveX controls in this case,
but the option will do no harm. We will see more about OLE and ActiveX controls towards the
end of the book. For now, we'll accept the default set of choices and move to the next step.

Step 4

This step offers you a range of functions that can be included in your application by the
AppWizard — we'll split these choices up into two groups. The first group contains five functions
that relate to menu and toolbar options. Let's take a brief look at them.

Feature Meaning

Docking
toolbar

The toolbar provides a standard range of buttons that are alternatives to
using menu options. A docking toolbar can be dragged to the sides or the
bottom of the application window, so you can put it wherever is most
convenient. We'll see how to add buttons to the toolbar in Chapter 14.

Initial status
bar

The status bar appears at the bottom of the application window. It comes
with fully implemented standard functions including indicators for the Num
Lock, Caps Lock, and Scroll Lock keys, as well as a message line to display
prompts for menu options and toolbar selections.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Feature Meaning

Printing and
print preview

This adds the standard Page Setup..., Print Preview, and Print... options to the
File menu. The AppWizard will also provide code to support these functions.

Context-
sensitive
Help

Enabling this option results in a basic set of facilities to support context-
sensitive help. You'll obviously need to add the specific contents of the help
files if you want to use this feature.

3D controls This option results in controls that appear in the application — such as
buttons — being shaded to give them a 3D appearance.

All of the above, except Context-sensitive Help, are default selections, and we'll keep the default
set of options in our example. The second group of choices concern WOSA, which is Windows
Open Services Architecture. This is only relevant if your program is to implement
communications with other computers. It provides two options for communications support in
your program:

Feature Meaning

MAPI
(Messaging
API)

This option will cause AppWizard to include support that allows you to
send and receive messages.

Windows
Sockets

This provides you with the ability to implement TCP/IP capability within
your program. This is particularly relevant to applications that support the
transfer of files over the Internet.

We will not be getting into either of these options, as they are beyond the scope of this book, so

we'll leave them unchecked.

This step also allows you to choose between traditional-style toolbars and IE4-style rebars. For

this simple application, we'll choose the default, Normal.

Towards the bottom of the dialog, you can vary the number file entries that will appear in the

recently-used file list at the end of the File menu. You can set this to any value from 0 to 16.

Clicking the Advanced... button brings up a range of options for your application, grouped under
two tabs, which we'll look at now. The first of these is the Document Template Strings tab:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The tab shown allows you to choose the file extension which will identify files that are generated
by your application and are to be associated with it. In this instance, we've associated .ted with

our application. You'll notice that, when you fill in the file extension, the Filter name: box is
automatically filled in for you — we'll be getting to what that does in a moment. From this tab,
you can also modify the File Type ID: which is used to label the file type for your application in
the system registry. The registry associates files with a given unique extension with a particular
application.

AppWizard has already decided on a caption for the title bar in your application window — it's

shown in the Main frame caption: entry. However, like all the strings shown here, you can change
it if you don't like it. For example, it might look better with a space between Text and Editor, or
you might want to personalize it in some way.

The Doc type name: entry is a default name for a document. When you create a new document,

MFC will use what is entered here as a basis for naming it. The Filter name: will be used to
describe files associated with your application in the List Files of Type: box in the File | Open...
and File | Save As... menu dialogs although, if you haven't specified a file extension for files
produced by your application, this will do nothing. If you want to specify the filter name entry,
you should put something descriptive to clearly identify the particular document type — dgm if
your document is a diagram, for example.

The option headed File new name (short name): is important if your application will support more
than one type of document. This would mean that you had more than one document template
implemented in your program. In that case, what you put here will be used to identify the
document template in the File | New... menu dialog. Along with the option adjacent to it, it's also
applicable if you're writing a program which is an ActiveX server (which used to be known as an
OLE server). We'll see rather more about this towards the end of the book.

The Windows Styles tab is shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The bottom area is grayed out because the options here only apply to MDI applications. The

Main frame styles area enables you to tailor your application window. Here, the Thick frame option
is checked by default. It provides you with a window border that can be dragged to resize the
window. The Minimize box, Maximize box, and System menu options, which are also checked by
default, provide the three standard buttons that appear at the top of a window. The two
unchecked options for Minimized and Maximized frame styles do not apply to Windows 95
programs, so you can ignore them.

We can now move to Step 5 by closing the Advanced Options dialog and clicking on Next >.

Step 5

This step offers three options for your consideration. First, you can choose the style of project
that you want: a Windows Explorer-style program features a split window, with a tree view in the
left pane. For our simple program we'll favor the default standard style over the Explorer-style.

Second, you can choose whether or not comments are to be included in the source code
generated by AppWizard. In most instances, you will want to keep the default option of having
them included, so that you can better understand the code generated for you.

The final option relates to how MFC library code is used in your program. The default choice of
using the MFC library as a shared DLL (Dynamic Link Library) means that your program will link
to MFC library routines at run time. This can reduce the size of the executable file that you'll
generate, but requires the MFC DLL to be on the machine that's running it. The two programs
together (.exe and .dll) may be bigger than if you had statically linked the MFC library. If you

opt for static linking, the routines will be included in the executable module for your program
when it is built. Generally, it's preferable to keep the default option of using MFC as a shared
DLL. With this option, several programs running simultaneously using the dynamic link library
can all share a single copy of the library in memory.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Step 6

The last step presents you with a list of the classes, that AppWizard will be generating in your
program code:

When you highlight a class in the list, the boxes beneath show the name given to the class, the
name of the header file in which the definition will be stored, the base class used and the name
of the file containing the implementation of member functions in the class. The class definition is
always contained in a .h file, and the member function source code is always included in a
.cpp file.

In the case of the class CTextEditorApp (shown above), the only thing that you can alter is

the class name and, since it's already a good choice, we'll leave it as it is. Try clicking on the
other classes in the list. For CMainFrame and CTextEditorDoc, the wizard will allow you to

alter everything except the base class; and for the class CTextEditorView, you can change

the base class as well.

There is one adjustment to the default that we will make here Select CTextEditorView from

the list, and then click the down arrow on the Base class box to display the list of other classes
that you can have as a base class:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There are a variety of view classes provided by the MFC with a range of capabilities, and the
capability built into your view class will depend on which base class you select. Since we've
called the application TextEditor, with the notion that it will be able to edit text, choose
CEditView to get basic editing capability provided automatically.

If you click on Finish, you will see a summary of what AppWizard will include in your project. Just
click on OK to have the program files containing a fully working base program generated by
AppWizard, using the options you've chosen.

The Output from AppWizard

All the output from AppWizard is stored in the folder TextEditor. Visual C++ provides several

ways for you to view the information in the project folder:

Tab View How project is viewed

Class View Viewed by class and function
member name, plus the global
entities in your program

Resource
View

Viewed by resource type

File View Viewed by file name

Each of these is selected using the appropriate tab at the bottom of the Project Workspace

window in the IDE.

Viewing Project Files

If you select FileView (by clicking on the third tab) and expand the list by clicking on the + for

TextEditor files, then on the ones for Source Files, Header Files and Resource Files, you'll see
the complete list of files for the project, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

As you can see, there are a total of 18 files in the list. You can view any of the files simply by

double-clicking on the filename. The contents of the file selected will be displayed in the right-
hand window. Try it out with the ReadMe.txt file. You'll see that it contains a brief explanation

of the contents of each of the files that make up the project. We won't repeat the descriptions of
the files here, as they are very clearly summarized in ReadMe.txt.

Viewing Classes

As you may have started to see in Chapter 11, ClassView is often much more convenient than

FileView, since classes are the basis for the organization of the application. When you want to
look at the code, it's typically the definition of a class or the implementation of a member
function that you'll want to see, and from ClassView you can go directly to either. On occasions,
however, FileView will come in handy. If you want to check the #include directives in a .cpp

file, you can use FileView to open the file you're interested in directly.

If you click the ClassView tab, you can expand the TextEditor classes item to show the classes

defined for the application. Clicking on + for any of the classes will expand the class to show the
members of that class.

In the window shown below, the CTextEditorDoc class has been expanded:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The icons simply code the various kinds of things that you can display:

§ Classes are dark blue:

§ Function members are purple:

§ Data members are light blue:

§ A key indicates that the member is protected:

§ A padlock indicates that the member is private:

You can see that we have the four classes we discussed earlier that are fundamental to an
MFC application: CTextEditorApp for the application, CMainFrame for the application frame

window, CTextEditorDoc for the document and CTextEditorView for the view. We also
have a class CaboutDlg, which defines objects that support the dialog that appears when you

select the menu item Help | About... in the application. If you expand Globals, you'll see that it
only contains one definition: the application object theApp.

You'll remember from Chapter 11 that to view the code for a class definition, you just double-
click the class name in the tree. To view the code for a member function, double-click the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

function name. Note that you can drag the edge of the Project Workspace window to the left or
the right in order to view its contents or your code more easily. However, it's usually convenient
to leave the left window fairly narrow — if you leave the cursor over any line that is partially
obscured, the complete contents of the line will be shown. You can hide or show the Project
Workspace window by clicking the Workspace button, which you'll find on the standard toolbar.

The Class Definitions

We won't examine the classes in complete detail here — we'll just get a feel for how they look
and pick out a few important aspects. If you double-click the name of a class in the ClassView,
the code defining the class will be displayed.

CTextEditorApp

Let's take a look at the application class, CTextEditorApp first. The definition for this class is

shown below:

 class CTextEditorApp : public CWinApp

 {

 public:

 CTextEditorApp();

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CTextEditorApp)

 public:

 virtual BOOL InitInstance();

 //}}AFX_VIRTUAL

 // Implementation

 //{{AFX_MSG(CTextEditorApp)

 afx_msg void OnAppAbout();

 // NOTE - the ClassWizard will add and remove member
functions here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_MSG

 DECLARE_MESSAGE MAP()

 };

It may look complicated at first sight, but there isn't much to it. It's derived from CWinApp and

includes a constructor, a virtual function InitInstance(), a function OnAppAbout(), and a
macro DECLARE_MESSAGE_MAP().

FYI

A macro is not C++ code. It's a name defined by a #define pre-processor
directive that will be replaced by some text that will normally be C++ code, but
could also be constants or symbols of some kind.

The DECLARE_MESSAGE_MAP() macro is concerned with defining which Windows messages

are handled by which function members of the class. The macro will appear in the definition of

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

any class that may process Windows messages. Of course, our application class will inherit a
lot of functions and data members from the base class, and we will be looking further into these
as we expand our program examples.

The rest of the CTextEditorApp class definition is comments. However, they are very

important comments. They include a note indicating where the ClassWizard will make changes
to the code. Don't be tempted to delete or alter any of the comments, because some will be
used as markers to enable the ClassWizard to find where changes to the class definition should
be made. Modifying them may prevent ClassWizard from working properly with this project ever
again!

If you take a look at the beginning of the .h file containing the class definition, you will notice

the directives that prevent the file being included more than once: they look very much like the
ones we've seen previously. Again, the long strings of letters and numbers will be differ from
class to class.

CMainFrame

The application frame window for our SDI program will be created by an object of the class
CMainFrame, which is defined by the code shown here:

 class CMainFrame : public CFrameWnd

 {

 protected: // create from serialization only

 CMainFrame();

 DECLARE_DYNCREATE(CMainFrame)

 // Attributes

 public:

 // Operations

 public:

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CMainFrame)

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

 //}}AFX_VIRTUAL

 // Implementation

 public:

 virtual -CMainFrame();

 #ifdef _DEBUG

 virtual void AssertValid() const;

 virtual void Dump(CDumpContext& dc) const;

 #endif

 protected: // control bar embedded members

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CStatusBar m_wndStatusBar;

 CToolBar m_wndToolBar;

 // Generated message map functions

 protected:

 //{{AFX_MSG(CMainFrame)

 afx_msg int OnCreate(LPCREATESTRUCT lpCreateStruct);

 // NOTE - the ClassWizard will add and remove member
functions here.

 // DO NOT EDIT what you see in these blocks of generated
code!

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 };

This class is derived from CFrameWnd, which provides most of the functionality required for our

application frame window. The derived class includes two protected data members,
m_wndStatusBar and m_wndToolBar, which are instances of the MFC classes CStatusBar

and CToolBar respectively. These objects will create and manage the status bar that will

appear at the bottom of the application window, and the toolbar which will provide buttons to
access standard menu functions.

CTextEditorDoc

The definition of the CTextEditorDoc class supplied by AppWizard is:

 class CTextEditorDoc : public CDocument

 {

 protected: // create from serialization only

 CTextEditorDoc();

 DECLARE_DYNCREATE(CTextEditorDoc)

 // Attributes

 public:

 // Operations

 public:

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CTextEditorDoc)

 public:

 virtual BOOL OnNewDocument();

 virtual void Serialize(CArchive& ar);

 //}}AFX_VIRTUAL

 // Implementation

 public:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 virtual -CTextEditorDoc();

 #ifdef _DEBUG

 virtual void AssertValid() const;

 virtual void Dump(CDumpContext& dc) const;

 #endif

 protected:

 // Generated message map functions

 protected:

 //{{AFX_MSG(CTextEditorDoc)

 // NOTE - the ClassWizard will add and remove member
functions here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 };

As with the previous classes, most of the meat comes from the base class and is therefore not
apparent here. There are also a lot of comments, some of which are for you, and some are to
help ClassWizard out.

The macro DECLARE_DYNCREATE() , which appears after the constructor (and which was also
used in the CMainFrame class), enables an object of the class to be created dynamically by

synthesizing it from data read from a file. When you save an SDI document object, the frame
window that contains the view is saved along with your data. This allows everything to be
restored when you read it back. Reading and writing a document object to a file is supported by
a process called serialization. In the examples that we develop, we will see how to write our
own documents to file using serialization, and then reconstruct them from the file data.

The document class also includes the macro DECLARE_MESSAGE_MAP() in its definition to

enable Windows messages to be handled by class member functions if necessary.

CTextEditorView

The view class in our SDI application is defined as:

 class CTextEditorView : public CEditView

 {

 protected: // create from serialization only

 CTextEditorView();

 DECLARE_DYNCREATE(CTextEditorView)

 // Attributes

 public:

 CTextEditorDoc* GetDocument();

 // Operations

 public:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CTextEditorView)

 public:

 virtual void OnDraw(CDC* pDC); // overridden to draw this view

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

 protected:

 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);

 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);

 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

 //}}AFX_VIRTUAL

 // Implementation

 public:

 virtual ~CTextEditorView();

 #ifdef _DEBUG

 virtual void AssertValid() const;

 virtual void Dump(CDumpContext& dc) const;

 #endif

 protected:

 // Generated message map functions

 protected:

 //{{AFX_MSG(CTextEditorView)

 // NOTE - the ClassWizard will add and remove member
functions here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 };

As we specified in the AppWizard dialog, the view class is derived from the class CEditView,
which already includes basic text handling facilities. The GetDocument() function returns a

pointer to the document object corresponding to the view, and you will be using this to access
data in the document object when you add your own extensions to the view class.

Comments in AppWizard-Generated Code

You will probably have noticed a variety of comments in the class definitions created by
AppWizard — things like // Operations and // Implementation. They can seem a little

confusing when you start adding your own class members, and you're trying to work out where
things fit. So before we get into adding our own code to that which AppWizard provides, let's
look at what they these comments mean.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

First of all, the comments are there as guidelines. They don't enforce anything on you as to
where you should put your code. The only exceptions to this are the comments which quite
clearly recommend against modifying code that was inserted by AppWizard. If you change or
add code in such a section, you're on your own! The significance of the principal AppWizard
comments within class definitions are as follows:

Comment Meaning

//
Implementation

This indicates that everything following it isn't guaranteed to be the
same in the next release of Visual C++. Anything can be included in
here — data members as well as function members. You can't rely on
this code being the same when you move to another version of Visual
C++. Of course, you can add your own code here if you want; the
comment is just for information.

//Attributes This indicates that the statements following it define properties of
objects of the class — typically these will be data members of the
class, but they can also be Get()/Set() types of functions that
supply information about the class but don't change anything.

// Operations The code following this comment will declare function members that
act on the data members of the class, so they change the attributes of
a class object in some way.

// Overrides This defines a section of the class which declares function members
that you can override in a derived class. Pure virtual functions will
also appear in this section.

//
Constructors

Obviously, the section headed by this comment will house the class
constructor declarations, but other functions that are used in the
initialization of class members will also appear here.

When you're modifying AppWizard-supplied classes, you can choose to add your own sections
to accommodate your code. You're under no obligation to put it in the sections designated by
the existing comments. We will endeavor to add code within the appropriately commented
section in the remaining chapters, but it won't necessarily always fit.

Creating an Executable Module

To compile and link the program, click on Build | Build TextEditor.exe, press F7, or click on the

build icon.

There are two implementations of the view class member function GetDocument() in the code

generated by AppWizard. The one in the .cpp file for the CTextEditorView class is used for

the debug version of the program. You will normally use this during program development, since
it provides validation of the pointer value stored for the document. (This is stored in the inherited
data member m_pDocument in the view class.) The version that applies to the release version

of your program you can find after the class definition in the TextEditorView.h file. This
version is declared as inline and it does not validate the document pointer.

You will be using the GetDocument() function just like the GetLogicUnit() member of

CCalculator in Chapter 11. It provides a link to the document object. Using the pointer to the

document, you can call any of the functions in the interface to the document class.

By default, you will have debug capability included in your program. As well as the special
version of GetDocument(), there are lots of checks in the MFC code that are included in this

case. If you want to change this, you can use the drop-down list box in the Build toolbar to
choose the release configuration, which doesn't contain all the debug code.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

FYI

When compiling your program with debug switched on, the compiler doesn't
detect uninitialized variables, so it can be helpful to do the occasional release
build even while you are still testing your program.

Precompiled Header Files

The first time you compile and link a program, it will take some time. The second and
subsequent times, the compilation should be quite a bit faster; this is because of a feature of
Visual C++ called precompiled headers. During the initial compilation, the compiler compiles
the header files and saves the output in a special file with the extension .pch. On subsequent

builds, this file is reused (provided the source code in the headers has not changed), thus
saving the compilation time for the headers.

You can determine whether or not precompiled headers are used and control how they are
handled. Choose Project | Settings... and then select the C/C++ tab. From the Category: drop-
down list box, select Precompiled Headers, and you'll see the dialog shown here.

The option for Automatic use of precompiled headers shown here is the easiest to apply. The .pch
file will be generated if there isn't one, and used if there is. The option to create a .pch file does

exactly that. The ability to specify the last header file to be included allows you to control what's
included in the precompiled header. The option to Use precompiled header file presumes that one

already exists. You can get more information on this through the button in the dialog.

Running the Program

To execute the program, press Ctrl-F5 , or select the Execute option in the Build menu. Because
we chose CEditView as the base class for our class CTextEditorView, the program is a

fully functioning, simple text editor. You can enter text in the window as shown below.

Note that the application has scroll bars for viewing text outside the visible area within the
window, and of course you can resize the window by dragging the boundaries. When you save
a document, it will automatically be given the extension .ted. All the options under the File
menu are fully operational. As you move the cursor over the toolbar buttons or the menu

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

options, prompts appear in the status bar describing the function that will be invoked, and if you
let the cursor linger on a toolbar button, a tooltip will be displayed showing its purpose.

How the Program Works

As in the trivial MFC example we looked at earlier in this chapter, the application object is
created at global scope in our SDI program. You can see this if you expand the Globals item in
the ClassView, and then double-click on theApp. In the right part of the project workspace
window you'll see this statement:

 CTextEditorApp theApp;

This declares the object theApp as an instance of our application class CTextEditorApp.

The statement is in the file TextEditor.cpp, which also contains member function
declarations for the application class, and the definition of the CAboutDlg class.

Once the object theApp has been created, the MFC-supplied WinMain() function is called.

This in turn calls two member functions of the theApp object. First it calls InitInstance(),
which provides for any initialization of the application that is necessary, and then Run(), which

provides initial handling for Windows messages. Let's have a look at those two functions now.

The Function Initinstance()

You can access the code for this function by double-clicking its entry in the ClassView after
expanding the CTextEditorApp class in the left pane of the Project Workspace window — or

if you're in a hurry you can just look at the code immediately following the line defining the
theApp object. The version created by AppWizard is as follows:

 BOOL CTextEditorApp::InitInstance()

 {

 AfxEnableControlContainer();

 // Standard initialization

 // If you are not using these features and wish to reduce the
size

 // of your final executable, you should remove from the
following

 // the specific initialization routines you do not need.

 #ifdef _AFXDLL

 Enable3dControls(); // Call this when using MFC in a
shared DLL

 #else

 Enable3dControlsStatic(); // Call this when linking to MFC
statically

 #endif

 // Change the registry key under which our settings are stored.

 // TODO: You should modify this string to be something
appropriate

 // such as the name of your company or organization.

 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 LoadStdProfileSettings(); // Load standard INI file options
(including MRU)

 // Register the application's document templates. Document
templates

 // serve as the connection between documents, frame windows and
views.

 CSingleDocTemplate* pDocTemplate;

 pDocTemplate = new CSingleDocTemplate(

 IDR_MAINFRAME,

 RUNTIME_CLASS(CTextEditorDoc),

 RUNTIME_CLASS(CMainFrame), // main SDI frame window

 RUNTIME_CLASS(CTextEditorView));

 AddDocTemplate(pDocTemplate);

 // Enable DDE Execute open

 EnableShellOpen();

 RegisterShellFileTypes(TRUE);

 // Parse command line for standard shell commands, DDE, file

open

 CCommandLineInfo cmdInfo;

 ParseCommandLine(cmdInfo);

 // Dispatch commands specified on the command line

 if (!ProcessShellCommand(cmdInfo))

 return FALSE;

 // The one and only window has been initialized, so show and
update it.

 m_pMainWnd->ShowWindow(SW_SHOW);

 m_pMainWnd->UpdateWindow();

 // Enable drag/drop open

 m_pMainWnd->DragAcceptFiles();

 return TRUE;

 }

The string passed to the SetRegistryKey() function will be used to define a registry key

under which program information will be stored. You can change this to whatever you want. If I
changed the argument to "Horton", information about our program would be stored under the

registry key

HKEY_CURRENT_USER\Software\Horton\TextEditor\

All the application settings will be stored under this key, including the list of files most recently
used by the program. The call to the function LoadStdProfileSettings() loads the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

application settings that were saved last time around. Of course, the first time you run the
program, there aren't any.

A document template object is created dynamically within InitInstance() by the statement:

 pDocTemplate = new CSingleDocTemplate(

 IDR_MAINFRAME,

 RUNTIME_CLASS(CTextEditorDoc),

 RUNTIME_CLASS(CMainFrame), // main SDI frame window

 RUNTIME_CLASS(CTextEditorView));

The first parameter to the CSingleDocTemplate constructor is a symbol, IDR_MAINFRAME,

which defines the menu and toolbar to be used with the document type. The following three
parameters define the document, main frame window and view class objects that are to be
bound together within the document template. Since we have an SDI application here, there will
only ever be one of each in the program, managed through one document template object.
RUNTIME_CLASS() is a macro that enables the type of a class object to be determined at

runtime.

There's a lot of other stuff here for setting up the application instance that we need not worry

about. You can add any initialization of your own that you need for the application to the
InitInstance() function.

The Function Run()

The function Run(), in the class CTextEditorApp, is inherited from the application base class

CWinApp. Because it is declared as virtual, you can replace the base class version of the
function Run() with one of your own, but this is not usually necessary so you don't need to

worry about it.

Run() acquires all the messages from Windows destined for the application and ensures that

each message is passed to the function in the program designated to service it, if one exists.
Therefore, this function continues executing as long as the application is running. It terminates
when you close the application.

Thus, you can boil the operation of the application down to four steps:
1. Creating an application object, theApp.
2. Executing WinMain(), which is supplied by MFC.

3. WinMain() calling InitInstance(), which creates the document template, the main

frame window, the document, and the view.
4. WinMain() calling Run(), which executes the main message loop to acquire and

dispatch Windows messages.

Using AppWizard to Create an MDI Application

Now let's create an MDI application using AppWizard. Let's give it the project name Sketcher,

as we will be expanding it into a sketching program during subsequent chapters. You should
have no trouble with this procedure, as there are only three things that we need to do differently
from the process that we have just gone through for the SDI application:
§ In Step 1, you should leave the default option, MDI, rather than changing to the SDI

option.
§ Under the Advanced... button in Step 4, you should specify the file extension as ske.

§ In Step 6, you should leave the base class for the class CSketcherView as CView.

§ In Step 6, which is shown below, we get an extra class derived from MFC for our
application:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The extra class is CChildFrame, which is derived from the MFC class CMDIChildWnd. This

class provides a frame window for a view of the document that will appear inside the application
window created by a CMainFrame object. With an SDI application there is a single document

with a single view, so the view is displayed in the client area of the main frame window. In an
MDI application, we can have multiple documents open, and each document can have multiple
views. To accomplish this, each view of a document in our program will have its own child frame
window created by an object of the class CChildFrame. As we saw earlier, a view will be

displayed in what is actually a separate window, but one which exactly fills the client area of a
frame window.

Running the Program

You can build the program in exactly the same way as the previous example. Then, if you
execute it, you will get the application window shown here:

In addition to the main application window, we have a separate document window with the
caption Sketch1. Sketch1 is the default name for the initial document, and it will have the
extension .ske if you save it. You can create additional views for the document by selecting the

Window | New Window menu option. You can also create a new document by selecting File |
New, so that there will be two active documents in the application. The situation with two
documents active, each with two views open, is shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can't yet actually create any data in the application, since we haven't added any code to do

that, but all the code for creating documents and views has already been included by
AppWizard.

Using the ClassWizard

We've mentioned the ClassWizard several times in this chapter, and we used some of its basic
facilities back in Chapter 11. Since most of the rest of the book will be concerned with using the
ClassWizard in various ways, let's make sure we have a good grasp of how we can use it. Once
the AppWizard has generated the initial application code, you'll be using the ClassWizard to
implement most of the additional code necessary to support your specific application needs, so
a good platform for trying out how to use it in practical situations is the Sketcher program we
just created.

You've already accessed the ClassWizard through the Wizard Bar, and through the context

menu that you get by right-clicking on a class name in ClassView. As you already know how to
create classes and add class members by these means we won't repeat them again here, but
we should take a look at some of the other things ClassWizard can do. You can invoke the
ClassWizard by selecting the View | ClassWizard... menu option, by pressing Ctrl-W, or easiest of
all, by clicking on the toolbar button on the menu bar. If the toolbar button for the ClassWizard
isn't displayed, you can add it by right-clicking on the menu bar and selecting Customize... from
the pop-up. You can then drag the toolbar button from the Customize dialog to the menu bar.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can get at toolbar buttons for any of the menus by this means. When you have all the

toolbar buttons you want, click on the Close button to end the dialog. If you now click on the
ClassWizard button with the Sketcher application open, you'll get the ClassWizard dialog

displayed for the current project. The dialog below shows the Sketcher project with the
CSketcherDoc class selected in the right-hand drop-down list.

Here you can see the Message Maps tab, where you can add functions to the classes in your
application to process specific Windows messages. The name of the current class is shown in
the drop-down list box at the top right. For the Object ID highlighted in the left list box, the
messages applicable to it are shown in the Messages: list box on the right. You can also edit or
delete any of the existing functions in a class. Highlighting one of the existing member functions
will enable the grayed out button for Delete Function.

The Add Class... button enables you to derive a new class in your application. This is the same

dialog as you get by selecting the down arrow on the Wizard Bar and selecting New Class... from
the pop-up menu. However, there's a big difference between the Sketcher program and what
we have before. Because Sketcher uses the MFC, the dialog gives you the option of deriving a
class from the MFC, in addition to the possibility of creating a generic class, which we used in
Chapter 11. The other tabs in the ClassWizard dialog provide a wealth of other facilities for
extending your program. We'll be going further into how we actually use the ClassWizard,
starting in the very next chapter.

Although there is overlap between the functions accessible through the Wizard Bar, the class

context menu, and selecting the ClassWizard toolbar button, you'll find yourself using all three,
since they each have some unique abilities. For instance, if you just want to add a variable to a

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

class then the class context menu is the way to go. Of course, none of these options prevent
you from modifying your source code directly. Indeed, you should be doing so from time to time,
if only to make sure your code is adequately commented.

Summary

In this chapter we've been concerned mainly with the mechanics of using the AppWizard. We

have looked at how a Windows program is structured, and we've taken a peek at MFC. We
have also seen the basic components of MFC programs generated by the AppWizard. All our
examples will be AppWizard-based, so it's a good idea to keep the general structure and broad
class relationships in mind. You probably won't feel too comfortable with the detail at this point,
but don't worry about that now. You'll find that it becomes much clearer once we have applied
the ClassWizard and other Visual C++ tools a few times in the succeeding chapters. They'll be
taking care of most of the detail automatically, and an appreciation of what fits where will
become quite obvious after a bit of practice.

The key points that we have discussed in this chapter are:

§ The AppWizard generates a complete, working, framework Windows application for you
to customize to your requirements.

§ The AppWizard can generate single document interface (SDI) applications which work
with a single document and a single view, or multiple document interface (MDI) programs
which can handle multiple documents and views simultaneously.

§ The four essential classes in an SDI application that are derived from the foundation
classes are:
o The application class
o The frame window class
o The document class
o The view class

§ A program can have only one application object. This is defined automatically by the
AppWizard at global scope.

§ A document class object stores application-specific data and a view class object
displays the contents of a document object.

§ A document template class object is used to tie together a document, a view and a
window. For an SDI application, a CSingleDocTemplate class does this, and for an MDI
application, the CMultiDocTemplate class is used. These are both foundation classes

and application-specific versions do not normally need to be derived.

Exercises

It isn't possible to give programming examples for this chapter, as it really just introduces the

Windows programming side of the IDE. There aren't solutions to all the exercises, because the
reader will either see the answer for themselves on the screen, or be able to check their answer
back with the text.

1. What is the relationship between a document and a view?
2. What is the purpose of the document template in an MFC Windows program?
3. Why do you need to be careful, and plan your program structure in advance, when

using AppWizard?
4. Code up the simple text editor program. Build both debug and release versions, and

examine the types and sizes of the files produced in each case.
5. Generate the text editor application several times, trying different window styles from

the Advanced Options in AppWizard.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 14: Working with Menus and Toolbars

Overview

In the last chapter, we saw how a simple framework application generated by the AppWizard is
made up and how the parts interrelate. In this chapter, we'll start customizing our MDI
framework application, Sketcher, with a view to making it into a useful program. The first step in
this process is to understand how menus are defined in Visual C++, and how functions are
created to service the application-specific menu items that we add to our program. We'll also
see how to add toolbar buttons to the application. By the end of this chapter you'll have learned:

§ How an MFC-based program handles messages
§ What menu resources are, and how you can create and modify them
§ What menu properties are, and how you can create and modify them

§ How to create a function to service the message generated when a menu item is
selected

§ How to add handlers to update menu properties

§ How to add toolbar buttons and associate them with existing menu items

Communicating with Windows

As we saw in Chapter 7, Windows communicates with your program by sending messages to it.
Most of the drudgery of message handling in a Visual C++ program is taken care of by MFC, so
you don't have to worry about providing a WndProc() function at all. MFC enables you to

provide functions to handle the individual messages that you're interested in and to ignore the
rest. These functions are referred to as message handlers or just handlers. Since your
application is MFC-based, a message handler is always a member function of one of your
application's classes.

The association between a particular message and the function in your program that is to

service it is established by a message map — each class in your program that can handle
Windows messages will have one. A message map for a class is simply a table of member
functions that handle Windows messages. Each entry in the message map associates a
particular message with a function; when a given message occurs, the corresponding function
will be called. Only the messages that are relevant to a class will appear in the message map
for the class.

A message map for a class is created automatically by AppWizard, or by ClassWizard when you

add a class that handles messages to your program. Additions to, and deletions from, a
message map are mainly managed by ClassWizard, but there are circumstances where you
need to modify the message map manually. The start of a message map in your code is
indicated by a BEGIN_MESSAGE_MAP() macro, and the end is marked by an
END_MESSAGE_MAP() macro. Let's look into how a message map operates using our Sketcher

example.

Understanding Message Maps

A message map is established by AppWizard for each of the main classes in your program. In

the instance of our MDI program, Sketcher, a message map will be defined for each of
CSketcherApp, CSketcherDoc, CSketcherView, CMainFrame and CChildFrame.

You can see the message map for a class in the .cpp file that contains the implementation of

the class. Of course, the functions that are included in the message map also need to be
declared in the class definition, but they are identified here in a special way. Look at the
definition for the CSketcherApp class shown here:

 class CSketcherApp : public CWinApp

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 public:

 CSketcherApp();

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CSketcherApp)

 public:

 virtual BOOL InitInstance();

 //}}AFX_VIRTUAL

 // Implementation

 //{{AFX_MSG(CSketcherApp)

 afx msg void OnAppAbout();

 // NOTE - the ClassWizard will add and remove member
functions here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 };

You can see the comments that indicate the start (//{{AFX_MSG(CSketcherApp)) and end
(//}}AFX_MSG) of the lines in the class definition where ClassWizard will add declarations for

the message handlers that you define in the class. The functions appearing here will also
appear in a message map in the class implementation in the .cpp file for the class. In

CSketcherApp, only one message handler is declared (namely OnAppAbout()). The word
afx_msg at the beginning of the line is just to distinguish a message handler from other

member functions in the class. It will be converted to whitespace by the preprocessor, so it has
no effect when the program is compiled.

The macro DECLARE_MESSAGE_MAP() indicates that the class can contain function members
that are message handlers. In fact, any class that you derive from the MFC class CCmdTarget

can potentially have message handlers, so such classes will have this macro included as part of
the class definition by AppWizard or ClassWizard, depending on which was responsible for
creating it. The diagram below shows the MFC classes derived from CCmdTarget that have

been used in our examples so far:

In this diagram, each arrow points from a derived class to its base class. The classes that have
been used directly, or as a direct base for our own application classes, are shown shaded.
Thus, our class CSketcherApp has CCmdTarget as an indirect base class and, therefore, will

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

always include the DECLARE_MESSAGE_MAP() macro. All of the view (and other) classes
derived from CWnd will also have it.

If you are adding your own members to a class directly, it's best to leave the
DECLARE_MESSAGE_MAP() macro as the last line in the class definition. If you do add
members after DECLARE_MESSAGE_MAP(), you'll also need to include an access specifier for

them: public, protected or private.

Message Handler Definitions

If a class definition includes the macro DECLARE_MESSAGE_MAP(), the class implementation
must include the macros BEGIN_MESSAGE_MAP() and END_MESSAGE_MAP(). If you look in

Sketcher.cpp, you'll see the following code as part of the implementation of CSketcherApp:

 BEGIN_MESSAGE_MAP(CSketcherApp, CWinApp)

 //{{AFX_MSG_MAP(CSketcherApp)

 ON_COMMAND(ID_APP_ABOUT, OnAppAbout)

 // NOTE - the ClassWizard will add and remove mapping macros
here.

 // DO NOT EDIT what you see in these blocks of generated
code!

 //}}AFX_MSG_MAP

 // Standard file based document commands

 ON_COMMAND(ID_FILE_NEW, CWinApp::OnFileNew)

 ON_COMMAND(ID_FILE_OPEN, CWinApp::OnFileOpen)

 // Standard print setup command

 ON_COMMAND(ID_FILE_PRINT_SETUP, CWinApp::OnFilePrintSetup)

 END_MESSAGE_MAP()

This is a message map. The BEGIN_MESSAGE_MAP() and END_MESSAGE_MAP() macros

define the boundaries of the message map, and each of the message handlers in the class will
appear between these macros. In the case above, the code is handling only one category of
message, namely the type of WM_COMMAND message called a command message, which is

generated when the user selects a menu option or accelerator keys. (If that seems clumsy, it's
because there's another kind of WM_COMMAND message called a control notifications

message, as we shall see later in this chapter.)

The message map knows which menu or key is pressed, by the identifier (or ID) that's included
in the message. There are four ON_COMMAND macros in the code above — one for each of the

command messages to be handled. The first argument to this macro is an ID that is associated
with one particular command, and the ON_COMMAND() macro ties the function name to the

command specified by the ID. Thus, when a message corresponding to the identifier
ID_APP_ABOUT is received, the function OnAppAbout() will be called. Similarly, for a

message corresponding to the ID_FILE_NEW identifier, the function OnFileNew() will be
called. This handler is actually defined in the base class, CWinApp, as are the two remaining

handlers.

The BEGIN_MESSAGE_MAP() macro has two arguments. The first argument identifies the

current class name for which the message map is defined and the second provides a
connection to the base class for finding a message handler. If a handler isn't found in the class
defining the message map, the message map for the base class is then searched.

Note that command IDs such as ID_APP_ABOUT are standard IDs defined in MFC. These

correspond to messages from standard menu items and toolbar buttons. The prefix ID_ is used

to identify a command associated with a menu item or a toolbar button, as we'll see when we

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

discuss resources later. For example, ID_FILE_NEW is the ID that corresponds to the File | New
menu item being selected, and ID_APP_ABOUT corresponds to the Help | About menu option.

There are more symbols besides WM_COMMAND that Windows uses to identify standard

messages. Each of them is prefixed with WM_ for Windows Message. These symbols are
defined in Winuser.h, which is included in Windows.h. If you want to look at them, you'll find

Winuser.h in the include folder, which is in the VC folder containing your Visual C++ system.

FYI

There's a nice shortcut for viewing a .h file. If the name of the file appears in

the editor window, you can just right click on it, and select the menu item Open
Document "Filename .h" from the pop-up.

Windows messages often have additional data values that are used to refine the identification of
a particular message specified by a given ID. The message WM_COMMAND, for instance, is sent

for a whole range of commands, including those originating from selecting a menu item or a
toolbar button.

Note that you should not map a message (or in the case of command messages, a command
ID) to more than one message handler in a class. If you do, it won't break anything, but the
second message handler will never be called. Since one of the major uses of the ClassWizard
is to define message handlers and make appropriate entries in the message maps in your
program, this situation should not arise if you stick to using the ClassWizard. Only when you
need to make message map entries manually will you need to take care not to assign more than
one handler to a message.

Message Categories

There are three categories of messages that your program may be dealing with, and the
category to which a message belongs will determine how it is handled. The message categories
are:

Message
category

Explanation

Windows
messages

These are standard Windows messages that begin with the WM_ prefix

(with the exception of WM_COMMAND messages, which we shall come to in
a moment). Examples of Windows messages are WM_PAINT, which

indicates that you need to redraw the client area of a window, and
WM_LBUTTONUP, which signals that the left mouse button has been
released.

Control
notification
messages

These are WM_COMMAND messages which are sent from controls (such as

a list box) to the window that created the control, or from a child window to
a parent window. Parameters associated with a WM_COMMAND message
enable messages from the controls in your application to be differentiated.

Command
messages

These are also WM_COMMAND messages that originate from the user

interface elements, such as menu items and toolbar buttons. MFC defines
unique identifiers for standard menu and toolbar command messages.

The standard Windows messages in the first category will be identified by the WM_-prefixed IDs

that Windows defines. We'll be writing handlers for some of these messages in the next chapter.
The messages in the second category are a particular group of WM_COMMAND messages that

we'll see in Chapter 17 when we work with dialogs. We'll deal with the last category, messages
originating from menus and toolbars, in this chapter. In addition to the message IDs defined by
MFC for the standard menus and toolbars, you can define your own message IDs for the menus
and toolbar buttons that you add to your program. If you don't supply IDs for these items, MFC
will automatically generate IDs for you, based on the menu text.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Handling Messages in Your Program

You can't put a handler for a message anywhere you like. The permitted sites for a handler
depend on what kind of message is to be processed. The first two categories of message that
we saw above (that is, standard Windows messages and control notification messages) are
always handled by objects of classes derived from CWnd. Frame window classes and view

classes, for example, are derived from CWnd, so they can have member functions to handle

Windows messages and control notification messages. Application classes, document classes
and document template classes are not derived from CWnd, so they can't handle these

messages.

Using the ClassWizard solves the headache of remembering where to place handlers, as it will
only give you the options that are allowed. For example, if you select CSketcherDoc as the

Class name:, you won't be offered any of the WM_ messages.

For standard Windows messages, the class CWnd provides default message handling. Thus, if

your derived class doesn't include a handler for a standard Windows message, it will be
processed by the default handler defined in the base class. If you do provide a handler in your
class, you'll sometimes still need to call the base class handler as well, so that the message will
be processed properly. When you're creating your own handler, ClassWizard will provide a
skeleton implementation of it, which will include a call to the base handler where necessary.

Handling command messages is much more flexible. You can put handlers for these in the
application class, the document and document template classes, and of course in the window
and view classes in your program. So, what happens when a command message is sent to your
application, bearing in mind there are a lot of options as to where it is handled?

How Command Messages are Processed

All command messages are sent to the main frame window for the application. The main frame
window then tries to get the message handled by routing it in a specific sequence to the classes
in your program. If one class can't process the message, it passes it on to the next.

For an SDI program, the sequence in which classes are offered an opportunity to handle a
command message is:

1. The view object
2. The document object
3. The document template object
4. The main frame window object
5. The application object

The view object is given the opportunity to handle a command message first and, if no handler
has been defined, the next class object has a chance to process it. If none of the classes has a
handler defined, default Windows processing takes care of it, essentially throwing the message
away.

For an MDI program, things are only a little more complicated. Although we have the possibility

of multiple documents, each with multiple views, only the active view and its associated
document are involved in the routing of a command message. The sequence for routing a
command message in an MDI program is:

1. The active view object
2. The document object associated with the active view
3. The document template object for the active document
4. The frame window object for the active view
5. The main frame window object
6. The application object

It's possible to alter the sequence for routing messages, but this is so rarely necessary that we

won't go into it in this book.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Extending the Sketcher Program

We're going to add code to the Sketcher program we created in the last chapter to implement
the functionality we need to create sketches. We'll provide code for drawing lines, circles,
rectangles and curves with various colors and line thickness, and for adding annotations to a
sketch. The data for a sketch will be stored in a document, and we'll also allow multiple views of
the same document at different scales.

It will take us several chapters to add everything we need, but a good starting point would be to
add menu items to deal with the types of elements that we want to be able to draw, and to
select a color for drawing. We'll make both the element type and color selection persistent in the
program, which means that having selected a color and an element type, both of these will
remain in effect until we change one or other of them.

The steps that we'll work through to add menus to Sketcher are:

§ Define the menu items that will appear on the main menu bar and in each of the menus.

§ Decide which of the classes in our application should handle the message for each
menu item.

§ Add message handling functions to the classes for our menu messages.

§ Add functions to the classes to update the appearance of the menus to show the
current selection in effect.

§ Add a toolbar button complete with tooltips for each of our menu items.

Elements of a Menu

We'll be looking at two aspects of dealing with menus in Visual C++:

§ The creation and modification of the menu as it appears in your application
§ The processing that is necessary when a particular menu item is selected—the

definition of a message handler for it

We will look at creating the menu items first.

Creating and Editing Menu Resources

Menus are defined external to the program code in a resource file and the specification of the
menu is referred to as a resource. There are several other kinds of resources that you can
include in your application, such as dialogs, toolbars and icons. You'll be seeing more on these
as we extend our application.

Having a menu defined in a resource allows the physical appearance of the menu to be

changed without affecting the code that processes menu events. For example, you could
change your menu items from English to French, or Norwegian, or whatever, without having to
modify or recompile the program code. The code to handle the message created when the user
selects a menu item doesn't need to be concerned with how the menu looks, only with the fact
that it was selected. Of course, if you add items to the menu, you'll need to add some code for
each of them to ensure that they actually do something!

The Sketcher program already has a menu, which means that it already has a resource file. We
can access the resource file contents for the Sketcher program by selecting the ResourceView
in the workspace window, or if you have the FileView displayed, by double-clicking
Sketcher.rc. This will switch you to the ResourceView and display the resources. If you

expand the Menu resource, you'll see that there are two menus defined, indicated by the
identifiers IDR_MAINFRAME and IDR_SKETCHTYPE. The first of these applies when there are

no documents open in the application, and the second when we have one or more documents
open. MFC uses the prefix IDR_ to identify a resource which defines a complete menu for a

window.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We're only going to be modifying the menu which has the identifier IDR_SKETCHTYPE. We
don't need to look at IDR_MAINFRAME, because our new menu items will only be relevant when

a document is open. You can invoke a resource editor for the menu by double-clicking its menu
ID. If you do this for IDR_SKETCHTYPE, you'll see the window shown here:

Adding a Menu Item to the Menu Bar

To add a new menu item, you can just click on the empty menu box to select it and type in the
menu name. If you insert & in front of a letter in the menu item, the letter will be identified as a

shortcut key to invoke the menu from the keyboard. Type the first menu item as E&lement. This
will select l (L) as the shortcut letter, so that the user can invoke the menu item by typing Alt-l.
(We can't use E because it's already used by Edit.) As soon as you begin typing, the Menu Item
Properties box will appear, as shown here:

Properties are simply parameters that determine how the menu item will appear and behave.
Since we want to create a menu containing the list of elements that we'll have in our program,
we can leave everything as it is, so you can just press Enter. No ID is necessary for a pop-up
menu item, since selecting it just displays the menu beneath. Note that you get a new blank
menu box for the first item of the new menu, as well as one on the main menu bar.

It would be better if the Element menu appeared between the View and Window items, so place
the cursor on the Element menu item and, with the left mouse button pressed, drag it to a

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

position between the View and Window items. Then release the left mouse button. After
positioning the new Element menu item, the next step is to add items to the menu beneath it.

Adding Items to the Element Menu

Select the first (currently empty) item in the Element menu by clicking on it, then type &Line as
the Caption: in the Menu Item Properties dialog, as shown here:

The properties modify the appearance of the menu item and also specify the ID of the message
that will be passed to your program when the menu item is selected. Don't press Enter just yet:
we'll run through the properties that you need to set in a moment.

Because this item is part of a pop-up menu, it isn't identified as a pop-up item by default;

however, you could make it into another pop-up with a further list of items, in which case you
would need to check the Pop-up box. Don't you love the way pop-ups pop up all over the place?

Defining Menu Item Properties

You can enter an ID for the menu item in the ID: box, as shown above. If you don't, then MFC

will generate it for you automatically, based on the menu item name. Sometimes, though, it's
convenient to specify the ID yourself — for example, when the generated ID is too long or its
meaning is unclear. If you do choose to define your own ID, you should use the MFC
convention of prefixing it with ID_ to indicate that it's a command ID for a menu item. We can

use the same format for each of the Element menu item IDs, in this case starting the ID with
ID_ELEMENT_. The ID will identify the message created when the user selects the menu item,

so you'll see it as an entry in the message map for the class handling the messages from the
Element menu items.

In the Prompt: box, you can enter a text string that will appear in the status bar of your

application when the menu item is highlighted. If you leave it blank, nothing is displayed in the
status bar. We want the default element selected in the application at start up to be a line, so we
can check the Checked box to get a check mark against the menu item to indicate this. We'll
have to remember to add code to update check marks for the menu items when a different
selection is made. The Break: entry can alter the appearance of the pop-up by shifting the item
into a new column. We don't need that here, so leave it as it is. Press Enter to move to the next
menu item.

Modifying Existing Menu Items

If you think that you may have made a mistake and want to change an existing menu item, or

even if you just want to verify that you have set the properties correctly, it's very easy to go back
to an item. Just double-click the item you're interested in, and the properties box for that item
will be displayed. (You can achieve the same result by right-clicking on the item and selecting

Properties from the menu.) You can then change the properties in any way that you want and

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

press Enter when you're done. If the item you want to access is in a pop-up menu that isn't
displayed, just click on the relevant item on the menu bar — this will display the popup.

Completing the Menu

Now go through the remaining Element menu items we need: &Rectangle, &Circle, and Cur&ve.
Of course, none of these should have the Checked box checked. We can't use C as the hotkey
for the last item, as hotkeys must be unique and we've already assigned C to the menu item for
a circle. You can use the default IDs ID_ELEMENT_RECTANGLE, ID_ELEMENT_CIRCLE, and

ID_ELEMENT_CURVE for these.

We also need a Color menu on the menu bar, with items for Black, Red, Green, and Blue. You

can create these, starting at the empty menu entry on the menu bar, using the same procedure
that we just went through. Set Black as checked, as that will be the default color. You can use
the default IDs (ID_COLOR_BLACK, etc.) as the IDs for the menu items. You can also add the

status bar prompt (for example, Draw in black) for each. When you've finished that, drag Color
so that it's just to the right of Element. Then the menu should appear as shown here:

Note that you need to take care not to use the same letter more than once as a shortcut in the
pop-up — or in the main menu for that matter. There's no check made as you create new menu
items, but if you click the right mouse button with the cursor on the menu when you've edited it,
you'll get a pop-up which contains an item Check Mnemonics. Selecting this will verify that you
have no duplicate shortcut keys. It's a good idea to do this every time you edit a menu because
it's very easy to create duplicates by accident.

That completes extending the menu for elements and colors. Don't forget to save the file to
make sure that the additions are safely stored away. Next, we need to decide in which classes
we want to deal with messages from our menu items, and add member functions to handle
each of the messages. For that, we'll use the ClassWizard.

Using ClassWizard for Menu Messages

You're spoilt for choice when starting ClassWizard You can invoke it from where we are (the
Resource Editor for menus) by right-clicking in the right-hand pane and selecting ClassWizard...
from the pop-up. Alternatively, you can enter Ctrl-W from the keyboard, or you can select it from
the View menu. You'll see the ClassWizard window as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We'll concentrate on Message Maps, so ignore the other tabs for the moment. The contents of the

five boxes on this tab are fairly self-explanatory:

Control Use

Project: Identifies the current project

Class name: Identifies the class that we're currently working on

Object IDs: Lists the IDs for which we can add handlers to the current class

Messages: Identifies the message types available for a particular object ID. (In the
screenshot above, we've selected a command ID, so we have the option of
choosing COMMAND or UPDATE_COMMAND_UI. We'll see the difference
between these two message types later in this chapter.)

Member
functions:

Lists the message handlers already defined in the current class

You can see that the IDs we assigned to our menu items appear in the Object IDs: box. If you
change to any of the other classes in the program by selecting from the drop-down list in the

Class name: box, you'll see that the IDs for our new menu items appear there too. Because the
menu items result in command messages, we can choose to handle them in any of the classes
that are currently defined in the application. So how do we decide where we should process the
messages?

Choosing a Class to Handle Menu Messages

Before we can decide which class should handle the messages for the menu items we've
added, we must know what we want to do with the messages, so let's consider that.

We want the element type and the element color to be modal — that is, whatever is set for the
element type and element color should remain in effect until one or other is changed. This will
allow you to create as many blue circles as you want, and when you want red circles, you just
change the color. We have two basic possibilities for handling the setting of a color and the
selection of an element type: setting them by view or by document. We could set them by view,
in which case, if there's more than one view of a document, each view will have its own color
and element set. This would mean that we might draw a red circle in one view, switch to another
view, and find that we're drawing a blue rectangle. This would be rather confusing, and in
conflict with how we want them to work.

It would be better, therefore, to have the current color and element selection apply to a
document. We can then switch from one view to another and continue drawing the same
elements in the same color. There might be other differences between the views that we might

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

implement — such as the scale at which the document is displayed, perhaps — but the drawing
operation will be consistent across multiple views.

This suggests that we should store the current color and element in the document object. These
could then be accessed by any view object associated with the document object. Of course, if
we had more than one document active, each document would have its own color and element
type settings. It would, therefore, be sensible to handle the messages for our new menu items in
the CSketcherDoc class and to store information about the current selections in an object of

this class.

Creating Menu Message Functions

Switch the class shown in the ClassWizard Class name: box to CSketcherDoc and click on

ID_COLOR_BLACK in the Object IDs: list. The window should appear as shown here:

The Messages: box in the window above shows, for a particular menu ID, the two kinds of
message that can arise. They serve distinct purposes in dealing with a menu item:

Message When Issued

COMMAND This is issued when a particular menu item has been selected.
The handler should provide the action appropriate to the menu
item being selected — for example, setting the current color in
the document object.

UPDATE_COMMAND_UI This is issued when the menu should be updated — checked
or unchecked, for example — depending on its status. This
message occurs before a pop-up menu is displayed so you
can set the appearance of the menu item before the user sees
it.

The way these work is quite simple. When you click on a menu item in the menu bar, an

UPDATE_COMMAND_UI message is sent for each item in that menu before the menu is
displayed. This provides the opportunity to do any necessary updating of the menu items'
properties. When these messages have been handled and any changes to the items' properties
have been completed, the menu is drawn. When you then click on one of the items in the menu,
a COMMAND message for that menu item is sent. We'll deal with the COMMAND messages for
now, and come back to the UPDATE_COMMAND_UI messages a little later in this chapter.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

With the ID_COLOR_BLACK object highlighted and COMMAND selected in the Messages: box,
click on the button Add Function.... This is the window you'll see:

Here, the ClassWizard is about to generate a handler function in the class CSketcherDoc with

the name shown. You have an opportunity to alter the function name, but this is a good choice
so click on the OK button to accept it. This function will be added to the Member functions: box,
and the message ID and the type of message that this handler will deal with will also be shown.

In the same way, add COMMAND message handlers for the other color menu IDs and all the
element menu IDs. You can create each of the handler functions for the menu items with just
four mouse clicks.

ClassWizard will have added the handlers to the class definition, which will now look like this:

 class CSketcherDoc : public CDocument

 {

 ...

 protected:

 // Generated message map functions

 protected:

 //{{AFX_MSG(CSketcherDoc)

 afx_msg void OnColorBlack();

 afx_msg void OnColorBlue();

 afx_msg void OnColorGreen();

 afx_msg void OnColorRed();

 afx_msg void OnElementCircle();

 afx_msg void OnElementCurve();

 afx_msg void OnElementLine();

 afx_msg void OnElementRectangle();

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 };

A declaration has been added for each of the handlers that we've specified in the ClassWizard
dialog. Each of the function declarations has been prefixed with afx_msg to indicate that it is a

message handler.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The ClassWizard also automatically updates the message map in your CSketcherDoc class
with the new message handlers. If you take a look in the file SketcherDoc.cpp, you'll see the

message map is as shown below:

 BEGIN_MESSAGE_MAP(CSketcherDoc, CDocument)

 //{{AFX_MSG_MAP(CSketcherDoc)

 ON_COMMAND(ID_COLOR_BLACK, OnColorBlack)

 ON_COMMAND(ID_COLOR_BLUE, OnColorBlue)

 ON_COMMAND(ID_COLOR_GREEN, OnColorGreen)

 ON_COMMAND(ID_COLOR_RED, OnColorRed)

 ON_COMMAND(ID_ELEMENT_CIRCLE, OnElementCircle)

 ON_COMMAND(ID_ELEMENT_CURVE, OnElementCurve)

 ON_COMMAND(ID_ELEMENT_LINE, OnElementLine)

 ON_COMMAND(ID_ELEMENT_RECTANGLE, OnElementRectangle)

 //}}AFX_MSG_MAP

 END_MESSAGE_MAP()

The ClassWizard has added an ON_COMMAND() macro for each of the handlers that you have

identified. This associates the handler name with the message ID, so, for example, the member
function OnColorBlack() will be called to service a COMMAND message for the menu item
with the ID ID_COLOR_BLACK.

Each of the handlers generated by ClassWizard is just a skeleton. For example, take a look at
the code provided for OnColorBlack(). This is also defined in the file SketcherDoc.cpp, so

you can scroll down to find it, or go directly to it by switching to the ClassView and double-
clicking the function name after expanding the tree for the class CSketcherDoc (make sure

that the file is saved first):

 void CSketcherDoc::OnColorBlack()

 {

 // TODO: Add your command handler code here

 }

As you can see, the handler takes no arguments and returns nothing. It also does nothing at the

moment, but this is hardly surprising since ClassWizard has no way of knowing what you want
to do with these messages!

Coding Menu Message Functions

Let's consider what we should do with the COMMAND messages for our new menu items. We
said earlier that we want to record the current element and color in the document, so we need a
data member added to the CSketcherDoc class for each of these.

Adding Members to Store Color and Element Mode

You can add the data members that we need to the 'Attributes' section of the CSketcherDoc

class definition, just by editing the class definition directly. Display the class definition by double-
clicking the class name in the ClassView, then insert the code shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The new data members are m_Color and m_Element. We've prefixed their names with m_ to

show that they are members of a class. The member m_Element is declared to be of type
WORD, which is equivalent to unsigned int. We'll see why this is a good choice when we

come to look into how to save a document in a file. The type for m_Color is COLORREF, a

Windows-defined type that is used to represent color values. It's a 32-bit integer. We'll be able
to use this value directly to set the color when we get to draw elements in a view. Both the new
data members are protected because there is no need for them to be public. As we saw

when we discussed classes, data members shouldn't be declared as public unless it's

absolutely necessary, as this undermines the security of the class.

You could also have added these data members by right-clicking the class name in ClassView
and selecting Add Member Variable... from the pop-up. You can add the information necessary to
define these data members in the dialog box that is displayed. Of course, if you want to add
comments — and it's a good idea to do so — you must still go back to the class definition to
insert them.

Initializing the New Class Data Members

We need to decide how to represent a color and an element. We could just set them to numeric
values, but this would introduce 'magic numbers' into the program, the significance of which
would be less than obvious to anyone else looking at the code. A better way would be to define
a set of constants that we can use to set values for the two member variables we have added.
In this way, we can use a standard mnemonic to refer to a given type of element. We could
define the element types with the following statements:

 // Element type definitions

 // Each type value must be unique

 const WORD LINE = 101U;

 const WORD RECTANGLE = 102U;

 const WORD CIRCLE = 103U;

 const WORD CURVE = 104U;

The constants initializing the element types are arbitrary unsigned integers. You can choose
different values if you like, as long as they are all distinct. If we want to add further types in the
future, it will obviously be very easy to add definitions here.

For the color values, it would be a good idea if we used constant variables that are initialized

with the values that Windows uses to define the color in question. We can do this with the
following lines of code:

 // Color values for drawing

 const COLORREF BLACK = RGB(0,0,0);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 const COLORREF RED = RGB(255,0,0);

 const COLORREF GREEN = RGB(0,255,0);

 const COLORREF BLUE = RGB(0,0,255);

Each constant is initialized by RGB(), which is a standard macro defined in the file Wingdi.h,

included as part of Windows.h. The three arguments define the red, green and blue

components of the color value respectively. Each parameter is an integer between 0 and 255,
where these limits correspond to no color component and the maximum color component.
RGB(0, 0, 0) corresponds to black, since there are no components of red, green or blue.

RGB(255, 0, 0) creates a color value with a maximum red component, and no green or blue

contribution. Other colors can be created by combining red, green and blue components.

We need somewhere to put these constants, so let's create a new header file and call it
OurConstants.h. You can create a new file by using the File | New menu option in the Visual

C++ IDE, then entering the constant definitions as shown here:

 //Definitions of constants

 #ifndef OurConstants_h

 #define OurConstants_h

 // Element type definitions

 // Each type value must be unique

 const WORD LINE = 101U;

 const WORD RECTANGLE = 102U;

 const WORD CIRCLE = 103U;

 const WORD CURVE = 104U;

 ////////////////////////////////////

 // Color values for drawing

 const COLORREF BLACK = RGB(0,0,0);

 const COLORREF RED = RGB(255,0,0);

 const COLORREF GREEN = RGB(0,255,0);

 const COLORREF BLUE = RGB(0,0,255);

 ///////////////////////////////////

 #endif //!defined(OurConstants.h)

As you'll recall, the pre-processor directive #if!defined is there to ensure that the definitions
aren't included more than once. The block of statements down to #endif will only be included if

OurConstants_h hasn't been defined previously.

After saving the file, you can add the following #include statement to the beginning of the file
Sketcher.h, as shown by the shaded line below:

//
//////////////

 // CSketcherApp:

 // See Sketcher.cpp for the implementation of this class

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //

 #include "OurConstants.h"

 class CSketcherApp : public CWinApp

 {

 ...

 };

Sketcher.h is included into the other .cpp files in the program, so our constants will be

available to any of them. To ensure the Visual C++ IDE displays the new file in FileView, you
need to add the file to the header files folder. Right click on Header Files in FileView and select
Add Files to Folder... from the pop-up. Then enter the name OurConstants.h in the dialog, and

click on OK.

Modifying the Class Constructor

It's important that we make sure that the data members we have added to the CSketcherDoc

class are initialized when a document is created. You can add the code to do this to the class
constructor as shown here:

 CSketcherDoc::CSketcherDoc()

 {

 // TODO: add one-time construction code here

 m_Element = LINE; // Set initial element type

 m_Color = BLACK; // Set initial drawing color

 }

The element type is initialized with LINE and the color with BLACK, consistent with the initial

check marks that we specified for the menus.

Now we're ready to add the code for the handler functions that we created. We can do this with
the ClassView. Double click on the name of the first handler function, OnColorBlack(). We

just need to add one line to the function, so the code for it becomes:

 void CSketcherDoc::OnColorBlack()

 {

 m_Color = BLACK; // Set the drawing color to black

 }

The only job that the handler has to do is to set the appropriate color. In the interests of
conciseness, the new line replaces the comment provided by ClassWizard. You can go through
and add one line to each of the Color menu handlers.

The element menu handlers are much the same. The handler for the Element | Line menu item
will be:

 void CSketcherDoc::OnElementLine()

 {

 m_Element = LINE; // Set element type as a line

 }

With this model, it's not too difficult to write the other handlers for the Element menu. That's eight
message handlers completed. Let's rebuild the example and see how it works.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Running the Extended Example

Assuming that there are no typos, the compiled and linked program should run without error.
When you run the program you should see the window shown here:

Our new menus are in place on the menu bar, and you can see that the items we have added in
the Element menu are all there, as is the message in the status bar that we provided in the
properties box. You could also verify that Alt-C and Alt-l work as well. The things that don't work
are the check marks for the currently selected color and element, which remain firmly stuck to
their initial defaults. Let's look at how we can fix that.

Adding Message Handlers to Update the User Interface

To set the check mark correctly for the new menus, we need to add the second kind of
message handler, UPDATE_COMMAND_UI (or update command user interface), for each of
the new menu items. This sort of message handler is specifically aimed at updating the menu
item properties before the item is displayed.

Let's go back to the ClassWizard. Make sure that the Class name: box shows CSketcherDoc first,
then select ID_COLOR_BLACK in the Object IDs: box and UPDATE_COMMAND_UI in the
Messages: box. You'll be able to click on the Add Function... button and see the window shown
below:

You can see the description of the purpose of the function below the Member functions: box. This

description fits our requirement precisely. The name for an update function has been generated,
OnUpdateColorBlack(), and since this seems a reasonable name for the function we want,

click on the OK button and have ClassWizard generate it. As well as generating the skeleton
function definition in SketcherDoc.cpp, its declaration will be added to the class definition. An

entry for it will also be made in the message map:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 ON_UPDATE_COMMAND_UI(ID_COLOR_BLACK, OnUpdateColorBlack)

This uses the macro ON_UPDATE_COMMAND_UI(), which identifies the function you have just

generated as the handler to deal with update messages corresponding to the ID shown. You
can now add command update handlers for each of the seven other menu items.

Coding a Command Update Handler

You can access the code for the handler, OnUpdateColorBlack(), by selecting the

appropriate line in the Member functions box of the ClassWizard, and then clicking the Edit Code
button. This is the skeleton code for the function OnUpdateColorBlack():

 void CSketcherDoc::OnUpdateColorBlack(CCmdUI* pCmdUI)

 {

 // TODO: Add your command update UI handler code here

 }

The argument passed to the handler is a pointer to an object of the CCmdUI class. This is an

MFC class that is only used with update handlers. The pointer points to an object that identifies
the particular menu item originating the update message and can be used to access members
of the class object. The class has five member functions that act on user interface items. The
purpose of each of these is described below:

Method Purpose

ContinueRouting() Pass the message on to the next priority handler.

Enable() Enable or disable the relevant interface item.

SetCheck() Set a check mark for the relevant interface item.

SetRadio() Set a button in a radio group on or off.

SetText() Set the text for the relevant interface item.

We'll use the third function, SetCheck(), as that seems to do what we want. The function is
declared in the CCmdUI class as:

 virtual void SetCheck(int nCheck = 1);

This function will set a menu item as checked if the argument passed is 1, and set it unchecked
if the argument passed is 0. The parameter has a default value of 1, so if you just want to set a
check mark for a menu item regardless, you can call this function without specifying an
argument.

In our case, we want to set a menu item as checked if it corresponds with the current color. We
can, therefore, write the update handler for OnUpdateColorBlack() as:

 void CSketcherDoc::OnUpdateColorBlack(CCmdUI* pCmdUI)

 {

 // Set menu item Checked if the current color is black

 pCmdUI->SetCheck(m_Color==BLACK);

 }

The first part of the statement, pCmdUI->SetCheck, calls the SetCheck() function of the

Color | Black menu item, while the comparison m_Color==BLACK results in 1 if m_Color is
BLACK, or 0 otherwise. The effect, therefore, is to check the menu item only if the current color

stored in m_Color is BLACK, which is precisely what we want.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Since the update handlers for all the menu items in a menu are always called before the menu
is displayed, you can code the other handlers in the same way to ensure that only the item
corresponding to the current color (or the current element) will be checked:

 void CSketcherDoc::OnUpdateColorBlue(CCmdUI* pCmdUI)

 {

 // Set menu item Checked if the current color is blue

 pCmdUI->SetCheck(m_Color==BLUE);

 }

 void CSketcherDoc::OnUpdateColorGreen(CCmdUI* pCmdUI)

 {

 // Set menu item Checked if the current color is green

 pCmdUI->SetCheck(m_Color==GREEN);

 }

 void CSketcherDoc::OnUpdateColorRed(CCmdUI* pCmdUI)

 {

 // Set menu item Checked if the current color is red

 pCmdUI->SetCheck(m_Color==RED);

 }

A typical Element menu item update handler will be coded as:

 void CSketcherDoc::OnUpdateElementCircle(CCmdUI* pCmdUI)

 {

 // Set Checked if the current element is a circle

 pCmdUI->SetCheck(m_Element==CIRCLE);

 }

You can now code all the other update handlers in a similar manner:

 void CSketcherDoc::OnUpdateElementCurve(CCmdUI* pCmdUI)

 {

 // Set Checked if the current element is a curve

 pCmdUI->SetCheck(m_Element==CURVE);

 }

 void CSketcherDoc::OnUpdateElementLine(CCmdUI* pCmdUI)

 {

 // Set Checked if the current element is a line

 pCmdUI->SetCheck(m_Element==LINE);

 }

 void CSketcherDoc::OnUpdateElementRectangle(CCmdUI* pCmdUI)

 {

 // Set Checked if the current element is a rectangle

 pCmdUI->SetCheck(m_Element==RECTANGLE);

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Once you get the idea, it's easy, isn't it?

Exercising the Update Handlers

When you've added the code for all the update handlers, you can build and execute the

Sketcher application again. Now, when you change a color or an element type selection, this
will be reflected in the menu, as shown below:

We've completed all the code that we need for our menu items. Make sure that you have saved
everything before embarking on the next stage. These days, toolbars are a must in any
Windows program of consequence, so we should now take a look at how we can add toolbar
buttons to support our new menus.

Adding Toolbar Buttons

Select the ResourceView and extend the Toolbar resource. You'll see that it has the same ID as
the main menu, IDR_MAINFRAME. If you double-click this ID, the Resource Editor window will

be as shown below:

A toolbar button is a 16x15 array of pixels which contains a pictorial representation of the
function it operates. You can see above that the resource editor provides an enlarged view of a
toolbar button so that you can see and manipulate individual pixels. If you click on the new
button at the right-hand end of the row as indicated, you'll be able to draw this button. Before

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

starting the editing, drag the new button about half a button width to the right. It will separate
from its neighbor on the left to start a new block.

We should keep the toolbar button blocks in the same sequence as the items on the menu bar,
so we'll create the element type selection buttons first. We'll be using the following editing
buttons provided by the resource editor:

Pencil for drawing individual pixels

Eraser for erasing individual pixels

Fill an area with the current color

Zoom the view of the button

Draw a rectangle

Draw an ellipse

Draw a curve

Make sure that the black color is selected and use the pencil tool to draw a diagonal line in the
enlarged image of the new toolbar button. In fact, if you want it a bit bigger, you can use the
'zoom' editing button to enlarge it up to eight times its actual size. If you make a mistake, you
can change to the eraser editing button, but you need to make sure that the color selected
corresponds to the background color for the button you are editing. You can also erase
individual pixels by clicking on them using the right mouse button, but again you need to be sure
that the background color is set correctly when you do this. To set the background color, just
click on the appropriate color using the right mouse button. Using the left mouse button selects
the foreground color. Once you're happy with what you've drawn, the next step is to edit the
toolbar button properties.

Editing Toolbar Button Properties

Double-clicking your new button in the toolbar will bring up its properties window:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The properties box will show a default ID for the button, but we want to associate the button with

the menu item Element | Line that we've already defined, so select ID_ELEMENT_LINE from the
drop-down box. You'll find that this will also cause the relevant status bar caption to appear in
the Prompt: box, because it is recorded along with the ID. You can press Enter to complete the
button definition.

You can now go on to designing the other three element buttons. You can use the rectangle

editing button to draw a rectangle and the ellipse button to draw a circle. You can draw a curve
using the pencil to set individual pixels, or use the curve button. You need to associate each
button with the ID corresponding to the equivalent menu item that we defined earlier.

Now add the buttons for the colors. You should also drag the first button for selecting a color to
the right, so that it starts a new group of buttons. You could keep the color buttons very simple
and just color the whole button with the color it selects. You can do this by selecting the
appropriate foreground color, then selecting the 'fill' editing button and clicking on the enlarged
button image. Again you need to use ID_COLOR_BLACK, ID_COLOR_RED, etc., as IDs for the

buttons. The toolbar editing window should look like the one shown here:

That's all we need for the moment, so save the resource file and give Sketcher another spin.

Exercising the Toolbar Buttons

Build the application once again and execute it. You should see the application window shown

below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There are some amazing things happening here. The toolbar buttons that we added already
reflect the default settings that we defined for the new menu items. If you let the cursor linger
over one of the new buttons, the prompt for the button will appear in the status bar. The new
buttons work as a complete substitute for the menu items and any new selection made, using
either the menu or the toolbar, is reflected by showing the toolbar button depressed, as well as
the check against the menu item.

If you close the document view window, Sketch1, you'll see that our toolbar buttons are

automatically grayed and disabled. If you open a new document window, they will be
automatically enabled once again. You can also try dragging the toolbar with the cursor. You
can move it to either side of the application window, or have it free-floating. You can also enable
or disable it through the View | Toolbar menu option. We got all this without writing a single
additional line of code!

Adding Tooltips

There's one further tweak that we can add to our toolbar buttons which is remarkably easy:
adding tooltips. A tooltip is a small box that appears adjacent to the toolbar button when you let
the cursor linger on the button. The tooltip contains a text string which is an additional clue as to
the purpose of the toolbar button.

To add tooltips, select the ResourceView and, after expanding the resource list, double-click on

the String Table resource. This contains the IDs and prompt strings associated with menu items
and toolbar buttons. You should see the IDs for the menus that we added earlier. Double-click
on ID_ELEMENT_LINE to cause the String Properties dialog to be displayed. To add a tooltip,
you just need to add \n, followed by the tooltip text, to the end of the prompt text. For this ID,
you could add \nLine, for example.

If you press Enter, the new prompt string with the tooltip text appended will be recorded against

the ID. You can now go through the other menu IDs for elements and colors adding similar
tooltips.

That's all you have to do. After saving the String Table resource, you can now rebuild the
application and execute it. Placing the cursor over one of the new toolbar buttons will cause the
tooltip to be displayed after a second or two.

Summary

In this chapter, you've learned how MFC connects a message with a class member function to

process it, and you've written your first message handlers. Much of the work in writing a
Windows program is writing message handlers, so it's important to have a good grasp of what
happens in the process. When we get to consider other message handlers, you'll see that the
process for adding them is just the same.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You have also extended the standard menu and the toolbar in the AppWizard-generated
program, which provides a good base for the application code that we will add in the next
chapter. Although there's no functionality under the covers yet, the menu and toolbar operation
looks very professional, courtesy of the AppWizard-generated framework and ClassWizard.

The important points that we've seen in this chapter are:

§ MFC defines the message handlers for a class in a message map which appears in the
.cpp file for the class.

§ Command messages which arise from menus and toolbars can be handled in any class
that's derived from CCmdTarget. These include the application class, the frame and child

frame window classes, the document class and the view class.
§ Messages other than command messages can only be handled in a class derived from

CWnd. This includes frame window and view classes, but not application or document

classes.
§ MFC has a predefined sequence for searching the classes in your program to find a

message handler for a command message.

§ You should always use ClassWizard to add message handlers to your program.
§ The physical appearances of menus and toolbars are defined in resource files, which

are edited by the built-in resource editor within the Visual C++ IDE.

§ Items in a menu that can result in command messages are identified by a symbolic
constant with the prefix ID_. These IDs are used to associate a handler with the message

from the menu item.
§ To associate a toolbar button with a particular menu item, you give it the same ID as

that of the menu item.

§ To add a tooltip for a toolbar button corresponding to a menu item, you add the tooltip
text to the entry for the menu item's ID in the String Table resource. The tooltip text is
separated from the menu prompt text by \n.

In the next chapter, you'll be adding the code necessary to draw elements in a view and, using
the menus and toolbar buttons that we have created here, to select what is to be drawn and in
which color. This is where the Sketcher program begins to live up to its name.

Exercises

1. Add a menu item Ellipse to the Element pop-up.

2. Implement the command and command update handlers for it in the document class.

3. Add a toolbar button corresponding to the Ellipse menu item and add a tooltip for the
button.

4. Modify the command update handlers for the color menu items so that the currently
selected item is displayed in upper case, and the others are displayed in lower case.

Answers

1. Open the menu resource IDR_SKETCHTYPE in ResourceView, and add the item &Ellipse to
the vacant position at the end of the Element pop-up. Assign the ID ID_ELEMENT_ELLIPSE.
Add a prompt reading Draw an ellipse. Save the menu.

2. Add a definition for ELLIPSE to OurConstants.h:

 const WORD ELLIPSE = 105U;

Open ClassWizard and add a COMMAND handler and an UPDATE_COMMAND_UI handler to
CSketcherDoc, corresponding to the ID ID_ELEMENT_ELLIPSE.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Implement the command handler as:

 void CSketcherDoc::OnElementEllipse()

 {

 m_Element = ELLIPSE; // Set element type as a ellipse

 }

Add a command update handler as:

 Void CSketcherDoc::OnUPdateElemetnEllipse(CCmdUI* pCmdUI)

 {

 // Set Checked if the current element is an ellipse

 pCmdUI->SetCheck(m_Element==ELLIPSE);

 }

3. Open the toolbar IDR_MAINFRAME in ResourceView. Draw a new toolbar button to represent

an ellipse. Drag it to the group of buttons for elements types. Change its ID to that of the
corresponding menu item, ID_ELEMENT_ELLIPSE. Save the toolbar.

Open the menu resource with the ID IDR_SKETCHTYPE. Open the properties box for the

menu item Ellipse. Modify the prompt to include the tooltip.

4. Use the SetText() member of the class CCmdUI to set the menu item text for each color to

upper or lower case, depending on the current value of m_Color. A typical update handler
will be modified as follows:

 void CSketcherDoc::OnUpdateColorBlack(CCmdUI* pCmdUI)

 {

 // Set menu item Checked if the current color is black

 pCmdUI->SetCheck(m_Color==BLACK);

 // Set upper case for a selected item, lower case otherwise

 if(m_Color == BLACK)

 pCmdUI->SetText("BLACK");

 else

 pCmdUI->SetText("black");

 }

This modification does not affect the corresponding toolbar button.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 15: Drawing in a Window

Overview

In this chapter, we'll add some meat to our Sketcher application. We'll concentrate on
understanding how you get graphical output displayed in the application window. Although we'll
be able to draw all but one of the elements for which we have added menu items, we'll leave the
problem of how to store them in a document until the next chapter. In this chapter, you will
learn:
§ What coordinate systems Windows provides for drawing in a window

§ What a device context is and why it is necessary
§ How and when your program draws in a window
§ How to define handlers for mouse messages

§ How to define your own shape classes
§ How to program the mouse to draw your shapes in a window
§ How to get your program to capture the mouse

Basics of Drawing in a Window

Before we go into drawing using MFC, it's useful to get an idea of what is happening under the

covers of the Windows operating system. Like any other operation under Windows, writing to a
window on your display screen is achieved through using Windows API functions. There's
slightly more to it than that though; the situation is somewhat complicated by the way Windows
works.

For a start, you can't just write to a window and forget it. There are many events that occur

which mean that you must redraw the window—if the user resizes the window that you're
drawing in, for instance, or if part of your window is exposed by the user moving another
window.

Fortunately, you don't need to worry about the details of such occurrences because Windows
actually manages all these events for you, but it does mean that you can only write permanent
data to a window when your application receives a specific Windows message requesting that
you do so. It also means that you need to be able to reconstruct everything that you've drawn in
the window at any time.

When all, or part, of a window needs to be redrawn, Windows sends a WM_PAINT message to

your application. This is intercepted by MFC, which passes the message to a function member
of one of your classes. You'll see how to handle this a little later in this chapter.

The Window Client Area

A window doesn't have a fixed position on the screen, or even a fixed visible area, because a
window can be dragged around using the mouse and resized by dragging its borders. So how
do you know where to draw on the screen?

Fortunately, you don't need to. Because Windows provides you with a consistent way of
drawing in a window, you don't have to worry about where it is on the screen. Otherwise,
drawing in a window would be inordinately complicated. Windows does this by maintaining a
coordinate system for the client area of a window that is local to the window. It always uses the
top left corner of the client area (rather than, say, the top left corner of the screen) as its
reference point. All points within the client area are defined relative to this point, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The horizontal and vertical distances of a point from the top left corner of the client area will

always be the same, regardless of where the window is on the screen, or how big it is. Of
course, Windows will need to keep track of where the window is, and when you draw something
at a point in the client area, it will need to figure out where that actually is on the screen.

The Windows Graphical Device Interface

The final constraint Windows imposes is that you don't actually write data to the screen in any
direct sense. All output to your display screen is graphical, regardless of whether it is lines and
circles, or text. Windows insists that you define this output using the Graphical Device
Interface (GDI). The GDI enables you to program graphical output independently of the
hardware on which it will be displayed, meaning that your program will work on different
machines with different display hardware. In addition to display screens, the Windows GDI also
supports printers and plotters, so outputting data to a printer or a plotter involves essentially the
same mechanisms as displaying information on the screen.

What is a Device Context?

When you want to draw something on a graphical output device such as the display screen, you
must use a device context. A device context is a data structure that's defined by Windows, and
which contains information that allows Windows to translate your output requests (which are in
the form of device-independent GDI function calls) into actions on the particular physical output
device being used. A pointer to a device context is obtained by calling a Windows API function.

A device context provides you with a choice of coordinate systems called mapping modes,
which will be automatically converted to client coordinates. You can also alter many of the
parameters that affect the output to a device context by calling GDI functions; such parameters
are called attributes. Examples of attributes that you can change are the drawing color, the
background color, the line thickness to be used when drawing and the font for text output. There
are also GDI functions that will provide information about the physical device you're working
with. For example, you may need to be certain that the display on the computer executing your
program can support 256 colors, or that a printer can support the output of bitmaps.

Mapping Modes

Each mapping mode in a device context is identified by an ID, in a manner similar to what we
saw with Windows messages. Each symbol has the prefix MM_ to indicate that it defines a

mapping mode. The mapping modes provided by Windows are:

Mapping Mode Definition

MM_TEXT A logical unit is one device pixel with positive x from left to right, and
positive y from top to bottom of the window client area.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Mapping Mode Definition

MM_LOENGLISH A logical unit is 0.01 inches with positive x from left to right, and
positive y from the top of the client area upwards.

MM_HIENGLISH A logical unit is 0.001 inches with the x and y directions as in
MM_LOENGLISH.

MM_LOMETRIC A logical unit is 0.1 millimeters with the x and y directions as in
MM_LOENGLISH.

MM_HIMETRIC A logical unit is 0.01 millimeters with the x and y directions as in
MM_LOENGLISH.

MM_ISOTROPIC A logical unit is of arbitrary length, but the same along both the x and
y axes. The x and y directions are as in MM_LOENGLISH.

MM_ANISOTROPIC This mode is similar to MM_ISOTROPIC, but allows the length of a
logical unit on the x axis to be different from that of a logical unit on
the y axis.

MM_TWIPS A logical unit is 0.05 of a point, which is 6.9×10
-4

 of an inch. (A point
is a unit of measurement for fonts). The x and y directions are as in
MM_LOENGLISH.

We're not going to be using all of these mapping modes in this book. However, the ones we will
be using form a good cross-section of those available, so you won't have any problem using the
others when you need to.

MM_TEXT is the default mapping mode for a device context. If you need to use a different

mapping mode, you'll have to take steps to change it. Note that the direction of the positive y
axis in the MM_TEXT mode is opposite to what you will have seen in high school coordinate

geometry, as you can see in the following drawing:

By default, the point at the top left corner of the client area has the coordinates (0,0) in every
mapping mode, although it's possible to move the origin away from the top left corner of the
client area if you want to. With the origin at the top left corner in MM_TEXT mode, a point 50

pixels from the left border and 100 pixels down from the top of the client area will have the
coordinates (50,100). The units are pixels; so of course, the point will be nearer the top left
corner of the client area if your monitor is using the 800×600 SVGA resolution than if it's working
with the 640×480 VGA resolution. An object drawn in this mapping mode will be smaller at the
SVGA resolution than it would be at the VGA resolution.

Coordinates are always 16-bit signed integers in Windows 95, which is the same as in earlier
16-bit versions of Windows. (It's slightly different under Windows NT, where coordinates can be
32 bits, but we won't go into that here.) This limits the x and y values to ± 32768. The maximum
physical size of the total drawing varies with the physical length of a coordinate unit, which is
determined by the mapping mode.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The directions of the x and y coordinate axes in MM_LOENGLISH and all the remaining mapping
modes are the same as each other, but different from MM_TEXT. While positive y is consistent

with what you learned in high school (y values increase as you move up the screen),
MM_LOENGLISH is still slightly odd because the origin is at the top left corner of the client area,

so for points within the visible client area, y is always negative.

In the MM_LOENGLISH mapping mode, the units along the axes are 0.01 inches apiece, so a

point at the position (50, -100) will be half an inch from the left border and one inch down from
the top of the client area. An object will be the same size in the client area, regardless of the
resolution of the monitor on which it is displayed. If you draw anything in the MM_LOENGLISH

mode with negative x or positive y coordinates, it will be outside the client area and therefore
invisible, since the reference point (0,0) is the top left hand corner by default. However, it's
possible to move the position of the reference point, by calling the Windows API function
SetViewportOrg() (or the SetViewportOrg() member of the CDC MFC class, which we'll

come to shortly).

The Drawing Mechanism in Visual C++

MFC encapsulates the Windows interface to your screen and printer and relieves you of the

need to worry about much of the detail involved in programming graphical output. As we saw in
Chapter 13, your AppWizard-generated application will already contain a class derived from the
MFC class CView that's specifically designed to display document data on the screen.

The View Class in Your Application

AppWizard generated the class CSketcherView to display information from a document in the

client area of a document window. The class definition includes overrides for several virtual
functions, but the one we're particularly interested in here is the function OnDraw(), because

this will be called whenever the client area of the document window needs to be redrawn. It's
the function that's called by the application framework when a WM_PAINT message is received

in your program.

The OnDraw() Member Function

The implementation of the OnDraw() member function that's created by AppWizard looks like

this:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT...VALID(pDoc);

 // TODO: add draw code for native data here

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

A pointer to an object of the class CDC is passed to the OnDraw() member of the view class.

This object has member functions that call the Windows API functions which allow you to draw
in a device context.

Since you'll put all the code to draw the document in this function, the AppWizard has included a
declaration for the pointer pDoc and initialized it using the function GetDocument(), which

returns the address of the document object related to the current view:

 CSketcherDoc* pDoc = GetDocument();

GetDocument() actually retrieves the pointer to the document from m_pDocument, an

inherited data member of the view object. The function performs the important task of casting
the pointer stored in this data member to the type corresponding to the document class in the
application, CSketcherDoc. This is so that the compiler will have access to the members of the

document class that you've defined. Otherwise, the compiler would only be able to access the
members of the base class. Thus, pDoc will point to the document object in your application

associated with the current view, and you will be using it to access the data that you've stored in
the document object when you want to draw it.

The following line:

 ASSERT_VALID(pDoc);

just makes sure that the pointer pDoc contains a valid address.

The object of the CDC class pointed to by the pDC argument that's passed to the OnDraw()

function is the key to drawing in a window. It provides a device context, plus the tools we need
to write graphics and text to it, so we clearly need to look at it in more detail.

The CDC Class

You should do all the drawing in your program using members of the CDC class. All objects of

this class and classes derived from it contain a device context and the member functions you
need for sending graphics and text to your display and your printer. There are also member
functions for retrieving information about the physical output device that you are using.

Because CDC class objects can provide almost everything you're likely to need by way of

graphical output, there are a lot of member functions of this class — in fact, well over a hundred.
Therefore, we'll only look at the ones we're going to use in the Sketcher program here in this
chapter, and go into others as we need them later on.

Note that MFC includes some more specialized classes for graphics output that are derived
from CDC. For example, we'll be using objects of CClientDC which, because it is derived from

CDC, also contains all the members we will discuss at this point. The advantage that
CClientDC has over CDC is that it always contains a device context that represents only the

client area of a window, and this is precisely what you want in most circumstances.

Displaying Graphics

In a device context, you draw entities such as lines, circles and text relative to a current
position. A current position is a point in the client area that was set either by the previous entity
that was drawn, or by calling a function to set it. For example, we could extend the OnDraw()

function to set the current position as follows:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pDC->MoveTo(50, 50); // Set the current position as 50,50

 }

The shaded line calls the function MoveTo() for the CDC object pointed to by pDC. This

member function simply sets the current position to the x and y coordinates specified as
arguments. As we saw earlier, the default mapping mode is MM_TEXT, so the coordinates are in

pixels and the current position will be set to a point 50 pixels from the inside left border of the
window, and 50 pixels down from the top of the client area.

The CDC class overloads the MoveTo() function to provide flexibility over how you specify the

position that you want to set as the current position. There are two versions of the function,
declared in the CDC class as:

 CPoint MoveTo(int x, int y); // Move to position x,y

 CPoint MoveTo(POINT aPoint); // Move to position defined by
aPoint

The first version accepts the x and y coordinates as separate arguments. The second accepts
one argument of type POINT, which is a structure defined as:

 typedef struct tagPOINT

 {

 LONG x;

 LONG y;

 } POINT;

The coordinates are members of the struct and are of type LONG. You may prefer to use a

class instead of a structure, in which case you can use objects of the class CPoint anywhere
that a POINT object can be used. The class CPoint has data members x and y of type LONG

(which is a 32-bit signed integer), and using CPoint objects has the advantage that the class
also defines member functions that operate on CPoint and POINT objects. This may seem

weird, since CPoint would seem to make POINT objects obsolete, but remember that the
Windows API was built before MFC was around, and POINT objects are used in the Windows

API and have to be dealt with sooner or later. We'll use CPoint objects in our examples, so

you'll have an opportunity to see some of the member functions in action.

The return value from the MoveTo() function is a CPoint object that specifies the current

position as it was before the move. You might think this a little odd, but consider the situation
where you want to move to a new position, draw something, and then move back. You may not
know the current position before the move, and once the move occurs it would be lost, so
returning the position before the move makes sure it's available to you if you need it.

Drawing Lines

We can follow the call to MoveTo() in the OnDraw() function with a call to the function

LineTo(), which will draw a line in the client area from the current position to the point
specified by the arguments to the LineTo() function, as illustrated here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The class CDC also defines two versions of the LineTo() function with the prototypes:

 BOOL LineTo(int x, int y); // Draw a line to position x,y

 BOOL LineTo(POINT aPoint); // Draw a line to position defined by
aPoint

This offers you the same flexibility in specifying the argument to the function as MoveTo(). You

can use a CPoint object as an argument to the second version of the function. The function
returns TRUE if the line was drawn, and FALSE otherwise.

When the LineTo() function is executed, the current position is changed to the point

specifying the end of the line. This allows you to draw a series of connected lines by just calling
the LineTo() function for each line. Look at the following version of the OnDraw() function:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 pDC->MoveTo(50,50); // Set the current position

 pDC->LineTo(50,200); // Draw a vertical line down 150
units

 pDC->LineTo(150,200); // Draw a horizontal line right 100
units

 pDC->LineTo(150,50); // Draw a vertical line up 150 units

 pDC->LineTo(50,50); // Draw a horizontal line left 100

units

}

If you plug this into the Sketcher program and execute it, it will display the document window
shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The four calls to the LineTo() function draw the rectangle shown counterclockwise, starting

with the top left corner. The first call uses the current position set by the MoveTo() function; the
succeeding calls use the current position set by the previous LineTo() function call. You can

use this to draw any figure consisting of a sequence of lines, each connected to the previous
line. Of course, you are also free to use MoveTo() to change the current position at any time.

Drawing Circles

You have a choice of several function members in the class CDC for drawing circles, but they're

all designed to draw ellipses. As you will know from high school geometry, a circle is a special
case of an ellipse, with the major and minor axes equal. You can, therefore, use the member
function Ellipse() to draw a circle. Like other closed shapes supported by the CDC class, the
Ellipse() function fills the interior of the shape with a color that you set. The interior color is

determined by a brush that is selected into the device context. The current brush in the device
context determines how any closed shape will be filled.

MFC provides a class CBrush which you can use to define a brush. You can set the color of a
CBrush object and also define a pattern to be produced when filling a closed shape. If you want

to draw a closed shape that isn't filled, you can use a null brush, which leaves the interior of the
shape empty. We'll come back to brushes a little later in this chapter.

Another way to draw circles that aren't filled is to use the Arc() function, which doesn't involve

brushes. This has the advantage that you can draw any arc of an ellipse, rather than the
complete curve. There are two versions of this function in the CDC class, declared as:

 BOOL Arc(int x1, int y1, int x2, int y2, int x3, int y3, int x4,
int y4);

 BOOL Arc(LPCRECT lpRect, POINT StartPt, POINT EndPt);

In the first version, (x1,y1) and (x2,y2) define the top left and bottom right corners of a

rectangle enclosing the complete curve. If you make these coordinates into the corners of a
square, the curve drawn will be a segment of a circle. The points (x3,y3) and (x4,y4) define the

start and end points of the segment to be drawn. The segment is drawn counterclockwise. If you
make (x4,y4) identical to (x3,y3), you'll generate a complete, apparently closed curve.

In the second version of Arc(), the enclosing rectangle is defined by a RECT object, and a

pointer to this object is passed as the first argument. The function will also accept a pointer to
an object of the class CRect, which has four public data members: left, top, right, and

bottom. These correspond to the x and y coordinates of the top left and bottom right points of

the rectangle respectively. The class also provides a range of function members which operate
on CRect objects, and we shall be using some of these later.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The POINT objects StartPt and EndPt in the second version of Arc() define the start and

end of the arc to be drawn.

Here's some code that exercises both versions of the Arc() function:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 pDC->Arc(50,50,150,150,100,50,150,100); // Draw the 1st (large)
circle

 // Define the bounding rectangle for the 2nd (smaller) circle

 CRect* pRect = new CRect(250,50,300,100);

 CPoint Start(275,100); // Arc start point

 CPoint End(250,75); // Arc end point

 pDC->Arc(pRect,Start, End); // Draw the second
circle

 delete pRect;

 }

Note that we used a CRect class object instead of a RECT structure to define the bounding

rectangle, and that we used CPoint class objects instead of POINT structures. We'll also be
using CRect objects later, but they have some limitations, as you'll see. The Arc() function

doesn't require a current position to be set, as the position and size of the arc are completely
defined by the arguments you supply. The current position is unaffected by drawing an arc — it
remains exactly wherever it was before the arc was drawn. Although coordinates can be ± 32K,
the maximum width or height of the rectangle bounding a shape is 32,767 because this is the
maximum positive value that can be represented in a signed 16-bit integer.

Now try running Sketcher with this code in the OnDraw() function. You should get the results

shown here:

Try re-sizing the borders. The client area is automatically redrawn as you cover or uncover the
arcs in the picture. Remember that screen resolution will affect the scale of what is displayed. If
you're using a VGA screen at 640x480 resolution, the arcs will be larger and further from the top
left corner of the client area.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Drawing in Color

Everything that we've drawn so far has appeared on the screen in black. Drawing implies using
a pen object which has a color and a thickness, and we've been using the default pen object
that is provided in a device context. You're not obliged to do this, of course—you can create
your own pen with a given thickness and color. MFC defines the class CPen to help you do this.

All closed curves that you draw are filled with the current brush in the device context. As we
mentioned earlier, you can define a brush as an instance of the class CBrush. Let's take a look

at some of the features of CPen and CBrush objects.

Creating a Pen

The simplest way to create a pen object is first to declare an object of the CPen class:

 CPen aPen; // Declare a pen object

This object now needs to be initialized with the properties you want. You do this using the class
member function CreatePen(), which is declared in the CPen class as:

 BOOL CreatePen (int aPenStyle, int aWidth, COLORREF aColor);

The function returns TRUE as long as the pen is successfully initialized, and FALSE otherwise.

The first argument defines the line style that you want to use when drawing. You must specify it
with one of the predefined symbolic values:

Pen Style Meaning

PS_SOLID The pen draws a solid line.

PS_DASH The pen draws a dashed line. This line style is valid only when the
pen width is specified as 1.

PS_DOT The pen draws a dotted line. This line style is valid only when the pen
width is specified as 1.

PS_DASHDOT The pen draws a line with alternating dashes and dots. This line style
is valid only when the pen width is specified as 1.

PS_DASHDOTDOT The pen draws a line with alternating dashes and double dots. This
line style is valid only when the pen width is specified as 1.

PS_NULL The pen doesn't draw anything.

PS_INSIDEFRAME The pen draws a solid line, but unlike PS_SOLID, the points that
specify the line occur on the edge of the pen rather than in the center,
so that the drawn object never extends beyond the enclosing
rectangle.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Pen Style Meaning

The second argument to the CreatePen() function defines the line width. If aWidth has the

value 0, the line drawn will be 1 pixel wide, regardless of the mapping mode in effect. For values
of 1 or more, the pen width is in the units determined by the mapping mode. For example, a
value of 2 for aWidth in MM_TEXT mode will be 2 pixels, while in MM_LOENGLISH mode the pen

width will be 0.02 inches.

The last argument specifies the color to be used when drawing with the pen, so we could
initialize a pen with the statement:

 aPen.CreatePen(PS_SOLID, 2, RGB(255,0,0)); // Create a red solid

pen

Assuming that the mapping mode is MM_TEXT, this pen will draw a solid red line which is 2

pixels wide.

Using a Pen

In order to use a pen, you must select it into the device context in which you are drawing. To do
this, you use the CDC class member function SelectObject(). To select the pen you want to

use, you call this function with a pointer to the pen object as an argument. The function returns
a pointer to the previous pen object being used, so that you can save it and restore the old pen
when you have finished drawing. A typical statement selecting a pen is:

 CPen* pOldPen = pDC->SelectObject (&aPen); // Select aPen as
the pen

To restore the old pen when you're done, you simply call the function again, passing the pointer
returned from the original call:

 pDC->SelectObject(pOldPen); // Restore the old
pen

We can demonstrate this in action by amending the previous version of the OnDraw() function

in our view class to:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Declare a pen object and initialize it as

 //a red solid pen drawing a line 2 pixels wide

 CPen aPen;

 aPen.CreatePen(PS SOLID, 2, RGB(255, 0, 0));

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select aPen as the
pen

 pDC->Arc(50,50,150,150,100,50,150,100); // Draw the 1st
circle

 // Define the bounding rectangle for the 2nd circle

 CRect* pRect = new CRect(250,50,300,100);

 CPoint Start(275,100); // Arc start point

 CPoint End(250,75); // Arc end point

 pDC->Arc(pRect,Start, End); // Draw the second
circle

 delete pRect;

 pDC->SelectObject(pOldPen); // Restore the old

pen

 }

If you build and execute the Sketcher application with this version of the OnDraw() function,

you will get the same arcs drawn as before, but this time the lines will be thicker and they'll be
red. You could usefully experiment with this example by trying different combinations of
arguments to the GreatePen() function and seeing their effects. Note that we have ignored

the BOOL value returned from the CreatePen() function, so we run the risk of the function

failing and the failure remaining undetected by the program. It doesn't matter here, since the
program is still trivial; but as we develop the program it will become important to check for
failures of this kind.

Creating a Brush

An object of the CBrush class encapsulates a Windows brush. You can define a brush to be

solid, hatched, or patterned. A brush is actually an 8x8 block of pixels that's repeated over the
region to be filled.

To define a brush with a solid color, you can specify the color when you create the brush object.

For example,

 CBrush aBrush(RGB(255,0,0)); // Define a red brush

which defines a red brush. The value passed to the constructor must be of type COLORREF,

which is the type returned by the RGB() macro, so this is a good way to specify the color.

Another constructor is available to define a hatched brush. It requires two arguments to be

specified, the first defining the type of hatching, and the second specifying the color, as before.
The hatching argument can be any of the following symbolic constants:

Hatching Style Meaning

HS_HORIZONTAL Horizontal hatching

HS_VERTICAL Vertical hatching

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Hatching Style Meaning

HS_BDIAGONAL Downward hatching from left to right at 45 degrees

HS_FDIAGONAL Upward hatching from left to right at 45 degrees

HS_CROSS Horizontal and vertical crosshatching

HS_DIAGCROSS Crosshatching at 45 degrees

So, to obtain a red, 45-degree crosshatched brush, you could define the CBrush object with the

statement:

 CBrush aBrush(HS DIAGCROSS, RGB(255,0,0));

You can also initialize a CBrush object in a similar manner to that for a CPen object, by using
the CreateSolidBrush() member function of the class for a solid brush, and the

CreateHatchBrush() member for a hatched brush. They require the same arguments as the

equivalent constructors. For example, we could create the same hatched brush as before, with
the statements:

 CBrush aBrush; // Define a brush object

 aBrush.CreateHatchBrush(HS_DIAGCROSS, RGB(255,0,0));

Using a Brush

To use a brush, you select the brush into the device context by calling the SeleotObject()
member of the CDC class in a parallel fashion to that used for a pen. This member function is

overloaded to support selecting brush objects into a device context. To select the brush we
defined previously, you would simply write:

 pDC->SelectObject(&aBrush); // Select the brush into the

device context

There are a number of standard brushes available. Each of the standard brushes is identified by

a predefined symbolic constant, and there are seven that you can use. They are the following:
§ GRAY_BRUSH

§ BLACK_BRUSH

§ HOLLOW_BRUSH

§ LTGRAY_BRUSH

§ WHITE_BRUSH

§ NULL_BRUSH
§ DKGRAY_BRUSH

The names of these brushes are quite self-explanatory. To use one, you call the
SelectStockObject() member of the CDC class, passing the symbolic name for the brush

that you want to use as an argument. To select the null brush, which will leave the interior of a
closed shape unfilled, you could write:

 pDC->SelectStockObject(NULL_BRUSH);

Here, pDC is a pointer to a CDC object, as before You can also use one of a range of standard
pens through this function. The symbols for standard pens are BLACK_PEN, NULL_PEN (which

doesn't draw anything), and WHITE_PEN. The SelectStockObject() function returns a

pointer to the object being replaced in the device context. This is to enable you to save it for
restoring later when you have finished drawing.

Because the function works with a variety of objects — we've seen pens and brushes in this
chapter, but it also works with fonts — the type of the pointer returned is CGdiObject*. The
CGdiObject class is a base class for all the graphic device interface object classes and thus a

pointer to this class can be used to store a pointer to any object of these types. However, you
need to cast the pointer value returned to the appropriate type so that you can select the old

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

object back to restore it. This is because the SelectObject() function you use to do this is

overloaded for each of the kinds of object that can be selected. There's no version of
SelectObject() that accepts a pointer to a CGdiObject as an argument, but there are
versions that accept an argument of type CBrush*, CPen*, and pointers to other GDI objects.

The typical pattern of coding for using a stock brush and later restoring the old brush when
you're done is:

 CBrush* pOldBrush = static_cast<CBrush*>(pDC-
>SelectStockObject(NULL_ BRUSH));

 // draw something

 pDC->SelectObject(pOldBrush); // Restore the old
brush

We'll be using this in our example later in the chapter.

Drawing Graphics in Practice

We now know how to draw lines and arcs, so it's about time we considered how the user is
going to define what they want drawn. In other words, we need to decide how the user interface
is going to work.

Since this program is to be a sketching tool, we don't want the user to worry about coordinates.
The easiest mechanism for drawing is using just the mouse. To draw a line, for instance, the
user could position the cursor and press the left mouse button where they wanted the line to
start, and then define the end of the line by moving the cursor with the left button held down. It
would be ideal if we could arrange that the line was continuously drawn as the cursor was
moved with the left button down (this is known as 'rubber-banding' to graphic designers). The
line would be fixed when the left mouse button was released. This process is illustrated in the
diagram below:

We could allow circles to be drawn in a similar fashion. The first press of the left mouse button

would define the center and, as the cursor was moved with the button down, the program would
track it. The circle would be continuously redrawn, with the current cursor position defining a
point on the circumference of the circle. As with drawing a line, the circle would be fixed when
the left mouse button was released. We can see this in the diagram here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We can draw a rectangle as easily as we draw a line, as illustrated here:

The first point is defined by the position of the cursor when the left mouse button is pressed.
This is one corner of the rectangle. The position of the cursor when the mouse is moved with
the left button held down defines the diagonally opposite corner of the rectangle. The rectangle
actually stored is the last one defined when the left mouse button is released.

A curve will be somewhat different. A curve may be defined by an arbitrary number of points.
The mechanism we'll use is illustrated below:

As with the other shapes, the first point is defined by the cursor position when the left mouse
button is pressed. Successive positions recorded when the mouse is moved are connected by
straight line segments to form the curve, so the mouse track defines the curve to be drawn.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Now we know how the user is going to define an element, clearly our next step in understanding
how to implement this is to get a grip on how the mouse is programmed.

Programming the Mouse

To be able to program the drawing of shapes in the way we've discussed, we need to know
various things about the status of the mouse. Specifically, we need to know:

§ When a mouse button is pressed, since this signals the start of a drawing operation
§ Where the cursor is when a button is pressed, because this defines a reference point

for the shape

§ When the mouse moves, and where the cursor moves to when it does. A mouse
movement after detecting that a mouse button has been pressed is a cue to draw a shape,
and the cursor position provides a defining point for the shape

§ When the mouse button is released, and the cursor position at that instant, because this
signals that the final version of the shape should be drawn

As you may have guessed, all this information is provided by Windows in the form of messages
sent to your program. The implementation of the process for drawing lines and circles will
consist almost entirely of writing message handlers.

Messages from the Mouse

When the user of our program is drawing a shape, they will be interacting with a particular
document view. The view class is, therefore, the obvious place to put the message handlers for
the mouse. Fire up the ClassWizard and take a look at the Message Maps tab for the
CSketcherView class. We don't want the messages associated with ID_-specified objects; we

need to get to the standard Windows messages sent to the class, which have IDs prefixed with
WM_. You can see these if you select the class name in the Object IDs: box and scroll down the

Messages: list, as shown here:

We're interested in three mouse messages at the moment:

Message Occurs...

WM_LBUTTONDOWN when the left mouse button is pressed.

WM_LBUTTONUP when the left mouse button is released.

WM_MOUSEMOVE when the mouse is moved.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

These messages are quite independent of one another and are being sent to the document
views in your program even if you haven't supplied handlers for them. It's quite possible for a
window to receive a WM_LBUTTONUP message without having previously received a
WM_LBUTTONDOWN message. This can happen if the button is pressed with the cursor over

another window and then moved to your view window before being released.

If you scroll the Messages: box, you'll see there are other mouse messages that can occur. You

can choose to process any or all of the messages, depending on your application requirements.
Let's define in general terms what we want to do with the three messages that we're currently
interested in, based on the process for drawing shapes that we saw earlier:

WM_LBUTTONDOWN

This starts the process of drawing an element. So we will:

1. Note that the element drawing process has started.
2. Record the current cursor position as the first point for defining an element.

WM_MOUSEMOVE

This is an intermediate stage where we want to create and draw a temporary version of the
current element, but only if the left mouse button is down, so:

1. Check that the left button is down.
2. If it isn't, then exit.
3. If it is, delete any previous version of the current element that was drawn.
4. Record the current cursor position as the second defining point for the current element.
5. Cause the current element to be drawn using the two defining points.

WM_LBUTTONUP

This indicates that the process for drawing an element is finished, so all we need to do is:
1. Store the final version of the element defined by the first point recorded, together with

the position of the cursor when the button is released for the second point.
2. Record the end of the process of drawing an element.

Let's now use ClassWizard to generate handlers for these three mouse messages.

Mouse Message Handlers

You can create the handlers for the mouse messages in the same way as you created the
menu message handlers. Just open the ClassWizard dialog and click on the Add Function button
with the message highlighted in the Messages: list box. Alternatively, you can use the Wizard
Bar. If you display CSketcherView in the list box on the left, and then select the down arrow

on the right, you'll see the following pop-up menu: contains an option:

If you click on Add Windows Message Handler... you'll see the dialog shown here.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You select the message that you want to add a handler for from the list box on the left, and click

on the Add Handler button. All the handlers defined for the class will be shown in the list box on
the right. You can select any of these when you want to edit the implementation of a handler.
Just double-click on the message, or click on the Edit Existing button with the appropriate
message highlighted.

The functions generated will be OnLButtonDown(), OnLButtonUp() and OnMouseMove().

You don't get the option of changing the names of these functions because you're replacing
versions that are already defined in the base class for your CSketcherView class. Let's look at

how we implement these handlers.

The Class Wizard Generated Code

We can start by looking at the WM_LBUTTONDOWN message handler. Make sure that it's

highlighted and click on the Edit Existing button. This is the skeleton code that's generated:

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 // TODO: Add your message handler code here and/or call default

 CView::OnLButtonDown(nFlags, point);

 }

You can see that ClassWizard has put a call to the base class handler in the skeleton version.
This ensures that the base handler is called if you don't add any code here. In this case you
don't need to call the base class handler when you handle the message yourself, although you
can if you want to. Whether you need to call the base class handler for a message depends on
the circumstances.

Generally, the comment indicating where you should add your own code is a good guide.
Where it suggests, as in the present instance, that calling the base class handler is optional,
you can omit it when you add your own message handling code. Note that the position of the
comment in relation to the call of the base class handler is also important, as sometimes you
must call the base class message handler before your code, and at other times, afterwards. The
comment indicates where your code should appear in relation to the base class message
handler call.

The handler in your class is passed two arguments: nFlags, which is of type UINT and

contains a number of status flags indicating whether various keys are being pressed, and the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

CPoint object point, which defines the cursor position when the left mouse button was
pressed. The type UINT is a portable unsigned integer which corresponds to a 32-bit unsigned

integer in Windows 95.

The value of nFlags which is passed to the function can be any combination of the following

symbolic values:

Flag Meaning

MK_CONTROL Corresponds to the Ctrl key being pressed.

MK_LBUTTON Corresponds to the left mouse button being down.

MK_MBUTTON Corresponds to the middle mouse button being down.

MK_RBUTTON Corresponds to the right mouse button being down.

MK_SHIFT Corresponds to the Shift key being pressed.

Being able to detect if a key is down in the message handler allows you to support different
actions, depending on what you find. The value of nFlags may contain more than one of these

indicators, each of which corresponds to a particular bit in the word, so you can test for a
particular key using the bitwise AND operator. For example, to test for the Ctrl key being
pressed, you could write:

 if(nFlags & MK_CONTROL)

 // Do something...

The expression nFlags & MK_CONTROL will only have the value TRUE if the nFlags variable
has the bit defined by MK_CONTROL set. In this way, you can have different actions when the left

mouse button is pressed, depending on whether the Ctrl key is also pressed. We use the
bitwise AND operator here, so corresponding bits are ANDed together. Don't confuse this with
the logical AND, &&, which would not do what we want here.

The arguments passed to the other two message handlers are the same as those for the
OnLButtonDown() function; the code generated by the ClassWizard for them is:

 void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)

 {

 // TODO: Add your message handler code here and/or call default

 CView::OnLButtonUp(nFlags, point);

 }

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // TODO: Add your message handler code here and/or call default

 CView::OnMouseMove(nFlags, point);

 }

Apart from the function names, the skeleton code is the same for each. With an understanding

of the information passed to the message handlers, we can start adding our own code.

Drawing Using the Mouse

For the WM_LBUTTONDOWN message, we want to record the cursor position as the first point

defining an element. We also want to record the position of the cursor after a mouse move. The

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

obvious place to store these cursor positions is in the CSketcherView class, so we can add

data members to the attributes section of the class for them as follows:

 class CSketcherView : public CView

 {

 protected: // create from serialization only

 CSketcherView();

 DECLARE_DYNCREATE(CSketcherView)

 // Attributes

 public:

 CSketcherDoc* GetDocument();

 protected:

 CPoint m_FirstPoint; // First point recorded for an element

 CPoint m_SecondPoint; // Second point recorded for an
element

FYI

As you've seen in previous chapters, another way of adding a new variable to a
class is to right-click on the class name in the ClassView and select Add
Variable... from the context menu. You can then fill in the details of the variable
in the dialog. However, there will be no comments explaining the new data
member unless you add them separately.

If you take a look a little further down the listing, you'll see that ClassWizard has added these
three function declarations:

 // Generated message map functions

 protected:

 //{{AFX MSG(CSketcherView)

 afx_msg void OnLButtonDown(UINT nFlags, CPoint point);

 afx_msg void OnLButtonUp(UINT nFlags, CPoint point);

 afx_msg void OnMouseMove(UINT nFlags, CPoint point);

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 };

The new data members are protected to prevent direct modification of them from outside the

class. Both of the new data members need to be initialized, so you should add code to the class
constructor to do this, as follows:

 // CSketcherView construction/destruction

 CSketcherView::CSketcherView()

 {

 // TODO: add construction code here

 m_FirstPoint = CPoint(0,0); // Set 1st recorded
point to 0,0

 m_SecondPoint = CPoint(0,0); // Set 2nd recorded

point to 0,0

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

We can now implement the handler for the WM_LBUTTONDOWN message as:

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 // TODO: Add your message handler code here and/or call default

 m_FirstPoint = point; // Record the cursor

position

 }

All it does is to note the coordinates passed by the second argument. We can ignore the first
argument in this situation altogether.

We can't complete this function yet, but we can have a stab at writing the code for the
WM_MOUSEMOVE message handler in outline:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // TODO: Add your message handler code here and/or call default

 if(nFlags & MK_LBUTTON)

 {

 m_SecondPoint = point; // Save the current

cursor position

 // Test for a previous temporary element

 {

 // We get to here if there was a previous mouse move

 // so add code to delete the old element

 }

 // Add code to create new element

 // and cause it to be drawn

 }

 }

The first thing that the handler does (after verifying the left mouse button is down) is to save the
current cursor position. This will be used as the second defining point for an element. The rest
of the logic is clear in general terms, but there are major gaps in our knowledge of how to
complete the function. We have no means of defining an element — we need to be able to
define an element as an object of a class. Even if we could, we don't know how to delete an
element or get one drawn when we have a new one. A brief digression is called for.

Getting the Client Area Redrawn

As we've already discovered, the client area gets drawn by the OnDraw() member function of

the CSketcherView class, which is called when a WM_PAINT message is received. Along with

the basic message to repaint the client area, Windows supplies information about the part of the
client area that needs to be redrawn. This can save a lot of time when you're displaying
complicated images, because only the area specified actually needs to be redrawn, which may
be a very small proportion of the total area.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can tell Windows that a particular area should be redrawn by calling the
InvalidateRect() function, which is an inherited member of your view class. The function

accepts two arguments, the first of which is a pointer to a RECT or CRect object that defines the
rectangle in the client area to be redrawn. Passing NULL for this parameter causes the whole

client area to be redrawn. The second parameter is a BOOL value which is TRUE if the
background to the rectangle is to be erased, and FALSE otherwise. This argument has a default

value of TRUE since you normally want the background erased before the rectangle is redrawn,

so you can ignore it most of the time.

A typical situation in which you'd want to cause an area to be redrawn would be where
something has changed which necessitates the contents of the area being recreated — moving
a displayed entity might be an example. In this case, you want to erase the background to
remove the old representation of what was displayed, before you draw the new version. When
you want to draw on top of an existing background, you just pass FALSE as the second

argument to InvalidateRect().

The InvalidateRect() function doesn't directly cause any part of the window to be redrawn;

it just communicates to Windows the rectangle that you would like to have it redraw at some
time. Windows maintains an update region — actually a rectangle — which identifies the area
in a window that needs to be redrawn. The area specified in your call to InvalidateRect() is

added to the current update region, so the new update region will enclose the old region plus
the new rectangle you have indicated as invalid. Eventually a WM_PAINT message will be sent

to the window and the update region will be passed to the window along with it. When
processing of the WM_PAINT message is complete, the update region is reset to the empty

state.

Thus, all you have to do to get a newly-created shape drawn is:
1. Make sure that the OnDraw() function in your view includes the newly-created item

when it redraws the window.
2. Call InvalidateRect() with a pointer to the rectangle bounding the shape to be

redrawn passed as the first argument.

Similarly, if you want a shape removed from the client area of a window, you need to do the

following:
1. Remove the shape from the items that the OnDraw() function will draw.

2. Call InvalidateRect() with the first argument pointing to the rectangle bounding the

shape that is to be removed.

Since the background to the rectangle specified is automatically erased, as long as the
OnDraw() function doesn't draw the shape again, the shape will disappear. Of course, this

means that we need to be able to obtain the rectangle bounding any shape that we create, so
we'll include a function to provide this as a member of our classes that define the elements that
can be drawn by Sketcher.

Defining Classes for Elements

Thinking ahead a bit, we'll need to store elements in a document in some way, and to be able to
perform file operations with them. We'll deal with the details of file operations later on, but for
now it's enough to know that the MFC class CObject includes the tools for us to do this, so
we'll use CObject as a base class for our element classes.

We'll also have the problem that we don't know in advance what sequence of element types the
user will create. Our program must be able to handle any sequence of elements. This suggests
that using a base class pointer for selecting a particular element class function might simplify
things a bit. For example, we won't need to know what an element is in order to draw it. As long
as we're accessing the element through a base class pointer, we can always get an element to
draw itself by using a virtual function. This is another example of the polymorphism we talked
about when we discussed virtual functions. All we need to do to achieve this is to make sure
that the classes defining specific elements share a common base class, and that in this class

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

we declare as virtual all the functions we want to be selected automatically at run time. This

indicates that our class structure should be like that shown in the diagram below:

The arrows in the diagram point towards the base class in each case. If we need to add another
element type, all we need to do is derive another class from CElement. Since these classes
are closely related, we'll be putting the definitions for all these classes in a single new .h file

that we can call Elements.h. Create a new header file and add the following skeleton code:

 #if !defined(Elements_h)

 #define Elements_h

 // Generic element class

 class CElement : public CObject

 {

 // Add virtual function declarations here

 };

 // Class defining a line object

 class CLine : public CElement

 {

 // Add class definition here

 };

 // Class defining a rectangle object

 class CRectangle : public CElement

 {

 // Add class definition here

 };

 // Class defining a circle object

 class CCircle : public CElement

 {

 // Add class definition here

 };

 // Class defining a curve object

 class CCurve : public CElement

 {

 // Add class definition here

 };

 #endif //!defined(Elements_h)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can save the file in the Sketcher folder as Elements.h. If you then add the file to the

Header Files folder in FileView (right-click on Header Files to get the pop-up), the new classes will
be displayed in ClassView. We've added the standard #if !defined command to protect

against having the definitions for our element classes included more than once. Since we
haven't involved the ClassWizard in this process, no .cpp file for any of these classes exists

yet.
FYI

From time to time you might see the directive #ifndef in place of #if
!defined, The two are completely equivalent, except that the label doesn't

require brackets in the former case (e.g. #ifndef Elements_h).

Storing a Temporary Element In the View

When we discussed how shapes would be drawn, it was evident that as the mouse was
dragged after pressing the left mouse button, a series of temporary element objects would be
created and drawn. Now that we know that the base class for all the shapes is CElement, we

can add a pointer to the view class to store the address of the temporary element. The class
definition will become:

 class CSketcherView : public CView

 {

 // other bits of the class definition as before...

 // Attributes

 public:

 CSketcherDoc* GetDocument();

 protected:

 CPoint m_FirstPoint; // First point recorded for an
element

 CPoint m_SecondPoint; // Second point recorded for an
element

 CElement* m_pTempElement; // Pointer to temporary element

 // other bits of the class definition as before...

 };

Of course, we should ensure that this is initialized when the view object is constructed, so we
need to add the following line to the CSketcherView class constructor:

 CSketcherView::CSketcherView()

 {

 // TODO: add construction code here

 m_FirstPoint = CPoint(0,0); // Set 1st recorded point to
0,0

 m_SecondPoint = CPoint(0,0); // Set 2nd recorded point to
0,0

 m_pTempElement = NULL; // Set temporary element
pointer to 0

}

We'll be able to use this pointer in the WM_MOUSEMOVE message handler as a test for previous

temporary elements.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We'll be creating CElement class objects in the view class member functions, and we refer to
the CElement class in defining the data member that points to a temporary element. Therefore,

we should ensure that the definition of the CElement class is included before the

CSketcherViewclass definition, wherever SketcherView.h is included into a .cpp file.
You can do this for CSketcherView by adding a #include directive for Elements.h to the

SketcherView.cpp file before the #include directive for SketcherView.h:

 #include "Elements.h"

Sketcher.cpp also has a #include directive for SketcherView.h, so you should add a
#include for Elements.h to this file too.

The CElement Class

We need to fill out the element class definitions. We'll be doing this incrementally as we add
more and more functionality to the Sketcher application, but what do we need right now? Some
data members, such as color, are clearly common to all types of element; we'll put those in the
CElement class so that they will be inherited in each of the derived classes. However, the data

members in the classes which define specific element properties will be quite disparate, so we'll
declare these members in the particular derived class to which they belong.

The CElement class will then only contain virtual functions that will be replaced in the derived

classes, plus data and function members which are the same in all the derived classes. The
virtual functions will be those that are selected automatically for a particular object through a
pointer. For now, we can define the CElement class as:

 class CElement : public CObject

 {

 protected:

 COLORREF m_Color; // Color of an
element

 public:

 virtual ~CElement(){} // Virtual destructor

 // Virtual draw operation

 virtual void Draw(CDC* pDC) const {} // Virtual draw
operation

 CRect GetBoundRect() const; // Get the bounding
rectangle for an

 // element

 protected:

 CElement(){} // Default
constructor

 };

The members to be inherited by the derived classes are:
§ Data member m_Color, which stores the color

§ Function member GetBoundRect(), which calculates the rectangle bounding an
element. This function returns a value of type CRect which will be the rectangle bounding

the shape

We also have a virtual destructor — necessary to ensure that derived class objects are
destroyed properly — and a virtual Draw() function which, in the derived classes, will draw the
particular object in question. The default constructor is in the protected section of the class to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

ensure that it can't be used externally. The Draw() function will need a pointer to a CDC object

passed to it in order to provide access to the drawing functions that we saw earlier.

You might be tempted to declare the Draw() member as a pure virtual function in the

CElement class — after all, it can have no meaningful content in this class. This would also

force it to be defined in any derived class. Normally you would do this, but our class inherits a
facility from CObject called serialization, that we'll use later for storing objects in a file, and

this will require that an instance of our class be created. A class with a pure virtual function
member is an abstract class, and instances of an abstract class can't be created. If you want to
use MFC's serialization capability for storing objects, your classes mustn't be abstract.

You might also be tempted to declare the GetBoundRect() function as returning a pointer to a

CRect object — after all, we're going to pass a pointer to the InvalidateRect() member

function in the view class. However, this could lead to problems. You'll be creating the CRect

object as local to the function, so the pointer would be pointing to a nonexistent object on return
from the GetBoundRect() function. You could get around this by creating the CRect object on

the heap, but then you'd need to take care that it's deleted after use, otherwise you'd be filling
the heap with CRect objects — a new one for every call of GetBoundRect(). A further

possibility is that you could store the bounding rectangle for an element as a class member and
generate it when the element is created. This is a reasonable alternative, but if you changed an
element subsequently — by moving it, for instance — you would need to ensure that the
bounding rectangle was recalculated.

The CLine Class

We'll define the CLine class as:

 class CLine : public CElement

 {

 public:

 virtual void Draw(CDC* pDC) const; // Function to display a line

 // Constructor for a line object

 CLine(const CPoint& Start, const CPoint& End, const COLORREF&
Color);

 protected:

 CPoint m_StartPoint; // Start point of line

 CPoint m_EndPoint; // End point of line

 CLine(){} // Default constructor -
should not be used

};

The data members that define a line are m_StartPoint and m_EndPoint, both of which are

protected. The class has a public constructor which has parameters for the values that
define a line, and a default constructor declared as protected to prevent its use externally.

Implementing the CLine Class

We can place the implementation of the member functions in a new file called Elements.cpp

that we can define in outline as:

 // Implementations of the element classes

 #include "stdafx.h"

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include "OurConstants.h"

 #include "Elements.h"

 // Add definitions for member functions here

We need the file stdafx.h to be included into this file to gain access to the definitions of the

standard system header files. The other two files we've included are the ones we created
containing definitions for our constants and for the classes we're implementing here. We may
need to add #include statements for the files containing definitions for AppWizard-generated

classes if we use any in our code.

We also need to add the Elements.cpp file to the Sketcher project, so once you have saved

this file, you need to select the Project | Add To Project... menu item and add the file to the
project. You can achieve the same result by right clicking in the editor window and selecting
from the pop-up menu.

Of course, we'll have to add each of the member function definitions to this file manually, since
ClassWizard wasn't involved in defining the classes. We're now ready to add the constructor for
the CLine class to the Elements.cpp file.

The CLine Class Constructor

The code for this will be:

 // CLine class constructor

 CLine::CLine(const CPoint& Start, const CPoint& End, const
COLORREF& Color)

 {

 m_StartPoint = Start; // Set line start point

 m_EndPoint = End; // Set line end point

 m_Color = Color; // Set line color

 }

There's nothing too intellectually taxing here. We just store each of the values passed to the
constructor in the appropriate data member.

Drawing a Line

The Draw() function isn't too difficult either, although we do need to take account of the color

and pen width to be used when the line is drawn:

 // Draw a CLine object

 void CLine::Draw(CDC* pDC) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width

 CPen aPen;

 if(!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))

 {

 // Pen creation failed. Abort the program

 AfxMessageBox("Pen creation failed drawing a line", MB_OK);

 AfxAbort();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Now draw the line

 pDC->MoveTo(m_StartPoint);

 pDC->LineTo(m_EndPoint);

 pDC->SelectObject(pOldPen); // Restore the old
pen

 }

We create a pen as we saw earlier, only this time we make sure that the creation works. If it
doesn't, the most likely cause is that we're running out of memory, which is a serious problem.
This will almost invariably be caused by an error in the program, so we have written the function
to call AfxMessageBox(), which is a global function to display a message box, and then call

AfxAbort() to terminate the program. The first argument to AfxMessageBox() specifies the

message that is to appear, and the second specifies that it should have an OK button. You can
get more information from the MSDN library on either of these functions by placing the cursor
within the function name in the editor window and then pressing F1.

The argument m_pen in the call to CreatePen() is a variable defining the pen width. We will
add this to the CElement class definition in a moment.

After selecting the pen, we move the current position to the start of the line, defined in the
m_StartPoint data member, and then draw the line from this point to the point m_EndPoint.

Finally, we restore the old pen and we are done.

Creating Bounding Rectangles

At first sight, obtaining the bounding rectangle for a shape looks trivial. For example, a line is
always a diagonal of its enclosing rectangle, and a circle is defined by its enclosing rectangle,
but there are a couple of slight complications. Firstly, the shape must lie completely inside the
rectangle, so we must allow for the thickness of the line used to draw the shape when we create
the bounding rectangle. Secondly, how you work out adjustments to the coordinates defining
the rectangle depends on the mapping mode, so we must take that into account too.

Look at the illustration below, relating to obtaining the bounding rectangle for a line and a circle:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We'll use the term 'enclosing rectangle' for the rectangle that is used to draw a shape, while the

term 'bounding rectangle' shall refer to the rectangle which takes into account the width of the
pen. The illustration shows the shapes with their enclosing rectangles, and their bounding
rectangles offset by the line thickness. This is obviously exaggerated here so you can see
what's happening.

In different mapping modes, there are differences in how you calculate the coordinates for the

bounding rectangle — but these only concern the y coordinates. To get the corners of the
bounding rectangle in the MM_TEXT mapping mode, subtract the line thickness from the y

coordinate of the top left corner of the enclosing rectangle, and add it to the y coordinate of the
bottom right corner. However, in MM_LOENGLISH (and all the other mapping modes), the y axis

increases in the opposite direction; so you need to add the line thickness to the y coordinate of
the top left corner of the enclosing rectangle, and subtract it from the y coordinate of the bottom
right corner. For all the mapping modes, you subtract the line thickness from the x coordinate of
the top left corner of the enclosing rectangle, and add it to the x coordinate of the bottom right
corner.

To implement our element types as consistently as possible, we can store an enclosing

rectangle for each shape in a data element in the base class. This will need to be calculated
when a shape is constructed. The job of the GetBoundRect() function in the base class will

then be to calculate the bounding rectangle by offsetting the enclosing rectangle by the pen
width. We can amend the CElement class definition by adding the following data members:

 class CElement : public CObject

 {

 protected:

 COLORREF m_Color; // Color of an element

 CRect m_EnclosingRect; // Rectangle enclosing
an element

 int m_Pen; // Pen width

 public:

 virtual ~CElement(){} // Virtual destructor

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Virtual draw operation

 virtual void Draw(CDC* pDC) const {} // Virtual draw
operation

 CRect GetBoundRect() const; // Get the bounding rectangle
for an element

 protected:

 CElement(){} // Default constructor

 };

We must update the CLine constructor so that it has the correct pen width:

 // CLine class constructor

 CLine::CLine(const CPoint& Start, const CPoint& End, const
COLORREF& Color)

 {

 m_StartPoint = Start; // Set line start point

 m_EndPoint = End; // Set line end point

 m_Color = Color; // Set line color

 m_Pen = 1; // Set pen width

 }

You can add this by right clicking on the class name and selecting Add Member Variable... from
the pop-up, or you can add the statement directly in the editor window along with the comment.

We can now implement the GetBoundRect() member of the base class, assuming the
MM_TEXT mapping mode:

 // Get the bounding rectangle for an element

 CRect CElement::GetBoundRect() const

 {

 CRect BoundingRect; // Object to store bounding

rectangle

 BoundingRect = m_EnclosingRect; // Store the enclosing
rectangle

 // Increase the rectangle by the pen width

 BoundingRect.InflateRect(m_Pen, m_Pen);

 return BoundingRect; // Return the bounding
rectangle

 }

This will return the bounding rectangle for any derived class object. We define the bounding
rectangle by modifying the coordinates of the enclosing rectangle stored in the base class data
member so that it is enlarged all round by the pen width, using the InflateRect() method of
the CRect class.

The CRect class provides an operator, + , for rectangles, which we could have used instead.

For example, we could have written the statement before the return as:

 BoundingRect = m_EnclosingRect + CRect(m_Pen, m_Pen, m_Pen,
m_Pen);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Equally, we could have simply added (or subtracted) the pen width to each of the x and y values
that make up the rectangle. We could have replaced the assignment with the following
statements:

 BoundingRect = m_EnclosingRect;

 BoundingRect.top -= m_Pen;

 BoundingRect.left -= m_Pen;

 BoundingRect.bottom += m_Pen;

 BoundingRect.right += m_Pen;

FYI

As a reminder, the individual data members of a CRect object are left and

top (storing the x and y coordinates of the top left corner) and right and
bottom (storing the coordinates of the bottom right corner). These are all

public members, so we can access them directly. A commonly made
mistake, especially by me, is to write the coordinate pair as (top,left) instead

of in the correct order (left,top).

The hazard with both this and the InflateRect() option is that there is a built-in assumption

that the mapping mode is MM_TEXT, which means that the positive y axis is assumed to run

from top to bottom. If you change the mapping mode, neither of these will work properly,
although it's not immediately obvious that they won't.

Normalized Rectangles

The InflateRect() function works by subtracting the values that you give it from the top and
left members of the rectangle and adding the values to the bottom and right. This means

that you may find your rectangle actually decreasing in size if you don't make sure that the
rectangle is normalized. A normalized rectangle has a left value that is less than or equal to

the right value, and a top value that is less than or equal to the bottom value. You can
make sure that a CRect object is normalized by calling the NormalizeRect() member of the

object. Most of the CRect member functions will require the object to be normalized in order for

them to work as expected, so we need to make sure that when we store the enclosing rectangle
in m_EnclosingRect, it is normalized.

Calculating the Enclosing Rectangle for a Line

All we need now is code in the constructor for a line to calculate the enclosing rectangle:

 CLine::CLine(const CPoint& Start, const CPoint& End, const
COLORREF& Color)

 {

 m_StartPoint = Start; // Set line start point

 m_EndPoint = End; // Set line end point

 m_Color = Color; // Set line color

 m_Pen = 1; // Set pen width

 // Define the enclosing rectangle

 m_EnclosingRect = CRect(Start, End);

 m_EnclosingRect.NormalizeRect();

 }

This simply calculates the coordinates of the top left and bottom right points, defining the
rectangle from the start and end points of the line. We need to take care, though, that the
bounding rectangle has the top value less than the bottom value, regardless of the relative

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

positions of the start and end points of the line, so we call the NormalizeRect() member of
the m_EnclosingRect object.

The CRectangle Class

Although we'll be defining a rectangle object by the same data we used to define a line, we don't
need to store the defining points. The enclosing rectangle in the data member inherited from the
base class completely defines the shape, so we don't need any data members:

 // Class defining a rectangle object

 class CRectangle : public CElement

 {

 public:

 virtual void Draw(CDC* pDC) const; // Function to display a
rectangle

 // Constructor for a rectangle object

 CRectangle(const CPoint& Start, const CPoint& End, const
COLORREF& Color);

 protected:

 CRectangle(){} // Default constructor -
should not be used

 };

The definition of the rectangle becomes very simple — just a constructor, the virtual Draw()

function, and the default constructor in the protected section of the class.

The CRectangle Class Constructor

The code for the class constructor is somewhat similar to that for a CLine constructor:

 // CRectangle class constructor

 CRectangle:: CRectangle(const CPoint& Start, const CPoint& End,
const COLORREF&

 Color)

 {

 m_Color = Color; // Set rectangle color

 m_Pen = 1; // Set pen width

 // Define the enclosing rectangle

 m_EnclosingRect = CRect(Start, End);

 m_EnclosingRect.NormalizeRect();

 }

Since we created the class definition manually, there will be no skeleton definition for the
constructor, so you need to add the definition directly to Elements.cpp.

This is cheap code. Some minor alterations to a subset of the CLine constructor, fix the

comments, and we have a new constructor for CRectangle. It just stores the color and pen

width and computes the enclosing rectangle from the points passed as arguments.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Drawing a Rectangle

There is a member of the class CDC to draw a rectangle, called Rectangle(). This draws a

closed figure and fills it with the current brush. You may think that this isn't quite what we want,
since we want to draw rectangles as outlines only, but by selecting a NULL_BRUSH this is

exactly what we'll draw. Just so you know, there's also a function PolyLine(), which draws

shapes consisting of multiple line segments from an array of points, or we could have used
LineTo() again, but the easiest approach for us is to use the Rectangle() function:

 // Draw a CRectangle object

 void CRectangle::Draw{CDC* pDC) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width

 CPen aPen;

 if (!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))

 {

 // Pen creation failed

 AfxMessageBox("Pen creation failed drawing a rectangle",
MB_OK);

 AfxAbort();

 }

 // Select the pen

 CPen* pOldPen = pDC->SelectObject(&aPen);

 // Select the brush

 CBrush* pOldBrush = static_cast<CBrush*>(pDC-
>SelectStockObject(NULL_BRUSH));

 // Now draw the rectangle

 pDC->Rectangle(m_EnclosingRect);

 pDC->SelectObject(pOldBrush); // Restore the old
brush

 pDC->SelectObject(pOldPen); // Restore the old

pen

 }

After setting up the pen and the brush, we can simply pass the whole rectangle directly to the
Rectangle() function to get it drawn. All that then remains to do is to clear up after ourselves

and restore the device context's old pen and brush.

The CCircle Class

The interface of the CCircle class is no different from that of the CRectangle class. We can

define a circle solely by its enclosing rectangle, so the class definition will be:

 // Class defining a circle object

 class CCircle : public CElement

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 public:

 virtual void Draw(CDC* pDC) const; // Function to
display a circle

 // Constructor for a circle object

 CCircle(const CPoint& Start, const CPoint& End, const COLORREF&
Color);

 protected:

 CCircle(){} // Default constructor - should not be
used

 };

We have defined a public constructor, and the default constructor is declared as protected

again.

Implementing the CCircle Class

As we discussed earlier, when you create a circle, the point where you press the left mouse
button will be the center, and after moving the cursor with the left button held down, the point
where you release the cursor is a point on the circumference of the final circle. The job of the
constructor will be to convert these points into the form used in the class to define a circle.

The CCircle Class Constructor

The point at which you release the left mouse button can be anywhere on the circumference, so
the coordinates of the points specifying the enclosing rectangle need to be calculated, as
illustrated below:

From this diagram, you can see that we can calculate the coordinates of the top left and bottom

right points of the enclosing rectangle relative to the center of the circle (x1, y1), which is the
point we record when the left mouse button is pressed Assuming that the mapping mode is
MM_TEXT, for the top left point we just subtract the radius from each of the coordinates of the

center. Similarly, the bottom right point is obtained by adding the radius to the x and y
coordinates of the center. We can, therefore, code the constructor as:

 // Constructor for a circle object

 CCircle::CCircle(const CPoint& Start, const CPoint& End, const
COLORREF& Color)

 {

 // First calculate the radius

 // We use floating point because that is required by

 // the library function (in math.h) for calculating a square
root.

 long Radius =

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 static_cast<long>(sqrt(static_cast<double>((End.x -
Start.x)*

 (End.x - Start.x) + (End.y - Start.y)*(End.y
- Start.y))));

 // Now calculate the rectangle enclosing

 // the circle assuming the MM_TEXT mapping mode

 m_EnclosingRect = CRect(Start.x - Radius, Start.y - Radius,

 Start.x + Radius, Start.y + Radius);

 m_Color = Color; // Set the color for the circle

 m_Pen = 1; // Set pen width

 }

To use the sqrt() function, you should add the line:

 #include <math.h>

to the beginning of the file, after the include for stdafx.h. The maximum coordinate values are

16 bits, and the CPoint members x and y are declared as long, so evaluating the argument to
the sqrt() function can safely be carried out as an integer. The result of the square root

calculation will be of type double, so we cast it to long because we want to use it as an

integer.

Drawing a Circle

We've already seen how to draw a circle using the Arc() function in the CDC class, so let's use

the Ellipse() function here. The Draw() function in the CCircle class will be:

 // Draw a circle

 void CCircle::Draw(CDC* pDC) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width

 CPen aPen;

 if (!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))

 {

 // Pen creation failed

 AfxMessageBox("Pen creation failed drawing a circle", MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Select a null brush

 CBrush* pOldBrush = static_cast<CBrush*>(pDC-
>SelectStockobject(NULL_BRUSH));

 // Now draw the circle

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pDC->Ellipse(m_EnclosingRect);

 pDC->SelectObject(pOldPen); // Restore the old
pen

 pDC->SelectObject(pOldBrush); // Restore the old
brush

 }

After selecting a pen of the appropriate color and a null brush, the circle is drawn by calling the
Ellipse() function. The only argument is a CRect object which encloses the circle to be

drawn. This is another example of code that's almost for free, as it's very similar to the code we
wrote earlier to draw a rectangle.

The CCurve Class

The CCurve class is different from the others in that it needs to handle a variable number of

defining points. This necessitates maintaining a list of some kind, and since we will look at how
MFC can help with lists in the next chapter, we'll defer defining the detail of this class until then.
For now, we'll include a class definition that provides dummy member functions so we can
compile and link code that contains calls to them. In Elements.h, you should have:

 // Class defining a curve object

 class CCurve : public CElement

 {

 public:

 virtual void Draw(CDC* pDC) const; // Function to display a
curve

 // Constructor for a curve object

 CCurve(const COLORREF& Color);

 protected:

 CCurve(){} // Default constructor - should not be used

 };

And in Elements.cpp:

 // Constructor for a curve object

 CCurve::CCurve(const COLORREF& Color)

 {

 m_Color = Color; // Store the color

 m_EnclosingRect = CRect(0,0,0,0);

 m_Pen = 1; // Set pen width

 }

 // Draw a curve

 void CCurve::Draw(CDC* pDC) const

 {

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Neither the constructor nor the Draw() member function does anything useful yet, and we have

no data members to define a curve. The constructor just sets the color, sets
m_EnclosingRect to an empty rectangle, and sets the pen width. We'll expand the class into

a working version in the next chapter.

Completing the Mouse Message Handlers

We can now come back to the WM_MOUSEMOVE message handler and fill out the detail. You can
get to it through the ClassWizard or by expanding CSketcherView in the ClassView and

double-clicking the handler name, OnMouseMove().

This handler will only be concerned with drawing a succession of temporary versions of an
element as you move the cursor, because the final element will be created when you release
the left mouse button. We can therefore treat the drawing of temporary elements to provide
rubber-banding as being entirely local to this function, leaving the final version of the element
being created to be drawn by the OnDraw() function member of the view. This approach will

result in the drawing of the rubber-banded elements being reasonably efficient, as we won't
involve the OnDraw() function, which ultimately will be responsible for drawing the entire

document.

We can do this best with the help of a member of the CDC class that is particularly effective in

rubber-banding operations: SetROP2().

Setting the Drawing Mode

The SetROP2() function sets the drawing mode for all subsequent output operations in the

device context associated with a CDC object. The 'ROP' bit of the function name stands for

Raster OPeration, because the setting of drawing modes only applies to raster displays. In case
you're wondering, "What's SetROP1() then?" — there isn't one. The function name represents
'Set Raster OPeration to', not 2!

FYI

There are other kinds of graphic displays, called vector displays or directed
beam displays, for which this mechanism does not apply, but you are unlikely
to meet them these days — they have been largely rendered obsolete by raster
displays.

The drawing mode determines how the color of the pen that you use for drawing is to combine
with the background color to produce the color of the entity you are displaying. You specify the
drawing mode with a single argument to the function which can be any of the following values:

Drawing Mode Effect

R2_BLACK All drawing is in black.

R2_WHITE All drawing is in white.

R2_NOP Drawing operations do nothing.

R2_NOT Drawing is in the inverse of the screen color. This ensures the output
will always be visible, since it prevents drawing in the same color as
the background.

R2_COPYPEN Drawing is in the pen color. This is the default drawing mode if you
don't set it.

R2_NOTCOPYPEN Drawing is in the inverse of the pen color.

R2_MERGEPENNOT Drawing is in the color produced by ORing the pen color with the
inverse of the background color.

R2_MASKPENNOT Drawing is in the color produced by ANDing the pen color with the
inverse of the background color.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Drawing Mode Effect

R2_MERGENOTPEN Drawing is in the color produced by ORing the background color with
the inverse of the pen color.

R2_MASKNOTPEN Drawing is in the color produced by ANDing the background color
with the inverse of the pen color.

R2_MERGEPEN Drawing is in the color produced by ORing the background color with
the pen color.

R2_NOTMERGEPEN Drawing is in the color that is the inverse of the R2_MERGEPEN color.

R2_MASKPEN Drawing is in the color produced by ANDing the background color
with the pen color.

R2_NOTMASKPEN Drawing is in the color that is the inverse of the R2_MASKPEN color.

R2_XORPEN Drawing is in the color produced by exclusive ORing the pen color
and the background color.

R2_NOTXORPEN Drawing is in the color that is the inverse of the R2_XORPEN color.

Each of these symbols is predefined and corresponds to a particular drawing mode. There are a
lot of options here, but the one that can work some magic for us is the last of them,
R2_NOTXORPEN.

When we set the mode as R2_NOTXORPEN, the first time you draw a particular shape on the

default white background, it will be drawn normally in the pen color you specify. If you draw the
same shape again, overwriting the first, the shape will disappear, because the color that the
shape will be drawn in corresponds to that produced by exclusive ORing the pen color with
itself. The drawing color that results from this will be white. You can see this more clearly by
working through an example.

White is formed from equal proportions of the 'maximum' amounts of red, blue, and green. For
simplicity, we can represent this as 1,1,1—the three values represent the RGB components of
the color. In the same scheme, red is defined as 1,0,0. These combine as follows:

R G B

Background — white 1 1 1

Pen — red 1 0 0

XORed 0 1 1

NOT XOR 1 0 0 which is red

So, the first time we draw a red line on a white background, it comes out red. If we draw the

same line a second time, overwriting the existing line, the background pixels we are writing over
are red. The resultant drawing color works out as follows:

R G B

Background — red 1 0 0

Pen — red 1 0 0

XORed 0 0 0

NOT XOR 1 1 1 which is white

Since the rest of the background is white, the line will disappear.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You need to take care to use the right background color here You should be able to see that
drawing with a white pen on a red background is not going to work too well, as the first time you
draw something it will be red, and therefore invisible. The second time it will appear as white. If
you draw on a black background, things will appear and disappear, as on a white background,
but they will not be drawn in the pen color you choose.

Coding the OnMouseMove() Handler

Let's start by adding the code that creates the element after a mouse move message. Since we

are going to draw the element from the handler function, we need to create an object for the
device context. The most convenient class to use for this is CClientDC, which is derived from

CDC. As we said earlier, the advantage of using this class rather than CDC is that it will

automatically take care of creating the device context for us and destroying it when we are
done. The device context that it creates corresponds to the client area of a window, which is
exactly what we want. Add the following code to the outline handler that we defined:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // Define a Device Context object for the view

 CClientDC aDC(this);

 aDC.SetROP2(R2_NOTXORPEN); // Set the drawing
mode

 if(nFlags & MK_LBUTTON)

 {

 m_SecondPoint = point; // Save the current
cursor position

 // Test for a previous temporary element

 {

 // We get to here if there was a previous mouse move

 // so add code to delete the old element

 }

 // Create a temporary element of the type and color that

 // is recorded in the document object, and draw it

 m_pTempElement = CreateElement(); // Create a new
element

 m_pTempElement->Draw(&aDC); // Draw the element

 }

 }

The first new line of code creates a local CClientDC object. The this pointer that we pass to
the constructor identifies the current view object, so the CClientDC object will have a device

context that corresponds to the client area of the current view. As well as the characteristics we
mentioned, this object has all the drawing functions we need, as they are inherited from the
class CDC. The first member function we use is SetROP2(), which sets the drawing mode to
R2_NOTXORPEN.

To create a new element, we save the current cursor position in the data member
m_SecondPoint, and then call a view member function CreateElement(). (We'll define the

CreateElement() function as soon as we have finished this handler.) This function should

create an element using the two points stored in the current view object, with the color and type
specification stored in the document object, and return the address of the element. We save this
in m_pTempElement.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using the pointer to the new element, we call its Draw() member to get the object to draw
itself. The address of the CClientDC object is passed as an argument. Since we defined the

Draw() function as virtual in the base class CElement, the function for whatever type of

element m_pTempElement is pointing to will automatically be selected. The new element will
be drawn normally with the R2_NOTXORPEN because we are drawing it for the first time on a

white background.

We can use the pointer m_pTempElement as an indicator of whether a previous temporary

element exists. The code for this part of the handler will be:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // Define a Device Context object for the view

 CClientDC aDC(this); // DC is for this
view

 aDC.SetROP2(R2_NOTXORPEN); // Set the drawing
mode

 if(nFlags&MK_LBUTTON)

 {

 m_SecondPoint = point; // Save the current
cursor position

 if(m_pTempElement)

 {

 // Redraw the old element so it disappears from the view

 m_pTempElement->Draw(&aDC);

 delete m_pTempElement; // Delete the old
element

 m_pTempElement = 0; // Reset the pointer
to 0

 }

 // Create a temporary element of the type and color that

 // is recorded in the document object, and draw it

 m_pTempElement = CreateElement(); // Create a new
element

 m_pTempElement->Draw(&aDC); // Draw the element

 }

 }

A previous temporary element exists if the pointer m_pTempElement is not zero. We need to

redraw the element it points to in order to remove it from the client area of the view. We then
delete the element and reset the pointer to zero. The new element will then be created and
drawn by the code that we added previously. This combination will automatically rubber-band
the shape being created, so it will appear to be attached to the cursor position as it moves. We
must remember to reset the pointer m_pTempElement back to 0 in the WM_LBUTTONUP

message handler after we create the final version of the element.

Creating an Element

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We need to add the CreateElement() function to the 'Operations' section of the
CSketcherView class, as a protected member:

 class CSketcherView : public CView

 {

 // Rest of the class definition as before...

 // Operations

 public:

 protected:

 CElement* CreateElement(); // Create a new element on the heap

 // Rest of the class definition as before...

 };

To do this you can either amend the class definition directly by adding the line shown above, or
you can right-click on the class name, CSketcherView, in ClassView, and select Add Member

Function... from the menu. This will open the following dialog:

Add the specifications of the function, as shown, and click on OK; then a declaration for the
function member will be added to the class definition, and you will be taken directly to a skeleton
for the function in SketcherView.cpp. If you added the declaration to the class definition

manually, you'll need to add the complete definition for the function to the .cpp file. This is:

 // Create an element of the current type

 CElement* CSketcherView::CreateElement()

 {

 // Get a pointer to the document for this view

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc); // Verify the pointer is
good

 // Now select the element using the type stored in the document

 switch(pDoc->GetElementType())

 {

 case RECTANGLE:

 return new CRectangle(m_FirstPoint, m_SecondPoint,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pDoc->GetElementColor());

 case CIRCLE:

 return new CCircle(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor());

 case CURVE:

 return new CCurve(pDoc->GetElementColor());

 case LINE:

 return new CLine(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor());

 default:

 // Something's gone wrong

 AfxMessageBox("Bad Element code", MB_OK);

 AfxAbort();

 return NULL;

 }

 }

The lines that aren't shaded are those that will have been supplied automatically if you added

the function to the class using the Add Member Function dialog. The first thing we do here is to
get a pointer to the document by calling GetDocument(), as we've seen before. For safety, the

ASSERT_VALID() macro is used to ensure that a good pointer is returned. In the debug

version of MFC that's used in the debug version of your application, this macro calls the
AssertValid() member of the object which is specified as the argument to the macro. This
checks the validity of the current object, and if the pointer is NULL or the object is defective in

some way, an error message will be displayed. In the release version of MFC, the
ASSERT_VALID() macro does nothing.

The switch statement selects the element to be created based on the type returned by a
function in the document class, GetElementType(). Two more functions in the document

class are used to obtain the current element color and pen width. We can add the definitions for
both these functions directly to the CSketcherDoc class definition, because they are very

simple:

 class CSketcherDoc : public CDocument

 {

 // Rest of the class definition as before...

 // Operations

 public:

 WORD GetElementType() const // Get the element
type

 { return m_Element; }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 COLORREF GetElementColor() const // Get the element
color

 { return m_Color; }

 // Rest of the class definition as before...

 };

Each of the functions returns the value stored in the corresponding data member. Remember

that putting a member function definition in the class definition is equivalent to a request to
make the function inline, so as well as being simple, these should be fast.

Dealing with WM_LBUTTONUP Messages

The WM_LBUTTONUP message completes the process of creating an element. The job of this

handler is to pass the final version of the element that was created to the document object, and
then clean up the view object data members. You can access and edit the code for this handler
in the same way as you did for the last one. Add the following lines to the function:

 void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)

 {

 // Make sure there is an element

 if(m_pTempElement)

 {

 // Call a document class function to store the element

 // pointed to by m_pTempElement in the document object

 delete m_pTempElement; // This code is
temporary

 m_pTempElement = 0; // Reset the element
pointer

 }

 }

The if statement will test that m_pTempElement is not zero. It's always possible that the user

could press and release the left mouse button without moving the mouse, in which case no
element would have been created. As long as there is an element, the pointer to the element
will be passed to the document object; we'll add the code for this in the next chapter. In the
meantime, we'll just delete the element here so as not to pollute the heap. Finally, the
m_pTempElement pointer is reset to 0, ready for the next time the user draws an element.

Exercising Sketcher

Before we can run the example with the mouse message handlers, we need to update the
OnDraw() function in the CSketcherView class implementation to get rid of any old code that

we added earlier.

To make sure that the OnDraw() function is clean, go to ClassView and double-click on the

function name to take you to its implementation in SketcherView.cpp. Delete any old code

that you added, but leave in the first two lines that AppWizard provided to get a pointer to the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

document object. We'll need this later to get to the elements when they're stored in the
document. The code for the function should now be:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 }

Since we have no elements in the document as yet, we don't need to add anything to this

function at this point. When we start storing data in the document in the next chapter, we'll need
to add code here to draw the elements in response to a WM_PAINT message. Without it, the

elements will just disappear whenever you resize the view, as you'll see.

Running the Example

After making sure that you have saved all the source files, build the program. If you haven't

made any mistakes entering the code, you'll get a clean compile and link, so you can execute
the program. You can now draw lines, circles and rectangles in any of the four colors the
program supports. A typical window is shown below:

Try experimenting with the user interface. Note that you can move the window around, and that
the shapes stay in the window as long as you don't move it so far that they're outside the
borders of the application window. If you do, the elements do not reappear after you move it
back. This is because the existing elements are never redrawn. When the client area is covered
and uncovered, Windows will send a WM_PAINT message to the application, which will cause

the OnDraw() member of the view object to be called. As you know, the OnDraw() function for

the view doesn't do anything at present. We'll fix this when we use the document to store the
elements.

When you resize the view window, the shapes disappear immediately, but when you move the

whole view around, they remain (as long as they don't slide beyond the application window
border). How come? Well, when you resize the window, Windows invalidates the whole client
area and expects your application to redraw it in response to the WM_PAINT message. If you

move the view around, Windows takes care of relocating the client area as it is. You can
demonstrate this by moving the view so that a shape is partially obscured. When you slide it
back, you still have a partial shape, with the bit that was obscured erased.

If you try drawing a shape while dragging the cursor outside the client view area, you'll notice
some peculiar effects. Outside the view window, we lose track of the mouse, which tends to
mess up our rubber-banding mechanism. What's going on?

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Capturing Mouse Messages

The problem is caused by the fact that Windows is sending the mouse messages to the window
under the cursor. As soon as the cursor leaves the client area of our application view window,
the WM_MOUSEMOVE messages are being sent elsewhere. We can fix this by using some
inherited members of CSketcherView.

Our view class inherits a function, SetCapture(), which tells Windows that we want our

window to get all the mouse messages until such time as we say otherwise (that is, by calling
another inherited function in our view class, ReleaseCapture()). We can capture the mouse

as soon as the left button is pressed by modifying the handler for the WM_LBUTTONDOWN

message:

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 // TODO: Add your message handler code here and/or call default

 m_FirstPoint = point; // Record the cursor position

 SetCapture(); // Capture subsequent mouse
messages

 }

Now we must call the ReleaseCapture() function in the WM_LBUTTONUP handler. If we don't

do this, other programs will not be able to receive any mouse messages as long as our program
continues to run. Of course, we should only release the mouse if we've captured it earlier. The
function GetCapture(), which our view class inherits, will return a pointer to the window that

has captured the mouse, and this gives us a way of telling whether or not we have captured
mouse messages. We just need to add the following to the handler for WM_LBUTTONUP:

 void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)

 {

 if(this == GetCapture())

 ReleaseCapture(); // Stop capturing mouse
messages

 // Make sure there is an element

 if(m_pTempElement)

 {

 // Call a document class function to store the element

 // pointed to by m_pTempElement in the document object

 delete m_pTempElement; // This code is temporary

 m_pTempElement =0; // Reset the element pointer

 }

 }

If the pointer returned by the GetCapture() function is equal to the pointer this, our view has

captured the mouse, so we release it.

The final alteration we should make is to modify the WM_MOUSEMOVE handler so that it only

deals with messages that have been captured by our view. We can do this with one small
change:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 // Rest of the handler as before...

 if((nFlags & MK_LBUTTON) && (this == GetCapture()))

 {

 // Rest of the handler as before...

 }

 }

The handler will now only process the message if the left button is down and the left button
down handler for our view has been called, so that the mouse has been captured by our view
window.

If you rebuild Sketcher with these additions, you'll find that the problems which arose earlier

when the cursor was dragged off the client area no longer occur.

Summary

After completing this chapter, you should have a good grasp of how to write message handlers

for the mouse, and how to organize drawing operations in your Windows programs. The
important points that we have covered in this chapter are:
§ By default, Windows addresses the client area of a window using a client coordinate

system with the origin in the top left corner of the client area. The positive x direction is from
left to right, and the positive y direction is from top to bottom.

§ You can only draw in the client area of a window by using a device context.

§ A device context provides a range of logical coordinate systems called mapping modes
for addressing the client area of a window.

§ The default origin position for a mapping mode is the top left corner of the client area.
The default mapping mode is MM_TEXT which provides coordinates measured in pixels.

The positive x axis runs from left to right in this mode, and the positive y axis from top to
bottom.

§ Your program should always draw the permanent contents of the client area of a
window in response to a WM_PAINT message, although temporary entities can be drawn at

other times. All the drawing for your application document should be controlled from the
OnDraw() member function of a view class. This function is called when a WM_PAINT

message is received by your application.
§ You can identify the part of the client area that you want to have redrawn by calling the

InvalidateRect() function member of your view class. The area passed as an

argument will be added by Windows to the total area to be redrawn when the next
WM_PAINT message is sent to your application.

§ Windows sends standard messages to your application for mouse events. You can
create handlers to deal with these messages by using ClassWizard.

§ You can cause all mouse messages to be routed to your application by calling the
SetCapture() function in your view class. You must release the mouse when you're
finished with it by calling the ReleaseCapture() function. If you fail to do this, other

applications will be unable to receive mouse messages.
§ You can implement rubber-banding when creating geometric entities by drawing them in

the message handler for mouse movements.
§ The SetROP2() member of the CDC class enables you to set drawing modes. Selecting

the right drawing mode greatly simplifies rubber-banding operations.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Exercises

1. Add the menu item and toolbar button for an element of type ellipse, as in the
exercises from Chapter 14, and define a class to support drawing ellipses defined by
two points on opposite corners of their enclosing rectangle.

2. Which functions now need to be modified to support drawing an ellipse? Modify the
program to draw an ellipse.

3. Which functions must you modify in the example from the previous exercise so that
the first point defines the center of the ellipse, and the current cursor position defines
a corner of the enclosing rectangle? Modify the example to work this way (Hint —
look up the CPoint class members in Help).

4. Add a new menu pop-up to the IDR_SKETCHTYPE menu for Pen Style, to allow solid,

dashed, dotted, dash-dotted, and dash-dot-dotted lines to be specified.

5. Which parts of the program need to be modified to support the operation of the menu,
and the drawing of elements in these line types?

6. Implement support for the new menu pop-up and drawing elements for any of the line
types.

Answers

1. The class definition should be:

 // Class defining an ellipse object

 class CEllipse: public CElement

 {

 public:

 virtual void Draw(CDC* pDC) const;

 // Constructor for an ellipse

 CEllipse(const Cpoint& Start, const CPoint& End, const
COLORREF& Color);

 protected:

 CEllipse(){} // Default constructor - should not
be used

 };

The implementation of the CEllipse class constructor is:

 // Constructor for an ellipse object

 CEllipse:: CEllipse(const Cpoint& Start, const Cpoint& End, const
COLORREF& Color)

 {

 m_Color = Color; // Set ellipse color

 m_Pen = 1; // Set pen width

 // Define the enclosing rectangle

 m_EnclosingRect = CRect(Start, End);

 m_EnclosingRect.NormalizeRect();

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The implementation of the Draw() function for an ellipse object is:

 // Draw an ellipse

 void CEllipse::Draw(CDC* pDC) const

 {

 // Create a pen for this object and

 // intialize it to the object color and line width of 1 pixel

 CPen aPen;

 if(!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))

 { // Pen creation
failed

 AfxMessageBox("Pen creation failed drawing an ellipse",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Select a null brush

 CBrush* pOldBrush = static_cast<CBrush*>(pDC-
>SelectStockObject(NULL_BRUSH));

 // Now draw the ellipse

 pDC->Ellipse(m_EnclosingRect);

 pDC->SelectObject(pOldPen); // Restore the old
pen

 pDC->SelectObject(pOldBrush); // Restore the old
brush

 }

2. Only the CreateElement() element function needs to be modified:

 CElement* CSketcherView::CreateElement()

 {

 // Get a pointer to the document for this view

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc); // Verify the pointer is
good

 // Now select the element using the type stored in the
document

 switch(pDoc->GetElementType())

 {

 case RECTANGLE:

 return new CRectangle(m_FirstPoint, m_SecondPoint,

 pDoc-

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

>GetElementColor());

 case CIRCLE:

 return new CCircle(m_FirstPoint, m_SecondPoint,

 pDoc-
>GetElementColor());

 case CURVE:

 return new CCurve(pDoc->GetElementColor());

 case LINE:

 return new CLine(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor());

 case ELLIPSE:

 return new CEllipse(m_FirstPoint, m_SecondPoint,

 pDoc-
>GetElementColor());

 default: // Something's gone wrong

 AfxMessageBox("Bad Element code", MB_OK);

 AfxAbort();

 }

 }

3. Only the class constructor needs to be modified:

 CEllipse:: CEllipse(const CPoint& Start, const CPoint& End, const
COLORREF& Color)

 {

 m_Color = Color; // Set ellipse color

 m_Pen = 1; // Set pen width

 // Define the enclosing rectangle

 m_EnclosingRect = CRect(Start - (End-Start), End);

 m_EnclosingRect.NormalizeRect();

 }

The modified statement uses two different versions of the overloaded operator—in the
CPoint class. The expression (End-Start) returns the difference between the two points

as an object of class CSize. This object is then subtracted from the CPoint object Start to
offset it by the CSize value.

4. Open the menu IDR_SKETCHTYPE in ResourceView. Add a new pop-up to the menu bar,

labeled Pen Style. Add menu items to the pop-up for Solid, Dashed, Dotted, Dash-dotted, and
Dash-dot-dotted lines. Save the resource.

5. The following modifications are necessary:
§ Add a protected member of type int, m_PenStyle, and a function to retrieve its

value, to the CSketcherDoc class.

§ Add initialization of m_Penstyle to PS_SOLID in the CSketcherDoc constructor.

§ Add COMMAND and UPDATE_COMMAND_UI handlers for each of the new menu items.

§ Add a protected member of type int, m_PenStyle, to the CElemant class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ Modify the constructors for each of the element classes to accept an argument of
type int specifying the pen style.

§ Modify the CreateElement() function member of CSketcherView to call the
constructors using the additional parameter for pen style.

§ Modify the Draw() functions in each of the element classes to draw using the pen
style specified in the m_PenStyle member of each element class.

6. The following line must be added to the protected section of the CSketcherDoc class
definition:

 int m_PenStyle; // Current pen style

Add the following function to retrieve the pen style from the document:

 int GetPenStyle() // Get the pen style

 { return m_PenStyle; }

The following line should be added to the constructor, CSketcherDoc():

 m_PenStyle = PS_SOLID; // Set initial style as solid

A typical COMMAND menu handler is:

 void CSketcherDoc::OnPenstyleDashdotted()

 {

 m_PenStyle = PS_DASHDOT;

 }

A typical UPDATE_COMMAND_UI handler is:

 void CSketcherDoc::OnUpdatePenstyleDashdotted(CCmdUI* pCmdUI)

 {

 pCmdUI->SetCheck(m_PenStyle==PS_DASHDOT);

 }

The following declaration should be added to the protected section of the CElement class:

 int m_PenStyle; // Element pen style

The constructor declaration in each derived element class definition should be modified to
add the extra parameter. The CCircle class is typical:

 CCircle(const Cpoint& Start, const Cpoint& End, const COLORREF&
Color,

 int
aPenStyle);

The typical change to the constructor to support the pen style is:

 CCircle::CCircle(const CPoint& Start, const CPoint& End,

 const COLORREF& Color, int aPenStyle)

 {

 // First calculate the radius

 //We use floating point because that is required by

 // the library function (in math.h) for calculating a square
root.

 long Radius =

 static_cast<long>(sqrt(static_cast<double>((End.x-
Start.x)*(End.x-Start.x)+

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 (End.y-
Start.y)*(End.y-Start.y))));

 // Now calculate the rectangle enclosing

 // the circle assuming the MM_TEXT mapping mode

 m_EnclosingRect = CRect(Start.x-Radius Start.y-Radius,

 Start.x+Radius, Start.y+Radius);

 m_Color = aColor; // Set the color for the circle

 m_Pen = 1; // Set pen width to 1

 m_PenStyle = aPenStyle // Set the pen style

 }

The CreateElement() member of CSketcherView is modified to:

 CElement* CSketcherView::CreateElement()

 {

 // Get a pointer to the document for this view

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc); // Verify the pointer is
good

 // Now select the element using the type stored in the
document

 switch(pDoc->GetElementType())

 {

 case RECTANGLE:

 return new CRectangle(m_FirstPoint, m_SecondPoint,

 p_Doc->GetElementColor(), pDoc-
>GetPenStyle());

 case CIRCLE:

 return new CCircle(pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 case CURVE:

 return new CCurve(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 case LINE:

 return new CLine(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 case ELLIPSE:

 return new CEllipse(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 default: // Something's gone wrong

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 AfxMessageBox("Bad Element code", MB_OK);

 AfxAbort();

 return NULL;

 }

 }

The typical change to the implementation of the Draw() members of the element classes is:

 void CCircle::Draw(CDC* pDC) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1 pixel

 CPen aPen;

 if(!aPen.CreatePen(m_PenStyle, m_Pen, m_Color))

 { // Pen creation
failed

 AfxMessageBox("Pen creation failed drawing a circle",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Select a null brush

 CBrush* pOldBrush = static_cast<CBrush*>(pDC-
>SelectStockObject(NULL_BRUSH));

 // Now draw the circle

 pDC->Ellipse(m_EnclosingRect);

 pDC->SelectObject(pOldPen); // Restore the old
pen

 pDC->SelectObject(pOldBrush); // Restore the old
brush

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 16: Creating the Document and
Improving the View

Overview

In this chapter, we'll look into the facilities offered by MFC for managing collections of data

items. We'll use these to complete the class definition and implementation for the curve element
that we left open in the last chapter. We'll also extend the Sketcher application to store data in a
document, and make the document view more flexible, introducing several new techniques in
the process.

In this chapter, you'll learn:

§ What collections are, and what you can do with them
§ How to use a collection to store point data for a curve
§ How to use a collection to store document data

§ How to implement drawing a document
§ How to implement scrolling in a view
§ How to create a pop-up menu at the cursor

§ How to highlight the element nearest the cursor to provide feedback to the user for
moving and deleting elements

§ How to program the mouse to move and delete elements

What are Collection Classes?

By the nature of Windows programming, you'll frequently need to handle collections of data

items where you have no advance knowledge of how many items you will need to manage, or
even what particular type they are going to be. This is clearly illustrated by our Sketcher
application. The user can draw an arbitrary number of elements which can be lines, rectangles,
circles and curves, and in any sequence. MFC provides a group of collection classes
designed to handle exactly this sort of problem — a collection being an aggregation of an
arbitrary number of data items organized in a particular way.

Types of Collection

MFC provides you with a large number of collection classes for managing data. We'll use just a
couple of them in practice, but it would be helpful to understand the types of collections
available. MFC supports three kinds of collections, differentiated by the way in which the data
items are organized. The way a collection is organized is referred to as the shape of the
collection. The three types of organization, or shape, are

Shape How information is organized

Array An array in this context is just like the array we have seen in the C++ language.
It's an ordered arrangement of elements, where any element is retrieved by using
an integer index value. An array collection can automatically grow to
accommodate more data items. However, one of the other collection types is
generally preferred, since array collections can be rather slow in operation.

List A list collection is an ordered arrangement of data items, where each item has
two pointers associated with it which point to the next and previous items in the
list. We saw a linked list in Chapter 7, when we discussed structures. The list we
have here is called a doubly linked list, because it has both backward and
forward-pointing links. It can be searched in either direction and, like an array, a
list collection grows automatically when required. A list collection is easy to use,
and fast when it comes to adding items. Searching for an item can be slow,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Shape How information is organized

though, if there are a lot of data items in the list.

Map A map is an unordered collection of data items, where each item is associated
with a key that is used to retrieve the item from the map. A key is usually a string,
but it can also be a numeric value. Maps are fast at storing data items and at
searching, since a key will take you directly to the item you need. This sounds as
though maps are always the ideal choice, and this is often the case, but for
sequential access arrays will be faster. You also have the problem of choosing a
key for your object that's unique to each item in the list.

MFC collection classes provide two approaches to implementing each type of collection. One
approach is based on the use of class templates and provides you with type-safe handling of
data in a collection. Type-safe handling means that the data passed to a function member of the
collection class will be checked to ensure that it's of a type that can be processed by the
function.

The other approach makes use of a range of collection classes (rather than templates), but
these perform no data checking. If you want your collection classes to be type-safe, you have to
include code yourself to ensure this. These latter classes were available in older versions of
Visual C++ under Windows, but the template collection classes were not. We'll concentrate on
the template-based versions, since these will provide the best chance of avoiding errors in our
application.

The Type-safe Collection Classes

The template-based type-safe collection classes support collections of objects of any type, and

collections of pointers to objects of any type. Collections of objects are supported by the
template classes CArray, CList and CMap, and collections of pointers to objects are

supported by the template classes CTypedPtrArray, CTypedPtrList and
CTypedPtrMap. We won't go into the detail of all of these, just the two that we'll use in the

Sketcher program. One will store objects and the other will store pointers to objects, so you'll
get a feel for both sorts of collection.

Collections of Objects

The template classes for defining collections of objects are all derived from the MFC class
CObject. They are defined this way so that they inherit the properties of the CObject class

which are particularly useful for a number of things, including the file input and output operations
(serialization, which we'll look at in Chapter 18).

These template classes can store and manage any kind of object, including all the C++ basic

data types, plus any classes or structures that you or anybody else might define. Because these
classes store objects, whenever you add an element to a list, an array, or a map, the class
template object will need to make a copy of your object. Consequently, any class type that you
want to store in any of these collections must have a copy constructor. The copy constructor for
your class will be used to create a duplicate of the object that you wish to store in the collection.

Let's look at the general properties of each of the template classes providing type-safe
management of objects. This is not an exhaustive treatment of all the member functions
provided. Rather, it's intended to give you a sufficient flavor of how they work to enable you to
decide if you want to use them or not. You can get information on all of the member functions by
using Help to get to the template class definition.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The CArray Template Class

You can use this template to store any kind of object in an array and have the array
automatically grow to accommodate more elements when necessary. An array collection is
illustrated below:

As with the arrays that we've seen in C++, elements in array collections are indexed from 0. The
declaration of an array collection takes two arguments. The first argument is the type of the
object to be stored; so, if your array collection is to store objects of type CPoint, for example,
you specify CPoint as the first argument. The second argument is the type to be used in

member function calls. To avoid the overhead in copying objects when passed by value, this is
usually a reference, so an example of an array collection declaration to hold CPoint objects is:

 CArray<CPoint, CPoint&> PointArray;

This defines the array collection class object, PointArray, which will store CPoint objects.

When you call function members of this object, the argument is a reference, so to add a
CPoint object, you would write

 PointArray.Add(aPoint);

and the argument aPoint will be passed as a reference.

If you declare an array collection, it's important to call the SetSize() member function to fix

the initial number of elements that you require before you use it. It will still work if you don't do
this, but the initial allocation of elements and subsequent increments will be small, resulting in
inefficient operation and frequent reallocation of memory for the array. The initial number of
elements that you should specify depends on the typical size of array you expect to need, and
how variable the size is. If you expect the minimum your program will require to be of the order
of 400 to 500 elements, for example, but with expansion up to 700 or 800, an initial size of 600
should be suitable.

To retrieve the contents of an element, you can use the GetAt() function, as shown in the

diagram above. To store the third element of PointArray in a variable aPoint, you would

write:

 aPoint = PointArray.GetAt(2);

The class also overloads the [] operator, so you could retrieve the third element of

PointArray by using PointArray[2]. For example, if aPoint is a variable of type CPoint,

you could write:

 aPoint = PointArray[2]; // Store a copy of the third
element

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

For array collections that are not const, this notation can also be used instead of the SetAt()

function to set the contents of an existing element. The following two statements are, therefore,
equivalent:

 PointArray.SetAt(3,NewPoint); // Store NewObject in the 4th
element

 PointArray[3] = NewPoint; // Same as previous line of code

Here, NewPoint is an object of the type used to declare the array. In both cases, the element

must already exist. You cannot extend the array by this means. To extend the array, you can
use the Add() function shown in the diagram, which adds a new element to the array. There is
also a function Append() to add an array of elements to the end of the array.

Helper Functions

Whenever you call the SetSize() function member of an array collection, a global function,
ConstructElements(), is called to allocate memory for the number of elements you want to

store in the array collection initially. This is called a helper function, as it helps in the process
of setting the size of the array collection. The default version of this function sets the contents of
the allocated memory to zero and doesn't call a constructor for your object class, so you'll need
to supply your own version of this helper function if this action isn't appropriate for your objects.
This will be the case if space for data members of objects of your class is allocated dynamically,
or if there is other initialization required ConstructElements() is also called by the member

function InsertAt(), which inserts one or more elements at a particular index position within

the array.

Members of the CArray collection class that remove elements call the helper function

DestructElements(). The default version does nothing; so, if your object construction

allocates any memory on the heap, you must override this function to release the memory
properly.

The CList collection template makes use of a helper function when searching the contents of a

list for a particular object. We'll discuss this further in the next section. Another helper function,
SerializeElements(), is used by the array, list and map collection classes, but we'll discuss

this when we come to look into how we can write a document to file.

The CList Template Class

A list collection is very flexible; you're likely to find yourself using lists more often than you use
either arrays or maps. Let's look at the list collection template in some detail, as we'll apply it in
our Sketcher program. The parameters to the CList collection class template are the same as
those for the CArray template:

 CList<objectType, ObjectType&> aList;

You need to supply two arguments to the template when you declare a list collection: the type of
object to be stored, and the way an object is to be specified in function arguments. The example
shows the second argument as a reference, since this is used most frequently. It doesn't
necessarily have to be a reference, though — you could use a pointer, or even the object type
(so objects would be passed by value), but this would be slow.

We can use a list to manage a curve in the Sketcher program. We could declare a list collection
to store the points specifying a curve object with the statement:

 CList<CPoint, CPoint&> PointList;

This declares a list called PointList that stores CPoint objects, which are passed to

functions in the class by reference. We'll come back to this when we fill out more detail of the
Sketcher program in this chapter.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Adding Elements to a List

You can add objects at the beginning or at the end of the list by using the AddHead() or

AddTail() member functions, as shown in the following diagram:

The diagram shows backward and forward pointers for each list element, which 'glue' the
objects in the list together. These are internal links that you can't access in any direct way, but
you can do just about anything you want by using the functions provided in the public interface
to the class.

To add the object aPoint to the tail of the list PointList, you would write:

 PointList.AddTail(aPoint); // Add an element to the end

As new elements are added, the size of the list will increase automatically.

Both the AddHead() and AddTail() functions return a value of type POSITION, which

specifies the position of the inserted object in the list. The way in which a variable of type
POSITION is used is shown in the next diagram:

You can use a value of type POSITION to retrieve the object at a given position in the list by

using the GetNext() function. Note that you can't perform arithmetic on values of type
POSITION — you can only modify a position value through member functions of the list object.

Furthermore, you can't set a position value to a specific numerical value. POSITION variables

can only be set through member functions of the list object.

As well as returning the object, the GetNext() function increments the position variable

passed to it, so that it points to the next object in the list. You can, therefore, use repeated calls

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

to GetNext() to step through a list element by element. The position variable is set to NULL if
you use GetNext() to retrieve the last object from the list, so you can use this to control your

loop operation. You should always make sure that you have a valid position value when you call
member functions of a list object.

You can insert an element in a list at a specific position as long as you have a POSITION value.

To insert the object ThePoint in the list PointList immediately before an element at the
position aPosition, you can use the statement:

 PointList.InsertBefore(aPosition, ThePoint)

The function InsertBefore() will also return the position of the new object. To insert an

element after the object at a given position, the function InsertAfter() is provided. These

functions are often used with a list containing geometric elements to be displayed. Elements will
be drawn on the screen in the sequence that you traverse the list. Elements that appear later in
the list will overlay elements that are positioned earlier, so the order of elements determines
what overlays what. You can therefore determine which of the existing elements a new element
overlays by entering it at an appropriate position in the list.

When you need to set an existing object in a list to a particular value, you can use the function
SetAt(), as long as you know the position value for the object:

 PointList.SetAt(aPosition, aPoint);

There is no return value for this function. You must ensure that the POSITION value you pass to

the function is valid. An invalid value will cause an error. You should, therefore, only pass a
POSITION value to this function that was returned by one of the other member functions, and
you must have verified that it isn't NULL.

Iterating through a List

If you want to get the POSITION value for the beginning or the end of the list, the class provides

the member functions GetHeadPosition() and GetTailPosition(). Starting with the
POSITION value for the head of the list, you can iterate through the complete list by calling

GetNext() until the position value is NULL. We can illustrate the typical code to do this using
the list of CPoint objects that we declared earlier:

 CPoint CurrentPoint(0,0);

 // Get the position of the first list element

 POSITION aPosition = PointList.GetHeadPosition();

 while(aPosition) // Loop while aPosition is not NULL

 {

 CurrentPoint = PointList.GetNext(aPosition);

 // Process the current object...

 }

You can work through the list backwards by using another member function, GetPrev(), which

retrieves the current object and then decrements the position indicator. Of course, in this case,
you would start out by calling GetTailPosition().

Once you know a position value for an object in a list, you can retrieve the object with the
member function GetAt(). You specify the position value as an argument and the object is

returned. An invalid position value will cause an error.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Searching a List

You can find the position of an element that's stored in a list by using the member function
Find():

 POSITION aPosition = PointList.Find(ThePoint);

This searches for the object specified as an argument by calling a global template function
CompareElements() to compare the objects in the list with the argument. This is the helper

function we referred to earlier, that aids the search process. The default implementation of this
function compares the address of the argument with the address of each object in the list. This
implies that if the search is to be successful, the argument must actually be an element in the
list — not a copy. If the object is found in the list, the position of the element is returned. If it isn't
found, NULL is returned. You can specify a second argument to define a position value where

the search should begin.

If you want to search a list for an object that is equal to another object, you must implement your
own version of CompareElements() that performs a proper comparison. The function

template is of the form:

 template<class TYPE, class ARG_TYPE> BOOL CompareElements(

 const TYPE* pElement1, const ARG_TYPE*
pElement2);

where pElement1 and pElement2 are pointers to the objects to be compared. For the
PointList collection class object, the prototype of the function generated by the template

would be:

 BOOL CompareElements(CPoint* pPoint1, CPoint* pPoint2);

To compare the CPoint objects, you could implement this as:

 BOOL CompareElements(CPoint* pPoint1, CPoint* pPoint2)

 { return *pPoint1 == *pPoint2; }

This uses the operator==() function implemented in the CPoint class. In general you would
need to implement the operator==() function for your own class in this context. You could

then use it to implement the helper function CompareElements().

You can also obtain the position of an element in a list by using an index value. The index works
in the same way as for an array, with the first element being at index 0, the second at index 1,
and so on. The function FindIndex() takes an index value of type int as an argument and

returns a value of type POSITION for the object at the index position in the list. If you want to

use an index value, you are likely to need to know how many objects there are in a list. The
GetCount() function will return this for you:

 int ObjectCount = PointList.GetCount();

Here, the integer count of the number of elements in the list will be stored in the variable
ObjectCount.

Deleting Objects from a List

You can delete the first element in a list using the member function RemoveHead(). The

function will then return the object that has just been removed from the head of the list. To
remove the last object, you can use the function RemoveTail(). Both of these functions

require that there should be at least one object in the list, so you should use the function
IsEmpty() first, to verify that the list is not empty. For example:

 if(!PointList.IsEmpty())

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 PointList.RemoveHead();

The function IsEmpty() returns TRUE if the list is empty, and FALSE otherwise.

If you know the position value for an object that you want to delete from the list, you can do this

directly:

 PointList.RemoveAt(aPosition);

There's no return value from this function. It's your responsibility to ensure that the position
value you pass as an argument is valid. If you want to delete the entire contents of a list, you
use the member function RemoveAll():

 PointList.RemoveAll();

This function will also free the memory that was allocated for the elements in the list.

Helper Functions for a List

We have already seen how the CompareElements() helper function is used by the Find()

function for a list. Both the ConstructElements() and DestructElements() global helper
functions are also used by members of a CList template class. These are template functions

which will be declared using the object type you specify in your CList class declaration. The

template prototypes for these functions are:

 template< class TYPE > void ConstructElements(

 TYPE* pElements, int
nCount);

 template< class TYPE > void DestructElements(

 TYPE* pElements, int
nCount);

To obtain the function that's specific to your list collection, you just plug in the type for the
objects you are storing. For example, the prototypes for the PointList class for these will be:

 void ConstructElements(CPoint* pPoint, int PointCount);

 void DestructElements(CPoint* pPoint, int PointCount);

Note that the parameters here are pointers. We mentioned earlier that arguments to the
PointList member functions would be references, but this doesn't apply to the helper

functions. The parameters to both functions are the same: the first is a pointer to an array of
CPoint objects, and the second is a count of the number of objects in the array.

The ConstructElements() function is called whenever you enter an object in the list, and

the DestructElements() function is called when you remove an object. As for the CArray

template class, you need to implement your versions of these functions if the default operation
is not suitable for your object class.

The CMap Template Class

Because of the way they work, maps are particularly suited to applications where your objects

obviously have a relatively dissimilar key associated with them, such as a customer class where
each customer will have an associated customer number, or a name and address class where
the name might be used as a key. The organization of a map is shown below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

A map stores an object and key combination. The key is used to determine where, within the

block of memory allocated to the map, the object is to be stored. The key, therefore, provides a
means of going directly to an object stored, as long as the key is unique. The process of
converting a key to an integer that can be used to calculate the address of an entry in a map is
called hashing.

The hashing process applied to a key produces an integer called a hash value. This hash value

is typically used as an offset to a base address to determine where to store the key and its
associated object in the map. If the memory allocated to the map is at address Base, and each

entry requires Length bytes, the entry producing the hash value HashValue will be stored at
Base+HashValue*Length.

The hashing process may not produce a unique hash value from a key, in which case an
element — the key together with the associated object — will be entered and linked to whatever
element or elements were previously stored with the same hashed key value (often as a list). Of
course, the fewer unique hash values that are generated, the less efficient the retrieval process
from your map will be, because searching will typically be required to retrieve elements that
have the same hash value.

There are four arguments necessary when you declare a map:

 CMap<LONG, LONG&, CPoint, CPoint&> PointMap;

The first two specify the key type and how it is passed as an argument. Usually, it will be
passed as a reference. The second pair of arguments specify the object type and how the
object is passed as an argument, as we have seen previously.

You can store an object in a map by using the [] operator, as shown in the diagram above. You

can also use a member function SetAt() to store an object, where you supply the key value
and the object as arguments. Note that you cannot use the [] operator on the right-hand side of

an assignment to retrieve an object, as this version of the operator is not implemented in the
class.

To retrieve an object, you use the member function, Lookup(), as shown in the diagram. This
will retrieve the object corresponding to the key specified; the function returns TRUE if the object

was found, and FALSE otherwise. You can also iterate through all the objects in a map using a
variable of type POSITION, although the sequence in which objects are retrieved is unrelated to

the sequence in which they were added to the map. This is because objects are stored in a map
in locations determined by the hash value, not by the sequence in which they were entered.

Helper Functions used by CMap

As well as the helper functions that we have discussed in the context of arrays and lists, map
collection classes also use a global function HashKey(), which is defined by this template:

 template<class ARG_KEY>

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 UINT HashKey(ARG_KEY key);

This function converts your key value to a hash value of type UINT. The default version does

this by simply shifting your key value right by 4 bit positions. You need to implement your own
version of this function if the default operation isn't suited to your key type.

There are different techniques used for hashing which vary depending on the type of data being
used as a key, and the number of elements you are likely to want to store in your map. The
likely number of elements to be stored indicates the number of unique hash values you need. A
common method for hashing a numeric key value is to compute the hash value as the value of
the key modulo N (that is, the remainder after dividing the number by N), where N is the number
of different values you want. For reasons it would take too long to explain here, N needs to be
prime for this to work well. Didn't you just know that our program to calculate primes would turn
out to be useful after all?

We can, perhaps, understand the principles of the mechanism used here with a simple
example. Suppose you expect to store up to 100 different entries in a map using a key value,
Key. You could hash the key with the statement:

 HashValue = Key%101;

This will result in values for the HashValue between 0 and 100, which is exactly what you need

to calculate the address for an entry. Assuming your map is stored at some location in memory,
Base, and the memory required to store the object along with its key is Length bytes, then you

can store an entry that produces the hash value HashValue at the location
Base+HashValue*Length. With the hashing process as above, we can accommodate up to

101 entries at unique positions in the map.

Where a key is a character string, the hashing process is rather more complicated, particularly
with long or variable strings. However, a method that is commonly used involves using
numerical values derived from characters in the string. This typically involves assigning a
numerical value to each character, so if your string contained lower case letters plus spaces,
you could assign each character a value between 0 and 26, with space as 0, a as 1, b as 2, and
so on. The string can then be treated as the representation of a number to some base, 32 say.
The numerical value for the string 'fred', for instance, would then be

6*32
3
+18*32

2
+5*32

1
+4*32

0

and, assuming you expected to store 500 strings, you could calculate the hashed value of the
key as:

6*32
3
+18*32

2
+5*32

1
+4*32

0
 mod 503

The value of 503 for N is the smallest prime greater than the likely number of entries. The base

chosen to evaluate a hash value for a string is usually a power of 2 that corresponds to the
minimum value that is greater than or equal to the number of possible different characters in a
string. For long strings, this can generate very large numbers, so special techniques are used to
compute the value modulo N. Detailed discussion of this is beyond the scope of this book.

The Typed Pointer Collections

The typed pointer collection class templates store pointers to objects, rather than objects

themselves. This is the primary difference between these class templates and the template
classes we have just discussed. We'll look at how the CTypedPtrList class template is used,

because we'll use this as a basis for managing elements in our document class,
CSketcherDoc.

The CTypedPtrList Template Class

You can declare a typed pointer list class with a statement of the form:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CTypedPtrList<BaseClass, Type*> ListName;

The first argument specifies a base class that must be one of two pointer list classes defined in
MFC, either CObList or CPtrList. Your choice will depend on how your object class has
been defined. Using the CObList class creates a list supporting pointers to objects derived

from CObject, while CPtrList supports lists of void* pointers. Since the elements in our
Sketcher example have CObject as a base class, we'll concentrate on how CObList is used.

The second argument to the template is the type of the pointers to be stored in the list. In our
example, this is going to be CElement*, since all our shapes have CElement as a base and
CElement is derived from CObject. Thus, the declaration of a class for storing shapes is:

 CTypedPtrList<CObList, CElement*> m_ElementList;

We could have used CObList* types to store the pointers to our elements, but then the list
could contain an object of any class that has CObject as a base. The declaration of

m_ElementList ensures that only pointers to objects of the class CElement can be stored.

This provides a greatly increased level of security in the program.

CTypedPtrList Operations

The functions provided in the CTypedPtrList-based classes are similar to those supported by
CList, except of course that all operations are with pointers to objects rather than with objects,

so let's tabulate them. They fall into two groups: those that are defined in CTypedPtrList, and
those that are inherited from the base class — CObList in this case.

Defined in CTypedPtrList:

Function Remarks

GetHead() Returns the pointer at the head of the list. You should use IsEmpty()
to verify that the list is not empty before calling this function.

GetTail() Returns the pointer at the tail of the list. You should use IsEmpty() to
verify that the list is not empty before calling this function.

RemoveHead() Removes the first pointer in the list. You should use IsEmpty() to

verify that the list is not empty before calling this function.

RemoveTail() Removes the last pointer in the list. You should use IsEmpty() to

verify that the list is not empty before calling this function.

GetNext() Returns the pointer at the position indicated by the variable of type
POSITION passed as a reference argument. The variable is updated to
indicate the next element in the list. When the end of the list is reached,
the position variable is set to NULL. This function can be used to iterate
forwards through all the pointers in the list.

GetPrev() Returns the pointer at the position indicated by the variable of type
POSITION passed as a reference argument. The variable is updated to

indicate the previous element in the list. When the beginning of the list is
reached, the position variable is set to NULL. This function can be used

to iterate backwards through all the pointers in the list.

GetAt() Returns the pointer stored at the position indicated by the variable of
type POSITION passed as an argument, which isn't changed. The
function returns a reference, so as long as the list is not defined as
const — this function can be used on the left of an assignment
operator to modify a list entry.

Inherited from CObList:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Function Remarks

AddHead() Adds the pointer passed as an argument to the head of the list
and returns a value of type POSITION that corresponds to the

new element. There is another version of this function which can
add another list to the head of the list.

AddTail() Adds the pointer passed as an argument to the tail of the list and
returns a value of type POSITION that corresponds to the new

element. There is another version of this function which can add
another list to the tail of the list.

RemoveAll() Removes all the elements from the list. Note that this doesn't
delete the objects pointed to by elements in the list. You need to
take care of this yourself.

GetHeadPosition() Returns the position of the element at the head of the list.

GetTailPosition() Returns the position of the element at the tail of the list.

SetAt() Stores the pointer specified by the second argument at the
position in the list defined by the first argument. An invalid
position value will cause an error.

RemoveAt() Removes the pointer from the position in the list specified by the
argument of type POSITION. An invalid position value will cause
an error.

InsertBefore() Inserts a new pointer specified by the second argument before
the position specified by the first argument. The position of the
new element is returned.

InsertAfter() Inserts a new pointer specified by the second argument after the
position specified by the first argument. The position of the new
element is returned.

Find() Searches for a pointer in the list that is identical to the pointer
specified as an argument. Its position is returned if it is found.
NULL is returned otherwise.

FindIndex() Returns the position of a pointer in the list specified by a zero-
based integer index argument.

GetCount() Returns the number of elements in the list.

IsEmpty() Returns TRUE if there are no elements in the list, and FALSE
otherwise.

We'll see some of these member functions in action a little later in this chapter in the context of
implementing the document class for the Sketcher program.

Using the CList Template Class

We can make use of the CList collection template in the definition of the curve object in our

Sketcher application. A curve is defined by two or more points, so storing these in a list would
be a good method of handling them. We first need to define a CList collection class object as

a member of the CCurve class. We'll use this collection to store points. We've looked at the
CList template class in some detail, so this should be easy.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The CList template class has two parameters, so the general form of declaring a collection

class of this type is:

 CList<YourObjectType, FunctionArgType> ClassName;

The first argument, YourObjectType, specifies the type of object that you want to store in the

list. The second argument specifies the argument type to be used in function members of the
collection class when referring to an object. This is usually specified as a reference to the object
type to minimize copying of arguments in a function call. So let's declare a collection class
object to suit our needs in the CCurve class as:

 class CCurve : public CElement

 {

 public:

 virtual void Draw(CDC* pDC) const; // Function to
display a curve

 // Constructor for a curve object

 CCurve(const COLORREF& Color);

 protected:

 // CCurve data members to go here

 CList<CPoint, const CPoint&> m_PointList; // Type safe point
list

 CCurve() {} // Default constructor - should not
be used

 };

The rest of the class definition is omitted here, since we're not concerned with it for now. The
collection declaration is shaded. It declares the collection m_PointList which will store
CPoint objects in the list, and its functions will use constant reference arguments to CPoint

objects.

The CPoint class doesn't allocate memory dynamically, so we won't need to implement
ConstructElements() or DestructElements(), and we don't need to use the Find()

member function, so we can forget about CompareElements() as well.

Drawing a Curve

Drawing a curve is different from drawing a line or a circle. With a line or a circle, as we move

the cursor with the left button down, we are creating a succession of different line or circle
elements that share a common reference point — the point where the left mouse button was
pressed. This is not the case when we draw a curve, as shown in the diagram:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

When we move the cursor while drawing a curve, we're not creating a sequence of new curves,

but extending the same curve, so each successive point adds another segment to the curve's
definition. We therefore need to create a curve object as soon as we have the two points from
the WM_LBUTTONDOWN message and the first WM_MOUSEMOVE message. Points defined with

subsequent mouse move messages then define additional segments to the existing curve
object. We'll need to add a function AddSegment() to the CCurve class to extend the curve

once it has been created by the constructor.

A further point to consider is how we are to calculate the enclosing rectangle. This is defined by

getting the minimum x and minimum y pair from all the defining points to establish the top left
corner of the rectangle, and the maximum x and maximum y pair for the bottom right. This
involves going through all the points in the list. We will, therefore, compute the enclosing
rectangle incrementally in the AddSegment() function as points are added to the curve.

Defining the CCurve Class

With these features added, the complete definition of the CCurve class will be:

 class CCurve : public CElement

 {

 public:

 virtual void Draw(CDC* pDC) const; // Function to display
a curve

 // Constructor for a curve object

 CCurve(const CPoint& FirstPoint, const CPoint& SecondPoint,
const COLORREF&

 Color);

 void AddSegment(const CPoint& Point); //Add a segment to the
curve

 protected:

 // CCurve data members to go here

 CList<CPoint, const CPoint&> m_PointList; // Type safe point
list

 CCurve() {} // Default constructor - should not be used

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 };

You should modify the definition of the class in Elements.h to correspond with the above. The

constructor has the first two defining points and the color as parameters, so it only defines a
curve with one segment. This will be called in the CreateElement() function, invoked by the

OnMouseMove() function in the view class, the first time a WM_MOUSEMOVE message is
received for a curve. Consequently, you must remember to modify the CreateElement()

function to call the constructor with the correct arguments. The statement using the CCurve
constructor in the switch in this function should be changed to:

 case CURVE:

 return new CCurve(m_FirstPoint, m_SecondPoint, pDoc-
>GetElementColor()};

After the constructor has been called, all subsequent WM_MOUSEMOVE messages will result in

the AddSegment() function being called to add a segment to the existing curve, as shown in

the diagram below:

This shows the complete sequence of message handler calls for a curve comprised of nine
segments. The sequence is indicated by the numbered arrows. The code for the
OnMouseMove() function in CSketcherView needs to be updated as follows:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // Define a Device Context object for the view

 CClientDC aDC(this);

 if((nFlags & MK_LBUTTON) & (this == GetCapture()))

 {

 m_SecondPoint = point; // Save the current
cursor position

 if(m_pTempElement)

 {

 if(CURVE == GetDocument()->GetElementType()) // Is it a
curve?

 { // We are drawing a curve

 // so add a segment to the existing curve

 (static_cast<CCurve*>(m_pTempElement))-
>AddSegment(m_SecondPoint);

 m_pTempElement->Draw(&aDC); // Now
draw it

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return; // We are
done

 }

 aDC.SetROP2(R2_NOTXORPEN); // Set
drawing mode

 // Redraw the old element so it disappears from the view

 m_pTempElement->Draw(&aDC);

 delete m_pTempElement; // Delete the old
element

 m_pTempElement = 0; // Reset the pointer
to 0

 }

 // Create a temporary element of the type and color that

 // is recorded in the document object, and draw it

 m_pTempElement = CreateElement(); // Create a new
element

 m_pTempElement->Draw(&aDC); // Draw the element

 }

 }

We have to treat an element of type CURVE as a special case once it has been created. This is

because, on all subsequent calls of the OnMouseMove() handler, we want to call the
AddSegment() function for the existing element, rather than construct a new one in place of

the old. We don't need to set the drawing mode, since we don't need to erase the previous
curve each time. We take care of this by moving the call to SetROP2() to a position after the

code processing a curve.

Adding the curve segment and drawing the extended curve is taken care of within the if we

have added. Note that we must cast the m_pTempElement pointer to type CCurve* in order to
use it to call AddSegment() for the old element, because AddSegment() is not a virtual

function. If we don't add the cast, we'll get an error, because the compiler will try to resolve the
call statically to a member of the CElement class.

Implementing the CCurve Class

Let's first write the code for the constructor. This should be added to Elements.cpp in place of

the temporary constructor that we used in the last chapter. It needs to store the two points
passed as arguments in the CList data member, m_PointList:

 CCurve::CCurve(const CPoint& FirstPoint, const CPoint& SecondPoint,
const

 COLORREF& Color)

 {

 m_PointList.AddTail(FirstPoint); // Add the 1st point to the
list

 m_PointList.AddTail(SecondPoint); // Add the 2nd point to the

list

 m_Color = Color; // Store the color

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_ en = 1; // Set pen width

 // Construct the enclosing rectangle assuming MM_TEXT mode

 m_EnclosingRect = CRect(FirstPoint, SecondPoint);

 m_EnclosingRect.NormalizeRect();

 }

The points are added to the list, m_PointList, by calling the AddTail() member of the

CList template class. This function adds a copy of the point passed as an argument to the end

of the list. The enclosing rectangle is defined in exactly the same way as we defined it for a line.

The next function we should add to Elements.cpp is AddSegment(). This function will be

called when additional curve points are recorded, after the first version of a curve object has
been created. This member function is very simple:

 void CCurve::AddSegment(const CPoint& Point)

 {

 m_PointList.AddTail(Point); // Add the point to the
end

 // Modify the enclosing rectangle for the new point

 m_EnclosingRect = CRect(min(Point.x, m_EnclosingRect.left),

 min(Point.y, m_EnclosingRect.top),

 max(Point.x, m_EnclosingRect.right),

 max(Point.y, m_EnclosingRect.bottom)
);

 }

The min() and max() functions we use here are standard macros that are the equivalent of

using the conditional operator for choosing the minimum or maximum of two values. The new
point is added to the tail of the list in the same way as in the constructor. It's important that each
new point is added to the list in a way that is consistent with the constructor, because we'll draw
the segments using the points in sequence, from the beginning to the end of the list. Each line
segment will be drawn from the end point of the previous line to the new point. If the points are
not in the right sequence, the line segments won't be drawn correctly. After adding the new
point, the enclosing rectangle for the curve is redefined, taking account of the new point.

The last member function we need to define for the interface to the CCurve class is Draw():

 void CCurve::Draw(CDC* pDC) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1 pixel

 CPen aPen;

 if (!aPen.CreatePen(PS SOLID, m_Pen, m_Color))

 {

 // Pen creation failed. Close the program

 AfxMessageBox("Pen creation failed drawing a curve", MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Now draw the curve

 // Get the position in the list of the first element

 POSITION aPosition = m_PointList.GetHeadPosition();

 // As long as it's good, move to that point

 if(aPosition)

 pDC->MoveTo(m_PointList.GetNext(aPosition));

 // Draw a segment for each of the following points

 while(aPosition)

 pDC->LineTo(m_PointList.GetNext(aPosition));

 pDC->SelectObject(pOldPen); // Restore the old
pen

 }

To draw the CCurve object, we need to iterate through all the points in the list from the
beginning, drawing each segment as we go. We get a POSITION value for the first element by

using the function GetHeadPosition() and then use MoveTo() to set the first point as the
current position in the device context. We then draw line segments in the while loop as long as

aPosition is not NULL. The GetNext() function, which appears as the argument to the
LineTo() function, returns the current point and simultaneously increments aPosition to

refer to the next point in the list.

Exercising the CCurve Class

With the changes we've just discussed added to the Sketcher program, we have implemented

all the code necessary for the element shapes in our menu. In order to make use of the
collection class templates, though, we must include the file afxtempl.h. The best place to put

the #include statement would be in StdAfx.h, so that it will be added to the precompiled
header file. Go to StdAfx.h in file mode and add the line shown below:

 // stdafx.h : include file for standard system include files,

 // or project specific include files that are used frequently, but

 // are changed infrequently

 //

 #if
!defined(AFX_STDAFX_H__5FEC0C68_1A40_11D2_99B1_00104B4C84A4__INCLUDED_
)

 #define
AFX_STDAFX_H__5FEC0C68_1A40_11D2_99B1_00104B4C84A4__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 #define VC_EXTRALEAN // Exclude rarely-used stuff from

Windows headers

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include <afxwin.h> // MFC core and standard components

 #include <afxext.h> // MFC extensions

 #include <afxtemp1.h> // Collection templates

 #include <afxdisp.h> // MFC Automation classes

 #include <afxdtct1.h> // MFC support for Internet Explorer 4
Common Controls

 #ifndef _AFX_NO_AFXCMN_SUPPORT

 #include <afxcmn.h> // MFC support for Windows Common
Controls

 #endif // _AFX_NO_AFXCMN_SUPPORT

 //{{AFX_INSERT_LOCATION}}

 // Microsoft Visual C++ will insert additional declarations
immediately before the

 previous line.

 #endif //

!defined(AFX_STDAFX_H__5FEC0C68_1A40_11D2_99B1_00104B4C84A4__INCLUDED_
)

With the file included here, it will also be available to the implementation of CSketcherDoc

when we get to use a collection class template there.

You can now build the Sketcher program once more, and execute it. You should be able to
create curves in all four colors. A typical application window is shown below:

Of course, like the other elements you can draw, the curves are not persistent. You'll notice that
they look more like dashes than continuous lines, with the lengths of the dashes dependent on
how quickly you move your mouse across the screen. Also, as soon as you cause a WM_PAINT

message to be sent to the application, by resizing the view for instance, they will disappear.
This is because the curves are drawn in relation to mouse movements, and stored temporarily.

Once we can store the curves in the document object for the application, they will be a bit more
permanent, and they'll look smoother — so let's take a look at that next.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Creating the Document

The document in the Sketcher application needs to be able to store an arbitrary collection of
lines, rectangles, circles and curves in any sequence, and an excellent vehicle for handling this
is a list. Because all the element classes that we've defined include the capability for the objects
to draw themselves, drawing the document is easily accomplished by stepping through the list.

Using a CTypedPtrList Template

We can declare a CTypedPtrList that will store pointers to instances of our shape classes as
CElement pointers. We just need to add the list declaration as a data member in the

CSketcherDoc class definition:

 class CSketcherDoc : public CDocument

 {

 protected: // create from serialization only

 CSketcherDoc();

 DECLARE_DYNCREATE(CSketcherDoc)

 // Attributes

 public:

 protected:

 COLORREF m_Color; //
Current drawing color

 WORD m_Element; //
Current element type

 CTypedPtrList<CObList, CElement*> m_ElementList; //
Element list

 // Operations

 public:

 WORD GetElementType() const // Get
the element type

 { return m_Element; }

 COLORREF GetElementColor() const // Get
the element color

 { return m_Color; }

 // Rest of the class as before...

 };

The CSketcherDoc class now refers to the CElement class. We need to make sure that all

#include directives for CSketcherDoc in the .cpp files are preceded by a #include for
Elements.h — so you'll need to add a #include for Elements.h to SketcherDoc.cpp,

and make sure the #include statements in Sketcher.cpp and SketcherView.cpp are in

the right order.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We'll also need a member function to add an element to the list. AddElement() would be a

good, if unoriginal, name for this. We create shape objects on the heap, so we can just pass a
pointer to the function and, since all it does is add an element, we might just as well put the
implementation in the class definition:

 class CSketcherDoc : public CDocument

 {

 // Rest of the class as before...

 // Operations

 public:

 WORD GetElementType() const // Get the element type

 { return m_Element; }

 COLORREF GetElementColor() const // Get the element color

 { return m_Color; }

 void AddElement(CElement* pElement) // Add an element to the
list

 { m_ElementList.AddTail(pElement); }

 // Rest of the class as before...

 };

Adding an element to the list requires just a single statement, which calls the AddTail()

member function. That's all we need to create the document, but we need to consider what
happens when a document is closed. We need to make sure that the list of pointers, and all the
elements they point to, are destroyed properly. To do this, we need to add code to the
destructor for CSketcherDoc objects.

Implementing the Document Destructor

In the destructor, we'll need to go through the list deleting the element pointed to by each entry.
Once that is complete, we must delete the pointers from the list. The code to do this will be:

 CSketcherDoc::~CSketcherDoc()

 {

 // Get the position at the head of the list

 POSITION aPosition = m_ElementList.GetHeadPosition();

 // Now delete the element pointed to by each list entry

 while(aPosition)

 delete m_ElementList.GetNext(aPosition);

 m_ElementList.RemoveAll(); // Finally delete all pointers

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We use the GetHeadPosition() function to obtain the position value for the entry at the head
of the list, and initialize the variable aPosition with this value. We then use aPosition in the

while loop to walk through the list and delete the object pointed to by each entry. The function

GetNext() returns the current pointer entry and updates the aPosition variable to refer to
the next entry. When the last entry is retrieved, aPosition will be set to NULL by the

GetNext() function and the loop will end. Once we have deleted all the element objects

pointed to by the pointers in the list, we just need to delete the pointers themselves. We can
delete the whole lot in one go by calling the RemoveAll() function for our list object.

In fact, the call to RemoveAll() isn't strictly necessary in this case, because RemoveAll() is

automatically called by the list's destructor. However, it doesn't do any harm here, and it would
be useful if we needed to reuse the list.

You should add this code to the definition of the destructor in SketcherDoc.cpp. You can go

directly to the code for the destructor through the ClassView.

Drawing the Document

As the document owns the list of elements, and the list is protected, we can't use it directly
from the view. The OnDraw() member of the view does need to be able to call the Draw()

member for each of the elements in the list, though, so we need to consider how best to do this.
Let's look at our options:
§ We could make the list public, but this would rather defeat the object of maintaining

protected members of the document class, as it would expose all the function members of
the list object.

§ We could add a member function to return a pointer to the list, but this would effectively
make the list public and also incur overhead in accessing it.

§ We could add a public function to the document which would call the Draw()
member for each element. We could then call this member from the OnDraw() function in

the view. This wouldn't be a bad solution, as it would produce what we want and would still
maintain the privacy of the list. The only thing against it is that the function would need
access to a device context, and this is really the domain of the view.

§ We could make the OnDraw() function a friend of CSketcherDoc, but this would

expose all of the members of the class, which isn't desirable, particularly with a complex
class.

§ We could add a function to provide a POSITION value for the first list element, and a

second member to iterate through the list elements. This wouldn't expose the list, but it
would make the element pointers available.

The last option looks to be the best choice, so let's go with that. We can extend the document

class definition to:

 class CSketcherDoc : public CDocument

 {

 // Rest of the class as before...

 // Operations

 public:

 WORD GetElementType() const // Get the element
type

 { return m_Element; }

 COLORREF GetElementColor() const // Get the element
color

 { return m_Color; }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 void AddElement(CElement* pElement) // Add an element to
the list

 { m_ElementList.AddTail(pElement); }

 POSITION GetListHeadPosition() const // Return list head
POSITION value

 { return m_ElementList.GetHeadPosition(); }

 CElement* GetNext(POSITION& aPos) const // Return current
element pointer

 { return m_ElementList.GetNext(aPos); }

 // Rest of the class as before...

 };

By using the two functions that we have added to the document class, the OnDraw() function
for the view will be able to iterate through the list, calling the Draw() function for each element.

Notice that the parameter type of the CSketcherDoc::GetNext() function is a reference;
this is because CTypedPointerList::GetNext() also takes a reference. The reason that

CTypedPointerList::GetNext() takes a reference is that it modifies the value of the
position passed to it so that it points to the POSITION value of the next entry in the list. This

enables you to write simple loops to move through the list calling GetNext() each time.

The implementation of OnDraw() to do this will be:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 POSITION aPos = pDoc->GetListHeadPosition();

 while(aPos) // Loop while aPos is
not null

 {

 pDoc->GetNext(aPos)->Draw(pDC); // Draw the current

element

 }

 }

If we implement it like this, the function will always draw all the elements contained in the
document. The statement in the while loop first gets a pointer to an element from the
document with the expression pDoc->GetNext(). The pointer that is returned is used to call

the Draw() function for that element. The statement works this way without parentheses
because of the left to right associativity of the -> operator. The while loop plows through the

list from beginning to end. We can do it better, though, and make our program more efficient.

Frequently, when a WM_PAINT message is sent to your program, only part of the window needs

to be redrawn. When Windows sends the WM_PAINT message to a window, it also defines an
area in the client area of the window, and only this area needs to be redrawn. The CDC class

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

provides a member function, RectVisible(), which checks whether a rectangle that you

supply to it as an argument overlaps the area that Windows requires to be redrawn. We can use
this to make sure we only draw the elements that are in the area Windows wants redrawn, thus
improving the performance of the application:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 POSITION aPos = pDoc->GetListHeadPosition();

 CElement* pElement = 0; // Store for an element
pointer

 while(aPos) // Loop while aPos is not
null

 {

 pElement = pDoc->GetNext(aPos); // Get the current element
pointer

 // If the element is visible...

 if(pDC->RectVisible(pElement->GetBoundRect()))

 pElement->Draw(pDC); // ...draw it

 }

 }

We get the position for the first entry in the list and store it in aPos. This controls the loop, which

retrieves each pointer entry in turn. The bounding rectangle for each element is obtained using
the GetBoundRect() member of the object and is passed to the RectVisible() function in
the if statement. As a result, only elements that overlap the area that Windows has identified

as invalid will be drawn. Drawing on the screen is a relatively expensive operation in terms of
time, so checking for just the elements that need to be redrawn, rather than drawing everything
each time, will improve performance considerably.

Adding an Element to the Document

The last thing we need to do to have a working document in our program is to add the code to
the OnLButtonUp() handler in the CSketcherView class to add the temporary element to

the document:

 void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)

 {

 if(this == GetCapture())

 ReleaseCapture(); // Stop capturing mouse messages

 // If there is an element, add it to the document

 if(m_pTempElement)

 {

 GetDocument()->AddElement(m_pTempElement);

 InvalidateRect(0); // Redraw the current window

 m_pTempElement = 0; // Reset the element pointer

 }

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Of course, we need to check that there really is an element before we add it to the document.
The user might just have clicked the left mouse button without moving the mouse. After adding
the element to the list in the document, we call InvalidateRect() to get the client area for

the current view redrawn. The argument of 0 invalidates the whole of the client area in the view.
Because of the way the rubber-banding process works, some elements may not be displayed
properly if we don't do this. If you draw a horizontal line, for instance, and then rubber-band a
rectangle with the same color so that its top (or bottom) edge overlaps the line, the overlapped
bit of line will disappear. This is because the edge being drawn is XORed with the line
underneath, so you get the background color back. We must also reset the pointer
m_pTempElement to avoid confusion when another element is created.

Exercising the Document

After saving all the modified files, you can build the latest version of Sketcher and execute it.
You'll now be able to produce art such as 'the happy programmer' shown below.

The program is now working more realistically. It stores a pointer to each element in the
document object, so they're all automatically redrawn as necessary. The program also does a
proper clean-up of the document data when it's deleted.

There are still some limitations in the program that we need to address. For instance:

§ You can open another view window by using the Window | New Window menu option in
the program. This capability is built in to an MDI application and opens a new view to an
existing document (i.e. not a new document). However, if you draw an element in one
window, the element does not immediately appear in the other window — and will not
appear in the second window until there is some other reason for redrawing the area that
the element occupies.

§ We can only draw in the client area we can see. It would be nice to be able to scroll the
view and draw over a bigger area.

§ Neither can we delete an element, so if you make a mistake, you either live with it or
start over with a new document.

These are all quite serious deficiencies which, together, make the program fairly useless as it

stands. We'll overcome all of them before the end of this chapter.

Improving the View

The first item that we can try to fix is the updating of all the document windows that are

displayed when an element is drawn. The problem arises because only the view in which an
element is drawn knows about the new element. Each view is acting independently of the others
and there is no communication between them. We need to arrange for any view that adds an
element to the document to let all the other views know about it, and they need to take the
appropriate action.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Updating Multiple Views

The document class conveniently contains a function UpdateAllViews() to help with this

particular problem. This function essentially provides a means for the document to send a
message to all its views. We just need to call it from the OnLButtonUp() function in the

CSketcherView class, whenever we have added a new element to the document:

 void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)

 {

 if(this == GetCapture())

 ReleaseCapture(); // Stop capturing mouse messages

 // If there is an element, add it to the document

 if(m_pTempElement)

 {

 GetDocument()->AddElement(m_pTempElement);

 GetDocument()->UpdateAllViews(0,0,m_pTempElement);

 // Tell all the views

 m_pTempElement = 0; // Reset the element pointer

 }

 }

When the m_pTempElement pointer is not NULL, the specific action of the function has been
extended to call the UpdateAllViews() member of our document class. This function

communicates with the views by causing the OnUpdate() member function in each view to be
called. The three arguments to UpdateAllViews() are described below:

The first argument to the UpdateAllViews() function call will often be the this pointer for

the current view. This suppresses the call of the OnUpdate() function for the current view. This

is a useful feature when the current view is already up-to-date. In our case, because we are
rubber-banding, we want to get the current view redrawn as well, so by specifying the first
argument as 0, we get the OnUpdate() function called for all the views, including the current
view. This removes the need to call InvalidateRect() as we did before.

We don't use the second argument to UpdateAllViews() here, but we do pass the pointer to

the new element through the third argument. Passing a pointer to the new element will allow the
views to figure out which bit of their client area needs to be redrawn.

In order to catch the information passed to the UpdateAllViews() function, we need to add
the OnUpdate() member function to our view class. You can do this by opening ClassWizard

and looking at the Message Maps tab for CSketcherView. If you select CSketcherView in the

Object IDs: box, you'll be able to find OnUpdate in the Messages: box. Click on the Add Function

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

button, then the Edit Code button. You only need to add the highlighted code below to the
function definition:

 void CSketcherView::OnUpdate(CView* pSender, LPARAM lHint,
CObject*,pHint)

 {

 // Invalidate the area corresponding to the element pointed to

 // if there is one, otherwise invalidate the whole client area

 if(pHint)

 InvalidateRect(static_cast<CElement*>(pHint)-
>GetBoundRect());

 else

 InvalidateRect(0);

 }

The three arguments passed to the OnUpdate() function in the view class correspond to the
arguments that we passed in the UpdateAllViews() function call. Thus, pHint will contain

the address of the new element. However, we can't assume that this is always the case. The
OnUpdate() function is also called when a view is first created, but with a NULL pointer for the

third argument. Therefore, the function checks that the pHint pointer isn't NULL and only then

gets the bounding rectangle for the element passed as the third argument. It invalidates this
area in the client area of the view by passing the rectangle to the InvalidateRect() function.
This area will be redrawn by the OnDraw() function in this view when the next WM_PAINT

message is sent to the view. If the pHint pointer is NULL, the whole client area is invalidated.

You might be tempted to consider redrawing the new element in the OnUpdate() function. This

isn't a good idea. You should only do permanent drawing in response to the Windows
WM_PAINT message. This means that the OnDraw() function in the view should be the only

place that's initiating any drawing operations for document data. This ensures that the view is
drawn correctly whenever Windows deems it necessary.

If you build and execute Sketcher with the new modifications included, you should find that all
the views will be updated to reflect the contents of the document.

Scrolling Views

Adding scrolling to a view looks remarkably easy at first sight; the water is in fact deeper and
murkier than at first it appears, but let's jump in anyway. The first step is to change the base
class for CSketcherView from CView to CScrollView. This new base class is derived from
CView, and has the scrolling functionality built in, so you can alter the definition of the

CSketcherView class to:

 class CSketcherView : public CScrollView

 {

 // Class definition as before...

 };

You must also modify two lines of code at the beginning of the SketcherView.cpp file which
refer to the base class for CSketcherView. You need to replace CView with CScrollView as

the base class:

 IMPLEMENT_DYNCREATE(CSketcherView, CScrollView)

 BEGIN MESSAGE_MAP(CSketcherView, CScrollView)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

However, this is still not quite enough. The new version of our view class needs to know some
things about the area that we are drawing on, such as the size and how far the view is to be
scrolled when you use the scroller. This information has to be supplied before the view is first
drawn. We can put the code to do this in the OnInitialUpdate() function in our view class.

We supply the information that is required by calling a function inherited from the CScrollView
class: SetScrollSizes(). The arguments to this function are shown in the following diagram:

Scrolling a distance of one line occurs when you click on the up or down arrow on the scroll bar;
a page scroll occurs when you click on the scrollbar itself. We have an opportunity to change
the mapping mode here MM_LOENGLISH would be a good choice for our application, but let's
first get scrolling working in MM_TEXT, as there are still some difficulties to be uncovered.

To add the code to call SetScrollSizes(), you need to override the default version of the

OnInitialUpdate() function in the view. Use ClassWizard to add the function to
CSketcherView by double-clicking OnInitialUpdate in the Messages: box, and then clicking Edit

Code. The version generated will call the default version in CSorollView. We just add our code

to the function where indicated by the comment:

 void CSketcherView::OnInitialUpdate()

 {

 CScrollView::OnInitialUpdate();

 // Define document size

 CSize DocSize(20000,20000);

 // Set mapping mode and document size.

 SetScrollSizes(MM_TEXT,DocSize);

 }

This maintains the mapping mode as MM_TEXT and defines the total extent that we can draw on

as 20000 pixels in each direction.

This is enough to get the scrolling mechanism working. Build the program and execute it with

these additions and you'll be able to draw a few elements and then scroll the view. However,
although the window scrolls OK, if you try to draw more elements with the view scrolled, things
don't work as they should. The elements appear in a different position from where you draw
them and they're not displayed properly. What's going on?

Logical Coordinates and Client Coordinates

The problem is the coordinate systems that we're using — and that plural is deliberate. We've
actually been using two coordinate systems in all our examples up to now, although you may
not have noticed. As we saw in the previous chapter, when we call a function such as
LineTo(), it assumes that the arguments passed are logical coordinates. The function is a

member of the CDC class which defines a device context, and the device context has its own

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

system of logical coordinates. The mapping mode, which is a property of the device context,
determines what the unit of measurement is for the coordinates when you draw something.

The coordinate data that we receive along with the mouse messages, on the other hand, has
nothing to do with the device context or the CDC object — and outside of a device context,

logical coordinates don't apply. The points passed to our OnLButtonDown() and
OnMouseMove() handlers have coordinates that are always in device units, that is, pixels, and

are measured relative to the top left corner of the client area. These are referred to as client
coordinates. Similarly, when we call InvalidateRect(), the rectangle is assumed to be

defined in terms of client coordinates.

In MM_TEXT mode, the client coordinates and the logical coordinates in the device context are

both in units of pixels, and so they're the same as long as you don't scroll the window. In all our
previous examples there was no scrolling, so everything worked without any problems. With the
latest version, it all works fine until you scroll the view, whereupon the logical coordinates origin
(the 0,0 point) is moved by the scrolling mechanism, and so it's no longer in the same place as
the client coordinates origin. The units for logical coordinates and client coordinates are the
same here, but the origins for the two coordinate systems are different. This situation is
illustrated below:

The left-hand side shows the position in the client area where you draw, and the points that are

the mouse positions defining the line. These are recorded in client coordinates. The right-hand
side shows where the line will actually be drawn. Drawing is in logical coordinates, but we have
been using client coordinate values. In the case of the scrolled window, the line appears
displaced, due to the logical origin being relocated.

This means that we are actually using the wrong values to define elements in our program, and

when we invalidate areas of the client area to get them redrawn, the rectangles passed to the
function are also wrong. Hence the weird behavior of our program. With other mapping modes it
gets worse: not only are the units of measurement in the two coordinate systems different, but
also the y axes may be in opposite directions!

Dealing with Client Coordinates

Let's consider what we need to do to fix the problem. There are two things we may have to

address:
1. We need to convert the client coordinates that we obtained from mouse messages to

logical coordinates before we can use them to create our elements.
2. We need to convert a bounding rectangle that we created in logical coordinates back to

client coordinates if we want to use it in a call to InvalidateRect().

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This amounts to making sure we always use logical coordinates when using device context
functions, and always use client coordinates for other communications about the window. The
functions we will have to apply to do the conversions are associated with a device context, so
we need to obtain a device context whenever we want to convert from logical to client
coordinates, or vice versa. We can use the coordinate conversion functions of the CDC class

that are inherited by CClientDC to do the work.

The new version of the OnLButtonDown() handler incorporating this will be:

 // Handler for left mouse button down message

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 CClientDC aDC(this); // Create a device context

 OnPrepareDC(&aDC); // Get origin adjusted

 aDC.DPtoLP(&point); // convert point to Logical

 m_FirstPoint = point; // Record the cursor
position

 SetCapture(); // Capture subsequent mouse
messages

 }

We obtain a device context for the current view by creating a CClientDC object and passing

the pointer this to the constructor. The advantage of CClientDC is that it automatically

releases the device context when the object goes out of scope. It's important that device
contexts are not retained, as there are a limited number available from Windows and you could
run out of them. If you use CClientDC, you're always safe.

As we're using CScrollView, the OnPrepareDC() member function inherited from that class

must be called to set the origin for the logical coordinate system in the device context to
correspond with the scrolled position. Once the origin is set by this call, the function DPtoLP(),
which converts from Device Points to Logical Points, is used to convert the point value that's

passed to the handler to logical coordinates. We then store the converted value, ready for
creating an element in the OnMouseMove() handler.

The new code for the OnMouseMove() handler will be as follows:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // Define a Device Context object for the view

 CClientDC aDC(this);

 OnPrepareDC(&aDC); // Get origin adjusted

 if((nFlags & MK_LBUTTON) && (this == GetCapture()))

 {

 aDC.DPtoLP(&point); // convert point to Logical

 m_SecondPoint = point; // Save the current cursor
position

 // Rest of the function as before

 }

 }

The code for the conversion of the point value passed to the handler is essentially the same as

in the previous handler, and that's all we need here for the moment. The last function that we

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

must change is one that's easy to overlook: the OnUpdate() function in the view class. This

needs to be modified to:

 void CSketcherView::OnUpdate(CView* pSender, LPARAM lHint, CObject*
pHint)

 {

 // Invalidate the area corresponding to the element pointed to

 // if there is one, otherwise invalidate the whole client area

 if(pHint)

 {

 CClientDC aDC(this); // Create a device context

 OnPrepareDC(&aDC); // Get origin adjusted

 // Get the enclosing rectangle and convert to client

coordinates

 CRect aRect = static_cast<CElement*>(pHint)-
>GetBoundRect();

 aDC.LPtoDP(aRect);

 InvalidateRect(aRect); // Get the area redrawn

 }

 else

 InvalidateRect(0); // Invalidate the client area

 }

The modification here just creates a CClientDC object and uses the LPtoDP() function

member to convert the rectangle for the area that's to be redrawn to client coordinates.

You may have noticed that, in the code fragments above, the calls to LPtoDP() are slightly

different in one interesting respect. We used LPtoDP() to convert a point like this:

 aDC.DPtoLP(&point);

However, we used LPtoDP() to convert a rectangle like this:

 aDC.LPtoDP(aRect);

In the first of these we pass the parameter by reference, and in the second we pass by value.
This is explained by a difference in the CRect and CPoint classes. The definition of the CRect

class contains a couple of member functions, LPRECT() and LPCRECT(). These are casting
operators — they return a LPRECT or LPCRECT from a CRect object.

We've seen the LP notation before. For example, CRect and CPoint are derived from their
Win32 equivalents, RECT and POINT—so if you want to get an LPRECT (i.e. a RECT*), you can

take the address of a CRect, and if you want to get an LPPOINT (i.e. a POINT*), you can take
the address of a CPoint .

These casting operators can be invoked explicitly if you choose, or implicitly by the compiler. In
this case, the statement aDC.LPtoDP(aRect); causes the compiler to invoke the conversion
implicitly, by using LPRECT() to convert aRect from a CRect object into an LPRECT. This

happens whenever you pass a CRect object to a function that takes an LPRECT argument. (In
case you're wondering, the LPCRECT() operator casts from CRect to LPCRECT, which is a

pointer to a constant RECT structure.)

There aren't any similar casting operators in the CPoint class, so we always have to remember
to take the address of the object explicitly when passing a CPoint object as an LPPOINT.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you now compile and execute Sketcher with the modifications we have discussed and are
lucky enough not to have introduced any typos, it will work correctly, regardless of the scroller
position.

Using MM_LOENGLISH Mapping Mode

Let's now look into what we need to do to use the MM_LOENGLISH mapping mode. This will

provide drawings in logical units of 0.01 inches, and will also ensure that the drawing size is
consistent on displays at different resolutions. This will make the application much more
satisfactory from the users' point of view.

We can set the mapping mode in the call to SetScrollSizes(), which is made from the

OnInitialUpdate() function in the view class. We also need to specify the total drawing

area, so, if we define it as 3000 by 3000, this will provide a drawing area of 30 inches by 30
inches, which should be adequate for our needs. The default scroll distances for a line and a
page will be satisfactory, so we don't need to specify those. You can use ClassView to get to
the OnInitialUpdate() function and then change it to that shown below:

 void CSketcherView::OnInitialUpdate()

 {

 CScrollView::OnInitialUpdate();

 // Define document size as 30x30ins in MM_LOENGLISH

 CSize DocSize(3000,3000);

 // Set mapping mode and document size.

 SetScrollSizes(MM_LOENGLISH, DocSize);

 }

We just alter the arguments in the call to SetScrollSizes() for the mapping mode and

document the size that we want. That's all we need to enable the view to work in
MM_LOENGLISH, but we still need to fix our dealings with rectangles.

Note that you are not limited to setting the mapping mode once and for all. You can change the
mapping mode in a device context at any time and draw different parts of the image to be
displayed using different mapping modes. A function SetMapMode() is used to do this, but we

won't be going into this any further here. We'll stick to getting our application working just using
MM_LOENGLISH. Whenever we create a CClientDC object for the view and call

OnPrepareDC(), the device context that it owns will have the mapping mode that we've set for

the view.

The problem we have with rectangles is that our element classes all assume MM_TEXT, and in

MM_LOENGLISH these will be upside-down because of the reversal of the y axis. When we
apply LPtoDP() to a rectangle, it is assumed to be oriented properly with respect to the

MM_LOENGLISH axes. Because ours are not, the function will mirror our rectangles in the x axis.
This creates a problem when we call InvalidateRect() to invalidate an area of a view, as

the mirrored rectangle in device coordinates will not be recognized by Windows as being inside
the visible client area.

We have two options for dealing with this. We can modify the element classes so that the
enclosing rectangles are the right way up for MM_LOENGLISH, or we can re-normalize the

rectangle that we intend to pass to the InvalidateRect() function. The easiest course is the
latter, since we only need to modify one member of the view class, OnUpdate():

 void CSketcherView::OnUpdate(CView* pSender, LPARAM lHint, CObject*
pHint)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 // Invalidate the area corresponding to the element pointed to

 // if there is one, otherwise invalidate the whole client area

 if(pHint)

 {

 CClientDC aDC(this); // Create a device context

 OnPrepareDC(&aDC); // Get origin adjusted

 // Get the enclosing rectangle and convert to client
coordinates

 CRect aRect = static_cast<CElement*>(pHint)->GetBoundRect();

 aDC.LPtoDP(aRect);

 aRect.NormalizeRect();

 InvalidateRect(aRect); // Get the area redrawn

 }

 else

 InvalidateRect(0); // Invalidate the client area

 }

That should do it for the program as it stands. If you rebuild Sketcher, you should have scrolling

working, with support for multiple views. We'll need to remember to re-normalize any rectangle
that we convert to device coordinates for use with InvalidateRect() in the future. Any

reverse conversion will also be affected.

Deleting and Moving Shapes

Being able to delete shapes is a fundamental requirement in a drawing program. One question
relating to this that we'll need to find an answer for is how you're going to select the element you
want to delete. Of course, once we decide how to select an element, this will apply equally well
if you want to move an element, so we can treat moving and deleting elements as related
problems. But let's first consider how we're going to bring move and delete operations into the
program.

A neat way of providing move and delete functions would be to have a pop-up context menu
appear at the cursor position when you click the right mouse button. We could then put Move
and Delete as items on the menu. A pop-up that works like this is a very handy facility that you
can use in lots of different situations.

How should the pop-up be used? The standard way that context menus work is that the user
moves the mouse over a particular object and right-clicks on it. This selects the object and pops
up a menu containing a list of items which relate to actions that can be performed on that object.
This means that different objects can have different menus. You can see this in action in the
Visual C++ IDE itself. When you right-click on a class icon in ClassView, you get a menu that's
different to the one you get if you right-click on the icon for a member function. The menu that
appears is sensitive to the context of the cursor, hence the term 'context menu'. We have two
contexts to consider in Sketcher. You could right click with the cursor over an element, and you
could right click when there is no element under the cursor.

So, how will we implement this functionality in the Sketcher application? We can do it simply by

creating two menus: one for when we have an element under the cursor, and one for when we
don't. We can check whether there's an element under the cursor when the user presses the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

right mouse button. If there is an element under the cursor, we can highlight the element so that
the user knows exactly which element the context pop-up is referring to.

Let's first take a look at how we can create a pop-up at the cursor and, once that works, come
back to how we are going to implement the detail of the move and delete operations.

Implementing a Context Menu

The first step is to create a menu containing two pop-ups: one containing Move and Delete as
items, the other a combination of the Element and Color menu items. So, change to
ResourceView and expand the list of resources. Right-click on the Menu folder to bring up a
context menu — another demonstration of what we are trying to create in our application. Select
Insert Menu to create a new menu. This will have a default name IDR_MENU1 assigned, but you

can change this by right-clicking the new menu name and selecting Properties. You could
change it to something more suitable, such as IDR_CURSOR_MENU, in the ID: box.

To add menu items to the menu, double-click IDR_CURSOR_MENU. Now create two new items

on the menu bar. These can have any old caption, since they won't actually be seen by the
user. They will represent the two context menus that we will provide with Sketcher, so we have
named them element and no element, according to the situation in which the context menu will be
used. Now you can add the Move and Delete items to the element pop-up.

Make sure that you type sensible IDs rather than allowing the default, which is to use the junk
name on the menu bar. Here, we have entered ID_MOVE and ID_DELETE as the IDs for the

two items in the pop-up. The illustration shows the properties box for the Delete menu item.

The second menu contains the list of available elements and colors, separated by a Separator.
The IDs used should be the same as we applied to the IDR_SKETCHTYPE menu: for example,
ID_ELEMENT_LINE and ID_COLOR_BLACK. The handler for a menu is associated with the

menu ID. Menu items with the same ID will use the same handlers, so the same handler will be
used for the Line menu item regardless of whether it's invoked from the main menu pop-up or
from the context menu. To insert the separator, just double click on the empty menu item so the
dialog is displayed.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can then click on the Separator check box and close the dialog without entering anything

else.

Close the properties box and save the resource file. At the moment, all we have is the definition

of the menu in a resource file. It isn't connected to the code in the Sketcher program. We now
need to associate this menu and its ID, IDR_CURSOR_MENU, with our view class. This will

enable us to create command handlers for the menu items in the pop-up corresponding to the
IDs ID_MOVE and ID_DELETE.

Associating a Menu with a Class

To associate the new menu with the view class in Sketcher, you can use ClassWizard. With the
cursor on the menu bar of our new menu, click the right mouse button and select ClassWizard
from the pop-up. This will bring up a dialog which will ask whether you want to Create or Select a
class. We want to Select an existing class, which is the default option, so just click OK. This will
bring up a second dialog with a list of available classes to associate with the menu. Select
CSketcherView from the Class list: and click the Select button.

Once you've done that, you'll be back to ClassWizard's standard window. Now, select

ID_MOVE in the Object IDs: box, COMMAND in the Messages: box, and click the Add Function...
button to create a handler for the menu item. Do the same for ID_DELETE and then close the
ClassWizard dialog.

We don't have to do anything for the second context menu, as we already have handlers written
for them in the document class. These will take care of the messages from the pop-up items
automatically. We're now ready to write the code to allow the pop-up to be displayed.

Displaying a Pop-up at the Cursor

MFC provides a class called CMenu for managing and processing menus. Whenever you want

to do something with a new menu, you can create a local object of this class and use its
member functions to do what you want. We want to be able to display the pop-up menu when
the user presses (or more specifically, releases) the right mouse button, so clearly we need to
add the code to do this to the handler for WM_RBUTTONUP in CSketcherView. You can add

the handler for this message using ClassWizard in the same way that you added the handlers
for the other mouse messages. Just fire up ClassWizard again and select the WM_RBUTTONUP
message in the Messages: box for CSketcherview. Then create the handler and click the Edit

Code button. The code you need to add is:

 void CSketcherView::OnRButtonUp(UINT nFlags, CPoint point)

 {

 // Create the cursor menu

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CMenu aMenu;

 aMenu.LoadMenu(IDR_CURSOR_MENU); // Load the cursor menu

 ClientToScreen(&point); // Convert to screen
coordinates

 // Display the pop-up at the cursor position

 aMenu.GetSubMenu(0)-
>TrackPopupMenu(TPM_LEFTALIGN|TPM_RIGHTBUTTON,

 point.x, point.y,
this);

}

We don't need to keep the call to the handler in the base class CScrollView that ClassWizard

supplied. That was there to ensure that the message would be handled in the base class, even
if you didn't add code to deal with it. As we said before, the comment left by ClassWizard to
indicate where you should add your code is a clue to the fact that you can omit it in this case.

The handler first creates a local CMenu object, aMenu, then uses its member function

LoadMenu() to load the menu that we have just created. The cursor position when the user
presses the right button is passed to the handler in the argument point, which is in client

coordinates. When we display the menu, we must supply the coordinates of where the menu is
to appear in screen coordinates. Screen coordinates are in pixels and have the top left corner
of the screen as position 0,0. As in the case of client coordinates, the positive y axis is from top
to bottom. The inherited function ClientToScreen() in CSketcherView does the

conversion for us.

To display the menu, we call two functions. The GetSubMenu() member of the object aMenu

returns a pointer to a CMenu object. This object contains the pop-up from the menu owned by
aMenu, which is the IDR_CURSOR_MENU menu that we loaded previously. The argument to

GetSubMenu() is an integer index specifying the pop-up, with index 0 referring to the first pop-
up. The function TrackPopupMenu() for the CMenu object returned is then called. The

arguments to TrackPopupMenu() are shown below:

In our case, we have specified the pop-up as being associated with the right mouse button, and

displayed it with the left side of the pop-up at the x coordinate passed to the function. The
coordinates are the x and y coordinates of the cursor position specified by the point object

after conversion to screen coordinates. The this pointer is used to specify the current view as

the owning window.

We don't specify the fifth argument, so it defaults to 0. The rectangle is, therefore, the pop-up
itself, so, if you click outside the pop-up, it will close the menu without selecting an item or
causing a message to be sent to the view. Of course, if you click on a menu item, it will still
close, but will also cause a message to be sent corresponding to the item clicked.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Choosing a Context Menu

At the moment, the OnRButtonUp() handler will only display the first context pop-up, no

matter where the right button is clicked in the view. This isn't really what we want it to do. The
first context menu applies specifically to an element, whereas the second context menu applies
in general. We want to display the first menu if there is an element under the cursor, and to
display the second menu if there isn't.

We need two things to fix this up. First, we need a mechanism to find out which (if any) element
is at the current cursor position, and second, we need to save the address of this element
somewhere so we can use it in the OnRButtonUp() handler. Let's deal with saving the

address of the element first, as this is the easier bit.

When we find out which element is under the cursor, we'll store its address in a data member,
m_pSelected, of the view class. This will be available to the right mouse button handler, since

that's in the same class. You can add the declaration for this variable to the protected section
of the CSketcherView class:

 class CSketcherView: public CScrollView

 {

 // Rest of the class as before...

 protected:

 CPoint m_FirstPoint; // First point recorded for an
element

 CPoint m_SecondPoint; // Second point recorded for an
element

 CElement* m_pTempElement; // Pointer to temporary element

 CElement* m_pSelected; // Currently selected element

 // Rest of the class as before...

 };

Alternatively, you can right-click on the class name and select Add Member Variable... from the

pop-up to open the dialog for adding a data member. It is, however, usually a good idea to go
back and add some comments.

You also need to initialize this element in the class constructor, so add the code shown below:

 CSketcherView::CSketcherView()

 {

 // TODO: add construction code here

 m_FirstPoint = CPoint(0,0); // Set 1st recorded point to
0,0

 m_SecondPoint = CPoint(0,0); // Set 2nd recorded point to

0,0

 m_pTempElement = NULL; // Set temporary element
pointer to 0

 m_pSelected = NULL; //No element selected
initially

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We'll figure out how to decide when an element is under the cursor in a moment, but in the
meantime we can use the m_pSelected member of the view in the implementation of the

OnRButtonUp() handler:

 void CSketcherView::OnRButtonUp(UINT nFlags, CPoint point)

 {

 // Find the element under the cursor

 m_pSelected = SelectElement(point);

 // Create the cursor menu

 CMenu aMenu;

 aMenu.LoadMenu(IDR_CURSOR_MENU); // Load the cursor menu

 ClientToScreen(&point); // Convert to screen
coordinates

 // Display the pop-up at the cursor position

 if(m_pSelected)

 aMenu.GetSubMenu(0)-

>TrackPopupMenu(TPM_LEFTALIGN|TPM_RIGHTBUTTON,

 point.x, point.y,
this);

 else

 aMenu.GetSubMenu(1)-
>TrackPopupMenu(TPM_LEFTALIGN|TPM_RIGHTBUTTON,

 point.x, point.y,
this);

 }

To get things going, we first store the address of the element at the cursor position (if there is
one) by calling the function SelectElement(), which accepts a CPoint object as an

argument to indicate the current cursor position, and returns a pointer to the element at that
position, or NULL if there isn't one. We'll implement this function in a moment. We will also come

back a little later to consider whether this is the best place to find an element at the cursor,
bearing in mind that you really can't be sure whether an element will be selected or not when
you click the right mouse button.

We have used the data member m_pSelected to choose which context menu to display. If the

address stored is not NULL we'll display the first context menu with the Move and Delete menu
items. If m_pSelected is NULL, there's no element under the cursor, and so we display the

second context menu with the color and element type choices.

Identifying a Selected Element

To find which element is selected, we need to implement the function SelectElement() to

examine the elements in the document to see whether any of them are at the cursor position.
We can add a function member to the view class called SelectElement(), which will have a
CPoint object as a parameter containing the current cursor position in client coordinates.

A simple method we can use to decide whether a particular element is at the cursor position is
to see if the current cursor position is inside the bounding rectangle for the element. We can use
the functions that we added to the document class to iterate through the list of elements. As we
retrieve the pointer to each element in turn, we can check whether the current cursor position is
within the bounding rectangle for the element.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

First, add the declaration of SelectElement() to the protected section of CSketcherView

as follows:

 // Operations

 public:

 protected:

 CElement* CreateElement(); // Create a new
element on the heap

 CElement* SelectElement(CPoint aPoint); // Select an element

There's no reason for the function to be public since it's only used internally. You can add the

implementation of the function to SketcherView.cpp, like this:

 // Find the element at the cursor

 CElement* CSketcherView::SelectElement(CPoint aPoint)

 {

 // Convert parameter aPoint to logical coordinates

 CClientDC aDC(this);

 OnPrepareDC(&aDC);

 aDC.DPtoLP(&aPoint);

 CSketcherDoc* pDoc=GetDocument(); // Get a pointer to

the document

 CElement* pElement = 0; // Store an element
pointer

 CRect aRect(0,0,0,0); // Store a rectangle

 POSITION aPos = pDoc->GetListTailPosition(); // Get last
element position

 while(aPos) // Iterate through the
list

 {

 pElement = pDoc->GetPrev(aPos);

 aRect = pElement->GetBoundRect();

 // Select the first element that appears under the cursor

 if(aRect.PtInRect(aPoint))

 return pElement;

 }

 return 0; //No element found

 }

We first get a device context so that we can convert the parameter aPoint from client

coordinates to logical coordinates, since all our element data is stored in logical coordinates.
We then store a pointer to the document in pDoc, which we can use to call the document
functions to retrieve elements. We declare local variables, pElement and aRect, which we will

use to store an element pointer and the bounding rectangle for an element, respectively.

To find the element at the cursor we iterate through the list backwards, so we'll search from the
most recently added element to the oldest. We get the POSITION value corresponding to the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

last element in the list by calling the function GetListTailPosition(), and store this value
in aPos. We use this to run through the elements in the list by calling the function GetPrev()

for the document. For each position value, we check whether the bounding rectangle for the
corresponding element encloses the current cursor position that was passed in the parameter
aPoint.

We determine whether aPoint is within the rectangle bounding an element in the if statement
using the PtInRect() member of the CRect class. This function requires the rectangle to be

normalized, which, of course, all ours are because we created them to be so. The function
returns TRUE if the CPoint value passed as an argument is within the aRect object, and
FALSE otherwise. As soon as we find a rectangle that encloses aPoint, we exit the function,

returning the pointer to the corresponding element. If we manage to walk through the entire list
without finding an element, which occurs when the cursor is not over an element, we return 0.

For SelectElement() to compile, we must add the GetListTailPosition() and

GetPrev() functions to the document class. These are very similar to the
GetListHeadPosition() and GetNext() functions we already have in CSketcherDoc.

You can add the code for these to the class definition as follows:

 POSITION GetListTailPosition() const // Return list tail
POSITION value

 { return m_ElementList.GetTailPosition(); }

 CElement* GetPrev(POSITION& aPos) const // Return current

element pointer

 { return m_ElementList.GetPrev(aPos); }

The code is now in a state where we can test the context menus.

Exercising the Pop-ups

We have added all the code we need to make the pop-ups operate, so you can build and

execute Sketcher to try it out. If there are no elements under the cursor, the second context
pop-up appears, allowing you to change the element type and color. These options work
because they generate exactly the same messages as the main menu options and because we
have already written handlers for them.

If there is an element under the cursor, the first context menu will appear with Move and Delete
on it. It won't do anything at the moment, as we've yet to handle the messages it generates. Try
right button clicks outside of the view window. Messages for these are not passed to the
document view window in our application, so the pop-up is not displayed.

Note that the context menu to select elements and colors isn't quite right — the check marks are

not set properly. The document class handles the messages from the menu, but the
UPDATE_COMMAND_UI messages don't apply to the context menu — they only work with the

IDR_SKETCHTYPE menu. How do we fix that?

Checking the Context Menu Items

The CMenu class has a function designed to do exactly what we want. Its prototype is:

 UINT CheckMenuItem(UINT nIDCheckItem, UINT nCheck);

This function will check or uncheck any item in the context menu. The first parameter selects
which entry in the context pop-up is to be checked or unchecked; the second parameter is a
combination of two flags, one of which determines how the first parameter specifies which item
is to be checked, and the other specifies whether the menu item is to be checked or unchecked.
Because each flag is a single bit in a UINT value, you combine the two using the bitwise OR.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The flag to determine how the item is identified can be one of two possible values:

MF_BYPOSITION The first parameter is an index where 0 specifies the first item, 1 the
second, and so on.

MF_BYCOMMAND The first parameter is a menu ID.

We will use MF_BYCOMMAND, so we don't have to worry about the sequence in which the menu

items appear in the pop-up, or even in which sub-menu they appear.

The possible flag values to check or uncheck an item are MF_CHECKED and MF_UNCHECKED,

respectively.

The code for checking or unchecking a menu item will be essentially the same for all the menu
items in the second context pop-up. Let's see how we can set the check for the menu item Black
correctly. The first argument to the CheckMenuItem() function will be the menu ID,
ID_COLOR_BLACK. The second argument will be MF_BYCOMMAND combined with either

MF_CHECKED or MF_UNCHECKED, depending on the current color selected. We can obtain the
current color from the document using the GetElementColor() function, with the following

statement:

 COLORREF Color = GetDocument()->GetElementColor();

We can use the Color variable to select the appropriate flag using the conditional operator,

and then combine the result with the MF_BYCOMMAND flag to obtain the second argument to the
CheckMenuItem() function, so the statement to set the check for the item will be:

 aMenu.CheckMenuItem(ID_COLOR_BLACK,

(BLACK==Color?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

We don't need to specify the sub-menu here, since the menu item is uniquely defined in the
menu by its ID. You just need to change the ID and the color value in this statement to obtain
the statement to set the flags for each of the other color menu items.

Checking the element menu items is essentially the same. To check the Line menu item we can

write:

 WORD ElementType = GetDocument()->GetElementType();

 aMenu.CheckMenuItem(ID_ELEMENT_LINE,

(LINE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

The complete code for the OnRButtonUp() handler will therefore be:

 void CSketcherView::OnRButtonUp(UINT nFlags, CPoint point)

 {

 // Find the element under the cursor

 m_pSelected = SelectElement(point);

 // Create the cursor menu

 CMenu aMenu;

 aMenu.LoadMenu(IDR_CURSOR_MENU); // Load the cursor menu

 ClientToScreen(&point); // Convert to screen
coordinates

 // Display the pop-up at the cursor position

 if(m_pSelected)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 aMenu.GetSubMenu(0)-
>TrackPopupMenu(TPM_LEFTALIGN|TPM_RIGHTBUTTON,

 point.x, point.y,
this);

 else

 {

 // Check color menu items

 COLORREF Color = GetDocument()->GetElementColor();

 aMenu.CheckMenuItem(ID_COLOR_BLACK,

(BLACK==Color?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_COLOR_RED,

(RED==Color?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_COLOR_GREEN,

(GREEN==Color?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_COLOR_BLUE,

(BLUE==Color?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 // Check element menu items

 WORD ElementType = GetDocument()->GetElementType();

 aMenu.CheckMenuItem(ID_ELEMENT_LINE,

(LINE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_ELEMENT_RECTANGLE,

(RECTANGLE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_ELEMENT_CIRCLE,

(CIRCLE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_ELEMENT_CURVE,

(CURVE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 // Display the context pop-up

 aMenu.GetSubMenu(1)-
>TrackPopupMenu(TPM_LEFTALIGN|TPM_RIGHTBUTTON,

 point.x, point.y,
this);

 }

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Highlighting Elements

Ideally, the user will want to know which element is under the cursor before they right-click to
get the context menu. When you want to delete an element, you want to know which element
you are operating on. Equally, when you want to use the other context menu — to change color,
for example — you need to be sure that no element is under the cursor. To show precisely
which element is under the cursor, we need to highlight it in some way before a right button click
occurs.

We can do this in the Draw() member function for an element. All we need to do is pass an
argument to the Draw() function to indicate when the element should be highlighted. If we pass

the address of the currently-selected element that we save in the m_pSelected member of the
view to the Draw() function, then we can compare it to the this pointer to see if it is the

current element.

Highlights will all work in the same way, so we'll take the CLine member as an example. You

can add similar code to each of the classes for the other element types. Before we start
changing CLine, we must first amend the definition of the base class CElement:

 class CElement : public CObject

 {

 protected:

 COLORREF m_Color; // Color of an
element

 CRect m_EnclosingRect; // Rectangle
enclosing an element

 int m_Pen; // Pen width

 public:

 virtual ~CElement(){} // Virtual destructor

 // Virtual draw operation

 virtual void Draw(CDC* pDC, const CElement* pElement = 0) const
{}

 CRect GetBoundRect() const; // Get the bounding
rectangle for an

 //element

 protected:

 CElement(){} // Default
constructor

 };

The change is to add a second parameter to the virtual Draw() function. This is a pointer to an

element. The reason for initializing the second parameter to zero is to allow the use of the
function with just one argument; the second will be supplied as 0 by default.

You need to modify the declaration of the Draw() function in each of the classes derived from

CElement (that's CLine, CRectangle, CCircle and CCurve) in exactly the same way. For
example, you should change the CLine class definition to:

 class CLine : public CElement

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 public:

 // Function to display a line

 virtual void Draw(CDC* pDC, const CElement* pElement = 0) const;

 // Constructor for a line object

 CLine(const CPoint& Start, const CPoint& End, const COLORREF&
Color);

 protected:

 CPoint m_StartPoint; // Start point of line

 CPoint m_EndPoint; // End point of line

 CLine(){} // Default constructor - should
not be used

 };

The implementations for each of the Draw() functions for the classes derived from CElement
all need to be extended in the same way. The function for the CLine class will be:

 void Cline::Draw(CDC* pDC, const CElement* pElement) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width

 CPen aPen;

 COLORREF aColor = m_Color; // Initialize with
element color

 if (this == pElement) // This element
selected?

 aColor = SELECT_COLOR; // Set highlight color

 if (!aPen.CreatePen(PS_SOLID, m_Pen, aColor))

 {

 // Pen creation failed. Abort the program

 AfxMessageBox("Pen creation failed drawing a line", MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Now draw the line

 pDC->MoveTo(m_StartPoint);

 pDC->LineTo(m_EndPoint);

 pDC->SelectObject(pOldPen); // Restore the old pen

 }

This is a very simple change. We set the new local variable aColor to the current color stored
in m_Color, and the if statement will reset the value of aColor to SELECT_COLOR when

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

pElement is equal to this — which will be the case when the current element and the
selected element are the same. You also need to add the definition for SELECT_COLOR to the

OurConstants.h file:

 // Element type definitions

 // Each type value must be unique

 const WORD LINE = 101U;

 const WORD RECTANGLE = 102U;

 const WORD CIRCLE = 103U;

 const WORD CURVE = 104U;

 ///////////////////////////////////

 // Color values for drawing

 const COLORREF BLACK = RGB(0,0,0);

 const COLORREF RED = RGB(255,0,0);

 const COLORREF GREEN = RGB(0,255,0);

 const COLORREF BLUE = RGB(0,0,255);

 const COLORREF SELECT_COLOR = RGB(255,0,180);

 ///////////////////////////////////

We have nearly implemented the highlighting. The derived classes of the CElement class are

now able to draw themselves as selected — we just need a mechanism to cause an element to
be selected. So where should we do this? As we said, ideally, we want to have the element
under the cursor always highlighted by default. We need to find a handler in the view that can
take care of this all the time.

Is there a handler that always knows where the cursor is? OnMouseMove() would seem to fit

the bill, since it will be called automatically whenever the cursor moves. We can put code in
here to ensure that if there is an element under the cursor, it will always be highlighted. The
amendments to this function are indicated below:

 Void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // Rest of the function as before

 // Create a temporary element of the type and color that

 // is recorded in the document object, and draw it

 m_pTempElement = CreateElement(); // Create a new element

 m_pTempElement->Draw(&aDC); // Draw the element

 }

 else // We are not drawing an element...

 { // ...so do highlighting

 CRect aRect;

 CElement* pCurrentSelection = SelectElement(point);

 if(pCurrentSelection!=m_pSelected)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if(m_pSelected) // Old elemented selected?

 { // Yes, so draw it unselected

 aRect = m_pSelected->GetBoundRect(); // Get bounding
rectangle

 aDC.LPtoDP(aRect); // Conv to device
coords

 aRect.NormalizeRect(); // Normalize

 InvalidateRect(aRect, FALSE); // Invalidate area

 }

 m_pSelected = pCurrentSelection; // Save elem under
cursor

 if(m_pSelected) // Is there one?

 { // Yes, so get it

redrawn

 aRect = m_pSelected->GetBoundRect(); // Get bounding
rectangle

 aDC.LPtoDP(aRect); // Conv to device
coords

 aRect.NormalizeRect(); // Normalize

 InvalidateRect(aRect, FALSE); // Invalidate area

 }

 }

 }

 }

We only want to deal with highlighting elements when we aren't in the process of creating a new
element. All the highlighting code can thus be added in an else clause for the main if. It starts

by calling SelectElement() with the current cursor position as the argument, and stores the
result in a local variable, pCurrentSelection. The remaining code is then only executed if

the element under the cursor is different from the one that was there last time this function was
called; there's no point changing the highlighting if the cursor has only moved within an element.

The remaining code does two things. If there is an element already highlighted, it invalidates the

area it occupies to get it redrawn. Having done that, it stores the element now under the cursor
in m_pSelected and (provided that there is an element) invalidates the bounding rectangle to

get it redrawn. Notice how the calls to InvalidateRect() in this function are given a second
parameter, FALSE. This parameter is optional and specifies that when we update the rectangle,

we don't want to update the background as well. This is safe here because nothing is ever
moved in this function, and will mean less flicker and faster update times — try omitting FALSE

and you'll see what I mean.

Since we now do the highlighting here, you can delete the following lines from the
OnRButtonUp() handler:

 // Find the element under the cursor

 m_pSelected = SelectElement(point);

Drawing Highlighted Elements

We still need to arrange that the highlighted element is actually drawn highlighted. Somewhere,
the m_pSelected pointer must be passed to the draw function for each element. The only
place to do this is in the OnDraw() function in the view:

 void CSketcherView::OnDraw(CDC* pDC)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 POSITION aPos = pDoc->GetListHeadPosition();

 CElement* pElement = 0; // Store for an
element pointer

 while(aPos) // Loop while aPos is
not null

 {

 pElement = pDoc->GetNext(aPos); // Get the current
element pointer

 // If the element is visible...

 if(pDC->RectVisible(pElement->GetBoundRect()))

 pElement->Draw(pDC, m_pSelected); // ...draw it

 }

 }

We only need to change one line. The Draw() function for an element has the second

argument added to communicate the address of the element to be highlighted.

Exercising the Highlights

This is all that's required for the highlighting to work all the time. You can build and execute

Sketcher to try it out. Any time there is an element under the cursor, the element is drawn in
magenta. This makes it obvious which element the context menu is going to act on before you
right click the mouse, and means that you know in advance which context menu will be
displayed.

Servicing the Menu Messages

The next step is to provide handlers for the Move and Delete menu items by adding some code

to the skeleton functions we created back when we designed the pop-up menus. We'll add the
code for Delete first, as that's the simpler of the two.

Deleting an Element

The code that you need to delete a selected element is very simple:

 void CSketcherView::OnDelete()

 {

 if(m_pSelected)

 {

 CSketcherDoc* pDoc = GetDocument(); // Get the document
pointer

 pDoc->DeleteElement(m_pSelected); // Delete the element

 pDoc->UpdateAllViews(0); // Redraw all the
views

 m_pSelected = 0; // Reset selected
element ptr

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

The code to delete an element is only executed if m_pSelected contains a valid address,

indicating that there is an element to be deleted. We get a pointer to the document and call the
function DeleteElement() for the document object; we'll add this member to the

CSketcherDoc class in a moment. When the element has been removed from the document,
we call UpdateAllViews() to get all the views redrawn without the deleted element. Finally,

we set m_pSelected to zero to indicate that there isn't an element selected.

You should add a declaration for DeleteElement() as a public member of the
CSketcherDoc class:

 void DeleteElement(CElement* pElement); // Delete an element

It accepts a pointer to the element to be deleted as an argument and returns nothing. You can
implement it as:

 void CSketcherDoc::DeleteElement(CElement* pElement)

 {

 if(pElement)

 {

 // If the element pointer is valid,

 // find the pointer in the list and delete it

 POSITION aPosition = m_ElementList.Find(pElement);

 m_ElementList.RemoveAt(aPosition);

 delete pElement; // Delete the element
from the heap

 }

 }

You shouldn't have any trouble with this. After making sure that we have a non-null pointer, we
find the POSITION value for the pointer in the list using the Find() member of the list object.
We use this with the RemoveAt() member to delete the pointer from the list, then we delete the

element pointed to by the parameter pElement from the heap.

That's all we need to delete elements. You should now have a Sketcher program in which you

can draw in multiple scrolled views, and delete any of the elements in your sketch from any of
the views.

Moving an Element

Moving the selected element is a bit more involved. As the element must move along with the
mouse cursor, we must add code to the OnMouseMove() method to account for this behavior.

As this function is also used to draw elements, we need a mechanism for indicating when we're
in 'move' mode. The easiest way to do this is to have a flag in the view class, which we can call
m_MoveMode. If we make it of type BOOL, we can use the value TRUE for when move mode is

on, and FALSE for when it's off.

We'll also need to keep track of the cursor during the move, so we need another data member
in the view for this. We can call it m_CursorPos, and it will be of type CPoint. Another thing

we should provide for is the possibility of aborting a move. To do this we must remember the
first position of the cursor, so we can move the element back. This will be another member of
type CPoint, and we can call it m_FirstPos. Add the three new members to the protected

section of the view class:

 class CSketcherView: public CScrollView

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Rest of the class as before...

 // Attributes

 public:

 CSketcherDoc* GetDocument();

 protected:

 CPoint m_FirstPoint; // First point recorded for an
element

 CPoint m_SecondPoint; // Second point recorded for an
element

 CElement* m_pTempElement; // Pointer to temporary element

 CElement* m_pSelected; // Currently selected element

 BOOL m_MoveMode; // Move element flag

 CPoint m_CursorPos; // Cursor position

 CPoint m_FirstPos; // Original position in a move

 // Rest of the class as before...

 };

We need to initialize these in the constructor for CSketcherView by adding the following

statements:

 CSketcherView::CSketcherView()

 {

 // TODO: add construction code here

 m_FirstPoint = CPoint(0,0); // Set 1st recorded point to
0,0

 m_SecondPoint = CPoint(0,0); // Set 2nd recorded point to
0,0

 m_pTempElement = NULL; // Set temporary element
pointer to 0

 m_pSelected = NULL; // No element selected
initially

 m_MoveMode = FALSE; // Set move mode off

 m_CursorPos = CPoint(0,0); // Initialize as zero

 m_FirstPos = CPoint(0,0); // Initialize as zero

 }

The element move process starts when the Move menu item from the context menu is selected.

Now we can add the code to the message handler for the Move menu item to set up the
conditions necessary for the operation:

 void CSketcherView::OnMove()

 {

 CClientDC aDC(this);

 OnPrepareDC(&aDC); // Set up the device context

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 GetCursorPos(&m_CursorPos); // Get cursor position in screen
coords

 ScreenToClient(&m_CursorPos); // Convert to client coords

 aDC.DPtoLP(&m_CursorPos); // Convert to logical

 m_FirstPos = m_CursorPos; // Remember first position

 m_MoveMode = TRUE; // Start move mode

 }

We are doing four things in this handler:
1. Getting the coordinate of the current position of the cursor, since the move operation

starts from this reference point.
2. Converting the cursor position to logical coordinates, because our elements are defined

in logical coordinates.
3. Remembering the initial cursor position in case the user wants to abort the move later.
4. Setting the move mode on, as a flag for the OnMouseMove() handler to recognize.

The GetCursorPos() function is a Windows API function that will store the current cursor

position in m_CursorPos. Note that we pass a pointer to this function. The cursor position will

be in screen coordinates — that is, coordinates relative to the top left hand corner of the screen.
All operations with the cursor are in screen coordinates. We need the position in logical
coordinates, so we must do the conversion in two steps. The ScreentoClient() function

(which is an inherited member of the view class) converts from screen to client coordinates, and
then we apply the DPtoLP() function member of the aDC object to the result in order to convert

to logical coordinates.

After saving the initial cursor position in m_FirstPos, we set m_MoveMode to TRUE so that the
OnMouseMove() handler can deal with moving the element.

Now we have set the move mode flag, it's time to update the mouse move message handler to
deal with moving an element.

Modifying the WM_MOUSEMOVE Handler

Moving an element only occurs when move mode is on and the cursor is being moved.
Therefore, all we need to do in OnMouseMove() is to add code to handle moving an element in
a block which only gets executed when m_MoveMode is TRUE. The new code to do this is as

follows:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // Define a Device Context object for the view

 CClientDC aDC(this);

 OnPrepareDC(&aDC); // Get origin adjusted

 // If we are in move mode, move the selected element and return

 if (m_MoveMode)

 {

 aDC.DPtoLP(&point); // Convert to logical coordinatess

 MoveElement(aDC, point); // Move the element

 return;

 }

 // Rest of the mouse move handler as before...

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

This addition doesn't need much explaining really, does it? The if verifies that we're in move

mode and then calls a function MoveElement(), which does what is necessary for the move.

All we need to do now is to implement this function.

Add the declaration for MoveElement() as a protected member of the CSketcherView

class by adding the following at the appropriate point in the class definition:

 void MoveElement(CClientDC& aDC, const CPoint& point); // Move an
element

As always, you can also right-click on the class name in ClassView to do this if you want to. The
function will need access to the object owning a device context for the view, aDC, and the

current cursor position, point, so both of these are reference parameters. The implementation
of the function in the .cpp file will be:

 void CSketcherView::MoveElement(CClientDc& aDC, const CPoint&
point)

 {

 CSize Distance = point - m_CursorPos; // Get move distance

 m_CursorPos = point; // Set current point as 1st for next
time

 // If there is an element selected, move it

 if(m_pSelected)

 {

 aDC.SetROP2(R2_NOTXORPEN);

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the element to
erase it

 m_pSelected->Move(Distance); // Now move the element

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the moved
element

 }

 }

The distance to move the element currently selected is stored locally as a CSize object,
Distance. The CSize class is specifically designed to represent a relative coordinate position

and has two public data members, cx and cy, which correspond to the x and y increments.
These are calculated as the difference between the current cursor position, stored in point,

and the previous cursor position saved in m_CursorPos. This uses the - operator, which is
overloaded in the CPoint class. The version we are using here returns a CSize object, but

there is also a version which returns a CPoint object. You can usually operate on CSize and
CPoint objects combined. We save the current cursor position in m_CursorPos for use the

next time this function is called, which will occur if there is a further mouse move message
during the current move operation.

Moving an element in the view is going to be implemented using the R2_NOTXORPEN drawing

mode, because it's easy and fast. This is exactly the same as what we've been using during the
creation of an element. We redraw the selected element in its current color (the selected color)
to reset it to the background color, and then call the function Move() to relocate the element by

the distance specified by Distance. We'll add this function to the element classes in a
moment. When the element has moved itself, we simply use the Draw() function once more to

display it highlighted at the new position. The color of the element will revert to normal when the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

move operation ends, as the OnLButtonUp() handler will redraw all the windows normally by
calling UpdateAllViews().

Getting the Elements to Move Themselves

We need to add the Move() function as a virtual member of the base class, CElement. Modify

the class definition to:

 class CElement : public CObject

 {

 protected:

 COLORREF m_Color; // Color of an
element

 CRect m_EnclosingRect; // Rectangle
enclosing an element

 int m_Pen; // Pen width

 public:

 virtual ~CElement(){} // Virtual destructor

 // Virtual draw operation

 virtual void Draw(CDC* pDC, const CElement* pElement = 0) const
{}

 virtual void Move(const CSize& Size) {} // Move an element

 CRect GetBoundRect() const; // Get the bounding rectangle
for an element

 protected:

 CElement(){} // Default constructor

 };

As we discussed before in relation to the Draw() member, although an implementation of the

Move() function here has no meaning, we can't make it a pure virtual function because of the

requirements of serialization.

We need to add a declaration for the Move() function as a public member of each of the four
classes derived from CElement. It will be the same in each:

 virtual void Move(const CSizs& aSize); // Function to move an
element

Now we can look at how we implement the Move() function in the CLine class:

 void CLine::Move(const CSize& aSize)

 {

 m_StartPoint += aSize; // Move the start point

 m_EndPoint += aSize; // and the end point

 m_EnclosingRect += aSize; // Move the enclosing
rectangle

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This is very easy because of the overloaded += operators in the CPoint and CRect classes.
They all work with CSize objects, so we just add the relative distance specified by aSize to the

start and end points for the line, and to the enclosing rectangle.

Moving a CRectangle object is even easier:

 void CRectangle::Move(const CSize& aSize)

 {

 m_EnclosingRect+= aSize; // Move the rectangle

 }

Because the rectangle is defined by the m_EnclosingRect member, that's all we need to

move it.

The Move() member of CCircle is identical:

 void CCircle::Move(const CSize& aSize}

 {

 m_EnclosingRect+= aSize; // Move rectangle defining

the circle

 }

Moving a CCurve object is a little more complicated because it's defined by an arbitrary number

of points. You can implement the function as follows:

 void CCurve::Move(const CSize& aSize)

 {

 m_EnclosingRect += aSize; // Move the rectangle

 // Get the 1st element position

 POSITION aPosition = m_PointList.GetHeadPosition();

 while(aPosition)

 m_PointList.GetNext(aPosition) += aSize; // Move each pt in
the list }

 }

There's still not a lot to it. We first move the enclosing rectangle stored in m_EnclosingRect,

using the overloaded += operator for CRect objects. We then iterate through all the points
defining the curve, moving each one in turn with the overloaded += operator in CPoint.

Dropping the Element

All that remains now is to drop the element into position once the user has finished moving it, or

to abort the whole move. To drop the element in its new position, the user will click the left
mouse button, so we'll manage this operation in the OnLButtonDown() handler. To abort the

operation, the user will click the right mouse button — so we can add a handler for
OnRButtonDown() to deal with this.

Let's deal with the left mouse button first. We need to provide for this as a special action when
move mode is on. The changes are highlighted below:

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 CClientDC aDC(this); // Create a device context

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 OnPrepareDC(&aDC); // Get origin adjusted

 aDC.DPtoLP(&point); // convert point to Logical

 if(m_MoveMode)

 {

 // In moving mode, so drop the element

 m_MoveMode = FALSE; // Kill move mode

 m_pSelected = 0; // De-select the element

 GetDocument()->UpdateAllViews(0); // Redraw all the views

 }

 else

 {

 m_FirstPoint = point; // Record the cursor
position

 SetCapture(); // Capture subsequent
mouse messages

 }

 }

The code is pretty simple. We must first make sure that we're in move mode. If this is the case,
we just set the move mode flag back to FALSE and then de-select the element. This is all that's

required because we've been tracking the element with the mouse, so it's already in the right
place. Finally, to tidy up all the views of the document, we call the document's
UpdateAllViews() function, causing all the views to be redrawn.

Add a handler for the WM_RBUTTONDOWN message to CSketcherView using ClassWizard. The

implementation for this must do two things: move the element back to where it was, and then
turn off move mode. The code to do this is:

 void CSketcherView::OnRButtonDown(UINT nFlags, CPoint point)

 {

 if(m_MoveMode)

 {

 // In moving mode, so drop element back in original position

 CClientDC aDC(this);

 OnPrepareDC(&aDC); // Get origin adjusted

 MoveElement(aDC, m_FirstPos); // Move element to orig
position

 m_MoveMode = FALSE; // Kill move mode

 m_pSelected => 0; // De-select element

 GetDocument()->UpdateAllViews(0); // Redraw all the views

 return; //We are done

 }

 }

We first create a CClientDC object for use in the MoveElement() function. We then call the
MoveElement() function to move the currently selected element the distance from the current

cursor position to the original cursor position that we saved in m_FirstPos. Once the element

has been repositioned, we just turn off move mode, deselect the element, and get all the views
redrawn.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Exercising the Application

Everything is now complete for the context pop-ups to work. If you build Sketcher, you can
select the element type and color from one context menu, or if your cursor is over an element,
then you can move or delete that element from the other context menu.

Dealing with Masked Elements

There's still a limitation that you might want to get over. If the element you want to move or

delete is enclosed by the rectangle of another element that is drawn after the element you want,
you won't be able to highlight it because the SelectElement() function will always find the

outer element first. The outer element completely masks the element it encloses. This is a result
of the sequence of elements in the list. You could fix this by adding a Send to Back item to the
context menu that would move an element to the beginning of the list.

Add a separator and a menu item to the element drop down in the IDR_CURSOR_MENU resource

as shown.

Once you've assigned a suitable ID, close the properties dialog and double click on the new

menu item while holding down the Ctrl key. You can then add a handler for the item to the view
class. We need to handle it in the view because that's where we record the selected element.
We can implement the handler as:

 void CSketcherView::OnSendtoback()

 {

 GetDocument()->SendToBack(m_pSelected); // Move element in
list

 }

We're going to get the document to do the work by passing the currently selected element
pointer to a function SendToBack() that we will implement in the CSketcherDoc class. Add it
to the public section of the class definition with a void return type, and a parameter of type

CElement*. We can implement this function as:

 void CSketcherDoc::SendToBack(CElement* pElement)

 {

 if(pElement)

 {

 // If the element pointer is valid,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // find the pointer in the list and remove the element

 POSITION aPosition = m_ElementList.Find(pElement);

 m_ElementList.RemoveAt(aPosition);

 m_ElementList.AddHead(pElement); // Put it back to the
beginning

 }

 }

Once we have the POSITION value corresponding to the element, we remove the element from

the list by calling RemoveAt(). Of course, this does not delete the element from memory, it just

removes the pointer to it from the list. Then we add the element pointer back at the beginning of
the list using the AddHead() function.

With the element moved to the head of the list, it cannot mask any of the others because we

search from the end. We will always find one of the other elements first if the applicable
bounding rectangle encloses the current cursor position. The Send to Back menu option will
always be able to resolve any element masking problem in the view.

Summary

In this chapter, you've seen how to apply MFC collection classes to the problems of managing
objects and managing pointers to objects. Collections are a real asset in programming for
Windows because the application data that you store in a document often originates in an
unstructured and unpredictable way, and you need to be able traverse the data whenever a
view needs to be updated.

You have also seen how to create document data and manage it in a pointer list in the

document, and — in the context of the Sketcher application — how the views and the document
communicate with each other.

We've improved the view capability in Sketcher in several ways. We've added scrolling to the
views using the MFC class CScrollView, and we've introduced a pop-up at the cursor for

moving and deleting elements. We've also implemented an element highlighting feature to
provide the user with feedback when moving or deleting elements.

We have covered quite a lot of ground in this chapter, and some of the important points you
need to keep in mind are:
§ If you need a collection class to manage your objects or pointers, the best choice is one

of the template-based collection classes, since they provide type-safe operation in most
cases.

§ When you draw in a device context, coordinates are in logical units that depend on the
mapping mode set. Points in a window that are supplied along with Windows mouse
messages are in client coordinates. The two coordinate systems are usually not the same.

§ Coordinates that define the position of the cursor are in screen coordinates which are
measured in pixels relative to the top left corner of the screen.

§ Functions to convert between client coordinates and logical coordinates are available in
the CDC class.

§ Windows requests that a view is redrawn by sending a WM_PAINT message to your
application. This causes the OnDraw() member of the affected view to be called.

§ You should always do any permanent drawing of a document in the OnDraw() member

of the view class. This will ensure that the window is drawn properly when required by
Windows.

§ You can make your OnDraw() implementation more efficient by calling the

RectVisible() member of the CDC class to check whether an entity needs to be drawn.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ To get multiple views updated when you change the document contents, you can call
the UpdateAllViews() member of the document object. This causes the OnUpdate()

member of each view to be called.
§ You can pass information to the UpdateAllViews() function to indicate which area in

the view needs to be redrawn. This will make redrawing the views faster.

§ You can display a context menu at the cursor position in response to a right mouse
click. This menu is created as a normal pop-up.

Exercises

1. Implement the CCurve class so that points are added to the head of the list instead

of the tail.

2. Implement the CCurve class in the Sketcher program using a typed pointer list,

instead of a list of objects, to represent a curve.

3. Look up the CArray template collection class in Help, and use it to store points in the
CCurve class in the Sketcher program.

Answers

1. When the points are added to the head of the list, they will be in reverse order. We must
modify the constructor and the AddSegment() function to add points to the head of the list,

and change the Draw() function to process the points from the tail to the head.

The code for the constructor is:

 CCurve::CCurve(const CPoint& FirstPoint, const CPoint&
SecondPoint,

 const
COLORREF& Color)

 {

 m_PointList.AddHead(FirstPoint); // Add the 1st point to
the list

 m_PointList.AddHead(SecondPoint); // Add the 2nd point to
the list

 m_Color = Color; // Store the color

 m_Pen = 1; // Set the pen width

 m_PenStyle = aPenStyle; // Set the pen style

 // Construct the enclosing rectangle assuming MM_TEXT mode

 m_EnclosingRect = CRect(FirstPoint, SecondPoint);

 m_EnclosingRect.NormalizeRect();

 }

Here we just use the AddHead() function instead of AddTail(). The code for the

AddSegment() member is:

 void CCurve::AddSegment(const CPoint& Point)

 {

 m_PointList.AddHead(Point); // Add the point to the list

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Modify the enclosing rectangle for the new point

 m_EnclosingRect = CRect(min(Point.x, m_EnclosingRect.left),

 min(Point.y, m_EnclosingRect.top),

 max(Point.x, m_EnclosingRect.right),

 max(Point.y, m_EnclosingRect.bottom)

);

Again, the change is just to use AddHead() in place of AddTail(). The code for the

Draw() member function is:

 void CCurve::Draw(CDC* pDC, const CElement* pElement) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1 pixel

 CPen aPen;

 COLORREF aColor = m_Color; // Initialize with
element color

 if(this == pElement) // This element
selected?

 aColor = SELECT_COLOR; // Set highlight color

 if(!aPen.CreatePen(PS_SOLID, m_Pen, aColor))

 {

 // Pen creation failed. Close the program

 AfxMessageBox("Pen creation failed drawing a curve",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Now draw the curve

 // Get the position in the list of the first element

 POSITION aPosition = m_PointList.GetTailPosition();

 // As long as it's good, move to that point

 if(aPosition)

 pDC->MoveTo(m_PointList.GetPrev(aPosition));

 // Draw a segment for each of the following points

 while(aPosition)

 pDC->LineTo(m_PointList.GetPrev(aPosition));

 pDC->SelectObject(pOldPen); // Restore the old
pen

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The GetTailPosition() function returns the POSITION value for the last member of the

list, which will correspond to the first point. We then step backwards through the list by using
the GetPrev() function.

2. The declaration in the CCurve class for the list should be changed to:

 // Type safe point pointer list

 CTypedPtrList<CPtrList, CPoint*> m_PointPtrList;

The constructor will now be implemented as:

 CCurve::CCurve(const CPoint& FirstPoint, const CPoint&
SecondPoint, const

 COLORREF& Color)

 {

 // Add the points to the list

 m_PointPtrList.AddTail(new CPoint(FirstPoint));

 m_PointPtrList.AddTail(new CPoint(SecondPoint));

 m_Color = Color; // Store the color

 m_Pen = 1; // Set the pen width

 // Construct the enclosing rectangle assuming MM_TEXT mode

 m_EnclosingRect = CRect(FirstPoint, SecondPoint);

 m_EnclosingRect.NormalizeRect();

 }

This now creates new points on the heap that are initialized with the points passed as
arguments to the constructor, and passes their addresses to the AddTail() function. Since
we're using a pointer list, we need to implement the destructor for the CCurve class:

 CCurve::~CCurve()

 {

 POSITION aPos = m_PointPtrList.GetHeadPosition();

 while(aPos)

 delete m_PointPtrList.GetNext(aPos); // Delete CPoint
objects

 m_PointPtrList.RemoveAll(); // Delete the
pointers

 }

Don't forget to add a declaration for the destructor in Elements.h! The AddSegment()
member of the CCurve class also needs to be modified:

 void CCurve::AddSegment(const CPoint& Point)

 {

 //Add the point to the end

 m_PointPtrList.AddTail(new CPoint(Point));

 // Modify the enclosing rectangle for the new point

 m_EnclosingRect = CRect(min(Point.x, m_EnclosingRect.left),

 min(Point.y, m_EnclosingRect.top),

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 max(Point.x, m_EnclosingRect.right),

 max(Point.y, m_EnclosingRect.bottom)
);

 };

The Move() member function is also affected:

 void CCurve::Move(const CSize& aSize)

 {

 m_EnclosingRect += aSize; // Move the
rectangle

 // Get the 1st element position

 POSITION aPosition = m_PointPtrList.GetHeadPosition();

 while(aPosition)

 *m_PointPtrList.GetNext(aPosition)+= aSize; // Move each
point

 }

Lastly, the Draw() function in the CCurve class must be changed:

 void CCurve::Draw(CDC* pDC, const CElement* pElement) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1 pixel

 CPen aPen;

 COLORREF aColor = m_Color; // Initialize with
element color

 if(this == pElement) // This element
selected?

 aColor = SELECT_COLOR; // Set highlight color

 if(!aPen.CreatePen(PS_SOLID, m_Pen, aColor))

 {

 // Pen creation failed. Close the program

 AfxMessageBox("Pen creation failed drawing a curve",
MB_OK);

 AfxAbort();

)

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Now draw the curve

 // Get the position in the list of the first element

 POSITION aPosition = m_PointPtrList.GetHeadPosition();

 //As long as it's good, move to that point

 if(aPosition)

 pDC->MoveTo(*m_PointPtrList.GetNext(aPosition));

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Draw a segment for each of the following points

 while(aPosition)

 pDC->LineTo(*m_PointPtrList.GetNext(aPosition));

1 pDC->SelectObject(pOldPen); // Restore the old
pen

 }

3. The declaration of the CArray data member in the CCurve class is:

 CArray<CPoint, const CPoint&> m_PointArray; // Type safe
point array

The second argument to the template specifies that arguments will be passed to function
members of m_PointArray as references. Remember to delete the declaration of the
CList data member in the CCurve class.

We can also add a protected data member to keep track of how many points we have in a
curve:

 int m_nPoints; // Number of points

The constructor needs to be modified to:

 CCurve::CCurve(const CPoint& FirstPoint, const CPoint&
SecondPoint,

 const
COLORREF& Color)

 {

 m_PointArray.SetSize(10);

 m_PointArray[0] = FirstPoint; // Add the 1st point to the
array

 m_PointArray[1] = SecondPoint; // Add the 2nd point to the
array

 m_nPoints = 2; // Set the point count

 m_Color = Color; // Store the color

 m_Pen = 1; // Set the pen width

 // Construct the enclosing rectangle assuming MM_TEXT mode

 m_EnclosingRect = CRect(FirstPoint, SecondPoint);

 m_EnclosingRect.NormalizeRect();

 }

By setting the initial size of the array, we avoid unnecessary creation of array elements. The
default situation allocates array elements one at a time. You can specify a second argument
to the SetSize() function to define the number of additional elements to be created when it
becomes necessary. If you omit the second argument, the framework will decide how many
to create, based on the initial array size.

The CArray template provides overloading for [] so that you can use indexing to reference

members of the array. The AddSegment() member of CCurve can be implemented as:

 void CCurve::AddSegment(const CPoint& Point)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 //Add the point to the array and increment the count

 m_PointArray.SetAtGrow(m_nPoints++, Point);

 // Modify the enclosing rectangle for the new point

 m_EnclosingRect = CRect(min(Point.x, m_EnclosingRect.left),

 min(Point.y, m_EnclosingRect.top),

 max(Point.x, m_EnclosingRect.right),

 max(Point.y, m_EnclosingRect.bottom)
);

 }

The SetAtGrow() member of CArray sets the array element specified by the first argument
to the value passed as the second argument. If the first argument is beyond the extent of the
array, the array will be automatically increased in size.

As in the previous exercises, we'll also need to modify the Draw() and Move() members.
Here's the first of those two:

 void CCurve::Draw(CDC* pDC, const CElement* pElement) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1 pixel

 CPen aPen;

 COLORREF aColor = m_Color; // Initialize with
element color

 if(this == pElement) // This element
selected?

 aColor = SELECT_COLOR; // Set highlight color

 if(!aPen.CreatePen(PS_SOLID, m_Pen, aColor))

 {

 // Pen creation failed. Close the program

 AfxMessageBox("Pen creation failed drawing a curve",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the pen

 // Now draw the curve

 // Set the position counter to the first element of the array

 int aPosition = 0;

 // Move to the first point in the curve

 pDC->MoveTo(m_PointArray[aPosition++]);

 // Draw a segment for each of the following points

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 while(aPosition < m_nPoints)

 pDC->LineTo(m_PointArray[aPosition++]);

 pDC->SelectObject(pOldPen); // Restore the old
pen

 }

And these are the changes you need to make to Move():

 void CCurve::Move(const CSize& aSize)

 {

 m_EnclosingRect += aSize; // Move the rectangle

 // Set a counter to the 1st element

 int aPosition = 0;

 while(aPosition < m_npoints)

 m_PointArray[aPosition++] += aSize; // Move each point in
the array

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 17: Working with Dialogs and Controls

Overview

Dialogs and controls are basic tools for user communications in the Windows environment. In
this chapter, you'll learn how to implement dialogs and controls by applying them to extend the
Sketcher program. As you do so, you'll see:

§ What a dialog is and how you can create dialog resources
§ What controls are and how to add them to a dialog
§ What basic varieties of controls are available to you

§ How to create a dialog class to manage a dialog
§ How to program the creation of a dialog box and how to get information back from the

controls in it

§ What is meant by modal and modeless dialogs
§ How to implement and use direct data exchange and validation with controls

Understanding Dialogs

Of course, dialogs are not new to you. Most Windows programs of consequence use dialogs to
manage some of their data input. You click a menu item and up pops a dialog box with various
controls that you use for entering information. Just about everything that appears in a dialog
box is a control. A dialog box is actually a window and, in fact, each of the controls in a dialog is
also a specialized window. Come to think of it, most things you see on the screen under
Windows are windows!

Although controls have a particular association with dialog boxes, you can also create and use

them in other windows if you want to. A typical dialog box is illustrated below:

This is the File | Open... dialog in Visual C++. The annotations show the variety of controls that

are used, which combine to provide a very intuitive interface for selecting a file to be opened.
This makes the dialog very easy to use, even though there's a whole range of possibilities here.

There are two things needed to create and use a dialog box in an MFC program. The physical
appearance of the dialog box, which is defined in a resource file, and a dialog class object that's
used to manage the operation of the dialog and its controls. MFC provides a class called
CDialog for you to use, once you have defined your dialog resource.

Understanding Controls

There are many different controls available to you in Windows, and in most cases there's quite a
bit of flexibility in how they look and operate. Most of them fall into one of six categories. We'll
take a look at these and, for each category, see what a typical control looks like and what it
does.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Type Appearance What they do

Static
Control
s

These provide
static
information, such
as titles or
instructions, or
simply provide
decoration in a
dialog in the form
of an icon or a
filled rectangle.

Buttons allow
communication
to the application
with a single
mouse button
click. Radio
buttons, named
after the old car
radios which
used push
buttons to select
predefined
stations, are
usually grouped
so that if one is
checked, the
others are
unchecked.

Check boxes, on
the other hand,
can be
individually
checked, so
more than one
can be checked
at one time.

Button
Control
s

Push buttons,
such as OK and

Cancel buttons,
are typically used
to close a dialog.

Scroll
Bars

We have already
seen scroll bars
attached to the
edge of our view
window. Scroll
bar controls can
be free-standing
and are used
inside a dialog
box.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Type Appearance What they do

List
Boxes

This presents a
list from which
you can choose
predefined items.
The scroll bar
need not appear
in a short list.
The list can also
have multiple
columns, and
can be scrolled
horizontally. A
version of the list
box is available
that can display
icons as well as
text.

Edit
Control
s

In its simplest
form, you can
enter and edit a
line of text. An
edit control can
be extended to
allow
sophisticated
editing of multiple
lines of text.

Combo
Boxes

These combine
the capability of a
list box with the
option of
modifying a line
or entering a
complete line
yourself. This is
used to present a
list of files in the
Save As dialog.

A control may or may not be associated with a class object. Static controls don't do anything

directly, so an associated class object may seem superfluous, but there's an MFC class,
CStatic, that provides functions to enable you to alter the appearance of static controls.

Button controls can also be handled by the dialog object in many cases, but again MFC
provides the CButton class for use in situations where you need a class object to manage a

control. MFC also provides a full complement of classes to support the other controls. Since a
control is a window, they are all derived from CWnd.

Common Controls

The set of standard controls that are supported by MFC and the Resource Editor under 32-bit

versions of Windows are called common controls. Common controls include all of the controls
we have just seen, as well as other, more complex controls. Examples of these include the
animate control which has the capability to play an AVI (Audio Video Interleaved) file, and the
tree control which can display a hierarchy of items in a tree. The tree control is used in

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Explorer in Windows 95 to display your files and folders in a hierarchy, but it can be used to
display anything you like that can usefully be represented by a tree.

Another useful control in the set of common controls is the spin button. You can use this to
increment or decrement values in an associated edit control. To go into all of the possible
controls that you might use is beyond the scope of this book, so we'll just take a few illustrative
examples (including an example that uses a spin button) and implement them in the Sketcher
program.

Creating a Dialog Resource

Let's take a concrete example. We can add a dialog to Sketcher to provide a choice of pen
widths for drawing elements. This will ultimately involve modifying the current pen width in the
document, as well as in CElement, and adding or modifying functions to deal with pen widths.

We'll deal with all that, though, once we've got the dialog together.

First, change to the ResourceView, expand the resource tree for Sketcher and right-click on the

Dialog folder in the tree. You'll see the pop-up shown here:

If you click on Insert Dialog, a new dialog resource is displayed with a default ID assigned. You

can edit the ID by right-clicking on it and selecting Properties from the pop-up. Change the ID to
something more meaningful, such as IDD_PENWIDTH_DLG. To the right of the ResourceView,

you'll see a basic dialog box which already has an OK button and a Cancel button.

There is also a Controls palette from which you can select the controls to be added. (If the

palette doesn't appear immediately, you can call it up by right-clicking on the menu bar and
selecting Controls from the pop-up menu.) The palette includes 26 buttons, 24 of which select a
Windows 95 common control.

Adding Controls to a Dialog Box

To provide a mechanism for entering a pen width, we're going to change the basic dialog that's
initially displayed to the one shown below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The dialog has six radio buttons which provide the pen width options. These are enclosed within

a group box with the caption Pen Widths. Each radio button has an appropriate label to identify
it.

The first step is to change the text in the title bar of the dialog box:

Make sure that the select button is active in the Controls window, as shown on the left. You can

now right-click on the dialog box and select Properties from the pop-up list to display the dialog's
properties box. Modify the caption text to Set Pen Width, as shown above. Each of the controls in
a dialog will have their own set of properties that you can access and modify in the same way
as for the dialog box itself.

The next step is to add the group box:

We'll use the group box to enclose the radio buttons that will be used to select a pen width. The

group box serves to associate the radio buttons in a group from an operational standpoint, and
to provide a caption and a boundary for the group of buttons. Where you need more than one
set of radio buttons, a means of grouping them is essential if they are to work properly.

Select the button corresponding to the group box from the common controls palette (as shown

on the left) by clicking it with the left mouse button. Then move the cursor to the approximate

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

position in the dialog box where you want the center of the group box to be and press the left
mouse button once more. This will place a group box of default size on to the dialog. You can
then drag the borders of the group box to enlarge it to accommodate the six radio buttons that
we will add. To set the caption for the group box, you can just type the caption you want. In this
case, type Pen Widths. The properties box will open automatically.

The last step is to add the radio buttons:

Select the radio button control as shown. You can now position the mouse cursor at the point
where you want to position a radio button within the group box and click the left mouse button.
Do the same for all six radio buttons. For each button, just type in the caption to change it; this
will open the properties box as before—the width of the radio button will increase to
accommodate the text. You can also drag the border of the button to set its size. You can
change the ID for each radio button in the properties dialog to correspond better with its
purpose: IDC_PENWIDTH0 for the 1 pixel pen width, IDC_PENWIDTH1 for the 0.01 inch width
pen, IDC_PENWIDTH2 for the 0.02 inch pen, and so on.

You can position individual controls by dragging them around with the mouse when the
selection tool is active in the Controls window. You can also select a group of controls by
selecting successive controls with the Shift key pressed, or by dragging the cursor with the left
button pressed to create a rectangle enclosing them. To align a group of controls, select an item
from the Layout menu, or use the toolbar which appeared at the bottom of the window when you
opened this resource for editing. This toolbar is dockable, so you can drag it into the main
window if you like.

Testing the Dialog

The dialog resource is now complete. You can test it by selecting the Layout | Test menu option,
pressing Ctrl-T, or by using the leftmost dialog edit toolbar button that appears at the bottom of
the Visual C++ IDE window. This will display a dialog window with the basic operations of the
controls available, so you can try clicking on the radio buttons. When you have a group of radio
buttons, only one can be selected, so, as you select one, any other that was previously selected
is reset. Click on the OK or Cancel button in the dialog to end the test. Once you have saved the
dialog resource, we're ready to add some code to support it.

Programming for a Dialog

There are two aspects to programming for a dialog: getting it displayed and handling the effects
of its controls. Before we can display the dialog corresponding to the resource we've just
created, we first need to define a dialog class for it. ClassWizard will help us with this.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Adding a Dialog Class

With the cursor on the dialog box that we've just created, press the right mouse button and

select ClassWizard... from the pop-up at the cursor. ClassWizard will then take you through a
process to associate a class with the dialog. The first ClassWizard dialog will ask whether you
want to associate the new resource with a new class or an existing class. We'll define a new
dialog class derived from the MFC class CDialog, which you can call CPenDialog in the

following dialog. Just click OK to bring it up.

In the New Class dialog, type in CPenDialog in the Name: box. The Base Class: drop-down list

will automatically show CDialog, which is fine for us. You may have to select the Dialog ID:,
just make sure that it shows IDD_PENWIDTH_DLG. You can now click OK to create the new

class, and click OK again to exit ClassWizard.

The CDialog class is a window class (derived from the MFC class CWnd) that's specifically for

displaying and managing dialogs. The dialog resource that we've created will automatically be
associated with an object of our CPenDialog class, since the class definition includes a

definition of a member IDD which is initialized with the ID of the dialog resource:

 class CPenDialog : public CDialog

 {

 // Construction

 public:

 CPenDialog(CWnd* pParent = NULL); // standard constructor

 // Dialog Data

 //{{AFX_DATA(CPenDialog)

 enum { IDD = IDD_PENWIDTH_DLG };

 // NOTE: the ClassWizard will add data members here

 //}}AFX_DATA

 // Plus the rest of the class definition...

 };

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The highlighted statement defines IDD as a symbolic name for the dialog ID in the enumeration.

Incidentally, using an enumeration is the only way you can get an initialized data member into a
class definition. If you try putting an initial value for any regular data member declaration it won't
compile. You will get an error message about illegal use of pure syntax. It works here because
an enum defines a symbolic name for an int. Unfortunately, you can only define values of type

int in this way. It's not strictly necessary here, since the initialization for IDD could be done in

the constructor, but this is how ClassWizard chose to do it. This technique is more commonly
used to define a symbol for the dimension of an array which is a member of a class, in which
case using an enumeration is your only option.

Having our own dialog class derived from CDialog also enables us to customize the dialog

class by adding data members and functions to suit our particular needs. You'll often want to
handle messages from controls within the dialog class, although you can also choose to handle
them in a view or a document class if this is more convenient.

Modal and Modeless Dialogs

There two different types of dialog, which work in quite distinct ways. These are termed modal
and modeless dialogs. While a modal dialog remains in effect, all operations in the other
windows in the application are suspended until the dialog box is closed, usually by clicking on
an OK or Cancel button. With a modeless dialog, you can move the focus back and forth
between the dialog box and other windows in your application just by clicking on them with the
mouse, and you can continue to use the dialog box at any time until you close it. ClassWizard is
an example of a modal dialog, while the properties window is modeless.

A modeless dialog box is created by calling the Create() function defined in the CDialog
class, but as we'll only be using modal dialogs in our example, we call the DoModal() function

in the dialog object, as you'll see shortly.

Displaying a Dialog

Where you put the code to display a dialog in your program depends on the application. In the
Sketcher program, we need to add a menu item which, when it's selected, will result in the pen
width dialog being displayed. We'll put this in the IDR_SKETCHTYPE menu bar. As both the

width and the color are associated with a pen, we'll rename the Color menu as Pen. You do this
just by double-clicking the Color menu item to open its properties box and changing the Caption:
entry to &Pen.

When we add the menu item Width... to the Pen menu, we should separate it from the colors in
the menu. You can add a separator after the last color menu item by double-clicking the empty
menu item and selecting the Separator check box. If you close the properties box, you can then
enter the new Width... item as the next menu item after the separator. Double-click on the menu
to display the menu properties for modification, as shown below:

Enter ID_PENWIDTH as the ID for the menu item. You can also add a status bar prompt for it

and, since we'll also add a toolbar button, you can include text for the tool tip as well. The menu
will look like this:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

To add the toolbar button, open the toolbar resource by extending Toolbar in the ResourceView
and double-clicking on IDR_MAINFRAME. You can add a toolbar button to represent a pen

width. The one shown below tries to represent a pen drawing a line:

To associate the new button with the menu item that we just added, open the properties box for
the button (by pressing Enter while the button is active) and specify its ID as ID_PENWIDTH, the

same as that for the menu item.

Code to Display the Dialog

The code to display the dialog will go in the handler for the Pen | Width... menu item, so in which

class should we implement this handler? We could consider the view class as a candidate for
dealing with pen widths, but following our previous logic with colors and elements, it would be
sensible to have the current pen width selection in the document, so we'll put the handler in the
CSketcherDoc class. Open ClassWizard and create a function for the COMMAND message
handler corresponding to ID_PENWIDTH in the CSketcherDoc class. Now edit this handler

and enter the following code:

 // Handler for the pen width menu item

 void CSketcherDoc::OnPenwidth()

 {

 CPenDialog aDlg; // Create a local dialog
object

 // Display the dialog as modal

 aDlg.DoModal();

 }

There are just two statements in the handler at the moment. The first creates a dialog object

which is automatically associated with our dialog resource. We then display the dialog by calling
the function DoModal() in the aDlg object. When the dialog box is closed, the function returns

a value corresponding to the button used to close it. In our dialog, the value returned can be
IDOK if the OK button is selected to close the dialog, or IDCANCEL if the dialog is closed using

the Cancel button. We'll add code to use this return value a little later.

Because the handler declares a CPenDialog object, you must add a #include statement for

PenDialog.h to the beginning of SketcherDoc.cpp (after the #includes for stdafx.h
and Sketcher.h), otherwise you'll get compilation errors when you build the program. Once

you've done that, you can build Sketcher and try out the dialog. It should appear when you click
the toolbar button or the Pen | Width... menu item. Of course, if the dialog is to do anything, we
still have to add the code to support the operation of the controls.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Supporting the Dialog Controls

For our pen dialog, we'll store the selected pen width in a data member, m_PenWidth, of the

CPenDialog class. You can either add the data member by right-clicking the CPenDialog

class name, or you can add it directly to the class definition as follows:

 class CPenDialog : public CDialog

 {

 // Construction

 public:

 CPenDialog(CWnd* pParent = NULL); // standard constructor

 // Dialog Data

 //{{AFX_DATA(CPenDialog)

 enum { IDD = IDD_PENWIDTH_DLG };

 // NOTE: the ClassWizard will add data members here

 //}}AFX_DATA

 // Data stored in the dialog

 public;

 int m_PenWidth; // Record the pen width

 // Plus the rest of the class definition....

 };

FYI

If you do use the context menu for the class to add m_PenWidth, be sure to
add a comment to the class definition. This is a good habit to get into, even
when the member name looks self-explanatory.

We'll use the data member m_PenWidth to set the radio button corresponding to the current

pen width in the document as checked. We'll also arrange that the pen width selected in the
dialog is stored in this member, so that we can retrieve it when the dialog closes.

Initializing the Controls

We can initialize the radio buttons by overriding the function OnInitDialog() which is defined
in the base class, CDialog. This function is called in response to a WM_INITDIALOG message,

which is sent during the execution of DoModal(), just before the dialog box is displayed. You
can add the function to the class by selecting WM_INITDIALOG in the Messages: box in

ClassWizard. The implementation for our version of OnInitDialog() will be:

 BOOL CPenDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // Check the radio button corresponding to the pen width

 switch(m_PenWidth)

 {

 case 1:

 CheckDlgButton(IDC_PENWIDTH1,1);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 break;

 case 2:

 CheckDlgButton(IDC_PENWIDTH2,1);

 break;

 case 3:

 CheckDlgButton(IDC_PENWIDTH3,1);

 break;

 case 4:

 CheckDlgButton(IDC_PENWIDTH4,1);

 break;

 case 5:

 CheckDlgButton(IDC_PENWIDTH5,1);

 break;

 default:

 CheckDlgButton(IDC_PENWIDTH0,1);

 }

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should return
FALSE

 }

You should leave the call to the base class function there, as it does some essential setup for
the dialog. The switch statement will check one of the radio buttons, depending on the value

set in the m_PenWidth data member. This implies that we must arrange to set m_PenWidth
before we execute DoModal(), since the DoModal() function causes the WM_INITDIALOG

message to be sent and our version of OnInitDialog() to be called.

The CheckDlgButton() function is inherited indirectly from CWnd through CDialog. If the

second argument is 1, it checks the button corresponding to the ID specified in the first
argument. If the second argument is 0, the button is unchecked. This works with both check
boxes and radio buttons.

Handling Radio Button Messages

Once the dialog box is displayed, every time you click on one or other of the radio buttons, a

message will be generated and sent to the application. To deal with these messages, we can
add handlers to our CPenDialog class. Open ClassWizard and create a handler for the

BN_CLICKED message for each of the radio button IDs, IDC_PENWIDTH0 through
IDC_PENWIDTH5. The implementations of all of these are very similar, since each of them just

sets the pen width in the dialog object. As an example, the handler for IDC_PENWIDTH0 will be:

 void CPenDialog::OnPenwidth0()

 {

 m_PenWidth = 0;

 }

You need to add the code for all six handlers to the CPenDialog class implementation, setting
m_PenWidth to 1 in OnPenWidth1(), 2 in OnPenWidth2(), and so on.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Completing Dialog Operations

We need to modify the OnPenwidth() handler in CSketcherDoc to make the dialog effective.

Add the following code to the function:

 // Handler for the pen width menu item

 void CSketcherDoc::OnPenwidth()

 {

 CPenDialog aDlg; // Create a local dialog object

 // Set the pen width in the dialog to that stored in the
document

 aDlg.m_PenWidth = m_PenWidth;

 // Display the dialog as modal

 // When closed with OK, get the pen width

 if(aDlg.DoModal() == IDOK)

 m_PenWidth = aDlg.m_PenWidth;

 }

The m_PenWidth member of the aDlg object is passed a pen width stored in the m_PenWidth

member of the document; we've still to add this member to CSketcherDoc. The call of the
DoModal() function now occurs in the condition of the if statement, which will be TRUE if the

DoModal() function returns IDOK. In this case, we retrieve the pen width stored in the aDlg
object and store it in the m_PenWidth member of the document. If the dialog box is closed

using the Cancel +button, IDOK won't be returned by DoModal() and the value of
m_PenWidth in the document will not be changed.

Note that even though the dialog box is closed when DoModal() returns a value, the aDlg

object still exists, so we can call its member functions without any problem. The object aDlg is
destroyed automatically on return from OnPenwidth().

All that remains to do to support variable pen widths in our application is to update the affected
classes: CSketcherDoc, CElement, and the four shape classes derived from CElement.

Adding Pen Widths to the Document

We need to add the member m_PenWidth to the document, and the function GetPenWidth()

to allow external access to the value stored. You should add the shaded statements below to
the CSketcherDoc class definition:

 class CSketcherDoc : public CDocument

 {

 // the rest as before...

 // Attributes

 public:

 protected:

 COLORREF m_Color; // Current drawing color

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 WORD m_Element; // Current element type

 int m_PenWidth; // Current pen width

 CTypedPtrList<CObList, CElement*> m_ElementList; // Element
list

 // Operations

 public:

 // the rest as before...

 int GetPenWidth() const // Get the current
pen width

 { return m_PenWidth; }

 // the rest as before...

 };

Because it's trivial, we can define the GetPenWidth() function in the definition of the class and

gain the benefit of it being implicitly inline. We do need to add initialization for m_PenWidth
to the constructor for CSketcherDoc, so add the line,

 m_Penwidth = 0; // Set 1 Pixel Pen

to the constructor definition in SketcherDoc.cpp.

Adding Pen Widths to the Elements

We have a little more to do to the CElement class and the shape classes derived from it. We
already have a member m_Pen in CElement to store the width to be used when drawing an

element, and we must extend each of the constructors for elements to accept a pen width as an
argument, and set the member in the class accordingly. The GetBoundRect() function in
CElement must be altered to deal with a pen width of zero. Let's deal with CElement first. The

new version of GetBoundRect() in the CElement class will be:

 // Get the bounding rectangle for an element

 CRect CElement::GetBoundRect() const

 {

 CRect BoundingRect; // Object to store bounding
rectangle

 BoundingRect = m_EnclosingRect; // Store the enclosing
rectangle

 // Increase the rectangle by the pen width

 int Offset = m_Pen == 0? 1:m_Pen; // Width must be at least 1

 BoundingRect.InflateRect(Offset, Offset);

 return BoundingRect;

 }

We use the local variable Offset to ensure that we pass the InflateRect() function a value

of 1 if the pen width is zero (a pen width of 0 will always draw a line one pixel wide), and we
pass the actual pen width in all other cases.

Each of the constructors for CLine, CRectangle, CCircle and CCurve needs to be modified

to accept a pen width as an argument, and to store it in the m_Pen member of the class. The

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

declaration for the constructor in each class definition needs to be modified to add the extra
parameter. For example, in the CLine class, the constructor declaration will become,

 CLine(const CPoint& Start, const CPoint& End, const COLORREF&
Color,

 const int&

PenWidth);

and the constructor implementation should be modified to:

 CLine::CLine(const CPoint& Start, const CPoint& End, const
COLORREF& Color,

 const int&
PenWidth)

 {

 m_StartPoint = Start; // Set line start point

 m_EndPoint = End; // Set line end point

 m_Color = Color; // Set line color

 m_Pen = PenWidth; // Set pen width

 // Define the enclosing rectangle

 m_EnclosingRect = CRect(Start, End);

 m_EnclosingRect.NormalizeRect();

 }

You should modify each of the class definitions and constructors for the shapes in the same

way.

Creating Elements in the View

The last change we need to make is to the CreateElement() member of CSketcherView.

Since we've added the pen width as an argument to the constructors for each of the shapes, we
must update the calls to the constructors to reflect this. Change the definition of
CSketcherView::CreateElement() to:

 CElement* CSketcherView::CreateElement()

 {

 // Get a pointer to the document for this view

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc); // Verify the pointer is
good

 // Now select the element using the type stored in the document

 switch(pDoc->GetElementType())

 {

 case RECTANGLE:

 return new CRectangle(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenWidth());

 case CIRCLE:

 return new CCircle(m_FirstPoint, m_SecondPoint,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pDoc->GetElementColor(), pDoc-
>GetPenWidth());

 case CURVE:

 return new CCurve(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenWidth());

 case LINE: // Always default to a
line

 return new CLine(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenWidth());

 default:

 // Something's gone wrong

 AfxMessageBox("Bad Element code", MB_OK);

 AfxAbort();

 return NULL;

 }

 }

Each constructor call now passes the pen width as an argument. This is retrieved from the
document using the GetPenWidth() function that we added to the document class.

Exercising the Dialog

You can now build and run the latest version of Sketcher to see how our dialog works out.

Selecting the Pen | Width... menu option will display the dialog box so that you can select the
pen width. The following screen is typical of what you might see when the program is executing:

Note that the dialog box is a completely separate window. You can drag it around to position it
where you want. You can even drag it outside the Sketcher application window.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using a Spin Button Control

Now let's move on to looking at how the spin button can help us in the Sketcher application. The
spin button is particularly useful when you want to constrain an input within a given integer
range. It's normally used in association with another control, called a buddy control, which
displays the value that the spin button modifies. The associated control is usually an edit
control, but it doesn't have to be. We could apply the spin control to managing scaling in a
document view. A drawing scale would be a view-specific property, and we would want the
element drawing functions to take account of the current scale for a view.

Altering the existing code to deal with view scaling will require rather more work than setting up
the control, so let's first look at how we can create a spin button and make it work.

Adding the Scale Menu Item and Toolbar Button

Let's begin by providing a means of displaying the scale dialog. Go to ResourceView and open
the IDR_SKETCHTYPE menu. We'll add a Scale... menu item to the end of the View menu. First,

add a separator to the end of that menu by checking the Separator check box in the properties
window for a new item. Now fill in the properties window for the next item, as shown below. This
item will bring up the scale dialog, so we end the caption with an ellipsis (three periods) to
indicate that it displays a dialog. This is a standard Windows convention.

The menu should now look like this:

You can also add a toolbar button for this menu item. All you need to do is make sure that the
ID for the button is also set to ID_VIEW_SCALE.

Creating the Spin Button

We've got the menu item; we'd better have a dialog to go with it. In ResourceView, add a new

dialog by right-clicking the Dialog folder on the tree and selecting Insert Dialog. Change the ID to
IDD_SCALE_DLG.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Click on the spin control in the palette, as shown on the left, and then click on the position in the

dialog where you want it to be placed. Next, right-click on the spin control and select Properties
from the pop-up. Change its ID to something more meaningful than the default, such as
IDC_SPIN_SCALE. Now take at look at the Styles tab in the spin button properties. It's shown

below:

The Arrow keys check box will be automatically selected, enabling you to operate the spin button

by using arrow keys on the keyboard You should also check the box Set buddy integer, which
specifies the buddy control value as an integer, and Auto buddy, which provides for automatic
selection of the buddy control. The control selected as the buddy will automatically be the
previous control defined in the dialog. At the moment, this is the Cancel button, which is not
exactly ideal, but we'll see how to change this in a moment. The Alignment: list determines how
the spin button will be displayed in relation to its buddy. You should set this to Right so that the
spin button is attached to the right edge of its buddy.

Next, add an edit control at the side of the spin button by selecting the edit control from the
palette, as shown on the left, and clicking in the dialog where you want it positioned. Change
the ID for the edit control to IDC_SCALE.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

To make the contents of the edit control quite clear, you could add a static control just to the left

of the edit control in the palette and enter View Scale: as the caption. You can select all three
controls by clicking on them while holding down the Shift key. Clicking the right mouse button
will pop up a menu at the cursor with options you can use for aligning the controls tidily, or you
can use the Layout menu.

If you use Ctrl-T to test this now, it won't seem quite right: the spin button seems to have gotten

involved with the Cancel button. This will be resolved next, as we look at the controls' tab
sequence.

The Controls' Tab Sequence

Controls in a dialog have what is called a tab sequence. This is the sequence in which the
focus shifts from one control to the next, determined initially by the sequence in which controls
are added to the dialog. You can see the tab sequence for the current dialog box by selecting

Layout | Tab Order from the main menu, or by pressing Ctrl-D.

The tab order will be displayed as shown on the left. Because the Cancel button immediately

precedes the spin button in sequence, the Auto buddy property for the spin button will select it as
the buddy control. We want the edit control to precede the spin button in the tab sequence, so
you need to select the controls by clicking on them with the left mouse button in the following
sequence: OK button; Cancel button; edit control; spin button; and finally the static control. Now
the edit control will be selected as the buddy to the spin button.

Generating the Scale Dialog Class

After saving the resource file, you can click the right mouse button on the dialog and select
ClassWizard from the pop-up at the cursor. This will take you through a dialog to define the new
class associated with the dialog resource that you have created. You should name the class
CScaleDialog.

We need to define a variable in the dialog class that will store the value returned from the edit
control, so switch to the Member Variables tab in ClassWizard and select the IDC_SCALE ID

which identifies the edit control. Click on Add Variable... and enter the variable name as
m_Scale. We'll be storing an integer scale value, so select int as the variable type and click

OK.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The ClassWizard will display boxes at the bottom of the Member Variables tab where you can
enter maximum and minimum values for the variable m_Scale. For our application, a minimum

of 1 and a maximum of 8 would be good values. Note that this constraint only applies to the edit
box; the spin control is independent of it. The definition which ClassWizard will produce when
you click on the OK button is as follows:

 class CScaleDialog : public CDialog

 {

 // Construction

 public:

 CScaleDialog(CWnd* pParent = NULL); // standard constructor

 // Dialog Data

 //{{AFX_DATA(CScaleDialog)

 enum { IDD = IDD_SCALE_DLG };

 int m_Scale,

 //}}AFX_DATA

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CScaleDialog)

 protected:

 virtual void DoDataExchanga(CDataExchange* pDX); // DDX/DDV
support

 //}}AFX_VIRTUAL

 // Implementation

 protected:

 // Generated message map functions

 //{{AFX_MSG(CScaleDialog)

 // NOTE: the ClassWizard will add member functions here

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 };

The interesting bits are shaded. The class is associated with the dialog resource through the
enum statement initializing IDD with the ID of the resource. It contains the variable m_Scale,

which is specified as a public member of the class, so we can set and retrieve its value

directly.

Dialog Data Exchange and Validation

A virtual function called DoDataExchange() has been included in the class by ClassWizard. If

you take a look in the ScaleDialog.cpp file, you'll find the implementation looks like this:

 void CScaleDialog::DoDataExchange(CDataExchange* pDX)

 {

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CScaleDialog)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 DDX_Text(pDX, IDC_SCALE, m_Scale);

 DDV_MinMaxInt(pDX, m_Scale, 1, 8);

 //}}AFX_DATA_MAP

 }

This function is called by the framework to carry out the exchange of data between variables in
a dialog and the dialog's controls. This mechanism is called Dialog Data Exchange, usually
abbreviated to DDX. This is a very powerful mechanism that can provide automatic transfer of
information between a dialog and its controls in most circumstances, thus saving you the effort
of programming to get the data yourself, as we did with the radio buttons in the pen width
dialog.

In our scale dialog, DDX handles data transfers between the edit control and the variable
m_Scale in the CScaleDialog class. The variable pDX passed to the function controls the
direction in which data is transferred. After calling the base class DoDataExchange() function,

the DDX_Text() function is called, which actually moves data between the variable, m_Scale,

and the edit control.

The call to the DDV_MinMaxInt() function verifies that the value transferred is within the limits
specified. This mechanism is called Dialog Data Validation, or DDV. The DoDataExchange()

function will be called automatically, before the dialog is displayed, to pass the value stored in
m_Scale to the edit control. When the dialog is closed with the OK button, it will be

automatically called again to pass the value in the control back to the variable m_Scale in the

dialog object. All this is taken care of for you. You only need to ensure that the right value is
stored in m_Scale before the dialog box is displayed, and arrange to collect the result when the

dialog box closes.

Initializing the Dialog

To initialize the dialog, we'll use the OnInitDialog() function, just as we did for the pen width
dialog. This time we'll use it to set up the spin control. We'll initialize the m_Scale member a

little later, when we create the dialog in the handler for a Scale... menu item, because we'll want
to set it to the value of the scale stored in the view. For now, add the handler for the
WM_INITDIALOG message to the CScaleDialog class, using the same mechanism that you

used for the previous dialog, and add code to initialize the spin control as follows:

 BOOL CScaleDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // First get a pointer to the spin control

 CSpinButtonCtrl* pSpin;

 pSpin = {CSpinButtonCtrl*)GetDlgItem(IDC_SPIN_SCALE);

 // If you have not checked the auto buddy option in

 // the spin control's properties, set the buddy control here

 // Set the spin control range

 pSpin->SetRange(1, 8);

 return TRUE; // return TRUE unless you set the focus to a

control

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // EXCEPTION: OCX Property Pages should return
FALSE

 }

There are only three lines of code added, along with four lines of comments. The first line of
code creates a pointer to an object of the MFC class CSpinButtonCtrl. This class is

specifically for managing spin buttons, and is initialized in the next statement to point to the
control in our dialog. The function GetDlgItem() is inherited from CWnd via CDialog, and it

will retrieve the address of any control from the ID passed as an argument. Since, as we saw
earlier, a control is just a specialized window, the pointer returned is of type CWnd*, so we have

to cast it to the type appropriate to the particular control, which is CSpinButtonCtrl* in this

case. The third statement that we've added sets the upper and lower limits for the spin button by
calling the SetRange() member of the spin control object. Although we've set the range limits

for the edit control, this doesn't affect the spin control directly. If we don't limit the values in the
spin control here, we would be allowing the spin control to insert values in the edit control that
were outside the limits, so there would be an error message from the edit control. You can
demonstrate this by commenting out the SetRange() statement here and trying out Sketcher

without it.

If you want to set the buddy control using code rather than using the Auto buddy option in the
spin button's properties, the CSpinButtonCtrl class has a function member to do this. You

would need to add the statement,

 pSpin->SetBuddy(GetDlgItem(IDC_SCALE));

at the point indicated by the comments.

Displaying the Spin Button

The dialog will be displayed when the Scale... menu option (or its associated toolbar button) is
selected, so you need to use ClassWizard's Message Maps tab to add a COMMAND handler to
the CSketcherView class corresponding to the ID_VIEW_SCALE message. Then you can

select the Edit Code button and add code as follows:

 void CSketcherView::OnViewScale()

 {

 CScaleDialog aDlg; // Create a dialog object

 aDlg.m_Scale = m_Scale; // Pass the view scale to the dialog

 if(aDlg.DoModal() == IDOK)

 {

 m Scale = aDlg.m_Scale; // Get the new scale

 InvalidateRect(0); // Invalidate the whole window

 }

 }

The dialog is created as modal, in the same way as the pen width dialog. Before the dialog box
is displayed by the DoModal() call, we store the scale value provided by the CSketcherView

member, m_Scale, in the dialog member with the same name, which ensures that the control

will display the current scale value when the dialog is displayed. If the dialog is closed with the
OK button, we store the new scale from the dialog member m_Scale, in the view member
m_Scale. Since we have changed the view scale, we need to get the view redrawn with the

new scale value applied. The call to InvalidateRect() will do this for us.

Of course, we must add m_Scale to the definition of CSketcherView, so add the following
line at the end of the other protected data members in the class definition:

 int m_Scale; // Current view scale

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You should also add a line to the CSketcherView constructor to initialize m_Scale to 1:

 m_Scale = 1; // Set scale to 1:1

This will result in a view always starting out with a scale of one to one. If you forget to do this,

it's unlikely that your program will work properly.

As we're using the CScaleDialog class, we need to add a #include statement for

ScaleDialog.h to the beginning of the SketcherView.cpp file. That's all we need to get the

scale dialog and its spin control operational. You can build and run Sketcher to give it a trial spin
before we add the code to use a view scale factor.

Using the Scale Factor

Scaling with Windows usually involves using one of the scaleable mapping modes,
MM_ISOTROPIC or MM_ANISOTROPIC. By using one or other of these mapping modes, you

can get Windows to do most of the work. Unfortunately, it's not as simple as just changing the
mapping mode, because neither of these mapping modes is supported by CScrollView.
However, if we can get around that, we're home and dry. We'll use MM_ANISOTROPIC, so let's

first understand what's involved in using this mapping mode.

Scaleable Mapping Modes

As we've said, there are two mapping modes that allow the mapping between logical
coordinates and device coordinates to be altered. These are MM_ISOTROPIC and
MM_ANISOTROPIC. MM_ISOTROPIC has the property that Windows will force the scaling

factor for both the x and y axes to be the same, which has the advantage that your circles will
always be circles, but the disadvantage that you can't map a document to fit into a rectangle of
a different shape. MM_ANISOTROPIC, on the other hand, permits scaling of each axis
independently. Because it's the more flexible, we'll use MM_ANISOTROPIC for scaling

operations in Sketcher.

The way in which logical coordinates are transformed to device coordinates is dependent on the
following parameters, which you can set:

Parameter Description

Window
Origin

The logical coordinates of the top left corner of the window. This is set by
calling the function CDC::SetWindowOrg().

Window
Extent

The size of the window specified in logical coordinates. This is set by
calling the function CDC::SetWindowExt().

Viewport
Origin

The coordinates of the top left corner of the window in device coordinates
(pixels). This is set by calling the function CDC::SetViewportOrg().

Viewport
Extent

The size of the window in device coordinates (pixels). This is set by calling
the function CDC::SetViewportExt().

The viewport referred to here has no physical significance by itself; it serves only as a
parameter for defining how coordinates are transformed from logical coordinates to device
coordinates.

FYI

Remember that:

Logical coordinates (also referred to as page coordinates) are determined
by the mapping mode. For example, the MM_LOENGLISH mapping mode has
logical coordinates in units of 0.01 inches, with the origin in the top left corner
of the client area, and the positive y axis direction running from bottom to top.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

These are used by the device context drawing functions.

Device coordinates (also referred to as client coordinates in a window) are
measured in pixels in the case of a window, with the origin at the top left corner
of the client area, and with the positive y axis direction from top to bottom.
These are used outside of a device context, for example for defining the
position of the cursor in mouse message handlers.

Screen coordinates are measured in pixels and have the origin at the top left
corner of the screen, with the positive y axis direction from top to bottom.
These are used when getting or setting the cursor position.

The formulae that are used by Windows to convert from logical coordinates to device
coordinates are:

With coordinate systems other than MM_ISOTROPIC and MM_ANISOTROPIC, the window

extent and the viewport extent are fixed by the mapping mode and you can't change them.
Calling the functions SetWindowExt() or SetViewportExt() in the CDC object to change

them will have no effect, although you can still move the position of (0,0) in your logical
reference frame by calling SetWindowOrg() or SetViewportOrg(). However, for a given

document size which will be expressed by the window extent in logical coordinate units, we can
adjust the scale at which elements are displayed by setting the viewport extent appropriately. By
using and setting the window and viewport extents, we can get the scaling done automatically.

Setting the Document Size

We need to maintain the size of the document in logical units in the document object. Add a
protected data member, m_DocSize, to the CSketcherDoc class definition:

 CSize m_DocSize; // Document size

We will also need to access this data member from the view class, so add a public function to
the CSketcherDoc class definition as follows:

 CSize GetDocSize() const

 { return m_DocSize; } // Retrieve the document size

We must initialize the m_DocSize member in the constructor for the document, so modify the
implementation of CSketcherDoc() as follows:

 CSketcherDoc::CSketcherDoc()

 {

 // TODO: add one-time construction code here

 m_Element = LINE; // Set initial element type

 m_Color = BLACK; // Set initial drawing color

 m_PenWidth = 0; // Set 1 pixel pen

 m_DocSize = CSize(3000,3000); // Set initial document size 30x30
inches

 }

We'll be using notional MM_LOENGLISH coordinates, so we can treat the logical units as 0.01

inches, and the value set will give us an area of 30 inches square to draw on.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Setting the Mapping Mode

We'll set the mapping mode to MM_ANISOTROPIC in the OnPrepareDC() member of

CSketcherView. This is always called for any WM_PAINT message, and we've arranged to

call it when we draw temporary objects in the mouse message handlers. However, we must do
a little more than just set the mapping mode. The implementation of OnPrepareDC() will be:

 void CSketcherView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)

 {

 CScrollView::OnPrepareDC(pDC, pInfo);

 CSketcherDoc* pDoc = GetDocument();

 pDC->SetMapMode(MM_ANISOTROPIC); // Set the map mode

 CSize DocSize = pDoc->GetDocSize(); // Get the document
size

 // y extent must be negative because we want MM_LOENGLISH

 DocSize.cy = -DocSize.cy; // Change sign of y

 pDC->SetWindowExt(DocSize); // Now set the window
extent

 // Get the number of pixels per inch in x and y

 int xLogPixels = pDC->GetDeviceCaps(LOGPIXELSX);

 int yLogPixels = pDC->GetDeviceCaps(LOGPIXELSY);

 // Calculate the viewport extent in x and y

 int xExtent = DocSize.cx * m_Scale * xLogPixels / 100;

 int yExtent = DocSize.cy * m_Scale * yLogPixels / 100;

 pDC->SetViewportExt(xExtent, -yExtent); // Set viewport
extent

 }

You'll need to create the handler for this before you can add the code. The easiest way is to

open the ClassWizard dialog by right clicking in the edit window and selecting ClassWizard... from
the pop-up, and then to select OnPrepareDC from the Messages: drop-down list on the Message
Maps tab for the CSketcherView class. If you click on the Add Function button and then the

Edit Code button, you can type the code straight in.

Our override of the base class function is unusual in that we have left the call to
CScrollView::OnPrepareDC() in, and added our modifications after it. If our class was

derived from CView, we would replace the call to the base class version because it does
nothing, but for CScrollView this isn't the case. We need the base class function to set some

attributes before we set the mapping mode. Don't make the mistake of calling the base class
function at the end though — if you do, scaling won't work.

After setting the mapping mode and obtaining the document extent, we set the window extent
with the y extent negative. This is just to be consistent with the MM_LOENGLISH mode that we

were using previously — remember that the origin is at the top, so y values in the client area are
negative with this mapping mode.

The CDC member function GetDeviceCaps() supplies information about the device that the

device context is associated with. You can get various kinds of information about the device,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

depending on the argument you pass to the function. In our case, the arguments LOGPIXELSX
and LOGPIXELSY return the number of pixels per logical inch in the x and y directions. These

values will be equivalent to 100 units in our logical coordinates.

We use these values to calculate the x and y values for the viewport extent, which we store in
the local variables xExtent and yExtent. The document extent along an axis in logical units,

divided by 100, gives the document extent in inches. If this is multiplied by the number of logical
pixels per inch for the device, we get the equivalent number of pixels for the extent. If we then
use this value as the viewport extent, we will get the elements displayed at a scale of 1 to 1. If
we simplify the equations for converting between device and logical coordinates by assuming
the window origin and the viewport origin are both (0,0), they become:

If we multiply the viewport extent values by the scale (in m_Scale), the elements will be drawn
according to the value of m_Scale. This logic is exactly represented by the expressions for the

x and y viewport extents in our code. The simplified equations with the scale included will be:

You should be able the see from this that a given pair of device coordinates will vary in

proportion to the scale value. The coordinates at a scale of 3 will be three times the coordinates
at a scale of 1. Of course, as well as making elements larger, increasing the scale will also
move them away from the origin.

That's all we need to scale the view. Unfortunately, at the moment the scrolling won't work with
scaling — the lengths of the scroll bars don't scale appropriately with the rest of the view. Let's
see what we can do about that.

Implementing Scrolling with Scaling

CScrollView just won't work with MM_ANISOTROPIC, so clearly we must use another
mapping mode to set up the scrollbars. The easiest way to do this is to use MM_TEXT, because

in this case the logical coordinates are the same as the client coordinates — pixels, in other
words. All we need to do, then, is to figure out how many pixels are equivalent to our logical
document extent for the scale at which we are drawing, which is easier than you might think.
We can add a function to CSketcherView to take care of the scrollbars and implement
everything in there. Right-click on the CSketcherView class name and add a public function

ResetScrollSizes() with a void return type. Add the code to the implementation, as

follows:

 Void CSketcherView::ResetScrollsizes()

 {

 CClientDC aDC(this);

 OnPrepareDC(&aDC); // Set up the
device context

 CSize DocSize = GetDocument()->GetDocSize(); // Get the

document size

 aDC.LPtoDP(&DocSize); // Get the size in
pixels

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SetScrollSizes(MM_TEXT, DocSize); // Set up the
scrollbars

 }

After creating a local CClientDC object for the view, we call OnPrepareDC() to set up the

MM_ANISOTROPIC mapping mode. Because this takes account of the scaling, the LPtoDP()
member of aDC will convert the document size stored in the local variable DocSize to the

correct number of pixels for the current logical document size and scale. The total document
size in pixels defines how large the scrollbars must be in MM_TEXT mode—remember MM_TEXT
logical coordinates are in pixels. Based on this, we can get the SetScrollSizes() member of

CScrollView to set up the scrollbars by specifying MM_TEXT as the mapping mode.

It may seem strange that we can change the mapping mode in this way, but it's important to
keep in mind that the mapping mode is nothing more than a definition of how logical coordinates
are to be converted to device coordinates. Whatever mode (and therefore coordinate
conversion algorithm) you've set up will apply to all subsequent device context functions until
you change it, and you can change it whenever you want. When you set a new mode,
subsequent device context function calls just use the conversion algorithm defined by the new
mode. We figure how big the document is in pixels with MM_ANISOTROPIC, since this is the
only way we can get the scaling into the process, and then switch to MM_TEXT to set up the

scrollbars because we need units for this in pixels for it to work properly. Simple really, when
you know how.

Setting Up the Scrollbars

We must set up the scrollbars initially for the view in the OnInitialUpdate() member of
CSketcherView. Change the previous implementation of the function to:

 void CSketcherView::OnInitialUpdate()

 {

 ResetScrollSizes(); // Set up the scrollbars

 CScrollView::OnInitialUpdate();

 }

All we need to do is call the function that we just added to the view. This takes care of
everything — well, almost. The CScrollView object needs an initial extent to be set for

OnPrepareDC() to work properly, so we need to add one statement to the CSketcherView

constructor:

 CSketcherView::CSketcherView()

 {

 // TODO: add construction code here

 m_FirstPoint = CPoint(0,0); // Set 1st recorded point
to 0,0

 m_SecondPoint = CPoint(0,0); // Set 2nd recorded point
to 0,0

 m_pTempElement = NULL; // Set temporary element
pointer to 0

 m_pSelected = NULL; // No element selected
initially

 m_MoveMode = FALSE; // Set move mode off

 m_CursorPos = CPoint(0,0); // Initialize as zero

 m_FirstPos = CPoint(0,0); // Initialize as zero

 m_Scale = 1; // Set scale to 1:1

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SetScrollSizes(MM_TEXT, CSize(0,0)); // Set arbitrary scrollers

 }

This just calls SetScrollSizes() to an arbitrary extent to get the scrollbars initialized before
the view is drawn. When the view is drawn for the first time, the ResetScrollSizes()

function call in OnInitialUpdate() will set up the scrollbars properly.

Of course, each time the view scale changes, we need to update the scrollbars before the view
is redrawn. We can take care of this in the OnViewScale() handler in CSketcherView:

 void CSketcherView::OnViewScale()

 {

 CScaleDialog aDlg; // Create a dialog object

 aDlg.m_Scale = m_Scale; // Pass the view scale to the
dialog

 if(aDlg.DoModal() == IDOK)

 {

 m_Scale = aDlg.m_Scale; // Get the new scale

 ResetScrollSizes(); // Adjust scrolling to the new
scale

 InvalidateRect(0); // Invalidate the whole window

 }

 }

Using our function ResetScrollSizes(), taking care of the scrollbars isn't complicated.

Everything is covered by the one additional line of code.

Now you can build the project and run the application. You'll see that the scrollbars work just as
they should. Note that each view maintains its own scale factor, independently of the other
views.

Creating a Status Bar

With each view now being scaled independently, it becomes necessary to have some indication
of what the current scale in a view is. A convenient way to do this would be to display the scale
in a status bar. Windows 95 style conventions indicate that the status bar should appear at the
bottom of the window, below the scroll bar if there is one. Also, there tends to be only one status
bar attached to the main application window, which you can see in the following screen showing
Sketcher at its current stage of development:

The status bar is divided into segments, called panes. The status bar in the previous screen
has four panes. The one on the left contains the text Ready, and the other three are the
recessed areas on the right. It's possible for you to write to this status bar, but you need to get
access to the m_wndStatusBar member of CMainFrame, as this represents it. As it's a

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

protected member of the class, you must add a public member function to modify the status
bar. You could add a public function member to CMainFrame as follows:

 void CMainFrame::SetPaneText(int Pane, LPCTSTR Text)

 {

 m_wndStatusBar.SetPaneText(Pane, Text);

 }

This function sets the text in the pane specified by Pane in the status bar represented by

m_wndStatusBar to the text, Text. The status bar panes are indexed from the left, starting at
0. Now we could write from anywhere outside the CMainFrame class:

 CMainFrame* pFrame = (CMainFrame*)AfxGetApp()->m_pMainWnd;

 pFrame->SetPaneText(0, "Goodbye cruel world");

This gets a pointer to the main window of the application and outputs the text string you see to

the leftmost pane in the status bar. This is fine, but the main application window is no place for a
view scale. We may well have several views, so we really want to associate displaying the scale
with each view. The answer is to give each child window its own status bar. The
m_wndStatusBar in CMainFrame is an instance of the CStatusBar class. We can use the

same class to implement our own status bars.

Adding a Status Bar to a Frame

The CStatusBar class defines a control bar with multiple panes in which you can display
information. Objects of type CStatusBar can also provide the same functionality as the

Windows common status bar control through a member function GetStatusBarCtrl().

There is an MFC class that specifically encapsulates each of the Windows common controls —
the one for the common status bar control is CStatusBarCtrl. However, using this directly

involves quite a bit of work to integrate it with the other MFC classes, as the raw Windows
control doesn't connect to MFC. Using CStatusBar in our program is easier and safer. The
GetStatusBarCtrl() function will return a reference to a CStatusBarCtrl object that

provides all the functionality of the common control, and the CStatusBar object will take care

of the communications to the rest of the MFC.

The first step towards utilizing it is to add a data member for the status bar to the definition of
CChildFrame, which is the frame window for a view, so add the following declaration to the

public section of the class:

 // Attributes

 public:

 CStatuaBar m_StatusBar; // Status bar object

Note

Important

A word of advice is required at this point. Status bars should be part of the
frame, not part of the view. We don't want to be able to scroll the status bars
or draw over them. They should just remain anchored to the bottom of the
window. If you added a status bar to the view, it would appear inside the
scrollbars and would be scrolled whenever we scrolled the view. Any drawing
over the part of the view containing the status bar would cause the bar to be
redrawn, leading to an annoying flicker. Having the status bar as part of the
frame avoids these problems.

We need to initialize this data member just before the visible view window is displayed. So,
using ClassWizard, add a function to the class that will be called in response to the WM_CREATE

message, which is sent to the application when the window is to be created. Add the following
code to the OnCreate() handler:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int CChildFrame::OnCreate(LPCREATESTRUCT lpCreateStruct)

 {

 if (CMDIChildWnd::OnCreate(lpCreateStruct) == -1)

 return -1;

 // Create the status bar

 m_StatusBar.Create(this);

 // Work out the width of the text we want to display

 CRect textRect;

 CClientDC aDC(&m_StatusBar);

 aDC.SelectObject(m_StatusBar.GetFont());

 aDC.DrawText("View Scale:99", -1, textRect,
DT_SINGLELINE|DT_CALCRECT);

 // Setup a part big enough to take the text

 int width = textRect.Width();

 m_StatusBar.GetStatusBarCtrl().SetParts(1, &width);

 // Initialize the text for the status bar

 m_StatusBar.GetStatusBarCtrl().SetText("View Scale:1", 0, 0);

 return 0;

 }

The ClassWizard generated the code that isn't shaded. It has inserted a call to the base class
version of the OnCreate() function, which takes care of creating the definition of the view

window. It's important not to delete this function call, otherwise the window will not be created.

The actual creation of the status bar is done with the Create() function in the CStatusBar
object. The this pointer for the current CChildFrame object is passed to the Create()

function, setting up a connection between the status bar and the window that owns it. Let's look
into what's happening in the code that we have added to the OnCreate() function.

Defining the Status Bar Parts

A CStatusBar object has an associated CStatusBarCtrl object with one or more parts.

Parts and panes in the context of status bars are equivalent terms — CStatusBar refers to
panes and CStatusBarCtrl refers to parts. You can display a separate item of information in

each part.

We can define the number of parts and their widths by a call to the SetParts() member of the
CStatusBarCtrl object. This function requires two arguments. The first argument is the

number of parts in the status bar, and the second is an array specifying the right-hand edge of
each part in client coordinates. If you omit the call to SetParts(), the status bar will have one

part by default, which stretches across the whole bar. We could use this, but it looks untidy. A
better approach is to size the part so that the text to be displayed fits well — we'll do this now.

The first thing we do in the OnCreate() function is to create a temporary CRect object in

which we'll store the enclosing rectangle for the text that we want to display. We then create a
CClientDC object which will contain a device context with the same extent as the status bar.

This is possible because the status bar, like other controls, is just a window.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Next, the font used in the status bar (set up as part of the desktop properties) is selected into
the device context by calling the SelectObject() function. The GetFont() member of

m_StatusBar returns a pointer to a CFont object that represents the current font. Obviously,

the particular font will determine how much space the text we want to display will take up.

The DrawText() member of the CClientDC object is called to calculate the enclosing

rectangle for the text we want to display. This function has four arguments:
1. The text string to be drawn. We have passed a string containing the maximum number

of characters we would ever want to display, "View Scale:99".

2. The count of the number of characters in the string. We have specified this as -1, which
indicates we are supplying a null-terminated string. In this case the function will work out
the character count.

3. Our rectangle, textRect. The enclosing rectangle for the text will be stored here in

logical coordinates.
4. One or more flags controlling the operation of the function.

We have specified a combination of two flags. DT_SINGLELINE specifies that the text is to be

on a single line, and DT_CALCRECT specifies that we want the function to calculate the size of

the rectangle required to display the string and store it in the rectangle pointed to by the third
argument. The DrawText() function is normally used to output text, but in this instance the
DT_CALCRECT flag stops the function from actually drawing the string. There are a number of

other flags that you can use with this function; you can find details of them by looking up this
function with Help.

The next statement sets up the parts for the status bar:

 m_StatusBar.GetStatusBarCtrl().SetParts(1, &width);

The expression m_StatusBar.GetStatusBarCtrl() returns a reference to the

CStatusBarCtrl object that belongs to m_StatusBar. The reference returned is used to call
the function SetParts() for the object. The first argument to SetParts() defines the number

of parts for the status bar — which is 1 in our case. The second argument is typically the
address of an array of type int containing the x coordinate of the right hand edge of each part

in client coordinates. The array will have one element for each part in the status bar. Since we
have only one part we pass the address of the single variable, width, which contains the width
of the rectangle we stored in textRect. This will be in client coordinates, since our device

context uses MM_TEXT by default.

Lastly, we set the initial text in the status bar with a call to the SetText() member of
CStatusBarCtrl. The first argument is the text string to be written, the second is the index

position of the part which is to contain the text string, and the third argument specifies the
appearance of the part on the screen. The third argument can be any of the following:

Style Code Appearance

0 The text will have a border such that it appears recessed into the
status bar.

SBT_NOBORDERS The text is drawn without borders.

SBT_OWNERDRAW The text is drawn by the parent window.

SBT_POPOUT The text will have a border such that it appears to stand out from the
status bar.

In our code, we specify the text with a border so that it appears recessed into the status bar.
You could try the other options to see how they look.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Updating the Status Bar

If you build and run the code now, the status bars will appear but they will only show a scale
factor of 1, no matter what scale factor is actually being used. Not very useful. What we need to
do is to change the text each time a different scale is chosen. This means modifying the
OnViewScale() handler in CSketcherView to change the status bar for the frame. We need

to add only four lines of code:

 void CSketcherView::OnViewScale()

 {

 CScaleDialog aDlg; // Create a dialog object

 aDlg.m_Scale = m_Scale; // Pass the view scale to the dialog

 if(aDlg.DoModal() == IDOK)

 {

 m_Scale = aDlg.m_Scale; // Get the new scale

 // Get the frame window for this view

 CChildFrame* viewFrame =
static_cast<CChildFrame*>(GetParentFrame());

 // Build the message string

 CString StatusMsg("View Scale:");

 StatusMsg += static_cast<char>('0' + m_Scale);

 // Write the string to the status bar

 viewFrame->m_StatusBar.GetStatusBarCtrl().SetText(StatusMsg,
0, 0);

 ResetScrollSizes(); // Adjust scrolling to the
new scale

 InvalidateRect(0); // Invalidate the whole
window

 }

 }

As we refer to the CChildFrame object here, you must add a #include directive for
ChildFrm.h to the beginning of SketcherView.cpp, after the #include for Sketcher.h.

The first line calls the GetParentFrame() member of CSketcherView that's inherited from

the CScrollView class. This returns a pointer to a CFrameWnd object to correspond to the
frame window, so it has to be cast to CChildFrame* for it to be of any use to us.

The next two lines build the message that is to be displayed in the status bar. The CString
class is used simply because it is more flexible than using a char array. CStrings will be

discussed in greater depth a bit later when we add a new element type to Sketcher. We get the
character for the scale value by adding the value of m_Scale (which will be from 1 to 8) to the

character '0'. This will generate characters from '1' to '8'.

Finally, we use the pointer to the child frame to get at the m_StatusBar member that we added
earlier. We can then get its status bar control and use the SetText() member of the control to

change the displayed text. The rest of the OnViewScale() function remains unchanged.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

That's all we need for the status bar. If you build Sketcher again, you should have multiple,
scrolled windows, each at different scales, with the scale displayed in a status bar in each view.

Using a List Box

Of course, you don't have to use a spin button to set the scale. You could also use a list box, for
example. The logic for handling a scale factor would be exactly the same, and only the dialog
box and the code to extract the value for the scale factor from it would change. If you want to try
this out without messing up the development of the Sketcher program, you can copy the
complete Sketcher project to another folder and make the modifications to the copy. Deleting
part of a ClassWizard managed program can be a bit messy, so it's a useful experience for
when you really need to do it.

Removing the Scale Dialog

You first need to delete the definition and implementation of CScaleDialog from the new

Sketcher project, as well as the resource for the scale dialog. To do this, go to FileView, select
ScaleDialog.cpp and press Delete, and then select ScaleDialog.h and press Delete to

remove them from the project. Then go to ResourceView, expand the Dialog folder, click on
IDD_SCALE_DLG and hit Delete to remove the dialog resource. Now, delete the #include
statement for ScaleDialog.h from SketcherView.cpp. At this stage, all references to the

original dialog class will have been removed from the project, but the files are still in your project
directory so you must remove or delete them. All done yet? Not by a long chalk. The IDs for the
resources are still around. To delete these, select the View | Resource Symbols... menu item, and
select and delete IDC_SCALE and IDC_SPIN_SCALE from the list. If you haven't deleted the

resources they represent, then they will still be checked and you won't be able to delete them.

In spite of all the deletions so far, ClassWizard will still think that the CScaleDialog class

exists. To get around this, you need to start ClassWizard and attempt to choose
CScaleDialog as the Class name:. After an initial warning, you'll see the following dialog:

You should select Remove to remove the class from the project completely. You'll need to go
through this rigmarole every time that you want to delete a class from an AppWizard-generated
project. Believe it or not, we're still not done!

Select the Build | Clean menu item to remove any intermediate files from the project that may
contain references to CScaleDialog, then close the project workspace by selecting the File |

Close Workspace menu item, then re-open it again. Once that's done, we can start by recreating
the dialog resource for entering a scale value.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Creating a List Box Control

Right-click on Dialog in ResourceView and add a new dialog with a suitable ID and caption. You
could use the same ID as before, IDD_SCALE_DLG.

Select the list box button in the controls palette as shown, and click on where you want the list

box positioned in the dialog box. You can enlarge the list box and adjust its position in the dialog
by dragging it appropriately.

Right-click on the list box and select Properties from the pop-up. You can set the ID to something
suitable, such as IDC_SCALELIST. Next, select the Styles tab and set it to the options shown

below:

The Sort option box will be checked by default, so make sure you uncheck it. This will mean that
strings that we add to the list box will not be automatically sorted. Instead, they'll be appended
to the end of the list in the box, and so will be displayed in the sequence in which they are
entered. Since we'll use the position in the list of the selected item to indicate the scale, it's
important not to have the sequence changed. The list box will have a vertical scroll bar for the
list entries by default, which is very useful, and we can ignore the other options. If you want to
look into the effects of the other options, you can click the question mark button to display a
help screen explaining them.

Now that the dialog is complete you can save it, and you're ready to create the class for the
dialog.

Creating the Dialog Class

Right-click on the dialog and select ClassWizard... from the pop-up. Again, you'll be taken
through the dialog to create a new class. Give it an appropriate name, such as the one we used
before: CScaleDialog. Once you've completed that, all you need to do is add a public

member variable from ClassWizard's Member Variables tab, called m_Scale, corresponding to
the list box ID, IDC_SCALELIST. The default type will be int, which is fine. ClassWizard will

implement DDX for this data member storing an index to the selected entry, in the list box in it.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We need to add some code to the OnInitDialog() member of CScaleDialog to initialize
the list box, so you'll have to create a handler for WM_INITDIALOG using ClassWizard Add

code as follows:

 BOOL CScaleDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 CListBox* pListBox =
static_cast<CListBox*>(GetDlgItem(IDC_SCALELIST));

 pListBox->AddString("Scale 1");

 pListBox->AddString("Scale 2");

 pListBox->AddString("Scale 3");

 pListBox->AddString("Scale 4");

 pListBox->AddString("Scale 5");

 pListBox->AddString("Scale 6");

 pListBox->AddString("Scale 7");

 pListBox->AddString("Scale 8") ;

 pListBox->SetCurSel(m_Scale - 1);

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should return
FALSE

 }

The first line that we have added obtains a pointer to the list box control by calling the
GetDlgItem() member of the dialog class. This is inherited from the MFC class CWnd. It

returns a pointer of type CWnd*, so we need to cast this to the type CListBox*, which is a

pointer to the MFC class defining a list box.

Using the pointer to our dialog's CListBox object, we then use the AddString() member to

add the lines defining the list of scale factors. These will appear in the list box in the order that
we enter them, so that the dialog will be displayed as shown below:

Each entry is associated with a zero-based index value that will be automatically stored in the
m_Scale member of CScaleDialog through the DDX mechanism. Thus, if the third entry in

the list is selected, m_Scale will be set to 2.

The call to the SetCurSel() member selects the string and, if necessary, scrolls it into view—

this ensures that one scale option is alreadyhighlighted when you open the dialog.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Displaying the Dialog

The dialog will be displayed by the OnViewScale() handler that we added to
CSketcherView in the previous version of Sketcher. You just need to amend this to deal with

the new dialog using a list box. The code for it will be as follows:

 void CSketcherView::OnViewScale()

 {

 CScaleDialog aDlg; // Create a dialog object

 aDlg.m_Scale = m_Scale; // Pass the view scale to the
dialog

 if(aDlg.DoModal() == IDOK)

 {

 m_Scale = 1 + aDlg.m_Scale; // Get the new scale

 // Get the frame window for this view

 CChildFrame* viewFrame =
static_cast<CChildFrame*>(GetParentFrame());

 // Build the message string

 CString StatusMsg("View Scale:");

 StatusMsg += static_cast<char>('0' + m_Scale);

 // Write the string to the status bar

 viewFrame->m_StatusBar.GetStatusBarCtrl().SetText(StatusMsg,

0, 0);

 ResetScrollSizes(); // Adjust scrolling to the
new scale

 InvalidateRect(0); // Invalidate the whole
window

 }

 }

Because the index value for the entry selected from the list is zero-based, we just need to add 1
to it to get the actual scale value to be stored in the view. The code to display this value in the
view's status bar is exactly as before. The rest of the code to handle scale factors is already
complete and requires no changes. Once you've added back the #include statement for

ScaleDialog.h, you can build and execute this version of Sketcher to see the list box in

action.

Using an Edit Box Control

We could use an edit box control to add annotations in Sketcher. We'll need a new element
type, CText, that will correspond to a text string, and an extra menu item to set a TEXT mode

for creating elements. Since a text element will only need one reference point, we can create it
in the OnLButtonDown() handler. We'll also need a new menu item in the Element pop-up to

set the TEXT mode. We'll add this text capability to Sketcher in the following sequence:

1. Create the dialog box resource and its associated class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. Add the new menu item.
3. Add the code to open the dialog for creating an element.
4. Add the support for a CText class.

Creating an Edit Box Resource

Create a new dialog resource in ResourceView by right-clicking the Dialog folder and selecting

Insert Dialog from the pop-up. Change the ID for the new dialog to IDD_TEXT_DLG and the

caption text to Enter Text.

To add an edit box, select the edit box icon from the control palette as shown on the left, and
then click the position in the dialog where you want to place it. You can adjust the size of the
edit box by dragging its borders, and you can alter its position in the dialog by dragging the
whole thing around.

You can display the properties for the edit box by right-clicking it and selecting Properties from
the pop-up. You could first change its ID to IDC_EDITTEXT (on the General tab), then select the

Styles tab, which is shown below:

Some of the options here are of interest at this point. First, select the Multiline option. This

creates a multi-line edit box, where the text entered can span more than one line. This enables
quite a long line of text to be entered and still remain visible in its entirety in the edit box.

The Align text: option determines how the text is to be positioned in the multi-line edit box. Left
is fine for us, since we'll be displaying the text as a single line anyway, but you also have the
options for Centered and Right.

If you select the Want return option, pressing Enter on the keyboard would enter a return

character in the text string. This would allow you to analyze the string if you wanted to break it
into multiple lines for display. We don't want this effect, so leave it unselected. With this option
unselected, pressing Enter has the same effect as selecting the default control (which is the OK
button), and so will close the dialog.

If Auto HScroll is unselected, there will be an automatic spill to the next line in the edit box when
you reach the end of a line of text. However, this is just for visibility in the edit box — it has no
effect on the contents of the string.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

When you've finished setting the styles for the edit box, you can press Enter to close it. You
should make sure that the edit box is first in the tab order by selecting the Tab Order menu item
from the Layout pop-up. You can then test the dialog by selecting the Test menu item. The
dialog is shown below:

You can even enter text into the dialog in test mode to see how it works. You can press Enter,
or click on the Cancel or OK button, to close the dialog.

Creating the Dialog Class

After saving the dialog resource, you can go to ClassWizard to create a suitable dialog class
corresponding to the resource, which you could call CTextDialog. Next, switch to the Member

Variables tab in ClassWizard, select the IDC_EDITTEXT control ID and click the Add Variable...
button. Call the new variable m_TextString and select its type as CString.We'll take a look

at this class once we've finished the dialog class. Having added the variable you can also
specify a maximum length for it, as shown here:

A length of 100 will be more than adequate for our needs. The variable that we have added
here will be automatically updated from the data entered into the control by the DDX
mechanism. You can click on OK to save the dialog class and close ClassWizard.

The CString Class

The CString class provides a very convenient and easy-to-use mechanism for handling strings

that you can use just about anywhere a string is required. To be more precise, you can use a
CString object in place of strings of type const char[], which is the usual type for a
character string in C++, or of type LPCTSTR, which is a type that comes up frequently in

Windows API functions.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The CString class provides several overloaded operators which make it easy to process

strings:

Operator Usage

= Copies one string to another, as in:

 Str1 = Str2; // Copies contents of
Str1 to Str2

 Str1 = "A normal string" ; // Copies the RHS
string to Str1

+ Concatenates two or more strings, as in:

 Str1 = Str2 + Str3 + " more"; // Forms Str1 from 3
strings

+ = Appends a string to an existing CString object

== Compares two strings for equality, as in:

 if(Str1 == Str2)

 // do something

< <= Tests if one string is less than, or less than or equal to, another.

> >= Tests if one string is greater than, or greater than or equal to, another.

The variables Str1 and Str2 above are CString objects. CString objects automatically

grow as necessary, such as when you add an additional string to the end of an existing object.
For example, in the statements:

 CString Str = "A fool and your money ";

 Str += "are soon partners.";

the first statement declares and initializes the object Str. The second statement appends an
additional string to Str, so the length of Str will automatically increase.

Important

Generally, you should avoid creating CString objects on the heap as
far as possible. The memory management necessary for growing them
means that operations will be rather slow.

Adding the Text Menu Item

Adding a new menu item should be easy by now. You just need to open the menu resource with
the ID IDR_SKETCHTYPE by double-clicking it, and add a new menu item Text to the Element
menu. The default ID, ID_ELEMENT_TEXT, will be fine so you can accept that. You can add a

prompt to be displayed on the status bar corresponding to the menu item, and since we'll also
want add an additional toolbar button corresponding to this menu item, you can add a tool tip to
the end of the prompt line, using \n to separate the prompt and the tool tip.

Don't forget the context menu. You can copy the menu item from IDR_SKETCHTYPE. Right

click on the Text menu item and select Copy from the pop-up. Open the menu
IDR_CURSOR_MENU, extend the no element menu, and you can right click on the empty item at

the bottom and select Paste. Then, all you need to do is to drag the item to the appropriate
position, before the separator, and save the resource file.

Add the toolbar button to the IDR_MAINFRAME toolbar and set its ID to the same as that for the
menu item, ID_ELEMENT_TEXT. You can drag the new button so that it's positioned at the end

of the block defining the other types of element. When you've saved the resources, we need to
add a handler for the menu item.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Go to ClassWizard and add a COMMAND handler to CSketcherDoc corresponding to
ID_ELEMENT_TEXT. Click the Edit Code button and add code as follows:

 void CSketcherDoc::OnElementText()

 {

 m_Element = TEXT;

 }

Only one line of code is necessary to set the element type in the document to TEXT. You must

also add a line to the OurConstants.h file:

 const WORD TEXT = 105U;

This statement can be added at the end of the other element type definitions. You also need to
add a function to check the menu item if it is the current mode — use ClassWizard to add an
UPDATE_COMMAND_UI handler corresponding to the ID_ELEMENT_TEXT ID, and implement

the code for it as follows:

 void CSketcherDoc::OnUpdateElementText(CCmdUI* pCmdUI)

 {

 // Set checked if the current element is text

 pCmdUI->SetCheck(m_Element == TEXT);

 }

This operates in the same way as the other Element pop-up menu items. We can now define the
CText class for an object of type TEXT.

Defining a Text Element

We can derive the class CText from the CElement class as follows:

 class CText : public CElement

 {

 public:

 // Function to display a text element

 virtual void Draw(CDC* pDC, const CElement* pElement = NULL)
const;

 // Constructor for a text element

 CText(const CPoint& Start, const CPoint& End, const CString&
String,

 const COLORREF&
Color);

 virtual void Move(const CSize& Size); // Move a text
element

 protected:

 CPoint m_StartPoint; // position of a text
element

 CString m_String; // Text to be
displayed

 CText(){} // Default
constructor

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 };

You can put this definition at the end of the Elements.h file (but before the #endif statement,

of course). This class definition declares the virtual Draw() and Move() functions, as the other

element classes do. The data member m_String of type CString stores the text to be
displayed, and m_StartPoint specifies the position of the string in the client area of a view.

We should now look at the constructor declaration in a little more detail. The CText constructor

declaration defines four parameters which provide the following essential information:

Argument Defines

CPoint Start The position of the text in logical coordinates

CPoint End The corner opposite Start that defines the rectangle enclosing the
text

CString
String

The text string to be displayed as a CString object

COLORREF
Color

The color of the text

The pen width doesn't apply to an item of text, since the appearance is determined by the font.
Although we do not need to pass a pen width as an argument to the constructor, the constructor
will need to initialize the m_Pen member inherited from the base class. This is because it will be

used in the computation of the bounding rectangle for the text.

Implementing the CText Class

We have three functions to implement for the CText class:
1. The constructor for a CText object.

2. The virtual Draw() function, to display it.
3. The Move() function, to support moving a text object by dragging it with the mouse.

You can add these to the Elements.cpp file.

The CText Constructor

The constructor for a CText object needs to initialize the class and base class data members:

 CText::CText(const CPoint& Start, const CPoint& End, const CString&
String,

 const
COLORREF& Color)

 {

 m_Pen =1; // Pen width only for
bounding rectangle

 m_Color = Color; // Set the color for the text

 m-String = String; // Make a copy of the string

 m_StartPoint = Start; // Start point for string

 m_EnclosingRect = CRect(Start, End);

 m_EnclosingRect.NormalizeRect();

 }

This is all standard stuff, just like we've seen before for the other elements.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Drawing a CText Object

Drawing text in a device context is different to drawing a geometric figure. The Draw() function
for a CText object is as follows:

 void CText::Draw(CDC* pDC, const CElement* pElement) const

 {

 COLORREF Color(m_Color); // Initialize with element
color

 if (this == pElement)

 Color = SELECT_COLOR; // Set selected color

 // Set the text color and output the text

 pDC->SetTextColor(Color);

 pDC->TextOut(m_StartPoint.x, m_StartPoint.y, m_String);

 }

We don't need a pen to display text. We just need to specify the text color using the
SetTextColor() function member of the CDC object, and then use the TextOut() member

to output the text string. This will display the string using the default font.

Since the TextOut() function doesn't use a pen, it won't be affected by setting the drawing

mode of the device context. This means that the raster operations (ROP) method that we use to
move the elements will leave temporary trails behind when applied to text. Remember that we
used the SetROP2() function to specify the way in which the pen would logically combine with
the background. By choosing R2_NOTXORPEN as the drawing mode, we could cause a

previously drawn element to disappear by redrawing it; then it would revert to the background
color and thus become invisible. Fonts aren't drawn using a pen, so it won't work with our text
elements. We'll see how to fix this problem in the next chapter.

Moving a CText Object

The Move() function for a CText object is very simple:

 void CText::Move(const CSize& aSize)

 {

 m_StartPoint += aSize; // Move the start point

 m_EnclosingRect += aSize; // Move the rectangle

 }

All we need to do is alter the point defining the position of the string, and the data member
defining the enclosing rectangle, by the distance specified in the aSize parameter.

Creating a Text Element

Once the element type has been set to TEXT, a text object should be created at the cursor

position whenever you click the left mouse button and enter the text you want to display. We
therefore need to open the dialog to enter text in the OnLButtonDown() handler. Add the

following code to this handler in CSketcherView:

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CClientDC aDC(this); // Create a device
context

 OnPrepareDC(&aDC); // Get origin adjusted

 aDC.DPtoLP(&point); // convert point to
Logical

 if(m_MoveMode)

 {

 // In moving mode, so drop the element

 m_MoveMode = FALSE; // Kill move mode

 m_pSelected = 0; // De-select the
element

 GetDocument()->UpdateAllViews(0); // Redraw all the
views

 }

 else

 {

 CSketcherDoc* pDoc = GetDocument(); // Get a document
pointer

 if(pDoc->GetElementType() == TEXT)

 {

 CTextDialog aDlg;

 if(aDlg.DoModal() == IDOK)

 {

 // Exit OK so create a text element

 CSize TextExtent =
aDC.GetTextExtent(aDlg.m_TextString);

 // Get bottom right of text rectangle - MM_LOENGLISH

 CPoint BottomRt(point.x+TextExtent.cx, point.y-
TextExtent.cy);

 CText* pTextElement = new CText(point, BottomRt,

 aDlg.m_TextString, pDoc-

>GetElementColor());

 // Add the element to the document

 pDoc->AddElement(pTextElement);

 // Get all views updated

 pDoc->UpdateAllViews(0,0,pTextElement);

 }

 return;

 }

 m_FirstPoint = point; // Record the cursor
position

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SetCapture(); // Capture subsequent
mouse messages

 }

 }

The code to be added is shaded. It creates a CTextDialog object and then opens the dialog
using the DoModal() function call. The m_TextString member of aDlg will be automatically

set to the string entered in the edit box, so we can just use this data member to pass the string
entered back to the CText constructor if the OK button is used to close the dialog. The color is
obtained from the document using the GetElementColor() member function that we have

used previously. The position of the text is the point value holding the cursor position that is

passed to the handler.

We also need to calculate the opposite corner of the rectangle that bounds the text. Because
the size of the rectangle for the block of text depends on the font used in a device context, we
use the GetTextExtent() function in the CClientDC object, aDC, to initialize the CSize
object, TextExtent, with the width and height of the text string in logical coordinates.

Calculating the rectangle for the text in this way is a bit of a cheat, which could cause a problem
once we start saving documents in a file. Problems could occur because it's conceivable that a
document could be read back into an environment where the default font in a device context is
larger than that in effect when the rectangle was calculated. This shouldn't arise very often, so
we won't worry about it here, but as a hint, if you want to pursue it, you could use an object of
the class CFont in the CText definition to define a specific font to be used. You could then use

the characteristics of the font to calculate the enclosing rectangle for the text string.

You could also use CFont to change the font size so that the text is zoomed when the scale

factor is increased. However, you also need to devise a way to calculate the bounding rectangle
based on the font size currently being used, which will vary with the view scale.

The CText object is created on the heap because the list in the document only maintains

pointers to the elements. We add the new element to the document by calling the
AddElement() member of CSketcherDoc, with the pointer to the new text element as an
argument. Finally, UpdateAllViews() is called with the first argument 0, which specifies that

all views are to be updated.

The Context Menu

In order to make the context menu reflect the selection of a text item we need to add the
following shaded line to the OnRButtonUp() handler in CSketcherView.cpp:

 aMenu.CheckMenuItem(ID_ELEMENT_LINE,

(LINE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_ELEMENT_RECTANGLE,

(RECTANGLE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_ELEMENT_CIRCLE,

(CIRCLE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_ELEMENT_CURVE,

(CURVE==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

 aMenu.CheckMenuItem(ID_ELEMENT_TEXT,

(TEXT==ElementType?MF_CHECKED:MF_UNCHECKED)|MF_BYCOMMAND);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Exercising the Edit Box

For the program to compile successfully, you need to add a #include statement for

TextDialog.h to the SketcherView.cpp file. You should now be able to produce annotated

sketches using multiple scaled and scrolled views, such as the ones shown below:

Summary

In this chapter, you've seen several different dialogs using a variety of controls. Although we
haven't created dialogs involving several different controls at once, the mechanism for handling
them is the same as we have seen, since each control can operate independently of the others.

The most important points that you've seen in this chapter are:

§ A dialog involves two components: a resource defining the dialog box and its controls,
and a class that will be used to display and manage the dialog.

§ Information can be extracted from controls in a dialog using the DDX mechanism. The
data can be validated using the DDV mechanism. To use DDX/DDV you need only to use
ClassWizard to define variables in the dialog class associated with the controls.

§ A modal dialog retains the focus in the application until the dialog box is closed. As long
as a modal dialog is displayed, all other windows in an application are inactive.

§ A modeless dialog allows the focus to switch from the dialog box to other windows in
the application and back again. A modeless dialog can remain displayed as long as the
application is executing, if required.

§ Common Controls are a set of standard Windows 95 controls that are supported by
MFC and the resource editing capabilities of the Visual C++ IDE.

§ Although controls are usually associated with a dialog, you can add controls to any
window if you want to.

Exercises

1. Implement the scale dialog using radio buttons.

2. Implement the pen width dialog using a list box.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

3. Implement the pen width dialog as a combo box with the drop list type selected on the

Styles tab in the properties box. (The drop list type allows the user to select from a
drop-down list, but not to key alternative entries in the list.)

Answers

1. Modify the scale dialog to appear as shown here:

Make sure that each radio button has a unique ID, such as IDC_SCALE1, IDC_SCALE2, etc.,

then use ClassWizard to add functions to handle the BN_CLICKED message for each radio
button. The implementations for these are all very similar. For example, the first two are:

 void CScaleDialog::OnScale1()

 {

 m_Scale = 1;

 }

 void CScaleDialog::OnScale2()

 {

 m_Scale = 2;

 }

Modify the OnInitDialog() member of CScaleDialog to check the appropriate radio
button, based on the current scale, as follows:

 BOOL CScaleDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // Check the radio button corresponding to the scale

 switch(m_Scale)

 {

 case 1:

 CheckDlgButton(IDC_SCALE1,1);

 break;

 case 2:

 CheckDlgButton(IDC_SCALE2,1);

 break;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 case 3:

 CheckDlgButton(IDC_SCALE3,1);

 break;

 case 4:

 CheckDlgButton(IDC_SCALE4,1);

 break;

 case 5:

 CheckDlgButton(IDC_SCALE5,1);

 break;

 case 6:

 CheckDlgButton(IDC_SCALE6, 1);

 break;

 case 7:

 CheckDlgButton(IDC_SCALE7,1);

 break;

 case 8:

 CheckDlgButton(IDC_SCALE8,1);

 break;

 default:

 CheckDlgButton(IDC_SCALE8,1);

 AfxMessageBox("Invalid scale set.");

 }

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should return
FALSE

 }

Delete the code from the DoDataExchange() member of CscaleDialog that handled the
previous version of the dialog controls, so it becomes:

 void CScaleDialog::DoDateExchange(CDateExchange" pDX)

 {

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CScaleDialog)

 // NOTE: the ClassWizard will add DDX and DDV calls here

 //}}AFX_DATA_MAP

 }

If you changed Sketcher to work with the list box scale dialogue, rather than the original spin
button control, there is an extra step to add to the solution. In the
CsketcherView::OnViewScale() function, return the first line after the DoModal() call
to its original state:

 m_Scale = aDlg.m_Scale;

That completes all the necessary modifications. Compile and run Sketcher as normal to see
the new dialog in operation.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. Modify the pen width dialog box resource to the following:

Assign a suitable ID, such as IDC_PENWIDTH to the list box, and make sure the Sort style is

unchecked. Now delete the m_PenWidth data member of CPenDialog and the functions
handling the previous BN_CLICKED messages for the radio buttons. Don't forget to delete
them from the class definition, as well as from the message map in the implementation file.
Save the two files so ClassWizard recognizes that the variable has been deleted.

Use ClassWizard to add a new variable for the dialog, m_Penwidth, of type int and
corresponding to the list box ID, IDC_PENWIDTH. The variable will store the index to the

selected list box item, and will also represent the pen width.

Modify the OnInitDialog() member of CPenDialog to add the strings to the list box, and

highlight the string corresponding to the current pen width:

 BOOL CPenDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // Initialize aBox

 CListBox* pLBox =
static_cast<CListBox*>(GetDlgItem(IDC_PENWIDTH));

 pLBox->AddString("Pen Width 0"); // Add the strings to the
box

 pLBox->AddString("Pen Width 2");

 pLBox->AddString("Pen Width 3");

 pLBox->AddString("Pen Width 4");

 pLBox->AddString("Pen Width 5");

 pLBox->SetCurSel(m_PenWidth); // Highlight the current
pen width

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should return
FALSE

 }

3. Change the dialog again by removing the list box and replacing it by a combo box with the
same ID. The dialog will look like this:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

It's important to allow enough space in the dialog for the combo box to drop down, otherwise
you will not see the complete list. Do this by clicking the down arrow and increasing the size
of the area displayed.

You could delete the existing m_PenWidth member of CPenDialog and add it back as the
variable to support the combo box, but because the differences are so slight the shortest way
to implement the support for the combo box is to modify the existing code. The
DoDataExchange() member of CPenDialog should be modified to:

 void CPenDialog::DoDataExchange(CDataExchange* pDX)

 {

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CPenDialog)

 DDX_CBIndex(pDX, IDC_PENWIDTH, m_PenWidth);

 //}}AFX_DATA_MAP

 }

This calls DDX_CBIndex() instead of DDX_LBIndex(), because we're now using a combo
box, not a list box. The only other modification necessary is to the OnInitDialog()

member of CPenDialog:

 BOOL CPenDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // Initialize aBox

 CComboBox* pCBox = static_cast<CComboBox*>
(GetDlgItem(IDC_PENWIDTH));

 pCBox->AddString("Pen Width 0"); // Add the strings to the
box

 pCBox->AddString("Pen Width 2");

 pCBox->AddString("Pen Width 3");

 pCBox->AddString("Pen Width 4");

 pCBox->AddString("Pen Width 5");

 pCBox->SetCurSel(m_PenWidth); // Highlight the current
pen width

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should return
FALSE

 }

The changed lines here are highlighted. The first statement creates a pointer to a
CComboBox object instead of a pointer to a CListBox object, and casts the pointer returned

by GetDlgItem() accordingly. You should also change the pointer name to pCBox for
consistency. You also have to change all the succeeding statements which refer to it, of
course.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 18: Storing and Printing Documents

Overview

With what we have accomplished so far in our Sketcher program, we can create a reasonably
comprehensive document with views at various scales, but the information is transient since we
have no means of saving a document. In this chapter, we'll remedy that by seeing how we can
store a document on disk. We'll also see how we can output a document to a printer.

In this chapter, you will learn:

§ What serialization is and how it works
§ What you need to do to make objects of a class serializable
§ The role of a CArchive object in serialization

§ How to implement serialization in your own classes
§ How to implement serialization in the Sketcher application

§ How printing works with MFC
§ What view class functions you can use to support printing
§ What a CPrintInfo object contains and how it's used in the printing process

§ How to implement multi-page printing in the Sketcher application

Understanding Serialization

A document in an MFC-based program is not a simple entity — it's a class object that can be
very complicated. It typically contains a variety of objects, each of which may contain other
objects, each of which may contain still more objects... and that structure may continue for a
number of levels.

We need to be able to save a document in a file, but writing a class object to a file represents

something of a problem, as it isn't the same as a basic data item like an integer or a character
string. A basic data item consists of a known number of bytes, so to write it to a file only requires
that the appropriate number of bytes be written. Conversely, if you know that an int was

written to a file, then to get it back you just read the appropriate number of bytes.

Writing objects is different. Even if you write away all the data members of an object, that's not
enough to be able to get the original object back. Class objects contain function members as
well as data members, and all the members, both data and functions, will have access
specifiers. Therefore, to record objects in an external file, the information written to the file must
contain complete specifications of all the class structures involved. The read process must also
be clever enough to synthesize the original objects completely from the data in the file. MFC
supports a mechanism called serialization to help you to implement input from (and output to
disk of) your class objects, with a minimum of time and trouble.

The basic idea behind serialization is that any class that's serializable must take care of storing
and retrieving itself. This means that for your classes to be serializable—in the case of the
Sketcher application this will include CElement and the shape classes we have derived from

it—they must be able to write themselves to a file. This implies that for a class to be serializable,
all the class types that are used to declare data members must be serializable too.

Serializing a Document

This all sounds like it might be rather tricky, but the basic capability for serializing your
document was built into the application by AppWizard right at the outset. The handlers for File |
Save, File | Save As..., and File | Open all assume that you want serialization implemented for your

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

document, and they already contain the code to support it. Let's take a look at the parts of the
definition and implementation of CSketcherDoc that relate to creating a document using

serialization.

Serialization in the Document Class Definition

The code in the definition of CSketcherDoc that enables serialization of a document object is

shown shaded in the following fragment:

 class CSketcherDoc : public CDocument

 {

 protected: // create from serialization only

 CSketcherDoc();

 DECLARE_DYNCREATE (CSketcherDoc)

 // Rest of the class...

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CSketcherDoc)

 public:

 virtual BOOL OnNewDocument();

 virtual void Serialize(CArchive& ar);

 //}}AFX_VIRTUAL

 // Rest of the class...

 };

There are three items here relating to serializing a document object:
1. The DECLARE_DYNCREATE() macro

2. The Serialize() member function

3. The default class constructor

DECLARE_DYNCREATE() is a macro which enables objects of the CSketcherDoc class to be

created dynamically by the application framework during the serialization input process. It's
matched by a complementary macro, IMPLEMENT_DYNCREATE(), in the class implementation.
These macros only apply to classes derived from CObject, but as we shall see shortly, they

aren't the only pair of macros that can be used in this context. For any class that you want to
serialize, CObject must be a direct or indirect base, since it adds the functionality that enables

serialization to work. This is why we took the trouble to derive our CElement class from
CObject. Almost all MFC classes are derived from CObject and, as such, are serializable.

FYI

The Hierarchy Chart, which you can find in the MSDN library under Visual C++
Documentation\Reference\MFC Library and Templates, shows those classes
which aren't derived from CObject. Note that CArchive is in this list.

The class definition also includes a declaration for a virtual function Serialize(). Every class

that's serializable must include this function. It's called to perform both input and output
serialization operations on the data members of the class. The object of type CArchive that's

passed as an argument to this function determines whether the operation that is to occur is

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

input or output. We'll look into this in more detail when we consider the implementation of
serialization for the document class.

Note that the class explicitly defines a default constructor. This is also essential for serialization
to work, as the default constructor will be used by the framework to synthesize an object when
reading from a disk file, which is then filled out with the data from the file to set the values of the
data members of the object.

Serialization in the Document Class Implementation

There are two bits of the file containing the implementation of CSketcherDoc that relate to
serialization. The first is the macro IMPLEMENT_DYNCREATE () that complements the

DECLARE_DYNCREATE() macro:

 // SketcherDoc.cpp : implementation of the CSketcherDoc class

 //

 #include "stdafx.h"

 #include "Sketcher.h"

 #include "PenDialog.h"

 #include "Elements.h"

 #include "SketcherDoc.h"

 #ifdef _DEBUG

 #define new DEBUG_NEW

 #undef THIS_FILE

 static char THIS_FILE[] = __FILE__;

 #endif

 //

 // CSketcherDoc

 IMPLEMENT_DYNCREATE(CSketcherDoc, CDocument)

 // Message maps and the rest of the file...

All this macro does is to define the base class for CSketcherDoc as CDocument. This is

required for the proper dynamic creation of a CSketcherDoc object, including members

inherited from the base class.

The Serialize() Function

The class implementation also includes the definition of the Serialize() function:

 void CSketcherDoc::Serialize(CArchive& ar)

 {

 if (ar.IsStoring())

 {

 // TODO: add storing code here

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 else

 {

 // TODO: add loading code here

 }

 }

This function serializes the data members of the class. The argument passed to the function is a
reference to an object of the CArchive class, ar. The IsStoring() member of this class
object returns TRUE if the operation is to store data members in a file, and FALSE if the

operation is to read back data members from a previously stored document.

Since AppWizard can have no knowledge of what data your document contains, the process of

writing and reading this information is up to you, as indicated by the comments. To understand
how this is done, we need to look a little more closely at the CArchive class.

The CArchive Class

The CArchive class is the engine that drives the serialization mechanism. It provides an MFC-

based equivalent of the stream operations in C++ that we used for reading from the keyboard,
and writing to the screen, in our console program examples. An object of the MFC class
CArchive provides a mechanism for streaming your objects out to a file, or recovering them

again as an input stream, automatically reconstituting the objects of your class in the process.

A CArchive object has a CFile object associated with it which provides disk input/output

capability for binary files, and provides the actual connection to the physical file. Within the
serialization process, the CFile object takes care of all the specifics of the file input and output

operations, and the CArchive object deals with the logic of structuring the object data to be

written or reconstructing the objects from the information read. You only need to worry about the
details of the associated CFile object if you are constructing your own CArchive object. With

our document in Sketcher, the framework has already taken care of it and passes the
CArchive object ar, that it constructs, to the Serialize() function in CSketcherDoc. We'll

be able to use the same object in each of the Serialize() functions we add to the shape

classes when we implement serialization for them.

CArchive overloads the extraction and insertion operators (>> and <<) for input and output

operations respectively on objects of classes derived from CObject, plus a range of basic data

types. These overloaded operators will work with the following types of objects:

Type Definition

float Standard single precision floating point.

double Standard double precision floating point.

BYTE 8-bit unsigned integer.

int 16-bit signed integer.

LONG 32-bit signed integer.

WORD 16-bit unsigned integer.

DWORD 32-bit unsigned integer.

CObject* Pointer to CObject.

CString A CString object defining a string.

SIZE and
CSize

An object defining a size as a cx, cy pair.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Type Definition

POINT and
CPoint

An object defining a point as an x, y pair.

RECT and
CRect

An object defining a rectangle by its top left and bottom right corners.

CTime A CTime object defines a time and a date.

CTimeSpan A CTimeSpan object contains a time interval in seconds, usually the

difference between two CTime objects.

For basic data types in your objects, you use the insertion and extraction operators to serialize

the data. To read or write an object of a serializable class which you have derived from
CObject, you can either call the Serialize() function for the object, or use the extraction or

insertion operator. Whichever way you choose must be used consistently for both input and
output, so you mustn't output an object using the insertion operator and then read it back using
the Serialize() function, or vice versa.

Where you don't know the type of an object when you read it, as in the case of the pointers in
the list of shapes in our document, for example, you must only use the Serialize() function.
This brings the virtual function mechanism into play, so the appropriate Serialize() function

for the type of object pointed to is determined at run time.

A CArchive object is constructed either for storing objects or for retrieving objects. The

CArchive function IsStoring() will return TRUE if the object is for output, and FALSE if the
object is for input. We saw this function used in the if statement in the Serialize() member

of the CSketcherDoc class.

There are many other member functions of the CArchive class which are concerned with the

detailed mechanics of the serialization process, but you don't usually need to know about them
to use serialization in your programs.

Functionality of CObject-based Classes

There are three levels of functionality available in your classes when they're derived from the
MFC class CObject. The level you get in your class is determined by which of three different

macros you use in the definition of your class:

Macro Functionality

DECLARE_DYNAMIC() Support for run-time class information.

DECLARE_DYNCREATE() Support for run-time class information and dynamic object
creation.

DECLARE_SERIAL() Support for run-time class information, dynamic object creation
and serialization of objects.

Each of these requires a complementary macro, named with the prefix IMPLEMENT_ instead of

DECLARE_, to be placed in the file containing the class implementation. As the table indicates,

the macros provide progressively more functionality, so we'll concentrate on the third macro,
DECLARE_SERIAL(), since it provides everything that the preceding macros do and more. This

is the macro you should use to enable serialization in your own classes. It requires the macro
IMPLEMENT_SERIAL() to be added to the file containing the class implementation.

You may be wondering why the document class uses DECLARE_DYNCREATE() and not
DECLARE_SERIAL(). The DECLARE_DYNCREATE() macro provides the capability for dynamic

creation of the objects of the class in which it appears. The DECLARE_SERIAL() macro

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

provides the capability for serialization of the class, plus the dynamic creation of objects of the
class, so it incorporates the effects of DECLARE_DYNCREATE(). Your document class doesn't

need serialization, since the framework only has to synthesize the document object and then
restore the values of its data members. However, the data members of a document do need to
be serializable, as this is the process used to store and retrieve them.

The Macros Adding Serialization to a Class

With the DECLARE_SERIAL() macro in the definition of your CObject-based class, you get

access to the serialization support provided by CObject. This includes special new and
delete operators that incorporate memory leak detection in debug mode. You don't need to do

anything to use this, as it works automatically.

The macro requires the class name to be specified as an argument, so for serialization of the
CElement class, you would add the following line to the class definition:

 DECLARE_SERIAL (CElement)

Important

There's no semicolon required here since this is a macro, not a C++
statement.

It doesn't matter where you put the macro within the class definition (as long as it's not in a
section that ClassWizard maintains), but if you always put it as the first line, then you'll always
be able to verify that it's there, even when the class definition involves many lines of code.

The macro IMPLEMENT_SERIAL(), which you need to place in the implementation file for your

class, requires three arguments to be specified. The first argument is the name of your class,
the second is the direct base class, and the third argument is an unsigned 32-bit integer
identifying a schema number, or version number, for your program. This schema number
allows the serialization process to guard against problems that can arise if you write objects with
one version of a program and read them with another, in which the classes may be different.

For example, we could add the following line to the implementation of the CElement class:

 IMPLEMENT_SERIAL(CElement, CObject, 1)

If we subsequently modified the class definition, we would change the schema number to 2,

say. If the program attempts to read data that was written with a different schema number from
that in the currently active program, an exception will be thrown. The best place for this macro is
as the first line following the #includes and any initial comments in the .cpp file.

Where CObject is an indirect base of a class, as in the case of our CLine class, for example,

each class in the hierarchy must have the serialization macros added for serialization to work in
the top level class. For serialization in CLine to work, the macros must also be added to

CElement.

How Serialization Works

The overall process of serializing a document is illustrated in a simplified form below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Serialize() function in the document object needs to call the Serialize() function (or

use an overloaded insertion operator) for each of its data members. Where a member is a class
object, the Serialize() function for that object will serialize each of its data members in turn,

until ultimately basic data types are written to the file. Since most classes in MFC ultimately
derive from CObject, they contain serialization support, so you can almost always serialize

objects of MFC classes.

The data that you'll deal with in the Serialize() member functions of your classes and the

application document object will, in each case, be just the data members. The structure of the
classes involved, and any other data necessary to reconstitute your original objects, is
automatically taken care of by the CArchive object.

Where you derive multiple levels of classes from CObject, the Serialize() function in a

class must call the Serialize() member of its direct base class to ensure that the direct base

class data members are serialized. Note that serialization doesn't support multiple inheritance,
so there can only be one base class for each class defined in a hierarchy.

How to Implement Serialization for a Class

From the previous discussion, we can summarize the actions that you need to take to add
serialization to a class:

1. Make sure that the class is derived directly or indirectly from CObject.
2. Add the DECLARE_SERIAL() macro to the class definition (and to the direct base class

if the direct base is not CObject).

3. Declare the function Serialize() as a member function of your class.
4. Add the IMPLEMENT_SERIAL() macro to the file containing the class implementation.

5. Implement the Serialize() function for your class.

Let's now see how we can implement serialization for documents in our Sketcher program.

Applying Serialization

To implement serialization in the Sketcher application, we need to complete the Serialize()

function in CSketcherDoc to deal with all of the data members of that class. We need then to

add serialization to each of the classes which specify objects that may be included in a
document. Before we start adding serialization to our application classes, let's make some small
changes to the program to record when we change the document. This isn't absolutely

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

necessary, but it is highly desirable, since it will enable the program to guard against the
document being closed without saving changes.

Recording Document Changes

There's already a mechanism for noting when a document changes; it uses an inherited
member of CSketcherDoc, SetModifiedFlag(). By calling this function consistently

whenever the document changes, you record the fact that the document has been altered in a
data member of the document class object. This will cause a prompt to be displayed
automatically when you try to exit the application without saving the modified document. The
argument to the function SetModifiedFlag() is a value of type BOOL, and the default value
is TRUE. If you have occasion to specify that the document was unchanged, you can call this

function with the argument FALSE, although circumstances where this is necessary are rare.

There are only three occasions when we alter a document object:
1. When we call the AddElement() member of CSketcherDoc to add a new element.

2. When we call the DeleteElement() member of CSketcherDoc to delete an

element.
3. When we move an element.

All three situations are very easy to deal with. All we need to do is add a call to
SetModifiedFlag() to each of the functions involved in these operations. The definition of

AddElement() appears in the class definition. You can extend this to:

 void AddElement(CElement* pElement) // Add an element to the
list

 {

 m_ElementList.AddTail(pElement);

 SetModifiedFlg(); // Set the modified flag

 }

You can get to the definition of DeleteElement() by clicking on its member name in the

ClassView. You should add one line to it, as follows:

 void CSketcherDoc::DeleteElement(CElement* pElement)

 {

 if(pElement)

 {

 // If the element pointer is valid,

 // find the pointer in the list and delete it

 SetModifiedFlag(); // Set the modified flag

 POSITION aPosition = m_ElementList.Find(pElement);

 m_ElementList.RemoveAt(aPosition);

 delete pElement; // Delete the element from the
heap

 }

 }

Note that we must only set the flag if pElement is not NULL, so you can't just stick the function

call anywhere.

In a view object, moving an element occurs in the MoveElement() member called by the

handler for the WM_MOUSEMOVE message, but we only actually change the document when the

left mouse button is pressed. If there's a right button click, the element is put back to its original

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

position, so you only need to add a line to the OnLButtonDown() function calling the
SetModifiedFlag() function for the document, as follows:

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 CClientDC aDC(this); // Create a device
context

 OnPrepareDC (&aDC) ; // Get origin adjusted

 aDC.DPtoLP(&point); // convert point to
Logical

 if(m_MoveMode)

 {

 // In moving mode, so drop the element

 m_MoveMode = FALSE; // Kill move mode

 m_pSelected = 0; // De-select element

 GetDocument()->UpdateAllViews(0); // Redraw all the views

 GetDocument()->SetModifiedFlag(); // Set the modified
flag

 }

 // Rest of the function as before...

 }

We just need to call the inherited member of our view class, GetDocument(), to get access to
a pointer to the document object, and then use this pointer to call the SetModifiedFlag()

function. We now have all the places where we change the document covered.

If you build and run Sketcher, and modify a document or add elements to it, you'll now get a

prompt to save the document when you exit the program. Of course, the File | Save menu option
doesn't do anything yet, except to clear the modified flag and save an empty file to disk. We
need to implement serialization to get the document written away to disk properly, and that's the
next step.

Serializing the Document

The first step is the implementation of the Serialize() function for the CSketcherDoc class.
Within this function, we must add code to serialize the data members of CSketcherDoc. The

data members that we have declared in the class are as follows:

 class CSketcherDoc : public CDocument

 {

 protected: // create from serialization only

 CSketcherDoc();

 DECLARE_DYNCREATE(CSketcherDoc)

 // Attributes

 public:

 protected:

 COLORREF m_Color; // Current
drawing color

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 WORD m_Element; // Current
element type

 CTypedPtrList<CObList, CElement*> m_ElementList; // Element list

 int m_PenWidth; // Current pen
width

 CSize m_DocSize; // Document
size

 // Rest of the class...

 };

All we need to do is to insert the statements to store and retrieve these five data members in the
Serialize() member of the class. We can do this with the following code:

 void CSketcherDoc::Serialize(CArchive& ar)

 {

 m_ElementList.Serialize(ar); // Serialize the element list

 if (ar.IsStoring())

 {

 ar << m_Color // Store the current color

 << m_Element // the current element type,

 << m_PenWidth // and the current pen width

 << m_DocSize; // and the current document size

 }

 else

 {

 ar >> m_Color // Retrieve the current color

 >> m_Element // the current element type,

 >> m_PenWidth // and the current pen width

 >> m_DocSize; // and the current document size

 }

 }

For four of the data members, we just use the extraction and insertion operators overloaded by
CArchive. This works for the data member m_Color, even though its type is COLORREF,

because type COLORREF is the same as type long. We can't use the extraction and insertion
operators for m_ElementList because its type isn't supported by the operators. However, as

long as the CTypedPtrList class is defined from the collection class template using

CObList, as we've done in the declaration of m_ElementList, the class will automatically
support serialization. We can, therefore, just call the Serialize() function for the object.

We don't need to place calls to the Serialize() member of the object m_ElementList in
the if-else statement because the kind of operation to be performed will be determined

automatically by the CArchive argument ar. The single statement calling the Serialize()
member of m_ElementList will take care of both input and output.

That's all we need for serializing the document class data members, but serializing the element
list, m_ElementList, will cause the Serialize() functions for the element classes to be

called to store and retrieve the elements themselves. Therefore, we also need to implement
serialization for those classes.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Serializing the Element Classes

All the shape classes are serializable because we derived them from their base class
CElement, which in turn is derived from CObject. The reason that we specified CObject as
the base for CElement was solely to get support for serialization. We can now add support for

serialization to each of the shape classes by adding the appropriate macros to the class
definitions and implementations. We must also add code to the Serialize() function member

of each class to serialize its data members. We can start with the base class, CElement, where

you need to modify the class definition as follows:

 class CElement: public CObject

 {

 DECLARE_SERIAL(CElement)

 protected:

 COLORREF m_Color; // Color of an element

 CRect m_EnclosingRect; // Rectangle enclosing an
element

 int m_Pen; // Pen width

 public:

 virtual ~CElement(){} // Virtual destructor

 // Virtual draw operation

 virtual void Draw(CDC* pDC, const CElement* pElement=0) const {}

 virtual void Move(const CSize& aSize){} // Move an element

 CRect GetBoundRect() const; // Get bounding rectangle
for an element

 virtual void Serialize(CArchive& ar); // Serialize function for
CElement

 protected:

 CElement(){} // Default constructor

};

We have added the DECLARE_SERIAL() macro and a declaration for the virtual function

Serialize().

We already had the default constructor defined as protected in the class, although in fact it

doesn't matter what its access specification is, as long as it appears explicitly in the class
definition. It can be public, protected, or private, and serialization will still work. If you

forget to include it, though, you'll get an error message when the IMPLEMENT_SERIAL()

macro is compiled.

You should add the DECLARE_SERIAL() macro to each of the classes CLine,

CRectangle, CCircle, CCurve and CText, with the relevant class name as the argument.
You should also add a declaration for the Serialize() function as a public member of each

class.

In the file Elements.cpp, you must add the following macro at the beginning:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 IMPLEMENT_SERIAL(CElement, CObject, VERSION_NUMBER)

You can define the constant VERSION_NUMBER in the OurConstants.h file by adding the

lines:

 // Program version number for use in serialization

 const UINT VERSION_NUMBER = 1;

You can then use the same constant when you add the macro for each of the other shape
classes. For instance, for the CLine class you should add the line,

 IMPLEMENT_SERIAL(CLine, CElement, VERSION_NUMBER)

and similarly for the other shape classes. When you modify any of the classes relating to the
document, all you need to do is change the definition of VERSION_NUMBER in the
OurConstants.h file, and the new version number will apply in all your Serialize()

functions. You can put all the IMPLEMENT_SERIAL() statements at the beginning of the
Elements.cpp file if you like. The complete set is:

 IMPLEMENT_SERIAL(CElement, CObject, VERSION_NUMBER)

 IMPLEMENT_SERIAL(CLine, CElement, VERSION_NUMBER)

 IMPLEMENT_SERIAL(CRectangle, CElement, VERSION_NUMBER)

 IMPLEMENT_SERIAL(CCircle, CElement, VERSION_NUMBER)

 IMPLEMENT_SERIAL(CCurve, CElement, VERSION_NUMBER)

 IMPLEMENT_SERIAL(CText, CElement, VERSION_NUMBER)

The Serialize() Functions for the Shape Classes

We need to implement the Serialize() member function for each of the shape classes. We

can start with the CElement class:

 void CElement::Serialize(CArchive& ar)

 {

 CObject::Serialize(ar); // Call the base class function

 if (ar.IsStoring())

 {

 ar << m_Color // Store the color,

 << m_EnclosingRect // and the enclosing rectangle,

 << m_Pen; // and the pen width

 }

 else

 {

 ar >> m_Color // Retrieve the color,

 >> m_EnclosingRect // and the enclosing rectangle,

 >> m_Pen; // and the pen width

 }

 }

This function is of the same form as the one supplied for us in the CSketcherDoc class. All of

the data members defined in CElement are supported by the overloaded extraction and

insertion operators, and so everything is done using those operators. Note that we must call the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Serialize() member for the CObject class to ensure that the inherited data members are

serialized.

For the CLine class, you can code the function as:

 void CLine::Serialize(CArchive& ar)

 {

 CElement::Serialize(ar); // Call the base class function

 if (ar.IsStoring())

 {

 ar << m_StartPoint // Store the line start point,

 << m_EndPoint; // and the end point

 }

 else

 {

 ar >> m_StartPoint // Retrieve the line start
point,

 >> m_EndPoint; // and the end point

 }

 }

Again, the data members are all supported by the extraction and insertion operators of the
CArchive object ar. We call the Serialize() member of the base class CElement to
serialize its data members, and this will call the Serialize() member of CObject. You can

see how the serialization process cascades through the class hierarchy.

The Serialize() function member of the CRectangle class is very simple:

 void CRectangle::Serialize(CArchive& ar)

 {

 CElement::Serialize(ar); // Call the base class
function

 }

All it does is to call the direct base class function, since the class has no additional data

members.

The CCircle class doesn't have additional data members beyond those inherited from

CElement either, so its Serialize() function also just calls the base class function:

 void CCircle::Serialize(CArchive& ar)

 {

 CElement::Serialize(ar); // Call the base class function

 }

For the CCurve class, we have surprisingly little work to do. The Serialize() function is

coded as follows:

 void CCurve::Serialize(CArchive& ar)

 {

 CElement::Serialize(ar); // Call the base class function

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_PointList.Serialize(ar); // Serialize the list of points

 }

After calling the base class Serialize() function, we just call the Serialize() function for
the CList object, m_PointList. Objects of any of the CList, CArray, and CMap classes can

be serialized in this way, as once again, these classes are all derived from CObject.

The last class for which we need to add an implementation of Serialize() to
Elements.cpp is CText:

 void CText::Serialize(CArchive& ar)

 {

 CElement::Serialize(ar); // Call the base class function

 if (ar.IsStoring())

 {

 ar << m_StartPoint // Store the start point

 << m_String; // and the text string

 }

 else

 {

 ar >> m_StartPoint // Retrieve the start point

 >> m_String; // and the text string

 }

 }

After calling the base class function, we serialize the two data members using the insertion and
extraction operators in ar. The class CString, although not derived from CObject is still fully
supported by CArchive with these overloaded operators.

Exercising Serialization

That's all we need for storing and retrieving documents in our program! The save and restore
menu options in the file menu are now fully operational without adding any more code. If you
build and run Sketcher after incorporating the changes we've discussed in this chapter, you'll be
able to save and restore files, and be automatically prompted to save a modified document
when you try to close it or exit from the program, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This works because of the SetModifiedFlag() calls that we added everywhere we update

the document. If you click on the Yes button in the screen above, you'll see the File | Save As...
dialog shown here:

This is the standard dialog for this menu item under Windows 95. It's all fully working, supported
by code supplied by the framework. The file name for the document has been generated from
that assigned when the document was first opened, and the file extension is automatically
defined as .ske. Our application now has full support for file operations on documents. Easy,

wasn't it?

Moving Text

Now it's time to take a brief digression to go back and fix a problem that we created in the last

chapter. You'll remember that whenever you try to move a text element, it leaves a trail behind it
until the text is positioned on the document again. This is caused by our reliance on ROP
drawing in the MoveElement() member of the view:

 void CSketcherView::MoveElement(CClientDC& aDC,const CPoint& point)

 {

 CSize Distance = point - m_CursorPos; // Get move distance

 m_CursorPos = point; // Set current point as 1st for
next time

 // If there is an element, selected, move it

 if(m_pSelected)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 aDC.SetROP2(R2_NOTXORPEN);

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the element to
erase it

 m_pSelected->Move(Distance); // Now move the element

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the moved
element

 }

 }

As we mentioned, setting the drawing mode of the device context to R2_NOTXORFEN won't

remove the trail left by moving the text. We could get around this by using a method of
invalidating the rectangles that are affected by the moving elements so that they redraw
themselves. This can, however, cause some annoying flicker when the element is moving fast.
A better solution would be to use the invalidation method only for the text elements, and our
original ROP method for all the other elements, but how are we to know which class the
selected element belongs to? This is surprisingly simple: we can use an if statement, as

follows:

 if (m_pSelected->IsKindOf(RUNTIME_CLASS(CText)))

 {

 // Code here will only be executed if the selected element is of
class CText

 }

This uses the RUNTIME_CLASS macro to get a pointer to an object of type CRuntimeClass,

then passes this pointer to the IsKindOf() member function of m_pSelected. This returns a
non-zero result if m_pSelected is of class CText, and returns zero otherwise. The only

proviso is that the class we're checking for must be declared using either of the
DECLARE_DYNCREATE or DECLARE_SERIAL macros, which is why we left this fix until now.

The final code for MoveElement() will be as follows:

 void CSketcherView::MoveElement(CClientDC& aDC, const CPoint&
point)

 {

 CSize Distance = point - m_CursorPos; // Get move distance

 m_CursorPos = point; // Set current point as 1st for
next time

 // If there is an element, selected, move it

 if(m_pSelected)

 {

 // If the element is text use this method...

 if (m_pSelected->IsKindOf(RUNTIME_CLASS(CText)))

 {

 CRect OldRect=m_pSelected->GetBoundRect(); // Get old
bound rect

 m_pSelected->Move(Distance); // Move the
element

 CRect NewRect=m_pSelected->GetBoundRect(); // Get new
bound rect

 OldRect.UnionRect(&OldRect,&NewRect); // Combine the
bound rects

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 aDC.LPtoDP(OldRect); // Convert to
client coords

 OldRect.NormalizeRect(); // Normalize
combined area

 InvalidateRect(&OldRect); // Invalidate
combined area

 UpdateWindow(); // Redraw

immediately

 m_pSelected->Draw(&aDC,m_pSelected); // Draw
highlighted

 return;

 }

 // ...otherwise, use this method

 aDC.SetROP2(R2_NOTXORPEN);

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the element to
erase it

 m_pSelected->Move(Distance); // Now move the element

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the moved element

 }

 }

You can see that the code for invalidating the rectangles that we need to use for moving the text

is much less elegant than the ROP code that we use for all the other elements. It works, though,
as you'll be able to see for yourself if you make this modification and build and run the
application.

Moving Text

Now it's time to take a brief digression to go back and fix a problem that we created in the last

chapter. You'll remember that whenever you try to move a text element, it leaves a trail behind it
until the text is positioned on the document again. This is caused by our reliance on ROP
drawing in the MoveElement() member of the view:

 void CSketcherView::MoveElement(CClientDC& aDC,const CPoint& point)

 {

 CSize Distance = point - m_CursorPos; // Get move distance

 m_CursorPos = point; // Set current point as 1st for
next time

 // If there is an element, selected, move it

 if(m_pSelected)

 {

 aDC.SetROP2(R2_NOTXORPEN);

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the element to
erase it

 m_pSelected->Move(Distance); // Now move the element

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the moved
element

 }

 }

As we mentioned, setting the drawing mode of the device context to R2_NOTXORFEN won't

remove the trail left by moving the text. We could get around this by using a method of
invalidating the rectangles that are affected by the moving elements so that they redraw
themselves. This can, however, cause some annoying flicker when the element is moving fast.
A better solution would be to use the invalidation method only for the text elements, and our
original ROP method for all the other elements, but how are we to know which class the
selected element belongs to? This is surprisingly simple: we can use an if statement, as

follows:

 if (m_pSelected->IsKindOf(RUNTIME_CLASS(CText)))

 {

 // Code here will only be executed if the selected element is of
class CText

 }

This uses the RUNTIME_CLASS macro to get a pointer to an object of type CRuntimeClass,

then passes this pointer to the IsKindOf() member function of m_pSelected. This returns a
non-zero result if m_pSelected is of class CText, and returns zero otherwise. The only

proviso is that the class we're checking for must be declared using either of the
DECLARE_DYNCREATE or DECLARE_SERIAL macros, which is why we left this fix until now.

The final code for MoveElement() will be as follows:

 void CSketcherView::MoveElement(CClientDC& aDC, const CPoint&

point)

 {

 CSize Distance = point - m_CursorPos; // Get move distance

 m_CursorPos = point; // Set current point as 1st for
next time

 // If there is an element, selected, move it

 if(m_pSelected)

 {

 // If the element is text use this method...

 if (m_pSelected->IsKindOf(RUNTIME_CLASS(CText)))

 {

 CRect OldRect=m_pSelected->GetBoundRect(); // Get old
bound rect

 m_pSelected->Move(Distance); // Move the
element

 CRect NewRect=m_pSelected->GetBoundRect(); // Get new
bound rect

 OldRect.UnionRect(&OldRect,&NewRect); // Combine the

bound rects

 aDC.LPtoDP(OldRect); // Convert to
client coords

 OldRect.NormalizeRect(); // Normalize
combined area

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 InvalidateRect(&OldRect); // Invalidate
combined area

 UpdateWindow(); // Redraw
immediately

 m_pSelected->Draw(&aDC,m_pSelected); // Draw
highlighted

 return;

 }

 // ...otherwise, use this method

 aDC.SetROP2(R2_NOTXORPEN);

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the element to

erase it

 m_pSelected->Move(Distance); // Now move the element

 m_pSelected->Draw(&aDC,m_pSelected); // Draw the moved element

 }

 }

You can see that the code for invalidating the rectangles that we need to use for moving the text

is much less elegant than the ROP code that we use for all the other elements. It works, though,
as you'll be able to see for yourself if you make this modification and build and run the
application.

Summary

In this chapter, we've seen how to get a document stored on disk in a form that allows us to
read it back and reconstruct its constituent objects using the serialization process supported by
MFC. To implement serialization for classes defining document data, you must:
§ Derive your class directly or indirectly from CObject.

§ Specify the DECLARE_SERIAL() macro in your class definition.

§ Specify the IMPLEMENT_SERIAL() macro in your class implementation.

§ Implement a default constructor in your class.
§ Declare the Serialize() function in your class.

§ Implement the Serialize() function in your class to serialize all the data members.

The serialization process uses a CArchive object to perform the input and output. You use the
CArchive object passed to the Serialize() function to serialize the data members of the

class.

Implementing classes for serialization also has the side-effect that it allows us access to run-
time class information using the RUNTIME_CLASS macro and the IsKindOf() function.

We have also seen how MFC supports output to a printer. To add to the basic printing capability

provided by default, you can implement your own versions of the view class functions involved
in printing a document. The principal roles of each of these functions are:

Function Role

OnPreparePrinting() Determine the number of pages in the document and call the
view member DoPreparePrinting().

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Function Role

OnBeginPrinting() Allocate the resources required in the printer device context
which are needed throughout the printing process, and
determine the number of pages in the document (where this is
dependent on information from the device context).

OnPrepareDC() Set attributes in the printer device context as necessary.

OnPrint() Print the document.

OnEndPrinting() Delete any GDI resources created in OnBeginPrinting()

and do any other necessary clean-up.

Information relating to the printing process is stored in an object of type CPrintInfo that's

created by the framework. You can store additional information in the view, or in another object
of your own. If you use your own class object, you can keep track of it by storing a pointer to it in
the CPrintInfo object.

Exercises

1. Add some code to the OnPrint() function so that the page number is printed at the
bottom of each page of the document in the form 'Page n '. If you use the features of
the CString class, you can do this with just 3 extra lines!

2. As a further enhancement to the CText class, change the implementation so that
scaling works properly. (Hint—look up the CreatePointFont() function in the
MSDN library.)

Answers

1. Printing page numbers. These are the lines you need to add to OnPrint():

 …

 // Output the document file name

 pDC->SetTextAlign(TA_CENTER); // Center the
following text

 pDC->TextOut(pInfo- >m_rectDraw.right/2, -20, pPrintData-
>m_DocTitle);

 CString PageNum;

 PageNum.Format("Page %d", pInfo->m_nCurPage);

 pDC->TextOut(pInfo->m_rectDraw.right/2, -1050, PageNum);

 pDC->SetTextAlign(TA_LEFT); // Left justify text

 …

Using CString, it's easy! You create a string object, initialize it using the member function
Format() with the m_nCurPage value we're already using elsewhere in OnPrint(), and

output it just as we did with the document title (although in a different position, of course).

2. Scaling text correctly is a matter of working out how and where to specify the font to be used.
In fact, you need to do it twice: once in the CText::Draw() function, and then again in
CSketcherView::OnLButtonDown(), to make sure that the text rectangle gets set up

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

correctly. Here are the changes to CText::Draw():

 void CText::Draw(CDC* pDC, CElement* pElement)

 {

 CFont aFont;

 aFont.CreatePointFont(100, "");

 CFont* pOldFont = pDC->SelectObject(&aFont);

 COLORREF Color(m_Color); // Initialize with element
color

 if(this==pElement)

 Color = SELECT_COLOR; // Set selected color

 // Set the text color and output the text

 pDC->SetTextColor(Color);

 pDC->TextOut(m_StartPoint.x, m_StartPoint.y, m_String);

 pDC->SelectObject(pOldFont);

 }

The new code simply creates a new object of the CFont class, calls its member function

CreatePointFont() to select a default 10 point font, selects it into the device context
before the text is output, and selects it out again afterwards. Four very similar lines get added
to CSketcherView::OnLButtonDown():

 if(pDoc->GetElementType() == TEXT)

 {

 CTextDialog aDlg;

 if(aDlg.DoModal() == IDOK)

 {

 // Exit OK so create a text element

 CFont aFont;

 aFont.CreatePointFont(100,

 CFont* pOldFont = aDC.SelectObject(&aFont);

 CSize TextExtent =
aDC.GetTextExtent(aDlg.m_TextString);

 // Get bottom right of text rectangle - MM_LOENGLISH

 CPoint BottomRt(point.x+TextExtent.cx, point.y-
TextExtent.cy);

 CText* pTextElement = new CText(point, BottomRt,

 aDlg.m_TextString, pDoc-
>GetElementColor());

 // Add the element to the document

 pDoc->AddElement(pTextElement);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Get all views updated

 pDoc->UpdateAllViews(0,0,pTextElement);

 aDC.SelectObject(pOldFont);

 }

 return;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 19: Writing Your Own DLLs

Overview

In this chapter, we'll be investigating a different kind of library from the static libraries that
contain standard C++ functions such as sqrt() or rand(). These libraries are called

dynamic-link libraries, or DLLs, and they provide a very powerful way of storing and
managing standard library functions that is integral to the Windows environment. They also
provide much more flexibility than static libraries.

A complete discussion of DLLs is outside the scope of a beginner's book, but they are important
enough to justify including an introductory chapter on them. In this chapter, you will learn:

§ What a DLL is and how it works
§ When you should consider implementing a DLL
§ What varieties of DLL are possible and what they are used for

§ How you can extend MFC using a DLL
§ How to define what is accessible in a DLL
§ How to access the contents of a DLL in your programs

Understanding DLLs

Almost all programming languages support libraries of standard code modules for commonly
used functions. In C++ we've been using lots of functions stored in standard libraries, such as
the ceil() function that we used in the previous chapter, which is declared in the math.h

header file. The code for this function is stored in a library file with the extension .lib, and

when the executable module for the Sketcher program was created, the linker retrieved the
code for this standard function from the library file and integrated a copy of it into the .exe file

for the Sketcher program.

If you write another program and use the same function, it too will have its own copy of the
ceil() function. The ceil() function is statically linked to each application, and is an

integral part of each executable module, as illustrated here:

While this is a very convenient way of using standard functions with minimal effort on your part,
it does have its disadvantages as a way of sharing common functions in the Windows

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

environment. Since Windows can execute several programs simultaneously, a statically linked
standard function being used by more than one program concurrently will be duplicated in
memory for each program using it. This may not seem to matter very much for the ceil()

function, but some functions — input and output, for instance — will invariably be common to
most programs and are likely to occupy sizable chunks of memory. Having these statically
linked would be extremely inefficient.

Another consideration is that a standard function from a static library may be linked into

hundreds of programs in your system, so identical copies of the code for them will be occupying
disk space in the .exe file for each program. For these reasons, an additional library facility is

supported by Windows for standard functions. It's called a Dynamic Link Library, and it's
usually abbreviated to DLL. This allows one copy of a function to be shared among several
concurrently executing programs and avoids the need to incorporate a copy of the code for a
library function into a program that uses it.

How DLLs Work

A dynamic link library is a file containing a collection of modules that can be used by any
number of different programs. The file usually has the extension .dll, but this isn't obligatory.

When naming a DLL, you can assign any extension that you like, but this can affect how they're
handled by Windows. Windows automatically loads dynamic link libraries that have the
extension .dll. If they have some other extension, you will need to load them explicitly by
adding code to do this to your program. Windows itself uses the extension .exe for some of its

DLLs. You're also likely to have seen the extensions .vbx and .ocx, which are applied to DLLs

containing specific kinds of controls.

You might imagine that you have a choice about whether or not you use dynamic-link libraries in
your program, but you don't. The Win32 API is used by every Windows 95 program, and the API
is implemented in a set of DLLs. DLLs really are fundamental to Windows programming.

Connecting a function in a DLL to a program is achieved differently from the process used with

a statically linked library, where the code is incorporated once and for all when the program is
linked to generate the executable module. A function in a DLL is only connected to a program
that uses it when the application is run, and this is done on each occasion the program is
executed, as illustrated here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This illustrates what happens when three programs that use a function in a DLL are started

successively, and then all execute concurrently. No code from the DLL is included in the
executable module of any of the programs. When one of the programs is executed, the program
is loaded into memory, and if the DLL it uses isn't already present, it too is loaded separately.
The appropriate links between the program and the DLL are then established. If, when a
program is loaded, the DLL is already there, all that needs to be done is to link the program to
the required function in the DLL.

Note particularly that when your program calls a function in a DLL, Windows will automatically
load the DLL into memory. Any program that's subsequently loaded into memory which uses the
same DLL can use any of the capabilities provided by the same copy of the DLL, since
Windows recognizes that the library is already in memory and just establishes the links between
it and the program. Windows keeps track of how many programs are using each DLL that is
resident in memory so that the library will remain in memory as long as at least one program is
still using it. When a DLL is no longer used by any executing program, Windows will
automatically delete it from memory.

MFC is provided in the form of a number of DLLs that your program can link to dynamically, as
well as a library which your program can link to statically. By default, AppWizard generates
programs that link dynamically to the DLL form of MFC.

Having a function stored in a DLL introduces the possibility of changing the function without

affecting the programs that use it. As long as the interface to the function in the DLL remains the
same, the programs can use a new version of the function quite happily, without the need for re-
compiling or re-linking them. Unfortunately, this also has a downside: it's very easy to end up
using the wrong version of a DLL with a program. This can be a particular problem with
applications that install DLLs in the Windows System folder. Some commercial applications
arbitrarily write the DLLs associated with the program to this folder without regard to the
possibility of a DLL with the same name being overwritten. This can interfere with other
applications you've already installed and, in the worst case, can render them inoperable.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Run-time Dynamic Linking

The DLL that we'll create in this chapter will be automatically loaded into memory when the
program that uses it is loaded into memory for execution. This is referred to as load-time
dynamic linking or early binding, because the links to the functions used are established as
soon as the program and DLL have been loaded into memory. This kind of operation was
illustrated in the previous diagram.

However, this isn't the only choice available. It's also possible to cause a DLL to be loaded after
execution of a program has started. This is called run-time dynamic linking, or late binding.
The sequence of operations that occurs with this is illustrated in the following diagram:

Run-time dynamic linking enables a program to defer linking of a DLL until it's certain that the
functions in a DLL are required. This will allow you to write a program that can choose to load
one or more of a number of DLLs based upon input to the program, so that only those functions
that are necessary are actually loaded into memory. In some circumstances, this can drastically
reduce the amount of memory required to run a program.

A program implemented to use run-time dynamic linking calls a function LoadLibrary() to

load the DLL when it's required. The address of a function within the DLL can then be obtained
using a function GetProcAddress(). When the program no longer has a need to use the DLL,

it can detach itself from the DLL by calling the FreeLibrary () function. If no other program

is using the DLL, it will be deleted from memory. We won't be going into further details of how
this works in this book.

Contents of a DLL

A dynamic-link library isn't limited to storing code for functions. You can also put resources into
a DLL, including such things as bitmaps and fonts. The Solitaire game that comes with
Windows uses a dynamic-link library called Cards.dll which contains all the bitmap images of

the cards and functions to manipulate them. If you wanted to write your own card game, you
could conceivably use this DLL as a base and save yourself the trouble of creating all the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

bitmaps needed to represent the cards. Of course, in order to use it, you would need to know
specifically which functions and resources are included in the DLL.

You can also define static global variables in a DLL, including C++ class objects, so that these
can be accessed by programs using it. The constructors for global static class objects will be
called automatically when such objects are created. You should note that each program using a
DLL will get its own copy of any static global objects defined in the DLL, even though they may
not necessarily be used by a program. For global class objects, this will involve the overhead of
calling a constructor for each. You should, therefore, avoid introducing such objects into a DLL
unless they are absolutely essential.

The DLL Interface

You can't access just anything that's contained in a DLL. Only items specifically identified as

exported from a DLL are visible to the outside world. Functions, classes, global static variables
and resources can all be exported from a DLL, and those that are make up the interface to it.
Anything that isn't exported can't be accessed from the outside. We'll see how to export items
from a DLL later in this chapter.

The DllMain() Function

Even though a DLL isn't executable as an independent program, it does contain a special
variety of the main() function, called DllMain(). This is called by Windows when the DLL is

first loaded into memory to allow the DLL to do any necessary initialization before its contents
are used. Windows will also call DllMain() just before it removes the DLL from memory to

enable the DLL to clean up after itself if necessary. There are also other circumstances where
DllMain() is called, but these situations are outside the scope of this book.

Varieties of DLL

There are three different kinds of DLL that you can build with Visual C++ using MFC: an MFC

extension DLL, a regular DLL with MFC statically linked, and a regular DLL with MFC
dynamically linked.

MFC Extension DLL

You build this kind of DLL whenever it's going to include classes that are derived from the MFC.

Your derived classes in the DLL effectively extend the MFC. The MFC must be accessible in the
environment where your DLL is used, so all the MFC classes are available together with your
derived classes — hence the name 'MFC extension DLL'. However, deriving your own classes
from the MFC isn't the only reason to use an MFC extension DLL. If you're writing a DLL that
includes functions which pass pointers to MFC class objects to functions in a program using it,
or which receive such pointers from functions in the program, then you must create it as an
MFC extension DLL.

Accesses to classes in the MFC by an extension DLL are always resolved dynamically by
linking to the shared version of MFC that is itself implemented in DLLs. An extension DLL is
created using the shared DLL version of the MFC, so when you use an extension DLL, the
shared version of MFC must be available. An MFC extension DLL can be used by a normal
AppWizard generated application. It requires the option Use MFC in a Shared DLL to be selected
under the General tab of the project settings, which you access through the Project | Settings...
menu option. This is the default selection with an AppWizard-generated program. Because of
the fundamental nature of the shared version of the MFC in an extension DLL, an MFC
extension DLL can't be used by programs that are statically linked to MFC.

Regular DLL - Statically Linked to MFC

This is a DLL that uses MFC classes which are linked statically. Use of the DLL doesn't require
MFC to be available in the environment in which it is used because the code for all the classes it

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

uses will be incorporated into the DLL. This will bulk up the size of the DLL, but the big
advantage is that this kind of DLL can be used by any Win32 program, regardless of whether it
uses MFC.

Regular DLL - Dynamically Linked to MFC

This is a DLL that uses dynamically linked classes from MFC but doesn't add classes of its own.
This kind of DLL can be used by any Win32 program regardless of whether it uses MFC itself,
but use of the DLL does require the MFC to be available in the environment.

You can use the AppWizard to build all three types of DLL that use MFC. You can also create a

project for a DLL that doesn't involve MFC at all, by selecting the project type as Dynamic-Link
Library.

Deciding What to Put in a DLL

How do you decide when you should use a DLL? In most cases, the use of a DLL provides a
solution to a particular kind of programming problem, so if you have the problem, a DLL can be
the answer. The common denominator is often sharing code between a number of programs,
but there are other instances where a DLL provides advantages. The kinds of circumstance
where putting code or resources in a DLL provides a very convenient and efficient approach
include the following:
§ You have a set of functions or resources on which you want to standardize and which

you will use in several different programs. The DLL is a particularly good solution for
managing these, especially if some of the programs using your standard facilities are likely
to be executing concurrently.

§ You have a complex application which involves several programs and a lot of code, but
which has sets of functions or resources that may be shared among several of the
programs in the application. Using a DLL for common functionality or common resources
enables you to manage and develop these with a great deal of independence from the
program modules that use them and can simplify program maintenance.

§ You have developed a set of standard application-oriented classes derived from MFC
which you anticipate using in several programs. By packaging the implementation of these
classes in an extension DLL, you can make using them in several programs very
straightforward, and in the process provide the possibility of being able to improve the
internals of the classes without affecting the applications that use them.

§ You have developed a brilliant set of functions which provide an easy-to-use but
amazingly powerful tool kit for an application area which just about everybody wants to
dabble in. You can readily package your functions in a regular DLL and distribute them in
this form.

There are also other circumstances where you may choose to use DLLs, such as when you
want to be able to dynamically load and unload libraries, or to select different modules at
runtime. You could even use them to ease the development and updating of your applications
generally.

The best way of understanding how to use a DLL is to create one and try it out. Let's do that

now.

Writing DLLs

There are two aspects to writing a DLL that we'll look at: how you actually write a DLL, and how

you define what's to be accessible in the DLL to programs that use it. As a practical example of

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

writing a DLL, we'll create an extension DLL to add a set of application classes to the MFC.
We'll then extend this DLL by adding variables that will be available to programs using it.

Writing and Using an Extension DLL

We can create an MFC extension DLL to contain the shape classes for the Sketcher
application. While this will not bring any major advantages to the program, it will demonstrate
how you can write an extension DLL without involving you in the overhead of entering a lot of
new code.

The starting point is AppWizard, so create a new project workspace by using the File | New...
menu option, selecting the Projects tab and choosing MFC AppWizard (dll), as shown here:

This selection identifies that we are creating an MFC-based DLL and will invoke the AppWizard.
The option Win 32 Dynamic-Link Library that you see a little lower down the list is for creating
DLLs that don't involve MFC. You need to make sure that the Location: entry corresponds to the
folder where you want the folder containing the code for the DLL to be placed. Once this is
done, and you've entered a suitable name for the DLL (as shown above), you can click on the

OK button to go to the next step:

Here, you can see three radio buttons corresponding to the three types of MFC-based DLL that

we discussed earlier. You should choose the third option, as shown above.

The two check boxes below the first group of three radio buttons allow you to include code to

support Automation and Windows Sockets in the DLL. These are both advanced capabilities

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

within a Windows program, so we don't need either of them here. Automation provides the
potential for hosting objects created and managed by one application inside another, and we'll
be taking a tentative look into this before the end of the book. Windows Sockets provides
classes and functionality to enable your program to communicate over a network, but we won't
be getting into this as it's beyond the scope of the book. The default choice to include comments
is OK, so you can click on the Finish button and complete creation of the project.

Now that AppWizard has done its stuff, we can look into the code that has been generated on

our behalf. If you look at the contents of the project using Windows Explorer, you'll see that
AppWizard has generated a total of eleven files in the project folder, including a .txt file which

contains a description of the other files, and one further resource file in the subfolder Res. You
can read what they're all for in the .txt file, but the following two are the ones of immediate

interest in implementing our DLL:

Filename Contents

ExtDLLExample.cpp This contains the function DllMain() and is the primary source
file for the DLL.

ExtDLLExample.def The information in this file is used by Visual C++ during
compilation. It contains the name of the DLL, and you can also
add to it the definitions of those items in the DLL that are to be
accessible to a program using the DLL. We'll use an alternative
and somewhat easier way of identifying such items in our
example.

When your DLL is loaded, the first thing that happens is that DllMain() is executed, so

perhaps we should take a look at that first.

Understanding DllMain()

If you take a look at the contents of ExtDLLExample.cpp, you will see that AppWizard has
generated a version of DllMain() for us, as shown here:

 extern "C" int APIENTRY

 DllMain(HINSTANCE hInstance, DWORD dwReason, LPVOID lpReserved)

 {

 // Remove this if you use lpReserved

 UNREFERENCED_PARAMETER(lpReserved);

 if (dwReason == DLL_PROCESS_ATTACH)

 {

 TRACE0("EXTDLLEXAMPLE.DLL Initializing!\n");

 // Extension DLL one-time initialization

 if (!AfxInitExtensionModule(ExtDLLExampleDLL, hInstance))

 return 0;

 // Insert this DLL into the resource chain

 // NOTE: If this Extension DLL is being implicitly linked to
by

 // an MFC Regular DLL (such as an ActiveX Control)

 // instead of an MFC application, then you will want to

 // remove this line from DllMain and put it in a separate

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // function exported from this Extension DLL. The Regular
DLL

 // that uses this Extension DLL should then explicitly call
that

 // function to initialize this Extension DLL. Otherwise,

 // the CDynLinkLibrary object will not be attached to the

 // Regular DLL's resource chain, and serious problems will

 // result.

 new CDynLinkLibrary(ExtDLLExampleDLL);

 }

 else if (dwReason == DLL_PROCESS_DETACH)

 {

 TRACED("EXTDLLEXAMPLE.DLL Terminating!\n");

 // Terminate the library before destructors are called

 AfxTermExtensionModule(ExtDLLExampleDLL);

 }

 return 1; // ok

 }

There are three arguments passed to DllMain(). The first argument, hInstance, is a

handle which has been created by Windows to identify the DLL. Every task under Windows 95
has an instance handle which identifies it uniquely. The second argument, dwReason,
indicates the reason why DllMain() is being called. You can see this argument being tested

in the if statements in DllMain(). The first if tests for the value DLL_PROCESS_ATTACH,
which indicates that a program is about to use the DLL, and the second if tests for the value

DLL_PROCESS_DETACH, which indicates that a program is finished using the DLL. The third

argument is a pointer that's reserved for use by Windows, so you can ignore it.

When the DLL is first used by a program, it's loaded into memory and the DllMain() function
will be executed with the argument dwReason set to DLL_PROCESS_ATTACH. This will result in

the function AfxInitExtensionModule() being called to initialize the DLL and an object of
the class CDynLinkLibrary created on the heap. Windows uses objects of this class to

manage extension DLLs. If you need to add initialization of your own, you can add it to the end
of this block. Any clean-up you require for your DLL can be added to the block for the second
if statement.

Adding Classes to the Extension DLL

We're going to use the DLL to contain the implementation of our shape classes, so move the
files Elements.h and Elements.cpp from the folder containing the source for Sketcher to the

folder containing the DLL. Be sure that you move rather than copy the files. Since the DLL is
going to supply the shape classes for Sketcher, we don't want to leave them in the source code
for Sketcher.

You'll also need to remove Elements.cpp from the Sketcher project. To do this, simply

change to the FileView, highlight Elements.cpp by clicking on the file, then press Delete. If you
don't do this, Visual C++ will complain that it couldn't find the file when you try to compile the
project. Follow the same procedure to get rid of Elements.h from the Header Files folder.

The shape classes use the constants that we have defined in the file OurConstants.h, so

copy this file from Sketcher to the folder containing the DLL. Note that the variable

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

VERSION_NUMBER is used exclusively by the IMPLEMENT_SERIAL() macros in the shape
classes, so you could delete it from the OurConstants.h file used in the Sketcher program.

We need to add Elements.cpp containing the implementation of our shape classes to the

extension DLL project, so select the menu option Project | Add To Project | Files... and choose the
file Elements.cpp from the list box in the dialog, as shown here:

To make sure that the project includes the files containing the definitions of the shape classes
and our constants, you need to add these to the project. To add Elements.h to the project,

right click on Header Files in FileView, and select Add Files to Folder... from the pop-up. You can
then select the .h file in the dialog. To add OurConstants.h, repeat the process, or if you like

you can select both files at once by holding down the Ctrl key. This will make sure that all the
classes are displayed in ClassView.

Exporting Classes from the Extension DLL

The names of the classes that are defined in the DLL and are to be accessible in programs that
use it must be identified in some way, so that the appropriate links can be established between
a program and the DLL. As we saw earlier, one way of doing this is by adding information to the
.def file for the DLL. This involves adding what are called decorated names to the DLL and

associating the decorated name with a unique identifying numeric value called an ordinal. A
decorated name for a object is a name generated by the compiler, which adds an additional
string to the name you gave to the object. This additional string provides information about the
type of the object or, in the case of a function for example, information about the types of the
parameters to the function. Among other things, it ensures that everything has a unique
identifier and enables the linker to distinguish overloaded functions from each other.

Obtaining decorated names and assigning ordinals to export items from a DLL is a lot of work,
and isn't the best or the easiest approach with Windows 95. A much easier way to identify the
classes that we want to export from the DLL is to modify the class definitions in Elements.h to

include the keyword AFX_EXT_CLASS before each class name, as shown below for the CLine

class:

 // Class defining a line object

 class AFX_EXT_CLASS CLine : public CElement

 {

 DECLARE_SERIAL(CLine)

 public:

 // Function to display a line

 virtual void Draw(CDC* pDC, const CElement* pElement = 0) const;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 virtual void Move(const CSize& aSize); // Function to move
an element

 // Constructor for a line object

 CLine(const CPoint& Start, const CPoint& End, const COLORREF&
Color, const int&

 PenWidth);

 virtual void Serialize(CArchive& ar); // Serialize
function for CLine

 protected:

 CPoint m_StartPoint; // Start point of line

 CPoint m_EndPoint; // End point of line

 CLine(){} // Default constructor - should not be
used

 };

The keyword AFX_EXT_CLASS indicates that the class is to be exported from the DLL. This has

the effect of making the complete class available to any program using the DLL and
automatically allows access to any of the data and functions in the public interface of the class.
The collection of things in a DLL that are accessible by a program using it is referred to as the
interface to the DLL. The process of making an object part of the interface to a DLL is referred
to as exporting the object.

You need to add the keyword AFX_EXT_CLASS to all of the other shape classes, including the

base class CElement and the text class CText. Why is it necessary to export CElement from
the DLL? After all, programs will only create objects of the classes derived from CElement,

and not objects of the class CElement itself. The reason is that we have declared public
members of CElement which form part of the interface to the derived shape classes, and which

are almost certainly going to be required by programs using the DLL. If we don't export the
CElement class, functions such as GetBoundRect() will not be available.

The final modification needed is to add the directive:

 #include <afxtempl.h>

to StdAfx.h in the DLL project so that the definition of CList is available.

We've done everything necessary to add the shape classes to the DLL. All you need to do is
compile and link the project to create the DLL.

Building a DLL

You build the DLL in exactly the same way as you build any other project — by using the Build |
Build menu option. The output produced is somewhat different, though. You can see the files
that are produced in the Debug subfolder of the project folder. The executable code for the DLL
is contained in the file ExtDLLExample.dll. This file needs to be available to execute a

program that uses the DLL. The file ExtDLLExample.lib is an import library file that contains

the definitions of the items that are exported from the DLL, and it must be available to the linker
when a program using the DLL is linked.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using the Extension DLL in Sketcher

We now have no information in the Sketcher program on the shape classes, because we moved
the files containing the class definitions and implementations to the DLL project. However, the
compiler will still need to know where the shape classes are coming from in order to compile the
code for the program. The Sketcher program needs to include a .h file defining the classes that
are to be imported from the DLL. We can just copy the file Elements.h from the DLL project to

the folder containing the Sketcher source. It would be a good idea to identify this file as
specifying the imports from the DLL in the Sketcher source code. You could do this by changing
its name to DllImports.h, in which case you'll need to change the #include statements that
are already in the Sketcher program for Elements.h to refer to the new file name (these occur

in Sketcher.cpp, SketcherDoc.cpp and SketcherView.cpp).

When the Sketcher source has been recompiled, the linker will need to know where to find the

DLL in order to include information that will trigger loading of the DLL when the Sketcher
program is executed, and to allow the links to the class implementations in the DLL to be
established. We must, therefore, add the location of the DLL to the project settings for the link
operation. Select Project | Settings..., choose the Link tab of the Project Settings dialog, and enter
the name of the .lib file for the DLL, ExtDLLExample.lib (including the full path to it), as

shown here:
FYI

Be aware that if the complete path to the .lib file contains spaces (as in the
example here), you'll need to enclose it within quotation marks for the linker to
recognize it correctly.

This shows the entry for the debug version of Sketcher. The .lib file for the DLL will be in the
Debug folder within the DLL project folder, as you can see from the entry under Object/library

modules: in the dialog box shown. If you create a release version of Sketcher, you'll also need
the release version of the DLL available to the linker, so you'll have to enter the fully qualified
name of the .lib file for the release version of the DLL, corresponding to the release version of

Sketcher. The file to which the Link tab applies is selected in the Settings For: drop-down list box
in the dialog above.

You can now build the Sketcher application once more, and everything should compile and link
as usual. However, if you try to execute the program, this happens:

This is one of the less cryptic error messages — it's fairly clear what's gone wrong. To enable
Windows to load a DLL for a program, it's usual to place the DLL in your \Windows\System

folder. Since you probably don't want to clutter up this folder unnecessarily, you can copy
ExtDllExample.dll from the Debug folder of the DLL project to the Debug folder for

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Sketcher. Sketcher should execute exactly as before, except that now it will use the shape
classes in the DLL we have created.

Files Required to Use a DLL

From what we've just seen in the context of using the DLL we created in the Sketcher program,
we conclude that three files must be available to use a DLL in a program:

Extension Contents

.h Defines those items that are exported from a DLL and enables the compiler
to deal properly with references to such items in the source code of a
program using the DLL. The .h file needs to be added to the source code for

the program using the DLL.

.lib Defines the items exported by a DLL in a form which enables the linker to
deal with references to exported items when linking a program that uses a
DLL.

.dll Contains the executable code for the DLL which is loaded by Windows when
a program using the DLL is executed.

If you plan to distribute program code in the form of a DLL for use by other programmers, you
need to distribute all three files in the package. For users, just the .dll is required.

Exporting Variables and Functions from a DLL

You've seen how you can export classes from an extension DLL using the AFX_EXT_CLASS

keyword You can also export objects of classes that are defined in a DLL, as well as ordinary
variables and functions. These can be exported from any kind of DLL by using the attribute
dllexport to identify them. By using dllexport to identify class objects, variables or

functions that are to be exported from a DLL, you avoid getting involved in the complications of
modifying the .def file and, as a consequence, you make defining the interface to the DLL a

straightforward matter.

Don't be misled into thinking that the approach we're taking to exporting things from our DLL
makes the .def file method redundant. The .def file approach is more complicated — which is

why we're taking the easy way out — but it offers distinct advantages in many situations over
the approach we're taking. This is particularly true in the context of products that are distributed
widely, and are likely to be developed over time. One major plus is that a .def file enables you

to define the ordinals that correspond to your exported functions. This allows you to add more
exported functions later and assign new ordinals to them, so the ordinals for the original set of
functions remain the same. This means that someone using a new version of the DLL with a
program built to use the old version doesn't have to relink their application.

You must use the dllexport attribute in conjunction with the keyword _declspec when you

identify an item to be exported. For example, the statement

 _declspec(dllexport) double aValue = 1.5;

defines the variable aValue of type double with an initial value of 1.5, and identifies it as a

variable that is to be available to programs using the DLL. To export a function from a DLL, you
use the dllexport attribute in a similar manner. For example:

 _declspec(dllexport) CString FindWinner(CString* Teams);

This statement exports the function FindWinner() from the DLL.

To avoid the slightly cumbersome notation for specifying the dllexport attribute, you can

simplify it by using a preprocessor directive:

 #define DLLEXPORT _declspec(dllexport)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

With this definition, the two previous examples can be written alternatively as:

 DLLEXPORT double aValue = 1.5;

 DLLEXPORT CString FindWinner(CString* Teams);

This notation is much more economical, as well as being easier to read, so you may wish to
adopt this approach when coding your DLLs.

Obviously, only symbols which represent objects with global scope can be exported from a DLL.
Variables and class objects that are local to a function in a DLL cease to exist when execution
of a function is completed, in just the same way as in a function in a normal program.
Attempting to export such symbols will result in a compile-time error.

Importing Symbols into a Program

The dllexport attribute identifies the symbols in a DLL that form part of the interface. If you

want to use these in a program, you must make sure that they are correspondingly identified as
being imported from the DLL. This is done by using the dllimport keyword in declarations for

the symbols to be imported in a .h file. We can simplify the notation by using the same
technique we applied to the dllexport attribute. Let's define DLLIMPORT with the directive:

 #define DLLIMPORT _declspec(dllimport)

We can now import the aValue variable and the FindWinner() function with the declarations:

 DLLIMPORT double aValue;

 DLLIMPORT CString FindWinner(CString* Teams);

These statements would appear in a .h file which would be included into the .cpp files in the

program that referenced these symbols.

Implementing the Export of Symbols from a DLL

We could extend the extension DLL to make the symbols defining shape types and colors
available in the interface to it. We can then remove the definitions that we have in the Sketcher
program and import the definitions of these symbols from the extension DLL.

We can first modify the source code for the DLL to add the symbols for shape element types
and colors to its interface. To export the element types and colors, they must be global
variables. As global variables, it would be better if they appeared in a .cpp file, rather than a .h
file, so move the definitions of these out of the OurConstants.h file to the beginning of

Elements.cpp in the DLL source. You can then apply the dllexport attribute to their
definitions in the Elements.cpp file, as follows:

 // Definitions of constants and identification of symbols to be
exported

 #define DLLEXPORT __declspec(dllexport)

 // Element type definitions

 // Each type value must be unique

 DLLEXPORT extern const WORD LINE = 101U;

 DLLEXPORT extern const WORD RECTANGLE = 102U;

 DLLEXPORT extern const WORD CIRCLE = 103U;

 DLLEXPORT extern const WORD CURVE = 104U;

 DLLEXPORT extern const WORD TEXT = 105U;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 ///////////////////////////////////

 // Color values for drawing

 DLLEXPORT extern const COLORREF BLACK = RGB(0,0,0);

 DLLEXPORT extern const COLORREF RED = RGB(255,0,0);

 DLLEXPORT extern const COLORREF GREEN = RGB(0,255,0);

 DLLEXPORT extern const COLORREF BLUE = RGB(0,0,255);

 DLLEXPORT extern const COLORREF SELECT_COLOR = RGB(255,0,180);

 ///////////////////////////////////

Add these to the beginning of Elements.cpp, after the #include directives. We first define

the symbol DLLEXPORT to simplify the specification of the variables to be exported, as we saw
earlier. We then assign the attribute dllexport to each of the element types and colors.

You will notice that the extern specifier has also been added to the definitions of these
variables. The reason for this is the effect of the const modifier, which indicates to the compiler

that the values are constants and shouldn't be modified in the program, which was what we
wanted. However, by default, it also specifies the variables as having internal linkage, so they
are local to the file in which they appear. We want to export these variables to another program,
so we have to add the modifier extern to override the default linkage specification due to the
const modifier and ensure that they have external linkage. Symbols that are assigned external

linkage are global and so can be exported. Of course, if the variables didn't have the const
modifier applied to them, we wouldn't need to add extern, since they would be global

automatically as long as they appeared at global scope.

The OurConstants.h file now only contains one definition:

 // Definitions of constants

 #if !defined(OurConstants_h)

 #define OurConstants_h

 // Define the program version number for use in serialization

 UINT VERSION_NUMBER = 1;

 #endif // !defined(OurConstants_h)

Of course, this is still required because it is used in the IMPLEMENT_SERIAL() macros in

Elements.cpp. You can now build the DLL once again, so it's ready to use in the Sketcher
program. Don't forget to copy the latest version of the .dll file to the Sketcher Debug folder.

Using Exported Symbols

To make the symbols exported from the DLL available in the Sketcher program, you need to
specify them as imported from the DLL. You can do this by adding the identification of the
imported symbols to the file DllImports.h which contains the definitions for the imported

classes. In this way, we'll have one file specifying all the items imported from the DLL. The
statements that appear in this file will be as follows:

 // Variables defined in the shape DLL ExtDLLExample.dll

 #if !defined(DllImports_h)

 #define DllImports_h

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #define DLLIMPORT __declspec(dllimport)

 // Import element type declarations

 // Each type value must be unique

 DLLIMPORT extern const WORD LINE;

 DLLIMPORT extern const WORD RECTANGLE;

 DLLIMPORT extern const WORD CIRCLE;

 DLLIMPORT extern const WORD CURVE;

 DLLIMPORT extern const WORD TEXT;

 ///////////////////////////////////

 // Import color values for drawing

 DLLIMPORT extern const COLORREF BLACK;

 DLLIMPORT extern const COLORREF RED;

 DLLIMPORT extern const COLORREF GREEN;

 DLLIMPORT extern const COLORREF BLUE;

 DLLIMPORT extern const COLORREF SELECT_COLOR;

 ///////////////////////////////////

 // Plus the definitions for the element classes...

 #endif // !defined(DllImports_h)

This defines and uses the DLLIMPORT symbol to simplify these declarations, in the way that we

saw earlier. This means that the OurConstants.h file in the Sketcher project is now
redundant, so we can delete it, along with the #include for it in Sketcher.h. It's a good idea

to close and reopen the project after deleting the file from the project, as Visual C++ can be a
little reluctant to let go of dependencies. This usually forces it to let go, though.

That looks as though we've done everything necessary to use the new version of the DLL with

Sketcher, but we haven't. If you try to recompile Sketcher, you'll get error messages for the
switch statement in the CreateElement() member of CSketcherView.

The values in the case statements must be constant, but although we've given the element type
variables the attribute const, the compiler has no access to these values because they are

defined in the DLL, not in the Sketcher program. The compiler, therefore, can't determine what
these constant case values are, and flags an error. The simplest way round this problem is to
replace the switch statement in the CreateElement() function by a series of if statements,

as follows:

 // Create an element of the current type

 CElement* CSketcherView::CreateElement()

 {

 // Get a pointer to the document for this view

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc); // Verify the pointer
is good

 // Now select the element using the type stored in the document

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 WORD ElementType = pDoc->GetElementType();

 if(ElementType == RECTANGLE)

 return new CRectangle(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenWidth());

 if(ElementType == CIRCLE)

 return new CCircle(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenWidth());

 if(ElementType == CURVE)

 return new CCurve(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenWidth());

 else

 // Always default to a line

 return new CLine(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-

>GetPenWidth());

}

We've added a local variable ElementType to store the current element type retrieved from the

document. This is then tested against the element types imported from the DLL in the series of
if statements. This does exactly the same job as the switch statement, but has no

requirement for the element type constants to be known explicitly. If you now build Sketcher
with these changes added, it will execute using the DLL, using the exported symbols as well as
the exported shape classes.

Summary

In this chapter, you've learned the basics of how to construct and use a dynamic link library. The

most important points we've looked at in this context are:
§ Dynamic link libraries provide a means of linking to standard functions dynamically

when a program executes, rather than incorporating them into the executable module for a
program.

§ An AppWizard-generated program links to a version of MFC stored in DLLs by default.
§ A single copy of a DLL in memory can be used by several programs executing

concurrently.
§ An extension DLL is so called because it extends the set of classes in MFC. An

extension DLL must be used if you want to export MFC-based classes or objects of MFC
classes from a DLL. An extension DLL can also export ordinary functions and global
variables.

§ A regular DLL can be used if you only want to export ordinary functions or global
variables that aren't instances of MFC classes.

§ You can export classes from an extension DLL by using the keyword AFX_EXT_CLASS

preceding the class name in the DLL.

§ You can export ordinary functions and global variables from a DLL by assigning the
dllexport attribute to them using the _declspec keyword.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ You can import the classes exported from an extension DLL by using including the .h
file from the DLL that contains the class definitions using the AFX_EXT_CLASS keyword.

§ You can import ordinary functions and global variables that are exported from a DLL by
assigning the dllimport attribute to their declarations in your program by using the

_declspec keyword.

Exercise

1. This is the last time we'll be amending this version of the Sketcher program, so try
this. Using the DLL we've just created, implement a Sketcher document viewer—in
other words, a program which simply opens a document created by Sketcher and
displays the whole thing in a window at once. You needn't worry about editing,
scrolling or printing, but you will have to work out the scaling required to make a big
picture fit in a little window!

Answers

1. Start off by using AppWizard to generate a new SDI application. You can turn off printer
support if you like, and the name really isn't important. The files and classes here assume a
project called SkView.

Copy the DllImports.h file into the project folder and add it to the project; insert

#includes for this file into SkView.cpp, SkViewDoc.cpp and SkViewView.cpp,
ensuring that you place them before the #includes for SkViewDoc.h and SkViewView.h.

Just like in the chapter, amend the project settings so the ExtDLLExample.lib file is linked
in, and don't forget to copy ExtDLLExample.dll to the Debug directory once that's been

created. You'll also need to add a #include for afxtempl.h to stdafx.h.

To the document class definition, you need to add five member variables and three member
functions, all of which you've used before:

 // Attributes

 protected:

 COLORREF m_Color;

 WORD m_Element;

 CTypedPtrList<CObList, CElement*> m_ElementList;

 int m_PenWidth;

 CSize m_DocSize;

 // Operations

 public:

 POSITION GetListHeadPosition()

 { return m_ElementList.GetHeadPosition(); }

 CElement* GetNext(POSITION &aPos)

 { return m_ElementList.GetNext(aPos); }

 CSize GetDocSize()

 { return m_DocSize; }

As for the implementation, since we're only dealing with documents held in files, we don't
need to do any initialization in the constructor. However, we should add the code which
deletes the element list cleanly to the destructor:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CSkViewDoc::~CSkViewDoc()

 {

 POSITION aPosition = m_ElementList.GetHeadPosition();

 while(aPosition)

 delete m_ElementList.GetNext(aPosition);

 m_ElementList.RemoveAll();

 }

The only other code to add to the document class is that required to enable serialization from
a file. (Remember, we aren't worried about saving files because we never alter them in this
application.) The Serialize() function looks like this:

 void CSkViewDoc::Serialize(CArchive& ar)

 {

 m_ElementList.Serialize(ar);

 if (ar.IsStoring())

 {

 }

 else

 {

 ar >> m_Color

 >> m_Element

 >> m_PenWidth

 >> m_DocSize;

 }

 }

The view class requires a little more work, although not much. For a start, it doesn't need any
new member variables, although you will need to use ClassWizard to add two new member
functions: OnPrepareDC() and OnOpenDocument(). Once again, nothing needs adding to
the constructor, and this time the destructor can be left empty as well. You should add some
code to OnDraw(), but only the same as we had in Sketcher itself:

 void CSkViewView::OnDraw(CDC* pDC)

 {

 CSkViewDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 POSITION aPos = pDoc->GetListHeadPosition();

 CElement*PElement = 0;

 while(aPos)

 {

 pElement = pDoc->GetNext(aPos);

 if(pDC->RectVisible(pElement->GetBoundRect()))

 pElement->Draw(pDC);

 }

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

OnPrepareDC() bears a little more inspection, and should look like this once you've created

the handler and added the code:

 void CSkViewView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)

 {

 CView::OnPrepareDC(pDC, pInfo);

 CSkViewDoc* pDoc = GetDocument();

 pDC->SetMapMode(MM_ANISOTROPIC);

 CSize DocSize = pDoc->GetDocSize();

 DocSize.cy = -DocSize.cy;

 pDC->SetWindowExt(DocSize);

 int xLogPixels = pDC->GetDeviceCaps(LOGPIXELSX);

 int yLogPixels = pDC->GetDeviceCaps(LOGPIXELSY);

 CRect WinRect;

 GetWindowRect(&WinRect);

 double xScale = (static_cast<double>(WinRect.right -

WinRect.left))/(DocSize.cx/100*xLogPixels);

 double yScale = -(static_cast<double>(WinRect.bottom -

WinRect.top))/(DocSize.cy/100*yLogPixels);

 long xExtent =
static_cast<long>(DocSize.cx*xScale*xLogPixels/100L);

 long yExtent =
static_cast<long>(DocSize.cy*yScale*yLogPixels/100L);

 pDC->SetViewportExt(static_cast<int>(xExtent),
static_cast<int>(-yExtent));

 }

The new lines here are the ones which handle the scaling. GetWindowRect() returns, in its
argument, the coordinates in pixels of the view window. From these values, we contrive to
produce two scaling factors (in general, they're different for the x and y directions) which map
the document stored in DocSize to our view window — the expressions come down to
(window width/document width) and (window height/document height), with all measurements
in pixels.

You need to implement OnOpenDocument() in order that you have somewhere to delete the

old document before opening a new one. If you don't do this, any new documents you open
will just be superimposed on top of old ones, which is hardly ideal. The code you need to add
is exactly the same as the code in the destructor:

 BOOL CSkViewDoc::OnOpenDocument(LPCTSTR lpszPathName)

 {

 POSITION aPosition = m_ElementList.GetHeadPosition();

 while(aPosition)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 delete m_ElementList.GetNext(aPosition);

 m_ElementList.RemoveAll();

 if (!CDocument::OnOpenDocument(lpszPathName))

 return FALSE;

 return TRUE;

 }

That's everything required for the problem as specified, although you might like to include the
text scaling we introduced in the last chapter's exercises, as the text is disproportionately
large at these scales otherwise.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 20: Connecting to Data Sources

Overview

In this chapter, we'll show you to how to interface to a database using Visual C++ and MFC.
This is by no means a comprehensive discussion of the possibilities, since we'll only address
retrieving data, but at least you'll take a few steps down this particular path.

In this chapter you will learn:

§ What SQL is, and how it is used
§ How to retrieve data using the SQL SELECT operation

§ What a recordset object is, and how it links to a relational database table

§ How a recordset object can retrieve information from a database
§ How a record view can display information from a recordset
§ How to create a database program using AppWizard

§ How to add recordsets to your program
§ How to handle multiple record views

Database Basics

This is not the place for a detailed dissertation on database technology, but we do need to make
sure that we have a common understanding of database terminology. Databases come in a
variety of flavors, but the majority these days are relational databases. It is relational
databases that we will be talking about throughout this chapter.

In a database, your data is organized into one or more tables. You can think of a database
table as being like a spreadsheet table, made up of rows and columns. Each row contains
information about a single item, and each column contains the information about the same
characteristic from every item.

A record is equivalent to a row in the spreadsheet. Each record consists of elements of data

that make up that record. These elements of data are known as fields. A field is a cell in the
table identified by the column heading. The term field can also represent the whole column.

We can best see the structure of a table with a diagram:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Here you can see that this table is being used to store information on a line of products.
Unsurprisingly then, the table is called Products. Each record in the table, represented by a
row in the diagram, contains the data for one product. The description of a product is separated
into fields in the table, each storing information about one aspect of a product: Product Name,
Unit Price, and so on.

Although the fields in this table store only relatively simple information (character strings or
numeric values), the type of data you decide to put in a particular field can be virtually anything
you want. You could store times, dates, pictures or even binary objects in a database.

A table will usually have at least one field that can be used to identify each record uniquely and

in the example above the Product ID is a likely candidate. A field in a table that serves to
identify each record within the table is called a key; a key which uniquely identifies each record
in a table is referred to as a primary key. In some cases, a table may have no single field that
uniquely identifies each record. In this circumstance, two or more key fields may be used. A key
composed of two or more fields is called a multivalue key.

The relational aspect of a database, and the importance of keys, comes into play when you
store related information in separate tables. You define relationships between the tables, using
keys, and use the relationships to find associated information stored in your database. Note that
the tables themselves don't know about relationships, just as the table doesn't understand the
bits of data stored in it. It is the program that accesses the data which must use the information
in the tables to pull together related data, whether that program is Access 95, SQL Server 6, or
your own program written in Visual C++. These are known collectively as relational database
management systems or RDBMSs.

A real-world, well-designed relational database will usually consist of a large number of tables.
Each table usually has only several fields and many records. The reason for only having a few
fields in each table is to increase query performance. Without going into the details of database
optimization, have faith that it's much faster to query many tables with a few fields each than to
query a single table with many fields.

We can extend the example shown in the previous diagram to illustrate a relational database
with two tables: Products and Categories.

As you can see from the diagram, the Category ID field is used to relate the information stored
in the two tables. Category ID uniquely identifies a category record in the Categories table, so
it is a primary key for that table. In the Products table, the Category ID field is used to relate a
product record to a category, so the field is termed a foreign key for that table.

Relational databases can be created and manipulated in numerous ways. There are a large
number of RDBMSs on the market that provide a wide range of facilities for creating and
manipulating database information. Obviously, it's possible for you to add and delete records in
a database table, and to update the fields in a record, although typically there are controls within
the RDBMS to limit such activities, based on the authorization level of the user. As well as
accessing information from a single table in a database, you can combine records from two or
more tables into a new table, based on their relationships, and retrieve information from that.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Combining tables in this way is called a table join. To program all these kinds of operations for
a relational database, you can use a language known as SQL, which is supported by most
RDBMSs and programming languages.

A Little SQL

SQL (often pronounced 'sequel') stands for Structured Query Language. It's a relatively simple

language, designed specifically for accessing and modifying information in relational databases.
It was originally developed at IBM in a mainframe environment, but is now used throughout the
computing world. SQL doesn't actually exist as a software package by itself — it's usually
hosted by some other environment, whether that's an RDBMS or a programming language,
such as COBOL, C or C++. The environment hosting SQL provides for mundane things such as
regular I/O and talking to the operating system, while SQL is used to query the database.

MFC support for databases uses SQL to specify queries and other operations on database
tables. These operations are provided by a set of specialized classes. You'll see how to use
some of these in the example that we'll write later in this chapter.

SQL has statements to retrieve, sort and update records from a table, to add and delete records

and fields, to join tables and to compute totals, as well as a lot of other capabilities for creating
and managing database tables. We won't be going into all the possible programming options
available in SQL, but we'll discuss the details sufficiently to enable you to understand what's
happening in the examples that we write, even though you may not have seen any SQL before.

When we use SQL in an MFC-based program, we won't need to write complete SQL statements
for the most part because the framework takes care of assembling a complete statement and
supplying it to the database engine you're using. Nevertheless, we'll look here at how typical
SQL statements are written in their entirety, so that you get a feel for how the language
statements are structured.

SQL statements are written with a terminating semicolon (just like C++ statements), and
keywords in the language are written in capital letters. Let's take a look at a few examples of
SQL statements and see how they work.

Retrieving Data Using SQL

To retrieve data, you use the SELECT statement. In fact, it's quite surprising how much of what

you want to do with a database is covered by the SELECT statement, which operates on one or
more tables in your database. The result of executing a SELECT statement is always a

recordset, which is a collection of data produced using the information from the tables you
supply in the detail of the statement. The data in the recordset is organized in the form of a
table, with named columns that are from the tables you specified in the SELECT statement, and

rows or records that are selected, based on conditions specified in the SELECT statement. The
recordset generated by a SELECT statement might have only one record, or might even be

empty.

Perhaps the simplest retrieval operation on a database is to access all the records in a single
table, so given that our database includes a table called Products, we can obtain all the

records in this table with the following SQL statement:

 SELECT * FROM Products;

The * indicates that we want all the fields in the database. The parameter following the keyword
FROM defines the table from which the fields are to be selected. We haven't constrained the

records that are returned by the SELECT statement, so we'll get all of them. A little later we'll see

how to constrain the records that are selected.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you wanted all the records, but only needed to retrieve specific fields in each record, you
could specify these by using the field names separated by commas in place of the asterisk in
the previous example. An example of a statement that would do this is:

 SELECT ProductID,UnitPrice FROM Products;

This statement selects all the records from the Products table, but only the ProductID and
UnitPrice fields for each record. This will produce a table having just the two fields specified

here.

The field names that we've used don't contain spaces, but they could. Where a name contains

spaces, standard SQL says that it has to be written between double quotes. If the fields had the
names Product ID and Unit Price, we would write the SELECT statement as:

 SELECT "Product ID","Unit Price" FROM Products;

Using double quotes with names, as we have done here, is a bit inconvenient in the C++
context, as we need to be able to pass SQL statements as strings. In C++, double quotes are
already used as character string delimiters, so there would be confusion if we tried to enclose
the names of database objects (tables or fields) in double quotes.

For this reason, when you reference database table or field names which include spaces in the

Visual C++ environment, you should enclose them within square brackets rather than double
quotes. Thus, you would write the field names from the example as [Product ID] and [Unit

Price]. You'll see this notation in action in the database program that we write later in this

chapter.

Choosing Records

Unlike fields, records in a table don't have names. The only way to choose particular records is
by applying some condition or restriction on the contents of one or more of the fields in a record,
so that only records meeting the condition are selected. This is done by adding a WHERE clause

to the SELECT statement. The parameter following the WHERE keyword defines the condition

that is to be used to select records.

We could select the records in the Products table that have a particular value for the

Category ID field, with the statement:

 SELECT * FROM Products WHERE [Category ID] = 1;

This selects just those records where the Category ID field has the value 1, so from the table

we illustrated earlier, we would get the records for coffee, tea and milk. Note that a single
equals sign is used to specify a check for equality in SQL, not == as we use in C++.

You can use other comparison operators, such as <, >, <= and >=, to specify the condition in
a WHERE clause. You can also combine logical expressions with AND and OR. To place a further

restriction on the records selected in the last example, we could write:

 SELECT * FROM Products WHERE [Category ID] = 1 AND [Unit Price] >
0.5;

In this case, the resulting table would just contain two records, because milk would be out as it's
too cheap. Only records with a Category ID of 1 and a Unit Price value greater than 0.5

are selected by this statement.

Joining Tables Using SQL

You can also use the SELECT statement to join tables together, although it's a little more
complicated than you might imagine. Suppose we have two tables: Products with three

records and three fields, and Orders with three records and four fields. These are illustrated

below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Here, we have a meager product set in the Products table, consisting of just coffee, bread and

cake, and we have three orders as shown in the Orders table — but we haven't managed to

sell any coffee.

We could join these tables together with the SELECT statement:

 SELECT * FROM Products,Orders;

This statement creates a recordset using the records from both the tables specified. The
recordset will have seven fields, three from the Products table and four from the Orders

table, but how many records does it have? The answer is illustrated in the diagram below:

The recordset produced by the SELECT statement has nine records that are created by

combining each record from the Products table with every record from the Orders table, so

all possible combinations are included. This may not be exactly what is required, or what you
expected. Arbitrarily including all combinations of records from one table with another is of
limited value. The meaning of a record containing details of the bread product and an order for
cake is hard to fathom. You could also end up with an incredibly big table in a real situation. If
you combine a table containing 100 products with one containing 500 orders and you don't
constrain the join operation, the resulting table will contain 50,000 records!

To get a useful join, you usually need to add a WHERE clause to the SELECT statement. With the

tables we've been using, one condition that would make sense would be to only allow records
where the Product ID from one table matched the same field in the other table. This would

combine each record from the Products table with the records from the Orders table that

related to that product. The statement to do this would be:

 SELECT * FROM Products,Orders WHERE Products.[Product ID] =
Orders.[Product ID];

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Notice how a specific field for a particular table is identified here You add the table name as a
prefix and separate it from the field name with a period. This qualification of the field name is
essential where the same field name is used in both tables. Without the table name, there's no
way to know which of the two fields you mean. With this SELECT statement and the same table

contents we used previously, we'll get the recordset shown here:

Of course, this may still be unsatisfactory in that we have two fields containing the Product

ID, but you could easily remove this by specifying the field names you want, instead of the * in
the SELECT statement. However, the columns with the same name could be distinguished here

by being qualified with the name of their original table when they appear in the recordset.

Sorting Records

When you retrieve data from a database using the SELECT statement, you'll often want the

records sorted in a particular order. With the previous example, the tables shown are already
ordered, but in practice this isn't necessarily the case. You might want to see the output of the
last example sorted in a different way, depending on the circumstances. At one time, it might be
convenient to have the records ordered by Customer ID, and on another occasion perhaps

ordered by Quantity within Product ID. The ORDER BY clause added to the SELECT
statement will do this for you. For example, we could refine the last SELECT statement by

adding an ORDER BY clause:

 SELECT * FROM Products,Orders WHERE Products.[Product ID] =
Orders.[Product ID]

 ORDER BY [Customer ID];

The result of this will be the same records that we obtained with the last example, but with the
records arranged so that the Customer ID field is in ascending sequence. Since the kind of

data stored in a given field is known, the records will be ordered according to the data type
applicable to the field. In our case the ordering will be alphabetical.

If you wanted to sort on two fields, Customer ID and Product ID say, and you wanted the

records arranged in descending sequence, you would write:

 SELECT * FROM Products,Orders

 WHERE Products.[Product ID] = Orders.[Product ID]

 ORDER BY [Customer ID] DESC, Products.[Product
ID] DESC;

We need to use the qualified name, Products.[Product ID], in the ORDER BY clause to

avoid ambiguity, as we do in the WHERE clause. The keyword DESC at the end of each field in
the ORDER BY statement specifies descending sequence for the sort operation. There's a

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

complementary keyword, ASC, for ascending sequence, although this is usually omitted

because it is the default condition.

This is by no means all there is to SQL, or even all there is to the SELECT statement, but it's

enough to get you through the database example that we will write.
FYI

If you need to know more about SQL, there's an excellent book written by Joe
Celko and published by Wrox Press entitled Instant SQL Programming . ISBN
1-874416-50-8.

Database Support in MFC

You're spoilt for choice when you use MFC for database application development, since two

distinct approaches are supported, each of which uses its own set of MFC classes.

One approach is to use Data Access Objects (DAO). These objects provide an interface to the
Jet database engine. The Jet database engine is a generalized piece of software that provides
the ability to store data in, and retrieve data from, a range of database management systems.
Jet is the engine used by Microsoft's Access DBMS. Whenever you manipulate a database in
Access, you're actually getting Jet to do all the hard work. Jet is optimized for accessing Access
(.mdb) database files directly, but will also enable you to attach to any database that supports

the Open DataBase Connectivity interface, better known as ODBC. This allows you to
manipulate databases in any format for which you have the appropriate ODBC driver.
Databases that you can access using Jet, in addition to Microsoft Access, include Oracle,
dBase 5, Btrieve 6.0, and FoxPro 2.6.

The other approach is ODBC-specific, but since ODBC drivers are also available for .mdb files,

both approaches cover essentially the same range of database formats. How do you choose
between them?

The first consideration is whether you're accessing your database in a client/server
environment. If you are, you need to use ODBC. If you're not in a client/server situation,
perhaps the most significant factor is whether you are going to use your program primarily with
.mdb databases. If you are, the DAO-based approach will be more efficient than the ODBC

approach. On the other hand, if you use the DAO approach with databases other than those in
Microsoft Access format, which don't use the Microsoft Jet engine to drive them, you'll be
working through the ODBC interface included within the DAO implementation, and this will be
less efficient than using the ODBC specific approach directly. The DAO-based classes also
provide a more comprehensive range of capabilities than the ODBC classes, so you need to
consider this aspect as well.

If you want to take a simplistic view, you could decide on the basis that if you intend to use
Microsoft Access databases and you're not in a client/server situation, you should program
using DAO, otherwise you use ODBC.

DAO vs ODBC

DAO uses objects for accessing and manipulating a database. There are objects representing

tables, queries and the database itself. These objects insulate you from the detail of the specific
database system implementation you are concerned with and provide you with a programming
interface that is consistent with the object-oriented approach to programming.

ODBC, on the other hand, is a system-independent interface to a database environment that
requires an ODBC driver to be provided for each database system from which you want to
manipulate data. ODBC defines a set of function calls for database operations that are system-
neutral. You can only use a database with ODBC if you have the DLL that contains the driver to
work with that database application's file format. The purpose of the driver is to interface the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

standard set of system-independent calls for database operations that will be used in your
program to the specifics of a particular database implementation.

While the concept here is rather different from that of DAO, the programming approach in Visual
C++ is very similar with both methodologies. MFC packages the ODBC interface in a set of
classes that are structured in a very similar way to the classes that apply with DAO. The
application of MFC classes for ODBC closely parallels the use of the equivalent DAO classes.

It would be useful now to take a broad view of the classes supporting DAO and ODBC in MFC.
We won't go into detail at this point, but will use a programming example to understand the
basic mechanics of how the ODBC classes can be used.

Classes Supporting DAO

The following eight classes are used with the DAO approach:

Class What it does

CDaoWorkspace An object of this class manages a database session from start to
finish. A CDaoDatabase object requires a CDaoWorkspace
object to be available, and if you don't create one, the framework
will supply one automatically when your CDaoDatabase object is
created. A workspace object can contain several database
objects.

CDaoDatabase An object of this class implements a connection to a specific
database. An object of this class will always be created when you
access a database, but you don't necessarily have to create a
database object explicitly. It can be created implicitly when you
create a CDaoRecordset object.

CDaoRecordset An object of a class derived from this class represents the result
of an SQL SELECT operation, which is a set of records. The
object makes available one record of the table produced by the
SELECT at a time, and provides a range of functions to enable
you to move backwards and forwards through the records
available, and to search for records conforming to a set of search
criteria.

CDaoRecordView An object of a class derived from this class is used to display the
current record from an associated recordset object. The record
view object uses a child dialog to display data items from the
DAO recordset object. There are automatic mechanisms for
updating the controls in the dialog with current data from the DAO
recordset object.

CDaoFieldExchange This class supports the exchange of data between your database
and a DAO recordset object. You can use objects of this class
yourself, but AppWizard and Class Wizard will implement and
maintain the use of these objects automatically.

CDaoQueryDef An object of this class defines a query on your database that is
usually predefined in the database. These are typically standard
queries that are used frequently in a particular database. A
CDaoQueryDef object can be used to create a CDaoRecordset
object that represents a particular SELECT statement. An object

of this class can also be used to execute SQL statements
explicitly, by using its Execute() member function.

CDaoTableDef An object of this class defines a table in your database. It can
represent an existing table, or can be used to construct a new
table.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Class What it does

CDaoException An object of this class is constructed when an exception condition
arises from a DAO database operation. All DAO errors cause
exceptions and result in objects of this class being created. The
CDaoException class members enable you to determine the
cause of the exception.

The most essential classes that you'll use in DAO programming are a CDaoDatabase class

that will represent your database, one or more classes derived from CDaoRecordset that will
represent SELECT operations on your database, and one or more classes derived from

CDaoRecordView that will display data made available by your CDaoRecordset-based

classes.

As we shall see, an ODBC application involves a similar set of basic classes with the same sort
of functionality. The CDaoTableDef and CDaoQueryDef classes provide capability that is not

available within MFC support for ODBC.

Classes Supporting ODBC

MFC support for ODBC is implemented through five classes:

Class What it does

CDatabase An object of this class represents a connection to your database. This
connection must exist before you can carry out any operations on the
database. No workspace class is used with an ODBC database.

CRecordset An object of a class derived from this class represents the result of an
SQL SELECT operation. This is the same concept that we saw with
the CDaoRecordset class.

CRecordView An object of a class derived from this class is used to display current
information from an associated recordset object. This is the same
concept that we saw with the CDaoRecordView class.

CFieldExchange This class provides for the exchange of data between the database
and a recordset object, in the same manner that we saw for DAO
databases.

CDBException Objects of this class represent exceptions that occur within ODBC
database operations.

The ODBC classes look very much like a subset of the DAO classes and, in the sense that the
interface they provide is similar to that of the equivalent DAO classes, they are. Of course, the
underlying process for accessing the database is rather different.

We can best understand how database operations with MFC work by creating an example. We

will use the ODBC approach, but apply it to accessing a Microsoft Access database. The
database that we'll use is supplied on the Visual C++ CD. It has the merit of containing a
considerable variety of tables that are populated by realistic numbers of records. This will give
you a lot of scope for experimentation, as well as providing some feel for how well your code will
work in practice. It's easy to be lulled into a false sense of security by running your program
against a test database where the numbers of tables and records within a table is trivial. It can
be quite a surprise to find out how long transactions can take in a real world context.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 Creating a Database Application

For our example, we'll show how to use three related tables in the database contained in the
sampdata.mdb file. You'll find this file in the \Samples\vc98\mfc\database\daoctl

folder on the MSDN library CD. Copy the file to a suitable folder on your hard disk and make
sure that it's no longer set to read-only. (In Windows 95, you can alter this by right-clicking the
file, selecting Properties from the pop-up menu and making sure that the Read-only attribute box
is unchecked.) Since you'll always have the read-only version of the database on the CD to go
back to if something goes wrong, you won't need to worry about messing it up, so feel free to
experiment as we go along.

In the first step, we'll create a program to display records from the Products table in the

database. We'll then add code to allow us to examine all the orders for a given product using
two other tables. Finally, we'll access the Customers table to enable the customer details for

an order to be displayed. Before we can start with the code, we need to identify the database to
the operating system.

Registering an ODBC Database

Before you can use an ODBC database, it needs to be registered. You do this through the

Control Panel that you access by selecting Settings from the Start menu. In the Control Panel,
select the 32bit ODBC icon. The procedure may vary depending on which release of Windows
95 you're using, but if you have a recent version, you should see the dialog shown here:

The User DSN tab shows you the data sources you already have configured on your system,

which may differ from the ones in the diagram. Click on the Add... button to add a new data
source. You should see the next dialog:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Here you must select from the list of ODBC drivers the one that we're going to use: Microsoft
Access Driver(*.mdb). This was automatically installed with the typical setup when you installed
Windows. If you don't see this driver, you need to go back to Windows setup to install it. When
you've selected the driver, click on the Finish button. This will take you to yet another dialog, as
shown:

Enter Sample Data as the Data Source Name:. We'll use this name to identify the database

when we generate our application using AppWizard You now need to click on the Select... button
to go to the final, Select Database dialog, in which you can select the sampdata.mdb file in

whichever directory it now sits:

Finally, click on three successive OK buttons, and you've registered the database. If this

procedure isn't the same on your PC, you'll need to resort to Help for your operating system, or
just experiment with the ODBC option on Control Panel. The truth is in there.

Once you've succeeded, we can go ahead with our database application and, as ever, the
starting point is AppWizard.

Using AppWizard to Generate an ODBC Program

Create a new project workspace in the usual way and give it a suitable name, such as
DBSample. Choose the SDI interface for document support, since that will be sufficient for our

needs. The document is somewhat incidental to operations in a database application, since
most things are managed by recordset and record view objects. As you'll see, the main use of
the document is to store recordset objects, so you won't need more than one of them. Click on
the Next > button to move to the next step.

In Step 2 you have a choice as to whether you include file support with the database view option.

File support refers to serializing the document, which isn't normally necessary since any
database input and output that you need will be taken care of using the recordset objects in
your application. Therefore, you should choose the option without file support, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

When you select either of the database options, the Data Source... button is activated. You now

need to click on this button to specify the database that your application is going to use. This will
display the dialog shown here:

ODBC is already selected as the database option and, if you expand the drop-down list, you
should find Sample Data as one of the data sources available to you (provided you've registered
it correctly beforehand). In the dialog above, it has already been selected.

AppWizard will automatically equip your program with a recordset class and a record view class,
and the dialog also shows a choice for the recordset your program will use. The grayed Table
option only applies if you're using DAO. For ODBC, you have a choice between Snapshot and
Dynaset for your initial recordset class. There's a significant difference between these options, so
let's look at what they mean.

Snapshot vs Dynaset Recordsets

Your recordset object will provide you with the result of a SELECT operation on the database. In

the case of a snapshot recordset, the query is executed once and the result is stored in
memory. Your recordset object can then make available to you any of the records in the table
that result from the query, so a snapshot is essentially static in nature. Any changes that might
occur in the database due to other users updating the database will not be reflected in the data
you have obtained with your snapshot recordset. If you need to see changes that may have
been made, you'll need to re-run the SELECT statement.

There's another feature of snapshot recordsets that depends on whether you're using DAO or

ODBC. A DAO snapshot can't be changed by your program - it's read-only. However, an ODBC

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

snapshot can be either read-only or updatable. An updatable snapshot writes any modifications
that you make to the table straight back to the underlying database, and your program can see
the change. Other programs with a snapshot of the database will not, however, see the changes
until they requery the database.

With the dynaset option, your recordset object will automatically refresh the current record from
the database when you move from one record to another in the table generated by the query for
the recordset. As a consequence, the record available in the recordset will reflect the up-to-date
status of the database when you accessed the record, not when you first opened the recordset.
Be aware that the refresh only occurs when your recordset object accesses a record. If the data
in the current record is modified by another user, this will not be apparent in your recordset
object unless you move to another record and then return to the original record A dynaset
recordset uses an index to the database tables involved to generate the contents of each record
dynamically.

Since we have no other users accessing the Sample Data database, you can choose the

Snapshot option for our example. This will be adequate here because we'll only be implementing
the retrieval of data from the database. If you want to try to add some update capability yourself,
you should use the Dynaset option.

Choosing Tables

Once Snapshot has been chosen, you can click on the OK button to display the dialog which will
determine the tables that the recordset class in your application will relate to. Here, you are
effectively specifying the tables parameter for the SELECT statement that will be applied for the

recordset. The dialog is shown here:

The dialog lists all the tables in the Sample Data database and, as you can see, there are quite a
few. You could select several tables to be associated with the recordset by holding down the
Shift key as you click on entries in the list box, but here we only need one, so just select the

Products table, as shown, and then click on the OK button.

You have now specified the operation for the recordset class that AppWizard will generate as:

 SELECT * FROM Products;

The use of * for all fields is determined by the framework. It just uses the table names you

choose here to form the SQL operation that will be applied for the recordset.

You can now move through the remaining steps for generating the project workspace without
changing any of the options, until you get to the dialog displaying the class and filenames to be
used, which is Step 6, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

As well as the changes shown above for the CDBSampleView class, you should also change

the CDBSampleSet class name to CProductSet, and the associated .h and .cpp file names

to be consistent with the class name. Once that's done, you can click on Finish and generate the
program.

Understanding the Program Structure

The basic structure of the program is as we've seen before, comprising an application class
CDBSampleApp, a frame window class CMainFrame, a document class CDBSampleDoc,
and a view class CProductView. A document template object is responsible for creating and

relating the frame window, the document and the view objects. This is done in a standard
manner in the InitInstance() member of the application object.

The document class is quite standard, except that AppWizard has added a data member,
m_productSet which is an object of the CProductSet class. As a consequence, a recordset

object will be automatically created when the document object is created in the
InitInstance() function member of the application object. The significant departures from a

non-database program arise in the detail of the CRecordset class, and in the CRecordView

class, so let's take a look at those.

Understanding Recordsets

We can look at the definition of the CProductSet class that AppWizard has generated

piecemeal and see how each piece works. The bits under discussion are shaded.

Recordset Creation

The first segment of the class definition that is of interest is:

 class CProductSet ::public CRecordset

 {

 public:

 CProductSet(CDatabase* pDatabase = NULL);

 DECLARE_DYNAMIC(CProductSet)

 // Plus more of the class definition...

 // Overrides

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL (CProductSet)

 public:

 virtual CString GetDefaultConnect(); // Default connection
string

 virtual CString GetDefaultSQL(); // default SQL for
Recordset

 virtual void DoFieldExchange(CFieldExchange* pFX);// RFX support

 //}}AFX_VIRTUAL

 // Plus some more standard stuff

 };

The class has CRecordset as a base class and provides the functionality for retrieving data
from the database. The constructor for the class accepts a pointer to a CDatabase object that

is set to NULL as a default. The parameter to the constructor allows a CProductSet object to
be created for a CDatabase object that already exists, which allows an existing connection to a

database to be reused. Opening a connection to a database is a lengthy business, so it's
advantageous to reuse a database connection when you can.

If no pointer is passed to the constructor, as will be the case for the m_productSet member of
the document class CDBSampleDoc, the framework will automatically create a CDatabase

object for you and call the GetDefaultConnect() function member of CProductSet to

define the connection. The implementation of this function provided by AppWizard is as follows:

 CString CProductSet::GetDefaultConnect()

 {

 return _T("ODBC;DSN=Sample Data");

 }

This function is a pure virtual function in the base class, and so must always be implemented in
a derived recordset class. The implementation provided by AppWizard will return the text string
shown to the framework. This identifies our database by name and enables the framework to
create a CDatabase object to provide the database connection automatically.

In practice, it's usually necessary to supply a user ID and a password before access to a
database is permitted. You can add this information to the string returned by the
GetDefaultConnect() function. Where this is necessary, you specify your user ID by adding
UID= and your ID following the DSN= part of the string, and you specify the password by adding

PWD= followed by your password. Each piece of the string is separated from the next by a

semicolon. For example, if your user ID is Reuben and your password is Hype, you could
specify these in the return statement from GetDefaultConnect() as:

 return _T("ODBC;DSN=Sample Data;UID=Reuben;PWD=Hype");

You can also make the framework pop up a dialog for the user to select the database name
from the list of registered database sources by writing the return as:

 return _T("ODBC;");

Querying the Database

The CProductSet class includes a data member for each field in the Products table.

AppWizard obtains the field names from the database and uses these to name the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

corresponding data members of the class. They appear in the block of code delimited by the
AFX_FIELD comments in the following:

 class CProductSet : public CRecordset

 {

 public:

 CProductSet(CDatabase* pDatabase = NULL);

 DECLARE_DYNAMIC(CProductSet)

 // Field/Param Data

 //{(AFX_FIELD(CProductSet, CRecordset)

 long m_ProductID;

 CString m_ProductName;

 long m_SupplierID;

 long m_CategoryID;

 CString m_QuantityPerUnit;

 CString m_UnitPrice;

 int m_UnitsInStock;

 int m_UnitsOnOrder;

 int m_ReorderLevel;

 BOOL m_Discontinued;

 //}}AFX_FIELD

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CProductSet)

 public:

 virtual CString GetDefaultConnect(); // Default connection
string

 virtual CString GetDefaultSQL(); // default SQL for
Recordset

 virtual void DoFieldExchange(CFieldExchange* pFX); // RFX
support

 //}}AFX_VIRTUAL

 // Implementation

 #ifdef _DEBUG

 virtual void AssertValid() const;

 virtual void Dump(CDumpContext& dc) const;

 #endif

 };

The type of each data member is set to correspond with the field type for the corresponding field
in the Products table. You may not want all these fields in practice, but you shouldn't delete

them willy-nilly in the class definition. As you will see shortly, they are referenced in other
places, so always use ClassWizard to delete fields that you don't want. A further caveat is that

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

you must not delete primary keys. If you do, the recordset won't work, so you need to be sure
which fields are primary keys before chopping out what you don't want.

The SQL operation which applies to the recordset to populate these data members is specified
in the GetDefaultSQL() function. The implementation that AppWizard has supplied for this is:

 CString CProductSet::GetDefaultSQL()

 {

 return _T("[Products]");

 }

The string returned is obviously obtained from the table you selected during the creation of the
project. The square brackets have been included to provide for the possibility of the table name
containing blanks. If you had selected several tables in Step 2 of the project creation process,
they would all be inserted here, separated by commas, with each table name enclosed within
square brackets.

The GetDefaultSQL() function is called by the framework when it constructs the SQL

statement to be applied for the recordset. The framework slots the string returned by this
function into a skeleton SQL statement with the form:

 SELECT * FROM < String returned by GetDefaultSQL() >;

This looks very simplistic, and indeed it is, but we can add WHERE and ORDER BY clauses to the

operation, as you'll see later.

Data Transfer between the Database and the Recordset

The transfer of data from the database to the recordset, and vice versa, is accomplished by the
DoFieldExchange() member of the CProductSet class. The implementation of this function

provided by AppWizard is:

 void CProductSet::DoFieldExchange(CFieldExchange* pFX)

 {

 //{{AFX_FIELD_MAP (CProductSet)

 pFX->SetFieldType(CFieldExchange::outputColumn);

 RFX_Long(pFX, _T("[ProductlD]"), m_ProductID);

 RFX_Text(pFX, _T("[ProductName]"), m_ProductName);

 RFX_Long(pFX, _T("[SupplierID]"), m_SupplierID);

 RFX_Long(pFX, _T("[CategoryID]"), m_CategoryID) ;

 RFX_Text(pFX, _T("[QuantityPerUnit]"), m_QuantityPerUnit);

 RFX_Text(pFX, _T("[UnitPrice]"), m_UnitPrice);

 RFX_Int(pFX, _T("[UnitsInStock]"), m_UnitsInStock);

 RFX_Int(pFX, _T("[UnitsOnOrder]"), m_UnitsOnOrder);

 RFX_Int(pFX, _T("[ReorderLevel]"), m_ReorderLevel);

 RFX_Bool(PFX, _T("[Discontinued]"), m_Discontinued);

 //}}AFX_FIELD_MAP

 }

This function is called automatically by the framework to store data in and retrieve data from the
database. It works in a similar fashion to the DoDataExchange() function we have seen with

dialog controls, in that the pFX parameter determines whether the operation is a read or a write.

Each time it's called, it moves a single record to or from the recordset object.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The first function called is SetFieldType(), which sets a mode for the RFX_() function calls
that follow. In this case, the mode is specified as outputColumn, which indicates that data is

to be exchanged between the database field and the corresponding argument specified in each
of the following RFX_() function calls.

There are a whole range of RFX_() functions for various types of database field. The function

call for a particular field will correspond with the data type applicable to that field. The first
argument to an RFX_() function call is the pFX object which determines the direction of data

movement. The second argument is the table field name and the third is the data member that
is to store that field for the current record.

Understanding the Record View

The purpose of the view class is to display information from the recordset object in the

application window, so we need to understand how this works. The bits of the class definition for
the CProductView class produced by AppWizard that are of primary interest are shaded:

 class CProductView : public CRecordView

 {

 protected: // create from serialization only

 CProductView();

 DECLARE_DYNCREATE(CProductView)

 public:

 //{{AFX_DATA(CProductView)

 enum{ IDD = IDD_DBSAMPLE_FORM };

 CProductSet* m_pSet;

 // NOTE: the ClassWizard will add data members here

 //}}AFX_DATA

 // Attributes

 public:

 CDBSampleDoc* GetDocument();

 // Operations

 public:

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CProductView)

 public:

 virtual CRecordset* OnGetRecordset();

 virtual BOOL PreCreateWindow(CREATESTRUCT& cs);

 protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 virtual void OnInitialUpdate(); // called first time after
construct

 virtual BOOL OnPreparePrinting(CPrintInfo* pInfo);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 virtual void OnBeginPrinting(CDC* pDC, CPrintInfo* pInfo);

 virtual void OnEndPrinting(CDC* pDC, CPrintInfo* pInfo);

 //)}AFX_VIRTUAL

 // plus implementation and generated message maps

 // that we have seen with standard view classes...

 };

The view class for a recordset always needs to be derived because the class has to be

customized to display the particular fields from the recordset that we want. The base class,
CRecordView, includes all the functionality required to manage communications with the

recordset. All we need to do is use ClassWizard to tailor our record view class to suit our
application. We'll get to that in a moment.

Note that the constructor is protected. This is because objects of this class are expected to

be created from serialization, which is a default assumption for record view classes. When we
add further record views to our application, we'll need to change the default access for their
constructors to public because we'll be creating the views ourselves.

In the block bounded by the comments containing AFX_DATA, the enumeration adds the ID
IDD_DBSAMPLE_FORM to the class. This is the ID for a blank dialog that AppWizard has

included in the program. We'll need to add controls to this dialog to display the database fields
from the Products table that we want displayed. The dialog ID is passed to the base class,

CRecordView, in the initialization list of the constructor for our view class:

 CProductView::CProductView() : CRecordView(CProductView::IDD)

 {

 //{{AFX_DATA_INIT(CProductView)

 // NOTE: the ClassWizard will add member initialization here

 m_pSet = NULL;

 //}}AFX_DATA_INIT

 // TODO: add construction code here

 }

This action links the view class to the dialog, which is necessary to enable the mechanism
which transfers data between the recordset object and the view object to work.

There is also a pointer to a CProductSet object, m_pSet, in the AFX_DATA block of the class

definition, which is initialized to NULL in the constructor. A more useful value for this pointer is
set in the OnInitialUpdate() member of the class, which has been implemented as:

 void CProductView::OnInitialUpdate()

 {

 m_pSet = &GetDocument()->m_productSet;

 CRecordView::OnInitialUpdate();

 GetParentFrame()->RecalcLayout();

 ResizeParentToFit();

 }

This function is called when the record view object is created. The first line sets m_pSet to the
address of the m_productSet member of the document, thus tying the view to the product set

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

object. The second line gives the base class a chance to initialize itself, and the final two lines
ensure that the frame window resizes itself properly to fit around the dialog.

The transfer of data between the data members in the CProductSet object that correspond to

fields in the Products table, and the controls in the dialog associated with the CProductView
object, will be managed by the DoDataExchange() member of CProductView. The code in

this function to do this isn't in place yet, since we first need to add the controls to the dialog that
are going to display the data, and then use ClassWizard to link the controls to the recordset
data members. Let's do that next.

Creating the View Dialog

The first step is to place the controls on the dialog, so go to ResourceView, expand the list of
Dialog resources and double-click on IDD_DBSAMPLE_FORM. You can delete the static text

object with the TODO message from the dialog. If you right-click on the dialog, you can choose
to view its Properties, as shown here:

The Style: option has been set to Child because the dialog is going to be a child window and will
fill the client area. The Border: option has been set to None because if it fills the client area, the
dialog doesn't need a border.

We'll add a static text control to identify each field from the recordset that we want to display,

plus an edit control to display it. The tab order of the text control should be such that each static
text control immediately precedes the corresponding control displaying the data in sequence.
This is because ClassWizard will determine the data member name to be associated with each
control that is to display a field from the text in the static control immediately preceding it. The
text you choose for the static control is, therefore, most important if this is to work.

You can add each static control, followed immediately by the corresponding edit control, to
create the tab order that you want, or you can simply fix the tab order at the end using the
Layout | Tab Order menu option.

You can enlarge the dialog by dragging its borders. Then, place controls on the dialog as shown
here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can add the text to each static control by just typing it as soon as the control has been

placed on the dialog. The Properties dialog box will open automatically. As you see, the text for
each static control corresponds to the field name in the database. You need to make sure that
all the edit controls have different IDs. It's helpful to use the field name as part of the control ID,
as shown in the Properties dialog above. You need not worry about the IDs for the static controls,
since they aren't referenced in the program. After you have arranged the controls, you should
check the tab order to make sure that each static control has a sequence number one less than
its corresponding edit control.

You can add other fields to the dialog if you want. The one that is most important for the rest of
our example is the Product ID, so you must include that. Save the dialog and then we can

move on to the last step, which is to link the controls to the variables in the recordset class.

Linking the Controls to the Recordset

Linking the controls to the data members of CProductSet is simplicity itself. Just double-click

on the Product ID edit control while holding down the Ctrl key and you'll see the dialog box

shown here:

ClassWizard has filled in all the required values for you using the text from the preceding static
control and the information from CProductSet. All you need to do is to verify that the variable

name is correct - it should be if you put the right text in the static control - and click on OK. You
then need to repeat this for the other edit controls on your dialog. This will enable ClassWizard

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

to fill out the code for the DoDataExchange() function in the CProductView class, which will

now be implemented as:

 void CProductViews::DoDataExchange(CDataExchange* pDX)

 {

 CRecordView::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CProductView)

 DDX_FieldText(pDX, IDC_PRODUCTID, m_pSet->m_ProductID, m_pSet);

 DDX_FieldText(pDX, IDC_PRODUCTNAME, m_pSet->m_ProductName,
m_pSet);

 DDX_FieldText(pDX, IDC_UNITPRICE, m_pSet->m_UnitPrice, m_pSet);

 DDX_FieldText(pDX, IDC_UNITSINSTOCK, m_pSet->m_UnitsInStock,

m_pSet);

 DDX_FieldText(pDX, IDC_CATEGORYID, m_pSet->m_CategoryID,
m_pSet);

 DDX_FieldText(pDX, IDC_UNITSONORDER, m_pSet->m_UnitsOnOrder,
m_pSet);

 //}}AFX_DATA_MAP

 }

This function works in the same way you've seen previously with dialog controls. Each DDX_()

function transfers data between the control and the corresponding data member of the
CProductSet class, which is accessed through the pointer m_pSet.

The complete mechanism for data transfer between the database and the dialog owned by the
CProductView object is illustrated here:

The recordset class and the record view class cooperate to enable data to be transferred
between the database and the controls in the dialog. The CProductSet class handles

transfers between the database and its data members and CProductView deals with transfers
between the data members of CProductSet and the controls in the dialog.

Exercising the Example

Believe it or not, you can now run the example. Just build it in the normal way and then execute
it. The application should display a window similar to this one:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The CRecordView base class automatically implements toolbar buttons that step from one

record in the recordset to the next or to the previous record. There are also toolbar buttons to
move directly to the first or last record in the recordset. You'll notice that the products are not
completely in order. It would be nice to have them sorted in Product ID sequence, so let's

see how we can do that.

Sorting a Recordset

As we saw earlier, the data is retrieved from the database by the recordset, using an SQL
SELECT statement which is generated by the framework using the GetDetaultSQL()

member. We can add an ORDER BY clause to the statement generated by setting a value in the
m_strSort member of CProductSet, which is inherited from CRecordSet. This will cause

the output table from the query to be sorted, based on the string stored in m_strSort. We
only need to set the m_strSort member to a string that contains the field name that we want

to sort on; the framework will provide the ORDER BY keywords. But where should we add the

code to do this?

The transfer of data between the database and the recordset occurs when the Open() member
of the recordset object is called. In our program, the Open() function member of the recordset

object is called by the OnInitialUpdate() member of the base class to our view class,
CRecordView. We can, therefore, put the code for setting the sort specification in the

OnInitialUpdate() member of the CProductView class, as follows:

 void CProductView::OnInitialUpdate()

 {

 m_pSet = &GetDocument()->m_productSet;

 m_pSet->m_strSort = "[ProductID]"; // Set the sort fields

 CRecordView::OnInitialUpdate();

 GetParentFrame()->RecalcLayout();

 ResizeParentToFit();

 }

We just set m_strSort in the recordset to the name of the ProductID field. Square brackets

are useful, even when there are no blanks in a name, because they differentiate strings
containing these names from other strings, so you can immediately pick out the field names.
They are, of course, optional if there are no blanks in the field name.

If there was more than one field that you wanted to sort on here, you would just include each of
the field names in the string, separated by commas.

Modifying the Window Caption

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There's one other thing we could add to this function at this point. The caption for the window
would be better if it showed the name of the table being displayed. We can fix this by adding
code to set the title in the document object:

 void CProductView::OnInitialUpdate()

 {

 m_pSet = &GetDocument()->m_productSet;

 m_pSet->m_strSort = "[ProductID]"; // Set the sort fields

 CRecordView::OnInitialUpdate();

 // Set the document title to the table name

 if (m_pSet->IsOpen()) // Verify the recordset

is open

 {

 CString strTitle = _T("Table Name"); // Set basic title
string

 CString strTable = m_pSet->GetTableName();

 if (!strTable.IsEmpty()) // Verify we have a
table name

 strTitle += _T(":") + strTable; // and add to basic
title

 GetDocument()->SetTitle(strTitle); // Set the document
title

 }

 GetParentFrame()->RecalcLayout();

 ResizeParentToFit();

 }

After checking that the recordset is indeed open, we initialize a local CString object with a

basic title string. We then get the name of the table from the recordset object by calling its
GetTableName() member. In general, you should check that you do get a string returned from

the GetTableName() function. Various conditions can arise that will prevent a table name from

being set - for instance, there may be more than one table involved in the recordset. After
appending a colon followed by the table name we have retrieved to the basic title in strTitle,
we set the result as the document title by calling the document's SetTitle() member.

If you rebuild the application and run it again, it will work as before, but with a new window
caption and with the product IDs in ascending sequence.

Using a Second Recordset Object

Now that we can view all the products in the database, a reasonable extension of the program
would be to add the ability to view all the orders for any particular product. To do this, we'll add
another recordset class to handle order information from the database, and a complementary
view class to display some of the fields from the recordset. We'll also add a button to the
Products dialog to enable you to switch to the Orders dialog when you want to view the

orders for the current product. This will enable us to operate with the arrangement shown in the
next diagram:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Products dialog will be the starting position. You will be able to step backwards and

forwards through all the available products. Clicking the Orders button will switch you to the
dialog where you'll be able to view all the orders for the current product. You will be able to
return to the Products dialog by clicking the Products button.

Adding a Recordset Class

We start by adding the recordset class using ClassWizard, so bring that into view by right

clicking in the editor window and selecting from the pop-up. Then, click on the Add Class...
button in the ClassWizard dialog and select New... from the pop-up. In the dialog, enter the
name of the class as COrderSet and select the base class from the drop-down list box, as

shown here.

If you now select the OK button, ClassWizard will take you to the dialog to select the database
for the recordset class. Select Sample Data from the list box and leave the Recordset type as
Snapshot, as before. Then click on the OK button to move to the table selection dialog shown
here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We'll select two tables to associate with the COrderSet class, so select the Orders and Order

Details table names. You can then click the OK button to complete the process.

You can examine what has been created through ClassWizard. If you switch to the Member
Variables tab, you'll see the dialog shown here:

ClassWizard has created a data member for every field in each of the tables. Note that the
OrderID field appears in both tables, so ClassWizard identifies these by prefixing the field

names with the table name in each case. The data member for the OrderID field in the
Orders table is differentiated from the member for the corresponding field in the Order

Details table by adding a 2 to the name created from the field name.

If you don't want all these fields, you can delete any of them by selecting the appropriate record

in the list and then clicking the Delete Variable button. You should, however, take care not to
delete any variables that are primary keys. When you delete a data member for a table field,
ClassWizard will take care of deleting the initialization for it in the class constructor and the
RFX_() call for it in the DoFieldExchange() member function. The variables that we need

are: m_OrderID, m_OrderID2, m_ProductID, m_Quantity and m_CustomerID.

You can now close ClassWizard by clicking the OK button. To hook the new recordset to the
document, you need to add a data member to the definition of the CDBSampleDoc class, so

right-click the class name in ClassView and select Add Member Variable... from the pop-up.
Specify the type as COrderSet and the variable name as m_OrderSet. You can leave it as a
public member of the class. After clicking OK to finish adding the data member to the

document, you need to be sure the compiler understands that COrderSet is a class before it
gets to compiling the CBSampleDoc class. If you take a look at the definition of

CBDSampleDoc, you'll see that an #include statement has already been added to the top of
DBSampleDoc.h:

 #include "OrderSet.h" // Added by ClassView

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 ...

 class CDBSampleDoc : public CDocument

 { // Rest of class definition }

Adding a Record View Class

Now you need to create another dialog resource. This must be done before you create the view
class so that ClassWizard can automatically connect the dialog to the class for you.

Creating the Dialog Resource

Switch to ResourceView, right-click on the Dialog folder and select Insert Dialog from the pop-up.
You can delete both of the default buttons from the dialog. Now change the name and styles for
the dialog, so right-click on it and display the Properties box. Change the dialog ID to
IDD_ORDERS_FORM. You also need to change the dialog style to Child and the border style to

None. You do this on the Styles tab, as shown here:

You're now ready to populate the dialog with controls for the fields that you want to display from
the Orders and Order Details tables. If you switch to ClassView and extend the

COrderSet part of the classes tree, you'll be able to see the names of the variables concerned

while you're working on the dialog. Add controls to the dialog as shown here:

Here, we have four edit controls for the OrderID, CustomerID, ProductID, and
Quantity fields from the tables associated with the COrderSet class, together with static

controls to identify them. You can add a few more if you wish. Don't forget to modify the IDs for
the edit controls so that they are representative of the purpose of the control. You can use the
table field names as we did previously. You also need to check the tab order and verify that
each static control immediately precedes the associated edit control in sequence. If they don't,
just click on them in the sequence that you want.

The button control labeled Products will be used to return to the Products table view, so modify
the ID for this button to IDC_PRODUCTS. When everything is arranged to your liking, save the

dialog resource.

Creating the Record View Class

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

To create the view class for the recordset, right-click on the dialog and select ClassWizard... from
the pop-up. You will then see a dialog offering you two options for identifying a class to
associate with the dialog. If you elect to create a new class, you'll see the dialog for creating a
New Class.

You need to enter the class name as COrderView and select the base class from the drop-
down list box as CRecordView. You also need to select the ID for the dialog you have just

created, IDD_ORDERS_FORM, from the Dialog ID: list box.

When you click on the OK button, ClassWizard will display a dialog asking you to choose the
record set to associate with the view. It should choose COrderSet for you, but if it doesn't,

select COrderSet from the list, and click this OK button as well.

You can see what the characteristics of the COrderView class are if you look at the Class Info
tab shown here:

This tells you everything you need to know. The view class, which is derived from
CRecordView, is hooked to the dialog resource you created with the ID IDD_ORDERS_FORM

and has the COrderSet class associated with it. A data member m_pSet has also been added
to hold the address of the associated COrderSet object. The class COrderSet is called a

foreign class in the dialog above because DDX normally links data members of a dialog class
and a view class. In this case, a third, 'foreign', class (which is COrderSet) is also involved,

since this is the source of the data being exchanged.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Check out the destructor for the COrderView class, which will have been implemented by

ClassWizard with the following code:

 COrderView::~COrderView()

 {

 if (m_pSet)

 delete m_pSet;

 }

Remove the if and the delete statement. They aren't necessary in our example because the
COrderSet object will be created and deleted by the framework, so we shouldn't delete it in the

view. If you leave the code in you'll get assertion failures when you close the application,
because an attempt will be made to delete the object twice.

Linking the Dialog Controls to the Recordset

To link the controls to the recordset, you follow the same procedure as we did for the
CProductView class. Go back to the dialog IDD_ORDERS_FORM and double-click each edit

control while holding down the Ctrl key.

Customizing the Record View Class

As it stands, the SQL SELECT operation for a COrderSet object will produce a table which will

contain all combinations of records from the two tables involved. This could be a lot of records,
so we must add the equivalent of a WHERE clause to the query to restrict the records selected to

those that make sense. But there's another problem too: when we switch from the Products

table display, we don't want to look at just any old orders. We want to see precisely those orders
for the product ID we were looking at, which amounts to selecting only those orders that have
the same product ID as that contained in the current CProductSet record. This is also effected

through a WHERE clause. In the MFC context, the WHERE clause for a SELECT operation for a

recordset is called a filter.

Adding a Filter to the Recordset

Adding a filter to the query is accomplished by assigning a string to the m_strFilter member

of the recordset object. This member is inherited from the base class, CRecordSet. As with
the ORDER BY clause, which we added by assigning a value to the m_strSort member of the

recordset, the place to implement this is in the OnInitialUpdate() member of the record

view class, just before the base class function is called.

We want to set two conditions in the filter. One is to restrict the records generated in the
recordset to those where the OrderID field in the Orders table is equal to the field with the

same name in the Order Details table. We can write this condition as:

 [Orders].[OrderID] = [Order Details].[OrderID]

The other condition we want to apply is that, for the records meeting the first condition, we only
want those with a ProductID field that is equal to the ProductID field in the current record in

the recordset object displaying the Products table. This means that we need to have the
ProductID field from the COrderSet object compared to a variable value. The variable in this

operation is called a parameter, and the condition in the filter is written in a special way:

 ProductID = ?

The question mark represents a parameter value for the filter, and the records that will be
selected are those where the ProductID field equals the parameter value. The value that is to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

replace the question mark will be set in the DoFieldExchange() member of the recordset.

We'll implement this in a moment, but first let's complete the specification of the filter.

We can define the string for the filter variable that incorporates both the conditions that we need
with the statement:

 // Set the filter as Product ID field with equal Order IDs

 m_pSet->m_strFilter =

 "[ProductID] = ? AND [Orders].[OrderID] = [Order
Details].[OrderID]";

We'll insert this into the OnInitialUpdate() member of the COrderView class, but before

that, let's finish setting the parameter for the filter.

Defining the Filter Parameter

We need to add a data member to the COrderSet class that will store the current value of the

ProductID field from the CProductSet object, and will also act as the parameter to substitute
for the ? in our filter for the COrderSet object. So, right-click on the COrderSet class name in

ClassView and select Add Member Variable... from the pop-up. The variable type needs to be the
same as that of the m_ProductID member of the CProductSet class, which is long, and you

can specify the name as m_ProductIDparam. You can also leave it as a public member.

Now we need to initialize this data member in the constructor and set the parameter count, so
add the code shown below:

 COrderSet::COrderSet(CDatabase* pdb) : CRecordset(pdb)

 {

 //{{AFX_FIELD_INIT(COrderSet)

 m_OrderID = 0;

 m_ProductID = 0 ;

 m_Quantity = 0 ;

 m_OrderID2 = 0;

 m_CustomerID = _T("");

 m_nFields = 5;

 //}}AFX_FIELD_INIT

 m_ProductIDparam = 0L; // Set initial parameter value

 m_nParams = 1; // Set number of parameters

 m_nDefaultType = snapshot;

 }

All of the unshaded code was supplied by ClassWizard to initialize the data members
corresponding to the fields in the recordset and to specify the type as snapshot. Our code

initializes the parameter to zero and sets the count of the number of parameters to 1. The
m_nParams variable is inherited from the base class, CRecordSet. Since there is a parameter

count, evidently you can have more than one parameter in the filter for the recordset. The
application framework requires the count of the number of parameters in your recordset to be
set to reflect the number of parameters you're using, otherwise it won't work correctly.

To identify the m_ProductIDparam variable in the class as a parameter to be substituted in
the filter for the COrderSet object, we must also add some code to the DoFieldExchange()

member of the class:

 void COrderSet::DoFieldExchange(CFieldExchange* pFX)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 //{{AFX_FIELD_MAP(COrderSet)

 pFX->SetFieldType(CFieldExchange::outputColumn);

 RFX_Long(pFX, _T("[Order Details].[OrderID]"), m_OrderID);

 RFX_Long(pFX, _T("[ProductID]"), m_ProductID);

 RFX_Int(pFX, _T("[Quantity]"), m_Quantity);

 RFX_Long(pFX, _T("[Orders].[OrderID]"), m_OrderID2);

 RFX_Text(pFX, _T("[CustomerID]"), m_CustomerID);

 //}}AFX_FIELD_MAP

 // Set the field type as parameter

 pFX->SetFieldType(CFieldExchange::param);

 RFX_Long(pFX, _T("ProductIDParam"), m_ProductIDparam);

 }

The ClassWizard has provided code to transfer data between the database and the field
variables it has added to the class. There is one RFX_() function call for each data member of

the recordset.

Other than the comment, we only needed to add two lines to the code that ClassWizard has
generated to specify m_ProductIDparam as a filter. The first line of code calls the
SetFieldType() member of the pFX object to set the mode for the following RFX_() calls to

param. The effect of this is to cause the third argument in any succeeding RFX_() calls to be

interpreted as a parameter that is to replace a? in the filter for the recordset. If you have more
than one parameter, the parameters substitute for the question marks in the m_strFilter
string in sequence from left to right, so it's important to ensure that the RFX_() calls are in the

right order. With the mode set to param, the second argument in the RFX_() call is ignored, so
you could put NULL here, or some other string if you want.

Initializing the Record View

We now need to add the code to the OnInitialUpdate() member of the COrderView class.
As well as specifying the filter, we can also define a value for m_strSort to sort the records in

OrderID sequence, and add code to change the window caption to match the tables we're

dealing with:

 void COrderView::OnInitialUpdate()

 {

 BeginWaitCursor(); // This could take time so start the wait

cursor

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument(); // Get doc
pointer

 m_pSet = &pDoc->m_OrderSet; // Get a pointer to the
recordset

 // Use the DB that is open for products recordset

 m_pSet->m_pDatabase = pDoc->m_productSet.m_pDatabase;

 // Set the current product ID as parameter

 m_pSet->m_ProductIDparam = pDoc->m_productSet.m_ProductID;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Set the filter as product ID field

 m_pSet->m_strFilter =

 "[ProductID] = ? AND [Orders].[OrderID] = [Order
Details].[OrderID]";

 GetRecordset(); // Get the
recordset

 // Now fix the caption

 if (m_pSet->IsOpen())

 {

 CString strTitle = "Table Name:";

 CString strTable = m_pSet->GetTableName(); // Get the
table name

 //If the recordset uses 2 or more tables, the name will be
empty

 if (!strTable.IsEmpty())

 strTitle += _T(":") + strTable; // It isn't so
use the name

 else

 strTitle += _T("Orders - Multiple Tables"); // Use generic
name

 GetDocument()->SetTitle(strTitle); // Set the
document title

 }

 CRecordView::OnInitialUpdate();

 EndWaitCursor();

 }

The version of the COrderSet class that has been implemented by ClassWizard doesn't
override the GetDocument() member because it isn't associated with the document class. As

a result, we need to cast the pointer from the base class GetDocument() member to a pointer
to a CDBSampleDoc object. Alternatively, you could add an overriding version of

GetDocument() to COrderSet to do the cast. Clearly, we need a pointer to our document

object because we need to access the members of the object.

Because we refer to the CDBSampleDoc class, you need to add three #include statements to

the beginning of the OrderView.cpp file:

 #include "ProductSet.h"

 #include "OrderSet.h"

 #include "DBSampleDoc.h"

The BeginWaitCursor() call added by ClassWizard at the start of the

OnInitialUpdate() function displays the hourglass cursor while this function is executing.

The reason for this is that, especially when multiple tables are involved, this function can take
an appreciable time to execute. The processing of the query and the transfer of data to the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

recordset all takes place in here. The cursor is returned to normal by the EndWaitCursor()

call at the end of the function.

The first thing that our code does is to set the m_pDatabase member of the COrderSet object

to the same as that for the CProductSet object. If we don't do this, the framework will re-open

the database when the orders recordset is opened. Since the database has already been
opened for the products recordset, this would waste a lot of time.

Next, we set the value for the parameter variable to the current value in the m_ProductID

member of the products recordset. This value will replace the question mark in the filter when
the orders recordset is opened and so select the records we want. We then set the filter for the
orders recordset to the string we saw earlier.

Next, the GetRecordSet() call supplied by ClassWizard is executed. This in turn calls the

OnGetRecordSet() member, which creates a recordset object if there isn't one - in our case
there is one because we added it to the document object - and then calls the Open() function

for the recordset.

Finally, we have the code we saw earlier to define the caption for the window. The test for an

empty table name isn't strictly necessary - we know that the table name will be empty, because
the recordset has two tables specified for it. You could just use the code to explicitly define the
caption, but the code we've implemented serves to demonstrate that the table name is indeed
empty in this case.

Accessing Multiple Tables

Since we have implemented our program with the single document interface, we have one

document and one view. The availability of just one view might appear to be a problem, but we
can arrange for the frame window object in our application to create an instance of our
COrderView class, and switch the current window to that when the orders recordset is to be

displayed.

We'll need to keep track of what the current window is, which we can do by assigning a unique

ID to each of the record view windows in our application. At the moment there are two: the
product view and the order view. To do this, create a new file called OurConstants.h and add

the following code to define the window IDs:

 // Definition of our constants

 #if !defined(OUR_CONSTANTS_H)

 #define OUR_CONSTANTS_H

 // Arbitrary constants to identify record views

 const UINT PRODUCT_VIEW = 1U;

 const UINT ORDER_VIEW = 2U;

 //

 #endif // !defined (OUR_CONSTANTS_H)

We can now use one of these constants to identify each view and to record the ID of the current
view in the frame window object. To do this, add a public data member to the CMainFrame
class of type UINT and give it the name m_CurrentViewID. Once you've done that, you can

initialize it in the constructor for CMainFrame, by adding code as follows:

 CMainFrame::CMainFrame()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 m_CurrentViewID = PRODUCT_VIEW; // We always start with this
view

 }

Now add an #include statement for OurConstants.h to the beginning of MainFrm.cpp so
that the definition of PRODUCT_VIEW is available here.

Switching Views

To enable the view switching mechanism, we're going to add a public function member called
SelectView() to the CMainFrame class, which will have a parameter defining a view ID. This

function will switch from the current view to whatever view is specified by the ID passed as an
argument.

Right-click on CMainFrame and select Add Member Function... from the pop-up. You can enter

the return type as void and the Function Declaration: entry as SelectView(UINT ViewID).

The implementation of the function is as follows:

 void CMainFrame::SelectView(UINT ViewID)

 {

 CView* pOldActivaView = GetActiveView(); // Get current
view

 // Get pointer to new view if it exists

 // if it doesn't the pointer will be null

 CView* pNewActiveView = (CView*)GetDlgItem(ViewID);

 // If this is 1st time around for the new view,

 // the new view won't exist, so we must create it

 if (pNewActiveView == NULL)

 {

 switch(ViewID)

 {

 case ORDER VIEW: // Create an
Order view

 pNewActiveView = (CView*)new COrderView;

 break;

 default:

 AfxMessageBox("Invalid View ID");

 return;

 }

 // Switching the views

 // Obtain the current view context to apply to the new view

 CCreateContext context;

 context.m_pCurrentDoc = pOldActiveView->GetDocument();

 pNewActiveView->Create(NULL, NULL, 0L,
CFrameWnd::rectDefault,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 this, ViewID,
&context);

 pNewActiveView->OnInitialUpdate();

 }

 SetActiveView(pNewActiveView); // Activate
the new view

 pOldActiveView->ShowWindow(SW_HIDE); // Hide the
old view

 pNewActiveView->ShowWindow(SW_SHOW); // Show the

new view

 pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old
view ID

 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);

 m_CurrentViewID = ViewID; // Save the
new view ID

 RecalcLayout();

 }

The operation of the function falls into three distinct parts:

1. Getting pointers to the current view and the new view
2. Creating the new view if it doesn't exist
3. Swapping to the new view in place of the current view

The address of the current active view is supplied by the GetActiveView() member of the

CMainFrame object. To get a pointer to the new view, we call the GetDlgItem() member of

the frame window object. If a view with the ID specified in the argument to the function exists, it
returns the address of the view, otherwise it returns NULL and we need to create the new view.

Since we'll create a COrderView object on the heap here, we need access to the constructor
for the class. The default access specification for the constructor COrderView() in the class

definition is protected, so change it to public to make creating the view object legal, as in

the following code:

 class COrderView : public CRecordView

 {

 public:

 COrderView(); // we changed this to public

 protected:

 DECLARE_DYNCREATE(COrderView)

 // rest of class definition

 };

After creating a view object, we define a CCreateContext object, context. A
CCreateContext object is only necessary when you're creating a window for a view that is to

be connected to a document. A CCreateContext object contains data members that can tie

together a document, a frame window and a view, and for MDI applications, a document
template as well. When we switch between views, we'll create a new window for the new view to
be displayed in. Each time we create a new view window, we will use the CCreateContext

object to establish a connection between the view and our document object. All we need to do is

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

store a pointer to our document object in the m_pCurrentDoc member of context. In general
you may need to store additional data in the CCreateContext object before you create; it

depends on the circumstances and the kind of window you're creating.

In the call to the Create() member of the view object which creates the window for the new
view, we pass the object, context, as an argument. This will establish a proper relationship

with our document and will validate the document pointer. The argument this in the call to
Create() specifies the current frame as the parent window, and the ViewID argument

specifies the ID of the window. This ID enables the address of the window to be obtained with a
subsequent call to the GetDlgItem() member of the parent window.

To make the new view the active view, we call the SetActiveView() member of

CMainFrame. The new view will then replace the current active view. To remove the old view
window, we call the ShowWindow() member of the view with the argument SW_HIDE using the

pointer to the old view. To display the new view window, we call the same function with the
argument SW_SHOW using the pointer to the new view.

 SetActiveView(pNewActiveView); // Activate the
new view

 pOldActiveView->ShowWindow(SW_HIDE); // Hide the old
view

 pNewActiveView->ShowWindow(SW_SHOW); // Show the new
view

 pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old
view ID

 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);

 m_CurrentViewID = ViewID; // Save the new
view ID

We restore the ID of the old active view to the ID value that we've defined for it in the
m_CurrentViewID member of the CMainFrame class that we added earlier. We also set the
ID of the new view to AFX_IDW_PANE_FIRST to identify it as the first window for the

application. This is necessary because our application has but one view, so the first view is the
only view. Lastly, we save our ID for the new window in the m_CurrentViewID member, so it's

available the next time the current view is replaced. The call to RecalcLayout() causes the

view to be redrawn when the new view is selected.

You must add a #include statement for the OrderView.h file to beginning of the
MainFrm.cpp file, so that the COrderView class definition is available here. Once you have

saved MainFrm.cpp, we can move on to adding a button control to the Products dialog to
link to the Orders dialog, and adding handlers for this button and its partner on the Orders

dialog to call the SelectView() member of CMainFrame.

Enabling the Switching Operation

To implement the view switching mechanism, go back to ResourceView and open the
IDD_DBSAMPLE_FORM dialog. You need to add a button control to the dialog, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can set the ID for the button to IDC_ORDERS, consistent with the naming for the other

controls in the dialog.

After saving the resource, you can create a handler for the button by double-clicking it while
holding down the Ctrl key. ClassWizard will add the function OnOrders() to the
CProductView class, and this handler will be called when the button is clicked. You only need

to add one line of code to complete the handler:

 void CProductView::OnOrders()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(ORDER_VIEW);

 }

The GetParentFrame() member of the view object is inherited from CWnd, which is an
indirect base class of CMainFrame. This function returns a pointer to the parent frame window

and we use it to call the SelectView() function that we've just added to the CMainFrame
class. The argument ORDER_VIEW will cause the frame window to switch to the Orders dialog

window. If this is the first time this has occurred, it will create the view object and the window.
On the second and subsequent occasions that a switch to the orders view is selected, the
existing Orders view will be reused.

You must add the following #include statements to the beginning of the ProductView.cpp

file:

 #include "OurConstants.h"

 #include "MainFrm.h"

The next task is to add the handler for the button we previously placed on the
IDD_ORDERS_FORM dialog. Double-click the button with the Ctrl key pressed, as before, and

add the following code to the OnProducts() handler that is generated in the COrderView

class:

 void COrderView::OnProducts()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(PRODUCT_VIEW);

 }

This works in the same way as the previous button control handler. Again, you must add
#include statements for the OurConstants.h and MainFrm.h files to the beginning of the

.cpp file, and then save it.

Handling View Activation

When we switch to a view that already exists, we need to ensure that the recordset is refreshed
and that the dialog is re-initialized, so that the correct information is displayed. When an existing
view is activated or deactivated, the framework calls the OnActivateView() member of the

class. We need to override this function in each of our view classes. You can do this using the
Message Maps tab in the ClassWizard dialog. With the class name selected in the Object IDs list
box, extend the Messages list box and double click on OnACtivateView. You need to add the
handler to both view classes.

You can add the following code to complete the implementation of the function:

 void COrderView::OnActivateView(BOOL bActivate,

 CView* pActivateView, CView*
pDeactiveView)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if(bActivate)

 {

 // Get a pointer to the document

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 // Get a pointer to the frame window

 CMainFrame* pMFrame = (CMainFrame*)GetParentFrame();

 // If the last view was the product view, we must re-query

 // the recordset with the product ID from the product
recordset

 if(pMFrame->m_CurrentViewID==PRODUCT_VIEW)

 {

 if(!m_pSet->IsOpen()) // Make sure the recordset is
open

 return;

 // Set current product ID as parameter

 m_pSet->m_ProductIDparam = pDoc->m_productSet.m_ProductID;

 m_pSet->Requery(); // Get data from the DB

 }

 // Set the window caption

 CString strTitle = _T("Table Name:");

 CString strTable = m_pSet->GetTableName();

 if(!strTable.IsEmpty())

 strTitle += strTable;

 else

 strTitle += _T("Orders - Multiple Tables");

 pDoc->SetTitle(strTitle);

 CRecordView::OnInitialUpdate(); // Update values in dialog

 }

 CRecordView::OnActivateView(bActivate, pActivateView,
pDeactiveView);

 }

We only execute our code if the view is being activated; if this is the case, the bActivate

argument will be TRUE. After getting pointers to the document and the parent frame, we verify

that the previous view was the product view, before requerying the order set. This check isn't
necessary at present, since the previous view is always the product view, but if and when we
add another view to our application, this will not always be true, so we might as well put the
code in now.

To requery the database, we set the parameter member of COrderSet,

m_ProductIDparam, to the current value of the m_ProductID member of the product

recordset. This will cause the orders for the current product to be selected. We don't need to set
the m_strFilter member of the recordset here because that will have been set in the
OnInitialUpdate() function when the CRecordView object was first created. The IsEOF()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

function member of the COrderSet object is inherited from CRecordSet and will return TRUE if

the recordset is empty when it is re-queried.

Before continuing, however, we need to perform one check. If there are no orders for a product,
then it isn't very useful to show a blank window, and it would be better to display a message box
informing the user that there's nothing to display. First, add a member function to the
COrderView class, like this:

 BOOL COrderView::HasOrders()

 {

 CDBSampleDoo* pDoc = (CDBSampleDoc*)GetDocument();

 // If the dataset isn't open, we can't help

 if (!m_pSet->IsOpen())

 return FALSE;

 m_pSet->m_ProductIDparam = pDoc->m_productSet.m_ProductID;

 m_pSet->Requery(); // Get data from the DB

 // If we're already at the end, there are no orders here

 if (m_pSet->IsEOF())

 return FALSE;

 else

 return TRUE;

 }

We call this function in the CMainFrame::SelectView() function, like this:

 void CMainFrame::SelectView(UINT ViewID)

 {

 CView* pOldActiveView = GetActiveView(); // Get current
view

 // Get pointer to new view if it exists

 // if it doesn't the pointer will be null

 CView* pNewActiveView = (CView*)GetDlgItem(ViewID);

 // If this is 1st time around for the new view,

 // the new view won't exist, so we must create it

 if (pNewActiveView == NULL)

 {

 switch(ViewID)

 {

 case ORDER_VIEW: // Create an
Order view

 pNewActiveView = (CView*)new COrderView;

 break;

 default:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 AfxMessageBox("Invalid View ID");

 return;

 }

 // Switching the views

 // Obtain the current view context to apply to the new view

 CCreateContext context;

 context.m_pCurrentDoc = pOldActiveView->GetDocument();

 pNewActiveView->Create(NULL, NULL, 0L,
CFrameWnd::rectDefault,

 this, ViewID,
&context);

 pNewActiveView->OnInitialUpdate();

 }

 // Check whether there are any orders

 if (ViewID == ORDER_VIEW && !((COrderView*)pNewActiveView)-
>HasOrders())

 {

 AfxMessageBox("No orders for this product ID");

 return;

 }

 SetActiveView(pNewActiveView); // Activate
the new view

 pOldActiveView->ShowWindow(SW_HIDE); // Hide the
old view

 pNewActiveView->ShowWindow(SW_SHOW); // Show the
new view

 pOldActiveView->SetDlgCtrllD(m_CurrentViewID); // Set the old
view ID

 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);

 m_CurrentViewID = ViewID; // Save the
new view ID

 RecalcLayout();

 }

If there are no orders to be displayed, the function displays a message box and exits. You may
be wondering why we couldn't do this in the OnActivateView() function itself. The reason is

that OnActivateView() is called in response to a window getting or losing the focus, and if

you do something which interferes with this (such as displaying a message box) you'll get
unpredictable and probably undesirable results! For that reason the error checking has to be
done outside the OnActivateView() function.

You now need to add the OnActivateView() function to the CProductView class as well,

and code it as follows:

 void CProductView::OnActivateView(BOOL bActivate,

 CView* pActivateView, CView*
pDeactiveView)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 if(bActivate)

 {

 // Update the window caption

 CString strTitle = _T("Table Name");

 CString strTable = m_pSet->GetTableName();

 strTitle += _T(":") + strTable;

 GetDocument()->SetTitle(strTitle);

 }

 CRecordView::OnActivateView(bActivate, pActivateView,
pDeactiveView);

 }

In this case, all we need to do if the view has been activated is to update the window caption.

Since the product view is the driving view for the rest of the application, we always want to
return the view to its state before it was deactivated. If we do nothing apart from updating the
window caption, the view will be displayed in its previous state.

Viewing Orders for a Product

You are now ready to try to build the executable module for the new version of the example.
When you run the example, you should be able to see the orders for any product just by clicking
the Orders button on the products dialog. A typical view of an order is shown here:

Clicking the Products button will return you to the products dialog, so you can browse further
through the products. In this dialog, you can use the toolbar buttons to browse all the orders for
the current product.

The Customer ID is a bit cryptic. We could add one more view to display the details of the
customer's name and address. It won't be too difficult because we've built the mechanism to
switch between views already.

Viewing Customer Details

The basic mechanism that we'll add will work through another button control on the order dialog,

which will switch to a new dialog for customer data. As well as controls to display customer
data, we'll add two buttons to the customer dialog: one to return to the order view, and the other
to return to the product view. We'll need another view ID corresponding to the customer view,
which we can add with the following line in the OurConstants.h file:

 const UINT CUSTOMER_VIEW = 3U;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Let's now add the recordset for the customer details.

Adding the Customer Recordset

The process is exactly the same as we followed for the COrderSet class. You use the Add
Class... button in ClassWizard to define the CCustomerSet class, with CRecordset specified

as the base class. You select the database as Sample Data, as before, and select the Customers
table for the recordset. The class should then be created with the data members shown here:

You can click on the OK button to store the class. At this point, you could add a CCustomerSet

member to the document so that it will be created when the document object is created. Right-
click on the CDBSampleDoc class name in ClassView and add a variable of type
CCustomerSet with the name m_CustomerSet. You can leave the access specifier as

public.

You will find that ClassView has already added an #include directive for CustomerSet.h

into DBSampleDoc.h. After saving all the files you have modified, you can move next to

creating the customer dialog resource.

Creating the Customer Dialog Resource

This process is also exactly the same as the one you went through for the orders dialog.
Change to ResourceView and create a new dialog resource with the ID IDD_CUSTOMER_FORM,

not forgetting to set the style to Child and the border to None in the Properties box for the dialog.
After deleting the default buttons, add controls to the dialog to correspond to the field names for
the Customers table, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The two buttons enable you to switch to either the Orders dialog, which will be how you got here,
or directly back to the Products dialog.

Specify the IDs for the controls, using the field names as a basis. You can get help with this by
expanding the list of members of CCustomerSet in ClassView and keeping that visible while

you work on the dialog. You can set the button IDs as IDC_ORDERS and IDC_PRODUCTS.

Remember to check the tab order is as required and then save the dialog resource. Now we're
ready to create the view class for the recordset.

Creating the Customer View Class

Right-click the dialog and select ClassWizard... from the pop-up. Create a new class based on
CRecordView with the name CCustomerView, and select the IDD_CUSTOMER_FORM as the

ID for the dialog to be associated with the class. ClassWizard should automatically choose
CCustomerSet as the recordset for the view class. Complete the process and click on OK in

ClassWizard You can then associate the edit controls with variables in the recordset.

To tie the controls to the recordset data members, double-click on each edit control in turn with
the Ctrl key held down. If the tab order for the controls is correct, all the variables should be
selected automatically.

You can also process the button controls in the same way to add the OnOrders() and

OnProducts() functions to the class. The code for these is very similar to the corresponding
functions in the other views. The code you need to add to OnOrders() is:

 void CCustomerView::OnOrders()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(ORDER_VIEW);

 }

You can add a similar line of code to the OnProducts() function:

 void CCustomerView::OnProducts()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(PRODUCT_VIEW);

 }

Once again, the destructor for CCustomerView will contain code to delete the object pointed to

by m_pSet, as follows:

 CCustomerView::~CCustomerView()

 {

 if (m_pSet)

 delete m_pSet;

 }

Delete the highlighted lines, since the framework will delete the record set object without our
intervention.

We now need to add code to specify a filter for the customer recordset so that we only get the
customer details displayed that correspond to the customer ID field from the current order in the
COrderSet object.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Adding a Filter

We can define the filter in the OnInitialUpdate() member of CCustomerView. Since we

only anticipate one record being returned corresponding to each customer ID, we don't need to
worry about sorting. The code you need to add to this function is as follows:

 void CCustomerView::OnInitialUpdate()

 {

 BeginWaitCursor();

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 m_pSet = &pDoc->m_CustomerSet; // Initialize the
recordset pointer

 // Set the DB for the customer recordset

 m_pSet->m_pDatabase = pDoc->m_productSet.m_pDatabase;

 // Set the current customer ID as the filter parameter value

 m_pSet->m_CustomerIDparam = pDoc->m_OrderSet.m_CustomerID;

 m_pSet->m_strFilter ="CustomerID = ?"; // Filter on
CustomerID field

 GetRecordset();

 CRecordView::OnInitialUpdate();

 if (m_pSet->IsOpen())

 {

 CString strTitle = m_pSet->m_pDatabase->GetDatabaseName();

 CString strTable = m_pSet->GetTableName();

 if (!strTable.IsEmpty())

 strTitle += _T(":") + strTable;

 GetDocument()->SetTitle(strTitle);

 }

 EndWaitCursor();

 }

After getting a pointer to the document, we store the address of the CCustomerSet object
member of the document in the m_pSet member of the view. We know the database is already

open, so we can set the database pointer in the customer recordset to that stored in the
CProductSet object.

The parameter for the filter will be defined in the m_CustomerIDparam member of

CCustomerSet. We'll add this member to the class in a moment. It's set to the current value of
the m_CustomerID member of the COrderSet object owned by the document. The filter is

defined in such a way that the customer recordset will only contain the record with the same
customer ID as that in the current order.

To handle activation of the customer view, you must add the OnActivateView() function

using ClassWizard, as before You can implement it as follows:

 void CCustomerView::OnActivateView(BOOL bActivate,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CView* pActivateView, CView*
pDeactiveView)

 {

 if(bActivate)

 {

 if(!m_pSet->IsOpen())

 return;

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 // Set current customer ID as parameter

 m_pSet->m_CustomerIDparam = pDoc->m_OrderSet.m_CustomerID;

 m_pSet->Requery(); // Get data from the DB

 CRecordView::OnInitialUpdate(); // Redraw the dialog

 CString strTitle = _T("Table Name:");

 CString strTable = m_pSet->GetTableName();

 if (!strTable.IsEmpty())

 strTitle += strTable;

 else

 strTitle += _T("Multiple Tables");

 pDoc->SetTitle(strTitle);

 }

 CRecordView::OnActivateView(bActivate, pActivateView,
pDeactiveView);

 }

If this function is called because the view has been activated (rather than deactivated),
bActivate will have the value TRUE. In this case, we set the filter parameter from the order

recordset and re-query the database.

The m_CustomerIDparam member for the CCustomerSet recordset object that's associated

with this view object is set to the customer ID from the orders recordset object that's stored in
the document. This will be the customer ID for the current order. The call to the Requery()

function for the CCustomerSet object will retrieve records from the database using the filter

we've set up. The result will be that the details for the customer for the current order will be
stored in the CCustomerSet object, and then passed to the CCustomerView object for

display in the dialog.

We also need to add a function to check that there are customer details to display, just as we
did for the order class:

 BOOL CCustomerView::HasDetails()

 {

 if (!m_pSet->IsOpen())

 return FALSE;

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 m_pSet->m_CustomerIDparam = pDoc->m_OrderSet.m_CustomerID;

 m_pSet->Requery();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if (m_pSet->IsEOF ())

 return FALSE;

 else

 return TRUE;

 }

If the dataset isn't open, or if it doesn't contain any records, this function will return FALSE.

You will need to add the following #include statements to the beginning of the
CustomerView.cpp file:

 #include "ProductSet.h"

 #include "OrderSet.h"

 #include "CustomerSet.h"

 #include "DBSampleDoc.h"

 #include "OurConstants.h"

 #include "MainFrm.h"

The first three are required because of classes used in the definition of the document class. We
need DBSampleDoc.h because of the CDBSampleDoc class reference in
OnInitialUpdate(), and the remaining two .h files contain definitions that are referred to in

the button handlers in the CCustomerView class.

At this point, you can save the current file and return to the definition of the CCustomerView
class. You'll need to change the constructor from protected access specification to public

because we need to be able to create a customer view object in the SelectView() member of
CMainFrame.

Implementing the Filter Parameter

Add a public variable of type CString to the CCustomerSet class to correspond with the
type of the m_CustomerID member of the recordset, and give it the name

m_CustomerIDparam. You can initialize this in the constructor and set the parameter count as

follows:

 CCustomerSet::CCustomerSet(CDatabase* pdb): CRecordset(pdb)

 {

 //{{AFX_FIELD_INIT(CCustomerSet)

 m_CustomerID = _T("");

 m_CompanyName = _T("");

 m_ContactName = _T("");

 m_ContactTitle = _T("");

 m_Address = _T("");

 m_City = _T("");

 m_Region = _T("");

 m_PostalCode = _T("");

 m_Country = _T("");

 m_Phone = _T("");

 m_Fax = _T("");

 m_nFields = 11;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //}}AFX_FIELD_INIT

 m_CustomerIDDparam = _T(""); // Initial customer ID
parameter

 m_nParams = 1; // Number of parameters

 m_nDefaultType = snapshot;

 }

ClassWizard uses the comments containing AFX_FIELD_INIT as markers for updating the

constructor when data members for table fields are added or deleted, so we add our
initialization code outside that block. We set the parameter to an empty string and the
parameter count in m_nParams to 1.

To set up the parameter, you add statements to the DoFieldExchange() member, as before:

 void CCustomerSet::DoFieldExchange(CFieldExchange* pFX)

 {

 //{{AFX_FIELD_MAP(CCustomerSet)

 pFX->SetFieldType(CFieldExchange::outputColumn);

 RFX_Text(pFX, _T("[CustomerID]"), m_CustomerID);

 RFX_Text(pFX, _T("[CompanyName]"), m_CompanyName);

 RFX_Text(pFX, _T("[ContactName]"), m_ContactName);

 RFX_Text(pFX, _T("[ContactTitle]"), m_ContactTitle);

 RFX_Text(pFX, _T("[Address]"), m_Address);

 RFX_Text(pFX, _T("[City]"), m_City);

 RFX_Text(pFX, _T("[Region]"), m_Region);

 RFX_Text(pFX, _T("[PostalCode]"), m_PostalCode);

 RFX_Text(pFX, _T("[Country]"), m_Country);

 RFX_Text(pFX, _T("[Phone]"), m_Phone);

 RFX_Text(pFX, _T("[Fax]"), m_Fax);

 //}}AFX_FIELD_MAP

 pFX->SetFieldType(CFieldExchange::param); // set parameter
mode

 RFX_Text(pFX, _T("CustomerIDParam"), m_CustomerIDparam);

 }

After setting the param mode by calling the SetFieldType() member of the pFX object, we

call the RFX_Text() function to pass the parameter value for substitution in the filter. We use
RFX_Text() because the parameter variable is of type CString. There are various RFX_()

functions supporting a range of parameter types.

Once you've completed this modification, you can save the CustomerSet.cpp file.

Linking the Order Dialog to the Customer Dialog

To permit a switch to the customer dialog, we require a button control on the
IDD_ORDERS_FORM dialog, so open it in ResourceView and add an extra button, as shown

here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can define the ID for the new button control as IDC_CUSTOMER. After you save the dialog,

you can add a handler for the button by double-clicking on it while keeping the Ctrl key pressed.
The handler only requires one line of code to be added to it, as follows:

 void COrderView::OnCustomer()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(CUSTOMER_VIEW);

 }

This obtains the address of the frame window and uses it to call the SelectView() member of
CMainFrame to switch to a customer view. The final step to complete the program is to add the

code to the SelectView() function that will deal with the CUSTOMER_VIEW value being

passed to it. This requires us to make two changes - we need to add a CUSTOMER_VIEW case

to the switch statement, and check whether there are any customer details :

 void CMainFrame::SelectView(UINT ViewID)

 {

 CView* pOldActiveView = GetActiveView(); // Get current
view

 // Get pointer to new view if it exists

 // if it doesn't the pointer will be null

 CView* pNewActiveView = (CView*)GetDlgItem(ViewID);

 // If this is 1st time around for the new view,

 // the new view won't exist, so we must create it

 if (pNewActiveView == NULL)

 {

 switch(ViewID)

 {

 case ORDER_VIEW: // Create an

Order view

 pNewActiveView = (CView*)new COrderView;

 break;

 case CUSTOMER_VIEW: // Create a
customer view

 pNewActiveView = (CView*)new CCustomerView;

 break;

 default:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 AfxMessageBox("Invalid View ID");

 return;

 }

 CCreateContext context;

 context.m_pCurrentDoc = pOldActiveView->GetDocument();

 pNewActiveView->Create(NULL, NULL, OL,
CFrameWnd::rectDefault,

 this, ViewID,
&context);

 pNewActiveView->OnInitialUpdate();

 }

 // Check whether there are any orders

 if (ViewID == ORDER_VIEW && !((COrderView*)pNewActiveView)-
>HasOrders())

 {

 AfxMessageBox("No orders for this product ID");

 return;

 }

 // Check whether there are any customer details

 if (ViewID == CUSTOMER_VIEW &&

!((CCustomerView*)pNewActiveView)->HasDetails())

 {

 AfxMessageBox("No details for this customer");

 return;

 }

 SetActiveView(pNewActiveView); // Activate the
new view

 pNewActiveView->ShowWindow(SW_SHOW); // Hide the old
view

 pOldActiveView->ShowWindow(SW_HIDE); // Show the new
view

 pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old

view ID

 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);

 m_CurrentViewID = ViewID; // Save the new
view ID

 RecalcLayout();

 }

The only change necessary is the addition of a case statement in the switch to create a
CCustomerView object when one doesn't exist. Each view object will be re-used next time

around, so they only get created once. The code to switch between views works with any
number of views, so if you want this function to handle more views, you just need to add

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

another case in the switch for each new view that you want. Although we are creating view

objects dynamically here, we don't need to worry about deleting them. Because they are
associated with a document object, they will be deleted by the framework when the application
closes.

Because we reference the CCustomerView class in the SelectView() function, you must
add an #include statement for the CustomerView.h file to the block at the beginning of
MainFrm.cpp.

Exercising the Database Viewer

At this point, the program is complete. You can build the application and execute it. As before,
the main view of the database is the products view. Clicking on Orders will, as before, take you
to the orders view. The second button on this form should now be active, and clicking on it takes
you to the details of the customer:

The two buttons take you back to the Orders view or the Products view respectively.

Summary

You should now be comfortable with the basics of how MFC links to your database. The
fundamentals of the recordset and the record view are the same, whether you use the DAO or
the ODBC classes. Although we haven't covered adding records to tables or deleting them in
our example, you should have little difficulty implementing this as the recordset already has the
functions you need built-in.

The key points we've seen in this chapter are:

§ MFC provides DAO and ODBC support for accessing databases.
§ To use a database with ODBC the database must be registered.
§ A connection to a database is represented by a CDatabase or a CDaoDatabase

object.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ A recordset object represents an SQL SELECT statement applied to a defined set of

tables. Where necessary, the framework will automatically create a database object
representing a connection to a database when a recordset object is created.

§ A WHERE clause can be added for a recordset object through its m_strFilter data

member.
§ An ORDER BY clause can be defined for a recordset through its m_strSort data

member.

§ A record view object is used to display the contents of a recordset object.

Exercises

1. Using the Products table again, add a 'stock control' dialog to the application. This

should be reachable through a button on the products dialog, and must itself contain
a button to go back to the products dialog. The fields it should display are the product
ID, product name, reorder level, unit price and units in stock. Don't worry about
filtering or sorting at the moment; just get the basic mechanism working.

2. Refine the above project so that the stock control dialog automatically displays
information about the product that was being shown in the products dialog when the
button was pressed.

3. Implement a system whereby the user of the database is warned in the stock control
dialog about the present stock being near or below the reorder level. You'll have
noticed by now that some of the stock reorder levels are set to zero; don't display a
warning in those cases.

Answers

1. There are a number of things to do here. Start by adding a new button labeled something like

Stock Info to the products dialog, and amend its ID appropriately. Implement a handler for it
using ClassWizard and add this code:

 void CProductView::OnStockinfo()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(STOCK_VIEW);

 }

For this to work, you must also define a new constant in OurConstants.h

 // Arbitrary constants to identify record views

 const UINT PRODUCT_VIEW = 1U;

 const UINT ORDER_VIEW = 2U;

 const UINT CUSTOMER_VIEW = 3U;

 const UINT STOCK_VIEW = 4U;

and add code to handle it in CMainFrame::SelectView(). The new class for the stock

control dialog will be called CStockView:

 if (pNewActiveView == NULL)

 {

 switch(ViewID)

 {

 case ORDER_VIEW: // Create an Order view

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pNewActiveView = (CView*)new COrderView;

 break;

 case CUSTOMER_VIEW: // Create a customer view

 pNewActiveView = (CView*)new CCustomerView;

 break;

 case STOCK_VIEW: // Create a stock view

 pNewActiveView = (CView*)new CStockView;

 break;

Don't forget that you'll need to add a #include for StockView.h to MainFrm.cpp. Next,

call up ClassWizard and use it to create a new class called CStockSet, with CRecordset
as its base. Choose to use the Products table from the Sample Data database, and once

you've done that, add a public member variable to the document class:

 public:

 CStockSet m_StockSet;

 CCustomerSet m_CustomerSet;

 COrderSet m_OrderSet;

The next step is to add the dialog itself. Go to the ResourceView and insert a new dialog
called IDD_STOCK_FORM. Make sure its Style and Border are set to Child and None

respectively, delete the default controls and add new ones so it looks something like this:

After giving the important controls sensible IDs and ensuring that the tab order of the controls
is such that each edit control immediately succeeds its partnering static text control, call up
ClassWizard and create a new class called CStockView. Base this class on CRecordView,

select IDD_STOCK_FORM as the dialog to be associated with it, and choose CStockSet as
its recordset.

You can now Ctrl-double-click on all the edit controls to tie them to the recordset data
members, and on the Products button so that you can implement the handler, which looks like
this:

 void CStockView::OnSkproducts()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(PRODUCT_VIEW);

 }

Just three things remain: make the constructor for CStockView public, delete the code from

the destructor, and add two #includes to StockView.cpp:

 #include "stdafx.h"

 #include "DBSample.h"

 #include "OurConstants.h"

 #include "Mainfrm.h"

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include "StockView.h"

2. Add the public member variable m_ProductIDparam, of type long, to the definition of
CStockSet. Initialize it and the parameter count m_nParams in the constructor in

StockSet.cpp:

 m_ProductIDparam = 0L;

 m_nParams = 1;

Set up the parameter by adding a couple of lines to the CStockSet::DoFieldExchange()
function:

 void CStockSet::DoFieldExchange(CFieldExchange* pFX)

 {

 //{{AFX_FIELD_MAP(CStockSet)

 pFX->SetFieldType(CFieldExchange::outputColumn);

 // Various RFX_... commands

 //}}AFX_FIELD_MAP

 pFX->SetFieldType(CFieldExchange::param);

 RFX_Long(pFX, _T("ProductIDparam"), m_ProductIDparam);

 }

Next, you need to add code to define a filter in the CStockView::OnInitialUpdate()
function:

 void CStockView::OnInitialUpdate()

 {

 BeginWaitCursor();

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 m_pSet = &pDoc->m_StockSet; // Initialize the recordset
pointer

 // Set the database for the recordset

 m_pSet->m_pDatabase = pDoc->m_productSet.m_pDatabase;

 // Set the current Product ID as the parameter

 m_pSet->m_ProductIDparam = pDoc->m_productSet.m_ProductID;

 // Filter on the Product ID field

 m_pSet->m_strFilter = "ProductID - ?">

 GetRecordset();

 CRecordView::OnInitialUpdate();

 if (m_pSet->IsOpen())

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CString strTitle = m_pSet->m_pDatabase->GetDatabaseName();

 CString strTable = m_pSet->GetTableName();

 if (!strTable.IsEmpty())

 strTitle += _T(":") + strTable;

 GetDocument()->SetTitle(strTitle);

 }

 EndWaitCursor();

 }

As in the chapter, you need to add an OnActivateView() handler to CStockView. Here's

the code you need to insert:

 void CStockView::OnActivateView(BOOL bActivate, CView*
pActivateView,

 CView*
pDeactiveView)

 {

 if(bActivate)

 {

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 // Set current Product ID as parameter and requery the
database

 m_pSet->m_ProductIDparam = pDoc->m_productSet.m_ProductID;

 m_pSet->Requery();

 CRecordView::OnInitialUpdate()

 }

 CRecordView::OnActivateView(bActivate, pActivateView,
pDeactiveView);

 }

Finally, you should add #includes for ProductSet.h and DBSampleDoc.h to

StockView.cpp.

3. There are all kinds of ways you could approach this; here's a fairly easy method. Add a new
edit control to the stock dialog and label it something like Stock Position. Ctrl-double-click on
the edit box and add a new CString variable called m_StockPosn. Then you can simply

add a few lines to CStockView::DoDataExchange():

 void CStockView::DoDataExchange(CDataExchange* pDX)

 {

 CRecordView::DoDataExchange(pDX);

 m_StockPosn = "Situation normal";

 long StockBalance = m_pSet->m_UnitsInStock - m_pSet-
>m_RecorderLevel;

 if (m_pSet->m_ReorderLevel ! = 0)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if ((StockBalance > 0) && (StockBalance < 11))

 m_StockPosn = "*Warning: low stock*";

 if (StockBalance < 1)

 m_StockPosn = "**Urgent: reorder now**";

 }

 //{{AFX_DATA_MAP(CStockView)

 DDX_FieldText(pDX, IDC_SKPRODUCTNAME, m_pSet->m_ProductName,
m_pSet);

 DDX_FieldText(pDX, IDC_SKPRODUCTID, m_pSet->m_ProductID,
m_pSet);

 DDX_FieldText(pDX, IDC_SKUNITPRICE, m_pSet->m_UnitPrice,
m_pSet);

 DDX_FieldText(pDX, IDC_SKUNITSINSTOCK, m_pSet->m_UnitsInStock,
m_pSet);

 DDX_FieldText(pDX, IDC_SKREORDERLEVEL, m_pSet->m_ReorderLevel,
m_pSet);

 DDX_Text(pDX, IDC_STOCKPOSN, m_StockPosn);

 //}}AFX_DATA_MAP

 }

If all has gone well, you'll have a dialog which looks something like this:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 21: Updating Data Sources

Overview

We will build on what we learnt about accessing a database via ODBC in the previous chapter,
and try our hand at updating through the same mechanism. We will use the Sample Data
database throughout as you are already familiar with some of its contents, and it is a reasonable
test database. It also has the advantage that you can always restore the original by copying it
from the CD to your hard disk in the event of problems.

By the end of this chapter you will have learnt:

§ What database transactions are
§ How to update a database using recordset objects

§ How data is transferred from a recordset to the database in an update operation
§ How to update an existing row in a table
§ How to add a new row to a table

Update Operations

When we are just writing code to view information from a database, the only issue is whether
we are authorized to access the data. As long as the administration of the database has the
right kind of access protection, the data in the database is safe. As soon as we start writing
code to update a database, it's another kettle of fish. Since we are altering the contents of the
database, such modifications could destroy the integrity of the database and make nonsense of
the contents of a table, or even make it unusable. You always need to take great care to test
your code properly with a test database, before letting it loose on the real thing.

A database update typically involves modifying one or more fields in a row in an existing table,
modifying an order quantity for instance, or adding a new row - a new order perhaps, in the
context of the Sample Data database. We will be taking a look at an example of both of these,
but first, let's consider the implications.

Most of the complications that can arise with database update operations become apparent in

the context of multi-user databases. Without proper control of the update process, concurrent
access by several users provides the potential for two kinds of problems. The first arises if one
person is allowed to retrieve a record while an update operation is in progress on the same
record. The person reading the data can potentially end up with the old data prior to the update,
or even a mixture with some fields containing old data and some new. The second problem
arises with concurrent update, where one person starts updating a record while another update
is already in progress on the same record. In a situation such as this, with a single record in a
table, there is potential for an update to be lost. Where records from several tables are involved,
the data in the database can end up in an inconsistent state. As you'll come to realize from
working with databases for any length of time, working with a set of data that is wrong is far
worse than not being able to access it in the first place. The integrity of the data - i.e. its
correctness - is paramount. Before we look into how these problems can be handled, let's see
how basic update operations on a recordset work.

CRecordset Update Operations

We saw in the previous chapter how the RFX_() function calls, in the DoFieldExchange()

member of the recordset object, retrieved data from the selected fields in the table or tables in
the database, and transferred it to the data members of the recordset object. The same
functions are also used to update fields in a database table, or to add a completely new row.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There are five member functions of the CRecordset class that support update operations:

Function Description

AddNew() Call this function to start adding a completely new record. Throws a
CDBException if a new record cannot be appended to the table.

CancelUpdate() Cancels any outstanding operation in order to modify an existing
record, or to add a new one.

Delete() Delete the current record by creating and executing an SQL DELETE.
Throws a CDBException if an error occurs - if the database is read-

only for instance. After a Delete() operation, all the data members
of the recordset will be set to null values - the equivalent of no value
set - so you must move to a new record before executing any other
operation on the recordset object.

Edit() Call this function to start updating an existing record. Throws a
CDBException if the table cannot be updated, and throws a

CMemoryException if an out of memory condition arises.

Update() Call this function to complete updating of an existing record or adding
a new one. Throws a CDBException if a single record was not
updated, or an error occurred.

None of the functions have parameters. Four of the functions throw exceptions as detailed
above, so you should put them in a try block and add a catch block if you don't want your

program to end abruptly when an error occurs.

To delete the current record for a recordset object, you just call its Delete() member. You

must then scroll the recordset to a new position before attempting to use any of the functions
above, since the values of the data members of the recordset object will be invalid after calling
Delete().

The basic sequence of events in updating an existing record or adding a new one is illustrated

below.

When you call AddNew() for a recordset to start adding a new record to a table, the function

saves the current values of all the data members of the recordset object that correspond to field
values in a buffer, and then sets the data members to PSEUDO_NULL. This is not zero, or null,

as in a pointer. It is a value that indicates that the data member has not been set. When you call
Update() to complete adding a record, the original values of the data members of the
recordset before AddNew() was called are restored. If you want the recordset to contain the

values for the new record, you must call the Requery() member of the recordset object. This
function returns TRUE if the operation was successful. You also call Requery() when you want

to obtain a different view of the data, where you will retrieve records using a different SQL
command, or a different filter for the records.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The transfer of data between the recordset data members and the database always uses the
DoFieldExchange() member of the recordset object, so the RFX_() functions provide a dual

capability - writing to the database as well as reading from it.

Checking that Operations are Legal

It is a good idea to confirm that the operation you intend to carry out with your recordset object

is legal. It is all too easy to end up with a read-only recordset - just forgetting to reset the read-
only attribute on the SampleData.mdb file will do it! If you try to update a table that is read-

only, an exception will be thrown that is entirely avoidable if you verify that the operation is
possible.

The CanUpdate() member of CRecordset returns TRUE if you can modify records in the

table represented by the recordset object. When you want to add a new record, you can call the
CanAppend() member of CRecordset beforehand to check. This will return TRUE if adding

new records to the table is permitted.

Record Locking

Record locking prevents other users from accessing the locked record while a table row is being

updated. The extent to which a record is locked during an update is determined by the locking
mode set in the recordset object. There are two locking modes defined in CRecordset,

referred to as optimistic mode and pessimistic mode:

Mode Name Description

CRecordset::optimistic In optimistic locking mode, the record is only locked while
the Update() member function is executing. This
minimizes the time that the record is inaccessible to other
users of the database.

CRecordset::pessimistic In pessimistic locking mode, the record is locked as soon
as you call Edit(), and it remains locked (and therefore

inaccessible to other users) until the completion of the
call to Update() or until the update operation is aborted.

This can obviously severely affect performance when
updates are being prepared interactively.

The default mode for a recordset object is optimistic, so you only have to set it if you want
pessimistic mode. To set this mode, you call the SetLockingMode() member of the recordset

object with CRecordset::pessimistic as the argument. Of course you can also reset it by
calling the function with CRecordset::optimistic as the argument.

Transactions

The idea of a transaction in the database context is to enable operations to be safely undone
when necessary. A transaction packages a well-defined series of one or more modifications to a
database into a single operation so that, at any point prior to the completion of the transaction,
everything can be reversed (or rolled back) if an error occurs. Clearly, if an update were to fail
when it was partially completed - due to a hardware problem for instance - it could have a
disastrous effect on the integrity of the database. A transaction is not just an update to a single
table. It can involve very complex operations on a database involving a series of modifications
to multiple tables, and may take an appreciable time to complete. In these situations, support for
transactions is virtually a necessity if the integrity of the database is to be assured.

With transaction based operations, the database system manages the processing of the

transaction and records recovery information so that anything that the transaction does to the
data can be undone in the event of a problem part way through. Thus by basing your database
operations on transactions, you can protect the database against errors that might occur during

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

processing. Typically, transaction processing locks records as necessary, along the way, and
also ensures that any other database users accessing data that has been modified by the
transaction will see the changes immediately.

Transactions are supported by most large commercial database systems on mainframe

computers, but this is not the case with many database systems that run on a PC. In spite of
this, the CDatabase class in MFC does support transactions, and as it happens, so does the

Microsoft ODBC support for Access databases, so you can try out transaction processing with
the Sample Data database if you want.

CDatabase Transaction Operations

Transactions are managed through those members of your CDatabase class object that

provide the connection to the database. To determine whether transactions are supported for
any given connection, you call the CanTransact() member of the CDatabase object. This

will return TRUE if transactions are supported. Incidentally, there is also a CanUpdate()
member of CDatabase that will return FALSE if the data source is read-only.

There are three member functions of CDatabase involved in transaction processing:

Function Description

BeginTrans() Starts a transaction on the database. All subsequent recordset
operations are part of the transaction, until either CommitTrans() or

Rollback() is called. The function returns TRUE if the transaction
start was successful.

CommitTrans() Commits the transaction so all recordset operations that are part of the
transaction are expedited. The function returns FALSE if an error

occurred, in which case the state of the data source is undefined.

Rollback() Rolls back all the recordset operations executed since BeginTrans()
was called, and restores the data source to the condition at the time
when BeginTrans() was called.

The sequence of events in a transaction is basically very simple:
1. Call BeginTrans() to start the transaction.
2. Call Edit(), Update(), AddNew(), for your recordset as necessary.

3. Call CommitTrans() to complete the transaction.

Outside of a transaction, Edit() or AddNew() operations on a recordset are executed when
you call Update(). Within a transaction they are not executed until you call CommitTrans()

for the CDatabase object. If you need to abort the transaction at any time after calling
BeginTrans(), you just call Rollback().

Complications can arise due to the effects of CommitTrans() and Rollback() - the position

in the recordset you are operating on can be lost, for instance - so you may need to take some
action in your program to recover the situation after completing or aborting a transaction. There
are two members of CDatabase to help with this. After a CommitTrans() call, you need to

call the GetCursorCommitBehavior() member of CDatabase, and, after calling
Rollback(), you need to call GetCursorRollbackBehavior(). Both these functions

return one of three values of type int that indicate what you should do:

Return Value Effect on CRecordset Objects

SQL_CB_PRESERVE The recordset's connection to the data source will be unaffected by
the commit or rollback operation, so you need do nothing.

SQL_CB_CLOSE You need to call Requery() for the recordset object to restore the
current position in the recordset.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Return Value Effect on CRecordset Objects

SQL_CB_DELETE You must close the recordset by calling the Close() member of the

object, and then re-open the recordset if necessary.

There are further complications with using transactions in practice because the particular drivers

you are using can affect when you must open the recordset. With some drivers you must open
the recordset before you call BeginTrans(). With others, and the Microsoft Access ODBC

drivers are a case in point, Rollback() will not work unless you open your recordset after you
call BeginTrans(). Therefore you need to understand how the particular drivers you intend to

use will behave, before attempting to use transactions in your application.

A Simple Update Example

Let's get some hands on experience with update operations in action, starting with a very basic

example. Initially, this will omit most of what we have discussed so far in this chapter, but we will
be building on this to apply some of what we have learned. We can create an application to
update a database table with minimal effort using the MFC AppWizard. We will be creating a
program to allow updating of certain fields in the Order Details table.

Create a project called DBSimpleUpdate using the wizard as an SDI program. Select the

Database view without file support on step 2, as we did in the previous chapter. We are still going
to use the "Sample Data" database through ODBC, but this time choose Dynaset as the
recordset type.

In a multi-user environment, a dynaset will be automatically updated with any changes made to

a record while it is accessed by our program. This ensures the data we have in our application
is always up to date. For operations to modify an existing record or add new ones you should
choose dynaset as the recordset type.

Since we plan to update the database, we must map the recordset to a single data base table.
The database classes in MFC do not support updating of recordsets that involve joining two or
more tables. Choose the Order Details table for the default recordset, as shown below.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you select multiple tables here, updating the recordset will be inhibited because the recordset

will automatically be made read-only. The database classes only support read-only access to
joins of multiple tables, not updating.

You can change the view and recordset class and associated file names to match the table we
are dealing with, as illustrated by the window below:

Now all we need to do is customize the dialog to do what we want.

Customizing the Application

The Order Details table contains five columns - Order ID, Product ID, Unit Price, Quantity, and
Discount. If you display ClassView, and look at the members of COrderDetailsSet, you will

see the data members corresponding to these. We need a static text control and an edit control
for each of these on the dialog corresponding to the recordset. I arranged them as shown
below, but you can arrange them how you like.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Make sure that the tab order is such that each edit control immediately follows the

corresponding static control in sequence. Assign IDs to the edit controls to match the field name
as we did in the previous chapter - the last one will be IDC_DISCOUNT for example. The default

style set for an edit control allows keyboard input, but, on the assumption that we want to limit
which recordset fields can be altered, I have set the first three edit controls as read-only, using
the styles tab in the Properties dialog. The value displayed in a read-only control can be set in
the program, but a value cannot be entered in the control from the keyboard.You can set all
these to read-only in a single step by selecting each of the three controls with the Ctrl key held
down, then right clicking to display the pop-up menu. Whatever you then set in the Properties
dialog tabs will be applied to all three. With the dialog arrangement shown, you will only be able
to enter data for Quantity and Discount.

The only other thing we need to do is to associate the edit controls with a corresponding data
member of the recordset, and as we saw in the previous chapter, you just double click each
control while holding down the Ctrl key, and select OK in the pop-up window to accept the
selection. Having done that, you will have completed the program to update the Order Details
table, believe it or not. Let's give it a whirl.

Try it Out: - Updating a Database

This should compile right off the bat if you have set up the controls correctly. When the program
executes, you will be able to move through the rows in the table using the toolbar buttons. If you
enter data for an order into the edit controls for Quantity or Discount, it will be updated when you
move backwards or forwards in the recordset. Don't forget, if you haven't already done it, to
make sure sampdata.mdb is no longer read-only. Unsurprisingly, you can't update a record if it

is.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can see here that I have changed the quantity and discount values for the product with the
ID 11, on the order with the ID 10248, to some unlikely values.

How It Works

It is quite remarkable that we have completed our update program with no coding. All the
necessary code has been supplied for us. The update is expedited by our
COrderDetailsView class through functionality that is inherited from the base class.

When you click on one of the toolbar buttons to move to another record, the OnMove() handler

provided by the default base class, CRecordView, is called. This function will write out any

changes that have been entered into the recordset before it moves to a new record in the
recordset. It moves to a new record by calling the Move() member of the CRecordset class
that is inherited in COrderDetailsSet. Remember that there are two levels of data exchange

going on here. The RFX_() functions called in the DoFieldExchange() member of our
COrderDetailsSet class transfer data between a row in the recordset from the database and

the data members of the class. The DDX_() functions called in the DoDataExchange()
member of COrderDetailsView, transfer data between the edit controls and the data

members of COrderDetailsSet. When you change the value in an edit control, the new data

is propagated through to the appropriate data member of the recordset object. When you move
to the next recordset by clicking a toolbar button, the new data will be written to the database by
the DoFieldExchange() function.

This example is fine as far as it goes, but having data written to the database without any
evident action on the part of the user is a bit disconcerting. We really need a bit more control
over what's going on. Let's put together an example where our code has more control of what
happens.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Managing the Update Process

We really want a positive action on the part of the user to enable an update rather than allowing
it to happen by default. We could start by making all the edit controls read-only, so by default,
data entry from the keyboard is inhibited for all the controls. We could then add an Edit Order
button to the dialog, which is intended to enable the appropriate edit controls to allow keyboard
entry.

Here we will be implementing two notional modes in our program; 'read-only mode' when
updating is not possible since the controls will be read-only, and 'edit mode', when keyboard
entry for selected controls will be possible so the recordset can be updated. The idea is that
when the user clicks the Edit Order button, the edit controls for fields that we want to allow
updating on will be enabled for keyboard input, and we will enter our 'edit mode'. Go ahead and
add the button to the dialog for our DBSimpleUpdate application. You can set the ID for the
button as IDC_EDITORDER. You can also add a handler for the button to the

COrderDetailsView class by double clicking the button with the Ctrl key held down.
ClassWizard will add the OnEditorder() function to the class, and add a skeleton

implementation in OrderDetailsView.cpp.

Ideally, we should inhibit the use of the toolbar buttons or the Record menu items to move to
another row in the table when in update mode. This is because we want a button click by the
user to end the update operation, not moving the current position of the recordset.

When the Edit Order button is clicked, the read-only status of the controls for quantity and
discount should be removed, and there should be a button to be clicked when the update
should take place. To accommodate all this, we want the dialog in the application to appear as
follows after an Edit Order button click:

Notice that the toolbar buttons to move the current record are disabled. So too are the menu
items in the Record menu drop down. The Edit Order button now reads Update, and an extra
button has appeared with the label Cancel. Our program is now in 'edit mode'.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We need to add the Cancel button to the dialog, but since we don't want the button displayed
initially, we should disable the Visible option on the General tab in the Properties dialog:

We will also need a handler for the Cancel button, so double click it with the Ctrl key pressed to
add one now - we will be filling in the code later.

The user enters the data in the enabled fields on the dialog and clicks the Update button to
complete the update. The dialog will then return to its original 'read-only mode' state with all the
edit controls read-only. The user will click on the Cancel button if he or she does not want to
proceed with the update operation.

To achieve this mechanism, and to manage the update process effectively, we will need to do
several things after the Edit Order button is clicked:

§ Change the text on the Edit Order button to "Update", so it now becomes the button to
complete the update operation.

§ Cause the Cancel button to appear on the dialog - in other words, make it visible.

§ Record in the class that we have entered 'edit mode'. This is necessary because we will
use the same button for two purposes, flip-flopping the label between Edit Order and Update.

§ Enable keyboard entry for the edit controls that show the fields we want to allow
updating on.

Let's explore how we can put the code together so that it will do what we want.

Implementing Update Mode

Let's start by providing for recording whether or not we are in update mode. We can do this by
adding a bool data member to the COrderDetailsView class. Right click on the class name

in ClassView and add the data member as shown.

This variable will be true when we are in update mode. Since we start out in normal mode, we

should add a line to the class constructor to initialize our new variable to false:

 COrderDetailsView::COrderDetailsView()

 : CRecordView(COrderDetailsView::IDD),
m_UpdateMode(false)

 {

 //{{AFX_DATA_INIT(COrderDetailsView)

 m_pSet = NULL;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //}}AFX_DATA_INIT

 }

We can do the switching of the button label and the program mode in the handler that we added
to the view class. In principle an initial version of the function will need to be implemented
something like this:

 void COrderDetailsView::OnEditorder()

 {

 if(m_UpdateMode)

 { // When button was clicked we were in

edit mode

 // Disable input to edit controls

 // Change the Update button text to Edit Order

 // Make the Cancel button invisible

 // Enable Record menu items and toolbar buttons

 // Complete the update

 // Switch to normal mode

 }

 else

 { // When button was clicked we were in
read-only mode

 // Enable input to edit controls

 // Change the Edit Order button text to Update

 // Make the Cancel button visible

 // Disable Record menu items and toolbar buttons

 // Start the update

 // Switch to update mode

 }

 m_UpdateMode = !m_UpdateMode; // Switch the mode

 }

We've put the mode switching code in right away, outside of the if statement. At the moment

all the function does is switch the m_UpdateMode member between true and false to record
the current mode. When the variable is true we are in edit mode, and false indicates

readonly mode. The rest of the functionality that we require is simply described in comments.
Let's investigate how to implement each of the comment lines in turn.

Enabling and Disabling Edit Controls

To modify the properties of a control, we need to call a function of some kind that relates to the

control. This implies that we must have access to an object that represents the control.
ClassWizard can do this for us. Right click in the edit window and open ClassWizard. If you look
at the Member Variables tab for the view class you will see the IDs for each of the edit controls.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

They each have a data member defined that stores the field value, but we can add another data

member for a control ID that will give us access to the object representing the control. We will
do this for the controls that we want to allow updates on - these correspond to IDC_QUANTITY

and IDC_DISCOUNT. With the line containing the control ID highlighted, IDC_DISCOUNT at the

moment, select the Add Variable... button.

In the dialog, make sure you select Control in the Category dropdown list box, and enter a
suitable name for the data member. Because the data member will correspond to an edit control
it will be of type CEdit. Click on OK to create the variable, and repeat the process with the
IDC_QUANTITY ID to add a variable m_QuantityCtrl. If you have done this correctly, the

ClassWizard will show two data members for each of the two control IDs - the original value
variable, and the new control variable.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

With these two variables we have access to the controls to update their styles, so you can now
use ClassWizard (via the Message Maps tab) to go to the OnEditorder() function, and modify

it as follows:

 void COrderDetailsView::OnEditorder()

 {

 if(m_UpdateMode)

 { // When button was clicked we were in
edit mode

 // Change the button text to Edit Order

 // Make the Cancel button invisible

 // Enable Record menu items and toolbar buttons

 // Complete the update

 }

 else

 { // When button was clicked we were in
read-only mode

 // Change the button text to Update

 // Make the Cancel button visible

 // Disable Record menu items and toolbar buttons

 // Start the update

 }

 // When m_UpdateMode is true, we are leaving edit mode, so we
want to make the

 // controls read-only. Using m_UpdateMode as the argument to

SetReadOnly() will

 // set the state as we require.

 m_QuantityCtrl.SetReadOnly(m_UpdateMode); // Set state of
quantity edit control

 m_DiscountCtrl.SetReadOnly(m_UpdateMode); // Set state of
discount edit control

 m_UpdateMode = !m_UpdateMode; // Switch the mode

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We use the variables that we added to call the SetReadOnly() members for the objects
corresponding to the edit controls. The SetReadOnly() member of the CEdit class has a

parameter of type BOOL, which sets the control to be read-only when the value TRUE is passed

as an argument. We don't need to modify the state of the controls in the if statement as we
can use the m_UpdateMode value as the argument to SetReadOnly(). If this has the value

TRUE, then we are switching back to read-only mode, so we can just pass the value as the
argument to make the controls read-only. The reverse applies when the variable is FALSE.

Many of the MFC functions have parameters of type BOOL that can have values TRUE and
FALSE because they were written before the availability of the bool type in C++. You can

always use values of type bool as arguments for BOOL parameters.

Changing the Button Label

We get at the object corresponding to the Edit button by adding a control data member,
m_EditCtrl, to the view class using ClassWizard in exactly the same way as we did for the
edit controls. Just add a control data member for IDC_EDITORDER ID. It will be of type

CButton, which is the MFC class that defines a button. We can use the variable to set the
button label in the OnEditorder() member, by calling the SetWindowText() member that is

inherited in the CButton class from CWnd, as follows:

 void COrderDetailsView::OnEditorder()

 {

 if(m_UpdateMode)

 { // When button was clicked we were in
edit mode

 m_EditCtrl.SetWindowText("Edit Order"); //

Switch button text

 // Make the Cancel button invisible

 // Enable Record menu items and toolbar buttons

 // Complete the update

 }

 else

 { // When button was clicked we were in
read-only mode

 m_EditCtrl:SetWindowText("Update"); //
Switch button text

 // Make the Cancel button visible

 // Disable Record menu items and toolbar buttons

 // Start the update

 }

 m_QuantityCtrl.SetReadOnly(m_UpdateMode); // Set state of
quantity edit control

 m_DiscountCtrl.SetReadOnly(m_UpdateMode); // Set state of
discount edit control

 m_UpdateMode = !m_UpdateMode; // Switch the mode

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Controlling the Visibility of the Cancel Button

To make the Cancel button visible or invisible, we need a control variable available, so using
ClassWizard, add m_CancelCtrl corresponding to IDC_CANCEL, just as you did for the Edit

Order button. Since CButton is derived from CWnd, we can call the inherited ShowWindow()
member of the CButton object to set the button as visible or invisible, as follows:

 void COrderDetailsView::OnEditorder()

 {

 if(m_UpdateMode)

 { // When button was clicked we were in
edit mode

 m_EditCtrl.SetWindowText("Edit Order"); // Switch
button text

 m_CancelCtrl.ShowWindow(SW_HIDE); // Hide the

Cancel Button

 // Enable Record menu items and toolbar buttons

 // Complete the update

 }

 else

 { // When button was clicked we were in
read-only mode

 m_EditCtrl.SetWindowText("Update"); // Switch
button text

 m_CancelCtrl.ShowWindow(SW_SHOW); // Show the
Cancel button

 // Disable Record menu items and toolbar buttons

 // Start the update

 }

 m_QuantityCtrl.SetReadOnly(m_UpdateMode); // Set state of

quantity edit control

 m_DiscountCtrl.SetReadOnly(m_UpdateMode); // Set state of
discount edit control

 m_UpdateMode = !m_UpdateMode; // Switch the mode

 }

The ShowWindow() function inherited from CWnd requires an argument of type int that must

be one of a range of fixed values (see the documentation for the full set). We use the argument
value SW_HIDE to make the button disappear if m_UpdateMode is true, and SW_SHOW when

we are entering edit mode to make the button visible and activate it.

Disabling the Record Menu

We want to disable the menu items in the Record menu when the m_UpdateMode member of

the view is true. We won't do this in the OnEditorder() handler after all, as there is an

easier and better way as we will now see, so you can remove the comment lines to this effect in
the if.

We can manage the state of the menu items and toolbar buttons by adding update handlers that
are specifically for this purpose in the view class. This is another job for ClassWizard so fire it up
and display the tab for the view class. We will add a handler for the UPDATE_COMMAND_UI
message for each of the IDs for the menu items - starting with ID_RECORD_FIRST.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We have already implemented this kind of message handler back in Chapter 17. The

description at the bottom of the dialog indicates their prime purpose - exactly what we need.
The CCmdUI class has a member function, enable(), that you can call to enable or disable the

item. An argument value of true will enable the item and a value of false will disable it. We
want to disable the menu items and toolbar buttons when m_UpdateMode is true, but the

circumstances when we want to disable them are a little more complicated because of the
behavior of the menu items and toolbar buttons before we started messing with them.

The program, as provided by ClassWizard by default, already disabled the menu items and
toolbar buttons corresponding to the IDs ID_RECORD_FIRST and ID_RECORD_PREV when the

current record is the first in the recordset. Similarly, when the current record is the last in the
recordset, the ID_RECORD_NEXT and ID_RECORD_LAST items are disabled. We should
maintain this behavior when m_UpdateMode is false. The key to doing this is to use functions

inherited in our view class that test whether the current record is the first or the last. We only
need to add one line of code to each of these handlers to do what we want. It's exactly the
same line of code for OnUpdateRecordFirst() and OnUpdateRecordPrev(). For

example:

 void COrderDetailsView::OnUpdateRecordFirst(CCmdUI* pCmdUI)

 {

 // Disable item if m_UpdateMode is true, enable if false and not
the 1st record

 pCmdUI->Enable(!m_UpdateMode && ! IsOnFirstRecord());

 }

The IsOnFirstRecord() function returns true if the view is on the first record in the

recordset, and false otherwise. This will disable the items (the menu item and the
corresponding toolbar button) if either m_UpdateMode or the value returned by the

IsOnFirstRecord() member of COrderDetailsView is true. The items will be enabled if
both are false. This handler affects both the menu item and the toolbar button because they

both have the same ID, ID_RECORD_FIRST.

The handlers corresponding to ID_RECORD_NEXT and ID_RECORD_LAST also require the

same line of code:

 void COrderDetailsView::OnUpdateRecordLast(CCmdUI* pCmdUI)

 {

 // Disable item if m_UpdateMode is true, enable if false and not
the last record

 pCmdUI->Enable(!m_UpdateMode && !IsOnLastRecord());

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

This works in the same way as the previous handler.

Expediting the Update

The last thing we need to do is to actually carry out the update when the Update button is
clicked. To update a record, the user first clicks the Edit Order button, so at this point we must
call the Edit() member of the recordset object to start the process of modifying the recordset.
When the Update button is clicked, we need to call the Update() member of the recordset

object to get the new data written to the record in the database. Using the m_pSet member of

our view class, we can implement it like this:

 void COrderDetailsView::OnEditorder()

 {

 if(m_pSet->CanUpdate())

 {

 try

 {

 if(m_UpdateMode)

 { // When button was clicked we were in
edit mode

 m_EditCtrl.SetWindowText("Edit Order"); // Switch
button text

 m_CancelCtrl.ShowWindow(SW_HIDE); // Hide the

Cancel button

 m_pSet->Update(); // Complete
the update

 }

 else

 { // When button was clicked we were in
read-only mode

 m_EditCtrl.SetWindowText("Update"); // Switch
button text

 m_CancelCtrl.ShowWindow(SW_SHOW); // Show the
Cancel button

 m_pSet->Edit(); // Start the
update process

 }

 m_QuantityCtrl.SetReadOnly(m_UpdateMode); // Set
state of

 quantity

 m_DiscountCtrl.SetReadOnly(m_UpdateMode); // &
discount edit

 control

 m_UpdateMode = !m_UpdateMode; // Switch the mode

 }

 catch(CException* pEx)

 {

. pEx->ReportError(); // Display error message

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 }

 else

 AfxMessageBox("Recordset is not updateable.");

 }

As we discussed at the beginning of this chapter, the Edit() and Update() functions can

throw an exception if an error occurs, so we put the calls within a try block along with the rest

of the code. Clearly if we cannot update the recordset, there is no purpose to any of the
processing in the OnEditorder() function. If an exception is thrown, we call its
ReportError() function to display an error message. The catch block exception parameter

is a pointer to CException, so the catch block will be executed for exception objects of type
CException, or any class derived from CException. We need this in order to accommodate

the CMemoryException that can be thrown by Edit(), as well as the CDBException that
can be thrown by both Edit() and Update(). Note the use of the pointer as the catch block

parameter. You will recall that this is because these are MFC exceptions thrown using the
THROW macro, not C++ exceptions thrown using the keyword throw. If they were the latter, we

would use a reference as the catch block parameter type.

We also verify that the recordset is updateable by calling its CanUpdate() member. If this
returns false we display an error message in a message box.

Implementing the Cancel Operation

The Cancel button should abort the update operation. All that is necessary to do this is to call
The CancelUpdate() member of the COrderDetailsSet object. Of course, we have a little

housekeeping to do, but this will be exactly the same as if the Update() button was pressed,
except that we don't call Edit(). Here's the code for the OnCancel() handler:

 void COrderDetailsView::OnCancel()

 {

 m_pSet->CancelUpdate(); // Cancel the
update operation

 UpdateData(FALSE); // Transfer

data to controls

 m_EditCtrl.SetWindowText("Edit"); // Switch
button text

 m_CancelCtrl.ShowWindow(SW_HIDE); // Hide the
Cancel button

 m_QuantityCtrl.SetReadOnly(m_UpdateMode); // Set state of
quantity and

 m_DiscountCtrl.SetReadOnly(m_UpdateMode); // discount
edit controls

 m_UpdateMode = !m_UpdateMode; // Switch the

mode

 }

The CancelUpdate() function ends the update operation and restores the recordset object's
fields to what they were before Edit() was called. Since the Cancel button can only be clicked

in edit mode, we can update the buttons and other controls in the same way as in the
onEditorder() handler. That's everything we need. We are ready for a trial run.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - Controlled Updating

Assuming you have no typos in your code, when you have compile and run the program it
should work as we hoped it would. You can only enter data in the Quantity and Discount edit
controls after you have clicked the Edit button.

The buttons for moving to a new record are now disabled, as are the menu items for the Record
menu. To complete the update after you have entered the new data, you click on the Update
button. This will cause the new data to be written to the database, and the application will return
to the normal state - all edit controls disabled and the buttons and menu restored to their
original status.

Adding Rows to a Table

Let's extend the example to implement the capability to add a new order to the Sample Data
database. This will provide insight into some of the practical problems and complexities you will
face in this kind of operation.

First of all, an order itself is not a simple record in a table. Two tables are involved in defining a
new order. The basic order data is in the Orders table, where information about the customer is
stored. For each order there will be one or more records in the Order Details table, one for each
product in the order, the link to the record in the Orders table being the Order ID. The
relationship between these tables is illustrated below.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

But there's more than these two tables involved. First of all, in creating a new order, we will
need to provide a way for the user to select a customer from the Customers table. The Orders
table includes a field identifying the employee, which needs to be one of the employees
recorded in the Employees table. Once the information required for a new record in the Orders
table has been established, one or more products will need to be selected from those defined in
the Products table. With all these tables involved, it's going to be a somewhat messy business.
We will simplify it slightly by making the Employee ID field 1 by default. This will avoid the need
to deal with the Employees table in the example. Let's establish the overall logic first of all.

The Order Entry Process

We will be using two dialogs in addition to the dialog we already have that provides for viewing
and editing the details of existing orders. One dialog will deal with the selection of the customer
for the order and setting the required delivery date, and the other will take care of entering the
details of the products and quantities for the order. The dialog to select the customer will be
associated with the Customers table in the database, and the dialog for selecting products will be
associated with the Products table. Buttons on the dialog will enable the transition from one
dialog to another. The basic logic is shown below.

We will hold off creating a new record in the Orders table until we have the first Product Details
record entered. That way we will avoid ending up with an order that doesn't order anything. Let's
put together the dialog resources we need first of all, and then implement the code to support
the operations.

Creating the Resources

We need an additional button on the dialog we have at present to process the creating of a new
order, so add a button with the label New Order, and with the ID IDC_NEWORDER. Once you

have done this, you can place the new button coincident with the Cancel button since only one
will be visible at any given time, the Cancel button being visible by default. If you want the New
Order button to appear on top when it is in the same position as the Cancel button, you need to
make sure it is before the Cancel button in the tab order.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can add a handler for the new button to COrderDetailsView by double clicking the

button with the Ctrl key pressed. We will add the code for this later. Of course, we could have
used the Cancel button here by changing its label and altering the effect of its handler depending
on the state of the m_UpdateMode member of COrderDetailsView, but let's see how we can

work with two buttons here.

You can insert both of the new dialog resources we need by right clicking the Dialog folder on

the ResourceView tab, and selecting Insert Dialog from the pop-up. Assign the IDs as
IDD_CUSTOMER_FORM and IDD_PRODUCT_FORM respectively. They both need to have Child

selected in the Style: list box, and None selected in the Border: list box. You should also make all
three dialogs about the same size and a little larger than the original dialog - I made them 30
units high by 60 units wide. You can delete the buttons from both of the new dialogs.

We need to connect the new dialogs to record view classes, so double click on the
IDD_CUSTOMER_FORM dialog first of all, with the Ctrl key held down, assign the class name and

then select the base class as shown below.

Since we have selected CRecordview as the base class, ClassWizard knows that this will be

associated with a data source and a recordset class, so it pops the dialog to select the
recordset. We need a new recordset class, so click on the New... button. On the New Class
dialog, you can enter the class name as CCustomerSet. Note that the base class has already
been selected to be CRecordSet. Of course, on the Database Options dialog which appears

once you've pressed OK, the Datasource selection is still ODBC and Sample Data. You can leave
the recordset option as Snapshot as we only want to retrieve data from the table. The database
table we want is Customers. Go through the same ritual with the IDD_PRODUCT_FORM dialog,
assigning the view class name as CProductView with CRecordView as the base class. The

recordset class will be CProductSet, and the table you need to select is Products. Again,

Snapshot recordset type will be fine as we just want to view the data.

We are now ready to populate the dialogs, with the controls we need.

Adding Controls to the Dialog Resources

Although we have only tied the IDD_CUSTOMER_FORM dialog into the Customers table, within the

process we will need to provide all the information necessary to create a new record in the
Orders table. The source of the data for each field of a new Orders record is shown in the
diagram below.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Half of the fields will be drawn from the record in the Customers table that the user selects. Since

we are creating a new order, we will need to synthesize a new unique order ID. To do this we
can find the largest ID currently in use in the Orders table, and then just add 1 to that value.

To select the customer, the user will just scroll through the recordset until the required customer
is displayed. We can then retrieve the data we need to construct the new Orders record from the
recordset. We will display the current date in the dialog as the order date, and we will provide a
control for selecting the required ship date. The other fields we will assign arbitrary values to, so
that we don't overcomplicate our example.

Of course, we don't need to display all the information from the Customers table in our dialog -
just the name will be sufficient to identify the customer for selection purposes. We will still need
the data in the recordset though. You can place controls on the IDD_CUSTOMER_FORM dialog

as shown below.

You can see from the diagram how the controls are to be used, and the IDs that you need to
assign to them. The date time picker controls allow a date or time to be entered or selected.
Whether it selects a date or a time depends on the Format: style you choose in the properties.

The controls here use Short Date format. The date is chosen by clicking on the down arrow and
choosing a date from the calendar that pops up. You can try it out to see how it works.

We can add variables to the CCustomerView class to store values from the date time picker

controls using ClassWizard. Right click in the edit window and start ClassWizard, and go to the
Member Variables tab. Select the line containing the IDC_ORDERDATE control ID and click the

Add Variable... button. You can enter the name as m_OrderDate. Note the type is already set
as CTime. Objects of this class store date and time values, as we will see. Do the same with

IDC_REQUIREDDATE, and specify the member name as m_RequiredDate.

Both edit controls are read-only as they are there just to display information. The date picker

control for the order date is disabled, as this will always be the current date and does not need
to be changed. The date picker control for the required ship date will be enabled by default, so

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

leave it like that as we want a date selected in this case. Although this view is associated with a
recordset corresponding to the Customers table, in fact only the edit control showing the
customer name needs to be connected to the CCustomerSet recordset as we are only

displaying this field on the dialog. You can double click on that now with the Ctrl key held down
to make the connection. Note that we want to connect this control to the CompanyName field, so

select the variable name from the drop down list accordingly. At this point you can also double
click on each of the buttons, with the Ctrl key pressed, to add handlers for them. We will fill in
the code for these handlers and deal with the rest of the controls later.

The IDD_PRODUCT_FORM dialog will select the products to be ordered, once the customer has

been selected. We will get to this dialog when the Select Products button is clicked on the
customer selection dialog. We need to show sufficient information on the dialog to allow the
product to be chosen, and we need to provide for the quantity and discount to be entered. The
dialog with its controls is shown below.

As always, check that the tab order for the controls is correct. The static control should
immediately precede the corresponding edit control in the tab order. Note that all the controls
here are read-only, except for the edit controls for quantity and discount, since these two values
are the only ones the user needs to supply. You can connect the edit control for the Product
Name to the recordset by double clicking it with the Ctrl key pressed. Add handlers for the
buttons in the same way as you did for the previous dialog resource.

The controls showing the Order ID and the Customer name will be initialized with values that will
originate in the previous dialog, so we will need class variables to hold the values for these
controls. ClassWizard can help with this. Display the Member Variables tab in ClassWizard for
the CProductView class. You will see that the IDs for these controls appear in the list. Click on

the line containing IDC_NEWORDERID and click on the Add Variable... button. Enter the variable

name and select the type as shown:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Notice that the default type is CString so you must select from the drop down list to make it

long. Click on OK to accept it, then create a variable m_CustomerName corresponding to
IDC_COMPANYNAME, but leaving it as type CString this time.

The user will enter values in the edit controls for quantity and discount, so we will need a
variable for each of these as well in the CProductView class. Select the line containing
IDC_ORDERQUANTITY on the Member Variables tab and add a variable, m_Quantity, of type

int. Add a variable, m_Discount, of type float, for IDC_ORDERDISCOUNT. When you have

done this the variables in the list on the Member Variables tab should be as shown below.

With the dialogs defined we can implement the mechanism to switch between them.

Implementing Dialog Switching

We saw all the basic logic for switching between dialogs in an earlier diagram. A button click is

the mechanism for switching from one dialog to the next, so the button handlers will contain
code to cause the switch. We will use the same process for switching views that we used in the
previous chapter, so we won't go into detailed explanations again - we will just implement the
code.

We will need to define view IDs to identify each of the three dialogs, so add a header file,
OurConstants.h, containing the following code:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Definition of our constants

 #ifndef OUR_CONSTANTS_H

 #define OUR_CONSTANTS_H

 // Arbitrary constants to identify record views

 const int ORDERDETAILS_VIEW =1;

 const int NEWORDER_VIEW = 2;

 const int SELECTPRODUCT_VIEW = 3;

 //

 #endif

We need a variable of type int in the CMainFrame class to record the ID of the current view,
so add m_CurrentViewID by right clicking on CMainFrame in ClassView and selecting Add

Member Variable... from the pop-up. We need to initialize this, so modify the CMainFrame

constructor to:

 CMainFrame::CMainFrame() : m_CurrentViewID(ORDERDETAILS_VIEW)

 {

 // TODO: add member initialization code here

 }

This identifies the view that the application always starts with. Add an #include directive for
OurConstants.h to the .cpp file so the definitions for the view IDs are available here.

We also need to add a member function, Selectview(), to CMainFrame that will perform

switching between dialogs, exactly as we did in the previous chapter. The return type is void
and the single parameter is of type int as the argument will be one of our view IDs. The

implementation of SelectView() is essentially the same as you have seen before:

 // Enables switching between views. The argument specifies the new
view

 void CMainFrame::SelectView(int viewID)

 {

 CView* pOldActiveView = GetActiveView(); // Get
current view

 // Get pointer to new view if it exists

 // if it doesn't the pointer will be null

 CView* pNewActiveView = static_cast<CView*>(GetDlgItem(viewID));

 // If this is first time around for the new view, the new view

 // won't exist, so we must create it

 // The Order Details view is always created first so we don't
need

 // to provide for creating that.

 if (pNewActiveView == NULL)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 switch(viewID)

 {

 case NEWORDER_VIEW: // Create view to add new
order

 pNewActiveView = new CCustomerView;

 break;

 case SELECTPRODUCT_VIEW: // Create view to add product
to order

 pNewActiveView = new CProductView;

 break;

 default:

 AfxMessageBox("Invalid View ID");

 return;

 }

 // Switching the views

 // Obtain the current view context to apply to the new view

 CCreateContext context;

 context.m_pCurrentDoc = pOldActiveView->GetDocument();

 pNewActiveView->Create(NULL, NULL, 0L, CFrameWnd::rectDefault,

 this, viewID,
&context);

 pNewActiveView->OnInitialUpdate();

 }

 SetActiveView(pNewActiveView); // Activate the
new view

 pOldActiveView->ShowWindow(SW_HIDE); // Hide the old
view

 pNewActiveView->ShowWindow(SW_SHOW); // Show the new
view

 pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old
view ID

 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);

 m_CurrentViewID = viewID; // Save the new
view ID

 RecalcLayout();

}

The code here refers to the CCustomerView and CProductView classes, so #include
directives for CustomerView.h and ProductView.h are necessary in MainFrm.cpp. We

also call the constructors for CCustomerView and CProductView and at the moment these

are protected. You need to change the access specifier for the constructors in both classes to
public if this code is to compile.

Switching from the order details dialog to the dialog starting new order creation is done in the
handler for OnNeworder() in the COrderDetailsView class:

 void COrderDetailsView::OnNeworder()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(NEWORDER_VIEW);

 }

This gets a pointer to the parent frame for the view - the CMainFrame object for our application
- and then uses that to call SelectView() to select the new order processing dialog. An

#include directive for OurConstants.h is also necessary in this source file since we refer to
NEWORDER_VIEW here, and we also must add an #include for MainFrm.h to get at the

definition of CMainFrame..

The Select Products button handler in the CCustomerView class will switch to the dialog for
CProductsView:

 void CCustomerView::OnSelectproducts()

 {

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(SELECTPRODUCT_VIEW);

 }

The Cancel button handler in the same class will just switch back to the previous view:

 void CCustomerView::OnCancel()

 {

 static_cast<CMainFrame*>(GetParentFrame())-

>SelectView(ORDERDETAILS_VIEW);

 }

We also need #include directives for OurConstants.h and MainFrm.h in
CustomerView.cpp.

The last switching operation to be implemented is in the OnDone() handler in the
CProductView class:

 void CProductView::OnDone()

 {

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(ORDERDETAILS_VIEW);

 }

This switches back to the original application view that allows browsing and editing of order
details. Of course, you could alternatively switch back to the CCustomerView dialog to provide
a succession of order entries if you wanted to. Don't forget the #include directives for

OurConstants.h and MainFrm.h once more.

We mustn't forget that the switching from the initial dialog for browsing order details to the dialog
for editing the details will now have to control the visibility of the New Order button, otherwise the
Cancel button will be hidden by the New Order button in the editing dialog. First we will use
ClassWizard to add a control variable, m_NewOrder, in COrderDetailsView corresponding
to the IDC_NEWORDER ID. Then we can amend the OnEditorder() handler to:

 void COrderDetailsView::OnEditorder()

 {

 if(m_pSet->CanUpdate())

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 try

 {

 if(m_UpdateMode)

 { // When button was clicked we were in
edit mode

 m_EditCtrl.SetWindowText("Edit Order"); // Switch
button text

 m_CancelCtrl.ShowWindow(SW_HIDE); // Hide the
Cancel button

 m_NewOrder.ShowWindow(SW_SHOW); // Show the
new order button

 m_pSet->Update(); // Complete
the update

 }

 else

 { // When button was clicked we were in
read-only mode

 m_EditCtrl.SetWindowText("Update"); // Switch
button text

 m_NewOrder.ShowWindow(SW_HIDE); // Hide the
new order button

 m_CancelCtrl.ShowWindow(SW_SHOW) ; // Show the
Cancel button

 m_pSet->Edit(); // Start the
update process

 }

 m_QuantityCtrl.SetReadOnly(m_UpdateMode); // Set state
of quantity &

 m_DiscountCtrl.SetReadOnly(m_UpdateMode); // discount
edit controls

 m_UpdateMode = !m_UpdateMode; // Switch the
mode

 }

 catch(CException* pEx)

 {

 pEx->ReportError(); // Display
the error message

 }

 }

 else

 AfxMessageBox("Recordset is not updatable.");

 }

Now we hide or show the New Order button, depending on whether m_UpdateMode is true or

false. We also must make the button visible in the OnCancel() handler:

 void COrderDetailsView::OnCancel()

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_pSet->CancelUpdate(); // Cancel the
update operation

 m_EditCtrl.SetWindowText("Edit"); // Switch button
text

 m_CancelCtrl.ShowWindow(SW_HIDE); // Hide the Cancel
button

 m_NewOrder.ShowWindow(SW_SHOW); // Show the New

Order button

 m_QuantityCtrl.SetReadOnly(m_UpdateMode); // Set state of
quantity &

 m_DiscountCtrl.SetReadOnly(m_UpdateMode); // discount edit
controls

 m_UpdateMode = !m_UpdateMode; // Switch the mode

 }

What we have done here is to implement the basic view switching mechanism. We will still need

to come back and add code to deal with updating the database. However, this is a good point to
try compiling and executing what we have in order to shake out any typos or other errors we
might have added. Once it works, you should find that you can scroll through the customers and
the products. Make sure that you check out all the switching paths.

Creating an Order ID

To create an ID for a new order, we need a recordset for the Orders table. We don't need a view
this time, so we can just create a recordset class using ClassWizard. Click on the Add Class...
button and select New... from the pop-up. Enter the class name and select the base class as
shown below.

When you click on the OK button, ClassWizard will display the Database Options dialog where

you want the ODBC check box and Sample Data to be selected. We will choose the recordset
type as Dynaset since we will reuse this recordset when we want to add a new order. Of course,
the table you should select is Orders.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Storing the New Order ID

In this section we will go into operations with recordsets in a little more depth. We will need to
create a unique order ID whenever we start creating a new order in the CCustomerView class,

so we need to think about where we can best do this and what the process should be. It really
should be a COrderSet object's responsibility to create the new ID, even though the ID will be

displayed by one of the edit controls in the view represented by the CCustomerView object. A
good approach would be to add a variable in the CCustomerView class that will set the value

of the ID in the edit control and that can be set using a function belonging to a COrderSet

object.

Go to the ClassWizard's Member Variables tab and select the class as CCustomerView. Select
the ID for the edit control that we are interested in, IDC_NEWORDERID, and click on the Add

Variable... button. Enter the name and choose the Variable type: as shown:

The type will be CString by default so make sure you set it to long. The DDX_Text()

functions that transfer data to and from an edit control come in a number of flavors to
accommodate the different data types shown in the drop down list.

Creating the New Order ID

The COrderSet object belongs in the document object, so add a public data member to the

CDBSimpleUpdateDoc class with the name m_OrderSet to go along with the
m_orderDetailsSet member created by AppWizard.

This object will be created automatically when the document object is created. Since we have
already created the COrderSet class, ClassWizard will automatically add an #include

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

directive for OrderSet.h to the DBSimpleUpdate.h file. With the object for the order set in

the document, it will be accessible in any of the view classes that needs it.

We can add a new member function to the COrderSet class to generate the unique new order

ID. Go to ClassView and add the function, CreateNewOrderID(), with a long return type and

no parameters.

The first thing the CreateNewOrderID() function will need to do is check whether the

recordset is open:

 long COrderSet::CreateNewOrderID()

 {

 if(!IsOpen())

 Open(CRecordset::dynaset);

 // Rest of the function implementation...

 }

The IsOpen() function that we call in the if will return TRUE if the recordset is open and
FALSE otherwise. To open it, we call the Open() member that is inherited from CRecordset.

This runs an SQL query against the database with the recordset type specified by the first
argument. We have the first argument specified as CRecordset::dynaset, which, as you

might expect, opens the recordset as a dynaset. As it happens, this is unnecessary because if
we omitted the argument, the default that we specified when we created the class - dynaset -

would apply. However, it does provide a cue to mention the other options that you have for this
argument:

Argument Description

CRecordset : :snapshot Recordset is opened as snapshot - we discussed
snapshot and dynaset in the previous chapter).

CRecordset : :
forwardonly

Recordset is opened as read-only and it can only be
scrolled forward.(When a recordset is opened, it is
positioned at the first record automatically.)

CRecordset : :dynamic Recordset is open with scrolling in both directions, and
changes made by other users will be reflected in the
recordset fields.

AFX_DB_USE_DEFAULT_TYPE Recordset is opened with the default recordset type
stored in the inherited member, m_nDefaultType, that
is initialized in the constructor.

There are two further parameters to Open() for which we have accepted default argument
values. The second parameter is a pointer to a string that can be a table name, an SQL SELECT

statement, a call of a predefined query procedure, or null, which is the default. If it is null, the
string returned by GetDefaultSQL() is used. The third parameter is a bit mask that you can

use to specify a myriad of options for the connection, including making it read-only, which
means that you can't write to it at all, or making it append-only, which prohibits editing or
deleting records. You will find more details on this in the documentation for this function.

With the recordset opened, we want to scan through all the records to find the largest value in
the OrderID field. We can do that by adding the following code:

 long COrderSet::CreateNewOrderID()

 {

 if{!IsOpen())

 Open(CRecordset::dynaset);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Check for no records in recordset

 long newOrderID = 0;

 if(!(IsBOF() && IsEOF()))

 { // We have records

 MoveFirst(); // so go to the
first

 while(!IsEOF()) // Compare with
all the others

 {

 // Save order ID if its larger

 if(newOrderID < m_OrderID)

 newOrderID = m_OrderID;

 MoveNext(); // Go to next
record

 }

 }

 return ++newOrderID;

 }

The IsBOF() and IsEOF() members of the recordset class return TRUE if you are beyond the

beginning or end of the records in the recordset respectively, in which case no record is
currently active so you should be using the fields. When a recordset is empty, both functions will
return TRUE. As long as there are records, we move to the first record by calling the

MoveFirst() member function. There is also a MoveLast() member that will go to the last

record in the recordset.

We create a local variable, newOrderID, with an initial value of 0 that will eventually store the
maximum order ID in the table. The while loop moves through each of the records in the

recordset using the MoveNext() member function, checking for a larger value for the
m_OrderID member. Before calling any of the move members of a recordset, you must call

either IsEOF() or IsBOF(), depending on which way you are going. If you call a move

function when you are beyond the end or beginning of the recordset, the function will throw an
exception of type CDBException.

In addition to the move functions we have used here, a recordset object also provides you with

three others:

Function Description

MoveLast() Moves to the last record in the recordset. You must not use this function(or
MoveFirst()) with forward-only recordset, otherwise an exception of type
CDBException will be thrown.

MovePrev() Moves to the record preceding the current record in the recordset. If there
isn't one, it will move to one position beyond the first record. After this the
recordset fields are not valid and ISBOF() will return TRUE.

Move() This is used to move one or more records through a recordset. The first
argument, of type long, specifies the number of rows to move. The

second argument of type WORD determines the nature of the move
operation. Four values for the second argument make the function
equivalent to the other move functions we have seen. You will find more

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Function Description

details on this in the Visual C++ documentation.

When the loop ends we have the maximum order ID stored in newOrderID, so we just need to

increment it by 1 before returning it. The last step is to get the value transferred to the control so
it will appear in the dialog. The call to UpdateData() with an argument of FALSE does this.

This function is inherited in the record view class from CWnd. An argument of FALSE causes the

data to be transferred from data member of the view class to the controls in the dialog. A value
of true will cause data to be retrieved from the controls and stored in the data members. In
both cases this is achieved by causing the DoDataExchange() member of view to be called

by the framework.

Initiating ID Creation

The customer view will need a new order ID to be available when it is first displayed. Add a
public member function, SetNewOrderID(), to the CCustomerView class and implement it

as follows:

void CCustomerView::SetNewOrderID()

{

 // Get a new order ID from the COrderSet object in the document

 m_NewOrderID = static_cast<CDBSimpleUpdateDoc*> (Get Document())

 -

>m_OrderSet.CreateNewOrderID();

 UpdateData(FALSE); // Transfer data to
controls

}

The pointer returned by the inherited GetDocument() function is of type CDocument. We want
to use this to access the m_OrderSet member of the derived class so we must cast the pointer

to CDBSimpleUpdateDoc*. We then call the member function for the m_OrderSet member of
the document class that returns the new order ID, and store the result in the m_NewOrderID

member of the CCustomerView class. Calling the inherited UpdateData() member of the

view transfers the data from the data members of the view to the controls. We must now add an
#include directive for DBSimpleUpdateDoc.h to the source file because we refer to the

CDBSimpleUpdateDoc class.

Since we only ever create a single CCustomerView object and reuse it as necessary, we will

want a new ID to be available each time we switch to that view. We deal with switching between
dialogs in the SelectView() member of the CMainFrame object and this is also where a
CCustomerView object gets created first time around, so that would be a good place to initiate

the process for creating the new order ID. All we need to do is to add some code to call the
SetNewOrderID() member if the view corresponds to the CCustomerView. This is quite

easy:

 void CMainFrame::SelectView(int viewID)

 {

 CView* pOldActiveView = GetActiveView(); // Get current view

 // Get pointer to new view if it exists

 // if it doesn't the pointer will be null

 CView* pNewActiveView = static_cast<CView*>(GetDlgItem(viewID));

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // If this is first time around for the new view, the new view

 // won't exist, so we must create it

 // The Order Details view is always created first so we don't
need

 // to provide for creating that.

 if (pNewActiveView == NULL)

 {

 switch(viewID)

 {

 case NEWORDER_VIEW: // Create view to add new
order

 pNewActiveView = new CCustomerView;

 break;

 case SELECTPRODUCT_VIEW: // Create view to add product
to order

 pNewActiveView = new CProductView;

 break;

 default:

 AfxMessageBox("Invalid View ID");

 return;

 }

 // Switching the views

 // Obtain the current view context to apply to the new view

 CCreateContext context;

 context.m_pCurrentDoc = pOldActiveView->GetDocument();

 pNewActiveView->Create(NULL, NULL, 0L,

CFrameWnd::rectDefault,

 this, viewID,
&context);

 pNewActiveView->OnInitialUpdate();

 }

 SetActiveView(pNewActiveView); // Activate the
new view

 if(viewID==NEWORDER_VIEW)

 static_Cast<CCustomerView*>(pNewActiveView)->SetNewOrderID();

 pOldActiveView->ShowWindow(SW_HIDE); // Hide the old
view

 pNewActiveView->ShowWindow(SW_SHOW); // Show the new

view

 pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old
view ID

 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);

 m_CurrentViewID = viewID; // Save the new
view ID

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 RecalcLayout();

 }

All we do is check the viewID value. If it is NEWORDER_VIEW we call the SetNewOrderID()

member of the new view object. Since pNewActiveView is of type CView, we must cast it to

the actual view type in order to call the member function.

Storing the Order Data

We don't want to create a new entry in the Orders table until we have the first Product Details
record for the order, so we need a way to pass the data accumulated in the CCustomerView
object to the CProductView object. A simple way to do this is to define a new class to

represent an order. It just needs to have a data member for each data value that we need to
stash away. Except for the shipped date field which doesn't sensibly have a value in a new
order, the data members will be the same as the data members corresponding to the fields in
the COrderSet class. Create a new header file, Order.h, in the project, and add the following

code to it:

 #ifndef ORDER_H

 #define ORDER_H

 class COrder

 {

 public:

 // Data members same as fields in COrderSet

 long m_OrderID;

 CString m_CustomerID;

 long m_EmployeeID;

 CTime m_OrderDate;

 CTime m_RequiredDate;

 long m_ShipVia;

 CString m_Freight;

 CString m_ShipName;

 CString m_ShipAddress;

 CString m_ShipCity;

 CString m_ShipRegion;

 CString m_ShipPostalCode;

 CString m_ShipCountry;

 // Default constructor

 COrder():

 m_OrderID(0), // Will be set by
CCustomerView object

 m_EmployeeID(1), // Arbitrary employee ID
assigned

 m_ShipVia(3), // Arbitrary shipping company

 m_CustomerID(_T("")), m_Freight(_T("")),
m_ShipName(_T("")),

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_ShipAddress(_T("")), m_ShipCity(_T("")).
m_ShipRegion(_T("")),

 m_ShipPostalCode(_T("")), m_ShipCountry(_T(""))

 {

 SYSTEMTIME Now;

 GetLocalTime(&Now); // Get current
time

 m_OrderDate = m_RequiredDate = CTime (Now); // Set time as
today

 }

 };

 #endif //ORDER_H

In general it is not good practice to make all the data members of a class public like this, but

since the recordset classes generated by ClassWizard all have public members, there is little to
be gained by making them private in our class here.

If we add a data member, m_Order, of type COrder, to the document class, we will be able to

use this to pass the order data to the CProductView object. All we have to do is get the
CCustomerView object to load up the data members when the Select Products button is

pressed, ready to be picked up by the CProductView object. The button handler in
CCustomerView will be implemented like this:

 void CCustomerView::OnSelectproducts()

 {

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 // Set up order field values from CCustomerSet object

 pDoc->m_Order.m_CustomerID = m_pSet->m_CustomerID;

 pDoc->m_Order.m_ShipAddress = m_pSet->m_Address;

 pDoc-> m_Order.m_ShipCity = m_pSet->m_City;

 pDoc-> m_Order.m_ShipCountry = m_pSet->m_Country;

 pDoc-> m_Order.m_ShipName = m_pSet->m_CompanyName;

 pDoc-> m_Order.m_ShipPostalCode = m_pSet->m_PostalCode;

 pDoc-> m_Order.m_ShipRegion = m_pSet->m_Region;

 // Set up_order field values from CCustomerView dialog input

 pDoc-> m_Order.m_OrderID = m_NewOrderID; // Generated
new ID

 pDoc-> m_Order.m_OrderDate = m_OrderDate; // From order
date control

 pDoc-> m_Order.m_RequiredDate = m_RequiredDate; // From
required date control

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(SELECTPRODUCT_VIEW);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

This is straightforward stuff. We are just copying values from the recordset and record view

objects to the Order object stored in the document object.

Setting Dates

There is a small problem with the date picker controls on the CCustomerView dialog. The

variables corresponding to these, m_OrderDate and m_RequiredDate are not initialized at

the moment, so the controls will not display sensible values to start with. We want them to
display the current date at the outset, so we should add some code to initialize them at the end
of the OnInitialUpdate() member that is called when the view object is first created:

 void CCustomerView::OnInitialUpdate()

 {

 BeginWaitCursor();

 GetRecordset();

 CRecordView::OnInitialUpdate();

 if (m_pSet->IsOpen())

 {

 CString strTitle = m_pSet->m_pDatabase->GetDatabaseName();

 CString strTable = m_pSet->GetTableName();

 if(!strTable.IsEmpty())

 strTitle += _T(":") + strTable;

 GetDocument()->SetTitle(strTitle);

 }

 EndWaitCursor();

 // Initialize time values

 SYSTEMTIME Now;

 GetLocalTime(&Now); // Get current
time

 m OrderDate = m_RequiredDate = CTime(Now); // Set time as
today

 }

Here we set both CTime variables to the current time, just as we did in the constructor for the
COrder class.

Now the CCuatomerView object is in good shape. It displays the right date and it squirrels

away all the value for the fields in a row in the Orders table, so we are ready to tackle the
production selection process.

Selecting Products for an Order

When the view for selecting a product is displayed, we want to have the variables for the
controls that display the order ID and the customer name already set up with appropriate
values. We will get these values from the Order member of the document object. We can add a

function to CProductView to do this. We will call it InitializeView() and the return type
will be void. We will arrange to call the function from the SelectView() member of the

CMainFrame object for the application. That way we can ensure that the controls are always

initialized before the dialog is displayed.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Before we implement InitializeView(), let's consider something else. The new Orders
table record will only be added when the Select Product button is clicked to add a product to the
order for the first time. Subsequent clicks on the button should just add another product to the
order, so we will need a way to determine whether the Orders table has been appended, to or
not, when the button is clicked. We can do this by adding a variable, m_OrderAdded, of type
bool to CProductView, that will be false to start with, and set to true by the Select Product
button handler. So add this variable to the class. We can initialize it in the InitializeView()

member that we will implement as follows:

 void CProductView::InitializeView()

 {

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 m_OrderID = pDoc->m_Order.m_OrderID;

 m_CustomerName = pDoc->m_Order.m_ShipName;

 m_Quantity = 1; // Must order
at least 1

 m_Discount = 0; // No default
discount

 m_OrderAdded = false; // Order not
added initially

 UpdateData(FALSE); // Transfer
data to controls

 }

This initializes the view class members for the order ID and customer name controls by copying
values from the appropriate member of the Order member of the document. This function is

also an opportunity to ensure that the controls for order quantity and discount start with suitable
initial values. The order quantity for any product has to be at least 1, and the discount will be 0
by default. Calling the inherited UpdateData() member with an argument value FALSE causes

the data to be transferred from the class variables to the controls, as we saw previously. You
will need to add an #include directive for DBSimpleUpdateDoc.h to the beginning of the

source file to make the document class definition available.

To put this into operation, we just need to call InitializeView() whenever we switch to the

product selection dialog. The obvious place to do this is in the Selectview() member of the
CMainFrame class:

 void CMainFrame::SelectView(int viewID)

 {

 CView* pOldActiveView = GetActiveView(); // Get current
view

 // Get pointer to new view if it exists

 // if it doesn't the pointer will be null

 CView* pNewActiveView = static_cast<CView*>(GetDlgItem(viewID));

 //If this is first time around for the new view, the new view

 // won't exist, so we must create it

 // The Order Details view is always created first so we don't
need

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //to provide for creating that.

 if (pNewActiveView == NULL)

 {

 switch(viewID)

 {

 case NEWORDER_VIEW: // Create view to add new order

 pNewActiveView = new CCustomerView;

 break;

 case SELECTPRODUCT_VIEW: // Create view to add product to
order

 pNewActiveView = new CProductView;

 break;

 default:

 AfxMessageBox("Invalid View ID");

 return;

 }

 // Switching the views

 // Obtain the current view context to apply to the new view

 CCreateContext context;

 context.m_pCurrentDoc = pOldActiveView->GetDocument();

 pNewActiveView->Create(NULL, NULL, 0L, CFrameWnd::rectDefault,

 this, viewID,
&context);

 pNewActiveView->OnInitialUpdate();

 }

 SetActiveView(pNewActiveView); // Activate the
new view

 if(viewID==NEWORDER_VIEW)

 static_cast<CCustomerView*>(pNewActiveView)->SetNewOrderID();

 else if(viewID ==SELECTPRODUCT_VIEW)

 static_cast<CProductView*><pNewActiveView)->InitializeView();

 p01dActiveView->ShowWindow(SW_HIDE); // Hide the old
view

 pNewActiveView->ShowWindow(SW_SHOW); // Show the new
view

 pOldActiveView->SetDlgCtrlID(m_CurrentViewID); // Set the old
view ID

 pNewActiveView->SetDlgCtrlID(AFX_IDW_PANE_FIRST);

 m_CurrentViewID = viewID; // Save the new
view ID

 RecalcLayout();

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

When the ViewID variable has the value SELECTPRODUCT_VIEW, the CProductView class
variables for the order ID and customer name controls will be initialized, as will the bool

variable controlling the creation of a new record in the Orders table.

Adding a New Order

The final piece of our program that we have to put together is the code to add a new order.
Adding an order will always be done by the OnSelectproducts() member of

CProductView. The effect of pressing the Select Products button will depend on the value of the
data member, m_OrderAdded. If it is false, the function should add a new record to the

Orders table, as well as a new record to the Order Details table. If m_OrderAdded is true, only

the Order Details table should have a new record added as this will be another product for the
same order. All the values we need for the new Orders record are stored in the m_Order

member of the document. We just need to copy them to the members of the COrderSet object

that is also a member of the document. The document object is in quite a strong position to deal
with this, so add a member function, AddOrder() to CDBSimpleUpdateDoc with a bool

return type, and implement it as:

 bool CDBSimpleUpdateDoc::AddOrder()

 {

 try

 {

 if(!m_OrderSet.IsOpen()) // If
recordset is not open

 m_OrderSet.Open(); // open it

 if(m_OrderSet.CanAppend()) // If we can
add a record

 { // then add it

 m_OrderSet.AddNew(); // Start

adding new record

 m_OrderSet.m_CustomerID = m_Order.m_CustomerID;

 m_OrderSet.m_EmployeeID = m_Order.m_EmployeeID;

 m_OrderSet.m_Freight = m_Order.m_Freight;

 m_OrderSet.m_OrderDate = m_Order.m_OrderDate;

 m_OrderSet.m_OrderID = m_Order ,m_OrderID;

 m_OrderSet.mRequiredDate = m_Order.m_RequiredDate;

 m_OrderSet.m_ShipAddress = m_Order.m_ShipAddress;

 m_OrderSet.m_ShipName = m_Order.m_ShipName;

 m_OrderSet.m_ShipPostalCode = m_Order.m_ShipPostalCode;

 m_OrderSet.m_ShipRegion = m_Order.m_ShipRegion;

 m_OrderSet.m_ShipVia = m_Order.m_ShipVia;

 // No value for the Shipped Date field

 m_OrderSet.SetFieldNull(&m_OrderSet.m_ShippedDate);

 m_OrderSet.Update(); // Complete
adding new record

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return true; // Return
success

 }

 else

 AfxMessageBox("Cannot append to Orders table"); }

 catch(CException* pEx) // Catch any
exceptions

 {

 pEx->ReportError(); // Display the
error message

 }

 return false; // Here we
have failed

 }

We saw earlier in this chapter that the functions in a recordset object for adding and editing
records can throw exceptions, so we put the code in a try block and catch any exceptions to

avoid aborting the application if this happens.

After ensuring the COrderSet recordset is open, we check that the it allows records to be
added by calling its CanAppend() member. Adding a new record involves three steps:

§ We first call the AddNew() member of the recordset. This starts the process and saves

the current values of the data members in the recordset as we will be altering them. It also
sets the values of the data members to null. This is nothing to do with null for pointers and it
is not zero - null here implies no value has been set for a variable.

§ We set all the data members for the field values in the recordset to the values required
in the record. This is quite straightforward. We just copy the values stored in the members
of the m_Order object to the members of the recordset object. The m_ShippedDate

member will be null since we have not set a value for it here.
§ We call Update() to actually get the record written, and this will also restore the

original values in the recordset object. It doesn't apply here but if we were displaying the
recordset that we were adding to, we would need to call the Requery() member of the

recordset object to get the new record values displayed.

We can now put in the basic logic for the OnSelectproduct() handler for the
CProductView class. We need to call UpdateData() for the view to get the data that was

entered in the edit controls transferred to data members of the view object. Here's the outline
code for the handler function:

 void CProductView::OnSelectproduct()

 {

 UpdateData(TRUE); // Transfer
data from controls

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 if(!m_OrderAdded) // If order not added

 m_OrderAdded = pDoc->AddOrder(); // then try to
add it

 if(m_OrderAdded)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Code to add new Order Details record...

 }

After calling the UpdateData() for the CProductView object, we get a pointer to the

document object. We need this to call the AddOrder() member of the document that will do

the work for us. Next we check the m_OrderAdded member. We only want to add a record to

Orders when this is false. The AddOrder() member of the document object returns a bool

value that is true if the order was added successfully, and false for any failure. We use this
value to set the m_OrderAdded member of CProductView, and as an indicator for whether

we can continue to add order details. We don't need to display any message in the case of
failure. The AddOrder() function will have already done that.

The code to add a record to the Order Details table is also probably best handled by the
document object, but the document class member function to do it will need access to four
values from members of the CProductView and CProductSet classes - for the product ID,

the order quantity, the unit price, and the applicable discount. The order ID is available in the
document class from its m_Order member so we don't need to worry about that. We can add a

function, AddOrderDetails(), to CDBSimpleUpdateDoc to add a record to the Order

Details table:

We can now implement this as follows:

 void CDBSimpleUpdateDoc::AddOrderDetails(long ID, CString& price,

int qty, float

 disc)

 {

 try

 {

 if(!m_orderDetailsSet.IsOpen()) // If
recordset is not open

 m_orderDetailsSet.Open(); // open it

 m_orderDetailsSet.AddNew(); // Start
adding new record

 // Set Product Details recordset data member values

 m_orderDetailsSet.m_OrderID = m_Order.m_OrderID;

 m_orderDetailsSet.m_Quantity = qty;

 m_orderDetailsSet.m_Discount = disc;

 m_orderDetailsSet.m_ProductID = ID;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_orderDetailsSet.m_UnitPrice = price;

 m_orderDetailsSet.Update(); // Complete
adding new record

 }

 catch(CException* pEx) // Catch any
exceptions

 {

 pEx->ReportError(); // Display the
error message

 }

 }

This sets up the values in the m_orderDetailsSet members and then updates the table in

essentially the same way as for the Orders table. Again, we need to put the update code in a try
block to catch any exceptions that might be thrown by AddNew() or Update().

We want to call this function every time the Select Product button handler in the CProductView

class is called, so we can modify the handler to do this:

 void CProductView::OnSelectproduct()

 {

 UpdateData(TRUE); // Transfer data from
controls

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 if(!m_OrderAdded) // If order not added

 m_OrderAdded = pDoc->AddOrder(); // then try to add it

 if(m_Order_Added)

 {

 pDoc->AddOrderDetails(m_pSet->m_ProductID,

 m_pSet->m_UnitPrice,

 m_Quantity,

 m_Discount);

 // Now reset the values in the quantity and discount controls

 m_Quantity = 1;

 m_Discount = 0;

 UpdateData(false); // Transfer data to controls

 }

 }

We use the m_OrderDetailsSet object to update the Order Details table. This was used by

the original view in the application, and it is stored in the document object. We get the values for
quantity and discount from the data members in the view object corresponding to the edit
controls that provide for these values to be entered. The order ID value was set when the dialog
was displayed so that it would be displayed for information only. The product ID and unit price
values are retrieved from the CProductSet object associated with this view. After calling
Update() to write the record, we reset the values for quantity and discount back to their

defaults.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Try it Out: - Adding New Orders

After adding a number of other orders, as you might deduce from the order ID, I added the
following order:

I then clicked on the Select Products button, and selected the product, the quantity and discount
as shown below.

Clicking the Select Product button adds that product to the order for the customer and then allows
the selection of another product. Each click of the Select Product button adds a new record to the

Order Details table for the current order ID. When the order is complete you just click on the Done
button to end the process.

Once you have added an order, you can verify that is was added correctly by moving to the last
order in the order details browsing view.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You may notice that the views don't reset to the beginning of the recordset when you finish an

order entry operation. Try the first exercise at the end of the chapter to fix this for the customer
recordset. You should not find this too difficult.

Summary

In this chapter you have learned how elementary updating works using the ODBC support in
MFC. You should have no difficulty in using DAO support in the same way if you need to, as the
implementation of the DAO classes is very similar to that of the ODBC classes.

The important points we have covered in this chapter include:

§ Updating is only possible if a recordset corresponds to a single table. Recordsets
corresponding to table joins cannot be updated.

§ To start editing a record in a recordset you call the Edit() member of the recordset

object.
§ To start adding a new record to a recordset, you call the AddNew() member of the

recordset object.

§ To complete either modifying an existing record or adding a new one, you must call the
Update() member of the recordset object.

§ Before initializing an update of a recordset, you should always ensure that the recordset
is open, and that the update operation you intend to perform is legal.

§ A transaction packages a series of database update operations so that the original state
of that database can be restored in the event of an error.

Exercises

1. Modify the update application in this chapter so that the dialog for adding a new order
always displays the customers in alphabetical order, and the dialog always displays
the first customer each time it is displayed.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. Modify the example to display the total value of a new order on the view used to
select products for the order (which corresponds to CProductView).

3. Extend the example in this chapter to enable the employee to be selected from the
records in the Employees table.

4. Extend the example further to allow the shipped via field in an order to be chosen
from the records in the Shippers table.

Answers

1. In order to display customers in alphabetical order, we need to change the
OnGetRecordSet() method of the CCustomerView class:

 CRecordset* CCustomerView::OnGetRecordset()

 {

 if (m_pSet != NULL)

 return m_pSet;

 m_pSet = new CCustomerSet(NULL);

 // Sort by customer name

 m_pSet->m_strSort = "[CompanyName]";

 m_pSet->Open();

 return m_pSet;

 }

Then, to make sure that the dialog always displays the first customer when switching to the
view, we need to alter the SelectView() member of the CMainFrame class:

 void CMainFrame::SelectView(int viewID)

 {

 ...

 if(viewID==NEWORDER_VIEW)

 {

 static_cast<CCustomerView*>(pNewActiveView)-
>SetNewOrderID();

 // Always move to the first record in the recordset

 static_cast<CCustomerView*>(pNewActiveView)-
>OnMove(ID_RECORD_FIRST);

 }

 else if(viewID == SELECTPRODUCT_VIEW)

 static_cast<CProductView*>(pNewActiveView)-
>InitializeView();

 ...

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. The IDD_PRODUCT_FORM dialog needs a couple of extra controls to display the total price.

(Note that all the forms will need to be resized as you alter the size of IDD_PRODUCT_FORM):

We add a data member named m_TotalValue to CProductView, and associate this with
the new edit control to display the total price.

Adding code to set m_TotalValue correctly, we need to modify the InitializeView()

method of CProductView:

 void CProductView::InitializeView()

 {

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 m_OrderID = pDoc->m_Order.m_OrderID;

 m_CompanyName = pDoc->m_Order.m_ShipName;

 m_Quantity =1; // Must order
at least 1

 m_Discount = 0; // No default
discount

 m_TotalVaIue = 0.0; // Reset
total value

 m_OrderAdded = false; // Order not
added initially

 UpdateData(false); // Transfer
data to controls

 }

The OnSelectproduct() member of CProductView has additional code to accumulate
and display the total price.

 void CProductView::OnSelectproduct()

 {

 ...

 if(m_OrderAdded)

 {

 pDoc->AddOrderDetails(m_pSet->m_ProductID,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_pSet->m_UnitPrice,

 m_Quantity,

 m_Discount);

 // Copy and trim unit price string

 CString price = m_pSet->m_UnitPrice; // Copy of unit price
string

 price.TrimLeft(); // Remove leading
whitespace

 price.TrimRight(); // Remove trailing
whitespace

 // Convert price string to floating point value

 double priceValue = 0.0; // Nemeric value of
unit price string

 int digitValue = 0; // Numeric value of
digit character

 double factor =10.0; // Multiplier in
comnversion

 bool isPoint = false; // Indicates a decimal
point found

 CString digits("0123456789"); // Legal digit
characters

 for(int i = 0 ; i<price.GetLength(); i++)

 {

 if(price[i] == '.') // Decimal point?

 {

 isPoint = true;

 continue;

 }

 digitValue = digits.Find(price[i]); // Find index of digit

 if(digitValue<0) // No digit found?

 {

 AfxMessageBox("Invalid character in Unit Price
string.");

 priceValue = 0.0; // reset price to zero

 break;

 }

 priceValue = isPoint ? priceValue+digitValue/factor :

 priceValue*factor+digitValue;

 }

 // Add price for current product quantity

 m_TotalValue += m_Quantity*priceValue*(1.0 - m_Discount);

 // Now reset the values in the quantity and discount

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

controls

 ...

 }

 }

3. You need to use the ClassWizard add a new CEmployeeSet recordset class to retrieve
employee data from sample database.

Next we need to modify the constructor to sort the records, as shown below:

 CEmployeeSet::CEmployeeSet(CDatabase* pdb) : CRecordset(pdb)

 {

 //{{AFX_FIELD_INIT(CEmployeeSet)

 m_EmployeeID = 0;

 m_LastName = _T("");

 m_FirstName = _T("");

 m_nFields = 3;

 //}}AFX_FIELD_INIT

 m_nDefaultType = snapshot;

 m_strSort = "LastName,FirstName"; // Sort records by name

 }

Next, #include the EmployeeSet.h file in the document object, CDBSimpleUpdateDoc,

and add a public member of type CEmployeeSet called m_EmployeeSet.

The IDD_CUSTOMER_FORM needs to provide an employee name selection facility, so add a

listbox control, IDC_EMPLOYEENAME, to look like:

We need to add a constant to OurConstants.h to represent "no employee ID":

 // Arbitrary constants to identify record views

 const int ORDERDETAILS_VIEW = 1;

 const int NEWORDER_VIEW = 2;

 const int SELECTPRODUCT_VIEW = 3;

 const long NO_EMPLOYEE_ID = 999999;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

And we need a public data member, m_pEmployeeID, in CCustomerView to store the

employee ID. To control the listbox, add another variable to CCustomerView:

 class CCustomerView : public CRecordView

 {

 public:

 CCustomerView(); // protected constructor used by
dynamic creation

 DECLARE_DYNCREATE(CCustomerView)

 // Form Data

 public:

 //{{AFX_DATA(CCustomerView)

 enum { IDD = IDD_CUSTOMER_FORM };

 CListBox m_EmployeeCtrl;

 CCustomerSet* m_pSet;

 CTime m_OrderDate;

 CTime m_RequiredDate;

 long m_NewOrderID;

 //}}AFX_DATA

 ...

 // Operations

 public:

 long m_EmployeeID;

 void SetNewOrderID();

 CCustomerSet* GetRecordset();

The CEmployeeSet object is used in OnInitialUpdate() method of CCustomerView to
populate the listbox with employee names and IDs.

 void CCustomerView::OnInitialUpdate()

 {

 ...

 SetNewOrderID(); // Set up a
a new order ID

 // Open employee recordset

 CEmployeeSet* pEmployeeSet = &static_cast<CDBSimpleUpdateDoc*>

 (GetDocument())-
>m_EmployeeSet;

 if (!pEmployeeSet->IsOpen())

 pEmployeeSet->Open(CRecordset::snapshot);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Set up employee control with names from the employee
recordset

 int listIndex = 0; // Index to
listbox entries

 m_EmployeeCtrl.InsertString(listlndex, "Choose a name");
// First entry

 m_EmployeeCtrl.SetItemData(listIndex, NO_EMPLOYEE_ID);
// is not a name

 if(!pEmployeeSet->IsBOF())

 pEmployeeSet->MoveFirst();

 // Insert names in the listbox plus IDs

 while(!pEmployeeSet->IsEOF())

 {

 listIndex = m_EmployeeCtrl.InsertString(++listIndex,

 pEmployeeSet->m_FirstName+ _T(" ") +

 pEmployeeSet->m_LastName);

 m_EmployeeCtrl.SetItemDate(listIndex,

 static_cast<DWORD> (pEmployeeSet-
>m_EmployeeID));

 pEmployeeSet->MoveNext();

 }

 m_EmployeeID = NO_EMPLOYEE_ID; // No
employee ID set

 EndWaitCursor();

 // Initialize time values

 SYSTEMTIME Now;

 GetLocalTime(&Now); // Get
current time

 m_OrderDate = m_RequiredDate = CTime(Now); // Set time
as today

 }

The OnSelectproducts() and OnCancel() handlers also need to be modified to deal

with employee names:

 void CCustomerView::OnSelectproducts()

 {

 // Check employee has been selected - Exercise 3

 if(m_EmployeeID == NO_EMPLOYEE_ID)

 {

 AfxMessageBox("You must select the employee name.");

 return;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 // Set up order field values from CCustomerSet object

 ...

 pDoc->m_Order.m_EmployeeID = m_EmployeeID;

 // Set up order field values from CCustomerView dialog input

 pDoc->m_Order.m_OrderID = m_NewOrderID; // Generated
new ID

 pDoc->m_Order.m_OrderDate = m_OrderDate; // From
order date control

 pDoc->m_Order.m_RequiredDate = m_RequiredDate; // From
required date control

 // Reset Employee Name listbox

 m_EmployeeCtrl.SetTopIndex(0); // Move to
first item

 m_EmployeeID = NO_EMPLOYEE_ID; // Reset ID
to no selection

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(SELECTPRODUCT_VIEW);

 }

 void CCustomerView::OnCancel()

 {

 // Reset Employee Name listbox

 m_EmployeeCtrl.SetTopIndex(0); // Move to
first item in

 listbox

 m_EmployeeID = NO_EMPLOYEE_ID; // Reset ID
to no selection

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(ORDERDETAILS_VIEW);

 }

Lastly, the listbox handler we added to CCustomerView to receive the listbox select events
needs the following code:

 void CCustomerView::OnSelchangeEmployeename()

 {

 m_EmployeeID =
m_EmployeeCtrl.GetItemData(m_EmployeeCtrl.GetCurSel());

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

4. This is going to feel pretty familiar. First, add a CShippersSet recordset class added to

retrieve shipping company data from database. Then modify the constructor to sort records:

 CShippersSet::CShippersSet(CDatabase* pdb) : CRecordset(pdb)

 {

 //{{AFX_FIELD_INIT(CShippersSet)

 m_ShipperID = 0;

 m_CompanyName = _T("");

 m_nFields = 2;

 //}}AFX_FIELD_INIT

 m_nDefaultType = snapshot;

 m_strSort = "CompanyName"; // Sort records by name

 }

Then we need to add the CShippersSet recordset object added to document object.

 #include "EmployeeSet.h"

 #include "ShippersSet.h" // Added by ClassView

 class CDBSimpleUpdateDoc : public CDocument

 {

 ...

 // Implementation

 public:

 CShippersSet m_Shippers;

 ...

Add another listbox, IDC_SHIPPERS, to IDD_CUSTOMER_FORM to provide shipping company
name selection facility:

OurConstants.h needs changing to represent "no shipping company ID":

 const long NO_EMPLOYEE_ID = 999999;

 const long NO_SHIPPER_ID = 999998;

Next, we need to change CCustomerView to store the shipping company ID and add a

variable for the listbox control:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 public:

 //{(AFX_DATA(CCustomerView)

 enum { IDD = IDD_CUSTOMER_FORM };

 CListBox m_ShippersCtrl;

 ...

 //}}AFX_DATA

 ...

 // Operations

 public:

 long m_ShipVia;

 long m_EmployeeID;

 ...

Turning our attention to the OnInitialUpdate() method of CCustomerView, we make

the following changes to populate the listbox with shipping company names and IDs:

 void CCustomerView::OnInitialUpdate()

 {

 ...

 m_EmployeeID = NO_EMPLOYEE_ID; // No
employee ID set

 // Open shippers recordset

 CShippersSet* pShippersSet = &static_cast<CDBSimpleUpdateDoc*>

 (GetDocument())-
>m_Shippers;

 if(!pShippersSet->IsOpen())

 pShippersSet->Open();

 // Set up shippers control with names from the shippers
recordset - Exercise 4

 listIndex = 0; // Index to
listbox entries

 // First entry

 m_ShippersCtrl.InsertString(listIndex, "Choose a shipping
company");

 m_ShippersCtrl.SetItemData(listIndex, NO_SHIPPER_ID); // is
not a shipper

 if(!pShippersSet->IsBOF())

 pShippersSet->MoveFirst();

 // Insert shippers in the listbox plus IDs - Exercise 3

 while(!pShippersSet->IsBOF()

 {

 listIndex = m_ShippersCtrl.InsertString(++listIndex,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pShippersSet-
>m_CompanyName);

 m_ShippersCtrl.SetItemData(listIndex, static_cast<DWORD>

 (pShippersSet-
>m_ShippersID));

 pShippersSet->MoveNext();

 }

 m_ShipVia = NO_SHIPPER_ID; // No
shipper ID set

 EndWaitCursor();

 // Initialize time values

 SYSTEMTIME Now;

 GetLocalTime(&Now); // Get
current time

 m_OrderDate = m_RequiredDate = CTime(Now); // Set time
as today

 }

Similar changes are needed for the handlers OnSelectproducts() and OnCancel() to

deal with shipping company names:

 void CCustomerView::OnSelectproducts()

 {

 // Check employee has been selected

 if(m_EmployeeID == NO_EMPLOYEE_ID)

 {

 AfxMessageBox("You must select the employee name.");

 return;

 }

 // Check shipper has been selected

 if(m_ShipVia == NO_SHIPPER_ID)

 {

 AfxMessageBox("You must select a shipping company.");

 return;

 }

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 // Set up order field values from CCustomerSet object

 ...

... pDoc->m_Order.m_EmployeeID = m_EmployeeID;

 pDoc->m_Order.m_ShipVia = m_ShipVia;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 ...

 // Reset Employee Name listbox

 m_EmployeeCtrl.SetTopIndex(0); // Move
to first item

 m_EmployeeID = NO_EMPLOYEE_ID; // Reset
ID to no

 selection

 // Reset Shippers listbox

 m_ShippersCtrl.SetTopIndex(0);

 m_ShipVia = NO_SHIPPER_ID;

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(SELECTPRODUCT_VIEW);

 }

 void CCustomerView::OnCancel()

 {

 // Reset Employee Name listbox - Exercise 3

 m_EmployeeCtrl.SetTopIndex(0); // Move
to first item in

 listbox

 m_EmployeeID = NO_EMPLOYEE_ID; // Reset
ID to no

 selection

 // Reset Shippers listbox - Exercise 4

 m_ShippersCtrl.SetTopIndax(0);

 m_ShipVia = NO_SHIPPER_ID;

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(ORDERDETAILS_VIEW);

 }

Finally, the listbox handler that the ClassWizard added to CCustomerView to receive listbox
select events needs the following code:

 void CCustomerView::OnSelchangeShippers()

 {

 m_Shipvia =
m_ShippersCtrl.GetItemData(m_ShippersCtrl.GetCurSel());

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 22: Understanding OLE Documents

Overview

OLE is a complex topic which many would argue is out of place in a beginners' programming
book. However, because of the advantages it brings, more and more applications are making
the most of OLE, so it's important to have a basic understanding of how it works.

There are whole books dedicated to OLE, so we'll only scratch the surface in this chapter.
Fortunately, MFC hides most of the complexity, and with the help you get from AppWizard you
shouldn't find it difficult to implement some examples that use OLE. By the end of this chapter
you will have learnt:
§ What OLE is and how it can be used

§ How the OLE mechanism works
§ What OLE containers and OLE servers are
§ How to write a simple OLE container using AppWizard

§ How to write an OLE server using AppWizard

Object Linking and Embedding

Before we launch into writing code, we first need to get the ideas and terminology straight.

Object Linking and Embedding, perhaps better known as OLE (and sometimes pronounced
'olé'), is a mechanism which enables you to write a program - a text editor, say - that will allow
other applications to edit data within it that it can't handle itself, like graphics. OLE also allows
an application that you write to handle data contained within other applications. This isn't the
whole story, but it's what we'll concentrate on.

Once you've allowed your program to contain these data objects, you can have any kind of
object you like, and as many of them as you like. This is a pretty incredible capability when you
think about it: the program hosting these alien objects has no knowledge of what they are, but
you can still edit and manipulate them as though they were handled by the same program. In
fact, there's a different program involved for each type of alien object you're working with.

An object from one program can appear in another in two different ways. An object from an
external document can be linked to the document of another program, in which case the
external object isn't stored as part of the document for the current program, but just as a
reference allowing it to be retrieved from wherever it is. Alternatively, an external document can
be embedded in the current document, in which case it's actually stored within it. A document
that contains an embedded or linked OLE object is called a compound document.

A linked object has the advantage that it can be modified independently of the compound

document, so that when you open a document containing a linked object, the latest version of
the object will automatically be incorporated. However, if you delete the file containing the linked
object, or even move it to another folder, the compound document will not know about this and
won't be able to find the linked object. With an embedded object, the object only exists in the
context of the compound document and is, therefore, not independently accessible. The
compound document with all its embedded OLE objects is a single file, so there's no possibility
of the embedded objects getting lost. These provisions aside, to the user there appears to be no
difference between the appearances of the compound documents.

Containers and Servers

Clearly, to enable OLE to work, a program must contain special code supporting this sort of

functionality. A program that can handle embedded objects is called an OLE container and a

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

program that creates objects that can be embedded in an OLE container is referred to as an
OLE server. OLE servers also come in two flavors. A full server can operate as an
independent program, or just servicing an object embedded in a compound document. A mini-
server can't operate in stand-alone mode - its sole function is to support objects in a compound
document.

It's possible for an application to be both an OLE server and an OLE container. The AppWizard
can generate programs which have OLE container and/or OLE server functionality built in. All
you have to do is to choose the appropriate options when creating an OLE project.

Compound Documents

A compound document is illustrated here:

When you work with an embedded object in a program, the code for the application that
generated the embedded object can be automatically invoked to allow you to edit the object in
the container application window. This is referred to as in-place activation. With an OLE server
that supports in-place activation, you can edit an embedded object in an OLE container
application just by double-clicking it. The menus and toolbars for the container application will
then change to incorporate those required to use the server application to edit the object. More
than that, if there are several different embedded objects, the menus and toolbars in the
container will change to incorporate the menus and toolbars for whatever embedded object
you're working with, all completely automatically.

With in-place activation, the appearance of the compound document comprising the natively-

supported object and the embedded object or objects is seamless, and generally hides the fact
that several different programs may be involved in manipulating what you see in the application
window.

If an OLE server doesn't support in-place activation, double-clicking the embedded object will
open a separate window for the server application, allowing you to edit the embedded object.
When you've finished editing the embedded object, you only need to close the server
application window to resume work with the container application. Obviously, in-place activation
is a much more attractive way of handling compound documents, as it appears to the user as a
single application. Most containers also allow you to edit an embedded object in a server
window, even when the server does support in-place activation. Double-clicking an object while
holding down the Ctrl or the Alt key often initiates this mode of server operation. In-place
activation is only possible with embedded, not linked, items.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Activating an Embedded Object

Once an object has been embedded in a container, the server supporting it can be in two basic
states. When the server has been activated in-place for editing, the object is shown with a
shaded border in the client area of the container. If you click once outside the object, the server
will be deactivated and the shaded border will not be displayed. You can see both of these
states in the following screen:

There are three embedded objects here. Only the object at the bottom left is in-place activated,
and in fact only one object can be in this state at a time. The user interface is under the control
of the server. The other two embedded objects are inactive, and no communication between the
container and server is necessary for them. To change an inactive object to the fully in-place
activated state, you just double-click on it. With the fully activated object, the server will advise
the container each time the area occupied by the embedded object needs to be redrawn. This
could be because the contents have changed, or because a larger area is required.

If you single -click on an inactive object, the appearance of the object will be as for an inactive

object but with resize handles on the borders. In this situation, you can't edit the object, but you
can resize the area it occupies by dragging the border. You can also move the object around in
the client area. The container signals the server whenever the contents of the object need to be
redrawn because of changes to the size or position of the area occupied by the embedded
object.

How Does OLE Work?

The communications between an OLE server application for an embedded object and the OLE
container application are concerned primarily with the area occupied by the object, when it
needs to be redrawn, and the resources the server needs to make available in the container for
editing, such as menus and toolbars. The container has no knowledge of what is to be
displayed by the server. All it knows is that an area in its view is going to be used by the server
and the server is going to sort out what needs to be displayed. Neither does the container know
which menus or toolbars are required to use the server - all it does is provide space for them
within its own menus and toolbars. It's a bit like the owner of a market hall renting a stall to
someone. The person who runs the stall does what they want, within an agreed set of rules.
The owner doesn't get involved in what goes on at the stall or what they sell. As long as the rent
is paid and the rules are obeyed, everybody's happy.

As you've probably guessed, the communication between an OLE container and the servers
supporting the embedded objects uses the Windows operating system as a go-between. Each
OLE program uses a common OLE DLL which is part of Windows, and the functions in the DLL
provide the means of passing information between them. Thus, the key to the operation of OLE
is a standard interface. The standard interface that enables OLE to work is specified by the
Component Object Model, or COM. This is essentially a definition of the appearance of an
embedded object and how a container communicates with it. COM is a big topic, and we won't
be delving into the detail. We'll just be looking close enough to understand the ideas involved.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The OLE Component Object Model

The Component Object Model has sets of standard functions that are used for OLE
communications, packaged in named groups called interfaces. This is analogous to a C++
class which defines an interface through its public function members. A complete discussion

of COM is far beyond the scope of this book, but its operation is hidden in the framework that
we get with an AppWizard-generated program, so you won't need to deal with the details.
However, we'll look far enough into it to give you a feel for what's happening when we
implement an OLE container and a server later in this chapter.

For a COM object such as an OLE server, at least one interface (or group of functions), called
IUnknown, is always implemented. The IUnknown interface contains three standard functions:

Function Usage

QueryInterface() Tests whether a particular interface is supported by the object. If
an interface that is queried is supported, a pointer to it is returned.
The calling function can then access the functions in the queried
interface through the pointer.

AddRef() Increments a count of the number of clients using the interface.
This count enables the object owning the interface to know when it
is no longer required.

Release() Decrements the count of the number of clients using the interface.
When the count is zero, the object knows that it is no longer in use
and can remove itself from memory.

You can do almost anything with these three functions. Since the QueryInterface() function

allows you to ask about other interfaces, you can access any interface that an object supports,
as long as you know about it. OLE defines a set of standard interfaces, each identified by an
interface ID, or IID, which is passed as an argument in the QueryInterface() call. It's also

possible to define your own custom interfaces which will also need to be identified by a unique
IID. We won't need to look into the detail of these interface functions, since for the most part
MFC takes care of using them.

IUnknown is by no means all there is to the component object model. There are several other

interfaces involved, concerned with transferring data, managing memory and so on, but we can
create a container and a server without knowing any more about COM, so let's press on.

FYI

Interface names usually start with 'I', just as class names usually begin with
'C'.

The Registry

In order to use an OLE server, it must be identified in some way. When you run an OLE

container, you wouldn't want to be just rummaging around your hard disk to see if any of the
applications on your PC might support OLE, so how are OLE programs identified?

An OLE object can be a program, a document type, or indeed any kind of object that supports
OLE. Each OLE object in your system is identified by a unique 128-bit numeric value, called a
class ID or CLSID. CLSIDs and IIDs are in turn particular types of globally unique IDs, or
GUIDs. The IDs are called 'globally unique' because they are generated by an algorithm that
ensures within reason that they are unique throughout the world. Information about every OLE
object in your system, including its CLSID, is stored on your hard disk in a database called the
system registry.

You can look at the registry by executing the program Regedit.exe. A typical window is

shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

FYI

It's not advisable to start messing around with the values in the registry, as you
can very quickly render Windows unusable. The registry is definitely a case for
looking with your eyes and not your hands!

This shows the Word.Document entry for the word processing package, Microsoft Word, and its

class ID. You can see that there is also a key (it looks like a folder) for Word.Picture, which
represents a different document type. Because it is also an OLE object, this also has its own
CLSID. An OLE server can't be used until it has been entered in the system registry with all the
information necessary to identify it.

MFC Classes Supporting OLE

MFC has a set of classes that represent OLE objects, as well as classes that represent

documents that can contain OLE objects. The relationships between these classes are
illustrated here:

The arrows in the diagram point from a derived class towards a base class, so the
ColeServerDoc class, for example, inherits the functionality of its base class

ColeLinkingDoc, as well as its indirect base classes, which are CDocument and
ColeDocument.

OLE Object Classes

The two classes that are shown derived from the class CDocItem, ColeClientItem and
ColeServerItem, represent different perspectives of an OLE object corresponding to the

points of view of a container and a server respectively, as shown here:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This shows two different OLE objects embedded in a container application. The class objects in

the container corresponding to the embedded objects will both be included in the container
document object. Each embedded object will have its own server application, and each server
will have a ColeServerItem object corresponding to the object in the container for which it is

responsible. This is a simplified representation, since the OLE DLL is involved in the
communications.

An Embedded Object In a Container

The class ColeClientItem provides the interfaces required by a container to manage an

embedded item. This involves a large number of functions which enable the object to be queried
and manipulated, as well as functions which enable communications between the container and
the server. The most important of these are the ones you will need to implement, which are as
follows:

Function to implement Usage

OnChange() This function is called by the framework when a change to
an embedded item is signaled by the item's server. The
typical action is to invalidate the embedded object to get it
redrawn in the container.

OnGetItemPosition() This function is called by the framework to obtain the
rectangle in the client area of the container where the OLE
object is to be displayed.

OnChangeItemPosition() This function is called by the framework to indicate to the
container that the extent of the embedded object has
changed during editing.

Serialize() If you add any members to the object in the container, you
will need to serialize them in this function.

The drawing of an embedded object and any modifications made by the user is carried out by
the server, but the object is displayed in an area in a window that is owned and managed by the
container. Thus, the communications between the container and the server are fundamental to
proper OLE operation.

An Embedded Object In a Server

An OLE object embedded in a server application is represented by an object of the class
ColeServerItem in the server. The interface supporting a server in ColeServerItem also

involves a large number of functions, but the most important of these are:

Function to
implement

Usage

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Function to
implement

Usage

OnDraw() This function is responsible for drawing the embedded object in the
container when it's not being edited, so it's essential to implement it.
When the object is in-place active, the object is drawn by the
OnDraw() function in the server's view class. Drawing in the

container has to be done by the server because the container has
no knowledge of the internals of the embedded object. When the
server runs stand-alone, the OnDraw() function in the view object
is of course also responsible for drawing the object in the normal
way.

Serialize() This function is responsible for serializing the embedded object
when required to do so by the container. This is usually
implemented by calling the Serialize() function for the
document object in the server.

OnGetExtent() This function is called by the framework to get the actual extent of
the embedded object. This is communicated to the container
application.

NotifyChanged() This function is called by the server application when it changes the
embedded object. This signals the change to the framework which
will call the OnChange() function in the corresponding

ColeClientItem object in the container.

OLE Document Classes

Specialized document classes are necessary for OLE applications because the documents

must include the ability to deal with the added complexity of OLE objects. There are two
document classes that are used in OLE container applications: COleDocument and

COleLinkingDoc. COleDocument supports embedded objects that are edited in-place by a

server. It represents the embedded objects as instances of a class derived from
COleClientItem. The class COleLinkingDoc is derived from COleDocument and adds

support for linked objects that are stored separately from the container document. The
document class in a container application is typically derived from either COleDocument or

COleLinkingDoc. The container example that we'll implement later in this chapter will use the
COleDocument class as a base.

A document in a server application is derived from the class COleServerDoc. When the

server is supporting an embedded object, the OLE object is represented by a class derived from
the COleServerItem class that we saw earlier. Of course, a server document will only include

one instance of this class, which will represent the whole document when it is embedded in a
container document.

A document class for an OLE server must implement the member OnGetEmbeddedItem(),
because this is a pure virtual function in the COleServerDoc class. If you don't implement it,

your code won't compile. This function is called by the framework to get a pointer to the OLE
object supported by the server and is used by the framework to call function members of the
object.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Implementing an OLE Container

AppWizard makes it very easy to create an OLE container application, so let's try it out. Create
a new project of type MFC AppWizard (exe). You could call it something meaningful, like

WrxContainer. Select the OK button to create it, then click on the Next > button to accept the
default MDI implementation, and another Next > without electing for database support. The next
step is shown here:

Select the Container radio button here to generate an OLE container. When you click on this, the
option for compound files will be activated and selected automatically. The other options on this
dialog are all the variations on a server that we referred to earlier: the Mini-server is just a server
that can't be used independently of a container; the Full-server can operate as a standalone
application or as a server to a container. We'll implement a full server a little later in this chapter.
The third possibility, Both container and server, generates a program that can run standalone, can
run as a server and can itself act as a container for other embedded objects. This raises the
possibility of an embedded object containing embedded objects.

The other two options, Automation and ActiveX Controls, provide additional levels of functionality.

Automation adds a programmable interface to your application so that other applications which
have provision for doing so can make use of functions within your application. Selecting ActiveX
Controls adds the capability for your program to incorporate and use ActiveX controls. We'll be
looking at creating an ActiveX control in the next chapter.

Click on Next > to go to Step 4 and select the Advanced... button. Change the File extension field
to con as shown (the Filter name field will adjust automatically).

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The entry in the File type ID: box, WrxContainer.Document, will appear in the registry.

The only other change to make is on Step 6 when you get to the list of classes that AppWizard
plans to generate. Select the class CWrxContainerCntrItem, and shorten it to CWrxContainerItem,
and also change the names of the files that this class will live in to WrxContainerItem.h and
WrxContainerItem.cpp. This is just for our convenience. You can then proceed to the end and
generate the program.

If you look at the classes in the program by selecting the ClassView tab, you'll see that we have

the standard set of classes supporting the MFC document/view architecture. If you look at the
definition of CWrxContainerApp, you'll see that it is perfectly standard. The differences really

start to become apparent in the initialization of the application object.

Initializing a Container Application

The initialization is done in the InitInstance() member of the application class

CWrxContainerApp. The code generated for it by AppWizard is as follows:

 BOOL CWrxContainerApp::InitInstance()

 {

 // initialize OLE libraries

 if (!AfxOleInit())

 {

 AfxMessageBox(IDP_OLE_INIT_FAILED);

 return FALSE;

 }

 AfxEnableControlContainer();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Standard initialization

 // If you are not using these features and wish to reduce the
size

 // of your final executable, you should remove from the
following

 // the specific initialization routines you do not need.

 #ifdef _AFXDLL

 Enable3dControls(); // Call this when using MFC
in a shared DLL

 #else

 Enable3dControlsStatic(); // Call this when linking to
MFC statically

 #endif

 // Change the registry key under which our settings are stored.

 // You should modify this string to be something appropriate

 // such as the name of your company or organization.

 SetRegistryKey(_T("Local AppWizard-Generated Applications"));

 LoadStdProfileSettings(); // Load standard INI file options
(including MRU)

 // Register the application's document templates. Document
templates

 // serve as the connection between documents, frame windows and
views.

 CMultiDocTemplate* pDocTemplate;

 pDocTemplate = new CMultiDocTemplate(

 IDR_WRXCONTYPE,

 RUNTIME_CLASS(CWrxContainerDoc),

 RUNTIME_CLASS(CChildFrame), // custom MDI child frame

 RUNTIME_CLASS(CWrxContainerView));

 pDocTemplate->SetContainerInfo(IDR_WRXCONTYPE_CNTR_IP);

 AddDocTemplate(pDocTemplate);

 // The rest of the function definition is

 // as in a normal application that we have seen before...

 }

This time we've used shading to highlight the differences between this code and that generated
in a standard application. We'll just discuss these differences. The call to the global function
AfxOleInit() initializes the system DLL that supports OLE operations. This establishes the

links between the application and the DLL. If the initialization fails for some reason, perhaps

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

because the version of the DLL required by the application is not installed, a message will be
displayed and the container will terminate.

The call to the member function SetContainerInfo() of the document template object

transfers the ID of the menu to be used when an OLE object is embedded and in-place active.
The container has three different menu resources that are shown in the diagram below:

The menu corresponding to the ID passed to the SetContainerInfo() function has

separator bars to identify where the menu items supplied by the server are to be inserted. The
additional menu items are inserted automatically by the framework when the embedded object
is active. We'll look at the specific menu items that are inserted when we implement an OLE
server, but it is essentially the set required to interact with the in-place object.

The CWrxContainerItem Class

Another differentiating feature of our container application is the class CWrxContainerItem,
which is derived from COleClientItem. As we have seen, an object of this class refers to an

embedded OLE object which is supported by a server application. When you introduce an
object into the container application, a CWrxContainerItem object is constructed and will only

be destroyed when the container document is closed or the embedded item it corresponds to is
deleted from the container. When a CWrxContainerItem is constructed, the constructor

requires a pointer to the container's document object, so that the object being constructed is
associated with the container document. The definition of the class provided by AppWizard is:

 class CWrxContainerItem : public COleClientItem

 {

 DECLARE_SERIAL(CWrxContainerItem)

 // Constructors

 public:

 CWrxContainerItem(CWrxContainerDoc* pContainer = NULL);

 // Note: pContainer is allowed to be NULL to enable
IMPLEMENT_SERIALIZE.

 // IMPLEMENT_SERIALIZE requires the class have a constructor

with

 // zero arguments. Normally, OLE items are constructed with
a

 // non-NULL document pointer.

 // Attributes

 public:

 CWrxContainerDoc* GetDocument()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 { return (CWrxContainerDoc*)COleClientItem::GetDocument(); }

 CWrxContainerView* GetActiveView()

 { return (CWrxContainerView*) COleClientItem::GetActiveView()
; }

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CWrxContainerItem)

 public:

 virtual void OnChange(OLE_NOTIFICATION wNotification, DWORD
dwParam);

 virtual void OnActivate();

 protected:

 virtual void OnGetItemPosition(CRect& rPosition);

 virtual void OnDeactivateUI(BOOL bUndoable);

 virtual BOOL OnChangeItemPosition(const CRect& rectPos);

 //}}AFX_VIRTUAL

 // Implementation

 public:

 ~CWrxContainerItem();

 #ifdef _DEBUG

 virtual void AssertValid() const;

 virtual void Dump(CDumpContext& dc) const;

 #endif

 virtual void Serialize(CArchive& ar);

 };

As the note in the code indicates, the constructor will normally be called with a pointer to a
container document as an argument. The default value of NULL for the parameter is only there

because the serialization mechanism requires a default constructor.

One addition to the CWrxContainerItem class definition that we can make straight away is a

data member to store the rectangle defining the position of the embedded object. Add the
following declaration to the public section of the class definition:

 CRect m_Rect; // Item position in the
document object

You can do this by right-clicking the class name in ClassView and selecting Add Member
Variable... from the pop-up. Now each item can record where it is in the container document.
You should also add initialization for the m_Rect member to the constructor:

 CWrxContainerItem::CWrxContainerItem(CWrxContainerDoc* pContainer)

 : COleClientItem(pContainer)

 {

 m_Rect.SetRect(10, 10, 100, 100); // Set initial item position

 }

The statement initializes m_Rect by calling the SetRect() member of the CRect class. This

sets an arbitrary position which will be overridden when an object is added to the container
document. Note that the constructor explicitly calls the base class constructor in the initialization
list for our constructor and passes the pointer to the document object to it.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We should also arrange to store and retrieve m_Rect by adding the following code to the
implementation of the Serialize() function for the embedded object:

 void CWrxContainerItem::Serialize(CArchive& ar)

 {

 ASSERT_VALID(this);

 // Call base class first to read in COleClientItem data.

 // Since this sets up the m_pDocument pointer returned from

 // CWrxContainerItem::GetDocument, it is a good idea to call

 // the base class Serialize first.

 COleClientItem::Serialize(ar);

 // now store/retrieve data specific to CWrxContainerItem

 if (ar.IsStoring())

 {

 ar << m_Rect;

 }

 else

 {

 ar >> m_Rect;

 }

 }

The base class Serialize() function takes care of everything else, so we don't need to add

anything further.

AppWizard has provided an implementation of GetDocument() which returns a pointer to the
document object, and GetActiveView() which returns a pointer to the active view belonging

to the document containing the embedded object. The next member function that we're
interested in is OnChange(), which is called when an embedded object is fully open for editing

and is modified in some way.

Reacting to OLE Object Modification

When the server modifies an embedded object, it calls a function to notify the framework that a
change has occurred. The framework reacts by calling the OnChange() member of the object

in the container application. The container owns the window in which the object is displayed, so
it's up to the container to do something about the change.

The reason for calling the OnChange() function is indicated by the first argument passed, the

two arguments being of type OLE_NOTIFICATION (nCode) and DWORD (dwParam). We
need to deal with two possibilities: when nCode has the value OLE_CHANGED, which indicates

that the object has been modified, and when nCode has the value OLE_CHANGED_STATE,

which indicates the object has changed in some other way. You should add the code for this to
the implementation of the OnChange() member, as follows:

 void CWrxContainerItem::OnChange(OLE_NOTIFICATION nCode, DWORD
dwParam)

 {

 ASSERT_VALID(this);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 COleClientItem::OnChange(nCode, dwParam);

 // When an item is being edited (either in-place or fully open)

 // it sends OnChange notifications for changes in the state of
the

 // item or visual appearance of its content.

 switch(nCode)

 {

 case OLE_CHANGED: // Item appearance has been
changed

 InvalidateItem(); // Invalidate the current item

 GetServerSize(); // Update to the size from the
server

 break;

 case OLE_CHANGED_STATE: // Item state has changed

 // Pass a hint to update all views in the document

 InvalidateItem();

 break;

 }

)

Our code replaces the call to UpdateAllViewa() in the default implementation. We will

update selectively, depending on what is happening to the embedded object. Where the value
of nCode indicates that there was a change to the content of the server, we need to get the

object redrawn. We initiate this by calling the function InvalidateItem(), which we'll add to
the CWrxContainerItem class in a moment. We also need to deal with the possibility that the

size of the object may be altered by the server, and we may want to record the area it occupies
in the m_Rect member and resize it in the container document view. This will be done in the

second function that we'll add to the CWrxContainerItem class, GetServerSize().

The second value of nCode reflects a change in state such as occurs when an object is active

but not being edited, and the user double-clicks the object in the document view to edit it. In this
case, we just need to get the object redrawn by calling the InvalidateItem() function. You'll

need to add this function, so right-click the CWrxContainerItem class name in ClassView and
select the Add Member Function... menu item from the pop-up. Specify the return type as void

and enter the function name as InvalidateItem(). You can leave its access specification as
public. Click on the OK button, then add the following code to its implementation:

 void CWrxContainerItem::InvalidateItem()

 {

 // Pass a hint to update all views in the document

 GetDocument()->UpdateAllViews(0, HINT_UPDATE_ITEM, this);

 }

This calls the UpdateAllViews() function member of the document object to get all the views
redrawn. The second argument value, HINT_UPDATE_ITEM, indicates that there is a hint

passed in the third argument which is the address of the current object. This will be used when
the OnUpdate() function in the container document view is called as a consequence of the call

to UpdateAllViews(). We'll be extending the implementation of the view a little later in this

chapter.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We can define the value of the symbol HINT_UPDATE_ITEM within the definition file for the
CWrxContainerItem class. Add it at the beginning of the WrxContainerItem.h file with the

directive:

 #define HINT_UPDATE_ITEM 1 // Indicates a hint is present

When you have entered this definition, you can add the GetServerSize() function next. Just

right-click the CWrxContainerItem class name again and select Add Member Function... from
the pop-up. Enter the return type as void and the function name as GetServerSize(). You

can implement the function as follows:

 void CWrxContainerItem::GetServerSize()

 {

 CSize aSize; // Create a size object

 if (GetCachedExtent(&aSize)) // Get the size of the current
item

 {

 // Size is specified by OLE in HIMETRIC units

 CClientDC aDC(0); // Get a device context

 aDC.HIMETRICtoDP(&aSize); // Convert size to device coordinates

 // Verify that size has changed and item is not in-place active

 if (aSize != m_Rect.Size() && !IsInPlaceActive())

 {

 InvalidateItem(); // Invalidate old item

 // Change the rectangle for the item to the new size

 m_Rect.right = m_Rect.left + aSize.cx;

 m_Rect.bottom = m_Rect.top + aSize.cy;

 InvalidateItem(); // Invalidate the item with the new
size

 }

 }

 }

The size of the OLE object is stored in the aSize object by the GetCachedExtent() member
function that is inherited from the base class, COleClientItem. If the object is blank, this

function will return FALSE and we will do nothing.

Whenever size information about an OLE object is passed to or from the framework, it is always
in HIMETRIC units to ensure that such information is handled uniformly. This provides a

standard unit for specifying size information that has more precision than any of the other
possible choices, such as LOMETRIC, HIENGLISH or LOENGLISH. This means that whenever

you pass size information to the framework, you must convert it from whatever units you're
using to HIMETRIC. Whenever you receive size information, you need to convert it to whatever
units you require, if they are different from HIMETRIC. In the container, we need the rectangle

to be in device units, which are pixels, so we get a CClientDC object which provides a
conversion function from HIMETRIC to device coordinate units.

After converting aSize to pixels, we then check that the size is actually different from that

recorded in m_Rect for the item and that the object is not still in-place active. We don't want to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

do anything if the size hasn't changed. If the item is in-place active and a change occurs, the
framework will call OnChangeItemPosition(). We'll come to this shortly, so we don't need

to handle that situation here.

The Size() member of the CRect class returns the size of the rectangle stored in m_Rect.
The IsInPlaceActive() function inherited from COleClientItem returns TRUE if the object

is currently being edited, and FALSE otherwise. With a new size, we invalidate the object with its

old extent, create a new extent, then invalidate the object with the new extent. We define the
new extent corresponding to the new size by leaving the top left point of the rectangle in
m_Rect in the same position and creating the bottom right point coordinates by adding the cx
and cy components of aSize to the top left point coordinates.

Dealing with the Position of an Object in the Container

There are two members of the CWrxContainerItem class concerned with the position of the

object in the view: OnGetItemPosition() and OnChangeItemPosition().

As we noted earlier, the function OnGetItemPosition() is called by the framework when it

needs to know where the object is to be displayed in the document view in the container. This
occurs each time an item is in-place activated. A reference to a CRect object is passed as an

argument, in which you need to store the required information. You can do this quite simply by
modifying the default implementation to correspond with the following:

 void CWrxContainerItem::OnGetItemPosition(CRect& rPosition)

 {

 ASSERT_VALID(this);

 rPosition = m_Rect;

 }

We just set the rPosition variable that is passed as a parameter to the value we have in the
m_Rect member of the object. This replaces the previous line of code . Since we update the

rectangle in m_Rect whenever we get a change signaled by the server, this will always be the

current rectangle appropriate to the object.

The OnChangeItemPosition() member is called when you move the embedded object in

the view, when you resize the borders of the object in the view, or when the server requests that
the size of the object be altered. We therefore need to change the default implementation to the
following:

 BOOL CWrxContainerItem::OnChangeItemPosition(const CRect& rectPos)

 {

 ASSERT_VALID(this);

 if (!COleClientItem::OnChangeItemPosition(rectPos))

 return FALSE;

 InvalidateItem() ; // Invalidate the item at the old
position

 m_Rect = rectPos; // Set the item rectangle to the new
position

 InvalidateItem(); // Invalidate the item in the new

position

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 GetDocument()->SetModifiedFlag(); // Mark the document as
changed

 return TRUE;

 }

Since we're moving the object or altering its extent, we first invalidate it in its old position. After
that, we set m_Rect for the object to the new extent passed in the parameter rectPos, and

then invalidate the object in its new position. Finally, we call the SetModifiedFlag() member

of the document to indicate that the document in the container has been changed.

Managing Multiple Embedded Objects

The container program generated by AppWizard assumes that there's only one embedded
object. To manage more than one, we must add functionality to the CWrxContainerView

class to enable a user to switch from one embedded object to another. This means keeping
track of a current active object, processing a single mouse click in a view to switch to the object
at the cursor position, and responding to a double mouse click by activating the object at the
cursor position. The view class already contains a data member m_pSelection that is a

pointer to an embedded item, so we can store the currently active item in this variable.
AppWizard has already added statements to set this member to NULL in the constructor for the
view class and in the OnInitialUpdate() member of the view, so we don't need to worry

about initializing it.

Let's take a look at how we handle a single mouse click.

Selecting an Object

We need to add a handler for the WM_LBUTTONDOWN message to CWrxContainerView, so

right-click on CWrxContainerView in ClassView and select Add Windows Message Handler.... Now
select WM_LBUTTONDOWN in the New Windows messages/events list and click the Add and Edit
button. Add code to the handler as follows:

 void CWrxContainerView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 // Get address of item hit

 CWrxContainerItem* pHitItem = HitTestItems(point);

 SelectItem(pHitItem); // Now select
the item

 if (pHitItem) // As long as an item was selected

 {

 CRectTracker aTracker; // Create a
tracker rectangle

 // Set the tracker rectangle to the item selected

 SetupTracker(pHitItem, &aTracker);

 UpdateWindow(); // Get the
window redrawn

 // Enable the rectangle to be resized

 // TRUE is returned from Track() if rectangle is changed

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if (aTracker.Track(this, point))

 {

 pHitItem->InvalidateItem(); // Invalidate
the old item

 // Set the item rectangle to the new tracker rectangle

 pHitItem->m_Rect = aTracker.m_rect;

 // Invalidate the item with the new tracker rect

 pHitItem->InvalidateItem();

 GetDocument()->SetModifiedFlag(); // Mark
document as changed

 }

 }

 CView::OnLButtonDown(nFlags, point);

 }

The handler uses several helper functions that we will add once we've discussed how it works in
general terms. The first helper function, HitTestItems(), is used to initialize the pointer
pHitItem. This function iterates over all the OLE objects in the container until it finds one that

has the point object within its bounding rectangle. The point object is passed to the handler

as an argument and contains the current cursor position, so the item containing it will be the
item the user has clicked on. Its address is returned and stored in the local pointer pHitItem.

If no item was hit, a null pointer will be returned from HitTestItems().

If the user has clicked on an embedded item, we create an object of the class CRectTracker.

An object of this class is a rectangle called a tracker that can be displayed in different ways to
provide visual clues to different situations. A tracker can be set to display its border as solid,
dotted or hatched. The interior of the tracker can be hatched, and it can also have resize
handles. You can use a CRectTracker object anywhere you need this kind of capability. The

first thing we do with our tracker, aTracker, is to initialize it using the helper function
SetupTracker(). This will set the tracker rectangle to be the same size as the rectangle

stored in the embedded object pointed to by pHitItem and set its appearance according to the

state of the object. Two examples of trackers appear in this window:

The one on the left represents an inactive object and the one on the right, with the hatched
border and the resize handles, represents an active item.

After initializing the tracker, we call the UpdateWindow() member function of

CWrxContainerView. This is a function that is inherited indirectly from the CWnd class which

causes the window to be redrawn immediately and will result in the tracker being displayed.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

In the succeeding if statement, the Track() member of the tracker object is called. This is
quite a sophisticated function that provides for the possibility that this WM_LBUTTONDOWN

message was triggered by the user re-sizing the border of the embedded object. The arguments
are a pointer to the current window and the current cursor position, point. The function

captures the mouse and allows the user to resize the tracker rectangle by dragging its borders.
As the border is dragged, the cursor is tracked and the border updated as long as the left
mouse button is held down. The Track() function stores the modified rectangle in the tracker
object and returns TRUE if the tracker was re-sized, and FALSE otherwise.

If the tracker rectangle was changed, the current item with its old extent is invalidated to get the
area it occupies redrawn. The m_rect member of the tracker object contains the new rectangle,

which is stored in the m_Rect member of the embedded object. Finally, the item with the new

extent is invalidated to get it redrawn.

Finding the Object Selected

The helper function HitTestItems() searches through the embedded items in the document

to find the one the user is clicking on. You can add this function to the class by right-clicking on
CWrxContainerView in the ClassView. Specify the private function's return type as

CWrxContainerItem*, and the name as HitTestItems(CPoint aPoint). Select the

OK button and enter its code as follows:

 CWrxContainerItem* CWrxContainerView::HitTestItems(CPoint aPoint)

 {

 CWrxContainerDoc* pDoc = GetDocument();

 CWrxContainerItem* pItem = 0; // Place to store an
item pointer

 // Get position of the first item

 POSITION aPosition = pDoc->GetStartPosition();

 while(aPosition) // Iterate over items until
one is hit

 {

 pItem = (CWrxContainerItem*)pDoc->GetNextItem(aPosition);

 if (pItem->m_Rect.PtInRect(aPoint))

 return pItem; // Return pointer to item hit

 }

 return 0; //No item hit

 }

After getting a pointer to the document object, we create a pointer, pItem, to store the address

of the item hit. We get a position value for the first item in the document by calling the
GetStartPosition() member of the document object. The value returned from this function
is of type POSITION because pointers to the items stored in the document are maintained in a

list. This is used in the same way as you've seen with the lists we used in the Sketcher
application. We iterate through the list of embedded objects by calling the GetNextItem()

member of the document object.

In the loop, the m_Rect member of each embedded object is tested using the PtInRect()

member of CRect to see whether the aPoint object is inside the rectangle. As soon as an

object is found where this is the case, the address of the embedded object is returned. If we
reach the end of the list, aPosition will be zero and the while loop will end. In this case we

haven't hit an item, so we return a null pointer value. This situation arises when the user clicks
on a point in the view that is outside of all the embedded objects. This might be done to

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

deactivate the current object, for instance, so that another object can be embedded in the
document.

Setting an Object as Selected

When the user clicks on an item, we must deactivate any active item and activate the new item.
This is carried out by the SelectItem() helper function that we used in the
OnLButtonDown() handler. You can add this function by right-clicking on CWrxContainerView

in ClassView and selecting Add Member Function... from the pop-up. You can specify the return
type as void and enter the name as SelectItem(CWrxContainerItem* pItem). You can

then add the code for the function as follows:

 void CWrxContainerView::SelectItem(CWrxContainerItem * pItem)

 {

 if (m_pSelection != 0 && m_pSelection != pItem)

 m_pSelection->Close(); // De-activate current

selected item

 if (m_pSelection != pItem) // Only update view for a new
selection

 {

 if (m_pSelection) // Check there is an old
selection

 // Update area for the old

 OnUpdate(0, HINT_UPDATE_ITEM, m_pSelection);

 m_pSelection = pItem; // Set the current selection
to the new item

 if (m_pSelection) // Check there is a new

selection

 // Update area for the new

 OnUpdate(0, HINT_UPDATE_ITEM, m_pSelection);

 }

 }

The first if statement deactivates the currently selected object (which has its address stored in

the m_pSelection member of the view) provided there's a current selection that's different
from the new item to be selected (which has its address passed in the parameter pItem). Note

that we won't deactivate the current item if it's the same as the new item.

The next if tests whether the address of the new item is different from that of the old. If they

are the same, we have nothing further to do. Otherwise, we verify that the address of the
current selected item is not zero before using it as the hint argument in the call to the
OnUpdate() member of the view.

Finally, we store the address of the new embedded object in the m_pSelection member of the
view. If it isn't zero, we use it as a hint in the call to the OnUpdate() function once more.

We need to override the default implementation of the OnUpdate() function in order to make use
of the hint information passed in the second and third parameters. Add this function to the
CWrxContainerView class using ClassWizard, giving the return type as void and the name as
OnUpdate(CView* pSender, LPARAM lHint, CObject *pHint). The implementation is shown
below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

void CWrxContainerView::OnUpdate(CView *pSender, LPARAM lHint, CObject *pHint)

{

 if(lHint==HINT_UPDATE_ITEM)

 {

 // We need to pass a rectangle to InvalidateRect() for the item

 // that takes account of the tracker

 CRectTracker tracker; // The tracker

 SetupTracker((CWrxContainerItem*)pHint, &tracker); // ...setup for the item

 CRect rect;

 tracker.GetTrueRect(rect); // Get the tracker rectangle

 InvalidateRect(rect); // and invalidate that.

 }

 else

 InvalidateRect(0);

}

Setting the Tracker Style

The last helper function sets the style for the tracker which determines its appearance. You can

add this function in the same way as the others by right-clicking on CWrxContainerView in
ClassView. Set the return type as void and the name of the function as

SetupTracker(CWrxContainerItem* pItem, CRectTracker* pTracker). The code

for the function is as follows:

 void CWrxContainerView::SetupTracker(CWrxContainerItem* pItem,

 CRectTracker*
pTracker)

 {

 pTracker->m_rect = pItem->m_Rect;

 if (pItem == m_pSelection) // Check if the
item is selected

 pTracker->m_nStyle |= CRectTracker::resizeInside;

 if (pItem->GetType() == OT_LINK) // Test for linked
item

 // Item is linked so dotted border

 pTracker->m_nStyle |= CRectTracker::dottedLine;

 else

 // Item is embedded so solid border

 pTracker->m_nStyle |= CRectTracker::solidLine;

 // If the item server window is open or activated in-place,

 // hatch over the item

 if (pItem->GetItemState() == COleClientItem::openState ||

 pItem->GetItemState() == COleClientItem:
:activeUIState)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pTracker->m_nStyle |= CRectTracker::hatchInside;

 }

The m_rect member of the tracker object stores the rectangle representing the tracker in
device coordinates. This is set up by storing the rectangle in the m_Rect member of the object,

which has its address passed as the parameter pItem.

The style of the tracker object is stored in the member m_nStyle. This can consist of a
number of different flags, so the style is set by ORing flags with m_nStyle. The symbols

corresponding to possible values for the flags are defined in an enumeration within the definition
of the CRectTracker class, so you must prefix them with CRectTracker::. The symbols

defining valid flags are:

Flag Meaning

solidLine Specifies the border of the rectangle as solid. This is used for an
embedded object that is inactive.

dottedLine Specifies the border of the rectangle as dotted. This is used to identify
a linked object. We won't be dealing with linked objects.

hatchedBorder Specifies the border of the rectangle as hatched. This identifies an
embedded object as active, with the server menus displayed in the
container.

resizeInside Specifies that resize handles appear inside the border.

resizeOutside Specifies that resize handles appear outside the border.

hatchInside Specifies that the interior of the rectangle is to be hatched. This is used
to identify an object that can't be edited in its present state.

The first if statement in the SetupTracker() function checks whether the object indicated by

pItem is actually the current selection. If it is, the resizeInside style is set to allow the
border to be resized. The next if checks whether the item is linked by calling the GetType()

member of the object. If it is, the flag dottedLine is added, otherwise we assume that it is
embedded and set the solidLine flag. The last if statement checks the state of the item by

calling its GetItemState() member. The states that are tested for reflect conditions under
which the item can't be edited, so the hatchInside style is set.

Setting the Cursor

Although we've implemented the capability to resize an object by dragging the tracker rectangle,

the user has no indication of when this is possible. We really need to ensure that the cursor
representation provides a cue for this by switching its appearance to a double arrow to indicate
when a border can be dragged, or to a four-way arrow showing that the object can be moved in
the view, as is usual for Windows applications.

To do this, we must add a handler for the WM_SETCURSOR message. As long as the mouse

hasn't been captured, this message is sent to the application whenever the cursor is moved. All
we need to do is implement the handler to check where the cursor is in relation to the tracker for
the currently selected object.

You can use the ClassView context menu to add the Windows message handler and then code

it as follows:

 BOOL CWrxContainerView::OnSetCursor(CWnd* pWnd, UINT nHitTest, UINT
message)

 {

 if (pWnd == this && m_pSelection)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 CRectTracker aTracker; // Create a tracker
rectangle

 SetupTracker(m_pSelection, &aTracker); // Set the tracker
style

 // Change the cursor if it is over the currently selected item

 // Check if the last hit was in the tracker rectangle

 if (aTracker.SetCursor(this, nHitTest))

 return TRUE; // and if so return
TRUE

 }

 return CView::OnSetCursor(pWnd, nHitTest, message);

 }

The first parameter passed to the handler is a pointer to the window that currently contains the
cursor. The second parameter is a numeric value that identifies the area in the window where
the cursor is. The third parameter, which we will ignore, is a mouse message number.

After verifying that the cursor is in the view window and that there is an object selected, we
create a CRectTracker object and set its style to correspond to the state of the selected
object. We then use the SetCursor() member of the tracker object, aTracker, which will

take care of setting the cursor appropriately if it is over the tracker. If the cursor was not set, the
SetCursor() function will return 0 and the message will be passed to the handler in the
CView class to give it a chance to set the cursor.

Activating an Embedded Object

An object is activated by double-clicking it, so we need to add a handler for the
WM_LBUTTONDBLCLK message to CWrxContainerView. You can use the ClassView context

menu to add the Windows message handler and implement it with the following code:

 void CWrxContainerView::OnLButtonDblClk(UINT nFlags, CPoint point)

 {

 OnLButtonDown(nFlags, point);

 if (m_pSelection)

 m_pSelection->DoVerb((GetKeyState(VK_CONTROL) < 0) ?

 OLEIVERB_OPEN:OLEIVERB_PRIMARY, this);

 CView::OnLButtonDblClk(nFlags, point);

 }

Because the left button has been clicked, we first call the OnLButtonDown() handler. If
m_pSelection is not zero, we use the pointer to call the DoVerb() member of the embedded

item selected.

The word verb has been given a special meaning in the context of OLE. A verb specifies an

action that an embedded object is to take, usually in response to some action by the user. The
first argument to the DoVerb() function specifies a verb, which in our case is given by:

 (GetKeyState(VK_CONTROL) < 0) ? OLEIVERB_OPEN:OLEIVERB_PRIMARY

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This is a conditional expression which will result in the verb OLEIVERB_OPEN if the function
GetKeyState() returns a negative value, and the verb OLEIVERB_PRIMARY if it doesn't. The

GetKeyState() function tests the status of keys, in this case the Ctrl key. If the Ctrl key is

pressed, the function will return a negative value. If you double-click with the Ctrl key pressed,
the verb OLEIVERB_OPEN will be selected, otherwise the other verb will be selected.

The verb OLEIVERB_OPEN opens the item for editing in a separate server window, although the

object will remain embedded in the container. You will see that the object in the container
window will be cross-hatched, because opening the server window modifies the style of the
tracker for the object to do this. The verb OLEIVERB_PRIMARY activates the server and makes

the item available for in-place editing in the container in the normal way. The second argument
to DoVerb() identifies the current view in the container where the double-click occurred.

Drawing Multiple Embedded Objects

To draw objects in the container document, you must extend the OnDraw() handler in
CWrxContainerView. The version provided by AppWizard assumes that there is only one

object. We need it to iterate over all the objects in the document and draw each of them with an
appropriate tracker. Change the code to the following:

 void CWrxContainerView::OnDraw(CDC* pDC)

 {

 CWrxContainerDoc* pDoc = GetDooument();

 ASSERT_VALID(pDoc);

 // Get the first item position

 POSITION aPosition = pDoc->GetStartPosition();

 while (aPosition) // For each item in
the list

 {

 // Get the pointer to the current item

 CWrxContainerItem* pItem =

 (CWrxContainerItem*)pDoc-
>GetNextItern(aPosition);

 pItem->Draw(pDC, pItem->m_Rect); // Now draw the item

 // Now create a suitable tracker for the item

 CRectTracker aTracker; // Create a tracker

rectangle

 SetupTracker(pItem, &aTracker); // Set the style for
current item

 aTracker.Draw(pDC); // Draw the tracker
rectangle

 }

 }

This is very straightforward. We iterate through all the items embedded in the document in the
while loop, using the GetNextItem() function member of the document object that you saw

earlier. For each item in the list, we call the Draw() function to get it to draw itself, passing the
m_Rect member of the item as the second argument. This function is inherited from the base

class, COleClientItem. We didn't implement a Draw() function for the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

CWrxContainerItem class; you'll remember that we saw at the beginning of this chapter that

the server, not the container, draws embedded objects.

The object will be drawn by the OnDraw() member of the OLE object in the server. This

drawing operation will generate the picture in an internal format called a metafile, which is a
way of storing all the function calls you make to draw the image to produce a device-
independent representation of the image. This can then be replayed in a specific device context.
The Draw() function member of COleClientItem will access the metafile generated by the

server and display it in the device context here.

After drawing an item, we create a tracker with a style based on the state of the current item
and get it to draw itself by calling its Draw() member. Each time a tracker needs to be

displayed for an item, we can just generate a new one because it's only a visual aid to
interaction. It doesn't need to be permanently saved with the item.

We have no local data in the container document. If the container application has its own
document data, you would need to display that in the OnDraw() function as well.

Dealing with Object Insertion

AppWizard already provided the mechanism for handling the insertion of a new object into the
container. This is in the implementation of the handler OnInsertObject() in the

CWrxContainerView class. We can make two additions to improve it a little, though. We'll add

code to update the rectangle for a new object to that corresponding to the size from the server,
and replace the default code that redraws all the views in the container with code that only
redraws the area occupied by the new object:

 void CWrxContainerView::OnInsertObject()

 {

 // Invoke the standard Insert Object dialog box to obtain
information

 // for new CWrxContainerItem object.

 COleInsertDialog dlg;

 if (dlg.DoModal() != IDOK)

 return;

 BeginWaitCursor();

 CWrxContainerItem* pItem = NULL;

 TRY

 {

 // Create new item connected to this document.

 CWrxContainerDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 pItem = new CWrxContainerItem(pDoc);

 ASSERT_VALID(pItem);

 // Initialize the item from the dialog data,

 if (!dlg.CreateItem(pItem))

 AfxThrowMemoryException(); // any exception will
do

 ASSERT_VALID(pItem);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pItem->UpdateLink(); // Update the item
display

 pItem->GetServerSize(); // Update the item
size

 // If item created from class list (not from file) then
launch

 // the server to edit the item.

 if (dlg.GetSelectionType() ==
COleInsertDialog::createNewItem)

 pItem->DoVerb(OLEIVERB_SHOW, this);

 ASSERT_VALID(pItem);

 //As an arbitrary user interface design, this sets the
selection

 // to the last item inserted.

 // TODO: reimplement selection as appropriate for your
application

 SelectItem(pItem); // Select last
inserted item

 pItem->InvalidateItem(); // then invalidate
the item

 }

 CATCH(CException, e)

 {

 if (pItem != NULL)

 {

 ASSERT_VALID(pItem);

 pItem->Delete();

 }

 AfxMessageBox(IDP_FAILED_TO_CREATE);

 }

 END_CATCH

 EndWaitCursor();

 }

In the TRY block, the default code creates a new CWrxContainerItem object associated with

the document and stores its address in pItem. This is then initialized to the new embedded
object through the CreateItem() member of the dialog object dlg, which manages the

selection of the type of object to be embedded. As long as everything works OK, the first two
lines of code we've added are executed. The call to the UpdateLink() member of the new

CWrxContainerItem object causes the contents of the embedded object to be drawn. We
then call our SetServerSize() helper function to update the size to that required for the

server.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The next if statement in the default code checks for a new embedded item being created,
rather than one being loaded from a file. If it's a new item, it executes the DoVerb() member of

the object to open it for editing. Our new code follows, which calls our SelectItem() function

to select the new item and causes the area occupied by the new object to be redrawn. These
lines replace the two default lines which set m_pSelection and called UpdateAllViews().

Trying Out the OLE Container

The container is ready to run. You can build it in the normal way and, if you haven't made any
typos, it should execute. You may well have applications installed on your system which are
OLE servers, in which case you'll see a list of them when you select the Edit | Insert New
Object... menu option:

This shows some of the OLE servers that are around in my system. If you want to load a file,

you should check the radio button Create from File on the left. Of course, you can add more than
one embedded object, as shown in the following screen:

Here you can see inactive bitmap, AVI and MIDI objects, and an in-place active WordPad
document towards the bottom. The Formatting toolbar shown here is supplied by the WordPad
server application.

Implementing an OLE Server

It would be nice to have the Sketcher application working as a server. If we had chosen the

options in AppWizard at the beginning, we would have the basics built in now, but that would
have meant carrying a lot of excess baggage around in the early stages, which we really didn't

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

want. However, we can quite quickly reconstruct a skeleton version of Sketcher to act as a full
server. For this exercise, we'll just add the bare bones drawing capability that we had in the
early versions of Sketcher, plus serialization of the document object. We'll go through the code
that you need to add to the AppWizard-generated base program, but you should be able to steal
a lot of it from versions of Sketcher that you have already. Of course, if you want to, you can
add any of the other functionality that we implemented in earlier chapters, but here we'll just
discuss the minimum we need to get an operational server going that we can exercise in our
container.

The first step is to recreate the basic Sketcher application as an OLE server using AppWizard.

Generating a Server Application

Create a new project of type MFCAppWizard (exe) and call it Sketcher. Make sure that it's in a
different folder from any of the other versions of Sketcher you may have around. The process is
almost identical to the one we used to generate the program in the first instance - it should be
an MDI application, and the only differences from the default options are in Step 3 and Step 4. In
Step 3, make sure that you select the Full-server option as the type of application. In Step 4, select
the Advanced button to bring up the Advanced Options dialog, then set the entries as you see
here:

You can see that we have used a different File extension and File type ID for this version of the
Sketcher application. Once this information has been filled in, you can click Close and then
Finish to create the new project. You may find that you get the following message displayed, in
which case, you should click No to ensure that a unique ID is used for your documents.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Adding Sketcher Application Functionality

The first step to recreating Sketcher is to copy the Elements.h, Elements.cpp and
OurConstants.h files from an earlier version of Sketcher to the folder containing the current

version. Make sure that it's a version containing serialization of the elements; the one you had
at the end of Chapter 18 will do nicely. Then, add the Elements.cpp file to the current project

by using the Project | Add To Project | Files... menu option.

We'll attempt to keep the code simple in this version of Sketcher, so we won't implement

scrolling, text, different pen widths or the context menu. The only change that you'll need to
make to the elements as we used them in Chapter 18 is to remove the PenWidth parameter

from the constructors, both in the class definitions and in the implementations, and set the
m_Pen member to 1 in each element constructor. The easiest way to do this is to search for

'PenWidth' in both the Elements.h and Elements.cpp files (using the Edit | Find... menu
item), and delete any occurences of ', const int PenWidth' that you find as a result of this

search. Once that's done, go back to the .cpp file and replace all remaining occurrences of
PenWidth with 1.

You can now follow what should be a well-trodden path to add the basic drawing functionality to
the project. You can do it in the following steps:

Document Data and Interface Functions

Add the protected data members to the CSketcherDoc class:

 WORD m_Element;

 COLORREF m_Color;

 CSize m_DocSize;

To do this, you can right-click on the class name in ClassView, or just copy the code from an
earlier implementation. The third data item is a record of the document size, which we'll use
extensively when Sketcher is operating as an OLE server.

Next, you can add the protected data member for storing the list of elements:

 CTypedPtrList<CObList, CElement*> m_ElementList; // Element
list

Note that you have to add this explicitly, and that you must remember to add an #include for
afxtempl.h to StdAfx.h. (Put it after the #include for afxole.h).

The first three data members must be initialized in the constructor for the document:

 CSketcherDoc::CSketcherDoc()

 {

 // Use OLE compound files

 EnableCompoundFile();

 // TODO: add one-time construction code here

 m_Element = LINE; // Set initial element

type

 m_Color = BLACK; // set initial drawing
color

 m_DocSize = CSize(200,200); // set document size

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Because we refer to the constants that we've defined for the element types and colors, you
must add a #include directive for OurConstants.h to the beginning of SketcherDoc.cpp.

We must also remember to clean up the m_ElementList object in the destructor for the

document:

 CSketcherDoc::~CSketcherDoc()

 {

 // Get the position at the head of the list

 POSITION aPosition = m_ElementList.GetHeadPosition();

 // Now delete the element pointed to by each list entry

 while (aPosition)

 delete m_ElementList.GetNext(aPosition);

 m_ElementList.RemoveAll(); // Finally delete all
pointers

 }

You can copy the public interface functions for the document class directly from the Chapter

18 version of Sketcher. The ones that you need are:

 WORD GetElementType() const // Get the element
type

 { return m_Elemant; }

 COLORREF GetElementColor() const // Get the element
color

 { return m_Color; }

 void AddElement(CElemant* pElement) // Add an element to
the list

 { m_ElementList.AddTail(pElement); }

 POSITION GetListHeadPosition() const // Return list head
POSITION value

 { return m_ElementList.GetHeadPosition(); }

 CElement* GetNext(POSITION& aPos) const // Return current
element pointer

 { return m_ElemantList.GetNext(aPos); }

 CSize GetDocSize() const // Retrieve the
document size

 { return m_DocSize; }

Because we refer to the CElement class here, you should add an #include statement for
Elements.h to the SketcherDoc.h file.

You also need to implement the Serialize() member of the document:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 void CSketcherDoc::Serialize(CArchive& ar)

 {

 m_ElementList.Serialize(ar); // Serialize the element
list

 if (ar.IsStoring())

 {

 ar << m_Color // Store the current
color

 << m_Element // the current element
type,

 << m_DocSize; // and the document size

 }

 else

 {

 ar >> m_Color // Retrieve the current

color

 >> m_Element // the current element
type,

 >> m_DocSize; // and the document size

 }

 }

The reason that you need serialization implemented for your server is that, when an embedded

object is deactivated, the framework uses it to save the document. When you reactivate the
object, it is restored using serialization. This is necessary because your server may be servicing
several embedded objects at one time.

Adding the Menus

Now you need to add the Element and Color menus that we had in earlier versions of Sketcher
(Chapter 14 and later). You should add them to the IDR_SKETCHTYPE menu, just as we did

before You'll see that this version of Sketcher contains a couple of menu resources in addition
to IDR_SKETCHTYPE and IDR_MAINFRAME which are for use when the program is operating

as a server, but ignore these for now - we'll get to them later. For each menu item, use the
same IDs and captions that we used before.

There is a shortcut you can use here to transfer your menus across from a previous version of
Sketcher. First, close all the open windows in Developer Studio, then open the .rc file for the
menu you want to copy. Double-click on the IDR_SKETCHTYPE menu resource for the newly

opened file to display the menu. Open IDR_SKETCHTYPE for the current project, then use the

Window | Tile Horizontally to view both menus simultaneously. You can copy the menu items that
you want by dragging them with the mouse while holding down the Ctrl key.

Now you should add the COMMAND and UPDATE_COMMAND_UI handlers for each menu
item to the CSketcherDoc class, exactly as you did way back in Chapter 14. You can use

ClassWizard to add these handlers, then copy the code for the command handlers
(OnColorBlack(), etc.) and update handlers (OnUpdateColorBlack(), etc.) from an earlier

version of Sketcher into the current one, or you can just enter the code - the functions are very
simple. The typical command handler for an element is:

 void CSketcherDoc::OnElementLine()

 {

 // TODO: Add your command handler code here

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_Element = LINE; // Set element type as a line

 }

A typical update command handler is:

 void CSketcherDoc::OnUpdateElementLine(CCmdUI* pCmdUI)

 {

 // TODO: Add your command update UI handler code here

 // Set Checked if the current element is a line

 pCmdUI->SetCheck(m_Element==LINE);

 }

All the command and command update handlers are of a similar form.

Adding the Toolbar Buttons

You can also add the toolbar buttons for the menu items exactly as before. All you need are the
buttons for the four element types and the four colors. You add these to the toolbar
IDR_MAINFRAME and set the IDs to the same as those for the corresponding menu item.

If you like, you can also take a shortcut to this process. In the same way that you did for the
menus, display the current project IDR_MAINFRAME toolbar and one containing the toolbar

buttons you need - any version of Sketcher from the end of Chapter 14 onwards will be OK. You
can then drag toolbar buttons from one toolbar to the other by holding down the Ctrl key. You
only need the four buttons for colors and the four for element types.

Adding the View Application Functionality

The protected data items you need in the CSketcherView class definition are:

 CPoint m_FirstPoint; // First point recorded for an

element

 CPoint m_SecondPoint; // Second point recorded for an
element

 CElement* m_pTempElement; // Pointer to temporary element

Since the class definition uses the CElement class, we ought to add an #include statement
for Elements.h to SketcherView.h.

The data members must be initialized in the constructor, so add the code to the constructor
implementation to do this:

 CSketcherView::CSketcherView()

 {

 m_FirstPoint = CPoint(0,0); // Set 1st recorded
point to 0,0

 m_SecondPoint = CPoint(0,0); // Set 2nd recorded
point to 0,0

 m_pTempElament = 0; // Set temporary
element pointer to 0

 }

The only message handling functions you need to add to the view class at this point are the
handlers for WM_LBUTTONDOWN, WM_LBUTTONUP and WM_MOUSEMOVE. Add these as before

by using ClassWizard or the context menu from ClassView.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can use simple implementations of the handlers, similar to those from Chapter 16 without
the context menu support, but with the proper conversion from client coordinates to logical
coordinates. The handler for WM_LBUTTONDOWN is:

 void CSketcherView::OnLButtonDown(UINT nFlags, CPoint point)

 {

 CClientDC aDC(this); // Create a device
context

 OnPrepareDC(&aDC); // Prepare the device
context

 aDC.DPtoLP(&point); // Convert point to
Logical

 m_FirstPoint = point; // Record the cursor
position

 SetCapture(); // Capture subsequent
mouse messages

 }

The implementation of the handler for WM_LBUTTONUP messages will be:

 void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)

 {

 CSketcherDoc* pDoc = GetDocument(); // Get the document
pointer

 if (this == GetCapture())

 ReleaseCapture(); // Stop capturing
mouse messages

 //If there is an element, add it to the document

 if (m_pTempElement)

 {

 pDoc->AddElement(m_pTempElement); // Add the element

 // Tell the other views about it

 pDoc->UpdateAllViews(0, 0, m_pTempElement);

 m_pTempElement = 0; // Reset the element
pointer

 }

 }

Finally, the code for the WM_MOUSEMOVE handler will be:

 void CSketcherView::OnMouseMove(UINT nFlags, CPoint point)

 {

 // Define a Device Context object for the view

 CClientDC aDC(this);

 OnPrepareDC(&aDC); // Prepare the device

context

 if ((nFlags & MK_LBUTTON) && (this == GetCapture()))

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 aDC.DPtoLP(&point); // Convert point to
logical

 m_SecondPoint = point; // Save the current
cursor position

 if(m_pTempElement)

 {

 if(CURVE == GetDocument()->GetElementType()) // Is
it a curve?

 { // We are drawing a curve

 // so add a segment to the existing curve

 ((CCurve*)m_pTempElement)->AddSegment(m_SecondPoint);

 m_pTempElemsnt->Draw(&aDC); // Now

draw it

 return; // We
are done

 }

 aDC.SetROP2(R2 NOTXORPEN); // Set
drawing mode

 // Redraw the old element so it disappears from the view

 m_pTempElement->Draw(&aDC);

 delete m_pTempElement; // Delete the old
element

 m_pTempElement = 0; // Reset the pointer
to 0

 }

 // Create a temporary element of the type and color that

 // is recorded in the document object, and draw it

 m_pTempElement = CreateElement(); // Create a new
element

 m_pTempElement->Draw(&aDC); // Draw the element

 }

 }

All of this should be quite familiar to you now, so these additions shouldn't take very long. We
also need the CreateElement() function to create elements on the heap. Add a protected

declaration for this function to the view class and implement it as:

 CElement* CSketcherView::CreateElement()

 {

 // Get a pointer to the document for this view

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc); // Verify the pointer is
good

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Now select the element using the type stored in the document

 switch (pDoc->GetElementType())

 {

 case RECTANGLE:

 return new CRectangle(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor());

 case CIRCLE:

 return new CCircle(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor());

 case CURVE:

 return new CCurve(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor());

 case LINE:

 return new CLine(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor());

 default: // Something's gone
wrong

 AfxMessageBox('Bad Element code", MB_OK);

 AfxAbort();

 return NULL;

 }

 }

This is like the code you've seen in earlier chapters.

Drawing the Document

As you well know by now, we'll draw the document in the onDraw() member of the view class.

The implementation is:

 void CSketcherView::OnDraw(CDC* pDC)

 {

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 POSITION aPos = pDoc->GetListHeadPosition();

 CElement* pElement = 0; // Store for an
element pointer

 while (aPos) // Loop while aPos is
not null

 {

 pElement = pDoc->GetNext(aPos); // Get the current
element pointer

 // If the element is visible...

 if (pDC->RectVisible(pElement->GetBoundRect()))

 pElement->Draw(pDC); // ...draw it

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

This is identical code to that in earlier versions of Sketcher, so you can copy it from one of those

if you like.

We must add the OnUpdate() function to respond to the UpdateAllViews() call that occurs
when we add an element to the document, so add this handler to CSketcherView using

ClassWizard or the WizardBar. The implementation for it will be:

 void CSketcherView::OnUpdate(CView* pSender, LPARAM lHint, CObject*
pHint)

 {

 // Invalidate the area corresponding to the element pointed to

 // if there is one, otherwise invalidate the whole client area

 if (pHint)

 {

 CClientDC aDC(this); // Create a device
context

 OnPrepareDC(&aDC); // Prepare the device
context

 // Get the enclosing rectangle and convert to client
coordinates

 CRect aRect = static_cast<CElement*>(pHint)->GetBoundRect();

 aDC.LPtoDP(aRect);

 aRect.NormalizeRect();

 InvalidateRect(aRect); // Get the area
redrawn

 }

 else

 InvalidateRect(0);

 }

Once again, this is very similar to the code we've used in previous versions of Sketcher. Finally,
you need to add an #include statement for OurConstants.h to SketcherView.cpp after
the #include for Sketcher.h.

Now that you've added OnDraw(), OnUpdate(), the mouse handlers, the

CreateElement() function and the #include statements, you should have a basic working

version of Sketcher with the OLE server mechanism built in. You can build it and run it as a
stand-alone application to check out all is well. Any omissions or errors should come out during
the compilation. When it works stand-alone, you can try it out in the container.

Running Sketcher as a Server

Start the WrxContainer application and select Insert New Object... from the Edit menu. The list of

OLE servers available should include Sketcher Document, if that is how you identified the file type
name in Step 4 of the AppWizard dialog to create the OLE version of Sketcher. If you select this,
a Sketcher object will be loaded ready for editing.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Unfortunately, we have no Sketcher menus or toolbars in the container, but at least you can

draw black lines. However, there's another little problem: if you click outside the object to
deactivate it, the contents of the object disappear. We clearly have a little more work to do on
our server.

Server Resources

Let's go back to the Sketcher server and take a look at the menus. If you extend the Menu part

of the resource tree, you'll see that there are two extra menu resources included in the server
beyond the two menus that are used when Sketcher is running stand-alone. The contents of
these are shown here:

The menu corresponding to IDR_SKETCHTYPE_SRVR_EMB is used when you open the server

to edit an object embedded in a container by double-clicking the object while holding down the
Ctrl key. This will appear in a server window separate from the container, so this menu should
contain all the items that appear in Sketcher when it's running stand-alone.

The IDR_SKETCHTYPE_SRVR_IP menu applies when you're editing an object in-place, which

occurs when you just double-click on an object embedded in a container. The server menu will
be merged with the menu in the container to enable you to interact with the server during
editing, while still providing access to the essential container menus. The segments of the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

menus in the server and the container that are delineated by the separators will be merged in a
predetermined sequence, as we shall see.

If you extend the Toolbar resources in the ResourceView, you'll see that there's also an extra
toolbar with the ID IDR_SKETCHTYPE_SRVR_IP. This will replace the container's toolbar when

you're editing an object in-place. We can copy the menu and toolbar resources that we need in
the extra menus from the IDR_SKETCHTYPE menu and the IDR_MAINFRAME toolbar in the

project.

Updating Menu Resources

The first step is to arrange to display the IDR_SKETCHTYPE and IDR_SKETCHTYPE_SRVR_EMB

menus together. The easiest way to do this is to close all the windows in the project, then, with
ResourceView displayed in the Project Window, extend the Menu resource tree and double-
click on IDR_SKETCHTYPE and IDR_SKETCHTYPE_SRVR_EMB to open both windows. Finally,

select Tile Horizontally from the Window menu.

You can now simply copy each menu that you need in turn from IDR_SKETCHTYPE to

IDR_SKETCHTYPE_SRVR_EMB by dragging it with Ctrl held down as we did before. You need to
copy the Color and Element menus. That completes the IDR_SKETCHTYPE_SRVR_EMB menu,

so you can save it. All the links to the handlers for the menu items are already in place because
they are the ones that are used normally.

After saving IDR_SKETCHTYPE_SRVR_EMB, you can close the window for this menu and open
the menu IDR_SKETCHTYPE_SRVR_IP. Select Window | Tile Horizontally so that this menu and

IDR_SKETCHTYPE are both visible. You can then copy the Element and Color menu items from
IDR_SKETCHTYPE to IDR_SKETCHTYPE_SRVR_IP. The new menu should look like this:

The combined menu is now in a state where it will merge with the container menu to provide a
composite menu in the container application for in-place editing of a Sketcher object.

How Container and Server Menus are Merged

If we assume the context of the container that we created earlier in this chapter, the menu for
our server will be merged into the container's menu, as shown here:

The diagram shows the composite menu in the center that is produced in the container by
merging the menus from the container and the server. The numbers on the arrows indicate the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

sequence in which segments of the two menus are added to form the composite menu. There's
actually more scope here than we're using, as we have no items between the separators in
either the server or the container. The resulting menu has the File and Window menu items from
the container, since a save operation will apply to the container document with its embedded
objects, and the window in which the object is displayed is owned by the container application.
The application menu items and the Help menu item are contributed by the server.

Updating Toolbar Resources

You need to open both toolbars in the current project corresponding to the IDs
IDR_MAINFRAME and IDR_SKETCHTYPE_SRVR_IP in the same way that you opened the
menus previously. Then modify the toolbar with the ID IDR_SKETCHTYPE_SRVR_IP as shown

here:

As we saw earlier, you can copy toolbar buttons using the same mechanism that you used for

copying menu items. Just drag each button while holding down the Ctrl key. We need to remove
the buttons indicated because these apply to server editing operations and, in the container
context, the container operations will apply. We haven't implemented these functions in
Sketcher anyway.

That completes updating the resources for the Sketcher project. Now would be a good time to

save the resources if you haven't done so already. You can build Sketcher at this point to see
how menu merging works out. If you run the container application and insert an object of the
latest version of the Sketcher server, you should get something like the next screen:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

All the menus and toolbar buttons from Sketcher should work OK. You can draw any of the

elements in any color. The problem of the picture not staying around when the object is
deactivated remains, but we're getting there.

Adding Server Functionality

As we discussed earlier on in this chapter, a server object is an instance of the class
COleServerItem in the server application. It's this object that's responsible for drawing the

embedded item when it isn't active. In Sketcher, AppWizard has provided the class
CSketcherSrvrItem, which is derived from COleServerItem, so this class represents the

embedded object in Sketcher. Whenever the embedded object is being edited, the drawing is
being done by the OnDraw() function in CSketcherView and is being transferred to the

container to be displayed. When the embedded object isn't active, the container is asking the
CSketcherSrvrItem object to draw it, but we haven't provided the capability to do this. This is

what we need to do now.

Implementing the Embedded Object

A CSketcherSrvrItem object has two essential jobs to do. It must draw the object when the

object is embedded but isn't being edited in-place, and it must be able to supply the extent of
the document when requested by the framework on behalf of the container. Drawing is done by
the OnDraw() member of the CSketcherSrvrItem class and the document extent is supplied
by the OnGetExtent() member.

Scaleable Mapping Modes

There are some complications arising from Sketcher being a server. We can no longer draw the

document in the same way as before You already know that there are two places in the
Sketcher program where an embedded document will be drawn: in the OnDraw() function in

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the view object when it's being edited, and in the OnDraw() function of the
CSketcherSrvrItem object when it isn't. Further complications arise because we'll be

drawing the embedded document in a rectangle within a view of a container. This rectangle is
inevitably small. After all, the whole point of embedding objects is that they should coexist with
other objects. It may also be moved about and varied in size, so we need to use a flexible
mapping mode.

There are two mapping modes that allow the mapping between logical coordinates and device
coordinates to be altered: MM_ISOTROPIC and MM_ANISOTROPIC. We discussed these

mapping modes back in Chapter 17, but it won't hurt to go over things again. The
MM_ISOTROPIC mapping mode has the property that Windows will force the scaling factor to be

the same for both the x and y axes, which has the advantage that your circles will always be
circles, but you can't map a document to fit into a rectangle of a different shape - you will always
leave part of the rectangle empty. MM_ANISOTROPIC, on the other hand, permits scaling of

each axis independently, so that you can map an object to fit exactly into a rectangle of any
shape, but, of course, shapes will deform in the process. Because it's the more flexible, we will
use MM_ANISOTROPIC in our server version of Sketcher. This is necessary in the view class, as

well as in the class representing the embedded object.

You'll remember that we saw the following equations which express device coordinates in terms

of logical coordinates:

With a bit of algebraic juggling, you'll see that the conversion from device coordinates to logical

coordinates will use the formulae:

With coordinate systems other than MM_ISOTROPIC and MM_ANISOTROPIC, the window

extent and the viewport extent are fixed by the mapping mode, and you can't change them.
Calling the functions SetWindowExt() or SetViewportExt() in the CDC object to change

them will have no effect, although you can still move the position of (0, 0) in your logical
reference frame around by calling SetWindowOrg() or SetViewportOrg(). With

MM_ISOTROPIC and MM_ANISOTROPIC, you can mess everything around to your heart's

content.

Updating the View

We need to adjust how the document is drawn by the view to take account of the implications of
the server mode of operation. This means using a mapping mode that allows for flexibility in the
way the conversion from logical to device coordinates occurs. In other words, we need to work
with the MM_ANISOTROPIC mode. We can best do this by adding the OnPrepareDC() function
to CSketcherView and setting up the mapping mode there, as we did in Chapter 17.

Changing the Mapping Mode

With the server version of Sketcher, we must define our logical units for drawing in the
MM_ANISOTROPIC mapping mode so that Windows can determine the mapping to pixels. This

is a bit more complicated than it seems at first sight, and requires a little more thought than our
Chapter 17 exercise. You must take account of the scaling between the size at which you're
drawing a document and the size of the document when it's displayed in the container.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The measure of this scaling between the server and the container is called a zoom factor. We'll
use this zoom factor to provide true WYSIWYG drawing for embedded objects. If you don't
adjust for the zoom factor, the size of a document object will vary depending on whether it's
being edited or not. The GetZoomFactor() member of COleDocument provides a value for

the zoom factor that you can use to adjust the viewport extent in the device context to get the
correct mapping.

We'll set up the mapping mode and the parameters that determine how our logical coordinates
are converted in the OnPrepareDC() function member of CSketcherView. Of course, you'll

need to add the function to the view class using ClassWizard. Its implementation will be as
follows:

 void CSketcherView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)

 {

 CView::OnPrepareDC(pDC, pInfo);

 CSketcherDoc* pDoc = GetDocumunt();

 pDC-> SetMapMode(MM_ANISOTROPIC);

 CSize DocSize = pDoc->GetDocSize();

 // y extent must be negative because document assumes
MM_LOENGLISH

 DocSize.cy = -DocSize.cy; // Change sign of y

 pDC->SetWindowExt(DocSize); // Now set the window
extent

 // Get the zoom factor for the server compared to the container

 // If the server isn't in-place active, zoom factor will be 1 to
1

 CSize SizeNum, SizeDenom; // Places to store
zoom factors

 pDoc->GetZoomFactor(&SizeNum, &SizeDenom);

 int xLogPixels = pDC->GetDevioeCaps(LOGPIXELSX);

 int yLogPixels = pDC->GetDeviceCaps(LOGPIXELSY);

 int xExtent = (DoCSize.cx * xlLogPixels * SizeNum.cx) /
(100*SizeDenom.cx);

 int yExtent = (DocSize.cy * yLogPixels * SizeNum.cy) /
(100*SizeDenom.cy);

 pDC->SetViewportExt(xExtent, -yExtent); // Set viewport extent

}

Note that we add our code after the call to the base class function that was supplied in the
default implementation. After setting the mapping mode to MM_ANISOTROPIC, we set the

window extent to correspond to the size of the document, not forgetting that the y extent must
be negative because we're assuming MM_LOENGLISH compatibility, with the origin at the top-

left corner of the client area. As we saw earlier, the conversion to device coordinates is
determined by the ratio of the window extent to the viewport extent, so we need to set the
viewport extent to be the number of pixels that are equivalent to the window extent we've
specified, adjusted for the zoom factor.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

As you've seen previously, the number of pixels in a logical inch is returned by the
GetDeviceCaps() member of the CDC object. By using the argument LOGPIXELSX we get the

number of pixels in a logical inch on the x axis, and perform a similar operation for the y axis. A
logical inch is a Windows invention which is an inch enlarged to make characters readable. For
every 100 logical units, we want to set the viewport extent to a logical inch's worth of pixels, so
the number of pixels for the viewport's x-extent, before adjustment for the zoom factor, is:

The zoom factor is returned as two CSize values - SizeNum and SizeDenom - corresponding

to the numerator and denominator in the factor respectively. The ratio of the cx members of
these apply to the x-extent for the viewport and the ratio of the cy members apply to the y-

extent. Thus, the x-extent, for example, is calculated by the expression:

This is what we have in the code for the function above.

Drawing the Embedded Object

To draw the embedded object, we need to add code to the OnDraw() member of
CSketcherSrvrItem as follows:

 BOOL CSketcherSrvrItem::OnDraw(CDC* pDC, CSize& rSize)

 {

 // Remove this if you use rSize

 UNREFERENCED_PARAMETER(rSize);

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 // TODO: set mapping mode and extent

 // (The extent is usually the same as the size returned from

OnGetExtent)

 pDC->SetMapMode(MM_ANISOTROPIC);

 CSize DocSize = pDoc->GetDocSize(); // Get the current
document size

 DocSize.cy = -DocSize.cy; // Invert the y axis for MM_LOENGLISH

 pDC->SetWindowOrg(0,0);

 pDC->SetWindowExt(DocSize);

 // TODO: add drawing code here. Optionally, fill in the HIMETRIC
extent.

 // All drawing takes place in the metafile device context
(pDC).

 POSITION aPos = pDoc->GetListHeadPosition();

 CElement* pElement = 0; // Store for an
element pointer

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 while (aPos) : // Loop while aPos is
not null

 {

 pElement = pDoc->GetNext(aPos); // Get the current
element pointer

 // If the element is visible...

 if (pDC->RectVisible(pElement->GetBoundRect()))

 pElement->Draw(pDC); // ...draw it

 }

 return TRUE;

 }

This is relatively straightforward After setting the mapping mode, we retrieve the size of the
document and use this to set the window extent. We make sure that the value for the y extent is
negative. All our code in Sketcher assumes MM_LOENGLISH with the origin at the top-left corner

of the client area. We must, therefore, specify the y extent and set the origin here to be
consistent with that assumption. Note that AppWizard already supplied the statement to set the
mapping mode to MM_ANISOTROPIC. This is the standard approach to drawing an embedded

server object.

After setting up the mapping mode and the window extent, we draw the document using the
same code we used in the OnDraw() function in the view. Drawing here is not directly to the

screen. The GDI function calls that create the document image are stored in a metafile, which is
a device-independent representation of the image. The viewport extent will be adjusted by the
framework to map this metafile into the rectangle in the container view before the metafile is
replayed to draw the document. This will result in the image being deformed if the rectangle
enclosing the item in the container has been resized. If you want to prevent this, you need to
include code here to do so. One possibility is to use MM_ISOTROPIC to force consistent scaling

of the axes.

We haven't set the value of the second parameter, rsize, in the OnDraw() function. If you set

this value it should be the size of the document in MM_HIMETRIC units. If you don't set it (we
haven't here), the framework will call the OnGetExtent() function in the COleServerItem

class object to get it from there. We'll implement that next.

Getting the Extent of an Embedded Object

The framework calls the OnGetExtent() member of the embedded object class in the server

to get the size of the document that is to be displayed in the container. We need to implement
this to return the size of the document object in Sketcher. The code to do this is as follows:

 BOOL CSketcherSrvrItem::OnGetExtent(DVASPECT dwDrawAspect,

 CSize&
rSize)

 {

 // Most applications, like this one, only handle drawing the

content

 // aspect of the item. If you wish to support other aspects,
such

 // as DVASPECT_THUMBNAIL (by overriding OnDrawEx), then this

 // implementation of OnGetExtent should be modified to handle
the

 // additional aspect(s).

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if (dwDrawAspect != DVASPECT_CONTENT)

 return COleServerItem::OnGetExtent(dwDrawAspect, rSize);

 // CSketcherSrvrItem::OnGetExtent is called to get the extent in

 // HIMETRIC units of the entire item. The default
implementation

 // here simply returns a hard-coded number of units.

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 // TODO: replace this arbitrary size

 rSize = pDoc->GetDocSize(); // Get the document size

 CClientDC aDC(0); // Get device context for
conversion

 aDC.SetMapMode(MM_ANISOTROPIC); // Set map mode that is
scaleable

 // Set window extent to 1 inch in each direction in MM_LOENGLISH

 aDC.SetWindowExt(100, -100); // Set window extent with

negative y

 // Set viewport extent to the number of pixels in 1 inch

 aDC.SetViewportExt(aDC.GetDeviceCaps(LOGPIXELSX),

 aDC.GetDeviceCaps(LOGPIXELSY));

 aDC.LPtoHIMETRIC(&rSize); // Convert document size to
HIMETRIC

 return TRUE; }

The comments explain what the framework expects from this function. Here, we take a

simplistic approach and just retrieve the document size that is stored in the document. Ideally,
the value returned should reflect the physical extent of the object to be drawn, not just the
arbitrarily assigned extent for the document, but this will suffice to get our server working. The
size must be returned in HIMETRIC units because this is the standard unit of measure set by
the framework. Our document size is in LOENGLISH units, so we need to set up a mapping that

will ensure that the logical unit in the device context is equivalent to this. We do this by setting
the window extent to 100, which is the equivalent of 1 inch in each direction in LOENGLISH

units, and then setting the viewport extent to the number of logical pixels per inch in each
direction.

The number of logical pixels per inch is obtained by calling the GetDeviceCaps() member of
the CClientDC object with the arguments shown. You will remember we used this in Chapter

17 when we were implementing scaling, and in Chapter 18 to get the number of points per inch
for the printer. By using suitable arguments, you can use this function to get at a vast range of
parameters that apply to the device context. You can get the complete list of these through the

Help menu option. Finally, having set the scaling in the device context appropriately, we call the
function LPtoHIMETRIC() to convert the document size to HIMETRIC units.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Add an #include directive for Elements.h to the beginning of the SrvrItem.cpp file
because of the references to the CElement class in the OnDraw() member function.

Notifying Changes

To communicate to the framework that we've altered the document, we need to call the
functions NotifyChanged() and SetModifiedFlag() whenever we do so. This is because

both the container and the server need to know the document has changed. Both functions are
members of the document class that is inherited from the base class, COleDocument.

We need to call the functions in the WM_LBUTTONUP handler in the view class:

 void CSketcherView::OnLButtonUp(UINT nFlags, CPoint point)

 {

 CSketcherDoc* pDoc = GetDocument(); // Get the document
pointer

 if (this == GetCapture())

 ReleaseCapture(); // Stop capturing
mouse messages

 // If there is an element, add it to the document

 if (m_pTempElement)

 {

 pDoc->AddElement(m_pTempElement); // Add the
element

 pDoc->SetModifiedFlag(); // Note the
modification

 // Tell the other views about it

 pDoc->UpdateAllViews(0, 0, m_pTempElement);

 m_pTempElement = 0; // Reset the
element pointer

 pDoc->NotifyChanged(); //Tell the
container...

 pDoc->SetModifiedFlag(); // ...and the
server

 }

 }

For the cut-down version of the Sketcher application, this is the only place where we change the

document. The two new lines are highlighted in the above code.

Executing the Server

Sketcher should now be ready to run as a server. You can try it out stand-alone first, to make

sure nothing has been overlooked. To run as a server, Sketcher needs to be entered in the
registry, but this will be done automatically for you when you build the application.

You can run Sketcher with the container we created at the beginning of this chapter. Run the
container application and select Edit | Insert New Object... from the menu. Then choose Sketcher

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Document from the list box in the dialog and click the OK button. You should then get an
embedded Sketcher object, ready for editing.

You aren't limited to Sketcher. You can try embedding objects of other server applications.
There are sure to be some on your system. Below, you can see an example of the container
running with a Paintbrush object and a Sketcher object embedded:

Here, the Sketcher object is in-place active and currently being edited, as you can see from the

hatched tracker border and the toolbar and menu items. You may also like to try editing an
embedded object in a server window. You'll remember that you do this by double-clicking the
object while you hold down the Ctrl key.

Summary

In this chapter, we've taken a brief look into how to implement an OLE container and a server
based on AppWizard-generated base code. The significant points that we have discussed in
this chapter are:
§ A program that can host OLE objects that are maintained and edited by an independent

program is called an OLE container. An OLE container can typically accommodate
multiple embedded objects of different types.

§ OLE objects in a container can be linked, in which case they are stored separately from
the container document, or embedded, in which case they are stored within the container
document.

§ A program that can provide an object embedded in an OLE container application is
called an OLE server. A server can also be a container.

§ There are two kinds of server that you can create with AppWizard: a mini-server which
can only operate in support of embedded objects, and a full server which can operate as a
stand-alone application as well as a server.

§ Embedded objects in a container are represented by instances of a class derived from
the class COleClientItem. A server document that is embedded in a container is

represented in the server application by an instance of a class derived from
COleServerItem.

§ Embedded objects are drawn in the container view by the server application. When an
embedded object is being edited, it is drawn by the OnDraw() member of the document
view object in the server, otherwise it is drawn by the OnDraw() member of the class

derived from COleServerItem.

§ An object is subjected to a scaling effect when it is displayed embedded in a container.
Consequently, the server must use a mapping mode to allow the drawing operation to take
account of the effect of this. This typically involves using MM_ANISOTROPIC as the

mapping mode in the server.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Exercise

1. Add a menu item to the Edit menu of WrxContainer that allows you to delete the
selected item from the container. (Hint - look in the online documentation at the class
members of COleClientItem. You'll find the function you need under General
Operations.)

Answers

1. First, open the resource for the menu IDR_WRXCONTYPE and add a new menu item to the

Edit menu with the properties shown below.

Ctrl-double-click on the new menu item to activate ClassWizard, then add COMMAND and
UPDATE_COMMAND_UI handlers to the view class, CWrxContainerView. You can accept

the default function names of OnEditDelete() and OnUpdateEditDelete(). Once the
new handlers have been added, you can close ClassWizard and start adding some code to
the new functions.

We need the new menu item to be enabled only when one of the items in the container is
selected. We can determine whether an item is selected by looking at the m_pSelection
member of the view class. Add the code shown to OnUpdateEditDelete().

 void CWrxContainerView::OnUpdateEditDelete(CCmdUI* pCmdUI)

 {

 if (m_pSelection == NULL)

 pCmdUI->Enable(FALSE);

 else

 pCmdUI->Enable(TRUE);

 }

This code enables the menu item when there's a valid pointer in m_pSelection and
disables it when m_pSelection is NULL. This prevents the user of the container from trying

to delete an item without first selecting one.

Deleting an item is simplicity itself - you can just call COleClientItam::Delete() to

remove a client from a document. The code you should add to OnEditDelete() is shown
below:

 void CWrxContainerView::OnEditDelete()

 {

 ASSET(m_pSelection != NULL);

 if (m_pSelection != NULL)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CWrxContainerDoc* pDoc = GetDocument();

 m_pSelection->Delete();

 m_pSelection = NULL;

 pDoc->SetModifiedFlag();

 Invalidate();

 }

 }

There's actually a bit more to this code than the single line that deletes the selected item
because we need to ensure the integrity of our application. The first line uses the ASSERT()

macro to alert us if m_pSelection is NULL. This also serves as documentation to show
readers of this code that m_pSelection shouldn't be NULL when the function is called. We

expect m_pSelection not to be NULL because of the way that we enable and disable the
menu item, but this macro helps make doubly sure that m_pSelection is in the state we

expect.

The ASSERT() macro is only active in debug builds so the if statement is also necessary to
ensure that our code is robust in release builds. If m_pSelection does somehow turn out to

be NULL when this function is called then we don't want to take any action in a release build.

If m_pSelection isn't NULL, we get a pointer to the document class, then delete the

selected item. Next, we set m_pSelection to NULL because the selected item no longer
exists. We need to let the framework know that the document has been modified so that it
can save it when necessary, so we call SetModifiedFlag() through the document pointer.
Finally, we Invalidate() the view so that it gets redrawn without the item that has just

been deleted.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 23: ActiveX Controls

Overview

ActiveX controls are another powerful innovation and are becoming very important in the
development of applications. This chapter, therefore, ventures a few steps into the basic
concepts of ActiveX controls and how they work. We'll create a simple ActiveX control example
that you'll be able to exercise using the test container provided with Visual C++.

By the end of this chapter, you will have learned:

§ What OLE controls are
§ What ActiveX controls are
§ What properties are and how they are used

§ What ambient and stock properties are
§ What methods in an ActiveX control are
§ What events are and how they are used

§ How to use Developer Studio to implement an ActiveX control
§ How to add properties to a control
§ How to add events to a control

§ How to provide constants for use with your control
§ How to embed an ActiveX control in a Web page

ActiveX and OLE

Perhaps the most important point to keep in mind is that OLE and ActiveX are marketing terms.
Clearly, they do correspond to things in the real world, but they are subject to change over time.
Marketing has always fully embraced the notion, first expressed by Humpty Dumpty, that words
mean whatever you want them to mean.

The term OLE, which we discussed in the last chapter, predates ActiveX. OLE originally related

just to the ability to embed a document created by one application within a document created by
another. The archetypal example of this is an Excel spreadsheet embedded in a Word
document. The original concept of OLE changed substantially over time and eventually
spawned the notion of the Component Object Model, COM, which we outlined in the last
chapter. COM transcends the original OLE concept in that it's a general interface specification
for creating software components that you can connect together in virtually any context.

ActiveX is a term coined by Microsoft to identify their technologies that can be applied to the
Internet. Since these, like OLE, are COM-based, there is an inevitable overlap between what
OLE and ActiveX relate to, to the extent that you will find the terms used interchangeably in
many contexts. For the moment there seems to be a distinction between OLE and ActiveX,
although this could conceivably be eliminated completely in time. Let's explore what the terms
OLE and ActiveX mean when they are applied to controls.

What Are OLE Controls?

Just like the Windows controls that we have seen in previous chapters, an OLE control is a

facility for a programmer to use someone else's code. For instance, a Visual Basic programmer

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

could use your C++ control in his code. An OLE control is often referred to as an OCX, because
the extension to the name of the executable module for an OLE control is usually .ocx.

OLE controls provide a way to implement component-based software, and they achieve this by
using COM as the means of communication. With the ever-increasing complexity of
applications, there's a growing need to be able to assemble applications from sets of
components which, although written completely independently of one another, can be slotted
together as required. An OLE document server goes a little way along that path, in that an OLE
container can use any OLE server that's written to conform to the OLE standard. The primary
limitation of an OLE server is that it's anonymous as far as the container is concerned - the
container has no knowledge of what the server does and has no real mechanism for
communicating with it. An OLE control is different. It can communicate extensively with the
container, so a greater degree of integration is possible between the container and the control.

What About ActiveX Controls?

You've almost certainly heard about ActiveX controls as part of the huge amount of discussion
and interest in ActiveX, but you're probably wondering exactly what they are and how they
relate to OLE controls.

An ActiveX control is defined simply as a control which meets two conditions: it must
communicate with its container using the COM interface IUnknown, and it must be able to

create its own entries in the System Registry. We mentioned in the previous chapter that every
COM object must implement the interface known as IUnknown, so this is the minimum

requirement for something to be a COM object, but many COM objects (such as OLE servers
and containers) will also implement other interfaces. An ActiveX control, however, is only
required to implement IUnknown to qualify. Therefore, other COM controls that may implement

other interfaces are also ActiveX controls, as long as they can create their own Registry entries.

Although we didn't look beneath the MFC code to see what interfaces were necessary to
implement an OLE server or container, you can rest assured that each OLE server or container
is required to implement a certain set of interfaces that interact with each other in a particular
way. Similarly, an OLE control must, by definition, implement a particular set of interfaces. Since
OLE document servers and OLE controls are COM objects, they must (and do) implement
IUnknown; since they are also able to create their own Registry entries, they qualify as ActiveX

controls. Thus we can say that all OLE controls are ActiveX controls, but not all ActiveX controls
are OLE controls (because an ActiveX control doesn't have to implement the interfaces
necessary to make it an OLE control).

It follows that anywhere you see 'OLE control' in this chapter, you can read it as 'ActiveX

control'. Indeed, in the Visual C++ documentation you'll see it stated that OLE controls have
been renamed ActiveX controls. We'll still use the term OLE control in this chapter because
much of the current documentation, as well as the MFC class names, still uses this terminology.

A detailed discussion of ActiveX is outside the scope of this book, but we'll get far enough into
how to create a control to give you a solid base for learning more. In this chapter, the ActiveX
control that we'll develop will, in fact, be a full-blown OLE control that supports rather more than
the minimum required for an ActiveX control. In the next chapter we'll take a look at how the
Active Template Library (ATL) can be used to create an ActiveX component that's
implemented rather differently from this chapter's control.

How OLE Controls Work

First and foremost, an OLE control communicates with the environment that's using it through a

set of standard OLE interfaces, specific to OLE controls. The standard for OLE controls is an

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

extension of the standard relating to OLE compound documents that we discussed in Chapter
22. You can easily reuse an OLE control in different application contexts, since a program that
is to use an OLE control uses the same interfaces, regardless of what the control does.

A program that uses an OLE control is called an OLE control container, which implies that it

supports the standard interfaces necessary to communicate with the OLE control. Obviously, an
OLE control container is typically an application in its own right, which uses one or more OLE
controls in its implementation. Because an OLE control uses the OLE interface, it's extremely
portable, in that it can be used in any program designed to act as an OLE control container. An
OLE control that you write using Visual C++ can be used in applications implemented in other
programming languages, as long as they also support the standard OLE control interface.

The major advantage of an OLE control over an OLE server is its potential for integrating with
its container. There are three ways in which an OLE control and its container can interact. As
well as being able to accommodate the transfer of data to and from an OLE container, an OLE
control supports a programmable interface through which its container can alter the behavior of
the control, and the control can send messages to its container. The names for the mechanisms
corresponding to these three capabilities are properties, methods and events. Let's take a
look at what each of these involves.

Properties

Properties are variables which specify things about an OLE control. Although they have names,
properties are specifically identified by integer values called DispIDs, which is an abbreviation
for Dispatch IDs. In the case of standard properties, which are properties defined within the
OLE standard, the DispIDs are negative values.

There are three kinds of property used in communications between an OLE control and its

container:
§ Ambient properties, which specify information about the environment provided by the

container.

§ Control properties, which are values determining aspects of the control and are set by
the control.

§ Extended properties, which are parameters that affect a control, such as the position
where it is displayed, but which are set by the container.

Ambient Properties

Ambient properties are values that the container makes available to a control. A control cannot

alter ambient properties, but it can use the values to provide better integration with the
container. Through having access to such things as the screen's current background and
foreground colors, the control can adjust its appearance to look consistent with that of the
current container. More than that, a control may be displayed from various points in the code
which goes to make up a container application, and the ambient properties may vary from place
to place. The control can be programmed to automatically adapt to the conditions prevailing
whenever it is displayed.

In order for ambient properties to be of any use, before you create a control you need to know

which ambient properties are likely to be available. If you know what they are, you can
incorporate code in your control to react to them. For this reason, there is a standard set of
ambient properties. There are eighteen standard ambient properties defined in all, and they all
have negative DispID values. MFC defines symbols for these in the Olectl.h file. We won't

look at them all, but some of the more common ambient properties are:

Ambient
Property
Symbol

Purpose

BackColor Specifies the background color, in RGB values, used by the container.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Ambient
Property
Symbol

Purpose

DisplayName Specifies the name of the control for use in error messages.

Font Specifies the font used by the container.

ForeColor Specifies the foreground color, in RGB values, used by the container
for the display of text and graphics.

ScaleUnits Specifies the name of the coordinate units being used by container.

TextAlign Specifies how the container would like text displayed in a control to be
aligned. A value of 0 indicates general alignment, which means text left
justified and numbers right justified. A value of 1 is left justified, 2
means text should be centered, 3 means right justified, and 4 is full
justification.

These are the ones that you're likely to use most often, but you can get the complete set by
looking at the contents of Olectl.h. Each of the DispIDs for these is represented by a symbol

which is obtained by preceding the name in upper case with DISPID_AMBIENT_, so the
symbol corresponding to the DispID for ForeColor is DISPID_AMBIENT_FORECOLOR.

You're not obliged to do anything about any of the ambient properties when you write an OLE
control, and a container isn't obliged to provide any of them, but your control will look more
professional if you react to those that are available and relevant.

Control Properties

Control properties are attributes which are set by, and give information about, the control. They
can be any kind of attribute that's relevant to your control, but there's a standard set of these
too, corresponding to control parameters that are also of interest to a container. If (as we shall
in our example) you create your control using the MFC ActiveX ControlWizard, the base class
for your control will be COleControl. This class implements nine standard control properties,

which are referred to as stock properties. They are:

Stock
Property

Purpose

BackColor Specifies the background color for the control in RGB values.

Appearance Specifies whether the control appears flat (with the value FALSE), or has
a 3D appearance (with the value TRUE).

BorderStyle Determines whether a control is displayed with a border.

Font Defines the current font for the control.

ForeColor Specifies, in RGB values, the foreground color for the control that's used
to display text and graphics.

Enabled When this has the value TRUE, it indicates that the control is enabled.

HWnd Specifies the handle of the control's main window.

Text Value for a text box, list box, or combo box in the control.

Caption Defines the caption for the control.

The DispIDs for these properties can be specified by symbols consisting of the name for the
property in capital letters with a prefix of DISPID_, so the symbol for the font property is
DISPID_FONT. These symbols are also defined in Olectl.h.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

It's possible to arrange for a container to be notified automatically when a stock property is
modified by a control. It is also possible to arrange that the control seeks permission from the
container before a certain stock property is changed. You are under no obligation to implement
support for any particular stock property in a control, although it makes sense to support some
of the basic stock properties that relate to the control's appearance. The usual approach is to
synchronize them with the corresponding ambient properties.

You'll certainly be defining non-standard properties for your control, and these are referred to as

custom properties. Custom properties can be anything you need to provide as a means of
adapting the behavior of your control.

Extended Properties

Extended properties are properties that apply to a control, but which are set by the container for

the control. A control is able to access the extended properties defined by the container, but it is
not usually necessary to do so. There are only four extended properties defined, with the
names, Visible, Parent, Cancel, and Default. We won't dwell on these, as we won't

be concerned with them in this book, but you should avoid giving your own properties names
that are the same as these.

Property Pages

A property page is a dialog that's used to display an interface for modifying a group of
properties so that the values assigned to them can be altered by the programmer.

With a complicated control, several property pages may be used, with a group of related
properties being assigned to each page. A series of property pages like this is organized into a
property sheet, which has the appearance of a tabbed dialog box. You've used such tabbed
dialog boxes many times in Developer Studio, so they'll be nothing new to you.

MFC includes the class CPropertySheet to define a property sheet, and the class
CPropertyPage to define individual tabbed pages within a property sheet. Each property page

will use controls such as edit boxes, list boxes or radio buttons for the setting of individual
property values. We'll see how to use controls on a property page to set values for properties
when we come to implement an ActiveX control later in this chapter.

Methods

In this context, a method is a function in a control that can be invoked to perform some action in
response to an external request. There are two stock methods defined by the COleControl

class:

Method Name Purpose

Refresh() Causes the control to be redrawn.

DoClick() Simulates the control being clicked with the left mouse button.

Of course, you can also add your own custom methods to a control that will execute when some
specific action occurs. We'll be adding custom methods to an OLE control example later in this
chapter.

The ability of an OLE control to react to ambient properties, and the ability of a container to call

control methods which affect the operation of the control, is referred to as Automation,
although it is not limited to OLE controls. You can, for example, implement Automation in an
OLE server to provide a programmable mechanism for a container to interact with the server.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Events

Events are signals that an OLE control sends to a container as a consequence of some action
by the user on the control, or when some Windows message is received by the control. A
control event can have parameters associated with it that provide additional information about
the event. The container needs to implement functions to service these events in an appropriate
way. The most common standard OLE control events are:

Event Name Purpose

Click Occurs when a mouse button is pressed and then released over a control.

DblClick Occurs when the control is double-clicked.

KeyDown Occurs when a key is pressed and the control has the focus.

KeyPress Occurs when a WM_CHAR message is received.

KeyUp Occurs when a key is released and the control has the focus.

MouseDown Occurs when a mouse button is pressed while the cursor is over the
control.

MouseMove Occurs when the cursor moves over the control.

MouseUp Occurs when a mouse button is released over the control.

Error Signals the container when some kind of error has occurred.

All the standard events noted above are supported by the class COleControl.

The Interface to an OLE Control

In order to make the properties, events and methods of a control available to a container
program, there needs to be an external description of what they are. Controls developed using
the MFC ActiveX ControlWizard in Developer Studio make the external description available in
a type library file, which has the extension .tlb. This file is produced from the definitions of

the interface elements expressed in the Object Description Language, or ODL, which is
stored in a source file with the extension .odl. ODL is also sometimes referred to as the

Object Definition Language.

ODL was originated with OLE as a means of defining interfaces, but in the next chapter we'll
see that COM interfaces can also be defined using the Interface Definition Language, or IDL
for short. The Microsoft implementation of IDL incorporates ODL, so the Microsoft IDL
processor, MIDL, will handle either ODL or IDL. IDL is more recent and more general than ODL,
and will almost certainly render ODL obsolete in time.

You don't need to worry about the detail of the object description language, since this is all
taken care of by ClassWizard when you add properties and other interface elements to your
control. In the .odl file, you will find statements that associate the DispIDs for particular control

properties with the variables in the code for your control which represent them. The same
applies to the DispIDs for methods in your control that you make available to a container, and
the events that you implement. The appropriate entries will be added to the .odl file as you

develop the source code for your control, and the type library file for your control will be
generated automatically when you build the executable module.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Implementing an ActiveX Control

We can implement a model of a traffic signal as an ActiveX control. We'll expose properties for
the period of time for which the stop or go light operates, and for the starting condition of the
signal, to make it possible to change these externally.

The starting point for our example is a basic ActiveX (OLE) control that we can create using

ControlWizard in Developer Studio.

Creating a Basic ActiveX Control

Create a new project and workspace with the type set to MFC ActiveX ControlWizard, as shown

below:

You can name the project as shown, or choose your own name if you wish. ControlWizard will

use the name you supply as the name of the directory containing the project files, and as a
basis for naming the classes in the project. Now click on the OK button to move to the next step.

We're going to leave all these options at their default settings, but let's take a brief run-through
of what they are.

The first choice allows you to specify up to 99 controls within a single project. This is in case
you're developing a package of controls that will be used or distributed as a unit. Since we're
just starting out, trying to get one working will provide us with enough entertainment.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Next, you have the option of including a run-time license. This is a program mechanism for
controlling where your control can be used. Your control can be used in an application that is
licensed - which implies that the application was developed with a suitable .lic license file

available - but a user of the application won't be able to use your control in another context.

The last two options here hardly need explanation. It goes without saying that we want the code
to be commented, and we don't want help files to be generated because we don't need the
overhead of creating their contents at this point. For a production control that would be used
extensively, the help files would most likely be a must.

The second and final ActiveX ControlWizard step is shown here:

The first option allows you to change the names of files and classes relating to the project, and

if you click on the Edit Names... button you can see what you can alter in our project. The Type
IDs for the control and the property page classes will be entered in the registry eventually, so
you need to avoid conflicts. Before the code is generated, ControlWizard will check for conflicts
with the existing registry entries and let you know if there's a potential problem. If you leave
everything as it is for the moment, there shouldn't be any.

The control features that are selected by the check boxes are quite straightforward. We do want
our control to be activated when it's visible and we might as well have an 'About' box. If you
extend the drop-down list box you'll see that you can base the control on an existing Windows
control, such as a button or an edit box, but that doesn't apply in our case. The last option here,
for advanced ActiveX enhancements, we'll leave unexposed and move on to accept all the
default settings on this step. If you click on the Finish button, ControlWizard will go ahead and
create all the files for the project.

Structure of the Program

If you look at ClassView and extend the contents, you'll see that we have a new icon used with
_DTrafficSignal and _DTrafficSignalEvents. This icon indicates these are COM
interface elements. The green icon used with AboutBox() indicates that it's an interface

method. All these interface specifications appear in the TrafficSignal.odl file. We'll look

into this in more detail later in the chapter.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There are just three classes defined: the application class CTrafficSignalApp, the control

class CTrafficSignalCtrl, and the property page class CTrafficSignalPropPage.

The Application Class

The application class CTrafficSignalApp is very simple, containing just two members: the
InitInstance() function, in which you can include any initialization code you want to add,

and the ExitInstance() function, in which you can do any necessary clean-up when the

control is terminated.

This external simplicity hides a good deal of internal sophistication. The base class for our
application class is COleControlModule which in turn is derived from CWinApp, which

provides all of the functionality of any other Windows application. The default version of the
InitInstance() function calls the version in COleControlModule, which initializes the

control.

The Control Class

The class CTrafficSignalCtrl is derived from the MFC class COleControl and provides

the interface to the control container. The definition provided by ControlWizard is as follows:

 class CTrafficSignalCtrl : public COleControl

 {

 DECLARE DYNCREATE(CTrafficSignalCtrl)

 // Constructor

 public:

 CTrafficSignalCtrl();

 // Overrides

 // ClassWizard generated virtual function overrides

 //{{AFX_VIRTUAL(CTrafficSignalCtrl)

 public:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 virtual void OnDraw(CDC* pdc, const CRect& rcBounds, const
CRect& rcInvalid);

 virtual void DoPropExchange(CPropExchange* pPX);

 virtual void OnResetState();

 //}}AFX VIRTUAL

 // Implementation

 protected:

 ~CTrafficSignalCtrl();

 DECLARE_OLECREATE_EX(CTrafficSignalCtrl) // Class factory and
guid

 DECLARE_OLETYPELIB(CTrafficSignalCtrl) // GetTypeInfo

 DECLARE_PROPPAGEIDS(CTrafficSignalCtrl) // Property page IDs

 DECLARE_OLECTLTYPE(CTrafficSignalCtrl) // Type name and misc
status

 // Message maps

 //{{AFX_MSG(CTrafficSignalCtrl)

 // NOTE - ClassWizard will add and remove member functions
here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

 // Dispatch maps

 //{{AFX_DISPATCH(CTrafficSignalCtrl)

 // NOTE - ClassWizard will add and remove member functions
here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_DISPATCH

 DECLARE_DISPATCH_MAP()

 afx_msg void AboutBox();

 // Event maps

 //{{AFX EVENT(CTrafficSignalCtrl)

 // NOTE - ClassWizard will add and remove member functions

here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_EVENT

 DECLARE_EVENT_MAP()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Dispatch and event IDs

 public:

 enum {

 //{(AFX_DISP_ID(CTrafficSignalCtrl)

 // NOTE: ClassWizard will add and remove enumeration elements
here.

 // DO NOT EDIT what you see in these blocks of generated
code !

 //}}AFX_DISP_ID

 };

);

You'll need to add application-specific data and function members to this class to customize the
control to your requirements.

The OnDraw() function is called when a WM_PAINT message is sent to the control, so you add

the drawing operations for your control to this function.

The DoPropExchange() member handles serialization of the properties for the control.

ClassWizard will automatically extend this function for stock properties that you add, but if your
control requires custom properties, you must add code to serialize these yourself. It may not be
immediately obvious why you would want to serialize the properties of a control, but think about
what might be involved in setting up a complicated control that you are using in a program.
There could be a significant number of properties that you need to set to achieve the behavior
that you want, and without serialization someone using your program would need to set every
single one each time your application was executed. This could get very tedious very quickly.

The OnResetState() member is called by the framework when the control properties need to

be set to their default values. The default implementation of this member calls the
DoPropExchange() function to do this. If your control needs special initialization, you can add

it to the OnResetState() member.

The group of four macros starting with DECLARE_OLECREATE_EX() are included by

ControlWizard to set up essential mechanisms required for the operation of an ActiveX control,
and we'll mention a little more about them shortly when we discuss the implementation of the
class.

This class will eventually include the code to support the specifics of the interface to a container.

You can see that there are three blocks at the end of the class, relating to message maps,
dispatch maps and event maps definitions, that are maintained by ClassWizard. The message
maps are the same as the ones we have seen previously in ordinary Windows programs,
providing Windows message handlers for the class. The dispatch maps specify the connection
between internal and external names for properties and methods which are accessible by a
container. The event maps will include the specification of the class function that's responsible
for firing each event that the control can send to its container. Entries in all these maps are all
handled automatically by ClassWizard as and when you specify elements of the interface.

Implementation of the Control Class

The default implementation of the control class provided by ControlWizard in
TrafficSignalCtl.cpp has the definitions of the maps we've just discussed, plus a lot of

other stuff that's essential to the operation of the control. With the exception of the list of
property pages, all of these are maintained by ClassWizard, so you can safely ignore their
detailed contents. We'll just give the briefest indication of what they are, so that you get a basic
understanding of what they do.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The maps are followed by the block that contains the list of property pages for the control. There
is just one at present, but if you need to add more property pages to your control, then for each
page you must add an additional line which applies the PROPPAGEID() macro to the property

page class name. You must also increase the count of the number of property pages to
correspond to the total number of property pages that you have.

The next macro in the implementation of CTrafficSignalCtrl is:

 IMPLEMENT_OLECREATE_EX(CTrafficSignalCtrl,

 "TRAFFICSIGNAL.TrafficSignalCtrl.1",

 0x261d8be5, 0x6938, 0x11d0, 0xab, 0x3a,

 0, 0x20, 0xaf, 0x71, 0xe4, 0x33)

The purpose of this macro is to create a class factory for the control. A class factory is an

object that has the ability to create COM objects and, in this case, the objects it will be able to
create are instances of our control. Instances of our control are identified by the CLSID which is
specified here in the last eleven arguments to the macro. This is a unique identifier for our
control that has been generated automatically by ControlWizard. The class factory object
implements another standard COM interface, known as the IClassFactory interface, but you

need not be concerned with the detailed mechanics of this - it's all handled by the framework.

The IMPLEMENT_OLETYPELIB() macro which follows creates a member of the control class

that's used to retrieve information about the interface to a container that's supported by the
control. The detail of this is also taken care of by the framework.

We then have definitions of two global constants, which are structs that define unique

identifiers for the interfaces to a container supported by our control. These identifiers are used
to reference the interfaces. They are followed by a global constant which defines miscellaneous
characteristics of the control's behavior, and a macro which implements these characteristics.

The definition of UpdateRegistry() overrides the base class implementation. The purpose of

this member is to cause the control to be entered in the system registry. The control cannot be
used until it has been registered. Note that UpdateRegistry() is a member of the factory
class CTrafficSignalCtrlFactory, not COleControl. It isn't obvious where the factory

class is defined - there's no definition evident in the .h files for our control - so where does it
come from? If you look back at the definition of CTrafficSignalCtrl, you'll see that it

contains the line:

 DECLARE_OLECREATE_EX(CTrafficSignalCtrl) // Class factory and
guid

DECLARE_OLECREATE_EX() is a macro that creates a factory class definition for our control

class. The class name appearing between the parentheses is used in the macro to create the
definition for CTrafficSignalCtrlFactory. This is all handled by the preprocessor and the

compiler, so you never see the source code for the class definition. Because the definition that's
created for the factory class is nested within the CTrafficSignalCtrl control class, its

members must be referenced using fully qualified names. Hence the need for both class names
being used as qualifiers when referring to UpdateRegistry().

The remainder of the implementation of CTrafficSignalCtrl contains simple default

implementations of the class members, some of which we'll extend when we customize the
control to behave as we want.

The Property Page Class

The class CTrafficSignalPropPage implements the ability to set control properties through
property pages. Each property page that is created for your control is managed by an instance
of this class. The definition of this class provided by ControlWizard is:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 class CTrafficSignalPropPage : public COlePropertyPage

 {

 DECLARE_DYNCREATE(CTrafficSignalPropPage)

 DECLARE_OLECREATE_EX(CTrafficSignalPropPage)

 // Constructor

 public:

 CTrafficSignalPropPage();

 // Dialog Data

 //{{AFX_DATA(CTrafficSignalPropPage)

 enum { IDD = IDD_PROPPAGE_TRAFFICSIGNAL };

 // NOTE - ClassWizard will add data members here.

 // DO NOT EDIT what you see in these blocks of generated
code :

 //}}AFX_DATA

 // Implementation

 protected:

 virtual void DoDataExchange(CDataExchange* pDX); // DDX/DDV
support

 // Message maps

 protected:

 //{(AFX_MSG(CTrafficSignalPropPage)

 // NOTE - ClassWizard will add and remove member functions
here.

 // DO NOT EDIT what you see in these blocks of generated

code !

 //}}AFX_MSG

 DECLARE_MESSAGE_MAP()

};

The main activity supported by this class is the transfer of data that is set through a property

page to update the variables that represent the properties in your ActiveX control
implementation. The data is entered through controls, such as buttons and list boxes that you
place on a property page, and the DoDataExchange() function handles the exchange of data

between the controls collecting the input and the variables in the control.

Implementation of the Property Page Class

If you look in the TrafficSignalPpg.cpp file for the property page class, you'll see that it

contains code for defining a CLSID and an implementation of the UpdateRegistry() member

function. This is because each property page is a COM object in its own right and has its own
class factory and entry in the system registry.

The class constructor doesn't contain any code at present, but ClassWizard will add code to
initialize any properties that we add to the property page. Similarly, the DoDataExchange()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

function will be extended by ClassWizard when we add variables to receive the values for
properties from controls on the property page.

Defining a Traffic Signal Object

We can define the basic representation of a traffic signal in a class. To add this class to the
project, select New Class... from the Insert menu. Select Generic Class for the Class type and give
the class the name CTrafficSignal. Now Change... the filenames to be used for the class to
OurTrafficSignal.h and OurTrafficSignal.cpp. Finally, click OK to create the new

class.

The first thing we should consider is what we want the traffic signal to do. That will give us an

idea of what function members we'll need to provide a satisfactory interface to the class.

A traffic signal object will represent the signal in a particular state. The change of state will be

triggered externally to the class. We'll need the ability to set the initial state of the signal and
step the signal from one state to another, keeping our traffic signal object very simple.

We can build in the ability for the signal to draw itself, but it would be useful if the size of the
signal could adapt to the size of the control when it's displayed. If we decide that the signal will
be the same height as the control, and will be positioned in the center of it, we can pass
sufficient information to a signal such that it can draw itself to fit the control with just two
functions in the class interface: one to set the position of the control, the other to set the height.
We can calculate a value for the width based on the height.

With these considerations in mind, we can define the traffic signal class as follows. Add the
highlighted code to the new class definition in OurTrafficSignal.h.

 class CTrafficSignal

 {

 public:

 CTrafficSignal();

 virtual ~CTrafficSignal();

 // Class interface

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 void SetPosition(CPoint ptPosition)

 { m_ptPosition = ptPosition; }

 void SetHeight(int nHeight)

 { m_nHeight =nHeight; }

 void SetSignalState(int nState)

 { m_nSignalState = nState; }

 void Draw(CDC* pDC); // Draw the traffic signal

 int NextState(); // Change to the next state

 private:

 CPoint m_ptPosition; // Bottom center of signal

 int m_nHeight; // Height of signal

 int m_nSignalState; // State of signal

 };

We have five functions defining the class interface to provide the capability we've just outlined,
and three private data members for the position of the signal, the height of the signal and the

state of the signal, which will determine which light is lit. The reference point for the position is
arbitrarily the center point on the bottom edge of the signal.

The only functions that we haven't defined in the class definition are the Draw() function which
will draw the signal using the m_ptPosition and m_nHeight values, and the NextState()

function which will change the signal to the next state in sequence by setting the value of
m_nSignalState appropriately. All we need to complete the class is to add the definitions for

these.

Implementing the NextState() Function

Before we can implement the NextState() function, we need to define what we mean by a

state. The signal has three different states: it can be at 'stop', at 'go', or it can be at 'get-ready-
to-stop'. (British signals have an extra state, 'get-ready-to-go', between stop and go, but we
won't implement that.) We can define these states by a set of const variables that we can put

in another file, so create a new source file and save it in the control project folder as
OurConstants.h, then add the following code:

 // Definition of constants

 #if !defined(__OURCONSTANTS_H__)

 #define __OURCONSTANTS_H__

 const int STOP = 101;

 const int GO = 102;

 const int READY_TO_STOP = 103;

 #endif // !defined(__OURCONSTANTS_H__)

After saving the file, you can add it to the project by right-clicking in the project window and

selecting Insert File into Project from the pop-up. The file should then appear in the FileView
immediately.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Now add #include "OurConstants.h" to the top of OurTrafficSignal.cpp just below
all the other #includes, since we're going to define the NextState() function using these

constants. Add the following code to the end of OurTrafficSignal.cpp.

 // Change the signal state to the next in sequence

 int CTrafficSignal::NextState()

 {

 switch (m_nSignalState)

 {

 case STOP:

 m_nSignalState = GO;

 break;

 case GO;

 m_nSignalState = READY_TO_STOP;

 break;

 case READY_TO_STOP;

 m_nSignalState = STOP;

 break;

 default:

 m_nSignalState = STOP;

 AfxMessageBox("Invalid signal state");

 }

 return m_nSignalState;

 }

This is very straightforward. The three cases in the switch correspond to the three possible

states of the signal, and each sets the m_nSignalState variable to the next state in

sequence. The action for the default case, which would only arise if an invalid state were set
somewhere, is to arbitrarily set the signal state to STOP and to display a message.

Implementing the Draw() Function

To draw the signal, we need a feel for how the width is set in relation to the height, and the
positioning of the lights relative to the reference point m_ptPosition. The dimensions

determining this are shown in the diagram below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The overall height of the signal is the same as that of the control. All the other dimensions for

the signal have been defined in terms of the height to produce a consistently proportioned
representation of it. All the coordinates for the centers of the lights and the top semicircular
section are defined relative to the reference point for the signal which is set at the center of the
base. The reference point is positioned at the midpoint on the bottom edge of the control.

There are several steps to drawing the complete signal, so let's build up the code for the
Draw() function incrementally. Using the drawing above and the coordinates of the reference
point for the signal stored in the data member m_ptPosition, we can draw the basic outline of

the signal with the following code, which you should add to the OurTrafficSignal.cpp file:

 // Draw the signal

 void CTrafficSignal::Draw(CDC* pDC)

 {

 // Set the pen and brush to draw the signal

 CBrush* pOldBrush = (CBrush*)pDC->SelectStockObject(GRAY_BRUSH);

 CPen* pOldPen = (CPen*)pDC->SelectStockObject(BLACK_PEN);

 // Define the main body of the signal

 int nLeft = m_ptPosition.x - m_nHeight/7;

 int nTop = m_ptPosition.y - (long)m_nHeight*6L/7L;

 int nRight = m_ptPosition.x + m_nHeight/7;

 int nBottom = m_ptPosition.y;

 pDC->Rectangle(nLeft, nTop, nRight, nBottom), // Draw the
body

 // Define the semi-circular top of the signal

 CRect rect(nLeft, nTop - m_nHeight/7, nRight, nTop +

m_nHeight/7);

 CPoint ptStart(nRight, nTop);

 CPoint ptEnd(nLeft, nTop);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pDC->Chord(rect, ptStart, ptEnd);

 // Code to create brushes for the lights will go here...

 // Code to actually draw the lights will go here...

 pDC->SelectObject(pOldBrush); // Put the old
brush back

 pDC->SelectObject(pOldPen); // Put the old
pen back

 }

We use the SelectStockObject() member of the CDC class to select a standard gray brush

and a standard black pen into the device context, saving the old objects in each case so we can
restore them when we're done. The brush is used to fill the interior of any closed shapes we
draw subsequently. We need to cast the pointer returned from SelectStockObject() to the
appropriate type, as it returns a void* pointer.

The next step is to calculate the coordinates of the upper left and bottom right corners of the
rectangle making up the main body of the signal. We won't change the mapping mode so the
default MM_TEXT will apply, with positive y from top to bottom, and positive x from left to right.
With these coordinates, we draw a closed rectangle with the Rectangle() member of the CDC

class. The interior of the rectangle will automatically be filled with the current brush color.

To draw the semicircle on the top of the signal, we calculate a CRect object corresponding to

the coordinates of the top left and bottom right corners of the rectangle enclosing a full circle,
together with the end points of the semicircular section that we want. The Chord() member of
CDC will draw a closed figure corresponding to the segment of the circle from StartPt to

EndPt plus the chord, and fill the interior with the current brush color.

To draw the lights, we'll need to define the colors that we're going to use for them. We can add
the definitions for the colors in the OurConstants.h file with the following code:

 const COLORREF RED = RGB(255, 0,0);

 const COLORREF ORANGE = RGB(200, 100, 0);

 const COLORREF GREEN = RGB(0, 255, 0);

 const COLORREF GRAY = RGB(100, 100, 100);

The red, orange and green colors are the colors for the lights when they are on, and the gray
color will be used for a light when it's off. If you don't like the way the colors come out, you can
always mess around with the RGB values for them!

For each light, we'll need to create a brush to fill its interior depending on the state of the signal
stored in m_nSignalState. We can do this by adding code to the Draw() function, as

follows:

 // Draw the signal

 void CTrafficSignal::Draw(CDC* pDC)

 {

 // Drawing code as before...

 // Create brushes for the lights

 CBrush brStop; // A brush to fill the
stop light

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CBrush brReady; // A brush to fill the
ready light

 CBrush brGo; // A brush to fill the
go light

 switch (m_nSignalState)

 {

 case STOP: // Red only

 brStop.CreateSolidBrush(RED);

 brReady.CreateSolidBrush(GRAY);

 brGo.CreateSolidBrush(GRAY);

 break;

 case GO: // Green only

 brStop.CreateSolidBrush(GRAY);

 brReady.CreateSolidBrush(GRAY);

 brGo.CreateSolidBrush(GREEN);

 break;

 case READY_TO_STOP: // Orange only

 brStop.CreateSolidBrush(GRAY);

 brReady.CreateSolidBrush(ORANGE);

 brGo.CreateSolidBrush(GRAY);

 break;

 default:

 brStop.CreateSolidBrush(GRAY);

 brReady.CreateSolidBrush(GRAY);

 brGo.CreateSolidBrush (GRAY);

 }

 // Code to actually draw the lights will go here...

 pDC->SelectObject(pOldBrush); // Get the old brush
back

 pDC->SelectObject(pOldPen); // Get the old pen
back

 }

We create a CBrush object for each light, which we'll use later to fill the interior of the lights. We
set the color for each CBrush object in the switch by calling the CreateSolidBrush()

member of the object. The colors are determined by the state set in m_nSignalState. If
m_nSignalState doesn't contain a valid state, all the lights will be out.

With the brush colors set, we're ready to draw the three lights. We can do this by adding the
following code to the Draw() function:

 // Draw the signal

 void CTrafficSignal::Draw(CDC* pDC)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Code to draw the outline of the signal as before...

 // Code to create brushes for the three lights as before...

 // Define the rectangle bounding the stop light

 int nMargin = (long)m_nHeight * 2L/70L; // Ten percent of the
width

 nLeft += nMargin; // Left side of stop
light

 nTop += nMargin; // Top of stop light

 nRight -= nMargin; // Right side of stop
light

 int nStep = (long)m_nHeight * 2L/7L; // Distance between
lights

 nBottom = nTop + nStep - 2 * nMargin; // Bottom of stop
light

 // Draw the stop light

 pDC->SelectObject(&brStop);

 pDC->Ellipse(nLeft, nTop, nRight, nBottom);

 // Set the position of the ready light

 nTop += nStep;

 nBottom += nStep;

 // Draw the ready light

 pDC->SelectObject(&brReady);

 pDC->Ellipse(nLeft, nTop, nRight, nBottom);

 // Set the position of the go light

 nTop += nStep;

 nBottom += nStep;

 // Draw the go light

 pDC->SelectObject(&brGo);

 pDC->Ellipse(nLeft, nTop, nRight, nBottom);

 pDC->SelectObject(pOldBrush); // Get the old brush
back

 pDC->SelectObject(pOldPen); // Get the old pen
back

 }

To draw the lights, we'll be using the Ellipse() member of the class CDC. This requires an

enclosing rectangle for the figure to be drawn, so we need to construct the coordinates of the
top left and bottom right corners of the square enclosing each light. If we construct the square
enclosing the red light, we can just displace this down by the appropriate amount to draw the
orange light, and again by the same amount for the green light.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The diameter of each light is 20% less than the width of the signal, so we first calculate 10% of
the width and store it in the local variable nMargin. We'll use this value to decrease the size of

the bounding rectangle for a light, all round. At this point, the coordinates stored in nLeft and
nTop are the top left corner of the rectangle defining the main body of the signal. We can offset

these by the value of nMargin to get the top left corner of the square enclosing the red light.

We can obtain the x coordinate of the bottom right corner of the square by subtracting the value
of nMargin from nRight; to get the y coordinate, we increment nTop by the value of nStep,
which we have set to the width of the signal, and subtract twice the value of nMargin, that is,

20% of the width. All we then have to do to draw the red light is select the appropriate brush into
the device context and use the Ellipse() function with the coordinates we have calculated.

Drawing the orange and green lights is simple. The orange light is the same size as the red one,
just displaced in the y direction by the width of the signal which we've stored in nStep. The

green light is displaced from the position of the orange light by a further distance nStep in the y

direction.

Adding a Constructor

We need to add the implementation of the constructor to the file OurTrafficSignal.cpp. All

this needs to do is to set some default values for the data members of the class:

 CTrafficSignal::CTrafficSignal()

 {

 m_ptPosition = CPoint(0, 0); // Set arbitrary position

 m_nHeight = 1000; // Set arbitrary height

 m_nSignalState = STOP; // Set initial state to STOP

 }

All the data member values will eventually be set by the control, so the values given here are
arbitrary.

Using a CTrafficSignal Object

To add a traffic signal object to the control, we need to add a protected member to the class

CTrafficSignalCtrl. You can do this either by right-clicking the class name in ClassView

and following the dialog after selecting Add Member Variable... from the pop-up, or by adding the
following code directly to the class definition in TrafficSignalCtl.h:

 protected:

 CTrafficSignal* m_pSignal; // Pointer to a traffic signal
object

The merit of adding the code directly is that you can organize the class definition sensibly.

Adding members using the dialog can put members of the class in rather bizarre places in the
class definition.

Add a line just before the beginning of the CTrafficSignalCtrl class definition to inform the

compiler that CTrafficSignal is a class:

 class CTrafficSignal;

We now need to create an object in the constructor, so amend the default constructor definition
in the file TrafficSignalCtl.cpp by adding a line of code to it, as follows:

 CTrafficSignalCtrl::CTrafficSignalCtrl()

 {

 InitializeIIDs(&IID_DTrafficSignal, &IID_DTrafficSignalEvents);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_pSignal = new CTrafficSignal; // Create a signal

 }

The first line of code in the constructor that was included by ControlWizard passes information

to the base class about the interface to a container. This enables properties and events that we
add to the control to be properly identified. Since we create a CTrafficSignal object on the

heap, we should arrange to delete it in the class destructor, so modify the destructor as follows:

 CTrafficSignalCtrl::~CTrafficSignalCtrl()

 {

 delete m_pSignal; // Delete the signal

 }

If we now add some code to the OnDraw() function, we can try out the control to make sure

that our traffic signal object displays as we expect it to. The default OnDraw() function in the

control draws an ellipse, so you need to delete that code and add code to draw the traffic signal,
like this:

 void CTrafficSignalCtrl::OnDraw(

 CDC* pdc, const CRect& rcBounds, const CRect&
rcInvalid)

 {

 pdc->FillRect(rcBounds,

CBrush::FromHandle((HBRUSH)GetStockObject(WHITE_BRUSH)));

 // Set the height of the signal

 m_pSignal->SetHeight(abs(rcBounds.Height()));

 // The reference point for the signal is the middle of its base

 // so set the position of the signal at the midway point

 // along the bottom of the bound rectangle

 CPoint ptPosition(((long)rcBounds.right + rcBounds.left)/2L,
rcBounds.bottom);

 m_pSignal->SetPosition(ptPosition);

 m_pSignal->Draw(pdc); // Draw the signal

 }

The first statement in the default version fills the whole rectangle occupied by the control using
a white brush. We'll be amending this later to use the background color defined by the ambient
property, but for now you can leave it as it is.

The rcBounds parameter passed to the function defines the rectangle that the control

occupies. We calculate the midpoint of the base of this rectangle and use this to set the position
of the reference point in the traffic signal object. We then call the Draw() member of the object

to get the traffic signal to draw itself.

Finally, we need to add #include statements to the beginning of the

TrafficSignalCtl.cpp file for the .h files containing the definition of the CTrafficSignal

class and the constants we have defined:

 #include "OurTrafficSignal.h"

 #include "OurConstants.h"

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Testing the Control

If you build the control, it should be ready to run. It won't do much, since we haven't built in any

ability to interact with a container, or to sequence the traffic signal, but at least you can verify
that it looks like a traffic signal and that it re-sizes itself satisfactorily.

Of course, you need a container to exercise the control and, conveniently, Developer Studio has
one available in the Tools menu. Just select the ActiveX Control Test Container option. The
control needs to be in the system registry before you can use it, but if it compiled and linked OK,
it will have been registered automatically.

Once the test container is running, select Edit | Insert New Control..., or click the seventh toolbar

button on the left (the one with the icon), to bring up a dialog displaying a list of controls

that you can use. Select TrafficSignal Control from the list to get our control displayed in the
container.

If you want to add another instance of our control, you can just click the same toolbar button
again. You can resize the control and the signal should automatically alter its height and width.
The hatching around the control indicates that it is currently active. You can render it inactive by
clicking anywhere outside it. A single-click in the control will reactivate it again.

Now that the basic drawing code works, we should think about extending the control to add
some properties and to get the signal working.

Using Stock and Ambient Properties

We can see how to introduce stock properties into our control by using the BackColor property

as an example. You use ClassWizard to add stock properties to the control. With the control
project open, select View | ClassWizard... in Developer Studio, and select the Automation tab.
Make sure that CTrafficSignalCtrl is shown in the Class name: list box and click on the Add

Property... button.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

If you extend the External name: list box, you'll see a list of stock properties. When you select
BackColor, the other three list boxes will be set to appropriate values and grayed to indicate that
you can't change them. The Stock radio button is also selected automatically. The resulting
dialog is shown below:

If you now select the OK button, you'll return to the ClassWizard dialog shown below:

The list of External names: now includes the name BackColor. The prefix S indicates that it's a
stock property. Custom properties will be prefixed with C, as you'll see when we add some a
little later. If you look in the implementation file for CTrafficSignalCtrl, you'll see that the

dispatch map has been modified by ClassWizard to become the following:

 BEGIN_DISPATCH_MAP(CTrafficSignalCtrl, COleControl)

 //{{AFX_DISPATCH_MAP(CTrafficSignalCtrl)

 DISP_STOCKPROP_BACKCOLOR()

 //}}AFX_DISPATCH_MAP

 DISP_FUNCTION_ID(CTrafficSignalCtrl, "AboutBox",
DISPID_ABOUTBOX,

 AboutBox, VT_EMPTY, VTS_NONE)

 END_DISPATCH_MAP()

This extra line of code ensures that the BackColor property is made available to the world

outside our control. With this code in place, users will be able to set and retrieve the value for
the BackColor of our control, but if we don't add any drawing code that actually makes use of

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

this property, there would be little point in having it. We must add some code to the OnDraw()
function so that our control actually uses the value of the BackColor property for its

background:

 void CTrafficSignalCtrl::OnDraw(

 CDC* pdc, const CRect& rcBounds, const CRect&
rcInvalid)

 {

 // Set the background using the control's BackColor property

 CBrush brBack(TranslateColor(GetBackColor()));

 pdc->FillRect(rcBounds, &brBack); // Fill the
background

 // Set the height of the signal

 m_pSignal->SetHeight(abs(rcBounds.Height()));

 // The reference point for the signal is the middle of its base

 // so set the position of the signal at the midway point

 // along the bottom of the bound rectangle

 CPoint ptPosition(((long)rcBounds.right + rcBounds.left)/2L,
rcBounds.bottom);

 m_pSignal->SetPosition(ptPosition);

 m_pSignal->Draw(pdc); // Draw the signal

 }

You should replace the default code that filled the background with the shaded lines of code
above. The GetBackColor() function, which is inherited from COleControl, returns the
color stored in the stock property in the control as type OLE_COLOR. The OLE_COLOR type

defines a standard way of representing color values when they are transferred between COM
objects. The OLE_COLOR value is converted to a COLORREF value (RGB value) by the

TranslateColor() function.

There are functions defined in the COleControl class for each of the stock properties that you
may include in your control. Examples of these are GetForeColor() which returns the

foreground color, and GetScaleUnits() which returns the type of units used in the container.

The implementation for the stock property provided by COleControl uses the ambient
BackColor property of the container to initialize the BackColor property for the control. This

means that the background color of the container and control should be the same when the
control is first added to the container. If the background color in the container later changes for
some reason, the stock property in the container won't be updated. If you want to find out the
current background color in the container, you can use the AmbientBackColor() function
inherited from COleControl.

You can easily see the difference between the effects of GetBackColor() and

AmbientBackColor() by trying two versions of the control in the test container. First, build
the current version of the control that uses GetBackColor() in its drawing code. Start the Test

Container by selecting it from the Tools menu. You can load the control by selecting Insert OLE
Control... from the Edit menu and selecting the control from the list available in the dialog. There
is also a toolbar button that you can use corresponding to this menu item.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can change the ambient background color by selecting Ambient Properties... from the

Container menu, or by selecting the tenth toolbar button from the left (with the icon). You
can choose the property that you want to set from the drop-down list box in the dialog, as
shown:

To select a color, click on the Choose Color... button in the dialog. Even though you change it,

the new background color will have no effect on the control. However, if you load another
instance of the control, it will use the new background color. Once you've added one instance of

a control, you can add another just by clicking on the seventh toolbar button (). Note
that the visible background of the test container is always white, even when you change the
ambient property to another color. Although most containers will keep their actual background
color and the ambient background color in synch, it doesn't have to be that way.

Now let's see what happens if we use the ambient background color to draw the background of
our control. Change the code in CTrafficSignalCtrl::OnDraw() as shown:

 void CTrafficSignalCtrl::OnDraw(

 CDC* pdc, const CRect& rcBounds, const CRect&
rcInvalid)

 {

 // Set the background using the control's BackColor property

 // CBrush brBack(TranslateColor(GetBackColor()));

 // Set the background using the container's ambient BackColor
property

 CBrush brBack(TranslateColor(AmbientBackColor()));

 pdc->FillRect(rcBounds, &brBack); // Fill the
background

 // Set the height of the signal

 m_pSignal->SetHeight(abs(rcBounds.Height()));

 // The reference point for the signal is the middle of its base

 // so set the position of the signal at the midway point

 // along the bottom of the bound rectangle

 CPoint ptPosition(((long)rcBounds.right + rcBounds.left)/2L,
rcBounds.bottom);

 m_pSignal->SetPosition(ptPosition);

 m_pSignal->Draw(pdc); // Draw the signal

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

If you build the new version of the control and insert it in the Test Container, you'll see the

difference in the way the background is drawn. This version of the control will always use the
ambient background color, even when you change it in the test container. If you do change the
ambient back color of the container, you'll need to get the control to redraw itself - by moving it,
for example - in order to see it use the new color.

When you've finished experimenting with the control, comment out the line that uses
AmbientBackColor() and uncomment the line that uses GetBackColor() to get back to

the original scheme. Then we can look at adding custom properties to the control.

Adding Custom Properties to the Control

There are actually four different flavors of custom property that you can define for an ActiveX
control. They reflect different ways in which the properties can operate:

The simplest variety of custom property is of type DISP_PROPERTY. This is represented by a

data member of the control class and is usually made available just for information. Because the
property is freely accessible, this is referred to as direct exposure of the property.
§ The DISP_PROPERTY_NOTIFY type of property is represented by a data member of

the control class, and has a function in the control class which is called if the property value
is altered. This allows the control to adapt its operation to the new value for the control
immediately. The notification function will typically cause the control to be redrawn.

§ The DISP_PROPERTY_EX type of property is supported with functions accessible by a

container both to set the value of the property and to retrieve its current value. These are
usually referred to as Get/Set functions. This type of property is referred to as being

indirectly exposed.
§ The DISP_PROPERTY_PARAM type of property is similar to the DISP_PROPERTY_EX

type in that it has Get/Set functions to manipulate it, but in addition can involve multiple

parameter values stored in an array.

We'll try out custom properties by adding two to our control. One property that we might want to
add is the duration of the stop or go period when the signal is running. A real signal might well
operate so that the time that the signal was at red and green could vary, depending on traffic
conditions. Another property could be the start-up conditions when the signal runs. Let's
suppose that we'll allow it to start on either red or green. We can provide the option for the user
to set this through a custom property.

Using ClassWizard to Add Custom Properties

First, we'll add the property to define which light is 'on' when the signal runs. We can make this
a logical value which will make the signal start on red if the property value is TRUE, and green

otherwise.

With the control project open, start up ClassWizard and select the Automation tab. Make sure
the CTrafficSignalCtrl class is shown in the Class name: list box and click on the Add

Property... button. You can enter StartRed as the External name, m_bStartRed as the Variable
name and select BOOL from the Type: drop-down list box, as shown below:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The type of the member variable for a property must be one of those from the list. You can't use

your own types here. ClassWizard will generate a variable and a notification function with the
names shown, so here our property is of type DISP_PROPERTY_NOTIFY. The Member variable
radio button has also been selected by default.

You can select the OK button to close this dialog and return to the Automation tab. You'll see

that the list of External names now includes StartRed, which is shown with the prefix C because
it is a custom property. We can now add the second custom property which will determine the
time period for stop and go conditions for the signal, so select the Add Property... button once
more.

We'll make this property of type DISP_PROPERTY_EX, just for the experience, so select the

Get/Set methods radio button. You can enter the external name as StopOrGoTime, and select

long from the Type: drop-down list box. The dialog will appear as shown:

Remember that we have a diminished set of types available, so although long isn't the most

convenient for a time interval, it will have to do. Note that there are edit boxes showing the
names that ClassWizard has assigned to the Get and Set functions. You can change these if

you want, but the defaults seem to be reasonable.

If you were specifying a property of type DISP_PROPERTY_PARAM, you would need to specify
parameters to the Get/Set functions in the Parameter list: box at the bottom of the dialog.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can select the OK button to return to the Automation tab. We now have two custom
properties listed in addition to our stock property. The two functions that have been added to
CTrafficSignalCtrl are also noted, and we could go directly to them by selecting the Edit

Code button, but we're not ready to do that yet. We've finished with ClassWizard for the moment,
though, so click the OK button.

If you take a look at the dispatch map in the implementation of CTrafficSignalCtrl, you'll

see that the custom properties have been added and the types have been set based on the
options we selected:

 BEGIN_DISPATCH_MAP(CTrafficSignalCtrl, COleControl)

 //{{AFX_DISPATCH_MAP(CTrafficSignalCtrl)

 DISP_PROPERTY_NOTIFY(CTrafficSignalCtrl, "StartRed",
m_bStartRed,

 OnStartRedChanged, VT_BOOL)

 DISP_PROPERTY_EX(CTrafficSignalCtrl, "StopOrGoTime",
GetStopOrGoTime,

 SetStopOrGoTime, VT_I4)

 DISP_STOCKPROP_BACKCOLOR()

 //}}AFX_DISPATCH_MAP

 DISP_FUNCTION_ID(CTrafficSignalCtrl, "AboutBox",
DISPID_ABOUTBOX,

 AboutBox, VT_EMPTY, VTS_NONE)

 END_DISPATCH_MAP()

Initializing Custom Properties

We need initial values to be set for both our custom properties, but the StopOrGoTime property
has no variable defined for it. This is because the Get/Set functions are the interface between

the container and the property, and you must fill in the detail. You can add a data member to the
CTrafficSignalCtrl class definition directly by including the line:

 long m_lStopOrGoTime; // Duration of stop period, or go
period

You can put this in the protected section since there's no reason to make it public. We can
initialize this property and m_bStartRed by adding code to the DoPropExchange() member

of the control class, which has the job of serializing properties:

 void CTrafficSignalCtrl::DoPropExchange(CPropExchange* pPX)

 {

 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

 COleControl::DoPropExchange(pPX);

 // TODO: Call PX_ functions for each persistent custom property.

 PX_Bool(pPX, _T("StartRed"), m_bStartRed, TRUE);

 PX_Long(pPX, _T("StopOrGoTime"), m_lStopOrGoTime, 5000);

 // Set the signal state from the StartRed property

 if(m_bStartRed)

 m_pSignal->SetSignalState(STOP);

 else

 m_pSignal->SetSignalState(GO);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

There's a global PX_ function for each data type that can be used. They come in two versions.

One version has three parameters and the other has an extra parameter; we're using the latter
kind here. The parameters to the functions are, from left to right:
§ A pointer to a CPropExchange object which determines whether the function is storing

or retrieving property values.
§ The external name of the property. The _T() macro, which is used here, takes care of

converting the text if the control is used in an environment using the Unicode character set.
It must be used for all literal strings that are to be transferred across the COM interface.

§ A reference to the class data member that represents the property.

§ A default value for the property which is used if the serialization process fails. The first
time you use the control the process will fail, of course, since the properties haven't
previously been saved.

The PX_ function versions with three parameters omit the default value for the property.

However, it's usually desirable to ensure that a value is set for all properties, so if you used this
method, you'd need to ensure that a value was set elsewhere. Of course, on the second and
subsequent times your control is used, the properties will be initialized to the values that were
last set. We need the if statement following the PX_ functions that import the property values
because the signal state is dependent on the StartRed property. This sets the signal state to

STOP if m_bStartRed is TRUE, and GO otherwise

By default we set m_bStartRed to TRUE and m_lStopOrGoTime to 5000 initially. Time

intervals are measured in milliseconds, therefore we're setting the default red and green signal
intervals to 5 seconds, so you need to be ready to floor the pedal!

Making the Signal Work

To get the signal running, we need three more data members in our CTrafficSignalCtrl

class. Add the following lines to the protected section of the class definition:

 UINT m_nChangeTime; // Duration of orange period

 BOOL m_bSignalGo; // TRUE indicates the signal is
running

 UINT m_nTimerID, // Timer event ID

The first will define the duration of the transient state of the signal between red and green, the
second is a flag which will be TRUE when the signal is running and FALSE when it is not, and

the third is a variable identifying the timer we will use to control stepping the signal from one
state to the next.

We can initialize these three members in the class constructor as follows:

 CTrafficSignalCtrl::CTrafficSignalCtrl()

 {

 InitializeIIDs(&IID_DTrafficSignal, &IID_DTrafficSignalEvents);

 m_pSignal = new CTrafficSignal; // Create a signal

 m_bSignalGo = FALSE; // Signal not running initially

 m_nChangeTime = 1500U; // Change over time in
milliseconds

 m_nTimerID = 10; // Timer ID

 }

Initially, the signal is not running since we have set m_bSignalGo to FALSE. The change-over

time is set to 1.5 seconds and the timer ID is set to an arbitrary integer value of 10.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Starting and Stopping the Signal

We need some external means of starting and stopping the signal and, for demonstration
purposes, a convenient way to do this is using a mouse click. We can get it to operate like a flip-
flop, so that clicking the control when the signal is not running will start it, and vice versa.

Add a handler for the WM_LBUTTONDOWN message to CTrafficSignalCtrl using

ClassWizard, and implement it as follows:

 void CTrafficSignalCtrl::OnLButtonDown(UINT nFlags, CPoint point)

 {

 // If the signal is stopped, start it

 // If the signal is running, stop it

 m_bSignalGo = !m_bSignalGo;

 if (m_bSignalGo)

 StartSignal();

 else

 StopSignal();

 COleControl::OnLButtonDown(nFlags, point);

 }

Since we want mouse clicks in the control to flip its operating state, the first action in the handler
is to invert the value stored in m_bSignalGo. If this value is now TRUE, we call a member
function StartSignal() to start the signal, and if it is FALSE, we invoke the function

StopSignal() to stop the signal.

Starting the Signal

You can add the StartSignal() member by right-clicking the CTrafficSignalCtrl class name in

ClassView and selecting Add Member Function... from the context menu. Enter the return type as
void and the name as StartSignal(). The code for this private function will be:

 void CTrafficSignalCtrl::StartSignal()

 {

 // Setup a timer with the required interval

 m_nTimerID = SetTimer(m_nTimerID, (UINT)m_lStopOrGoTime, NULL);

 if (!m_nTimerID)

 {

 AfxMessageBox("No Timer!");

 exit(1);

 }

 InvalidateControl(); // Get the control
redrawn

 }

We obtain a timer by calling the SetTimer() member of our class inherited from CWnd. The

first argument is an ID for the timer which must be non-zero, and the second argument is the
time interval we want, expressed in milliseconds as a UINT value. The third argument can be a

pointer to a function that will be called when the time interval is up, but if it's NULL, as we've
specified here, a WM_TIMER message will be sent. We'll add a handler for this in a moment.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There are a limited number of timers available, so we need to make sure that we got one. If
none are available, the SetTimer() function returns FALSE, in which case we display a

message and end the program. If a timer is available, SetTimer() returns the ID of the timer.

Once we have a timer, we get the control redrawn so that it always starts with the state
determined by the StartRed property. This will be set in the notification function for this

property which we'll complete shortly.

Stopping the Signal

Add the StopSignal() function, which also has a void return type, and implement it as

follows:

 void CTrafficSignalCtrl::StopSignal()

 {

 KillTimer(m_nTimerID); // Destroy the timer

 InvalidateControl(); // Redraw the control

 }

The KillTimer() function kills the timer event specified by the ID passed as an argument and

removes any WM_TIMER messages that have been queued for it. The function returns TRUE if it
finds the specified event, and FALSE otherwise, so it copes with a non-existent timer event

without any problem. We get the control redrawn to return it to its initial state.

Handling WM_TIMER Messages

Add a handler for the WM_TIMER message using ClassWizard. The process is exactly the same

as for any other message handler. Add code to the handler as follows:

 void CTrafficSignalCtrl::OnTimer(UINT nIDEvent)

 {

 UINT nInterval = 0; // Interval in

milliseconds

 // Step to the next state and set the time interval

 // based on the new state

 switch (m_pSignal->NextState())

 {

 case STOP: case GO:

 nInterval = (UINT)m_lStopOrGoTime; // Stop or Go
interval

 break;

 default:

 nInterval = m_nChangeTime; // Transient interval

 }

 InvalidateControl(); // Redraw the signal

 // Make sure the old timer is dead

 KillTimer(m_nTimerID),

 // Set a new timer event

 m_nTimerID = SetTimer(m_nTimerID, nInterval, NULL);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 if (!m_nTimerID)

 {

 AfxMessageBox("No Timer!");

 exit(1);

 }

 }

The signal is stepped to the next state by calling the NextState() member of the

CTrafficSignal object. The new state is used to select the appropriate time interval for it.
Having stored the time interval in the local variable nInterval, we call

InvalidateControl() to get the signal drawn in its new state and start a new timer period.

Implementing the Notify Function for the Control

The notify function, OnStartRedChanged() will be called when the StartRed property is

modified externally, so we must add code to deal with this change, as follows:

 void CTrafficSignalCtrl::OnStartRedChanged()

 {

 // Stop the signal if necessary

 if (m_bSignalGo)

 {

 m_bSignalGo = FALSE; // Set signal not running

 StopSignal(); // Stop the signal

 }

 // Set the signal object to the appropriate state

 if (m_bStartRed)

 m_pSignal->SetSignalState(STOP);

 else

 m_pSignal->SetSignalState(GO);

 InvalidateControl(); // Get the control redrawn

 SetModifiedFlag();

 }

Other than at initialization when the control is loaded, this is the only place the StartRed

property change is acted upon. We need to take account of the possibility that the signal is
already running when the property is changed. We first check for this and stop the signal, since
we're assuming that the user changed the starting condition because it will be restarted (there
would be little point in changing it otherwise). To set the signal state, we use the
SetSignalState() member of CTrafficSignal with a parameter determined by the value

of the property. We then call InvalidateControl() to get the signal drawn in its latest state.

Implementing the Property Get/Set Functions

The Get function for the StopOrGoTime property is extremely simple since all we need to do is

return the current property value:

 long CTrafficSignalCtrl::GetStopOrGoTime()

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return m_lStopOrGoTime; // Return the
current interval

 }

The Set function requires a little more work:

 void CTrafficSignalCtrl::SetStopOrGoTime(long nNewValue)

 {

 // Only alter the control if the value is different

 if (m_lStopOrQoTime != nNewValue)

 {

 m_lStopOrOoTime = nNewValue; // Set the new stop
or go time

 OnStartRedChanged(); // Set the initial
state

 SetModifiedFlag();

 }

 }

The value passed to the function is the new value for the property, but we don't want to do
anything drastic unless it's different from the old value. If we have a new value, we store it in the
m_lStopOrGoTime member that we added for the purpose. We then set the signal state back

to its initial starting state, according to the value of the property StartRed, by calling
OnStartRedChanged().

Using the Property Page

Now let's move on to adding some controls to the property page that ControlWizard
conveniently provided for us, to allow us to modify the values of the control's custom properties.
To add controls to the property page, you need to be in ResourceView. Extend the Dialog part
of the resource set, and double-click on IDD_PROPPAGE_TRAFFICSIGNAL to display the
property page dialog. You can remove the static text control that has been added to the dialog
by selecting it and pressing the Delete key.

We need to add two controls to the property page corresponding to the StartRed property,
which is Boolean, and the StopOrGoTime property, which is a long integer. The former we

can handle with a check box control and for the latter we can use an edit box.

From the control palette, select a check box and place it at a suitable point on the property

page. Bring up its properties and enter the text as Start with Red Light. You may also like to
check the Left text check box on the Styles tab. Next, you can add a static text control and place
it on the property page. Display its properties and change the text to Stop or Go Period:. Next,
add an edit box to the property page and place it to the right of the static text box. Your property
page should look something like this:

We've finished laying out the property page, so you can save the resource. Now we need to
connect the controls that we've added to the properties in our ActiveX control.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Connecting Controls to Properties

First, we'll connect the check box to the StartRed property. Double-click on the check box

control with the Ctrl key held down. You'll then see the Add Member Variable dialog box. You
can complete the name for the variable to be added to the CTrafficSignalPropPage class
as m_bStartRed, and the property name in the bottom list box as StartRed. The category

and variable type boxes will already have been set as we are using a check box, so the dialog
box will be as shown:

The drop-down list for property names provides stock property names for when you are adding
these to a property page. You can click on the OK button to complete the addition of the data
member to the class.

Next, you should double-click the edit box while holding the Ctrl key down to add the data
member to receive the value of the StopOrGoTime property from the control. Enter the

information in the dialog box as shown below:

Here you must set the Variable type: to long to be consistent with what we have specified

previously for this value. Make sure the Category: entry is Value. As well as adding this data

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

member, ClassWizard will make provision for range validation of the value entered, as indicated
by the note at the bottom. You can click on the OK button to complete this operation and then
save the property page.

In fact, ClassWizard has done rather more than just adding two data members to the
CTrafficSignalPropPage class. It has also included initialization for them in the class

constructor:

 CTraffIcSignalPropPage::CTrafficSignalPropPage() :

 COlePropertyPage(IDD, IDS_TRAFFICSIGNAL_PPG_CAPTION)

 {

 //{{AFX_DATA_INIT(CTrafficSignalPropPage)

 m_bStartRed = FALSE;

 m_lStopOrGoTime = 0;

 //}}AFX_DATA_INIT

 }

However, neither of these are good values for us, so set the initial value for m_bStartRed to

TRUE, and the value for m_lStopOrGoTime to 5000.

The transfer of data between the controls and the variables we've added is accomplished using
the DDX macros in the DoPropExchange() member of the property page class. These are

exactly the same macros that we have seen used for controls in ordinary dialog boxes.
ClassWizard has also added the code to do this, so the function implementation has already
been created, as follows:

 void CTrafficSignalPropPage::DoDataExchange(CDataExchange* pDX)

 {

 //{{AFX_DATA_MAP(CTrafficSignalPropPage)

 DDP_Check(pDX, IDC_CHECK1, m_bStartRed, _T("StartRed"));

 DDX_Check(pDX, IDC_CHECK1, m_bStartRed);

 DDP_Text(pDX, IDC_EDIT1, m_lStopOrGoTime, _T("StopOrGoTime"));

 DDX_Text(pDX, IDC_EDIT1, m_lStopOrGoTime);

 //}}AFX_DATA_MAP

 DDP_PostProcessing(pDX);

 }

The DDP macros you see here are specific to properties. They do the job of synchronizing the

property values in the control with the values in the data members of the property page class,
so all the updating of the property values is taken care of.

The last thing you need to do is to set the range limits for the m_lStopOrGoTime value. For

this, you can add a DDV macro at the end of the block of DDX and DDP macros in the
DoDataExchange() member, as follows:

 void CTrafficSignalPropPage::DoDataExchange(CDataExchange* pDX)

 {

 //{{AFX_DATA_MAP(CTrafficSignalPropPage)

 DDP_Check(pDX, IDC_CHECK1, m_bStartRed, _T("StartRed"));

 DDX_Check(pDX, IDC_CHECK1, m_bStartRed);

 DDP_Text(pDX, IDC_EDIT1, m_lStopOrGoTime, _T("StopOrGoTime"));

 DDX_Text(pDX, IDC_EDIT1, m_lStopOrGoTime);

 //}}AFX_DATA_MAP

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 DDV_MinMaxUInt(pDX, m_lStopOrGoTime, 1000, 30000);

 DDP_PostProcessing(pDX);

 }

You should add this line immediately before the DDP_PostProcessing macro to prevent

values less than 1000 milliseconds or greater than 30000 milliseconds being accepted for the
StopOrGoTime property. This is the same macro that's used for range checking values for

controls in an ordinary dialog box.

Using the Control

You can now build the control once more, and exercise it using the test container. The window

shows three instances of the control running in the container, each having a different interval set
for the StopOrGoTime property:

You can bring up the Properties dialog box by using the Edit | Properties... menu item. Try setting
the StopOrGoTime outside the permitted range. Whenever you set a property value, it only

applies to the control that is currently active. An instance of the control which is running will
continue to run when it isn't active, so several can run simultaneously.

Adding Events to a Control

You'll recall that events are used to tell a container that something has occurred in an ActiveX
control. It might conceivably be useful for a container using our traffic signal control to know
when the signal has changed and to know what state the signal has changed to.

You can add events to the control using ClassWizard. Open ClassWizard and select the ActiveX
Events tab. After making sure CTrafficSignalCtrl is the class name selected, click on the

Add Event... button. Enter the external name for the event as SignalChanged and add a

parameter called lNewState of type long. This parameter will indicate to the container the

new state of the control.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The drop-down list for the External name: list box contains names for standard events, but we

don't need them here because we're creating a custom event. ClassWizard will fill in the internal
name field. This will be the name of the function you call when you want to fire the event.

Click the OK button to create the event. The ActiveX Events tab will now show the new custom
event. This event will have been entered in CTrafficSignalCtrl's event map and the

definition for the function FireSignalChanged() will also have been created. All we have to

do is to use it.

The best place to fire this event is from the handler for the WM_TIMER message, because it is

here that we change the state of the signal object. Close ClassWizard by clicking the OK button
and switch to the OnTimer() function implementation from ClassView. Alter the code in it as

follows:

 void CTrafficSignalCtrl::OnTimer(UINT nIDEvent)

 {

 UINT nInterval = 0; // Interval in
milliseconds

 // Step to the next state and set the time interval

 // based on the new state

 int nNewState = m_pSignal->NextState();

 switch (nNewState)

 {

 case STOP: case GO:

 nInterval = (UINT)m_lStopOrGoTime; // Stop or Go interval

 break;

 default:

 nInterval = m_nChangeTime; // Transient interval

 }

 FireSignalChanged(nNewState);

 InvalidateControl(); // Redraw the signal

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Make sure the old timer is dead

 KillTimer(m_nTimerID);

 // Set a new timer event

 m_nTimerID = SetTimer(m_nTimerID, nInterval, NULL);

 if (!m_nTimerID)

 {

 AfxMessageBox("No Timer!");

 exit(1);

 }

 }

Here, we're keeping track of the precise state of the traffic signal and passing it as a parameter

to the event. The rest of the handler remains as before.

With the event added, you can compile the control and see how it runs in the test container. You
can view the event log by selecting the Options | Logging.. menu option in the container. The

event log is shown below:

Here, two controls are running with different values assigned for the StopOrGoTime property.

The individual instances of the control are indicated in the event log by the name of the control
(in this case Control and Control1). You can also see the value that is being passed as the
parameter to indicate the new state.

Of course, the control will also be usable from more functional control container applications,
including Visual Basic or Visual C++ itself. In fact, since Visual Basic is such an important
container when writing professional controls, it's a good idea to make your controls as easy as
possible to use from that environment. We can enhance the ease in which our control can be
used by changing some of the code in the .odl file. Remember that the .odl file is compiled

into a type library that container applications can use to find information about an ActiveX
control. We will make some simple changes to the file so that users of the control can use
named constants for the values passed to the SignalChanged event.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The ODL File

First, open TrafficSignal.odl in Developer Studio. This file defines a type library for our

control using ODL, which we alluded to earlier. The type library defines what's in the control by
way of interfaces and data types that can be accessed externally. Although you're probably
unfamiliar with ODL and the file may seem a bit confusing at first sight, ODL is actually relatively
straightforward. In fact, you should be able to see that the file contains definitions for four items.

 [uuid(A833B927-78FF-11D0-9257-00201834E2A3), version(1.0),

 helpfile("TrafficSignal.hlp"),

 helpstring("TrafficSignal ActiveX Control module"),

 control]

 library TRAFFICSIGNALLib

 {

 importlib(STDOLE_TLB);

 importlib(STDTYPE_TLB);

 // Primary dispatch interface for CTrafficSignalCtrl

 [uuid(A833B928-78FF-11DO-9257-00201834E2A3),

 helpstring("Dispatch interface for TrafficSignal Control"),
hidden]

 dispinterface _DTrafficSignal

 {

 properties:

 // NOTE - ClassWizard will maintain property information
here.

 // Use extreme caution when editing this section.

 //{{AFX_ODL_PROP(CTrafficSignalCtrl)

 [id(DISPID_BACKCOLOR), bindable, requestedit] OLB_COLOR
BackColor;

 [id(1)] boolean StartRed;

 [id(2)] long StopOrGoTime;

 //}}AFX_ODL_PROP

 methods:

 // NOTE - ClassWizard will maintain method information
here.

 // Use extreme caution when editing this section.

 //{(AFX_ODL_METHOD(CTrafficSignalCtrl)

 // }} AFX_ODL_METHOD

 [id(DISPID_ABOUTBOX)] void AboutBox();

 };

 // Event dispatch interface for CTrafficSignalCtrl

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 [uuid(A833B929-78FF-11DO-9257-00201834E2A3),

 helpstring("Event interface for TrafficSignal Control")]

 dispinterface _DTrafficSignalEvents

 {

 properties:

 // Event interface has no properties

 methods:

 // NOTE - ClassWizard will maintain event information
here.

 // Use extreme caution when editing this section.

 //{{AFX_ODL_EVENT (CTrafficSignalCtrl)

 [id(1)] void SignalChanged(long lNewState);

 //}}AFX_ODL_EVENT

 };

 // Class information for CTrafficSignalCtrl

 [uuid(A833B92A-78FF-11D0-9257-00201834E2A3),

 helpstring("TrafficSignal Control"), control]

 coclass TrafficSignal

 {

 [default] dispinterface _DTrafficSignal;

 [default, source] dispinterface _DTrafficSignalEvents;

 }

 // {{AFX_APPEND_ODL}}

 //)} AFX_APPEND_ODL}}

 };

The definition for the type library, which has the name TRAFFICSIGNALLib, is delimited by a
pair of braces. The opening brace is immediately after the library statement, and the closing

brace is at the end of the file. These braces enclose the definitions for three items in the type
library: the primary dispatch interface, the event interface and the control. Each definition
consists of some information between square brackets followed by a further set of information
specific to the type of the item contained between braces. The whole structure looks rather like
a set of nested classes.

The two importlib statements add all the standard OLE interfaces, types, and dispatch IDs to

the type library for our control. Note that each definition in the ODL file is uniquely identified by a
uuid tag. UUID stands for universally unique identifier, because it's a number that uniquely

identifies the item. The UUID for an item should be different from any other UUID worldwide, so
your UUIDs will certainly be different from those shown here.

For the control, the number given after uuid is the CLSID. You can see that it's the same

number as was used in the ControlWizard-generated IMPLEMENT_OLECREATE_EX statement
in TrafficSignalCtl.cpp.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 IMPLEMENT_OLECREATE_EX(CTrafficSignalCtrl,

 "TRAFFICSIGNAL.TrafficSignalCtrl.1",

 0xa833b92a, 0x78ff, 0x11d0, 0x92, 0x57,

 0, 0x20, 0x18, 0x34, 0xe2, 0xa3)

Each of the items we've provided in the interface to our control appears within the definitions in
the type library. You can use a type library with an object browser, such as the OLE-COM
Object Viewer (provided with Visual C++ in the DevStudio\VC\bin directory as
Oleview.exe), to determine what interfaces are supported by a control, and the information

provided by a type library can be used to build applications that will use a control. The type
library information is recorded in the system registry, including the UUIDs for the library itself
and the interface items it defines. Because a UUID, rather than a name, is used to identify an
interface, there's no possibility of an interface to one control being confused with that for
another.

Adding an Enumeration

We're going to change the ODL file so that it defines an enumeration for the state parameter of
the SignalChanged event for our control. This will allow Visual Basic users to determine the

state of our control in a very simple way. They'll be able to make use of the named constants
that we will define to represent the status of the signal after a change has occurred. First, add
the following code to the .odl file just below the importlib statements:

 importlib(STDTYPE_TLB);

 typedef [uuid(/* Need to add a valid ID here */),

 helpstring("Signal state constants")]

 enum { [helpstring ("Stop")] IsStop = 101,

 [helpstring ("Go")] IsGo = 103,

 [helpstring ("Ready to stop")] IsReadyToStop =
104

 } SignalState;

 // Primary dispatch interface for CTrafficSignalCtrl

This code simply defines an enumeration called SignalState containing the named constants
IsStop, IsGo and IsReadyToStop. These correspond to the values that could be passed via

the SignalChanged event. It's a common ActiveX control convention to use mixed case

constants with a two or three letter prefix to ensure that they're unique.

The one thing that's missing from this definition is a valid ID to use in the uuid statement. The

ID needs to take a particular form and it needs to be unique, so we can't just type in anything
here. Instead, we have to use the GUID generator utility, Guidgen.exe, that's supplied with

Visual C++; GUID stands for Globally Unique ID. This utility is also known as Uuidgen for
obvious reasons, and you'll see references to both Guidgen and Uuidgen in the documentation.
The reason that there are two names for the same thing is that there are two groups dealing
with it. GUID comes from Microsoft, and UUID comes from the Open Software Foundation.

The easiest way to access Guidgen is through the Components and Controls Gallery, which you
can get to by selecting Add to Project | Components and Controls... on the Project menu. You can
also make the Components and Controls Gallery available as a toolbar button by right-clicking
on one of the Developer Studio toolbars and selecting Customize... from the resulting menu.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Change the Category to Project and drag the icon shown on to your favorite toolbar or create a

new toolbar for it. Now close the Customize dialog and you can use the new toolbar button to
display the Components and Controls Gallery.

If you do this now, you'll see a dialog showing a list of folders. Select the folder Visual C++
Components from the list. You'll see the dialog shown:

Select GUID Generator from the list and hit Insert. Now you'll be presented with a dialog that
allows you to generate GUIDs in a variety of formats and copy them to the clipboard so that you
can paste the results wherever they are needed:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We want an ID in Registry Format, so select the radio button, click Copy to copy the GUID to the
clipboard, then close the Gallery and return to the .odl file. Of course, the ID generated when

you run GUID Generator will be different to the one shown here, since the whole point of the
GUID Generator is that it produces unique IDs!

Now paste the generated ID between the parentheses of the uuid term in the definition of the

enumeration by keying Ctrl-V, and remove the braces from around the ID. The last step to
enable the enumeration to be used for determining the result of the event is to change the type
of the event parameter from long to SignalState:

 [uuid(261D8BE4-6938-11D0-AB3A-0020AF71E433),

 helpstring("Event interface for TrafficSignal

Control")]

 dispinterface _DTrafficSignalEvents

 {

 properties:

 // Event interface has no properties

 methods:

 // NOTE - ClassWizard will maintain event information
here.

 // Use extreme caution when editing this section.

 //{{AFX_ODL_EVENT(CTrafficSignalCtrl)

 [id(1)] void SignalChanged(SignalState lNewState);

 //}}AFX_ODL_EVENT

 };

Now you can compile the control and test it out once more. If you use the test container, you

won't see any differences in the control, but if you use Visual Basic (4 or later), you'll see that
you can make use of the new constants we defined in the enumeration.

 ' Example Visual Basic code

 Private Sub TrafficSignal1_SignalChanged(ByVal lNewState As Long)

 If lNewState = IsStop Then

 Print "Stop Light"

 End If

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 End Sub

The Visual Basic routine shown will be executed each time the SignalChanged event is fired

by the control. The status stored in lNewState is compared with the IsStop value defined in

the enumeration that we added to the .odl file. Whenever the signal state is IsStop, a

message will be displayed.

Enumerations like the one we've just defined are even more useful when used in conjunction
with properties that should only accept a limited number of specific values. Visual Basic can use
the constants defined in an enumeration and offer them to the user through the Properties
window that it provides for all controls, as you can see in this sample:

Embedding an ActiveX Control in a Web Page

To get the next section to work, you'll need to have an ActiveX-aware browser installed on your

PC. Internet Explorer 3.0 or later from Microsoft will do, or any other browser that supports
ActiveX. If you can access the Internet but don't have an ActiveX capable browser, you can
download Internet Explorer for free, courtesy of those nice folks at Microsoft. You'll find it on
their web site at http://www.microsoft.com. While you're there, you might like to take a look at
another freebie: the ActiveX Control Pad. This is a very nice tool that will help you to create web
pages and embed ActiveX controls in them.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You define web pages using something called the HyperText Markup Language, commonly
known as HTML. The elements of a web page are specified by HTML tags, which usually occur
in pairs, and are delimited by angled brackets. Fire up the ActiveX Control Pad and you'll see a
new, basic document specified with the following HTML tags:

Each pair of tags encloses a particular kind of entity. The Microsoft ActiveX Control Pad creates
this for you automatically. To customize it, you could start by changing the title to something
more appropriate. If you want some text to appear on the page, you just add it between the
BODY tags. To add our ActiveX control to the page, we use a pair of <OBJECT> tags, as follows:

 <HTML>

 <HEAD>

 <TITLE> A Page with a Traffic Signal</TITLE>

 </HEAD>

 <BODY>

 <OBJECT ID="TrafficSignal1" WIDTH=100 HEIGHT=50

 CLASSID="CLSID:A833B92A-78FF-11D0-9257-00201834E2A3">

 </OBJECT>

 </BODY>

 </HTML>

Again, inserting an ActiveX control is very easy using Microsoft ActiveX Control Pad. All you
have to do is select the control you want from the list presented by the menu item Edit | Insert
ActiveX Control... and all the detail is taken care of. ActiveX Control Pad knows about all the
controls in your system because they are entered in the registry, so you get the choice of
inserting any of them.

In the page definition above, the specification of the name of object to be inserted, and the
CLASSID for the object which identifies what kind of object it is, both appear in the opening

<OBJECT> tag along with the width and height of the control. We've specified the CLASSID
between quotes as the characters CLSID:, followed by the hexadecimal digits for the CLSID

that appeared in the arguments to the IMPLEMENT_OLECREATE_EX macro that we saw earlier
in TrafficSignalCtrl.cpp. This was:

 IMPLEMENT_OLECREATE_EX(CTrafficSignalCtrl,

 "TRAFFICSIGNAL.TrafficSignalCtrl.1",

 0xa833b92a, 0x78ff, 0x11d0, 0x92, 0x57,

 0, 0x20, 0x18, 0x34, 0xe2, 0xa3)

Note that the sixth argument is a byte, so it actually has two hexadecimal digits, 0x00.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

FYI

Don't worry if you don't have the ActiveX Control Pad. Just save the HTML
segment into a file, and provided you make sure the CLSID is correct, the
control will be displayed by your browser. The Control Pad doesn't do anything
special, it just makes life a little easier.

That's all you need to include the control in the page, but there are a myriad of other possibilities
available to you through HTML. You can assign values to parameters for the control for
example, or determine its position on the page when it is displayed. Since we just want to see
that it works, we'll ignore these and go with what we've got.

If you save the HTML above in a file with the extension .htm - TrafficSignal.htm, for

example - you should then be able to open it in your web browser to see the control. The
<OBJECT> tag is relatively new to HTML, and not all web browsers support it, so if the control

doesn't appear, it probably isn't your code that's at fault. The page is shown here in a Microsoft
Internet Explorer window:

The control works, too. If you click on it, the traffic signal will start operating - amazing isn't it?
Now it's up to you to discover what use you can put your new-found knowledge to.

Summary

In this chapter, we've dug a little into the how and why of OLE and ActiveX controls. You should
have a good idea now of how a control communicates with its container, and how the basic
features of an ActiveX control can be implemented. You also know that an OLE control is an
ActiveX control.

The important ideas we have explored in this chapter are:

§ An OLE control is a reusable software component. An OLE control is also an ActiveX
control.

§ ActiveX controls can be executed in any ActiveX container and can be embedded within
a Web page.

§ A control communicates with a container through properties, methods, and events.
§ There are three kinds of properties for a control: ambient properties, control properties,

and extended properties.
§ A method is a function in a control that can be called from outside the control.
§ Events are signals that a control sends to a container as a consequence of some action

by the user.
§ You can create an ActiveX control in Visual C++ by using the MFC ActiveX

ControlWizard. The controls that it produces are also OLE controls.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ You can manipulate the .odl file to provide the users of your control with useful

constants.

Of course, there is much more to learn about many of the topics we have covered, but we have
scratched the surface sufficiently for you to see the gleam of gold underneath. ActiveX controls
are an extremely powerful mechanism for reusing and distributing code, and there's no doubt
that you will be seeing more and more of them. COM is more general though, and we'll look at
that in the next chapter.

Exercises

1. Explain the limitations of the StartRed property and say how the control could be

improved by adding a new StartState property to define the starting state of the
signal.

2. Implement the new StartState property and use an enumeration for its possible
values.

3. (Advanced) Explain what difference it would have made to your implementation if
there were already many users of the existing control. How could you ensure
compatibility with the existing control? How could you discourage use of legacy
functions? (Hints - investigate CPropExchange::GetVersion() and

COleControl::ExchangeVersion(). Also, ODL provides a hidden keyword.)

Answers

1. Limitations of the StartRed property. There are two main flaws:

1. It limits the starting state of the signal to one of two values: red or not red. This is a
problem because there are more than two states that our signal can be in, and it
seems unreasonable to exclude valid signal states from the possible start states. We
should provide optimum flexibility to the users of our control.

2. Its name unnecessarily relates the state of the signal to a color. The interface of our
control is inconsistent because we have one property (StartRed) that describes the

state of the signal in terms of its color (red or not red) and another property
(StopOrGoTime) and an event (SignalChanged) that describe the state of the

signal in terms of the information it conveys (stop, go, or ready to stop). We should
rationalize these inconsistencies and always describe the state of the signal in the
same way. Since the signal is better defined in terms of the information it conveys
than the colors it uses to convey that information, StartRed should be replaced or
renamed.

To rectify the problems with StartRed, we could replace it with a property called

StartState. This property could use the same enumeration for its possible values as we
defined for the SignalChanged event. This means that we can provide greater flexibility to
our control's users, and provide a consistent interface to our control.

Replacing StartRed with StartState would also allow us to alter the drawing code for the

signal without worrying about whether the property name remained relevant to the control. If
we wanted to provide a signal that used icons to represent the different states of the signal,
all we would need to change would be the drawing code. The user of our control would be
able to use the new version instantly without getting confused by our choice of property
name.

2. Implementing the StartState property. First, use ClassWizard to remove all traces of the
StartRed property. Go to the Automation tab for the CTrafficSignalCtrl class, select

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

StartRed and then click Delete. Follow the instructions you're given. Next, use ClassWizard
again to add a new Automation property to CTrafficSignalCtrl using the settings shown

in the screenshot:

Add the following code to CTrafficSignalCtrl::OnStartStateChanged():

 void CTrafficSignalCtrl::OnStartStateChanged()

 {

 // Stop the signal if necessary

 if (m_bSignalGo)

 {

 m_bSignalGo = FALSE; // Set signal not running

 StopSignal(); // Stop the signal

 }

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 InvalidateControl(); // Get the control redrawn

 SetModifiedFlag();

 }

Update the code in CTrafficSignalCtrl::DoPropExchange() as shown:

 void CTrafficSignalCtrl::DoPropExchange(CPropExchange* pPX)

 {

 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

 COleControl::DoPropExchange(pPX);

 // TODO: Call PX_ functions for each persistent custom
property.

 PX_Long(pPX, _T("StartState"), m_lStartState, STOP);

 PX_Long(pPX, _T("StopOrGoTime"), m_lStopOrGoTime, 5000);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 }

Update CTrafficSignalCtrl::SetStopOrGoTime() to use the new property

notification function:

 void CTrafficSignalCtrl::SetStopOrGoTime(long nNewValue)

 {

 // Only alter the control if the value is different

 if (m_lStopOrGoTime != nNewValue)

 {

 m_lStopOrGoTime = nNewValue; // Set the new stop or
go time

 OnStartStateChanged(); // Set the initial state

 SetModifiedFlag();

 }

 }

Update the .odl file as shown so that the new property uses the enumeration:

 [id(2)] long StopOrGoTime;

 [id(1)] SignalState StartState;

3. Updating a control that has existing users needs to be handled sensitively if you want those
users to upgrade to the new version. It can be quite tricky when you're just adding
functionality, but that's as nothing compared with when you want to remove properties,
methods or events from a control. Removing items from the public interface of a control is not
something that should be done lightly, and you should try to avoid being in the position of
wanting to remove something by carefully designing, implementing and testing your control
before releasing it to the public.

In our case, we'll plan to remove the StartRed property in two stages which in the real world
might be separated by months or even years. First, we'll release a control that retains the
StartRed property and is completely compatible with the first version of the control. All code
written to use the first version of the control will work fully with the new version. However, the
new version of the control will discourage the use of the StartRed property so that in the
future we may be able to release a version of the control that drops support for the
StartRed property completely.

In fact, we may decide never to drop the StartRed property from our control because of the

large amount of existing code that uses it. It might not be a problem with our simple traffic
signal, but it's certainly a possibility for professionally produced ActiveX controls. With that in
mind, the first thing that we'd do differently from the implementation of StartState in Ex23-
2 is not to delete the StartRed property!

Important
When updating a control, make sure that you keep a clean backup copy of the source
code for the existing control - you never know what might happen!

We can add the StartState property to the control in the same way as before, but after

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

doing so we need to make that it hasn't altered the DispIDs used for the existing methods and
properties. It's a good idea to keep DispIDs consistent between versions of a control, even
though it's quite unlikely for a client to be using the DispIDs directly. (It could be important if
you distribute type libraries for the control separately from the control itself.)

There are two places that you need to check the values of the DispIDs. Towards the end of
TrafficSignalCtl.h you'll find the following:

 enum {

 //{{AFX_DISP_ID(CTrafficSignalCtrl)

 dispidStartRed = 1L,

 dispidStopOrGoTime = 3L,

 diapidStartState = 2L,

 eventidSignalChanged = 1L,

 //}}AFX_DISP_ID

 };

If you compare this with the original control, you may find that the DispID for the
StopOrGoTime property has changed so change the code like this:

 enum {

 //{{AFX_DISP_ID(CTrafficSignalCtrl)

 dispidStartRed = 1L,

 dispidStopOrGoTime = 2L,

 dispidStartState = 3L,

 eventidSignalChanged = 1L,

 //}}AFX_DISP_ID

 };

You'll also need to change the values of the ids in the .odl file to corresponding values.

Always make sure that the IDs for the properties and methods are unique, positive integers.

 properties:

 // NOTE - ClassWizard will maintain property information
here.

 // Use extreme caution when editing this section.

 //{{AFX_ODL_PROP(CTrafficSignalCtrl)

 [id(DISPID_BACKCOLOR), bindable, requestedit] OLE_COLOR
BackColor;

 [id(1)] boolean StartRed;

 [id(2)] long StopOrGoTime;

 [id(3)] SignalState StartState;

 //}}AFX_ODL_PROP

Note that we have changed the type of the StartState property so that it uses the

enumeration, just as we did in Ex23-2 .

If you change the DispIDs, the last area you'll need to change is the dispatch map itself,
which you'll find in TrafficSignalCtl.cpp. The order of the entries in the map should
match the DispIDs that you've assigned in the header and .odl files, so make sure that the

code matches this:

 BEGIN_DISPATCH_MAP(CTrafficSignalCtrl, COleControl)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //{{AFX_DISPATCH_MAP(CTrafficSignalCtrl)

 DISP_PROPERTY_NOTIFY(CTrafficSignalCtrl, "StartRed",

 m_bStartRed, OnStartRedChanged, VT_BOOL)

 DISP_PROPERTY_EX(CTrafficSignalCtrl, "StopOrGoTime",

 GetStopOrGoTime, SetStopOrGoTime, VT_I4)

 DISP_PROPERTY_NOTIFY(CTrafficSignalCtrl, "StartState",

 m_lStartState, onStartStateChanged,
VT_I4)

 DISP_STOCKPROP_BACKCOLOR()

 //}}AFX_DISPATCH_MAP

 DISP_FUNCTION_ID(CTrafficSignalCtrl, "AboutBox",

 DISPID_ABOUTBOX, AboutBox, VT_EMPTY,
VTS_NONE)

 END_DISPATCH_MAP()

Important
As you've seen, ClassWizard provides DispIDs that match the alphabetical order of the
properties you supply. This may be inappropriate if you're modifying a control that needs
to maintain the DispIDs for its existing members. However, you can set the DispIDs of the
properties manually by using the technique outlined above. Remember to match up the
DispIDs in the control's header file, the .odl file and dispatch map.

Now add the code for OnStartStateChanged(). The highlighted code shows up the

differences between this version and Ex23-2, when we didn't have to worry about StartRed.

 void CTrafficSignalCtrl::OnStartStateChanged()

 {

 // Stop the signal if necessary

 if (m_bSignalGo)

 {

 m_bSignalGo = FALSE; // Set signal not running

 StopSignal(); // Stop the signal

 }

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 // The following is only necessary if you are continuing

 // to support the StartRed property

 if (STOP == m_lStartState)

 m_bStartRed = TRUE;

 else

 m_bStartRed = FALSE;

 InvalidateControl(); // Get the control redrawn

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SetModifiedFlag();

 }

Now change the code for DoPropExchange(). This is significantly different to the code

we've had previously:

 void CTrafficSignalCtrl::DoPropExchange(CPropExchange* pPX)

 {

 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

 COleControl::DoPropExchange(pPX);

 // TODO: Call PX_ functions for each persistent custom
property.

 if (pPX->GetVersion() < MAKELONG(0, 2))

 {

 // If we are loading information from before version 2.0

 // then we know that StartRed will have been saved

 PX_Bool(pPX, _T("StartRed"), m_bStartRed, TRUE);

 PX_Long(pPX, _T("StopOrGoTime"), m_lStopOrGoTime, 5000);

 // Set the signal object to the appropriate state

 if (m_bStartRed)

 {

 m_pSignal->SetSignalState(STOP);

 m_lStartState = STOP; // Added to support the new
StartState property

 }

 else

 {

 m_pSignal->SetSignalState(GO);

 m_lStartState = GO; // Added to support the new
StartState property

 }

 }

 else

 {

 // If we are loading/saving info from a version 2.0 or
later file,

 // we don't have to worry about StartRed, we use StartState
instead

 PX_Long(pPX, _T("StopOrGoTime"), m_lStopOrGoTime, 5000);

 PX_Long(pPX, _T("StartState"), m_lStartState, STOP);

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 // This is only necessary if you are continuing to support

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // the StartRed property

 if (STOP == m_lStartState)

 m_bStartRed = TRUE;

 else

 m_bStartRed = FALSE;

 }

 }

Note the use of CPropExchange::GetVersion(). This function returns the version of the
control, which is retrieved from the persistent data when loading properties and is taken from
the values of the global constants wVerMajor and wVerMinor when saving properties. The
function will save data in version 2.0 format just so long as we make sure that the control
knows that it's a version 2.0 control. You can do this by changing the values of wVerMajor
and wVerMinor, which you'll find at the top of TrafficSignal.cpp:

 const WORD _wVerMajor = 2;

 const WORD _wVerMinor = 0;

This code means that regardless of whether we load our properties from a version 1.0 or
version 2.0 property store, they will always be saved in version 2.0 format. This means that
we are already making a small step towards eliminating the use of the StartRed property.

FYI
If you want a way to save persistent properties using the same version format as they
were loaded with, check out the documentation for ExchangeVersion().

The only thing left to do is to discourage the use of the StartRed property in new code. The
best way to do this is to document the function as being out of date and point the programmer
to the new StartState property. However, you can also hide the property from Visual Basic
users by applying the hidden keyword to the property in the .odl file:

 [id(DISPID_BACKCOLOR), bindable, requestedit] OLE_COLOR
BackColor;

 [id(1), hidden] boolean StartRed;

 [id(2)] long StopOrGoTime;

This will tell Visual Basic (and other environments that respect this property) not to show the
item to the user of your control. Thus StartRed will no longer appear in Visual Basic's

Properties Window or the Object Browser. However, any code that uses StartRed will
continue to work just as before.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 24: Using the Active Template Library

Overview

The Active Template Library, known as ATL, provides you with another means of creating
COM components, including simple and full ActiveX controls, but using a very different
approach from that of the previous chapter.

In this chapter you will learn:

§ More about how COM works

§ What the Active Template Library is
§ How to use the ATL Object Wizard
§ How to implement a simple COM component

§ How you can use a COM component in Visual Basic
§ How you can use a COM component in a C++ program
§ How to implement a full ActiveX control using ATL

More About COM

Using ATL takes you much closer to COM than the example in the previous chapter, so we
need to understand a little more about what COM involves. It's cards on the table time: COM is
actually quite complicated. When you consider what COM achieves, it was inevitable, wasn't it?
Defining a mechanism which allows program modules to be written in almost any language
such that they can always be connected together - even when they're on different computers - is
no mean achievement. The basic concepts are quite easy, but the devil is in the details.
Fortunately, you can get by with an understanding of the basics, at least for the purposes of
getting started with using ATL to create simple COM components.

You already know that COM is an interface specification for reusable software components. The
COM interface isn't dependent on C++ or any other programming language in particular;
provided a programming language has the capability to implement a COM interface, you can
use it to create a COM component. COM doesn't require an object-oriented approach and
classes aren't necessary to implement COM components, but they do make it easier. As we
saw in the last chapter, all ActiveX controls are COM components, because they implement a
COM interface.

A COM component is called a server, and a program that uses a COM component is called a
client. A single COM component can be used by several clients simultaneously, rather like a
function in a DLL. In fact, as we shall see later, we can store a COM component in a .dll file.

To use a COM component, a client must create an instance of the component. An instance of a
component is referred to as a COM object, although this term is also used to describe a COM
component in general.

A COM interface contains only functions (often referred to as methods). A component can have

properties - parameters that can be set for a component or have their values retrieved - as we
saw with our TrafficSignal control, but these are accessed through get and put functions in the

interface. A COM component has at least one interface, and can have several.

COM and Interfaces

The basis of COM is the interface called IUnknown. All COM component interfaces must

support the minimum IUnknown capability, since IUnknown allows a client to find out what

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

other interfaces the component has. This is the key to unlimited flexibility in what a COM
interface can include. The IUnknown interface contains three functions:

Function Name Description

QueryInterface() You call this function to determine whether the component
supports a particular interface and to get a pointer to the interface
if it does.

AddRef() A COM object that's being shared keeps track of the number of
clients that are using the interface. Calling AddRef() increments
the reference count.

Release() Called by a client when it ceases using a component interface.
Calling Release() decrements the reference count for an

interface. When the interface count is zero, the object knows that
there are no clients using the interface.

Since the client and the COM server may be implemented in completely different programming
languages - indeed, the server and the client can be running on completely different computers
- the interface functions aren't accessed directly by a client. Instead, they're accessed indirectly
through a table of pointers to functions.

An interface pointer contains the address of a table containing the addresses of the functions in

the interface. This table of addresses is called a virtual function table (or vtable); virtual
functions in C++ work through a similar mechanism. An interface function is called indirectly
through its address in the table. A particular function is referenced through the base address for
the table, plus an offset for the particular entry required. In C++ terms, the entries in the vtable
are pointers to functions, and the interface pointer is of type pointer to pointer, usually void**.

COM defines its own data types. These are independent of C++, but they do of course map to
C++ types. The parameters to a COM interface function can only be of the types that COM
supports, and there are restrictions on how information is passed to and from an interface
function. We shall see more of the detail of this when we come to put a COM component
together.

The basic IUnknown interface is just a platform - the absolute minimum necessary to get

communications working between a COM server and a client. In practice, other interfaces can
be added that will be specific to the sort of capability implemented in a component. IUnknown

provides the means by which a client can find out about these additional interfaces. In C++,
IUnknown can be represented very easily as a class, and extending it then becomes a matter
of deriving a new class that inherits the functions in IUnknown. Since the notion of virtual

functions is fundamental to C++, accessing a COM interface is a relatively straightforward
matter. The way in which IUnknown works is not always the most convenient in other

environments, and some are just not comfortable with having to work through a virtual function
table. An important COM interface that can overcome such difficulties, and that was first defined
for use in the Visual Basic environment, is called a dispatch interface (or dispinterface).

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Dispatch Interfaces

A dispatch interface is an interface that's based on a standard interface called IDispatch.

IDispatch inherits the functions from IUnknown, and implements additional functions that
make calling interface functions easier. In particular, the IDispatch interface adds a function

called Invoke() that you can use to call different functions depending on an argument passed

to it. The argument is a positive 32-bit integer value called a DispID (Dispatch ID) that identifies
the function. To get the DispIDs for the functions implemented in a dispatch interface you call
another function called GetIDsOfNames(). You can pass an array of function names to it and

get back an array of corresponding DispIDs for the functions.

Note that the functions that are part of the dispatch interface and callable through Invoke() do

not necessarily appear in the virtual function table. When they do, the interface is referred to as
a dual interface, because the functions can be called through Invoke() using DispIDs, or

they can be called directly through the virtual function table pointers. Calling functions through
the vtable pointers is faster than calling them through Invoke().

COM Interfaces and Class Interfaces

Don't confuse a COM interface with a class interface. Being immersed in C++ classes all the
time makes it easy to mix them up, but when you write a COM component in C++ you will be
involved with both kinds. The COM interface will be defined in a file using IDL, the Interface
Description Language that we referred to in the last chapter. IDL looks quite similar to C++ but it
most certainly isn't C++ and there are many differences. Keep in mind that IDL isn't a
programming language in the normal sense; it's a language for defining interfaces and other
information that will be stored in a type library - that is, in a .tlb file. When you build a COM
component, the MIDL compiler processes the .idl file and the C++ compiler processes the

.cpp files. The two are interrelated but they aren't the same.

Of course, a COM component will need to be implemented in C++. A C++ class will represent
the COM object, and the implementation of the COM interface will require class functions to be
declared corresponding to the COM interface functions. Since these are called from outside the
COM object, potentially from a client written in another programming language, the declaration
and implementation of the interface functions must be made in a special way to accommodate
this. The default C++ calling convention for functions isn't acceptable to COM. We'll see how we
specify the calling convention to suit COM in an example.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Understanding the Active Template Library

Believe it or not, the Active Template Library is a library of class templates that support ActiveX

- in other words, COM components. We saw how class templates work back in Chapter 9, so
here we can see them applied in a real-world context. The ATL class templates enable you to
create classes that form a basis for an ActiveX component that doesn't involve the overhead
implicit in using the MFC. In fact, ATL is completely independent of the MFC. Such a
component will therefore require substantially less memory than the MFC-based ActiveX control
that we produced in the previous chapter.

Being able to produce a COM component in racing trim by using ATL is a major plus, but where
there's a plus, there's often a minus or two. One minus in this case is that if your component
needs any kind of visual representation that the user can see or interact with, you must program
it yourself. This isn't necessarily as big a problem as it sounds, but it does mean that you'll be
calling Windows API functions directly. Another minus is that you can't use ClassWizard with
ATL programs - ClassWizard just doesn't support them. It's possible to use the MFC and ATL
together, but there's really no point in doing so. If you intend to use the MFC, you don't need
ATL at all.

We can deduce from this that ATL is aimed squarely at the development of components that are
lightweight in memory requirements, but with the flexibility to add whatever capability you want.
One context in which ATL excels is the development of lightweight, invisible controls.

Invisible Controls

'Invisible' and 'lightweight' suggest we could be dealing with vaporware here, but that certainly

isn't the case. Why would you want such a component? Well, there are a couple of reasons.
Firstly, consider a hypothetical COM component that provides a computation function of some
kind. When you need the function it supplies, you can plug it into your application. It doesn't
need a visual representation, and the lighter it is on memory requirements, the better. Secondly,
we saw in the previous chapter that ActiveX controls can be used in web pages on the Internet.
Clearly, the growing requirement for Internet web pages to contain active code implies a need
for components in this context, and because Internet communications bandwidth is a critical
resource, such components need to be as lightweight as possible. Clumping several
heavyweight MFC-based ActiveX controls in your web page would most likely mean that
nobody will be prepared to wait for it to download.

This second example is where ATL components come riding to the rescue, although it isn't

immediately obvious how. Lightweight components are all very well, but an ATL-based, invisible
one doesn't seem right - after all, if you can't see it, how do you know it's there, and what's
more, how do you use it? The current facilities you have available to you for defining web pages
can help. There are scripting languages such as VBScript and JavaScript that you can use
within the description of a web page in HTML. From these scripting languages you can get and
set component properties and call functions, so you can use them to interface with invisible
components. You can even tie multiple components together so they work in an integrated way.

We can get a clearer idea of how an ATL-based COM component is developed by creating one.

After we've done that we can see how to use it. We'll start with the simplest kind (it has no visual
appearance implemented), but later we'll see how we can use ATL to implement the traffic
signal control we created in the previous chapter without incurring the overhead of MFC.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using the ATL COM AppWizard

We need something simple as an example of a COM component. Let's create a component that
can figure out the maximum refresh rate for a monitor, given the monitor's horizontal scanning
frequency. The horizontal scanning frequency is a measure of how many lines your monitor can
draw in one second, so if you know how many lines there are on the screen, you can divide this
into the scanning frequency to get how many times the screen will be redrawn in a second. The
number of lines on the screen is just the vertical resolution, and we can get the component to
figure that out. In reality, the refresh rate is also limited by the vertical scan rate that your
monitor can sustain, but we'll ignore that for the purposes of this exercise.

Visual C++ 6 provides a special Wizard for projects using ATL, so we can jump right in with that.
Start a new ATL COM AppWizard project called RefreshRate, as shown here.

This will generate a new project in a new workspace in the directory shown in the edit box. If

you click on the OK button you'll move on to the first (and only) step in the ATL COM AppWizard
process:

As you see, you can create a component as a DLL or as an .exe file. When you think about it,
there's no reason why an application in a .exe file shouldn't have a COM interface - after all,

that's essentially what you're using when you embed an Excel worksheet in a Word document.
A COM component in a DLL is called an in-process server, because it shares the address
space of a client. A COM component implemented in a .exe file is called an out-of-process

server because it runs in its own address space. The default DLL Server Type option is what we
want for our example.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

When your COM component is in one address space and the client program using it is in
another, the client clearly can't call the interface functions in the COM component directly. Some
extra software is necessary in each process to manage the transfer of data and provide the
interface between the client and the component.

The software that sits in the client process is called a proxy, because it represents the interface
to the COM server component. The client communicates with the proxy, and the proxy
communicates with the server process via a piece of software in that process called a stub.
This calls the interface functions in the component on behalf of the client.

The process the proxy goes through when it gathers the arguments together for an interface

function call is called marshaling; the process of sorting them out at the component end, which
is carried out by the stub, is called unmarshaling. The proxy and stub code is generated from
the .idl file by the MIDL compiler and is usually placed in a separate DLL. We have the option

here of including this code within the same DLL as the component, but we'll leave it unchecked.

If you want to use the MFC classes, you can check the Support MFC box. This will add an
application class to the project derived from CWinApp, and the program will contain an

application object. It will also increase the size of the component considerably, but it does mean
that you would be able to use any of the MFC classes in your project. We don't need it here, so
leave this box unchecked as well.

Finally, if you want your ATL COM project to integrate with Microsoft Transaction Server, then
you can check the Support MTS box. MTS is a back office component of Windows NT that
provides a backbone for applications which want to incorporate strict transactions into their
workings. If you do check the box, the AppWizard will modify the build script for the project to
include two MTS-specific libraries. Again, however, we don't need it here, so leave the box
unchecked.

If you click on the Finish button you'll see the last dialog which, as usual, shows you the details

of the files that will be generated, and gives you a last chance to back out.

Don't weaken now! Click on the OK button to complete the operation. We can then take a look

at the code that's generated for us.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Basic COM AppWizard Code

If you switch to ClassView and extend the tree, you'll see that there's very little there, especially
compared with what we've been used to in the last few chapters:

There are no classes defined at all. We have five global functions and a global object,
_Module, defined. At the moment there's no COM object and no COM interface implemented.

Two of the global functions, DllRegisterServer() and DllUnregisterServer(), will

provide the ability to register and unregister our COM component, as you can probably guess
from the function names. The DllMain() function is called when the DLL is loaded into

memory and, as we saw in Chapter 19, initializes the DLL. The function DllCanUnloadNow()

determines whether the DLL is still in use, and is called to decide when to remove the DLL from
memory. Lastly, the DllGetClassObject() function is used to retrieve the COM object from

the DLL when you create an instance of the component in a client program. You don't usually
call this function directly, though - we'll see how we can create an instance of a COM
component later in this chapter.

The global object _Module is an instance of the class CComModule, which represents the COM

server module we're creating. The COM server module will contain functions to manage all the
class objects in the module and provides the mechanism for entering information about the
COM components in the system registry. DllRegisterServer() and
DllUnresisterServer() call functions belonging to the _Module object to perform the

registration and unregistration operations. So where does our COM object implementation come
from?

Adding a COM object to the Project

To add a COM object, you can either select the Insert | New ATL Object... menu item, or display
the ATL toolbar and click on the button. A dialog will be displayed that gives you a selection of
COM objects that you can add to your project:

The dialog offers four sets of COM components to choose from: Objects, Controls, Miscellaneous
and Data Access. We'll be creating another COM component later in this chapter which will be an

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

ActiveX control, but for now we will just add a Simple Object. Highlight that by clicking it, as
shown, and click on the Next> button.

Here you need to enter the name for the COM component, RefRate. This is used as the basis

for the C++ class name that implements the component, and for the names of the files
containing the C++ code. It is also the basis for the names of the CoClass, which is the
component class, the name of the interface, IRefRate, that the component will support, the

type name and the Prog ID that will appear in the registry. Note that the component class is not
a C++ class - it's a COM class which identifies the interfaces that the component supports.

The other tab on the dialog provides options as to how the component will be implemented:

The threading options relate to the degree of concurrency of executing processes within a
component and are beyond the scope of this book, so we'll ignore that here. Dual interfaces, on
the other hand, we have mentioned previously. This option provides for interface functions to be
callable through a dispatch interface (using the Invoke() function) as well as through the

virtual function table. Aggregation refers to the capability of one COM component to make use
of another, making the contained component's interfaces available as well as its own. All the
defaults are fine for our example, so click on the OK button to add the object to our project. Let's
see what we've got now.

ATL Object Code

The ATL-based component is very different from the ActiveX control we saw in the previous
chapter. If you extend all the trees in ClassView, you can see that we have one class defined,

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

CRefRate, and one interface, IRefRate, in addition to the five global functions and the global
object _Module that we had before:

The class CRefRate represents our COM object, and IRefRate is the definition of the COM
interface for this object. IRefRate is defined in the RefreshRate.idl file, and is

implemented by the class CRefRate, which has its definition in RefRate.h and its
implementation in RefRate.cpp, as you might expect. If you look at the files in the project in

FileView, you will see a file of a type that we haven't met before: RefRate.rgs. This contains

the information that will be entered in the system registry when we successfully build our COM
project.

The COM Object Class

The definition of the class CRefRate is short, but there's quite a lot there nonetheless, because

it has no less than three base classes. Notice that while MFC relies on single inheritance, ATL
capitalizes on using multiple inheritance:

 Class ATL_NO_VTABLE CRefRate :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CRefRate, &CLSID_RefRate>,

 public IDispatchImpl<IRefRate, &IID_IRefRate,
&LIBID_REFRESHRATELib>

 {

 public:

 CRefRate()

 {

 }

 DECLARE_REGISTRY_RESOURCEID(IDR_REFRATE)

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 BEGIN_COM_MAP(CRefRate)

 COM_INTERFACE_ENTRY(IRefRate)

 COM_INTERFACE_ENTRY(IDispatch)

 END_COM_MAP()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // IRefRate

 public:

 };

The base classes add the basic COM infrastructure that our COM object needs. As you can
see, they're all generated from templates. The first base class, CComObjectRootEx,

implements the basic COM interface, IUnknown. It takes cares of the reference counting
through the AddRef() and Release() functions, and it implements the QueryInterface()

function. The argument to the template, CComSingleThreadModel, makes the generated

class applicable to single thread operations. This is a consequence of accepting the default
threading model on the Attributes tab of the ATL Object Wizard.

The second base class, CComCoClass, defines the factory class for our component. The

factory class enables an instance of the COM component to be created. You need to create an
instance of a component before you can call any of its interface functions. The template for
CComCoClass uses the class name, CRefRate, and the CLSID for the component as

parameters to define the factory class.

The last base class, IDispatchImpl, will provide the dual interface for our control. We'll have
IUnknown by default, plus the IDispatch interface functions to allow interface methods to be

called using Invoke(). The three parameters to the template are our component interface,
IRefRate, a pointer to the corresponding interface ID, and a pointer to the GUID for the type

library. These aren't defined in the C++ code yet, but code will be added to define them when
the .idl file is processed.

We will be extending the interface IRefRate by adding our own functions to the .idl file.

When we do, we'll also need to add declarations for these functions to the CRefRate class
definition. These will go after the public keyword at the end of the class definition.

The interfaces defined for the class are identified following the BEGIN_COM_MAP() macro. We

have an entry for IRefRate in addition to the standard IDispatch interface, since this will

contain our application-specific interface functions. The COM map makes the methods in these
interfaces accessible to a container through the QueryInterface() method in IUnknown.

The Interface Definition

The IDL file, RefreshRate.idl, has two import statements for the files oaidl.idl and

ocidl.idl at the beginning. These add all the standard definitions for the interfaces supported
by ATL. The file also contains two main definitions: a definition of the interface IRefRate, and

a definition of what will go into the type library which records information about the COM
component. In each case there's a set of attributes appearing between square brackets,
followed by the details of the definition. The IDL code defining the IRefRate interface is:

 [

 object,

 uuid(3A6DD1CF-1B63-11D2-B735-ADB796337F06),

 dual,

 helpstring("IRefRate Interface"),

 pointer_default(unique)

]

 interface IRefRate : IDispatch

 {

 };

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The object attribute indicates that this is a custom COM interface, and we'll be adding our own

methods to this interface definition. The second attribute defines the UUID for the interface. This
is the 128-bit universally unique ID we discussed in the previous chapter that identifies the
interface, so the UUID you have in your version of the project will undoubtedly be different from
the one here. The dual attribute determines that this is a dual interface, which as you know

means that you can access functions directly through the vtable, or indirectly through
IDispatch::Invoke(). helpstring can be used by applications that make use of the
type library to describe the interface. The pointer_default(unique) dictates that if pointers

to pointers are used as parameters in interface functions, they must each provide a unique
access route to the data they point to - that is, to access any particular data item, only one
pointer can be used. This enables the code that accesses the data to be simplified.

At the moment the interface contains no custom interface functions at all. We'll be adding ours
between the braces following the interface statement. The basic COM requirement for
IUnknown is taken care of with this, since IRefRate inherits from IDispatch which inherits

from IUnknown.

The type library is specified with the following IDL code:

 [

 uuid(3A6DD1C3-1B63-11D2-B735-ABB796237F06),

 version(1.0),

 helpstring("RefreshRate 1.0 Type Library")

]

 library REFRESHRATELib

 {

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 [

 uuid(3A6DD1D0-1B63-11D2-B735-ADB796237F06),

 helpstring("RefRate Class")

]

 coclass RefRate

 {

 [default] interface IRefRate;

 };

 };

The standard OLE type libraries are imported with the importlib statement. The coclass
definition statement incorporates our custom interface IRefRate which was defined previously,

so that this will be part of each instance of the COM component implemented by the C++ class
CRefRate.

Extending the Interface

The basic function our component will perform is to calculate the refresh rate for a monitor,
given the horizontal scan frequency. We will therefore need an interface function we can call
RefreshRate() that will accept an argument specifying the horizontal scan frequency in
kilohertz (of type long, say) and return the refresh rate in hertz as another long value. If we

were declaring this as a regular C++ function, it would have a prototype something like

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 long RefreshRate(long HScan);

However, we're defining a COM interface function here, and there are some constraints. A COM
interface function should return a value of type HRESULT. This is a 32-bit value containing fields

indicating success or failure of the operation. This is necessary because of the diversity of
contexts in which a component might be used. Bearing in mind that the client may be on a
different machine from the COM server, a lot can go wrong in the general case, so the HRESULT

return type provides a rich set of possible return codes.

A consequence of all this is that if you want to return a data value to the client, such as the
refresh rate we plan to calculate, you must return it through a parameter to the function. This
complicates the specification of interface function parameters somewhat. In addition to the
constraint that they must be of a type supported by COM, we also have the requirement that
you must indicate in the interface definition which parameters to a function are inputting data
and which are outputting data. You must also specify which, if any, of the output parameters is
passing a return value back to the client.

Because of all this, the definition of our interface function in the IDL file turns out to be:

 HRESULT RefreshRate([in] long HScan, [out, retval] long* retval);

The return type is HRESULT, and each parameter is preceded by attributes defined between
square brackets. A parameter will have the attribute in if a value is being passed by the client

to the function, the attribute out if a value is being passed from the function to the client, and
the attributes out and retval if a value is being passed from the function to the client as a

return value. A parameter that is specified as in can also have the attribute out if the function
will use the parameter to return a value. A parameter with the attribute out must always be

specified as a pointer; this means that the memory for storing the value is owned by the client. A
parameter with the attribute retval must also have the attribute out, and therefore must be a

pointer. Note that a parameter with the attribute retval must also be named retval.

Since we'll need to obtain the current vertical display resolution in order to calculate the refresh

rate, we might as well include functions to supply the horizontal and vertical resolution of the
display independent of the refresh rate. You will therefore need to modify the interface definition
in RefreshRate.idl by adding the following statements:

 [

 object,

 uuid(3A6DD1CF-1B63-11D2-B735-ADB796237F06),

 dual,

 helpstring("IRefRate Interface"),

 pointer_default(unique)

]

 interface IRefRate : IDispatch

 {

 HRESULT RefreshRate([in] long HScan, [out, retval] long*
retval);

 HRESULT GetVRes([out, retval] long* retval);

 HRESULT GetHRes([out, retval] long* retval);

};

Both the GetVRes() and GetHRes() functions have a single parameter that has the retval

attribute. Since we'll get the values to be returned by using the Windows API, no input
parameters are necessary.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Implementing the Interface Functions

We must first add the functions we have defined as part of the interface to the class definition
for our COM object:

 class ATL_NO_VTABLE CRefRate :

 public CComObjectRootEx<CComSingleThreadModel>,

 public CComCoClass<CRefRate, &CLSID_RefRate>,

 public IDispatchImpl<IRefRate, &IID_IRefRate,

&LIBID_REFRESHRATELib>

 {

 public:

 CRefRate()

 {

 }

 DECLARE_REGISTRY_RESOURCEID(IDR_REFRATE)

 DECLARE_PROTECT_FINAL_CONSTRUCT()

 BEGIN_COM_MAP(CRefRate)

 COM_INTERFACE_ENTRY(IRefRate)

 COM_INTERFACE_ENTRY(IDispatch)

 END_COM_MAP()

 // IRefRate

 public:

 HRESULT __stdcall RefreshRate(long HScan, long* retval);

 HRESULT __stdcall GetVRes(long* retval);

 HRESULT __stdcall GetHRes(long* retval);

 };

The __stdcall qualifier that appears in front of each function name specifies that the function

uses the WINAPI (or PASCAL) calling convention. This prescribes how the parameters are

handled when the function is called, and differs from the standard C++ calling convention. All
COM interface functions with a fixed number of parameters use this. We must now add the
implementations for these functions to the RefRate.cpp file. Let's implement
RefreshRate() first:

 // Calculate the refresh rate

 HRESULT __stdcall CRefRate::RefreshRate(long HScan, long* retval)

 {

 int ScreenY = GetSystemMetrics(SM_CYSCREEN); // Get
vertical

 ScreenY = static_cast<int>(1.04 * ScreenY); // Allow for
overscan areas

 *retval = HScan * 1000 / ScreenY; // Return to
client

 return S_OK;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

Getting the current screen resolution is easy. We just call the Windows API function
GetSystemMetrics() with an argument that specifies the kind of information we want. The
argument value SM_CXSCREEN would give the number of pixels in the horizontal direction, and

the argument we have used, SM_CYSCREEN, results in the number of pixels on the screen

vertically being returned. This function can supply a large number of other items of information,
on which you can find details by placing the cursor on the function name and pressing F1.

There is usually some time lost between ending one screen scan and starting the next, so we

compensate for this by effectively increasing the number of screen pixels in the y direction by
4%. We then divide the result into the value for the horizontal scan frequency to get the refresh
rate, the 1000 multiplier being necessary because the units are kilohertz. We need to
dereference retval to store the result. When the function is called by a client, the value (rather

than a pointer to the value) will be returned, as we shall see. Here we are storing the result in
the location pointed to by the retval argument.

Finally, we return the HRESULT value S_OK to the COM environment. HRESULT is quite a

complex value: packed into its 32 bits are four different fields indicating the status on return from
the function. We don't need to get into the detail of these, since most of it is intended for the
operating system. Returning S_OK indicates the function succeeded; E_FAIL indicates an
unspecified failure. There are in fact a variety of return codes for success beginning with S_,

and similarly a range of error return codes beginning with E_. Because there are multiple codes
for success and failure, you should not test an HRESULT value by comparing it with specific

return codes such as S_OK or E_FAIL. You should use the macro SUCCEEDED() to test for
success and the macro FAILED() to test for failure. For example, if the HRESULT value

returned is hR, you could write:

 if(SUCCEEDED(hR))

 // Do something for success...

 else

 // Oh dear, it didn't work...

Implementing the other two interface functions is very easy:

 HRESULT __stdcall CRefRate::GetVRes(long* retval)

 {

 *retval = GetSystemMetrics(SM_CYSCREEN); // Return horizontal
resolution

 return S_OK; // Return to COM
environment

 }

 HRESULT __stdcall CRefRate::GetHRes(long* retval)

 {

 *retval = GetSystemMetrics(SM_CXSCREEN); // Return vertical
resolution

 return S_OK; // Return to COM
environment

 }

They both work in the same way. Each stores the result to be returned to the client in the
location pointed to by retval, and then returns the S_OK value.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Building the Component

Build the component in exactly the same way as any other project. First, the MIDL compiler will
process the .idl file to produce the .tlb file containing the type library, then the C++ compiler

will compile the C++ source, the link step will generate the .dll, and finally the component will

be registered. This presumes, of course, that there are no errors in the code you have added.

If you look at the External Dependencies folder in FileView, you'll see that the MIDL compiler has
produced three new files and included RefreshRate.h there as well:

File Description

Basetsd.h Contains definitions for the base types used by the IDL compiler

RefreshRate.tlb Contains the type library for the program.

RefreshRate_i.c Contains definitions for the IIDs for the IRefRate interface and the
type library, and the CLSID for the COM component.

It has also added code to RefreshRate.h, which previously only contained a comment but
now contains the code defining the virtual function table for our custom interface IRefRate.

The virtual function table contains a pointer to each function in the interface. There's one
version of the vtable that's selected if the symbol __cplusplus is defined (the C++ version),

and one for when it isn't. In our context, the former applies.

You'll notice the macro __RPC_FAR applied to the type of the parameters in the pointer

definitions for our interface functions in the virtual function table in RefreshRate.h. This

macro only applies to 16-bit environments and is removed by the preprocessor in Windows 95
and other Win32 environments. That's why we didn't need it in our declarations in CRefRate

class, but you should add it if you plan to compile the code for a 16-bit environment. The
STDMETHODCALLTYPE macro that also appears is equivalent to the __stdcall specifier that
we used in the CRefRate class and in the implementations of the functions.

If you're unsure what the prototypes in C++ for functions you have added to the interface in the
.idl file are, you can always build the project to get the MIDL compiler to generate the .h file.

There will be a lot of errors, since you won't have declared these functions in the component
class, but you can copy the function declarations that appear in the interface definition in the .h

file generated by the MIDL compiler. For example, if you look in the RefreshRate.h file you
will see it has an interface entry for the RefreshRate() function as follows:

 virtual HRESULT STDMETHODCALLTYPE RefreshRate(

 /* [in] */ long HScan,

 /* [retval][out] */ long __RPC_FAR *retval) = 0;

All you need to do is remove the =0 at the end to get a declaration to put in your class:

 virtual HRESULT STDMETHODCALLTYPE RefreshRate(

 /* [in] */ long HScan,

 /* [retval][out] */ long __RPC_FAR *retval);

You could then put this as the declaration in the class definition verbatim. The
STDMETHODCALLTYPE is a macro that generates __stdcall, so you can leave that. The

__RPC_FAR macro is for 16-bit environments and is ignored under Windows 95. The comments

aren't particularly tidy, so you could remove those if you wanted to, but they don't do any harm.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Using the Component

Our component should be usable in any environment that supports COM. Using our COM
component is easiest in Visual Basic, so let's give that a try first. After that, we'll see how we can
incorporate RefRate into a C++ program. If you don't have or use Visual Basic, you can skip
the next section and go straight to using RefRate in a C++ program.

Visual Basic Access to the COM Component

The first thing to establish, once you've started a new Visual Basic project, is that Visual Basic is
aware of our COM component. Select the menu item References... in the Project menu to
display the dialog shown here:

This lists the references that are identified in the system. All those checked are available to your
Visual Basic program. If the type library for RefreshRate appears in the list, just click the

check box and click on the OK button to make it available in your program. If it doesn't appear in
the list, you can add it by clicking the Browse... button, going to the directory containing the
RefreshRate code, and selecting the type library file, RefreshRate.tlb.

The first step is to design a form that we can use to exercise our COM component. All we need
are some text boxes and a few labels, as shown:

Four text boxes have been added to the form. You can assign names to the text boxes in the
property list that reflect their purpose. Running from top to bottom, I used the names
txtHScanMax, txtRRate, txtHRes and txtVRes respectively. The last three are output
only, so you could set the Locked property to True to prevent them from being edited. You

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

could also clear the Text property so they appear empty. There is a label at the top with
instructions, plus a label for each of the text boxes to identify them. All we need in addition to
this is a small amount of code to handle the input.

You need to implement a subroutine to handle a KeyPress event for the txtHScanMax text

box, as follows:

 Private Sub txtHScanMax_KeyPress(KeyAscii As Integer)

 Dim objRefRate As New RefRate

 If (KeyAscii = 13) Then

 txtRRate.Text =
objRefRate.RefreshRate(HScant:=Val(txtHScanMax.Text))

 txtHRes.Text = objRefRate.GetHRes

 txtVRes.Text = objRefRate.GetVRes

 End If

 End Sub

The Dim statement declares an object variable, objRefRate, that's an instance of the
RefRate component. We can use this variable to call the interface functions for the component.

The If statement tests for the Enter key being pressed (code 13). If it is, it passes the value
entered in the txtHScanMax text box as the argument to the interface function

RefreshRate(). The refresh rate is then displayed in the text box txtRRate. In practice, it
would be a good idea to verify that the txtHScanMax text box is not zero before passing the

value to the COM interface function. We call the other two interface functions for the RefRate

object and display the output in the appropriate text box.

As you may have already noticed, Visual Basic has the same intellisense features that Visual
C++ does and will prompt you with the various member functions that an object has available to
it. For example:

Visual Basic also provides you with an Object Browser which shows you every object and class

that's available to you in your code, along with their properties, methods and events. Press the
F2 function key to display it. Once you've selected an object method, you can copy it to the

clipboard by pressing and then paste it into your code at your discretion.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Running the program on my machine and typing in a value of 90 for the horizontal scan rate, I

get this output:

Using ATL-based COM objects in Visual Basic is very straightforward, once Visual Basic is

aware of them. All you do is create a variable representing an instance of the component, and
use the object variable to access the interface. What could be simpler than that?

Using the COM Component in C++

The simplest way we can explore the mechanics of using a COM component in Visual C++ is to
create a project specifically to do this. Use MFC AppWizard (exe) to create a new project for an
SDI program. I gave the project the name UseRefRate, but you can use whatever you want.

You can leave the ActiveX Controls box on Step 3 checked, and on Step 6 change the base class
for the view to CFormView. This will make it easy to set up some controls to operate the

component.

The first thing we need to do is set up the dialog that's used in the view. Go to ResourceView

and double-click on the dialog ID - with the name I assigned to the project it's
IDD_USEREFRATE_FORM. We can set it up to look very similar to the Visual Basic form we had

previously:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

There are four edit boxes, each with a static text item alongside, and a static text item to

indicate how to use the dialog. There's also a button labeled Calculate at the bottom. You can
give the button the ID IDC_CALCULATE, and the edit boxes the IDs IDC_HSCAN,

IDC_REFRESH, IDC_HRES and IDC_VRES. All the edit boxes should have the Number option

checked on the Styles tab in the Properties dialog, and the bottom three should have the Read-
only option checked as well.

Now we can add variables corresponding to the four edit boxes. You will recall that we can do
this by double-clicking the edit box while holding down the Ctrl key. They should all be of type
long, since each of the entries is an integer, and you can give them the names m_lHScan,
m_lRefresh, m_lHRes and m_lVRes. They will be added to the view class definition and

initialized in the constructor. You could change the default value set in the view class
constructor for m_lHScan to 50, since this should always be non-zero. All the code necessary

to pass data between the variables and the controls will already have been added to the
DoDataExchange() function in the view class. We just need to add a handler for the button.

You can add the button handler in the same way as you added the variables for the edit boxes:
just double-click the button in the dialog while holding down the Ctrl key. The OnCalculate()

handler will do all of the work to call the COM component interface methods, but first we need to
connect our program to an instance of the COM component. We'll need to do two basic things
to make this happen: we must create an instance of the component, and we must implement a
means of accessing the interface to the component. Since we get a lot of help from
ClassWizard for the latter, let's do that first.

Creating the Interface

For the representation of the interface to the COM component, it's natural in C++ to think of a
class. ClassWizard can create the class that we need automatically from the type library for the
component.

Open the ClassWizard dialog by right clicking in the editor window and selecting from the
context menu, and click on the Add Class... button. From the pop-up that appears, select the

From a type library... option. You will then see this dialog:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Navigate to the directory containing the type library for RefreshRate, select the file and click

on Open. You will then see a dialog showing details of the class that will be created from the
type library:

A class IRefRate will be derived from COleDispatchDriver to implement the interface
defined in the type library file RefreshRate.tlb. Click on OK in the dialog to accept this, and

then click on the OK button to close ClassWizard. If you look in ClassView you will see the class
has been added to your project, and is defined as:

 class IRefRate : public ColeDispatchDriver

 {

 public:

 IRefRate() {} // Calls COleDispatchDriver default
constructor

 IRefRate(LPDISPATCH pDispatch) : COleDispatchDriver(pDispatch)
{}

 IRefRate(const IRefRate& dispatchSrc) :
COleDispatchDriver(dispatchSrc) {}

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Attributes

 public:

 // Operations

 public:

 long RefreshRate(long HScan);

 long GetVRes();

 long GetHRes();

 };

The base class ColeDispatchDriver enables COM interface functions to be called using the

IDispatch interface. ColeDispatchDriver has three constructors: one connects to a COM
object by using an existing ColeDispatchDriver object that has already established an

interface to the COM object; one accepts a pointer to an IDispatch interface; the third is a

default constructor that accepts no arguments. If you use the default constructor to create a
ColeDispatchDriver-derived object, you can use CreateDispatch() or

AttachDispatch() to attach the dispatch interface to the object.

If you look in RefreshRate.cpp, you'll see how the interface functions have been

implemented:

 long IRefRate::RefreshRate(long HScan)

 {

 long result;

 static BYTE parms[] = VTS_I4;

 InvokeHelper(0x60020000, DISPATCH_METHOD, VT_I4,
(void*)&result,

parms, HScan);

 return result;

 }

 long IRefRate::GetVRes()

 {

 long result;

 InvokeHelper(0x60020001, DISPATCH_METHOD, VT_I4,
(void*)&result, NULL);

 return result;

 }

 long IRefRate::GetHRes()

 {

 long result;

 InvokeHelper(0x60020002, DISPATCH_METHOD, VT_I4,
(void*)&result, NULL);

 return result;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Each of the three functions calls the function InvokeHelper() that's inherited from the base
class. This function packages the Invoke() function in the IDispatch interface and can

accept five or more arguments, which we can use to find out how it works.

The first argument to InvokeHelper() is the DispID for the interface function that's to be

called; the DispID was obtained from the type library for the component by ClassWizard. The
second argument determines that a method is being called, rather than a property value being
set or obtained. The third argument specifies the type of the return value - VT_I4 corresponds
to long. The types acceptable in the COM context are encoded so that they can be interpreted

appropriately in any programming context, and there is a predefined set of symbols that
correspond to these types. The fourth argument is a pointer to a variable that is to receive the
return value from the interface function. This is the retval value, not the value of type
HRESULT returned to COM. If the HRESULT value returned when the interface function is called

indicates a failure, the InvokeHelper() function will throw an exception.

The fifth argument is a pointer to a string that indicates the type of each of the following
arguments. If there are none, as is the case with GetVRes() and GetHRes(), this pointer is
NULL. The types are specified in a language-neutral form similar to that for the return value.

VTS_I4 is used for HScan, which corresponds to long.

Once we've a created component object, we'll be able to access the interface functions for the
RefRate component through the driver class, IRefRate, so add the following declaration to

the CUseRefRateView class definition:

 public:

 IRefRate* m_pRefRateDriver; // Pointer to dispatch driver for
RefRate

We'll be using this pointer in the button handler to call the interface functions for the component.
You can also add an incomplete declaration for the IRefRate class immediately before the

view class definition:

 class IRefRate; // The RefRate dispatch driver class

Of course, we'll need the definition of the class IRefRate when we include the view class
definition into the view implementation file, so add the following #include directive to the

UseRefRateView.cpp file, just before the #include directive for UseRefRateView.h:

 #include "RefreshRate.h"

You need to add the same #include directive to the UseRefRate.cpp file.

Using the COM Library

Before you can do anything with a COM component, even before constructing it, you need
access to the COM library in your program. The COM library contains functions that enable you
to create COM components, as well as a variety of other functions for working with COM
objects. To make the COM library functions available to your program, you call a function
CoInitialize().

When you call this function, it requires an argument of NULL to be specified because the

parameter is reserved for possible future use. Because it's a COM function, it returns a value of
type HRESULT. The normal return value is S_OK if the COM library initialization was successful.

CoInitialize() returns S_FALSE if the library was already initialized. Remember that you
should not use an if to check for these values directly. Because there are several possible

success or failure codes, you should use the macros SUCCEEDED() or FAILED() to test an
HRESULT value.

Note that the COM library is part of the OLE library that's a prerequisite for OLE (ActiveX)
controls. The OLE library is initialized by a call to OleInitialize(), which in turn calls

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

CoInitialize(). If you think you'll need the full facilities of the OLE library at some point, you
can call OleInitialize() instead of CoInitialize(). You must then call

OleUninitialize() (rather than CoUninitialize()) when you're done. We only need

COM in the present context, so we'll stick with that in our example.

All our usage of COM library facilities will be within the view class for our program. We can add
the following statements to the constructor for the CUseRefRateView class, following the block
of code bounded by the AFX_DATA_INIT comments:

 if(FAILED(CoInitialize(NULL))) // Initialize COM
library

 {

 AfxMessageBox("COM Library init failed");

 AfxAbort(); // End the program

 }

This uses the FAILED() macro to test whether the HRESULT value returned indicates that the

COM library was not initialized. If it wasn't, we can't proceed, so we display a message and end
the program.

When you've finished with the library in your program, you should call the function
CoUninitialize(), so add the following statement to the view class destructor:

 CoUninitialize(); // Uninitialize the COM library

With the COM library initialized, we are ready to create our first COM object.

Component Objects

A COM object is not a class object. Although we used a class to implement RefRate, doing so

was a C++ convenience, nothing more. A COM component can be implemented without using
classes at all. To create an instance of a COM component, you can call the COM library
function CoCreateInstance(). This function will create the COM object by calling the
GetClassObject() member of the _Module object in the component implementation, and

supplying a pointer to the COM interface that you request. The function requires five arguments:
1. The CLSID for the component, of type REFCLSID.

2. A pointer of type IUnknown. If this is NULL, it indicates that the component isn't

embedded in another component; a component incorporated into another component is
said to be aggregated. If the component is aggregated, this pointer points to the
IUnknown interface for the component that contains the component you want.

3. A value indicating the context in which the component is to run - this could be as an in-
process server, as an out-of-process server, or as a remote server on a separate
machine.

4. A reference to the ID for the interface to be used.
5. A pointer to a pointer to the required interface.

Luckily, ColeDispatchDriver wraps up this function in a member function called

CreateDispatch(). All that CreateDispatch() needs is a CLSID to be able to create an
object and attach its IDispatch interface to the ColeDispatchDriver-derived class. This is

precisely what we need it to do, so let's investigate how we can get hold of the CLSID.

Obtaining the CLSID for a Component

There are several ways to get hold of a CLSID. The easy way out in this case would be to copy
the definition of CLSID_RefRate from the RefreshRate_i.c file that was generated by the

MIDL compiler when we compiled the code for the component. However, for other components,
we can't be sure that this will always be available so we need a more general approach for the
COM components you have on your system.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can view information about RefRate and other COM components by using the OLE/COM
Object Viewer (oleview.exe) that you can access through the Tools menu. It runs as a

completely independent program so you could execute it separately from Visual C++ if you
wanted to.

To display information about our component using the OLE/COM Object Viewer, make sure

Expert Mode is checked in the View menu, and extend the All Objects folder in the left hand
pane. You will then see a list of all the COM objects on your system in alphabetical order. You
should find the RefRate entry in the list.

If you click on the entry to highlight it, the registry data will be displayed in the right hand
window. Right clicking the entry will bring up a context menu, as shown, where you have an
option to copy the CLSID to the clipboard. You will then be able to copy the CLSID from the
clipboard into your program. However, there's a problem with that: the CLSID is actually a 128-
bit binary number. When we copy the CLSID from the clipboard, we end up with a string of
characters:

{3A6DD1D0-1B63-11D2-B735-ADB796237F06}

You need to convert this to the 16-byte numeric value for the CLSID for it to be of any use.
Fortunately, the COM library provides a function called CLSIDFromString() that will do the

conversion for you. You must supply two arguments to the function: a pointer to the string
representation of the CLSID, and the address of a variable of type CLSID. You could therefore
get the CLSID with the statements:

 CLSID CLSID_RefRate; // Object
class ID

 ::CLSIDFromString(L"{3A16DD1D0-1B63-11D2-B735-ADB796237F06}",

&CLSID_RefRate);

You'll have noticed the L preceding the first quote for the string representation of the CLSID.

No, it isn't a typo! The L specifies the string constant as being a wide character string - of type
wchar_t. The L is a cast to long which is the underlying type of wchar_t. With this type of

string, each character requires 16 bits (two bytes), rather than the single byte for ASCII. You
can just paste the string representation direct from the clipboard (including the braces), put
quotes around it and add the initial L. In fact, it won't work if you remove the braces, so don't be

tempted to delete them.

There's yet another way to get the CLSID. The registry contains a ProgID (a program ID) for
each COM component. The ProgID is usually in the form
Program_Name.Component_Name.Version. In our case, the program name is
RefreshRate, the component name is RefRate, and the version is 1. If you look in the

registry under HKEY_CLASSES_ROOT, you'll see a key for RefreshRate.RefRate.1 which is
the ProgID of our component. This key contains a subkey called CLSID that contains the CLSID

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

for our component. Given that you've declared CLSID_RefRate as above, you can use the
ProgID to produce the CLSID using the COM library function CLSIDFromProgID(), like this:

 ::CLSIDFromProgID(L"RefreshRate.RefRate.1",&CLSID_RefRate);

This is quite a nice way of getting a CLSID to use for creating an instance of a COM class, but it
turns out that COleDispatchDriver provides an overloaded version of CreateDispatch()

that accepts a string for the ProgID of the object to create, so we don't need to call
CLSIDFromProgID() ourselves.

Creating an Instance of a Component

We can add the code to create an instance of RefRate to the view constructor:

 CUseRefRateView::CUseRefRateView()

 : CFormView(CUseRefRateView::IDD)

 {

 //{{AFX_DATA_INIT(CUseRefRateView)

 m_lHScan = 50;

 m_lRefresh = 0;

 m_lHRes = 0;

 m_lVRes = 0;

 //}}AFX_DATA_INIT

 // TODO: add construction code here

 if(FAILED(CoInitialize(NULL))) //
Initialize COM Library

 {

 AfxMessageBox("COM library Init failed");

 AfxAbort();

 } // End the

program

 // Create a new driver object to handle our COM object

 m_pRefRateDriver = new IRefRate;

 // Create an instance of the COM object using the ProgID

 // and attach the dispinterface to our OLEDispatchDriver-
derived object

 m_pRefRateDriver->CreateDispatch(_T("RefreshRate.RefRate.1"));

 }

This is really just putting together what we've discussed. The only thing to notice is the _T()

macro around the ProgID. If you've compiled your application for Unicode then the
CreateDispatch() function accepts a wide string, but if you haven't then you must pass a
standard string without prefixing it with an L. In our (non-Unicode) case we could get away with

passing the string directly to the function, but it would be better if we wrapped the string up in a
_T() macro. This macro is exactly the same as the L prefix if Unicode is used, but it means

nothing if it isn't, so we're covered in either case. You'll see this macro used a lot in MFC itself.

Note that the pointer, m_pRefRateDriver, that we're using here is not a pointer to the
IDispatch interface of the RefRate object. m_pRefRateDriver is a pointer to a

ColeDispatchDriver-derived class that implements functions corresponding to those in the

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

RefRate dispatch interface. If you want to manipulate the dispatch interface directly, you can
get a pointer to it from the public m_lpDispatch member of ColeDispatchDriver.

Releasing the Component

The next thing we need to do is add code to the destructor to clean up the driver object that
we've allocated with the new operator, so add the following statement to the

CUseRefRateView class destructor:

 CUseRefRateView::~CUseRefRateView()

 {

 delete m_pRefRateDriver;

 CoUninitialize(); // Uninitialize the COM library

 }

Note that the code must come before the call to CoUninitialize(). We can't uninitialize the

COM library until all the COM objects that we've created have been released. Remember that
each time you call QueryInterface() or AddRef() on an interface, you are increasing the
reference count for that interface and that you need to call Release() when you've finished

using the interface so that the reference count is decreased and the object can remove itself
from memory when appropriate.

Although it doesn't look like we're calling Release() on the IDispatch interface that's
wrapped up in the driver class, it is happening. The destructor for ColeDispatchDriver calls

Release() on the dispatch interface pointer that it has, as long as a member variable called
m_bAutoRelease is set to TRUE. Since it is TRUE by default, the delete operation on

m_pRefRateDriver does call IDispatch::Release() in our case.

Now we have an instance of the RefRate component and the interface is available to us, so we

can implement the handler for the Calculate button.

Using Component Interface Functions

We're back on familiar ground now. We can use the functions in the IRefRate class object that

connects to the COM object just like any other class member function. The implementation of
the handler will be:

 void CUseRefRateView::OnCalculate()

 {

 UpdateData(TRUE); // Get m_lHScan from the
dialog

 m_lRefresh = m_pRefRateDriver->RefreshRate(m_lHScan);

 m_lHRes = m_pRefRateDriver->GetHRes();

 m_lVRes = m_pRefRateDriver->GetVRes();

 UpdateData(FALSE); // Set the values in the
dialog

}

We first call the UpdateData() member of our view class (inherited from CWnd) with the
argument TRUE. This causes DoDataExchange() to be called to retrieve data from the form

dialog controls - on this occasion, just the value entered for the scan rate. After calling the
component interface functions to calculate the refresh rate and the screen resolution, we call
UpdateData() with the argument FALSE to store these values back in the controls in the form

dialog.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Our client for the component is complete. You can now build it and give it a whirl. You should
get a dialog that looks like this one:

Using ATL to Create an ActiveX Control

Now that we've staggered through creating and using an elementary ATL-based COM object,
we're ready for something a bit more challenging. We can see how to put together an ATL-
based equivalent of the traffic signal control that we produced using MFC.

The first step is to create a project using the ATL COM AppWizard, exactly as before, but name
the project ATLSignal. Once that's done you can add a COM object. Click on the button on the

ATL toolbar, or select Insert | New ATL Object... from the menu.

This time we want to insert a full ATL control from the Controls set of COM components, so
make sure it's highlighted as shown, and click on Next >. You can enter Signal as the short

name on the Names tab in the ATL Object Wizard Properties dialog:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The Stock Properties tab enables you to add support for stock properties to the ATL control object

that will be accessible from a client. If you look at the tab, you'll see that there are a greater
variety of stock properties available here than through COleControl in MFC. However, we

don't need to add any of these to our control. Take a look at the Attributes tab:

Check the box for Support Connection Points - this will be needed when we add the event to the

control which signals the container when our traffic signal changes state. We had the capability
in the MFC version to do this, so we should see how to implement it using ATL. Now take a look
at the Miscellaneous tab:

As you can see, this tab provides us with options to specify how we want our control to appear
when it's being run. In this case, we'd like it to always appear in a window, so check the

Windowed Only box.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

That's all we need from the options, so just click on OK to add the files defining the control to
our project. Let's take a look at what's been added.

The ATL Control Class

If you look at ClassView, you'll see that we have just one class added to our project, CSignal,

and an interface, ISignal. If you look at the class definition though, there's some real meat

here. Let's explore the interesting bits piecemeal:

 Class ATL_NO_VTABLE CSignal :

 public CComObjectRootEx<CComSingleThreadModel>,

 public IDispatchImpl<ISignal, &IID_ISignal,
&LIBID_ATLSIGNALLib>,

 public CComControl<CSignal>,

 public IPersistStreamInitImpl<CSignal>,

 public IOleControlImpl<CSignal>,

 public IOleObjectImpl<CSignal>,

 public IOleInPlaceActiveObjectImpl<CSignal>,

 public IViewObjectExImpl<CSignal>,

 public IOleInPlaceObjectWindowlessImpl<CSignal>,

 public IConnectionPointContainerImpl<CSignal>,

 public IPersistStorageImpl<CSignal>,

 public ISpecifyPropertyPagesImpl<CSignal>,

 public IQuickActivateImpl<CSignal>,

 public IDataObjectImpl<CSignal>,

 public
IProvideClassInfo2Imp1<&CLSID_Signal,&DIID__ISignalEvents,

&LIBID_ATLSIGNALLib>,

 public IPropertyNotifySinkCP<CSignal>,

 public CComCoClass<CSignal, &CLSID_Signal>

 {

 // Details of the class definition...

 };

Our class CSignal has no fewer than seventeen base classes, all of which are templates, so

they're customized to fit with our class. Our class will inherit the functionality of all these classes,
so you'd need to look into the members of all of them if you wanted to appreciate the full
capabilities of CSignal. We won't be doing that here, but we will pick a few that are of interest

to us. You can get to the documentation on any of the base classes by placing the cursor on the
class name and pressing F1.

CComObjectRootEx, CComCoClass, CComControl and IDispatchImpl implement the

basic COM capability that we discussed in the context of the previous COM example, so we
won't repeat it here. We won't go through the others in detail, but a rough guide to the services
that the other base classes provide is as follows:

Class Name Purpose

IProvideClassInfo2Impl Provides functions that make the type
information for an object available.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Class Name Purpose

IPersistStreamInitImpl Provides a client interface to initiate saving
and loading of the persistent data for an object
in a stream.

IPersistStorageImpl Provides a client interface to initiate saving
and loading of the persistent data for an object
in a structured form called a storage that can
improve I/O performance with complex
objects.

IQuickActivateImpl Enables rapid loading of the control.

IOleControlImpl Provides a default implementation of the
IOleControl interface that supports
signaling ambient property changes, among
other things.

IOleObjectImpl Provides a default implementation of
IOleObject which provides the primary
interface by which a container communicates
with a control.

IOleInPlaceActiveObjectImpl Provides a default implementation of the
IOleInPlaceActiveObject interface

which supports communications between a
container and an in-place active control.

IViewObjectExImpl Provides a default implementation of the
IViewObject interface which enables a

control to display itself in the container.

IOleInPlaceObjectWindowlessImpl Provides an implementation of the
IOleInPlaceObjectwindowless interface
which enables a windowless control to receive
Windows messages.

IDataObjectImpl Provides an implementation of the
IDataObject interface that supports the
uniform data transfer which applies to
transferring data via the clipboard and drag
and drop operations.

IConnectionPointContainerImpl Provides a container class for connection
points which support events that are signaled
from our control to the container.

ISpecifyPropertyPagesImpl Provides an implementation of the
ISpecifyPropertyPages interface which

enables a container to obtain the CLSIDs for
the property pages for a control.

IPropertyNotifySinkCP Exposes the IPropertyNotifySink
interface on a connection point for receiving
notifications from the object that a property
has changed

The COM AppWizard automatically deals with the registration of the control. The statement:

 DECLARE_REGISTRY_RESOURCEID(IDR_SIGNAL)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

is a macro that will generate the definition of a static function in the class that will register the
control. The symbol IDR_SIGNAL is defined by the COM AppWizard and identifies the .rgs file

containing the registry script.

This block of code in the class definition defines the COM map for the control:

 BEGIN_COM_MAP (CSignal)

 COM_INTERFACE_ENTRY(ISignal)

 COM_INTERFACE_ENTRY(IDispatch)

 COM_INTERFACE_ENTRY(IViewObjectEx)

 COM_INTERFACE_ENTRY(IViewObject2)

 COM_INTERFACE_ENTRY(IViewObject)

 COM_INTERFACE_ENTRY(IOleInPlaceObjectWindowless)

 COM_INTERFACE_ENTRY(IOleInPlacoObject)

 COM_INTERFACE_ENTRY2(IOleWindow, IOlePlaceObjectWindowless)

 COM_INTERFACE_ENTRY(IOleInPlaceActiveObject)

 COM_INTERFACE_ENTRY(IOleControl)

 COM_INTERFACE_ENTRY(IOleObject)
COM_INTERFACE_ENTRY(IPersistStreamInit)

 COM_INTERFACE_ENTRY2(IPersist, IPersistStreamInit)

 COM_INTERFACE_ENTRY(IConnectionPointContainer)

 COM_INTERFACE_ENTRY(ISpecifyPropertyPages)

 COM_INTERFACE_ENTRY(IQuickActivate)

 COM_INTERFACE_ENTRY(IPersistStorage)

 COM_INTERFACE_ENTRY(IDataObject)

 COM_INTERFACE_ENTRY(IProvideClassInfo)

 COM_INTERFACE_ENTRY(IProvideClassInfo2)

 END_COM_MAP()

Each entry is an interface which can be accessed by a container. All the functions that a
container can call in the control will appear in one or other of the interfaces that appear here.

The property map defines the CLSIDs and other information relating to property pages
supported by the control:

 BEGIN_PROP_MAP(CSignal)

 PROP_DATA_ENTRY("_CX", m_sizeExtent.cx, VT_UI4)

 PROP_DATA_ENTRY("_cy", m_sizeExtent.cy, VT_UI4)

 // Example entries

 // PROP_ENTRY("Property Description", dispid, clsid)

 // PROP_PAGE(CLSID_StockColorPage)

 END_PROP_MAP()

Next we have a connection point map:

 BEGIN_CONNECTION_POINT_MAP(CSignal)

 CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)

 END_CONNECTION_POINT_MAP()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This contains just the one point at the moment for receiving property changes, but you can add
an entry here for each event that the control supports. Each event will be represented by a
connection point that is specified in this map.

The message map defines the message handlers that the control provides:

 BEGIN_MSG_MAP(CSignal)

 CHAIN_MSG_MAP(CComControl<CSignal>)

 DEFAULT_REFLECTION_HANDLER()

 END_MSG_MAP()

The first entry defines where to find the message map of the base class for CSignal - which in
this case in CComControl - and the second provides a default handler for the control that will
receive reflected messages. We'll be adding further handlers to the message map a little later in
the chapter.

The DECLARE_VIEW_STATUS() function specifies information to a container about whether the

control has a solid background and is opaque or not. It will be called by a container when the
view containing the control needs to be redrawn. This allows the container to make the drawing
process more efficient, since items in the view that are covered by an opaque object with a solid
background will not need to be redrawn.

At the end of the class definition there's a definition of the OnDraw() function which will draw

the control in the container.

Before we can do much about drawing the control, however, we need to define a traffic signal.
That means we need to add a class to the project.

Defining the Signal

We can implement the class to define the signal much as we did with the MFC-based version.
However, we'll need to make a few changes because we no longer have MFC available to us.

Create a new class by selecting the Insert | New Class... menu item. Set the Class type to Generic
in the New Class dialog and give the class the name CTrafficSignal, then click OK.

Now go to the class definition and add the following code:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #if
!defined(AFX_TRAFFICSIGNAL_H__E21E34C2_1BC5_11D2_BA71_00600873394D__IN
CLUDED_)

 #define
AFX_TRAFFICSIGNAL_H__E21E34C2_1BC5_11D2_BA71_00600873394D__INCLUDED_

 #if _MSC_VER > 1000

 #pragma once

 #endif // _MSC_VER > 1000

 class CTrafficSignal

 {

 public:

 CTrafficSignal();

 virtual ~CTrafficSignal();

 // Class interface

 void SetPosition(int x, int y)

 {

 m_ptPosition.x = x;

 m_ptPosition.y = y;

 }

 void SetHeight(int nHeight)

 { m_nHeight =nHeight; }

 void SetState(int nState)

 { m_nState = nState; }

 int NextState(); // Change to the
next state

 void Draw(HDC& hDC); // Draw the
traffic signal

 private:

 POINT m_ptPosition; // Bottom center of signal

 int m_nHeight; // Height of signal

 int m_nState; // State of signal

 };

 #endif

 //
!defined(AFX_TRAFFICSIGNAL_H__E21E34C2_1BC5_11D2_BA71_00600873394D__IN
CLUDED_)

This is almost the same as the definition we had in the MFC implementation in Chapter 23, but
there are some differences you should note.

The CPoint class isn't available because we're not using MFC. To declare the member
m_ptPosition to store the reference point for the signal we use the POINT structure which is

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

defined for the Windows API. This has public members x and y storing the coordinates. The
SetPosition() member of the original class accepted a CPoint argument; now it accepts

two arguments of type int. We could use a POINT structure for the point here, but it will be

easier to use the coordinates as arguments in this case.

The Draw() function has a different parameter type specified from the original version too. The

HDC type is another Windows type defining a handle to a device context. A device context in
Windows is a structure that you refer to with a variable of type HDC. All our drawing operations

will need to use the Windows API, since we have no MFC facilities in our control, but it's not
going to be that difficult, as you will see.

Implementing CTrafficSignal

In TrafficSignal.cpp, we need to implement three functions: the constructor, the
NextState() function, and the Draw() function. We'll use the same constants that we used in

the MFC version, so copy the OurConstants.h file to the current project directory. The

contents are exactly as before:

 // Definition of constants

 #ifndef __OURCONSTANTS_H__

 #define __OURCONSTANTS_H__

 const int STOP = 101;

 const int GO = 103;

 const int READY_TO_STOP = 104;

 const COLORREF RED = RGB(255, 0, 0);

 const COLORREF ORANGE = RGB(200, 100, 0);

 const COLORREF GREEN = RGB(0, 255, 0);

 const COLORREF GRAY = RGB(100, 100, 100);

 #endif

We can implement the constructor for the CTrafficSignal class first, since that's the easiest
function. The initial additions to TrafficSignal.cpp will be:

 #include "stdafx.h"

 #include "OurConstants.h"

 #include "ATLSignal.h"

 #include "TrafficSignal.h"

//
//////////

 // Construction/Destruction

//
//////////

 CTrafficSignal::CTrafficSignal()

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_ptPosition.x = m_ptPosition.y = 0; // Set arbitrary position

 m_nHeight =1000; // Set arbitrary height

 m_nState = STOP; // Set initial state to
STOP

 }

This just initializes the data members of the class to arbitrary values. The values for these data
members will be set externally by the control.

We can implement the NextState() member function almost exactly as in the original version,

so add the following code to TrafficSignal.cpp:

 // Change the signal state to the next in sequence

 int CTrafficSignal::NextState()

 {

 switch (m_nstate)

 {

 case STOP: // Next after STOP is GO

 m_nState = Go;

 break;

 case GO: // Next after GO is
READY_TO_STOP

 m_nState = READY_TO_STOP;

 break;

 case READY_TO_STOP; // Next after READY_TO_STOP
is STOP

 m_nState = STOP;

 break;

 default: // We should never get to

here

 m_nState = STOP;

 MessageBox(NULL, "Invalid signal state", "ATLSignal
Error", MB_OK);

 }

 return m_nState;

 }

However, note that the original call to AfxMessageBox() has to be replaced with a call to the

Win32 MessageBox() function. The last function we need to implement in the
CTrafficSignal class is Draw().

Drawing the Signal

The visual representation of the signal is exactly the same as in the previous chapter. The
reference point for describing the signal geometry is at the bottom center of the signal.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The dimensions for the signal are determined from the height of the control, and the signal will

be drawn relative to the reference point. The reference point will be set by the control as being
midway between the left and right boundaries of the control, on the bottom boundary.

Let's go through the code for the Draw() function step by step. There's quite a lot of it, although

much will be essentially the same as the previous version in Chapter 23. We can start by setting
up the brushes and pens we need to draw the traffic signal:

 void CTrafficSignal::Draw(HDC& hDC)

 {

 // Set the pen and brush to draw the signal

 HBRUSH hGrayBrush = (HBRUSH)GetStockObject(GRAY_BRUSH);

 HBRUSH hOldBrush = (HBRUSH)SelectObject(hDC, hGrayBrush);

 HPEN hBlackPen = (HPEN)GetStockObject(BLACK_PEN);

 HPEN hOldPen = (HPEN)SelectObject(hDC, hBlackPen);

 // Plus the rest of the code for the function...

 }

The Windows API uses HBRUSH and HPEN types to specify brushes and pens to be used in a

device context. These are handles - pointers to the structures representing those entities. Here
we need a stock pen and a stock brush, so we can use the API function GetStockObject()

to obtain them. The type of object that is returned is determined by the argument passed to the
function. The object is returned as type HGDIOBJ, which is a generic type for all of the stock

objects, so we must cast the handle returned to the type we want.

To select a pen or a brush into the device context, we call the API function SelectObject().
This works similarly to the CDC class member function (which in fact calls the API function

eventually). Here we pass the handle to the device context as an argument, as well as the
handle to the drawing object we want to select. Of course, we must save the handles to the pen
and brush we displace in the device context so that we can restore them when we are done.

Next we can add the code to draw the basic outline of the signal:

 void CTrafficSignal::Draw(HDC& hDC)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 // Set the pen and brush to draw the signal...

 // Define the main body of the signal

 int nLeft = m_ptPosition.x - m_nHeight/7;

 int nTop = m_ptPosition.y - (long)m_nHeight*6L/7L;

 int nRight = m_ptPosition.x + m_nHeight/7;

 int nBottom = m_ptPosition.y;

 Rectangle(hDC, nLeft, nTop, nRight, nBottom); // Draw the
body

 // Draw the semi-circular top of the signal

 Chord(hDC, // Device
context

 nLeft, nTop - m_nHeight/7, // Bounding
rectangle top-left

 nRight, nTop + m_nHeight/7, // Bounding
rectangle bottom-right

 nRight, nTop, // Start
point

 nLeft, nTop); // End Point

 // Plus the rest of the code for the function...

 }

The coordinates we need are calculated exactly as before You should be able to relate them to
the diagram. To draw the outline of the signal we call the Rectangle() and Chord()

functions from the Windows API. The MFC functions are just wrappers for these functions, so
the argument list is very similar. The only hardship we have to endure is to enter the
coordinates for the bounding rectangle explicitly.

Next we can add the code to create the brushes we need to draw the lights:

 void CTrafficSignal::Draw(HDC& hDC)

 {

 // Set the pen and brush to draw the signal...

 // Define the main body of the signal...

 // Create brushes for the lights

 HBRUSH hbrStop; // A brush to fill the stop
light

 HBRUSH hbrReady; // A brush to fill the ready
light

 HBRUSH hbrGo; // A brush to fill the go
light

 switch (m_nState)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 case STOP: // Red only

 hbrStop = CreateSolidBrush(RED);

 hbrReady = CreateSolidBrush(GRAY);

 hbrGo = CreateSolidBrush(GRAY);

 break;

 case GO: // Green only

 hbrStop = CreateSolidBrush(GRAY);

 hbrReady = CreateSolidBrush(GRAY);

 hbrGo = CreateSolidBrush(GREEN);

 break;

 case READY_TO_STOP: // Orange only

 hbrStop = CreateSolidBrush(GRAY);

 hbrReady = CreateSolidBrush(ORANGE);

 hbrGo = CreateSolidBrush(GRAY);

 break;

 default:

 hbrStop = CreateSolidBrush(GRAY);

 hbrReady = CreateSolidBrush(GRAY);

 hbrGo = CreateSolidBrush(GRAY); }

 // Plus the rest of the code for the function...

 }

To draw the lights, we must set up the appropriately colored brush that we'll use to fill each light,
depending on the current signal state stored in the m_nState data member. We have a

variable of type HBRUSH declared for each of the three lights. To create a brush, we can use the
API function, CreateSolidBrush(). This will return a handle to a brush defined by the

argument specified, which is of type COLORREF. Here we can use the symbols for the standard
colors, but you can use the RGB() macro to specify the color if necessary. The overall logic

here is exactly the same as before.

The last block of code we need to add will draw the lights using the brushes we have created:

 void CTrafficSignal::Draw(HDC& hDC)

 {

 // Set the pen and brush to draw the signal...

 // Define the main body of the signal...

 // Create brushes for the lights...

 // Define the rectangle bounding the stop light

 int nMargin = (long)m_nHeight * 2L/70L; // Ten percent
of the width

 nLeft += nMargin; // Left side
of stop light

 nTop += nMargin; // Top of stop
light

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 nRight -= nMargin; // Right side
of stop light

 int nStep = (long)m_nHeight * 2L/7L; // Distance
between lights

 nBottom = nTop + nStep - 2 * nMargin; // Bottom of
stop light

 // Draw the stop light

 SelectObject(hDC, hbrStop);

 Ellipse(hDC, nLeft, nTop, nRight, nBottom);

 // Set the position of the ready light

 nTop += nStep;

 nBottom += nStep;

 // Draw the ready light

 SelectObject(hDC, hbrReady);

 Ellipse(hDC, nLeft, nTop, nRight, nBottom);

 // Set the position of the go light

 nTop += nStep;

 nBottom += nStep;

 // Draw the go light

 SelectObject(hDC, hbrGo);

 Ellipse(hDC, nLeft, nTop, nRight, nBottom);

 SelectObject(hDC, hOldBrush); // Put the old brush

back

 SelectObject(hDC, hOldPen); // Put the old pen back

 // Delete the brushes we have created

 DeleteObject(hbrStop);

 DeleteObject(hbrReady);

 DeleteObject(hbrGo);

 }

The main difference from the original code is that we call Windows API functions to select a
brush, to do the drawing and to restore the original brush and pen. We also have to delete the
brushes we create in the function. Using an MFC class, CBrush, in the previous chapter, the
brush was deleted automatically when the CBrush object was destroyed. This would occur

when the Draw() function exited. Here, if we don't delete the brushes, we will consume more

and more GDI resources till we eventually run out and no programs will execute.

The names of the functions we use are the same as the equivalent CDC class members, so the

basic logic is exactly the same. Only the arguments are a little different. Piece of cake, wasn't it?

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Adding the Signal to the Control

Our control class CSignal will need an instance of CTrafficSignal, together with the data

members that will keep track of the state of the signal. Add the following private members to
the CSignal class definition:

 private:

 CTrafficSignal m_TrafficSignal; // The traffic
signal

 long m_lStopOrGoTime; // Stop/Go
duration in msecs

 BOOL m_bStartRed; // TRUE to start
on red

 BOOL m_bSignalGo; // True to start
the signal

 int m_nTimerID; // ID of timer
controlling the signal

 int m_nChangeTime; // Time for
READY_TO_STOP in msecs.

Because the class contains a member of type CTrafficSignal, we must add an #include

directive for TrafficSignal.h to Signal.cpp, immediately preceding the one for
Signal.h. Later, we'll be using the constants we've defined in OurConstants.h, so you can

add an #include for this too while you're about it. Another place that needs access to the
CTrafficSignal class that's easy to overlook is the ATLSignal.cpp file. This includes

Signal.h, so you must add an #include directive for TrafficSignal.h before it does so.

Of course, we need to initialize the new data members in the constructor, which has its
definition within the class definition:

 public:

 CSignal()

 {

 m_bWindowOnly = TRUE;

 m_bSignalGo = FALSE; // Not running initially

 m_bStartRed = TRUE; // Start on red

 m_nTimerID = 100; // Arbitrary ID for timer

 m_lStopOrGoTime = 5000L; // Stop or go light on for 5
seconds

 m_nChangeTime = 2000; // Orange light on for 2
seconds

 }

There's nothing new here; we can go straight on to drawing the control.

Drawing the Control

We already have an OnDraw() member implemented for us in the CSignal class by the ATL

Object Wizard:

 HRESULT OnDraw(ATL_DRAWINFO& di)

 {

 RECT& rc = *(RECT*)di.prcBounds;

 Rectangle(di.hdcDraw, rc.left, rc.top, rc.right, rc.bottom);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SetTextAlign(di.hdcDraw, TA_CENTER|TA_BASELINE);

 LPCTSTR pszText = _T("ATL 3.0 : Signal");

 TextOut(di.hdcDraw,

 (rc.left + rc.right) / 2,

 (rc.top + rc.bottom) / 2,

 pszText,

 lstrlen(pszText));

 return S_OK;

 }

This is a COM function, so it returns a value of type HRESULT. The return value here is S_OK,

but you can return other HRESULT values if you have a reason to do so. The parameter, di, that
gets passed to the function is a reference to a structure of type ATL_DRAWINFO. This contains

the information we need to implement drawing the control. It contains a member prcBounds,
which is a pointer to the bounding rectangle for the control, and a member hdcDraw, which is a

handle to a device context. The code here arbitrarily draws a rectangle around the boundary
and displays some text. We'll replace this with our own code to draw the signal:

 HRESULT OnDraw(ATL_DRAWINFO& di)

 {

 RECT& rc = *(RECT*)di.prcBounds; // Get
control rectangle

 HDC hDC = di.hdcDraw; // Get the
device context

 COLORREF clrBackGround; // Control

background color

 OLE_COLOR clrClientBackColor; // Client
background color

 // Get client backgound color and convert to COLORREF

 GetAmbientBackColor(clrClientBackColor);

 ::OleTranslateColor(clrClientBackColor,NULL,&clrBackGround);

 HBRUSH hbrBackground = CreateSolidBrush(clrBackGround); //
Create brush

 FillRect(hDC,&rc,hbrBackground); //
Fill control area

 // Define position and height of the traffic signal

 m_TrafficSignal.SetPosition((rc.right+rc.left)/2,rc.bottom);

 m_TrafficSignal = SetHeight (rc.bottom-rc.top);

 m_TrafficSignal.Draw(hDC); // Draw the signal

 return S_OK;

 }

We get a RECT structure, rc, from the prcBounds member of di that corresponds to the

rectangle bounding the control. The type RECT is a struct with members left, top,
right and bottom corresponding to the x and y coordinates of the top-left and bottom-right

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

corners of the rectangle. Since prcBounds is a pointer, we first cast it to type RECT*, then

dereference the result to get the rectangle. We also obtain a handle to the device context for the
control which we store in hDC.

The ambient background color for the container is obtained by calling the
GetAmbientBackColor() function inherited from the CComControl base class. The ambient

background color is stored in the variable passed as an argument of type OLE_COLOR. Before
we can use this value, we must convert it to a COLORREF value. This is done by the global

function OleTranslateColor(), and the result is returned in the variable passed as the third
argument, clrBackground. The second argument to the function gives you the opportunity of

supplying a handle to a color palette to be used in the conversion.

To draw the background in the container background color, we create a brush corresponding to
the background color and use the API function FillRect() to fill the rectangle rc with that

color by using the brush we've created. The traffic signal will be drawn on top of this
background.

To draw the traffic signal, we set the values for its position and height using the coordinates
stored in the rectangle rc. We then call the Draw() function of the traffic signal object
m_TrafficSignal.

Starting and Stopping the Signal

To start and stop the signal, we need to intercept mouse messages in our control. The
WM_LBUTTONDOWN message is the one we want. We must first add our handler,

OnLButtonDown() to the message map for the CSignal class. We need one extra line in the
definition of the CSignal class:

 BEGIN_MSG_MAP(CSignal)

 CHAIN_MSG_MAP(CComControl<CSignal>)

 DEFAULT_REFLECTION_HANDLER()

 MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)

 END_MSG_MAP()

With an MFC-based program we wouldn't meddle with the message map because ClassWizard
would have managed it, but since we're using ATL here we don't have that support and must
take care of the message map entries ourselves. Of course, we must also add the function
OnLButtonDown() as a member of the class. You can add it as a public class member,
following the declaration of the OnDraw() member:

 public:

 HRESULT OnDraw(ATL_DRAWINFO& di);

 LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam,
BOOL& bHandled);

In fact, all message handlers that are specified using the MESSAGE_HANDLER() macro must

have the same prototype:

 LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM lParam,
BOOL& bHandled);

The first parameter identifies the message, and the second and third parameters are standard

parameter values passed to the handler by Windows that provide additional information about
the message. The contents of both wParam and lParam depend on the message. For example,

in the case of the WM_LBUTTONDOWN message, the lParam parameter contains the coordinates
of the cursor when the button was clicked and the wParam parameter will indicate whether any

of the mouse buttons, or the Shift or Ctrl keys were pressed. The x coordinate for the cursor
position is retrieved from lParam by using the LOWORD() macro, and the y coordinate by using

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

the HIWORD() macro. The last argument is set to TRUE before a handler is called. If you want
the message to be handled elsewhere, you can set it to FALSE in your handler. The return value

type is a 32-bit value used by Windows message handlers and callback functions.

We can implement the WM_LBUTTONDOWN message handler in Signal.cpp as:

 LRESULT CSignal::OnLButtonDown(UINT uMsg, WPARAM wParam,

 LPARAM lParam, BOOL& bHandled)

 {

 // If the signal is stopped, start it

 // If the signal is running, stop it

 m_bSignalGo = !m_bSignalGo;

 if(m_bSignalGo)

 StartSignal();

 else

 StopSignal();

 return 0;

 }

We're not interested in the cursor position. If the button is clicked we switch the running state of
the signal - if it's stopped we start it, and if it's running we stop it. To make this work we need to
add the StartSignal() and StopSignal() functions to the CSignal class. The

declarations in the class definition will be:

 public:

 HRESULT OnDraw(ATL_DRAWINFO& di);

 LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam,

 BOOL&
bHandled);

 void StartSignal(); // Start the signal

 void StopSignal(); // Stop the signal

We can implement these in Signal.cpp as:

 // Start the signal

 void CSignal::StartSignal()

 {

 // Setup a timer with the required interval

 m_TrafficSignal.SetState(m_bStartRed ? STOP : GO);

 m_nTimerID = SetTimer(m_nTimerID, (UINT)m_lStopOrGoTime);

 if (!m_nTimerID)

 exit(1); // No
timer so exit

 Invalidate(); // Get
the control redrawn

 }

 // Stop the signal

 void CSignal::StopSignal()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 KillTimer(m_nTimerID); //
Destroy the timer

 Invalidate(); //
Redraw the control

 }

These work just like the versions we had in the last chapter. In StartSignal() we call the

function SetTimer() to create a timer for the required interval; this function is inherited from
the base class CComControl. The SetTimer() arguments are the timer ID and the time

interval in milliseconds.

The KillTimer() function used in the StopSignal() function is also inherited from

CComControl and it destroys the timer identified by the ID passed as an argument. To get the
control redrawn we call the function Invalidate() which invalidates the whole area of the

control, which will result in the OnDraw() member being called. Invalidate() is also

inherited from the base class CComControl.

Controlling the Signal

To manage the operation of the signal in CSignal we use a timer, so we need to add a handler

for WM_TIMER messages to the class. We do this in the same way as for the WM_LBUTTONDOWN

message. First, add the message handler to the message map in the class definition:

 BEGIN_MSG_MAP(CSignal)

 CHAIN_MSG_MAP(CComControl<CSignal>)

 DEFAULT_REFLECTION_HANDLER()

 MESSAGE_HANDLER(WM_LBUTTONDOWN, OnLButtonDown)

 MESSAGE_HANDLER(WM_TIMER, OnTimer)

 END_MSG_MAP()

We also need to add a declaration for the handler function to the class definition:

 public:

 HRESULT OnDraw(ATL_DRAWINFO& di);

 LRESULT OnLButtonDown(UINT uMsg, WPARAM wParam, LPARAM lParam,

BOOL&

bHandled);

 void StartSignal(); // Start the
signal

 void StopSignal(); // Stop the
signal

 LRESULT OnTimer(UINT nIDEvent, WPARAM wParam, LPARAM lParam,
BOOL& bHandled);

The declaration has the standard form for a handler specified in a MESSAGE_HANDLER() macro

that we discussed earlier. In this case, the first parameter will be the ID of the timer. We can
implement the handler by adding the following code to Signal.cpp:

 LRESULT CSignal::OnTimer(UINT nIDEvent, WPARAM wParam,

 LPARAM lParam, BOOL& bHandled)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 UINT nInterval = 0; // Interval in
milliseconds

 // Step to the next signal state and set the time interval

 // based on the new state

 int nNewState = m_TrafficSignal.NextState(); // Go to next
state

 switch (nNewState)

 {

 case STOP: case GO:

 nInterval = (UINT)m_lStopOrGoTime; // Stop or Go
interval

 break;

 default:

 nInterval = m_nChangeTime; // Transient

interval

 }

 Invalidate(); // Redraw the signal

 KillTimer(m_nTimerID); // Make sure the old
timer is dead

 // Set a new timer event

 m_nTimerID = SetTimer(m_nTimerID, nInterval);

 if (!m_nTimerID) // No timer...

 exit(1); // ...so end the
program

 return 0;

 }

This follows the same logic as in Chapter 23, so we don't need to go through it again.

Exercising the Control

If you build the control, you should be able to run it in the ActiveX Control Test Container that's

available through the Tools menu. It will appear in the list of objects in the Insert Control dialog as
Signal Class. Here are two copies running:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Our control will respond to the background color being set in the container, but we can't set the

stop and go interval, or whether it starts on red or green. For that we need to add some
properties to the control.

Adding Custom Properties

We add properties through the interface to the control. If you right-click on ISignal in ClassView,
you'll see the context menu shown here:

If you select Add Property... from the context menu, you'll be able to specify the property you
want to add through the Add Property to Interface dialog:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Select the type as BOOL and enter the name as StartRed. The information in the lower part of

the dialog shown here appears when you click in, or tab to the Parameters edit box after entering
the Property Type and Property Name data. This shows the get and put functions that will be

added to the interface for retrieving and setting the property value. You should always select the
property type from the drop down list, because only these are supported by COM. Click on the
OK button to add the property to the interface.

If you look at the definition of CSignal, you'll see that the get_StartRed() and

put_StartRed() functions for the property have been added, and there's a skeleton
implementation in the file Signal.cpp. The implementations are trivial:

 STDMETHODIMP CSignal::get_StartRed(BOOL *pVal)

 {

 *pVal = m_bStartRed; // Return StartRed
status

 return S_OK;

 }

 STDMETHODIMP CSignal::put_StartRed(BOOL newVal)

 {

 m_bStartRed = newVal; // Store new StartRed
status

 return S_OK;

 }

The get_StartRed() function is passed a pointer to the location where the return value is to
be stored, so we must dereference the parameter, pVal, to store the current value from

m_bStartRed.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

You can use the same procedure to add a property with the name StopOrGoTime of type long
to the ISignal interface. The implementations of the get and put methods require just one

extra line of code in each:

 STDMETHODIMP CSignal::get_StopOrGoTime(long * pVal)

 {

 *pVal = m_lStopOrGoTime; // Return the current
interval

 return S_OK;

 }

 STDMETHODIMP CSignal::put_StopOrGoTime(long newVal)

 {

 m_lStopOrGoTime = newVal; // Store the new

interval

 return S_OK;

 }

That's all we need for the container to be able to control these properties. We should do one

more thing to match the functionality of the MFC-based control: add an event to signal the
container when the light changes.

Adding Events

An event is a very different animal to the interface functions or properties, which are functions in
the control that can be called by the container. An event puts the boot on the other foot: we
want the control to be able to call a function in the container.

With the advent of Visual C++ 6, even more of the legwork has been taken out of adding an
event to the control. The ATL AppWizard has automatically generated an event interface called
_ISignalEvents for us in ATLSignal.idl so we declare our event there:

 [

 uuid(E21E34B1-1BC5-11D2-BA71-00600873394D),

 version(1.0),

 helpstring("ATLSignal 1.0 Type Library")

]

 library ATLSIGNALLib

 {

 importlib("stdole32.tlb");

 importlib("stdole2.tlb");

 [

 uuid(E21E34BF-1BC5-11D2-BA71-00600873394D),

 helpstring("_ISignalEvents Interface")

]

 dispinterface _ISignalEvents

 {

 properties:

 methods:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 [id(l)] void SignalChanged([in]long lSignalState);

 };

 [

 uuid(E21E34BE-1BC5-11D2-BA71-00600873394D),

 helpstring("Signal Class")

]

 coclass Signal

 {

 [default] interface ISignal;

 [default, source] dispinterface _ISignalEvents;

 };

 };

A dispinterface is just a dispatch interface. The interface name, _ISignalEvents, begins

with an underscore. By COM convention, this indicates it's an outgoing interface - in other
words, it's an interface that the control's container needs to implement.

Within the coclass definition, the attributes in square brackets define the nature of the interface.
The default attribute indicates it's the default interface, and the source attribute specifies

that it's outgoing from the control. To fire the event, you just call the function
Fire_SignalChanged() with an argument specifying the current state of the signal. We need

to do this in the CSignal::OnTimer() handler, so add the following statement immediately
preceding the call to the Invalidate() function:

 Fire_SignalChanged(nNewState); // Signal the container

 Invalidate(); // Redraw the signal

 KillTimer(m_nTimerID); // Make sure the old timer
is dead

Is that it, then? Unfortunately, no. We haven't defined how the container is going to connect to
the interface. The Fire_SignalChanged() function needs to be implemented and must

connect to a container in some way. After all, we're calling a container function here to
communicate that the signal has changed. This is done through something called a connection
point.

Adding a Connection Point

A connection point on a control that represents an event is implemented through an interface
called IConnectionPoint. It couldn't be anything else really, could it? Since we know nothing

about any prospective container, the only way to communicate an event is through an outgoing
interface. The connection point interface defines how the event will be communicated to the
container. Because a control may have more than one connection point, something called a
connection point container is used to contain however many connection points we need. A
connection point container is implemented through an interface
IConnectionPointContainer, which the container application will use to find out what

connection points are supported. Conveniently, we already have a connection point container
implemented in our control, courtesy of the ATL AppWizard.

We can get the code for the connection point generated automatically using the type library for
our control. To get an up-to-date version of the type library, including the new event interface,
we need to recompile the .idl file. We don't want to rebuild the whole project right now, as
we'll get compiler errors - it isn't finished yet, after all. You can compile the .idl file alone by

right-clicking it in FileView, and selecting Compile ATLSignal.idl from the context menu.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

With the type library file generated we can add the IConnectionPoint interface. To do this,

right click on CSignal and select Implement Connection Point....

In the Implement Connection Point dialog that's displayed, the wizard assumes we want to use the
current project's type library for this implementation and names the tab ATLSIGNALLib
accordingly. In the box beneath is a list of the outgoing interfaces we could generate a
connection point for. Of course, _ISignalEvents is the only such interface here, so we check

that and now press OK. The wizard will generate the code that will implement the
Fire_SignalChanged() function so that it calls a container function through the connection

point interface. On completion, this new code will be saved in ATLSignalCP.h.

A new class template, CProxy_ISignalEvents<class T>, will have appeared in the

ClassView window. Double clicking on it will display its implementation. It's derived from
IConnectionPointImpl, which implements a connection point.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The wizard has also added to the definition of our control class CSignal to incorporate the new

template:

 class ATL_NO_VTABLE CSignal :

 public CComObjectRootEx<CComSingleThreadModel>,

 public IDispatchImpl<ISignal, &IID_ISignal,
&LIBID_ATLSIGNALLib>,

 public CComControl<CSignal>,

 public IPersistStreamInitImpl<CSignal>,

 public IOleControlImpl<CSignal>,

 public IOleObjectImpl<CSignal>,

 public IOleInPlaceActiveObjectImpl<CSignal>,

 public IViewObjectExImpl<CSignal>,

 public IOleInPlaceObjectWindowlessImpl<CSignal>,

 public IConnectionPointContainerImpl<CSignal>,

 public IPersistStorageImpl<CSignal>,

 public ISpecifyPropertyPagesImpl<CSignal>,

 public IQuickActivateImpl<CSignal>,

 public IDataObjectImpl<CSignal>,

 public IProvideClassInfo2Impl<&CLSID_Signal,

&DIID__ISignalEvents,

&LIBID_ATLSIGNALLib>,

 public IPropertyNotifySinkCP<CSignal>,

 public CComCoClass<CSignal, &CLSID_Signal>,

 public CProxy_ISignalEvents< CSignal > // Added for
event proxy

 {

 // Detail of the class definition...

 };

Note that the addition is a template class that requires CSignal as a parameter value. You'll
note that an #include directive for ATLSignalCP.h was also added to Signal.h.

The CProxy_ISignalEvents class contains the Fire_SignalChanged() function that will

communicate with the container. The IConnectionPointContainerImpl class that was
added by the COM AppWizard implements an interface IConnectionPointContainer for

the container to access the connection points on the control. This is re-iterated in the interface
entry added to the COM map section of Signal.h.

 BEGIN_COM_MAP(CSignal)

 COM_INTERFACE_ENTRY(ISignal)

 COM_INTERFACE_ENTRY(IDispatch)

 COM_INTERFACE_ENTRY(IViewObjectEx)

 COM_INTERFACE_ENTRY(IViewObject2)

 COM_INTERFACE_ENTRY(IViewObject)

 COM_INTERFACE_ENTRY(IOleInPlaceObjectWindowless)

 COM_INTERFACE_ENTRY(IOleInPlaceObject)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 COM_INTERFACE_ENTRY2(IOleWindow, IOleInPlaceObjectWindowless)

 COM_INTERFACE_ENTRY(IOleInPlaceActiveObject)

 COM_INTERFACE_ENTRY(IOleControl)

 COM_INTERFACE_ENTRY(IOleObject)

 COM_INTERFACE_ENTRY(IPersistStreamInit)

 COM_INTERFACE_ENTRY2(IPersist, IPersistStreamInit)

 COM_INTERFACE_ENTRY(IConnectionPointContainer)

 COM_INTERFACE_ENTRY(ISpecifyPropertyPages)

 COM_INTERFACE_ENTRY(IQuickActivate)

 COM_INTERFACE_ENTRY(IPersistStorage)

 COM_INTERFACE_ENTRY(IDataObject)

 COM_INTERFACE_ENTRY(IProvideClassInfo)

 COM_INTERFACE_ENTRY(IProvideClassInfo2)

 COM_INTERFACE_ENTRY_IMPL(IConnectionPointContainer)

 END_COM_MAP()

Finally, just beneath the COM map, the wizard has made the connection point itself available to

COM by adding an entry in the connection point map:

 BEGIN_CONNECTION_POINT_MAP(CSignal)

 CONNECTION_POINT_ENTRY(IID_IPropertyNotifySink)

 CONNECTION_POINT_ENTRY(DIID_ISignalEvents)

 END_CONNECTION_POINT_MAP()

All connection points for a control must appear in the connection point map. Each entry

represents an outgoing interface from the control to the container, so there will be one entry
here for each event interface that you define. Connection points are identified by their ID, which
is generated by the MIDL compiler. We have just the one defined by the dispatch interface ID
DIID__ISignalEvents. You will find that this has been defined in the file ATLSignal_i.c

that appears in the External Dependencies folder in FileView.

If you've done everything correctly, the control is ready for another trial.

Running the Control

If you build the control once more, you can exercise it again using the ActiveX Test Container.
You'll be able to trace the events being fired and change the properties.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Note that to change the properties you need to use the put method. Remember that properties
in COM use get and put methods to operate on property values. You can change the stop and

go time interval and the starting condition. An event should fire each time the signal changes.

Summary

If you've made it this far without too much trouble, you have a solid understanding of C++ and

you should have little difficulty progressing further into using Visual C++ on a wider basis and
getting deeper into COM. We only scratched the surface of COM here because, as you will
surely appreciate, it's a topic of above average complexity. You shouldn't find it particularly
difficult; there's just rather a lot to it. I hope that you've found as much pleasure in getting to here
as I have. Enjoy your programming!

Exercises

1. 'Mission: Impossible?'

In this chapter, you've seen how to create a client for the RefRate ATL component.
In fact, you've already created two versions of the client, one in Visual Basic and the
other using MFC. Your final mission, should you choose to accept it, is to create yet
another client for the RefRate component. This time, however, the only tool at your
disposal is the Active Template Library. You'll need to prepare well for this expedition.
Good luck!

Hints:
Use the documentation to help you learn more about ATL.

Start with an ATL executable project.

Discover how to use the compiler COM support, particularly the #import
statement.

Answers

1. To show you COM compiler support, we'll can create a Win32 Console Application, of type
Simple Application, and add the following code to the main() function:

 // Mytesting.cpp : Defines the entry point for the console
application.

 //

 #include "stdafx.h"

 int main(int argc, char* argv[])

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 HRESULT hr = CoInitinlize(NULL); // Initialize COM

 if (FAILED(hr)) // Check for failure

 {

 cout << "COM could not be initialized\n";

 return 0;

 }

 // If COM was successfully initialized, we can create the
proper code

 // We wrap the code in a try block because the #import-
generated wrappers

 // can throw _com_error exceptions on failure

 try

 {

 // Create the COM object and get a smart pointer to the
IRefRate interface

 IRefRatePtr pRefRate(__uuidof(RefRate));

 // Get the horizontal and vertical resolutions

 long lHRes = pRefRate->GetHRes();

 long lVRes = pRefRate->GetVRes();

 // Output the resolutions

 cout << "Horizontal resolution (pixels): " << lHRes <<
"\n";

 cout << "Vertical resolution (pixels): " << lVRes << "\n";

 while (true) // indefinite
loop

 {

 cout << "\nEnter the maximum horizontal scan rate (kHz)
or a negative

 number to quit\n";

 long lHScan = -1;

 cin >> lHScan;

 if (lHScan < 0) // If the user
wants to quit...

 throw "Application terminating..."; // ...terminate
loop by throwing

 // an
exception

 long lRefresh = pRefRate->RefreshRate(lHScan);

 cout << "Refresh rate (Hz): " << lRefresh << "\n";

 }

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // This error might be thrown by a wrapper class if something
goes wrong

 catch (const _com_ error& Err)

 {

 cout << Err.ErrorMessage() << "\n";

 }

 // We're expecting this error to be thrown when the user's had
enough

 //It makes it easy to ensure that the smart pointer is
finished with

 // by the time we call CoUninitialize()

 catch (const char* str)

 {

 cout << str << "\n";

 }

 CoUninitialize(); // Uninitialize COM

 return 0;

 }

In StdAfx.h, add the following #import statements:

 // #import generates smart pointer wrapper classes

 // from the information contained in a type library

 #import "..\RefreshRate\RefreshRate.tlb"

 using namespace REFRESHRATELib;

 // Use standard input and output

 #include <iostream>

 using std::cout;

 using std::cin;

To implement the full ATL dialog-based application, start by creating a new project with the

ATL COM AppWizard. Call it CtrlClient and select Executable (EXE) as the Server Type.
Now add a dialog to the project by selecting Insert | New ATL Object..., and then Miscellaneous
from the list in the ATL Object Wizard. Hit Next > and give the dialog a Short Name of
ClientDlg. Then click OK.

Once the dialog class has been added to the project, we need to create an instance of the
class when the executable starts. Open CtrlClient.cpp and add a #include statement

for ClientDlg.h to the top of the file, just below the other #includes.

Now move down the file to the _tWinMain() function. This serves exactly the same purpose

as the WinMain() function you saw back in Chapter 7, and acts as the entry point for the

executable. (The _t prefix indicates that it will receive command line arguments as ASCII
characters normally, or Unicode (wide) characters if _UNICODE is defined.)

The first half of the code provided by the Wizard for this function deals with parsing the
command line arguments and registering or unregistering any components if the command
line contains the RegServer or UnregServer switches. We don't need to worry about this
because our client won't be exposing any COM objects. The code we're interested in will go

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

in the second half of the function, after the if (bRun) check.

Add or modify the highlighted code shown below:

 if (bRun)

 {

 hRes = _Module.RegisterClassObjects(CLSCTX_LOCAL_SERVER,

 REGCLS_MULTIPLEUSE);

 _ASSERTE(SUCCEEDED(hRes));

 CClientDlg* pdlgClient = new CClientDlg;

 pdlgClient->Create(NULL);

 pdlgClient->ShowWindow(SW_SHOW);

 MSG msg;

 while (GetMessaget&msg, 0, 0, 0) == TRUE)

 {

 TranslateMessage(&msg); // Translate the message

 DispatchMessage(&msg); // Dispatch the message

 }

 if (pdlgClient)

 {

 delete pdlgClient;

 pdlgClient = NULL;

 }

 _Module.RevokeClassObjects();

 }

The first section of code before the message loop just creates a new dialog object, then
displays it to the user. Once the message loop exits (when it receives a WM_CLOSE message
and GetMessage() returns zero), the dialog object is deleted to free the memory we used.

Now we have to make sure that that the application closes when the user closes the dialog.
This means that we need to post a WM_QUIT message when the user clicks OK or Cancel on

the dialog - for our purposes, both buttons perform the same action. If you look at the dialog
class, you'll see that it already has functions (OnOK() and OnCancel()) to handle the
buttons. The Wizard-produced code assumes that the dialog is modal, so it includes calls to
EndDialog(). We're using a modeless dialog, so we need to replace this code with a call to

DestroyWindow().

Add the highlighted code shown below:

 LRESULT CClientDlg::OnOK(WORD wNotifyCode, WORD wID, HWND
hWndCtl, BOOL& bHandled)

 {

 PostMessage(WM_QUIT);

 DestroyWindow();

 return 0;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 LRESULT CClientDlg::OnCancel(WORD wNotifyCode, WORD wID, HWND
hWndCtl, BOOL&

 bHandled)

 {

 PostMessage(WM_QUIT);

 DestroyWindow();

 return 0;

 }

Now modify the dialog resource to include the controls necessary for the client. You can copy
these controls from the existing dialog resource that you created for the MFC-based client.
That done, the next step is to set up the variables that can be used to store the values
associated with the controls, so add the following declarations to the CClientDlg class
definition.

 private:

 long m_lVRes;

 long m_lHRes;

 long m_lRefresh;

 long m_lHScan;

You should also initialize these variables in the class constructor. The top three can be
initialized to zero, whereas m_lHScan should start at 50, just as it did in the MFC client.

Unfortunately, things get a little harder here. We can no longer use ClassWizard to add these
variables, so you'll have to add them by hand. In addition, there's no ATL equivalent of the
UpdateData() function so you'll need to write your own.

Add the function shown below to CClientDlg and give the single bool parameter a default

value of true. This will work just like the UpdateData() member function in an MFC
dialog.

 void CClientDlg::UpdateData(bool bSave /* = true */)

 {

 Exchange_Text(bSave, IDC_HSCAN, m_lHScan);

 Exchange_Text(bSave, IDC_REFRESH, m_lRefresh);

 Exchange_Text(bSave, IDC_HRES, m_lHRes);

 Exchange_Text (bSave, IDC_VRES, m_lVRes);

 }

If you pass true, the Exchange_Text() function will take the strings stored in the control

specified by the ID passed as the second parameter and convert their contents to a type
compatible with the member variables passed as the third parameter. If you pass false, the

Exchange_Text() function will take the values stored in the third parameter and display
them in the control passed in the second parameter.

Your Exchange_Text() function should be added to CClientDlg, and could look
something like this:

 void CClientDlg::Exchange_Text(bool bSave, int nID, long& lValue)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 CComVariant converter = 0;

 if (bSave)

 {

 const int MAX_COUNT = 12;

 TCHAR strText[MAX,_COUNT + 1] = {0};

 GetDlgItemText(nID, strText, MAX_COUNT);

 converter = strText;

 converter.ChangeType(VT_14);

 lvalue = converter.lVal;

 }

 else

 {

 USES_CONVERSION;

 converter = lValue;

 converter.ChangeType(VT_BSTR);

 LPCTSTR strText = OLE2T(converter.bstrVal);

 SetDlgItemText(nID, strText);

 }

 }

This function is pretty rough-and-ready, but it does show how you might use a VARIANT (or

the CComVariant wrapper class) to convert between a string and a long, and vice versa. It
also demonstrates the use of the OLE2T() macro to convert from a BSTR to a LPCTSTR. In

your own code, you'd probably want to provide something rather more robust.

Now we need to get hold of the server component so that we can use it to provide information
about the refresh rate of our monitor. In contrast to the MFC client, we're going to use the
compiler COM support to create a smart pointer class to wrap the IRefRate interface.

First, copy the type library for the RefreshRate component (RefreshRate.tlb) into the

CtrlClient project directory. This is just so that we don't have to type a long path name
into the #import statement for the library. Add #import "RefreshRate.tlb"

no_namespace to the end of StdAfx.h.

Once you compile the project, this statement will produce two files in the output (Debug or
Release) directory for the project, RefreshRate.tlh and RefreshRate.tli. These files

contain class definitions for wrappers for the interfaces and classes contained in the type
library. These output files are really for your reference (you don't need to include these files in
your project explicitly since this is all handled by the #import statement), but it's worth

taking a look at them to see what's available to you.

The smart pointer class that wraps the IRefRate interface is typedef'd to IRefRatePtr,
so add a new member variable to the dialog class:

 IRefRatePtr m_IRefRate;

Now we can use this member in OnInitDialog() and create an instance of the RefRate

class:

 LRESULT CClientDlg::OnInitDialog(UINT uMsg, WPARAM wParam, LPARAM
lParam, BOOL&

 bHandled)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 HRESULT hr = m_IRefRate.CreateInstance(_uuidof(RefRate));

 if SUCCEEDED(hr)

 {

 m_lVRes = m_IRefRate->GetVRes();

 m_lHRes = m_IRefRate->GetHRes();

 m_lRefresh = m_IRefRate.GetInterfacePtr()-
>RefreshRate(m_lHScan);

 UpdateData(false);

 }

 return 1; // Let the system set the focus

 }

Similarly, we can add code to respond to the Calculate button. You'll need to add an entry to
the message map and a declaration for the OnCalculate() function to the CClientDlg
class:

 BEGIN_MSG_MAP(CClientDlg)

 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

 COMMAND_ID_HANDLER(IDOK, OnOK)

 COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

 COMMAND_ID_HANDLER(IDC_CALCULATE, OnCalculate)

 END_MSG_MAP()

 // Handler prototypes:

 // LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM
lParam, BOOL&

 bHandled);

 // LRESULT CommandHandler(WORD wNotifyCode, WORD wID, HWND
hWndCtl,

 // BOOL& bHandled);

 // LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL&
bHandled);

 LRESULT OnCalculate(WORD wNotifyCode, WORD wID, HWND hWndCtl,
BOOL& bHandled);

The OnCalculate() function looks very similar to the OnCalculate() function in the
MFC-based client:

 LRESULT CClientDlg::OnCalculate(WORD wNotifyCode, WORD wID, HWND
hWndCtl, BOOL&

 bHandled)

 {

 UpdateData();

 m_lVRes = m_IRefRate.GetInterfacePtr()->GetVRes();

 m_lHRes = m_IRefRate.GetInterfacePtr()->GetHRes();

 m_lRefresh = m_IRefRate.GetInterfacePtr()-
>RefreshRate(m_lHScan);

 UpdateData(false);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return 0;

 }

That's all there is to it. Now you can compile and run your ATL client just as you did with the
MFC and Visual Basic clients. You don't need to worry about releasing the IRefRate pointer
because it's all handled by the IRefRatePtr wrapper class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Appendix A: C++ Keywords

Keywords are words used for special purposes. You must not use these words as names of
objects in your programs. The following is a list of Visual C++ keywords:
§ asm

§ case

§ const

§ delete

§ else

§ export

§ float

§ if

§ mutable

§ private

§ reinterpret_cast

§ sizeof

§ switch

§ true

§ typename

§ virtual

§ while

§ auto

§ catch

§ const_cast

§ do

§ enum

§ extern

§ for

§ inline

§ namespace

§ protected

§ return

§ static

§ template

§ try

§ union

§ void

§ bool

§ char

§ continue

§ double

§ except

§ false

§ friend

§ int

§ new

§ public

§ short

§ static_cast

§ this

§ typedef

§ unsigned

§ volatile

§ break

§ class

§ default

§ dynamic_cast

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ explicit

§ finally

§ goto

§ long

§ operator

§ register

§ signed

§ struct

§ throw

§ typeid

§ using

§ wchar_t

The following is a list of Microsoft-specific keywords. In Microsoft C++, identifiers with two
leading underscores are reserved for compiler implementations and cannot be used as identifier
names. Those keywords without double underscores are special identifiers when used with
_declspec; their use in other contexts is not restricted:

§ allocate

§ __asm

§ __based

§ __cdecl

§ __declspec

§ dllexport

§ dllimport

§ __except

§ __fastcall

§ __finally

§ __inline

§ __int8

§ __int16

§ __int32

§ __int64

§ __leave

§ __multiple_inheritance

§ naked

§ nothrow

§ property

§ selectany

§ __single_inheritance

§ __stdcall

§ thread

§ __try

§ uuid

§ __uuidof

§ __virtual_inheritance

The C++ language is still evolving. There are a number of C++ keywords not at present
supported in Visual C++, but they may well be in the future. Other compilers support at least
some of them at the moment. You should therefore also avoid using these for your own
identifiers. Accidental use of some of them is quite possible, as you can see from the list below.
§ and

§ and_eq

§ bitand

§ bitor

§ compl

§ not

§ not_eq

§ or

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

§ or_eq

§ xor

§ xor_eq

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Appendix B: The ASCII Table

Overview

The American Standard Code for Information Interchange or ASCII assigns values between 0
and 255 for upper and lower case letters, numeric digits, punctuation marks and other symbols.
ASCII characters can be split into the following sections:

0 - 31 Control functions

32 - 127 Standard, implementation-independent characters

128 -
255

Special symbols, international character sets - generally these are non-standard
characters.

Since the latter 128 characters are implementation-dependent and have no fixed entry in the
ASCII table, we shall only cover the first two groups in the following table:

ASCII Characters 0 - 31

Decimal Hexadecimal Character Control

000 00 null NUL

001 01 ˘ SOH

002 02

STX

003 03
|

ETX

004 04
|

EOT

005 05
|

ENQ

006 06
|

ACK

007 07 * BEL (Audible bell)

008 08 Backspace

009 09

HT

010 0A LF (Line feed)

011 0B VT (Vertical feed)

012 0C

FF (Form feed)

013 0D

CR (Carriage return)

014 0E SO

015 0F ¤ SI

016 10

DLE

017 11

DC1

018 12 DC2

019 13 DC3

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Decimal Hexadecimal Character Control

020 14 DC4

021 15

NAK

022 16 SYN

023 17 ETB

024 18

CAN

025 19

EM

026 1A SUB

027 1B ESC (Escape)

028 1C
L

FS

029 1D

GS

030 1E RS

031 1F US

ASCII Characters 32 - 127

Decimal Hexadecimal Character

032 20 space

033 21 !

034 22 "

035 23 #

036 24 $

037 25 %

038 26 &

039 27 '

040 28 (

041 29)

042 2A *

043 2B +

044 2C ,

045 2D -

046 2E .

047 2F /

048 30 0

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Decimal Hexadecimal Character

049 31 1

050 32 2

051 33 3

052 34 4

053 35 5

054 36 6

055 37 7

056 38 8

057 39 9

058 3A :

059 3B ;

060 3C <

061 3D =

062 3E >

063 3F ?

064 40 @

065 41 A

066 42 B

067 43 C

068 44 D

069 45 E

070 46 F

071 47 G

072 48 H

073 49 I

074 4A J

075 4B K

076 4C L

077 4D M

078 4E N

079 4F O

080 50 P

081 51 Q

082 52 R

083 53 S

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Decimal Hexadecimal Character

084 54 T

085 55 U

086 56 V

087 57 W

088 58 X

089 59 Y

090 5A Z

091 5B [

092 5C \

093 5D]

094 5E ^

095 5F _

096 60 '

097 61 a

098 62 b

099 63 c

100 64 d

101 65 e

102 66 f

103 67 g

104 68 h

105 69 i

106 6A J

107 6B k

108 6C 1

109 6D m

110 6E n

111 6F o

112 70 p

113 71 q

114 72 r

115 73 s

116 74 t

117 75 u

118 76 v

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Decimal Hexadecimal Character

119 77 w

120 78 x

121 79 y

122 7A z

123 7B {

124 7C |

125 7D }

126 7E ~

127 7F delete

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Appendix C: Solutions to Exercises

Chapter 1
1. There are four direct ways to build a project:

§ Press the Build button on the Build toolbar or on the Build Minibar toolbar
§ Press the F7 function key
§ Choose the Build | Build menu item

§ Click the right mouse button on the files item in the tree in the FileView pane,
and select Build from the context menu

2. The three files used to store information about a project are the .dsp, .ncb and .dsw
files. The .dsp file stores information about the files that make up the project, the .ncb

file stores 'browse information' used by several features in Visual C++, and the .dsw

saves the IDE workspace settings.
3. File types:

§ .obj files hold the intermediate object code files produced by the compiler

§ .pch files hold precompiled header information (more about this later!)

§ .pdb files hold debugging information

§ .exe files hold the final, executable program produced by the linker

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 2
1. [Prg1]

2. #include <iostream>

3.

4. using namespace std;

5.

6. int main()

7. {

8. int number = 0;

9.

10. cout << "Enter a number: ";

11. cin >> number;

12. cout << "\nThank you. Your number was " << number;

13. cout << endl;

14.

15. return 0;

16. }

17. Use of BIT operators to calculate a remainder:

18. // Use the bitwise AND operator. For example:

19. // 29 = (3x8)+5 -14 = (-2x8)+2

20. // 29 = 0000 0000 0001 1101 -14 = 1111 1111 1111 0010

21. // 7 = 0000 0000 0000 0111 7 = 0000 0000 0000 0111

22. // ======================== =========================

23. // 0000 0000 0000 0101 = rem 5 0000 0000 0000 0010 =

rem 2

24.

25. #include <iostream>

26.

27. using namespace std;

28.

29. int main()

30. {

31. int number1 = 0;

32. int seven = 0x7;

33.

34. cout << "Type in an integer: ";

35. cin >> number1;

36.

37. cout << endl

38. << "The remainder when "

39. << number1

40. << " is divided by eight is "

41. << (number1 & seven)

42. << endl;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

43. return 0;

44. }

45. Precedence and associativity:

46. (((1 + 2) + 3) + 4)

47.

48. (((16 * 4) / 2) * 3)

49. (a > b) ? a : ((c > d) ? e : f)

50.

51. (a & b) && (c & d)

52. As it stands, the division will produce an integer result that is unlikely to be satisfactory.
You need to cast one of the arguments to a double in order to force the division to be

done correctly:

53. double aspect = static_cast<double>(width)/height;

54. The value printed should be 2. Let's look at the statement:

55. int i = (s >> 4) & ~(~0 << 3);

What we're doing here is bit manipulation on s. The first clause, (s >> 4), shifts s right

by four bits; because 555 is 1000101011 in binary, a four-bit shift leaves it as 100010. In
the second clause, ~0 is composed of all 1s, and it gets shifted left 3 bits, and then the
second ~ complements all the bits to leave us with 111 in the bottom three bits. Doing a

bitwise AND on 100010 and 111 gives 010, or 2, as the result.

Chapter 3
1. The while version:

2. #include <iostream>

3.

4. using namespace std;

5.

6. int main()

7. {

8. int val = 0;

9. int total = 0;

10.

11. cout << "Enter numbers, one per line:\n";

12. cin >> val;

13.

14. while (val != 0)

15. {

16. total += val;

17. cin >> val;

18. }

19.

20. cout << "\nThank you. The total was " << total;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

21. cout << endl;

22. return 0;

23. }

The do-while version:

 #include <iostream>

 using namespace std;

 int main()

 {

 int val = 0;

 int total = 0;

 cout << "Enter numbers, one per line:\n";

 do

 {

 cin >> val;

 total += val;

 } while (val ! = 0);

 cout << "\nThank you. The total was " << total;

 cout << endl;

 return 0;

 }

The for version:

 #include <iostream>

 using namespace std;

 int main()

 {

 int val = 0;

 int total = 0;

 cout << "Enter numbers, one per line:\n";

 cin >> val;

 // We don't need the initialization or increment
expressions

 for (; val! = 0;)

 {

 total += val;

 cin >> val;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 cout << "Thank you. The total was " << total;

 cout << endl;

 return 0;

 }

24. Counting characters.

25. #include <iostream>

26.

27. using namespace std;

28.

29. int main()

30. {

31. char c = ' ';

32. int nVowels = 0;

33. int nChars = 0;

34.

35. cout << "Type some characters and q or Q to stop counting
followed by

36. ENTER.\n";

37.

38. for (;;)

39. {

40. cin >> c;

41.

42. if (C =='q' || c == 'Q')

43. break;

44.

45. switch(c)

46. {

47. case 'A'; case 'a';

48. case 'E'; case 'e';

49. case 'I'; case 'i';

50. case 'O'; case 'o';

51. case 'U'; case 'u';

52. nVowels++;

53.

54. defaults

55. nChars++;

56. }

57. }

58.

59. cout << "Total chars=" << nChars << ", vowels=" <<
nVowels;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

60. cout << endl;

61. return 0;

62. }

63. Multiplication tables.

64. #include <iostream>

65. #include <iomanip>

66.

67. using namespace std;

68.

69. int main()

70. {

71. cout << " 2 3 4 5 6 7 8
9 10 11 12\n";

72. cout << "---

73. --\n";

74. for (int i-1; i<13; i++) // rows

75. {

76. for (int j=2; j<13; j++) // columns

77. {

78. cout << setw(6) << j*i;

79. }

80. cout << '\n';

81. }

82. return 0;

83. }

84.

85. Flags and bitwise operators.

86. #include <iostream>

87.

88. using namespace std;

89.

90. const int text = 0x01;

91. const int binary = 0x02;

92.

93. const int read = 0x10;

94. const int write = 0x20;

95. const int append = 0x40;

96.

97. int main()

98. {

99. int mode = text | append;

100.

101. if (mode & text)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

102. cout << "mode is (text,";

103. else if (mode & binary)

104. cout << "mode is (binary,";

105.

106. if (mode & read)

107. cout << "read)\n";

108. else if (mode & write)

109. cout << "write)\n";

110. else if (mode & append)

111. cout << "append)\n";

112.

113. return 0;

114. }

115. [Prg2]

116. #include <iostream>

117.

118. using namespace std;

119.

120. int main()

121. {

122. int number = 0;

123.

124. for (;;)

125. {

126.

127. cout << "Enter a number: ";

128. cin >> number;

129. if (number == 0)

130. break;

131. cout << "Thank you. Your number was " << number << "\n";

132. cout << endl ;

133. }

134.

135. return 0;

136. }

Chapter 4
1. The types of the expressions are:

a. i // int

b. j // int
c. &i // int*

d. pi // int*

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

e. *pi // int
f. array // int*

g. *array // int

h. pi[3] // int
i. pi+3 // int*

2. [Prg3]

3. #include <iostream>

4.

5. using namespace std;

6.

7. int main()

8. {

9. int number = 0;

10. char name[15] = {'a'};

11.

12. for (;;)

13. {

14.

15. cout << "Enter a number: ";

16. cin >> number;

17. if (number == 0)

18. break;

19.

20. cout << "And a name: ";

21. cin >> name;

22. cout << "Thank you. Your number and name were " << number

23. << " and '" << name << "'\n";

24. }

25.

26. return 0;

27. }

28. Character arrays:

29. #include <iostream>

30. #include <cstring>

31.

32. using namespace std;

33.

34. int main()

35. {

36. char str[] = "Doctor Livingstone, I presume?";

37. cout << str << '\n';

38.

39. for (unsigned int i=0; i<strlen(str); i+=2)

40. {

41. if (str[i] >= 'a' && str[i] <= 'z')

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

42. str[i] -= 32;

43. }

44.

45. cout << str << endl;

46. return 0;

47.)

48. The statements produce:

a. cout << c; // hello world

b.

c. cout << c[3]; // 1

d.

e. cout << pc; // llo world

f.

g. cout << *(pc-2); // h

h.

i. cout << *pc-2; // 106

j.

Congratulations if you got the last one without trying it out first! The pointer expression
*pc-2 takes what pc is pointing to, the character 1 with ASCII code 108, and takes two

from it in an integer subtraction operation (not a pointer operation), so the result is 106.
49. In the declaration given, ppi is a 'pointer to a pointer to int', and gives two levels of

indirect addressing. We can use it to construct a 2-D array dynamically by first creating a
'row vector' to hold pointers to the rows, and then creating arrays for each row and
storing their addresses in the row vector. This gives us our two levels of addressing-row
and column-and because of the equivalence of array and pointer notation, we can treat
our two-level pointer as a 2-D array, as shown in the code below:

50. #include <iostream>

51.

52. using namespace std;

53.

54. const int ROWS = 4;

55. const int COLS = 4;

56.

57. int main()

58. {

59. int** ppi;

60.

61. // Create an array to hold the pointers to each row

62. ppi = new int*[ROWS];

63.

64. // Create each row, and store it away

65. for (int i=0; i<ROWS; i++)

66. ppi[i] = new int[COLS];

67.

68. // Set all the elements to zero using a nested loop

69. for (i=0; i<ROWS; i++)

70. for (int j=0; j<COLS; j++)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

71. ppi[i] [j] = 0;

72.

73. // Set ppi to the identity matrix, and print it out as a
test

74. ppi[0] [0] = ppi [1][1] = ppi[2][2] = ppi[3][3] = 1;

75.

76. for (i=0; i<ROWS; i++)

77. {

78. for (int j=0; j<COLS; j++)

79. cout << ppi[i][j] << ' ';

80. cout << '\n';

81. }

82.

83. // Delete it in reverse order...

84. for (i=0; i<ROWS; i++)

85. delete [] ppi[i];

86.

87. delete [] ppi;

88. return 0;

89. }

Chapter 5
1. Recursion. You could also add an if clause here to check that the number entered is

greater than zero. This is left as a further exercise for you.

2. #include <iostream>

3.

4. using namespace std;

5.

6. long fact(long n)

7. {

8. if (n == 1)

9. return 1;

10. else

11. return n * fact(n-1);

12. }

13.

14. int main()

15. {

16. long val = 0;

17. long result = 0;

18.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

19. cout << "Give me a integer greater than 1: ";

20. cin >> val;

21.

22. result = fact(val);

23. cout << "\n" << val << "! = ' << result << "\n";

24.

25. return 0;

26. }

27. Swap two integers.

28. #include <iostream>

29.

30. using namespace std;

31.

32. void swap(int* pa, int* pb)

33. {

34. int temp;

35.

36. cout << "Now we swap them.\n";

37. temp = *pa;

38. *pa = *pb;

39. *pb = temp;

40. }

41.

42. int main()

43. {

44. int a=6;

45. int b=4;

46.

47. cout << "Before: a= " << a << ", b= " << b << "\n";

48.

49. swap(&a, &b);

50.

51. cout << "After: a= " << a << ", b= " << b << "\n">>;

52. return 0;

53. }

54. Trig functions. There are 2*pi radians or 360 degrees in a circle. Thus the ratio between
radians and degrees is 1:57.2957795.

55. #include <iostream>

56. #include <cmath>

57.

58. using namespace std;

59.

60. const double DEG_TO_RAD = 57.2957795;

61.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

62. double sind(double d)

63. {

64. return sin(d/DEG_TO_RAD);

65. }

66.

67. double cosd(double d)

68. {

69. return cos(d/DEG_TO_RAD);

70. }

71.

72. double tand(double d)

73. {

74. return tan(d/DEG_TO_RAD);

75. }

76.

77. int main()

78. {

79. cout << "cos(30)=" << cosd(30.0) << "\n";

80. cout << "sin(30)=" << sind(30.0) << "\n";

81. cout << "tan(30)=" << tand(30.0) << "\n";

82.

83. return 0;

84. }

85.

86. [Prg4]

87. #include <iostream>

88.

89. using namespace std;

90.

91. void GetData(int& number, char name[])

92. {

93. cout << "Enter a number: ";

94. cin >> number;

95. if (number ! = 0)

96. {

97. cout << "And a name: ";

98. cin >> name;

99. }

100. }

101.

102. void PutData(int number, char name[])

103. {

104. cout << "Thank you. Your number and name were " << number

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

105. << " and '" << name << "'\n";

106. }

107.

108. int main()

109. {

110. int number = 0;

111. char name[15] = {' '};

112.

113. for (;;)

114. {

115. GetData(number, name);

116.

117. if (number == 0)

118. break;

119.

120. PutData(number, name);

121. }

122.

123. return 0;

124. }

125. Parsing function.

126. #include <iostream>

127. #include <cstring>

128.

129. using namespace std;

130.

131. char* parse(const char* str)

132. {

133. static char* pStr = 0;

134. static int len = 0;

135. static int start = 0;

136. int pos = 0;

137. char* pReturn = 0;

138. // First time through, save the string

139. if (str)

140. {

141. delete pStr; // in case it was allocated

142. len = strlen(str);

143. pStr = new char[len+1];

144. strcpy(pStr,str);

145. }

146.

147. if (start >= len)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

148. return 0;

149.

150. // Walk the string from 'start' till we find a blank or
the end

151. for (pos = start; pStr[pos] != ' ' && pStr[pos] != '\0';
pos++);

152.

153. // Copy the string if we've a word to return, otherwise
return NULL

154. if (pos != start)

155. {

156. pReturn = new char[pos - start + 1];

157. int i=0;

158. for (int j=start; j<pos; i++, j++)

159. pReturn[i] = pStr[j];

160. pReturn[i] = '\0';

161. start = pos+1;

162. return pReturn;

163. }

164. else

165. return 0;

166. }

167.

168. int main()

169. {

170. char s1[] = "seventy-one fruit balls, please Doris";

171. cout << "string is '= << s1 << "'\n\nParsing...\n";

172. char* p = parse(s1);

173.

174. while (p)

175. {

176. cout << p << endl;

177. delete p;

178. p = parse(NULL);

179.)

180.

181. return 0;

182. }

Chapter 6
1. Calling function via a pointer.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

2. #include <iostream>

3. #include <cstring>

4.

5. using namespace std;

6. int ascVal(int i, const char* p)

7. {

8. // print the ASCII value of the char

9. if (!p || i > strlen(p))

10. return -1;

11. else

12. return static_cast<int>(p[i]);

13. }

14.

15. int main()

16. {

17. char* str = "a bunch of bananas";

18. int (*fp)(int, const char*);

19.

20. fp = ascVal;

21. int i = (*fp)(3,str);

22.

23. cout << "value of '" << str[3] << "' is " << i << end1;

24.

25. return 0;

26. }

27. Overloaded functions.

28. #include <iostream>

29. #include <cstring>

30.

31. using namespace std;

32.

33. bool equal(int a,int b)

34. {

35. return (a==b) ? true : false;

36. }

37.

38. bool equal(double a, double b)

39. {

40. return (a==b) ? true : false;

41. }

42.

43. bool equal(char a,char b)

44. {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

45. return (a==b) ? true : false;

46. }

47.

48. bool equal(char* a,char* b)

49. {

50. return (!strcmp(a,b)) ? true : false;

51. }

52.

53. int main()

54. {

55. int iA=3, iB=5;

56. if (equal(iA,iB))

57. cout << "iA and iB are the same" << endl;

58. else

59. cout << "iA and iB are different" << endl;

60. char* pA = "hello";

61. char* pB = "mickey";

62. if (equal(pA,pB))

63. cout << "pa and pB are the same" << endl;

64. else

65. cout << "pA and pB are different" << endl;

66.

67. char* pC << "mickey";

68. if (equal (pB,pC))

69. cout << "pB and pC are the same" << endl;

70. else

71. cout << "pB and pC are different" << endl;

72.

73. return 0;

74. }

75. Adding error reporting to the calculator.

76. void error(char* str, int index);

77.

78. double expr(char* str)

79. {

80. // ...

81. for(;;)

82. {

83. switch(*(str+index++))

84. {

85. case '\0' :

86. // ...

87. case '+':

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

88. // ...

89. case '-':

90. // ...

91. default:

92. cout << "Arrrgh!*#!! There's an error"

93. << endl;

94. error(str, index-1);

95. exit(1);

96. }

97. }

98. }

99.

100. void error(char* str, int index)

101. {

102. cout << str << endl;

103. for (int i=0;| i<index; i++)

104. cout << ' ';

105. cout << '^' << endl;

106. }
107. Adding an exponentiation operator needs a simple extension to the term() function:

108. #include <cmath>

109.

110. double term(char* str, int& index)

111. {

112. double value = 0;

113. value = number(str, index);

114.

115. while((*(str+index)=='*') || (*(str+index)=='/') ||
(*(str+index)=='^'))

116. {

117. if (*(str+index)=='*')

118. value *= number(str, ++index);

119. if (*(str+index)=='/')

120. value /= number(str, ++index);

121. if (*<str+index)=='^')

122. value = pow(value, number(str, ++index));

123. }

124. return value;

125. }

Notice the use of the pow() function from the math library. The limitation of this

approach is that ^ should have higher precedence than * or /, but the calculator only

gives us two levels: the plus-and-minus level, and the multiply-and-divide level. Without
redesigning the calculator from the ground up, the best way to make exponentiation work
properly is to always use parentheses, so that instead of 3*3^3, you type 3*(3^3). This is
what programmers call a 'feature'...

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

126. Adding math functions. The place to do this is in the number() function, which

currently checks whether the next item in the string is a number or an opening bracket.
Since all math functions are going to be followed by an opening bracket, it is quite simple
to collect alphabetic characters into a string until we hit an opening bracket, then process
the contents of the brackets, and apply the operation on the way out. This version is
pretty simple-minded, and errors (such as not putting the function argument in brackets)
tend to get silently ignored.

127. double doOperation(char* op, double value);

128.

129. double number(char* str, int& index)

130. {

131. double value = 0.0;

132.

133. char op[6]={0};

134. int ip = 0;

135. while (isalpha(*(str+index)))

136. op[ip++] = *(str+index++);

137. op[ip] = '\0';

138.

139. if (*(str+index) == '(')

140. {

141. char* psubstr = 0;

142. psubstr = extract(str, ++index);

143. value = expr(psubstr);

144.

145. // If we have an operation saved, go and do it

146. if (op[0])

147. value = doOperation(op, value);

148.

149. delete [] psubstr;

150. return value;

151. }

152.

153. // the rest of the function is as before...

154. }

155.

The doOperation() function is pretty simple:

 const double degToRad = 57.295779;

 double doOperation(char* op, double value)

 {

 if (!stricmp(op, "sin"))

 return sin(value);

 else if (!stricmp(op, "sind"))

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return sin(value / degToRad);

 else if (!stricmp(op, "cos"))

 return cos(value);

 else if (!stricmp(op, "cosd"))

 return cos(value / degToRad);

 else if (!stricmp(op, "tan"))

 return tan(value);

 else if (!stricmp(op, "tand"))

 return tan(value / degToRad);

 else if (!stricmp(op, "sqrt"))

 return sqrt(value);

 else

 {

 cout << "Error: unknown operation '" << op << "'" <<
endl;

 exit(1);

 }

 return 0;

 }

You could code this up in a more efficient way-maybe driven by a table-but this simple
version shows how it works.

Chapter 7
1. Simple structure:

2. #include <iostream>

3.

4. using namespace std;

5.

6. struct X

7. {

8. int one;

9. int two;

10. };

11.

12. int main()

13. {

14. X a;

15. X b;

16.

17. a.one = 1;

18. a.two = 2;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

19.

20. cout << "a=(" << a.one << "," << a.two << ")\n";

21. // b contains junk values. Dont worry when compiler gives
warning

22. cout << "b=(" << b.one << "," << b.two << ")\n";

23.

24. b = a;

25. cout << "b=(" << b.one << "," << b.two << ")\n";

26.

27. return 0;

28. }

29. Structure with char* member:

30. #include <iostream>

31. #include <cstring>

32.

33. using namespace std;

34.

35. struct X

36. {

37. int one;

38. int two;

39. char* sptr;

40. };

41.

42. int main()

43. {

44. X a;

45. X b;

46. char s[] = "hello world!";

47.

48. a.one = 1;

49. a.two = 2;

50. a.sptr = s;

51.

52. cout << "a=(" << a.one << "," << a.two << "," << a.sptr
<< ")\n";

53.

54. b.one = a.one;

55. b.two = a.two;

56. b.sptr = new char[strlen(a.sptr)+1];

57. strcpy(b.sptr,a.sptr);

58.

59. cout << "b=(" << b.one << "," << b.two << "," << b.sptr
<< ")\n";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

60.

61. a.sptr[0] = 'H';

62.

63. cout << "a=(" << a.one << "," << a.two << "," << a.sptr
<< ")\n";

64. cout << "b=(" << b.one << "," << b.two << "," << b.sptr
<< ")\n";

65.

66. delete [] b.sptr;

67.

68. return 0;

69. }

When you copy b into a, it is the pointer sptr which is copied, and not the string to

which it points. Thus, both a and b are pointing to the same string, so when you modify it
via a.sptr, you are also modifying b's copy. To get around this, you need to manually

make your own copy of the string and assign it to b. This sort of problem can be greatly

eased by using classes instead of structs.
70. Using pointers to structures.

71. #include <iostream>

72. #include <cstring>

73.

74. using namespace std;

75.

76. struct X

77. {

78. int one;

79. int two;

80. char* sptr;

81. };

82.

83. void printX(X* pX)

84. {

85. cout << pX->one << "," << pX->two << "," << pX->sptr;

86. }

87.

88. int main()

89. {

90. X a;

91. X b;

92. char s[] = "hello world!";

93.

94. a.one = 1;

95. a.two = 2;

96. a.sptr = s;

97.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

98. cout << "a=("; printX(&a); cout << ")\n";

99.

100. b.one = a.one;

101. b.two = a.two;

102. b.sptr = new char[strlen(a.sptr)+1];

103. strcpy(b.sptr,a.sptr);

104.

105. cout << "b=("; printX(&b); cout << ")\n";

106.

107. a.sptr[0] > 'H';

108.

109. cout << "a=("; printX(&a); cout << ")\n";

110. cout << "b=("; printX(&b); cout << ")\n";

111.

112. delete [] b.sptr;

113.

114. return 0;

115. }

116. [Prg5]

117. #include <iostream>

118.

119. using namespace std;

120.

121. struct item

122. {

123. int number;

124. char name[15];

125. };

126.

127.

128. void GetData(item& r)

129. {

130. cout << "Enter a number: ";

131. cin >> r.number;

132.

133. if (r.number != 0)

134. {

135. cout << "And a name: ";

136. cin >> r.name;

137. }

138. }

139.

140. void PutData(item r)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

141. {

142. cout << "Thank you. Your number and name were " <<
r.number

143. << " and '" << r.name << "'\n";

144. }

145.

146. int main()

147. {

148. item rec;

149.

150. for (;;)

151. {

152. GetData(rec);

153.

154. if (rec.number == 0)

155. break;

156.

157. PutData(rec);

158. }

159. return 0;

160. }

161. The GetSystemMetrics() API call can be used to get the width and height of the

screen in pixels, so you can use it to calculate the position and size of your window
before you create it in WinMain().

162. int nXCenter = GetSystemMetrics(SM_CXSCREEN)/2;

163. int nYCenter = GetSystemMetrics(SM_CYSCREEN)/2;

164. int nWidth = 300;

165. int nHeight = 200;

166.

167. hWnd = CreateWindow(

168. szAppName, // The window class
name

169. "A Basic Window the Hard Way", // The window title

170. WS_OVERLAPPEDWINDOW, // The window style

171. nXCenter - nWidth/2, // Upper-left x
position

172. nYCenter - nHeight/2, // Upper-left y
position

173. nWidth, // The window width

174. nHeight, // The window height

175. 0, // No parent window

176. 0, // No menu

177. hInstance, // Program instance
handle

178. 0 // No window
creation data

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

179.);

Chapter 8
1. List exercise-[Prg6]

2. #include <iostream>

3.

4. using namespace std;

5.

6. class CRecord

7. {

8. private:

9. int number;

10. char name[15];

11. public:

12. bool GetData();

13. void PutData();

14. };

15.

16.

17. bool CRecord::GetData()

18. {

19. cout << "Enter a number: ";

20. cin >> number;

21.

22. if (number != 0)

23. {

24. cout << "And a name: ";

25. cin >> name;

26. return true;

27. }

28. else

29. return false;

30. }

31.

32. void CRecord::PutData()

33. {

34. cout << "Thank you. Your number and name were " << number

35. << "and " << name << "'\n";

36. }

37.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

38. int main()

39. {

40. CRecord rec;

41.

42. for (;;)

43. {

44. if (!rec.GetData())

45. break;

46.

47. rec.PutData();

48. }

49. return 0;

50. }

51.

52. CTrace class:

53. #include <iostream>

54. #include <cstring>

55.

56. using namespace std;

57.

58. class CTrace

59. {

60. private;

61. char* pstr;

62. public;

63. CTrace(const char* str);

64. ~CTrace();

65. };

66.

67. CTrace::CTrace(const char* str)

68. {

69. pstr = new char[strlen(str)+1);

70. strcpy(pstr,str);

71. cout << "Entry: " << pstr << end1;

72. }

73.

74. CTrace::~CTrace()

75. {

76. cout << "Exit: " << pstr << end1;

77. delete pstr;

78. pstr = NULL;

79. }

80.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

81. int main()

82. {

83. CTrace t("Main routine");

84.

85. if (3 < 5)

86. {

87. CTrace t1("'if' block");

88. }

89. else

90. {

91. CTrace t2("'else' block");

92. }

93.

94. return 0;

95. }
96. Indenting the trace. You can do this using a static data member to hold the

indentation level, so that every CTrace object increases the indentation level when it is

created, and decreases it when it is destroyed, like this:

97. #include <iostream>

98. #include <cstring>

99.

100. using namespace std;

101. class CTrace

102. {

103. private:

104. char* pstr;

105. static int indentLevel;

106. public:

107. CTrace(const char* str);

108. ~CTrace();

109. };

110.

111. int CTrace::indentLevel = 0;

112.

113. CTrace::CTrace(const char* str)

114. {

115. indentLevel +=2;

116. pstr = new char[strlen(str)+1];

117. strcpy(pstr,str);

118.

119. for (int i=0; i<indentLevel; i++)

120. cout << ' ';

121. cout << "Entry: " << pstr << endl;

122. }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

123.

124. CTrace::~CTrace()

125. {

126. for (int i=0; i<indentLevel; i++)

127. cout << ' ';

128. cout << "Exit: " << pstr << endl;

129. delete pstr;

130. pstr = NULL;

131. indentLevel -=2;

132. }

133.

134. int main()

135. {

136. CTrace t("Main routine");

137.

138. if (3 < 5)

139. {

140. CTrace t1("'if' block");

141. }

142. else

143. {

144. CTrace t2("'else' block");

145. }

146.

147. return 0;

148. }

149. CStack class:

150. #include <iostream>

151.

152. using namespace std;

153.

154. class CStack

155. {

156. private:

157. int list[100];

158. int next;

159. public:

160. CStack() : next(0) {}

161. void Push(int i);

162. int Pop();

163. void Print() const;

164. };

165.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

166. void CStack::Push(int i)

167. {

168. if (next < 99)

169. list[next++] = i;

170. }

171.

172. int CStack::Pop()

173. {

174. return list[--next];

175. }

176.

177. void CStack::Print() const

178. {

179. cout << '[';

180. for (int i=next-1; i>=0; i--)

181. cout << ' '<< list[i];

182. cout << "]\n";

183. }

184.

185. int main()

186. {

187. CStack s;

188.

189. s.Print();

190.

191. s.Push(5);

192. s.Push(10);

193. s.Push(8);

194.

195. s.Print();

196.

197. cout << "top of stack=" << s.Pop() << '\n';

198.

199. s.Print();

200.

201. return 0;

202. }

203. Extending the CStack class. To guard against popping more items than there are on the
stack (known as stack underflow) or storing more than you've got space for (stack
overflow), you can print out an error message and return a 'safe' value, such as zero. In
a real version of such a class, you'd probably use C++'s exception handling to trap this
sort of error.

204. #include <iostream>

205.

206. using namespace std;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

207. class CStack

208. {

209. private:

210. int list[100];

211. int next;

212. public:

213. CStack() : next(0) {}

214. void Push(int i);

215. int Pop();

216. int Peek() const;

217. void Print() const;

218. };

219.

220. void CStack::Push(int i)

221. {

222. if (next < 99)

223. list[next++] = i;

224. else

225. cout << "Error! Stack Overflow\n";

226. }

227.

228. int CStack::Pop()

229. {

230. if (next==0)

231. {

232. cout << "Error! Stack Underflow\n";

233. return 0;

234. }

235. else

236. return list[--next];

237. }

238.

239. int CStack::Peek() const

240. {

241. if (next==0)

242. {

243. cout << "Error! Stack Underflow\n";

244. return 0;

245. }

246. else

247. return list[next-1];

248. }

249.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

250. void CStack::Print() const

251. {

252. cout << '[';

253. for (int i=next-1; i>=0; i--)

254. cout << ' '<< list[i];

255. cout << "]\n";

256. }

257.

258. int main()

259. {

260. CStack s;

261.

262. s.Print();

263. s.Push(5);

264. s.Push(10);

265. s.Push(8);

266.

267. s.Print();

268.

269. cout << "peek at top of stack=" << s.Peek() << '\n';

270.

271. s.Print();

272. cout << "pop top of stack=" << s.Pop() << '\n';

273. cout << "pop top of stack=" << s.Pop() << '\n';

274. s.Print();

275. cout << "pop top of stack=" << s.Pop() << '\n'

276. cout << "pop top of stack" << s.Pop() << '\n';

277.

278. return 0;

279. }

Chapter 9
1. Estimated integer class:

2. #include <iostream>

3.

4. using namespace std;

5.

6. #define ESTIMATED true

7. #define EXACT false

8.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

9. class CEstInt

10. {

11. private:

12. int val;

13. bool bEst;

14.

15. public:

16. CEstInt(int i=0, bool e=EXACT) : val(i), bEst(e)

17. {

18. }

19.

20. // void SetEstimated(bool e)

21. // {

22. // bEst = (!e) ? EXACT : ESTIMATED;

23. // }

24.

25. void Print();

26.

27. // Helper functions

28. CEstInt Add(const CEstInt& b) const;

29. };

30.

31. void CEstInt::Print()

32. {

33. if (bEst)

34. cout << 'E';

35. cout << val;

36. }

37.

38. CEstInt CEstInt::Add(const CEstInt& b) const

39. {

40. CEstInt t(val+b.val);

41. if (bEst || b.bEst)

42. t.bEst = ESTIMATED;

43.

44. return t;

45. }

46.

47. CEstInt operator+(const CEstInt& a, const CEstInt& b)

48. {

49. return a.Add(b);

50. }

51.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

52. int main()

53. {

54. CEstInt a=3, c;

55. CEstInt b(5,ESTIMATED);

56.

57. cout << "a=";

58. a.Print();

59. cout << '\n';

60. cout << "b=";

61. b.Print();

62. cout << '\n';

63.

64. c = a + b;

65. cout << "c=";;

66. c.Print();

67. cout << '\n';

68.

69. return 0;

70. }

71. Simple string class:

72. #include <iostream>

73. #include <cstring>

74.

75. using namespace std;

76.

77. class CSimpString

78. {

79. private:

80. int len;

81. char* buff;

82. public:

83. CSimpString(const char* p = 0);

84. CSimpString(const CSimpString& s);

85. ~CSimpString();

86.

87. CSimpString() operator=(const CSimpString& rhs);

88. void Print() const;

89. };

90. CSimpString::CSimpString(const char* p) : len(0), buff(0)

91. {

92. if (p != 0)

93. {

94. len = strlen(p);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

95. if (len > 0)

96. {

97. buff = new char[len+1];

98. strcpy(buff,p);

99. }

100. }

101. }

102.

103. CSimpString::CSimpString(const CSimpString& s)

104. {

105. len = s.len;

106. buff = new char[len+1];

107. strcpy(buff,s.buff);

108. }

109.

110. CSimpString::~CSimpString()

111. {

112. delete [] buff;

113. }

114.

115. CSimpString& CSimpString::operator=(const CSimpString& rhs)

116. {

117. len = rhs.len;

118. delete [] buff;

119. buff = new char[len+1];

120. strcpy(buff,rhs.buff);

121.

122. return *this;

123. }

124.

125. void CSimpString::Print() const

126. {

127. cout << buff;

128. }

129.

130. int main()

131. {

132. CSimpString s1 = "hello";

133. CSimpString s2;

134.

135. s2 = s1;

136.

137. cout << "s1='";

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

138. s1.Print();

139. cout << "'\n";

140.

141. cout << "s2='";

142. s2.Print();

143. cout << "'\n";

144.

145. return 0;

146. }

147.

148. Extra constructors. Here are two suggestions-the first constructs a string from a
repeated single character, while the second uses an integer.

149. #include <cstdlib>

150. #include <iostream>

151. #include <cstring>

152.

153. class CSimpString

154. {

155. public:

156. CSimpString(char c, int count=1);

157. CSimpString(int i);

158. // rest of class as before

159. };

160.

161. CSimpString::CSimpString(char c, int count) : len(0),
buff(0)

162. {

163. len = count;

164. if (len > 0)

165. {

166. buff = new char[len+1];

167. memset(buff, c, len);

168. buff[len] = '\0';

169. }

170. }

171.

172. CSimpString::CSimpString(int i) : len(0), buff (0)

173. {

174. char sTmp[20];

175. itoa(i, sTmp, 10);

176.

177. len = strlen(sTmp);

178. if <len > 0)

179. {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

180. buff = new char[len+1];

181. strcpy(buff, sTmp);

182. }

183. }

184. As coded, our assignment operator won't cope with pathological cases such as s1=s1,

because we delete the buffer before doing the copy. If we're trying to copy the same
object, we'll have deleted the object's buffer before doing so. The simplest and easiest
way around this is to check that the object isn't copying itself:

185. CSimpString& CSimpString::operator=(const CSimpString& rhs)

186. {

187. if (&rhs != this)

188. {

189. len = rhs.len;

190. delete buff;

191. buff = new char[len+1];

192. strcpy(buff,rhs.buff);

193. }

194.

195. return *this;

196. }

197.

198. Overloading the + and += operators for the simple string class. First, add these two
functions to the public section class declaration:

199. CSimpString& operator+=(const CSimpString& rhs);

200. CSimpString Concat(const CSimpString& s2) const;

Here's their implementation. The += operator is implemented as a member function,

because it will always be called by a string object. The + operator, on the other hand,

may be called upon to add string objects and string literals in any order, so it makes
sense to make it a global operator function.

 CSimpString& CSimpString::operator+=(const CSimpString& rhs)

 {

 char* t = buff;

 buff = new char[len + rhs.len + 1];

 strcpy(buff,t);

 strcpy(buff,rhs.buff);

 len += rhs.len;

 delete[] t;

 return *this;

 }

 CSimpString CSimpString::Concat(const CSimpString& s2) const

 {

 char* tmp = new char[len + s2.len + 1];

 strcpy(tmp,buff);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 strcat(tmp,s2.buff);

 CSimpString_t(tmp);

 delete [] tmp;

 return t;

 }

 CSimpString operator+(const CSimpString& s1, const
CSimpString& s2)

 {

 return s1.Concat(s2);

 }

201. When you dynamically allocate space for the stack, you'll need to provide a destructor
to free the memory.

202. #include <iostream>

203.

204. using namespace std;

205.

206. class CStack

207. {

208. private:

209. int* list;

210. int size;

211. int next;

212. public:

213. CStack(int n = 10);

214. ~CStack();

215. void Push(int i);

216. int Pop();

217. int Peek() const;

218. void Print() const;

219. };

220.

221. CStack::CStack(int n) : next(0), size(n)

222. {

223. list = new int[size];

224. }

225.

226. CStacks::~CStack()

227. {

228. delete [] list)

229. }

230.

231. void CStack::Push(int i)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

232. {

233. if (next < size-1)

234. list[next++] = i;

235. else

236. cout << "Error! Stack overflow\n";

237. }

238.

239. int CStack::Pop()

240. {

241. if (next == 0)

242. {

243. cout << "Error! Stack underflow\n";

244. return 0;

245. }

246. else

247. return list[--next];

248. }

249.

250. int CStack::Peek() const

251. {

252. if (next == 0)

253. {

254. cout << "Error! Stack underflow\n";

255. return 0;

256. }

257. else

258. return list[next-1];

259.)

260.

261. void CStack::Print() const

262. {

263. cout << '[';

264. for (int i=next-1; i>=0; i--)

265. cout << ' '<< list[i];

266. cout << "]\n";

267. }

268.

269. int main()

270. {

271. CStack s(20);

272.

273. s.Print();

274. s.Push(5);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

275. s.Push(10);

276. s.Push(8);

277.

278. s.Print();

279.

280. cout << "peek at top of stack=" << s.Peek() << '\n' ;

281.

282. s.Print();

283. cout << "pop top of stack=" << s.Pop() << '\n';

284. cout << "pop top of stack=" << s.Pop() << '\n';

285. s.Print();

286. cout << "pop top of stack=" << s.Pop() << '\n';

287. cout << "pop top of stack=" << s.Pop() << '\n';

288.

289. return 0;

290. }

Chapter 10
1. The items in the initialization list will be processed in the 'wrong' order. In other words,

len won't contain the length of the string in p, since len will be initialized before p.

Remember that the members of a class are initialized in the order of their declaration,
not in the order that they appear in the initialization list. For this reason, it's a good idea
to ensure that your initialization lists are in the same order as the declarations.

2. COstrich example. We were considering the CBird class:

3. class CBird

4. {

5. protected:

6. int wingSpan;

7. int airSpeed;

8. int altitude;

9. public:

10. virtual void fly() { altitude = 100; }

11. };

It's reasonable to derive a CHawk from this class, but not a COstrich. This is because
the fly() function sets the altitude to 100, and (as we all know) ostriches can't fly. If we

were to derive COstrich from CBird, we'd provide a fly() function which returned 0,

and this might break existing code which relied on the altitude being 100.

A better derivation would be something like this:

 class CAvian

 {

 protected:

 int wingSpan;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 int eggSize;

 };

 class CFlyingBird : public CAvian

 {

 protected:

 int airSpeed;

 int altitude;

 public:

 virtual void fly() { altitude = 100; }

 };

 class CFlightlessBird : public CAvian

 {

 // ...

 };

 class CHawk: public CFlyingBird

 {

 // ...

 };

 class COstrich : public CFlightlessBird

 {

 // ...

 };

Now there's no reason for a user of the bird classes to suppose that an COstrich might

be able to fly, and no need for us to bend the inheritance.
12. Class CBase is an abstract base class, because it contains a pure virtual function. In

order to derive a class from it, we need to provide a Print() method.

13. #include <iostream>

14.

15. using namespace std;

16.

17. class CBase

18. {

19. protected:

20. int m_anInt;

21. public:

22. CBase (int n) : m_anInt(n) { cout << "Base
constructor\n"; }

23. virtual void Print() const = 0;

24. };

25.

26. class CDerived: public CBase

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

27. {

28. public:

29. CDerived(int n) : CBase(n) {cout << "Derived
constructor\n"; }

30. void Print() const { cout << "value is " << m_anInt <<
'\n'; }

31. };

32.

33. int main()

34. {

35. CDerived d(3);

36.

37. d.Print();

38.

39. return 0;

40. }

41.

42. Multiple inheritance.

43. #include <iostream>

44.

45. using namespace std;

46.

47. class CBase_A

48. {

49. public:

50. void fA() const { cout << "This is CBase_A::fA" << endl;
}

51. void fCommon() const { cout << "This is CBase_A::fCommon"
<< endl; }

52. };

53.

54. class CBase_B

55. {

56. public:

57. void fB() const { cout << "This is CBase_B::fB" << endl;
}

58. void fCommon() const { cout << "This is CBase_B::fCommon"
<< endl; }

59. };

60.

61. class CMulti : public CBase_A, public CBase_B

62. {

63. };

64.

65. int main()

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

66. {

67. CMulti t;

68.

69. t.fA();

70. t.fB();

71. t.CBase-A::fCommon()

72.

73. return 0;

74. }

75. Changing the inheritance access level. The program doesn't work as it did before,
because the functions that CMulti inherited from its base classes are no longer public

in CMulti. In order to get at them, you'll have to provide public access functions in
CMulti, as shown in the code below.

76. #include <iostream>

77.

78. using namespace std;

79.

80. class CBase_A

81. {

82. public:

83. void fA() const { cout << "This is CBase_A::fA" << endl;
}

84. void fCommon() const { cout << "This is CBase_A::fCommon"
<< endl; }

85. };

86.

87. class CBase_B

88. {

89. public:

90. void fB() const { cout << "This is CBase_B::fB" << endl;
}

91. void fCommon() const { cout << "This is CBase_B::fCommon"
<< endl; }

92. };

93. class CMulti : private CBase_A, private CBase_B

94. {

95. public

96. void call_fA() const { fA(); }

97. void call_fB() const { fB(); }

98. void call_fCommon() const { CBase_A::fCommon(); }

99. };

100.

101. int main()

102. {

103. CMulti t;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

104.

105. t.call_fA();

106. t.call_fB();

107. t.call_fCommon();

108.

109. return 0;

110. }

You might use this to provide a 'firewall' class. For instance, if you've created a hierarchy

of classes, you might only want the class user to have access to the functions provided
by certain 'interface' classes, and not to the functions provided by their base classes.
Private inheritance will prevent use of inherited functionality, both directly and in further
derived classes.

Chapter 11
1. Adding an exponentiation operator. This operator fits in with the multiply and divide

operators, rather than add and subtract, so you need to create a CExp class, modeled on

the CMultiply class. The two new files you need to create are therefore very familiar.
This is Exp.h:

2. // Exp.h: interface for the CExp class.

3. //

4.
///

5.

6. #ifndef __EXP_H__

7. #define __EXP_H__

8.

9. #include "Operation.h"

10.

11. class CLogicUnit;

12.

13. class CExp : public COperation

14. {

15. public:

16. void DoOperation(CLogicUnit* pLogicUnit);

17. CExp();

18. virtual ~CExp()

19.

20. };

21.

22. #endif //__EXP_H__

23.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The definition of the CExp class in Exp.cpp provides a suitable DoOperation()

function to perform the exponentiation on the registers:

 // Exp.cpp: implementation of the CExp class.

 //

///
///////////

 #include "Register.h"

 #include "LogicUnit.h"

 #include "Exp.h"

///
///////////

 // Construction/Destruction

///
///////////

 CExp::CExp()

 {

 }

 CExp::~CExp()

 {

 }

 void CExp::DoOperation(CLogicUnit* pLogicUnit)

 {

 pLogicUnit->m_MultiplyReg ^= pLogicUnit->m_DisplayReg;

 pLogicUnit->m_DisplayReg = pLogicUnit->m_MultipleReg;

 return;

 }

This will require a new operator^=() function in the CRegister base class, which will
perform the real exponentiation. The easiest way to do this is to use the pow() function

declared in the <cmath> header file (look in Help for details on how to use pow()).
You'll need to add this line to Register.h:

 CRegister& operator^=(const CRegister& rhs);

and the following #include and function definition to Register.cpp:

 // Register.cpp: implementation of the CRegister class.

 //

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

///
////////

 #include <cmath>

 #include "Register.h"

 // Rest of the function definitions as before...

 // ^= operation

 CRegister& CRegister::operator^=(const CRegister& rhs)

 {

 m_Store = pow(m_Store, rhs.m_Store);

 return *this;

 }

Then, add an OnExp() function to CLogicUnit:

 public:

 void OnExp();

and a case to the switch statement in CKeyboard::GetKey() which calls this

function when a ^ has been entered:

 case '^':

 pLogicUnit->OnExp(); // Send an exp
message

 break;

Now implement CLogicUnit::OnExp() itself; it'll be almost identical to

CLogicUnit::OnMultiply(), differing only in the fact that the new operation queued
will be a CExp rather than a CMultiply:

 // Process an exp message

 void CLogicUnit::OnExp()

 {

 if(m_pMultiplyDivide() // Check for previous
multiply/divide

 {

 m_pMultiplyDivide->DoOperation(this); // If so, do
it

 delete m_pMultiplyDivide; // Now delete the
operation object

 }

 else

 // No previous operation queued so save the display
register

 m_MultiplyReg = m_DisplayReg;

 m_pMultiplyDivide = new CExp(); // Queue a new operation

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Signal start of value in display

 m_DisplayReg.SetBeginValue();

 return;

 }

The other things you'll need to remember are to put a #include for Exp.h in

LogicUnit.cpp, and to make CExp a friend of the CLogicUnit class.

24. Trapping divide by zero errors. The easiest method is to make changes to the
CDivide::DoOperation() function. First of all, since we want to output a message,
we need to #include another header file in Divide.cpp:

25. #include <iostream>

In DoOperation(), we check that the value in pLogicUnit->m_DisplayReg is not

equal to 0 before performing the division, and outputs an error message if it is:

 void CDivide::DoOperation(CLogicUnit* pLogicUnit)

 {

 if ((pLogicUnit->m_DisplayReg.Get())!=0)

 pLogicUnit->m_MultiplyReg /= pLogicUnit->m_DisplayReg;

 else

 {

 cout << endl

 << "Divide-by-zero error detected. Operation
skipped."

 << endl;

 }

 pLogicUnit->m_DisplayReg = pLogicUnit->m_MultiplyReg;

 return;

 }

This is hardly ideal since despite detecting the error, the calculation will carry on

regardless. The offending operation is just passed over, but at least the calculator will
keep going. The next exercise provides a rather more satisfactory solution.

26. Arranging for divide-by-zero errors to terminate processing of the current line is actually
quite tricky because a new calculator is created for every pair of parentheses, and you
have to make sure all the instances are cleaned up correctly. We've already developed a
method that 'rides out' a divide-by-zero error, so one method would be to extend it and
add a global flag variable.

Change the CDivide::DoOperation() function to this:

 void CDivide::DoOperation(CLogicUnit* pLogicUnit)

 {

 if (pLogicUnit->m_DisplayReg.Get() != 0)

 pLogicUnit->m_MultiplyReg /= pLogicUnit->m_DisplayReg;

 else

 ZeroErrorFlag = true;

 pLogicUnit->m_DisplayReg = pLogicUnit->m_MultiplyReg;

 return;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This time, rather than produce the error message here, we raise an error flag. That
means the header file we included in the last exercise is no longer required. We can now
let the calculator continue on its way, just like last time, and catch the error when the
time comes for output, which is in CDisplay::ShowRegister():

 void CDisplay::ShowRegister (CRegister& rReg)

 {

 if (ZeroErrorFlag == true)

 {

 cout << endl << "Divide by zero error. Calculator

reset." << endl;

 m_pCalc->GetLogicUnit()->Reset();

 ZeroErrorFlag = false;

 }

 cout << endl << setw(12) << rReg.Get() << endl;

 return;

 }

The function now checks our error flag before outputting the result. If a divide-by-zero
error has been detected, it produces an error message, resets the calculator and resets
the flag. That just leaves the declarations required to make the flag available at global
scope. The first comes in Ex11_01.cpp,

 // EX11_01.CPP - the main() function

 #include "Calculator.h"

 bool ZeroErrorFlag = false;

 int main(void)

 {

 CCalculator myCalculator; // Create a calculator

 myCalculator.Run(); // ...then run it

 return 0;

 }

and to make ZeroErrorFlag available to the CDivide and CDisplay classes, you

need to add the line

 extern bool ZeroErrorFlag;

after the #include statements in Divide.cpp and Display.cpp. The extern

keyword forces the compiler to look outside the current source file for the definition of
what follows it, and since we've declared ZeroErrorFlag at global scope, everything

compiles as it should.

The problem with this method is the very fact that it uses global variables, which are
rather inelegant and provide the opportunity for errors themselves-multiple definitions
and the like-if used carelessly.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Chapter 13
1. A document is a class which holds data for an application, while a view presents the

data to the user in some form. There may be more than one type of view associated with
a given document.

2. The document template ties together the document, view and window types used by an
application.

3. You need to be careful when using AppWizard because you can't go back and modify
your choices later! If you didn't select (say) database support when you generated the
application, it can be hard to go back and manually edit in all the necessary code
yourself.

Chapter 14
1. Open the menu resource IDR_SKETCHTYPE in ResourceView, and add the item

&Ellipse to the vacant position at the end of the Element pop-up. Assign the ID
ID_ELEMENT_ELLIPSE. Add a prompt reading Draw an ellipse. Save the menu.

2. Add a definition for ELLIPSE to OurConstants.h:

3. const WORD ELLIPSE = 105U;

Open ClassWizard and add a COMMAND handler and an UPDATE_COMMAND_UI handler

to CSketcherDoc, corresponding to the ID ID_ELEMENT_ELLIPSE.

Implement the command handler as:

 void CSketcherDoc::OnElementEllipse()

 {

 m_Element = ELLIPSE; // Set element type as a ellipse

 }

Add a command update handler as:

 Void CSketcherDoc::OnUPdateElemetnEllipse(CCmdUI* pCmdUI)

 {

 // Set Checked if the current element is an ellipse

 pCmdUI->SetCheck(m_Element==ELLIPSE);

 }
4. Open the toolbar IDR_MAINFRAME in ResourceView. Draw a new toolbar button to

represent an ellipse. Drag it to the group of buttons for elements types. Change its ID to
that of the corresponding menu item, ID_ELEMENT_ELLIPSE. Save the toolbar.

Open the menu resource with the ID IDR_SKETCHTYPE. Open the properties box for the

menu item Ellipse. Modify the prompt to include the tooltip.
5. Use the SetText() member of the class CCmdUI to set the menu item text for each

color to upper or lower case, depending on the current value of m_Color. A typical

update handler will be modified as follows:

6. void CSketcherDoc::OnUpdateColorBlack(CCmdUI* pCmdUI)

7. {

8. // Set menu item Checked if the current color is black

9. pCmdUI->SetCheck(m_Color==BLACK);

10.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

11. // Set upper case for a selected item, lower case
otherwise

12. if(m_Color == BLACK)

13. pCmdUI->SetText("BLAC&K");

14. else

15. pCmdUI->SetText("blac&k");

16. }

This modification does not affect the corresponding toolbar button.

Chapter 15
1. The class definition should be:

2. // Class defining an ellipse object

3. class CEllipse: public CElement

4. {

5. public:

6. virtual void Draw(CDC* pDC) const;

7.

8. // Constructor for an ellipse

9. CEllipse(const Cpoint& Start, const CPoint& End, const
COLORREF& Color);

10. protected:

11. CEllipse(){} // Default constructor - should
not be used

12. };

The implementation of the CEllipse class constructor is:

 // Constructor for an ellipse object

 CEllipse:: CEllipse(const Cpoint& Start, const Cpoint& End,
const COLORREF& Color)

 {

 m_Color = Color; // Set ellipse color

 m_Pen = 1; // Set pen width

 // Define the enclosing rectangle

 m_EnclosingRect = CRect(Start, End);

 m_EnclosingRect.NormalizeRect();

 }

The implementation of the Draw() function for an ellipse object is:

 // Draw an ellipse

 void CEllipse::Draw(CDC* pDC) const

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Create a pen for this object and

 // intialize it to the object color and line width of 1
pixel

 CPen aPen;

 if(!aPen.CreatePen(PS_SOLID, m_Pen, m_Color))

 { // Pen creation
failed

 AfxMessageBox("Pen creation failed drawing an ellipse",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the

pen

 // Select a null brush

 CBrush* pOldBrush = static_cast<CBrush*>(pDC-
>SelectStockObject(NULL_BRUSH));

 // Now draw the ellipse

 pDC->Ellipse(m_EnclosingRect);

 pDC->SelectObject(pOldPen); // Restore the
old pen

 pDC->SelectObject(pOldBrush); // Restore the
old brush

 }
13. Only the CreateElement() element function needs to be modified:

14. CElement* CSketcherView::CreateElement()

15. {

16. // Get a pointer to the document for this view

17. CSketcherDoc* pDoc = GetDocument();

18. ASSERT_VALID(pDoc); // Verify the
pointer is good

19.

20. // Now select the element using the type stored in the
document

21. switch(pDoc->GetElementType())

22. {

23. case RECTANGLE:

24. return new CRectangle(m_FirstPoint, m_SecondPoint,

25. pDoc-
>GetElementColor());

26. case CIRCLE:

27. return new CCircle(m_FirstPoint, m_SecondPoint,

28. pDoc-
>GetElementColor());

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

29. case CURVE:

30. return new CCurve(pDoc->GetElementColor());

31.

32. case LINE:

33. return new CLine(m_FirstPoint, m_SecondPoint,

34. pDoc-
>GetElementColor());

35. case ELLIPSE:

36. return new CEllipse(m_FirstPoint, m_SecondPoint,

37. pDoc-
>GetElementColor());

38.

39. default: // Something's gone wrong

40. AfxMessageBox("Bad Element code", MB_OK);

41. AfxAbort();

42. }

43. }

44. Only the class constructor needs to be modified:

45. CEllipse:: CEllipse(const CPoint& Start, const CPoint& End,
const COLORREF& Color)

46. {

47. m_Color = Color; // Set ellipse color

48. m_Pen = 1; // Set pen width

49.

50. // Define the enclosing rectangle

51. m_EnclosingRect = CRect(Start - (End-Start), End);

52. m_EnclosingRect.NormalizeRect();

53. }

The modified statement uses two different versions of the overloaded operator-in the
CPoint class. The expression (End-Start) returns the difference between the two

points as an object of class CSize. This object is then subtracted from the CPoint
object Start to offset it by the CSize value.

54. Open the menu IDR_SKETCHTYPE in ResourceView. Add a new pop-up to the menu

bar, labeled Pen Style. Add menu items to the pop-up for Solid, Dashed, Dotted, Dash-
dotted, and Dash-dot-dotted lines. Save the resource.

55. The following modifications are necessary:
§ Add a protected member of type int, m_PenStyle, and a function to retrieve

its value, to the CSketcherDoc class.

§ Add initialization of m_Penstyle to PS_SOLID in the CSketcherDoc

constructor.
§ Add COMMAND and UPDATE_COMMAND_UI handlers for each of the new menu

items.
§ Add a protected member of type int, m_PenStyle, to the CElemant class.

§ Modify the constructors for each of the element classes to accept an argument
of type int specifying the pen style.

§ Modify the CreateElement() function member of CSketcherView to call

the constructors using the additional parameter for pen style.
§ Modify the Draw() functions in each of the element classes to draw using the

pen style specified in the m_PenStyle member of each element class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

56. The following line must be added to the protected section of the CSketcherDoc class

definition:

57. int m_PenStyle; // Current pen style

Add the following function to retrieve the pen style from the document:

 int GetPenStyle() // Get the pen style

 { return m_PenStyle; }

The following line should be added to the constructor, CSketcherDoc():

 m_PenStyle = PS_SOLID; // Set initial style as solid

A typical COMMAND menu handler is:

 void CSketcherDoc::OnPenstyleDashdotted()

 {

 m_PenStyle = PS_DASHDOT;

 }

A typical UPDATE_COMMAND_UI handler is:

 void CSketcherDoc::OnUpdatePenstyleDashdotted(CCmdUI* pCmdUI)

 {

 pCmdUI->SetCheck(m_PenStyle==PS_DASHDOT);

 }

The following declaration should be added to the protected section of the CElement

class:

 int m_PenStyle; // Element pen
style

The constructor declaration in each derived element class definition should be modified
to add the extra parameter. The CCircle class is typical:

 CCircle(const Cpoint& Start, const Cpoint& End, const

COLORREF& Color,

int aPenStyle);

The typical change to the constructor to support the pen style is:

 CCircle::CCircle(const CPoint& Start, const CPoint& End,

 const COLORREF& Color, int
aPenStyle)

 {

 // First calculate the radius

 //We use floating point because that is required by

 // the library function (in math.h) for calculating a
square root.

 long Radius =

 static_cast<long>(sqrt(static_cast<double>((End.x-
Start.x)*(End.x-Start.x)+

 (End.y-
Start.y)*(End.y-Start.y))));

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Now calculate the rectangle enclosing

 // the circle assuming the MM_TEXT mapping mode

 m_EnclosingRect = CRect(Start.x-Radius Start.y-Radius,

 Start.x+Radius, Start.y+Radius);

 m_Color = aColor; // Set the color for the circle

 m_Pen = 1; // Set pen width to 1

 m_PenStyle = aPenStyle // Set the pen style

 }

The CreateElement() member of CSketcherView is modified to:

 CElement* CSketcherView::CreateElement()

 {

 // Get a pointer to the document for this view

 CSketcherDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc); // Verify the pointer
is good

 // Now select the element using the type stored in the
document

 switch(pDoc->GetElementType())

 {

 case RECTANGLE:

 return new CRectangle(m_FirstPoint, m_SecondPoint,

 p_Doc->GetElementColor(), pDoc-
>GetPenStyle());

 case CIRCLE:

 return new CCircle(pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 case CURVE:

 return new CCurve(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 case LINE:

 return new CLine(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 case ELLIPSE:

 return new CEllipse(m_FirstPoint, m_SecondPoint,

 pDoc->GetElementColor(), pDoc-
>GetPenStyle());

 default: // Something's gone wrong

 AfxMessageBox("Bad Element code", MB_OK);

 AfxAbort();

 return NULL;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

 }

The typical change to the implementation of the Draw() members of the element

classes is:

 void CCircle::Draw(CDC* pDC) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1
pixel

 CPen aPen;

 if(!aPen.CreatePen(m_PenStyle, m_Pen, m_Color))

 { // Pen creation

failed

 AfxMessageBox("Pen creation failed drawing a circle",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the
pen

 // Select a null brush

 CBrush* pOldBrush = static_cast<CBrush*>(pDC-
>SelectStockObject(NULL_BRUSH));

 // Now draw the circle

 pDC->Ellipse(m_EnclosingRect);

 pDC->SelectObject(pOldPen); // Restore the
old pen

 pDC->SelectObject(pOldBrush); // Restore the
old brush

 }

Chapter 16
1. When the points are added to the head of the list, they will be in reverse order. We must

modify the constructor and the AddSegment() function to add points to the head of the
list, and change the Draw() function to process the points from the tail to the head.

The code for the constructor is:

 CCurve::CCurve(const CPoint& FirstPoint, const CPoint&
SecondPoint,

 const
COLORREF& Color)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 m_PointList.AddHead(FirstPoint); // Add the 1st point to
the list

 m_PointList.AddHead(SecondPoint); // Add the 2nd point to
the list

 m_Color = Color; // Store the color

 m_Pen = 1; // Set the pen width

 m_PenStyle = aPenStyle; // Set the pen style

 // Construct the enclosing rectangle assuming MM_TEXT mode

 m_EnclosingRect = CRect(FirstPoint, SecondPoint);

 m_EnclosingRect.NormalizeRect();

 }

Here we just use the AddHead() function instead of AddTail(). The code for the
AddSegment() member is:

 void CCurve::AddSegment(const CPoint& Point)

 {

 m_PointList.AddHead(Point); // Add the point to the list

 // Modify the enclosing rectangle for the new point

 m_EnclosingRect = CRect(min(Point.x,
m_EnclosingRect.left),

 min(Point.y, m_EnclosingRect.top),

 max(Point.x,
m_EnclosingRect.right),

 max(Point.y,
m_EnclosingRect.bottom)

);

Again, the change is just to use AddHead() in place of AddTail(). The code for the
Draw() member function is:

 void CCurve::Draw(CDC* pDC, const CElement* pElement) const

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1
pixel

 CPen aPen;

 COLORREF aColor = m_Color; // Initialize with
element color

 if(this == pElement) // This element
selected?

 aColor = SELECT_COLOR; // Set highlight
color

 if(!aPen.CreatePen(PS_SOLID, m_Pen, aColor))

 {

 // Pen creation failed. Close the program

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 AfxMessageBox("Pen creation failed drawing a curve",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the
pen

 // Now draw the curve

 // Get the position in the list of the first element

 POSITION aPosition = m_PointList.GetTailPosition();

 // As long as it's good, move to that point

 if(aPosition)

 pDC->MoveTo(m_PointList.GetPrev(aPosition));

 // Draw a segment for each of the following points

 while(aPosition)

 pDC->LineTo(m_PointList.GetPrev(aPosition));

 pDC->SelectObject(pOldPen); // Restore the
old pen

 }

The GetTailPosition() function returns the POSITION value for the last member of

the list, which will correspond to the first point. We then step backwards through the list
by using the GetPrev() function.

2. The declaration in the CCurve class for the list should be changed to:

3. // Type safe point pointer list

4. CTypedPtrList<CPtrList, CPoint*> m_PointPtrList;

The constructor will now be implemented as:

 CCurve::CCurve(const CPoint& FirstPoint, const CPoint&
SecondPoint, const

 COLORREF& Color)

 {

 // Add the points to the list

 m_PointPtrList.AddTail(new CPoint(FirstPoint));

 m_PointPtrList.AddTail(new CPoint(SecondPoint));

 m_Color = Color; // Store the color

 m_Pen = 1; // Set the pen width

 // Construct the enclosing rectangle assuming MM_TEXT mode

 m_EnclosingRect = CRect(FirstPoint, SecondPoint);

 m_EnclosingRect.NormalizeRect();

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This now creates new points on the heap that are initialized with the points passed as
arguments to the constructor, and passes their addresses to the AddTail() function.

Since we're using a pointer list, we need to implement the destructor for the CCurve

class:

 CCurve::~CCurve()

 {

 POSITION aPos = m_PointPtrList.GetHeadPosition();

 while(aPos)

 delete m_PointPtrList.GetNext(aPos); // Delete CPoint
objects

 m_PointPtrList.RemoveAll(); // Delete the
pointers

 }

Don't forget to add a declaration for the destructor in Elements.h! The
AddSegment() member of the CCurve class also needs to be modified:

 void CCurve::AddSegment(const CPoint& Point)

 {

 //Add the point to the end

 m_PointPtrList.AddTail(new CPoint(Point));

 // Modify the enclosing rectangle for the new point

 m_EnclosingRect = CRect(min(Point.x,
m_EnclosingRect.left),

 min(Point.y, m_EnclosingRect.top),

 max(Point.x,
m_EnclosingRect.right),

 max(Point.y,
m_EnclosingRect.bottom));

 };

The Move() member function is also affected:

 void CCurve::Move(const CSize& aSize)

 {

 m_EnclosingRect += aSize; // Move the
rectangle

 // Get the 1st element position

 POSITION aPosition = m_PointPtrList.GetHeadPosition();

 while(aPosition)

 *m_PointPtrList.GetNext(aPosition)+= aSize; // Move
each point

 }

Lastly, the Draw() function in the CCurve class must be changed:

 void CCurve::Draw(CDC* pDC, const CElement* pElement) const

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Create a pen for this object and

 // initialize it to the object color and line width of 1
pixel

 CPen aPen;

 COLORREF aColor = m_Color; // Initialize with
element color

 if(this == pElement) // This element
selected?

 aColor = SELECT_COLOR; // Set highlight

color

 if(!aPen.CreatePen(PS_SOLID, m_Pen, aColor))

 {

 // Pen creation failed. Close the program

 AfxMessageBox("Pen creation failed drawing a curve",
MB_OK);

 AfxAbort();

)

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the
pen

 // Now draw the curve

 // Get the position in the list of the first element

 POSITION aPosition = m_PointPtrList.GetHeadPosition();

 //As long as it's good, move to that point

 if(aPosition)

 pDC->MoveTo(*m_PointPtrList.GetNext(aPosition));

 // Draw a segment for each of the following points

 while(aPosition)

 pDC->LineTo(*m_PointPtrList.GetNext(aPosition));

1 pDC->SelectObject(pOldPen); // Restore the
old pen

 }
5. The declaration of the CArray data member in the CCurve class is:

6. CArray<CPoint, const CPoint&> m_PointArray; // Type
safe point array

The second argument to the template specifies that arguments will be passed to function
members of m_PointArray as references. Remember to delete the declaration of the

CList data member in the CCurve class.

We can also add a protected data member to keep track of how many points we have in
a curve:

 int m_nPoints; // Number of
points

The constructor needs to be modified to:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CCurve::CCurve(const CPoint& FirstPoint, const CPoint&
SecondPoint,

 const
COLORREF& Color)

 {

 m_PointArray.SetSize(10);

 m_PointArray[0] = FirstPoint; // Add the 1st point to
the array

 m_PointArray[1] = SecondPoint; // Add the 2nd point to

the array

 m_nPoints = 2; // Set the point count

 m_Color = Color; // Store the color

 m_Pen = 1; // Set the pen width

 // Construct the enclosing rectangle assuming MM_TEXT mode

 m_EnclosingRect = CRect(FirstPoint, SecondPoint);

 m_EnclosingRect.NormalizeRect();

 }

By setting the initial size of the array, we avoid unnecessary creation of array elements.

The default situation allocates array elements one at a time. You can specify a second
argument to the SetSize() function to define the number of additional elements to be

created when it becomes necessary. If you omit the second argument, the framework will
decide how many to create, based on the initial array size.

The CArray template provides overloading for [] so that you can use indexing to
reference members of the array. The AddSegment() member of CCurve can be

implemented as:

 void CCurve::AddSegment(const CPoint& Point)

 {

 //Add the point to the array and increment the count

 m_PointArray.SetAtGrow(m_nPoints++, Point);

 // Modify the enclosing rectangle for the new point

 m_EnclosingRect = CRect(min(Point.x,
m_EnclosingRect.left),

 min(Point.y, m_EnclosingRect.top),

 max(Point.x,
m_EnclosingRect.right),

 max(Point.y,
m_EnclosingRect.bottom));

 }

The SetAtGrow() member of CArray sets the array element specified by the first

argument to the value passed as the second argument. If the first argument is beyond
the extent of the array, the array will be automatically increased in size.

As in the previous exercises, we'll also need to modify the Draw() and Move()

members. Here's the first of those two:

 void CCurve::Draw(CDC* pDC, const CElement* pElement) const

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 // Create a pen for this object and

 // initialize it to the object color and line width of 1
pixel

 CPen aPen;

 COLORREF aColor = m_Color; // Initialize with
element color

 if(this == pElement) // This element
selected?

 aColor = SELECT_COLOR; // Set highlight
color

 if(!aPen.CreatePen(PS_SOLID, m_Pen, aColor))

 {

 // Pen creation failed. Close the program

 AfxMessageBox("Pen creation failed drawing a curve",
MB_OK);

 AfxAbort();

 }

 CPen* pOldPen = pDC->SelectObject(&aPen); // Select the
pen

 // Now draw the curve

 // Set the position counter to the first element of the
array

 int aPosition = 0;

 // Move to the first point in the curve

 pDC->MoveTo(m_PointArray[aPosition++]);

 // Draw a segment for each of the following points

 while(aPosition < m_nPoints)

 pDC->LineTo(m_PointArray[aPosition++]);

 pDC->SelectObject(pOldPen); // Restore the
old pen

 }

And these are the changes you need to make to Move():

 void CCurve::Move(const CSize& aSize)

 {

 m_EnclosingRect += aSize; // Move the rectangle

 // Set a counter to the 1st element

 int aPosition = 0;

 while(aPosition < m_npoints)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_PointArray[aPosition++] += aSize; // Move each point
in the array

 }

Chapter 17
1. Modify the scale dialog to appear as shown here:

Make sure that each radio button has a unique ID, such as IDC_SCALE1, IDC_SCALE2,

etc., then use ClassWizard to add functions to handle the BN_CLICKED message for

each radio button. The implementations for these are all very similar. For example, the
first two are:

 void CScaleDialog::OnScale1()

 {

 m_Scale = 1;

 }

 void CScaleDialog::OnScale2()

 {

 m_Scale = 2;

 }

Modify the OnInitDialog() member of CScaleDialog to check the appropriate radio

button, based on the current scale, as follows:

 BOOL CScaleDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // Check the radio button corresponding to the scale

 switch(m_Scale)

 {

 case 1:

 CheckDlgButton(IDC_SCALE1,1);

 break;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 case 2:

 CheckDlgButton(IDC_SCALE2,1);

 break;

 case 3:

 CheckDlgButton(IDC_SCALE3,1);

 break;

 case 4:

 CheckDlgButton(IDC_SCALE4,1);

 break;

 case 5:

 CheckDlgButton(IDC_SCALE5,1);

 break;

 case 6:

 CheckDlgButton(IDC_SCALE6, 1);

 break;

 case 7:

 CheckDlgButton(IDC_SCALE7,1);

 break;

 case 8:

 CheckDlgButton(IDC_SCALE8,1);

 break;

 default:

 CheckDlgButton(IDC_SCALE8,1);

 AfxMessageBox("Invalid scale set.");

 }

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should
return FALSE

 }

Delete the code from the DoDataExchange() member of CscaleDialog that handled

the previous version of the dialog controls, so it becomes:

 void CScaleDialog::DoDateExchange(CDateExchange" pDX)

 {

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CScaleDialog)

 // NOTE: the ClassWizard will add DDX and DDV calls here

 //}}AFX_DATA_MAP

 }

If you changed Sketcher to work with the list box scale dialogue, rather than the original

spin button control, there is an extra step to add to the solution. In the
CsketcherView::OnViewScale() function, return the first line after the DoModal()

call to its original state:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_Scale = aDlg.m_Scale;

That completes all the necessary modifications. Compile and run Sketcher as normal to

see the new dialog in operation.
2. Modify the pen width dialog box resource to the following:

Assign a suitable ID, such as IDC_PENWIDTH to the list box, and make sure the Sort
style is unchecked. Now delete the m_PenWidth data member of CPenDialog and the

functions handling the previous BN_CLICKED messages for the radio buttons. Don't

forget to delete them from the class definition, as well as from the message map in the
implementation file. Save the two files so ClassWizard recognizes that the variable has
been deleted.

Use ClassWizard to add a new variable for the dialog, m_Penwidth, of type int and
corresponding to the list box ID, IDC_PENWIDTH. The variable will store the index to the

selected list box item, and will also represent the pen width.

Modify the OnInitDialog() member of CPenDialog to add the strings to the list box,

and highlight the string corresponding to the current pen width:

 BOOL CPenDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // Initialize aBox

 CListBox* pLBox =
static_cast<CListBox*>(GetDlgItem(IDC_PENWIDTH));

 pLBox->AddString("Pen Width 0"); // Add the strings to
the box

 pLBox->AddString("Pen Width 2");

 pLBox->AddString("Pen Width 3");

 pLBox->AddString("Pen Width 4");

 pLBox->AddString("Pen Width 5");

 pLBox->SetCurSel(m_PenWidth); // Highlight the
current pen width

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should
return FALSE

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

3. Change the dialog again by removing the list box and replacing it by a combo box with
the same ID. The dialog will look like this:

It's important to allow enough space in the dialog for the combo box to drop down,
otherwise you will not see the complete list. Do this by clicking the down arrow and
increasing the size of the area displayed.

You could delete the existing m_PenWidth member of CPenDialog and add it back as

the variable to support the combo box, but because the differences are so slight the
shortest way to implement the support for the combo box is to modify the existing code.
The DoDataExchange() member of CPenDialog should be modified to:

 void CPenDialog::DoDataExchange(CDataExchange* pDX)

 {

 CDialog::DoDataExchange(pDX);

 //{{AFX_DATA_MAP(CPenDialog)

 DDX_CBIndex(pDX, IDC_PENWIDTH, m_PenWidth);

 //}}AFX_DATA_MAP

 }

This calls DDX_CBIndex() instead of DDX_LBIndex(), because we're now using a

combo box, not a list box. The only other modification necessary is to the
OnInitDialog() member of CPenDialog:

 BOOL CPenDialog::OnInitDialog()

 {

 CDialog::OnInitDialog();

 // Initialize aBox

 CComboBox* pCBox = static_cast<CComboBox*>
(GetDlgItem(IDC_PENWIDTH));

 pCBox->AddString("Pen Width 0"); // Add the strings to
the box

 pCBox->AddString("Pen Width 2");

 pCBox->AddString("Pen Width 3");

 pCBox->AddString("Pen Width 4");

 pCBox->AddString("Pen Width 5");

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 pCBox->SetCurSel(m_PenWidth); // Highlight the
current pen width

 return TRUE; // return TRUE unless you set the focus to a
control

 // EXCEPTION: OCX Property Pages should
return FALSE

 }

The changed lines here are highlighted. The first statement creates a pointer to a
CComboBox object instead of a pointer to a CListBox object, and casts the pointer

returned by GetDlgItem() accordingly. You should also change the pointer name to
pCBox for consistency. You also have to change all the succeeding statements which

refer to it, of course.

Chapter 18
1. Printing page numbers. These are the lines you need to add to OnPrint():

2. …

3. // Output the document file name

4. pDC->SetTextAlign(TA_CENTER); // Center the
following text

5. pDC->TextOut(pInfo- >m_rectDraw.right/2, -20, pPrintData-

>m_DocTitle);

6. CString PageNum;

7. PageNum.Format("Page %d", pInfo->m_nCurPage);

8. pDC->TextOut(pInfo->m_rectDraw.right/2, -1050, PageNum);

9.

10. pDC->SetTextAlign(TA_LEFT); // Left justify
text

11. …

Using CString, it's easy! You create a string object, initialize it using the member
function Format() with the m_nCurPage value we're already using elsewhere in

OnPrint(), and output it just as we did with the document title (although in a different

position, of course).
12. Scaling text correctly is a matter of working out how and where to specify the font to be

used. In fact, you need to do it twice: once in the CText::Draw() function, and then

again in CSketcherView::OnLButtonDown(), to make sure that the text rectangle
gets set up correctly. Here are the changes to CText::Draw():

13. void CText::Draw(CDC* pDC, CElement* pElement)

14. {

15. CFont aFont;

16. aFont.CreatePointFont(100, "");

17. CFont* pOldFont = pDC->SelectObject(&aFont);

18.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

19. COLORREF Color(m_Color); // Initialize with
element color

20.

21. if(this==pElement)

22. Color = SELECT_COLOR; // Set selected color

23.

24. // Set the text color and output the text

25. pDC->SetTextColor(Color);

26. pDC->TextOut(m_StartPoint.x, m_StartPoint.y, m_String);

27. pDC->SelectObject(pOldFont);

28. }

The new code simply creates a new object of the CFont class, calls its member function

CreatePointFont() to select a default 10 point font, selects it into the device context

before the text is output, and selects it out again afterwards. Four very similar lines get
added to CSketcherView::OnLButtonDown():

 if(pDoc->GetElementType() == TEXT)

 {

 CTextDialog aDlg;

 if(aDlg.DoModal() == IDOK)

 {

 // Exit OK so create a text element

 CFont aFont;

 aFont.CreatePointFont(100,

 CFont* pOldFont = aDC.SelectObject(&aFont);

 CSize TextExtent =
aDC.GetTextExtent(aDlg.m_TextString);

 // Get bottom right of text rectangle -
MM_LOENGLISH

 CPoint BottomRt(point.x+TextExtent.cx, point.y-
TextExtent.cy);

 CText* pTextElement = new CText(point, BottomRt,

 aDlg.m_TextString, pDoc-
>GetElementColor());

 // Add the element to the document

 pDoc->AddElement(pTextElement);

 // Get all views updated

 pDoc->UpdateAllViews(0,0,pTextElement);

 aDC.SelectObject(pOldFont);

 }

 return;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 }

Chapter 19
1. Start off by using AppWizard to generate a new SDI application. You can turn off printer

support if you like, and the name really isn't important. The files and classes here
assume a project called SkView.

Copy the DllImports.h file into the project folder and add it to the project; insert

#includes for this file into SkView.cpp, SkViewDoc.cpp and SkViewView.cpp,
ensuring that you place them before the #includes for SkViewDoc.h and

SkViewView.h. Just like in the chapter, amend the project settings so the
ExtDLLExample.lib file is linked in, and don't forget to copy ExtDLLExample.dll to

the Debug directory once that's been created. You'll also need to add a #include for
afxtempl.h to stdafx.h.

To the document class definition, you need to add five member variables and three
member functions, all of which you've used before:

 // Attributes

 protected:

 COLORREF m_Color;

 WORD m_Element;

 CTypedPtrList<CObList, CElement*> m_ElementList;

 int m_PenWidth;

 CSize m_DocSize;

 // Operations

 public:

 POSITION GetListHeadPosition()

 { return m_ElementList.GetHeadPosition(); }

 CElement* GetNext(POSITION &aPos)

 { return m_ElementList.GetNext(aPos); }

 CSize GetDocSize()

 { return m_DocSize; }

As for the implementation, since we're only dealing with documents held in files, we don't

need to do any initialization in the constructor. However, we should add the code which
deletes the element list cleanly to the destructor:

 CSkViewDoc::~CSkViewDoc()

 {

 POSITION aPosition = m_ElementList.GetHeadPosition();

 while(aPosition)

 delete m_ElementList.GetNext(aPosition);

 m_ElementList.RemoveAll();

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

The only other code to add to the document class is that required to enable serialization
from a file. (Remember, we aren't worried about saving files because we never alter
them in this application.) The Serialize() function looks like this:

 void CSkViewDoc::Serialize(CArchive& ar)

 {

 m_ElementList.Serialize(ar);

 if (ar.IsStoring())

 {

 }

 else

 {

 ar >> m_Color

 >> m_Element

 >> m_PenWidth

 >> m_DocSize;

 }

 }

The view class requires a little more work, although not much. For a start, it doesn't need
any new member variables, although you will need to use ClassWizard to add two new
member functions: OnPrepareDC() and OnOpenDocument(). Once again, nothing

needs adding to the constructor, and this time the destructor can be left empty as well.
You should add some code to OnDraw(), but only the same as we had in Sketcher

itself:

 void CSkViewView::OnDraw(CDC* pDC)

 {

 CSkViewDoc* pDoc = GetDocument();

 ASSERT_VALID(pDoc);

 POSITION aPos = pDoc->GetListHeadPosition();

 CElement*PElement = 0;

 while(aPos)

 {

 pElement = pDoc->GetNext(aPos);

 if(pDC->RectVisible(pElement->GetBoundRect()))

 pElement->Draw(pDC);

 }

 }

OnPrepareDC() bears a little more inspection, and should look like this once you've

created the handler and added the code:

 void CSkViewView::OnPrepareDC(CDC* pDC, CPrintInfo* pInfo)

 {

 CView::OnPrepareDC(pDC, pInfo);

 CSkViewDoc* pDoc = GetDocument();

 pDC->SetMapMode(MM_ANISOTROPIC);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CSize DocSize = pDoc->GetDocSize();

 DocSize.cy = -DocSize.cy;

 pDC->SetWindowExt(DocSize);

 int xLogPixels = pDC->GetDeviceCaps(LOGPIXELSX);

 int yLogPixels = pDC->GetDeviceCaps(LOGPIXELSY);

 CRect WinRect;

 GetWindowRect(&WinRect);

 double xScale = (static_cast<double>(WinRect.right -

WinRect.left))/(DocSize.cx/100*xLogPixels);

 double yScale = -(static_cast<double>(WinRect.bottom -

WinRect.top))/(DocSize.cy/100*yLogPixels);

 long xExtent =
static_cast<long>(DocSize.cx*xScale*xLogPixels/100L);

 long yExtent =
static_cast<long>(DocSize.cy*yScale*yLogPixels/100L);

 pDC->SetViewportExt(static_cast<int>(xExtent),
static_cast<int>(-yExtent));

 }

The new lines here are the ones which handle the scaling. GetWindowRect() returns,

in its argument, the coordinates in pixels of the view window. From these values, we
contrive to produce two scaling factors (in general, they're different for the x and y
directions) which map the document stored in DocSize to our view window - the

expressions come down to (window width/document width) and (window
height/document height), with all measurements in pixels.

You need to implement OnOpenDocument() in order that you have somewhere to

delete the old document before opening a new one. If you don't do this, any new
documents you open will just be superimposed on top of old ones, which is hardly ideal.
The code you need to add is exactly the same as the code in the destructor:

 BOOL CSkViewDoc::OnOpenDocument(LPCTSTR lpszPathName)

 {

 POSITION aPosition = m_ElementList.GetHeadPosition();

 while(aPosition)

 delete m_ElementList.GetNext(aPosition);

 m_ElementList.RemoveAll();

 if (!CDocument::OnOpenDocument(lpszPathName))

 return FALSE;

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 return TRUE;

 }

That's everything required for the problem as specified, although you might like to
include the text scaling we introduced in the last chapter's exercises, as the text is
disproportionately large at these scales otherwise.

Chapter 20
1. There are a number of things to do here. Start by adding a new button labeled

something like Stock Info to the products dialog, and amend its ID appropriately.
Implement a handler for it using ClassWizard and add this code:

2. void CProductView::OnStockinfo()

3. {

4. ((CMainFrame*)GetParentFrame())->SelectView(STOCK_VIEW);

5. }

For this to work, you must also define a new constant in OurConstants.h

 // Arbitrary constants to identify record views

 const UINT PRODUCT_VIEW = 1U;

 const UINT ORDER_VIEW = 2U;

 const UINT CUSTOMER_VIEW = 3U;

 const UINT STOCK_VIEW = 4U;

and add code to handle it in CMainFrame::SelectView(). The new class for the
stock control dialog will be called CStockView:

 if (pNewActiveView == NULL)

 {

 switch(ViewID)

 {

 case ORDER_VIEW: // Create an Order view

 pNewActiveView = (CView*)new COrderView;

 break;

 case CUSTOMER_VIEW: // Create a customer view

 pNewActiveView = (CView*)new CCustomerView;

 break;

 case STOCK_VIEW: // Create a stock view

 pNewActiveView = (CView*)new CStockView;

 break;

Don't forget that you'll need to add a #include for StockView.h to MainFrm.cpp.
Next, call up ClassWizard and use it to create a new class called CStockSet, with

CRecordset as its base. Choose to use the Products table from the Sample Data
database, and once you've done that, add a public member variable to the document

class:

 public:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CStockSet m_StockSet;

 CCustomerSet m_CustomerSet;

 COrderSet m_OrderSet;

The next step is to add the dialog itself. Go to the ResourceView and insert a new dialog
called IDD_STOCK_FORM. Make sure its Style and Border are set to Child and None

respectively, delete the default controls and add new ones so it looks something like this:

After giving the important controls sensible IDs and ensuring that the tab order of the
controls is such that each edit control immediately succeeds its partnering static text
control, call up ClassWizard and create a new class called CStockView. Base this class
on CRecordView, select IDD_STOCK_FORM as the dialog to be associated with it, and

choose CStockSet as its recordset.

You can now Ctrl-double-click on all the edit controls to tie them to the recordset data
members, and on the Products button so that you can implement the handler, which looks
like this:

 void CStockView::OnSkproducts()

 {

 ((CMainFrame*)GetParentFrame())->SelectView(PRODUCT_VIEW);

 }

Just three things remain: make the constructor for CStockView public, delete the code

from the destructor, and add two #includes to StockView.cpp:

 #include "stdafx.h"

 #include "DBSample.h"

 #include "OurConstants.h"

 #include "Mainfrm.h"

 #include "StockView.h"

6. Add the public member variable m_ProductIDparam, of type long, to the definition
of CStockSet. Initialize it and the parameter count m_nParams in the constructor in

StockSet.cpp:

7. m_ProductIDparam = 0L;

8. m_nParams = 1;

Set up the parameter by adding a couple of lines to the
CStockSet::DoFieldExchange() function:

 void CStockSet::DoFieldExchange(CFieldExchange* pFX)

 {

 //{{AFX_FIELD_MAP(CStockSet)

 pFX->SetFieldType(CFieldExchange::outputColumn);

 // Various RFX_... commands

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 //}}AFX_FIELD_MAP

 pFX->SetFieldType(CFieldExchange::param);

 RFX_Long(pFX, _T("ProductIDparam"), m_ProductIDparam);

 }

Next, you need to add code to define a filter in the
CStockView::OnInitialUpdate() function:

 void CStockView::OnInitialUpdate()

 {

 BeginWaitCursor();

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 m_pSet = &pDoc->m_StockSet; // Initialize the recordset
pointer

 // Set the database for the recordset

 m_pSet->m_pDatabase = pDoc->m_productSet.m_pDatabase;

 // Set the current Product ID as the parameter

 m_pSet->m_ProductIDparam = pDoc->m_productSet.m_ProductID;

 // Filter on the Product ID field

 m_pSet->m_strFilter = "ProductID - ?">

 GetRecordset();

 CRecordView::OnInitialUpdate();

 if (m_pSet->IsOpen())

 {

 CString strTitle = m_pSet->m_pDatabase-
>GetDatabaseName();

 CString strTable = m_pSet->GetTableName();

 if (!strTable.IsEmpty())

 strTitle += _T(":") + strTable;

 GetDocument()->SetTitle(strTitle);

 }

 EndWaitCursor();

 }

As in the chapter, you need to add an OnActivateView() handler to CStockView.

Here's the code you need to insert:

 void CStockView::OnActivateView(BOOL bActivate, CView*

pActivateView,

 CView*
pDeactiveView)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 if(bActivate)

 {

 CDBSampleDoc* pDoc = (CDBSampleDoc*)GetDocument();

 // Set current Product ID as parameter and requery the
database

 m_pSet->m_ProductIDparam = pDoc-
>m_productSet.m_ProductID;

 m_pSet->Requery();

 CRecordView::OnInitialUpdate()

 }

 CRecordView::OnActivateView(bActivate, pActivateView,
pDeactiveView);

 }

Finally, you should add #includes for ProductSet.h and DBSampleDoc.h to

StockView.cpp.

9. There are all kinds of ways you could approach this; here's a fairly easy method. Add a
new edit control to the stock dialog and label it something like Stock Position. Ctrl-double-
click on the edit box and add a new CString variable called m_StockPosn. Then you

can simply add a few lines to CStockView::DoDataExchange():

10. void CStockView::DoDataExchange(CDataExchange* pDX)

11. {

12. CRecordView::DoDataExchange(pDX);

13.

14. m_StockPosn = "Situation normal";

15. long StockBalance = m_pSet->m_UnitsInStock - m_pSet-
>m_RecorderLevel;

16.

17. if (m_pSet->m_ReorderLevel ! = 0)

18. {

19. if ((StockBalance > 0) && (StockBalance < 11))

20. m_StockPosn = "*Warning: low stock*";

21. if (StockBalance < 1)

22. m_StockPosn = "**Urgent: reorder now**";

23. }

24.

25. //{{AFX_DATA_MAP(CStockView)

26. DDX_FieldText(pDX, IDC_SKPRODUCTNAME, m_pSet-
>m_ProductName, m_pSet);

27. DDX_FieldText(pDX, IDC_SKPRODUCTID, m_pSet->m_ProductID,
m_pSet);

28. DDX_FieldText(pDX, IDC_SKUNITPRICE, m_pSet->m_UnitPrice,

m_pSet);

29. DDX_FieldText(pDX, IDC_SKUNITSINSTOCK, m_pSet-
>m_UnitsInStock, m_pSet);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

30. DDX_FieldText(pDX, IDC_SKREORDERLEVEL, m_pSet-
>m_ReorderLevel, m_pSet);

31. DDX_Text(pDX, IDC_STOCKPOSN, m_StockPosn);

32. //}}AFX_DATA_MAP

33. }

If all has gone well, you'll have a dialog which looks something like this:

Chapter 21
1. In order to display customers in alphabetical order, we need to change the

OnGetRecordSet() method of the CCustomerView class:

2. CRecordset* CCustomerView::OnGetRecordset()

3. {

4. if (m_pSet != NULL)

5. return m_pSet;

6. m_pSet = new CCustomerSet(NULL);

7.

8. // Sort by customer name

9. m_pSet->m_strSort = "[CompanyName]";

10.

11. m_pSet->Open();

12.

13. return m_pSet;

14. }

Then, to make sure that the dialog always displays the first customer when switching to
the view, we need to alter the SelectView() member of the CMainFrame class:

 void CMainFrame::SelectView(int viewID)

 {

 ...

 if(viewID==NEWORDER_VIEW)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 static_cast<CCustomerView*>(pNewActiveView)-
>SetNewOrderID();

 // Always move to the first record in the recordset

 static_cast<CCustomerView*>(pNewActiveView)-
>OnMove(ID_RECORD_FIRST);

 }

 else if(viewID == SELECTPRODUCT_VIEW)

 static_cast<CProductView*>(pNewActiveView)-
>InitializeView();

 ...

 }
15. The IDD_PRODUCT_FORM dialog needs a couple of extra controls to display the total

price. (Note that all the forms will need to be resized as you alter the size of
IDD_PRODUCT_FORM):

We add a data member named m_TotalValue to CProductView, and associate this

with the new edit control to display the total price.

Adding code to set m_TotalValue correctly, we need to modify the

InitializeView() method of CProductView:

 void CProductView::InitializeView()

 {

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 m_OrderID = pDoc->m_Order.m_OrderID;

 m_CompanyName = pDoc->m_Order.m_ShipName;

 m_Quantity =1; // Must
order at least 1

 m_Discount = 0; // No
default discount

 m_TotalVaIue = 0.0; // Reset
total value

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 m_OrderAdded = false; // Order
not added initially

 UpdateData(false); //
Transfer data to controls

 }

The OnSelectproduct() member of CProductView has additional code to

accumulate and display the total price.

 void CProductView::OnSelectproduct()

 {

 ...

 if(m_OrderAdded)

 {

 pDoc->AddOrderDetails(m_pSet->m_ProductID,

 m_pSet->m_UnitPrice,

 m_Quantity,

 m_Discount);

 // Copy and trim unit price string

 CString price = m_pSet->m_UnitPrice; // Copy of unit
price string

 price.TrimLeft(); // Remove leading
whitespace

 price.TrimRight(); // Remove trailing
whitespace

 // Convert price string to floating point value

 double priceValue = 0.0; // Nemeric value of

unit price string

 int digitValue = 0; // Numeric value of
digit character

 double factor =10.0; // Multiplier in
comnversion

 bool isPoint = false; // Indicates a
decimal point found

 CString digits("0123456789"); // Legal digit
characters

 for(int i = 0 ; i<price.GetLength(); i++)

 {

 if(price[i] == '.') // Decimal point?

 {

 isPoint = true;

 continue;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 digitValue = digits.Find(price[i]); // Find index of
digit

 if(digitValue<0) // No digit found?

 {

 AfxMessageBox("Invalid character in Unit Price
string.");

 priceValue = 0.0; // reset price to
zero

 break;

 }

 priceValue = isPoint ? priceValue+digitValue/factor :

 priceValue*factor+digitValue;

 }

 // Add price for current product quantity

 m_TotalValue += m_Quantity*priceValue*(1.0 -

m_Discount);

 // Now reset the values in the quantity and discount
controls

 ...

 }

 }

16. You need to use the ClassWizard add a new CEmployeeSet recordset class to

retrieve employee data from sample database.

Next we need to modify the constructor to sort the records, as shown below:

 CEmployeeSet::CEmployeeSet(CDatabase* pdb) : CRecordset(pdb)

 {

 //{{AFX_FIELD_INIT(CEmployeeSet)

 m_EmployeeID = 0;

 m_LastName = _T("");

 m_FirstName = _T("");

 m_nFields = 3;

 //}}AFX_FIELD_INIT

 m_nDefaultType = snapshot;

 m_strSort = "LastName,FirstName"; // Sort records by name

 }

Next, #include the EmployeeSet.h file in the document object,
CDBSimpleUpdateDoc, and add a public member of type CEmployeeSet called

m_EmployeeSet.

The IDD_CUSTOMER_FORM needs to provide an employee name selection facility, so
add a listbox control, IDC_EMPLOYEENAME, to look like:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

We need to add a constant to OurConstants.h to represent "no employee ID":

 // Arbitrary constants to identify record views

 const int ORDERDETAILS_VIEW = 1;

 const int NEWORDER_VIEW = 2;

 const int SELECTPRODUCT_VIEW = 3;

 const long NO_EMPLOYEE_ID = 999999;

And we need a public data member, m_pEmployeeID, in CCustomerView to store the
employee ID. To control the listbox, add another variable to CCustomerView:

 class CCustomerView : public CRecordView

 {

 public:

 CCustomerView(); // protected constructor used by

dynamic creation

 DECLARE_DYNCREATE(CCustomerView)

 // Form Data

 public:

 //{{AFX_DATA(CCustomerView)

 enum { IDD = IDD_CUSTOMER_FORM };

 CListBox m_EmployeeCtrl;

 CCustomerSet* m_pSet;

 CTime m_OrderDate;

 CTime m_RequiredDate;

 long m_NewOrderID;

 //}}AFX_DATA

 ...

 // Operations

 public:

 long m_EmployeeID;

 void SetNewOrderID();

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CCustomerSet* GetRecordset();

The CEmployeeSet object is used in OnInitialUpdate() method of

CCustomerView to populate the listbox with employee names and IDs.

 void CCustomerView::OnInitialUpdate()

 {

 ...

 SetNewOrderID(); // Set up
a a new order ID

 // Open employee recordset

 CEmployeeSet* pEmployeeSet =
&static_cast<CDBSimpleUpdateDoc*>

 (GetDocument())-
>m_EmployeeSet;

 if (!pEmployeeSet->IsOpen())

 pEmployeeSet->Open(CRecordset::snapshot);

 // Set up employee control with names from the employee
recordset

 int listIndex = 0; // Index

to listbox entries

 m_EmployeeCtrl.InsertString(listlndex, "Choose a name");
// First entry

 m_EmployeeCtrl.SetItemData(listIndex, NO_EMPLOYEE_ID);
// is not a name

 if(!pEmployeeSet->IsBOF())

 pEmployeeSet->MoveFirst();

 // Insert names in the listbox plus IDs

 while(!pEmployeeSet->IsEOF())

 {

 listIndex = m_EmployeeCtrl.InsertString(++listIndex,

 pEmployeeSet->m_FirstName+ _T(" ") +

 pEmployeeSet->m_LastName);

 m_EmployeeCtrl.SetItemDate(listIndex,

 static_cast<DWORD> (pEmployeeSet-
>m_EmployeeID));

 pEmployeeSet->MoveNext();

 }

 m_EmployeeID = NO_EMPLOYEE_ID; // No

employee ID set

 EndWaitCursor();

 // Initialize time values

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SYSTEMTIME Now;

 GetLocalTime(&Now); // Get
current time

 m_OrderDate = m_RequiredDate = CTime(Now); // Set
time as today

 }

The OnSelectproducts() and OnCancel() handlers also need to be modified to

deal with employee names:

 void CCustomerView::OnSelectproducts()

 {

 // Check employee has been selected - Exercise 3

 if(m_EmployeeID == NO_EMPLOYEE_ID)

 {

 AfxMessageBox("You must select the employee name.");

 return;

 }

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 // Set up order field values from CCustomerSet object

 ...

 pDoc->m_Order.m_EmployeeID = m_EmployeeID;

 // Set up order field values from CCustomerView dialog
input

 pDoc->m_Order.m_OrderID = m_NewOrderID; //
Generated new ID

 pDoc->m_Order.m_OrderDate = m_OrderDate; // From

order date control

 pDoc->m_Order.m_RequiredDate = m_RequiredDate; // From
required date control

 // Reset Employee Name listbox

 m_EmployeeCtrl.SetTopIndex(0); // Move
to first item

 m_EmployeeID = NO_EMPLOYEE_ID; // Reset
ID to no selection

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(SELECTPRODUCT_VIEW);

 }

 void CCustomerView::OnCancel()

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Reset Employee Name listbox

 m_EmployeeCtrl.SetTopIndex(0); // Move
to first item in

 listbox

 m_EmployeeID = NO_EMPLOYEE_ID; // Reset
ID to no selection

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(ORDERDETAILS_VIEW);

 }

Lastly, the listbox handler we added to CCustomerView to receive the listbox select

events needs the following code:

 void CCustomerView::OnSelchangeEmployeename()

 {

 m_EmployeeID =
m_EmployeeCtrl.GetItemData(m_EmployeeCtrl.GetCurSel());

 }
17. This is going to feel pretty familiar. First, add a CShippersSet recordset class added

to retrieve shipping company data from database. Then modify the constructor to sort
records:

18. CShippersSet::CShippersSet(CDatabase* pdb) : CRecordset(pdb)

19. {

20. //{{AFX_FIELD_INIT(CShippersSet)

21. m_ShipperID = 0;

22. m_CompanyName = _T("");

23. m_nFields = 2;

24. //}}AFX_FIELD_INIT

25. m_nDefaultType = snapshot;

26. m_strSort = "CompanyName"; // Sort records by name

27. }

Then we need to add the CShippersSet recordset object added to document object.

 #include "EmployeeSet.h"

 #include "ShippersSet.h" // Added by ClassView

 class CDBSimpleUpdateDoc : public CDocument

 {

 ...

 // Implementation

 public:

 CShippersSet m_Shippers;

 ...

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Add another listbox, IDC_SHIPPERS, to IDD_CUSTOMER_FORM to provide shipping

company name selection facility:

OurConstants.h needs changing to represent "no shipping company ID":

 const long NO_EMPLOYEE_ID = 999999;

 const long NO_SHIPPER_ID = 999998;

Next, we need to change CCustomerView to store the shipping company ID and add a

variable for the listbox control:

 public:

 //{(AFX_DATA(CCustomerView)

 enum { IDD = IDD_CUSTOMER_FORM };

 CListBox m_ShippersCtrl;

 ...

 //}}AFX_DATA

 ...

 // Operations

 public:

 long m_ShipVia;

 long m_EmployeeID;

 ...

Turning our attention to the OnInitialUpdate() method of CCustomerView, we

make the following changes to populate the listbox with shipping company names and
IDs:

 void CCustomerView::OnInitialUpdate()

 {

 ...

 m_EmployeeID = NO_EMPLOYEE_ID; //
No employee ID set

 // Open shippers recordset

 CShippersSet* pShippersSet =
&static_cast<CDBSimpleUpdateDoc*>

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 (GetDocument())-
>m_Shippers;

 if(!pShippersSet->IsOpen())

 pShippersSet->Open();

 // Set up shippers control with names from the shippers
recordset - Exercise 4

 listIndex = 0; // Index
to listbox entries

 // First entry

 m_ShippersCtrl.InsertString(listIndex, "Choose a shipping
company");

 m_ShippersCtrl.SetItemData(listIndex, NO_SHIPPER_ID); //
is not a shipper

 if(!pShippersSet->IsBOF())

 pShippersSet->MoveFirst();

 // Insert shippers in the listbox plus IDs - Exercise 3

 while(!pShippersSet->IsBOF()

 {

 listIndex = m_ShippersCtrl.InsertString(++listIndex,

 pShippersSet-
>m_CompanyName);

 m_ShippersCtrl.SetItemData(listIndex, static_cast<DWORD>

 (pShippersSet-
>m_ShippersID));

 pShippersSet->MoveNext();

 }

 m_ShipVia = NO_SHIPPER_ID; // No
shipper ID set

 EndWaitCursor();

 // Initialize time values

 SYSTEMTIME Now;

 GetLocalTime(&Now); // Get
current time

 m_OrderDate = m_RequiredDate = CTime(Now); // Set
time as today

 }

Similar changes are needed for the handlers OnSelectproducts() and OnCancel()

to deal with shipping company names:

 void CCustomerView::OnSelectproducts()

 {

 // Check employee has been selected

 if(m_EmployeeID == NO_EMPLOYEE_ID)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 AfxMessageBox("You must select the employee name.");

 return;

 }

 // Check shipper has been selected

 if(m_ShipVia == NO_SHIPPER_ID)

 {

 AfxMessageBox("You must select a shipping company.");

 return;

 }

 // Get a pointer to the document

 CDBSimpleUpdateDoc* pDoc =
static_cast<CDBSimpleUpdateDoc*>(GetDocument());

 // Set up order field values from CCustomerSet object

 ...

... pDoc->m_Order.m_EmployeeID = m_EmployeeID;

 pDoc->m_Order.m_ShipVia = m_ShipVia;

 ...

 // Reset Employee Name listbox

 m_EmployeeCtrl.SetTopIndex(0); //
Move to first item

 m_EmployeeID = NO_EMPLOYEE_ID; //
Reset ID to no

 selection

 // Reset Shippers listbox

 m_ShippersCtrl.SetTopIndex(0);

 m_ShipVia = NO_SHIPPER_ID;

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(SELECTPRODUCT_VIEW);

 }

 void CCustomerView::OnCancel()

 {

 // Reset Employee Name listbox - Exercise 3

 m_EmployeeCtrl.SetTopIndex(0); //
Move to first item in

 listbox

 m_EmployeeID = NO_EMPLOYEE_ID; //
Reset ID to no

 selection

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Reset Shippers listbox - Exercise 4

 m_ShippersCtrl.SetTopIndax(0);

 m_ShipVia = NO_SHIPPER_ID;

 static_cast<CMainFrame*>(GetParentFrame())-
>SelectView(ORDERDETAILS_VIEW);

 }

Finally, the listbox handler that the ClassWizard added to CCustomerView to receive

listbox select events needs the following code:

 void CCustomerView::OnSelchangeShippers()

 {

 m_Shipvia =

m_ShippersCtrl.GetItemData(m_ShippersCtrl.GetCurSel());

 }

Chapter 22
1. First, open the resource for the menu IDR_WRXCONTYPE and add a new menu item to

the Edit menu with the properties shown below.

Ctrl-double-click on the new menu item to activate ClassWizard, then add COMMAND and
UPDATE_COMMAND_UI handlers to the view class, CWrxContainerView. You can

accept the default function names of OnEditDelete() and OnUpdateEditDelete().

Once the new handlers have been added, you can close ClassWizard and start adding
some code to the new functions.

We need the new menu item to be enabled only when one of the items in the container is

selected. We can determine whether an item is selected by looking at the
m_pSelection member of the view class. Add the code shown to

OnUpdateEditDelete().

 void CWrxContainerView::OnUpdateEditDelete(CCmdUI* pCmdUI)

 {

 if (m_pSelection == NULL)

 pCmdUI->Enable(FALSE);

 else

 pCmdUI->Enable(TRUE);

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

This code enables the menu item when there's a valid pointer in m_pSelection and
disables it when m_pSelection is NULL. This prevents the user of the container from

trying to delete an item without first selecting one.

Deleting an item is simplicity itself - you can just call COleClientItam::Delete() to
remove a client from a document. The code you should add to OnEditDelete() is

shown below:

 void CWrxContainerView::OnEditDelete()

 {

 ASSET(m_pSelection != NULL);

 if (m_pSelection != NULL)

 {

 CWrxContainerDoc* pDoc = GetDocument();

 m_pSelection->Delete();

 m_pSelection = NULL;

 pDoc->SetModifiedFlag();

 Invalidate();

 }

 }

There's actually a bit more to this code than the single line that deletes the selected item

because we need to ensure the integrity of our application. The first line uses the
ASSERT() macro to alert us if m_pSelection is NULL. This also serves as

documentation to show readers of this code that m_pSelection shouldn't be NULL
when the function is called. We expect m_pSelection not to be NULL because of the

way that we enable and disable the menu item, but this macro helps make doubly sure
that m_pSelection is in the state we expect.

The ASSERT() macro is only active in debug builds so the if statement is also necessary
to ensure that our code is robust in release builds. If m_pSelection does somehow

turn out to be NULL when this function is called then we don't want to take any action in a

release build.

If m_pSelection isn't NULL, we get a pointer to the document class, then delete the

selected item. Next, we set m_pSelection to NULL because the selected item no

longer exists. We need to let the framework know that the document has been modified
so that it can save it when necessary, so we call SetModifiedFlag() through the
document pointer. Finally, we Invalidate() the view so that it gets redrawn without

the item that has just been deleted.

Chapter 23
1. Limitations of the StartRed property. There are two main flaws:

1. It limits the starting state of the signal to one of two values: red or not red. This
is a problem because there are more than two states that our signal can be in,
and it seems unreasonable to exclude valid signal states from the possible start
states. We should provide optimum flexibility to the users of our control.

2. Its name unnecessarily relates the state of the signal to a color. The interface of
our control is inconsistent because we have one property (StartRed) that

describes the state of the signal in terms of its color (red or not red) and another

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

property (StopOrGoTime) and an event (SignalChanged) that describe the

state of the signal in terms of the information it conveys (stop, go, or ready to
stop). We should rationalize these inconsistencies and always describe the state
of the signal in the same way. Since the signal is better defined in terms of the
information it conveys than the colors it uses to convey that information,
StartRed should be replaced or renamed.

To rectify the problems with StartRed, we could replace it with a property called
StartState. This property could use the same enumeration for its possible values as

we defined for the SignalChanged event. This means that we can provide greater

flexibility to our control's users, and provide a consistent interface to our control.

Replacing StartRed with StartState would also allow us to alter the drawing code

for the signal without worrying about whether the property name remained relevant to the
control. If we wanted to provide a signal that used icons to represent the different states
of the signal, all we would need to change would be the drawing code. The user of our
control would be able to use the new version instantly without getting confused by our
choice of property name.

2. Implementing the StartState property. First, use ClassWizard to remove all traces of

the StartRed property. Go to the Automation tab for the CTrafficSignalCtrl class,
select StartRed and then click Delete. Follow the instructions you're given. Next, use

ClassWizard again to add a new Automation property to CTrafficSignalCtrl using

the settings shown in the screenshot:

Add the following code to CTrafficSignalCtrl::OnStartStateChanged():

 void CTrafficSignalCtrl::OnStartStateChanged()

 {

 // Stop the signal if necessary

 if (m_bSignalGo)

 {

 m_bSignalGo = FALSE; // Set signal not running

 StopSignal(); // Stop the signal

 }

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 InvalidateControl(); // Get the control redrawn

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 SetModifiedFlag();

 }

Update the code in CTrafficSignalCtrl::DoPropExchange() as shown:

 void CTrafficSignalCtrl::DoPropExchange(CPropExchange* pPX)

 {

 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

 COleControl::DoPropExchange(pPX);

 // TODO: Call PX_ functions for each persistent custom
property.

 PX_Long(pPX, _T("StartState"), m_lStartState, STOP);

 PX_Long(pPX, _T("StopOrGoTime"), m_lStopOrGoTime, 5000);

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 }

Update CTrafficSignalCtrl::SetStopOrGoTime() to use the new property

notification function:

 void CTrafficSignalCtrl::SetStopOrGoTime(long nNewValue)

 {

 // Only alter the control if the value is different

 if (m_lStopOrGoTime != nNewValue)

 {

 m_lStopOrGoTime = nNewValue; // Set the new stop

or go time

 OnStartStateChanged(); // Set the initial
state

 SetModifiedFlag();

 }

 }

Update the .odl file as shown so that the new property uses the enumeration:

 [id(2)] long StopOrGoTime;

 [id(1)] SignalState StartState;

3. Updating a control that has existing users needs to be handled sensitively if you want
those users to upgrade to the new version. It can be quite tricky when you're just adding
functionality, but that's as nothing compared with when you want to remove properties,
methods or events from a control. Removing items from the public interface of a control
is not something that should be done lightly, and you should try to avoid being in the
position of wanting to remove something by carefully designing, implementing and
testing your control before releasing it to the public.

In our case, we'll plan to remove the StartRed property in two stages which in the real

world might be separated by months or even years. First, we'll release a control that

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

retains the StartRed property and is completely compatible with the first version of the

control. All code written to use the first version of the control will work fully with the new
version. However, the new version of the control will discourage the use of the
StartRed property so that in the future we may be able to release a version of the

control that drops support for the StartRed property completely.

In fact, we may decide never to drop the StartRed property from our control because of

the large amount of existing code that uses it. It might not be a problem with our simple
traffic signal, but it's certainly a possibility for professionally produced ActiveX controls.
With that in mind, the first thing that we'd do differently from the implementation of
StartState in Ex23-2 is not to delete the StartRed property!

Important

When updating a control, make sure that you keep a clean
backup copy of the source code for the existing control - you
never know what might happen!

We can add the StartState property to the control in the same way as before, but

after doing so we need to make that it hasn't altered the DispIDs used for the existing
methods and properties. It's a good idea to keep DispIDs consistent between versions of
a control, even though it's quite unlikely for a client to be using the DispIDs directly. (It
could be important if you distribute type libraries for the control separately from the
control itself.)

There are two places that you need to check the values of the DispIDs. Towards the end
of TrafficSignalCtl.h you'll find the following:

 enum {

 //{{AFX_DISP_ID(CTrafficSignalCtrl)

 dispidStartRed = 1L,

 dispidStopOrGoTime = 3L,

 diapidStartState = 2L,

 eventidSignalChanged = 1L,

 //}}AFX_DISP_ID

 };

If you compare this with the original control, you may find that the DispID for the
StopOrGoTime property has changed so change the code like this:

 enum {

 //{{AFX_DISP_ID(CTrafficSignalCtrl)

 dispidStartRed = 1L,

 dispidStopOrGoTime = 2L,

 dispidStartState = 3L,

 eventidSignalChanged = 1L,

 //}}AFX_DISP_ID

 };

You'll also need to change the values of the ids in the .odl file to corresponding

values. Always make sure that the IDs for the properties and methods are unique,
positive integers.

 properties:

 // NOTE - ClassWizard will maintain property
information here.

 // Use extreme caution when editing this section.

 //{{AFX_ODL_PROP(CTrafficSignalCtrl)

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 [id(DISPID_BACKCOLOR), bindable, requestedit]
OLE_COLOR BackColor;

 [id(1)] boolean StartRed;

 [id(2)] long StopOrGoTime;

 [id(3)] SignalState StartState;

 //}}AFX_ODL_PROP

Note that we have changed the type of the StartState property so that it uses the

enumeration, just as we did in Ex23-2 .

If you change the DispIDs, the last area you'll need to change is the dispatch map itself,
which you'll find in TrafficSignalCtl.cpp. The order of the entries in the map

should match the DispIDs that you've assigned in the header and .odl files, so make

sure that the code matches this:

 BEGIN_DISPATCH_MAP(CTrafficSignalCtrl, COleControl)

 //{{AFX_DISPATCH_MAP(CTrafficSignalCtrl)

 DISP_PROPERTY_NOTIFY(CTrafficSignalCtrl, "StartRed",

 m_bStartRed, OnStartRedChanged,
VT_BOOL)

 DISP_PROPERTY_EX(CTrafficSignalCtrl, "StopOrGoTime",

 GetStopOrGoTime, SetStopOrGoTime, VT_I4)

 DISP_PROPERTY_NOTIFY(CTrafficSignalCtrl, "StartState",

 m_lStartState, onStartStateChanged,
VT_I4)

 DISP_STOCKPROP_BACKCOLOR()

 //}}AFX_DISPATCH_MAP

 DISP_FUNCTION_ID(CTrafficSignalCtrl, "AboutBox",

 DISPID_ABOUTBOX, AboutBox, VT_EMPTY,
VTS_NONE)

 END_DISPATCH_MAP()

Important

As you've seen, ClassWizard provides DispIDs that match the
alphabetical order of the properties you supply. This may be
inappropriate if you're modifying a control that needs to maintain
the DispIDs for its existing members. However, you can set the
DispIDs of the properties manually by using the technique
outlined above. Remember to match up the DispIDs in the
control's header file, the .odl file and dispatch map.

Now add the code for OnStartStateChanged(). The highlighted code shows up the

differences between this version and Ex23-2, when we didn't have to worry about
StartRed.

 void CTrafficSignalCtrl::OnStartStateChanged()

 {

 // Stop the signal if necessary

 if (m_bSignalGo)

 {

 m_bSignalGo = FALSE; // Set signal not running

 StopSignal(); // Stop the signal

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 // The following is only necessary if you are continuing

 // to support the StartRed property

 if (STOP == m_lStartState)

 m_bStartRed = TRUE;

 else

 m_bStartRed = FALSE;

 InvalidateControl(); // Get the control redrawn

 SetModifiedFlag();

 }

Now change the code for DoPropExchange(). This is significantly different to the code

we've had previously:

 void CTrafficSignalCtrl::DoPropExchange(CPropExchange* pPX)

 {

 ExchangeVersion(pPX, MAKELONG(_wVerMinor, _wVerMajor));

 COleControl::DoPropExchange(pPX);

 // TODO: Call PX_ functions for each persistent custom
property.

 if (pPX->GetVersion() < MAKELONG(0, 2))

 {

 // If we are loading information from before version 2.0

 // then we know that StartRed will have been saved

 PX_Bool(pPX, _T("StartRed"), m_bStartRed, TRUE);

 PX_Long(pPX, _T("StopOrGoTime"), m_lStopOrGoTime, 5000);

 // Set the signal object to the appropriate state

 if (m_bStartRed)

 {

 m_pSignal->SetSignalState(STOP);

 m_lStartState = STOP; // Added to support the new
StartState property

 }

 else

 {

 m_pSignal->SetSignalState(GO);

 m_lStartState = GO; // Added to support the new
StartState property

 }

 }

 else

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 {

 // If we are loading/saving info from a version 2.0 or
later file,

 // we don't have to worry about StartRed, we use
StartState instead

 PX_Long(pPX, _T("StopOrGoTime"), m_lStopOrGoTime, 5000);

 PX_Long(pPX, _T("StartState"), m_lStartState, STOP);

 // Set the signal object to the appropriate state

 m_pSignal->SetSignalState(m_lStartState);

 // This is only necessary if you are continuing to
support

 // the StartRed property

 if (STOP == m_lStartState)

 m_bStartRed = TRUE;

 else

 m_bStartRed = FALSE;

 }

 }

Note the use of CPropExchange::GetVersion(). This function returns the version of

the control, which is retrieved from the persistent data when loading properties and is
taken from the values of the global constants wVerMajor and wVerMinor when saving

properties. The function will save data in version 2.0 format just so long as we make sure
that the control knows that it's a version 2.0 control. You can do this by changing the
values of wVerMajor and wVerMinor, which you'll find at the top of
TrafficSignal.cpp:

 const WORD _wVerMajor = 2;

 const WORD _wVerMinor = 0;

This code means that regardless of whether we load our properties from a version 1.0 or
version 2.0 property store, they will always be saved in version 2.0 format. This means
that we are already making a small step towards eliminating the use of the StartRed

property.
FYI

If you want a way to save persistent properties using the same version
format as they were loaded with, check out the documentation for
ExchangeVersion().

The only thing left to do is to discourage the use of the StartRed property in new code.

The best way to do this is to document the function as being out of date and point the
programmer to the new StartState property. However, you can also hide the property

from Visual Basic users by applying the hidden keyword to the property in the .odl file:

 [id(DISPID_BACKCOLOR), bindable, requestedit] OLE_COLOR
BackColor;

 [id(1), hidden] boolean StartRed;

 [id(2)] long StopOrGoTime;

This will tell Visual Basic (and other environments that respect this property) not to show
the item to the user of your control. Thus StartRed will no longer appear in Visual

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Basic's Properties Window or the Object Browser. However, any code that uses
StartRed will continue to work just as before.

Chapter 24
1. To show you COM compiler support, we'll can create a Win32 Console Application, of

type Simple Application, and add the following code to the main() function:

2. // Mytesting.cpp : Defines the entry point for the console
application.

3. //

4.

5. #include "stdafx.h"

6.

7. int main(int argc, char* argv[])

8. {

9. HRESULT hr = CoInitinlize(NULL); // Initialize
COM

10. if (FAILED(hr)) // Check for failure

11. {

12. cout << "COM could not be initialized\n";

13. return 0;

14. }

15.

16. // If COM was successfully initialized, we can create the
proper code

17. // We wrap the code in a try block because the #import-

generated wrappers

18. // can throw _com_error exceptions on failure

19. try

20. {

21. // Create the COM object and get a smart pointer to
the IRefRate interface

22. IRefRatePtr pRefRate(__uuidof(RefRate));

23.

24. // Get the horizontal and vertical resolutions

25. long lHRes = pRefRate->GetHRes();

26. long lVRes = pRefRate->GetVRes();

27.

28. // Output the resolutions

29. cout << "Horizontal resolution (pixels): " << lHRes <<
"\n";

30. cout << "Vertical resolution (pixels): " << lVRes <<
"\n";

31.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

32. while (true) //
indefinite loop

33. {

34. cout << "\nEnter the maximum horizontal scan rate
(kHz) or a negative

35. number to quit\n";

36. long lHScan = -1;

37. cin >> lHScan;

38.

39. if (lHScan < 0) // If the
user wants to quit...

40. throw "Application terminating..."; //
...terminate loop by throwing

41. // an
exception

42. long lRefresh = pRefRate->RefreshRate(lHScan);

43. cout << "Refresh rate (Hz): " << lRefresh << "\n";

44. }

45. }

46. // This error might be thrown by a wrapper class if
something goes wrong

47. catch (const _com_ error& Err)

48. {

49. cout << Err.ErrorMessage() << "\n";

50. }

51. // We're expecting this error to be thrown when the
user's had enough

52. //It makes it easy to ensure that the smart pointer is
finished with

53. // by the time we call CoUninitialize()

54. catch (const char* str)

55. {

56. cout << str << "\n";

57. }

58.

59. CoUninitialize(); // Uninitialize COM

60. return 0;

61. }

In StdAfx.h, add the following #import statements:

 // #import generates smart pointer wrapper classes

 // from the information contained in a type library

 #import "..\RefreshRate\RefreshRate.tlb"

 using namespace REFRESHRATELib;

 // Use standard input and output

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 #include <iostream>

 using std::cout;

 using std::cin;

To implement the full ATL dialog-based application, start by creating a new project with
the ATL COM AppWizard. Call it CtrlClient and select Executable (EXE) as the Server

Type. Now add a dialog to the project by selecting Insert | New ATL Object..., and then

Miscellaneous from the list in the ATL Object Wizard. Hit Next > and give the dialog a Short
Name of ClientDlg. Then click OK.

Once the dialog class has been added to the project, we need to create an instance of
the class when the executable starts. Open CtrlClient.cpp and add a #include

statement for ClientDlg.h to the top of the file, just below the other #includes.

Now move down the file to the _tWinMain() function. This serves exactly the same
purpose as the WinMain() function you saw back in Chapter 7, and acts as the entry

point for the executable. (The _t prefix indicates that it will receive command line
arguments as ASCII characters normally, or Unicode (wide) characters if _UNICODE is

defined.)

The first half of the code provided by the Wizard for this function deals with parsing the

command line arguments and registering or unregistering any components if the
command line contains the RegServer or UnregServer switches. We don't need to

worry about this because our client won't be exposing any COM objects. The code we're
interested in will go in the second half of the function, after the if (bRun) check.

Add or modify the highlighted code shown below:

 if (bRun)

 {

 hRes = _Module.RegisterClassObjects(CLSCTX_LOCAL_SERVER,

 REGCLS_MULTIPLEUSE);

 _ASSERTE(SUCCEEDED(hRes));

 CClientDlg* pdlgClient = new CClientDlg;

 pdlgClient->Create(NULL);

 pdlgClient->ShowWindow(SW_SHOW);

 MSG msg;

 while (GetMessaget&msg, 0, 0, 0) == TRUE)

 {

 TranslateMessage(&msg); // Translate the message

 DispatchMessage(&msg); // Dispatch the message

 }

 if (pdlgClient)

 {

 delete pdlgClient;

 pdlgClient = NULL;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 _Module.RevokeClassObjects();

 }

The first section of code before the message loop just creates a new dialog object, then
displays it to the user. Once the message loop exits (when it receives a WM_CLOSE

message and GetMessage() returns zero), the dialog object is deleted to free the

memory we used.

Now we have to make sure that that the application closes when the user closes the
dialog. This means that we need to post a WM_QUIT message when the user clicks OK

or Cancel on the dialog - for our purposes, both buttons perform the same action. If you
look at the dialog class, you'll see that it already has functions (OnOK() and

OnCancel()) to handle the buttons. The Wizard-produced code assumes that the
dialog is modal, so it includes calls to EndDialog(). We're using a modeless dialog, so

we need to replace this code with a call to DestroyWindow().

Add the highlighted code shown below:

 LRESULT CClientDlg::OnOK(WORD wNotifyCode, WORD wID, HWND
hWndCtl, BOOL& bHandled)

 {

 PostMessage(WM_QUIT);

 DestroyWindow();

 return 0;

 }

 LRESULT CClientDlg::OnCancel(WORD wNotifyCode, WORD wID, HWND
hWndCtl, BOOL&

 bHandled)

 {

 PostMessage(WM_QUIT);

 DestroyWindow();

 return 0;

 }

Now modify the dialog resource to include the controls necessary for the client. You can
copy these controls from the existing dialog resource that you created for the MFC-
based client. That done, the next step is to set up the variables that can be used to store
the values associated with the controls, so add the following declarations to the
CClientDlg class definition.

 private:

 long m_lVRes;

 long m_lHRes;

 long m_lRefresh;

 long m_lHScan;

You should also initialize these variables in the class constructor. The top three can be
initialized to zero, whereas m_lHScan should start at 50, just as it did in the MFC client.

Unfortunately, things get a little harder here. We can no longer use ClassWizard to add
these variables, so you'll have to add them by hand. In addition, there's no ATL
equivalent of the UpdateData() function so you'll need to write your own.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Add the function shown below to CClientDlg and give the single bool parameter a
default value of true. This will work just like the UpdateData() member function in an

MFC dialog.

 void CClientDlg::UpdateData(bool bSave /* = true */)

 {

 Exchange_Text(bSave, IDC_HSCAN, m_lHScan);

 Exchange_Text(bSave, IDC_REFRESH, m_lRefresh);

 Exchange_Text(bSave, IDC_HRES, m_lHRes);

 Exchange_Text (bSave, IDC_VRES, m_lVRes);

 }

If you pass true, the Exchange_Text() function will take the strings stored in the

control specified by the ID passed as the second parameter and convert their contents to
a type compatible with the member variables passed as the third parameter. If you pass
false, the Exchange_Text() function will take the values stored in the third

parameter and display them in the control passed in the second parameter.

Your Exchange_Text() function should be added to CClientDlg, and could look

something like this:

 void CClientDlg::Exchange_Text(bool bSave, int nID, long&
lValue)

 {

 CComVariant converter = 0;

 if (bSave)

 {

 const int MAX_COUNT = 12;

 TCHAR strText[MAX,_COUNT + 1] = {0};

 GetDlgItemText(nID, strText, MAX_COUNT);

 converter = strText;

 converter.ChangeType(VT_14);

 lvalue = converter.lVal;

 }

 else

 {

 USES_CONVERSION;

 converter = lValue;

 converter.ChangeType(VT_BSTR);

 LPCTSTR strText = OLE2T(converter.bstrVal);

 SetDlgItemText(nID, strText);

 }

 }

This function is pretty rough-and-ready, but it does show how you might use a VARIANT
(or the CComVariant wrapper class) to convert between a string and a long, and vice

versa. It also demonstrates the use of the OLE2T() macro to convert from a BSTR to a
LPCTSTR. In your own code, you'd probably want to provide something rather more

robust.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Now we need to get hold of the server component so that we can use it to provide
information about the refresh rate of our monitor. In contrast to the MFC client, we're
going to use the compiler COM support to create a smart pointer class to wrap the
IRefRate interface.

First, copy the type library for the RefreshRate component (RefreshRate.tlb) into the
CtrlClient project directory. This is just so that we don't have to type a long path

name into the #import statement for the library. Add #import "RefreshRate.tlb"
no_namespace to the end of StdAfx.h.

Once you compile the project, this statement will produce two files in the output (Debug

or Release) directory for the project, RefreshRate.tlh and RefreshRate.tli.

These files contain class definitions for wrappers for the interfaces and classes
contained in the type library. These output files are really for your reference (you don't
need to include these files in your project explicitly since this is all handled by the
#import statement), but it's worth taking a look at them to see what's available to you.

The smart pointer class that wraps the IRefRate interface is typedef'd to

IRefRatePtr, so add a new member variable to the dialog class:

 IRefRatePtr m_IRefRate;

Now we can use this member in OnInitDialog() and create an instance of the

RefRate class:

 LRESULT CClientDlg::OnInitDialog(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL&

 bHandled)

 {

 HRESULT hr = m_IRefRate.CreateInstance(_uuidof(RefRate));

 if SUCCEEDED(hr)

 {

 m_lVRes = m_IRefRate->GetVRes();

 m_lHRes = m_IRefRate->GetHRes();

 m_lRefresh = m_IRefRate.GetInterfacePtr()-
>RefreshRate(m_lHScan);

 UpdateData(false);

 }

 return 1; // Let the system set the focus

 }

Similarly, we can add code to respond to the Calculate button. You'll need to add an entry
to the message map and a declaration for the OnCalculate() function to the

CClientDlg class:

 BEGIN_MSG_MAP(CClientDlg)

 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

 COMMAND_ID_HANDLER(IDOK, OnOK)

 COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

 COMMAND_ID_HANDLER(IDC_CALCULATE, OnCalculate)

 END_MSG_MAP()

 // Handler prototypes:

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 // LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM
lParam, BOOL&

 bHandled);

 // LRESULT CommandHandler(WORD wNotifyCode, WORD wID, HWND
hWndCtl,

 // BOOL& bHandled);

 // LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL&
bHandled);

 LRESULT OnCalculate(WORD wNotifyCode, WORD wID, HWND

hWndCtl, BOOL& bHandled);

The OnCalculate() function looks very similar to the OnCalculate() function in the

MFC-based client:

 LRESULT CClientDlg::OnCalculate(WORD wNotifyCode, WORD wID,
HWND hWndCtl, BOOL&

 bHandled)

 {

 UpdateData();

 m_lVRes = m_IRefRate.GetInterfacePtr()->GetVRes();

 m_lHRes = m_IRefRate.GetInterfacePtr()->GetHRes();

 m_lRefresh = m_IRefRate.GetInterfacePtr()-
>RefreshRate(m_lHScan);

 UpdateData(false);

 return 0;

 }

That's all there is to it. Now you can compile and run your ATL client just as you did with
the MFC and Visual Basic clients. You don't need to worry about releasing the
IRefRate pointer because it's all handled by the IRefRatePtr wrapper class.

Chapter 24
1. To show you COM compiler support, we'll can create a Win32 Console Application, of

type Simple Application, and add the following code to the main() function:

2. // Mytesting.cpp : Defines the entry point for the console
application.

3. //

4.

5. #include "stdafx.h"

6.

7. int main(int argc, char* argv[])

8. {

9. HRESULT hr = CoInitinlize(NULL); // Initialize

COM

10. if (FAILED(hr)) // Check for failure

11. {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

12. cout << "COM could not be initialized\n";

13. return 0;

14. }

15.

16. // If COM was successfully initialized, we can create the
proper code

17. // We wrap the code in a try block because the #import-
generated wrappers

18. // can throw _com_error exceptions on failure

19. try

20. {

21. // Create the COM object and get a smart pointer to
the IRefRate interface

22. IRefRatePtr pRefRate(__uuidof(RefRate));

23.

24. // Get the horizontal and vertical resolutions

25. long lHRes = pRefRate->GetHRes();

26. long lVRes = pRefRate->GetVRes();

27.

28. // Output the resolutions

29. cout << "Horizontal resolution (pixels): " << lHRes <<

"\n";

30. cout << "Vertical resolution (pixels): " << lVRes <<
"\n";

31.

32. while (true) //
indefinite loop

33. {

34. cout << "\nEnter the maximum horizontal scan rate
(kHz) or a negative

35. number to quit\n";

36. long lHScan = -1;

37. cin >> lHScan;

38.

39. if (lHScan < 0) // If the
user wants to quit...

40. throw "Application terminating..."; //
...terminate loop by throwing

41. // an
exception

42. long lRefresh = pRefRate->RefreshRate(lHScan);

43. cout << "Refresh rate (Hz): " << lRefresh << "\n";

44. }

45. }

46. // This error might be thrown by a wrapper class if
something goes wrong

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

47. catch (const _com_ error& Err)

48. {

49. cout << Err.ErrorMessage() << "\n";

50. }

51. // We're expecting this error to be thrown when the
user's had enough

52. //It makes it easy to ensure that the smart pointer is
finished with

53. // by the time we call CoUninitialize()

54. catch (const char* str)

55. {

56. cout << str << "\n";

57. }

58.

59. CoUninitialize(); // Uninitialize COM

60. return 0;

61. }

In StdAfx.h, add the following #import statements:

 // #import generates smart pointer wrapper classes

 // from the information contained in a type library

 #import "..\RefreshRate\RefreshRate.tlb"

 using namespace REFRESHRATELib;

 // Use standard input and output

 #include <iostream>

 using std::cout;

 using std::cin;

To implement the full ATL dialog-based application, start by creating a new project with
the ATL COM AppWizard. Call it CtrlClient and select Executable (EXE) as the Server

Type. Now add a dialog to the project by selecting Insert | New ATL Object..., and then
Miscellaneous from the list in the ATL Object Wizard. Hit Next > and give the dialog a Short
Name of ClientDlg. Then click OK.

Once the dialog class has been added to the project, we need to create an instance of
the class when the executable starts. Open CtrlClient.cpp and add a #include

statement for ClientDlg.h to the top of the file, just below the other #includes.

Now move down the file to the _tWinMain() function. This serves exactly the same

purpose as the WinMain() function you saw back in Chapter 7, and acts as the entry

point for the executable. (The _t prefix indicates that it will receive command line
arguments as ASCII characters normally, or Unicode (wide) characters if _UNICODE is

defined.)

The first half of the code provided by the Wizard for this function deals with parsing the
command line arguments and registering or unregistering any components if the
command line contains the RegServer or UnregServer switches. We don't need to

worry about this because our client won't be exposing any COM objects. The code we're
interested in will go in the second half of the function, after the if (bRun) check.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

Add or modify the highlighted code shown below:

 if (bRun)

 {

 hRes = _Module.RegisterClassObjects(CLSCTX_LOCAL_SERVER,

 REGCLS_MULTIPLEUSE);

 _ASSERTE(SUCCEEDED(hRes));

 CClientDlg* pdlgClient = new CClientDlg;

 pdlgClient->Create(NULL);

 pdlgClient->ShowWindow(SW_SHOW);

 MSG msg;

 while (GetMessaget&msg, 0, 0, 0) == TRUE)

 {

 TranslateMessage(&msg); // Translate the message

 DispatchMessage(&msg); // Dispatch the message

 }

 if (pdlgClient)

 {

 delete pdlgClient;

 pdlgClient = NULL;

 }

 _Module.RevokeClassObjects();

 }

The first section of code before the message loop just creates a new dialog object, then
displays it to the user. Once the message loop exits (when it receives a WM_CLOSE
message and GetMessage() returns zero), the dialog object is deleted to free the

memory we used.

Now we have to make sure that that the application closes when the user closes the
dialog. This means that we need to post a WM_QUIT message when the user clicks OK
or Cancel on the dialog - for our purposes, both buttons perform the same action. If you
look at the dialog class, you'll see that it already has functions (OnOK() and
OnCancel()) to handle the buttons. The Wizard-produced code assumes that the

dialog is modal, so it includes calls to EndDialog(). We're using a modeless dialog, so
we need to replace this code with a call to DestroyWindow().

Add the highlighted code shown below:

 LRESULT CClientDlg::OnOK(WORD wNotifyCode, WORD wID, HWND

hWndCtl, BOOL& bHandled)

 {

 PostMessage(WM_QUIT);

 DestroyWindow();

 return 0;

 }

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 LRESULT CClientDlg::OnCancel(WORD wNotifyCode, WORD wID, HWND
hWndCtl, BOOL&

 bHandled)

 {

 PostMessage(WM_QUIT);

 DestroyWindow();

 return 0;

 }

Now modify the dialog resource to include the controls necessary for the client. You can

copy these controls from the existing dialog resource that you created for the MFC-
based client. That done, the next step is to set up the variables that can be used to store
the values associated with the controls, so add the following declarations to the
CClientDlg class definition.

 private:

 long m_lVRes;

 long m_lHRes;

 long m_lRefresh;

 long m_lHScan;

You should also initialize these variables in the class constructor. The top three can be
initialized to zero, whereas m_lHScan should start at 50, just as it did in the MFC client.

Unfortunately, things get a little harder here. We can no longer use ClassWizard to add

these variables, so you'll have to add them by hand. In addition, there's no ATL
equivalent of the UpdateData() function so you'll need to write your own.

Add the function shown below to CClientDlg and give the single bool parameter a

default value of true. This will work just like the UpdateData() member function in an

MFC dialog.

 void CClientDlg::UpdateData(bool bSave /* = true */)

 {

 Exchange_Text(bSave, IDC_HSCAN, m_lHScan);

 Exchange_Text(bSave, IDC_REFRESH, m_lRefresh);

 Exchange_Text(bSave, IDC_HRES, m_lHRes);

 Exchange_Text (bSave, IDC_VRES, m_lVRes);

 }

If you pass true, the Exchange_Text() function will take the strings stored in the

control specified by the ID passed as the second parameter and convert their contents to
a type compatible with the member variables passed as the third parameter. If you pass
false, the Exchange_Text() function will take the values stored in the third

parameter and display them in the control passed in the second parameter.

Your Exchange_Text() function should be added to CClientDlg, and could look

something like this:

 void CClientDlg::Exchange_Text(bool bSave, int nID, long&
lValue)

 {

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 CComVariant converter = 0;

 if (bSave)

 {

 const int MAX_COUNT = 12;

 TCHAR strText[MAX,_COUNT + 1] = {0};

 GetDlgItemText(nID, strText, MAX_COUNT);

 converter = strText;

 converter.ChangeType(VT_14);

 lvalue = converter.lVal;

 }

 else

 {

 USES_CONVERSION;

 converter = lValue;

 converter.ChangeType(VT_BSTR);

 LPCTSTR strText = OLE2T(converter.bstrVal);

 SetDlgItemText(nID, strText);

 }

 }

This function is pretty rough-and-ready, but it does show how you might use a VARIANT
(or the CComVariant wrapper class) to convert between a string and a long, and vice

versa. It also demonstrates the use of the OLE2T() macro to convert from a BSTR to a
LPCTSTR. In your own code, you'd probably want to provide something rather more

robust.

Now we need to get hold of the server component so that we can use it to provide
information about the refresh rate of our monitor. In contrast to the MFC client, we're
going to use the compiler COM support to create a smart pointer class to wrap the
IRefRate interface.

First, copy the type library for the RefreshRate component (RefreshRate.tlb) into the

CtrlClient project directory. This is just so that we don't have to type a long path
name into the #import statement for the library. Add #import "RefreshRate.tlb"

no_namespace to the end of StdAfx.h.

Once you compile the project, this statement will produce two files in the output (Debug
or Release) directory for the project, RefreshRate.tlh and RefreshRate.tli.

These files contain class definitions for wrappers for the interfaces and classes
contained in the type library. These output files are really for your reference (you don't
need to include these files in your project explicitly since this is all handled by the
#import statement), but it's worth taking a look at them to see what's available to you.

The smart pointer class that wraps the IRefRate interface is typedef'd to
IRefRatePtr, so add a new member variable to the dialog class:

 IRefRatePtr m_IRefRate;

Now we can use this member in OnInitDialog() and create an instance of the
RefRate class:

 LRESULT CClientDlg::OnInitDialog(UINT uMsg, WPARAM wParam,
LPARAM lParam, BOOL&

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 bHandled)

 {

 HRESULT hr = m_IRefRate.CreateInstance(_uuidof(RefRate));

 if SUCCEEDED(hr)

 {

 m_lVRes = m_IRefRate->GetVRes();

 m_lHRes = m_IRefRate->GetHRes();

 m_lRefresh = m_IRefRate.GetInterfacePtr()-
>RefreshRate(m_lHScan);

 UpdateData(false);

 }

 return 1; // Let the system set the focus

 }

Similarly, we can add code to respond to the Calculate button. You'll need to add an entry
to the message map and a declaration for the OnCalculate() function to the

CClientDlg class:

 BEGIN_MSG_MAP(CClientDlg)

 MESSAGE_HANDLER(WM_INITDIALOG, OnInitDialog)

 COMMAND_ID_HANDLER(IDOK, OnOK)

 COMMAND_ID_HANDLER(IDCANCEL, OnCancel)

 COMMAND_ID_HANDLER(IDC_CALCULATE, OnCalculate)

 END_MSG_MAP()

 // Handler prototypes:

 // LRESULT MessageHandler(UINT uMsg, WPARAM wParam, LPARAM
lParam, BOOL&

 bHandled);

 // LRESULT CommandHandler(WORD wNotifyCode, WORD wID, HWND
hWndCtl,

 // BOOL& bHandled);

 // LRESULT NotifyHandler(int idCtrl, LPNMHDR pnmh, BOOL&
bHandled);

 LRESULT OnCalculate(WORD wNotifyCode, WORD wID, HWND

hWndCtl, BOOL& bHandled);

The OnCalculate() function looks very similar to the OnCalculate() function in the

MFC-based client:

 LRESULT CClientDlg::OnCalculate(WORD wNotifyCode, WORD wID,
HWND hWndCtl, BOOL&

 bHandled)

 {

 UpdateData();

 m_lVRes = m_IRefRate.GetInterfacePtr()->GetVRes();

 m_lHRes = m_IRefRate.GetInterfacePtr()->GetHRes();

 m_lRefresh = m_IRefRate.GetInterfacePtr()-
>RefreshRate(m_lHScan);

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

 UpdateData(false);

 return 0;

 }

That's all there is to it. Now you can compile and run your ATL client just as you did with

the MFC and Visual Basic clients. You don't need to worry about releasing the
IRefRate pointer because it's all handled by the IRefRatePtr wrapper class.

This watermark does not appear in the registered version - http://www.clicktoconvert.com

http://www.clicktoconvert.com

	Beginning Visual C++ 6
	Who's This Book For?
	What's Covered in This Book
	What You Need to Use This Book
	Conventions Used
	Tell Us What You Think
	Source Code and Keeping Up-to-date
	Errata & Updates

	Chapter 1: Programming with Visual C++
	Overview
	Learning C++ and Windows Programming
	Introducing Windows Programming
	Console Applications

	What is the Integrated Development Environment?
	Components of the System
	The Editor
	The Compiler
	The Linker
	The Libraries

	Other Tools
	AppWizard
	ClassWizard
	The Wizard Bar

	Using the IDE
	Toolbar Options
	Dockable Toolbars
	Documentation
	Projects and Project Workspaces
	Defining a Project
	Debug and Release Versions of Your Program
	Try it Out: - Creating a New Project
	Entering Your First Program
	Adding a Source File to a Project
	Building a Project
	Dealing with Errors
	Using Help with the Output Window
	Files Created by Building a Console Application

	Executing Your First Program

	Setting Options in Visual C++
	Setting Visual C++ Options
	Setting Project Options

	Creating and Executing a Windows Program
	Executing a Windows Program

	The Function main()
	Program Statements
	Whitespace
	Statement Blocks

	Summary
	Exercises

	Chapter 2: Data, Variables and Calculations
	Overview
	The Structure of a C++ Program
	Try it Out: - A Simple Program
	Program Comments
	The #include Directive — Header Files
	The using Directive — Namespaces

	Defining Variables
	Naming Variables
	Keywords in C++

	Declaring Variables
	Initial Values for Variables

	Data Types in C++
	Integer Variables
	The char Data Type
	Integer Type Modifiers

	Floating Point Variables
	Logical Variables
	Variables with Specific Sets of Values
	Defining Your Own Data Types
	Literals
	Basic Input/Output Operations
	Input from the Keyboard
	Try it Out: - Output to the Display
	How It Works
	Try it Out: - Manipulators
	How It Works

	Escape Sequences

	Calculating in C++
	The Assignment Statement
	Understanding Lvalues
	Arithmetic Operations
	Try it Out: - Exercising Basic Arithmetic
	How It Works
	The const Modifier
	Constant Expressions
	Program Input
	Calculating the Result
	Displaying the Result

	Calculating a Remainder
	Modifying a Variable
	The Increment and Decrement Operators
	Try it Out: - The Comma Operator
	How It Works

	The Sequence of Calculation
	Operator Precedence

	The Bitwise Operators
	The Bitwise AND
	The Bitwise OR
	The Bitwise Exclusive OR
	The Bitwise NOT
	The Bitwise Shift Operators

	Variable Types and Casting
	Rules for Casting Operands
	Casts in Assignment Statements
	Explicit Casts
	Old-Style Casts

	Understanding Scope
	Automatic Variables
	Try it Out: - Automatic Variables
	How It Works

	Positioning Variable Declarations
	Global Variables
	Try it Out: - The Scope Resolution Operator
	How It Works

	Static Variables

	Namespaces
	Declaring a Namespace
	Multiple Namespaces

	Summary
	Exercises

	Chapter 3: Decisions and Loops
	Overview
	Comparing Values
	The if Statement
	Nested if Statements
	Try it Out: - Using Nested Ifs
	How It Works

	The Extended if Statement
	Try it Out: - Extending the If
	How It Works

	Nested if-else Statements
	Logical Operators and Expressions
	Logical AND
	Logical OR
	Logical NOT
	Try it Out: - Combining Logical Operators
	How It Works

	The Conditional Operator
	Try it Out: - Using the Conditional Operator with Output
	How It Works

	The switch Statement
	Try it Out: - The Switch Statement
	How It Works
	Try it Out: - Sharing a Case
	How It Works

	Unconditional Branching

	Repeating a Block of Statements
	What is a Loop?
	Try it Out: - Using the for Loop
	How It Works

	Variations on the for Loop
	Try it Out: - Using Multiple Counters
	How It Works
	Try it Out: - The Infinite for Loop
	How It Works

	The continue Statement
	Try it Out: - Using Other Types in Loops
	How It Works

	The while Loop
	Try it Out: - Using the while Loop
	How It Works

	The do-while Loop
	Nested Loops
	Try it Out: - Nested Loops
	How It Works
	Try it Out: - Another Nested Loop
	How It Works

	Summary
	Exercises

	Chapter 4: Arrays, Pointers and References
	Overview
	Handling Multiple Data Values of the Same Type
	Arrays
	Declaring Arrays
	Try it Out: - Using Arrays
	How It Works
	Inputting the Data
	Producing the Results

	Initializing Arrays
	Try it Out: — Initializing an Array
	How It Works

	Character Arrays and String Handling
	String Input
	Try it Out: — Programming With Strings
	How It Works

	Multidimensional Arrays
	Initializing Multidimensional Arrays
	Try it Out: — Storing Multiple Strings
	How It Works

	Indirect Data Access
	What is a Pointer?
	Declaring Pointers
	The Address-Of Operator

	Using Pointers
	The Indirection Operator
	Why Use Pointers?
	Try it Out: — Using Pointers
	How It Works

	Initializing Pointers
	Pointers to char
	Try it Out: — Lucky Stars With Pointers
	How It Works

	Try it Out: — Arrays of Pointers
	How It Works

	The sizeof Operator
	Try it Out: — Using the sizeof Operator
	How It Works

	Constant Pointers and Pointers to Constants
	Pointers and Arrays
	Pointer Arithmetic
	Try it Out: — Array Names as Pointers
	How It Works

	Try it Out: — Counting Characters Revisited
	How It Works

	Using Pointers with Multidimensional Arrays
	Pointer Notation with Multidimensional Arrays

	Dynamic Memory Allocation
	The Free Store, Alias the Heap
	The Operators new and delete
	Allocating Memory Dynamically for Arrays
	Try it Out: — Using Free Store
	How It Works

	Dynamic Allocation of Multidimensional Arrays

	Using References
	What is a Reference?
	Declaring and Initializing References

	Summary
	Exercises

	Chapter 5: Introducing Structure into Your Programs
	Overview
	Understanding Functions
	Why Do You Need Functions?
	Structure of a Function
	The Function Header
	The General Form of a Function Header

	The Function Body
	The return Statement

	Using a Function
	Function Prototypes
	Try it Out: - Using a Function
	How It Works

	Passing Arguments to a Function
	The Pass-by-value Mechanism
	Try it Out: - Passing-by-value
	How It Works

	Pointers as Arguments to a Function
	Try it Out: - Pass-by-pointer
	How It Works

	Passing Arrays to a Function
	Try it Out: - Passing Arrays
	How It Works

	Try it Out: - Using Pointer Notation When Passing Arrays
	How It Works

	Passing Multidimensional Arrays to a Function
	Try it Out: - Passing Multi-Dimensional Arrays
	How It Works

	References as Arguments to a Function
	Try it Out: - Pass-by-reference
	How It Works

	Use of the const Modifier
	Try it Out: - Passing a const
	How It Works

	Returning Values from a Function
	Returning a Pointer
	Try it Out: - Returning a Bad Pointer
	How It Works (or Why It Doesn't)

	A Cast Iron Rule for Returning Addresses

	Returning a Reference
	Try it Out: - Returning a Reference
	How It Works

	A Teflon-Coated Rule: Returning References

	Static Variables in a Function
	Try it Out: - Using Static Variables in Functions
	How It Works

	Using Recursion

	Recursive Function Calls
	Try it Out: - A Recursive Function
	How It Works

	Summary
	Exercises

	Chapter 6: More About Program Structure
	Overview
	Pointers to Functions
	Declaring Pointers to Functions
	Try it Out: - Pointers to Functions
	How It Works

	A Pointer to a Function as an Argument
	Try it Out: - Passing a Function Pointer
	How It Works

	Arrays of Pointers to Functions
	Exception Handling in the MFC

	Initializing Function Parameters
	Try it Out: - Omitting Function Arguments
	How It Works

	Exceptions
	Try it Out: - Throwing and Catching Exceptions
	How It Works

	Throwing Exceptions
	Catching Exceptions
	Try it Out: - Nested try Blocks

	Handling Memory Allocation Errors
	Function Overloading
	What is Function Overloading?
	Try it Out: - Using Overloaded Functions
	How It Works

	When to Overload Functions

	Function Templates
	Using a Function Template

	An Example Using Functions
	Implementing a Calculator
	Analyzing the Problem

	Eliminating Blanks from a String
	How the Function Functions

	Evaluating an Expression
	How the Function Functions

	Getting the Value of a Term
	How the Function Functions

	Analyzing a Number
	How the Function Functions

	Putting the Program Together
	How the Function Functions

	Extending the Program
	How the Function Functions

	Extracting a Substring
	How the Function Functions

	Running the Modified Program

	Summary
	Exercises

	Chapter 7: A Taste of Old-Fashioned Windows
	Overview
	The struct in C++
	What is a struct?
	Defining a struct
	Initializing a struct
	Accessing the Members of a struct
	Try it Out: - Using structs
	How It Works

	Intellisense Assistance with Structures
	The struct RECT
	Using Pointers with a struct
	Accessing Elements Through a Pointer
	The Indirect Member Selection Operator

	Windows Programming Basics
	Elements of a Window
	Comparing DOS and Windows Programs
	Event-driven Programs
	Windows Messages
	The Windows API
	Notation in Windows Programs

	The Structure of a Windows Program
	The WinMain() Function
	Specifying a Program Window
	Creating and Initializing a Program Window
	Initializing the Client Area of the Window

	Dealing with Windows Messages
	Queued and Non-Queued Messages
	The Message Loop
	Multitasking

	A Complete WinMain() Function
	How It Works

	Message Processing Functions
	The WindowProc() Function
	Decoding a Windows Message
	Drawing the Window Client Area

	Ending the Program
	A Complete WindowProc() Function
	How It Works

	A Simple Windows Program
	Try it Out: - Old-Fashioned Windows

	Summary
	Exercises

	Chapter 9: More on Classes
	Overview
	Class Destructors
	What is a Destructor?
	The Default Destructor
	Try it Out: - A Simple Destructor
	How It Works

	Destructors and Dynamic Memory Allocation
	Try it Out: - Using the Message Class
	How It Works

	Implementing a Copy Constructor

	Sharing Memory Between Variables
	Defining Unions
	Anonymous Unions
	Unions in Classes

	Operator Overloading
	Implementing an Overloaded Operator
	Try it Out: - Operator Overloading
	How It Works

	Implementing Full Support for an Operator
	Try it Out: - Complete Overloading of the > Operator
	How It Works

	Overloading the Assignment Operator
	Fixing the Problem
	Try it Out: - Overloading the Assignment Operator

	Overloading the Addition Operator
	Try it Out: - Exercising Our Addition
	How It Works

	Class Templates
	Defining a Class Template
	Template Member Functions

	Creating Objects from a Class Template
	Try it Out: - Class Templating

	Class Templates with Multiple Parameters

	Using Classes
	The Idea of a Class Interface
	Defining the Problem
	Implementing the CBox Class
	Comparing CBox Objects
	Combining CBox Objects
	Analyzing CBox Objects
	Try it Out: - A Multifile Project Using the CBox Class

	Defining the CBox Class
	Adding Data Members
	Defining the Constructor
	Adding Function Members
	Adding Global Functions

	Using Our CBox Class

	Organizing your Program Code
	Naming Program Files

	Summary
	Exercises

	Chapter 10: Class Inheritance
	Overview
	Basic Ideas of OOP
	Inheritance in Classes
	What is a Base Class?
	Deriving Classes from a Base Class
	Try it Out: - Using a Derived Class
	How It Works

	Constructor Operation in a Derived Class
	Try it Out: - Calling Constructors
	How It Works

	Declaring Protected Members of a Class
	Try it Out: - Using Protected Members
	How It Works

	The Access Level of Inherited Class Members

	Access Control Under Inheritance
	Try it Out: - Accessing Private Members of the Base Class
	How It Works

	The Copy Constructor in a Derived Class
	Try it Out: - The Copy Constructor in Derived Classes
	How It Works (or why It doesn't)

	Try it Out: - Fixing the Copy Constructor Problem
	How It Works

	Class Members as friends
	Friend Classes
	Limitations on Class Friendship
	What's a Virtual Function?
	Try it Out: - Fixing the CGlassBox
	How It Works

	Using Pointers to Class Objects
	Try it Out: - Pointers to Base and Derived Classes
	How It Works

	Using References With Virtual Functions
	Try it Out: - Using References with Virtual Functions
	How It Works

	Pure Virtual Functions
	Abstract Classes
	Try it Out: - An Abstract Class
	How It Works

	Indirect Base Classes
	Try it Out: - More than One Level of Inheritance
	How It Works

	Virtual Destructors
	Try it Out: - Calling the Wrong Destructor
	How It Works

	Virtual Functions
	Try it Out: - Using an Inherited Function
	How It Works

	Multiple Inheritance
	Multiple Base Classes
	Virtual Base Classes

	Summary
	Exercises

	Chapter 11: An Example using Classes
	Using Classes
	Defining the Problem
	Analyzing the Problem
	Deciding Between Class Membership and Class Inheritance

	Let the Coding Commence
	Defining the CCalculator Class
	Communicating Between Classes
	Adding Data Members to CCalculator
	Outlining the CDisplay, CKeyboard, and CLogicUnit Classes
	Making the CCalculator Class Safe to Use

	Starting the Calculator
	Calculator Input
	Linking the Keyboard to the Logic Unit
	Handling Keyboard Input

	Implementing the Logic Unit
	Logic Unit Registers
	Handling Digits
	Handling a Decimal Point

	The CRegister Class
	Handling a Decimal Point in CRegister
	Handling a Digit In CRegister
	Service Functions for a Register
	Arithmetic Operations on Registers

	Handling Arithmetic Operations
	Defining a Base Class for Arithmetic Operations
	Deriving Classes for Arithmetic Operations
	Making Friends
	Implementing Operation Execution

	Completing the CLogicUnit Class
	Handling Multiply and Divide
	Handling Add and Subtract
	Handling the Enter Key
	Using the Registers

	Completing the CDisplay Class
	Running the Calculator

	Handling Parentheses
	Returning a Calculator Value
	Handling a Right Parenthesis
	Handling a Left Parenthesis
	Try it Out: - Exercising the Calculator
	Extending the Calculator

	Summary
	Exercises

	Chapter 12: Debugging
	Overview
	Understanding Debugging
	Program Bugs
	Common Bugs

	Basic Debugging Operations
	Setting Breakpoints
	Advanced Breakpoints

	Starting Debugging
	Inspecting Variable Values
	Viewing Variables in the Edit Window
	Watching Variables' Values

	Changing the Value of a Variable

	Adding Debugging Code
	Using Assertions
	Adding your own Debugging Code
	Try it Out: - Adding Code for Debugging
	How It Works

	Debugging a Program
	The Call Stack
	Step over to the Error

	Testing the Extended Class
	Finding the Next Bug

	Debugging Dynamic Memory
	Functions Checking the Free Store
	Controlling Free Store Debug Operations
	Free Store Debugging Output
	Try it Out: - Memory Leak Detection
	How It Works

	Summary

	Chapter 13: Understanding Windows Programming
	Overview
	The Essentials of a Windows Program
	The Windows API
	Visual C++ and the Windows API

	The Microsoft Foundation Classes
	MFC Notation
	How an MFC Program is Structured
	Try it Out: - An MFC Application Without AppWizard
	The Application Class
	The Window Class
	Completing the Program
	The Finished Product

	The Document/View Concept
	What is a Document?
	Document Interfaces
	What is a View?

	Linking a Document and its Views
	Document Templates
	Document Template Classes

	Your Application and MFC

	Windows Programming with Visual C++
	What is the AppWizard?
	Using AppWizard to Create an SDI Application
	Step 1
	Step 2
	Step 3
	Step 4
	Step 5
	Step 6

	The Output from AppWizard
	Viewing Project Files
	Viewing Classes
	The Class Definitions
	CTextEditorApp
	CMainFrame
	CTextEditorDoc
	CTextEditorView

	Comments in AppWizard-Generated Code
	Creating an Executable Module
	Precompiled Header Files

	Running the Program
	How the Program Works
	The Function Initinstance()
	The Function Run()

	Using AppWizard to Create an MDI Application
	Running the Program

	Using the ClassWizard

	Summary
	Exercises

	Chapter 14: Working with Menus and Toolbars
	Overview
	Communicating with Windows
	Understanding Message Maps
	Message Handler Definitions

	Message Categories
	Handling Messages in Your Program
	How Command Messages are Processed

	Extending the Sketcher Program
	Elements of a Menu
	Creating and Editing Menu Resources
	Adding a Menu Item to the Menu Bar
	Adding Items to the Element Menu
	Defining Menu Item Properties

	Modifying Existing Menu Items
	Completing the Menu

	Using ClassWizard for Menu Messages
	Choosing a Class to Handle Menu Messages
	Creating Menu Message Functions
	Coding Menu Message Functions
	Adding Members to Store Color and Element Mode
	Initializing the New Class Data Members
	Modifying the Class Constructor

	Running the Extended Example

	Adding Message Handlers to Update the User Interface
	Coding a Command Update Handler
	Exercising the Update Handlers

	Adding Toolbar Buttons
	Editing Toolbar Button Properties
	Exercising the Toolbar Buttons
	Adding Tooltips

	Summary
	Exercises

	Chapter 15: Drawing in a Window
	Overview
	Basics of Drawing in a Window
	The Window Client Area
	The Windows Graphical Device Interface
	What is a Device Context?
	Mapping Modes

	The Drawing Mechanism in Visual C++
	The View Class in Your Application
	The OnDraw() Member Function

	The CDC Class
	Displaying Graphics
	Drawing Lines
	Drawing Circles

	Drawing in Color
	Creating a Pen
	Using a Pen
	Creating a Brush
	Using a Brush

	Drawing Graphics in Practice
	Programming the Mouse
	Messages from the Mouse
	WM_LBUTTONDOWN
	WM_MOUSEMOVE
	WM_LBUTTONUP

	Mouse Message Handlers
	The Class Wizard Generated Code

	Drawing Using the Mouse
	Getting the Client Area Redrawn
	Defining Classes for Elements
	Storing a Temporary Element In the View

	The CElement Class
	The CLine Class
	Implementing the CLine Class
	The CLine Class Constructor
	Drawing a Line
	Creating Bounding Rectangles
	Normalized Rectangles

	Calculating the Enclosing Rectangle for a Line
	The CRectangle Class
	The CRectangle Class Constructor
	Drawing a Rectangle

	The CCircle Class
	Implementing the CCircle Class
	The CCircle Class Constructor
	Drawing a Circle

	The CCurve Class
	Completing the Mouse Message Handlers
	Setting the Drawing Mode
	Coding the OnMouseMove() Handler
	Creating an Element
	Dealing with WM_LBUTTONUP Messages

	Exercising Sketcher
	Running the Example
	Capturing Mouse Messages

	Summary
	Exercises

	Chapter 16: Creating the Document and Improving the View
	Overview
	What are Collection Classes?
	Types of Collection
	The Type-safe Collection Classes
	Collections of Objects
	The CArray Template Class
	Helper Functions
	The CList Template Class
	Adding Elements to a List
	Iterating through a List
	Searching a List
	Deleting Objects from a List
	Helper Functions for a List

	The CMap Template Class
	Helper Functions used by CMap

	The Typed Pointer Collections
	The CTypedPtrList Template Class
	CTypedPtrList Operations

	Using the CList Template Class
	Drawing a Curve
	Defining the CCurve Class
	Implementing the CCurve Class
	Exercising the CCurve Class

	Creating the Document
	Using a CTypedPtrList Template
	Implementing the Document Destructor
	Drawing the Document
	Adding an Element to the Document
	Exercising the Document

	Improving the View
	Updating Multiple Views
	Scrolling Views
	Logical Coordinates and Client Coordinates
	Dealing with Client Coordinates

	Using MM_LOENGLISH Mapping Mode

	Deleting and Moving Shapes
	Implementing a Context Menu
	Associating a Menu with a Class
	Displaying a Pop-up at the Cursor
	Choosing a Context Menu
	Identifying a Selected Element

	Exercising the Pop-ups
	Checking the Context Menu Items

	Highlighting Elements
	Drawing Highlighted Elements
	Exercising the Highlights

	Servicing the Menu Messages
	Deleting an Element
	Moving an Element
	Modifying the WM_MOUSEMOVE Handler

	Getting the Elements to Move Themselves
	Dropping the Element

	Exercising the Application

	Dealing with Masked Elements
	Summary
	Exercises

	Chapter 17: Working with Dialogs and Controls
	Overview
	Understanding Dialogs
	Understanding Controls
	Common Controls

	Creating a Dialog Resource
	Adding Controls to a Dialog Box
	Testing the Dialog

	Programming for a Dialog
	Adding a Dialog Class
	Modal and Modeless Dialogs
	Displaying a Dialog
	Code to Display the Dialog

	Supporting the Dialog Controls
	Initializing the Controls
	Handling Radio Button Messages

	Completing Dialog Operations
	Adding Pen Widths to the Document
	Adding Pen Widths to the Elements
	Creating Elements in the View
	Exercising the Dialog

	Using a Spin Button Control
	Adding the Scale Menu Item and Toolbar Button
	Creating the Spin Button
	The Controls' Tab Sequence

	Generating the Scale Dialog Class
	Dialog Data Exchange and Validation
	Initializing the Dialog

	Displaying the Spin Button

	Using the Scale Factor
	Scaleable Mapping Modes
	Setting the Document Size
	Setting the Mapping Mode
	Implementing Scrolling with Scaling
	Setting Up the Scrollbars
	Updating the Status Bar

	Creating a Status Bar
	Adding a Status Bar to a Frame
	Defining the Status Bar Parts

	Using a List Box
	Removing the Scale Dialog
	Creating a List Box Control
	Creating the Dialog Class
	Displaying the Dialog

	Using an Edit Box Control
	Creating an Edit Box Resource
	Creating the Dialog Class
	The CString Class

	Adding the Text Menu Item
	Defining a Text Element
	Implementing the CText Class
	The CText Constructor
	Drawing a CText Object
	Moving a CText Object

	Creating a Text Element
	The Context Menu

	Exercising the Edit Box

	Summary
	Exercises

	Chapter 18: Storing and Printing Documents
	Overview
	Understanding Serialization
	Serializing a Document
	Serialization in the Document Class Definition
	Serialization in the Document Class Implementation
	The Serialize() Function
	The CArchive Class

	Functionality of CObject-based Classes
	The Macros Adding Serialization to a Class

	How Serialization Works
	How to Implement Serialization for a Class

	Applying Serialization
	Recording Document Changes
	Serializing the Document
	Serializing the Element Classes
	The Serialize() Functions for the Shape Classes

	Exercising Serialization
	Moving Text
	Moving Text
	Summary
	Exercises

	Chapter 19: Writing Your Own DLLs
	Overview
	Understanding DLLs
	How DLLs Work
	Run-time Dynamic Linking

	Contents of a DLL
	The DLL Interface
	The DllMain() Function

	Varieties of DLL
	MFC Extension DLL
	Regular DLL - Statically Linked to MFC
	Regular DLL - Dynamically Linked to MFC

	Deciding What to Put in a DLL
	Writing DLLs
	Writing and Using an Extension DLL
	Understanding DllMain()
	Adding Classes to the Extension DLL
	Exporting Classes from the Extension DLL
	Building a DLL
	Using the Extension DLL in Sketcher
	Files Required to Use a DLL

	Exporting Variables and Functions from a DLL
	Importing Symbols into a Program
	Implementing the Export of Symbols from a DLL
	Using Exported Symbols

	Summary
	Exercise

	Chapter 20: Connecting to Data Sources
	Overview
	Database Basics
	A Little SQL
	Retrieving Data Using SQL
	Choosing Records

	Joining Tables Using SQL
	Sorting Records

	Database Support in MFC
	DAO vs ODBC
	Classes Supporting DAO
	Classes Supporting ODBC

	 Creating a Database Application
	Registering an ODBC Database
	Using AppWizard to Generate an ODBC Program
	Snapshot vs Dynaset Recordsets
	Choosing Tables

	Understanding the Program Structure
	Understanding Recordsets
	Recordset Creation
	Querying the Database
	Data Transfer between the Database and the Recordset

	Understanding the Record View
	Creating the View Dialog
	Linking the Controls to the Recordset

	Exercising the Example
	Sorting a Recordset
	Modifying the Window Caption

	Using a Second Recordset Object
	Adding a Recordset Class
	Adding a Record View Class
	Creating the Dialog Resource
	Creating the Record View Class
	Linking the Dialog Controls to the Recordset

	Customizing the Record View Class
	Adding a Filter to the Recordset
	Defining the Filter Parameter
	Initializing the Record View

	Accessing Multiple Tables
	Switching Views
	Enabling the Switching Operation
	Handling View Activation

	Viewing Orders for a Product

	Viewing Customer Details
	Adding the Customer Recordset
	Creating the Customer Dialog Resource
	Creating the Customer View Class
	Adding a Filter
	Implementing the Filter Parameter
	Linking the Order Dialog to the Customer Dialog
	Exercising the Database Viewer

	Summary
	Exercises

	Chapter 21: Updating Data Sources
	Overview
	Update Operations
	CRecordset Update Operations
	Checking that Operations are Legal
	Record Locking

	Transactions
	CDatabase Transaction Operations

	A Simple Update Example
	Customizing the Application
	Try it Out: - Updating a Database
	How It Works

	Managing the Update Process
	Implementing Update Mode
	Enabling and Disabling Edit Controls
	Changing the Button Label
	Controlling the Visibility of the Cancel Button
	Disabling the Record Menu
	Expediting the Update
	Implementing the Cancel Operation
	Try it Out: - Controlled Updating

	Adding Rows to a Table
	The Order Entry Process
	Creating the Resources
	Adding Controls to the Dialog Resources
	Implementing Dialog Switching
	Creating an Order ID
	Storing the New Order ID
	Creating the New Order ID
	Initiating ID Creation

	Storing the Order Data
	Setting Dates

	Selecting Products for an Order
	Adding a New Order
	Try it Out: - Adding New Orders

	Compound Documents
	Activating an Embedded Object

	How Does OLE Work?
	The OLE Component Object Model
	The Registry

	MFC Classes Supporting OLE
	OLE Object Classes
	An Embedded Object In a Container
	An Embedded Object In a Server

	OLE Document Classes

	Summary
	Exercises

	Chapter 22: Understanding OLE Documents
	Overview
	Object Linking and Embedding
	Containers and Servers

	Implementing an OLE Container
	Initializing a Container Application
	The CWrxContainerItem Class
	Reacting to OLE Object Modification
	Dealing with the Position of an Object in the Container

	Managing Multiple Embedded Objects
	Selecting an Object
	Finding the Object Selected
	Setting an Object as Selected
	Setting the Tracker Style
	Setting the Cursor

	Activating an Embedded Object
	Drawing Multiple Embedded Objects
	Dealing with Object Insertion

	Trying Out the OLE Container

	Implementing an OLE Server
	Generating a Server Application
	Adding Sketcher Application Functionality
	Document Data and Interface Functions
	Adding the Menus
	Adding the Toolbar Buttons
	Adding the View Application Functionality
	Drawing the Document

	Running Sketcher as a Server
	Server Resources
	Updating Menu Resources
	How Container and Server Menus are Merged

	Updating Toolbar Resources

	Adding Server Functionality
	Implementing the Embedded Object
	Scaleable Mapping Modes

	Updating the View
	Changing the Mapping Mode
	Drawing the Embedded Object
	Getting the Extent of an Embedded Object
	Notifying Changes

	Executing the Server
	Summary
	Exercise

	Chapter 23: ActiveX Controls
	Overview
	ActiveX and OLE
	What Are OLE Controls?
	What About ActiveX Controls?

	How OLE Controls Work
	Properties
	Ambient Properties
	Control Properties
	Extended Properties
	Property Pages

	Methods
	Events
	The Interface to an OLE Control

	Implementing an ActiveX Control
	Creating a Basic ActiveX Control
	Structure of the Program
	The Application Class
	The Control Class
	Implementation of the Control Class

	The Property Page Class
	Implementation of the Property Page Class

	Defining a Traffic Signal Object
	Implementing the NextState() Function
	Implementing the Draw() Function
	Adding a Constructor

	Using a CTrafficSignal Object
	Testing the Control
	Using Stock and Ambient Properties
	Adding Custom Properties to the Control
	Using ClassWizard to Add Custom Properties
	Initializing Custom Properties

	Making the Signal Work
	Starting and Stopping the Signal
	Starting the Signal
	Stopping the Signal
	Handling WM_TIMER Messages

	Implementing the Notify Function for the Control
	Implementing the Property Get/Set Functions

	Using the Property Page
	Connecting Controls to Properties

	Using the Control
	Adding Events to a Control
	The ODL File
	Adding an Enumeration

	Embedding an ActiveX Control in a Web Page
	Summary
	Exercises

	Chapter 24: Using the Active Template Library
	Overview
	More About COM
	COM and Interfaces
	Dispatch Interfaces
	COM Interfaces and Class Interfaces

	Understanding the Active Template Library
	Invisible Controls

	Using the ATL COM AppWizard
	Basic COM AppWizard Code
	Adding a COM object to the Project

	ATL Object Code
	The COM Object Class
	The Interface Definition
	Extending the Interface
	Implementing the Interface Functions

	Building the Component
	Using the Component
	Visual Basic Access to the COM Component
	Using the COM Component in C++
	Creating the Interface
	Using the COM Library
	Component Objects
	Obtaining the CLSID for a Component
	Creating an Instance of a Component
	Releasing the Component

	Using Component Interface Functions

	Using ATL to Create an ActiveX Control
	The ATL Control Class
	Defining the Signal
	Implementing CTrafficSignal
	Drawing the Signal

	Adding the Signal to the Control
	Drawing the Control

	Starting and Stopping the Signal
	Controlling the Signal
	Exercising the Control

	Adding Custom Properties
	Adding Events
	Adding a Connection Point

	Running the Control

	Summary
	Exercises

	Appendix A: C++ Keywords
	Appendix B: The ASCII Table
	Overview
	ASCII Characters 0 - 31
	ASCII Characters 32 - 127

	Appendix C: Solutions to Exercises
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Chapter 24
	Chapter 24

