
this print for content only—size & color not accurate spine = 0.9682" 512 page count

Books for professionals By professionals®

Beginning C# 2008 Databases:
From Novice to Professional
Dear Reader,

This book focuses on accessing databases using C# 2008 as a development tool
in conjunction with the new release of Visual Studio 2008 and.NET Framework 3.5.
This book will walk you through all the aspects of programming a database with
SQL Server 2005, pulling the data to an application developed using C# 2008.

As you work your way through this book, you get a chance to explore the
concepts covered by creating sample applications in “Try It Out” sections,
which will help you to apply what you learn to your real-world applications.
Following the sample applications, I explain each code statement in “How It
Works” sections to help you understand the code.

I hope that you will achieve not only knowledge of C# 2008, but also knowledge
of SQL Server 2005. I have targeted quite a few database concepts, from the
basics to the new T-SQL features of SQL Server 2005. This book will also help
you to build your code competency in a gradual manner because I begin with
the easy topics before moving on to the complex ones. This book starts from
basic application development and goes over the concepts of LINQ and ADO.
NET 3.5 and building applications with them.

I believe that you will find this book to be an asset in enriching your data-
base application development skills.

Cheers,

Vidya Vrat Agarwal

Vidya Vrat Agarwal,
author of
Beginning VB 2008
Databases: From Novice
to Professional

US $39.99

Shelve in
Programming Languages/C#

User level:
Beginner–Intermediate

Agarw
al,

Huddleston
C# 2008

 Databases

The eXperT’s Voice® in .neT

Beginning

C# 2008
Databases
From Novice to Professional

 cyan
 MaGenTa

 yelloW
 Black
 panTone 123 c

Vidya Vrat Agarwal and James Huddleston
Ranga Raghuram, Syed Fahad Gilani,
Jacob Hammer Pedersen, and Jon Reid

Companion
eBook Available

THE APRESS ROADMAP

Expert C# 2008 Business
Objects, Third Edition

Pro C# 2008 and
the .NET 3.5 Platform,

Fourth Edition

Beginning C# 2008
Databases: From

Novice to Professional

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-900-6
ISBN-10: 1-59059-900-4

9 781590 599006

53999

What every C# programmer needs to know about
SQL Server 2005, T-SQL, ADO.NET 3.5, and LINQ

James Huddleston,
author of
Beginning VB 2005
Databases: From Novice
to Professional
Beginning C# 2005
Databases: From Novice
to Professional

Beginning

Vidya Vrat Agarwal and James Huddleston
Ranga Raghuram, Syed Fahad Gilani,
Jacob Hammer Pedersen, and Jon Reid

Beginning C#
2008 Databases
From Novice
to Professional

9004fmfinal.qxd 12/14/07 11:10 AM Page i

Beginning C# 2008 Databases: From Novice to Professional

Copyright © 2008 by Vidya Vrat Agarwal, James Huddleston, Ranga Raghuram, Syed Fahad Gilani,
Jacob Hammer Pedersen, and Jon Reid

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-900-6

ISBN-10 (pbk): 1-59059-900-4

ISBN-13 (electronic): 978-1-4302-0450-3

ISBN-10 (electronic): 1-4302-0450-8

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Jonathan Hassell
Technical Reviewer: Fabio Claudio Ferracchiati
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper, Ben Renow-Clarke,
Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Beth Christmas
Copy Editor: Ami Knox
Associate Production Director: Kari Brooks-Copony
Production Editor: Ellie Fountain
Compositor: Linda Weidemann, Wolf Creek Press
Proofreader: Nancy Sixsmith
Indexer: Broccoli Information Management
Artist: April Milne
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com,
or visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://
www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every pre-
caution has been taken in the preparation of this work, neither the author(s) nor Apress shall have any
liability to any person or entity with respect to any loss or damage caused or alleged to be caused directly
or indirectly by the information contained in this work.

The source code for this book is available to readers at http://www.apress.com. You will need to answer
questions pertaining to this book in order to successfully download the code.

9004fmfinal.qxd 12/14/07 11:10 AM Page ii

mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com
http://www.apress.com
http://www.apress.com

In loving memory of James E. Huddleston
(June 7, 1951–February 25, 2007)

&
To my sweet little daughter, Pearly,

and beloved wife, Rupali
—Vidya Vrat Agarwal

9004fmfinal.qxd 12/14/07 11:10 AM Page iii

9004fmfinal.qxd 12/14/07 11:10 AM Page iv

Contents at a Glance

About the Authors . xxi

About the Technical Reviewer . xxiii

Acknowledgments . xxv

Introduction . xxvii

■CHAPTER 1 Getting Your Tools . 1

■CHAPTER 2 Getting to Know Your Tools . 15

■CHAPTER 3 Getting to Know Relational Databases . 27

■CHAPTER 4 Writing Database Queries . 39

■CHAPTER 5 Manipulating Database Data . 73

■CHAPTER 6 Using Stored Procedures. 95

■CHAPTER 7 Using XML . 119

■CHAPTER 8 Understanding Transactions . 135

■CHAPTER 9 Getting to Know ADO.NET . 157

■CHAPTER 10 Making Connections . 189

■CHAPTER 11 Executing Commands . 209

■CHAPTER 12 Using Data Readers . 235

■CHAPTER 13 Using Datasets and Data Adapters . 265

■CHAPTER 14 Building Windows Forms Applications . 321

■CHAPTER 15 Building ASP.NET Applications . 349

■CHAPTER 16 Handling Exceptions . 369

■CHAPTER 17 Working with Events . 391

■CHAPTER 18 Working with Text and Binary Data . 403

■CHAPTER 19 Using LINQ . 431

■CHAPTER 20 Using ADO.NET 3.5 . 449

■INDEX . 467

v

9004fmfinal.qxd 12/14/07 11:10 AM Page v

9004fmfinal.qxd 12/14/07 11:10 AM Page vi

Contents

About the Authors . xxi

About the Technical Reviewer . xxiii

Acknowledgments . xxv

Introduction . xxvii

■CHAPTER 1 Getting Your Tools . 1

Obtaining Visual Studio 2008 . 2

Installing SQL Server Management Studio Express. 3

Installing the Northwind Sample Database . 4

Installing the Northwind Creation Script . 5

Creating the Northwind Sample Database . 6

Installing the AdventureWorks Sample Database . 9

Installing the AdventureWorks Creation Script 9

Creating the AdventureWorks Sample Database 10

Summary. 13

■CHAPTER 2 Getting to Know Your Tools . 15

Microsoft .NET Framework Versions and the Green Bit and

Red Bit Assembly Model . 15

Using Microsoft Visual Studio 2008 . 16

Try It Out: Creating a Simple Console Application Project

Using Visual Studio 2008 . 19

How It Works . 21

Using SQL Server Management Studio Express. 22

Summary . 26

vii

9004fmfinal.qxd 12/14/07 11:10 AM Page vii

■CHAPTER 3 Getting to Know Relational Databases . 27

What Is a Database? . 27

Choosing Between a Spreadsheet and a Database. 28

Why Use a Database?. 28

Benefits of Using a Relational Database Management System. 29

Comparing Desktop and Server RDBMS Systems . 29

Desktop Databases . 30

Server Databases. 30

The Database Life Cycle. 31

Mapping Cardinalities . 32

Understanding Keys . 34

Primary Keys. 35

Foreign Keys . 35

Understanding Data Integrity. 36

Entity Integrity . 36

Referential Integrity . 36

Normalization Concepts . 36

Drawbacks of Normalization . 38

Summary. 38

■CHAPTER 4 Writing Database Queries . 39

Comparing QBE and SQL . 40

Beginning with Queries . 41

Try It Out: Running a Simple Query . 41

How It Works . 42

Common Table Expressions . 42

Try It Out: Creating a CTE . 43

How It Works . 44

GROUP BY Clause . 44

Try It Out: Using the GROUP BY Clause . 44

How It Works. 45

■CONTENTSviii

9004fmfinal.qxd 12/14/07 11:10 AM Page viii

PIVOT Operator. 46

Try It Out: Using the PIVOT Operator . 46

How It Works . 47

ROW_NUMBER() Function . 48

Try It Out: Using the ROW_NUMBER() Function 48

How It Works . 49

PARTITION BY Clause . 49

Try It Out: Using the PARTITION BY Clause . 49

How It Works . 50

Pattern Matching . 50

Try It Out: Using the % Character . 51

How It Works . 52

Try It Out: Using the _ (Underscore) Character. 52

How It Works . 53

Try It Out: Using the [] (Square Bracket) Characters. 54

How It Works . 54

Try It Out: Using the [^] (Square Bracket and Caret)

Characters . 55

How It Works . 56

Aggregate Functions . 56

Try It Out: Using the MIN, MAX, SUM, and AVG Functions 56

How It Works . 57

Try It Out: Using the COUNT Function . 57

How It Works . 58

DATETIME Functions. 59

Try It Out: Using T-SQL Date and Time Functions 59

How It Works . 60

Joins . 61

Inner Joins . 61

Outer Joins . 67

Other Joins . 71

Summary . 72

■CONTENTS ix

9004fmfinal.qxd 12/14/07 11:10 AM Page ix

■CONTENTSx

■CHAPTER 5 Manipulating Database Data . 73

Retrieving Data . 73

Try It Out: Running a Simple Query . 74

How It Works . 75

Using the WHERE Clause . 76

Sorting Data . 80

Using SELECT INTO Statements . 83

Try It Out: Creating a New Table . 83

How It Works . 84

Try It Out: Using SELECT INTO to Copy Table Structure 86

How It Works . 86

Inserting Data. 88

Try It Out: Inserting a New Row. 88

How It Works . 89

Updating Data . 91

Try It Out: Updating a Row . 91

How It Works . 91

Deleting Data . 93

Summary. 94

■CHAPTER 6 Using Stored Procedures . 95

Creating Stored Procedures. 95

Try It Out: Working with a Stored Procedure in SQL Server 96

How It Works . 97

Try It Out: Creating a Stored Procedure with an

Input Parameter . 99

How It Works . 100

Try It Out: Creating a Stored Procedure with an

Output Parameter . 100

How It Works . 102

Modifying Stored Procedures . 103

Try It Out: Modifying the Stored Procedure . 103

How It Works. 105

9004fmfinal.qxd 12/14/07 11:10 AM Page x

Displaying Definitions of Stored Procedures. 106

Try It Out: Viewing the Definition of Your Stored Procedure 106

How It Works . 107

Renaming Stored Procedures . 107

Try It Out: Renaming a Stored Procedure . 107

How It Works . 108

Working with Stored Procedures in C# . 108

Try It Out: Executing a Stored Procedure with

No Input Parameters . 109

How It Works . 111

Try It Out: Executing a Stored Procedure with Parameters 111

How It Works . 114

Deleting Stored Procedures . 115

Try It Out: Deleting a Stored Procedure . 115

How It Works . 116

Summary. 117

■CHAPTER 7 Using XML . 119

Defining XML . 119

Why XML?. 120

Benefits of Storing Data As XML. 120

Understanding XML Documents . 121

Understanding the XML Declaration. 123

Converting Relational Data to XML. 123

Using FOR XML RAW. 124

Using FOR XML AUTO . 128

Using the xml Data Type . 130

Try It Out: Creating a Table to Store XML . 130

How It Works . 131

Try It Out: Storing and Retrieving XML Documents 131

How It Works . 133

Summary . 133

■CONTENTS xi

9004fmfinal.qxd 12/14/07 11:10 AM Page xi

73ed30358d714f26dd2d9c0159f8cfe0

■CHAPTER 8 Understanding Transactions . 135

What Is a Transaction? . 135

When to Use Transactions . 136

Understanding ACID Properties. 137

Transaction Design . 138

Transaction State . 138

Specifying Transaction Boundaries . 139

T-SQL Statements Allowed in a Transaction . 139

Local Transactions in SQL Server 2005 . 139

Distributed Transactions in SQL Server 2005 . 141

Guidelines to Code Efficient Transactions . 142

How to Code Transactions . 143

Coding Transactions in T-SQL . 143

Coding Transactions in ADO.NET . 151

Summary. 156

■CHAPTER 9 Getting to Know ADO.NET . 157

Understanding ADO.NET. 157

The Motivation Behind ADO.NET. 158

Moving from ADO to ADO.NET. 159

ADO.NET Isn’t a New Version of ADO. 159

ADO.NET and the .NET Base Class Library . 160

Understanding ADO.NET Architecture . 162

Working with the SQL Server Data Provider . 164

Try It Out: Creating a Simple Console Application

Using the SQL Server Data Provider . 165

How It Works . 168

Working with the OLE DB Data Provider . 171

Try It Out: Creating a Simple Console Application

Using the OLE DB Data Provider . 172

How It Works. 176

■CONTENTSxii

9004fmfinal.qxd 12/14/07 11:10 AM Page xii

Working with the ODBC Data Provider. 177

Creating an ODBC Data Source . 178

Try It Out: Creating a Simple Console Application

Using the ODBC Data Provider . 184

How It Works . 186

Data Providers Are APIs . 187

Summary. 188

■CHAPTER 10 Making Connections . 189

Introducing the Data Provider Connection Classes 189

Connecting to SQL Server Express with SqlConnection 190

Try It Out: Using SqlConnection. 190

How It Works . 192

Debugging Connections to SQL Server . 195

Security and Passwords in SqlConnection . 196

How to Use SQL Server Security . 197

Connection String Parameters for SqlConnection 197

Connection Pooling . 199

Improving Your Use of Connection Objects. 199

Using the Connection String in the Connection Constructor. 199

Displaying Connection Information . 199

Connecting to SQL Server Express with OleDbConnection 205

Try It Out: Connecting to SQL Server Express with the

OLE DB Data Provider . 206

How It Works . 208

Summary. 208

■CHAPTER 11 Executing Commands. 209

Creating a Command . 209

Try It Out: Creating a Command with a Constructor 210

How It Works . 211

Associating a Command with a Connection 211

Assigning Text to a Command . 213

■CONTENTS xiii

9004fmfinal.qxd 12/14/07 11:10 AM Page xiii

Executing Commands . 215

Try It Out: Using the ExecuteScalar Method 216

How It Works . 218

Executing Commands with Multiple Results. 219

Try It Out: Using the ExecuteReader Method 219

How It Works . 221

Executing Statements. 222

Try It Out: Using the ExecuteNonQuery Method 222

How It Works . 225

Command Parameters . 227

Try It Out: Using Command Parameters . 228

How It Works . 232

Summary. 233

■CHAPTER 12 Using Data Readers . 235

Understanding Data Readers in General . 235

Try It Out: Looping Through a Result Set. 236

How It Works . 238

Using Ordinal Indexers . 239

Using Column Name Indexers . 243

Using Typed Accessor Methods . 244

Getting Data About Data. 251

Try It Out: Getting Information About a Result Set with a

Data Reader. 251

How It Works . 255

Getting Data About Tables . 256

Try It Out: Getting Schema Information . 256

How It Works . 258

Using Multiple Result Sets with a Data Reader . 259

Try It Out: Handling Multiple Result Sets . 260

How It Works . 262

Summary . 264

■CONTENTSxiv

9004fmfinal.qxd 12/14/07 11:10 AM Page xiv

■CHAPTER 13 Using Datasets and Data Adapters . 265

Understanding the Object Model. 266

Datasets vs. Data Readers . 266

A Brief Introduction to Datasets. 266

A Brief Introduction to Data Adapters. 268

A Brief Introduction to Data Tables, Data Columns,

and Data Rows . 269

Working with Datasets and Data Adapters . 270

Try It Out: Populating a Dataset with a Data Adapter 270

How It Works . 273

Filtering and Sorting in a Dataset . 274

Comparing FilterSort to PopDataSet. 280

Using Data Views . 281

Modifying Data in a Dataset. 285

Propagating Changes to a Data Source. 289

UpdateCommand Property . 289

InsertCommand Property . 295

DeleteCommand Property . 301

Command Builders . 306

Concurrency . 310

Using Datasets and XML . 311

Try It Out: Extracting a Dataset to an XML File 312

How It Works . 314

Using Data Tables Without Datasets . 315

Try It Out: Populating a Data Table with a Data Adapter. 315

How It Works . 317

Understanding Typed and Untyped Datasets . 318

Summary. 319

■CHAPTER 14 Building Windows Forms Applications 321

Understanding Windows Forms . 321

User Interface Design Principles . 322

■CONTENTS xv

9004fmfinal.qxd 12/14/07 11:10 AM Page xv

Best Practices for User Interface Design. 322

Simplicity. 322

Position of Controls . 323

Consistency. 323

Aesthetics . 324

Color. 324

Fonts . 324

Images and Icons. 325

Working with Windows Forms. 325

Understanding the Design and Code Views . 327

Sorting Properties in the Properties Window . 328

Categorized View . 329

Alphabetical View. 330

Setting Properties of Solutions, Projects, and Windows Forms. 330

Working with Controls . 331

Try It Out: Working with the TextBox and Button Controls 332

How It Works . 335

Setting Dock and Anchor Properties . 335

Dock Property . 336

Anchor Property . 336

Try It Out: Working with the Dock and Anchor Properties. 337

How It Works . 340

Adding a New Form to the Project . 340

Try It Out: Adding a New Form to the Windows Project 340

Try It Out: Setting the Startup Form . 341

How It Works . 342

Implementing an MDI Form . 342

Try It Out: Creating an MDI Parent Form with a Menu Bar 343

Try It Out: Creating an MDI Child Form and Running an

MDI Application. 344

How It Works . 346

Summary . 347

■CONTENTSxvi

9004fmfinal.qxd 12/14/07 11:10 AM Page xvi

■CHAPTER 15 Building ASP.NET Applications. 349

Understanding Web Functionality . 349

The Web Server . 350

The Web Browser and HTTP . 350

Introduction to ASP.NET and Web Pages. 351

Understanding the Visual Studio 2008 Web Site Types 351

File System Web Site . 352

FTP Web Site . 353

HTTP Web Site . 353

Layout of an ASP.NET Web Site . 354

Web Pages . 355

Application Folders . 357

The web.config File . 357

Try It Out: Working with a Web Form . 358

Try It Out: Working with Split View . 359

Using Master Pages . 362

Try It Out: Working with a Master Page . 363

Summary. 368

■CHAPTER 16 Handling Exceptions . 369

Handling ADO.NET Exceptions . 369

Try It Out: Handling an ADO.NET Exception (Part 1) 369

How It Works . 373

Try It Out: Handling an ADO.NET Exception (Part 2) 375

How It Works. 378

■CONTENTS xvii

9004fmfinal.qxd 12/14/07 11:10 AM Page xvii

Handling Database Exceptions . 379

Try It Out: Handling a Database Exception (Part 1):

RAISERROR . 380

How It Works . 383

Try It Out: Handling a Database Exception (Part 2):

Stored Procedure Error . 385

How It Works . 387

Try It Out: Handling a Database Exception (Part 3):

Errors Collection . 388

How It Works . 390

Summary. 390

■CHAPTER 17 Working with Events . 391

Understanding Events. 391

Properties of Events . 392

Design of Events . 392

Common Events Raised by Controls . 393

Event Generator and Consumer . 394

Try It Out: Creating an Event Handler . 394

How It Works . 396

Try It Out: Working with Mouse Movement Events 396

How It Works . 400

Try It Out: Working with the Keyboard’s KeyDown and

KeyUp Events. 400

How It Works . 401

Try It Out: Working with the Keyboard’s KeyPress Event 401

How It Works . 402

Summary . 402

■CONTENTSxviii

9004fmfinal.qxd 12/14/07 11:10 AM Page xviii

■CHAPTER 18 Working with Text and Binary Data. 403

Understanding SQL Server Text and Binary Data Types. 403

Storing Images in a Database . 404

Try It Out: Loading Image Binary Data from Files 405

How It Works . 410

Rerunning the Program. 413

Retrieving Images from a Database . 413

Try It Out: Displaying Stored Images . 413

How It Works . 417

Working with Text Data . 419

Try It Out: Loading Text Data from a File . 419

How It Works . 424

Retrieving Data from Text Columns . 425

Summary. 430

■CHAPTER 19 Using LINQ . 431

Introduction to LINQ . 432

Architecture of LINQ . 433

LINQ Project Structure . 435

Using LINQ to Objects . 437

Try It Out: Coding a Simple LINQ to Objects Query 437

How It Works . 439

Using LINQ to SQL . 439

Try It Out: Coding a Simple LINQ to SQL Query 439

How It Works . 442

Try It Out: Using the where Clause . 444

How It Works . 445

Using LINQ to XML. 445

Try It Out: Coding a Simple LINQ to XML Query 445

How It Works . 447

Summary . 447

■CONTENTS xix

9004fmfinal.qxd 12/14/07 11:10 AM Page xix

■CHAPTER 20 Using ADO.NET 3.5 . 449

Understanding ADO.NET 3.5 Entity Framework . 449

Understanding the Entity Data Model. 450

Working with the Entity Data Model . 451

Try It Out: Creating an Entity Data Model . 453

How It Works . 461

Try It Out: Schema Abstraction Using an Entity Data Model. 462

Summary. 465

■INDEX . 467

■CONTENTSxx

9004fmfinal.qxd 12/14/07 11:10 AM Page xx

About the Authors

■VIDYA VRAT AGARWAL, a Microsoft .NET Purist and an MCT, MCPD,
MCTS, MCSD.NET, MCAD.NET, and MCSD, works with Lionbridge
Technologies (NASDAQ: LIOX), and his business card reads Subject
Matter Expert (SME). He is also a lifetime member of the Computer
Society of India (CSI). He started working on Microsoft .NET with its
beta release. He has been involved in software development, evangel-
ism, consultation, corporate training, and T3 programs on Microsoft

.NET for various employers and corporate clients. His articles can be read at http://www.
ProgrammersHeaven.com, and he also reviews .NET Preparation Kits, available at http://
www.UCertify.com. He has contributed as technical reviewer to many books published by
Apress; presently he is authoring another book, Beginning VB 2008 Databases: From
Novice to Professional.

He lives with his beloved wife, Rupali, and lovely daughter, Vamika (“Pearly”). He
believes that nothing will turn into a reality without them. He is the follower of the con-
cept No Pain, No Gain and believes that his wife is his greatest strength. He is a biblio-
phile; when he is not working on technical stuff, he likes to be with his family and also
likes reading spiritual and occult science books. He blogs at http://dotnetpassion.
blogspot.com. You can reach him at Vidya_mct@yahoo.com.

■JIM HUDDLESTON worked with computers, primarily as a database
designer and developer, for more than 30 years before becoming an
Apress editor in 2006. He had a bachelor’s degree in Latin and Greek
from the University of Pennsylvania and a juris doctor degree from
the University of Pittsburgh. Author also of Beginning VB 2005 Data-
bases: From Novice to Professional, Jim found databases an endlessly
fascinating area of study. He also championed the new language F#,

which, to Jim, was almost as intriguing as his lifelong hobby, translating ancient Greek
and Latin epic poetry.

His translations of Homer’s Odyssey and the pseudo-Hesiodic Shield of Heracles are
available at The Chicago Homer (http://www.library.northwestern.edu/homer/). You can
remember Jim via his classical blog, http://onamissionunaccomplished.blogspot.com/.

xxi

9004fmfinal.qxd 12/14/07 11:10 AM Page xxi

http://www
http://www.UCertify.com
http://www.UCertify.com
http://dotnetpassion
mailto:mct@yahoo.com
http://www.library.northwestern.edu/homer
http://onamissionunaccomplished.blogspot.com

9004fmfinal.qxd 12/14/07 11:10 AM Page xxii

About the Technical Reviewer

■FABIO CLAUDIO FERRACCHIATI is a senior consultant and a senior analyst/developer using
Microsoft technologies. He works for Brain Force (http://www.brainforce.com) at its Italian
branch (http://www.brainforce.it). He is a Microsoft Certified Solution Developer for
.NET, a Microsoft Certified Application Developer for .NET, a Microsoft Certified Profes-
sional, and a prolific author and technical reviewer. Over the past 10 years, he’s written
articles for Italian and international magazines and coauthored more than 10 books on a
variety of computer topics. You can read his LINQ blog at http://www.ferracchiati.com.

xxiii

9004fmfinal.qxd 12/14/07 11:10 AM Page xxiii

http://www.brainforce.com
http://www.brainforce.it
http://www.ferracchiati.com

9004fmfinal.qxd 12/14/07 11:10 AM Page xxiv

Acknowledgments

Though my name appears on the cover of this book, I am not alone in accomplishing this.
Many people have been directly or indirectly associated with me throughout my journey
of authoring this book. Let me take this opportunity to thank them all one by one.

First and foremost, I would like to thank James Huddleston, one of those to whom I
dedicated this book, for all his guidance, friendship, and the support he constantly showed
me. He and I were supposed to author this book together, but he passed away unexpectedly
before the writing began. He was one of the most talented men I’ve ever known and a ver-
satile personality. Besides his technical work, available in the form of the books he authored
and edited, he also translated into English many ancient Greek and Latin epic poems. I
pray to God that his great soul rests in peace, and he will be sadly missed.

Thanks to the Apress team I have directly worked with: Beth Christmas, project man-
ager, thanks for all your patience and support throughout this book. Thanks to Jonathan
Hassel, editorial director, who has reviewed my work and helped me to refine the con-
cepts in this book and the way I was trying to express them. Thanks to Ami Knox, copy
editor, who has been helpful in finding things that could be easily missed by anyone, but
would have made a huge impact if not caught and treated properly. Thanks to Ellie Foun-
tain, production editor, for giving me the opportunity to look at the finalized chapters,
which was the result of her team’s hard work. I also would like to thank all those people
from Apress with whom I have not interacted directly but who are associated with this
book, such as those involved in the graphics, printing, and so on. Thank you, guys.

Thanks to my technical reviewer, Fabio Claudio Ferracchiati, for his thorough review
of the script and testing of the code. He has been very objective in pointing out issues
and helping me to come up with something even better.

Thanks to my spiritual guru, Shri J.P. Kukreti, for always promoting me and having
faith in me, and for always being there with all your blessings and prayers whenever I
have a real tough time.

Thanks to my parents for allowing me to have my dreams and helping me with all
their hearts to achieve them. I know I have given you less time recently and we meet only
once or twice in a year, but I love you, and I will always make you feel proud—I promise!

Thanks to my father- and mother-in-law for always wishing the best for me and hav-
ing unbreakable faith in me. I am thankful that you chose me for your only daughter,
whom you love the most.

Finally, my heartfelt gratitude to those two who are an integral part of my life for
accompanying me throughout the eight-month journey of completing this book: my
wife, Rupali, and my two-year-old daughter, Vamika (“Pearly”). Many thanks to you for

xxv

9004fmfinal.qxd 12/14/07 11:10 AM Page xxv

all your support and patience, which you have shown by staying awake late into the night
to keep me company so I wouldn’t feel sleepy, giving me my freedom and a peaceful envi-
ronment in which to concentrate, and of course bringing me many cups of tea with sweet
smiles as well. Thanks for sacrificing all those weekends until I reached the end of the book,
and always motivating and supporting me to complete the chapters and meet the dead-
lines. My sweet little daughter, I remember all those moments when you were so desper-
ate to play with me, but I could not look beyond my laptop screen. Yet you have also been
such a darling doll, like your mom, to leave me with a smile. I hope to make up all that
time I couldn’t spend with you. Thanks, my angels, for everything, especially for being in
my life. I would not have achieved anything without you; thanks for being my inspiration
and strength, and I love you.

Also big, big thanks to God and to my late grandparents for showering their blessings
on me. I promise to be your best kid.

Vidya Vrat Agarwal

■ACKNOWLEDGMENTSxxvi

9004fmfinal.qxd 12/14/07 11:10 AM Page xxvi

Introduction

Because most real-world applications interact with data stored in relational databases,
every C# programmer needs to know how to access that data. This book specifically covers
how to interact with the SQL Server 2005 database using C# 2008. This book also covers
LINQ and ADO.NET 3.5, the most exciting features of .NET Framework 3.5. The chapters
that shed light on database concepts will help you understand those concepts better than
you would have learning them from a pure database concepts book. We also cover many
new features of T-SQL, which SQL Server 2005 now incorporates.

This book has been written in such a way that beginners will easily understand the
text and even professionals will benefit from the instruction within. If you want to use
Visual Studio 2008 to build database applications, this is the right book for you; the text
will not only walk you through all the concepts that an application developer may have
to use, but also explain each piece of code you will write for example applications.

The chapters in this book are organized in such a manner that you will build a strong
foundation before moving on to more advanced techniques.

Who This Book Is For
If you are an application developer who likes to interact with databases using C#, this
book is for you, as it covers programming SQL Server 2005 using C# 2008.

This book does not require or even assume that you have sound knowledge of C# 2.0
and SQL Server 2000 and database concepts. We have covered all the fundamentals that
other books assume a reader must have before moving on with the chapters.

This book is a must for any application developer who intends to interact with data-
bases using C# 2008 as the development tool; if this is you, then this book is a must.

What This Book Covers
This book covers Visual Studio 2008, SQL Server 2005, C# 2008, LINQ, and ADO.NET 3.5.
All these topics are covered in the form of chapters that explain these tools and technolo-
gies using various concepts and code examples. We also modeled the applications used
in this book on real-life applications, so you can utilize the concepts that you will learn
throughout this book in your professional life.

xxvii

9004fmfinal.qxd 12/14/07 11:10 AM Page xxvii

How This Book Is Organized
This book is organized in such a way that concepts in each chapter are built upon in
subsequent chapters. We also tried to make chapters self-contained, so the reader can
concentrate on the chapter at hand rather than switching focus among the chapters to
understand the concepts.

The concepts explained in each chapter are demonstrated with code examples in the
“Try It Out” sections, which are usually followed by “How It Works” sections that will help
you understand each code statement and its purpose.

How to Download the Sample Code
All the source code is available in the Source Code/Download section at http://www.
apress.com. You will need to answer questions pertaining to this book in order to suc-
cessfully download the code.

■INTRODUCTIONxxviii

9004fmfinal.qxd 12/14/07 11:10 AM Page xxviii

http://www

Getting Your Tools

This book is designed to help you learn how to access databases with C# 2008, previ-
ously known as C# 3.0 and C# Orcas. The development tools used throughout this book
are Microsoft Visual Studio 2008 (code-named Visual Studio Orcas) and Microsoft SQL
Server 2005 Express Edition, both of which work with Microsoft .NET Framework version
3.5. This latest version of .NET also provides extensive support for Language Integrated
Query (LINQ), and because it is an extension of the .NET Framework 3.0 (previously
known as WinFX), it supports NET 3.0 features such as Windows Presentation Founda-
tion (WPF), Windows Communication Foundation (WCF), and Windows Workflow
Foundation (WF).

Microsoft Visual Studio 2008, the latest version of Visual Studio, provides functional-
ity for building WPF, WCF, WF, and LINQ applications by using C# 2008 or other .NET
languages. Visual Studio 2008 targets multiple .NET Framework versions by allowing you
to build and maintain applications for .NET 2.0 and .NET 3.0 in addition to its native and
default support for .NET 3.5.

■Note Code names are interesting things. For example, the .NET common language runtime (CLR) was
code-named Lightning because it was another milestone for Microsoft after its best-selling technology Visual
Basic, which has been around since 1991 and was code-named Thunder.

Visual Studio products have a very specific code-name methodology based on some cities in and islands
of the United States. Orcas is one of the San Juan islands, located north of Seattle.

SQL Server 2005 is one of the most advanced relational database management sys-
tems (RDBMSs) available. An exciting feature of SQL Server 2005 is the integration of the
.NET CLR into the SQL Server 2005 database engine, making it possible to implement
database objects using managed code written in a .NET language such as Visual C# .NET
or Visual Basic .NET. Besides this, SQL Server 2005 comes with multiple services such as
analysis services, data transformation services, reporting services, notification services,
and Service Broker. SQL Server 2005 offers one common environment, named SQL Server
Management Studio, for both database developers and database administrators (DBAs).

1

C H A P T E R 1

9004ch01final.qxd 12/13/07 4:23 PM Page 1

■Note If you ever worked with SQL Server 2000, you’ll recall there are two separate interfaces named
SQL Server Query Analyzer and SQL Server Enterprise Manager (the latter also known as Microsoft Manage-
ment Console, or MMC), which are specifically designed for database developers and database administra-
tors, respectively.

SQL Server 2005 Express Edition is the relational database subset of SQL Server
2005 that provides virtually all the online transaction processing (OLTP) capabilities
of SQL Server 2005, supports databases up to 4GB in size (and up to 32,767 databases
per SQL Server Express, or SSE, instance), and can handle hundreds of concurrent
users. SSE doesn’t include SQL Server’s data warehousing and Integration Services
components. It also doesn’t include business intelligence components for online ana-
lytical processing (OLAP) and data mining, because they’re based on SQL Server’s
Analysis Services server, which is completely distinct from its relational database
engine.

SQL Server 2005 Express Edition is also completely distinct from its predecessor,
Microsoft SQL Server Desktop Engine (MSDE), which was a subset of SQL Server 2000.
MSDE databases cannot be used with SSE, but they can be upgraded to SSE databases.

Now that you know a little about these development tools, we’ll show you how to
obtain and install them and the sample databases you’ll need to work through this book.
In this chapter, we’ll cover the following:

• Obtaining Visual Studio 2008

• Installing SQL Server Management Studio Express

• Installing the Northwind sample database

• Installing the AdventureWorks sample database

Obtaining Visual Studio 2008
As mentioned previously, working through the examples in this book requires Visual
Studio 2008 to be installed on your PC. To find information about Visual Studio 2008
and where to get the setup CDS and so forth, go to http://msdn.microsoft.com/vstudio.

You can also directly download the installer ISO image files from the MSDN Sub-
scriptions site (http://msdn.microsoft.com). Access the downloadable setup files by
clicking the Visual Studio link in the Developer Center, and then extract the downloaded
file and run Setup.exe.

CHAPTER 1 ■ GETTING YOUR TOOLS2

9004ch01final.qxd 12/13/07 4:23 PM Page 2

http://msdn.microsoft.com/vstudio
http://msdn.microsoft.com

If you have a setup DVD or CDs of Visual Studio 2008, just put the DVD or CD1 into
your PC’s disk drive and complete the setup by following the instructions, making sure
that you have enough disk space on your C drive.

Installing SQL Server Management Studio Express
To install SQL Server Management Studio Express for the purpose of working through the
examples in this book, follow these steps:

1. Go to http://www.microsoft.com/downloads and in the search text box enter
SQL Server Management Studio.

2. In the returned results, you should see a link at the top titled Microsoft SQL Server
Management Studio Express. Click this link to go to the download page.

3. On the download page, click the Download button to download the SQL Server
Management Studio Express installer file SQLServer2005_SSMSEE.msi.

4. Save this file to a location on your host PC (such as on the desktop). When the
download of the file is complete, click Close.

5. Run the SQLServer2005_SSMSEE.msi setup file to start the installation process. The
Welcome window shown in Figure 1-1 will appear. Click Next.

Figure 1-1. Welcome window for installing SQL Server Management Studio Express

CHAPTER 1 ■ GETTING YOUR TOOLS 3

9004ch01final.qxd 12/13/07 4:23 PM Page 3

http://www.microsoft.com/downloads

6. When the License Agreement window appears, click the I Agree radio button, and
then click the now-enabled Next button.

7. Fill out the registration information on the next screen by providing your name
and company details.

8. When the Feature Selection window appears, click Next.

9. In the Ready to Install the Program window, click Install to begin installation. You
will see a progress bar that indicates the status of the installation (see Figure 1-2).

Figure 1-2. SQL Server Management Studio Express installation in progress

10. When the Completing the SQL Server Management Setup window appears, click
the Finish button.

Because SQL Server Management Studio Express comes without a preconfigured
database, you need to download and configure databases to be used inside SQL Server
Management Studio Express to follow the examples in this book. The next section talks
about installing and configuring the first of two databases in SQL Server Management
Studio Express, Northwind.

Installing the Northwind Sample Database
Next, you will download the Northwind sample database to be used with SQL Server
Management Studio Express.

CHAPTER 1 ■ GETTING YOUR TOOLS4

9004ch01final.qxd 12/13/07 4:23 PM Page 4

Installing the Northwind Creation Script

To install the script that creates the Northwind sample database, follow these steps:

1. Go to http://www.microsoft.com/downloads and in the search textbox enter sample
database.

2. In the returned results, you should see a link near the top titled “NorthWind and
pubs Sample Databases for SQL Server 2000.” Click this link to go to the download
page.

3. Click the Download button to download SQL2000SampleDb.msi, and click Save in the
dialog box that appears.

4. Specify your installation location (such as the desktop) and click Save. When the
download is complete, click Close.

5. Run the SQL2000SampleDb.msi file to start the installation process. The Welcome
window shown in Figure 1-3 will appear. Click Next.

Figure 1-3. Northwind installation scripts Setup Wizard Welcome window

6. When the License Agreement window appears, click the I Agree radio button, and
then click the now-enabled Next button.

7. When the Choose Installation Options window appears, click Next.

CHAPTER 1 ■ GETTING YOUR TOOLS 5

9004ch01final.qxd 12/13/07 4:23 PM Page 5

http://www.microsoft.com/downloads

8. When the Confirm Installation window appears, click Next.

9. A progress window briefly appears, followed by the Installation Complete window
(see Figure 1-4). Click Close.

Figure 1-4. Northwind installation scripts Installation Complete window

The installation files have been extracted to C:\SQL Server 2000 Sample Databases.

Creating the Northwind Sample Database

You need to run a Transact-SQL (T-SQL) script to create the Northwind database. You’ll
do that with the SQL Server command-line utility sqlcmd.

To create the Northwind sample database, follow these steps:

1. Open a command prompt, and then go to the C:\SQL Server 2000 Sample

Databases directory, which contains the instnwnd.sql file.

2. Enter the following command, making sure to use -S, not -s.

sqlcmd -S .\sqlexpress -i instnwnd.sql

This should produce the output shown in Figure 1-5.

CHAPTER 1 ■ GETTING YOUR TOOLS6

9004ch01final.qxd 12/13/07 4:23 PM Page 6

Figure 1-5. Creating the Northwind database

This command executes the sqlcmd program, invoking it with two options. The first
option, -S .\sqlexpress, tells sqlcmd to connect to the SQLEXPRESS instance of SQL
Server Express on the local machine (represented by .). The second option, -i
<instnwnd.sql>, tells sqlcmd to read the file instnwnd.sql and execute the T-SQL in it.

■Tip Visual Studio 2008 comes with an SSE instance, so sqlcmd can connect to SSE. A Windows service
named MSSQL$SQLEXPRESS gets created during the installation of SSE, and it should automatically start,
so the SQLEXPRESS instance should already be running. If sqlcmd complains that it can’t connect, you can
start the service from a command prompt with the command net start mssql$sqlexpress.

To make sure the NorthWind sample database has been created successfully, try
accessing it. You’ll use sqlcmd interactively.

1. At the command prompt, enter the following command, which runs sqlcmd and
connects to the SQLEXPRESS instance (see Figure 1-6):

sqlcmd -S .\sqlexpress

Figure 1-6. Connecting to SQLEXPRESS with sqlcmd

CHAPTER 1 ■ GETTING YOUR TOOLS 7

9004ch01final.qxd 12/13/07 4:23 PM Page 7

2. At the sqlcmd prompt (1>), enter the following T-SQL:

use northwind

select count(*) from employees

go

The first two lines are T-SQL statements: USE specifies the database to query, and
SELECT asks for the number of rows in the Employees table. GO is not a T-SQL state-
ment but a sqlcmd command that signals the end of the T-SQL statements to
process. The result, that there are nine rows in Employees, is shown in Figure 1-7.

Figure 1-7. Running a simple query against the Northwind database

3. Enter the sqlcmd command quit to exit sqlcmd (see Figure 1-8).

Figure 1-8. Exiting sqlcmd

■Note We don’t cover sqlcmd further, since we submit SQL with SQL Server Management Studio Express
from this point on, but we recommend you play with it. It’s the latest command-line tool for SQL Server,
superseding the earlier osql and isql tools, and it’s still a very valuable tool for database administrators
and programmers.

CHAPTER 1 ■ GETTING YOUR TOOLS8

9004ch01final.qxd 12/13/07 4:23 PM Page 8

Installing the AdventureWorks Sample Database
For the purposes of this book, you also must install the AdventureWorks database for
SQL Server 2005. This database, which contains data for a fictitious cycling company, is
a totally new one specially designed and developed for SQL Server 2005 only. To start,
you first install the AdventureWorks creation script, and then you create the database.

Installing the AdventureWorks Creation Script

To install the creation script for the AdventureWorks sample database, follow these steps:

1. Navigate to the following URL: http://www.codeplex.com/MSFTDBProdSamples/
Release/ProjectReleases.aspx?ReleaseId=5705.

2. On the displayed page under the Files section, click AdventureWorksDB.msi. Accept
the license when prompted.

3. In the dialog box that opens, click Save, specify your install folder (such as the host
machine’s desktop), and click Save.

4. When the download is complete, click Close.

5. Now run the AdventureWorksDB.msi file to start the installation process. A message
box will be followed by the Welcome window (see Figure 1-9). Click Next.

Figure 1-9. AdventureWorks InstallShield Wizard Welcome window

CHAPTER 1 ■ GETTING YOUR TOOLS 9

9004ch01final.qxd 12/13/07 4:23 PM Page 9

http://www.codeplex.com/MSFTDBProdSamples

6. When the License Agreement window appears, click the I Accept radio button,
and then click the now-enabled Next button.

7. When the Destination Folder window appears, click Next.

8. When Ready to Install the Program window appears, click Install.

9. A progress window briefly appears, followed by the InstallShield Wizard Com-
pleted window (see Figure 1-10). Click Finish.

Figure 1-10. AdventureWorks database installation is complete.

The installation files have been extracted to C:\Program Files\Microsoft SQL Server\
MSSQL.1\MSSQL\Data.

Creating the AdventureWorks Sample Database

You need to access SQL Server Management Studio Express to create the AdventureWorks
database. To do so, follow these steps:

1. Open SQL Server Management Studio Express, and in the Connect to Server dia-
log box, ensure that <YOUR_SERVER_NAME > is shown as the server name (see
Figure 1-11). Click Connect.

■Note The server name we use throughout this book is ORCASBETA2_VSTS. You may choose to use some
other server on your PC.

CHAPTER 1 ■ GETTING YOUR TOOLS10

9004ch01final.qxd 12/13/07 4:23 PM Page 10

Figure 1-11. Connecting to the server

2. SQL Server Management Studio Express will open as shown in Figure 1-12. Right-
click the Databases node in Object Explorer (located on the left side), and click
Attach in the context menu.

Figure 1-12. SQL Server Management Studio Express

3. In Attach Database window, click Add.

CHAPTER 1 ■ GETTING YOUR TOOLS 11

9004ch01final.qxd 12/13/07 4:23 PM Page 11

4. In the Locate Database Files window, select the file AdventureWorks_Data.mdf, and
click OK. The Attach Database window will now have the AdventureWorks_Data.mdf
and AdventureWorks_Log.ldf files mapped; these are required for AdventureWorks
to be attached (see Figure 1-13). Click OK.

Figure 1-13. Attaching the AdventureWorks database

5. Expand the Databases node, and you will see that the AdventureWorks database
has been successfully added to this node, as shown in Figure 1-14.

■Note Also notice that the Northwind database is available in Object Explorer as well, since you installed
it earlier.

CHAPTER 1 ■ GETTING YOUR TOOLS12

9004ch01final.qxd 12/13/07 4:23 PM Page 12

Figure 1-14. AdventureWorks database in SQL Server Management Studio Express

Now you have all the basic tools you require to move ahead and work through the
examples in this book.

Close SQL Server Management Studio Express, and delete the SQLServer2005_
SSMSEE.msi, SQL2000SampleDb.msi, and AdventureWorksDB.msi files from the desktop or your
specified location.

Summary
In this chapter, you learned to install Visual Studio 2008, SQL Server Management Stu-
dio Express, and the sample Northwind and AdventureWorks databases. You used sqlcmd
to create and query the Northwind database from a SQLExpress instance. You also used
SQL Server Management Studio Express to attach the AdventureWorks database in SQL
Server 2005.

Now that you have your tools, it’s time to get acquainted with them.

CHAPTER 1 ■ GETTING YOUR TOOLS 13

9004ch01final.qxd 12/13/07 4:23 PM Page 13

9004ch01final.qxd 12/13/07 4:23 PM Page 14

Getting to Know Your Tools

Now that you’ve installed the tools you’ll use in this book, we’ll show you just enough
about them so you can use them easily to do the things you need to do the rest of the
way. We’ll focus on Visual Studio 2008 and SQL Server Management Studio Express
(SSMSE).

In this chapter, we’ll cover the following:

• Understanding how versions of Microsoft .NET Framework work in the green bit
and red bit assembly model

• Using Microsoft Visual Studio 2008

• Using SQL Server Management Studio Express

Microsoft .NET Framework Versions and the
Green Bit and Red Bit Assembly Model
As mentioned in Chapter 1, Visual Studio 2008 supports various .NET Framework ver-
sions. To ensure this compatibility, Visual Studio 2008 comes installed with .NET 2.0 and
.NET 3.0 along with .NET 3.5. Navigate to C:\WINDOWS\Microsoft.NET\Framework, and you
will see individual folders for each .NET Framework version installed, as shown in
Figure 2-1.

Having the various .NET Framework versions on a given Visual Studio 2008 system
could also be achieved by installing one .NET Framework version on top of another ver-
sion—for example, .NET 3.0 installed atop .NET 2.0, and then .NET 3.5 installed atop
.NET 3.0.

.NET Framework 3.5 holds green bit assemblies, which are additional assemblies that
can be installed above other existing .NET Framework assemblies without affecting
them. For example, installing .NET 3.0 on a .NET 2.0 system does not affect the .NET 2.0
assemblies. In a similar manner, .NET 3.5 assemblies do not affect either .NET 2.0 or 3.0 if
you install .NET 3.5 on top of them. See the list of green bit assemblies in Figure 2-2.

15

C H A P T E R 2

9004ch02final.qxd 12/13/07 4:22 PM Page 15

Figure 2-1. .NET Framework versions installed in Visual Studio 2008

Figure 2-2. .NET 3.5 green bit assemblies

Red bit assemblies are the assemblies that ship as either part of the platform or part
of a development tool. For example, Windows Vista ships WPF, WCF, and so forth, and
Visual Studio 2008 ships .NET 2.0. In addition, assemblies delivered as service packs, hot
fixes, or updates are also considered to be red bit assemblies.

Using Microsoft Visual Studio 2008
Now it’s time for you to familiarize yourself with the workings of Visual Studio 2008.
Follow these steps:

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS16

9004ch02final.qxd 12/13/07 4:22 PM Page 16

1. Select Start ➤ Programs ➤ Microsoft Visual Studio 2008 and then click Micro-
soft Visual Studio 2008. You will see a splash screen for Visual Studio 2008 (see
Figure 2-3), followed by the start page (see Figure 2-4).

Figure 2-3. Visual Studio 2008 splash screen

Figure 2-4. Start page of Microsoft Visual Studio 2008

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS 17

9004ch02final.qxd 12/13/07 4:22 PM Page 17

■Note The first time you load Visual Studio 2008, it may take a little longer to get to the start page than it
will eventually, as some initial configurations need to be performed.

2. To take a look at the project templates, click File ➤ New ➤ Project. This opens the
New Project window, shown in Figure 2-5, where you will see all the project tem-
plates you can use with Visual C#.

Figure 2-5. Project templates in the New Project window

3. While selecting your desired project template, you can also choose the .NET
Framework version you want your application to be compatible with. To develop
.NET 2.0– or 3.0–specific applications in Visual Studio 2008, you have to explicitly
define the .NET Framework version before you choose the project template. To
specify a .NET version, click the drop-down list button just below the title bar and
on the right side of the New Project window, as you see in Figure 2-6.

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS18

9004ch02final.qxd 12/13/07 4:22 PM Page 18

Figure 2-6. Choosing the .NET Framework version

Try It Out: Creating a Simple Console Application Project
Using Visual Studio 2008

In this example, you’ll create a simple Console Application project in Visual Studio 2008:

1. Open Visual Studio 2008 if it’s not already open.

2. Click File ➤ New ➤ Project, and select Visual C# language’s Console Application
template. In the Name text box of the selected project template, type FirstApp
(see Figure 2-7) and click OK.

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS 19

9004ch02final.qxd 12/13/07 4:22 PM Page 19

Figure 2-7. Creating a new Console Application project

3. Now replace the code of Program.cs with the code in Listing 2-1.

Listing 2-1. Replacement Code for Program.cs

using System;

using System.Linq;

using System.Collections.Generic;

using System.Text;

namespace FirstApp

{

class Program

{

static void Main(string[] args)

{

Console.WriteLine("Welcome to C# 3.0");

Console.ReadLine();

}

}

}

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS20

9004ch02final.qxd 12/13/07 4:22 PM Page 20

4. Run the application by pressing Ctrl+F5. Your results should appear as shown in
Figure 2-8.

Figure 2-8. Output of your simple Console Application project

How It Works

Let’s take a look at how the code works, starting with the using directives:

using System;

using System.Linq;

using System.Collections.Generic;

using System.Text;

The references to System.Linq, System.Collections.Generic, and System.Text are actu-
ally not needed in this small program, since you don’t explicitly use any of their mem-
bers, but it’s a good habit to always include these, as they are by default part of
Program.cs.

The following specifies the string to be printed on the console:

Console.WriteLine("Welcome to C# 3.0");

The following method specifies that output will be shown to you until you press the
Enter key:

Console.ReadLine();

Go ahead and close the Visual Studio environment. Next, we’ll get you acquainted
with SQL Server Management Studio Express.

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS 21

9004ch02final.qxd 12/13/07 4:22 PM Page 21

Using SQL Server Management Studio Express
SQL Server Management Studio Express is the GUI interface for SQL Server 2005. It com-
bines the features of two earlier SQL Server GUI tools, Enterprise Manager (also known as
Microsoft Management Console) and Query Analyzer, to make database administration
and T-SQL development possible from a single interface. We use it in the examples in this
book primarily to submit T-SQL, but here we’ll discuss briefly its Object Explorer feature,
which lets you view database objects.

Let’s take a quick tour of SSMSE:

1. To open SSMSE, click Start ➤ Programs ➤ Microsoft SQL Server 2005 ➤ SQL
Server Management Studio to bring up the window shown in Figure 2-9. Click
Connect.

Figure 2-9. Connecting to SQL Server

2. A window containing Object Explorer and the Summary tab will appear, and you
should be connected to your SQL Server instance named ORCASBETA2_VSTS\
SQLEXPRESS (see Figure 2-10). The top node in Object Explorer should be your
SQL Server instance, and the Summary tabbed pane should display folder icons
for the five other nodes in Object Explorer. Expand the Databases node in Object
Explorer.

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS22

9004ch02final.qxd 12/13/07 4:22 PM Page 22

Figure 2-10. SSMSE Object Explorer and Summary tabbed pane

3. Expand the System Databases node, and your screen should resemble that shown
in Figure 2-11. As you can see, SSMS has four system databases:

• The master database is the main controlling database, and it records all the
global information that is required for the SQL Server instance.

• The model database works as a template for new databases to be created; in
other words, settings of the model database will be applied to all user-created
databases.

• The msdb database is used by SQL Server Agent for scheduling jobs and alerts.

• The tempdb database holds temporary tables and other temporary database
objects, either generated automatically by SQL Server or created explicitly by
you. The temporary database is re-created each time the SQL Server instance
is started, so objects in it do not persist after SQL Server is shut down.

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS 23

9004ch02final.qxd 12/13/07 4:22 PM Page 23

Figure 2-11. System databases

4. Click the AdventureWorks node in Object Explorer, and then click New Query to
bring up a new SQL edit window, as shown in Figure 2-12. As mentioned in Chap-
ter 1, AdventureWorks is a new sample database introduced for the first time with
SQL Server 2005.

5. To see a listing of the tables residing inside AdventureWorks, type the query select
name from sysobjects where xtype=‘U’ and click the Execute button. The table
names will appear in the Results tab (see Figure 2-12). If you navigate to the Mes-
sages tab, you will see the message “70 row(s) affected,” which means that the
AdventureWorks database consists of 70 tables.

6. Click File ➤ Disconnect Object Explorer.

7. Click the Northwind node in Object Explorer, and then click New Query. To see
the table names residing inside Northwind, type the query select name from sys-
objects where xtype=‘U’ and click the Execute button. A listing of tables in the
database will appear in the Results tab (see Figure 2-13). If you navigate to the
Messages tab, you will see the message “13 row(s) affected,” which means that
the Northwind database consists of 13 tables.

8. Click File ➤ Disconnect Object Explorer, and then close SQL Server Management
Studio Express.

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS24

9004ch02final.qxd 12/13/07 4:22 PM Page 24

Figure 2-12. Tables in the AdventureWorks database

Figure 2-13. Tables in the Northwind database

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS 25

9004ch02final.qxd 12/13/07 4:22 PM Page 25

Summary
In this chapter, we covered just enough about Visual Studio 2008 and SQL Server Man-
agement Studio to get you familiar with the kinds of things you’ll do with these tools later
in this book. Besides these tools, we also covered a bit about multiple .NET Framework
versions on a single system.

Now that your tools are installed and configured, you can start learning how to do
database programming by learning the basics of T-SQL.

CHAPTER 2 ■ GETTING TO KNOW YOUR TOOLS26

9004ch02final.qxd 12/13/07 4:22 PM Page 26

Getting to Know
Relational Databases

Now that you have gotten to know the tools you’ll use in this book, we’ll step back a bit
to give you a brief introduction to the important concepts of the PC database world
before diving into the examples.

In this chapter, we’ll cover the following:

• What is a database?

• Choosing between a spreadsheet and a database

• Why use a database?

• Benefits of using a relational database management system

• Comparing desktop and server RDBMS systems

• The database life cycle

• Mapping cardinalities

• Understanding keys

• Understanding data integrity

• Normalization concepts

• Drawbacks of normalization

What Is a Database?
In very simple terms, a database is a collection of structured information. Databases are
designed specifically to manage large bodies of information, and they store data in an

27

C H A P T E R 3

9004ch03final.qxd 12/13/07 4:21 PM Page 27

organized and structured manner that makes it easy for users to manage and retrieve
that data when required.

A database management system (DBMS) is a software program that enables users to
create and maintain databases. A DBMS also allows users to write queries for an individ-
ual database to perform required actions like retrieving data, modifying data, deleting
data, and so forth.

DBMSs support tables (a.k.a. relations or entities) to store data in rows (a.k.a. records
or tuples) and columns (a.k.a. fields or attributes), similar to how data appears in a
spreadsheet application.

A relational database management system, or RDBMS, is a type of DBMS that stores
information in the form of related tables. RDBMS is based on the relational model.

Choosing Between a Spreadsheet and a Database
If databases are much like spreadsheets, why do people still use database applications? A
database is designed to perform the following actions in an easier and more productive
manner than a spreadsheet application would require:

• Retrieve all records that match particular criteria.

• Update or modify a complete set of records at one time.

• Extract values from records distributed among multiple tables.

Why Use a Database?
Following are some of the reasons we use databases:

• Compactness: Databases help in maintaining large amounts of data, and thus com-
pletely replace voluminous paper files.

• Speed: Searches for a particular piece of data or information in a database are
much faster than sorting through piles of paper.

• Less drudgery: It is a dull work to maintain files by hand; using a database com-
pletely eliminates such maintenance.

• Currency: Database systems can easily be updated and so provide accurate infor-
mation all the time and on demand.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES28

9004ch03final.qxd 12/13/07 4:21 PM Page 28

Benefits of Using a Relational Database
Management System
RDBMSs offer various benefits by controlling the following:

• Redundancy: RDBMSs prevent having multiple duplicate copies of the same data,
which takes up disk space unnecessarily.

• Inconsistency: Each redundant set of data may no longer agree with other sets of
the same data. When an RDBMS removes redundancy, inconsistency cannot occur.

• Data integrity: Data values stored in the database must satisfy certain types of con-
sistency constraints. (We’ll discuss this benefit in more detail in the section
“Understanding Data Integrity” later in this chapter.)

• Data atomicity: In event of a failure, data is restored to the consistent state it
existed in prior to the failure. For example, fund transfer activity must be atomic.
(We cover the fund transfer activity and atomicity in more detail in Chapter 8.)

• Access anomalies: RDBMSs prevent more than one user from updating the same
data simultaneously; such concurrent updates may result in inconsistent data.

• Data security: Not every user of the database system should be able to access all
the data. Security refers to the protection of data against any unauthorized access.

• Transaction processing: A transaction is a sequence of database operations that
represents a logical unit of work. In RDBMSs, a transaction either commits all the
changes or rolls back all the actions performed till the point at which failure
occurred.

• Recovery: Recovery features ensure that data is reorganized into a consistent state
after a transaction fails.

• Storage management: RDBMSs provide a mechanism for data storage manage-
ment. The internal schema defines how data should be stored.

Comparing Desktop and Server RDBMS Systems
In the industry today, we mainly work with two types of databases: desktop databases
and server databases. Here, we’ll give you a brief look at each of them.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES 29

9004ch03final.qxd 12/13/07 4:21 PM Page 29

Desktop Databases

Desktop databases are designed to serve a limited number of users and run on desktop
PCs, and they offer a less-expansive solution wherever a database is required. Chances
are you have worked with a desktop database program—Microsoft SQL Server Express,
Microsoft Access, Microsoft FoxPro, FileMaker Pro, Paradox, and Lotus represent a wide
range of desktop database solutions.

Desktop databases differ from server databases in the following ways:

• Less expensive: Most desktop solutions are available for just a few hundred dollars.
In fact, if you own a licensed version of Microsoft Office Professional, you’re
already a licensed owner of Microsoft Access, which is one of the most commonly
and widely used desktop database programs around.

• User friendly: Desktop databases are quite user friendly and easy to work with,
as they do not require complex SQL queries to perform database operations
(although some desktop databases also support SQL syntax if you would like to
code). Desktop databases generally offer an easy-to-use graphical user interface.

Server Databases

Server databases are specifically designed to serve multiple users at a time and offer fea-
tures that allow you to manage large amounts of data very efficiently by serving multiple
user requests simultaneously. Well-known examples of server databases include
Microsoft SQL Server, Oracle, Sybase, and DB2.

Following are some other characteristics that differentiate server databases from
their desktop counterparts:

• Flexibility: Server databases are designed to be very flexible to support multiple
platforms, respond to requests coming from multiple database users, and perform
any database management task with optimum speed.

• Availability: Server databases are intended for enterprises, and so they need to be
available 24/7. To be available all the time, server databases come with some high-
availability features, such as mirroring and log shipping.

• Performance: Server databases usually have huge hardware support, and so servers
running these databases have large amounts of RAM and multiple CPUs, and this
is why server databases support rich infrastructure and give optimum perform-
ance.

• Scalability: This property allows a server database to expand its ability to process
and store records even if it has grown tremendously.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES30

9004ch03final.qxd 12/13/07 4:21 PM Page 30

The Database Life Cycle
The database life cycle defines the complete process from conception to implementa-
tion. The entire development and implementation process of this cycle can be divided
into small phases; only after the completion of each phase can you move on to the next
phase, and this is the way you build your database block by block.

Before getting into the development of any system, you need to have strong a life-
cycle model to follow. The model must have all the phases defined in proper sequence,
which will help the development team to build the system with fewer problems and full
functionality as expected.

The database life cycle consists of the following stages, from the basic steps
involved in designing a global schema of the database to database implementation
and maintenance:

• Requirement analysis: Requirements need to be determined before you can begin
design and implementation. The requirements can be gathered by interviewing
both the producer and the user of the data; this process helps in creating a formal
requirement specification.

• Logical design: After requirement gathering, data and relationships need to be
defined using a conceptual data modeling technique such as an entity relationship
(ER) diagram.

• Physical design: Once the logical design is in place, the next step is to produce the
physical structure for the database. The physical design phase involves table cre-
ation and selection of indexes.

• Database implementation: Once the design is completed, the database can be cre-
ated through implementation of formal schema using the data definition language
(DDL) of the RDBMS.

• Data modification: Data modification language (DML) can be used to query and
update the database as well as set up indexes and establish constraints such as ref-
erential integrity.

• Database monitoring: As the database begins operation, monitoring indicates
whether performance requirements are being met; if they are not, modifications
should be made to improve database performance. Thus the database life cycle
continues with monitoring, redesign, and modification.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES 31

9004ch03final.qxd 12/13/07 4:21 PM Page 31

Mapping Cardinalities
Tables are the fundamental components of a relational database. In fact, both data and
relationships are stored simply as data in tables.

Tables are composed of rows and columns. Each column represents a piece of
information.

Mapping cardinalities, or cardinality ratios, express the number of entities to which
another entity can be associated via a relationship set. Cardinality refers to the unique-
ness of data values contained in a particular column of a database table. The term
relational database refers to the fact that different tables quite often contain related data.
For example, one sales rep in a company may take many orders, which were placed by
many customers. The products ordered may come from different suppliers, and chances
are that each supplier can supply more than one product. All of these relationships exist
in almost every database and can be classified as follows:

One-to-One (1:1) For each row in Table A, there is at most only one related row in Table B,
and vice versa. This relationship is typically used to separate data by frequency of use to
optimally organize data physically. For example, one department can have only one
department head.

One-to-Many (1:M) For each row in Table A, there can be zero or more related rows in
Table B; but for each row in Table B, there is at most one row in Table A. This is the most
common relationship. An example of a one-to-many relationship of tables in Northwind
is shown in Figure 3-1. Note the Customers table has a CustomerID field as the primary
key (indicated by the key symbol on the left), which has a relation with the CustomerID
field of the Orders table; CustomerID is considered a foreign key in the Orders table. The
link shown between the Customers and Orders tables indicates a one-to-many relation-
ship, as many orders can belong to one customer. Here, Customers is referred to as the
parent table, and Orders is the child table in the relationship.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES32

9004ch03final.qxd 12/13/07 4:21 PM Page 32

Figure 3-1. A one-to-many relationship

Many-to-Many (M:M) For each row in Table A, there are zero or more related rows in
Table B, and vice versa. Many-to-many relationships are not so easy to achieve, and
they require a special technique to implement them. This relationship is actually
implemented in a one-many-one format, so it requires a third table (often referred to
as a junction table) to be introduced in between that serves as the path between the
related tables.

This is a very common relationship. An example from Northwind is shown in Fig-
ure 3-2: an order can have many products and a product can belong to many orders.
The Order Details table not only represents the M:M relationship, but also contains
data about each particular order-product combination.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES 33

9004ch03final.qxd 12/13/07 4:21 PM Page 33

Figure 3-2. A many-to-many relationship

■Note Though relationships among tables are extremely important, the term relational database has
nothing to do with them. Relational databases are (to varying extents) based on the relational model of data
invented by Dr. Edgar F. Codd at IBM in the 1970s. Codd based his model on the mathematical (set-
theoretic) concept of a relation. Relations are sets of tuples that can be manipulated with a well-defined
and well-behaved set of mathematical operations—in fact, two sets: relational algebra and relational cal-
culus. You don’t have to know or understand the mathematics to work with relational databases, but if you
hear it said that a database is relational because it “relates data,” you’ll know that whoever said it doesn’t
understand relational databases.

Understanding Keys
The key, the whole key, and nothing but the key, so help me Codd.

Relationships are represented by data in tables. To establish a relationship between two
tables, you need to have data in one table that enables you to find related rows in another

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES34

9004ch03final.qxd 12/13/07 4:21 PM Page 34

table. That’s where keys come in, and RDBMS mainly works with two types of keys, as
mentioned earlier: primary keys and foreign keys.

A key is one or more columns of a relation that is used to identify a row.

Primary Keys

A primary key is an attribute (column) or combination of attributes (columns) whose val-
ues uniquely identify records in an entity.

Before you choose a primary key for an entity, an attribute must have the following
properties:

• Each record of the entity must have a not-null value.

• The value must be unique for each record entered into the entity.

• The values must not change or become null during the life of each entity instance.

• There can be only one primary key defined for an entity.

Besides helping in uniquely identifying a record, the primary key also helps in
searching records as an index automatically gets generated as you assign a primary key
to an attribute.

An entity will have more than one attribute that can serve as a primary key. Any key
or minimum set of keys that could be a primary key is called a candidate key. Once candi-
date keys are identified, choose one, and only one, primary key for each entity.

Sometimes it requires more than one attribute to uniquely identify an entity. A pri-
mary key that consists of more than one attribute is known as a composite key. There can
be only one primary key in an entity, but a composite key can have multiple attributes
(i.e., a primary key will be defined only once, but it can have up to 16 attributes). The pri-
mary key represents the parent entity. Primary keys are usually defined with the IDENTITY
property, which allows insertion of an auto-incremented integer value into the table
when you insert a row into the table.

Foreign Keys

A foreign key is an attribute that completes a relationship by identifying the parent entity.
Foreign keys provide a method for maintaining integrity in the data (called referential
integrity) and for navigating between different instances of an entity. Every relationship
in the model must be supported by a foreign key. For example, in Figure 3-1 earlier, the
Customers and Orders tables have a primary key and foreign key relationship, where the
Orders table’s CustomerID field is the foreign key having a reference to the CustomerID
field, which is the primary key of the Customers table.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES 35

9004ch03final.qxd 12/13/07 4:21 PM Page 35

Understanding Data Integrity
Data integrity means that data values in a database are correct and consistent. There are
two aspects to data integrity: entity integrity and referential integrity.

Entity Integrity

We mentioned previously in “Primary Keys” that no part of a primary key can be null.
This is to guarantee that primary key values exist for all rows. The requirement that pri-
mary key values exist and that they are unique is known as entity integrity (EI). The DBMS
enforces entity integrity by not allowing operations (INSERT, UPDATE) to produce an invalid
primary key. Any operation that creates a duplicate primary key or one containing nulls
is rejected. That is, to establish entity integrity, you need to define primary keys so the
DBMS can enforce their uniqueness.

Referential Integrity

Once a relationship is defined between tables with foreign keys, the key data must be
managed to maintain the correct relationships, that is, to enforce referential integrity
(RI). RI requires that all foreign key values in a child table either match primary key val-
ues in a parent table or (if permitted) be null. This is also known as satisfying a foreign
key constraint.

Normalization Concepts
Normalization is a technique for avoiding potential update anomalies, basically by mini-
mizing redundant data in a logical database design. Normalized designs are in a sense
“better” designs because they (ideally) keep each data item in only one place. Normal-
ized database designs usually reduce update processing costs but can make query
processing more complicated. These trade-offs must be carefully evaluated in terms of
the required performance profile of a database. Often, a database design needs to be
denormalized to adequately meet operational needs.

Normalizing a logical database design involves a set of formal processes to sepa-
rate the data into multiple, related tables. The result of each process is referred to as a
normal form. Five normal forms have been identified in theory, but most of the time
third normal form (3NF) is as far as you need to go in practice. To be in 3NF, a relation
(the formal term for what SQL calls a table and the precise concept on which the math-
ematical theory of normalization rests) must already be in second normal form (2NF),
and 2NF requires a relation to be in first normal form (1NF). Let’s look briefly at what
these normal forms mean.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES36

9004ch03final.qxd 12/13/07 4:21 PM Page 36

First Normal Form (1NF) In first normal form, all column values are scalar; in other words,
they have a single value that can’t be further decomposed in terms of the data model. For
example, although individual characters of a string can be accessed through a procedure
that decomposes the string, only the full string is accessible by name in SQL, so, as far as
the data model is concerned, they aren’t part of the model. Likewise, for a Managers table
with a manager column and a column containing a list of employees in Employees table
who work for a given manager, the manager and the list would be accessible by name,
but the individual employees in the list wouldn’t be. All relations—and SQL tables—are
by definition in 1NF since the lowest level of accessibility (known as the table’s gran-
ularity) is the column level, and column values are scalars in SQL.

Second Normal Form (2NF) Second normal form requires that attributes (the formal
term for SQL columns) that aren’t parts of keys be functionally dependent on a key that
uniquely identifies them. Functional dependence basically means that for a given key
value, only one value exists in a table for a column or set of columns. For example, if a
table contained employees and their titles, and more than one employee could have
the same title (very likely), a key that uniquely identified employees wouldn’t uniquely
identify titles, so the titles wouldn’t be functionally dependent on a key of the table. To
put the table into 2NF, you’d create a separate table for titles—with its own unique
key—and replace the title in the original table with a foreign key to the new table. Note
how this reduces data redundancy. The titles themselves now appear only once in the
database. Only their keys appear in other tables, and key data isn’t considered redun-
dant (though, of course, it requires columns in other tables and data storage).

Third Normal Form (3NF) Third normal form extends the concept of functional depend-
ence to full functional dependence. Essentially, this means that all nonkey columns in a
table are uniquely identified by the whole, not just part of, the primary key. For example,
if you revised the hypothetical 1NF Managers-Employees table to have three columns
(ManagerName, EmployeeId, and EmployeeName) instead of two, and you defined the
composite primary key as ManagerName + EmployeeId, the table would be in 2NF (since
EmployeeName, the nonkey column, is dependent on the primary key), but it wouldn’t
be in 3NF (since EmployeeName is uniquely identified by part of the primary key defined
as column named EmployeeId). Creating a separate table for employees and removing
EmployeeName from Managers-Employees would put the table into 3NF. Note that even
though this table is now normalized to 3NF, the database design is still not as normalized
as it should be. Creating another table for managers using an ID shorter than the man-
ager’s name, though not required for normalization here, is definitely a better approach
and is probably advisable for a real-world database.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES 37

9004ch03final.qxd 12/13/07 4:21 PM Page 37

Drawbacks of Normalization
Database design is an art more than a technology, and applying normalization wisely is
always important. On the other hand, normalization inherently increases the number of
tables and therefore the number of operations (called joins) required to retrieve data.
Because data is not in one table, queries that have a complex join can slow things down.
This can cost in the form of CPU usage: the more complex the queries, the more CPU
time is required.

Denormalizing one or more tables, by intentionally providing redundant data to
reduce the number or complexity of joins to get quicker query response times, may be
necessary. With either normalization or denormalization, the goal is to control redun-
dancy so that the database design adequately (and ideally, optimally) supports the
actual use of the database.

Summary
This chapter has described basic database concepts. You also learned about desktop
and server databases, the stages of the database life cycle, and the types of keys and
how they define relationships. You also looked at normalization forms for designing a
better database.

In the next chapter, you’ll start working with database queries.

CHAPTER 3 ■ GETTING TO KNOW RELATIONAL DATABASES38

9004ch03final.qxd 12/13/07 4:21 PM Page 38

Writing Database Queries

In this chapter, you will learn about coding queries in SQL Server 2005. SQL Server
uses T-SQL as its language, and it has a wide variety of functions and constructs for
querying. Besides this, you will also be exploring new T-SQL features of SQL Server
2005 in this chapter. You will see how to use SQL Server Management Studio Express
and the AdventureWorks and Northwind databases to submit queries.

In this chapter, we’ll cover the following:

• Comparing QBE and SQL

• SQL Server Management Studio Express

• Beginning with queries

• Common table expressions

• GROUP BY clause

• PIVOT operator

• ROW_NUMBER() function

• PARTITION BY clause

• Pattern matching

• Aggregate functions

• DATETIME functions

• Joins

39

C H A P T E R 4

9004ch04final.qxd 12/13/07 4:19 PM Page 39

Comparing QBE and SQL
There are two main languages that have emerged for RDBMS—QBE and SQL.

Query by Example (QBE) is an alternative, graphical-based, point-and-click way of
querying a database. QBE was invented by Moshé M. Zloof at IBM Research during the
mid-1970s, in parallel to the development of SQL. It differs from SQL in that it has a
graphical user interface that allows users to write queries by creating example tables on
the screen. QBE is especially suited for queries that are not too complex and can be
expressed in terms of a few tables.

QBE was developed at IBM and is therefore an IBM trademark, but a number of other
companies also deal with query interfaces like QBE. Some systems, such as Microsoft
Access, have been influenced by QBE and have partial support for form-based queries.

Structured Query Language (SQL) is the standard relational database query lan-
guage. In the 1970s, a group at IBM’s San Jose Research Center (now the Almaden
Research Center) developed a database system named System R based upon Codd’s
model. To manipulate and retrieve data stored in System R, a language called Structured
English Query Language (SEQUEL) was designed. Donald D. Chamberlin and Raymond F.
Boyce at IBM were the authors of the SEQUEL language design. The acronym SEQUEL
was later condensed to SQL. SQL was adopted as a standard by the American National
Standards Institute (ANSI) in 1986 and then ratified by International Organization for
Standardization (ISO) in 1987; this SQL standard was published as SQL 86 or SQL 1. Since
then, the SQL standards have gone through many revisions. After SQL 86, there was SQL
89 (which included a minor revision); SQL 92, also known as SQL 2 (which was a major
revision); and then SQL 99, also known as SQL 3 (which added object-oriented features
that together represent the origination of the concept of ORDBMS, or object relational
database management system).

Each database vendor offers its own implementation of SQL that conforms at some
level to the standard but typically extends it. T-SQL does just that, and some of the SQL
used in this book may not work if you try it with a database server other than SQL Server.

■Tip Relational database terminology is often confusing. For example, neither the meaning nor the pro-
nunciation of SQL is crystal clear. IBM invented the language back in the 1970s and called it SEQUEL,
changing it shortly thereafter to Structured Query Language SQL to avoid conflict with another vendor’s
product. SEQUEL and SQL were both pronounced “sequel.” When the ISO/ANSI standard was adopted, it
referred to the language simply as “database language SQL” and was silent on whether this was an acronym
and how it should be pronounced. Today, two pronunciations are used. In the Microsoft and Oracle worlds
(as well as many others), it’s pronounced “sequel.” In the DB2 and MySQL worlds (among others), it’s pro-
nounced “ess cue ell.” We’ll follow the most reasonable practice. We’re working in a Microsoft environment,
so we’ll go with “sequel” as the pronunciation of SQL.

CHAPTER 4 ■ WRITING DATABASE QUERIES40

9004ch04final.qxd 12/13/07 4:19 PM Page 40

Beginning with Queries
A query is a technique to extract information from a database. You need a query window
into which to type your query and run it so data can be retrieved from the database.

■Note Many of the examples from this point forward require you to work in SQL Server Management
Studio Express. Refer back to “Using SQL Server Management Studio Express” in Chapter 2 for instructions
if you need to refresh your memory on how to connect to SSMSE.

Try It Out: Running a Simple Query

1. Open SQL Server Management Studio Express, expand the Databases node, and
select the AdventureWorks database.

2. Click the New Query button in the top-left corner of the window, as shown in
Figure 4-1, and then enter the following query:

Select * from Sales.SalesReason

Figure 4-1. Writing a query

CHAPTER 4 ■ WRITING DATABASE QUERIES 41

9004ch04final.qxd 12/13/07 4:19 PM Page 41

3. Click Execute (or press F5 or select Query ➤ Execute), and you should see the out-
put shown in the Results window as in Figure 4-2.

Figure 4-2. Query Results window

How It Works

Here, you use the asterisk (*) with the SELECT statement. The asterisk indicates that all the
columns from the specified table should be retrieved.

Common Table Expressions
Common table expressions (CTEs) are new to SQL Server 2005. A CTE is a named tem-
porary result set that will be used by the FROM clause of a SELECT query. You then use the
result set in any SELECT, INSERT, UPDATE, or DELETE query defined within the same scope as
the CTE.

The main advantage CTEs provide you is that the queries with derived tables become
simpler, as traditional Transact-SQL constructs used to work with derived tables usually
require a separate definition for the derived data (such as a temporary table). Using a
CTE to define the derived table makes it easier to see the definition of the derived table
with the code that uses it.

CHAPTER 4 ■ WRITING DATABASE QUERIES42

9004ch04final.qxd 12/13/07 4:19 PM Page 42

A CTE consists of three main elements:

• Name of the CTE followed by the WITH keyword

• The column list (optional)

• The query that will appear within parentheses, (), after the AS keyword

Try It Out: Creating a CTE

To create a CTE, enter the following query into SQL Server Management Studio Express
and execute it. You should see the results shown in Figure 4-3.

WITH TopSales (SalesPersonID,TerritoryID,NumberOfSales)

AS

(

SELECT SalesPersonID,TerritoryID, Count(*)

FROM Sales.SalesOrderHeader

GROUP BY SalesPersonID, TerritoryID

)

SELECT * FROM TopSales

WHERE SalesPersonID IS NOT NULL

ORDER BY NumberOfSales DESC

Figure 4-3. Using a common table expression

CHAPTER 4 ■ WRITING DATABASE QUERIES 43

9004ch04final.qxd 12/13/07 4:19 PM Page 43

How It Works

The CTE definition line in which you specify the CTE name and column list:

WITH TopSales (SalesPersonID,TerritoryID,NumberOfSales)

consists of three columns, which means that this SELECT statement:

SELECT SalesPersonID,TerritoryID, Count(*)

will also have three columns, and the individual column specified in the SELECT list will
map to the columns specified inside the CTE definition.

By running the CTE, you will see the SalesPersonID, TerritoryID, and NumberOfSales
made in that particular territory by a particular salesperson.

GROUP BY Clause
The GROUP BY clause is used to organize output rows into groups. The SELECT list can
include aggregate functions and produce summary values for each group. Often you’ll
want to generate reports from the database with summary figures for a particular column
or set of columns. For example, you may want to find out the total quantity of each card
type that expires in a specific year from the Sales.CreditCard table.

Try It Out: Using the GROUP BY Clause

The Sales.CreditCard table contains the details of credit cards. You need to total the cards
of a specific type that will be expiring in a particular year.

Open a New Query window in SQL Server Management Studio Express. Enter the fol-
lowing query and click Execute. You should see the results shown in Figure 4-4.

Use AdventureWorks

Go

Select CardType, ExpYear,count(CardType) AS 'Total Cards'

from Sales.CreditCard

Where ExpYear in (2006,2007)

group by ExpYear,CardType

order by CardType,ExpYear

CHAPTER 4 ■ WRITING DATABASE QUERIES44

9004ch04final.qxd 12/13/07 4:19 PM Page 44

Figure 4-4 Using GROUP BY to aggregate values

How It Works

You specify three columns and use the COUNT function to count the total number of cards
listed in the CardType column of the CreditCard table.

Select CardType, ExpYear,count(CardType) AS 'Total Cards'

from Sales.CreditCard

Then you specify the WHERE condition, and the GROUP BY and ORDER BY clauses. The
WHERE condition ensures that the cards listed will be those that will expire in either 2006
or 2007.

Where ExpYear in (2006,2007)

The GROUP BY clause enforces the grouping on the specified columns that the results
should be displayed in the form of groups for ExpYear and CardType columns.

group by ExpYear,CardType

The ORDER BY clause ensures that the result shown will be organized in proper
sequential order based upon CardType and ExpYear.

order by CardType,ExpYear

CHAPTER 4 ■ WRITING DATABASE QUERIES 45

9004ch04final.qxd 12/13/07 4:19 PM Page 45

PIVOT Operator
A common scenario where PIVOT can be useful is when you want to generate cross-
tabulation reports to summarize data. The PIVOT operator can rotate rows to columns.
For example, suppose you want to query the Sales.CreditCard table in the Adventure-
Works database to determine the number of credit cards of a particular type that will be
expiring in specified year.

If you look at the query for GROUP BY mentioned in the previous section and shown
earlier in Figure 4-4, the years 2006 and 2007 have also been passed to the WHERE clause,
but they are displayed only as part of the record and get repeated for each type of card
separately, which has increased the number of rows to eight. PIVOT achieves the same
goal by producing a concise and easy-to-understand report format.

Try It Out: Using the PIVOT Operator

The Sales.CreditCard table contains the details for customers’ credit cards. You need to
total the cards of a specific type that will be expiring in a particular year.

Open a New Query window in SQL Server Management Studio Express. Enter the fol-
lowing query and click Execute. You should see the results shown in Figure 4-5.

Use AdventureWorks

Go

select CardType ,[2006] as Year2006,[2007] as Year2007

from

(

select CardType,ExpYear

from Sales.CreditCard

)piv Pivot

(

count(ExpYear) for ExpYear in ([2006],[2007])

)as carddetail

order by CardType

CHAPTER 4 ■ WRITING DATABASE QUERIES46

9004ch04final.qxd 12/13/07 4:19 PM Page 46

Figure 4-5. Using the PIVOT operator to summarize data

How It Works

You begin with the SELECT list and specify the columns and their aliases as you want them
to appear in the result set.

select CardType ,[2006] as Year2006,[2007] as Year2007

from

Then you specify the SELECT statement for the table with column names from which
you will be retrieving data, and you also assign a PIVOT operator to the SELECT statement.

select CardType,ExpYear

from Sales.CreditCard

) piv Pivot

Now you need to count the cards of particular type for the years 2006 and 2007 as
specified in this statement:

(

count(ExpYear) for ExpYear in ([2006],[2007])

)as carddetail

CHAPTER 4 ■ WRITING DATABASE QUERIES 47

9004ch04final.qxd 12/13/07 4:19 PM Page 47

The ORDER BY clause will arrange the credit card names listed under CardType column
in the asscending order by the type of card.

order by CardType

ROW_NUMBER() Function
SQL Server 2005 has introduced the ROW_NUMBER() function for ranking: it returns a
unique, sequential number for each row of the returned result set.

Try It Out: Using the ROW_NUMBER() Function

To see how ROW_NUMBER() works, open a New Query window in SQL Server Management
Studio Express. Enter the following query and click Execute. You should see the results
shown in Figure 4-6.

select SalesPersonID, Bonus,

ROW_NUMBER() over (order by SalesPersonID) as [RowCount]

from Sales.SalesPerson

Figure 4-6. Using the ROW_NUMBER() function

CHAPTER 4 ■ WRITING DATABASE QUERIES48

9004ch04final.qxd 12/13/07 4:19 PM Page 48

How It Works

You specify the following as part of the SELECT statement:

ROW_NUMBER() over (order by SalesPersonID) as [RowCount]

Here, you use the ROW_NUMBER() function over the SalesPersonID column and show
the row number count in a column titled RowCount. The RowCount column name
appears in the square brackets ([]) here because RowCount is a keyword in SQL Server and
so can’t be used directly; if you try to do so, you will get an error.

PARTITION BY Clause
The PARTITION BY clause can be used to divide the result set into partitions to which the
ROW_NUMBER() function is applied. The application of the ROW_NUMBER() function with the
PARTITION BY clause returns a sequential number for each row within a partition of a
result set, starting at 1 for the first row in each partition.

Try It Out: Using the PARTITION BY Clause

To see how PARTITION BY works, open a New Query window in SQL Server Management
Studio Express. Enter the following query and click Execute. You should see the results
shown in Figure 4-7.

select CustomerID, TerritoryID ,

Row_Number() over (Partition by TerritoryID

order by CustomerID) as [RowCount]

from Sales.Customer

Where TerritoryID in (1,2) AND

CustomerID Between 1 and 75

Notice that the RowCount column lists sequential numbers starting at one for each
row of the result set, and this numbering restarts as TerritoryID changes. If you look at
the result shown in the Figure 4-7, you will see that the RowCount column displays num-
bering from 1 to 12 for all those territories that have TerritoryID value 1. The numbering
restarts for the TerritoryID 2.

CHAPTER 4 ■ WRITING DATABASE QUERIES 49

9004ch04final.qxd 12/13/07 4:19 PM Page 49

Figure 4-7. Using the PARTITION BY clause

How It Works

You specify the following as part of the SELECT statement:

Row_Number() over (Partition by TerritoryID

order by CustomerID) as [RowCount]

The ROW_NUMBER() function implemented with OVER and PARTITION BY helps to divide
the result set into the partition for individual territories as specified in the WHERE clause
shown here:

Where TerritoryID in (1, 2)

Pattern Matching
Pattern matching is a technique that determines whether a specific character string
matches a specified pattern. A pattern can be created by using a combination of regular
characters and wildcard characters. During pattern matching, regular characters must
exactly match as specified in the character string. LIKE and NOT LIKE (negation) are the

CHAPTER 4 ■ WRITING DATABASE QUERIES50

9004ch04final.qxd 12/13/07 4:19 PM Page 50

operators are used for pattern matching. Remember that pattern matching is case sensi-
tive. SQL Server supports the following wildcard characters for pattern matching:

• % (percent mark): This wildcard represents zero to many characters. For example,
WHERE title LIKE '%C# 2008%' finds all book titles containing the text “C# 2008,”
regardless of where in the title that text occurs—at the beginning, middle, or end.
In this case, book titles such as “C# 2008: An Introduction,” “Accelerated C# 2008,”
and “Beginning C# 2008 Databases” will be listed.

• _ (underscore): A single underscore represents any single character. By using this
wildcard character, you can be very specific in your search about the character
length of the data you seek. For example, WHERE au_fname LIKE '_ean' finds all the
first names that consist of four letters and that end with “ean” (Dean, Sean, and so
on). WHERE au_fname LIKE 'a___n' finds all the first names that begin with “a” and
end with “n” and have any other three characters in between, for example, allan,
amman, aryan, and so on.

• [] (square brackets): These specify any single character within the specified range,
such as [a-f], or set, such as [abcdef] or even [adf]. For example, WHERE au_lname
LIKE '[C-K]arsen' finds author last names ending with “arsen” and starting with
any single character between “C” and “K,” such as Carsen, Darsen, Larsen, Karsen,
and so on.

• [^] (square brackets and caret): These specify any single character not within the
specified range, such as [^a-f], or set, such as [^abcdef]. For example, WHERE
au_lname LIKE 'de[^l]%' retrieves all author last names starting with “de,” but
the following letter cannot be “l.”

Try It Out: Using the % Character

To see how the % wildcard character works, open a New Query window in SQL Server
Management Studio Express. Enter the following query and click Execute. You should
see the results shown in Figure 4-8.

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

from Person.Contact

where FirstName like 'A%' and Title is not null

CHAPTER 4 ■ WRITING DATABASE QUERIES 51

9004ch04final.qxd 12/13/07 4:19 PM Page 51

Figure 4-8. Using the LIKE operator with %

How It Works

You concatenate the three columns Title, FirstName, and LastName into one column
titled “Person Name” using the + operator as follows:

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

You specify the WHERE clause with a pattern using the LIKE operator to list all people
whose first name begins with the letter “A” and consists of any number of letters. You also
specify the condition that the null values from the Title column should not be listed.

where FirstName like 'A%' and Title is not null

Try It Out: Using the _ (Underscore) Character

To see how the _ wildcard character works, open a New Query window in SQL Server
Management Studio Express. Enter the following query and click Execute. You should see
the results shown in Figure 4-9.

CHAPTER 4 ■ WRITING DATABASE QUERIES52

9004ch04final.qxd 12/13/07 4:19 PM Page 52

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

from Person.Contact

where FirstName like 'B____a' and Title is not null

Figure 4-9. Using the LIKE operator with _

How It Works

You concatenate the three columns Title, FirstName, and LastName into one column
titled “Person Name” using the + operator.

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

You specify the WHERE clause with a pattern using the LIKE operator to list all people
whose first name consists of a total six characters. As per the WHERE clause, FirstName
must begin with “B” and end with “a” and have any four letters in between. You also spec-
ify the condition that the null values should not be listed from the Title column.

where FirstName like 'B____a' and Title is not null

CHAPTER 4 ■ WRITING DATABASE QUERIES 53

9004ch04final.qxd 12/13/07 4:19 PM Page 53

Try It Out: Using the [] (Square Bracket) Characters

To see how the [] characters work in pattern matching, open a New Query window in
SQL Server Management Studio Express. Enter the following query and click Execute.
You should see the results shown in Figure 4-10.

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

from Person.Contact

where FirstName like '[A-I]__' and Title is not null

Figure 4-10. Using the LIKE operator with []

How It Works

You concatenate the three columns Title, FirstName, and LastName into one column
titled “Person Name” using the + operator.

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

CHAPTER 4 ■ WRITING DATABASE QUERIES54

9004ch04final.qxd 12/13/07 4:19 PM Page 54

You specify the WHERE clause with a pattern using the LIKE operator to list all people
whose first name consists of a total of three characters. As per the WHERE clause, FirstName
must begin with a letter that falls in the range between “A” and “I” and must end with any
other two letters. You also specify the condition that null values should not be listed from
the Title column.

where FirstName like '[A-I]__' and Title is not null

Try It Out: Using the [^] (Square Bracket and Caret) Characters

To see how the [^] characters work in pattern matching, open a New Query window in
SQL Server Management Studio Express. Enter the following query and click Execute. You
should see the results shown in Figure 4-11.

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

from Person.Contact

where FirstName like '_[^I][a]__' and Title is not null

Figure 4-11. Using the LIKE operator with [^]

CHAPTER 4 ■ WRITING DATABASE QUERIES 55

9004ch04final.qxd 12/13/07 4:19 PM Page 55

How It Works

You concatenate the three columns Title, FirstName, and LastName into one column
titled “Person Name” using the + operator.

select Title + ' ' + FirstName + ' ' + LastName

as "Person Name"

You specify the WHERE clause with a pattern using the LIKE operator to list all people
whose first name consists of a total five characters. As per the WHERE clause, FirstName
may begin with any two letters except for “I,” followed by “a,” and then any other two
letters. You also specify the condition that null values should not be listed from the Title
column.

where FirstName like '_[^I][a]__' and Title is not null

Aggregate Functions
SQL has several built-in functions that aggregate the values of a column. Aggregate func-
tions are applied on sets of rows and return a single value. For example, you can use
aggregate functions to calculate the average unit price of orders placed. You can find the
order with the lowest price or the most expensive. MIN, MAX, SUM, AVG, and COUNT are fre-
quently used in aggregate functions.

Try It Out: Using the MIN, MAX, SUM, and AVG Functions

Let’s find the minimum, maximum, sum, and average of the unit price (UnitPrice) of
each sales order (SalesOrderID) from the SalesOrderDetail table.

Open a New Query window in SQL Server Management Studio Express. Enter the fol-
lowing query and click Execute. You should see the results shown in Figure 4-12.

select SalesOrderID,min(UnitPrice)as "Min",

max(UnitPrice) as "Max",Sum(UnitPrice) as "Sum",

Avg(UnitPrice)as "Avg"

from Sales.SalesOrderDetail

where SalesOrderID between 43659 and 43663

group by SalesOrderID

CHAPTER 4 ■ WRITING DATABASE QUERIES56

9004ch04final.qxd 12/13/07 4:19 PM Page 56

Figure 4-12. Using aggregate functions

How It Works

You use the MIN and MAX functions to find the minimum and maximum values, the SUM
function to calculate the total value, and the AVG function to calculate the average value.

min(UnitPrice) as "Min",

max(UnitPrice) as "Max",

Sum(UnitPrice) as "Sum",

Avg(UnitPrice)as "Avg"

Since you want the results listed by SalesOrderID, you use the GROUP BY clause. From
the result set, you see that order 1 had a minimum unit price of 5.1865, a maximum unit
price of 2039.994, a total unit price of 14323.7118, and an average unit price of 1193.6426.

Try It Out: Using the COUNT Function

Let’s find the count of records from the Person.Contact table.
Open a New Query window in SQL Server Management Studio Express. Enter the fol-

lowing query and click Execute. You should see the results shown in Figure 4-13.

CHAPTER 4 ■ WRITING DATABASE QUERIES 57

9004ch04final.qxd 12/13/07 4:19 PM Page 57

Select count(*) as "Total Records" from Person.Contact

Select count(Title)as "Not Null Titles" from Person.Contact

Figure 4-13. Using the COUNT aggregate function

How It Works

The COUNT function has different behaviors depending upon the parameter passed to the
function. If you try COUNT(*),the query will return you the number of total records avail-
able in the table as shown in the topmost results: table Person.Contact contains a total
of 19972 records

If you pass a column name to the COUNT function, it will return the total number of
records again, but it will ignore all those rows that contain null values for that column. In
the second query, you are querying the same table, which has listed 19972 records, but as
your second query applies to the Title column, it returns only 1009 records, because this
time it has ignored all null values.

CHAPTER 4 ■ WRITING DATABASE QUERIES58

9004ch04final.qxd 12/13/07 4:19 PM Page 58

DATETIME Functions
Although the SQL standard defines a DATETIME data type and its components, YEAR, MONTH,
DAY, HOUR, MINUTE, and SECOND, it doesn’t dictate how a DBMS makes this data available.
Each DBMS offers functions that extract parts of DATETIMEs. Let’s look at some examples of
T-SQL DATETIME functions.

Try It Out: Using T-SQL Date and Time Functions

Let’s practice with T-SQL date and time functions.
Open a New Query window in SQL Server Management Studio Express (database

context does not affect this query). Enter the following query and click Execute. You
should see the results shown in Figure 4-14

select

current_timestamp'standard datetime',

getdate()'Transact-SQL datetime',

datepart(year, getdate())'datepart year',

year(getdate())'year function',

datepart(hour, getdate())'hour'

Figure 4-14. Using date and time functions

CHAPTER 4 ■ WRITING DATABASE QUERIES 59

9004ch04final.qxd 12/13/07 4:19 PM Page 59

How It Works

You use a nonstandard version of a query, omitting the FROM clause, to display the current
date and time and individual parts of them. The first two columns in the SELECT list give
the complete date and time.

current_timestamp 'standard datetime',

getdate() 'Transact-SQL datetime',

The first line uses the CURRENT_TIMESTAMP value function of standard SQL; the second
uses the GETDATE function of T-SQL. They’re equivalent in effect, both returning the com-
plete current date and time.

The next two lines each provide the current year. The first uses the T-SQL DATEPART
function; the second uses the T-SQL YEAR function. Both take a DATETIME argument and
return the integer year. The DATEPART function’s first argument specifies what part of a
DATETIME to extract. Note that T-SQL doesn’t provide a date specifier for extracting a com-
plete date, and it doesn’t have a separate DATE function.

datepart(year, getdate()) 'datepart year',

year(getdate()) 'year function',

The final line gets the current hour. The T-SQL DATEPART function must be used here
since no HOUR function is analogous to the YEAR function. Note that T-SQL doesn’t provide
a time specifier for extracting a complete time, and it doesn’t have a separate TIME func-
tion.

datepart(hour, getdate()) 'hour'

You can format dates and times and alternative functions for extracting and convert-
ing them in various ways. Dates and times can also be added and subtracted and incre-
mented and decremented. How this is done is DBMS-specific, though all DBMSs comply
to a reasonable extent with the SQL standard in how they do it. Whatever DBMS you use,
you’ll find that dates and times are the most complicated data types to employ. But, in all
cases you’ll find that functions (sometimes a richer set of them than in T-SQL) are the
basic tools for working with dates and times.

■Tip When providing date and time input, character string values are typically expected; for example,
6/28/2004 would be the appropriate way to specify the value for a column holding the current date from
the example. However, DBMSs store dates and times in system-specific encodings. When you use date and
time data, read the SQL manual for your database carefully to see how to best handle it.

CHAPTER 4 ■ WRITING DATABASE QUERIES60

9004ch04final.qxd 12/13/07 4:19 PM Page 60

Joins
Most queries require information from more than one table. A join is a relational opera-
tion that produces a table by retrieving data from two (not necessarily distinct) tables
and matching their rows according to a join specification.

Different types of joins exist, which you’ll look at individually, but keep in mind that
every join is a binary operation, that is, one table is joined to another, which may be the
same table since tables can be joined to themselves. The join operation is a rich and
somewhat complex topic. The next sections will cover the basics.

For the join examples, we are using the all-time favorite database, Northwind. To
connect with Northwind, perform the following steps in SQL Server Management Studio
Express:

1. Select File ➤ Disconnect Object Explorer, close all open windows, and click the No
button if prompted to save changes to items.

2. Again, click File ➤ Connect Object Explorer. In the Connect to Server dialog box,
select <ServerName>\SQLEXPRESS as the server name and then click Connect.

3. In Object Explorer, select the Northwind database.

Inner Joins

An inner join is the most frequently used join. It returns only rows that satisfy the join
specification. Although in theory any relational operator (such as > or <) can be used in
the join specification, the equality operator (=) is almost always used. Joins using the
equality operator are called natural joins.

The basic syntax for an inner join is as follows:

select

<select list>

from

left-table INNER JOIN right-table

ON

<join specification>

Notice that INNER JOIN is a binary operation, so it has two operands, left-table and
right-table, which may be base tables or anything that can be queried (for example, a
table produced by a subquery or by another join). The ON keyword begins the join specifi-
cation, which can contain anything that could be used in a WHERE clause.

CHAPTER 4 ■ WRITING DATABASE QUERIES 61

9004ch04final.qxd 12/13/07 4:19 PM Page 61

Try It Out: Writing an Inner Join

Let’s retrieve a list of orders, the IDs of the customers who placed them, and the last
name of the employees who took them.

Open a New Query window in SQL Server Management Studio Express (remember to
make Northwind your query context). Enter the following query and click Execute. You
should see the results shown in Figure 4-15.

select

orders.orderid,

orders.customerid,

employees.lastname

from

orders inner join employees

on

orders.employeeid = employees.employeeid

Figure 4-15. Using INNER JOIN

CHAPTER 4 ■ WRITING DATABASE QUERIES62

9004ch04final.qxd 12/13/07 4:19 PM Page 62

How It Works

Let’s start with the SELECT list.

select

orders.orderid,

orders.customerid,

employees.lastname

Since you’re selecting columns from two tables, you need to identify which table a
column comes from, which you do by prefixing the table name and a dot (.) to the col-
umn name. This is known as disambiguation, or removing ambiguity so the database
manager knows which column to use. Though this has to be done only for columns that
appear in both tables, the best practice is to qualify all columns with their table names.

The following FROM clause specifies both the tables you’re joining and the kind of join
you’re using:

from

orders inner join employees

on

orders.employeeid = employees.employeeid

It specifies an inner join of the Orders and Employees tables.

orders inner join employees

It also specifies the criteria for joining the primary key EmployeeId of the Employees
table with the foreign key EmployeeId of the Orders table.

on

orders.employeeid = employees.employeeid

The inner join on EmployeeID produces a table composed of three columns:
OrderID, CustomerID, and LastName. The data is retrieved from rows in Orders and
Employees where their EmployeeID columns have the same value. Any rows in Orders
that don’t match rows in Employees are ignored and vice versa. (This isn’t the case here,
but you’ll see an example soon.) An inner join always produces only rows that satisfy the
join specification.

■Tip Columns used for joining don’t have to appear in the SELECT list. In fact, EmployeeID isn’t in the
SELECT list of the example query.

CHAPTER 4 ■ WRITING DATABASE QUERIES 63

9004ch04final.qxd 12/13/07 4:19 PM Page 63

Try It Out: Writing an Inner Join Using Correlation Names

Joins can be quite complicated. Let’s revise this one to simplify things a bit.
Open a New Query window in SQL Server Management Studio Express (remember to

make Northwind your query context). Enter the following query and click Execute. You
should see the results shown in Figure 4-16.

select

o.orderid,

o.customerid,

e.lastname

from

orders o inner join employees e

on

o.employeeid = e.employeeid

Figure 4-16. Using correlation names

CHAPTER 4 ■ WRITING DATABASE QUERIES64

9004ch04final.qxd 12/13/07 4:19 PM Page 64

How It Works

You simplify the table references by providing a correlation name for each table. (This is
somewhat similar to providing column aliases, but correlation names are intended to be
used as alternative names for tables. Column aliases are used more for labeling than for
referencing columns.) You can now refer to Orders as o and to Employees as e. Correlation
names can be as long as table names and can be in mixed case, but obviously the shorter
they are, the easier they are to code.

You use the correlation names in both the SELECT list:

select

o.orderid,

o.customerid,

e.lastname

and the ON clause:

on

o.employeeid = e.employeeid

Try It Out: Writing an Inner Join of Three Tables

Open a New Query window in SQL Server Management Studio Express (remember to
make Northwind your query context). Enter the following query and click Execute. You
should see the results shown in Figure 4-17.

select

o.orderid OrderID,

c.companyname CustomerName,

e.lastname Employee

from

orders o inner join employees e

on o.employeeid = e.employeeid

inner join customers c

on o.customerid = c.customerid

CHAPTER 4 ■ WRITING DATABASE QUERIES 65

9004ch04final.qxd 12/13/07 4:19 PM Page 65

Figure 4-17. Coding an INNER JOIN of three tables

How It Works

First, you modify the SELECT list, replacing CustomerID from the Orders table with Com-
panyName from the Customers table.

select

o.orderid OrderID,

c.companyname CustomerName,

e.lastname Employee

Second, you add a second inner join, as always with two operands: the table pro-
duced by the first join and the base table Customers. You reformat the first JOIN operator,
splitting it across three lines simply to make it easier to distinguish the tables and joins.
You can also use parentheses to enclose joins, and you can make them clearer when you
use multiple joins. (Furthermore, since joins produce tables, their results can also be
associated with correlation names for reference in later joins and even in the SELECT list,
but such complexity is beyond the scope of this discussion.)

CHAPTER 4 ■ WRITING DATABASE QUERIES66

9004ch04final.qxd 12/13/07 4:19 PM Page 66

from

orders o inner join employees e

on o.employeeid = e.employeeid

inner join customers c

on o.customerid = c.customerid

The result of the first join, which matched orders to employees, is matched against
the Customers table from which the appropriate customer name is retrieved for each
matching row from the first join. Since referential integrity exists between Orders and
both Employees and Customers, all Orders rows have matching rows in the other two
tables.

How the database actually satisfies such a query depends on a number of things,
but joins are such an integral part of relational database operations that query optimiz-
ers are themselves optimized to find efficient access paths among multiple tables to
perform multiple joins. However, the fewer joins needed, the more efficient the query,
so plan your queries carefully. Usually you have several ways to code a query to get the
same data, but almost always only one of them is the most efficient.

Now you know how to retrieve data from two or more tables—when the rows match.
What about rows that don’t match? That’s where outer joins come in.

Outer Joins

Outer joins return all rows from (at least) one of the joined tables even if rows in one
table don’t match rows in the other. Three types of outer joins exist: left outer join, right
outer join, and full outer join. The terms left and right refer to the operands on the left
and right of the JOIN operator. (Refer to the basic syntax for the inner join, and you’ll see
why we called the operands left-table and right-table.) In a left outer join, all rows from
the left table will be retrieved whether they have matching rows in the right table. Con-
versely, in a right outer join, all rows from the right table will be retrieved whether they
have matching rows in the left table. In a full outer join, all rows from both tables are
returned.

■Tip Left and right outer joins are logically equivalent. It’s always possible to convert a left join into a right
join by changing the operator and flipping the operands or a right join into a left with a similar change. So,
only one of these operators is actually needed. Which one you choose is basically a matter of personal pref-
erence, but a useful rule of thumb is to use either left or right, but not both in the same query. The query
optimizer won’t care, but humans find it much easier to follow a complex query if the joins always go in the
same direction.

CHAPTER 4 ■ WRITING DATABASE QUERIES 67

9004ch04final.qxd 12/13/07 4:19 PM Page 67

When is this useful? Quite frequently. In fact, whenever a parent-child relationship
exists between tables, despite the fact that referential integrity is maintained, some par-
ent rows may not have related rows in the child table, since child rows may be allowed to
have null foreign key values and therefore not match any row in the parent table. This sit-
uation doesn’t exist in the original Orders and Employees data, so you’ll have to add some
data before you can see the effect of outer joins.

You need to add an employee so you have a row in the Employees table that doesn’t
have related rows in Orders. To keep things simple, you’ll provide data only for the
columns that aren’t nullable.

Try It Out: Adding an Employee with No Orders

To add an employee with no orders, open a New Query window in SQL Server Manage-
ment Studio Express (remember to make Northwind your query context). Enter the
following query and click Execute. You should see the results shown in Figure 4-18.

insert into employees

(

firstname,

lastname

)

values ('Amy', 'Abrams')

Figure 4-18. Adding an employee with no orders

CHAPTER 4 ■ WRITING DATABASE QUERIES68

9004ch04final.qxd 12/13/07 4:19 PM Page 68

How It Works

You submit a single INSERT statement, providing the two required columns. The first col-
umn, EmployeeID, is an IDENTITY column, so you can’t provide a value for it, and the rest
are nullable, so you don’t need to provide values for them.

insert into employees

(

firstname,

lastname

)

values ('Amy', 'Abrams')

You now have a new employee, Amy Abrams, who has never taken an order.
Now, let’s say you want a list of all orders taken by all employees—but this list must

include all employees, even those who haven’t taken any orders.

Try It Out: Using LEFT OUTER JOIN

To list all employees, even those who haven’t taken any orders, open a New Query win-
dow in SQL Server Management Studio Express (remember to make Northwind your
query context). Enter the following query and click Execute. You should see the results
shown in Figure 4-19.

select

e.firstname,

e.lastname,

o.orderid

from

employees e left outer join orders o

on e.employeeid = o.employeeid

order by 2, 1

CHAPTER 4 ■ WRITING DATABASE QUERIES 69

9004ch04final.qxd 12/13/07 4:19 PM Page 69

Figure 4-19. Using LEFT OUTER JOINs

How It Works

Had you used an inner join you would have missed the row for the new employee. (Try it
for yourself.) The only new SQL in the FROM clause is the JOIN operator itself.

left outer join

You also add an ORDER BY clause to sort the result set by first name within last name,
to see that the kind of join has no effect on the rest of the query, and to see an alternative
way to specify columns, by position number within the SELECT list rather than by name.
This technique is convenient (and may be the only way to do it for columns that are pro-
duced by expressions, for example, by the SUM function).

order by

2, 1

Note that the OrderID column for the new employee is null, since no value exists for
it. The same holds true for any columns from the table that don’t have matching rows (in
this case, the right table).

CHAPTER 4 ■ WRITING DATABASE QUERIES70

9004ch04final.qxd 12/13/07 4:19 PM Page 70

You can obtain the same result by placing the Employees table on the right and the
Orders table on the left of the JOIN operator and changing the operator to RIGHT OUTER
JOIN. (Try it!) Remember to flip the correlation names, too.

The keyword OUTER is optional and is typically omitted. Left and right joins are always
outer joins.

Other Joins

The SQL standard also provides for FULL OUTER JOIN, UNION JOIN, and CROSS JOIN (and even
NATURAL JOIN, basically an inner join using equality predicates), but these are much less
used and beyond the scope of this book. We won’t provide examples, but this section con-
tains a brief summary of them.

A FULL OUTER JOIN is like a combination of both the LEFT and RIGHT OUTER joins. All
rows from both tables will be retrieved, even if they have no related rows in the other
table.

A UNION JOIN is unlike outer joins in that it doesn’t match rows. Instead, it creates a
table that has all the rows from both tables. For two tables, it’s equivalent to the following
query:

select

*

from

table1

union all

select

*

from

table2

The tables must have the same number of columns, and the data types of correspon-
ding columns must be compatible (able to hold the same types of data).

A CROSS JOIN combines all rows from both tables. It doesn’t provide for a join specifi-
cation, since this would be irrelevant. It produces a table with all columns from both
tables and as many rows as the product of the number of rows in each table. The result is
also known as a Cartesian product, since that’s the mathematical term for associating
each element (row) of one set (table) with all elements of another set. For example, if
there are five rows and five columns in table A and ten rows and three columns in table B,
the cross join of A and B would produce a table with fifty rows and eight columns. This
join operation is not only virtually inapplicable to any real-world query, but it’s also a
potentially very expensive process for even small real-world databases. (Imagine using
it for production tables with thousands or even millions of rows.)

CHAPTER 4 ■ WRITING DATABASE QUERIES 71

9004ch04final.qxd 12/13/07 4:19 PM Page 71

Summary
In this chapter, we covered how to construct more sophisticated queries using SQL
features such as aggregates, DATETIME functions, GROUP BY clauses, joins, and pattern
matching. We also covered the features that are new in SQL Server 2005 such as com-
mon table expressions, the PIVOT operator, the ROW_NUMBER() function, and the PARTITION
BY clause.

In the next chapter, you will learn about manipulating the database.

CHAPTER 4 ■ WRITING DATABASE QUERIES72

9004ch04final.qxd 12/13/07 4:19 PM Page 72

Manipulating Database Data

Now that you know something about writing database queries, it’s time to turn your
attention to the different aspects of data modification, such as retrieving, inserting,
updating, and deleting data.

In this chapter, we’ll cover the following:

• Retrieving data

• Using SELECT INTO statements

• Inserting data

• Updating data

• Deleting data

Retrieving Data
A SQL query retrieves data from a database. Data is stored as rows in tables. Rows are
composed of columns. In its simplest form, a query consists of two parts:

• A SELECT list, where the columns to be retrieved are specified

• A FROM clause, where the table or tables to be accessed are specified

■Tip We’ve written SELECT and FROM in capital letters simply to indicate they’re SQL keywords. SQL isn’t
case sensitive, and keywords are typically written in lowercase in code. In T-SQL, queries are called SELECT
statements, but the ISO/ANSI standard clearly distinguishes “queries” from “statements.” The distinction is
conceptually important. A query is an operation on a table that produces a table as a result; statements may
(or may not) operate on tables and don’t produce tables as results. Furthermore, subqueries can be used in
both queries and statements. So, we’ll typically call queries “queries” instead of SELECT statements. Call
queries whatever you prefer, but keep in mind that queries are a special feature of SQL.

73

C H A P T E R 5

9004ch05final.qxd 12/13/07 4:17 PM Page 73

Using two keywords, SELECT and FROM, here’s the simplest possible query that will get
all the data from the specified table:

Select * from <table name>

The asterisk (*) means you want to select all the columns in the table.
You will be using a SQLEXPRESS instance of SQL Server 2005 in this chapter. Open

SQL Server Management Studio Express and in the Connect to Server dialog box select
<ServerName>\SQLEXPRESS as the server name and then click Connect. SQL Server
Management Studio Express will open. Expand the Databases node and select the North-
wind database. Your screen should resemble that shown in Figure 5-1.

Figure 5-1. Selecting a database to query

Try It Out: Running a Simple Query

To submit a query to retrieve all employee data, open a New Query window in SQL Server
Management Studio Express (remember to make Northwind your query context). Enter
the following query and click Execute. You should see the results shown in Figure 5-2.

Select * from employees

CHAPTER 5 ■ MANIPULATING DATABASE DATA74

9004ch05final.qxd 12/13/07 4:17 PM Page 74

Figure 5-2. Query results pane

How It Works

You ask the database to return the data for all columns, and you get exactly that. If you
scroll to the right, you’ll find all the columns in the Employees table.

Most of the time, you should limit queries to only relevant columns. When you select
columns you don’t need, you waste resources. To explicitly select columns, enter the col-
umn names after the SELECT keyword as shown in the following query and click Execute.
Figure 5-3 shows the results.

Select employeeid, firstname, lastname

from employees

This query selects all the rows from the Employees table but only the EmployeeID,
FirstName, and LastName columns.

CHAPTER 5 ■ MANIPULATING DATABASE DATA 75

9004ch05final.qxd 12/13/07 4:17 PM Page 75

Figure 5-3. Selecting specific columns

Using the WHERE Clause

Queries can have WHERE clauses. The WHERE clause allows you to specify criteria for select-
ing rows. This clause can be complex, but we’ll stick to a simple example for now. The
syntax is as follows:

WHERE <column1> <operator> <column2 / Value>

Here, <operator> is a comparison operator (for example, =, <>, >, or <). (Table 5-1, later in
the chapter, lists the T-SQL comparison operators.)

Try It Out: Refining Your Query

In this exercise, you’ll see how to refine your query.

1. Add the following WHERE clause to the query in Figure 5-3.

Where country = 'USA'

2. Run the query by pressing F5, and you should see the results shown in Figure 5-4.

CHAPTER 5 ■ MANIPULATING DATABASE DATA76

9004ch05final.qxd 12/13/07 4:17 PM Page 76

Figure 5-4. Using a WHERE clause

■Caution SQL keywords and table and column names aren’t case sensitive, but string literals (enclosed
in single quotes) are. This is why we use 'USA', not 'usa', for this example.

How It Works

The new query returns the data for columns EmployeeID, FirstName, and LastName
from the Employees table, but only for rows where the Country column value equals
“USA”.

CHAPTER 5 ■ MANIPULATING DATABASE DATA 77

9004ch05final.qxd 12/13/07 4:17 PM Page 77

Using Comparison Operators in a WHERE Clause

You can use a number of different comparison operators in a WHERE clause (see Table 5-1).

Table 5-1. Comparison Operators

Operator Description Example

= Equals EmployeeID = 1

< Less than EmployeeID < 1

> Greater than EmployeeID > 1

<= Less than or equal to EmployeeID <= 1

>= Greater than or equal to EmployeeID >= 1

<> Not equal to EmployeeID <> 1

!= Not equal to EmployeeID != 1

!< Not less than EmployeeID !< 1

!> Not greater than EmployeeID !> 1

■Tip As mentioned earlier, every database vendor has its own implementation of SQL. This discussion is
specific to T-SQL; for example, standard SQL doesn’t have the != operator and calls <> the not equals oper-
ator. In fact, standard SQL calls the expressions in a WHERE clause predicates; we’ll use that term because
predicates are either true or false, but other expressions don’t have to be. If you work with another version
of SQL, please refer to its documentation for specifics.

In addition to these operators, the LIKE operator (see Table 5-2) allows you to match
patterns in character data. As with all SQL character data, strings must be enclosed in
single quotes ('). (Chapter 4 covers the LIKE operator in more detail.)

Table 5-2. The LIKE Operator

Operator Description Example

LIKE Allows you to specify a pattern WHERE Title LIKE 'Sales%' selects all rows
where the Title column contains a value that
starts with the word “Sales” followed by zero or
more characters.

CHAPTER 5 ■ MANIPULATING DATABASE DATA78

9004ch05final.qxd 12/13/07 4:17 PM Page 78

You can use four different wildcards in the pattern. Chapter 4 covers these wildcards
in detail, but to briefly review, we list them here in Table 5-3.

Table 5-3. Wildcard Characters

Wildcard Description

% Any combination of characters. Where FirstName LIKE 'Mc%' selects all rows where
the FirstName column equals McDonald, McBadden, McMercy, and so on.

_ Any one character. WHERE Title LIKE '_ales' selects all rows where the Title column
equals Aales, aales, Bales, bales, and so on.

[] A single character within a range [a-d] or set [abcd]. WHERE Title LIKE '[bs]ales'
selects all rows where the Title column equals either the bales or sales.

[^] A single character not within a range [^a-d] or set [^abcd].

Sometimes it’s useful to select rows where a value is unknown. When no value has
been assigned to a column, the column is NULL. (This isn’t the same as a column that con-
tains the value 0 or a blank.) To select a row with a column that’s NULL, use the IS [NOT]

NULL operator (see Table 5-4).

Table 5-4. The IS [NOT] NULL Operator

Operator Description Example

IS NULL Allows you to select rows where WHERE Region IS NULL returns all rows where
a column has no value Region has no value.

IS NOT NULL Allows you to select rows where WHERE Region IS NOT NULL returns all rows
a column has a value where Region has a value.

■Note You must use the IS NULL and IS NOT NULL operators (collectively called the null predicate in
standard SQL) to select or exclude NULL column values, respectively. The following is a valid query but
always produces zero rows: SELECT * FROM employees WHERE Region = NULL. If you change = to IS,
the query will read as SELECT * FROM employees WHERE Region IS NULL, and it will return rows where
regions have no value.

To select values in a range or in a set, you can use the BETWEEN and IN operators (see
Table 5-5). The negation of these two is NOT BETWEEN and NOT IN.

CHAPTER 5 ■ MANIPULATING DATABASE DATA 79

9004ch05final.qxd 12/13/07 4:17 PM Page 79

Table 5-5. The BETWEEN and IN Operators

Operator Description Example

BETWEEN True if a value is within a range. WHERE extension BETWEEN 400 AND 500 returns
the rows where Extension is between 400 and
500, inclusive.

IN True if a value is in a list. The list WHERE city IN ('Seattle', 'London') returns
can be the result of a subquery. the rows where City is either Seattle or London.

Combining Predicates

Quite often you’ll need to use more than one predicate to filter your data. You can use the
logical operators shown in Table 5-6.

Table 5-6. SQL Logical Operators

Operator Description Example

AND Combines two expressions, HERE (title LIKE 'Sales%' AND lastname
evaluating the complete ='Peacock')
expression as true only if both
are true

NOT Negates a Boolean value WHERE NOT (title LIKE 'Sales%' AND lastname
='Peacock')

OR Combines two expressions, WHERE (title = 'Peacock' OR title = 'King')
evaluating the complete
expression as true if either
is true

When you use these operators, it’s often a good idea to use parentheses to clarify the
conditions. In complex queries, this may be absolutely necessary.

Sorting Data

After you’ve filtered the data you want, you can sort the data by one or more columns and
in a certain direction. Since tables are by definition unsorted, the order in which rows are
retrieved by a query is unpredictable. To impose an ordering, you use the ORDER BY clause.

ORDER BY <column> [ASC | DESC] {, n}

CHAPTER 5 ■ MANIPULATING DATABASE DATA80

9004ch05final.qxd 12/13/07 4:17 PM Page 80

The <column> is the column that should be used to sort the result. The {, n} syntax
means you can specify any number of columns separated by commas. The result will be
sorted in the order in which you specify the columns.

The following are the two sort directions:

• ASC: Ascending (1, 2, 3, 4, and so on)

• DESC: Descending (10, 9, 8, 7, and so on)

If you omit the ASC or DESC keywords, the sort order defaults to ASC.
The following is the basic syntax for queries:

SELECT <column>

FROM <table>

WHERE <predicate>

ORDER BY <column> ASC | DESC

Now that you’ve seen it, you’ll put this syntax to use in an example.

Try It Out: Writing an Enhanced Query

In this example, you’ll code a query that uses the basic syntax just shown. You want to do
the following:

• Select all the orders that have been handled by employee 5.

• Select the orders shipped to either France or Brazil.

• Display only OrderID, EmployeeID, CustomerID, OrderDate, and ShipCountry.

• Sort the orders by the destination country and the date the order was placed.

Does this sound complicated? Give it a try. Open a New Query window in SQL Server
Management Studio. Enter the following query and click Execute. You should see the
results shown in Figure 5-5.

select orderid,employeeid,customerid,orderdate,shipcountry

from orders

where employeeid = 5 and shipcountry in ('Brazil', 'France')

order by shipcountry asc,orderdate asc

CHAPTER 5 ■ MANIPULATING DATABASE DATA 81

9004ch05final.qxd 12/13/07 4:17 PM Page 81

Figure 5-5. Filtering and sorting data

How It Works

Let’s look at the clauses individually. The SELECT list specifies which columns you want
to use.

select orderid,employeeid,customerid,orderdate,shipcountry

The FROM clause specifies that you want to use the Orders table.

from orders

The WHERE clause is a bit more complicated. It consists of two predicates that individ-
ually state the following:

• EmployeeID must be 5.

• ShipCountry must be in the list Brazil or France.

CHAPTER 5 ■ MANIPULATING DATABASE DATA82

9004ch05final.qxd 12/13/07 4:17 PM Page 82

As these predicates are combined with AND, they both must evaluate to true for a row
to be included in the result.

where employeeid = 5 and shipcountry in ('Brazil', 'France')

The ORDER BY clause specifies the order in which the rows are sorted. The rows will be
sorted by ShipCountry first and then by OrderDate.

order by shipcountry asc,orderdate asc

Using SELECT INTO Statements
A SELECT INTO statement is used to create a new table containing or not containing the
result set returned by a SELECT query. SELECT INTO copies the exact table structure and
data into another table specified in the INTO clause. Usually, a SELECT query returns result
sets to the client application.

Including the # (hash) symbol before table name results in creating a temporary
table, which ends up in the tempdb system database, regardless of which database you
are working in. Specifying the table name without the # symbol gives you a permanent
table in your database (not in tempdb).

The columns of the newly created table inherit the column names, their data types,
whether columns can contain null values or not, and any associated IDENTITY property
from the source table. However, the SELECT INTO clause does have some restrictions: it
will not copy any constraints, indexes, or triggers from the source table.

Try It Out: Creating a New Table

In this exercise, you’ll see how to create a table using a SELECT INTO statement. Open a
New Query window in SQL Server Management Studio Express (remember to make
Northwind your query context). Enter the following query and click Execute. You should
see the results shown in Figure 5-6.

select orderid,employeeid,customerid,orderdate,shipcountry

into #myorder

from orders

CHAPTER 5 ■ MANIPULATING DATABASE DATA 83

9004ch05final.qxd 12/13/07 4:17 PM Page 83

Figure 5-6. Creating a new table

How It Works

In the following statement:

select orderid,employeeid,customerid,orderdate,shipcountry

into #myorder

from orders

you define the SELECT list, the INTO clause with a table name prefixed by #, and then the
FROM clause. This means that you want to retrieve all the specified columns from the
Orders table and insert them into the #myorder table.

Even though you write the query in Northwind, the #myorder table gets created
inside tempdb because of the prefixed # symbol (see Figure 5-7).

A temporary table can reside in the tempdb database as long as you have the query
window open. If you close the query window from which you created your temporary
table, and regardless of whether you saved the query, the temporary table will be auto-
matically deleted from tempdb.

Once the table is created, you can use it like any other table (see Figure 5-8).
Temporary tables will also be deleted if you close SQL Server Management Studio

Express, because the tempdb database gets rebuilt every time you close and open SQL
Server Management Studio Express again.

CHAPTER 5 ■ MANIPULATING DATABASE DATA84

9004ch05final.qxd 12/13/07 4:17 PM Page 84

Figure 5-7.Viewing the newly created table in tempdb

Figure 5-8. Retrieving data from your temporary table

CHAPTER 5 ■ MANIPULATING DATABASE DATA 85

9004ch05final.qxd 12/13/07 4:17 PM Page 85

Try It Out: Using SELECT INTO to Copy Table Structure

Sometimes you will want to copy only the table structure, not the data inside the table
(e.g., you only need an empty copy of the table). To do so, you need to include a condition
that must not return true. In this case, you are free to insert your own data.

To try this out, enter the following query, and you should get the results shown in
Figure 5-9.

select orderid,employeeid,customerid,orderdate,shipcountry

into #myemptyorder

from orders

where 0=1

Figure 5-9. Creating an empty table

How It Works

The magic condition where 0=1, which is a false condition, has done all the work for you,
and only table structure has been copied into the tempdb database.

To view this table, you can navigate to the tempdb database in Object Explorer,
expand the Temporary Tables node if it isn’t already expanded, select the node, right-click
it, and select Refresh to refresh the tables list. You should see the newly created
#myemptyorder table as shown in Figure 5-10.

CHAPTER 5 ■ MANIPULATING DATABASE DATA86

9004ch05final.qxd 12/13/07 4:17 PM Page 86

Figure 5-10. Viewing a newly created empty table in tempdb

As you can see, the table has structure but not data, the false condition you included.
If you were to run a SELECT query on the #myemptyorder table as shown in

Figure 5-11, the query would return nothing, clearly demonstrating that only the
table structure has been copied because only field names are displayed.

Figure 5-11. Writing a SELECT query on an empty table in tempdb

CHAPTER 5 ■ MANIPULATING DATABASE DATA 87

9004ch05final.qxd 12/13/07 4:17 PM Page 87

Inserting Data
The next important task you need to be able to do is add data (e.g., add rows) to a table.
You do this with the INSERT statement. The INSERT statement is much simpler than a
query, particularly because the WHERE and ORDER BY clauses have no meaning when insert-
ing data and therefore aren’t used.

A basic INSERT statement has these parts:

INSERT INTO <table>

(<column1>, <column2>, ..., <columnN>)

VALUES (<value1>, <value2>, ..., <valueN>)

Using this syntax, let’s add a new row to the Shippers table of the Northwind data-
base. Before you insert it, let’s look at the table. In the SQL Server Management Studio
Express Object Explorer, select the Northwind database, right-click the Shippers table,
and click Open Table. The table has three rows, which are displayed in a tabbed window
(see Figure 5-12).

Figure 5-12. The Shippers table before adding a row

Try It Out: Inserting a New Row

To insert a new row into a table, open a New Query window in SQL Server Management
Studio Express. Enter the following query and click Execute.

CHAPTER 5 ■ MANIPULATING DATABASE DATA88

9004ch05final.qxd 12/13/07 4:17 PM Page 88

insert into shippers (companyname, phone)

values ('GUIPundits', '+91 9820801756')

Executing this statement in the query pane should produce a Messages window
reporting “(1 row(s) affected)”. You should see the results shown in Figure 5-13.

Figure 5-13. Inserting a new row into the Shippers table

How It Works

The first column, ShipperID, is an identity column, and you can’t insert values into it
explicitly—SQL Server database engine will make sure that a unique and SQL server–
generated value is inserted for the ShipperID field. So, the INSERT statement needs to be
written in such a way that you specify the column list you want to insert values for explic-
itly; though the Shippers table contains three fields, ShipperID is an identity column, and
it does not expect any value to be inserted from the user. But by default, an INSERT state-
ment cannot judge whether the column you are not passing a value for is an identity
column. Thus, to prevent errors, you specify the column list and then pass the respective
values to these fields as shown in the following query:

insert into shippers(companyname, phone)

values ('GUIPundits', '+91 9820801756')

CHAPTER 5 ■ MANIPULATING DATABASE DATA 89

9004ch05final.qxd 12/13/07 4:17 PM Page 89

■Note INSERT statements have a limitation. When you try to insert data directly into a foreign key table,
and the primary key table has no related parent record, you will receive an error because that value needs to
be available in the primary key table before you insert it into the foreign key table. For example, the Shippers
table is the PK table for the Orders table, which has an FK column named ShipVia that references the PK col-
umn ShipperID of Shippers table. In this scenario, you can’t insert a row until you have inserted it into the
Shippers table.

After inserting the row, return to the dbo.Shippers table in Object Explorer, right-
click, and open the table again. You’ll see that the new row has been added, as shown in
Figure 5-14.

Figure 5-14. The Shippers table after adding a row

Be careful to insert data of the correct data type. In this example, both the columns
are of character type, so you inserted strings. If one of the columns had been of integer
type, you would have inserted an integer value instead.

CHAPTER 5 ■ MANIPULATING DATABASE DATA90

9004ch05final.qxd 12/13/07 4:17 PM Page 90

Updating Data
Another important task you need to be able to do is change data. You do this with the
UPDATE statement. When coding UPDATE statements, you must be careful to include a WHERE
clause, or you’ll update all the rows in a table. So, always code an appropriate WHERE
clause, or you won’t change the data you intend to change.

Now that you’re aware of the implications of the UPDATE statement, let’s take a good
look at it. In essence, it’s a simple statement that allows you to update values in one or
more rows and columns.

UPDATE <table>

SET <column1> = <value1>, <column2> = <value2>, ..., <columnN> = <valueN>

WHERE <predicate>

As an example, imagine that the company you added earlier, GUIPundits, has
realized that, though (unfortunately) accurate, its name isn’t good for business, so it’s
changing its name to Pearl HR Solution. To make this change in the database, you first
need to locate the row to change. More than one company could have the same name,
so you shouldn’t use the CompanyName column as the key. Instead, look back at
Figure 5-10 and note the ShipperID value for GUIPundits.

Try It Out: Updating a Row

To change a row’s value, open a New Query window in SQL Server Management Studio
Express. Enter the following query and click Execute.

update shippers

set companyname = 'PearlHRSolution'

where shipperid = 4

How It Works

The ShipperID is the primary key (unique identifier for rows) of the Shippers table, so
you can use it to locate the one row we want to update. Running the query should pro-
duce a Messages pane reporting “(1 row(s) affected)”. Switch back to Object Explorer and
open the Shippers table, and you’ll see that CompanyName has changed, as shown in
Figure 5-15.

CHAPTER 5 ■ MANIPULATING DATABASE DATA 91

9004ch05final.qxd 12/13/07 4:17 PM Page 91

Figure 5-15. The Shippers table after updating a row

When you update more than one column, you still use the SET keyword only once,
and separate column names and their respective values you want to set by comma. For
example, the following statement would change both the name and the phone of the
company:

update shippers

set companyname = 'PearlHRSolution',

phone = '+91 9819133949'

where shipperid = 4

If you were to switch back to Object Explorer and open the Shippers table, you would
see that the time value for Phone has also changed, as shown in Figure 5-16.

CHAPTER 5 ■ MANIPULATING DATABASE DATA92

9004ch05final.qxd 12/13/07 4:17 PM Page 92

Figure 5-16. The Shippers table after updating multiple columns of a row

Deleting Data
The final important task you need to be able to do that we’ll discuss in this chapter is
remove data. You do this with the DELETE statement. The DELETE statement has the same
implications as the UPDATE statement. It’s all too easy to delete every row (not just the wrong
rows) in a table by forgetting the WHERE clause, so be careful. The DELETE statement removes
entire rows, so it’s not necessary (or possible) to specify columns. Its basic syntax is as fol-
lows (remember, the WHERE clause is optional, but without it all rows will be deleted):

DELETE FROM <table>

WHERE <predicate>

If you need to remove some records from the Shippers table, you need to determine
the primary key of the row you want to remove and use that in the DELETE statement.

delete from shippers

where shipperid = 4

This should produce a Messages pane reporting “(1 row(s) affected)”. Navigate to the
Table – dbo.Shippers pane, right-click, and select Execute SQL, and you’ll see that the
company has been removed, as shown in Figure 5-17.

CHAPTER 5 ■ MANIPULATING DATABASE DATA 93

9004ch05final.qxd 12/13/07 4:17 PM Page 93

Figure 5-17. The Shippers table after deleting a row

If you try to delete one of the remaining three shippers, you’ll get a database error. A
foreign-key relationship exists from Orders (FK) to Shippers (PK), and SSE enforces it,
preventing deletion of Shippers’ rows that are referred to by Orders rows. If the database
were to allow you to drop records from the PK table, the records in the FK table would be
left as orphan records, leaving the database in an inconsistent state. (Chapter 3 discusses
keys.)

Sometimes you do need to remove every row from a table. In such cases, the TRUNCATE
TABLE statement may be preferable to the DELETE statement, since it performs better. The
TRUNCATE TABLE statement is faster because it doesn’t do any logging (saving each row in a
log file before deleting it) to support recovery, while DELETE logs every row removed.

Summary
In this chapter, you saw how to use the following T-SQL keywords to perform data manip-
ulation tasks against a database: SELECT INTO, SELECT, INSERT, UPDATE, and DELETE. You also
saw how to use comparison and other operators to specify predicates that limit what
rows are retrieved or manipulated.

In the next chapter, you will see how stored procedures work.

CHAPTER 5 ■ MANIPULATING DATABASE DATA94

9004ch05final.qxd 12/13/07 4:17 PM Page 94

Using Stored Procedures

Stored procedures are SQL statements that allow you to perform a task repeatedly.
You can create a procedure once and reuse it any number of times in your program.
This can improve the maintainability of your application and allow applications to
access the database in a uniform and optimized manner. The goal of this chapter is to
get you acquainted with stored procedures and understand how C# programs can
interact with them.

In this chapter, we’ll cover the following:

• Creating stored procedures

• Modifying stored procedures

• Displaying definitions of stored procedures

• Renaming stored procedures

• Working with stored procedures in C#

• Deleting stored procedures

Creating Stored Procedures
Stored procedures can have parameters that can be used for input or output and single-
integer return values (that default to zero), and they can return zero or more result sets.
They can be called from client programs or other stored procedures. Because stored
procedures are so powerful, they are becoming the preferred mode for much database
programming, particularly for multitier applications and web services, since (among
their many benefits) they can dramatically reduce network traffic between clients and
database servers.

95

C H A P T E R 6

9004ch06final.qxd 12/13/07 4:16 PM Page 95

Try It Out: Working with a Stored Procedure in SQL Server

Using SQL Server Management Studio Express, you’ll create a stored procedure that pro-
duces a list of the names of employees in the Northwind database. It requires no input
and doesn’t need to set a return value.

1. Open SQL Server Management Studio Express, and in the Connect to Server dia-
log box, select <ServerName>\SQLEXPRESS as the server name and then click
Connect.

2. In Object Explorer, expand the Databases node, select the Northwind database,
and click the New Query button. Enter the following query and click Execute. You
should see the results shown in Figure 6-1.

create procedure sp_Select_All_Employees

as

select

employeeid,

firstname,

lastname

from

employees

Figure 6-1. Creating a stored procedure using SQL Server Management Studio Express

CHAPTER 6 ■ USING STORED PROCEDURES96

9004ch06final.qxd 12/13/07 4:16 PM Page 96

3. To execute the stored procedure, enter the following query and click Execute. You
should see the results shown in Figure 6-2.

execute sp_Select_All_Employees

Figure 6-2. Executing the stored procedure

How It Works

The CREATE PROCEDURE statement creates stored procedures. The AS keyword separates the
signature (the procedure’s name and parameter list, but here you define no parameters)
of the stored procedure from its body (the SQL that makes up the procedure).

create procedure sp_Select_All_Employees

as

After AS, the procedure body has just one component, a simple query.

Select

employeeid,

firstname,

lastname

from

employees

CHAPTER 6 ■ USING STORED PROCEDURES 97

9004ch06final.qxd 12/13/07 4:16 PM Page 97

SQL Server Management Studio Express submitted the CREATE PROCEDURE statement,
and once the stored procedure is created, you run it from the query window by writing
the statement

execute sp_Select_All_Employees

That’s it. There’s nothing complicated about creating stored procedures. The chal-
lenge is coding them when they’re nontrivial, and stored procedures can be quite compli-
cated and can do very powerful things, but that’s well beyond the scope of this book.

■Note The prefix sp_ is a T-SQL convention that typically indicates the stored procedure is coded in SQL.
The prefix xp_ (which stands for extended procedure) is also used to indicate that the stored procedure isn’t
written in SQL. (However, not all sp_ stored procedures provided by SQL Server are written in SQL.) By the
way, hundreds of sp_ (and other) stored procedures are provided by SQL Server 2005 to perform a wide
variety of common tasks.

Although we use sp_ for the purposes of these examples, it is a best practice not to
create a stored procedure prefixed with sp_; doing so has a dramatic effect on the search
mechanism and the way the SQL Server database engine starts searching for that partic-
ular procedure in order to execute.

The SQL Server follows this search order if you are executing a stored procedure that
begins with sp_:

1. SQL Server will search the master database for the existence of the procedure, if it
is available, and then it will call the procedure.

2. If the stored procedure is not available in the master database, SQL Server
searches inside either the database from which you are calling it or the database
whose name you provide as qualifier (database_name.stored_procedure_name).

Therefore, although a user-created stored procedure prefixed with sp_ may exist in
the current database, the master database, which is where the sp_ prefixed stored proce-
dures that come with SQL Server 2005 are stored, is always checked first, even if the
stored procedure is qualified with the database name.

It is also important to note that if any user-defined stored procedure has the same
name as a system stored procedure, and you try calling the user-defined stored proce-
dure, it will never be executed, even if you call it from inside the database where you have
just created it. Only the master database’s version will be called.

CHAPTER 6 ■ USING STORED PROCEDURES98

9004ch06final.qxd 12/13/07 4:16 PM Page 98

Try It Out: Creating a Stored Procedure with an Input Parameter

Here you’ll create a stored procedure that produces a list of orders for a given employee.
You’ll pass the employee ID to the stored procedure for use in a query.

1. Enter the following query and click Execute. You should see the message “Com-
mand(s) completed successfully” in the results window.

create procedure sp_Orders_By_EmployeeId

@employeeid int

as

select orderid, customerid

from orders

where employeeid = @employeeid;

2. To execute the stored procedure, enter the following command along with the
value for the parameter, select it, and then click Execute. You should see the
results shown in Figure 6-3.

execute sp_Orders_By_EmployeeId 2

Figure 6-3. Using an input parameter

CHAPTER 6 ■ USING STORED PROCEDURES 99

9004ch06final.qxd 12/13/07 4:16 PM Page 99

■Tip SQL Server has a very interesting behavior of executing a portion of a query or executing a particular
query out of multiple SQL statements written in the query window, unlike other RDBMSs. This behavior is
shown in the Figure 6-3, in which we have selected a particular statement. Click the Execute button, and
SQL Server will process only the selected statement.

How It Works

The CREATE PROCEDURE statement creates a stored procedure that has one input parameter.
Parameters are specified between the procedure name and the AS keyword. Here you
specify only the parameter name and data type, so by default it is an input parameter.
Parameter names start with @.

create procedure sp_Orders_By_EmployeeId

@employeeid int

as

This parameter is used in the WHERE clause of the query.

where

employeeid = @employeeid;

■Note In this example, a semicolon terminates the query. It’s optional here, but you’ll see when it needs to
be used in the next example.

Try It Out: Creating a Stored Procedure with an
Output Parameter

Output parameters are usually used to pass values between stored procedures, but
sometimes they need to be accessed from C#, so here you’ll see how to write a stored
procedure with an output parameter so you can use it in a C# program later. You’ll also
see how to return a value other than zero.

CHAPTER 6 ■ USING STORED PROCEDURES100

9004ch06final.qxd 12/13/07 4:16 PM Page 100

1. Enter the following query and click Execute. You should see the message “Com-
mand(s) completed successfully” in the results window.

create procedure sp_Orders_By_EmployeeId2

@employeeid int,

@ordercount int = 0 output

as

select orderid,customerid

from orders

where employeeid = @employeeid;

select @ordercount = count(*)

from orders

where employeeid = @employeeid

return @ordercount

2. Now you need to test your stored procedure. To do so, enter the following state-
ments in the query window, making sure that you either replace the earlier
statements or select only these statements while executing.

Declare @return_value int,

@ordercount int

Execute @return_value=sp_Orders_By_EmployeeId2

@employeeId=2,

@ordercount=@ordercount output

Select @ordercount as '@ordercount'

Select 'Return value' =@return_value

You should get the results shown in Figure 6-4. Note that both the @ordercount and
Return value rows show 96.

CHAPTER 6 ■ USING STORED PROCEDURES 101

9004ch06final.qxd 12/13/07 4:16 PM Page 101

Figure 6-4. Using an output parameter

How It Works

You add an output parameter, @ordercount, assigning a default value of zero.

create procedure sp_Orders_By_EmployeeId2

@employeeid int,

@ordercount int = 0 output

as

select orderid,customerid

from orders

where employeeid = @employeeid;

The keyword output marks it as an output parameter.
You also add an additional query.

select @ordercount = count(*)

from orders

where employeeid = @employeeid

CHAPTER 6 ■ USING STORED PROCEDURES102

9004ch06final.qxd 12/13/07 4:16 PM Page 102

In this example, you need the semicolon in sp_Orders_By_EmployeeId2 to separate the
first query from the second. You assign the scalar returned by the new query to the out-
put parameter in the SELECT list:

@ordercount = count(*)

and then you returned the same value:

return @ordercount

The COUNT function returns an integer, which makes this a convenient way to demon-
strate how to use the RETURN statement.

■Tip Input parameters can also be assigned default values.

There are other ways to do these (and many other) things with stored procedures.
We’ve done all we need for this chapter, since our main objective is not teaching you how
to write stored procedures, but how to use them in C#. However, we’ll show you how to
modify and delete stored procedures in the remainder of this chapter.

Modifying Stored Procedures
Now we’ll show you how to modify the sp_Select_All_Employees stored procedure you
have created.

Try It Out: Modifying the Stored Procedure

To modify the sp_Select_All_Employees stored procedure you created earlier in the chap-
ter, follow these steps:

CHAPTER 6 ■ USING STORED PROCEDURES 103

9004ch06final.qxd 12/13/07 4:16 PM Page 103

1. Modify sp_Select_All_Employees as shown in the following code, and add an ORDER
BY clause (see Figure 6-5).

Alter procedure sp_Select_All_Employees

as

select employeeid,firstname,lastname

from employees

order by lastname,firstname

Figure 6-5. Modifying the stored procedure

CHAPTER 6 ■ USING STORED PROCEDURES104

9004ch06final.qxd 12/13/07 4:16 PM Page 104

2. Execute the stored procedure using the statement shown in the Figure 6-6. Notice
that the employee names are now sorted by last name and then by first name;
compare this to the results shown earlier in Figure 6-2, in which records are not
sorted.

Figure 6-6. Executing the modified stored procedure

How It Works

After you execute the ALTER PROCEDURE statement, the stored procedure is updated in the
database.

Alter procedure sp_Select_All_Employees

Including the ORDER BY clause while modifying the procedure results in the output
being sorted in ascending order by last name and then by first name.

order by lastname,firstname

CHAPTER 6 ■ USING STORED PROCEDURES 105

9004ch06final.qxd 12/13/07 4:16 PM Page 105

Displaying Definitions of Stored Procedures
SQL Server offers a mechanism of viewing the definition of the objects created in the
database. This is known as metadata retrieval. The information about objects is stored in
some predefined system stored procedures that can be retrieved whenever required.

Try It Out: Viewing the Definition of Your Stored Procedure

To view the definition of your stored procedure, follow these steps:

1. Enter the following statement in the query window:

Execute sp_helptext 'sp_Select_All_Employees'

2. Go to the Query menu, select Results To ➤ Results to Text, and then click Execute.
You will see the same definition you specified for sp_Select_All_Employees. The
output should be as shown in Figure 6-7.

Figure 6-7. Displaying the definition of a stored procedure

CHAPTER 6 ■ USING STORED PROCEDURES106

9004ch06final.qxd 12/13/07 4:16 PM Page 106

How It Works

The statement sp_helptext is a predefined SQL Server stored procedure that accepts an
object name as parameter and shows the definition of that passed object.

Execute sp_helptext 'sp_Select_All_Employees'

■Note The sp_helptext statement doesn’t work with table objects, (e.g., you can’t see the definition of
the CREATE TABLE statement used while creating a table object).

Renaming Stored Procedures
SQL Server allows you to rename objects using the predefined stored procedure
sp_rename. In the following example, you’ll see how to use it to change a stored proce-
dure’s name.

Try It Out: Renaming a Stored Procedure

To rename a stored procedure, follow these steps:

1. Enter the following statement in the query window:

Execute sp_rename 'sp_Select_All_Employees', 'sp_Select_Employees_Details'

2. Click Execute, and you will see the following message in the results window, even
though sp_rename has been executed successfully: “Caution: Changing any part of
an object name could break scripts and stored procedures.”

3. Now go to Object Explorer, expand the Northwind database node, and then
expand the Programmability node. Select the Stored Procedures node, right-click,
and select Refresh.

4. Expand the Stored Procedures node and notice that sp_Select_All_Employees has
been renamed to sp_Select_Employees_Details. Your screen should resemble
Figure 6-8.

CHAPTER 6 ■ USING STORED PROCEDURES 107

9004ch06final.qxd 12/13/07 4:16 PM Page 107

Figure 6-8. Renaming a stored procedure

How It Works

The sp_rename statement accepts an object’s old name and then the object’s new name as
parameters.

Execute sp_rename 'sp_Select_All_Employees', 'sp_Select_Employees_Details'

■Note sp_rename works very well with most the objects, such as tables, columns, and others to
rename them.

Working with Stored Procedures in C#
Now that you’ve created some stored procedures, you can use them with C#.

CHAPTER 6 ■ USING STORED PROCEDURES108

9004ch06final.qxd 12/13/07 4:16 PM Page 108

Try It Out: Executing a Stored Procedure with No
Input Parameters

Here, you’ll execute sp_Select_Employees_Details, which takes no input and returns only a
result set, a list of all employees sorted by name.

1. Create a new Console Application project named CallSp1. Rename the CallSp1
Solution to Chapter6.

2. Rename the Program.cs file to CallSp1.cs, and replace the generated code with the
code in Listing 6-1.

■Note You can easily rename the solution and project by selecting them, right-clicking, and selecting the
Rename option.

Listing 6-1. CallSp1.cs.

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter6

{

class CallSp1

{

static void Main()

{

// create connection

SqlConnection conn = new SqlConnection

(@"server = .\sqlexpress;

integrated security = true;

database = northwind");

try

{

// open connection

conn.Open();

// create command

SqlCommand cmd = conn.CreateCommand();

CHAPTER 6 ■ USING STORED PROCEDURES 109

9004ch06final.qxd 12/13/07 4:16 PM Page 109

// specify stored procedure to execute

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_select_employees_details";

// execute command

SqlDataReader rdr = cmd.ExecuteReader();

// process the result set

while (rdr.Read())

{

Console.WriteLine(

"{0} {1} {2}"

,rdr[0].ToString().PadRight(5)

,rdr[1].ToString()

,rdr[2].ToString());

}

rdr.Close();

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

conn.Close();

}

}

}

}

3. Build and run the solution by pressing Ctrl+F5. You should see the results in
Figure 6-9.

Figure 6-9. Running a stored procedure with C#

CHAPTER 6 ■ USING STORED PROCEDURES110

9004ch06final.qxd 12/13/07 4:16 PM Page 110

How It Works

You use the connection’s CreateCommand method and then specify the command type is for
a stored procedure call rather than a query. Finally, you set the command text to the
stored procedure name.

// create command

SqlCommand cmd = conn.CreateCommand();

// specify stored procedure to execute

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_select_ employees_details";

The rest of the code changes only trivially to handle displaying the extra column. You
used ExecuteReader just as you would for a query, which makes sense, since the stored
procedure simply executes a query and returns a result set.

// execute command

SqlDataReader rdr = cmd.ExecuteReader();

Try It Out: Executing a Stored Procedure with Parameters

In this example, you’ll call the sp_Orders_By_EmployeeId2 stored procedure, supplying the
employee ID as an input parameter and displaying the result set, the output parameter,
and the return value.

1. Add a new C# Console Application project named CallSp2 to your Chapter6 solu-
tion. Rename Program.cs to CallSp2.cs.

2. Replace the code in CallSp2.cs with the code in Listing 6-2.

Listing 6-2. CallSp2.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter6

{

class CallSp2

{

static void Main()

{

CHAPTER 6 ■ USING STORED PROCEDURES 111

9004ch06final.qxd 12/13/07 4:16 PM Page 111

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

try

{

// open connection

conn.Open();

// create command

SqlCommand cmd = conn.CreateCommand();

// specify stored procedure to execute

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_orders_by_employeeid2";

// create input parameter

SqlParameter inparm = cmd.Parameters.Add(

"@employeeid", SqlDbType.Int);

inparm.Direction = ParameterDirection.Input;

inparm.Value = 2;

// create output parameter

SqlParameter ouparm = cmd.Parameters.Add(

"@ordercount", SqlDbType.Int);

ouparm.Direction = ParameterDirection.Output;

// create return value parameter

SqlParameter retval = cmd.Parameters.Add(

"return_value", SqlDbType.Int);

retval.Direction = ParameterDirection.ReturnValue;

// execute command

SqlDataReader rdr = cmd.ExecuteReader();

CHAPTER 6 ■ USING STORED PROCEDURES112

9004ch06final.qxd 12/13/07 4:16 PM Page 112

// process the result set

while (rdr.Read())

{

Console.WriteLine(

"{0} {1}"

, rdr[0].ToString().PadRight(5)

, rdr[1].ToString());

}

rdr.Close();

// display output parameter value

Console.WriteLine(

"The output parameter value is {0}"

, cmd.Parameters["@ordercount"].Value);

// display return value

Console.WriteLine(

"The return value is {0}"

, cmd.Parameters["return_value"].Value);

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

conn.Close();

}

}

}

}

3. Make this the startup project and run it by pressing Ctrl+F5. You should see the
results shown in Figure 6-10.

CHAPTER 6 ■ USING STORED PROCEDURES 113

9004ch06final.qxd 12/13/07 4:16 PM Page 113

mailto:Parameters["@ordercount"].Value

Figure 6-10. Using parameters and the return value with C#

How It Works

This is very much like the previous example. The main difference is that you add three
command parameters, specifying the kind of parameter with the Direction property.

// create input parameter

SqlParameter inparm = cmd.Parameters.Add(

"@employeeid"

, SqlDbType.Int

);

inparm.Direction = ParameterDirection.Input;

inparm.Value = 2;

// create output parameter

SqlParameter ouparm = cmd.Parameters.Add(

"@ordercount"

, SqlDbType.Int

);

ouparm.Direction = ParameterDirection.Output;

// create return value parameter

SqlParameter retval = cmd.Parameters.Add(

"return_value"

, SqlDbType.Int

);

retval.Direction = ParameterDirection.ReturnValue;

CHAPTER 6 ■ USING STORED PROCEDURES114

9004ch06final.qxd 12/13/07 4:16 PM Page 114

You set the input parameter value to 2 before the call:

inparm.Value = 2;

and retrieve the values for the output parameter and return value by indexing into the
command’s parameters collection after the stored procedure is returned.

// display output parameter value

Console.WriteLine(

"The output parameter value is {0}"

, cmd.Parameters["@ordercount"].Value

);

// display return value

Console.WriteLine(

"The return value is {0}"

, cmd.Parameters["return_value"].Value

);

You can create as many input and output parameters as you need. You must provide
command parameters for all input parameters that don’t have default values. You don’t
have to provide command parameters for any output parameters you don’t need to use.
Input and output parameter names must agree with the parameter names in the stored
procedure, except for case (remember that T-SQL is not case sensitive).

Though it’s handled in ADO.NET as a command parameter, there is always only one
return value. Like output parameters, you don’t need to create a command parameter for
the return value unless you intend to use it. But unlike input and output parameters, you
can give it whatever parameter name you choose.

Deleting Stored Procedures
Once a stored procedure is created, it can also be deleted if its functionality is not
required.

Try It Out: Deleting a Stored Procedure

You’ll delete your first stored procedure (sp_Select_All_Employees), which you renamed to
sp_Select_Employees_Details.

CHAPTER 6 ■ USING STORED PROCEDURES 115

9004ch06final.qxd 12/13/07 4:16 PM Page 115

mailto:Parameters["@ordercount"].Value

1. Replace the query with the following statement in the query window and click
Execute.

Drop procedure sp_Select_Employees_Details

You will see the following message: “Command(s) completed successfully.”

2. Navigate to Object Explorer, expand the Northwind database node, and then
expand the Programmability node. Select the Stored Procedures node, right-click,
and select Refresh. Notice that the procedure sp_Select_Employees_Details has
been deleted, as it is no longer listed in Object Explorer (see Figure 6-11).

Figure 6-11. Deleting a stored procedure

How It Works

SQL Server offers the DROP statement to remove objects. To remove the stored procedure,
you use

drop procedure sp_Select_Employees_Details

In this statement, DROP takes the procedure sp_Select_Employees_Details as its value
and will thus remove it.

CHAPTER 6 ■ USING STORED PROCEDURES116

9004ch06final.qxd 12/13/07 4:16 PM Page 116

Summary
In this chapter, you created stored procedures; you developed an understanding of what’s
involved in calling stored procedures from C#. You saw that calling stored procedures
isn’t inherently different from executing queries and statements; you simply create
appropriate command parameters for the stored procedure parameters you need to use.
You also learned about modifying a stored procedure, retrieving metadata information,
and renaming and deleting a stored procedure, as well as calling a stored procedure from
C# applications using ADO .NET.

In the next chapter, you will see how to work with XML.

CHAPTER 6 ■ USING STORED PROCEDURES 117

9004ch06final.qxd 12/13/07 4:16 PM Page 117

9004ch06final.qxd 12/13/07 4:16 PM Page 118

Using XML

XML has been around for many years; with the release of Microsoft .NET technology,
XML has become even more popular. Microsoft’s development tools and technologies
have built-in features to support XML. The advantages of using XML and its related tech-
nologies are major foundations of both the Internet and .NET.

Our goal in this chapter is to introduce you to the most essential XML concepts and
terminology and the most basic techniques for using XML with SQL Server 2005. This
will enable you to handle some common programming tasks while writing a software
application.

In this chapter, we’ll cover the following:

• Defining XML

• Why XML?

• Benefits of storing data as XML

• Understanding XML documents

• Understanding the XML declaration

• Converting relational data to XML

• How to store and retrieve XML documents using the xml data type

Defining XML
XML stands for eXtensible Markup Language. XML, which is derived from SGML (Stan-
dard Generalized Markup Language), is a metalanguage. A metalanguage isn’t used for
programming but rather for defining other languages, and the languages XML defines are
known as markup languages. Markup is exactly what it implies: a means of “marking up”
something. The XML document is in the form of a text document, and it can be read by
both humans and computers.

119

C H A P T E R 7

9004ch07final.qxd 12/13/07 4:14 PM Page 119

■Note In essence, each XML document is an instance of a language defined by the XML elements used
in the document. The specific language may or may not have been explicitly defined, but professional use of
XML demands carefully planning one’s XML vocabulary and specifying its definition in a schema that can be
used to validate that documents adhere to both the syntax and semantics of a vocabulary. The XML Schema
Definition language (usually referred to as XSD) is the language for defining XML vocabularies.

The World Wide Web Consortium (W3C) developed XML in 1996. Intended to sup-
port a wide variety of applications, XML was used by the W3C to create eXtensible HTML
(XHTML), an XML vocabulary. Since 1996, the W3C has developed a variety of other
XML-oriented technologies, including eXtensible Stylesheet Language (XSL), which pro-
vides the same kind of facility for XHTML that Cascading Style Sheets (CSS) does for
HTML, and XSL Transformations (XSLT), which is a language for transforming XML doc-
uments into other XML documents.

Why XML?
XML is multipurpose, extensible data representation technology. XML increases the pos-
sibilities for applications to consume and manipulate data. XML data is different from
relational data in that it can be structured, semistructured, or unstructured. XML support
in SQL Server 2005 is fully integrated with the relational engine and query optimizer,
allowing the retrieval and modification of XML data and even the conversion between
XML and relational data representations.

Benefits of Storing Data As XML
XML is a platform-independent, data-representation format that offers certain benefits
over a relational format for specific data representation requirements.

Storing data as XML offers many benefits, such as the following:

• Since XML is self-describing, applications can consume XML data without know-
ing the schema or structure. XML data is always arranged hierarchically in a tree
structure form. XML tree structure must always have a root, or parent node, which
is known as an XML document.

• XML maintains document ordering. Because XML is arranged in tree structure,
maintaining node order becomes easy.

• XML Schema is used to define valid XML document structure.

CHAPTER 7 ■ USING XML120

9004ch07final.qxd 12/13/07 4:14 PM Page 120

• Because of XML’s hierarchical structure, you can search inside the tree structures.
XQuery and XPath are the query languages designed to search XML data.

• Data stored as XML is extensible. It is easy to manipulate XML data by inserting,
modifying, and deleting nodes.

■Note Well-formed XML is an XML document that meets a set of constraints specified by the W3C recom-
mendation for XML 1.0. For example, well-formed XML must contain a root-level element, and any other
nested elements must open and close properly without intermixing.

SQL Server 2005 validates some of the constraints of well-formed XML. Some rules such as the require-
ment for a root-level element are not enforced. For a complete list of requirements for well-formed XML, refer
to the W3C recommendations for XML 1.0 at http://www.w3.org/TR/REC-xml.

Understanding XML Documents
An XML document could be a physical file on a computer, a data stream over a network
(in theory, formatted so a human could read it, but in practice, often in compressed
binary form), or just a string in memory. It has to be complete in itself, however, and
even without a schema, it must obey certain rules.

The most fundamental rule is that XML documents must be well formed. At its sim-
plest, this means that overlapping elements aren’t allowed, so you must close all child
elements before the end tag of their parent element. For example, this XML document is
well formed:

<states>

<state>

<name>Delaware</name>

<city>Dover</city>

<city>Wilmington</city>

</state>

</states>

It has a root (or document) element, states, delimited by a start tag, <states>, and an
end tag, </states>. The root element is the parent of the state element, which is in turn
the parent of a name element and two city elements. An XML document can have only
one root element.

Elements may have attributes. In the following example, name is used as an attribute
with the state element:

CHAPTER 7 ■ USING XML 121

9004ch07final.qxd 12/13/07 4:14 PM Page 121

http://www.w3.org/TR/REC-xml

<states>

<state name="Delaware">

<city>Dover</city>

<city>Wilmington</city>

</state>

</states>

This retains the same information as the earlier example, replacing the name element,
which occurs only once, with a name attribute and changing the content of the original
element (Delaware) into the value of the attribute ("Delaware"). An element may have any
number of attributes, but it may not have duplicate attributes, so the city elements
weren’t candidates for replacement.

Elements may have content (text data or other elements), or they may be empty. For
example, just for the sake of argument, if you want to keep track of how many states are
in the document, you could use an empty element to do it:

<states>

<controlinfo count="1"/>

<state name="Delaware">

<city>Dover</city>

<city>Wilmington</city>

</state>

</states>

The empty element, controlinfo, has one attribute, count, but no content. Note that
it isn’t delimited by start and end tags, but exists within an empty element tag (that starts
with < and ends with />).

An alternative syntax for empty elements, using start and end tags, is also valid:

<controlinfo count="1"></controlinfo>

Many programs that generate XML use this form.

■Note Though it’s easy to design XML documents, designing them well is as much a challenge as design-
ing a database. Many experienced XML designers disagree over the best use of attributes and even whether
attributes should be used at all (and without attributes, empty elements have virtually no use). While elements
may in some ways map more ideally to relational data, this doesn’t mean that attributes have no place in
XML design. After all, XML isn’t intended to (and in principle can’t) conform to the relational model of data.
In fact, you’ll see that a “pure” element-only design can be more difficult to work with in T-SQL.

CHAPTER 7 ■ USING XML122

9004ch07final.qxd 12/13/07 4:14 PM Page 122

Understanding the XML Declaration
In addition to elements and attributes, XML documents can have other parts, but most
of them are important only if you really need to delve deeply into XML. Though it is
optional, the XML declaration is one part that should be included in an XML document
to precisely conform to the W3C recommendation. If used, it must occur before the root
element in an XML document.

The XML declaration is similar in format to an element, but it has question marks
immediately next to the angle brackets. It always has an attribute named version; cur-
rently, this has two possible values: "1.0" and "1.1". (A couple other attributes are defined
but aren’t required.) So, the simplest form of an XML declaration is

<?xml version="1.0" ?>

XML has other aspects, but this is all you need to get started. In fact, this may be all
you’ll ever need to be quite effective. As you’ll see, we don’t use any XML declarations (or
even more important things such as XML schemas and namespaces) for our XML docu-
ments, yet our small examples work well, are representative of fundamental XML proces-
sing, and could be scaled up to much larger XML documents.

Converting Relational Data to XML
A SELECT query returns results as a row set. You can optionally retrieve results of a SQL
query as XML by specifying the FOR XML clause in the query. SQL Server 2005 enables you
to extract relational data into XML form, by using the FOR XML clause in the SELECT state-
ment. SQL Server 2005 extends the FOR XML capabilities, making it easier to represent com-
plex hierarchical structures and add new keywords to modify the resulting XML structure.

■Note In Chapter 13, we’ll show how to extract data from a dataset, convert it into XML, and write it to a
file with the dataset’s WriteXml method.

The FOR XML clause converts result sets from a query into an XML structure, and it
provides four modes of formatting:

• FOR XML RAW

• FOR XML AUTO

CHAPTER 7 ■ USING XML 123

9004ch07final.qxd 12/13/07 4:14 PM Page 123

• FOR XML PATH

• FOR XML EXPLICIT

We’ll use the first two in examples to show how to generate XML with a query.

Using FOR XML RAW

The FOR XML RAW mode transforms each row in the query result set into an XML element
identified as row for each row displayed in the result set. Each column name in the SELECT
statement is added as an attribute to the row element while displaying the result set.

By default, each column value in the row set that is not null is mapped to an attribute
of the row element.

Try It Out: Using FOR XML RAW (Attribute Centric)

To use FOR XML RAW to transform returned rows into XML elements, follow these steps:

1. Open SQL Server Management Studio Express, and in the Connect to Server dia-
log box select <ServerName>\SQLEXPRESS as the server name and click Connect.

2. In Object Explorer, expand the Databases node, select the AdventureWorks data-
base, and click the New Query button. Enter the following query and click
Execute:

SELECT ProductModelID, Name

FROM Production.ProductModel

WHERE ProductModelID between 98 and 101

FOR XML RAW

3. You will see a link in the results pane of the query window. Click the link, and you
should see the results shown in Figure 7-1.

CHAPTER 7 ■ USING XML124

9004ch07final.qxd 12/13/07 4:14 PM Page 124

Figure 7-1. Using FOR XML RAW

How It Works

FOR XML RAW mode produces very “raw” XML. It turns each row in the result set into an
XML row empty element and uses an attribute for each of the column values, using the
alias names you specify in the query as the attribute names. It produces a string com-
posed of all the elements.

FOR XML RAW mode doesn’t produce an XML document, since it has as many root ele-
ments (raw) as there are rows in the result set, and an XML document can have only one
root element.

Try It Out: Using FOR XML RAW (Element Centric)

To change the formatting from attribute centric (as shown in the previous example) to
element centric, which means that a new element will be created for each column, you
need to add the ELEMENTS keyword after the FOR XML RAW clause as shown in the following
example:

CHAPTER 7 ■ USING XML 125

9004ch07final.qxd 12/13/07 4:14 PM Page 125

1. Replace the existing query in the query window with the following query and click
Execute:

SELECT ProductModelID, Name

FROM Production.ProductModel

WHERE ProductModelID between 98 and 101

FOR XML RAW,ELEMENTS

2. You will see a link in the results pane of the query window. Click the link, and you
should see the results shown in Figure 7-2.

Figure 7-2. Using FOR XML RAW ELEMENTS

How It Works

FOR XML RAW ELEMENTS mode ode produces very “element-centric” XML. It turns each row
in the result set where each column is converted into an attribute.

FOR XML RAW ELEMENTS mode also doesn’t produce an XML document, since it has as
many root elements (raw) as there are rows in the result set, and an XML document can
have only one root element.

Try It Out: Renaming the row Element

For each row in the result set, the FOR XML RAW mode generates a row element. You can
optionally specify another name for this element by including an optional argument in

CHAPTER 7 ■ USING XML126

9004ch07final.qxd 12/13/07 4:14 PM Page 126

the FOR XML RAW mode, as shown in the following example. To achieve this, you need to
add an alias after the FOR XML RAW clause, which you’ll do now.

1. Replace the existing query in the query window with the following query, and click
Execute.

SELECT ProductModelID, Name

FROM Production.ProductModel

WHERE ProductModelID between 98 and 101

FOR XML RAW ('ProductModelDetail'),ELEMENTS

2. You will see a link in the results pane of the query window. Click the link, and you
should see the results shown in Figure 7-3.

Figure 7-3. Renaming the row element

How It Works

FOR XML RAW ('alias') mode produces output where the row element is renamed to the
alias specified in the query.

Because the ELEMENTS directive is added in the query, the result is element centric,
and this is why the row element is renamed with the alias specified. If you don’t add the
ELEMENTS keyword in the query, the output will be attribute centric, and the row element
will be renamed to the alias specified in the query.

CHAPTER 7 ■ USING XML 127

9004ch07final.qxd 12/13/07 4:14 PM Page 127

Observations About FOR XML RAW Formatting

FOR XML RAW does not provide a root node, and this is why the XML structure is not a well-
formed XML document.

FOR XML RAW supports attribute- and element-centric formatting, which means that
all the columns must be formatted in the same way. Hence it is not possible to have the
XML structure returned with both the XML attributes and XML elements.

FOR XML RAW generates a hierarchy in which all the elements in the XML structure are
at the same level.

Using FOR XML AUTO

FOR XML AUTO mode returns query results as nested XML elements. This does not provide
much control over the shape of the XML generated from a query result. FOR XML AUTO
mode queries are useful if you want to generate simple hierarchies.

Each table in the FROM clause, from which at least one column is listed in the SELECT
clause, is represented as an XML element. The columns listed in the SELECT clause are
mapped to attributes or subelements.

Try It Out: Using FOR XML AUTO

To see how to use FOR XML AUTO to format query results as nested XML elements, follow
these steps:

1. Replace the existing query in the query window with the following query and click
Execute:

SELECT Cust.CustomerID,

OrderHeader.CustomerID,

OrderHeader.SalesOrderID,

OrderHeader.Status,

Cust.CustomerType

FROM Sales.Customer Cust, Sales.SalesOrderHeader

OrderHeader

WHERE Cust.CustomerID = OrderHeader.CustomerID

ORDER BY Cust.CustomerID

FOR XML AUTO

2. You will see a link in the results pane of the query window. Click the link, and you
should see the results shown in Figure 7-4.

CHAPTER 7 ■ USING XML128

9004ch07final.qxd 12/13/07 4:14 PM Page 128

Figure 7-4. Using FOR XML AUTO

How It Works

The CustomerID references the Cust table. Therefore, a Cust element is created and
CustomerID is added as its attribute.

Next, three columns, OrderHeader.CustomerID, OrderHeader.SaleOrderID, and
OrderHeader.Status, reference the OrderHeader table. Therefore, an OrderHeader element
is added as a subelement of the Cust element, and the three columns are added as attrib-
utes of OrderHeader.

Next, the Cust.CustomerType column again references the Cust table that was
already identified by the Cust.CustomerID column. Therefore, no new element is cre-
ated. Instead, the CustomerType attribute is added to the Cust element that was previ-
ously created.

The query specifies aliases for the table names. These aliases appear as correspon-
ding element names. ORDER BY is required to group all children under one parent.

Observations About FOR XML AUTO Formatting

FOR XML AUTO does not provide a root node, and this is why the XML structure is not a
well-formed XML document.

CHAPTER 7 ■ USING XML 129

9004ch07final.qxd 12/13/07 4:14 PM Page 129

FOR XML AUTO supports attribute- and element-centric formatting, which means that
all the columns must be formatted in the same way. Hence it is not possible to have the
XML structure returned with both the XML attributes and XML elements.

FOR XML AUTO does not provide a renaming mechanism the way FOR XML RAW does.
However, FOR XML AUTO uses table and column names and aliases if present.

Using the xml Data Type
SQL Server 2005 has a new data type, xml, that is designed not only for holding XML doc-
uments (which are essentially character strings and can be stored in any character col-
umn big enough to hold them), but also for processing XML documents. When we
discussed parsing an XML document into a DOM tree, we didn’t mention that once it’s
parsed, the XML document can be updated. You can change element contents and attrib-
ute values, and you can add and remove element occurrences to and from the hierarchy.

We won’t update XML documents here, but the xml data type provides methods to do
it. It is a very different kind of SQL Server data type, and describing how to exploit it
would take a book of its own—maybe more than one. Our focus here will be on what
every database programmer needs to know: how to use the xml type to store and retrieve
XML documents.

■Note There are so many ways to process XML documents (even in ADO.NET and with SQLXML, a sup-
port package for SQL Server 2000) that only time will tell if incorporating such features into a SQL Server
data type was worth the effort. Because XML is such an important technology, being able to process XML
documents purely in T-SQL does offer many possibilities, but right now it’s unclear how much more about
the xml data type you’ll ever need to know. At any rate, this chapter will give you what you need to know
to start experimenting with it.

Try It Out: Creating a Table to Store XML

To create a table to hold XML documents, replace the existing query in the query window
with the following query and click Execute:

create table xmltest

(

xid int not null primary key,

xdoc xml not null

)

CHAPTER 7 ■ USING XML130

9004ch07final.qxd 12/13/07 4:15 PM Page 130

How It Works

This works in the same way as a CREATE TABLE statement is expected to work. Though
we’ve said the xml data type is different from other SQL Server data types, columns of xml
type are defined just like any other columns.

■Note The xml data type cannot be used in primary keys.

Now, you’ll insert your XML documents into xmltest and query it to see that they
were stored.

Try It Out: Storing and Retrieving XML Documents

To insert your XML documents, follow these steps:

1. Replace the code in the SQL query window with the following two INSERT
statements:

insert into xmltest

values(

1,

'

<states>

<state>

<abbr>CA</abbr>

<name>California</name>

<city>Berkeley</city>

<city>Los Angeles</city>

<city>Wilmington</city>

</state>

<state>

<abbr>DE</abbr>

<name>Delaware</name>

<city>Newark</city>

<city>Wilmington</city>

</state>

</states>

'

)

CHAPTER 7 ■ USING XML 131

9004ch07final.qxd 12/13/07 4:15 PM Page 131

insert into xmltest

values(

2,

'

<states>

<state abbr="CA" name="California">

<city name="Berkeley"/>

<city name="Los Angeles"/>

<city name="Wilmington"/>

</state>

<state abbr="DE" name="Delaware">

<city name="Newark"/>

<city name="Wilmington"/>

</state>

</states>

'

)

2. Run the two INSERT statements by clicking Execute, and then display the table with
select * from xmltest. You see the two rows displayed. Click the xdoc column in
the first row, and you should see the XML shown in Figure 7-5.

Figure 7-5. Viewing an XML document

CHAPTER 7 ■ USING XML132

9004ch07final.qxd 12/13/07 4:15 PM Page 132

How It Works

This works the same way all INSERTs work. You simply provide the primary keys as inte-
gers and the XML documents as strings. The query works just as expected, too.

Summary
This chapter covered the fundamentals of XML that every C# programmer needs to
know. It also showed you how to use the most frequently used T-SQL features for extract-
ing XML from tables and querying XML documents like tables. Finally, we discussed the
xml data type and gave you some practice using it.

How much more you need to know about XML or T-SQL and ADO.NET facilities
for using XML documents depends on what you need to do. As for many developers,
this chapter may be all you ever really need to know and understand. If you do more
sophisticated XML processing, you now have a strong foundation for experimenting
on your own.

In the next chapter, you will learn about database transactions.

CHAPTER 7 ■ USING XML 133

9004ch07final.qxd 12/13/07 4:15 PM Page 133

9004ch07final.qxd 12/13/07 4:15 PM Page 134

Understanding Transactions

For any business, transactions, which may comprise many individual operations and
even other transactions, play a key role. Transactions are essential for maintaining data
integrity, both for multiple related operations and when multiple users update the data-
base concurrently.

This chapter will talk about the concepts related to transactions and how trans-
actions can be used in SQL Server 2005 and C#.

In this chapter, we’ll cover the following:

• What is a transaction?

• When to use transactions

• Understanding ACID properties

• Transaction design

• Transaction state

• Specifying transaction boundaries

• T-SQL statements allowed in a transaction

• Local transactions in SQL Server 2005

• Distributed transactions in SQL Server 2005

• Guidelines to code efficient transactions

• How to code transactions

What Is a Transaction?
A transaction is a set of operations performed so all operations are guaranteed to succeed
or fail as one unit. 135

C H A P T E R 8

9004ch08final.qxd 12/13/07 4:13 PM Page 135

A common example of a transaction is the process of transferring money from a
checking account to a savings account. This involves two operations: deducting money
from the checking account and adding it to the savings account. Both must succeed
together and be committed to the accounts, or both must fail together and be rolled back
so that the accounts are maintained in a consistent state. Under no circumstances should
money be deducted from the checking account but not added to the savings account (or
vice versa)—at least you would not want this to happen with the transactions occurring
with your bank accounts. By using a transaction, both the operations, namely debit and
credit, can be guaranteed to succeed or fail together. So both accounts remain in a con-
sistent state all the time.

When to Use Transactions
You should use transactions when several operations must succeed or fail as a unit. The
following are some frequent scenarios where use of transactions is recommended:

• In batch processing, where multiple rows must be inserted, updated, or deleted as
a single unit

• Whenever a change to one table requires that other tables be kept consistent

• When modifying data in two or more databases concurrently

• In distributed transactions, where data is manipulated in databases on different
servers

When you use transactions, you place locks on data pending permanent change to
the database. No other operations can take place on locked data until the lock is released.
You could lock anything from a single row up to the whole database. This is called con-
currency, which means how the database handles multiple updates at one time.

In the bank example, locks ensure that two separate transactions don’t access the
same accounts at the same time. If they did, either deposits or withdrawals could be lost.

■Note It’s important to keep transactions pending for the shortest period of time. A lock stops others from
accessing the locked database resource. Too many locks, or locks on frequently accessed resources, can
seriously degrade performance.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS136

9004ch08final.qxd 12/13/07 4:13 PM Page 136

Understanding ACID Properties
A transaction is characterized by four properties, often referred to as the ACID properties:
atomicity, consistency, isolation, and durability.

■Note The term ACID was coined by Andreas Reuter in 1983.

Atomicity: A transaction is atomic if it’s regarded as a single action rather than a col-
lection of separate operations. So, only when all the separate operations succeed
does a transaction succeed and is committed to the database. On the other hand,
if a single operation fails during the transaction, everything is considered to have
failed and must be undone (rolled back) if it has already taken place. In the case of
the order-entry system of the Northwind database, when you enter an order into the
Orders and Order Details tables, data will be saved together in both tables, or
it won’t be saved at all.

Consistency: The transaction should leave the database in a consistent state—
whether or not it completed successfully. The data modified by the transaction
must comply with all the constraints placed on the columns in order to maintain
data integrity. In the case of Northwind, you can’t have rows in the Order Details
table without a corresponding row in the Orders table, as this would leave the data
in an inconsistent state.

Isolation: Every transaction has a well-defined boundary—that is, it is isolated from
another transaction. One transaction shouldn’t affect other transactions running at
the same time. Data modifications made by one transaction must be isolated from
the data modifications made by all other transactions. A transaction sees data in the
state it was in before another concurrent transaction modified it, or it sees the data
after the second transaction has completed, but it doesn’t see an intermediate state.

Durability: Data modifications that occur within a successful transaction are kept
permanently within the system regardless of what else occurs. Transaction logs are
maintained so that should a failure occur the database can be restored to its original
state before the failure. As each transaction is completed, a row is entered in the
database transaction log. If you have a major system failure that requires the data-
base to be restored from a backup, you could then use this transaction log to insert
(roll forward) any successful transactions that have taken place.

Every database server that offers support for transactions enforces these four ACID
properties automatically.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 137

9004ch08final.qxd 12/13/07 4:13 PM Page 137

Transaction Design
Transactions represent real-world events such as bank transactions, airline reservations,
remittance of funds, and so forth.

The purpose of transaction design is to define and document the high-level charac-
teristics of transactions required on the database system, including the following:

• Data to be used by the transaction

• Functional characteristics of the transaction

• Output of the transaction

• Importance to users

• Expected rate of usage

There are three main types of transactions:

• Retrieval transactions: Retrieves data from display on the screen

• Update transactions: Inserts new records, deletes old records, or modifies existing
records in the database

• Mixed transactions: Involves both retrieval and updating of data

Transaction State
In the absence of failures, all transactions complete successfully. However, a transaction
may not always complete its execution successfully. Such a transaction is termed aborted.

A transaction that completes its execution successfully is said to be committed. Fig-
ure 8-1 shows that if a transaction has been partially committed, it will be committed but
only if it has not failed; and if the transaction has failed, it will be aborted.

Figure 8-1. States of a transaction

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS138

9004ch08final.qxd 12/13/07 4:13 PM Page 138

Specifying Transaction Boundaries
SQL Server transaction boundaries help you to identify when SQL Server transactions
start and end by using API functions and methods:

• Transact-SQL statements: Use the BEGIN TRANSACTION, COMMIT TRANSACTION, COMMIT
WORK, ROLLBACK TRANSACTION, ROLLBACK WORK, and SET IMPLICIT_TRANSACTIONS state-
ments to delineate transactions. These are primarily used in DB-Library appli-
cations and in T-SQL scripts, such as the scripts that are run using the osql
command-prompt utility.

• API functions and methods: Database APIs such as ODBC, OLE DB, ADO, and the
.NET Framework SQLClient namespace contain functions or methods used to
delineate transactions. These are the primary mechanisms used to control trans-
actions in a database engine application.

Each transaction must be managed by only one of these methods. Using both meth-
ods on the same transaction can lead to undefined results. For example, you should not
start a transaction using the ODBC API functions, and then use the T-SQL COMMIT state-
ment to complete the transaction. This would not notify the SQL Server ODBC driver that
the transaction was committed. In this case, use the ODBC SQLEndTran function to end
the transaction.

T-SQL Statements Allowed in a Transaction
You can use all T-SQL statements in a transaction, except for the following statements:
ALTER DATABASE, RECONFIGURE, BACKUP, RESTORE, CREATE DATABASE, UPDATE STATISTICS, and
DROP DATABASE.

Also, you cannot use sp_dboption to set database options or use any system proce-
dures that modify the master database inside explicit or implicit transactions.

Local Transactions in SQL Server 2005
All database engines are supposed to provide built-in support for transactions. Trans-
actions that are restricted to only a single resource or database are known as local
transactions. Local transactions can be in one of the following four transaction modes:

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 139

9004ch08final.qxd 12/13/07 4:13 PM Page 139

Autocommit Transactions Autocommit mode is the default transaction management
mode of SQL Server. Every T-SQL statement is committed or rolled back when it is com-
pleted. If a statement completes successfully, it is committed; if it encounters any errors,
it is bound to roll back. A SQL Server connection operates in autocommit mode when-
ever this default mode has not been overridden by any type transactions.

Explicit Transactions Explicit transactions are those in which you explicitly control when
the transaction begins and when it ends. Prior to SQL Server 2000, explicit transactions
were also called user-defined or user-specified transactions.

T-SQL scripts for this mode use the BEGIN TRANSACTION, COMMIT TRANSACTION, and
ROLLBACK TRANSACTION statements. Explicit transaction mode lasts only for the duration
of the transaction. When the transaction ends, the connection returns to the transaction
mode it was in before the explicit transaction was started.

Implicit Transactions When you connect to a database using SQL Server Management
Studio Express and execute a DML query, the changes are automatically saved. This
occurs because, by default, the connection is in autocommit transaction mode. If you
want no changes to be committed unless you explicitly indicate so, you need to set the
connection to implicit transaction mode.

You can set the database connection to implicit transaction mode by using SET
IMPLICIT _TRANSACTIONS ON|OFF.

After implicit transaction mode has been set to ON for a connection, SQL Server auto-
matically starts a transaction when it first executes any of the following statements: ALTER
TABLE, CREATE, DELETE, DROP, FETCH, GRANT, INSERT, OPEN, REVOKE, SELECT, TRUNCATE TABLE, and
UPDATE.

The transaction remains in effect until a COMMIT or ROLLBACK statement has been
explicitly issued. This means that when, say, an UPDATE statement is issued on a particular
record in a database, SQL Server will maintain a lock on the data scoped for data modifi-
cation until either a COMMIT or ROLLBACK is issued. In case neither of these commands is
issued, the transaction will be automatically rolled back when the user disconnects. This
is why it is not a best practice to use implicit transaction mode on a highly concurrent
database.

Batch-Scoped Transactions A connection can be in batch-scoped transaction mode, if the
transaction running in it is Multiple Active Result Sets (MARS) enabled. Basically MARS
has an associated batch execution environment, as it allows ADO .NET to take advantage
of SQL Server 2005’s capability of having multiple active commands on a single connec-
tion object.

When MARS is enabled, you can have multiple interleaved batches executing at the
same time, so all the changes made to the execution environment are scoped to the spe-
cific batch until the execution of the batch is complete. Once the execution of the batch

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS140

9004ch08final.qxd 12/13/07 4:13 PM Page 140

completes, the execution settings are copied to the default environment. Thus a connec-
tion is said to be using batch-scoped transaction mode if it is running a transaction, has
MARS enabled on it, and has multiple batches running at the same time.

MARS allows executing multiple interleaved batches of commands. However, MARS
does not let you have multiple transactions on the same connection, it only allows having
Multiple Active Result Sets.

Distributed Transactions in SQL Server 2005
In contrast to local transactions, which are restricted to a single resource or database,
distributed transactions span two or more servers, which are known as resource man-
agers. Transaction management needs to be coordinated among the resource managers
via a server component known as a transaction manager or transaction coordinator. SQL
Server can operate as a resource manager for distributed transactions coordinated by
transaction managers such as the Microsoft Distributed Transaction Coordinator (MS DTC).

A transaction with a single SQL Server that spans two or more databases is actually
a distributed transaction. SQL Server, however, manages the distributed transaction
internally.

At the application level, a distributed transaction is managed in much the same way
as a local transaction. At the end of the transaction, the application requests the trans-
action to be either committed or rolled back. A distributed commit must be managed
differently by the transaction manager to minimize the risk that a network failure might
lead you to a situation when one of the resource managers is committing instead of
rolling back the transactions due to failure caused by various reasons. This critical situa-
tion can be handled by managing the commit process in two phases, also known as two-
phase commit:

Prepare phase: When the transaction manager receives a commit request, it sends a
prepare command to all of the resource managers involved in the transaction. Each
resource manager then does everything required to make the transaction durable,
and all buffers holding any of the log images for other transactions are flushed to
disk. As each resource manager completes the prepare phase, it returns success or
failure of the prepare phase to the transaction manager.

Commit phase: If the transaction manager receives successful prepares from all of
the resource managers, it sends a COMMIT command to each resource manager. If all
of the resource managers report a successful commit, the transaction manager sends
notification of success to the application. If any resource manager reports a failure to
prepare, the transaction manager sends a ROLLBACK statement to each resource man-
ager and indicates the failure of the commit to the application.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 141

9004ch08final.qxd 12/13/07 4:13 PM Page 141

Guidelines to Code Efficient Transactions
We recommend you use the following guidelines while coding transactions to make them
as efficient as possible:

• Do not require input from users during a transaction.

Get all required input from users before a transaction is started. If additional user
input is required during a transaction, roll back the current transaction and restart
the transaction after the user input is supplied. Even if users respond immediately,
human reaction times are vastly slower than computer speeds. All resources held
by the transaction are held for an extremely long time, which has the potential to
cause blocking problems. If users do not respond, the transaction remains active,
locking critical resources until they respond, which may not happen for several
minutes or even hours.

• Do not open a transaction while browsing through data, if at all possible.

Transactions should not be started until all preliminary data analysis has been
completed.

• Keep the transaction as short as possible.

After you know the modifications that have to be made, start a transaction, execute
the modification statements, and then immediately commit or roll back. Do not
open the transaction before it is required.

• Make intelligent use of lower cursor concurrency options, such as optimistic concur-
rency options.

In a system with a low probability of concurrent updates, the overhead of dealing
with an occasional “somebody else changed your data after you read it” error can
be much lower than the overhead of always locking rows as they are read.

• Access the least amount of data possible while in a transaction.

The smaller the amount of data that you access in the transaction, the fewer the
number of rows that will be locked, reducing contention between transactions.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS142

9004ch08final.qxd 12/13/07 4:13 PM Page 142

How to Code Transactions
The following three T-SQL statements control transactions in SQL Server:

• BEGIN TRANSACTION: This marks the beginning of a transaction.

• COMMIT TRANSACTION: This marks the successful end of a transaction. It signals the
database to save the work.

• ROLLBACK TRANSACTION: This denotes that a transaction hasn’t been successful and
signals the database to roll back to the state it was in prior to the transaction.

Note that there is no END TRANSACTION statement. Transactions end on (explicit or
implicit) commits and rollbacks.

Coding Transactions in T-SQL

You’ll use a stored procedure to practice coding transactions in SQL. It’s an intentionally
artificial example but representative of transaction processing fundamentals. It keeps
things simple so you can focus on the important issue of what can happen in a trans-
action. That’s what you really need to understand, especially when you later code the
same transaction in C#.

■Warning Using ROLLBACK and COMMIT inside stored procedures typically requires careful consideration
of what transactions may already be in progress and have led to the stored procedure call. The example runs
by itself, so you don’t need to be concerned with this here, but you should always consider whether it’s a
potential issue.

Try It Out: Coding a Transaction in T-SQL

Here, you’ll code a transaction to both add a customer to and delete one from the
Northwind Customers table. The Customers table has eleven columns; two columns,
CustomerID and CompanyName, don’t allow null values, whereas the rest do, so you’ll
use just the CustomerID and CompanyName columns for inserting values. You’ll also use
arbitrary customer IDs to make it easy to find the rows you manipulate when viewing
customers sorted by ID.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 143

9004ch08final.qxd 12/13/07 4:13 PM Page 143

1. Open SQL Server Management Studio Express, and in the Connect to Server dia-
log box, select <ServerName>\SQLEXPRESS as the server name and then click
Connect.

2. In Object Explorer, expand the Databases node, select the Northwind database,
and click the New Query button.

3. Create a stored procedure named sp_Trans_Test using the code in Listing 8-1.

Listing 8-1. sp_Trans_Test

create procedure sp_Trans_Test

@newcustid nchar(5),

@newcompname nvarchar(40),

@oldcustid nchar(5)

as

declare @inserr int

declare @delerr int

declare @maxerr int

set @maxerr = 0

begin transaction

-- Add a customer

insert into customers (customerid, companyname)

values(@newcustid, @newcompname)

-- Save error number returned from Insert statement

set @inserr = @@error

if @inserr > @maxerr

set @maxerr = @inserr

-- Delete a customer

delete from customers

where customerid = @oldcustid

-- Save error number returned from Delete statement

set @delerr = @@error

if @delerr > @maxerr

set @maxerr = @delerr

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS144

9004ch08final.qxd 12/13/07 4:13 PM Page 144

-- If an error occurred, roll back

if @maxerr <> 0

begin

rollback

print 'Transaction rolled back'

end

else

begin

commit

print 'Transaction committed'

end

print 'INSERT error number:' + cast(@inserr as nvarchar(8))

print 'DELETE error number:' + cast(@delerr as nvarchar(8))

return @maxerr

4. Enter the following query in the same query windows as the Listing 8-1 code. Select
the statement as shown in Figure 8-2, and then click Execute to run the query.

exec sp_Trans_Test 'a ', 'a ', 'z '

The results window should show a return value of zero, and you should see the
same messages as shown in Figure 8-2.

Figure 8-2. Executing the stored procedure

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 145

9004ch08final.qxd 12/13/07 4:13 PM Page 145

5. In the same query window, enter the following SELECT statement:

Select * from Customers

Select the statement as shown in Figure 8-3 and then click the Execute button. You
will see that the customer named “a” has been added to the table, as shown in the
Results tab in Figure 8-3.

Figure 8-3. Row inserted in a transaction

6. Add another customer with parameter value “aa” for both @newcustid and
@newcompname and “z” for @oldcustid. Enter the following statement and execute
it as you’ve done previously with other similar statements.

exec sp_Trans_Test 'aa ', 'aa ', 'z '

You should get the same results shown earlier in Figure 8-2 in the Messages tab.

7. Try the SELECT statement shown in Figure 8-3 one more time. You should see that
customer “aa” has been added to the Customers table. Both customer “a” and “aa”
have no child records in the Orders table.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS146

9004ch08final.qxd 12/13/07 4:13 PM Page 146

How It Works

In the stored procedure, you define three input parameters:

create procedure sp_Trans_Test

@newcustid nchar(5),

@newcompname nvarchar(40),

@oldcustid nchar(5)

as

You also declare three local variables:

declare @inserr int

declare @delerr int

declare @maxerr int

These local variables will be used with the stored procedure, so you can capture and
display the error numbers returned if any from the INSERT and DELETE statements.

You mark the beginning of the transaction with a BEGIN TRANSACTION statement and
follow it with the INSERT and DELETE statements that are part of the transaction. After each
statement, you save the return number for it.

begin transaction

-- Add a customer

insert into customers (customerid, companyname)

values(@newcustid, @newconame)

-- Save error number returned from Insert statement

set @inserr = @@error

if @inserr > @maxerr

set @maxerr = @inserr

-- Delete a customer

delete from customers

where customerid = @oldcustid

-- Save error number returned from Delete statement

set @delerr = @@error

if @delerr > @maxerr

set @maxerr = @delerr

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 147

9004ch08final.qxd 12/13/07 4:13 PM Page 147

Error handling is important at all times in SQL Server, and it’s never more so than
inside transactional code. When you execute any T-SQL statement, there’s always the
possibility that it may not succeed. The T-SQL @@ERROR function returns the error number
for the last T-SQL statement executed. If no error occurred, @@ERROR returns zero.

@@ERROR is reset after every T-SQL statement (even SET and IF) is executed, so if you
want to save an error number for a particular statement, you must store it before the next
statement executes. That’s why you declare the local variables @inserr and @delerr and
@maxerr.

If @@ERROR returns any value other than 0, an error has occurred, and you want to roll
back the transaction. You also include PRINT statements to report whether a rollback or
commit has occurred.

-- If an error occurred, roll back

if @maxerr <> 0

begin

rollback

print 'Transaction rolled back'

end

else

begin

commit

print 'Transaction committed'

end

■Tip T-SQL (and standard SQL) supports various alternative forms for keywords and phrases. You’ve used
just ROLLBACK and COMMIT here.

Then you add some more instrumentation, so you could see what error numbers are
encountered during the transaction.

print 'INSERT error number:' + cast(@inserr as nvarchar(8))

print 'DELETE error number:' + cast(@delerr as nvarchar(8))

return @maxerr

Now let’s look at what happens when you execute the stored procedure. You run it
twice, first by adding customer “a” and next by adding customer “aa”, but you also enter
the same nonexistent customer to delete each time. If all statements in a transaction are
supposed to succeed or fail as one unit, why does the INSERT succeed when the DELETE
doesn’t delete anything?

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS148

9004ch08final.qxd 12/13/07 4:13 PM Page 148

Figure 8-2 should make everything clear. Both the INSERT and DELETE return error
number zero. The reason DELETE returns error number zero even though it has not deleted
any rows is that when a DELETE doesn’t find any rows to delete, T-SQL doesn’t treat that as
an error. In fact, that’s why you use a nonexistent customer. The rest of the customers
(well, all but the two you have just added) have child orders, and you can’t delete these
existing customers unless you delete their orders first.

Try It Out: What Happens When the First Operation Fails

In this example, you’ll try to insert a duplicate customer and delete an existing customer.
Add customer “a” and delete customer “aa” by entering the following statement, and

then click the Execute button.

exec sp_Trans_Test 'a', 'a ', 'aa '

The result should appear as in Figure 8-4.

Figure 8-4. Second operation rolled back

In the Messages pane shown in Figure 8-4, note that the transaction was rolled back
because the INSERT failed and was terminated with error number 2627 (whose error mes-
sage appears at the top of the window). The DELETE error number was 0, meaning it exe-
cuted successfully but was rolled back. (If you check the table, you’ll find that customer
“aa” still exists in the Customers table.)

How It Works

Since customer “a” already exists, SQL Server prevents the insertion of a duplicate, so
the first operation fails. The second DELETE statement in the transaction is executed, and
customer “aa” is deleted since it doesn’t have any child records in the Orders table; but
because @maxerr isn’t zero (it’s 2627, as you see in the Results pane), you roll back the
transaction by undoing the deletion of customer “aa”.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 149

9004ch08final.qxd 12/13/07 4:13 PM Page 149

Try It Out: What Happens When the Second Operation Fails

In this example, you’ll insert a valid new customer and try to delete a customer who has
child records in Orders table.

Add customer “aaa” and delete customer ALFKI by entering the following statement,
and then click the Execute button.

exec sp_Trans_Test 'aaa', 'aaa ', 'ALFKI'

The result should appear as in Figure 8-5.

Figure 8-5. First operation rolled back.

In the Messages window shown in Figure 8-5, note that the transaction was rolled
back because the DELETE failed and was terminated with error number 547 (the message
for which appears at the top of the window). The INSERT error number was 0, so it appar-
ently executed successfully but was rolled back. (If you check the table, you’ll find “aaa”
is not a customer.)

How It Works

Since customer “aaa” doesn’t exist, SQL Server inserts the row, so the first operation
succeeds. When the second statement in the transaction is executed, SQL Server pre-
vents the deletion of customer ALFKI because it has child records in the Orders table,
but since @maxerr isn’t zero (it’s 547, as you see in the Results pane), the entire trans-
action is rolled back.

Try It Out: What Happens When Both Operations Fail

In this example, you’ll try to insert an invalid new customer and try to delete an
undeletable one.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS150

9004ch08final.qxd 12/13/07 4:13 PM Page 150

Add customer “a” and delete customer ALFKI by entering the following statement,
and then click the Execute button.

exec sp_Trans_Test 'a ', 'a ', 'ALFKI'

The result should appear as in Figure 8-6.

Figure 8-6. Both operations rolled back

In the Messages window shown in Figure 8-6, note that the transaction was rolled
back (even though neither statement succeeded, so there was nothing to roll back)
because @maxerr returns 2627 for the INSERT and 547 for the DELETE. Error messages for
both failing statements are displayed at the top of the window.

How It Works

By now, you should understand why both statements failed. This example proves that
even when the first statement fails, the second is executed (and in this case fails with
error number 547). Our original example, where the error code is zero when there are no
rows to delete, didn’t necessarily prove this since the error number there may have come
from the line

set @maxerr = @inserr

immediately before the DELETE statement.

Coding Transactions in ADO.NET

In ADO.NET, a transaction is an instance of a class that implements the interface
System.Data.IDbTransaction. Like a data reader, a transaction has no constructor of its
own but is created by calling another object’s method—in this case, a connection’s
BeginTransaction method. Commands are associated with a specific transaction for a
specific connection, and any SQL submitted by these commands is executed as part of
the same transaction.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 151

9004ch08final.qxd 12/13/07 4:13 PM Page 151

Try It Out: Working with ADO.NET Transactions

In this ADO.NET example, you’ll code a C# equivalent of sp_Trans_Try.

1. Create a new Windows Application project named Chapter8. When Solution
Explorer opens, save the solution.

2. Rename Form1.cs to Transaction.cs.

3. Change the Text property of Transaction form to ADO.NET Transaction in C#.

4. Add three labels, three text boxes, and a button to the form as shown in Figure 8-7.

Figure 8-7. ADO.NET transaction form

5. Add a using directive to Transaction.cs.

using System.Data.SqlClient;

6. Next you want to add a click event for the button. Double-click button1, and it
will open the code editor with the button1_click event. Insert the code in
Listing 8-2 into the code editor.

Listing 8-2. button1_Click()

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

database = Northwind

");

// INSERT statement

string sqlins = @"

insert into customers(customerid,companyname)

values(@newcustid, @newconame) ";

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS152

9004ch08final.qxd 12/13/07 4:13 PM Page 152

// DELETE statement

string sqldel = @"

delete from customers

where customerid = @oldcustid";

try

{

// open connection

conn.Open();

// begin transaction

SqlTransaction sqltrans = conn.BeginTransaction();

// create insert command

SqlCommand cmdins = conn.CreateCommand();

cmdins.CommandText = sqlins;

cmdins.Transaction = sqltrans;

cmdins.Parameters.Add("@newcustid",

System.Data.SqlDbType.NVarChar, 5);

cmdins.Parameters.Add("@newconame",

System.Data.SqlDbType.NVarChar, 30);

// create delete command

SqlCommand cmddel = conn.CreateCommand();

cmddel.CommandText = sqldel;

cmddel.Transaction = sqltrans;

cmddel.Parameters.Add("@oldcustid",

System.Data.SqlDbType.NVarChar, 5);

// add customer

cmdins.Parameters["@newcustid"].Value = textBox1.Text;

cmdins.Parameters["@newconame"].Value = textBox2.Text;

cmdins.ExecuteNonQuery();

// delete customer

cmddel.Parameters["@oldcustid"].Value = textBox3.Text;

cmddel.ExecuteNonQuery();

// commit transaction

sqltrans.Commit();

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 153

9004ch08final.qxd 12/13/07 4:13 PM Page 153

mailto:Parameters["@newcustid"].Value
mailto:Parameters["@newconame"].Value
mailto:Parameters["@oldcustid"].Value

// no exception, transaction committed, give message

MessageBox.Show("Transaction committed");

}

catch (System.Data.SqlClient.SqlException ex)

{

// roll back transaction

sqltrans.Rollback();

MessageBox.Show(

"Transaction rolled back\n" + ex.Message,

"Rollback Transaction");

}

catch (System.Exception ex)

{

MessageBox.Show("System Error\n" + ex.Message, "Error");

}

finally

{

// close connection

conn.Close();

}

7. Run the program by pressing Ctrl+F5. Try the same kinds of insertions and dele-
tions as you did with sp_Trans_Test, but use “b”, “bb”, and “bbb”, instead of “a”, “aa”,
and “aaa”, for the new customers.

How It Works

After you open the connection, you create a transaction. Note that transactions are con-
nection specific. You can’t create a second transaction for the same connection before
committing or rolling back the first one. Though the BeginTransaction method begins a
transaction, the transaction itself performs no work until the first SQL statement is exe-
cuted by a command.

// open connection

conn.Open();

// begin transaction

SqlTransaction sqltrans = conn.BeginTransaction();

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS154

9004ch08final.qxd 12/13/07 4:13 PM Page 154

You create separate commands for the INSERT and DELETE statements and associate
them with the same transaction by setting their Transaction property to the same trans-
action, sqltrans.

// create insert command

SqlCommand cmdins = conn.CreateCommand();

cmdins.CommandText = sqlins;

cmdins.Transaction = sqltrans;

cmdins.Parameters.Add("@newcustid", SqlDbType.NVarChar, 5);

cmdins.Parameters.Add("@newconame", SqlDbType.NVarChar, 30);

// create delete command

SqlCommand cmddel = conn.CreateCommand();

cmddel.CommandText = sqldel;

cmddel.Transaction = sqltrans;

cmddel.Parameters.Add("@oldcustid", SqlDbType.NVarChar, 5);

■Tip You could use the same command object for both commands, but this really doesn’t save you any-
thing, and it would prevent you from preparing the commands if the program were designed to do this.

You then assign values to the parameters and execute the commands.

// add customer

cmdins.Parameters["@newcustid"].Value = textBox1.Text;

cmdins.Parameters["@newconame"].Value = textBox2.Text;

cmdins.ExecuteNonQuery();

// delete customer

cmddel.Parameters["@oldcustid"].Value = textBox3.Text;

cmddel.ExecuteNonQuery();

You then commit the transaction after the second command:

//Commit transaction

sqltrans.Commit();

or roll it back in the database exception handler:

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS 155

9004ch08final.qxd 12/13/07 4:13 PM Page 155

mailto:Parameters["@newcustid"].Value
mailto:Parameters["@newconame"].Value
mailto:Parameters["@oldcustid"].Value

catch (System.Data.SqlClient.SqlException ex)

{

//Roll back transaction

sqltrans.Rollback();

}

Summary
This chapter covered the fundamentals of transactions, from concepts such as under-
standing what transactions are, to ACID properties, local and distributed transactions,
guidelines for writing efficient transactions, and coding transactions in T-SQL and
ADO.NET using C# 2008. Although this chapter provides just the fundamentals of trans-
actions, you now know enough about coding transactions to handle basic transactional
processing.

In the next chapter, we’ll look at the fundamentals of ADO.NET.

CHAPTER 8 ■ UNDERSTANDING TRANSACTIONS156

9004ch08final.qxd 12/13/07 4:13 PM Page 156

Getting to Know ADO.NET

In industry, most applications can’t be built without having interaction with a database.
Databases solve the purpose of retrieval and storage of data. Almost every software appli-
cation running interacts with either one or multiple databases. The front end needs a
mechanism to connect with databases, and ADO.NET serves the purpose. Each .NET
application that requires database functionality is dependent on ADO.NET.

In this chapter, we’ll cover the following:

• Understanding ADO.NET

• The motivation behind ADO.NET

• Moving from ADO to ADO.NET

• Understanding ADO.NET architecture

• Working with the SQL Server Data Provider

• Working with the OLE DB Data Provider

• Working with the ODBC Data Provider

• Data providers as APIs

Understanding ADO.NET
Before .NET, developers used data access technologies such as ODBC, OLE DB, and
ActiveX Data Objects (ADO). With the introduction of .NET, Microsoft created a new way
to work with data, called ADO.NET.

ADO.NET is a set of classes that exposes data access services to the .NET program-
mer, providing a rich set of components for creating distributed, data-sharing applica-
tions. ADO.NET is an integral part of the .NET Framework that provides access to
relational, XML, and application data. ADO.NET classes are found in System.Data.dll.

157

C H A P T E R 9

9004ch09final.qxd 12/13/07 4:12 PM Page 157

This technology supports a variety of development needs, including the creation of front-
end database clients and middle-tier business objects used by applications, tools, lan-
guages, and Internet browsers.

The Motivation Behind ADO.NET
With the evolution of application development, applications have become loosely
coupled, an architecture where components are easier to maintain and reuse (for more
information, please refer to http://www.serviceoriented.org/loosely_coupled.html). More
and more of today’s applications use XML to encode data to be passed over network con-
nections, and that is how different applications running on different platforms can
interoperate.

ADO.NET was designed to support the disconnected data architecture, tight inte-
gration with XML, common data representation with the ability to combine data from
multiple and varied data sources, and optimized facilities for interacting with a database,
all native to the .NET Framework.

During the development of ADO.NET, Microsoft wanted to include the following
features:

Leverage for the Current ADO Knowledge ADO.NET’s design addresses many of the require-
ments of today’s application development model. At the same time, the programming
model stays as similar as possible to ADO, so current ADO developers do not have to start
from scratch. ADO.NET is an intrinsic part of the .NET Framework, yet is familiar to the
ADO programmer.

ADO.NET also coexists with ADO. Although most new .NET-based applications will
be written using ADO.NET, ADO remains available to the .NET programmer through
.NET COM interoperability services.

Support for the N-Tier Programming Model The concept of working with a disconnected
record set has become a focal point in the programming model. ADO.NET provides pre-
mium class support for the disconnected, n-tier programming environment. ADO.NET’s
solution for building n-tier database applications is the dataset.

Integration of XML Support XML and data access are closely tied. XML is about encoding
data, and data access is increasingly becoming about XML. The .NET Framework not
only supports web standards, but also is built entirely on top of them.

XML support is built into ADO.NET at a very fundamental level. The XML classes in
the .NET Framework and ADO.NET are part of the same architecture; they integrate at
many different levels. You therefore no longer have to choose between the data access set
of services and their XML counterparts; the ability to cross over from one to the other is
inherent in the design of both.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET158

9004ch09final.qxd 12/13/07 4:12 PM Page 158

http://www.serviceoriented.org/loosely_coupled.html

Moving from ADO to ADO.NET
ADO is a collection of ActiveX objects that are designed to work in a constantly connected
environment. It was built on top of OLE DB (which we’ll look at in the “Working with the
OLE DB Data Provider” section). OLE DB provides access to non-SQL data as well as SQL
databases, and ADO provides an interface designed to make it easier to work with OLE
DB providers.

However, accessing data with ADO (and OLE DB under the hood) means you have to
go through several layers of connectivity before you reach the data source. Just as OLE DB
is there to connect to a large number of data sources, an older data access technology,
Open Database Connectivity (ODBC), is still there to connect to even older data sources
such as dBase and Paradox. To access ODBC data sources using ADO, you use an OLE DB
provider for ODBC (since ADO only works directly with OLE DB), thus adding more lay-
ers to an already multilayered model.

With the multilayered data access model and the connected nature of ADO, you
could easily end up sapping server resources and creating a performance bottleneck.
ADO served well in its time, but ADO.NET has some great features that make it a far
superior data access technology.

ADO.NET Isn’t a New Version of ADO

ADO.NET is a completely new data access technology, with a new design that was built
entirely from scratch. Let’s first get this cleared up: ADO.NET doesn’t stand for ActiveX
Data Objects .NET. Why? For many reasons, but the following are the two most impor-
tant ones:

• ADO.NET is an integral part of .NET, not an external entity.

• ADO.NET isn’t a collection of ActiveX components.

The name ADO.NET is analogous to ADO because Microsoft wanted developers to
feel at home using ADO.NET and didn’t want them to think they’d need to “learn it all
over again,” as mentioned earlier, so it purposely named and designed ADO.NET to offer
similar features implemented in a different way.

During the design of .NET, Microsoft realized that ADO wasn’t going to fit in. ADO
was available as an external package based on Component Object Model (COM) objects,
requiring .NET applications to explicitly include a reference to it. In contrast, .NET appli-
cations are designed to share a single model, where all libraries are integrated into a
single framework, organized into logical namespaces, and declared public to any appli-
cation that wants to use them. It was wisely decided that the .NET data access technology
should comply with the .NET architectural model. So, ADO.NET was born.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 159

9004ch09final.qxd 12/13/07 4:12 PM Page 159

ADO.NET is designed to accommodate both connected and disconnected access.
Also, ADO.NET embraces the fundamentally important XML standard, much more than
ADO did, since the explosion in XML use came about after ADO was developed. With
ADO.NET, not only can you use XML to transfer data between applications, but you can
also export data from your application into an XML file, store it locally on your system,
and retrieve it later when you need it.

Performance usually comes at a price, but in the case of ADO.NET, the price is defi-
nitely reasonable. Unlike ADO, ADO.NET doesn’t transparently wrap OLE DB providers;
instead, it uses managed data providers that are designed specifically for each type of
data source, thus leveraging their true power and adding to overall application speed
and performance.

ADO.NET also works in both connected and disconnected environments. You can
connect to a database, remain connected while simply reading data, and then close your
connection, which is a process similar to ADO. Where ADO.NET really begins to shine is
in the disconnected world. If you need to edit database data, maintaining a continuous
connection would be costly on the server. ADO.NET gets around this by providing a
sophisticated disconnected model. Data is sent from the server and cached locally on
the client. When you’re ready to update the database, you can send the changed data
back to the server, where updates and conflicts are managed for you.

In ADO.NET, when you retrieve data, you use an object known as a data reader. When
you work with disconnected data, the data is cached locally in a relational data structure,
either a data table or a dataset.

ADO.NET and the .NET Base Class Library

A dataset (a DataSet object) can hold large amounts of data in the form of tables
(DataTable objects), their relationships (DataRelation objects), and constraints
(Constraint objects) in an in-memory cache, which can then be exported to an
external file or to another dataset. Since XML support is integrated into ADO.NET,
you can produce XML schemas and transmit and share data using XML documents.

Table 9-1 describes the namespaces in which ADO.NET components are grouped.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET160

9004ch09final.qxd 12/13/07 4:12 PM Page 160

Table 9-1. ADO.NET Namespaces

Namespace Description

System.Data Classes, interfaces, delegates, and enumerations that define and
partially implement the ADO.NET architecture

System.Data.Common Classes shared by .NET Framework data providers

System.Data.Design Classes that can be used to generate a custom-typed dataset

System.Data.Odbc The .NET Framework data provider for ODBC

System.Data.OleDb The .NET Framework data provider for OLE DB

System.Data.Sql Classes that support SQL Server–specific functionality

System.Data.OracleClient The .NET Framework data provider for Oracle

System.Data.SqlClient The .NET Framework data provider for SQL Server

System.Data.SqlServerCe The .NET Compact Framework data provider for SQL Server
Mobile

System.Data.SqlTypes Classes for native SQL Server data types

Microsoft.SqlServer.Server Components for integrating SQL Server and the CLR

Since XML support has been closely integrated into ADO.NET, some ADO.NET com-
ponents in the System.Data namespace rely on components in the System.Xml namespace.
So, you sometimes need to include both namespaces as references in Solution Explorer.

These namespaces are physically implemented as assemblies, and if you create a
new application project in VCSE, references to the assemblies should automatically be
created, along with the reference to the System assembly. However, if they’re not present,
simply perform the following steps to add the namespaces to your project:

1. Right-click the References item in Solution Explorer, and then click Add Reference.

2. A dialog box with a list of available references displays. Select System.Data,
System.Xml, and System (if not already present) one by one (hold down the Ctrl
key for multiple selections), and then click the Select button.

3. Click OK, and the references will be added to the project.

■Tip Though we don’t use it in this book, if you use the command-line C# compiler, you can use the
following compiler options to include the reference of the required assemblies: /r:System.dll
/r:System.Data.dll /r:System.Xml.dll.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 161

9004ch09final.qxd 12/13/07 4:12 PM Page 161

As you can see from the namespaces, ADO.NET can work with older technologies
such as OLE DB and ODBC. However, the SQL Server data provider communicates
directly with SQL Server without adding an OLE DB or Open Database Connectivity
(ODBC) layer, so it’s the most efficient form of connection. Likewise, the Oracle data
provider accesses Oracle directly.

■Note All major DBMS vendors support their own ADO.NET data providers. We’ll stick to SQL Server in this
book, but the same kind of C# code is written regardless of the provider.

Understanding ADO.NET Architecture
Figure 9-1 presents the most important architectural features of ADO.NET. We’ll discuss
them in far greater detail in later chapters.

Figure 9-1. ADO.NET architecture

ADO.NET has two central components: data providers and datasets.
A data provider connects to a data source and supports data access and manipula-

tion. You’ll play with three different ones later in this chapter.
A dataset supports disconnected, independent caching of data in a relational fash-

ion, updating the data source as required. A dataset contains one or more data tables. A
data table is a row-and-column representation that provides much the same logical view

CHAPTER 9 ■ GETTING TO KNOW ADO.NET162

9004ch09final.qxd 12/13/07 4:12 PM Page 162

as a physical table in a database. For example, you can store the data from the Northwind
database’s Employees table in an ADO.NET data table and manipulate the data as needed.
You’ll learn about datasets and data tables starting in Chapter 13.

In Figure 9-1, notice the DataView class (in the System.Data namespace). This isn’t a
data provider component. Data views are used primarily to bind data to Windows and
web forms.

As you saw in Table 9-1, each data provider has its own namespace. In fact, each data
provider is essentially an implementation of interfaces in the System.Data namespace,
specialized for a specific type of data source.

For example, if you use SQL Server, you should use the SQL Server data provider
(System.Data.SqlClient) because it’s the most efficient way to access SQL Server.

The OLE DB data provider supports access to older versions of SQL Server as well as
to other databases, such as Access, DB2, MySQL, and Oracle. However, native data pro-
viders (such as System.Data.OracleClient) are preferable for performance, since the OLE
DB data provider works through two other layers, the OLE DB service component and the
OLE DB provider, before reaching the data source.

Figure 9-2 illustrates the difference between using the SQL Server and OLE DB data
providers to access a SQL Server database.

Figure 9-2. SQL Server and OLE DB data provider differences

If your application connects to an older version of SQL Server (6.5 or older) or to
more than one kind of database server at the same time (for example, an Access and an
Oracle database connected simultaneously), only then should you choose to use the
OLE DB data provider.

No hard-and-fast rules exist; you can use both the OLE DB data provider for SQL
Server and the Oracle data provider (System.Data.OracleClient) if you want, but it’s

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 163

9004ch09final.qxd 12/13/07 4:12 PM Page 163

important you choose the best provider for your purpose. Given the performance bene-
fits of the server-specific data providers, if you use SQL Server, 99% of the time you
should be using the System.Data.SqlClient classes.

Before we look at what each kind of data provider does and how it’s used, you need to
be clear on their core functionality. Each .NET data provider is designed to do the follow-
ing two things very well:

• Provide access to data with an active connection to the data source.

• Provide data transmission to and from disconnected datasets and data tables.

Database connections are established by using the data provider’s connection class
(for example, System.Data.SqlClient.SqlConnection). Other components such as data read-
ers, commands, and data adapters support retrieving data, executing SQL statements, and
reading or writing to datasets or data tables, respectively.

As you’ve seen, each data provider is prefixed with the type of data source it
connects to (for instance, the SQL Server data provider is prefixed with Sql), so its
connection class is named SqlConnection. The OLE DB data provider’s connection
class is named OleDbConnection.

Let’s see how to work with the three data providers that can be used with SQL Server.

Working with the SQL Server Data Provider
The .NET data provider for SQL Server is in the System.Data.SqlClient namespace.
Although you can use System.Data.OleDb to connect with SQL Server, Microsoft has
specifically designed the System.Data.SqlClient namespace to be used with SQL Server,
and it works in a more efficient and optimized way than System.Data.OleDb. The reason
for this efficiency and optimized approach is that this data provider communicates
directly with the server using its native network protocol instead of through multiple
layers.

Table 9-2 describes some important classes in the SqlClient namespace.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET164

9004ch09final.qxd 12/13/07 4:12 PM Page 164

Table 9-2. Commonly Used SqlClient Classes

Classes Description

SqlCommand Executes SQL queries, statements, or stored procedures

SqlConnection Represents a connection to a SQL Server database

SqlDataAdapter Represents a bridge between a dataset and a data source

SqlDataReader Provides a forward-only, read-only data stream of the results

SqlError Holds information on SQL Server errors and warnings

SqlException Defines the exception thrown on a SQL Server error or warning

SqlParameter Represents a command parameter

SqlTransaction Represents a SQL Server transaction

Another namespace, System.Data.SqlTypes, maps SQL Server data types to .NET
types, both enhancing performance and making developers’ lives a lot easier.

Let’s look at an example that uses the SQL Server data provider. It won’t cover con-
nections and data retrieval in detail, but it will familiarize you with what you’ll encounter
in upcoming chapters.

Try It Out: Creating a Simple Console Application Using the
SQL Server Data Provider

You’ll build a simple Console Application project that opens a connection and runs a
query, using the SqlClient namespace against the SSE Northwind database. You’ll display
the retrieved data in a console window.

1. Open Visual Studio 2008 and create a new Visual C# Console Application project
named Chapter09.

2. Right-click the Chapter09 project and rename it to SqlServerProvider.

3. Right-click the Program.cs file and rename it to SqlServerProvider.cs. When
prompted to rename all references to Program, you can click either Yes or No.

4. Since you’ll be creating this example from scratch, open SqlServerProvider.cs in
the code editor and replace it with the code in Listing 9-1.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 165

9004ch09final.qxd 12/13/07 4:12 PM Page 165

Listing 9-1. SqlServerProvider.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter09

{

class SqlServerProvider

{

static void Main(string[] args)

{

// set up connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// set up query string

string sql = @"

select

*

from

employees

";

// declare connection and data reader variables

SqlConnection conn = null;

SqlDataReader reader = null;

try

{

// open connection

conn = new SqlConnection(connString);

conn.Open();

// execute the query

SqlCommand cmd = new SqlCommand(sql, conn);

reader = cmd.ExecuteReader();

CHAPTER 9 ■ GETTING TO KNOW ADO.NET166

9004ch09final.qxd 12/13/07 4:12 PM Page 166

// display output header

Console.WriteLine(

"This program demonstrates the use of "

+ "the SQL Server Data Provider."

);

Console.WriteLine(

"Querying database {0} with query {1}\n"

, conn.Database

, cmd.CommandText

);

Console.WriteLine("First Name\tLast Name\n");

// process the result set

while(reader.Read()) {

Console.WriteLine(

"{0} | {1}"

, reader["FirstName"].ToString().PadLeft(10)

, reader[1].ToString().PadLeft(10)

);

}

}

catch (Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

reader.Close();

conn.Close();

}

}

}

}

5. Save the project, and press Ctrl+F5 to run it. The results should appear as in
Figure 9-3.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 167

9004ch09final.qxd 12/13/07 4:12 PM Page 167

Figure 9-3. Accessing Northwind via the SQL Server data provider

How It Works

Let’s take a look at how the code works, starting with the using directives.

using System;

using System.Data;

using System.Data.SqlClient;

The reference to System.Data is actually not needed in this small program, since you
don’t explicitly use any of its members, but it’s a good habit to always include it. The ref-
erence to System.Data.SqlClient is necessary since you want to use the simple names of
its members.

You specify the connection string with parameters (key-value pairs) suitable for a
SQL Server Express session.

// set up connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

The connection string contains this parameter:

integrated security=true;

which specifies Windows Authentication, so any user logged on to Windows can access
the SQLEXPRESS instance.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET168

9004ch09final.qxd 12/13/07 4:12 PM Page 168

You then code the SQL query:

// set up query string

string sql = @"

select

*

from

employees

";

■Tip We use verbatim strings for both connection strings and SQL because it allows us to indent the
source code conveniently. The connection string is actually parsed before it’s assigned to the connection’s
ConnectionString property, so the new lines and extra spaces are inconsequential. SQL can contain extra-
neous new lines and spaces, so you can format it flexibly to make it more readable and maintainable.

You next declare variables for the connection and data reader, so they’re available to
the rest of your code.

// declare connection and data reader variables

SqlConnection conn = null;

SqlDataReader reader = null;

You then create the connection and open it:

try

{

// open connection

conn = new SqlConnection(connString);

conn.Open();

You do this (and the rest of your database work) in a try block to handle exceptions,
in particular exceptions thrown by ADO.NET in response to database errors. Here,
ADO.NET will throw an exception if the connection string parameters aren’t syntactically
correct, so you may as well be prepared. If you had waited until you entered the try block
to declare the connection (and data reader) variable, you wouldn’t have it available in the
finally block to close the connection. Note that creating a connection doesn’t actually
connect to the database. You need to call the Open method on the connection.

To execute the query, you first create a command object, passing its constructor the
SQL to run and the connection on which to run it. Next, you create a data reader by call-
ing ExecuteReader() on the command object. This not only executes the query, but also

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 169

9004ch09final.qxd 12/13/07 4:12 PM Page 169

sets up the data reader. Note that unlike most objects, you have no way to create a data
reader with a new expression.

// execute the query

SqlCommand cmd = new SqlCommand(sql, conn);

reader = cmd.ExecuteReader();

You then produce a header for your output, using connection and command proper-
ties (Database and CommandText, respectively) to get the database name and query text.

// display output header

Console.WriteLine(

"This program demonstrates the use of "

+ "the SQL Server Data Provider."

);

Console.WriteLine(

"Querying database {0} with query {1}\n"

, conn.Database

, cmd.CommandText

);

Console.WriteLine("First Name\tLast Name\n");

You retrieve all the rows in the result set by calling the data reader’s Read method,
which returns true if there are more rows and false otherwise. Note that the data reader
is positioned immediately before the first row prior to the first call to Read.

// process the result set

while(reader.Read()) {

Console.WriteLine(

"{0} | {1}"

, reader["FirstName"].ToString().PadLeft(10)

, reader[1].ToString().PadLeft(10)

);

}

}

You access each row’s columns with the data reader’s indexer (here, the Sql-
DataReader.Item property), which is overloaded to accept either a column name or a
zero-based integer index. You use both so you can see the indexer’s use, but using col-
umn numbers is more efficient than using column names.

Next you handle any exceptions, quite simplistically, but at least you’re developing
a good habit. We’ll cover exception handling much more thoroughly in Chapter 16.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET170

9004ch09final.qxd 12/13/07 4:12 PM Page 170

catch (Exception e)

{

Console.WriteLine("Error: " + e);

}

Finally, in a finally block, you close the data reader and the connection by calling
their Close methods. As a general rule, you should close things in a finally block to be
sure they get closed no matter what happens within the try block.

finally

{

// close connection

reader.Close();

conn.Close();

}

Technically, closing the connection also closes the data reader, but closing both
(in the previous order) is another good habit. A connection with an open data reader
can’t be used for any other purpose until the data reader has been closed.

Working with the OLE DB Data Provider
Outside .NET, OLE DB is still Microsoft’s high-performance data access technology. The
OLEDB data provider has been around for many years. If you’ve programmed MS Access
in the past, you may recall using Microsoft Jet OleDb 3.5 or 4.0 to connect with an MS
Access database. You can use this data provider to access data stored in any format, so
even in ADO.NET it plays an important role in accessing data sources that don’t have
their own ADO.NET data providers.

The .NET Framework data provider for OLE DB is in the namespace System.
Data.OleDb. Table 9-3 describes some important classes in the OleDb namespace.

Table 9-3. Commonly Used OleDb Classes

Classes Description

OleDbCommand Executes SQL queries, statements, or stored procedures

OleDbConnection Represents a connection to an OLE DB data source

OleDbDataAdapter Represents a bridge between a dataset and a data source

OleDbDataReader Provides a forward-only, read-only data stream of rows from a data source

OleDbError Holds information on errors and warnings returned by the data source

OleDbParameter Represents a command parameter

OleDbTransaction Represents a SQL transaction

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 171

9004ch09final.qxd 12/13/07 4:12 PM Page 171

Notice the similarity between the two data providers, SqlClient and OleDb. The differ-
ences in their implementations are transparent, and the user interface is fundamentally
the same.

The ADO.NET OLE DB data provider requires that an OLE DB provider be specified
in the connection string. Table 9-4 describes some OLE DB providers.

Table 9-4. Some OLE DB Providers

Provider Description

DB2OLEDB Microsoft OLE DB provider for DB2

SQLOLEDB Microsoft OLE DB provider for SQL Server

Microsoft.Jet.OLEDB.4.0 Microsoft OLE DB provider for Access (which uses the Jet engine)

MSDAORA Microsoft OLE DB provider for Oracle

MSDASQL Microsoft OLE DB provider for ODBC

Let’s use the OLE DB data provider (SQLOLEDB) to access the Northwind database,
making a few straightforward changes to the code in Listing 9-1. (Of course, you’d use the
SQL Server data provider for real work since it’s more efficient.)

Try It Out: Creating a Simple Console Application Using the
OLE DB Data Provider

In this example, you’ll see how to access Northwind with OLE DB.

1. In Solution Explorer, add a new C# Console Application project named
OleDbProvider to the Chapter09 solution. Rename the Program.cs file to
OleDbProvider.cs. In the code editor, replace the generated code with the code in
Listing 9-2, which shows the changes to Listing 9-1 in bold.

Listing 9-2. OleDbProvider.cs

using System;

using System.Data;

using System.Data.OleDb;

CHAPTER 9 ■ GETTING TO KNOW ADO.NET172

9004ch09final.qxd 12/13/07 4:12 PM Page 172

namespace Chapter09

{

class OleDbProvider

{

static void Main(string[] args)

{

// set up connection string

string connString = @"

provider = sqloledb;

data source = .\sqlexpress;

integrated security = sspi;

initial catalog = northwind

";

// set up query string

string sql = @"

select

*

from

employees

";

// declare connection and data reader variables

OleDbConnection conn = null;

OleDbDataReader reader = null;

try

{

// open connection

conn = new OleDbConnection(connString);

conn.Open();

// execute the query

OleDbCommand cmd = new OleDbCommand(sql, conn);

reader = cmd.ExecuteReader();

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 173

9004ch09final.qxd 12/13/07 4:12 PM Page 173

// display output header

Console.WriteLine(

"This program demonstrates the use of "

+ "the OLE DB Data Provider."

);

Console.WriteLine(

"Querying database {0} with query {1}\n"

, conn.Database

, cmd.CommandText

);

Console.WriteLine("First Name\tLast Name\n");

// process the result set

while(reader.Read()) {

Console.WriteLine(

"{0} | {1}"

, reader["FirstName"].ToString().PadLeft(10)

, reader[1].ToString().PadLeft(10)

);

}

}

catch (Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

reader.Close();

conn.Close();

}

}

}

}

2. Since you now have two projects in your solution, you need to make this project
the startup project so it runs when you press Ctrl+F5. Right-click the project name
in Solution Explorer, and then click Set as StartUp Project (see Figure 9-4).

CHAPTER 9 ■ GETTING TO KNOW ADO.NET174

9004ch09final.qxd 12/13/07 4:12 PM Page 174

Figure 9-4. Setting the startup project

3. Run the application by pressing Ctrl+F5. The results should appear as in
Figure 9-5.

Figure 9-5. Accessing Northwind via OLE DB

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 175

9004ch09final.qxd 12/13/07 4:12 PM Page 175

How It Works

This program does the same thing as the first example, so we’ll discuss only the things
that changed. First, you replace SqlClient with OleDb in the third using directive.

using System;

using System.Data;

using System.Data.OleDb;

The connection string requires the most change, since the OLE DB data provider
doesn’t accept the same parameters as the SQL Server data provider. In addition, it
requires a provider parameter.

// set up connection string

string connString = @"

provider = sqloledb;

data source = .\sqlexpress;

integrated security = sspi;

initial catalog = northwind

";

Only four other lines had to change to use the OLE DB data provider classes for the
connection, command, and data reader.

// declare connection and data reader variables

OleDbConnection conn = null;

OleDbDataReader reader = null;

try

{

// open connection

conn = new OleDbConnection(connString);

conn.Open();

// execute the query

OleDbCommand cmd = new OleDbCommand(sql, conn);

reader = cmd.ExecuteReader();

The final change was a semantic one and wasn’t required by ADO.NET.

// display output header

Console.WriteLine(

"This program demonstrates the use of "

+ "the OLE DB Data Provider."

);

CHAPTER 9 ■ GETTING TO KNOW ADO.NET176

9004ch09final.qxd 12/13/07 4:12 PM Page 176

Working with the ODBC Data Provider
ODBC was Microsoft’s original general-purpose data access technology. It’s still widely
used for data sources that don’t have OLE DB providers or .NET Framework data pro-
viders. ADO.NET includes an ODBC data provider in the namespace System.Data.Odbc.

The ODBC architecture is essentially a three-tier process. An application uses ODBC
functions to submit database requests. ODBC converts the function calls to the protocol
(call-level interface) of a driver specific to a given data source. The driver communicates
with the data source, passing any results or errors back up to ODBC. Obviously this is less
efficient than a database-specific data provider’s direct communication with a database,
so for performance it’s preferable to avoid the ODBC data provider, since it merely offers
a simpler interface to ODBC but still involves all the ODBC overhead. Table 9-5 describes
some important classes in the Odbc namespace.

Table 9-5. Commonly Used Odbc Classes

Classes Description

OdbcCommand Executes SQL queries, statements, or stored procedures

OdbcConnection Represents a connection to an ODBC data source

OdbcDataAdapter Represents a bridge between a dataset and a data source

OdbcDataReader Provides a forward-only, read-only data stream of rows from a data source

OdbcError Holds information on errors and warnings returned by the data source

OdbcParameter Represents a command parameter

OdbcTransaction Represents a SQL transaction

Let’s use the ODBC data provider to access the Northwind database, making the
same kind of straightforward changes (highlighted later in this chapter in Listing 9-3) to
the code in Listing 9-1 as you did in using the OLE DB data provider.

Before you do, though, you need to create an ODBC data source—actually, you
configure a DSN (data source name) for use with a data source accessible by ODBC—
for the Northwind database, since, unlike the SQL Server and OLE DB data providers,
the ODBC data provider doesn’t let you specify the server or database in the connection
string. (The following works on Windows XP, and the process is similar for other ver-
sions of Windows.)

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 177

9004ch09final.qxd 12/13/07 4:12 PM Page 177

Creating an ODBC Data Source

To create an ODBC data source, follow these steps:

1. In the Control Panel, double-click Administrative Tools (see Figure 9-6).

Figure 9-6. Control Panel: Administrative Tools

2. In Administrative Tools, double-click Data Sources (ODBC) (see Figure 9-7).

CHAPTER 9 ■ GETTING TO KNOW ADO.NET178

9004ch09final.qxd 12/13/07 4:12 PM Page 178

Figure 9-7. Administrative Tools: Data Sources (ODBC)

3. When the ODBC Data Source Administrator window opens, click the User DSN
tab and then click Add (see Figure 9-8).

Figure 9-8. ODBC Data Source Administrator dialog box

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 179

9004ch09final.qxd 12/13/07 4:12 PM Page 179

4. The Create New Data Source wizard starts. Follow its instructions carefully! First,
select the SQL Server driver; second, click Finish (see Figure 9-9).

Figure 9-9. Create New Data Source wizard

5. The next window prompts for the data source name and server. Specify the values
for Name and Server as NorthwindOdbc and .\sqlexpress, respectively, as shown
in Figure 9-10, and then click Next.

Figure 9-10. Specifying the data source name and SQL Server to connect to

CHAPTER 9 ■ GETTING TO KNOW ADO.NET180

9004ch09final.qxd 12/13/07 4:12 PM Page 180

6. Accept the defaults in the authentication window by clicking Next (see
Figure 9-11).

Figure 9-11. Specifying SQL Server authentication

7. In the next window, check the Change the default database to option, select the
Northwind database from the provided drop-down list, and click Next (see
Figure 9-12).

Figure 9-12. Specifying the default database

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 181

9004ch09final.qxd 12/13/07 4:12 PM Page 181

8. In the next window, simply click Finish (see Figure 9-13).

Figure 9-13. Finishing DSN creation

9. A confirmation window appears, describing the new data source. Click Test Data
Source (see Figure 9-14).

Figure 9-14. Testing the Northwind data source connection

CHAPTER 9 ■ GETTING TO KNOW ADO.NET182

9004ch09final.qxd 12/13/07 4:12 PM Page 182

10. A window reporting a successful test should appear (see Figure 9-15). (If it doesn’t,
cancel your work and carefully try again.) Click OK.

Figure 9-15. Connection to Northwind was successful.

11. When the confirmation window reappears, click OK. When the ODBC Data
Source Administrator window reappears, the new data source will be on the list
(see Figure 9-16). Click OK.

Figure 9-16. New data source appearing in the data source list

Now you have your NorthwindOdbc data source ready to work with. Next, you will
use it in code for setting up the connection string.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 183

9004ch09final.qxd 12/13/07 4:12 PM Page 183

Try It Out: Creating a Simple Console Application Using the
ODBC Data Provider

Let’s access Northwind with ODBC:

1. In Solution Explorer, add a new C# Console Application project named
OdbcProvider to the Chapter09 solution. Rename the Program.cs file to
OdbcProvider.cs. In the code editor, replace the generated code with the
code in Listing 9-3, which shows the changes to Listing 9-1 in bold.

Listing 9-3. OdbcProvider.cs

using System;

using System.Data;

using System.Data.Odbc;

namespace Chapter04

{

class OdbcProvider

{

static void Main(string[] args)

{

// set up connection string

string connString = @"dsn=northwindodbc";

// set up query string

string sql = @"

select

*

from

employees

";

// declare connection and data reader variables

OdbcConnection conn = null;

OdbcDataReader reader = null;

try

{

// open connection

conn = new OdbcConnection(connString);

conn.Open();

CHAPTER 9 ■ GETTING TO KNOW ADO.NET184

9004ch09final.qxd 12/13/07 4:12 PM Page 184

// execute the query

OdbcCommand cmd = new OdbcCommand(sql, conn);

reader = cmd.ExecuteReader();

// display output header

Console.WriteLine(

"This program demonstrates the use of "

+ "the ODBC Data Provider."

);

Console.WriteLine(

"Querying database {0} with query {1}\n"

, conn.Database

, cmd.CommandText

);

Console.WriteLine("First Name\tLast Name\n");

// process the result set

while(reader.Read()) {

Console.WriteLine(

"{0} | {1}"

, reader["FirstName"].ToString().PadLeft(10)

, reader[1].ToString().PadLeft(10)

);

}

}

catch (Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

reader.Close();

conn.Close();

}

}

}

}

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 185

9004ch09final.qxd 12/13/07 4:12 PM Page 185

2. Make this project the startup program by right-clicking the project name in
Solution Explorer and then clicking Set as StartUp Project as shown earlier in the
Figure 9-4.

3. Run the application with Ctrl+F5. The results should appear as in Figure 9-17.

Figure 9-17. Accessing Northwind via ODBC.

How It Works

Once you create a DSN, the rest is easy. You simply change Sql to Odbc in the class names
(and, of course, the output header), just as you did to modify the program to work with
OLE DB. The biggest change, and the only one that really deserves attention, is to the
connection string.

// set up connection string

string connString = @"dsn=northwindodbc";

The ODBC connection string isn’t limited only to the DSN, but it doesn’t allow blanks
or newlines anywhere in the string.

■Tip Each data provider has its own rules regarding both the parameters and syntax of its connection
string. Consult the documentation for the provider you’re using when coding connection strings. Connection
strings can be very complicated. We don’t cover the details here, but documentation for connection strings
is included with the description of the ConnectionString property for the connection class for each data
provider.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET186

9004ch09final.qxd 12/13/07 4:12 PM Page 186

Now that you’ve played with all the data providers that access SQL Server (the SQL
Server CE data provider is beyond the scope of this book), let’s make sure you clearly
understand what a data provider is and how different data providers can be used to
access data.

Data Providers Are APIs
The .NET Framework data providers, sophisticated as they are (and you’ll learn plenty
about exploiting their sophistication later), are simply APIs for accessing data sources,
most often relational databases. (ADO.NET is essentially one big API of which data
providers are a major part.)

Newcomers to ADO.NET are often understandably confused by the Microsoft
documentation. They read about Connection, Command, DataReader, and other ADO.NET
objects, but they see no classes named Connection, Command, or DataReader in any of the
ADO.NET namespaces. The reason is that data provider classes implement interfaces in
the System.Data namespace. These interfaces define the data provider methods of the
ADO.NET API.

The key concept is simple. A data provider, such as System.Data.SqlClient, consists of
classes whose methods provide a uniform way of accessing a specific kind of data source.
In this chapter, you used three different data providers (SQL Server, OLE DB, and ODBC)
to access the same SSE database. The only real difference in the code was the connection
string. Except for choosing the appropriate data provider, the rest of the programming
was effectively the same. This is true of all ADO.NET facilities, whatever kind of data
source you need to access.

The SQL Server data provider is optimized to access SQL Server and can’t be used for
any other DBMS. The OLE DB data provider can access any OLE DB data source—and
you used it without knowing anything about OLE DB (a major study in itself). The ODBC
data provider lets you use an even older data access technology, again without knowing
anything about it. Working at such an abstract level enabled you to do a lot more, a lot
more quickly, than you could have otherwise.

ADO.NET is not only an efficient data access technology, but also an elegant one.
Data providers are only one aspect of it. The art of ADO.NET programming is founded
more on conceptualizing than on coding. First get a clear idea of what ADO.NET offers,
and then look for the right method in the right class to make the idea a reality.

Since conceptual clarity is so important, you can view (and refer to) connections,
commands, data readers, and other ADO.NET components primarily as abstractions
rather than merely objects used in database programs. If you concentrate on concepts,
learning when and how to use relevant objects and methods will be easy.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET 187

9004ch09final.qxd 12/13/07 4:12 PM Page 187

Summary
In this chapter, you saw why ADO.NET was developed and how it supersedes other data
access technologies in .NET. We gave an overview of its architecture and then focused on
one of its core components, the data provider. You built three simple examples to prac-
tice basic data provider use and experience the uniform way data access code is written,
regardless of the data provider. Finally, we offered the opinion that conceptual clarity is
the key to understanding and using both data providers and the rest of the ADO.NET API.

Next, we’ll study the details of ADO.NET, starting with connections.

CHAPTER 9 ■ GETTING TO KNOW ADO.NET188

9004ch09final.qxd 12/13/07 4:12 PM Page 188

Making Connections

Before you can do anything useful with a database, you need to establish a session with
the database server. You do this with an object called a connection, which is an instance
of a class that implements the System.Data.IDbConnection interface for a specific data
provider. In this chapter, you’ll use various data providers to establish connections and
look at problems that may arise and how to solve them.

In this chapter, we’ll cover the following:

• Introducing data provider connection classes

• Connecting to SQL Server Express with SqlConnection

• Improving your use of connection objects

• Connecting to SQL Server Express with OleDbConnection

Introducing the Data Provider Connection Classes
As you saw in Chapter 9, each data provider has its own namespace. Each has a connec-
tion class that implements the System.Data.IDbConnection interface. Table 10-1 summa-
rizes the data providers supplied by Microsoft.

Table 10-1. Data Provider Namespaces and Connection Classes

Data Provider Namespace Connection Class

ODBC System.Data.Odbc OdbcConnection

OLE DB System.Data.OleDb OleDbConnection

Oracle System.Data.OracleClient OracleConnection

SQL Server System.Data.SqlClient SqlConnection

SQL Server CE System.Data.SqlServerCe SqlCeConnection

189

C H A P T E R 1 0

9004ch10final.qxd 12/13/07 4:10 PM Page 189

As you can see, the names follow a convention, using Connection prefixed by an
identifier for the data provider. Since all connection classes implement System.Data.
IDbConnection, the use of each one is similar. Each has additional members that provide
methods specific to a particular database. You used connections in Chapter 9. Let’s take a
closer look at one of them, SqlConnection, in the namespace System.Data.SqlClient.

Connecting to SQL Server Express with
SqlConnection
In this example, you’ll again connect to the SQL Server connect to the SQL Server Express
(SSE) Northwind database.

Try It Out: Using SqlConnection

You’ll write a very simple program, just to open and check a connection.

1. In Visual Studio 2008, create a new Windows Console Application project named
Chapter10. When Solution Explorer opens, save the solution.

2. Rename the Chapter10 project ConnectionSQL. Rename the Program.cs file to
ConnectionSql.cs, and replace the generated code with the code in Listing 10-1.

Listing 10-1. ConnectionSql.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter10

{

class ConnectionSql

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

";

CHAPTER 10 ■ MAKING CONNECTIONS190

9004ch10final.qxd 12/13/07 4:10 PM Page 190

// create connection

SqlConnection conn = new SqlConnection(connString);

try {

// open connection

conn.Open();

Console.WriteLine("Connection opened.");

}

catch (SqlException e) {

// display error

Console.WriteLine("Error: " + e);

}

finally {

// close connection

conn.Close();

Console.WriteLine("Connection closed.");

}

}

}

}

3. Run the application by pressing Ctrl+F5. If the connection is successful, you’ll see
the output in Figure 10-1.

Figure 10-1. Connecting and disconnecting

If the connection failed, you’ll see an error message as in Figure 10-2. (You can
get this by shutting down SSE first, with net stop mssql$sqlexpress entered at
a command prompt. If you try this, remember to restart it with net start
mssql$sqlexpress.)

CHAPTER 10 ■ MAKING CONNECTIONS 191

9004ch10final.qxd 12/13/07 4:10 PM Page 191

Figure 10-2. Error if connection failed while connecting to SQL Server

Don’t worry about the specifics of this message right now. Connections often fail for
reasons that have nothing to do with your code. It may be because a server isn’t started,
as in this case, or because a password is wrong, or some other configuration problem
exists. You’ll soon look at common problems in establishing database connections.

How It Works

Let’s examine the code in Listing 10-1 to understand the steps in the connection process.
First, you specify the ADO.NET and the SQL Server data provider namespaces, so you can
use the simple names of their members.

using System;

using System.Data;

using System.Data.SqlClient;

Then you create a connection string. A connection string consists of parameters—in
other words, key=value pairs separated by semicolons—that specify connection informa-
tion. Although some parameters are valid for all data providers, each data provider has
specific parameters it will accept, so it’s important to know what parameters are valid in a
connection string for the data provider you’re using.

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

";

CHAPTER 10 ■ MAKING CONNECTIONS192

9004ch10final.qxd 12/13/07 4:10 PM Page 192

Let’s briefly examine each of the connection string parameters in this example. The
server parameter specifies the SQL Server instance to which you want to connect.

server = .\sqlexpress;

In this statement, . (dot) represents the local server, and the name followed by the \
(slash) represents the instance name running on the database server. So here you have an
instance of SQL Server Express named sqlexpress running on the local server.

■Tip (local) is an alternative to the . (dot) to specify the local machine, so .\sqlexpress can be
replaced with (local)\sqlexpress.

The next clause indicates that you should use Windows Authentication (i.e., any valid
logged-on Windows user can log on to SSE).

integrated security = true;

You could alternatively have used sspi instead of true, as they both have the same
effect. Other parameters are available. You’ll use one later to specify the database to
which you want to connect.

Next you create a connection (a SqlConnection object), passing it the connection
string. This doesn’t create a database session. It simply creates the object you’ll use later
to open a session.

// create connection

SqlConnection conn = new SqlConnection(connString);

Now you have a connection, but you still need to establish a session with the data-
base by calling the Open method on the connection. If the attempt to open a session fails,
an exception will be thrown, so you use a try statement to enable exception handling.
You display a message after calling Open, but this line will be executed only if the connec-
tion was successfully opened.

try {

// open connection

conn.Open();

Console.WriteLine("Connection opened.");

}

At this stage in the code, you’d normally issue a query or perform some other data-
base operation over the open connection. However, we’ll save that for later chapters and
concentrate here on just connecting.

CHAPTER 10 ■ MAKING CONNECTIONS 193

9004ch10final.qxd 12/13/07 4:10 PM Page 193

Next comes an exception handler in case the Open() fails.

catch (SqlException e) {

// display error

Console.WriteLine("Error: " + e);

}

Each data provider has a specific exception class for its error handling; SqlException
is the class for the SQL Server data provider. Specific information about database errors is
available from the exception, but here you’re just displaying its raw contents.

When you’re finished with the database, you call Close() to terminate the session
and then print a message to show that Close() was called.

finally {

// close connection

conn.Close();

Console.WriteLine("Connection closed.");

}

You call Close() within the finally block to ensure it always gets called.

■Note Establishing connections (database sessions) is relatively expensive. They use resources on both
the client and the server. Although connections may eventually get closed through garbage collection or by
timing out, leaving one open when it’s no longer needed is a bad practice. Too many open connections can
slow a server down or prevent new connections from being made.

Note that you can call Close() on a closed connection, and no exception will be
thrown. So, your message would have been displayed if the connection had been closed
earlier or even if it had never been opened. See Figure 10-2, where the connection failed
but the close message is still displayed.

In one typical case, multiple calls to both Open() and Close() make sense. ADO.NET
supports disconnected processing of data, even when the connection to the data
provider has been closed. The pattern looks like this:

try

{

conn.Open(); // open connection

//

// online processing (e.g., queries) here

//

conn.Close(); // close connection

CHAPTER 10 ■ MAKING CONNECTIONS194

9004ch10final.qxd 12/13/07 4:10 PM Page 194

//

// offline processing here

//

conn.Open(); // reopen connection

//

// online processing(e.g., INSERT/UPDATE/DELETE) here

//

conn.Close(); // reclose connection

}

finally

{

// close connection

conn.Close();

}

The finally block still calls Close(), calling it unnecessarily if no exceptions are
encountered, but this isn’t a problem or expensive, and it ensures the connection will be
closed. Although many programmers hold connections open until program termination,
this is usually wasteful in terms of server resources. With connection pooling, opening
and closing a connection as needed is actually more efficient than opening it once and
for all.

That’s it! You’re finished with the first connection example. However, since you saw
a possible error, let’s look at typical causes of connection errors.

Debugging Connections to SQL Server

Writing the C# code to use a connection is usually the easy part of getting a connec-
tion to work. Problems often lie not in the code, but rather in a mismatch in the
connection parameters between the client (your C# program) and the database server.
All appropriate connection parameters must be used and must have correct values.
Even experienced database professionals often have problems getting a connection
to work the first time.

More parameters are available than the ones shown here, but you get the idea. A
corollary of Murphy’s Law applies to connections: If several things can go wrong, surely
one of them will. Your goal is to check both sides of the connection to make sure all of
your assumptions are correct and that everything the client program specifies is matched
correctly on the server.

Often the solution is on the server side. If the SQL Server instance isn’t running, the
client will be trying to connect to a server that doesn’t exist. If Windows Authentication
isn’t used and the user name and password on the client don’t match the name and pass-
word of a user authorized to access the SQL Server instance, the connection will be

CHAPTER 10 ■ MAKING CONNECTIONS 195

9004ch10final.qxd 12/13/07 4:10 PM Page 195

rejected. If the database requested in the connection doesn’t exist, an error will occur. If
the client’s network information doesn’t match the server’s, the server may not receive
the client’s connection request, or the server response may not reach the client.

For connection problems, using the debugger to locate the line of code where the
error occurs usually doesn’t help—the problem almost always occurs on the call to
the Open method. The question is, why? You need to look at the error message.

A typical error is as follows:

Unhandled Exception: System.ArgumentException: Keyword not supported...

The cause for this is either using an invalid parameter or value or misspelling a
parameter or value in your connection string. Make sure you’ve entered what you really
mean to enter.

Figure 10-2 earlier showed probably the most common message when trying to con-
nect to SQL Server. In this case, most likely SQL Server simply isn’t running. Restart the
SSE service with net start mssql$sqlexpress.

Other possible causes of this message are as follows:

• The SQL Server instance name is incorrect. For example, you used .\sqlexpress,
but SSE was installed with a different name. It’s also possible that SSE was installed
as the default instance (with no instance name) or is on another machine (see the
next section); correct the instance name if this is the case.

• SSE hasn’t been installed—go back to Chapter 1 and follow the instructions there
for installing SSE.

• A security problem exists—your Windows login and password aren’t valid on the
server. This is unlikely to be the problem when connecting to a local SSE instance,
but it might happen in trying to connect to a SQL Server instance on another server.

• A hardware problem exists—again unlikely if you’re trying to connect to a server
on the same machine.

Security and Passwords in SqlConnection

There are two kinds of user authentication in SSE. The preferred way is to use Windows
Authentication (integrated security), as you do when following the examples in this book.
SQL Server uses your Windows login to access the instance. Your Windows login must
exist on the machine where SQL Server is running, and your login must be authorized to
access the SQL Server instance or be a member of a user group that has access.

If you don’t include the Integrated Security = true (or Integrated Security = sspi)
parameter in the connection string, the connection defaults to SQL Server security,
which uses a separate login and password within SQL Server.

CHAPTER 10 ■ MAKING CONNECTIONS196

9004ch10final.qxd 12/13/07 4:10 PM Page 196

How to Use SQL Server Security

If you really did intend to use SQL Server security because that’s how your company or
department has set up access to your SQL Server (perhaps because some clients are non-
Microsoft), you need to specify a user name and password in the connection string, as
shown here:

thisConnection.ConnectionString = @"

server = .\sqlexpress;

user id = sa;

password = x1y2z3

";

The sa user name is the default system administrator account for SQL Server. If a
specific user has been set up, such as george or payroll, specify that name. The password
for sa is set when SQL Server is installed. If the user name you use has no password, you
can omit the password clause entirely or specify an empty password, as follows:

password =;

However, a blank password is bad practice and should be avoided, even in a test
environment.

Connection String Parameters for SqlConnection

Table 10-2 summarizes the basic parameters for the SQL Server data provider connection
string.

CHAPTER 10 ■ MAKING CONNECTIONS 197

Table 10-2. SQL Server Data Provider Connection String Parameters

Name Alias Default Value Allowed Values Description

Application Name .Net SqlClient Any string Name of
Data Provider application

AttachDBFileName extended properties, None Any path Full path of an
Initial File Name attachable

database file

Connect Timeout Connection Timeout 15 0–32767 Seconds to wait
to connect

Data Source Server, Address, Addr, None Server name or Name of the
Network Address network address target SQL Server

instance

Continued

9004ch10final.qxd 12/13/07 4:10 PM Page 197

Table 10-2. Continued

Name Alias Default Value Allowed Values Description

Encrypt false true, false, yes, Whether to use
no SSL encryption

Initial Catalog Database None Any database that Database name
exists on server

Integrated Security Trusted_Connection false true, false, yes, Authentication
no, sspi mode

Network Library Net dbmssocn dbnmpntw, Network .dll
dbmsrpcn,
dbmsadsn,
dbmsgnet,
dbmslpcn,
dbmsspxn,
dbmssocn

Packet Size 8192 Multiple of 512 Network packet
size in bytes

Password PWD None Any string Password if not
using Windows
Authentication

Persist Security Info false true, false, yes, Whether sensi-
no tive information

should be passed
back after
connecting

User ID UID None User name if not
using Windows
Authentication

Workstation ID Local com- Any string Workstation
puter name connecting to

SQL Server

CHAPTER 10 ■ MAKING CONNECTIONS198

The Alias column in Table 10-2 gives alternate parameter names. For example, you
can specify the server using any of the following:

data source = .\sqlexpress

server = .\sqlexpress

address = .\sqlexpress

addr = .\sqlexpress

network address = .\sqlexpress

9004ch10final.qxd 12/13/07 4:10 PM Page 198

Connection Pooling

One low-level detail that’s worth noting—even though you shouldn’t change it—is con-
nection pooling. Recall that creating connections is expensive in terms of memory and
time. With pooling, a closed connection isn’t immediately destroyed but is kept in mem-
ory in a pool of unused connections. If a new connection request comes in that matches
the properties of one of the unused connections in the pool, the unused connection is
used for the new database session.

Creating a totally new connection over the network can take seconds, whereas
reusing a pooled connection can happen in milliseconds; it’s much faster to use
pooled connections. The connection string has parameters that can change the size
of the connection pool or even turn off connection pooling. The default values (for
example, connection pooling is on by default) are appropriate for the vast majority
of applications.

Improving Your Use of Connection Objects
The code in the first sample program was trivial, so you could concentrate on how con-
nections work. Let’s enhance it a bit.

Using the Connection String in the Connection Constructor

In the ConnectionSql project, you created the connection and specified the connection
string in separate steps. Since you always have to specify a connection string, you can
use an overloaded version of the constructor that takes the connection string as an
argument.

// create connection

SqlConnection conn = new SqlConnection(@"

server = (local)\sqlexpress;

integrated security = sspi;

");

This constructor sets the ConnectionString property when creating the SqlConnection
object. You will try it in the next examples and use it in later chapters.

Displaying Connection Information

Connections have several properties that provide information about the connection.
Most of these properties are read-only, since their purpose is to display rather than set
information. (You set connection values in the connection string.) These properties are

CHAPTER 10 ■ MAKING CONNECTIONS 199

9004ch10final.qxd 12/13/07 4:10 PM Page 199

often useful when debugging, to verify that the connection properties are what you
expect them to be.

Here, we’ll describe the connection properties common to most data providers.

Try It Out: Displaying Connection Information

In this example, you’ll see how to write a program to display connection information.

1. Add a C# Console Application project named ConnectionDisplay to the Chapter10
solution.

2. Rename Program.cs to ConnectionDisplay.cs. When prompted to rename all refer-
ences to Program, you can click either Yes or No. Replace the code with that in
Listing 10-2.

Listing 10-2. ConnectionDisplay.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter10

{

class ConnectionDisplay

{

static void Main()

{

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

user id=administrator;

integrated security = true;

");

try

{

// open connection

conn.Open();

Console.WriteLine("Connection opened.");

CHAPTER 10 ■ MAKING CONNECTIONS200

9004ch10final.qxd 12/13/07 4:10 PM Page 200

// display connection properties

Console.WriteLine("Connection Properties:");

Console.WriteLine(

"\tConnection String: {0}",

conn.ConnectionString);

Console.WriteLine(

"\tDatabase: {0}",

conn.Database);

Console.WriteLine(

"\tDataSource: {0}",

conn.DataSource);

Console.WriteLine(

"\tServerVersion: {0}",

conn.ServerVersion);

Console.WriteLine(

"\tState: {0}",

conn.State);

Console.WriteLine(

"\tWorkstationId: {0}",

conn.WorkstationId);

}

catch (SqlException e)

{

// display error

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

Console.WriteLine("Connection closed.");

}

}

}

}

3. Make ConnectionDisplay the startup project, and run it by pressing Ctrl+F5. If the
connection is successful, you’ll see output like that shown in Figure 10-3.

CHAPTER 10 ■ MAKING CONNECTIONS 201

9004ch10final.qxd 12/13/07 4:10 PM Page 201

Figure 10-3. Displaying connection information

How It Works

The ConnectionString property can be both read and written. Here you just display it.

Console.WriteLine(

"\tConnection String: {0}",

conn.ConnectionString);

You can see the value you assign to it, including the whitespace, in the verbatim
string.

What’s the point? Well, it’s handy when debugging connections to verify that the
connection string really contains the values you thought you assigned. For example, if
you’re trying out different connection options, you may have different connection string
parameters in the program. You may have commented out one, intending to use it later,
but forgot about it. Displaying the ConnectionString property helps to see whether a
parameter is missing.

The next statement displays the Database property. Since each SQL Server instance
has several databases, this property shows which one you’re initially using when you
connect.

Console.WriteLine(

"\tDatabase: {0}",

conn.Database);

In this program, it displays

Database: master

CHAPTER 10 ■ MAKING CONNECTIONS202

9004ch10final.qxd 12/13/07 4:10 PM Page 202

since you didn’t specify a database in the connection string, so you were connected to the
SQL Server’s default database master. If you wanted to connect to the Northwind data-
base, you’d need to specify the Database parameter, for example:

// connection string

string connString = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

You can also change the default database from the master database to some other
database, say, AdventureWorks, by executing the following statement:

exec sp_defaultdb 'sa','adventureworks'

Again, this is a handy property to display for debugging purposes. If you get an error
saying that a particular table doesn’t exist, often the problem isn’t that the table doesn’t
exist but that it isn’t in the database to which you’re connected. Displaying the Database
property helps you to find that kind of error quickly.

■Tip If you specify a database in the connection string that doesn’t exist on the server, you may see the
following error message: “System.Data.SqlClient.SqlException: Cannot open database ‘database’ requested
by the login. The login failed.”

You can change the database currently used on a connection with the ChangeDatabase
method.

The next statement displays the DataSource property, which gives the server instance
name for SQL Server database connections.

Console.WriteLine(

"\tDataSource: {0}",

conn.DataSource);

This displays the same SQL Server instance name you’ve used in all the examples so
far.

DataSource: .\sqlexpress

The utility of this, again, is mainly for debugging purposes.

CHAPTER 10 ■ MAKING CONNECTIONS 203

9004ch10final.qxd 12/13/07 4:10 PM Page 203

The ServerVersion property displays the server version information.

Console.WriteLine(

"\tServerVersion: {0}",

conn.ServerVersion);

It shows the version of SSE you installed in Chapter 1. (Your version may differ.)

ServerVersion: 09.00.3042

The version number is useful for debugging. This information actually comes from
the server, so it indicates the connection is working.

■Note SQL Server 2005 (and SSE) is Version 9. SQL Server 2000 is version 8.

The State property indicates whether the connection is open or closed.

Console.WriteLine(

"\tState: {0}",

conn.State);

Since you display this property after the Open() call, it shows that the connection is
open.

State: Open

You’ve been displaying your own message that the connection is open, but this prop-
erty contains the current state. If the connection is closed, the State property would be
Closed.

You then display the workstation ID, which is a string identifying the client com-
puter. The WorkstationId property is specific to SQL Server and can be handy for
debugging.

Console.WriteLine(

"\tWorkstationId: {0}",

conn.WorkstationId);

CHAPTER 10 ■ MAKING CONNECTIONS204

9004ch10final.qxd 12/13/07 4:10 PM Page 204

It defaults to the computer name. Our computer is named ORCASBETA2_VSTS, but
yours, of course, will be different.

WorkstationId: <YourComputerName>

What makes this useful for debugging is that the SQL Server tools on the server
can display which workstation ID issued a particular command. If you don’t know
which machine is causing a problem, you can modify your programs to display the
WorkstationId property and compare them to the workstation IDs displayed on the
server.

You can also set this property with the workstation ID connection string parameter
as follows, so if you want all the workstations in, say, Building B to show that information
on the server, you can indicate that in the program:

// connection string

string connString = @"

server = .\sqlexpress;

workstation id = Building B;

integrated security = true;

";

That completes the discussion of the fundamentals of connecting to SQL Server with
SqlClient. Now let’s look at connecting with another data provider.

Connecting to SQL Server Express with
OleDbConnection
As you saw in Chapter 9, you can use the OLE DB data provider to work with any
OLE DB–compatible data store. Microsoft provides OLE DB data providers for Microsoft
SQL Server, Microsoft Access (Jet), Oracle, and a variety of other database and data file
formats.

If a native data provider is available for a particular database or file format (such as
the SqlClient data provider for SQL Server), it’s generally better to use it rather than the
generic OLE DB data provider. This is because OLE DB introduces an extra layer of indi-
rection between the C# program and the data source. One common database format for
which no native data provider exists is the Microsoft Access database (.mdb file) format,
also known as the Jet database engine format, so in this case you need to use the OLE DB
(or the ODBC) data provider.

We don’t assume you have an Access database to connect to, so you’ll use OLE DB
with SSE, as you did in Chapter 9.

CHAPTER 10 ■ MAKING CONNECTIONS 205

9004ch10final.qxd 12/13/07 4:10 PM Page 205

Try It Out: Connecting to SQL Server Express with the OLE DB
Data Provider

To connect to SSE with the OLE DB data provider, follow these steps:

1. Add a C# Console Application project named ConnectionOleDb, and rename
Program.cs to ConnectionOleDb.cs.

2. Replace the code in ConnectionOleDb.cs with that in Listing 10-3. This is basically
the same code as Connection.cs, with the changed code in bold.

Listing 10-3. ConnectionOleDb.cs

using System;

using System.Data;

using System.Data.OleDb;

namespace Chapter10

{

class ConnectionOleDb

{

static void Main()

{

// create connection

OleDbConnection conn = new OleDbConnection(@"

provider = sqloledb;

data source = .\sqlexpress;

integrated security = sspi;

");

try

{

// open connection

conn.Open();

Console.WriteLine("Connection opened.");

// display connection properties

Console.WriteLine("Connection Properties:");

Console.WriteLine(

"\tConnection String: {0}",

conn.ConnectionString);

CHAPTER 10 ■ MAKING CONNECTIONS206

9004ch10final.qxd 12/13/07 4:10 PM Page 206

Console.WriteLine(

"\tDatabase: {0}",

conn.Database);

Console.WriteLine(

"\tDataSource: {0}",

conn.DataSource);

Console.WriteLine(

"\tServerVersion: {0}",

conn.ServerVersion);

Console.WriteLine(

"\tState: {0}",

conn.State);

}

catch (OleDbException e)

{

// display error

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

Console.WriteLine("Connection closed.");

}

}

}

}

4. Make ConnectionOleDb the startup project, and run it by pressing Ctrl+F5. If the
connection is successful, you’ll see output like that shown in Figure 10-4.

Figure 10-4. Displaying OLE DB connection information

CHAPTER 10 ■ MAKING CONNECTIONS 207

9004ch10final.qxd 12/13/07 4:10 PM Page 207

How It Works

We’ll discuss only the differences between this example and the previous one.
The first step is to reference the OLE DB data provider namespace,

System.Data.OleDb.

using System.Data.OleDb;

Next, you create an OleDbConnection object instead of a SqlConnection object. Note the
changes to the connection string. Instead of the server parameter, you use Provider and
Data Source. Notice the value of the Integrated Security parameter must be sspi, not true.

// create connection

OleDbConnection conn = new OleDbConnection(@"

provider = sqloledb;

data source = .\sqlexpress;

integrated security = sspi;

");

Finally, note that you omit the WorkstationId property in your display. The OLE DB
data provider doesn’t support it.

This is the pattern for accessing any data source with any .NET data provider. Specify
the connection string with parameters specific to the data provider. Use the appropriate
objects from the data provider namespace. Use only the properties and methods pro-
vided by that data provider.

Summary
In this chapter, you created, opened, and closed connections using two data providers
and their appropriate connection strings, parameters, and values. You displayed informa-
tion about connections after creating them using connection properties. You also saw
how to handle various exceptions associated with connections.

In the next chapter, you’ll look at ADO.NET commands and see how to use them to
access data.

CHAPTER 10 ■ MAKING CONNECTIONS208

9004ch10final.qxd 12/13/07 4:10 PM Page 208

Executing Commands

Once you’ve established a connection to the database, you want to start interacting
with it and getting it doing something useful for you. You may need to add, update, or
delete some data, or perhaps modify the database in some other way, usually by running
a query. Whatever the task, it will inevitably involve a command.

In this chapter, we’ll explain commands, which are objects that encapsulate the
SQL for the action you want to perform and that provide methods for submitting it to
the database. Each data provider has a command class that implements the System.Data.
IDbCommand interface.

In this chapter, we’ll cover the following:

• Creating commands

• Executing commands

• Executing commands with multiple results

• Executing statements

• Command parameters

We’ll use the SQL Server data provider (System.Data.SqlClient) in our examples. Its
command is named SqlCommand. The commands for the other data providers work the
same way.

Creating a Command
You can create a command either using the SqlCommand constructor or using methods that
create the object for you. Let’s look at the first of these alternatives.

209

C H A P T E R 1 1

9004ch11final.qxd 12/13/07 4:08 PM Page 209

Try It Out: Creating a Command with a Constructor

In this example, you’ll create a SqlCommand object but not yet do anything with it.

1. Create a new Console Application project named Chapter11. When Solution
Explorer opens, save the solution.

2. Rename the Chapter11 project to CommandSql. Rename the Program.cs file to
CommandSql.cs, and replace the generated code with the code in Listing 11-1.

Listing 11-1. CommandSql.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter11

{

class CommandSql

{

static void Main()

{

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command

SqlCommand cmd = new SqlCommand();

Console.WriteLine("Command created.");

try

{

// open connection

conn.Open();

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

CHAPTER 11 ■ EXECUTING COMMANDS210

9004ch11final.qxd 12/13/07 4:09 PM Page 210

finally

{

conn.Close();

Console.WriteLine("Connection Closed.");

}

}

}

}

3. Run the program by pressing Ctrl+F5. You should see the output in Figure 11-1.

Figure 11-1. Connecting after creating a command

How It Works

You create a SqlCommand object using the default constructor and print a message indicat-
ing you’ve created it.

// create SqlCommand

SqlCommand cmd = new SqlCommand();

Console.WriteLine("Command created.");

In this example, the command is empty. It isn’t associated with a connection, and it
doesn’t have its text (in other words, the SQL) set. You can’t do much with it here, so let’s
move on and see how you can associate a command with a connection.

Associating a Command with a Connection

For your commands to be executed against a database, each command must be associ-
ated with a connection to the database. You do this by setting the Connection property of
the command, and in order to save resources, multiple commands can use the same con-
nection. You have a couple of ways to set up this association, so next you’ll modify the
example to try them.

CHAPTER 11 ■ EXECUTING COMMANDS 211

9004ch11final.qxd 12/13/07 4:09 PM Page 211

Try It Out: Setting the Connection Property

To set the Connection property, follow these steps:

1. Add the following bold code to the try block of Listing 11-1.

try

{

// open connection

conn.Open();

// connect command to connection

cmd.Connection = conn;

Console.WriteLine("Connnected command to this connection.");

}

2. Run the code by pressing Ctrl+F5. You should see the results in Figure 11-2.

Figure 11-2. Connecting a command to a connection

How It Works

As you saw in the previous example, you start the code by creating the connection and
command.

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command

SqlCommand cmd = new SqlCommand();

Console.WriteLine("Command created.");

CHAPTER 11 ■ EXECUTING COMMANDS212

9004ch11final.qxd 12/13/07 4:09 PM Page 212

At this point, both the connection and command exist, but they aren’t associated
with each other in any way. It’s only when you assign the connection to the command’s
Connection property that they become associated.

// connect command to connection

cmd.Connection = conn;

Console.WriteLine("Connected command to this connection.");

The actual assignment occurs after the call to conn.Open in this particular example,
but you could have done it before calling Open(); the connection doesn’t have to be open
for the Connection property of the command to be set.

As mentioned earlier, you have a second option for associating a connection with
a command; calling the connection’s CreateCommand method will return a new command
with the Connection property set to that connection.

SqlCommand cmd = conn.CreateCommand();

This is equivalent to

SqlCommand cmd = new SqlCommand();

cmd.Connection = conn;

In both cases, you end up with a command associated with a connection.
You still need one more thing in order to use the command, and that’s the text of the

command. Let’s see how to set that next.

Assigning Text to a Command

Every command has a property, CommandText, that holds the SQL to execute. You can
assign to this property directly or specify it when constructing the command. Let’s look at
these alternatives.

Try It Out: Setting the CommandText Property

To set the CommandText property, follow these steps:

1. Modify the try block with the following bold code:

try

{

// open connection

conn.Open();

CHAPTER 11 ■ EXECUTING COMMANDS 213

9004ch11final.qxd 12/13/07 4:09 PM Page 213

// connect command to connection

cmd.Connection = conn;

Console.WriteLine("Connnected command to this connection.");

// associate SQL with command

cmd.CommandText = @"

select

count(*)

from

employees

";

Console.WriteLine(

"Ready to execute SQL: {0}"

, cmd.CommandText

);

}

2. Run the code by pressing Ctrl+F5. You should see the result in Figure 11-3.

Figure 11-3. Setting command text

How It Works

CommandText is just a string, so you can print it with Console.WriteLine() just like any other
string. The SQL will return the number of employees in the Northwind Employees table
when you eventually execute it.

■Note You must set both the Connection and the CommandText properties of a command before the
command can be executed.

CHAPTER 11 ■ EXECUTING COMMANDS214

9004ch11final.qxd 12/13/07 4:09 PM Page 214

You can set both of these properties when you create the command with yet another
variation of its constructor, as shown here:

// create command (with both text and connection)

string sql = @"

select

count(*)

from

employees

";

SqlCommand cmd =

new SqlCommand(sql, thisConnection);

This is equivalent to the previous code that assigns each property explicitly. This is
the most commonly used variation of the SqlCommand constructor, and you’ll use it for the
rest of the chapter.

Executing Commands
Commands aren’t much use unless you can execute them, so let’s look at that now.
Commands have several different methods for executing SQL. The differences between
these methods depend on the results you expect from the SQL. Queries return rows of
data (result sets), but the INSERT, UPDATE, and DELETE statements don’t. You determine
which method to use by considering what you expect to be returned (see Table 11-1).

Table 11-1. Command Execution Methods

If the Command Is Going to Return . . . You Should Use . . .

Nothing (it isn’t a query) ExecuteNonQuery

Zero or more rows ExecuteReader

XML ExecuteXmlReader

The SQL you just used in the example should return one value, the number of
employees. Looking at Table 11-1, you can see that you should use the ExecuteScalar
method of SqlCommand to return this one result. Let’s try it.

CHAPTER 11 ■ EXECUTING COMMANDS 215

9004ch11final.qxd 12/13/07 4:09 PM Page 215

Try It Out: Using the ExecuteScalar Method

To use the ExecuteScalar method, follow these steps:

1. Add a new C# Console Application project named CommandScalar to your
Chapter11 solution. Rename Program.cs to CommandScalar.cs.

2. Replace the code in CommandScalar.cs with the code in Listing 11-2.

Listing 11-2. CommandScalar.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter11

{

class CommandScalar

{

static void Main()

{

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command (with both text and connection)

string sql = @"

select

count(*)

from

employees

";

SqlCommand cmd = new SqlCommand(sql, conn);

Console.WriteLine("Command created and connected.");

CHAPTER 11 ■ EXECUTING COMMANDS216

9004ch11final.qxd 12/13/07 4:09 PM Page 216

try

{

// open connection

conn.Open();

// execute query

Console.WriteLine(

"Number of Employees is {0}"

, cmd.ExecuteScalar()

);

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

conn.Close();

Console.WriteLine("Connection Closed.");

}

}

}

}

3. Make CommandScalar the startup project, and then run it by pressing Ctrl+F5.
You should see the results in Figure 11-4.

Figure 11-4. Executing a scalar command

CHAPTER 11 ■ EXECUTING COMMANDS 217

9004ch11final.qxd 12/13/07 4:09 PM Page 217

How It Works

All you do is add a call to ExecuteScalar() within a call to WriteLine():

// execute query

Console.WriteLine(

"Number of Employees is {0}"

, cmd.ExecuteScalar()

);

ExecuteScalar() takes the CommandText property and sends it to the database using the
command’s Connection property. It returns the result (9) as a single object, which you dis-
play with Console.WriteLine().

This is pretty simple to follow, but it’s worth noting this really is simpler than
usual because Console.WriteLine() takes any kind of object as its input. In fact,
ExecuteScalar()’s return type is object, the base class of all types in the .NET Frame-
work, which makes perfect sense when you remember that a database can hold any
type of data. So, if you want to assign the returned object to a variable of a specific
type (int, for example), you must cast the object to the specific type. If the types aren’t
compatible, the system will generate a runtime error that indicates an invalid cast.

The following is an example that demonstrates this idea. In it, you store the result
from ExecuteScalar() in the variable count, casting it to the specific type int.

int count = (int) cmd.ExecuteScalar();

Console.WriteLine("Number of Employees is: {0}", count);

If you’re sure the type of the result will always be an int (a safe bet with COUNT(*)),
the previous code is safe. However, if you left the cast to int in place and changed the
CommandText of the command to the following:

select

firstname

from

employees

where

lastname = 'Davolio'

ExecuteScalar() would return the string Nancy instead of an integer, and you’d get this
exception:

Unhandled Exception: System.InvalidCastException: Specified cast is not valid.

because you can’t cast a string to an int.

CHAPTER 11 ■ EXECUTING COMMANDS218

9004ch11final.qxd 12/13/07 4:09 PM Page 218

Another problem may occur if a query actually returns multiple rows where you
thought it would return only one; for example, what if there were multiple employees
with the last name Davolio? In this case, ExecuteScalar() just returns the first row of the
result and ignores the rest. If you use ExecuteScalar(), make sure you not only expect but
actually get a single value returned.

Executing Commands with Multiple Results
For queries where you’re expecting multiple rows and columns to be returned, use the
command’s ExecuteReader() method.

ExecuteReader() returns a data reader, an instance of the SqlDataReader class that
you’ll study in the next chapter. Data readers have methods that allow you to read suc-
cessive rows in result sets and retrieve individual column values.

We’ll leave the details of data readers for the next chapter, but for comparison’s
sake, we’ll give a brief example here of using the ExecuteReader() method to create a
SqlDataReader from a command to display query results.

Try It Out: Using the ExecuteReader Method

To use the ExecuteReader method, follow these steps:

1. Add a new C# Console Application project named CommandReader to your
Chapter11 solution. Rename Program.cs to CommandReader.cs.

2. Replace the code in CommandReader.cs with the code in Listing 11-3.

Listing 11-3. CommandReader.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter11

{

class CommandReader

{

static void Main()

{

// create connection

CHAPTER 11 ■ EXECUTING COMMANDS 219

9004ch11final.qxd 12/13/07 4:09 PM Page 219

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command (with both text and connection)

string sql = @"

select

firstname,

lastname

from

employees

";

SqlCommand cmd = new SqlCommand(sql, conn);

Console.WriteLine("Command created and connected.");

try

{

// open connection

conn.Open();

// execute query

SqlDataReader rdr = cmd.ExecuteReader();

while (rdr.Read())

{

Console.WriteLine("Employee name: {0} {1}",

rdr.GetValue(0),

rdr.GetValue(1)

);

}

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

CHAPTER 11 ■ EXECUTING COMMANDS220

9004ch11final.qxd 12/13/07 4:09 PM Page 220

finally

{

conn.Close();

Console.WriteLine("Connection Closed.");

}

}

}

}

3. Make CommandReader the startup project, and then run it by pressing Ctrl+F5.
You should see the output in Figure 11-5, the first and last names of all nine
employees.

Figure 11-5. Using a data reader

How It Works

In this example, you use the ExecuteReader method to retrieve and then output the first
and last names of all the employees in the Employees table. As with ExecuteScalar(),
ExecuteReader() takes the CommandText property and sends it to the database using the
connection from the Connection property.

When you use the ExecuteScalar method, you produce only a single scalar value. In
contrast, using ExecuteReader() returns a SqlDataReader object.

// execute query

SqlDataReader rdr = cmd.ExecuteReader();

while (rdr.Read())

{

Console.WriteLine("Employee name: {0} {1}",

rdr.GetValue(0),

rdr.GetValue(1)

);

}

CHAPTER 11 ■ EXECUTING COMMANDS 221

9004ch11final.qxd 12/13/07 4:09 PM Page 221

The SqlDataReader object has a Read method that gets each row in turn and a GetValue
method that gets the value of a column in the row. The particular column whose value it
retrieves is given by the integer parameter indicating the index of the column. Note that
GetValue uses a zero-based index, so the first column is column 0, the second column is
column 1, and so on. Since the query asked for two columns, FirstName and LastName,
these are the columns numbered 0 and 1 in this query result.

Executing Statements
The ExecuteNonQuery method The ExecuteNonQuery method of the command executes SQL
statements instead of queries. Let’s try it.

Try It Out: Using the ExecuteNonQuery Method

To use the ExecuteNonQuery method, follow these steps:

1. Add a new C# Console Application project named CommandNonQuery to your
Chapter11 solution. Rename Program.cs to CommandNonQuery.cs.

2. Replace the code in CommandNonQuery.cs with the code in Listing 11-4.

Listing 11-4. CommandNonQuery.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter11

{

class CommandNonQuery

{

static void Main()

{

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

CHAPTER 11 ■ EXECUTING COMMANDS222

9004ch11final.qxd 12/13/07 4:09 PM Page 222

// define scalar query

string sqlqry = @"

select

count(*)

from

employees

";

// define insert statement

string sqlins = @"

insert into employees

(

firstname,

lastname

)

values('Zachariah', 'Zinn')

";

// define delete statement

string sqldel = @"

delete from employees

where

firstname = 'Zachariah'

and

lastname = 'Zinn'

";

// create commands

SqlCommand cmdqry = new SqlCommand(sqlqry, conn);

SqlCommand cmdnon = new SqlCommand(sqlins, conn);

try

{

// open connection

conn.Open();

// execute query to get number of employees

Console.WriteLine(

"Before INSERT: Number of employees {0}\n"

, cmdqry.ExecuteScalar()

);

CHAPTER 11 ■ EXECUTING COMMANDS 223

9004ch11final.qxd 12/13/07 4:09 PM Page 223

// execute nonquery to insert an employee

Console.WriteLine(

"Executing statement {0}"

, cmdnon.CommandText

);

cmdnon.ExecuteNonQuery();

Console.WriteLine(

"After INSERT: Number of employees {0}\n"

, cmdqry.ExecuteScalar()

);

// execute nonquery to delete an employee

cmdnon.CommandText = sqldel;

Console.WriteLine(

"Executing statement {0}"

, cmdnon.CommandText

);

cmdnon.ExecuteNonQuery();

Console.WriteLine(

"After DELETE: Number of employees {0}\n"

, cmdqry.ExecuteScalar()

);

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

conn.Close();

Console.WriteLine("Connection Closed.");

}

}

}

}

3. Make CommandNonQuery the startup project, and then run it by pressing
Ctrl+F5. You should see the results in Figure 11-6.

CHAPTER 11 ■ EXECUTING COMMANDS224

9004ch11final.qxd 12/13/07 4:09 PM Page 224

Figure 11-6. Executing statements

How It Works

In this program, you use a scalar query and two statements, storing the SQL in three
string variables:

// define scalar query

string sqlqry = @"

select

count(*)

from

employees

";

// define insert statement

string sqlins = @"

insert into employees

(

firstname,

lastname

)

values('Zachariah', 'Zinn')

";

CHAPTER 11 ■ EXECUTING COMMANDS 225

9004ch11final.qxd 12/13/07 4:09 PM Page 225

// define delete statement

string sqldel = @"

delete from employees

where

firstname = 'Zachariah'

and

lastname = 'Zinn'

";

Then you create two commands. The first is cmdqry, which encapsulates the scalar
query to count the rows in the Employees table. You use this command several times to
monitor the number of rows as you insert and delete employees. The second is cmdnon,
which you use twice, first to insert a row, and then to delete the same row. You initially
set its CommandText to the INSERT statement SQL:

SqlCommand cmdnon = new SqlCommand(sqlins, conn);

and later reset it to the DELETE statement SQL:

cmdnon.CommandText = sqldel;

executing the SQL statements with two calls to

cmdnon.ExecuteNonQuery();

ExecuteNonQuery() returns an int indicating how many rows are affected by the
command. Since you want to display the number of affected rows, you put the call to
ExecuteNonQuery() within a call to Console.WriteLine(). You used ExecuteScalar() to dis-
play the number of rows, before and after the INSERT and DELETE operations.

Console.WriteLine("After INSERT: Number of Employees is: {0}",

selectCommand.ExecuteScalar());

Note that both cmdqry and cmdnon are SqlCommand objects. The difference between sub-
mitting queries and statements is the method you use to submit them.

■Note With ExecuteNonQuery() you can submit virtually any SQL statement, including Data Definition
Language (DDL) statements, to create and drop database objects like tables and indexes.

CHAPTER 11 ■ EXECUTING COMMANDS226

9004ch11final.qxd 12/13/07 4:09 PM Page 226

Command Parameters
When you inserted the new row into Employees, you hard-coded the values. Although
this was perfectly valid SQL, it’s something you almost never want (or need) to do. You
need to be able to store whatever values are appropriate at any given time. There are
two approaches to doing this. Both are reasonable, but one is far more efficient than
the other.

The less efficient alternative is to dynamically build an SQL statement, producing
a string that contains all the necessary information in the CommandText property. For
example, you could do something like this:

string fname = "Zachariah";

string lname = "Zinn";

string vals = "('" + fname + "'," + "'" + lname +"')" ;

string sqlins = @"

insert into employees

(

firstname,

lastname

)

values"

+ vals

;

and then assign sqlins to some command’s CommandText before executing the statement.

■Note Of course, we’re using fname and lname simply as rudimentary sources of data. Data most likely
comes from some dynamic input source and involves many rows over time, but the technique is nonetheless
the same: building an SQL string from a combination of hard-coded SQL keywords and values contained in
variables.

You should take care when inserting values that consist of single quotes, for example, a possessive form
of the surname Agarwal’s. To insert this string, you must include two single quotes—Agarwal’’s—to prevent
a syntax error. However, this is not recommended as best practice due to the risk of SQL injection attacks.

A much better way to handle this is with command parameters. A command parame-
ter is a placeholder in the command text where a value will be substituted. In SQL Server,
named parameters are used. They begin with @ followed by the parameter name with no
intervening space. So, in the following INSERT statement, @MyName and @MyNumber are both
parameters.

INSERT INTO MyTable VALUES (@MyName, @MyNumber)

CHAPTER 11 ■ EXECUTING COMMANDS 227

9004ch11final.qxd 12/13/07 4:09 PM Page 227

■Note Some data providers use the standard SQL parameter marker, a question mark (?), instead of
named parameters.

Command parameters have several advantages:

• The mapping between the variables and where they’re used in SQL is clearer.

• Parameters let you use the type definitions that are specific to a particular
ADO.NET data provider to ensure that your variables are mapped to the correct
SQL data types.

• Parameters let you use the Prepare method, which can make your code run faster
because the SQL in a “prepared” command is parsed by SQL Server only the first
time it’s executed. Subsequent executions run the same SQL, changing only
parameter values.

• Parameters are used extensively in other programming techniques, such as using
stored procedures and working with irregular data.

Try It Out: Using Command Parameters

To try out using command parameters, follow these steps:

1. Add a new C# Console Application project named CommandParameters to your
Chapter11 solution. Rename Program.cs to CommandParameters.cs.

2. Replace the code in CommandParameters.cs with the code in Listing 11-5. This is a
variation of Listing 11-4, with salient changes highlighted in bold.

Listing 11-5. CommandParameters.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter11

{

class CommandParameters

{

static void Main()

CHAPTER 11 ■ EXECUTING COMMANDS228

9004ch11final.qxd 12/13/07 4:09 PM Page 228

{

// set up rudimentary data

string fname = "Zachariah";

string lname = "Zinn";

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

// define scalar query

string sqlqry = @"

select

count(*)

from

employees

";

// define insert statement

string sqlins = @"

insert into employees

(

firstname,

lastname

)

values(@fname, @lname)

";

// define delete statement

string sqldel = @"

delete from employees

where

firstname = @fname

and

lastname = @lname

";

CHAPTER 11 ■ EXECUTING COMMANDS 229

9004ch11final.qxd 12/13/07 4:09 PM Page 229

// create commands

SqlCommand cmdqry = new SqlCommand(sqlqry, conn);

SqlCommand cmdnon = new SqlCommand(sqlins, conn);

Cmdnon.Prepare();

// add parameters to the command for statements

cmdnon.Parameters.Add("@fname", SqlDbType.NVarChar, 10);

cmdnon.Parameters.Add("@lname", SqlDbType.NVarChar, 20);

try

{

// open connection

conn.Open();

// execute query to get number of employees

Console.WriteLine(

"Before INSERT: Number of employees {0}\n"

, cmdqry.ExecuteScalar()

);

// execute nonquery to insert an employee

cmdnon.Parameters["@fname"].Value = fname;

cmdnon.Parameters["@lname"].Value = lname;

Console.WriteLine(

"Executing statement {0}"

, cmdnon.CommandText

);

cmdnon.ExecuteNonQuery();

Console.WriteLine(

"After INSERT: Number of employees {0}\n"

, cmdqry.ExecuteScalar()

);

// execute nonquery to delete an employee

cmdnon.CommandText = sqldel;

Console.WriteLine(

"Executing statement {0}"

, cmdnon.CommandText

);

cmdnon.ExecuteNonQuery();

CHAPTER 11 ■ EXECUTING COMMANDS230

9004ch11final.qxd 12/13/07 4:09 PM Page 230

mailto:Parameters["@fname"].Value
mailto:Parameters["@lname"].Value

Console.WriteLine(

"After DELETE: Number of employees {0}\n"

, cmdqry.ExecuteScalar()

);

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

conn.Close();

Console.WriteLine("Connection Closed.");

}

}

}

}

3. Make CommandParameters the startup project, and then run it by pressing
Ctrl+F5. You should see the results in Figure 11-7.

Figure 11-7. Using command parameters

CHAPTER 11 ■ EXECUTING COMMANDS 231

9004ch11final.qxd 12/13/07 4:09 PM Page 231

How It Works

First, you set up your sample data.

// set up rudimentary data

string fname = "Zachariah";

string lname = "Zinn";

You then add two parameters, @fname and @lname, to the Parameters collection prop-
erty of the command you want to parameterize.

// create commands

SqlCommand cmdqry = new SqlCommand(sqlqry, conn);

SqlCommand cmdnon = new SqlCommand(sqlins, conn);

Cmdnon.Prepare();

// add parameters to the command for statements

cmdnon.Parameters.Add("@fname", SqlDbType.NVarChar, 10);

cmdnon.Parameters.Add("@lname", SqlDbType.NVarChar, 20);

Note that you provide the parameter names as strings and then specify the data
types of the columns you expect to use them with. The SqlDbType enumeration contains
a member for every SQL Server data type except cursor and table, which can’t be directly
used by C# programs. The Add method is overloaded. Since nvarchar requires you to spec-
ify its maximum length, you include that as the third argument.

Finally, you set the parameter values before executing the command.

// execute nonquery to insert an employee

cmdnon.Parameters["@fname"].Value = fname;

cmdnon.Parameters["@lname"].Value = lname;

■Note You use the same command, cmdnon, to execute both the INSERT and DELETE statements. The
parameter values don’t change, even though the SQL in CommandText does. The Parameters collection is
the source of parameter values for whatever SQL is in CommandText. The SQL does not have to use all or
even any of the parameters, but it cannot use any parameters not in the command’s Parameters collection.

Notice in Figure 11-7 that when you display the SQL in CommandText, you see the
parameter names rather than their values. Values are substituted for parameters when

CHAPTER 11 ■ EXECUTING COMMANDS232

9004ch11final.qxd 12/13/07 4:09 PM Page 232

mailto:Parameters["@fname"].Value
mailto:Parameters["@lname"].Value

the SQL is submitted to the database server, not when the values are assigned to the
members of the Parameters collection.

Summary
In this chapter, we covered what an ADO.NET command is and how to create a command
object. We also discussed associating a command with a connection, setting command
text, and using ExecuteScalar(), ExecuteReader(), and ExecuteNonQuery() statements.

In the next chapter, you’ll look at data readers.

CHAPTER 11 ■ EXECUTING COMMANDS 233

9004ch11final.qxd 12/13/07 4:09 PM Page 233

9004ch11final.qxd 12/13/07 4:09 PM Page 234

Using Data Readers

In Chapter 11, you used data readers to retrieve data from a multirow result set. In this
chapter, we’ll look at data readers in more detail. You’ll see how they’re used and their
importance in ADO.NET programming.

In this chapter, we’ll cover the following:

• Understanding data readers in general

• Getting data about data

• Getting data about tables

• Using multiple result sets with a data reader

Understanding Data Readers in General
The third component of a data provider, in addition to connections and commands, is
the data reader. Once you’ve connected to a database and queried it, you need some way
to access the result set. This is where the data reader comes in.

■Note If you’re from an ADO background, an ADO.NET data reader is like an ADO forward-only/read-only
client-side recordset, but it’s not a COM object.

Data readers are objects that implement the System.Data.IDataReader interface. A
data reader is a fast, unbuffered, forward-only, read-only connected stream that retrieves
data on a per-row basis. It reads one row at a time as it loops through a result set.

235

C H A P T E R 1 2

9004ch12final.qxd 12/13/07 4:07 PM Page 235

You can’t directly instantiate a data reader; instead, you create one with the
ExecuteReader method of a command. For example, assuming cmd is a SqlClient
command object for a query, here’s how to create a SqlClient data reader:

SqlDataReader rdr = cmd.ExecuteReader();

You can now use this data reader to access the query’s result set.

■Tip One point that we’ll discuss further in the next chapter is choosing a data reader vs. a dataset. The
general rule is to always use a data reader for simply retrieving data. If all you need to do is display data, all
you need to use in most cases is a data reader.

We’ll demonstrate basic data reader usage with a few examples. The first example is
the most basic; it simply uses a data reader to loop through a result set.

Let’s say you’ve successfully established a connection with the database, a query has
been executed, and everything seems to be going fine—what now? The next sensible
thing to do would be to retrieve the rows and process them.

Try It Out: Looping Through a Result Set

The following console application shows how to use a SqlDataReader to loop through
a result set and retrieve rows.

1. Create a new Console Application project named Chapter12. When Solution
Explorer opens, save the solution.

2. Rename the Chapter12 project to DataLooper. Rename the Program.cs file to
DataLooper.cs, and replace the generated code with the code in Listing 12-1.

Listing 12-1. DataLooper.cs

using System;

using System.Data;

using System.Data.SqlClient;

CHAPTER 12 ■ USING DATA READERS236

9004ch12final.qxd 12/13/07 4:07 PM Page 236

namespace Chapter12

{

class DataLooper

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

contactname

from

customers

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// open connection

conn.Open();

// create command

SqlCommand cmd = new SqlCommand(sql, conn);

// create data reader

SqlDataReader rdr = cmd.ExecuteReader();

// loop through result set

while (rdr.Read())

{

// print one row at a time

Console.WriteLine("{0}", rdr[0]);

}

CHAPTER 12 ■ USING DATA READERS 237

9004ch12final.qxd 12/13/07 4:07 PM Page 237

// close data reader

rdr.Close();

}

catch(Exception e)

{

Console.WriteLine("Error Occurred: " + e);

}

finally

{

//close connection

conn.Close();

}

}

}

}

3. Run the DataLooper by pressing Ctrl+F5. You should see the results in Figure 12-1.

Figure 12-1. Looping through a result set

How It Works

SqlDataReader is an abstract class and can’t be instantiated explicitly. For this reason,
you obtain an instance of a SqlDataReader by executing the ExecuteReader method of
SqlCommand.

// create data reader

SqlDataReader rdr = cmd.ExecuteReader();

ExecuteReader() doesn’t just create a data reader, it sends the SQL to the connection
for execution, so when it returns you can loop through each row of the result set and

CHAPTER 12 ■ USING DATA READERS238

9004ch12final.qxd 12/13/07 4:07 PM Page 238

retrieve values column by column. To do this, you call the Read method of SqlDataReader,
which returns true if a row is available and advances the cursor (the internal pointer to
the next row in the result set) or returns false if another row isn’t available. Since Read()
advances the cursor to the next available row, you have to call it for all the rows in the
result set, so you call it as the condition in a while loop:

// loop through result set

while (rdr.Read())

{

// print one row at a time

Console.WriteLine("{0}", rdr[0]);

}

Once you call the Read method, the next row is returned as a collection and stored in
the SqlDataReader object itself. To access data from a specific column, you can use a num-
ber of methods (we’ll cover these in the next section), but for this application you use the
ordinal indexer lookup method, giving the column number to the reader to retrieve val-
ues (just as you’d specify an index for an array). Since in this case you choose a single
column from the Customers table while querying the database, only the “zeroth” indexer
is accessible, so you hard-code the index as rdr[0].

To use the connection for another purpose or to run another query on the database,
it’s important to call the Close method of SqlDataReader to close the reader explicitly.
Once a reader is attached to an active connection, the connection remains busy fetch-
ing data for the reader and remains unavailable for other use until the reader has been
detached from it. That’s why you close the reader in the try block rather than in the
finally block (even though this simple program doesn’t need to use the connection for
another purpose).

// close data reader

rdr.Close();

Using Ordinal Indexers

You use an ordinal indexer to retrieve column data from the result set. Let’s learn more
about ordinal indexers. The code

rdr[0]

is a reference to the data reader’s Item property and returns the value in the column spec-
ified for the current row. The value is returned as an object.

CHAPTER 12 ■ USING DATA READERS 239

9004ch12final.qxd 12/13/07 4:07 PM Page 239

Try It Out: Using Ordinal Indexers

In this example, you’ll build a console application that uses an ordinal indexer.

1. Add a new C# Console Application project named OrdinalIndexer to your
Chapter12 solution. Rename Program.cs to OrdinalIndexer.cs.

2. Replace the code in OrdinalIndexer.cs with the code in Listing 12-2.

Listing 12-2. OrdinalIndexer.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter07

{

class OrdinalIndexer

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

companyname,

contactname

from

customers

where

contactname like 'M%'

";

// create connection

SqlConnection conn = new SqlConnection(connString);

CHAPTER 12 ■ USING DATA READERS240

9004ch12final.qxd 12/13/07 4:07 PM Page 240

try

{

// open connection

conn.Open();

// create command

SqlCommand cmd = new SqlCommand(sql, conn);

// create data reader

SqlDataReader rdr = cmd.ExecuteReader();

// print headings

Console.WriteLine("\t{0} {1}",

"Company Name".PadRight(25),

"Contact Name".PadRight(20));

Console.WriteLine("\t{0} {1}",

"============".PadRight(25),

"============".PadRight(20));

// loop through result set

while (rdr.Read())

{

Console.WriteLine(" {0} | {1}",

rdr[0].ToString().PadLeft(25),

rdr[1].ToString().PadLeft(20));

}

// close reader

rdr.Close();

}

catch(Exception e)

{

Console.WriteLine("Error Occurred: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

CHAPTER 12 ■ USING DATA READERS 241

9004ch12final.qxd 12/13/07 4:07 PM Page 241

3. Make OrdinalIndexer the startup project, and run it by pressing Ctrl+F5. You
should see the results in Figure 12-2.

Figure 12-2. Displaying multiple columns

How It Works

You query the Customers table for the columns CompanyName and ContactName,
where contact names begin with the letter “M.”

// query

string sql = @"

select

companyname,

contactname

from

customers

where

contactname like 'M%'

";

Since two columns are selected by your query, the returned data also comprises a
collection of rows from only these two columns, thus allowing access to only two possible
ordinal indexers, 0 and 1.

You read each row in a while loop, fetching values of the two columns with their
indexers. Since the returned value is an object, you need to explicitly convert the value to
a string so that you can use the PadLeft method to format the output in such a way that
all the characters will be right-aligned, being padded with spaces on the left for a speci-
fied total length.

CHAPTER 12 ■ USING DATA READERS242

9004ch12final.qxd 12/13/07 4:07 PM Page 242

// loop through result set

while (rdr.Read())

{

Console.WriteLine(" {0} | {1}",

rdr[0].ToString().PadLeft(25),

rdr[1].ToString().PadLeft(20));

}

After processing all rows in the result set, you explicitly close the reader to free the
connection.

// close reader

rdr.Close();

Using Column Name Indexers

Most of the time we don’t really keep track of column numbers and prefer retrieving
values by their respective column names, simply because it’s much easier to remember
them by their names, which also makes the code more self-documenting.

You use column name indexing by specifying column names instead of ordinal
index numbers. This has its advantages. For example, a table may be changed by the
addition or deletion of one or more columns, upsetting column ordering and raising
exceptions in older code that uses ordinal indexers. Using column name indexers
would avoid this issue, but ordinal indexers are faster, since they directly reference
columns rather than look them up by name.

The following code snippet retrieves the same columns (CompanyName and
ContactName) that the last example did, using column name indexers.

// loop through result set

while (rdr.Read())

{

Console.WriteLine(" {0} | {1}",

rdr["companyname"].ToString().PadLeft(25),

rdr["contactname"].ToString().PadLeft(20));

}

Replace the ordinal indexers in OrdinalIndexer.cs with column name indexers, rerun
the project, and you’ll get the same results as in Figure 12-2.

The next section discusses a better approach for most cases.

CHAPTER 12 ■ USING DATA READERS 243

9004ch12final.qxd 12/13/07 4:07 PM Page 243

Using Typed Accessor Methods

When a data reader returns a value from a data source, the resulting value is retrieved
and stored locally in a .NET type rather than the original data source type. This in-place
type conversion feature is a trade-off between consistency and speed, so to give some
control over the data being retrieved, the data reader exposes typed accessor methods
that you can use if you know the specific type of the value being returned.

Typed accessor methods all begin with Get, take an ordinal index for data retrieval,
and are type safe; C# won’t allow you to get away with unsafe casts. These methods turn
out to be faster than both the ordinal and the column name indexer methods. Being
faster than column name indexing seems only logical, as the typed accessor methods
take ordinals for referencing; however, we need to explain how it’s faster than ordinal
indexing. This is because even though both techniques take in a column number, the
conventional ordinal indexing method needs to look up the data source data type of the
result and then go through a type conversion. This overhead of looking up the schema is
avoided with typed accessors.

.NET types and typed accessor methods are available for almost all data types sup-
ported by SQL Server and OLE DB databases.

Table 12-1 should give you a brief idea of when to use typed accessors and with what
data type. It lists SQL Server data types, their corresponding .NET types, .NET typed
accessors, and special SQL Server–specific typed accessors designed particularly for
returning objects of type System.Data.SqlTypes.

Table 12-1. SQL Server Typed Accessors

SQL Server Data Types .NET Type .NET Typed Accessor

bigint Int64 GetInt64

binary Byte[] GetBytes

bit Boolean GetBoolean

char String or Char[] GetString or GetChars

datetime DateTime GetDateTime

decimal Decimal GetDecimal

float Double GetDouble

image or long varbinary Byte[] GetBytes

int Int32 GetInt32

money Decimal GetDecimal

nchar String or Char[] GetString or GetChars

ntext String or Char[] GetString or GetChars

numeric Decimal GetDecimal

CHAPTER 12 ■ USING DATA READERS244

9004ch12final.qxd 12/13/07 4:07 PM Page 244

SQL Server Data Types .NET Type .NET Typed Accessor

nvarchar String or Char[] GetString or GetChars

real Single GetFloat

smalldatetime DateTime GetDateTime

smallint Int16 GetInt16

smallmoney Decimal GetDecimal

sql_variant Object GetValue

long varchar String or Char[] GetString or GetChars

timestamp Byte[] GetBytes

tinyint Byte GetByte

uniqueidentifier Guid GetGuid

varbinary Byte[] GetBytes

varchar String or Char[] GetString or GetChars

Here are some available OLE DB data types, their corresponding .NET types, and
their .NET typed accessors (see Table 12-2).

Table 12-2. OLE DB Typed Accessors

OLE DB Type .NET Type .NET Typed Accessor

DBTYPE_I8 Int64 GetInt64

DBTYPE_BYTES Byte[] GetBytes

DBTYPE_BOOL Boolean GetBoolean

DBTYPE_BSTR String GetString

DBTYPE_STR String GetString

DBTYPE_CY Decimal GetDecimal

DBTYPE_DATE DateTime GetDateTime

DBTYPE_DBDATE DateTime GetDateTime

DBTYPE_DBTIME DateTime GetDateTime

DBTYPE_DBTIMESTAMP DateTime GetDateTime

DBTYPE_DECIMAL Decimal GetDecimal

DBTYPE_R8 Double GetDouble

DBTYPE_ERROR ExternalException GetValue

Continued

CHAPTER 12 ■ USING DATA READERS 245

9004ch12final.qxd 12/13/07 4:07 PM Page 245

Table 12-2. Continued

OLE DB Type .NET Type .NET Typed Accessor

DBTYPE_FILETIME DateTime GetDateTime

DBTYPE_GUID Guid GetGuid

DBTYPE_I4 Int32 GetInt32

DBTYPE_LONGVARCHAR String GetString

DBTYPE_NUMERIC Decimal GetDecimal

DBTYPE_R4 Single GetFloat

DBTYPE_I2 Int16 GetInt16

DBTYPE_I1 Byte GetByte

DBTYPE_UI8 UInt64 GetValue

DBTYPE_UI4 UInt32 GetValue

DBTYPE_UI2 UInt16 GetValue

DBTYPE_VARCHAR String GetString

DBTYPE_VARIANT Object GetValue

DBTYPE_WVARCHAR String GetString

DBTYPE_WSRT String GetString

To see typed accessors in action, you’ll build a console application that uses them.
For this example, you’ll use the Products table from the Northwind database.

Table 12-3 shows the data design of the table. Note that the data types given in the
table will be looked up for their corresponding typed accessor methods in Table 12-1 so
you can use them correctly in your application.

Table 12-3. Northwind Products Table Data Types

Column Name Data Type Length Allow Nulls?

ProductID (unique) int 4 No

ProductName nvarchar 40 No

SupplierID int 4 Yes

CategoryID int 4 Yes

QuantityPerUnit nvarchar 20 Yes

UnitPrice money 8 Yes

CHAPTER 12 ■ USING DATA READERS246

9004ch12final.qxd 12/13/07 4:07 PM Page 246

Column Name Data Type Length Allow Nulls?

UnitsInStock smallint 2 Yes

UnitsOnOrder smallint 2 Yes

ReorderLevel smallint 2 Yes

Discontinued bit 1 No

Try It Out: Using Typed Accessor Methods

Here, you’ll build a console application that uses typed accessors.

1. Add a new C# Console Application project named TypedAccessors to your
Chapter12 solution. Rename Program.cs to TypedAccessors.cs.

2. Replace the code in TypedAccessors.cs with the code in Listing 12-3.

Listing 12-3. TypedAccessors.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter12

{

class TypedAccessors

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

CHAPTER 12 ■ USING DATA READERS 247

9004ch12final.qxd 12/13/07 4:07 PM Page 247

// query

string sql = @"

select

productname,

unitprice,

unitsinstock,

discontinued

from

products

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// open connection

conn.Open();

// create command

SqlCommand cmd = new SqlCommand(sql, conn);

// create data reader

SqlDataReader rdr = cmd.ExecuteReader();

// fetch data

while (rdr.Read())

{

Console.WriteLine(

"{0}\t {1}\t\t {2}\t {3}",

// nvarchar

rdr.GetString(0).PadRight(30),

// money

rdr.GetDecimal(1),

// smallint

rdr.GetInt16(2),

// bit

rdr.GetBoolean(3));

}

CHAPTER 12 ■ USING DATA READERS248

9004ch12final.qxd 12/13/07 4:07 PM Page 248

// close data reader

rdr.Close();

}

catch(Exception e)

{

Console.WriteLine("Error Occurred: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make TypedAccessors the startup project, and run it by pressing Ctrl+F5. You
should see the results in Figure 12-3. (Only the first 20 rows are displayed in the
figure.)

Figure 12-3. Using typed accessors

How It Works

You query the Products table for ProductName, UnitPrice, UnitsInStock, and
Discontinued.

CHAPTER 12 ■ USING DATA READERS 249

9004ch12final.qxd 12/13/07 4:07 PM Page 249

// query

string sql = @"

select

productname,

unitprice,

unitsinstock,

discontinued

from

products

";

The reason we have you choose these columns is to deal with different kinds of data
types and show how to use relevant typed accessors to obtain the correct results.

// fetch data

while (rdr.Read())

{

Console.WriteLine(

"{0}\t {1}\t\t {2}\t {3}",

// nvarchar

rdr.GetString(0).PadRight(30),

// money

rdr.GetDecimal(1),

// smallint

rdr.GetInt16(2),

// bit

rdr.GetBoolean(3));

}

Looking at Table 12-1, you can see that you can access nvarchar, money, smallint, and
bit data types in SQL Server with the GetString, GetDecimal, GetInt16, and GetBoolean
accessor methods, respectively.

This technique is fast and completely type safe. By this, we mean that if implicit con-
versions from native data types to .NET types fail, an exception is thrown for invalid
casts. For instance, if you try using the GetString method on a bit data type instead of
using the GetBoolean method, a “Specified cast is not valid” exception will be thrown.

CHAPTER 12 ■ USING DATA READERS250

9004ch12final.qxd 12/13/07 4:07 PM Page 250

Getting Data About Data
So far, all you’ve done is retrieve data from a data source. Once you have a populated data
reader in your hands, you can do a lot more. Here are a number of useful methods for
retrieving schema information or retrieving information directly related to a result set.
Table 12-4 describes some of the metadata methods and properties of a data reader.

Table 12-4. Data Reader Metadata Properties and Methods

Method or Property Name Description

Depth A property that gets the depth of nesting for the current row

FieldCount A property that holds the number of columns in the current row

GetDataTypeName A method that accepts an index and returns a string containing the
name of the column data type

GetFieldType A method that accepts an index and returns the .NET Framework
type of the object

GetName A method that accepts an index and returns the name of the
specified column

GetOrdinal A method that accepts a column name and returns the column
index

GetSchemaTable A method that returns column metadata

HasRows A property that indicates whether the data reader has any rows

RecordsAffected A property that gets the number of rows changed, inserted, or
deleted

Try It Out: Getting Information About a Result Set with a
Data Reader

In this exercise, you’ll use some of these methods and properties.

1. Add a new C# Console Application project named ResultSetInfo to your Chapter12
solution. Rename Program.cs to ResultSetInfo.cs.

2. Replace the code in ResultSetInfo.cs with the code in Listing 12-4.

CHAPTER 12 ■ USING DATA READERS 251

9004ch12final.qxd 12/13/07 4:07 PM Page 251

Listing 12-4. ResultSetInfo.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter12

{

class ResultSetInfo

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

contactname,

contacttitle

from

customers

where

contactname like 'M%'

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

conn.Open();

SqlCommand cmd = new SqlCommand(sql, conn);

SqlDataReader rdr = cmd.ExecuteReader();

CHAPTER 12 ■ USING DATA READERS252

9004ch12final.qxd 12/13/07 4:07 PM Page 252

// get column names

Console.WriteLine(

"Column Name:\t{0} {1}",

rdr.GetName(0).PadRight(25),

rdr.GetName(1));

// get column data types

Console.WriteLine(

"Data Type:\t{0} {1}",

rdr.GetDataTypeName(0).PadRight(25),

rdr.GetDataTypeName(1));

Console.WriteLine();

while (rdr.Read())

{

// get column values for all rows

Console.WriteLine(

"\t\t{0} {1}",

rdr.GetString(0).ToString().PadRight(25),

rdr.GetString(1));

}

// get number of columns

Console.WriteLine();

Console.WriteLine(

"Number of columns in a row: {0}",

rdr.FieldCount);

// get info about each column

Console.WriteLine(

"'{0}' is at index {1} " +

"and its type is: {2}",

rdr.GetName(0),

rdr.GetOrdinal("contactname"),

rdr.GetFieldType(0));

CHAPTER 12 ■ USING DATA READERS 253

9004ch12final.qxd 12/13/07 4:07 PM Page 253

Console.WriteLine(

"'{0}' is at index {1} " +

"and its type is: {2}",

rdr.GetName(1),

rdr.GetOrdinal("contacttitle"),

rdr.GetFieldType(1));

rdr.Close();

}

catch(Exception e)

{

Console.WriteLine("Error Occurred: " + e);

}

finally

{

conn.Close();

}

}

}

}

3. Make ResultSetInfo the startup project, and run it by pressing Ctrl+F5. You should
see the results in Figure 12-4.

Figure 12-4. Displaying result set metadata

CHAPTER 12 ■ USING DATA READERS254

9004ch12final.qxd 12/13/07 4:07 PM Page 254

How It Works

The GetName method gets a column name by its index. This method returns information
about the result set, so it can be called before the first call to Read().

// get column names

Console.WriteLine(

"Column Name:\t{0} {1}",

rdr.GetName(0).PadRight(25),

rdr.GetName(1));

The GetDataTypeName method returns the database data type of a column. It too can
be called before the first call to Read().

// get column data types

Console.WriteLine(

"Data Type:\t{0} {1}",

rdr.GetDataTypeName(0).PadRight(25),

rdr.GetDataTypeName(1));

The FieldCount property of the data reader contains the number of columns in the
result set. This is useful for looping through columns without knowing their names or
other attributes.

// get number of columns

Console.WriteLine();

Console.WriteLine(

"Number of columns in a row: {0}",

rdr.FieldCount);

Finally, you see how the GetOrdinal and GetFieldType methods are used. The former
returns a column index based on its name; the latter returns the C# type. These are the
countertypes of GetName() and GetDataTypeName(), respectively.

// get info about each column

Console.WriteLine(

"'{0}' is at index {1} " +

"and its type is: {2}",

rdr.GetName(0),

rdr.GetOrdinal("contactname"),

rdr.GetFieldType(0));

So much for obtaining information about result sets. You’ll now learn how to get
information about schemas.

CHAPTER 12 ■ USING DATA READERS 255

9004ch12final.qxd 12/13/07 4:07 PM Page 255

Getting Data About Tables
The term schema has several meanings in regard to relational databases. Here, we use it
to refer to the design of a data structure, particularly a database table. A table consists of
rows and columns, and each column can have a different data type. The columns and
their attributes (data type, length, and so on) make up the table’s schema.

To retrieve schema information easily, you can call the GetSchemaTable method on
a data reader. As the name suggests, this method returns a System.Data.DataTable object,
which is a representation (schema) of the table queried and contains a collection of rows
and columns in the form of DataRow and DataColumn objects. These rows and columns are
returned as collection objects by the properties Rows and Columns of the DataTable class.

However, here’s where a slight confusion usually occurs. Data column objects aren’t
column values, rather they are column definitions that represent and control the behav-
ior of individual columns. They can be looped through by using a column name indexer,
and they can tell you a lot about the dataset.

Try It Out: Getting Schema Information

Here you’ll see a practical demonstration of the GetSchemaTable method.

1. Add a new C# Console Application project named SchemaTable to your Chapter12
solution. Rename Program.cs to SchemaTable.cs.

2. Replace the code in SchemaTable.cs with the code in Listing 12-5.

Listing 12-5. SchemaTable.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter12

{

class SchemaTable

{

static void Main(string[] args)

{

// connection string

CHAPTER 12 ■ USING DATA READERS256

9004ch12final.qxd 12/13/07 4:07 PM Page 256

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

*

from

employees

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

conn.Open();

SqlCommand cmd = new SqlCommand(sql, conn);

SqlDataReader rdr = cmd.ExecuteReader();

// store Employees schema in a data table

DataTable schema = rdr.GetSchemaTable();

// display info from each row in the data table.

// each row describes a column in the database table.

foreach (DataRow row in schema.Rows)

{

foreach (DataColumn col in schema.Columns)

Console.WriteLine(col.ColumnName + " = " + row[col]);

Console.WriteLine("----------------");

}

CHAPTER 12 ■ USING DATA READERS 257

9004ch12final.qxd 12/13/07 4:07 PM Page 257

rdr.Close();

}

catch(Exception e)

{

Console.WriteLine("Error Occurred: " + e);

}

finally

{

conn.Close();

}

}

}

}

3. Make SchemaTable the startup project, and run it by pressing Ctrl+F5. You should
see the results in Figure 12-5. (Only the information for the table and the first col-
umn are displayed in the figure.)

Figure 12-5. Displaying schema metadata

How It Works

This code is a bit different from what you’ve written earlier. When the call to the
GetSchemaTable method is made, a populated instance of a data table is returned.

CHAPTER 12 ■ USING DATA READERS258

9004ch12final.qxd 12/13/07 4:07 PM Page 258

// store Employees schema in a data table

DataTable schema = rdr.GetSchemaTable();

You can use a data table to represent a complete table in a database, either in the
form of a table that represents its schema or in the form of a table that holds all its origi-
nal data for offline use.

In this example, once you grab hold of a schema table, you retrieve a collection of
rows through the Rows property of DataTable and a collection of columns through the
Columns property of DataTable. (You can use the Rows property to add a new row into the
table altogether or remove one, and you can use the Columns property for adding or delet-
ing an existing column—we’ll cover this in Chapter 13.) Each row returned by the table
describes one column in the original table, so for each of these rows, you traverse
through the column’s schema information one by one, using a nested foreach loop.

// display info from each row in the data table.

// each row describes a column in the database table.

foreach (DataRow row in schema.Rows)

{

foreach (DataColumn col in schema.Columns)

Console.WriteLine(col.ColumnName + " = " + row[col]);

Console.WriteLine("----------------");

}

Notice how you use the ColumnName property of the DataColumn object to retrieve the
current schema column name in the loop, and then you retrieve the value related to that
column’s definition by using the familiar indexer-style method that uses a DataRow object.
DataRow has a number of overloaded indexers, and this is only one of several ways of
doing it.

Using Multiple Result Sets with a Data Reader
Sometimes you may really want to get a job done quickly and also want to query the
database with two or more queries at the same time. And, you wouldn’t want the over-
all application performance to suffer in any way either by instantiating more than one
command or data reader or by exhaustively using the same objects over and over again,
adding to the code as you go.

So, is there a way you can get a single data reader to loop through multiple result
sets? Yes, data readers have a method, NextResult(), that advances the reader to the next
result set.

CHAPTER 12 ■ USING DATA READERS 259

9004ch12final.qxd 12/13/07 4:07 PM Page 259

Try It Out: Handling Multiple Result Sets

In this example, you’ll use NextResult() to process multiple result sets.

1. Add a new C# Console Application project named MultipleResults to your
Chapter12 solution. Rename Program.cs to MultipleResults.cs.

2. Replace the code in MultipleResults.cs with the code in Listing 12-6.

Listing 12-6. MultipleResults.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter12

{

class MultipleResults

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query 1

string sql1 = @"

select

companyname,

contactname

from

customers

where

companyname like 'A%'

";

CHAPTER 12 ■ USING DATA READERS260

9004ch12final.qxd 12/13/07 4:07 PM Page 260

// query 2

string sql2 = @"

select

firstname,

lastname

from

employees

";

// combine queries

string sql = sql1 + sql2;

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// open connection

conn.Open();

// create command

SqlCommand cmd = new SqlCommand(sql, conn);

// create data reader

SqlDataReader rdr = cmd.ExecuteReader();

// loop through result sets

do

{

while (rdr.Read())

{

// Print one row at a time

Console.WriteLine("{0} : {1}", rdr[0], rdr[1]);

}

Console.WriteLine("".PadLeft(60, '='));

}

while (rdr.NextResult());

CHAPTER 12 ■ USING DATA READERS 261

9004ch12final.qxd 12/13/07 4:07 PM Page 261

// close data reader

rdr.Close();

}

catch(Exception e)

{

Console.WriteLine("Error Occurred: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make MultipleResults the startup project, and run it by pressing Ctrl+F5. You
should see the results in Figure 12-6.

Figure 12-6. Handling multiple result sets

How It Works

This program is essentially the same as the first, DataLooper.cs (Listing 12-1). Here, you
define two separate queries and then combine them.

// query 1

string sql1 = @"

select

companyname,

contactname

CHAPTER 12 ■ USING DATA READERS262

9004ch12final.qxd 12/13/07 4:07 PM Page 262

from

customers

where

companyname like 'A%'

";

// query 2

string sql2 = @"

select

firstname,

lastname

from

employees

";

// combine queries

string sql = sql1 + sql2;

■Caution Some DBMSs require an explicit character as a separator between multiple queries, but
SQL Server requires only whitespace before subsequent SELECT keywords, which you have because of the
verbatim strings.

The only other change is that you loop through result sets. You nest the loop that
retrieves rows inside one that loops through result sets.

// loop through result sets

do

{

while (rdr.Read())

{

// print one row at a time

Console.WriteLine("{0} : {1}", rdr[0], rdr[1]);

}

Console.WriteLine("".PadLeft(60, '='));

}

while (rdr.NextResult());

We have you choose only two character-string columns per query to simplify things.
Extending this to handle result tables with different numbers of columns and column
data types is straightforward.

CHAPTER 12 ■ USING DATA READERS 263

9004ch12final.qxd 12/13/07 4:07 PM Page 263

Summary
In this chapter, you used data readers to perform a variety of common tasks, from simply
looping through single result sets to handling multiple result sets. You learned how to
retrieve values for columns by column name and index and learned about methods avail-
able for handling values of different data types. You also learned how to get information
about result sets and get schema information.

In the next chapter, we’ll cover the really interesting aspects of ADO.NET, handling
database data while disconnected from the database.

CHAPTER 12 ■ USING DATA READERS264

9004ch12final.qxd 12/13/07 4:07 PM Page 264

Using Datasets and
Data Adapters

In Chapter 12, you saw how to use data readers to access database data in a connected,
forward-only, read-only fashion. Often, this is all you want to do, and a data reader suits
your purposes perfectly.

In this chapter, you’ll look at a new object for accessing data, the dataset. Unlike data
readers, which are objects of data provider–specific classes that implement the System.
Data.IDataReader interface, datasets are objects of the class System.Data.DataSet, a distinct
ADO.NET component used by all data providers. Datasets are completely independent of
and can be used either connected to or disconnected from data sources. Their funda-
mental purpose is to provide a relational view of data stored in an in-memory cache.

■Note In yet another somewhat confusing bit of terminology, the class is named DataSet, but the generic
term is spelled dataset (when one expects data set). Why Microsoft does this is unclear, especially since data
set is the more common usage outside ADO.NET. Nonetheless, we’ll follow the .NET convention and call
DataSet objects datasets.

So, if a dataset doesn’t have to be connected to a database, how do you populate it
with data and save its data back to the database? This is where data adapters come in.
Think of data adapters as bridges between datasets and data sources. Without a data
adapter, a dataset can’t access any kind of data source. The data adapter takes care of all
connection details for the dataset, populates it with data, and updates the data source.

In this chapter, we’ll cover the following:

• Understanding the object model

• Working with datasets and data adapters

• Propagating changes to a data source

265

C H A P T E R 1 3

9004ch13final.qxd 12/13/07 4:05 PM Page 265

• Concurrency

• Using datasets and XML

• Using data tables without datasets

• Understanding typed and untyped datasets

Understanding the Object Model
We’ll start this chapter with a quick presentation of all the new objects you’ll need to
understand in order to work with datasets and data adapters. You’ll start by looking at the
difference between datasets and data readers and then move on to look in more detail at
how data is structured within a dataset and how a dataset works in collaboration with a
data adapter.

Datasets vs. Data Readers

If you simply want to read and display data, then you need to use only a data reader, as
you saw in the previous chapter, particularly if you’re working with large quantities of
data. In situations where you need to loop through thousands or millions of rows, you
want a fast sequential reader (reading rows from the result set one at a time), and the
data reader does this job in an efficient way.

If you need to manipulate the data in any way and then update the database, you
need to use a dataset. A data adapter fills a dataset by using a data reader; additional
resources are needed to save data for disconnected use. You need to think about whether
you really need a dataset; otherwise, you’ll just be wasting resources. Unless you need to
update the data source or use other dataset features such as reading and writing to XML
files, exporting database schemas, and creating XML views of a database, you should use
a data reader.

A Brief Introduction to Datasets

The notion of a dataset in ADO.NET is a big step in the world of multitiered database
application development. When retrieving or modifying large amounts of data, maintain-
ing an open connection to a data source while waiting for users to make requests is an
enormous waste of precious resources.

Datasets help tremendously here, because they enable you to store and modify large
amounts of data in a local cache, view the data as tables, and process the data in an
offline mode (in other words, disconnected from the database).

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS266

9004ch13final.qxd 12/13/07 4:05 PM Page 266

Let’s look at an example. Imagine you’re trying to connect to a remote database
server over the Internet for detailed information about some business transactions. You
search on a particular date for all available transactions, and the results are displayed.
Behind the scenes, your application creates a connection with the data source, joins a
couple of tables, and retrieves the results. Suppose you now want to edit this information
and add or remove details. Whatever the reason, your application will go through the
same cycle over and over again: creating a new connection, joining tables, and retrieving
data. Not only is there overhead in creating a new connection each time, but you may be
doing a lot of other redundant work, especially if you’re dealing with the same data.
Wouldn’t it be better if you could connect to the data source once, store the data locally in
a structure that resembles a relational database, close the connection, modify the local
data, and then propagate the changes to the data source when the time is right?

This is exactly what the dataset is designed to do. A dataset stores relational data as
collections of data tables. You met data tables briefly in the previous chapter when a Sys-
tem.Data.DataTable object was to hold schema information. In that instance, however, the
data table contained only schema information, but in a dataset, the data tables contain
both metadata describing the structure of the data and the data itself.

Figure 13-1 shows the dataset architecture.

Figure 13-1. Dataset architecture

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 267

9004ch13final.qxd 12/13/07 4:05 PM Page 267

The architecture mirrors the logical design of a relational database. You’ll see how to
use data tables, data rows, and data columns in this chapter.

A Brief Introduction to Data Adapters

When you first instantiate a dataset, it contains no data. You obtain a populated dataset
by passing it to a data adapter, which takes care of connection details and is a component
of a data provider. A dataset isn’t part of a data provider. It’s like a bucket, ready to be
filled with water, but it needs an external pipe to let the water in. In other words, the
dataset needs a data adapter to populate it with data and to support access to the data
source.

Each data provider has its own data adapter in the same way that it has its own con-
nection, command, and data reader. Figure 13-2 depicts the interactions between the
dataset, data adapter, and data source.

Figure 13-2. Dataset, data adapter, and data source interaction

The data adapter constructor is overloaded. You can use any of the following to get
a new data adapter. We’re using the SQL Server data provider, but the constructors for the
other data providers are analogous.

SqlDataAdapter da = new SqlDataAdapter();

SqlDataAdapter da = new SqlDataAdapter(cmd);

SqlDataAdapter da = new SqlDataAdapter(sql, conn);

SqlDataAdapter da = new SqlDataAdapter(sql, connString);

So, you can create a data adapter in four ways:

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS268

9004ch13final.qxd 12/13/07 4:05 PM Page 268

• You can use its parameterless constructor (assigning SQL and the connection later).

• You can pass its constructor a command (here, cmd is a SqlCommand object).

• You can pass a SQL string and a connection.

• You can pass a SQL string and a connection string.

You’ll see all this working in action shortly. For now, we’ll move on and show how to
use data tables, data columns, and data rows. You’ll use these in upcoming sections.

A Brief Introduction to Data Tables, Data Columns,
and Data Rows

A data table is an instance of the class System.Data.DataTable. It’s conceptually analogous
to a relational table. As shown in Figure 13-1, a data table has collections of data rows and
data columns. You can access these nested collections via the Rows and Columns properties
of the data table.

A data table can represent a stand-alone independent table, either inside a dataset—
as you’ll see in this chapter—or as an object created by another method, as you saw in
the previous chapter when a data table was returned by calling the GetSchemaTable
method on a data reader.

A data column represents the schema of a column within a data table and can then
be used to set or get column properties. For example, you could use it to set the default
value of a column by assigning a value to the DefaultValue property of the data column.

You obtain the collection of data columns using the data table’s Columns property,
whose indexer accepts either a column name or a zero-based index, for example (where
dt is a data table):

DataColumn col = dt.Columns["ContactName"];

DataColumn col = dt.Columns[2];

A data row represents the data in a row. You can programmatically add, update, or
delete rows in a data table. To access rows in a data table, you use its Rows property, whose
indexer accepts a zero-based index, for example (where dt is a data table):

DataRow row = dt.Rows[2];

That’s enough theory for now. It’s time to do some coding and see how these objects
work together in practice!

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 269

9004ch13final.qxd 12/13/07 4:05 PM Page 269

Working with Datasets and Data Adapters
The dataset constructor is overloaded.

DataSet ds = new DataSet();

DataSet ds = new DataSet("MyDataSet");

If you use the parameterless constructor, the dataset name defaults to NewDataSet. If
you need more than one dataset, it’s good practice to use the other constructor and name
it explicitly. However, you can always change the dataset name by setting its DataSetName
property.

You can populate a dataset in several ways, including the following:

• Using a data adapter

• Reading from an XML document

In this chapter, we’ll use data adapters. However, in the “Using Datasets and XML”
section, you’ll take a quick peek at the converse of the second method, and you’ll write
from a dataset to an XML document.

Try It Out: Populating a Dataset with a Data Adapter

In this example, you’ll create a dataset, populate it with a data adapter, and then display
its contents.

1. Create a new Console Application project named Chapter13. When Solution
Explorer opens, save the solution.

2. Rename the Chapter13 project to PopDataset. Rename the Program.cs file to
PopDataset.cs, and replace the generated code with the code in Listing 13-1.

Listing 13-1. PopDataSet.cs

using System;

using System.Data;

using System.Data.SqlClient;

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS270

9004ch13final.qxd 12/13/07 4:05 PM Page 270

namespace Chapter13

{

class PopDataSet

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

productname,

unitprice

from

products

where

unitprice < 20

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// open connection

conn.Open();

// create data adapter

SqlDataAdapter da = new SqlDataAdapter(sql, conn);

// create dataset

DataSet ds = new DataSet();

// fill dataset

da.Fill(ds, "products");

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 271

9004ch13final.qxd 12/13/07 4:05 PM Page 271

// get data table

DataTable dt = ds.Tables["products"];

// display data

foreach (DataRow row in dt.Rows)

{

foreach (DataColumn col in dt.Columns)

Console.WriteLine(row[col]);

Console.WriteLine("".PadLeft(20, '='));

}

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Run PopDataset by pressing Ctrl+F5. You should see the results in Figure 13-3.
(Only the last ten rows are displayed.)

Figure 13-3. Populating a dataset

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS272

9004ch13final.qxd 12/13/07 4:05 PM Page 272

How It Works

After defining a query and opening a connection, you create and initialize a data adapter:

// create data adapter

SqlDataAdapter da = new SqlDataAdapter(sql, conn);

and then create a dataset:

// create dataset

DataSet ds = new DataSet();

At this stage, all you have is an empty dataset. The key line is where you use the Fill
method on the data adapter to execute the query, retrieve the data, and populate the
dataset.

// fill dataset

da.Fill(ds, "products");

The Fill method uses a data reader internally to access the table schema and data
and then use them to populate the dataset.

Note that this method isn’t just used for filling datasets. It has a number of overloads
and can also be used for filling an individual data table without a dataset, if needed.

If you don’t provide a name for the table to the Fill method, it will automatically be
named TableN, where N starts as an empty string (the first table name is simply Table) and
increments every time a new table is inserted into the dataset. It’s better practice to
explicitly name data tables, but here it doesn’t really matter.

If the same query is run more than once, on the dataset that already contains data,
Fill() updates the data, skipping the process of redefining the table based on the
schema.

It’s worth mentioning here that the following code would have produced the same
result. Instead of passing the SQL and connection to the data adapter’s constructor, you
could have set its SelectCommand property with a command that you create with the
appropriate SQL and connection.

// Create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(sql, conn);

With a populated dataset at your disposal, you can now access the data in individual
data tables. (This dataset contains only one data table.)

// get data table

DataTable dt = ds.Tables["products"];

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 273

9004ch13final.qxd 12/13/07 4:05 PM Page 273

Finally, you use nested foreach loops to access the columns in each row and output
their data values to the screen.

// display data

foreach (DataRow row in dt.Rows)

{

foreach (DataColumn col in dt.Columns)

Console.WriteLine(row[col]);

Console.WriteLine("".PadLeft(20, '='));

}

Filtering and Sorting in a Dataset

In the previous example, you saw how to extract data from a dataset. However, if you’re
working with datasets, chances are that you’re going to want to do more with the data
than merely display it. Often, you’ll want to dynamically filter or sort the data. In the
following example, you’ll see how you can use data rows to do this.

Try It Out: Dynamically Filtering and Sorting Data in a Dataset

We’ll get all the rows and columns from the Customers table, filter the result for only
German customers, and sort it by company. We’ll use a separate query to find products,
and fill two data tables in the same dataset.

1. Add a new C# Console Application project named FilterSort to your Chapter13
solution. Rename Program.cs to FilterSort.cs.

2. Replace the code in FilterSort.cs with the code in Listing 13-2.

Listing 13-2. FilterSort.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class FilterSort

{

static void Main(string[] args)

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS274

9004ch13final.qxd 12/13/07 4:05 PM Page 274

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query 1

string sql1 = @"

select

*

from

customers

";

// query 2

string sql2 = @"

select

*

from

products

where

unitprice < 10

";

// combine queries

string sql = sql1 + sql2;

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(sql, conn);

// create and fill data set

DataSet ds = new DataSet();

da.Fill(ds, "customers");

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 275

9004ch13final.qxd 12/13/07 4:05 PM Page 275

// get the data tables collection

DataTableCollection dtc = ds.Tables;

// display data from first data table

//

// display output header

Console.WriteLine("Results from Customers table:");

Console.WriteLine(

"CompanyName".PadRight(20) +

"ContactName".PadLeft(23) + "\n");

// set display filter

string fl = "country = 'Germany'";

// set sort

string srt = "companyname asc";

// display filtered and sorted data

foreach (DataRow row in dtc["customers"].Select(fl, srt))

{

Console.WriteLine(

"{0}\t{1}",

row["CompanyName"].ToString().PadRight(25),

row["ContactName"]);

}

// display data from second data table

//

// display output header

Console.WriteLine("\n----------------------------");

Console.WriteLine("Results from Products table:");

Console.WriteLine(

"ProductName".PadRight(20) +

"UnitPrice".PadLeft(21) + "\n");

// display data

foreach (DataRow row in dtc[1].Rows)

{

Console.WriteLine("{0}\t{1}",

row["productname"].ToString().PadRight(25),

row["unitprice"]);

}

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS276

9004ch13final.qxd 12/13/07 4:05 PM Page 276

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make FilterSort the startup project, and run it by pressing Ctrl+F5. You should see
the results in Figure 13-4.

Figure 13-4. Filtering and sorting a data table

How It Works

You code and combine two queries for execution on the same connection.

// query 1

string sql1 = @"

select

*

from

customers

";

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 277

9004ch13final.qxd 12/13/07 4:05 PM Page 277

// query 2

string sql2 = @"

select

*

from

products

where

unitprice < 10

";

// combine queries

string sql = sql1 + sql2;

// create connection

SqlConnection conn = new SqlConnection(connString);

You create a data adapter, assigning to its SelectCommand property a command that
encapsulates the query and connection (for internal use by the data adapter’s Fill
method).

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(sql, conn);

You then create and fill a dataset.

// create and fill data set

DataSet ds = new DataSet();

da.Fill(ds, "customers");

Each query returns a separate result set, and each result set is stored in a separate
data table (in the order in which the queries were specified). The first table is explicitly
named customers; the second is given the default name customers1.

You get the data table collection from the dataset Tables property for ease of refer-
ence later.

// get the data tables collection

DataTableCollection dtc = ds.Tables;

As part of displaying the first data table, you declare two strings.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS278

9004ch13final.qxd 12/13/07 4:05 PM Page 278

// set display filter

string fl = "country = 'Germany'";

// set sort

string srt = "companyname asc";

The first string is a filter expression that specifies row selection criteria. It’s syntacti-
cally the same as a SQL WHERE clause predicate. You want only rows where the Country
column equals “Germany”. The second string specifies your sort criteria and is syntacti-
cally the same as a SQL ORDER BY clause, giving a data column name and sort sequence.

You use a foreach loop to display the rows selected from the data table, passing the
filter and sort strings to the Select method of the data table. This particular data table is
the one named Customers in the data table collection.

// display filtered and sorted data

foreach (DataRow row in dtc["customers"].Select(fl, srt))

{

Console.WriteLine(

"{0}\t{1}",

row["CompanyName"].ToString().PadRight(25),

row["ContactName"]);

}

You obtain a reference to a single data table from the data table collection (the dtc
object) using the table name that you specify when creating the dataset. The overloaded
Select method does an internal search on the data table, filters out rows not satisfying
the selection criterion, sorts the result as prescribed, and finally returns an array of data
rows. You access each column in the row, using the column name in the indexer.

It’s important to note that you can achieve the same result—much more efficiently—
if you simply use a different query for the customer data.

select

*

from

customers

where

country = 'Germany'

order by

companyname

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 279

9004ch13final.qxd 12/13/07 4:05 PM Page 279

This would be ideal in terms of performance, but it’d be feasible only if the data you
needed were limited to these specific rows in this particular sequence. However, if you
were building a more elaborate system, it might be better to pull all the data once from
the database (as you do here) and then filter and sort it in different ways. ADO.NET’s rich
suite of methods for manipulating datasets and their components gives you a broad
range of techniques for meeting specific needs in an optimal way.

■Tip In general, try to exploit SQL, rather than code C# procedures, to get the data you need from the
database. Database servers are optimized to perform selections and sorts, as well as other things. Queries
can be far more sophisticated and powerful than the ones you’ve been playing with in this book. By carefully
(and creatively) coding queries to return exactly what you need, you not only minimize resource demands (on
memory, network bandwidth, and so on), but also reduce the code you must write to manipulate and format
result set data.

The loop through the second data table is interesting mainly for its first line, which
uses an ordinal index:

foreach (DataRow row in dtc[1].Rows)

Since you don’t rename the second data table (you could do so with its TableName
property), it is better to use the index rather than the name (customers1), since a change
to the name in the Fill() call would require you to change it here, an unlikely thing to
remember to do, if the case ever arises.

Comparing FilterSort to PopDataSet

In the first example, PopDataSet (Listing 13-1), you saw how simple it is to get data into a
dataset. The second example, FilterSort (Listing 13-2), was just a variation, demonstrat-
ing how multiple result sets are handled and how to filter and sort data tables. However,
the two programs have one major difference. Did you notice it?

FilterSort doesn’t explicitly open a connection! In fact, it’s the first (but won’t be the
last) program you’ve written that doesn’t. Why doesn’t it?

The answer is simple but very important. The Fill method automatically opens a
connection if it’s not open when Fill() is called. It then closes the connection after filling
the dataset. However, if a connection is open when Fill() is called, it uses that connec-
tion and doesn’t close it afterward.

So, although datasets are completely independent of databases (and connections),
just because you’re using a dataset doesn’t mean you’re running disconnected from a
database. If you want to run disconnected, use datasets, but don’t open connections

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS280

9004ch13final.qxd 12/13/07 4:05 PM Page 280

before filling them (or, if a connection is open, close it first). Datasets in themselves don’t
imply either connected or disconnected operations.

You leave the standard conn.Close(); in the finally block. Since Close() can be called
without error on a closed connection, it presents no problems if called unnecessarily, but
it definitely guarantees that the connection will be closed, whatever may happen in the
try block.

■Note If you want to prove this for yourself, simply open the connection in FilterSort before calling
Fill() and then display the value of the connection’s State property. It will be Open. Comment out the
Open() call, and run it again. State will be closed.

Using Data Views

In the previous example, you saw how to dynamically filter and sort data in a data table
using the Select method. However, ADO.NET has another approach for doing much the
same thing and more: data views. A data view (an instance of class System.Data.DataView)
enables you to create dynamic views of the data stored in an underlying data table,
reflecting all the changes made to its content and its ordering. This differs from the Select
method, which returns an array of data rows whose contents reflect the changes to data
values but not the data ordering.

■Note A data view is a dynamic representation of the contents of a data table. Like a SQL view, it doesn’t
actually hold data.

Try It Out: Refining Data with a Data View

We won’t cover all aspects of data views here, as they’re beyond the scope of this book.
However, to show how they can be used, we’ll present a short example that uses a data
view to dynamically sort and filter an underlying data table.

1. Add a new C# Console Application project named DataViews to your Chapter13
solution. Rename Program.cs to DataViews.cs.

2. Replace the code in DataViews.cs with the code in Listing 13-3.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 281

9004ch13final.qxd 12/13/07 4:05 PM Page 281

Listing 13-3. DataViews.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class DataViews

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

contactname,

country

from

customers

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(sql, conn);

// create and fill dataset

DataSet ds = new DataSet();

da.Fill(ds, "customers");

// get data table reference

DataTable dt = ds.Tables["customers"];

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS282

9004ch13final.qxd 12/13/07 4:05 PM Page 282

// create data view

DataView dv = new DataView(

dt,

"country = 'Germany'",

"country",

DataViewRowState.CurrentRows

);

// display data from data view

foreach (DataRowView drv in dv)

{

for (int i = 0; i < dv.Table.Columns.Count; i++)

Console.Write(drv[i] + "\t");

Console.WriteLine();

}

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make DataViews the startup project, and run it by pressing Ctrl+F5. You should
see the results in Figure 13-5.

Figure 13-5. Using a data view

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 283

9004ch13final.qxd 12/13/07 4:05 PM Page 283

How It Works

This program is basically the same as the other examples, so we’ll focus on its use of a
data view. You create a new data view and initialize it by passing four parameters to its
constructor.

// create data view

DataView dv = new DataView(

dt,

"country = 'Germany'",

"country",

DataViewRowState.CurrentRows

);

The first parameter is a data table, the second is a filter for the contents of the data
table, the third is the sort column, and the fourth specifies the types of rows to include
in the data view.

System.Data.DataViewRowState is an enumeration of states that rows can have in a
data view’s underlying data table. Table 13-1 summarizes the states.

Table 13-1. Data View Row States

DataViewRowState Members Description

Added A new row

CurrentRows Current rows including unchanged, new, and modified ones

Deleted A deleted row

ModifiedCurrent The current version of a modified row

ModifiedOriginal The original version of a modified row

None None of the rows

OriginalRows Original rows, including unchanged and deleted rows

Unchanged A row that hasn’t been modified

Every time a row is added, modified, or deleted, its row state changes to the appro-
priate one in Table 13-1. This is useful if you’re interested in retrieving, sorting, or filtering
specific rows based on their state (for example, all new rows in the data table or all rows
that have been modified).

You then loop through the rows in the data view.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS284

9004ch13final.qxd 12/13/07 4:05 PM Page 284

// display data from data view

foreach (DataRowView drv in dv)

{

for (int i = 0; i < dv.Table.Columns.Count; i++)

Console.Write(drv[i] + "\t");

Console.WriteLine();

}

Just as a data row represents a single row in a data table, a data row view (perhaps
it would have been better to call it a data view row) represents a single row in a data
view. You retrieve the filtered and the sorted column data for each data row view and
output it to the console.

As this simple example suggests, data views offer a powerful and flexible means of
dynamically changing what data one works within a data table.

Modifying Data in a Dataset

In the following sections, you’ll work through a practical example showing a number of
ways to update data in data tables programmatically. Note that here you’ll just modify the
data in the dataset but not update the data in the database. You’ll see in the “Propagating
Changes to a Data Source” section how to persist the original data source changes made
to a dataset.

■Note Changes you make to a dataset aren’t automatically propagated to a database. To save the
changes in a database, you need to connect to the database again and explicitly perform the necessary
updates.

Try It Out: Modifying a Data Table in a Dataset

Let’s update a row and add a row in a data table.

1. Add a new C# Console Application project named ModifyDataTable to your
Chapter13 solution. Rename Program.cs to ModifyDataTable.cs.

2. Replace the code in ModifyDataTable.cs with the code in Listing 13-4.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 285

9004ch13final.qxd 12/13/07 4:05 PM Page 285

Listing 13-4. ModifyDataTable.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class ModifyDataTable

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

*

from

employees

where

country = 'UK'

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(sql, conn);

// create and fill dataset

DataSet ds = new DataSet();

da.Fill(ds, "employees");

// get data table reference

DataTable dt = ds.Tables["employees"];

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS286

9004ch13final.qxd 12/13/07 4:05 PM Page 286

// FirstName column should be nullable

dt.Columns["firstname"].AllowDBNull = true;

// modify city in first row

dt.Rows[0]["city"] = "Wilmington";

// add a row

DataRow newRow = dt.NewRow();

newRow["firstname"] = "Roy";

newRow["lastname"] = "Beatty";

newRow["titleofcourtesy"] = "Sir";

newRow["city"] = "Birmingham";

newRow["country"] = "UK";

dt.Rows.Add(newRow);

// display rows

foreach (DataRow row in dt.Rows)

{

Console.WriteLine(

"{0} {1} {2}",

row["firstname"].ToString().PadRight(15),

row["lastname"].ToString().PadLeft(25),

row["city"]);

}

//

// code for updating the database would come here

//

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 287

9004ch13final.qxd 12/13/07 4:05 PM Page 287

3. Make ModifyDataTable the startup project, and run it by pressing Ctrl+F5. You
should see the results in Figure 13-6.

Figure 13-6. Modifying a data table

How It Works

As before, you use a single data table in a dataset.

// get data table reference

DataTable dt = ds.Tables["employees"];

Next, you can see an example of how you can change the schema information. You
select the FirstName column, whose AllowNull property is set to false in the database,
and you change it—just for the purposes of demonstration—to true.

// FirstName column should be nullable

dt.Columns["firstname"].AllowDBNull = true;

Note that you can use an ordinal index (for example, dt.Columns[1]) if you know what
the index for the column is, but using * to select all columns makes this less reliable since
the position of a column may change if the database table schema changes.

You can modify a row using the same technique. You simply select the appropriate
row and set its columns to whatever values you want, consistent with the column data
types, of course. The following line shows the City column of the first row of the dataset
being changed to Wilmington.

// modify City in first row

dt.Rows[0]["city"] = "Wilmington";

Next you add a new row to the data table.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS288

9004ch13final.qxd 12/13/07 4:05 PM Page 288

// add a row

DataRow newRow = dt.NewRow();

newRow["firstname"] = "Roy";

newRow["lastname"] = "Beatty";

newRow["titleofcourtesy"] = "Sir";

newRow["city"] = "Birmingham";

newRow["country"] = "UK";

dt.Rows.Add(newRow);

The NewRow method creates a data row (a System.Data.DataRow instance). You use the
data row’s indexer to assign values to its columns. Finally, you add the new row to the
data table, calling the Add method on the data table’s Rows property, which references the
rows collection.

Note that you don’t provide a value for EmployeeID since it’s an IDENTITY column. If
you were to persist the changes to the database, SQL Server would automatically provide
a value for it.

Updating data sources requires learning more about data adapter methods and
properties. Let’s take a look at these now.

Propagating Changes to a Data Source
You’ve seen how a data adapter populates a dataset’s data tables. What you haven’t looked
at yet is how a data adapter updates and synchronizes a data source with data from a
dataset. It has three properties that support this (analogous to its SelectCommand property,
which supports queries).

• UpdateCommand

• InsertCommand

• DeleteCommand

We’ll describe each of these properties briefly and then put them to work.

UpdateCommand Property

The UpdateCommand property The UpdateCommand property of the data adapter holds the
command used to update the data source when the data adapter’s Update method is
called.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 289

9004ch13final.qxd 12/13/07 4:05 PM Page 289

For example, to update the City column in the Employees table with the data from
a data table, one approach is to write code such as the following (where da is the data
adapter, dt is the data table, conn is the connection, and ds is the dataset):

// create command to update Employees City column

da.UpdateCommand = new SqlCommand(

"update employees "

+ "set "

+ " city = "

+ "'" + dt.Rows[0]["city"] + "' "

+ "where employeeid = "

+ "'" + dt.Rows[0]["employeeid"] + "' "

, conn);

// update Employees table

da.Update(ds, "employees");

This isn’t very pretty—or useful. Basically, you code an UPDATE statement and embed
two data column values for the first row in a data table in it. It’s valid SQL, but that’s its
only virtue and it’s not much of one, since it updates only one database row, the row in
Employees corresponding to the first data row in the employees data table.

Another approach works for any number of rows. Recall from the Command
Parameters program in Chapter 11 how you used command parameters for INSERT
statements. You can use them in any query or data manipulation statement. Let’s recode
the preceding code with command parameters.

Try It Out: Propagating Dataset Changes to a Data Source

Here you’ll change the city in the first row of the Employees table and persist the change
in the database.

1. Add a new C# Console Application project named PersistChanges to your
Chapter13 solution. Rename Program.cs to PersistChanges.cs.

2. Replace the code in PersistChanges.cs with the code in Listing 13-5. (This is a
variation on ModifyDataTable.cs in Listing 13-4, with the nullability and inser-
tion logic removed since they’re irrelevant here.)

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS290

9004ch13final.qxd 12/13/07 4:05 PM Page 290

Listing 13-5. PersistChanges.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class PersistChanges

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string qry = @"

select

*

from

employees

where

country = 'UK'

";

// SQL to update employees

string upd = @"

update employees

set

city = @city

where

employeeid = @employeeid

";

// create connection

SqlConnection conn = new SqlConnection(connString);

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 291

9004ch13final.qxd 12/13/07 4:05 PM Page 291

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(qry, conn);

// create and fill dataset

DataSet ds = new DataSet();

da.Fill(ds, "employees");

// get data table reference

DataTable dt = ds.Tables["employees"];

// modify city in first row

dt.Rows[0]["city"] = "Wilmington";

// display rows

foreach (DataRow row in dt.Rows)

{

Console.WriteLine(

"{0} {1} {2}",

row["firstname"].ToString().PadRight(15),

row["lastname"].ToString().PadLeft(25),

row["city"]);

}

// update Employees

//

// create command

SqlCommand cmd = new SqlCommand(upd, conn);

//

// map parameters

//

// City

cmd.Parameters.Add(

"@city",

SqlDbType.NVarChar,

15,

"city");

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS292

9004ch13final.qxd 12/13/07 4:05 PM Page 292

//

// EmployeeID

SqlParameter parm =

cmd.Parameters.Add(

"@employeeid",

SqlDbType.Int,

4,

"employeeid");

parm.SourceVersion = DataRowVersion.Original;

//

// update database

da.UpdateCommand = cmd;

da.Update(ds, "employees");

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make PersistChanges the startup project, and run it by pressing Ctrl+F5. You
should see the result in Figure 13-7.

Figure 13-7. Modifying a row

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 293

9004ch13final.qxd 12/13/07 4:05 PM Page 293

How It Works

You add an UPDATE statement and change the name of the original query string variable
from sql to upd in order to clearly distinguish it from this statement.

// SQL to update employees

string upd = @"

update employees

set

city = @city

where

employeeid = @employeeid

";

You replace the update comment in the try block with quite a bit of code. Let’s look
at it piece by piece. Creating a command is nothing new, but notice that you use the
update SQL variable (upd), not the query one (sql).

// update Employees

//

// create command

SqlCommand cmd = new SqlCommand(upd, conn);

Then you configure the command parameters. The @city parameter is mapped to
a data column named city. Note that you don’t specify the data table, but you must be
sure the type and length are compatible with this column in whatever data table you
eventually use.

// city

cmd.Parameters.Add(

"@city",

SqlDbType.NVarChar,

15,

"city");

Next, you configure the @employeeid parameter, mapping it to a data column named
employeeid. Unlike @city, which by default takes values from the current version of the
data table, you want to make sure that @employeeid gets values from the version before any
changes. Although it doesn’t really matter here, since you don’t change any employee IDs,
it’s a good habit to specify the original version for primary keys, so if they do change, the
correct rows are accessed in the database table. Note also that you save the reference
returned by the Add method so you can set its SourceVersion property. Since you don’t
need to do anything else with @city, you don’t have to save a reference to it.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS294

9004ch13final.qxd 12/13/07 4:05 PM Page 294

// EmployeeID

SqlParameter parm =

cmd.Parameters.Add(

"@employeeid",

SqlDbType.Int,

4,

"employeeid");

parm.SourceVersion = DataRowVersion.Original;

Finally, you set the data adapter’s UpdateCommand property with the command to
update the Employees table so it will be the SQL the data adapter executes when you call
its Update method. You then call Update on the data adapter to propagate the change to
the database. Here you have only one change, but since the SQL is parameterized, the
data adapter will look for all changed rows in the employees data table and submit
updates for all of them to the database.

// Update database

da.UpdateCommand = cmd;

da.Update(ds, "employees");

Figure 13-7 shows the change to the city, and if you check with Database Explorer
or the SSMSE, you’ll see the update has been propagated to the database. The city for
employee Steven Buchanan is now Wilmington, not London.

InsertCommand Property

The data adapter uses the InsertCommand property for inserting rows into a table. Upon
calling the Update method, all rows added to the data table will be searched for and
propagated to the database.

Try It Out: Propagating New Dataset Rows to a Data Source

Let’s propagate a new row to the database, in another variation on ModifyDataTable.cs
in Listing 13-4.

1. Add a new C# Console Application project named PersistAdds to your Chapter13
solution. Rename Program.cs to PersistAdds.cs.

2. Replace the code in PersistAdds.cs with the code in Listing 13-6.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 295

9004ch13final.qxd 12/13/07 4:05 PM Page 295

Listing 13-6. PersistAdds.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class PersistAdds

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string qry = @"

select

*

from

employees

where

country = 'UK'

";

// SQL to insert employees

string ins = @"

insert into employees

(

firstname,

lastname,

titleofcourtesy,

city,

country

)

values

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS296

9004ch13final.qxd 12/13/07 4:05 PM Page 296

(

@firstname,

@lastname,

@titleofcourtesy,

@city,

@country

)

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(qry, conn);

// create and fill dataset

DataSet ds = new DataSet();

da.Fill(ds, "employees");

// get data table reference

DataTable dt = ds.Tables["employees"];

// add a row

DataRow newRow = dt.NewRow();

newRow["firstname"] = "Roy";

newRow["lastname"] = "Beatty";

newRow["titleofcourtesy"] = "Sir";

newRow["city"] = "Birmingham";

newRow["country"] = "UK";

dt.Rows.Add(newRow);

// display rows

foreach (DataRow row in dt.Rows)

{

Console.WriteLine(

"{0} {1} {2}",

row["firstname"].ToString().PadRight(15),

row["lastname"].ToString().PadLeft(25),

row["city"]);

}

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 297

9004ch13final.qxd 12/13/07 4:05 PM Page 297

// insert employees

//

// create command

SqlCommand cmd = new SqlCommand(ins, conn);

//

// map parameters

cmd.Parameters.Add(

"@firstname",

SqlDbType.NVarChar,

10,

"firstname");

cmd.Parameters.Add(

"@lastname",

SqlDbType.NVarChar,

20,

"lastname");

cmd.Parameters.Add(

"@titleofcourtesy",

SqlDbType.NVarChar,

25,

"titleofcourtesy");

cmd.Parameters.Add(

"@city",

SqlDbType.NVarChar,

15,

"city");

cmd.Parameters.Add(

"@country",

SqlDbType.NVarChar,

15,

"country");

//

// insert employees

da.InsertCommand = cmd;

da.Update(ds, "employees");

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS298

9004ch13final.qxd 12/13/07 4:05 PM Page 298

{

// close connection

conn.Close();

}

}

}

}

3. Make PersistAdds the startup project, and run it by pressing Ctrl+F5. You should
see the results in Figure 13-8.

Figure 13-8. Adding a row

How It Works

You add an INSERT statement and change the name of the original query string variable
from sql to ins in order to clearly distinguish it from this statement.

// SQL to insert employees

string ins = @"

insert into employees

(

firstname,

lastname,

titleofcourtesy,

city,

country

)

values

(

@firstname,

@lastname,

@titleofcourtesy,

@city,

@country

)

";

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 299

9004ch13final.qxd 12/13/07 4:05 PM Page 299

You replace the update comment in the try block with quite a bit of code. Let’s look at
it piece by piece. Creating a command is nothing new, but notice that you use the insert
SQL variable (ins), not the query one (sql).

// insert employees

//

// create command

SqlCommand cmd = new SqlCommand(ins, conn);

Then you configure the command parameters. The five columns for which you’ll
provide values are each mapped to a named command parameter. You don’t supply the
primary key value since it’s generated by SQL Server, and the other columns are nullable,
so you don’t have to provide values for them. Note that all the values are current values,
so you don’t have to specify the SourceVersion property.

// map parameters

cmd.Parameters.Add(

"@firstname",

SqlDbType.NVarChar,

10,

"firstname");

cmd.Parameters.Add(

"@lastname",

SqlDbType.NVarChar,

20,

"lastname");

cmd.Parameters.Add(

"@titleofcourtesy",

SqlDbType.NVarChar,

25,

"titleofcourtesy");

cmd.Parameters.Add(

"@city",

SqlDbType.NVarChar,

15,

"city");

cmd.Parameters.Add(

"@country",

SqlDbType.NVarChar,

15,

"country");

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS300

9004ch13final.qxd 12/13/07 4:05 PM Page 300

Finally, you set the data adapter’s InsertCommand property with the command to
insert into the Employees table so it will be the SQL the data adapter executes when you
call its Update method. You then call Update on the data adapter to propagate the change
to the database. Here you add only one row, but since the SQL is parameterized, the data
adapter will look for all new rows in the employees data table and submit inserts for all
of them to the database.

// insert employees

da.InsertCommand = cmd;

da.Update(ds, "employees");

Figure 13-8 shows the new row, and if you check with Database Explorer or the
SSMSE, you’ll see the row has been propagated to the database. Roy Beatty is now in
the Employees table.

DeleteCommand Property

You use the DeleteCommand property to execute SQL DELETE statements.

Try It Out: Propagating New Dataset Rows to a Data Source

In this example, you’ll again modify ModifyDataTable.cs (Listing 13-4) to delete a row from
the database.

1. Add a new C# Console Application project named PersistDeletes to your
Chapter13 solution. Rename Program.cs to PersistDeletes.cs.

2. Replace the code in PersistDeletes.cs with the code in Listing 13-7.

Listing 13-7. PersistDeletes.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class PersistDeletes

{

static void Main(string[] args)

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 301

9004ch13final.qxd 12/13/07 4:05 PM Page 301

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string qry = @"

select

*

from

employees

where

country = 'UK'

";

// SQL to delete employees

string del = @"

delete from employees

where

employeeid = @employeeid

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(qry, conn);

// create and fill dataset

DataSet ds = new DataSet();

da.Fill(ds, "employees");

// get data table reference

DataTable dt = ds.Tables["employees"];

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS302

9004ch13final.qxd 12/13/07 4:05 PM Page 302

// delete employees

//

// create command

SqlCommand cmd = new SqlCommand(del, conn);

//

// map parameters

cmd.Parameters.Add(

"@employeeid",

SqlDbType.Int,

4,

"employeeid");

//

// select employees

string filt = @"

firstname = 'Roy'

and

lastname = 'Beatty'

";

//

// delete employees

foreach (DataRow row in dt.Select(filt))

{

row.Delete();

}

da.DeleteCommand = cmd;

da.Update(ds, "employees");

// display rows

foreach (DataRow row in dt.Rows)

{

Console.WriteLine(

"{0} {1} {2}",

row["firstname"].ToString().PadRight(15),

row["lastname"].ToString().PadLeft(25),

row["city"]);

}

}

catch(Exception e)

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 303

9004ch13final.qxd 12/13/07 4:05 PM Page 303

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make PersistDeletes the startup project, and run it by pressing Ctrl+F5. You should
see the output in Figure 13-9.

Figure 13-9. Deleting a row

How It Works

You add a DELETE statement (and change the name of the original query string variable
from sql to del in order to clearly distinguish it from this statement).

// SQL to delete employees

string del = @"

delete from employees

where

employeeid = @employeeid

";

You insert the DELETE code ahead of the display. After creating a command and map-
ping a parameter:

// delete employees

//

// create command

SqlCommand cmd = new SqlCommand(del, conn);

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS304

9004ch13final.qxd 12/13/07 4:05 PM Page 304

//

// map parameters

cmd.Parameters.Add(

"@employeeid",

SqlDbType.Int,

4,

"employeeid");

you select the row to delete and delete it. Actually, you select all rows for employees
named Roy Beatty, since you don’t know (or care about) their employee IDs. Although
you expect only one row to be selected, you use a loop to delete all the rows. (If you were
to run the PersistAdds program multiple times, you’d have more than one row that
matches this selection criteria.)

// select employees

string filt = @"

firstname = 'Roy'

and

lastname = 'Beatty'

";

//

// delete employees

foreach (DataRow row in dt.Select(filt))

{

row.Delete();

}

Finally, you set the data adapter’s DeleteCommand property with the command to
delete from the Employees table so it will be the SQL the data adapter executes when
you call its Update method. You then call Update() on the data adapter to propagate the
changes to the database.

da.DeleteCommand = cmd;

da.Update(ds, "employees");

Whether you delete one row or several, your SQL is parameterized, and the data
adapter will look for all deleted rows in the employees data table and submit deletes for
all of them to the Employees database table.

If you check with Database Explorer or the SSMSE, you’ll see the row has been
removed from the database. Sir Roy Beatty is no longer in the Employees table.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 305

9004ch13final.qxd 12/13/07 4:05 PM Page 305

Command Builders

Although it’s straightforward, it’s a bit of a hassle to code SQL statements for the
UpdateCommand, InsertCommand, and DeleteCommand properties, so each data provider has
its own command builder. If a data table corresponds to a single database table, you
can use a command builder to automatically generate the appropriate UpdateCommand,
InsertCommand, and DeleteCommand properties for a data adapter. This is all done trans-
parently when a call is made to the data adapter’s Update method.

To be able to dynamically generate INSERT, DELETE, and UPDATE statements, the com-
mand builder uses the data adapter’s SelectCommand property to extract metadata for the
database table. If any changes are made to the SelectCommand property after invoking the
Update method, you should call the RefreshSchema method on the command builder to
refresh the metadata accordingly.

To create a command builder, you create an instance of the data provider’s command
builder class, passing a data adapter to its constructor. For example, the following code
creates a SQL Server command builder:

SqlDataAdapter da = new SqlDataAdapter();

SqlCommandBuilder cb = new SqlCommandBuilder(da);

■Note For a command builder to work, the SelectCommand data adapter property must contain a
query that returns either a primary key or a unique key for the database table. If none is present, an
InvalidOperation exception is generated, and the commands aren’t generated.

Try It Out: Using SqlCommandBuilder

Here, you’ll convert PersistAdds.cs in Listing 13-6 to use a command builder.

1. Add a new C# Console Application project named PersistAddsBuilder to your
Chapter13 solution. Rename Program.cs to PersistAddsBuilder.cs.

2. Replace the code in PersistAddsBuilder.cs with the code in Listing 13-8.

Listing 13-8. PersistAddsBuilder.cs

using System;

using System.Data;

using System.Data.SqlClient;

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS306

9004ch13final.qxd 12/13/07 4:05 PM Page 306

namespace Chapter13

{

class PersistAddsBuilder

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string qry = @"

select

*

from

employees

where

country = 'UK'

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(qry, conn);

// create command builder

SqlCommandBuilder cb = new SqlCommandBuilder(da);

// create and fill dataset

DataSet ds = new DataSet();

da.Fill(ds, "employees");

// get data table reference

DataTable dt = ds.Tables["employees"];

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 307

9004ch13final.qxd 12/13/07 4:05 PM Page 307

// add a row

DataRow newRow = dt.NewRow();

newRow["firstname"] = "Roy";

newRow["lastname"] = "Beatty";

newRow["titleofcourtesy"] = "Sir";

newRow["city"] = "Birmingham";

newRow["country"] = "UK";

dt.Rows.Add(newRow);

// display rows

foreach (DataRow row in dt.Rows)

{

Console.WriteLine(

"{0} {1} {2}",

row["firstname"].ToString().PadRight(15),

row["lastname"].ToString().PadLeft(25),

row["city"]);

}

// insert employees

da.Update(ds, "employees");

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make PersistAddsBuilder the startup project, and run it by pressing Ctrl+F5. You
should see the results in Figure 13-10. Roy Beatty is back in the Employees table.

Figure 13-10. Adding a row using a command builder

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS308

9004ch13final.qxd 12/13/07 4:05 PM Page 308

How It Works

The most interesting thing to note isn’t the line (yes, just one plus a comment) you add as
much as what you replace. The single statement

// create command builder

SqlCommandBuilder cb = new SqlCommandBuilder(da);

makes all the following code unnecessary:

// SQL to insert employees

string ins = @"

insert into employees

(

firstname,

lastname,

titleofcourtesy,

city,

country

)

values

(

@firstname,

@lastname,

@titleofcourtesy,

@city,

@country

)

";

// create command

SqlCommand cmd = new SqlCommand(ins, conn);

//

// map parameters

cmd.Parameters.Add(

"@firstname",

SqlDbType.NVarChar,

10,

"firstname");

cmd.Parameters.Add(

"@lastname",

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 309

9004ch13final.qxd 12/13/07 4:05 PM Page 309

SqlDbType.NVarChar,

20,

"lastname");

cmd.Parameters.Add(

"@titleofcourtesy",

SqlDbType.NVarChar,

25,

"titleofcourtesy");

cmd.Parameters.Add(

"@city",

SqlDbType.NVarChar,

15,

"city");

cmd.Parameters.Add(

"@country",

SqlDbType.NVarChar,

15,

"country");

//

// insert employees

da.InsertCommand = cmd;

Obviously, using command builders is preferable to manually coding SQL; however,
remember that they work only on single tables and that the underlying database table
must have a primary or unique key. Also, the data adapter SelectCommand property must
have a query that includes the key columns.

■Note Though all five of the data providers in the .NET Framework Class Library have command builder
classes, no class or interface exists in the System.Data namespace that defines them. So, if you want to
learn more about command builders, the best place to start is the description for the builder in which you’re
interested. The System.Data.DataSet class and the System.Data.IDataAdapter interface define the
underlying components that command builders interact with, and their documentation provides the informal
specification for the constraints on command builders.

Concurrency
You’ve seen that updating a database with datasets and data adapters is relatively
straightforward. However, we’ve oversimplified things; you’ve been assuming that no

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS310

9004ch13final.qxd 12/13/07 4:05 PM Page 310

other changes have been made to the database while you’ve been working with discon-
nected datasets.

Imagine two separate users trying to make conflicting changes to the same row in a
dataset and then trying to propagate these changes to the database. What happens? How
does the database resolve the conflicts? Which row gets updated first, or second, or at all?
The answer is unclear. As with so many real-world database issues, it all depends on a
variety of factors. However, ADO.NET provides a fundamental level of concurrency con-
trol that’s designed to prevent update anomalies. The details are beyond the scope of this
book, but the following is a good conceptual start.

Basically, a dataset marks all added, modified, and deleted rows. If a row is propa-
gated to the database but has been modified by someone else since the dataset was filled,
the data manipulation operation for the row is ignored. This technique is known as opti-
mistic concurrency and is essentially the job of the data adapter. When the Update method
is called, the data adapter attempts to reconcile all changes. This works well in an envi-
ronment where users seldom contend for the same data.

This type of concurrency is different from what’s known as pessimistic concurrency,
which locks rows upon modification (or sometimes even on retrieval) to avoid conflicts.
Most database managers use some form of locking to guarantee data integrity.

Disconnected processing with optimistic concurrency is essential to successful
multitier systems. How to employ it most effectively given the pessimistic concurrency of
DBMSs is a thorny problem. Don’t worry about it now, but keep in mind that many issues
exist, and the more complex your application, the more likely you’ll have to become an
expert in concurrency.

Using Datasets and XML
XML is the fundamental medium for data transfer in .NET. In fact, XML is a major foun-
dation for ADO.NET. Datasets organize data internally in XML format and have a variety
of methods for reading and writing in XML. For example:

• You can import and export the structure of a dataset as an XML schema using
System.Data.DataSet’s ReadXmlSchema and WriteXmlSchema methods.

• You can read the data (and, optionally, the schema) of a dataset from and write it
to an XML file with ReadXml() and WriteXml(). This can be useful when exchanging
data with another application or making a local copy of a dataset.

• You can bind a dataset to an XML document (an instance of System.Xml.
XmlDataDocument). The dataset and data document are synchronized, so either
ADO.NET or XML operations can be used to modify it.

Let’s look at one of these in action: copying a dataset to an XML file.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 311

9004ch13final.qxd 12/13/07 4:05 PM Page 311

■Note If you’re unfamiliar with XML, don’t worry. ADO.NET doesn’t require any detailed knowledge of it.
Of course, the more you know, the better you can understand what’s happening transparently.

Try It Out: Extracting a Dataset to an XML File

You can preserve the contents and schema of a dataset in one XML file using the dataset’s
WriteXml method or in separate files using WriteXml() and WriteXmlSchema(). WriteXml() is
overloaded, and in this example we’ll show a version that extracts both data and schema.

1. Add a new C# Console Application project named WriteXML to your Chapter13
solution. Rename Program.cs to WriteXML.cs.

2. Replace the code in WriteXML.cs with the code in Listing 13-9.

Listing 13-9. WriteXML.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class WriteXML

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string qry = @"

select

productname,

unitprice

from

products

";

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS312

9004ch13final.qxd 12/13/07 4:05 PM Page 312

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// create data adapter

SqlDataAdapter da = new SqlDataAdapter();

da.SelectCommand = new SqlCommand(qry, conn);

// open connection

conn.Open();

// create and fill dataset

DataSet ds = new DataSet();

da.Fill(ds, "products");

// extract dataset to XML file

ds.WriteXml(

@"C:\Documents and Settings\Administrator\My Documents\➥

Visual Studio

2008\Projects\Chapter13\productstable.xml"

); Console.WriteLine("The file is Created");

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Make WriteXML the startup project, and run it by pressing Ctrl+F5. You should see
the output in Figure 13-11.

Figure 13-11. Extracting a data table as XML

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 313

9004ch13final.qxd 12/13/07 4:05 PM Page 313

4. Not much seems to have happened, but that’s because you wrote to a file rather
than to the screen. Open productstable.xml to see the XML. (One way in Visual
Studio is to use File ➤ Open File.) Figure 13-12 shows the XML extracted for the
first five product rows.

Figure 13-12. Data table extracted as XML

■Tip By default, extracted XML documents are plain text files. You can open the productstable.xml file
in any editor, or even use the type or more commands to view it from the command line.

How It Works

You replace a console display loop with a method call to write the XML file.

// extract dataset to XML file

ds.WriteXml(

@" C:\Documents and Settings\Administrator\My Documents\Visual Studio Codename

Orcas\Projects\Chapter13\productstable.xml"

);

You give the full path for the XML file to place it in the solution directory. Were you to
give only the file name, it would have been placed in the bin\Release subdirectory under
the WriteXML project directory.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS314

9004ch13final.qxd 12/13/07 4:05 PM Page 314

Note that the XML has simply mapped the dataset as a hierarchy. The first XML ele-
ment, <NewDataSet>, is the dataset name (defaulting to NewDataSet since you don’t specify
one). The next element, <products>, uses the data table name (you have only one data
table since you use only one query to populate the dataset), and it’s nested inside the
dataset element. The data column elements, <productname> and <unitprice>, are nested
inside this element.

The data for each column appears (as plain text) between the start tag (for example,
<productname>) and the end tag (for example, </productname>) for each column element.
Note that the <products> elements represent individual rows, not the whole table. So, the
column elements are contained within the start tag <products> and end tag </products>
for each row.

If you scroll to the bottom of the XML file, you’ll find the end tag </NewDataSet> for the
dataset.

Using Data Tables Without Datasets
As we mentioned in our first example, “Populating a Dataset with a Data Adapter,” data
tables can be used without datasets. Most of the time this involves calling the same meth-
ods on data tables that you use for datasets. We’ll give one example. You should then be
able to analogize from it for other processing.

■Note Datasets and data tables can also be used without data adapters. Such uses are beyond the scope
of this book.

Try It Out: Populating a Data Table with a Data Adapter

This example is based on our first example, PopDataSet.cs (Listing 13-1). You’ll create
a data table, populate it with a data adapter, and then display its contents.

1. Add a new C# Console Application project named PopDataTable to your
Chapter13 solution. Rename Program.cs to PopDataTable.cs.

2. Replace the code in PopDataTable.cs with the code in Listing 13-10. The lines
changed from Listing 13-1 are highlighted in bold.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 315

9004ch13final.qxd 12/13/07 4:05 PM Page 315

Listing 13-10. PopDataTable.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace Chapter13

{

class PopDataTable

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// query

string sql = @"

select

productname,

unitprice

from

products

where

unitprice < 20

";

// create connection

SqlConnection conn = new SqlConnection(connString);

try

{

// open connection

conn.Open();

// create data adapter

SqlDataAdapter da = new SqlDataAdapter(sql, conn);

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS316

9004ch13final.qxd 12/13/07 4:05 PM Page 316

// create data table

DataTable dt = new DataTable();

// fill data table

da.Fill(dt);

// display data

foreach (DataRow row in dt.Rows)

{

foreach (DataColumn col in dt.Columns)

Console.WriteLine(row[col]);

Console.WriteLine("".PadLeft(20, '='));

}

}

catch(Exception e)

{

Console.WriteLine("Error: " + e);

}

finally

{

// close connection

conn.Close();

}

}

}

}

3. Run PopDataTable by pressing Ctrl+F5. You should see the same results as in
Figure 13-3 earlier for PopDataSet.cs.

How It Works

Instead of creating a dataset:

// create dataset

DataSet ds = new DataSet();

you create a data table:

// create data table

DataTable dt = new DataTable();

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 317

9004ch13final.qxd 12/13/07 4:05 PM Page 317

And instead of filling a dataset:

// fill dataset

da.Fill(ds, "products");

you fill a data table:

// fill data table

da.Fill(dt);

Since a data table can hold only one table, notice that the Fill method doesn’t accept
the data table name as an argument. And, since you don’t have to find a particular data
table in a dataset, there is no need for

// get data table

DataTable dt = ds.Tables["products"];

Otherwise, the code needs no changes.

■Tip Unless you really need to organize data tables in datasets so you can define relationships between
them, using one or more data tables instead of one (or more) datasets is easier to code and takes up fewer
runtime resources.

Understanding Typed and Untyped Datasets
Datasets can be typed or untyped. The datasets you’ve used so far have all been untyped.
They were instances of System.Data.DataSet. An untyped dataset has no built-in schema.
The schema is only implicit. It grows as you add tables and columns to the dataset, but
these objects are exposed as collections rather than as XML schema elements. However,
as we mentioned in passing in the previous section, you can explicitly export a schema
for an untyped dataset with WriteXmlSchema (or WriteXml).

A typed dataset is one that’s derived from System.Data.DataSet and uses an XML
Schema (typically in an .xsd file) in declaring the dataset class. Information from the
schema (tables, columns, and so on) is extracted, generated as C# code, and compiled,
so the new dataset class is an actual .NET type with appropriate objects and properties.

Either typed or untyped datasets are equally valid, but typed datasets are more effi-
cient and can make code somewhat simpler. For example, using an untyped dataset,
you’d need to write this:

Console.WriteLine(ds.Tables[0].Rows[0]["CompanyName"]);

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS318

9004ch13final.qxd 12/13/07 4:05 PM Page 318

to get the value for the CompanyName column of the Customers table, assuming that the
data table was the first in the dataset. With a typed dataset, you can access its data tables
and data columns as class members. You could replace the previous code with this:

Console.WriteLine(ds.Customers[0].CompanyName);

making the code more intuitive. In addition, the Visual Studio code editor has Intel-
liSense support for typed datasets.

Typed datasets are more efficient than untyped datasets because typed datasets have
a defined schema, and when they’re populated with data, runtime type identification and
conversion aren’t necessary, since this has been taken care of at compile time. Untyped
datasets have a lot more work to do every time a result set is loaded.

However, typed datasets aren’t always the best choice. If you’re dealing with data that
isn’t basically well defined, whose definition dynamically changes, or is only of tempo-
rary interest, the flexibility of untyped datasets can outweigh the benefits of typed ones.

This chapter is already long enough. Since we’re not concerned with efficiency in our
small sample programs, we won’t use typed datasets and we don’t need to cover creating
them here.

Our emphasis in this book is explaining how C# works with ADO.NET by showing
you how to code fundamental operations. If you can code them yourself, you’ll have
insight into what C# does when it generates things for you, as in the next chapter on
using Windows Forms. This is invaluable for understanding how to configure generated
components and debugging applications that use them.

Although you can code an .xsd file yourself (or export an XSL schema for an
untyped dataset with System.Data.DataSet.WriteXmlSchema() and modify it) and then
use the xsd.exe utility to create a class for a typed dataset, it’s a lot of work, is subject
to error, and is something you’ll rarely (if ever) want or need to do.

Summary
In this chapter, we covered the basics of datasets and data adapters. A dataset is a rela-
tional representation of data that has a collection of data tables, and each data table has
collections of data rows and data columns. A data adapter is an object that controls how
data is loaded into a dataset (or data table) and how changes to the dataset data are prop-
agated back to the data source.

We presented basic techniques for filling and accessing datasets, demonstrated how
to filter and sort data tables, and noted that though datasets are database-independent
objects, disconnected operation isn’t the default mode.

We discussed how to propagate data modifications back to databases with parame-
terized SQL and the data adapter’s UpdateCommand, InsertCommand, and DeleteCommand
properties, and how command builders simplify this for single-table updates.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS 319

9004ch13final.qxd 12/13/07 4:05 PM Page 319

We briefly mentioned the important issue of concurrency and then introduced XML,
the fundamental technology behind ADO.NET.

We provided an example of populating a data table without a dataset, and you
should be able to analogize this for all the other operations on datasets that we covered.
Finally, we discussed typed and untyped datasets

Now that you’ve seen the basics of using ADO.NET, we’ll move from console applica-
tions to Windows applications.

CHAPTER 13 ■ USING DATASETS AND DATA ADAPTERS320

9004ch13final.qxd 12/13/07 4:05 PM Page 320

Building Windows Forms
Applications

This chapter introduces you to the concepts related to Windows Forms, which will give
you an understanding about Windows Forms and developing Windows Forms Applica-
tions using C# 2008.

In this chapter, we’ll cover the following:

• Understanding Windows Forms

• User interface design principles

• Best practices for user interface design

• Working with Windows Forms

• Understanding the Design and Code views

• Sorting properties in the Properties window

• Setting properties of solutions, projects, and Windows Forms

• Working with controls

• Setting dock and anchor properties

• Adding a new form to the project

• Implementing an MDI form

Understanding Windows Forms
Windows Forms, also known as WinForms, is the name given to the graphical user
interface (GUI) application programming interface (API) included as a part of Microsoft’s

321

C H A P T E R 1 4

9004ch14final.qxd 12/13/07 4:02 PM Page 321

.NET Framework, providing access to the native Microsoft Windows interface elements
by wrapping the existing Windows API in managed code.

WinForms are basic building blocks of the user interface. They work as containers to
host controls that allow you to present an application. WinForms is the most commonly
used interface for an application’s development, although other types of applications are
also available such as console applications and services. But WinForms offers the best
possible way to interact with the user and accepts user input in the form of key presses
or mouse clicks.

User Interface Design Principles
The best mechanism for interacting with any application is often a user interface. There-
fore, it becomes important to have an efficient design that is easy to use. When designing
the user interface, your primary consideration should be the people who will use the
application. They are your target audience, and knowing your target audience makes it
easier for you to design a user interface that helps users learn and use your application.
A poorly designed user interface, on the other hand, can lead to frustration and ineffi-
ciency if it causes the target audience to avoid or even discard your application.

Forms are the primary element of a Microsoft Windows application. As such, they
provide the foundation for each level of user interaction. Various controls, menus, and
so on can be added to forms to supply specific functionality. In addition to being func-
tional, your user interface should be attractive and inviting to the user.

Best Practices for User Interface Design
The user interface provides a mechanism for users to interact with your application.
Therefore, an efficient design that is easy to use is of paramount importance. Following
are some guidelines for designing user-friendly, elegant, and simple user interfaces.

Simplicity

Simplicity is an important aspect of a user interface. A visually “busy” or overly complex
user interface makes it harder and more time-consuming to learn the application. A user
interface should allow a user to quickly complete all interactions required by the pro-
gram, but it should expose only the functionality needed at each stage of the application.

When designing your user interface, you should keep program flow and execution in
mind, so that users of your application will find it easy to use. Controls that display
related data should be grouped together on the form. ListBox, ComboBox, and CheckBox
controls can be used to display data and allow users to choose between preset options.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS322

9004ch14final.qxd 12/13/07 4:02 PM Page 322

The use of a tab order (the order by which users can cycle through controls on a form by
pressing the Tab key) allows users to rapidly navigate fields.

Trying to reproduce a real-world object is a common mistake when designing user
interfaces. For instance, if you want to create a form that takes the place of a paper form,
it is natural to attempt to reproduce the paper form in the application. This approach
might be appropriate for some applications, but for others, it might limit the application
and provide no real user benefit, because reproducing a paper form can limit the func-
tionality of your application. When designing an application, think about your unique
situation and try to use the computer’s capabilities to enhance the user experience for
your target audience.

Default values are another way to simplify your user interface. For example, if you
expect 90 percent of the users of an application to select Washington in a State field,
make Washington the default choice for that field.

Information from your target audience is paramount when designing a user inter-
face. The best information to use when designing a user interface is input from the
target audience. Tailor your interface to make frequent tasks easy to perform.

Position of Controls

The location of controls on your user interface should reflect their relative importance
and frequency of use. For example, if you have a form that is used to input both required
information and optional information, the controls for the required information are
more important and should receive greater prominence. In Western cultures, user inter-
faces are typically designed to be read left-to-right and top-to-bottom. The most impor-
tant or frequently used controls are most easily accessed at the top of a form. Controls
that will be used after a user completes an action on a form, such as a Submit button,
should follow the logical flow of information and be placed at the bottom of the form.

It is also necessary to consider the relatedness of information. Related information
should be displayed in controls that are grouped together. For example, if you have a
form that displays information about a customer, a purchase order, or an employee, you
can group each set of controls on a Tab control that allows a user to easily move back and
forth between displays.

Aesthetics is also an important consideration in the placement of controls. You
should try to avoid forms that display more information than can be understood at a
glance. Whenever possible, controls should be adequately spaced to create visual appeal
and ease of accessibility.

Consistency

Your user interface should exhibit a consistent design across each form in your applica-
tion. An inconsistent design can make your application seem disorganized or chaotic,

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 323

9004ch14final.qxd 12/13/07 4:02 PM Page 323

hindering adoption by your target audience. Don’t ask users to adapt to new visual ele-
ments as they navigate from form to form.

Consistency is created through the use of colors, fonts, size, and types of control
employed throughout the application. Before any actual application development takes
place, you should decide on a visual scheme that will remain consistent throughout the
application. For web applications, CSS (Cascading Style Sheets) offers the best mecha-
nism to ensuring a consistent look and feel throughout your web application.

Aesthetics

Whenever possible, a user interface should be inviting and pleasant. Although clarity and
simplicity should not be sacrificed for the sake of attractiveness, you should endeavor to
create an application that will not dissuade users from using it.

Color

Judicious use of color helps make your user interface attractive to the target audience
and inviting to use. It is easy to overuse color, however. Loud, vibrant colors might
appeal to some users, but others might have a negative reaction. When designing a
background color scheme for your application, the safest course is to use muted colors
with broad appeal.

Always research any special meanings associated with color that might affect user
response to your application. If you are designing an application for a company, you
might consider using the company’s corporate color scheme in your application. When
designing for international audiences, be aware that certain colors might have cultural
significance. Maintain consistency, and do not overdo the color.

Always think about how color might affect usability. For example, gray text on a
white background can be difficult to read and thus impairs usability. Also, be aware of
usability issues related to color blindness. Some people, for example, are unable to dis-
tinguish between red and green. Therefore, red text on a green background is invisible
to such users. Do not rely on color alone to convey information. Contrast can also
attract attention to important elements of your application.

Fonts

Usability should determine the fonts you choose for your application. For usability, avoid
fonts that are difficult to read or highly embellished. Stick to simple, easy-to-read fonts
such as Palatino or Times New Roman. Also, as with other design elements, fonts should
be applied consistently throughout the application. Use cursive or decorative fonts only
for visual effects, such as on a title page if appropriate, and never to convey important
information.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS324

9004ch14final.qxd 12/13/07 4:02 PM Page 324

Images and Icons

Pictures and icons add visual interest to your application, but careful design is essential to
their use. Images that appear “busy” or distract the user will hinder use of your applica-
tion. Icons can convey information, but again, careful consideration of end-user response
is required before deciding on their use. For example, you might consider using a red octa-
gon similar to a US stop sign to indicate that users might not want to proceed beyond that
point in the application. Whenever possible, icons should be kept to simple shapes that
are easily rendered in a 16-by-16-pixel square.

Working with Windows Forms
In order to work with Windows Forms, you need to create a Windows Forms Application
project using Visual Studio 2008. To do so, click Start ➤ Programs ➤ Visual Studio 2008,
and from the list shown choose Microsoft Visual Studio 2008. This will open the Visual
Studio start page. Click File ➤ New ➤ Project. Now you will see the New Project dialog
box from which you can choose the template for Windows Forms Application as shown
in Figure 14-1.

Figure 14-1. Choosing the Windows Forms Application project template

By default, the project is named as WindowsFormsApplication1 (the next would be
WindowsFormsApplication2, and so on). You can enter another name for your project in

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 325

9004ch14final.qxd 12/13/07 4:02 PM Page 325

the Name text box when you choose the project template or you can rename your proj-
ect later.

Once you have chosen the desired template, click OK. This will open the Visual
Studio integrated development environment (IDE), called such because it has all the
development-related tools, windows, dialog boxes, options, and so forth embedded (or
integrated) inside one common window, which makes the development process easier.

In the IDE, you will see that a Windows Form named Form1.cs has been added as you
open the project, and on the right-hand side you can also see the Solution Explorer win-
dow. You also need to know about one more window called the Properties window. If the
Properties window is not available below the Solution Explorer window, you can open it
by clicking View ➤ Properties Window or pressing F4. Now the development environ-
ment will look as shown in Figure 14-2.

Figure 14-2. IDE with Solution Explorer and the Properties window

Because this is a Windows Forms Application project, you will be working with con-
trols or tools that allow you to achieve functionality in the form of a GUI. You can pick the
controls from the Toolbox, shown on the left-hand side of the Windows Form, in the
development environment. If you hover your mouse pointer on the Toolbox tab, the Tool-
box window will open for you, as shown in Figure 14-3, and you can pick controls from
there and drop them on the surface of the Windows Form.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS326

9004ch14final.qxd 12/13/07 4:02 PM Page 326

Figure 14-3. IDE with the Toolbox

Understanding the Design and Code Views
You mainly deal with two views in the Visual Studio IDE: Design view and Code view.
When you open the Visual Studio IDE, by default it displays the Design view, as shown in
Figure 14-3. Design view allows you to drag controls and drop them onto the form. You
can use the Properties window to set the properties of objects and forms or other files
shown in Solution Explorer. Solution Explorer also allows you to rename the project,
forms, or even other files included in the project. You can rename these objects by select-
ing them, right-clicking, and selecting Rename from the context menu.

Basically, Design view gives you a visual way to work with the controls, objects, proj-
ect files, and so forth. On the other hand, you’ll want to use the other view available in
the Visual Studio IDE, Code view, when you are working with code to implement the
functionality behind the visual controls sitting on the surface of your Windows Forms.

To switch from Design view to Code view, click View ➤ Code or right-click the Win-
dows Form in Design view and select View Code. Either method will open the code editor
for you as shown in Figure 14-4.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 327

9004ch14final.qxd 12/13/07 4:02 PM Page 327

Figure 14-4. The Code view

The code editor window displays all the code functionality. In Figure 14-4, note the
Form1.cs tab (in which you see Code view) is beside the Form1.cs [Design] tab, which is
actually the Design mode of the Windows Form Form1; these tabs allow you to switch
between all the GUI elements of Design view and the related code in Code view that
helps you to achieve functionality. Interestingly, if you were to try accessing the Toolbox
while in Code view, you would see that there are no controls in the Toolbox. But when
you switch back to Design view, you’ll find the Toolbox is fully loaded with the controls.

In order to switch back to Design view, right-click the form in Code view and select
View Designer; you will see that now you are back to Design mode and can continue
working with the visual elements, or controls.

You can also use Solution Explorer to switch between Design and Code view by
selecting your desired Windows Form (in case you have multiple Windows Forms open),
right-clicking, and choosing either View Code or View Designer. This will open either the
Code or Design view of the selected Windows Form.

Sorting Properties in the Properties Window
Each object such as a form, control, and so on has a lot of properties you may need to set
while working with any application. To help you navigate the many properties listed in

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS328

9004ch14final.qxd 12/13/07 4:02 PM Page 328

the Properties window, you can sort them either by category or alphabetically. Let’s look
at each of these sorting options.

Categorized View

The Categorized view organizes properties in the form of sets of properties, and each set
has a name to describe that collection of properties; for example, there are categories
named Appearance, Behavior, Data, Design, Focus, and so on. You can switch to the Cat-
egorized view by clicking the icon on the very left of the toolbar shown in the top of the
Properties window.

In Figure-14-5, which shows the Categorized view, under the Appearance category,
you will see all properties listed that define the look and feel of the object (in this case, a
form). Note the other categories also shown in Figure 14-5.

■Note We have intentionally kept other categories in the collapsed mode in Figure 14-5, just to show you
all the categories. When you switch to the Categorized view, you will see that all the categories are expanded
by default.

Figure 14-5. Categorized view of properties

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 329

9004ch14final.qxd 12/13/07 4:02 PM Page 329

Alphabetical View

The Alphabetical view organizes properties in ascending order by name from “a” to “z.”
You can switch to the Alphabetical view by clicking the icon located at the second posi-
tion from the left of the toolbar shown in the top of the Properties window.

In Figure 14-6, which shows this view, all the properties listed are organized alpha-
betically. We have experienced that working with the Alphabetical view, rather than the
Categorized view, makes life much easier. An example will help to show why. Say you
are seeking the Font property. In the Categorized view, you have to know under which
category this property is located to find it. However, if you have properties organized in
the Alphabetical view, you can easily locate this property because it begins with the let-
ter “F,” so you know whether you need to go back or forward to find this property for
your control.

Figure 14-6. Alphabetical view of properties

Setting Properties of Solutions, Projects, and
Windows Forms
Before you begin putting controls on the Windows Form, you need to learn how to mod-
ify some property values of the solution, project, and the form you created earlier (shown
previously in Figure 14-2).

Select the WindowsFormsApplication1 solution, go to the Properties window, and set
its Name property value to Chapter14.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS330

9004ch14final.qxd 12/13/07 4:02 PM Page 330

Select the WindowsFormsApplication1 project in Solution Explorer, go to the Proper-
ties window, and modify the Project File property value, which defines the file name of
the project, to appear as WinApp.csproj.

Now change the name of Windows Form: select Form1.cs in Solution Explorer, in the
Properties window modify the File Name property from Form1.cs to WinApp.cs, and click
Yes in the dialog box that appears.

Now click Form1, located in the Solution Explorer window. Once Form1 is selected,
you will see that the list of properties has changed in the Properties window. Select the
Text property and modify its value from Form1 to Windows Application. The Text prop-
erty defines the name shown on the title bar of the form.

After setting the properties for your solution, project, and Windows Form, the IDE
will look as shown in Figure 14-7.

Figure 14-7. IDE after setting the properties for your solution, project, and Windows Form

Working with Controls
Now that you have your Windows Forms Application in place, you can start working with
the controls.

The basic element of any windows application is the control, which plays a key role
by providing the visual meaning to the code functionality embedded in an application.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 331

9004ch14final.qxd 12/13/07 4:02 PM Page 331

Based on our years of combined experience, we can confidently say the most com-
monly used controls are Label, Button, TextBox, RadioButton, ListBox, and ComboBox.
Applications cannot exist without these controls. Next, you’ll see how you can incorpo-
rate these controls in your application.

Try It Out: Working with the TextBox and Button Controls

In this exercise, you’ll create a Windows Forms Application having three labels, two text
boxes, and a button. The application will accept your name as input and then flash a
“Welcome” message.

1. Go to the project named WinApp located under the solution named Chapter14,
which you created earlier (refer back to Figure 14-7). Ensure that you are in
Design view.

2. Drag a Label control onto the form, and position it at the top and the center.
Select the label named label1, navigate to the Properties window, and set its Text
property to Welcome. Select the Font property, click the ellipsis button, and spec-
ify the size of the Label control as 16 points from the Size drop-down list.

■Tip You can also double-click any control in the Toolbox to add it to the form. The difference between
dragging a control and double-clicking is that while dragging, you can position the control as you desire on
the form. But if you just double-click a control, it will be added to the top-left corner; so if you prefer it in a
different location, you still have to drag it there.

3. Drag two more Label controls onto the form, and put them below the “Welcome”
text, a little toward the left of the form. Select the label named label2, navigate to
the Properties window, and set its Text property to First Name. Select the label
named label3, and set its Text property in the Properties window to Last Name.

4. Drag two TextBox controls onto the form, and put the TextBox named textBox1 in
front of the First Name label and the TextBox named textBox2 in front of the Last
Name label.

5. Select textBox1, go to the Properties window, and set its Name property to
txtFname. Select textBox2, and in the Properties window set its Name property
to txtLname.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS332

9004ch14final.qxd 12/13/07 4:02 PM Page 332

6. Drag a Button control onto the form and place it below the Label and TextBox
controls. Select the Button control, go to the Properties window, change the Name
property to btnSubmit, and then set its Text property to Submit.

Now you have your GUI design of the application ready; it should resemble the
form shown in Figure 14-8.

Figure 14-8. GUI design of the Windows Application form

It’s time to add functionality and switch the Code view. You are going to read in
the First Name and Last Name values supplied by the user and flash a message
on a click of the Submit button, which means you need to put all the functional-
ity behind the Submit button’s click event, which will eventually read the values
from the TextBoxes. To achieve this, continue with these steps:

7. Double-click the Submit button. This will take you to Code view, and you will see
that the btnSubmit_Click event template has been added to the code editor win-
dow, as shown in Figure 14-9.

8. Now add the following code inside this btnSubmit_Click event to achieve the
desired functionality:

MessageBox.Show("Hello" + ' ' + txtFname.Text + ' ' + txtLname.Text + ' ' +

"Welcome to the Windows Application");

9. Once you have added the code, click Build ➤ Build Solution, and ensure that you
see the following message in the Output window:

========== Build: 1 succeeded or up-to-date, 0 failed, 0 skipped ==========

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 333

9004ch14final.qxd 12/13/07 4:02 PM Page 333

Figure 14-9. Code view of your Windows Forms Application project

10. Now it’s time to run and test the application. To do so, press Ctrl+F5. Visual Studio
2008 will load the application.

11. Enter values in the First Name and Last Name text boxes, and then click the Sub-
mit button; you will see a message similar to the one shown in Figure 14-10.

Figure 14-10. Running the Windows Application form

12. Click OK, and then close the Windows Application form.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS334

9004ch14final.qxd 12/13/07 4:02 PM Page 334

How It Works

Visual Studio comes with a lot of features to help developers while writing code. One
of these features is that you can just double-click the GUI element for which you want
to add the code, and you will be taken to the code associated with the GUI element in
Code view. For example, when you double-click the Submit button in Design view, you
are taken to the Code view, and the btnSubmit_Click event template automatically gets
generated.

To achieve the functionality for this control, you add the following code:

MessageBox.Show("Hello" + ' ' + txtFname.Text + ' ' + txtLname.Text + ' ' +

"Welcome to the Windows Application");

MessageBox.Show is a C# method that pops up a message box. To display a “Welcome”
message with the first name and last name specified by the user in the message box, you
apply a string concatenation approach while writing the code.

In the code segment, you hard code the message “Hello Welcome to the Windows
Application”, but with the first name and last name of the user appearing after the word
“Hello” and concatenated with the rest of the message, “Welcome to the Windows Appli-
cation”.

For readability, you also add single space characters (' ') concatenated by instances
of the + operator in between the words and values you are reading from the Text property
of the txtFnam and txtLname. If you do not include the single space character (' ') during
string concatenation, the words will be run into each other, and the message displayed in
the message box will be difficult to read.

Setting Dock and Anchor Properties
Prior to Visual Studio 2005, resizing Windows Forms would require you to reposition
and/or resize controls on those forms. For instance, if you had some controls on the left
side of a form, and you tried to resize the form by stretching it toward the right side or
bring it back toward the left, the controls wouldn’t readjust themselves according to the
width of the resized form. Developers were bound to write code to shift controls accord-
ingly to account for the user resizing the form. This technique was very code heavy and
not so easy to implement.

With Visual Studio 2005 came two new properties, Anchor and Dock, which are so
easy to set at design time itself. The same Dock and Anchor properties are available with
Visual Studio 2008, and they solve the problem with the behavior of controls that users
face while resizing forms.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 335

9004ch14final.qxd 12/13/07 4:02 PM Page 335

Dock Property

The Dock property allows you to attach a control to one of the edges of its parent. The
term “parent” applies to Windows Forms, because Windows Forms contain the controls
that you drag and drop on them. By default, the Dock property of any control is set to
None.

For example, a control docked to the top edge of a form will always be connected to
the top edge of the form, and it will automatically resize in the left and right directions
when its parent is resized.

The Dock property for a control can be set by using the provided graphical interface
in the Properties window as shown in Figure 14-11.

Figure 14-11. Setting the Dock property

Anchor Property

When a user resizes a form, the controls maintain a constant distance from the edges
of its parent form with the help of the Anchor property. The default value for the
Anchor property for any control is set to Top, Left, which means that this control will
maintain a constant distance from the top and left edges of the form. The Anchor prop-
erty can be set by using the provided graphical interface in the Properties window, as
shown in Figure 14-12.

Due to the default setting of Anchor property to Top, Left, if you try to resize a form
by stretching it toward the right side, you will see that its controls are still positioned on
the left rather than shifting to the center of the form to adjust to the size of the form after
resizing is done.

If opposite edges, for example, Left and Right, are both set in the Anchor property,
the control will stretch when the form is resized. However, if neither of the opposite edges
is set in the Anchor property, the control will float when the parent is resized.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS336

9004ch14final.qxd 12/13/07 4:02 PM Page 336

Figure 14-12. Setting the Anchor property

Try It Out: Working with the Dock and Anchor Properties

In this exercise, you will use the existing Windows Forms Application named WinApp,
which you created previously in the chapter. You will see how to modify this application
in such a way that when you resize the form, its controls behave accordingly and keep
the application presentable for the user.

1. Go to Solution Explorer and open the WinApp project. Open the WinApp form in
Design mode.

2. Select the form by clicking its title bar; you will see handles around form’s border,
which allow you to resize the form’s height and width.

3. Place the cursor on the handle of the right-hand border, and when mouse pointer
becomes double-headed, click and stretch the form toward the right-hand side.
You will see that form’s width increases, but the controls are still attached to the
left corner of the form.

4. Similarly, grab the handle located on the bottom of the form and try to increase
the height of the form. You will notice that the controls are still attached to the top
side of the form.

Have a look at Figure 14-13, which shows a resized (height and width) form and
the position of the controls. The controls appear in the top-left corner because
their Dock property values are None and Anchor property values are Top, Left.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 337

9004ch14final.qxd 12/13/07 4:02 PM Page 337

Figure 14-13. Resized form and position of controls

Now you will try to set the Dock and Anchor properties for the controls and then
retest the application.

5. Select the Label control having a Text value of Welcome, and go to the Properties
window. Select the AutoSize property and set its value to False (default value is
True).

6. Resize the width of the Label control to the width of the form, and adjust the Label
control to the top border of the form. Set this control’s TextAlign property to Top,
Center.

7. Set the Dock property for the Label control from None to Top, which means you
want the label to always be affixed with the top border of the form.

8. Now select all the remaining controls (two Labels, two TextBoxes, and one
Button) either by scrolling over all of them while holding down the left mouse
button or selecting each with a click while pressing down either the Shift or
Ctrl key.

9. Once you have selected all the controls, go to the Properties window. You will see
listed all the properties common to the controls you have selected on the form.

10. Select the Anchor property; modify its value from the default Top, Left to Top, Left,
and Right. This will allow you to adjust the controls accordingly as soon as you
resize the form. The controls will also grow in size accordingly to adjust to the
width of the form, as you can see in Figure 14-14.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS338

9004ch14final.qxd 12/13/07 4:02 PM Page 338

Figure 14-14. The effect of the Anchor property setting Top, Left, Right on a
resized form

■Note The Anchor property has very interesting behaviors; you can try setting this property in various
combinations and see their effects when you resize your form.

11. Return the form to its previous size so you can see the effects of setting another
Anchor property.

12. Select all the controls again as you did in Step 8. Set the Anchor property to Top
only and try resizing the form now. You will notice that the controls are floating in
the middle of the form when you resize it, as you can see in Figure 14-15.

Figure 14-15. The effect of the Anchor property setting Top on a resized form

13. Save the changes in your project by clicking File ➤ Save All.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 339

9004ch14final.qxd 12/13/07 4:02 PM Page 339

How It Works

When you resize the form, it will behave according to the settings of the Dock and Anchor
properties.

In the first instance, you set the Dock property of the Label control to Top, which
allows this Label control to be affixed to the top border of the form and span the entire
width of the form. Setting the Anchor property of the remaining controls to Top, Left,
and Right shifts the controls in such a manner that they will maintain a constant dis-
tance from the left and right borders of the form.

Adding a New Form to the Project
You’ll obviously need multiple Windows Forms in any given project. By default, every
project opens with only one Windows Form, but you are free to add more.

Try It Out: Adding a New Form to the Windows Project

In this exercise, you will add another Windows Form to your project. You will also work
with a ListBox control and see how to add items to that control.

1. Navigate to Solution Explorer and select the WinApp project, right-click, and click
Add ➤ Windows Form. This will add a new Windows Form in your project.

2. In the Add New Item dialog box displayed, change the form’s name from Form1.cs
to AddName.cs. Click Add. The new form with the name AddName will be added to
your project.

3. Ensure that the newly added form AddName is open in Design view. Drag a Label
control onto the form and change its Text property to Enter Name.

4. Drag a TextBox control onto the AddName form, and modify its Name property
to txtName.

5. Drag a ListBox control onto the AddName form, and modify its Name property
to lstName.

6. Add a Button control to the AddName form and modify its Name property to
btnAdd and its Text property to Add.

Now you are done with the design part of the AddName form; your form should
look like the one shown in Figure 14-16.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS340

9004ch14final.qxd 12/13/07 4:02 PM Page 340

Figure 14-16. GUI design of the AddNames form

You want the user to add a name into the TextBox and click the Add button, after
which that name will be added to the ListBox. To do so, you need to write the code
functionality behind the click event of the Add button.

7. Double-click the Add button and write the following code, which will read the
name entered into the TextBox and add it to the ListBox, inside the btnAdd_Click
event.

lstName.Items.Add(txtName.Text);

txtName.Clear();

8. Go to the Build menu and select Build Solution. You should see a message indicat-
ing a successful build.

Keep your current project open, as you’ll need it immediately for the next exercise.
(Don’t worry, we’ll explain how this and the next exercise work afterward.)

Try It Out: Setting the Startup Form

Setting the startup form in a Visual C# project is a little tricky, so we wanted to break it
out into its own exercise. To set a startup form, you need to follow these steps:

1. In the project you modified in the previous exercise, navigate to Solution Explorer,
open the Program.cs file, and look for the following code line:

Application.Run(new WinApp());

This code line ensures the WinApp form will be the first form to run all the time; in
order to set the AddNames form as the startup form, you need to modify this
statement a little, as follows:

Application.Run(new AddNames());

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 341

9004ch14final.qxd 12/13/07 4:02 PM Page 341

2. Build the solution, and run and test the application by pressing Ctrl+F5. The
AddNames application form will be loaded.

3. Enter a name in the TextBox and click the Add button; you will see that the name
you entered has been added to the ListBox, as shown in Figure 14-17.

Figure 14-17. Running the AddNames Windows Forms Application

How It Works

Let’s have a look at the “Adding a New Form to the Windows Project” task first. You use the
following code:

lstName.Items.Add(txtName.Text);

txtName.Clear();

The ListBox control has a collection named Items, and this collection can contain a
list of items, which is why you use it here. Next you call up the Add method of the Items
collection, and finally you pass the value entered in the TextBox to the ListBox’s Items col-
lection’s Add method.

As users may want to add another name after entering one, you have to clear the
TextBox once the name has been added to the list so that the TextBox will be empty, ready
for another name to be entered.

In the “Setting the Startup Form” task, you create an instance of the AddName form
in the Program.cs, as shown in the following code:

Application.Run(new AddNames());

Implementing an MDI Form
The term Multiple Document Interface (MDI) means to have a GUI interface that allows
multiple documents or forms under one parent form or window.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS342

9004ch14final.qxd 12/13/07 4:02 PM Page 342

Visualize the working style of Microsoft Word: you are allowed to open multiple doc-
uments in one parent window, and all the documents will get listed in the Window menu,
from which you can choose whichever you want to read, instead of having the individual
documents open in their own windows, which makes it difficult to handle all of the docu-
ments and covers your screen with a lot of open windows.

Having an individual window for each instance of the same application is termed
Single Document Interface (SDI); applications such as Notepad, MS Paint, Calculator, and
so on are SDI applications. SDI applications only get opened in their own windows and
can become difficult to manage, unlike when you have multiple documents or forms open
inside one MDI interface.

Hence, MDI applications follow a parent form and child form relationship model.
MDI applications allow you to open, organize, and work with multiple documents at the
same time.

The parent (MDI) form organizes and arranges all the child forms or documents that
are currently open.

Try It Out: Creating an MDI Parent Form with a Menu Bar

In this exercise, you will create an MDI form in the WinApp project. You will also see how
to create a menu bar for the parent form, which will allow you to navigate to all the child
forms. To do so, follow these steps:

1. Navigate to Solution Explorer, select the WinApp project, right-click, and select
Add ➤ Windows Form. Change the Name value from Form1.cs to ParentForm.cs,
and click Add.

2. Select the newly added ParentForm in Design mode, and navigate to the Proper-
ties window. Set the IsMdiContainer property value to True (the default value is
False). Notice that the background color of the form has changed to dark gray.

3. Modify the size of the ParentForm so that it can accommodate the two forms you
created earlier, WinApp and AddNames, inside it.

4. Add a menu to the ParentForm by dragging a MenuStrip (a control that serves the
purpose of a menu bar) onto the ParentForm. In the top-left corner, you should
now see a drop-down sporting the text Type Here. Enter Open Forms in the drop-
down. This will be your main top-level menu.

5. Now under the Open Forms menu, add a submenu by entering the text Win App.

6. Under the Win App submenu, enter Add Names.

7. Now click the top menu, Open Forms, and on the right side of it, type Help.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 343

9004ch14final.qxd 12/13/07 4:02 PM Page 343

8. Under the Help menu, enter Exit.

9. Now it’s time to attach code to the submenus you have added under the main
menu Open Forms. First, you’ll add code for the submenu Win App, which basi-
cally will open the WinApp form. In Design mode, double-click the Win App
submenu, which will take you to the code editor. Under the click event, add the
following code:

WinApp wa = new WinApp();

wa.Show();

10. Now to associate functionality with the Add Names submenu: double-click this
submenu, and under the click event add the following code:

AddNames an = new AddNames();

an.Show();

11. To associate functionality with the Exit submenu located under the Help main
menu, double-click Exit, and under the click event add the following code:

Application.Exit();

Again, keep your current project open, as you’ll need it immediately for the next
exercise. (Don’t worry, we’ll explain how this and the next exercise work afterward.)

Try It Out: Creating an MDI Child Form and Running an
MDI Application

In this exercise, you will associate all the forms you created earlier as MDI child forms to
the main MDI parent form you created in the previous task.

1. In the project you modified in the previous exercise, you’ll first make the WinApp
form an MDI child form. To do so, you need to set the MdiParent property to the
name of the MDI parent form, but in the code editor. You have already added
functionality in the previous task (opening the WinApp form); just before the line
where you are calling the Show() method, add the following code:

wa.MdiParent=this;

After adding this line, the code will appear as follows:

WinApp wa = new WinApp();

wa.MdiParent = this;

wa.Show();

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS344

9004ch14final.qxd 12/13/07 4:02 PM Page 344

■Note this is a C# language keyword that represents the current instance of the class. In this case, it
refers to the ParentForm. Because you are writing this code inside ParentForm, you can use the this key-
word for the same.

2. Now you will make the AddNames form an MDI child form. To do so, you need to
set the MdiParent property to the name of the MDI parent form, but in the code
editor. Add the following code as you have done in the previous step:

an.MdiParent=this;

After adding this line, the code will appear as follows:

AddNames an = new AddNames();

an.MdiParent=this;

an.Show();

3. Now you have all the code functionality in place, and you are almost set to run the
application. But first, you have to bring all the controls to the MDI form, Parent-
Form in this case, and so you need to set ParentForm as the startup object. To do
so, open Program.cs and modify the Application.Run(new AddNames()); statement
to the following:

Application.Run(new ParentForm());

4. Now build the solution, and run the application by pressing F5; the MDI applica-
tion will open and should appear as shown in Figure 14-18.

Figure 14-18. Running an MDI form application

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 345

9004ch14final.qxd 12/13/07 4:02 PM Page 345

5. Click Open Form ➤ Win App; the WinApp form should open. Again, open the
main menu and click Add Names. Both the forms should now be open inside your
main MDI parent form application, as shown in Figure 14-19.

Figure 14-19. Opening child forms inside an MDI form application

6. Because both the forms are open inside one MDI parent, it becomes easier to
work with them. Switch back and forth between these forms by clicking their
title bars.

7. Once you are done with the forms, close the application by selecting Help ➤ Exit.

How It Works

Let’s talk about the “Creating an MDI Parent Form with a Menu Bar” task first. You use the
following code:

WinApp wa = new WinApp();

wa.Show();

This creates an instance of the WinApp form and opens it for you.
The following code creates an instance of the AddNames form and opens it for you:

AddNames an = new AddNames();

an.Show();

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS346

9004ch14final.qxd 12/13/07 4:02 PM Page 346

You close the application with the following code:

Application.Exit();

In the “Creating an MDI Child Form and Running an MDI Application” task, you add
the lines shown in bold:

WinApp wa = new WinApp();

wa.MdiParent = this;

wa.Show();

AddNames an = new AddNames();

an.MdiParent=this;

an.Show();

The wa.MdiParent=this; line tells the child form which form is its parent. As you
want all the child forms to appear inside ParentForm, and you write the code inside
the MDI parent form, you can use the this keyword to represent the current object.

Finally, you modify the code inside Program.cs by supplying the MDI form’s name
as follows:

Application.Run(new ParentForm());

This sets ParentForm as the startup form.

Summary
In this chapter, you learned about Windows Forms and the design principles associated
with graphical user interface design. You also learned the importance of commonly
ignored features, such as font styles and colors, and their impact on applications and
effect on large numbers of users. You also worked with properties that solve the resizing
problem of Windows Forms. You looked at the importance of MDI applications, and then
you created an MDI application with menu controls.

In the next chapter, you will see how to build an ASP.NET application.

CHAPTER 14 ■ BUILDING WINDOWS FORMS APPLICATIONS 347

9004ch14final.qxd 12/13/07 4:02 PM Page 347

9004ch14final.qxd 12/13/07 4:02 PM Page 348

Building ASP.NET Applications

This chapter focuses on the concepts behind web application development and the
key components that play a very important role in the web environment, and shows
you how to work with some new features of ASP.NET during the development of a web
application.

In this chapter, we’ll cover the following:

• Understanding web functionality

• Introduction to ASP.NET and web pages

• Understanding the Visual Studio 2008 web site types

• Layout of an ASP.NET web site

• Using Master Pages

Understanding Web Functionality
A web application, also often referred to as a web site, is one that you want to run over the
Internet or an intranet. The technique .NET came up with to build web applications is by
using web forms, which work in the ASP.NET environment and accept code functionality
from the C# language.

Before you dive into web forms and learn how to develop a web application, you
need to understand what components drive this entire web world and how these compo-
nents serve various applications running over it.

Basically, there are three key players that make all web applications functional: the
web server, the web browser, and Hypertext Transfer Protocol (HTTP). Let’s have a look at
their communication process:

1. The web browser initiates a request to the web server for a resource.

2. HTTP sends a GET request to the web server, and the web server processes that
request. 349

C H A P T E R 1 5

9004ch15final.qxd 12/13/07 4:00 PM Page 349

3. The web server initiates a response; HTTP sends the response to the web browser.

4. The web browser processes the response and displays the result on the web page.

5. The user inputs data or performs some action that forces data to be sent again to
the web server.

6. HTTP will POST the data back to the web server, and the web server processes that
data.

7. HTTP sends the response to the web browser.

8. The web browser processes the response and displays the result on the web page.

Now that you have a general understanding of the communication process, let’s have
a closer look at each of the key components.

The Web Server

The web server is responsible for receiving and handling all requests coming from
browsers through HTTP. After receiving a request, the web server will process that
request and send the response back to the browser. Right after this, usually the web
server will close its connection with the database and release all resources, opened
files, network connections, and so forth, which become part of the request to be
processed on the web server.

The web server does all this cleaning of data, resources, and so on in order to be
stateless. The term state refers to the data that gets stored between the request sent to
the server and the response delivered to the browser.

Today’s web sites run as applications and consist of many web pages, and data on
one web page is often responsible for the output that will be displayed on the next web
page; in this situation, being stateless defeats the whole purpose of such web sites, and
so maintaining state becomes important.

To be stateful, the web server will keep connections and resources alive for a period
of time by anticipating that there will be an additional request from the web browser.

The Web Browser and HTTP

The web browser is the client-side application that displays web pages. The web browser
works with HTTP to send a request to the web server, and then the web server responds
to the web browser or web client’s request with the data the user wants to see or work
with.

HTTP is a communication protocol that is used to request web pages from the web
server and then to send the response back to the web browser.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS350

9004ch15final.qxd 12/13/07 4:00 PM Page 350

Introduction to ASP.NET and Web Pages
ASP.NET is available to all .NET developers, as it comes with Microsoft .NET Framework.
ASP.NET provides a web development model to build web applications by using any
.NET-compliant language. ASP.NET code is compiled rather than interpreted, and it sup-
ports the basic features of .NET Framework such as strong typing, performance opti-
mizations, and so on. After the code has been compiled, the .NET CLR will further
compile the ASP.NET code to native code, which provides improved performance.

Web pages serve the purpose of a user interface for your web application. ASP.NET
adds programmability to the web page. ASP.NET implements application logic using
code, which will be sent for execution on the server side. ASP.NET web pages have the
following traits:

• They are based on Microsoft ASP.NET technology, in which code that runs on the
server dynamically generates web page output to the browser or client device.

• They are compatible with any language supported by the .NET common language
runtime, including Microsoft Visual Basic, Microsoft Visual C#, Microsoft J#, and
Microsoft JScript .NET.

• They are built on the Microsoft .NET Framework. This provides all the benefits of
the framework, including a managed environment, type safety, and inheritance.

The web page consists of application code that serves requests by users; to do so,
ASP.NET compiles the code into the assemblies. Assemblies are files that contain meta-
data about the application and have the file extension .dll. After the code is compiled, it
is translated into a language-independent and CPU-independent format called Microsoft
Intermediate Language (MSIL), also known as Intermediate Language (IL). While running
the web site, MSIL runs in the context of the .NET Framework and gets translated into
CPU-specific instructions for the processor on the PC running the web application.

Understanding the Visual Studio 2008
Web Site Types
Visual Studio 2008 offers various ways of creating a web project or web site. Though
web sites are only meant for the Internet or intranets, Visual Studio 2008 has three
types, based on location, that can serve as a foundation for any web site web develop-
ers are working on. The purpose of having these options is that they really simplify the
system requirements on the developer’s machine.

If you have ever worked with classic ASP applications (not ASP.NET), recall the days
of Visual Studio 6.0, when developers were required to use Internet Information Services

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 351

9004ch15final.qxd 12/13/07 4:00 PM Page 351

(IIS) to work with and test an ASP web application. This issue has been resolved with the
evolution of Visual Studio; now you can develop a web site without having IIS installed
on your machine.

■Note Internet Information Services (formerly called Internet Information Server) is a set of Internet-based
services where all web applications can reside and run. IIS provides complete web administration facility to
the web applications hosted inside it.

A new Web Site project can be built in the Visual Studio 2008 IDE by accessing File ➤
New ➤ Web Site.

Let’s have look at the types of web sites offered by Visual Studio 2008.

File System Web Site

A file system–based web site is stored on the computer like any other folder structure.
The main feature of this type of web site is that it uses a very lightweight ASP.NET devel-
opment server that is part of Visual Studio 2008, and so it does not necessarily require
IIS to be available on the developer’s local machine.

Figure 15-1 shows the New Web Site dialog box with the web site Location option set
to File System; notice also the path of the folder where this web site will be stored.

Figure 15-1. Specifying a file system web site

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS352

9004ch15final.qxd 12/13/07 4:00 PM Page 352

FTP Web Site

A web site based on the File Transfer Protocol (FTP) helps you to manage and transfer
files between a local machine and a remote web site. The FTP web site offers a Windows
Explorer–like interface and exposes the folder structure where files, documents, and so
on are kept for sharing purposes.

You can access the FTP site to share, transfer, or download files from a remote FTP
site to your local computer, or you can upload files to the remote FTP site.

Figure 15-2 shows the New Web Site dialog box with the web site Location option set
to FTP.

Figure 15-2. Specifying an FTP web site

■Note Building FTP sites requires a user’s credentials to be passed. Usually there is no anonymous
FTP site; you should specify the FTP address using the ftp://user:pwd@ftpaddress:port syntax.

HTTP Web Site

A web site based on the Hypertext Transfer Protocol (HTTP) is preferable for building
entirely commercial web-based products. The HTTP web site requires IIS on the local
machine of the developer, as it is configured as an application in the virtual directory
of IIS. The IIS server brings a lot of administrative power to web applications sitting
inside IIS.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 353

9004ch15final.qxd 12/13/07 4:00 PM Page 353

ftp://user:pwd@ftpaddress:port

Figure 15-3 shows the New Web Site dialog box with the web site Location option set
to HTTP.

Figure 15-3. Specifying an HTTP web site

Layout of an ASP.NET Web Site
Let’s open a new web site and explore its layout. Open the Visual Studio 2008 IDE, and
select File ➤ New ➤ Web Site. In the New Web Site dialog box, select ASP.NET Web Site as
the project template, and then choose HTTP as the location and Visual C# as the lan-
guage. In the text box adjacent to the Location drop-down list box, modify the path from
http:// to http://localhost/Chapter15, which indicates that you are going to create a web
site under IIS with the name Chapter15. Click OK.

Now navigate to Solution Explorer so you can see what components make up a Web
Site project. After you create the project, it will open as shown in Figure 15-4.

So that you understand the function of the components for a Web Site project, we’ll
discuss each component shown under Solution Explorer in the Chapter15 Web Site proj-
ect next.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS354

9004ch15final.qxd 12/13/07 4:00 PM Page 354

http://to
http://localhost/Chapter15

Figure 15-4. Layout of an ASP.NET web site

Web Pages

Web pages, also known as web forms, provide an interface for user interaction. By
default, each Web Site project comes with one Default.aspx page, or form, and can have
as many other web pages with different names as you like to achieve the functionality
you desire. The name Default.aspx has special meaning for IIS; the Default.aspx page will
be loaded automatically when someone accesses the web site URL.

The Default.aspx page can be used as the home page for your web site, or you can
insert some hyperlinks on this page and write code behind those hyperlinks to redirect
users to other pages. By default, Default.aspx is added to the list of default content pages
under IIS. Besides those pages that are already listed, you can add any other pages to be
treated as default pages for your web site. You can even remove the default setting of IIS,
which allows a user’s web browser to recognize Default.aspx as the default page to be
loaded while that user is accessing the web site, so it becomes unnecessary to pass the
name of the page while the web site is being accessed.

For this example, you need to provide the URL as http://localhost/Chapter15, which
will load the Default.aspx page. However, if there is any other page available with a name
other than Default.aspx, you need to pass that name along with the URL: for example,
http://localhost/Chapter15/MyPage.aspx. Also note that the URLs are not case sensitive.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 355

9004ch15final.qxd 12/13/07 4:00 PM Page 355

http://localhost/Chapter15
http://localhost/Chapter15/MyPage.aspx

You can access IIS by either of the following methods:

• Click Start ➤ Run and then type InetMgr (short for Internet manager).

• Click Start ➤ Settings ➤ Control Panel. Select Administrative Tools and then click
the Internet Information Services (IIS) Manager option. You should see the Inter-
net Information Services (IIS) Manager window as shown in Figure 15-5.

Figure 15-5. Internet Information Services (IIS) Manager window

■Note Under Internet Information Services, the default pages are established as properties of your web
site.

Now right-click your Chapter15 Web Site project and select the Properties option.
In the Chapter15 Properties window, shown in Figure 15-6, switch to the Documents tab
page, and you will see that the Default.aspx page is available in the list of default content
pages. IIS works as a web server, which is why you see listed other page types that work as
default pages for other types of web sites that could have been built using other technol-
ogies (for example, ASP could be used and for that purpose Default.asp is also listed). If
required, you can click the Add button to add another page of your web site to be recog-
nized as a default page. You can also remove a page listed as a default page by selecting

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS356

9004ch15final.qxd 12/13/07 4:00 PM Page 356

the particular page and clicking the Remove button. By default, you will see that the
option Enable default content page is active; you can disable this functionality by remov-
ing the check mark.

Figure 15-6. Chapter15 Properties window

Application Folders

ASP.NET comes with some predefined folders into which you can insert data files, style
sheets, resource files (used in a global scope in the application), and so on and achieve
functionality throughout the project.

The App_Data folder is the default folder, which is added automatically when you cre-
ate an ASP.NET Web Site project.

To add other available folders, right-click the project, select the Add ASP.NET Folder
option, and then choose the folder that is appropriate for the type of web application you
are building.

The web.config File

The web.config file is a very important file of a web project. This file helps the developer
by providing a central location where all the settings required for various actions like
database connections, debugging mode, and so on can be set, and these settings will be
applied and accessible throughout the project.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 357

9004ch15final.qxd 12/13/07 4:00 PM Page 357

■Note The web.config file is not automatically added to the ASP.NET Web Site project if you select
File System as the storage location. The web.config file is also not added if you choose the location of a
folder with the File System option selected while saving the project.

Another feature of the web.config file is that it is simple to read and write to, just like
a Notepad file, because it comes in XML format.

The web.config file has a lot of predefined tags that help you to organize the configu-
ration settings for your web application. The most important thing to remember is that
all tags need to be embedded inside the parent tags <Configuration></Configuration>.

Try It Out: Working with a Web Form

In this exercise, you will add a web form with basic controls, and then you will attach the
required functionality to the controls.

1. Navigate to Solution Explorer, select the Chapter15 project, right-click it, and
select Add New Item.

2. In the Add New Item dialog box, modify the form name to appear as Input.aspx
and ensure that the Language drop-down list shows Visual C# as the language to
be used. Click Add to add the Input.aspx form to your project.

3. Right-click the Input.aspx web form and select the View Designer option; this will
open the Input.aspx page in Design view, where you can drag and drop controls
onto the web page.

4. Drag a Label control (named Label1) onto the form, and modify its Text property
to Enter Name.

5. Drag a TextBox control (named TextBox1) onto the form. Drag a Button control
(named Button1) onto the form and modify its Text property to Submit. All three
controls should appear in one line.

6. Now add another Label control (named Label2) below the three controls you
added previously, and set its Text property to blank (i.e., no text is assigned).

7. To attach the code behind the Button control, double-click the Button control.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS358

9004ch15final.qxd 12/13/07 4:00 PM Page 358

8. Source view opens, taking you inside the Input.aspx.cs tab page, where you will
see the blank template for the Button1_Click event. Add the following code to the
click event of the button:

Label1.Text = "Hello" + " " + TextBox1.Text + " " +

"You are Welcome !";

9. Begin testing the application by selecting Input.aspx, right-clicking, and choosing
the View in Browser option.

10. The Input.aspx form will appear in the browser. Enter a name in the provided text
box and click the Submit button. You should receive output similar to that shown
in Figure 15-7.

Figure 15-7. Testing the web form application

Try It Out: Working with Split View

In this exercise, you will see how to modify the properties of ASP control elements such
as asp:Label, asp:TextBox, and so on. You will also see how Split view, a brand-new fea-
ture of Visual Studio 2008, works.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 359

9004ch15final.qxd 12/13/07 4:00 PM Page 359

1. Navigate back to the IDE, right-click the Input.aspx form, and select the View
Markup option. This view will take you to Source view, where you will see the
HTML tags defined for the controls that you dragged and dropped on the
Input.aspx web form earlier. This view allows you to set properties for ASP.NET
elements such as asp:Label, asp:TextBox, and asp:Button to be specific to your
application.

2. Next you’ll set the color for Label1 so it will appear in some color other than black
as in the previous exercise. To do so, go to the line where all the properties for
asp:Label1 are defined, place the cursor after the Text property defined for Label1,
and type ForeColor=Red. As you start typing the property name, because of the
IntelliSense feature, you’ll see the complete property name and many other color
names listed, so you can use this feature to choose any color as well.

You have modified asp:Label1 in source view, so to see your change in effect, you
need to switch back to Design view. When you have a lot of changes, it can be a
tedious process to see how each change made to the various controls and their
respective properties looks.

To avoid this tedious switching between Source and Design view, Visual Studio
2008 has come up with a brand new feature called Split view. This feature allows
you to work with both Source and Design view displayed so you can immediately
see how changes done in the code affect the controls.

3. Click the Split button located on the bottom of the IDE between the Design and
Source buttons. You should now be able to see the code in Source view and the
controls in Design view in one common window, as shown in Figure 15-8.

4. Modify the ForeColor property of Label1 to Blue and set the Font Size property
of Label2 to XX-Large. When you make these changes, you will see a pop-up
message stating that Design view is out of sync with the Source view, as shown
in Figure 15-9.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS360

9004ch15final.qxd 12/13/07 4:00 PM Page 360

Figure 15-8. Split view of your Web Site project

Figure 15-9. Synchronization pop-up message of Split view

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 361

9004ch15final.qxd 12/13/07 4:00 PM Page 361

5. Click the pop-up message to synchronize Source view and Design view. This
causes the changes made to the code to be reflected in Design view (see
Figure 15-10).

Figure 15-10. Effect on Design view after synchronization

6. Now right-click Input.aspx and select the View in Browser option to see the
output.

Using Master Pages
As touched upon in the previous chapter, aesthetics are an important feature of any
web application. As a developer, you may be more concerned about functionality, but
at the same time you can’t overlook consistency of appearance in your web pages. This
can seem to be a pretty complex task, as any web application consists of up to dozens
of web pages or web forms; and if you try to apply a common look and feel to an indi-
vidual web page, you can imagine how tedious a task it would become for you, and
whoever else is working on your application, to ensure that all web pages have a con-
sistent look and feel.

ASP.NET has a solution to this very important need for consistency among all the
web pages in your web application, and this feature is known as Master Pages.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS362

9004ch15final.qxd 12/13/07 4:00 PM Page 362

In your web application, you will define one Master Page with the look and feel you
want that all other web pages must inherit. The Master Page also contains a content page
embedded inside it. The look and feel will be applied to the Master Page portion, and the
content of child pages will be merged inside the content page area. The content page is
represented in the form of a ContentPlaceHolder control, which is added automatically
whenever you create a Master Page.

Try It Out: Working with a Master Page

In this exercise, you will see how to create a Master Page. You will also see how to set a
Master Page for an existing or newly created child page.

1. Navigate back to the IDE, right-click the Chapter15 project, and select the Add
New Item option.

2. In the dialog box that appears, select Master Page, change its name to
Ch15MasterPage.master, and ensure that the Language setting is Visual C#.
Click Add.

3. The Ch15MasterPage.master page is added in Solution Explorer, and Source view
opens. Switch to Design view; you will see that a ContentPlaceHolder control is
added to the Master Page, as shown in Figure 15-11. This is the default template
of any Master Page.

Figure 15-11. Template of a Master Page

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 363

9004ch15final.qxd 12/13/07 4:00 PM Page 363

Note in Figure 15-11 that the area outside the ContentPlaceHolder is where you
can apply all the settings to be part of the Master Page, and the area inside the
ContentPlaceHolder is where the content of other pages will get emerged.

4. You will add an image to the Master Page, but before you do that you need to add
a folder to contain image files. Right-click the project, click New Folder, and name
it Images. To add images to this folder, right-click it and select Add Existing Item.
Select the item you want to add, and then click Add. The image will be added to
this folder and made available for use anywhere in this project.

■Note For the purposes of this example, we are using an image named Pearl HR.JPG, which is also
provided with the code in the Images folder. You can use any other picture from your machine.

5. Drag an Image control to just above the ContentPlaceHolder1. Just to ensure that
you have added the Image control correctly above the ContentPlaceHolder1,
switch to Source view and look at the asp:Image tag, which should be above the
asp:ContentPlaceHolder tag as shown in Figure 15-12.

Figure 15-12. Analyzing position of controls in Source view of a Master Page

6. Switch to Design view, select the image, and go to the Properties window. Click the
ellipsis button beside the ImageUrl property. This will take you to the Select Image
dialog box, as shown in Figure 15-13. Select the Pearl HR.JPG image located under
the Images folder and click OK.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS364

9004ch15final.qxd 12/13/07 4:00 PM Page 364

Figure 15-13. Selecting an image

7. The image added to the Master Page may not be the size you want it to be, in
which case you should set its Size and Width properties in the Properties window.
The Pearl HR.JPG image used in this exercise was added at its full size, so we have
set its Size and Width properties to 53px and 153px, respectively, to appear as a
logo having the proper dimensions on the page.

8. Now drag a Label control above the ContentPlaceHolder and to the right of the
Image control. Go to the Properties window, set this Label control’s Text property
to the text you want (for example, we have set it to Pearl HR Solution), and then
set its Font Size to XX-Large. Now your Master Page is ready (see Figure 15-14).

Figure 15-14. Master Page with controls

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 365

9004ch15final.qxd 12/13/07 4:00 PM Page 365

9. Now you will set the Master Page for some child web pages so they can inherit the
layout of the Master Page. Go to Solution Explorer, open the Input.aspx page in
Design view, go to the Properties window, and click the ellipsis button beside the
MasterPageFile property. This will take you to the Select a Master Page dialog box.
Select Ch15MasterPage.master, and click OK.

10. Switch to Source view of the Input.aspx page. You need to modify it by removing
all the lines except the control tags and embedding these lines inside the
<asp:Content> </asp:Content> tags (see Figure 15-15).

Figure 15-15.Child form displaying Master Page settings with controls

11. After modifying the code, switch back to Design view. You will see the page in
Design mode as shown in Figure 15-16.

12. Now open Input.aspx in your browser. You should see output similar to what is
shown in Figure 15-17.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS366

9004ch15final.qxd 12/13/07 4:00 PM Page 366

Figure 15-16. Design view showing child page with Master Page applied

Figure 15-17. Runtime version of child page with Master Page applied

13. Close the browser window.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS 367

9004ch15final.qxd 12/13/07 4:00 PM Page 367

14. As you have created a Master Page, it will be accessible to any newly created
pages. Right-click the project in Solution Explorer, click Add New Item, select Web
Form, and ensure that the Select Master Page option is checked. Click OK. This
will open the Select a Master Page dialog box. Select the listed Master Page. This
will create a new web page based on the Master Page that you have selected (see
Figure 15-18).

Figure 15-18. New web form added with a Master Page applied

The controls that you want to include on the newly added web form must be
placed inside only the ContentPlaceHolder. In Figure 15-18, note also the text
Ch15MasterPage.master in the top-right corner of ContentPlaceHolder. If you click
this text, you will be taken to the Master Page. You can make changes there, and they
will get reflected on the child pages.

Summary
In this chapter, you learned about the web technology ASP.NET. You also learned about
the various types of web sites you can create in Visual Studio 2008. You saw how to work
with the Split view feature to save you time in development. You now also have an under-
standing of the importance of Master Pages, and how to create them and allocate Master
Pages to existing web pages and newly created web pages.

In the next chapter, you will see how to handle exceptions.

CHAPTER 15 ■ BUILDING ASP.NET APPLICATIONS368

9004ch15final.qxd 12/13/07 4:00 PM Page 368

Handling Exceptions

Up to now, we’ve been rather relaxed in our handling of database exceptions. Robust
database applications demand more careful attention to this important issue. Structured
exception handling is both elegant and robust. In database programming, errors come
from three sources: application programs, ADO.NET, and database servers. We assume
you’re familiar with handling application exceptions in C# with try statements, so we’ll
focus on the last two sources.

In this chapter, we’ll cover the following:

• Handling ADO.NET exceptions

• Handling database exceptions

Handling ADO.NET Exceptions
First, we’ll show you how to handle exceptions thrown by ADO.NET. These exceptions
arise when ADO.NET is trying to communicate with SQL Server, before the database
server responds. We’ll use a Windows application, since it makes generating and viewing
error situations and messages more convenient. To expediently generate an exception,
you’ll try to execute a stored procedure without specifying the CommandText property. You’ll
do this first without handling the exception, and then you’ll modify things to handle it.

Try It Out: Handling an ADO.NET Exception (Part 1)

To handle an ADO.NET exception, follow these steps:

1. Create a new Windows Forms Application project named Chapter16. When Solu-
tion Explorer opens, save the solution.

2. Rename the Chapter16 project to AdoNetExceptions.

3. Change the Text property of Form1 to ADO.NET Exceptions.

369

C H A P T E R 1 6

9004ch16final.qxd 12/13/07 3:59 PM Page 369

4. Add a Tab control to the form. By default, the Tab control will include two tab
pages. Change the Text property of tabPage1 to ADO.NET and the second tab
page’s Text property to Database.

5. Add a button to the tab page titled ADO .NET Exceptions, and change its Text
property to ADO.NET Exception-1. Add a label to the right of this button, and
change its Text property to Incorrect ADO.NET code will cause an exception.

6. Add a second button to the tab page, and change its Text property to ADO.NET
Exception-2. Add a label to the right of this button, and change its Text property
to Accessing a nonexistent column will cause exception.

The layout should now look like Figure 16-1.

Figure 16-1. ADO.NET tab page

7. Add the following using directive for the SQL Server data provider namespace to
Form1.cs.

using System.Data.SqlClient;

8. Insert the code in Listing 16-1 into the click event handler for button1. This will
provide the first exception.

Listing 16-1. button1_Click()

// create connection

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

database = northwind

");

CHAPTER 16 ■ HANDLING EXCEPTIONS370

9004ch16final.qxd 12/13/07 3:59 PM Page 370

// create command

SqlCommand cmd = conn.CreateCommand();

// specify that a stored procedure is to be executed

cmd.CommandType = CommandType.StoredProcedure;

// deliberately fail to specify the procedure

// cmd.CommandText = "sp_Select_All_Employees";

// open connection

conn.Open();

// create data reader

SqlDataReader dr = cmd.ExecuteReader();

// close reader

dr.Close();

if (conn.State == ConnectionState.Open)

{

MessageBox.Show ("closing the connection);

conn.Close();

}

9. Run the program by pressing Ctrl+F5. Click the ADO.NET Exception-1 button, and
you’ll see the message box in Figure 16-2. Click Quit.

Figure 16-2. Unhandled exception message

10. Modify the button1_Click event handler with the bold code in Listing 16-2.

Listing 16-2. Modifications to button1_Click()

// create connection

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

CHAPTER 16 ■ HANDLING EXCEPTIONS 371

9004ch16final.qxd 12/13/07 3:59 PM Page 371

database = northwind

");

// create command

SqlCommand cmd = conn.CreateCommand();

// specify that a stored procedure is to be executed

cmd.CommandType = CommandType.StoredProcedure;

// deliberately fail to specify the procedure

// cmd.CommandText = "sp_Select_All_Employees";

try

{

// open connection

conn.Open();

// create data reader

SqlDataReader dr = cmd.ExecuteReader();

// close reader

dr.Close();

}

catch (SqlException ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Exception Message: " + ex.Message;

MessageBox.Show (str, "Database Exception");

}

catch (System.Exception ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Exception Message: " + ex.Message;

MessageBox.Show (str, "Non-Database Exception");

}

finally

{

if (conn.State == ConnectionState.Open)

{

MessageBox.Show ("Finally block closing the connection", "Finally");

conn.Close();

}

}

CHAPTER 16 ■ HANDLING EXCEPTIONS372

9004ch16final.qxd 12/13/07 3:59 PM Page 372

11. Run the program by pressing Ctrl+F5. Click the ADO.NET Exception-1 button, and
you’ll see the message box in Figure 16-3. Click OK.

Figure 16-3. Handled exception message

12. When the message box in Figure 16-4 appears, click OK, and then close the
window.

Figure 16-4. Message from finally block

How It Works

It would be highly unusual to miss setting the CommandText property. However, this is an
expedient way to cause an ADO.NET exception. You specify the command is for a stored
procedure call, but you don’t specify the stored procedure to call:

// specify that a stored procedure is to be executed

cmd.CommandType = CommandType.StoredProcedure;

// deliberately fail to specify the procedure

// cmd.CommandText = "sp_Select_AllEmployees";

So when you call the ExecuteReader method, you get an exception, as shown in
Figure 16-2 earlier. Though it is an unhandled exception, it still gives you an accurate
diagnostic:

ExecuteReader: CommandText property has not been initialized.

and it even gives you the option to continue or quit, but leaving this decision to users
isn’t a very good idea.

After seeing what happens without handling the exception, you place the call in a try
block.

CHAPTER 16 ■ HANDLING EXCEPTIONS 373

9004ch16final.qxd 12/13/07 3:59 PM Page 373

try

{

// Open connection

conn.Open();

// Create data reader

SqlDataReader dr = cmd.ExecuteReader();

// Close reader

dr.Close();

}

and to handle the exception yourself, you code two catch clauses.

catch (SqlException ex)

{

string str;

str = "Source:" + ex.Source;

str += "\n" + "Exception Message:" + ex.Message;

MessageBox.Show (str, "Database Exception");

}

catch (System.Exception ex)

{

string str;

str = "Source:" + ex.Source;

str += "\n" + "Exception Message:" + ex.Message;

MessageBox.Show (str, "Non-Database Exception");

}

In the first catch clause, you specify a database exception type. The second catch
clause, which produces the message box in Figure 16-3, is a generic block that catches all
types of exceptions. Note the title of the message box in this catch block: it says “Non-
Database Exception.” Although you may think that a failure to specify a command string
is a database exception, it’s actually an ADO.NET exception; in other words, this error is
trapped before it gets to the database server.

So, when the button is clicked, since the CommandText property isn’t specified, an
exception is thrown and caught by the second catch clause. Even though a catch clause
for SqlException is provided, the exception is a System.InvalidOperationException, a com-
mon exception thrown by the CLR, not a database exception.

The exception message indicates where the problem occurred: in the ExecuteReader
method. The finally block checks whether the connection is open and, if it is, closes it
and gives a message to that effect. Note that in handling the exception you do not termi-
nate the application.

CHAPTER 16 ■ HANDLING EXCEPTIONS374

9004ch16final.qxd 12/13/07 3:59 PM Page 374

finally

{

if (conn.State == ConnectionState.Open)

{

MessageBox.Show ("Finally block closing the connection", "Finally");

conn.Close();

}

}

Try It Out: Handling an ADO.NET Exception (Part 2)

Let’s try another example of an ADO.NET exception. You’ll execute a stored procedure and
then reference a nonexistent column in the returned dataset. This will throw an ADO.NET
exception. This time, you’ll code a specific catch clause to handle the exception.

1. You’ll use the sp_Select_All_Employees stored procedure you created in Chapter 6.
If you haven’t already created it, please go to Chapter 6 and follow the steps in “Try
It Out: Working with a Stored Procedure in SQL Server.”

2. Insert the code in Listing 16-3 into the body of the button2_Click method.

Listing 16-3. button2_Click()

// create connection

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command

SqlCommand cmd = conn.CreateCommand();

// specify that a stored procedure is to be executed

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_Select_All_Employees";

try

{

// open connection

conn.Open();

CHAPTER 16 ■ HANDLING EXCEPTIONS 375

9004ch16final.qxd 12/13/07 3:59 PM Page 375

// create data reader

SqlDataReader dr = cmd.ExecuteReader();

// access nonexistent column

string str = dr.GetValue(20).ToString();

// close reader

dr.Close();

}

catch (System.InvalidOperationException ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Message: "+ ex.Message;

str += "\n" + "\n";

str += "\n" + "Stack Trace: " + ex.StackTrace;

MessageBox.Show (str, "Specific Exception");

}

catch (SqlException ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Exception Message: " + ex.Message;

MessageBox.Show (str, "Database Exception");

}

catch (System.Exception ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Exception Message: " + ex.Message;

MessageBox.Show (str, "Non-Database Exception");

}

finally

{

if (conn.State == ConnectionState.Open)

{

MessageBox.Show ("Finally block closing the connection", "Finally");

conn.Close();

}

}

CHAPTER 16 ■ HANDLING EXCEPTIONS376

9004ch16final.qxd 12/13/07 3:59 PM Page 376

■Tip Testing whether a connection is open before attempting to close it isn’t actually necessary. The
Close method doesn’t throw any exceptions, and calling it multiple times on the same connection, even if
it’s already closed, causes no errors.

3. Run the program by pressing Ctrl+F5. Click the ADO.NET Exception-2 button, and
you’ll see the message box in Figure 16-5. Click OK. When the finally block mes-
sage appears, click OK, and then close the window.

Figure 16-5. Handling a specific ADO.NET exception

4. For a quick comparison, you’ll now generate a SQL Server exception, an error that
occurs within the database. Alter the name of the stored procedure in the code to
a name that doesn’t exist at all within the Northwind database. For example:

cmd.CommandText = "sp_Select_No_Employees";

5. Run the program by pressing Ctrl+F5. Click the ADO.NET Exception-2 button, and
you’ll see the message box in Figure 16-6. Click OK. When the finally block mes-
sage appears, click OK, and then close the window.

Figure 16-6. Handling a specific ADO.NET exception

CHAPTER 16 ■ HANDLING EXCEPTIONS 377

9004ch16final.qxd 12/13/07 3:59 PM Page 377

How It Works

First you create the data reader and try to access an invalid column:

// create data reader

SqlDataReader dr = cmd.ExecuteReader();

// access nonexistent column

string str = dr.GetValue(20).ToString();

so an exception is thrown because column 20, the value of which you try to get, doesn’t
exist. You add a new catch clause to handle this kind of ADO.NET error.

catch (System.InvalidOperationException ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Message: "+ ex.Message;

str += "\n" + "\n";

str += "\n" + "Stack Trace: " + ex.StackTrace;

MessageBox.Show (str, "Specific Exception");

}

When an exception of type System.InvalidOperationException is thrown, this catch
clause executes, displaying the source, message, and stack trace for the exception. With-
out this specific catch clause, the generic catch clause will handle the exception. (Try
commenting out this catch clause and reexecuting the code to see which catch clause
handles the exception.)

Next, you run the program for a nonexistent stored procedure.

// specify that a stored procedure is to be executed

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_Select_No_Employees";

You catch your (first) database exception with

catch (SqlException ex)

leading into the next topic: handling exceptions thrown by the database manager.

CHAPTER 16 ■ HANDLING EXCEPTIONS378

9004ch16final.qxd 12/13/07 3:59 PM Page 378

Handling Database Exceptions
An exception of type System.Data.SqlClient.SqlException is thrown when SQL Server
returns a warning or error. This class is derived from System.SystemException and is sealed
so it can’t be inherited, but it has several useful members that can be interrogated to
obtain valuable information about the exception.

An instance of SqlException is thrown whenever the .NET data provider for SQL
Server encounters an error or warning from the database. Table 16-1 describes the prop-
erties of this class that provide information about the exception.

Table 16-1. SqlException Properties

Property Name Description

Class Gets the severity level of the error returned from the SqlClient data provider.
The severity level is a numeric code that’s used to indicate the nature of the
error. Levels 1 to 10 are informational errors; 11 to 16 are user-level errors; and
17 to 25 are software or hardware errors. At level 20 or greater, the connection is
usually closed.

Data Gets a collection of key-value pairs that contain user-defined information.

ErrorCode Specifies the HRESULT of the error.

Errors Contains one or more SqlError objects that have detailed information about
the exception. This is a collection that can be iterated through.

HelpLink Specifies the help file associated with this exception.

InnerException Gets the exception instance that caused the current exception.

LineNumber Gets the line number within the Transact-SQL command batch or stored
procedure that generated the exception.

Message Defines the text describing the exception.

Number Specifies the number that identifies the type of exception.

Procedure Specifies the name of the stored procedure that generated the exception.

Server Specifies the name of the computer running the instance of SQL Server that
generated the exception.

Source Specifies the name of the provider that generated the exception.

StackTrace Defines a string representation of the call stack when the exception was
thrown.

State Specifies a numeric error code from SQL Server that represents an exception,
warning, or “no data found” message. For more information, see SQL Server
Books Online.

TargetSite Represents the method that throws the current exception.

CHAPTER 16 ■ HANDLING EXCEPTIONS 379

9004ch16final.qxd 12/13/07 3:59 PM Page 379

When an error occurs within SQL Server, it uses a T-SQL RAISERROR statement to raise
an error and send it back to the calling program. A typical error message looks like the
following:

Server: Msg 2812, Level 16, State 62, Line 1

Could not find stored procedure 'sp_DoesNotExist'

In this message, 2812 represents the error number, 16 represents the severity level,
and 62 represents the state of the error.

You can also use the RAISERROR statement to display specific messages within a stored
procedure. The RAISERROR statement in its simplest form takes three parameters. The first
parameter is the message itself that needs to be shown. The second parameter is the
severity level of the error. Any user can use severity levels 11 through 16. They represent
messages that can be categorized as information, software, or hardware problems. The
third parameter is an arbitrary integer from 1 through 127 that represents information
about the state or source of the error.

Let’s see how a SQL error, raised by a stored procedure, is handled in C#. You’ll create
a stored procedure and use the following T-SQL to raise an error when the number of
orders in the Orders table exceeds ten:

if @orderscount > 10

raiserror (

'Orders Count is greater than 10 - Notify the Business Manager',

16,

1

)

Note that in this RAISERROR statement, you specify a message string, a severity level of
16, and an arbitrary state number of 1. When a RAISERROR statement that you write con-
tains a message string, the error number is given automatically as 50000. When SQL
Server raises errors using RAISERROR, it uses a predefined dictionary of messages to give
out the corresponding error numbers.

Try It Out: Handling a Database Exception (Part 1): RAISERROR

Here, you’ll see how to raise a database error and handle the exception.

1. Add a button to the Database tab page and change its Text property to Database
Exception-1. Add a label to the right of this button, and change its Text property to
Calls a stored procedure that uses RAISERROR.

2. Add a second button to the tab page, and change its Text property to Database
Exception-2. Add a label to the right of this button, and change its Text property to
Calls a stored procedure that encounters an error.

CHAPTER 16 ■ HANDLING EXCEPTIONS380

9004ch16final.qxd 12/13/07 3:59 PM Page 380

3. Add a third button to the tab page, and change its Text property to Database
Exception-3. Add a label to the right of this button, and change its Text property to
Creates multiple SqlError objects. The layout should look like Figure 16-7.

Figure 16-7. Database tab page

4. Using SSMSE, create a stored procedure in Northwind named sp_DbException_1,
as follows:

create procedure sp_DbException_1

as

set nocount on

declare @ordercount int

select

@ordercount = count(*)

from

orders

if @ordercount > 10

raiserror (

'Orders Count is greater than 10 - Notify the Business ➥

Manager',

16,

1

)

5. Add the code in Listing 16-4 to the button3_Click method.

CHAPTER 16 ■ HANDLING EXCEPTIONS 381

9004ch16final.qxd 12/13/07 3:59 PM Page 381

Listing 16-4. button3_Click()

// create connection

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command

SqlCommand cmd = conn.CreateCommand();

// specify that a stored procedure be executed

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_DbException_1";

try

{

// open connection

conn.Open();

// execute stored procedure

cmd.ExecuteNonQuery();

}

catch (SqlException ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n"+ "Number: "+ ex.Number.ToString();

str += "\n"+ "Message: "+ ex.Message;

str += "\n"+ "Class: "+ ex.Class.ToString ();

str += "\n"+ "Procedure: "+ ex.Procedure.ToString();

str += "\n"+ "Line Number: "+ex.LineNumber.ToString();

str += "\n"+ "Server: "+ ex.Server.ToString();

MessageBox.Show (str, "Database Exception");

}

catch (System.Exception ex)

CHAPTER 16 ■ HANDLING EXCEPTIONS382

9004ch16final.qxd 12/13/07 3:59 PM Page 382

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Exception Message: " + ex.Message;

MessageBox.Show (str, "General Exception");

}

finally

{

if (conn.State == ConnectionState.Open)

{

MessageBox.Show(

"Finally block closing the connection",

"Finally"

);

conn.Close();

}

}

6. Run the program by pressing Ctrl+F5, and then click the Database Exception-1
button. You’ll see the message box in Figure 16-8. Click OK to close the message
box, click OK to close the next one, and then close the window.

Figure 16-8. RAISERROR database exception message

Observe the caption and contents of the message box. The source, message, name
of the stored procedure, exact line number where the error was found, and name of the
server are all displayed. You obtain this detailed information about the exception from
the SqlException object.

How It Works

In the sp_DBException_1 stored procedure, you first find the number of orders in the
Orders table and store the number in a variable called @ordercount.

CHAPTER 16 ■ HANDLING EXCEPTIONS 383

9004ch16final.qxd 12/13/07 3:59 PM Page 383

select

@ordercount = count(*)

from

orders

If @ordercount is greater than ten, you raise an error using the RAISERROR statement.

if @ordercount > 10

raiserror (

'Orders Count is greater than 10 - Notify the Business Manager',

16,

1

)

Then, in the button3_Click method, you execute the stored procedure using the
ExecuteNonQuery method within a try block.

try

{

// open connection

conn.Open();

// create data reader

cmd.ExecuteNonQuery();

}

When the stored procedure executes, the RAISERROR statement raises an error, which
is converted to an exception by ADO.NET. The exception is handled by

catch (SqlException ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n"+ "Number: "+ ex.Number.ToString();

str += "\n"+ "Message: "+ ex.Message;

str += "\n"+ "Class: "+ ex.Class.ToString ();

str += "\n"+ "Procedure: "+ ex.Procedure.ToString();

str += "\n"+ "Line Number: "+ex.LineNumber.ToString();

str += "\n"+ "Server: "+ ex.Server.ToString();

MessageBox.Show (str, "Database Exception");

}

CHAPTER 16 ■ HANDLING EXCEPTIONS384

9004ch16final.qxd 12/13/07 3:59 PM Page 384

Try It Out: Handling a Database Exception (Part 2):
Stored Procedure Error

Now you’ll see what happens when a statement in a stored procedure encounters an
error. You’ll create a stored procedure that attempts an illegal INSERT, and then you’ll
extract information from the SqlException object.

1. Using SSMSE, create a stored procedure in Northwind named sp_DbException_2,
as follows:

create procedure sp_DBException_2

as

set nocount on

insert into employees

(

employeeid,

firstname

)

values (50, 'Cinderella')

2. Insert the code in Listing 16-5 into the button4_Click method.

Listing 16-5. button4_Click()

// create connection

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command

SqlCommand cmd = conn.CreateCommand();

// specify stored procedure to be executed

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_DbException_2";

CHAPTER 16 ■ HANDLING EXCEPTIONS 385

9004ch16final.qxd 12/13/07 3:59 PM Page 385

try

{

// open connection

conn.Open();

// execute stored procedure

cmd.ExecuteNonQuery();

}

catch (SqlException ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n"+ "Number: "+ ex.Number.ToString();

str += "\n"+ "Message: "+ ex.Message;

str += "\n"+ "Class: "+ ex.Class.ToString ();

str += "\n"+ "Procedure: "+ ex.Procedure.ToString();

str += "\n"+ "Line Number: "+ex.LineNumber.ToString();

str += "\n"+ "Server: "+ ex.Server.ToString();

MessageBox.Show (str, "Database Exception");

}

catch (System.Exception ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Exception Message: " + ex.Message;

MessageBox.Show (str, "ADO.NET Exception");

}

finally

{

if (conn.State == ConnectionState.Open)

{

MessageBox.Show(

"Finally block closing the connection",

"Finally"

);

conn.Close();

}

}

CHAPTER 16 ■ HANDLING EXCEPTIONS386

9004ch16final.qxd 12/13/07 3:59 PM Page 386

3. Run the program by pressing Ctrl+F5, and then click the Database Exception-2
button. You’ll see the message box in Figure 16-9. Click OK to close the message
box, click OK to close the next one, and then close the window.

Figure 16-9. Stored procedure database exception message

How It Works

The stored procedure tries to insert a new employee into the Employees table.

insert into employees

(

employeeid,

firstname

)

values (50, 'Cinderella')

However, since the EmployeeID column in the Employees table is an IDENTITY col-
umn, you can’t explicitly assign a value to it.

■Tip Actually, you can—as the message indicates—if you use SET IDENTITY_INSERT employees OFF
in the stored procedure before you attempt the INSERT. This would allow you to insert explicit EmployeeID
values, but this seldom is, or should be, done.

When this SQL error occurs, the specific SqlException catch clause traps it and dis-
plays the information. The finally block then closes the connection.

It’s possible for stored procedures to encounter several errors. You can trap and
debug these using the SqlException object, as you’ll see next.

CHAPTER 16 ■ HANDLING EXCEPTIONS 387

9004ch16final.qxd 12/13/07 3:59 PM Page 387

Try It Out: Handling a Database Exception (Part 3):
Errors Collection

The SqlException class SqlException class has an Errors collection property. Each item in
the Errors collection is an object of type SqlError. When a database exception occurs, the
Errors collection is populated. For the example, you’ll try to establish a connection to a
nonexistent database and investigate the SqlException’s Errors collection.

1. Insert the code in Listing 16-6 into the button5_Click method. Note that you’re
intentionally misspelling the database name.

Listing 16-6. button5_Click()

// create connection

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

database = northwnd

");

// create command

SqlCommand cmd = conn.CreateCommand();

// specify stored procedure to be executed

cmd.CommandType = CommandType.StoredProcedure;

cmd.CommandText = "sp_DbException_2";

try

{

// open connection

conn.Open();

// execute stored procedure

cmd.ExecuteNonQuery();

}

catch (SqlException ex)

{

string str ="";

for (int i = 0; i < ex.Errors.Count; i++)

CHAPTER 16 ■ HANDLING EXCEPTIONS388

9004ch16final.qxd 12/13/07 3:59 PM Page 388

{

str +=

"\n" + "Index #" + i + "\n"

+ "Exception: " + ex.Errors[i].ToString() + "\n"

+ "Number: " + ex.Errors[i].Number.ToString() + "\n"

;

}

MessageBox.Show (str, "Database Exception");

}

catch (System.Exception ex)

{

string str;

str = "Source: " + ex.Source;

str += "\n" + "Exception Message: " + ex.Message;

MessageBox.Show (str, "ADO.NET Exception");

}

finally

{

if (conn.State == ConnectionState.Open)

{

MessageBox.Show(

"Finally block closing the connection",

"Finally"

);

conn.Close();

}

}

2. Run the program by pressing Ctrl+F5, and then click the Database Exception-2
button. You’ll see the message box in Figure 16-10.

Figure 16-10. Handling multiple database errors

CHAPTER 16 ■ HANDLING EXCEPTIONS 389

9004ch16final.qxd 12/13/07 3:59 PM Page 389

Observe that two items are found in the Errors collection, and their error numbers
are different.

How It Works

In the connection string, you specify a database that doesn’t exist on the server; here you
misspell Northwind as Northwnd.

// Create connection

SqlConnection conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

database = northwnd

");

When you try to open the connection, an exception of type SqlException is thrown
and you loop through the items of the Errors collection and get each Error object using
its indexer.

catch (SqlException ex)

{

string str ="";

for (int i = 0; i < ex.Errors.Count; i++)

{

str +=

"\n" + "Index #" + i + "\n"

+ "Exception: " + ex.Errors[i].ToString() + "\n"

+ "Number: " + ex.Errors[i].Number.ToString() + "\n"

;

}

MessageBox.Show (str, "Database Exception");

}

This example shows that the SqlException object carries detailed information about
every SQL error in its Errors collection.

Summary
In this chapter, you saw how to handle exceptions thrown by ADO.NET and by the SQL
Server database. In particular, you learned how to handle both single and multiple data-
base errors with the System.Data.SqlClient.SqlException class.

In the next chapter, you’ll look at transactions and how to work with events.

CHAPTER 16 ■ HANDLING EXCEPTIONS390

9004ch16final.qxd 12/13/07 3:59 PM Page 390

Working with Events

Any type of application, either window based or web based, is designed and developed
to help users achieve functionality and run their businesses. Users interact with applica-
tions by using input devices such as the keyboard or the mouse to provide input to these
applications. Whatever users do using input devices gets translated into events that are
recognized and thus cause certain actions to occur. Clicking by using a mouse is the most
common task we computer users all do, and whenever we click, what should happen is
recorded in the form of an event or an action.

In this chapter, we’ll cover the following:

• Understanding events

• Properties of events

• Design of events

• Common events raised by controls

• Event generator and consumer

Understanding Events
An event can be defined as an action that a user can respond to or can be handled in the
form of code. Usually events get generated by a user action, such as clicking the mouse or
pressing a key.

Events are associated with the controls you put in Windows Forms or web forms, and
whenever you code any functionality behind a control’s behavior, for example, a click of a
mouse, then that associated event will be raised and the application will respond to that
event.

No application can be written without events. Event-driven applications execute
code in response to events. Each form and control exposes a predefined set of events that
you can program against. If one of these events occurs and there is code in the associated
event handler, that code is invoked.

391

C H A P T E R 1 7

9004ch17final.qxd 12/13/07 3:57 PM Page 391

Events enable a class or object to notify other classes or objects when something of
interest occurs. The entire event system works in the form of the publisher and subscriber
model. The class that sends or raises the event is known as the publisher, and the class
that receives (or handles) that event is known as the subscriber.

In a typical C# Windows Forms Application or web application, you subscribe to
events raised by controls such as Buttons, ListBoxes, LinkLabels, and so forth. The Visual
Studio 2008 integrated development environment (IDE) allows you to browse the events
that a control publishes and select the ones that you want it to handle. The IDE automati-
cally adds an empty event handler method and the code to subscribe to the event.

Properties of Events
The events associated with any class or object work in some predefined manner. Here, we
describe the properties of events and the way the publisher and subscriber works to
achieve functionality.

• The publisher determines when an event is raised; the subscriber determines what
action is taken in response to the event.

• An event can have multiple subscribers. A subscriber can handle multiple events
from multiple publishers.

• Events that have no subscribers are never called.

• Events are typically used to signal user actions such as button clicks or menu selec-
tions in graphical user interfaces.

• When an event has multiple subscribers, the event handlers are invoked synchro-
nously when an event is raised.

• Events can be used to synchronize threads.

• In the .NET Framework class library, events are based on the EventHandler delegate
and the EventArgs base class.

Design of Events
Events happen either before their associated action occurs (pre-events) or after that
action occurs (post-events). For example, when a user clicks a button in a window, a post-
event is raised, allowing application-specific methods to execute. An event handler
delegate is bound to the method to be executed when the system raises an event. The
event handler is added to the event so that it is able to invoke its method when the event

CHAPTER 17 ■ WORKING WITH EVENTS392

9004ch17final.qxd 12/13/07 3:57 PM Page 392

is raised. Events can have event-specific data (for example, a mouse-down event can
include data about the screen cursor’s location).

The event handler signature observes the following conventions:

• The return type is Void.

• The first parameter is named sender and is of type Object. This represents the
object that raised the event.

• The second parameter is named e and is of type EventArgs or a derived class of
EventArgs. This represents the event-specific data.

• The event takes only these two parameters.

Common Events Raised by Controls
Various controls come with Visual Studio 2008, and they are built to achieve different
functionality from one another. However, the industry has identified a few events that are
common among many controls, and most applications use only these types of controls.

Table 17-1 describes the common events among various controls.

Table 17-1. Common Events

Event Name Description

Click Usually occurs on left mouse click. This event can also occur with keyboard
input in the situation when the control is selected and the Enter key is pressed.

DoubleClick Occurs when left mouse button is clicked twice rapidly.

KeyDown Occurs when a key is pressed and a control has the focus.

KeyPress Occurs when a key is pressed and a control has the focus.

KeyUp Occurs when a key is released and a control has the focus.

MouseClick Occurs only when a control is being clicked by the mouse.

MouseDoubleClick Occurs when a control gets double-clicked by the mouse.

MouseDown Occurs when the mouse pointer is located over a control and the mouse
button is being clicked.

MouseUp Occurs when a mouse button is released over a control.

MouseEnter Occurs when the mouse pointer enters a control.

MouseHover Occurs when the mouse pointer is positioned over a control.

MouseLeave Occurs when the mouse pointer rests on a control.

MouseMove Occurs when the mouse rotates or moves over a control.

MouseWheel Occurs when the user revolves the mouse wheel and a control has the focus.

CHAPTER 17 ■ WORKING WITH EVENTS 393

9004ch17final.qxd 12/13/07 3:57 PM Page 393

Event Generator and Consumer
Another way of thinking of an event is as a mechanism that notifies the Windows operat-
ing system or the .NET Framework that something has happened in the application, and
so the functionality takes place once it receives a response back from the .NET Frame-
work or Windows platform.

The application, which has the controls with functionality associated with them in
the form of events, is known as the consumer, and the .NET Framework or Windows
platform, which receives the request for the event to take place, is known as the event
generator.

As you know, controls come with various types of events to serve particular function-
ality. The code segment known as the event handler notifies the application once an
event has occurred so the proper actions can be implemented behind that event handler.

Try It Out: Creating an Event Handler

In this exercise, you will see how to add an event handler for a control that you have on a
Windows Form.

1. Open a new Windows Forms Application project, and rename the solution and
project as Chapter17. Rename Form1.cs to Events.cs, and also modify the Text
property of the form to Events.

2. Open the Toolbox and drag a Button control over to the form. Select the Button
control, navigate to the Properties window, and set the control’s Text property to
Click Me. Then click the lightning bolt button located on the toolbar shown in the
Properties window, and you will see the entire list of events that the Button control
supports; event handlers could be written for all these events (see Figure 17-1).
Also notice the tooltip titled “Events” under the lightning bolt button.

3. By default, the Click event comes preselected, and the text area beside the event is
blank. Double-click in this blank area, and you will see that an event handler
named button1_Click has been created, as shown in Figure 17-2.

CHAPTER 17 ■ WORKING WITH EVENTS394

9004ch17final.qxd 12/13/07 3:57 PM Page 394

Figure 17-1. The events list in Designer mode

Figure 17-2. Event handler creation in Designer mode

4. Since the button1_Click event handler has been generated, its template will be
available in Code view. Switch to Code view of the Windows Form, named
Events.cs, to view the event handler and to prepare to write the functionality
for the Click event (see Figure 17-3).

CHAPTER 17 ■ WORKING WITH EVENTS 395

9004ch17final.qxd 12/13/07 3:57 PM Page 395

Figure 17-3. Event handler in Code view

5. Inside the button1_Click() event handler, write the following line of code:

MessageBox.Show("I have been clicked");

6. Build and run the application, click button1, and you will see a dialog box appear
due to the event that is raised when the button is clicked.

How It Works

The most common event that a button handles, which also happens to be the default, is
the Click event. In this example, you write code to flash a message box whenever a user
clicks the button on the form.

MessageBox.Show("I have been clicked");

Try It Out: Working with Mouse Movement Events

In this exercise, you will see the events that are associated with movements of the mouse.
To try them, follow these steps:

1. Navigate to Solution Explorer and open the Events form in Design view.

2. Drag a TextBox control onto the Windows Form just under the button1 control.
Select the TextBox control, and you will see an arrow on the top-right border of the
control; this arrow is called a Smart Tag.

CHAPTER 17 ■ WORKING WITH EVENTS396

9004ch17final.qxd 12/13/07 3:57 PM Page 396

■Note The Smart Tag feature is available with some controls. The main purpose of this feature is to pro-
vide a generalized way for developers to specify a set of actions for a control at design time. Clicking a
component’s Smart Tag icon, shown here: allows you to select from a list of available actions offered from
the Smart Tag panel.

3. Click the Smart Tag, and a small panel will appear showing a check box for the
MultiLine property to be enabled (see Figure 17-4).

Figure 17-4. Smart Tag for the TextBox control

4. Click the MultiLine check box shown in the Smart Tag pop-up, and you will see the
height of the TextBox increase, as shown in Figure 17-5.

Figure 17-5. Setting the MultiLine property using the Smart Tag of the
TextBox control

CHAPTER 17 ■ WORKING WITH EVENTS 397

9004ch17final.qxd 12/13/07 3:57 PM Page 397

5. Now click outside the TextBox on the form itself to retain the new size the
MultiLine property has given to the TextBox by default. If you want, you can
also use the handles (the small three rectangles on each border line) to resize
the TextBox control.

■Tip The MultiLine property of a TextBox can also be set without using the Smart Tag feature. You can
directly set the MultiLine property to True, which is set to False by default.

6. Drag a Label control from the Toolbox to below the TextBox and set its AutoSize
property to False. Also, set the Label’s Font Size property to 12 and TextAlign
property to MiddleCenter. Now your Events form will look like the one shown
in Figure 17-6.

Figure 17-6. The Events Windows Form with controls

7. Select the TextBox, go to the Properties window, and click the Events button. In the
events list, double-click in the text area of the MouseEnter and MouseLeave events.
This will simply create the event handlers for these two mouse movement events.

8. Switch to Code view and add the following code to the MouseEnter and MouseLeave
event handlers:

private void textBox1_MouseEnter (object sender, EventArgs e)

{

label1.Text = "Mouse Enters into the TextBox";

}

CHAPTER 17 ■ WORKING WITH EVENTS398

9004ch17final.qxd 12/13/07 3:57 PM Page 398

private void textBox1_MouseLeave (object sender, EventArgs e)

{

label1.Text = "Mouse Leaves the TextBox";

}

9. Go to the Build menu and click Build Solution; you should receive a message indi-
cating a successful build.

10. Press F5 to run the application. You will now see a message in the Label control
depending on the action you perform with your mouse. Move the mouse pointer
over the text box, and you’ll get the message shown in Figure 17-7.

Figure 17-7. Demonstrating the MouseEnter event

11. Now move the pointer outside of the text box, and you will see the message shown
in the Label control change (see Figure 17-8).

Figure 17-8. Demonstrating the MouseLeave event

CHAPTER 17 ■ WORKING WITH EVENTS 399

9004ch17final.qxd 12/13/07 3:57 PM Page 399

How It Works

The MouseEnter event will occur when you take the mouse pointer into the text box having
the focus, and this will be recognized by the MouseEnter event handler, resulting in the
appropriate message being displayed in the Label control.

In the same way, when you move the mouse pointer away from the focus of the text
box, the MouseLeave event gets into the action, and again the appropriate message gets
displayed in the Label control.

Try It Out: Working with the Keyboard’s KeyDown and
KeyUp Events

In this exercise, you will work with the KeyDown and KeyUp events, which are associated
with controls that can receive input from the keyboard whenever a user presses or
releases the Alt, Ctrl, or Shift keys. To try these events, follow these steps:

1. Navigate to Solution Explorer and open the Events.cs form in Design view.

2. Select the TextBox control, go to the Properties window, and click the Events but-
ton. In the events list, double-click in the text area of KeyDown event. This will
simply create an event handler for the KeyDown event.

3. Switch to Code view and add the following code to the KeyDown event handler:

private void textBox1_KeyDown(object sender, KeyEventArgs e)

{

if (e.Alt == true)

label1.Text="The Alt key has been pressed";

else

if (e.Control==true)

label1.Text="The Ctrl key has been pressed";

else

if (e.Shift==true)

label1.Text="The Shift key has been pressed";

}

4. Switch back to Design view again. Select the TextBox control, go to the Properties
window, and click the Events button. In the events list, double-click in the text
area of the KeyUp event. This will simply create an event handler for the keyboard’s
KeyUp event.

CHAPTER 17 ■ WORKING WITH EVENTS400

9004ch17final.qxd 12/13/07 3:57 PM Page 400

5. Switch to Code view and add the following code to the KeyUp event handler:

private void textBox1_KeyUp(object sender, KeyEventArgs e)

{

if (e.Alt == false || e.Control==false || e.Shift==false)

label1.Text = "The Key has been released";

}

6. Go to the Build menu and click Build Solution; you should receive a message indi-
cating a successful build.

7. Press F5 to run the application. Move the mouse pointer over the text box, click
once, and then press and release either the Alt, Ctrl, or Shift keys; you will see a
message displayed in the Label control indicating which key you pressed.

How It Works

With the KeyDown event, you recognize which key is pressed at a particular point in time.
The conditional if statement helps you trace which key has been pressed and will display
the message in the Label control.

if (e.Alt == true)

label1.Text="The Alt key has been pressed";

else

if (e.Control==true)

label1.Text="The Ctrl key has been pressed";

else

if (e.Shift==true)

label1.Text="The Shift key has been pressed";

The KeyUp event recognizes whenever the key that was pressed has been released,
and as a result displays the appropriate message in the Label control.

if (e.Alt == false || e.Control==false || e.Shift==false)

label1.Text = "The Key has been released";

Try It Out: Working with the Keyboard’s KeyPress Event

In this exercise, you will work with the KeyPress event. The KeyPress event gets into the
action whenever the associated control receives input in the form of a keypress; if that
key has an ASCII value, the KeyPress event is raised. To try this event, follow these steps:

CHAPTER 17 ■ WORKING WITH EVENTS 401

9004ch17final.qxd 12/13/07 3:57 PM Page 401

1. Navigate to Solution Explorer and open the Events.cs form in Design view.

2. Select the TextBox control, go to the Properties window, and click the Events but-
ton. In the events list, double-click in the text area of the KeyPress event. This will
simply create an event handler for the KeyPress event.

3. Switch to Code view and add the following code to the KeyPress event handler:

private void textBox1_KeyPress(object sender, KeyPressEventArgs e)

{

if (char.IsDigit(e.KeyChar) == true)

label1.Text = "You have pressed a Numeric key";

else

if (char.IsLetter(e.KeyChar) == true)

label1.Text = "You have pressed a Letter key";

}

4. Now go to the Build menu and click Build Solution; you should receive a message
indicating a successful build.

5. Press F5 to run the application. Click inside the text box and then press a number
or letter key on the keyboard. You will see a message is displayed in the Label con-
trol indicating which type of key you pressed.

How It Works

With the KeyPress event, you recognize whether a numeric or alphabetic key has been
pressed at a particular point in time. The conditional if statement helps you trace which
key has been pressed and displays the appropriate message in the Label control.

if (char.IsDigit (e.KeyChar)==true)

label1.Text = "You have pressed a Numeric key";

else

if (char.IsLetter (e.KeyChar)==true)

label1.Text = "You have pressed a Letter key";

Summary
In this chapter, you saw how to handle events with respect to the mouse and keyboard.
In particular, you learned how events are handled when a mouse enters and leaves a con-
trol. You also learned how to trap an event whenever an Alt, Ctrl, or Shift key is pressed.

In the next chapter, you’ll look at how to work with text and binary data.

CHAPTER 17 ■ WORKING WITH EVENTS402

9004ch17final.qxd 12/13/07 3:57 PM Page 402

Working with Text and
Binary Data

Some kinds of data have special formats, are very large, or vary greatly in size. Here,
we’ll show you techniques for working with text and binary data.

In this chapter, we’ll cover the following:

• Understanding SQL Server text and binary data types

• Storing images in a database

• Retrieving images from a database

• Working with text data

We’ll also present the T-SQL for creating tables in the tempdb database, which is
intended to hold any temporary table. We’ll start by covering what data types support
these kinds of data.

Understanding SQL Server Text and
Binary Data Types
SQL Server provides the types CHAR, NCHAR, VARCHAR, NVARCHAR, BINARY, and VARBINARY for
working with reasonably small text and binary data. You can use these with text (charac-
ter) data up to a maximum of 8000 bytes (4000 bytes for Unicode data, NCHAR, and
NVARCHAR, which use 2 bytes per character).

For larger data, which SQL Server 2005 calls large-value data types, you should use
the VARCHAR(MAX), NVARCHAR(MAX), and VARBINARY(MAX) data types. VARCHAR(MAX) is for non-
Unicode text, NVARCHAR(MAX) is for Unicode text, and VARBINARY(MAX) is for images and
other binary data.

403

C H A P T E R 1 8

9004ch18final.qxd 12/13/07 3:56 PM Page 403

■Warning In SQL Server 2000, large data was stored using NTEXT, TEXT, and IMAGE data types.
These data types are deprecated and will likely be removed in the future. If you work with legacy appli-
cations, you should consider converting NTEXT, TEXT, and IMAGE to NVARCHAR(MAX), VARCHAR(MAX),
and VARBINARY(MAX), respectively. However, the System.Data.SqlDbType enumeration does not yet
include members for these data types, so we use VARCHAR(MAX) and VARBINARY(MAX) for column data
types, but Text and Image when specifying data types for command parameters.

An alternative to using these data types is to not store the data itself in the database
but instead define a column containing a path that points to where the data is actually
stored. This can be more efficient for accessing large amounts of data, and it can save
resources on the database server by transferring the demand to a file server. It does require
more complicated coordination and has the potential for database and data files to get
out of sync. We won’t use this technique in this chapter.

■Tip Since SSE databases cannot exceed 4GB, this technique may be your only alternative for very large
text and image data.

Within a C# program, binary data types map to an array of bytes (byte[]), and char-
acter data types map to strings or character arrays (char[]).

■Note DB2, MySQL, Oracle, and the SQL standard call such data types large objects (LOBs); specifically,
they’re binary large objects (BLOBs) and character large objects (CLOBs). But, as with many database terms,
whether BLOB was originally an acronym for anything is debatable. Needless to say, it’s always implied a
data type that can handle large amounts of (amorphous) data, and SQL Server documentation uses BLOB
as a generic term for large data and data types.

Storing Images in a Database
Let’s start by creating a database table for storing images and then loading some images
into it. We’ll use small images but use VARBINARY(MAX) to store them. In the examples, we’ll
demonstrate using images in C:\Documents and Settings\Administrator\My Documents; you
can use the path of the location where you have some images in your PC.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA404

9004ch18final.qxd 12/13/07 3:56 PM Page 404

Try It Out: Loading Image Binary Data from Files

In this example, you’ll write a program that creates a database table and then stores
images in it.

1. Create a new Console Application project named Chapter18. When Solution
Explorer opens, save the solution.

2. Rename the Chapter18 project to LoadImages. Rename Program.cs to
LoadImages.cs, and replace its code with the code in Listing 18-1.

Listing 18-1. LoadImages.cs

using System;

using System.Data;

using System.Data.SqlClient;

using System.IO;

namespace LoadImages

{

class LoadImages

{

// you may refer to your own system's image file location

string imageFileLocation =

@" C:\Documents and Settings\Administrator\My Documents \" ;

// you may refer to your own image's file name here.

string imageFilePrefix = "painting-almirah";

// the basic idea is that the images get stored in some

// sequential numbers and so you refer to the base name

// and then you retrieve them all from the starting

// number until the image of particular number

int numberImageFiles = 1;

// we are accessing JPEG images; you may need to

// change the format based on the images you are accessing

string imageFileType = ".jpg";

int maxImageSize = 10000;

SqlConnection conn = null;

SqlCommand cmd = null;

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 405

9004ch18final.qxd 12/13/07 3:56 PM Page 405

static void Main()

{

LoadImages loader = new LoadImages();

try

{

// open connection

loader.OpenConnection();

// create command

loader.CreateCommand();

// create table

loader.CreateImageTable();

// prepare insert

loader.PrepareInsertImages();

// insert images

int i;

for (i = 1; i <= loader.numberImageFiles; i++)

{

loader.ExecuteInsertImages(i);

}

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

loader.CloseConnection();

}

}

void OpenConnection()

{

// create connection

conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = tempdb

");

// open connection

conn.Open();

}

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA406

9004ch18final.qxd 12/13/07 3:56 PM Page 406

void CloseConnection()

{

// close connection

conn.Close();

Console.WriteLine("Connection Closed.");

}

void CreateCommand()

{

cmd = new SqlCommand();

cmd.Connection = conn;

}

void ExecuteCommand(string cmdText)

{

int cmdResult;

cmd.CommandText = cmdText;

Console.WriteLine("Executing command:");

Console.WriteLine(cmd.CommandText);

cmdResult = cmd.ExecuteNonQuery();

}

void CreateImageTable()

{

ExecuteCommand(@"

create table imagetable

(

imagefile nvarchar(20),

imagedata varbinary(max)

)

");

}

void PrepareInsertImages()

{

cmd.CommandText = @"

insert into imagetable

values (@imagefile, @imagedata)

";

cmd.Parameters.Add("@imagefile", SqlDbType.NVarChar, 20);

cmd.Parameters.Add("@imagedata", SqlDbType.Image, 1000000);

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 407

9004ch18final.qxd 12/13/07 3:56 PM Page 407

cmd.Prepare();

}

void ExecuteInsertImages(int imageFileNumber)

{

string imageFileName = null;

byte[] imageImageData = null;

imageFileName =

imageFilePrefix + imageFileNumber.ToString() + imageFileType;

imageImageData =

LoadImageFile(imageFileName, imageFileLocation, maxImageSize);

cmd.Parameters["@imagefile"].Value = imageFileName;

cmd.Parameters["@imagedata"].Value = imageImageData;

ExecuteCommand(cmd.CommandText);

}

byte[] LoadImageFile(

string fileName,

string fileLocation,

int maxImageSize

)

{

byte[] imagebytes = null;

string fullpath = fileLocation + fileName;

Console.WriteLine("Loading File:");

Console.WriteLine(fullpath);

FileStream fs = new FileStream(fullpath, FileMode.Open, ➥

FileAccess.Read);

BinaryReader br = new BinaryReader(fs);

imagebytes = br.ReadBytes(maxImageSize);

Console.WriteLine(

"Imagebytes has length {0} bytes.",

imagebytes.GetLength(0)

);

return imagebytes;

}

}

}

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA408

9004ch18final.qxd 12/13/07 3:56 PM Page 408

mailto:Parameters["@imagefile"].Value
mailto:Parameters["@imagedata"].Value

3. Run the program by pressing Ctrl+F5. You should see output similar to that in
Figure 18-1. It shows the information for loading an image we have on our PC at
the specified location, the operations performed, and the size of each of the
image.

Figure 18-1. Loading image data

4. To see the image you have inserted into the database, open SQL Server Manage-
ment Studio Express and run a SELECT query on the image table you have created
in the tempdb database (see Figure 18-2).

Figure 18-2. Viewing image data

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 409

9004ch18final.qxd 12/13/07 3:56 PM Page 409

How It Works

In the Main method, you do three major things. You call an instance method to create a
table to hold images.

// create table

loader.CreateImageTable();

You call an instance method to prepare a command (yes, you finally prepare a com-
mand, since you expect to run it multiple times) to insert images.

// prepare insert

loader.PrepareInsertImages();

You then loop through the image files and insert them.

// insert images

int i;

for (i = 1; i <= loader.numberImageFiles; i++)

{

loader.ExecuteInsertImages(i);

}

Note that you connect to tempdb, the temporary database that’s re-created when
SQL Server starts.

// create connection

conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = tempdb

");

// open connection

conn.Open();

The tables in this database are temporary; that is, they’re always deleted when SQL
Server stops. This is ideal for these examples and many other situations, but don’t use
tempdb for any data that needs to persist permanently.

When you create the table, a simple one containing the image file name and the
image, you use the VARBINARY(MAX) data type for the imagedata column.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA410

9004ch18final.qxd 12/13/07 3:56 PM Page 410

void CreateImageTable()

{

ExecuteCommand(@"

create table imagetable

(

imagefile nvarchar(20),

imagedata varbinary(max)

)

");

}

But when you configure the INSERT command, you use the Image member of the
SqlDbType enumeration, since there is no member for the VARBINARY(MAX) data type. You
specify lengths for both variable-length data types, since you can’t prepare a command
unless you do.

void PrepareInsertImages()

{

cmd.CommandText = @"

insert into imagetable

values (@imagefile, @imagedata)

";

cmd.Parameters.Add("@imagefile", SqlDbType.NVarChar, 20);

// the image gets stored in the form of the Image string.

// figure 1000000 specifies the bytes for the amount to

// specify the size of the Image string.

cmd.Parameters.Add("@imagedata", SqlDbType.Image, 1000000);

cmd.Prepare();

}

The ExecuteInsertImages method accepts an integer to use as a suffix for the image
file name, calls LoadImageFile to get a byte array containing the image, assigns the file
name and image to their corresponding command parameters, and then executes the
command to insert the image.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 411

9004ch18final.qxd 12/13/07 3:56 PM Page 411

void ExecuteInsertImages(int imageFileNumber)

{

string imageFileName = null;

byte[] imageImageData = null;

imageFileName =

imageFilePrefix + imageFileNumber.ToString() + imageFileType;

imageImageData =

LoadImageFile(imageFileName, imageFileLocation, maxImageSize);

cmd.Parameters["@imagefile"].Value = imageFileName;

cmd.Parameters["@imagedata"].Value = imageImageData;

ExecuteCommand(cmd.CommandText);

}

The LoadImageFile method reads the image file, displays the file name and number of
bytes in the file, and returns the image as a byte array.

byte[] LoadImageFile(

string fileName,

string fileLocation,

int maxImageSize

)

{

byte[] imagebytes = null;

string fullpath = fileLocation + fileName;

Console.WriteLine("Loading File:");

Console.WriteLine(fullpath);

FileStream fs = new FileStream(fullpath, FileMode.Open, FileAccess.Read);

BinaryReader br = new BinaryReader(fs);

imagebytes = br.ReadBytes(maxImageSize);

Console.WriteLine(

"Imagebytes has length {0} bytes.",

imagebytes.GetLength(0)

);

return imagebytes;

}

}

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA412

9004ch18final.qxd 12/13/07 3:56 PM Page 412

mailto:Parameters["@imagefile"].Value
mailto:Parameters["@imagedata"].Value

Rerunning the Program

Since the program always creates the imagetable table, you must cycle (stop and restart)
SSE before rerunning the program, to remove the table by re-creating an empty tempdb
database. You’ll see how to avoid this problem in “Working with Text Data” later in this
chapter.

Retrieving Images from a Database
Now that you’ve stored some images, you’ll see how to retrieve and display them with a
Windows application.

Try It Out: Displaying Stored Images

To display your stored images, follow these steps:

1. Add a Windows Forms Application project named DisplayImages to your solution.
Rename Form1.cs to DisplayImages.cs.

2. Add a text box, a button, and a picture box to the form and set the button’s Text
property to Show Image and the form’s Text property to Display Images as in
Figure 18-3.

Figure 18-3. Design view of Display Images form

3. Add a new class named Images to this Windows Form project. Replace the code in
Images.cs with the code in Listing 18-2.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 413

9004ch18final.qxd 12/13/07 3:56 PM Page 413

Listing 18-2. Images.cs

using System;

using System.Data;

using System.Data.SqlClient;

using System.Drawing;

using System.IO;

namespace DisplayImages

{

public class Images

{

string imageFilename = null;

byte[] imageBytes = null;

SqlConnection imageConnection = null;

SqlCommand imageCommand = null;

SqlDataReader imageReader = null;

// constructor

public Images()

{

imageConnection = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

initial catalog = tempdb;

");

imageCommand = new SqlCommand(

@"

select

imagefile,

imagedata

from

imagetable

",

imageConnection

);

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA414

9004ch18final.qxd 12/13/07 3:56 PM Page 414

// open connection and create data reader

imageConnection.Open();

imageReader = imageCommand.ExecuteReader();

}

public Bitmap GetImage()

{

MemoryStream ms = new MemoryStream(imageBytes);

Bitmap bmap = new Bitmap(ms);

return bmap;

}

public string GetFilename()

{

return imageFilename;

}

public bool GetRow()

{

if (imageReader.Read())

{

imageFilename = (string) imageReader.GetValue(0);

imageBytes = (byte[]) imageReader.GetValue(1);

return true;

}

else

{

return false;

}

}

public void EndImages()

{

// close the reader and the connection.

imageReader.Close();

imageConnection.Close();

}

}

}

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 415

9004ch18final.qxd 12/13/07 3:56 PM Page 415

4. Insert an instance variable (as in the bold code that follows) of type Images into
DisplayImagesDesigner.cs.

private System.Windows.Forms.TextBox textBox1;

private System.Windows.Forms.Button button1;

private System.Windows.Forms.PictureBox pictureBox1;

private Images images;

5. Insert the code in Listing 18-3 into DisplayImages.cs after the call to
InitializeComponent() in the constructor. You can access DisplayImages.cs by
right-clicking DisplayImages.cs and selecting View Code, which will take you
to Code view.

Listing 18-3. Initializing Image Display in the DisplayImages Constructor

images = new Images();

if (images.GetRow())

{

this.textBox1.Text = images.GetFilename();

this.pictureBox1.Image = (Image)images.GetImage();

}

else

{

this.textBox1.Text = "DONE";

this.pictureBox1.Image = null;

}

6. Insert the code in Listing 18-3 (except for the first line) into the button1_Click
event handler. You can access the button1_click event handler by navigating to
Design view of the DisplayImages form and double-clicking the Button control.

7. Insert the highlighted line that follows into the Dispose method (above
components.Dispose();) of DisplayImages in DisplayImages.Designer.cs.

images.EndImages();

if (disposing && (components != null))

{

components.Dispose();

}

base.Dispose(disposing);

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA416

9004ch18final.qxd 12/13/07 3:56 PM Page 416

8. Make DisplayImages the startup project and run it by pressing Ctrl+F5. You should
see the output shown in Figure 18-4. Click Next to see whether any other images
appear in succession; when the last is reached, the word “DONE” will appear in
the text box (as we have used only one image for our example, this message will
appear on the first click of Next). Since you didn’t add an Exit button, just close the
window to exit.

Figure 18-4. Displaying images

How It Works

You declare a type, Images, to access the database and provide methods for the form com-
ponents to easily get and display images. In its constructor, you connect to the database
and create a data reader to handle the result set of a query that retrieves all the images
you stored earlier.

// constructor

public Images()

{

imageConnection = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

initial catalog = tempdb;

");

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 417

9004ch18final.qxd 12/13/07 3:56 PM Page 417

imageCommand = new SqlCommand(

@"

select

imagefile,

imagedata

from

imagetable

",

imageConnection

);

// open connection and create data reader

imageConnection.Open();

imageReader = imageCommand.ExecuteReader();

}

When the form is initialized, the new code creates an instance of Images, looks for an
image with GetRow(), and, if it finds one, assigns the file name and image to the text box
and picture box with the GetFilename and GetImage methods, respectively.

images = new Images();

if (images.GetRow())

{

this.textBox1.Text = images.GetFilename();

this.pictureBox1.Image = (Image)images.GetImage();

}

else

{

this.textBox1.Text = "DONE";

this.pictureBox1.Image = null;

}

You use the same if statement in the Next button’s click event handler to look for the
next image. If none is found, you displayed the word “DONE” in the text box.

You call the endImages method when the form terminates to close the connection.
(Were you to use a dataset instead of a data reader, you could close the connection in the
Images instance immediately after the images are retrieved, which would be a good exer-
cise for you to attempt.)

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA418

9004ch18final.qxd 12/13/07 3:56 PM Page 418

protected override void Dispose(bool disposing)

{

images.EndImages();

if (disposing && (components != null))

{

components.Dispose();

}

base.Dispose(disposing);

}

The image is returned from the database as an array of bytes. The PictureBox control
Image property can be a Bitmap, Icon, or Metafile (all derived classes of Image). Bitmap sup-
ports a variety of formats including BMP, GIF, and JPG. The getImage method, shown here,
returns a Bitmap object:

public Bitmap GetImage()

{

MemoryStream ms = new MemoryStream(imageBytes);

Bitmap bmap = new Bitmap(ms);

return bmap;

}

Bitmap’s constructor doesn’t accept a byte array, but it will accept a MemoryStream
(which is effectively an in-memory representation of a file), and MemoryStream has a con-
structor that accepts a byte array. So, you create a memory stream from the byte array
and then create a bitmap from the memory stream.

Working with Text Data
Handling text is similar to handling images except for the data type used for the database
column.

Try It Out: Loading Text Data from a File

To load text data from a file, follow these steps:

1. Add a C# Console Application project named LoadText to the solution.

2. Rename Program.cs to LoadText.cs, and replace the code with that in Listing 18-4.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 419

9004ch18final.qxd 12/13/07 3:56 PM Page 419

Listing 18-4. LoadText.cs

using System;

using System.Data;

using System.Data.SqlClient;

using System.Data.SqlTypes;

using System.IO;

namespace LoadText

{

class LoadText

{

static string fileName =

@"C:\Documents and Settings\Administrator\My Documents\"

+ @"Visual Studio Codename ➥

Orcas\Projects\Chapter18\LoadText\LoadText.cs";

SqlConnection conn = null;

SqlCommand cmd = null;

static void Main()

{

LoadText loader = new LoadText();

try

{

// get text file

loader.GetTextFile(fileName);

// open connection

loader.OpenConnection();

// create command

loader.CreateCommand();

// create table

loader.CreateTextTable();

// prepare insert command

loader.PrepareInsertTextFile();

// load text file

loader.ExecuteInsertTextFile(fileName);

Console.WriteLine(

"Loaded {0} into texttable.", fileName

);

}

catch (SqlException ex)

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA420

9004ch18final.qxd 12/13/07 3:56 PM Page 420

{

Console.WriteLine(ex.ToString());

}

finally

{

loader.CloseConnection();

}

}

void CreateTextTable()

{

ExecuteCommand(@"

if exists

(

select

*

from

information_schema.tables

where

table_name = 'texttable'

)

drop table texttable

");

ExecuteCommand(@"

create table texttable

(

textfile varchar(255),

textdata varchar(max)

)

");

}

void OpenConnection()

{

// create connection

conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

initial catalog = tempdb;

");

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 421

9004ch18final.qxd 12/13/07 3:56 PM Page 421

// open connection

conn.Open();

}

void CloseConnection()

{

// close connection

conn.Close();

}

void CreateCommand()

{

cmd = new SqlCommand();

cmd.Connection = conn;

}

void ExecuteCommand(string commandText)

{

int commandResult;

cmd.CommandText = commandText;

Console.WriteLine("Executing command:");

Console.WriteLine(cmd.CommandText);

commandResult = cmd.ExecuteNonQuery();

Console.WriteLine("ExecuteNonQuery returns {0}.", commandResult);

}

void PrepareInsertTextFile()

{

cmd.CommandText = @"

insert into texttable

values (@textfile, @textdata)

";

cmd.Parameters.Add("@textfile", SqlDbType.NVarChar, 30);

cmd.Parameters.Add("@textdata", SqlDbType.Text, 1000000);

}

void ExecuteInsertTextFile(string textFile)

{

string textData = GetTextFile(textFile);

cmd.Parameters["@textfile"].Value = textFile;

cmd.Parameters["@textdata"].Value = textData;

ExecuteCommand(cmd.CommandText);

}

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA422

9004ch18final.qxd 12/13/07 3:56 PM Page 422

mailto:Parameters["@textfile"].Value
mailto:Parameters["@textdata"].Value

string GetTextFile(string textFile)

{

string textBytes = null;

Console.WriteLine("Loading File: " + textFile);

FileStream fs = new FileStream(textFile, FileMode.Open, ➥

FileAccess.Read);

StreamReader sr = new StreamReader(fs);

textBytes = sr.ReadToEnd();

Console.WriteLine("TextBytes has length {0} bytes.",

textBytes.Length);

return textBytes;

}

}

}

3. Make LoadText the startup project, and run it by pressing Ctrl+F5. You should see
the results in Figure 18-5.

Figure 18-5. Loading a text file into a table

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 423

9004ch18final.qxd 12/13/07 3:56 PM Page 423

How It Works

You simply load the source code for the LoadText program:

static string fileName =

@"C:\Documents and Settings\Administrator\My Documents\"

+ @"Visual Studio Codename Orcas\Projects\Chapter18\LoadText\LoadText.cs";

into a table:

cmd.CommandText = @"

insert into texttable

values (@textfile, @textdata)

";

cmd.Parameters.Add("@textfile", SqlDbType.NVarChar, 30);

// the image gets stored in the form of of an Image string.

// figure 1000000 specifies the bytes for the amount to

// specify the size of the Image string.

cmd.Parameters.Add("@textdata", SqlDbType.Text, 1000000);

that you created in the temporary database:

ExecuteCommand(@"

if exists

(

select

*

from

information_schema.tables

where

table_name = 'texttable'

)

drop table texttable

");

ExecuteCommand(@"

create table texttable

(

textfile varchar(255),

textdata varchar(max)

)

");

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA424

9004ch18final.qxd 12/13/07 3:56 PM Page 424

Note that you first check to see whether the table exists. If it does, you drop it so you
can re-create it.

■Note The information_schema.tables view (a named query) is compatible with the SQL standard
INFORMATION_SCHEMA view of the same name. It limits the tables you can see to the ones you can
access. Microsoft recommends you use the new catalog views to get database metadata in SQL Server
2005, and SQL Server itself uses them internally. The catalog view for this query would be sys.tables,
and the column name would be name. We’ve used the INFORMATION SCHEMA view here because you
may still see it often.

Instead of the BinaryReader you use for images, GetTextFile uses a StreamReader
(derived from System.IO.TextReader) to read the contents of the file into a string.

string GetTextFile(string textFile)

{

string textBytes = null;

Console.WriteLine("Loading File: " + textFile);

FileStream fs = new FileStream(textFile, FileMode.Open, FileAccess.Read);

StreamReader sr = new StreamReader(fs);

textBytes = sr.ReadToEnd();

Console.WriteLine("TextBytes has length {0} bytes.",

textBytes.Length);

return textBytes;

}

Otherwise, the processing logic is basically the same as you’ve seen many times
throughout the book: open a connection, access a database, and then close the connec-
tion.

Now let’s retrieve the text you just stored.

Retrieving Data from Text Columns

Retrieving data from text columns is just like retrieving it from the smaller character data
types. You’ll now write a simple console program to see how this works.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 425

9004ch18final.qxd 12/13/07 3:56 PM Page 425

Try It Out: Retrieving Text Data

To retrieve data from text columns, follow these steps:

1. Add a C# Console Application project named RetrieveText to the solution.

2. Rename Program.cs to RetrieveText.cs, and replace the code with that in List-
ing 18-5.

Listing 18-5. RetrieveText.cs

using System;

using System.Data;

using System.Data.SqlClient;

namespace RetrieveText

{

public class RetrieveText

{

string textFile = null;

char[] textChars = null;

SqlConnection conn = null;

SqlCommand cmd = null;

SqlDataReader dr = null;

public RetrieveText()

{

// create connection

conn = new SqlConnection(@"

data source = .\sqlexpress;

integrated security = true;

initial catalog = tempdb;

");

// create command

cmd = new SqlCommand(@"

select

textfile,

textdata

from

texttable

", conn);

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA426

9004ch18final.qxd 12/13/07 3:56 PM Page 426

// open connection

conn.Open();

// create data reader

dr = cmd.ExecuteReader();

}

public bool GetRow()

{

long textSize;

int bufferSize = 100;

long charsRead;

textChars = new Char[bufferSize];

if (dr.Read())

{

// get file name

textFile = dr.GetString(0);

Console.WriteLine("------ start of file:");

Console.WriteLine(textFile);

textSize = dr.GetChars(1, 0, null, 0, 0);

Console.WriteLine("--- size of text: {0} characters -----",

textSize);

Console.WriteLine("--- first 100 characters in text -----");

charsRead = dr.GetChars(1, 0, textChars, 0, 100);

Console.WriteLine(new String(textChars));

Console.WriteLine("--- last 100 characters in text -----");

charsRead = dr.GetChars(1, textSize - 100, textChars, 0, 100);

Console.WriteLine(new String(textChars));

return true;

}

else

{

return false;

}

}

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 427

9004ch18final.qxd 12/13/07 3:56 PM Page 427

public void endRetrieval()

{

// close the reader and the connection.

dr.Close();

conn.Close();

}

static void Main()

{

RetrieveText rt = null;

try

{

rt = new RetrieveText ();

while (rt.GetRow() == true)

{

Console.WriteLine("----- end of file:");

Console.WriteLine(rt.textFile);

Console.WriteLine("======================================");

}

}

catch (SqlException ex)

{

Console.WriteLine(ex.ToString());

}

finally

{

rt.endRetrieval();

}

}

}

}

3. Make RetrieveText the startup project and run it by pressing Ctrl+F5. You should
see the results in Figure 18-6.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA428

9004ch18final.qxd 12/13/07 3:56 PM Page 428

Figure 18-6. Retrieving text from a table

How It Works

After querying the database:

// create command

cmd = new SqlCommand(@"

select

textfile,

textdata

from

texttable

", conn);

// open connection

conn.Open();

// create data reader

dr = cmd.ExecuteReader();

you loop through the result set (but here there is only one row), get the file name from
the table with GetString(), and print it to show which file is displayed. You then call
GetChars() with a null character array to get the size of the VARCHAR(MAX) column.

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA 429

9004ch18final.qxd 12/13/07 3:56 PM Page 429

if (dr.Read())

{

// get file name

textFile = dr.GetString(0);

Console.WriteLine("------ start of file:");

Console.WriteLine(textFile);

textSize = dr.GetChars(1, 0, null, 0, 0);

Console.WriteLine("--- size of text: {0} characters -----",

textSize);

Console.WriteLine("--- first 100 characters in text -----");

charsRead = dr.GetChars(1, 0, textChars, 0, 100);

Console.WriteLine(new String(textChars));

Console.WriteLine("--- last 100 characters in text -----");

charsRead = dr.GetChars(1, textSize - 100, textChars, 0, 100);

Console.WriteLine(new String(textChars));

return true;

}

else

{

return false;

}

Rather than print the whole file, you display the first 100 bytes, using GetChars() to
extract a substring. You do the same thing with the last 100 characters.

Otherwise, this program is like any other that retrieves and displays database charac-
ter data.

Summary
In this chapter, you explored SQL Server’s text and binary data types. You also practiced
storing and retrieving binary and text data using data types for SQL Server large objects
and ADO.NET.

In the next chapter, you will learn about the most exciting feature of .NET 3.5: Lan-
guage Integrated Query (LINQ).

CHAPTER 18 ■ WORKING WITH TEXT AND BINARY DATA430

9004ch18final.qxd 12/13/07 3:56 PM Page 430

Using LINQ

Writing software means that you have to have a database sitting at the back end, and
most of the time goes into writing queries to retrieve and manipulate data. Whenever
someone talks about data, we tend to only think of the information that is contained in
a relational database or in an XML document.

The kind of data access that we had prior to the release of .NET 3.5 was only meant
for or limited to accessing data that resides in traditional data sources as the two just
mentioned. But with the release of .NET 3.5, which has Language Integrated Query
(LINQ) incorporated into it, it is now possible to deal with data residing beyond the tra-
ditional homes of information storage. For instance, you can query a generic List<>
type containing a few hundred integer values and write a LINQ expression to retrieve
the subset that meets your criterion—for example, either even or odd.

The LINQ feature, as you may have gathered, is one of the major differences between
.NET 3.0 and .NET 3.5. LINQ is a set of features in Visual Studio 2008 that extends power-
ful query capabilities into the language syntax of C# and VB .NET.

LINQ introduces a standard, unified, easy-to-learn approach for querying and
modifying data, and can be extended to support potentially any type of data store.
Visual Studio 2008 includes LINQ provider assemblies that enable the use of LINQ
queries with various types of data sources including relational data, XML, and in-
memory data structures.

In this chapter, we’ll cover the following:

• Introduction to LINQ

• Architecture of LINQ

• LINQ project structure

• Using LINQ to Objects

• Using LINQ to SQL

• Using LINQ to XML

431

C H A P T E R 1 9

9004ch19final.qxd 12/13/07 3:54 PM Page 431

Introduction to LINQ
LINQ is an innovation that Microsoft made with the release of Visual Studio 2008 and
.NET Framework version 3.5 that promises to revolutionize the way that developers have
been working with data before the release of .NET 3.5. As we mentioned previously, LINQ
introduces the standard and unified concept of querying various types of data sources
falling in the range of relational databases, XML documents, and even in-memory data
structures. LINQ supports all these types of data stores with the help of LINQ query
expressions of first-class language constructs in C# 2008.

LINQ offers the following advantages:

• LINQ offers common syntax for querying any type of data source; for example, you
can query an XML document in the same way as you query a SQL database, an
ADO.NET dataset, an in-memory collection, or any other remote or local data
source that you have chosen to connect to and access by using LINQ.

• LINQ bridges the gap and strengthens the connection between relational data and
the object-oriented world.

• LINQ speeds development time by catching many errors at compile time and
including IntelliSense and debugging support.

• LINQ query expressions (unlike traditional SQL statements) are strongly typed.

■Note Strongly typed expressions ensure access to values as the correct type at compile time and so pre-
vent type mismatch errors being caught when the code is compiled rather than at runtime.

As discussed in Chapter 2 as well, .NET 3.5 assemblies are green bit assemblies and
can be found in the C:\Program Files\Reference Assemblies\Microsoft\Framework\v3.5

folder. The LINQ assemblies provide all the functionality of accessing various types of
data stores under one umbrella. The core LINQ assemblies are listed in Table 19-1.

CHAPTER 19 ■ USING L INQ432

9004ch19final.qxd 12/13/07 3:54 PM Page 432

Table 19-1. Core LINQ Assemblies

Assembly Name Description

System.LINQ Provides classes and interfaces that support LINQ queries

System.Collections.Generic Allows users to create strongly typed collections that provide
better type safety and performance than nongeneric strongly
typed collections (LINQ to Objects)

System.Data.LINQ Provides the functionality to use LINQ to access relational
databases (LINQ to SQL)

System.XML.LINQ Provides functionality for accessing XML documents using LINQ
(LINQ to XML)

System.Data.Linq.Mapping Designates a class as an entity class associated with a database

■Note Though it’s called Language Integrated Query, LINQ can be used to update database data. We’ll
only cover simple queries here to give you your first taste of LINQ, but LINQ is a general-purpose facility for
accessing data. In many respects, it’s the future of ADO.NET. For a concise but comprehensive introduction
to LINQ, see Fabio Claudio Ferracchiati’s LINQ for Visual C# 2005 (Apress, 2006). You can also refer to
Joseph C. Rattz, Jr.’s Pro LINQ: Language Integrated Query in C# 2008 (Apress, 2007) or have a look at the
LINQ Project site at http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx.

Architecture of LINQ
LINQ consists of three major components:

• LINQ to Objects

• LINQ to ADO.NET, which includes

• LINQ to SQL (formerly called DLinq)

• LINQ to DataSets (formerly called LINQ over DataSets)

• LINQ to Entities

• LINQ to XML (formerly called XLinq)

Figure 19-1 depicts the LINQ architecture, which clearly shows the various compo-
nents of LINQ and their related data stores.

CHAPTER 19 ■ USING L INQ 433

9004ch19final.qxd 12/13/07 3:54 PM Page 433

http://msdn2.microsoft.com/en-us/netframework/aa904594.aspx

Figure 19-1. LINQ architecture

LINQ to Objects deals with in-memory data. Any class that implements the
IEnumerable<T> interface (in the System.Collections.Generic namespace) can be queried
with Standard Query Operators (SQOs).

■Note SQOs are a collection of methods that form the LINQ pattern. SQO methods operate on sequences,
where a sequence represents an object whose type implements the interface IEnumerable<T> or the inter-
face IQueryable<T>. The SQO provides query capabilities including filtering, projection, aggregation,
sorting, and so forth.

LINQ to ADO.NET (also known as LINQ-enabled ADO .NET) deals with data from
external sources, basically anything ADO.NET can connect to. Any class that imple-
ments IEnumerable<T> or IQueryable<T> (in the System.Linq namespace) can be queried
with SQOs. The LINQ to ADO.NET functionality can be achieved by using the System.
Data.Linq namespace.

LINQ to XML is a comprehensive API for in-memory XML programming. Like the
rest of LINQ, it includes SQOs, and it can also be used in concert with LINQ to ADO.NET,
but its primary purpose is to unify and simplify the kinds of things that disparate XML
tools, such as XQuery, XPath, and XSLT, are typically used to do. The LINQ to XML func-
tionality can be achieved by using the System.Xml.Linq namespace.

CHAPTER 19 ■ USING L INQ434

9004ch19final.qxd 12/13/07 3:54 PM Page 434

■Note LINQ on the .NET Compact Framework includes a subset of the desktop LINQ features. One of the
differences between LINQ on the.NET Framework and LINQ on the .NET Compact Framework is that on the
.NET Compact Framework, only SQOs are supported. LINQ to DataSets and LINQ to DataTables are supported,
and LINQ to XML is also supported except for XPath extensions.

In this chapter, we’ll work with the three techniques LINQ to Objects, LINQ to SQL,
and LINQ to DataSets, since they’re most closely related to the C# 2008 database pro-
gramming we’ve covered in this book.

LINQ Project Structure
Visual Studio 2008 allows you to use LINQ queries, and to create a LINQ project, follow
these steps:

1. Open Visual Studio 2008 and select File ➤ New ➤ Project.

2. In the New Project dialog box that appears, by default .NET Framework 3.5 is cho-
sen in the list of available .NET Framework versions supported by Visual Studio
2008. Select the type of project you would like the LINQ feature to be part of. For
example, we will be using a Console Application project (see Figure 19-2).

Figure 19-2. Choosing a LINQ-enabled Console Application project

CHAPTER 19 ■ USING L INQ 435

9004ch19final.qxd 12/13/07 3:54 PM Page 435

3. Specify the name Chapter19 for the chosen project and click OK. The new Console
Application project named Chapter19 will appear as shown in Figure 19-3.

Figure 19-3. Structure of the LINQ-enabled Console Application project

By default, you will see some common namespaces have been included in the
Program.cs file, as shown in Figure 19-3. You can add other LINQ namespaces per your
requirements by right-clicking the project you are developing LINQ applications with
and selecting the Add Reference option from the context menu.

4. Open the References folder in Solution Explorer. You should see some more
assembly references added there to support the LINQ project, as shown in
Figure 19-4.

Figure 19-4. LINQ references

CHAPTER 19 ■ USING L INQ436

9004ch19final.qxd 12/13/07 3:54 PM Page 436

Now you are ready to work with a LINQ project, and all you need to do is add the
code functionality and required namespaces to the project and test the application. Let’s
begin using LINQ.

Using LINQ to Objects
The term LINQ to Objects refers to the use of LINQ queries to access in-memory data
structures. You can query any type that supports IEnumerable<T>. This means that you can
use LINQ queries not only with user-defined lists, arrays, dictionaries, and so on, but also
in conjunction with .NET Framework APIs that return collections. For example, you can
use the System.Reflection classes to return information about types stored in a specified
assembly, and then filter those results by using LINQ. Or you can import text files into
enumerable data structures and compare the contents to other files, extract lines or parts
of lines, group matching lines from several files into a new collection, and so on.

LINQ queries offer three main advantages over traditional foreach loops:

• They are more concise and readable, especially when filtering multiple conditions.

• They provide powerful filtering, ordering, and grouping capabilities with a mini-
mum of application code.

• They can be ported to other data sources with little or no modification.

In general, the more complex the operation you want to perform on the data, the
greater the benefit you will realize by using LINQ as opposed to traditional iteration
techniques.

Try It Out: Coding a Simple LINQ to Objects Query

In this exercise, you’ll use LINQ to Objects to retrieve some names from an array of
strings.

1. Right-click the Chapter19 project in the Chapter19 solution, select the Rename
option, and rename the project to LinqToObjects. Rename Program.cs to
LinqToObjects.cs. Replace the code in LinqToObjects.cs with the code in
Listing 19-1.

CHAPTER 19 ■ USING L INQ 437

9004ch19final.qxd 12/13/07 3:54 PM Page 437

Listing 19-1. LinqToObjects.cs

using System;

using System.Text;

using System.Linq;

using System.Collections.Generic;

namespace Chapter19

{

class LinqToObjects

{

static void Main(string[] args)

{

string[] names = {"James Huddleston", "Pearly", "Ami Knox", ➥

"Rupali Agarwal",

"Beth Christmas", "Fabio Claudio", "Vamika Agarwal", "Vidya ➥

Vrat Agarwal"};

IEnumerable<string> namesOfPeople = from name in names

where name.Length <= 16

select name;

foreach (var name in namesOfPeople)

Console.WriteLine(name);

}

}

}

2. Run the program by pressing Ctrl+F5, and you should see the results shown in
Figure 19-5.

Figure 19-5. Retrieving names from a string array using LINQ to Objects

CHAPTER 19 ■ USING L INQ438

9004ch19final.qxd 12/13/07 3:54 PM Page 438

How It Works

You declare a string array called names:

string[] names = {"James Huddleston", "Pearly", "Ami Knox", "Rupali Agarwal",

"Beth Christmas", "Fabio Claudio", "Vamika Agarwal", "Vidya Vrat Agarwal"};

In order to retrieve names from the string array, you query the string array using
IEnumerable<string> and also loop through the names array with the help of foreach using
the LINQ to Objects query syntax.

IEnumerable<string> namesOfPeople = from name in names

where name.Length <= 16

select name;

foreach (var name in namesOfPeople)

Using LINQ to SQL
LINQ to SQL is a facility for managing and accessing relational data as objects. It’s logi-
cally similar to ADO.NET in some ways, but it views data from a more abstract perspec-
tive that simplifies many operations. It connects to a database, converts LINQ constructs
into SQL, submits the SQL, transforms results into objects, and even tracks changes and
automatically requests database updates.

A simple LINQ query requires three things:

• Entity classes

• A data context

• A LINQ query

Try It Out: Coding a Simple LINQ to SQL Query

In this exercise, you’ll use LINQ to SQL to retrieve all customers from the Northwind Cus-
tomers table.

1. Navigate to Solution Explorer, right-click the Chapter19 solution, and select Add ➤
New Project. From the provided list of Visual Studio installed templates, choose
Console Application and name the newly added project LinqToSql. Click OK.

2. Rename Program.cs to LinqToSql.cs. Replace the code in LinqToSql.cs with the
code in Listing 19-2.

CHAPTER 19 ■ USING L INQ 439

9004ch19final.qxd 12/13/07 3:54 PM Page 439

Listing 19-2. LinqToSql.cs

using System;

using System.Linq;

using System.Data.Linq;

using System.Data.Linq.Mapping;

namespace Chapter19

{

[Table]

public class Customers

{

[Column]

public string customerId;

[Column]

public string companyName;

[Column]

public string city;

[Column]

public string country;

}

class LinqToSql

{

static void Main(string[] args)

{

// connection string

string connString = @"

server = .\sqlexpress;

integrated security = true;

database = northwind

";

// create data context

DataContext db = new DataContext(connString);

// create typed table

Table<Customers> customers = db.GetTable<Customers>();

CHAPTER 19 ■ USING L INQ440

9004ch19final.qxd 12/13/07 3:54 PM Page 440

// query database

var custs =

from c in customers

select

c

;

// display customers

foreach (var c in custs)

Console.WriteLine(

"{0} {1} {2} {3}",

c.customerId,

c.companyName,

c.city,

c.country

);

}

}

}

3. Right-click the LinqToSql project and select the Set as StartUp Project option.

4. Run the program by pressing Ctrl+F5, and you should see the results shown in
Figure 19-6.

Figure 19-6. Retrieving customer data with LINQ to SQL

CHAPTER 19 ■ USING L INQ 441

9004ch19final.qxd 12/13/07 3:54 PM Page 441

How It Works

You define an entity class, Customers:

[Table]

public class Customers

{

[Column]

public string customerId;

[Column]

public string companyName;

[Column]

public string city;

[Column]

public string country;

}

Entity classes provide objects in which LINQ stores data from data sources. They’re
like any other C# class, but LINQ defines attributes that tell it how to use the class.

The [Table] attribute marks the class as an entity class and has an optional Name
property that can be used to give the name of a table, which defaults to the class name.
That’s why you name the class Customers rather than Customer. A more typical approach
would be

[Table(Name="Customers")]

public class Customer

and then you’d have to change the typed table definition to

Table<Customer> customers = db.GetTable<Customer>();

to be consistent.
The [Column] attribute marks a field as one that will hold data from a table. You can

declare fields in an entity class that don’t map to table columns, and LINQ will just ignore
them, but those decorated with the [Column] attribute must be of types compatible with
the table columns they map to. (Note that since SQL Server table and column names
aren’t case sensitive, the default names do not have to be identical in case to the names
used in the database.)

You create a data context:

// create data context

DataContext db = new DataContext(connString);

CHAPTER 19 ■ USING L INQ442

9004ch19final.qxd 12/13/07 3:54 PM Page 442

A data context does what an ADO.NET connection does, but it also does things that
a data provider handles. It not only manages the connection to a data source, but also
translates LINQ requests (expressed in SQO) into SQL, passes the SQL to the database
server, and creates objects from the result set.

You create a typed table:

// create typed table

Table<Customers> customers = db.GetTable<Customers>();

A typed table is a collection (of type System.Data.Linq.Table<T>) whose elements are
of a specific type. The GetTable method of the DataContext class tells the data context to
access the results and indicates where to put them. Here, you get all the rows (but only
four columns) from the Customers table, and the data context creates an object for each
row in the customers typed table.

You declare a C# 2008 implicitly typed local variable, custs, of type var:

// query database

var custs =

An implicitly typed local variable is just what its name implies. When C# sees the var
type, it infers the type of the local variable based on the type of the expression in the
initializer to the right of the = sign.

You initialize the local variable with a query expression:

from c in customers

select

c

;

A query expression is composed of a from clause and a query body. You use the sim-
plest form of the from clause and query body here. This from clause declares an iteration
variable, c, to be used to iterate over the result of the expression, customers, that is, over
the typed table you earlier created and loaded. A query body must include a select or
groupby clause that may be preceded by where or orderby clauses.

Your select clause is the most primitive possible:

select

c

and, like a SQL SELECT *, gets all columns, so the variable custs is implicitly typed to han-
dle a collection of objects that contain all the fields in the Customers class.

Finally, you loop through the custs collection and display each customer. Except for
the use of the var type, which is a new data type in C# 2008, in the foreach statement, this
was just C# 2.0.

CHAPTER 19 ■ USING L INQ 443

9004ch19final.qxd 12/13/07 3:54 PM Page 443

// display customers

foreach (var c in custs)

Console.WriteLine(

"{0} {1} {2}",

c.customerId,

c.companyName,

c.country

);

Despite the new C# 2008 features and terminology, this should feel familiar. Once
you get the hang of it, it’s an appealing alternative for coding queries. You basically code
a query expression instead of SQL to populate a collection that you can iterate through
with a foreach statement. However, you provide a connection string, but don’t explicitly
open or close a connection. Further, no command, data reader, or indexer is required.
You don’t even need the System.Data or System.Data.SqlClient namespaces to access SQL
Server.

Pretty cool, isn’t it?

Try It Out: Using the where Clause

Here, you’ll modify LinqToSql to retrieve only customers in the USA.

1. Add the following two bold lines to LinqToSql.cs:

// query database

var custs =

from c in customers

where

c.country == "USA"

select

c

;

2. Rerun the program by pressing Ctrl+F5, and you should see the results shown in
Figure 19-7.

CHAPTER 19 ■ USING L INQ444

9004ch19final.qxd 12/13/07 3:54 PM Page 444

Figure 19-7. Retrieving only U.S. customers with a where clause.

How It Works

You simply use a C# 2008 where clause to limit the rows selected.

where

c.country == "USA"

It is just like a SQL WHERE clause, except for using == and "USA" instead of = and 'USA',
since you code using C# 2008 here, not T-SQL.

Using LINQ to XML
LINQ to XML provides an in-memory XML programming API that integrates XML query-
ing capabilities into C# 2008 to take advantage of the LINQ framework and add query
extensions specific to XML. LINQ to XML provides the query and transformation power
of XQuery and XPath integrated into .NET.

From another perspective, you can also think of LINQ to XML as a full-featured XML
API comparable to a modernized, redesigned System.Xml API plus a few key features
from XPath and XSLT. LINQ to XML provides facilities to edit XML documents and ele-
ment trees in memory, as well as streaming facilities.

Try It Out: Coding a Simple LINQ to XML Query

In this exercise, you’ll use LINQ to XML to retrieve element values from an XML
document.

CHAPTER 19 ■ USING L INQ 445

9004ch19final.qxd 12/13/07 3:54 PM Page 445

1. Navigate to Solution Explorer, right-click the Chapter19 solution, and select Add ➤
New Project. From the provided list of Visual Studio installed templates, choose
Console Application and name the newly added project LinqToXml. Click OK.

2. Rename Program.cs to LinqToXml.cs. Replace the code in LinqToXml.cs with the
code in Listing 19-3.

Listing 19-3. LinqToXml.cs

using System;

using System.Linq;

using System.Xml.Linq;

namespace Chapter19

{

class LinqToXml

{

static void Main(string[] args)

{

//load the productstable.xml in memory

XElement doc = XElement.Load(@"C:\Documents and Settings\

Administrator\My Documents\Visual Studio 2008\Projects\

Chapter19\productstable.xml");

//query xml doc

var products = from prodname in doc.Descendants("products")

select prodname.Value;

//display details

foreach (var prodname in products)

Console.WriteLine("Product's Detail = {0}\t", prodname);

}

}

}

■Note We have specified the productstable.xml file, which is located in a specific location on our
machine; you can use another XML file path based on your machine and XML file availability. The
productstable.xml is also available with the source code for this chapter.

CHAPTER 19 ■ USING L INQ446

9004ch19final.qxd 12/13/07 3:54 PM Page 446

3. Right-click the LinqToXml project and select the Set as StartUp Project option.

4. Run the program by pressing Ctrl+F5, and you should see the results shown in
Figure 19-8.

Figure 19-8. Retrieving product details with LINQ to XML

How It Works

You specify the following statement using the XElement of System.Linq.Xml to load the
XML doc in memory:

XElement doc = XElement.Load(@"C:\Documents and Settings\Administrator\My

Documents\Visual Studio 2008\Projects\Chapter19\productstable.xml");

You also write the following statement to query the XML doc, where the Descendents
method will return the values of the descendant elements for the specified element of the
XML document.

var products = from prodname in doc.Descendants("products")

select prodname.Value;

Summary
In this chapter, we covered the essentials of using LINQ for simple queries. We intro-
duced you to the three flavors of LINQ, mainly LINQ to Objects, LINQ to SQL, and LINQ
to XML. We discussed several new features of C# 2008 that support using LINQ queries.

In the next chapter, we will look at LINQ features for ADO.NET 3.5.

CHAPTER 19 ■ USING L INQ 447

9004ch19final.qxd 12/13/07 3:54 PM Page 447

9004ch19final.qxd 12/13/07 3:54 PM Page 448

Using ADO.NET 3.5

The world thought that the database APIs were mature enough with the release of
ADO.NET 2.0, but data access API–related innovations are still taking place and still grow-
ing. They are reasonably straightforward to use and let you simulate the same kinds of
data structures and relationships that exist in relational databases.

However, you don’t interact with data in datasets or data tables in the same way you
do with data in database tables. The difference between the relational model of data and
the object-oriented model of programming is considerable, and ADO.NET 2.0 does rela-
tively little to reduce impedance between the two models.

With the release of .NET Framework 3.5 and the addition of Language Integrated
Query (LINQ) to Visual Studio 2008, a new version of ADO.NET has also been introduced:
ADO.NET 3.5. To work with ADO.NET 3.5 features, you need to have ADO.NET 3.5 Entity
Framework (ADO.NET 3.5 EF) and ADO.NET 3.5 Entity Framework Tools. This chapter
will introduce you to the ADO.NET 3.5 Entity Data Model (EDM).

In this chapter, we’ll cover the following:

• Understanding ADO.NET 3.5 Entity Framework

• Understanding the Entity Data Model

• Working with the Entity Data Model

Understanding ADO.NET 3.5 Entity Framework
The vision behind ADO.NET 3.5, the latest version of ADO.NET, is to extend the level of
abstraction for database programming, which completely removes the impedance mis-
match between data models and development languages that programmers use to write
software applications.

Two revolutionary innovations have made this entire mission successful: LINQ
and ADO.NET 3.5 EF. ADO.NET 3.5 EF exists as a new part of the ADO.NET family of
technologies.

449

C H A P T E R 2 0

9004ch20final.qxd 12/13/07 3:53 PM Page 449

ADO.NET 3.5 EF allows developers to focus on data through an object model instead
of through the traditional logical/relational data model, helping to abstract the logical
data schema into a conceptual model to allow interaction with that model through a new
data provider called EntityClient.

ADO.NET 3.5 EF abstracts the logical database structure using a conceptual layer,
a mapping layer, and a logical layer. In this chapter, we review the purpose of each of
these layers.

ADO.NET 3.5 EF allows developers to write less data access code, reduces mainte-
nance, and abstracts the structure of the data into a more business-friendly manner. It
can also help to reduce the number of compile-time errors since it generates strongly
typed classes from the conceptual model.

ADO.NET 3.5 EF generates a conceptual model that developers can write code
against using a new data provider called EntityClient, as mentioned previously.
EntityClient follows a model similar to familiar ADO.NET objects, using
EntityConnection and EntityCommand objects to return an EntityDataReader.

■Note If required, you can download ADO.NET 3.5 EF and ADO.NET 3.5 Entity Framework Tools from
http://www.microsoft.com/downloads.

Understanding the Entity Data Model
The core of ADO.NET 3.5 EF is in its Entity Data Model. ADO.NET 3.5 EF supports a logi-
cal store model that represents the relational schema from a database. A relational
database often stores data in a different format from what the application can use. This
typically forces developers to retrieve the data in the same structure as that contained in
the database. Developers then often feed the data into business entities that are more
suited for handling business rules. ADO.NET 3.5 EF bridges this gap between data mod-
els using mapping layers. There are three layers active in ADO.NET 3.5 EF’s model:

• Conceptual layer

• Mapping layer

• Logical layer

These three layers allow data to be mapped from a relational database to a more
object-oriented business model. ADO.NET 3.5 EF defines these layers using XML files.
These XML files provide a level of abstraction so developers can program against the OO
conceptual model instead of the traditional relational data model.

CHAPTER 20 ■ USING ADO.NET 3.5450

9004ch20final.qxd 12/13/07 3:53 PM Page 450

http://www.microsoft.com/downloads

The conceptual model is defined in an XML file using Conceptual Schema Defini-
tion Language (CSDL). CSDL defines the entities and the relationships as the applica-
tion’s business layer knows them. The logical model, which represents the database
schema, is defined in an XML file using Store Schema Definition Language (SSDL). The
mapping layer, which is defined using Mapping Schema Language (MSL), maps the
other two layers. This mapping is what allows developers to code against the conceptual
model and have those instructions mapped into the logical model.

Working with the Entity Data Model
Most applications running today cannot exist without having a database at the back end.
The application and the database are highly dependent on each other, that is, they are
tightly coupled, and so it becomes so obvious that any change made either in the appli-
cation or in the database will have a huge impact on the other end; tight coupling is
always two-way, and altering one side will require changes to be in sync with the other
side. If changes are not reflected properly, the application will not function in the desired
manner, and the system will break down.

Let’s have look at tight coupling by considering the following code segment, which
we used in Chapter 11 as part of Listing 11-3:

// create connection

SqlConnection conn = new SqlConnection(@"

server = .\sqlexpress;

integrated security = true;

database = northwind

");

// create command

string sql = @"

select

firstname,

lastname

from

employees

";

SqlCommand cmd = new SqlCommand(sql, conn);

Console.WriteLine("Command created and connected.");

CHAPTER 20 ■ USING ADO.NET 3.5 451

9004ch20final.qxd 12/13/07 3:53 PM Page 451

try

{

// open connection

conn.Open();

// execute query

SqlDataReader rdr = cmd.ExecuteReader();

}

Assume you have deployed the preceding code into production along with the data-
base, which has the column names as specified in the select query. Later, the database
administrator (DBA) decides to change the column names in all the tables to implement
new database policies: he modifies the employees table and changes the firstname col-
umn to EmployeeFirstName and the lastname column to EmployeeLastName.

After these database changes are made, the only way to prevent the application from
breaking is by modifying all the code segments in source code that refers to the firstname
and lastname columns, rebuild, retest, and deploy the whole application again. The mod-
ified code segment in the preceding code will appear as follows:

// create command

string sql = @"

select

EmployeeFirstName,

EmployeeLastName

from

employees

";

Though on the surface it seems not so difficult to make such changes, if you factor
in the possibility that there might be many database-related code segments that require
modification of the column names according to the new column naming scheme, this
can end up being a tedious and difficult approach to upgrade an application so it can
work with the modified database.

With ADO.NET 3.5 EF’s Entity Data Model, Microsoft has made entity-relationship
modeling executable. Microsoft achieved this by a combination of XML schema files
and ADO.NET 3.5 EF APIs. The schema files are used to define a conceptual layer to
expose the data store’s schema (for example, the schema for a SQL Server database)
and to create a map between the two. ADO.NET 3.5 EF allows you to write your pro-
grams against classes that are generated from the conceptual schema. The EDM then
takes care of all of the translations as you extract data from the database by allowing
you to interact with that relational database in an object-oriented way.

CHAPTER 20 ■ USING ADO.NET 3.5452

9004ch20final.qxd 12/13/07 3:53 PM Page 452

The EDM makes it possible for the client application and the database schema
to evolve independently in a loosely coupled fashion without affecting and breaking
each other.

The EDM of ADO.NET 3.5 Entity Framework provides a conceptual view of the data-
base schema that is used by the application. This conceptual view is described as an XML
mapping file in the application. The XML mapping file maps the entity properties and
associated relationships to the database tables.

This mapping is the magic wand that abstracts the application from the changes
made to the relational database schema. So rather than modifying all the database-
oriented code segments in an application to accommodate changes made in the
database schema, you just need to modify the XML mapping file in such a way that it
reflects all the changes made to the database schema. In other words, the solution
offered by ADO.NET 3.5 EDM is to modify the XML mapping file to reflect the schema
change without changing any source code.

Try It Out: Creating an Entity Data Model

In this exercise, you will see how to create an EDM.

1. Create a Windows Forms Application project named EntityDataModel.

2. Right-click the solution, choose the Rename option, and then name the solution
Chapter20.

3. Right-click the project and select Add ➤ New Item; from the provided Visual Stu-
dio templates choose ADO.NET Entity Data Model and name it NorthwindModel;
your screen should be as shown in Figure 20-1. Click Add.

4. The Entity Data Model Wizard will start, with the Choose Model Contents screen
appearing first. Select the Generate from database option as shown in Figure 20-2.
Click Next.

CHAPTER 20 ■ USING ADO.NET 3.5 453

9004ch20final.qxd 12/13/07 3:53 PM Page 453

Figure 20-1. Adding an ADO.NET Entity Data Model

Figure 20-2. Entity Data Model Wizard—Choose Model Contents screen

5. The Choose Your Data Connection screen appears next as shown in Figure 20-3.
Click New Connection.

CHAPTER 20 ■ USING ADO.NET 3.5454

9004ch20final.qxd 12/13/07 3:53 PM Page 454

Figure 20-3. Entity Data Model Wizard—Choose Your Data Connection screen

6. The Choose Data Source dialog box appears. Select Microsoft SQL Server from the
Data source list as shown in Figure 20-4. Click Continue.

Figure 20-4. Entity Data Model Wizard—Choose Data Source dialog box

7. Next, the Connection Properties dialog box appears. Enter .\sqlexpress in the
Server name list box and ensure that the Use Windows Authentication radio but-
ton option is selected. From the list box provided below the Select or enter a
database name radio button, select Northwind. Your dialog box should appear
as shown in Figure 20-5. Click Test Connection.

CHAPTER 20 ■ USING ADO.NET 3.5 455

9004ch20final.qxd 12/13/07 3:53 PM Page 455

Figure 20-5. Entity Data Model Wizard—Connection Properties dialog box

8. A message box should flash showing the message “Test connection succeeded.”
Click OK. Now click OK in the Connection Properties dialog box.

9. The Choose Your Data Connection window appears again displaying all the set-
tings you’ve made so far. Ensure the check box option Save entity connection
settings in App.config as is checked and has NorthwindEntities as a value entered
in it. Modify the value to appear as NorthwindEntitiesConnectionString as shown
in Figure 20-6. Click Next.

10. The Choose Your Database Objects screen now appears. Expand the Tables node.
By default, all the tables in the selected Northwind database will have a check box
with a check mark in it. Remove all the check marks from all the check boxes
except for the ones beside the Employees and EmployeeTerritories tables. Also
remove the check marks from the check boxes next to the Views and Stored
Procedures node. The screen will appear as shown in Figure 20-7. Click Finish.

CHAPTER 20 ■ USING ADO.NET 3.5456

9004ch20final.qxd 12/13/07 3:53 PM Page 456

Figure 20-6. Entity Data Model Wizard—Choose Your Data Connection screen with
settings displayed

Figure 20-7. Entity Data Model Wizard—Choose Your Database Objects screen

CHAPTER 20 ■ USING ADO.NET 3.5 457

9004ch20final.qxd 12/13/07 3:53 PM Page 457

11. Navigate to Solution Explorer, and you will see that a new NorthwindModel.edmx
object has been added to the project as shown in Figure 20-8.

Figure 20-8. Solution Explorer displaying the generated Entity Data Model

12. Double-click NorthwindModel.edmx to view the generated Entity Data Model in
Design view. It should appear as shown in Figure 20-9.

Figure 20-9. Entity Data Model in Design view

CHAPTER 20 ■ USING ADO.NET 3.5458

9004ch20final.qxd 12/13/07 3:53 PM Page 458

13. The generated Entity Data Model also has an XML mapping associated with it.
To view the XML mapping, navigate to Solution Explorer, right-click
NorthwindModel.edmx, and choose the Open With option. From the dialog box that
appears, select XML Editor and click OK. You should see the XML mapping as
shown in Figure 20-10.

Figure 20-10. XML mapping associated with the Entity Data Model

14. Switch to the Design view of Form1, and set the Name property of the form to
Employees and the Text property to Get Employees.

15. Drag a Button control onto the form, and set its Name property to btnEmployees
and Text property to Get Employees.

16. Drag a ListBox control onto the form below the Button control, and set its Name
property to lstEmployees. The form should appear as shown in Figure 20-11.

CHAPTER 20 ■ USING ADO.NET 3.5 459

9004ch20final.qxd 12/13/07 3:53 PM Page 459

Figure 20-11. Design view of the form

17. Double-click the Button control to go to Code view. Before proceeding with
adding the code for the button’s click event, add the following namespace to the
project:

using System.Data.EntityClient;

18. Switch back to the click event of the button and add the code shown in
Listing 20-1.

Listing 20-1. Creating a Connection Using the Entity Data Model

EntityConnection connection = new

EntityConnection("name=NorthwindEntitiesConnectionString");

connection.Open();

EntityCommand command = connection.CreateCommand();

command.CommandText = "select E.FirstName,E.LastName from

NorthwindEntitiesConnectionString.Employees as E";

EntityDataReader reader =

command.ExecuteReader(CommandBehavior.SequentialAccess);

lstEmployees.Items.Clear();

while (reader.Read())

{

lstEmployees.Items.Add(reader["FirstName"] + " " + reader["LastName"]);

}

19. Build the solution and run the project. When the Employees Detail form appears,
click the Get Employees button. The screen shown in Figure 20-12 should display.

CHAPTER 20 ■ USING ADO.NET 3.5460

9004ch20final.qxd 12/13/07 3:53 PM Page 460

Figure 20-12. Displaying the Employees Detail form

How It Works

Because you are working with an Entity Data Model, you aren’t having to deal with
SqlConnection, SqlCommand, and so forth. Here you create a connection object referencing
the EntityConnection, pass the entire connection string that is stored with the name
NorthwindEntitiesConnectionString in the App.config file, and then open the connection.

EntityConnection connection = new

EntityConnection("name=NorthwindEntitiesConnectionString");

connection.Open();

After specifying opening the connection, it’s time to create the Command object using
EntityCommand, and then specify the query to the CommandText property. Notice that the
From clause of the query is composed of EntityContainer.EntitySet, thus including the
name of the connection string, which represents the EntityContainer, suffixed with the
table name, which is actually an EntitySet.

■Note The EntityContainer element is named after the database schema, and all “Entity sets” that
should be logically grouped together are contained within an EntityContainer element. An EntitySet
represents the corresponding table in the database.

EntityCommand command = connection.CreateCommand();

command.CommandText = "select E.FirstName,E.LastName from

NorthwindEntitiesConnectionString.Employees as E";

CHAPTER 20 ■ USING ADO.NET 3.5 461

9004ch20final.qxd 12/13/07 3:53 PM Page 461

Now you have to specify the reader object, which will read the data stream from
the database and populate the ListBox control. You do so by using the EntityDataReader
object, and then you also specify the ExecuteReader method to return the results. The
ExecuteReader method also requires an enumeration value to be specified; for this
example, you use the CommandBehavior.SequentialAccess enumeration value to tell the
ADO.NET 3.5 runtime to retrieve and load the data sequentially and receive it in the
form of a stream.

EntityDataReader reader =

command.ExecuteReader(CommandBehavior.SequentialAccess);

Next, you specify the code to tell the reader that it has to add the data values in the
ListBox until the reader is able to read the data.

lstEmployees.Items.Clear();

while (reader.Read())

{

lstEmployees.Items.Add(reader["FirstName"] + " " + reader["LastName"]);

}

Try It Out: Schema Abstraction Using an Entity Data Model

In the previous exercise, you created an Entity Data Model named NorthwindModel; in
this exercise, you will see how this Entity Data Model will help developers achieve
schema abstraction and modify the database without touching the data access code
throughout the project or in the Data Access Layer (DAL).

1. Start SQL Server Management Studio Express, expand the Database node, expand
the Northwind database node, and then expand the Tables node. In the list of
tables, expand the dbo.Employees node and then expand the Columns folder.

2. Select the LastName column, right-click, and select the Rename option. Rename
the LastName column to EmployeesLastName.

3. Select the FirstName column, right-click, and select the Rename option. Rename
the FirstName column to EmployeesFirstName.

4. Now exit from SQL Server Management Studio Express by selecting File ➤ Exit.

5. Switch to the Chapter20 solution and then run the EntityModel project. The
Employees Detail form should load. Click the Get Employees button; this raises
an exception window with the message “CommandExecutionException was
unhandled.” Click View Detail located under Actions.

CHAPTER 20 ■ USING ADO.NET 3.5462

9004ch20final.qxd 12/13/07 3:53 PM Page 462

6. The View Detail dialog box opens. Expand the exception to see the exception
details. If you look at InnerException, you will see a message that indicates the
cause of this exception, and that is because you have just renamed the FirstName
and LastName database columns. The exception details should appear as shown
in Figure 20-13.

Figure 20-13. Exception details

7. Click OK to close the exception’s View Detail window, go to the Debug menu, and
choose the Stop Debugging option.

8. To fix this application, you have to modify the XML mapping file created by the
Entity Data Model, the NorthwindModel.edmx file you created earlier in the chapter
and shown previously in Figures 20-8 and 20-9. To view the XML mapping, navi-
gate to Solution Explorer, right-click NorthwindModel.edmx, and choose the Open
With option. From the provided dialog box, select XML Editor and click OK. You
will see the XML mapping as shown previously in Figure 20-10.

9. In the opened XML mapping file, navigate to the <!-- SSDL content --> section
and modify LastName in the <Property Name="LastName" Type="nvarchar"
Nullable="false" MaxLength="20" /> XML tag to EmployeesLastName; the tag should
appear as <Property Name="EmployeesLastName" Type="nvarchar" Nullable="false"

MaxLength="20" /> after the modification.

■Note The logical model, which represents the database schema, is defined in an XML file using SSDL.
This is why you need to modify the column names to map with the database schema.

CHAPTER 20 ■ USING ADO.NET 3.5 463

9004ch20final.qxd 12/13/07 3:53 PM Page 463

10. Now you need to modify the <Property Name="FirstName" Type="nvarchar"

Nullable="false" MaxLength="10" /> XML tag to appear as <Property
Name="EmployeesFirstName" Type="nvarchar" Nullable="false" MaxLength="10" />.
The modified SSDL content section having FirstName and LastName values will
appear as shown in Figure 20-14.

Figure 20-14. Modifying the SSDL content section

11. Now look for the <!-- C-S mapping content --> section and modify the
<ScalarProperty Name="LastName" ColumnName="LastName" /> tag to appear as
<ScalarProperty Name="LastName" ColumnName="EmployeesLastName" />.

■Note The conceptual model is defined in an XML file using CSDL. CSDL defines the entities and the rela-
tionships as the application’s business layer knows them. This is why you need to modify the column names
to be readable and easy to find by the entity.

12. Next, modify the <ScalarProperty Name="FirstName" ColumnName="FirstName" /> tag
to appear as <ScalarProperty Name="FirstName" ColumnName="EmployeesFirstName"

/>. The modified C-S mapping content section having FirstName and LastName
values will appear as shown in Figure 20-15.

CHAPTER 20 ■ USING ADO.NET 3.5464

9004ch20final.qxd 12/13/07 3:53 PM Page 464

Figure 20-15. Modifying the C-S mapping content section

13. Now build the Chapter20 solution, and run the application. When the Employees
Detail form is open, click the Get Employees button. This should populate the list
box with the employees’ FirstName and LastName values as shown earlier in
Figure 20-12.

14. Switch back to the Form1.cs. You should still see the same SELECT query with
FirstName and LastName column names, even though you have modified the
column names in the Northwind database’s Employees table. But by taking advan-
tage of the schema abstraction feature of the Entity Data Model, you only have to
specify the updated column names in the XML mapping file under the SSDL con-
tent and C-S mapping content sections.

Summary
In this chapter, you looked at ADO.NET 3.5 and its Entity Data Model feature. You also
looked at the prerequisites you need to take full advantage of ADO.NET 3.5.

You also learned how schema abstraction works and how it will help you to achieve
loose coupling between a database and the data access code or Data Access Layer.

CHAPTER 20 ■ USING ADO.NET 3.5 465

9004ch20final.qxd 12/13/07 3:53 PM Page 465

9004ch20final.qxd 12/13/07 3:53 PM Page 466

■Special Characters
(hash) symbol, 83
% character, 51, 79
* (asterisk), 42, 74
[] (square bracket) characters, 54, 55, 79
[^] wildcard, 79
_ (underscore), 52–53, 79
< > operator, 78
< operator, 78
!< operator, 78
<= operator, 78
= operator, 78
!= operator, 78
> operator, 78
>= operator, 78

■Numbers
1:1 (one-to-one) cardinality ratio, 32
1:M (one-to-many) cardinality ratio, 32
1NF (first normal form), 37
2NF (second normal form), 37
3NF (third normal form), 37

■A
ACID (atomicity, consistency, isolation,

and durability) properties, 137
ActiveX Data Objects (ADO), 157, 159–162
Add button, 341
Add method, 232, 289, 342
Added state, 284
AddName form, 340
ADO (ActiveX Data Objects), 157, 159–162
ADO.NET, 157–188

architecture, 162–164
coding transactions in, 151–155
exceptions, 369–378
handling exceptions, 374
motivation behind, 158
moving from ADO to, 159–162

ODBC data provider, 177–187
creating Console Application with,

184–186
creating ODBC data source, 178–183

OLE DB data provider, 171–176
overview, 157–158
SQL Server data provider, 164–171

ADO.NET 3.5, 449–465
Entity Data Model, 450–465

creating, 453–460
overview, 451
schema abstraction, 462–465
working with, 451–453

entity framework, 449–450
overview, 449

AdventureWorks creation script,
installing, 9–10

AdventureWorks sample database,
installing, 9–13

aggregate functions, 56–58
AVG functions, 56
COUNT function, 57
MAX functions, 56
MIN functions, 56
SUM functions, 56

AllowNull property, 288
Alphabetical view, 330
ALTER PROCEDURE statement, 105
American National Standards Institute

(ANSI), 40
Anchor property, 335–340
AND operator, 80
ANSI (American National Standards

Institute), 40
API (application programming interface),

321
API functions, 139
API methods, 139
App_Data folder, 357

Index

467

9004idxfinal.qxd 12/13/07 3:49 PM Page 467

App.config file, 461
application development, 349–368

ASP.NET
web pages, 351
web sites, 354–362

Master Pages, 362–368
overview, 349
Visual Studio 2008 web site types,

351–354
file system web sites, 352
FTP web sites, 353
HTTP web sites, 353–354

web functionality, 349–350
application folders, 357
Application Name parameter, 197
application programming interface (API),

321
AS keyword, 97, 100
ASC keyword, 81
ASP.NET web sites, 354–362

application folders, 357
Split view, 359–362
web forms, 358–359
web pages, 351, 355–357
web.config file, 357–358

assemblies, 351
asterisk (*), 42, 74
atomicity, consistency, isolation, and

durability (ACID) properties, 137
AttachDBFileName parameter, 197
attribute centric formatting, 124
attributes, 37
autocommit transactions, 140
AVG functions, 56, 57

■B
batch-scoped transactions, 140–141
BEGIN TRANSACTION statement, 143,

147
BeginTransaction method, 151
BETWEEN operator, 79
binary data

binary data types, 403–404
overview, 403
retrieving images from database,

413–419

storing images in database, 404–413
loading image binary data from files,

405–409
rerunning program, 413

binary large objects (BLOBs), 404
binary operation, 61
bin\Release subdirectory, 314
bit data type, 250
Bitmap object, 419
BLOBs (binary large objects), 404
boundaries, transaction, 139
Boyce, Raymond F., 40
btnAdd_Click event, 341
btnSubmit_Click event template, 335
button controls, Windows Forms

Applications, 332–334
button3_Click method, 384

■C
C# stored procedures, 108–115

executing with no input parameters,
109–110

executing with parameters, 111–113
candidate key, 35
cardinality ratios, 27, 32
Cartesian product, 71
Cascading Style Sheets (CSS), 120, 324
catalog views, 425
catch block, 374
catch clauses, 374, 378
Categorized view, 329
Ch15MasterPage.master, 368
Chamberlin, Donald D., 40
ChangeDatabase method, 203
character large objects (CLOBs), 404
CheckBox controls, 322
child elements, 121
child forms, MDI, 344–346
child table, 32
city elements, 121
Class property, 379
Click event, 393, 396
click event handler, 418
CLOBs (character large objects), 404
Close() method, 171, 194, 239, 281
CLR (common language runtime), 1

■INDEX468

9004idxfinal.qxd 12/13/07 3:49 PM Page 468

cmd command, 236
cmdnon command, 226
cmdqry command, 226
Code view, 327–328
coding transactions, 143–155

in ADO.NET, 151–155
efficiency, 142
in T-SQL, 143–151

color, Windows Forms user interface
design, 324

column name indexers, 243
[Column] attribute, 442
ColumnName property, 259
columns, 28
Columns property, 259, 269
COM (Component Object Model) objects,

159
ComboBox controls, 322
command builders, 306–310
Command classes, 236
Command object, 461
command parameters, 227
CommandBehavior.SequentialAccess

enumeration, 462
commands, 233

command parameters, 227–233
creating, 209–215

assigning text to, 213–215
associating with connection, 211–213
with constructors, 210–211

executing, 215–219
ExecuteScalar method, 216–217
with multiple results, 219–222

executing statements, 222–226
CommandText method, 213
CommandText property, 213–214, 218,

221, 227, 232, 369, 461
Commit phase, 141
COMMIT statement, 139–140
COMMIT TRANSACTION statement, 143
committed, 139
common language runtime (CLR), 1
common table expressions (CTEs), 42–44
comparison operators, 78–80
Component Object Model (COM) objects,

159

composite key, 35
Conceptual Schema Definition Language

(CSDL), 451
concurrency, 136
<Configuration> tag, 358
conn.Close(); method, 281
Connect Timeout parameter, 197
connecting, 189–208

connection objects, 199–205
displaying connection information,

199–205
using connection strings in

connection constructor, 199
data provider Connection classes,

189–190
overview, 189
to SQL Server Express

with OleDbConnection, 205–208
with SqlConnection, 190–199

Connection classes, 189–190
connection constructor, 199
Connection interface, 190
connection objects, 199–205
connection pooling, 195, 199
Connection property, 211, 212, 218
connection string parameters, 197–198
connection strings, 192, 199
connections

associating commands with, 211–213
connecting to MSDE with

SqlConnection, 190
ConnectionString property, 169, 186, 199
consistency, 137, 323–324
Console Application

creating with ODBC data provider,
184–186

creating with OLE DB data provider,
172–175

creating with SQL Server data provider,
165–167

Console.WriteLine() method, 214, 219,
228

constructors, creating commands with,
210–211

consumers, 394–402
content, 121

■INDEX 469

9004idxfinal.qxd 12/13/07 3:49 PM Page 469

ContentPlaceHolder, 364, 368
control position, Windows Forms user

interface design, 323
controlinfo elements, 123
controls

events raised by, 393
Windows Forms Applications

button, 332–334
textbox, 332–334

converting relational data to XML,
123–130

FOR XML AUTO mode, 128–130
FOR XML RAW mode, 124–128

copying table structure, 86
correlation names, writing inner joins

using, 64
count attribute, 123
COUNT function, 45, 57, 58, 103
CREATE PROCEDURE statement, 97, 100
CREATE TABLE statement, 131
CreateCommand method, 111, 213
CROSS JOIN clause, 71
CSDL (Conceptual Schema Definition

Language), 451
CSS (Cascading Style Sheets), 120, 324
CTEs (common table expressions), 42–44
CURRENT_TIMESTAMP value function,

60
CurrentRows state, 284
cursor, 239
Cust element, 129
Customers class, 442
CustomerType attribute, 129
custs variable, 443

■D
DAL (Data Access Layer), 462
data. See database data
Data Access Layer (DAL), 462
data adapters

concurrency, 310–311
InsertCommand property, 300
overview, 268–269
populating datasets with, 270–274

propagating changes to data source,
289–310

command builders, 306–310
DeleteCommand property, 301–305
InsertCommand property, 295–301
UpdateCommand property, 289–295

UpdateCommand property, 289
data columns, 269
data integrity, 36
data provider Connection classes, 189–190
data providers (ADO.NET), 164
data readers, 160, 235–264

vs. datasets, 266
getting data about data, 251–255
getting data about tables, 256–259
looping through result set, 236–238
overview, 235–236
using column name indexers, 243
using multiple result sets with, 259–263
using ordinal indexers, 239–243
using typed accessor methods, 244–250

data rows, 269, 285
data source name (DSN), 177
Data Source parameter, 197
data source, propagating changes to,

289–310
command builders, 306–310
DeleteCommand property, 301–305
InsertCommand property, 295–301
UpdateCommand property, 289–295

data tables, 160, 162, 267
overview, 269
using without datasets, 315–318

data views, 281–285
database administrators (DBAs), 1, 452
database connectivity. See connections
database data, 73–94

deleting, 93–94
inserting, 88–90
overview, 73
retrieving, 73–83

simple queries, 74
sorting data, 80–83
WHERE clause, 76–80

■INDEX470

9004idxfinal.qxd 12/13/07 3:49 PM Page 470

SELECT INTO statements, 83–87
copying table structure, 86
creating tables, 83

updating, 91–92
database exceptions, 379–390

errors collection, 388–390
RAISERROR statement, 380–383
stored procedure error, 385–387

database life cycle, 31
database management system (DBMS), 28
Database property, 205
database queries, 39–72

aggregate functions, 56–58
AVG functions, 56
COUNT function, 57
MAX functions, 56
MIN functions, 56
SUM functions, 56

CTEs, 42–44
DATETIME functions, 59–60
GROUP BY clause, 44–45
joins, 61–71

inner, 61–67
outer, 67–71

overview, 39
PARTITION BY clause, 49–50
pattern matching, 50–56

% character, 51
[] (square bracket) characters, 54, 55
_ (underscore) character, 52–53

PIVOT operator, 46–48
QBE vs. SQL, 40
refining, 76–77
ROW_NUMBER() function, 48–49
simple, 41–42
writing enhanced, 81

DataColumn object, 256, 259
DataContext class, 443
DataLooper.cs file, 262
DataReader classes, 239
DataRow object, 256, 259
DataSet class, 265
DataSetName property, 270
datasets, 160, 162, 265

concurrency, 310–311
vs. data readers, 266

filtering/sorting in, 274–280
FilterSort vs. PopDataSet, 280–281
modifying data in, 285–289
overview, 266–268
populating with data adapters, 270–274
typed/untyped, 318–319
using data tables without, 315–318
XML and, 311–315

DataSource property, 203
DataTable class, 256
DataView class, 163
DATEPART function, 60
DATETIME argument, 60
DATETIME data type, 59
DATETIME functions, 59–60
DB2OLEDB provider, 172
DBAs (database administrators), 1, 452
DBMS (database management system), 28
debugging

connections to SQL Server, 195–196
ServerVersion property, 204
WorkstationId property, 204

declaration, XML, 123
Default.aspx page, 355
DefaultValue property, 269
DELETE statement, 93–94, 147, 149, 215,

226, 304, 308
DeleteCommand property, 301–306
Deleted state, 284
deleting

database data, 93–94
stored procedures, 115–116

denormalized database, 36
Depth property, 251
DESC keyword, 81
Descendents method, 447
Design view, 327–328
desktop databases, 30
Direction property, 114
disambiguation, 63
displaying

connection information, 199–205
definitions of stored procedures,

106–107
stored images, 413–417

■INDEX 471

9004idxfinal.qxd 12/13/07 3:49 PM Page 471

distributed transactions, in SQL Server
2005, 141

Dock property, 335–340
documents, XML, 121–122, 131–132
DoubleClick event, 393
driver, 177
DROP statement, 116
DSN (data source name), 177
durability, 137

■E
e parameter, 393
easy-to-read fonts, 324
element-centric formatting, 125–126
ELEMENTS directive, 128
ELEMENTS keyword, 126
EmployeeFirstName, 452
empty element tag, 122
Encrypt parameter, 198
end tag, 318
END TRANSACTION statement, 143
endImages method, 418–419
entity class, 442
Entity Data Model, 450–465

creating, 453–460
overview, 451
schema abstraction, 462–465
working with, 451–453

entity framework, 449–450
entity integrity, 36
EntityClient data provider, 450
EntityCommand object, 450, 461
EntityConnection command, 461
EntityConnection object, 450
EntityContainer element, 461
EntityContainer.EntitySet property, 461
EntityDataReader object, 450, 462
ErrorCode property, 379
errors collection, 388–390
Errors collection property, of SqlException

class, 388
event generators, 394–402
event handlers, 394–396
EventArgs base class, 392
event-driven applications, 391
EventHandler delegate, 392

events, 391–402
consumers, 394–402
creating event handlers, 394–396
design of, 392–393
generators, 394–402
KeyDown, 400–401
KeyPress, 401–402
KeyUp, 400–401
mouse movement, 396–399
overview, 391–392
properties of, 392
raised by controls, 393

exception handling, ADO.NET facilities
for, 374

exceptions, 369–390
ADO.NET, 369–378
database, 379–390

errors collection, 388–390
RAISERROR statement, 380–383
stored procedure error, 385–387

overview, 369
ExecuteNonQuery() method, 215,

222–224, 226, 384
ExecuteReader() method, 111, 169, 215,

219–221, 236, 238, 373, 462
ExecuteScalar() method, 216–217, 218
ExecuteXmlReader method, 215
executing

commands, 215–219
ExecuteScalar method, 216–217
with multiple results, 219–222

statements, 222–226
explicit transactions, 140
eXtensible HTML (XHTML), 120
eXtensible Stylesheet Language (XSL), 120
extracting datasets to XML files, 312–314

■F
FieldCount property, 251, 255
file system web sites, 352
File Transfer Protocol (FTP), 353
Fill() method, 273, 318
filter expression, 279
filtering in datasets, 274–280
FilterSort, 280–281
finally block, 169, 194, 239, 281, 374, 387
first normal form (1NF), 37

■INDEX472

9004idxfinal.qxd 12/13/07 3:49 PM Page 472

fonts, Windows Forms user interface
design, 324

FOR XML AUTO mode, 128–130
FOR XML clause, 123
FOR XML RAW ELEMENTS mode, 126
FOR XML RAW mode, 124–128

attribute-centric, 124
element-centric, 125–126
formatting, 128
renaming row element, 126–127

foreach loops, 259, 274
foreach statement, 443–444
foreign keys, 32, 35, 36
Form1.cs class, 326
Form1.cs tab, 328
FROM clause, 42, 60, 63, 70, 73, 82, 129,

443
FTP (File Transfer Protocol), 353
full functional dependence, 37
FULL OUTER JOIN clause, 71
functionally dependent key, 37

■G
generators, 394–402
GetBoolean accessor method, 250
GetChars() method, 429
GetDataTypeName() method, 255
GetDataTypeName property, 251
GETDATE function, 60
GetDecimal accessor method, 250
GetFieldType method, 255
GetFieldType property, 251
GetFilename method, 418
GetImage method, 418–419
GetInt16 accessor method, 250
GetName() method, 255, 256
GetName property, 251
GetOrdinal method, 255
GetOrdinal property, 251
GetRow() method, 418
GetSchemaTable method, 256, 270
GetSchemaTable property, 251
GetString accessor method, 250
GetString() method, 429
GetTable method, 443
GetTextFile method, 425
GetValue method, 222

granularity, 37
graphical user interface (GUI), 321
green bit assemblies, 15–16
GROUP BY clause, 44–45
groupby clause, 443
GUI (graphical user interface), 321

■H
hash (#) symbol, 83
HasRows property, 251
HelpLink property, 379
HTTP (Hypertext Transfer Protocol), 349

web browsers and, 350
web sites, 353–354

■I
icons, Windows Forms user interface

design, 325
IDE (integrated development

environment), 326, 392
IDENTITY column, 69, 289
IDENTITY property, 35, 83
IEnumerable<string> interface, 439
IEnumerable<T> interface, 434
if statement, 402, 418
IIS (Internet Information Services), 351
IL (Intermediate Language), 351
IMAGE data type, 404
Image member, 411
imagedata column, 410
images

retrieving from database, 413–419
storing in database, 404–413

loading image binary data from files,
405–409

rerunning program, 413
Windows Forms user interface design,

325
implicit transactions, 140
IN operator, 79
INFORMATION_SCHEMA view, 425
information_schema.tables view, 425
Initial Catalog parameter, 198
INNER JOIN argument, 61
inner joins, 61–67
InnerException property, 379

■INDEX 473

9004idxfinal.qxd 12/13/07 3:49 PM Page 473

input parameters
creating stored procedures with, 99–100
executing stored procedures with,

111–113
executing stored procedures without,

109–110
INSERT command, 411
INSERT statement, 69, 89–90, 147, 215,

226, 290, 299, 308
InsertCommand property, 295–301, 306
inserting database data, 88–90
installing

AdventureWorks creation script, 9–10
AdventureWorks sample database, 9–13
Northwind creation script, 5–6
Northwind sample database, 4–8
sample databases, 5–7, 9–11
SQL Server Management Studio

Express, 3–4
instnwnd.sql file, 7
integrated development environment

(IDE), 326, 392
Integrated Security = sspi parameter, 196
Integrated Security = true parameter, 196
Integrated Security parameter, 198, 208
interfaces, 187
Intermediate Language (IL), 351
International Organization for

Standardization (ISO), 40
Internet Information Services (IIS), 351
INTO clause, 84
IQueryable<T> interface, 434
IS NOT NULL operator, 80
IS NULL operator, 79
ISO (International Organization for

Standardization), 40
isolation, 137
isql tool, 8
Item property, 239
Items collection, 342

■J
JOIN operator, 67, 70
join specification, 61

joins, 38, 61–71
inner, 61–67

writing, 62
writing of three tables, 65
writing using correlation names, 64

natural joins, 61
outer, 67–71

adding employee with no orders, 68
LEFT OUTER JOIN, 69

junction table, 33

■K
KeyDown event, 393, 400–401
KeyPress event, 393, 401–402
keys, 34–35
KeyUp event, 393, 400–401

■L
Language Integrated Query. See LINQ
large objects (LOBs), 404
large-value data types, 403
LEFT OUTER JOINs, 69
LIKE operator, 50, 52, 56, 78
LineNumber property, 379
LINQ (Language Integrated Query), 1,

431–447, 449
architecture of, 433–435
LINQ to Objects, 437–439
LINQ to SQL, 439–445
LINQ to XML, 445–447
overview, 431–433
project structure, 435–437

LINQ to Objects, 437–439
LINQ to SQL, 439–445
LINQ to XML, 445–447
List< > type, 431
ListBox control, 322, 342
LoadImageFile method, 411
loading

image binary data from files, 405–409
text data from file, 419–423

LOBs (large objects), 404
local transactions, in SQL Server 2005,

139–141
autocommit, 140
batch-scoped, 140–141

■INDEX474

9004idxfinal.qxd 12/13/07 3:49 PM Page 474

explicit, 140
implicit, 140

logging, 94
loosely coupled, 158

■M
managed data providers, 160
many-to-many (M:M) cardinality ratio,

33–34
mapping cardinalities, 32–34
Mapping Schema Language (MSL), 451
markup languages, 119
MARS (Multiple Active Result Sets), 140
master database, 23, 98
Master Pages, 362–368
MAX functions, 56, 57
MDI forms. See Multiple Document

Interface (MDI) forms
MemoryStream method, 419
Message property, 379
MessageBox.Show method, 335
metadata retrieval, 106
metalanguage, 119
Microsoft Distributed Transaction

Coordinator (MS DTC), 141
Microsoft Intermediate Language (MSIL),

351
Microsoft .NET Framework, versions,

15–16
Microsoft SQL Server Desktop Engine

(MSDE), 2, 190
Microsoft Visual Studio 2008, 16–21
Microsoft.Jet.OLEDB.4.0 provider, 172
Microsoft.SqlServer.Server namespace,

161
MIN functions, 56, 57
Mixed transactions, 138
M:M (many-to-many) cardinality ratio,

33–34
model database, 23
ModifiedCurrent state, 284
ModifiedOriginal state, 284
ModifyDataTable.cs file, 301
money data type, 250
more command, 317
mouse movement events, 396–399

MouseClick event, 393
MouseDoubleClick event, 393
MouseDown event, 393
MouseEnter event, 393, 400
MouseHover event, 394
MouseLeave event, 393, 400
MouseMove event, 393
MouseUp event, 393
MouseWheel event, 393
MS DTC (Microsoft Distributed

Transaction Coordinator), 141
MSDAORA provider, 172
MSDASQL provider, 172
msdb database, 23
MSDE (Microsoft SQL Server Desktop

Engine), 2, 190
MSDN Subscriptions site, 2
MSIL (Microsoft Intermediate Language),

351
MSL (Mapping Schema Language), 451
Multiple Active Result Sets (MARS), 140
Multiple Document Interface (MDI)

forms, 342–347
creating child form, 344–346
creating parent form with menu bar,

343–344

■N
name element, 121
Name property, 442
named parameters, 227
names array, 439
natural joins, 61
.NET base class library, 160–162
.NET Framework, versions, 15–16
net start mssql$sqlexpress command, 7,

196
Network Library parameter, 198
New Project dialog box, 325
New Web Site dialog box, 353
NewDataSet property, 270
<NewDataSet> element, 315
NewRow method, 289
NextResult() method, 259
None state, 284
normal forms, 36

■INDEX 475

9004idxfinal.qxd 12/13/07 3:49 PM Page 475

normalization, 36–37
Northwind creation script, installing, 5–6
Northwind sample database, installing,

4–11
NorthwindEntitiesConnectionString

command, 461
NOT LIKE operator, 50
NOT operator, 80
NTEXT data type, 404
n-tier programming model, 158
Number property, 379
nvarchar data type, 250

■O
Object type, 393
ODBC (Open Database Connectivity), 159
Odbc class, 186
ODBC data provider, 177–187

creating Console Application with,
184–186

creating ODBC data source, 178–183
ODBC data source, creating with ODBC

data provider, 178–183
Odbc namespace, 177
OdbcCommand class, 177
OdbcConnection class, 183
OdbcDataAdapter class, 184
OdbcDataReader class, 177
OdbcError class, 177
OdbcParameter class, 177
OdbcTransaction class, 177
OLAP (online analytical processing), 2
OLE DB data provider, 171–176
OleDb namespace, 171
OleDbCommand class, 171
OleDbConnection class, 164, 171
OleDbConnection object, 208
OleDbDataAdapter class, 171
OleDbDataReader class, 171
OleDbError class, 171
OleDbParameter class, 171
OleDbTransaction class, 171
OLTP (online transaction processing), 2
one-to-many (1:M) cardinality ratio, 32
one-to-one (1:1) cardinality ratio, 32
online analytical processing (OLAP), 2
online transaction processing (OLTP), 2

Open Database Connectivity (ODBC), 159
Open() method, 169, 193, 194
<operator> operator, 76
optimistic concurrency, 311
OR operator, 80
ORDER BY clause, 45, 70, 80, 105, 280
orderby clause, 443
OrderHeader element, 129
ordinal indexers, 239–243
OrdinalIndexer.cs file, 243
OriginalRows state, 284
osql tool, 8
outer joins, 67–71

adding employees with no orders, 68
LEFT OUTER JOINs, 69

OUTER keyword, 71
output parameters

creating stored procedures with,
100–101

executing stored procedures with,
111–113

OVER clause, 50

■P
Packet Size parameter, 198
PadLeft method, 242
parameter marker, 228
parameters, 95, 168
Parameters collection property, 232
parameters, command, 227–233
parent element, 121
parent forms, MDI, 343–344
parent table, 32
PARTITION BY clause, 49–50
Password parameter, 198
passwords, SqlConnection, 196
pattern matching, 50–56

% character, 51
[] (square bracket) characters, 54
[^] (square bracket and caret)

characters, 55
_ (underscore) character, 52–53

Persist Security Info parameter, 198
PersistAdds.cs file, 306
Person.Contact table, 57
pessimistic concurrency, 311, 314
PIVOT operator, 46–48

■INDEX476

9004idxfinal.qxd 12/13/07 3:49 PM Page 476

PopDataSet method, 280
PopDataSet, vs. FilterSort, 280–281
PopDataSet.cs file, 315
populating datasets with data adapters,

270–274
post-events, 392
predicates, combining, 80
pre-events, 392
Prepare method, 228
Prepare method, SqlCommand class, 228
Prepare phase, 141
primary keys, 32, 35
Procedure property, 379
<productname> element, 318
<products> element, 315
productstable.xml file, 317, 446
Program.cs file, 347
Project File property value, 331
Properties window, 328–330

Alphabetical view, 330
Categorized view, 329

provider parameter, 176
publisher model, 392

■Q
QBE (Query by Example), 40
queries. See database queries
query body, 443
Query by Example (QBE), 40
query expression, 443

■R
RAISERROR statement, 380–383
RAW mode, 126
RDBMS (relational database management

system), 28, 29
Read() method, 170, 222, 239, 255
reader object, 462
ReadXml() method, 311
ReadXmlSchema method, 311
RecordsAffected property, 251
red bit assemblies, 15–16
referential integrity, 35–36
refining data with data views, 281–283
refining queries, 76–77
RefreshSchema method, 306
relational algebra, 34

relational calculus, 34
relational data, converting to XML,

123–130
FOR XML AUTO mode, 128–130
FOR XML RAW mode, 124–128

relational database, 32, 34
relational database management system

(RDBMS), 28, 29
relational databases

benefits of using, 29
data integrity, 36
defined, 27–28
desktop databases, 30
keys, 34–35
life cycle, 31
mapping cardinalities, 32–34
normalization, 36–37
overview, 27
reasons for using, 28
server databases, 30
vs. spreadsheets, 28

relational model, 28, 34
renaming stored procedures, 107–108
resource managers, 141
result sets, 215

looping through, 236–238
multiple, using with data reader,

259–263
Retrieval transactions, 138
retrieving

data from text columns, 425–430
database data, 73–83

simple queries, 74
sorting data, 80–83
WHERE clause, 76–80

images, 413–419
XML documents, 131–132

RETURN statement, 103
return values, 95
ROLLBACK statement, 140
ROLLBACK TRANSACTION statement,

143
rolled back, 136
root element, 121
row element, 124, 126–127
row empty element, 126

■INDEX 477

9004idxfinal.qxd 12/13/07 3:49 PM Page 477

ROW_NUMBER() function, 48–49, 50
rows, 28

inserting, 88–89
updating, 91

Rows property, 259, 269–270, 289

■S
sample databases, installing, 5–7, 9–11
scalar, 37
schema, 120, 256
schema abstraction, Entity Data Model,

462–465
SDI (Single Document Interface), 343
second normal form (2NF), 37
security, SqlConnection, 196–197
select clause, 443
SELECT INTO statements, 83–87

copying table structure, 86
creating tables, 83

SELECT list, 73, 103
Select method, 279
SELECT query, 42, 83, 87, 123
SELECT statement, 42, 47
SelectCommand property, 273, 278, 289,

306, 310
SEQUEL (Structured English Query

Language), 40
server databases, 30
server parameter, 208
Server property, 379
ServerVersion property, 204
SET keyword, 92
simplicity, 322–323
Single Document Interface (SDI), 343
smallint type, 250
Solution Explorer, 327
sorting data, 80–83

writing enhanced queries, 81
sorting, in datasets, 274–280
Source property, 379
SourceVersion property, 294, 300
sp_ prefix, 98
sp_DBException_1 stored procedure, 383
sp_dboption function, 139
sp_helptext statement, 107
sp_Orders_By_EmployeeId2 stored

procedure, 111

sp_rename stored procedure, 107
sp_Select_All_Employees stored

procedure, 103
sp_Select_Employees_Details stored

procedure, 115
Split view, 359–362
spreadsheets, vs. relational databases, 28
SQL (Structured Query Language), 40

LINQ to SQL, 439–445
vs. QBE, 40
queries, 215
SUM function, 45

Sql class, 186
SQL Server 2005

distributed transactions in, 141
local transactions in, 139–141

autocommit, 140
batch-scoped, 140–141
explicit, 140
implicit, 140

SQL Server, creating stored procedures in,
96–97

SQL Server data provider, 164–171
SQL Server Express

connecting to with OleDbConnection,
205–208

connecting to with SqlConnection,
190–199

connection pooling, 199
connection string parameters,

197–198
debugging connections, 195–196
security/passwords, 196–197

SQL Server Express (SSE), 190
SQL Server Management Studio Express

(SSMSE), 15, 22–24
installing, 3–4

SqlClient data reader, 236
SqlClient namespace, 164–165
sqlcmd command-line utility, 6
sqlcmd program, 7
SqlCommand class, 165
SqlCommand command, 209, 461
SqlCommand data reader, 238
SqlCommandBuilder, 306–308
SqlConnection class, 164–165, 190, 203,

204

■INDEX478

9004idxfinal.qxd 12/13/07 3:49 PM Page 478

SqlConnection command, 461
SqlConnection interface, 190
SqlConnection object, 190, 199, 208
SqlDataAdapter class, 165
SqlDataReader class, 165, 219
SqlDataReader class,

System.Data.SqlClient namespace,
222

SqlDataReader data reader, 236
SqlDataReader object, 222
SqlDbType enumeration, 232, 411
SQLEndTran function, 139
SqlError class, 165
SqlException catch clause, 387
SqlException class, 165, 194, 388
SqlException method, 374
SqlException object, 383
SQLOLEDB provider, 172
SqlParameter class, 165
SqlTransaction class, 165
square bracket ([]) characters, 54, 55, 79
SSDL (Store Schema Definition

Language), 451
SSE (SQL Server Express), 190
SSMSE (SQL Server Management Studio

Express), 15
StackTrace property, 379
start tag, 315
startup form, Windows Forms

Applications, 341–342
state, 350
State property, 204, 379
statements, executing, 222–226
<states> tag, 121
Store Schema Definition Language

(SSDL), 451
stored procedure errors, 385–387
stored procedures, 95–117

in C#, 108–115
executing with no input parameters,

109–110
executing with parameters, 111–113

creating, 95–103
with input parameters, 99–100
with output parameters, 100–101
in SQL Server, 96–97

deleting, 115–116
displaying definitions of, 106–107
modifying, 103–105
overview, 95
renaming, 107–108

storing
data as XML, 120–121
images, 404–413

loading image binary data from files,
405–409

rerunning program, 413
XML documents, 131–132

StreamReader method, 425
Structured English Query Language

(SEQUEL), 40
Structured Query Language. See SQL
Submit button, 323, 333
subscriber model, 392
SUM functions, 45, 56, 57, SQL
System assembly, 161
System.Collections.Generic assembly, 433
System.Collections.Generic namespace,

21
System.Data namespace, 21, 161, 163, 168,

187, 310, 444
System.Data.Common namespace, 161
System.Data.DataSet class, 310, 318
System.Data.DataSet interface, 265
System.Data.DataTable object, 256, 267
System.Data.DataViewRowState

enumeration, 284
System.Data.Design namespace, 161
System.Data.dll file, 157
System.Data.IDataAdapter interface, 310
System.Data.IDataReader interface, 235,

265
System.Data.IDbCommand interface, 209
System.Data.IDbConnection interface,

189
System.Data.IDbTransaction interface,

151
System.Data.LINQ assembly, 433
System.Data.Linq namespace, 434
System.Data.Linq.Mapping assembly, 433
System.Data.Odbc namespace, 161, 177

■INDEX 479

9004idxfinal.qxd 12/13/07 3:49 PM Page 479

System.Data.OleDb namespace, 161, 164,
171, 208

System.Data.OracleClient namespace, 161
System.Data.Sql namespace, 161
System.Data.SqlClient classes, 164
System.Data.SqlClient interface, 190
System.Data.SqlClient namespace, 161,

164, 187, 444
System.Data.SqlClient.SqlException

exception, 379
System.Data.SqlServerCe namespace, 161
System.Data.SqlTypes namespace, 161,

165
System.Data.SqlTypes type, 244
System.InvalidOperationException

exception, 374
System.LINQ assembly, 433
System.Linq namespace, 21
System.Reflection classes, 437
System.SystemException exception, 379
System.Text namespace, 21
System.XML.LINQ assembly, 433
System.Xml.Linq namespace, 434

■T
[Table] attribute, 442
TableN method, 273
tables, 28

creating to store XML, 130
creating with SELECT INTO statements,

83
getting data about, 256–259

Tables property, 278
TargetSite property, 379
tempdb database, 23
text, assigning to commands, 213–215
text data, 419–430

loading from file, 419–423
overview, 403
retrieving data from text columns,

425–430
text data types, 403–404

TEXT data type, 404
Text property, 335
textbox controls, Windows Forms

Applications, 332–334

third normal form (3NF), 37
this keyword, 347
Thunder, 1
Toolbox tab, 326
transaction coordinator, 141
transaction manager, 141
Transaction property, 155
transactions, 135–156

ACID properties, 137
coding, 143–155

in ADO.NET, 151–155
efficiency, 142
in T-SQL, 143–151

defined, 135–136
design, 138
distributed in SQL Server 2005, 141
local in SQL Server 2005, 139–141

autocommit, 140
batch-scoped, 140–141
explicit, 140
implicit, 140

overview, 135
specifying boundaries, 139
state, 138
T-SQL statements allowed in, 139
when to use, 136

Transact-SQL. See T-SQL
TRUNCATE TABLE statement, 94
try block, 169, 239, 281, 294, 300, 384
try statement, 193
T-SQL (Transact-SQL)

coding transactions in, 143–151
when both operations fail, 150–151
when first operation fails, 149
when second operation fails, 150

date and time functions, 59
statements allowed in transactions, 139

two-phase commit, 141
txtFnam method, 335
txtLname method, 335
type command, 317
typed accessor methods, 244–250
typed datasets, 318–319

■INDEX480

9004idxfinal.qxd 12/13/07 3:49 PM Page 480

■U
Unchanged state, 284
underscore (_) character, 51, 52–53, 79
UNION JOIN clause, 71
<unitprice> element, 318
untyped datasets, 318–319
update comment, 294, 300
Update method, 289, 295
Update() method, 305, 311
UPDATE statement, 91, 93, 140, 215, 290,

308
Update transactions, 138
UpdateCommand property, 289–295, 306
updating

database data, 91–92
rows, 91

User ID parameter, 198
user interface design, Windows Forms

best practices, 322–325
principles, 322

user-defined transaction, 140
user-specified transaction, 140
using directives, 21

■V
var type, 443
VARBINARY(MAX) data type, 405, 411
version attribute, 123
Visual Studio 2008, 15

obtaining, 2–3
web site types, 351–354

file system web sites, 352
FTP web sites, 353
HTTP web sites, 353–354

Void type, 393

■W
wa.MdiParent=this; line, 347
WCF (Windows Communication

Foundation), 1
web application, 349
web browsers, and HTTP, 350
web forms, 358–359
web functionality, 349–350
web pages, ASP.NET, 351, 355–357
web servers, 350

web sites
ASP.NET, 354–362

application folders, 357
Split view, 359–362
web forms, 358–359
web pages, 355–357
web.config file, 357–358

file system, 352
FTP, 353
HTTP, 353–354

web.config file, 357–358
WF (Windows Workflow Foundation), 1
WHERE clause, 52, 55, 76–80, 82, 91, 93,

100, 279, 443, 444, 445
combining predicates, 80
comparison operators, 78–80
refining queries, 76–77

while loop, 239
WinApp.cs file, 331
WinApp.csproj file, 331
Windows Communication Foundation

(WCF), 1
Windows Forms Applications, 321–347

adding new forms, 340–342
Anchor property, 335–340
Code view, 327–328
controls, 331–335

button, 332–334
textbox, 332–334

Design view, 327–328
Dock property, 335–340
Multiple Document Interface (MDI)

forms, 342–347
creating child form, 344–346
creating parent form with menu bar,

343–344
overview, 321–322
setting properties, 330–331
user interface design, 322–325

Windows Presentation Foundation
(WPF), 1

Windows Workflow Foundation (WF), 1
Workstation ID parameter, 198
WorkstationId property, 204, 208
WPF (Windows Presentation

Foundation), 1

■INDEX 481

9004idxfinal.qxd 12/13/07 3:49 PM Page 481

WriteXml() method, 311
WriteXML project directory, 314
WriteXmlSchema() method, 311, 312

■X
XElement statement, 447
XHTML (eXtensible HTML), 120
XML, 119–133

benefits of storing data as, 120–121
converting relational data to, 123–130

FOR XML AUTO mode, 128–130
FOR XML RAW mode, 124–128

datasets and, 311–315
defined, 119–120
LINQ to XML, 445–447
overview, 119
reasons to use, 120
support for in ADO.NET, 158
xml data type, 130–133

creating tables to store XML, 130
storing/retrieving documents,

131–132
XML declaration, 123
XML documents, 121–122

xml data type, 130–133
creating tables to store XML, 130
storing/retrieving XML documents,

131–132
XML declaration, 123
XML Schema Definition language (XSD),

120
XML vocabulary, 120
xp_ prefix, 98
XSD (XML Schema Definition language),

120
.xsd file, 319
xsd.exe utility, 319
XSL (eXtensible Stylesheet Language), 120
XSLT (XSL Transformations), 120

■Y
YEAR function, 60

■Z
Zloof, Moshé M., 40

■INDEX482

9004idxfinal.qxd 12/13/07 3:49 PM Page 482

	Beginning C# 2008 Databases
	Contents at a Glance
	Contents
	About the Authors
	About the Technical Reviewer
	Acknowledgments
	Introduction
	Who This Book Is For
	What This Book Covers
	How This Book Is Organized
	How to Download the Sample Code

	Getting Your Tools
	Obtaining Visual Studio 2008
	Installing SQL Server Management Studio Express
	Installing the Northwind Sample Database
	Installing the Northwind Creation Script
	Creating the Northwind Sample Database

	Installing the AdventureWorks Sample Database
	Installing the AdventureWorks Creation Script
	Creating the AdventureWorks Sample Database

	Summary

	Getting to Know Your Tools
	Microsoft .NET Framework Versions and the Green Bit and Red Bit Assembly Model
	Using Microsoft Visual Studio 2008
	Try It Out: Creating a Simple Console Application Project Using Visual Studio 2008
	How It Works

	Using SQL Server Management Studio Express
	Summary

	Getting to Know Relational Databases
	What Is a Database?
	Choosing Between a Spreadsheet and a Database
	Why Use a Database?
	Benefits of Using a Relational Database Management System
	Comparing Desktop and Server RDBMS Systems
	Desktop Databases
	Server Databases

	The Database Life Cycle
	Mapping Cardinalities
	Understanding Keys
	Primary Keys
	Foreign Keys

	Understanding Data Integrity
	Entity Integrity
	Referential Integrity

	Normalization Concepts
	Drawbacks of Normalization
	Summary

	Writing Database Queries
	Comparing QBE and SQL
	Beginning with Queries
	Try It Out: Running a Simple Query
	How It Works

	Common Table Expressions
	Try It Out: Creating a CTE
	How It Works

	GROUP BY Clause
	Try It Out: Using the GROUP BY Clause
	How It Works

	PIVOT Operator
	Try It Out: Using the PIVOT Operator
	How It Works

	ROW_NUMBER() Function
	Try It Out: Using the ROW_NUMBER() Function
	How It Works

	PARTITION BY Clause
	Try It Out: Using the PARTITION BY Clause
	How It Works

	Pattern Matching
	Try It Out: Using the % Character
	How It Works
	Try It Out: Using the _ (Underscore) Character
	How It Works
	Try It Out: Using the [] (Square Bracket) Characters
	How It Works
	Try It Out: Using the [^] (Square Bracket and Caret) Characters
	How It Works

	Aggregate Functions
	Try It Out: Using the MIN, MAX, SUM, and AVG Functions
	How It Works
	Try It Out: Using the COUNT Function
	How It Works

	DATETIME Functions
	Try It Out: Using T-SQL Date and Time Functions
	How It Works

	Joins
	Inner Joins
	Try It Out: Writing an Inner Join
	How It Works
	Try It Out: Writing an Inner Join Using Correlation Names
	How It Works
	Try It Out: Writing an Inner Join of Three Tables
	How It Works

	Outer Joins
	Try It Out: Adding an Employee with No Orders
	How It Works
	Try It Out: Using LEFT OUTER JOIN
	How It Works

	Other Joins

	Summary

	Manipulating Database Data
	Retrieving Data
	Try It Out: Running a Simple Query
	How It Works
	Using the WHERE Clause
	Try It Out: Refining Your Query
	How It Works
	Using Comparison Operators in a WHERE Clause
	Combining Predicates

	Sorting Data
	Try It Out: Writing an Enhanced Query
	How It Works

	Using SELECT INTO Statements
	Try It Out: Creating a New Table
	How It Works
	Try It Out: Using SELECT INTO to Copy Table Structure
	How It Works

	Inserting Data
	Try It Out: Inserting a New Row
	How It Works

	Updating Data
	Try It Out: Updating a Row
	How It Works

	Deleting Data
	Summary

	Using Stored Procedures
	Creating Stored Procedures
	Try It Out: Working with a Stored Procedure in SQL Server
	How It Works
	Try It Out: Creating a Stored Procedure with an Input Parameter
	How It Works
	Try It Out: Creating a Stored Procedure with an Output Parameter
	How It Works

	Modifying Stored Procedures
	Try It Out: Modifying the Stored Procedure
	How It Works

	Displaying Definitions of Stored Procedures
	Try It Out: Viewing the Definition of Your Stored Procedure
	How It Works

	Renaming Stored Procedures
	Try It Out: Renaming a Stored Procedure
	How It Works

	Working with Stored Procedures in C#
	Try It Out: Executing a Stored Procedure with No Input Parameters
	How It Works
	Try It Out: Executing a Stored Procedure with Parameters
	How It Works

	Deleting Stored Procedures
	Try It Out: Deleting a Stored Procedure
	How It Works

	Summary

	Using XML
	Defining XML
	Why XML?
	Benefits of Storing Data As XML
	Understanding XML Documents
	Understanding the XML Declaration
	Converting Relational Data to XML
	Using FOR XML RAW
	Try It Out: Using FOR XML RAW (Attribute Centric)
	How It Works
	Try It Out: Using FOR XML RAW (Element Centric)
	How It Works
	Try It Out: Renaming the row Element
	How It Works
	Observations About FOR XML RAW Formatting

	Using FOR XML AUTO
	Try It Out: Using FOR XML AUTO
	How It Works
	Observations About FOR XML AUTO Formatting

	Using the xml Data Type
	Try It Out: Creating a Table to Store XML
	How It Works
	Try It Out: Storing and Retrieving XML Documents
	How It Works

	Summary

	Understanding Transactions
	What Is a Transaction?
	When to Use Transactions
	Understanding ACID Properties
	Transaction Design
	Transaction State
	Specifying Transaction Boundaries
	T-SQL Statements Allowed in a Transaction
	Local Transactions in SQL Server 2005
	Distributed Transactions in SQL Server 2005
	Guidelines to Code Efficient Transactions
	How to Code Transactions
	Coding Transactions in T-SQL
	Try It Out: Coding a Transaction in T-SQL
	How It Works
	Try It Out: What Happens When the First Operation Fails
	How It Works
	Try It Out: What Happens When the Second Operation Fails
	How It Works
	Try It Out: What Happens When Both Operations Fail
	How It Works

	Coding Transactions in ADO.NET
	Try It Out: Working with ADO.NET Transactions
	How It Works

	Summary

	Getting to Know ADO.NET
	Understanding ADO.NET
	The Motivation Behind ADO.NET
	Moving from ADO to ADO.NET
	ADO.NET Isn’t a New Version of ADO
	ADO.NET and the .NET Base Class Library

	Understanding ADO.NET Architecture
	Working with the SQL Server Data Provider
	Try It Out: Creating a Simple Console Application Using the SQL Server Data Provider
	How It Works

	Working with the OLE DB Data Provider
	Try It Out: Creating a Simple Console Application Using the OLE DB Data Provider
	How It Works

	Working with the ODBC Data Provider
	Creating an ODBC Data Source
	Try It Out: Creating a Simple Console Application Using the ODBC Data Provider
	How It Works

	Data Providers Are APIs
	Summary

	Making Connections
	Introducing the Data Provider Connection Classes
	Connecting to SQL Server Express with SqlConnection
	Try It Out: Using SqlConnection
	How It Works
	Debugging Connections to SQL Server
	Security and Passwords in SqlConnection
	How to Use SQL Server Security
	Connection String Parameters for SqlConnection
	Connection Pooling

	Improving Your Use of Connection Objects
	Using the Connection String in the Connection Constructor
	Displaying Connection Information
	Try It Out: Displaying Connection Information
	How It Works

	Connecting to SQL Server Express with OleDbConnection
	Try It Out: Connecting to SQL Server Express with the OLE DB Data Provider
	How It Works

	Summary

	Executing Commands
	Creating a Command
	Try It Out: Creating a Command with a Constructor
	How It Works
	Associating a Command with a Connection
	Try It Out: Setting the Connection Property
	How It Works

	Assigning Text to a Command
	Try It Out: Setting the CommandText Property
	How It Works

	Executing Commands
	Try It Out: Using the ExecuteScalar Method
	How It Works

	Executing Commands with Multiple Results
	Try It Out: Using the ExecuteReader Method
	How It Works

	Executing Statements
	Try It Out: Using the ExecuteNonQuery Method
	How It Works

	Command Parameters
	Try It Out: Using Command Parameters
	How It Works

	Summary

	Using Data Readers
	Understanding Data Readers in General
	Try It Out: Looping Through a Result Set
	How It Works
	Using Ordinal Indexers
	Try It Out: Using Ordinal Indexers
	How It Works

	Using Column Name Indexers
	Using Typed Accessor Methods
	Try It Out: Using Typed Accessor Methods
	How It Works

	Getting Data About Data
	Try It Out: Getting Information About a Result Set with a Data Reader
	How It Works

	Getting Data About Tables
	Try It Out: Getting Schema Information
	How It Works

	Using Multiple Result Sets with a Data Reader
	Try It Out: Handling Multiple Result Sets
	How It Works

	Summary

	Using Datasets and Data Adapters
	Understanding the Object Model
	Datasets vs. Data Readers
	A Brief Introduction to Datasets
	A Brief Introduction to Data Adapters
	A Brief Introduction to Data Tables, Data Columns, and Data Rows

	Working with Datasets and Data Adapters
	Try It Out: Populating a Dataset with a Data Adapter
	How It Works
	Filtering and Sorting in a Dataset
	Try It Out: Dynamically Filtering and Sorting Data in a Dataset
	How It Works

	Comparing FilterSort to PopDataSet
	Using Data Views
	Try It Out: Refining Data with a Data View
	How It Works

	Modifying Data in a Dataset
	Try It Out: Modifying a Data Table in a Dataset
	How It Works

	Propagating Changes to a Data Source
	UpdateCommand Property
	Try It Out: Propagating Dataset Changes to a Data Source
	How It Works

	InsertCommand Property
	Try It Out: Propagating New Dataset Rows to a Data Source
	How It Works

	DeleteCommand Property
	Try It Out: Propagating New Dataset Rows to a Data Source
	How It Works

	Command Builders
	Try It Out: Using SqlCommandBuilder
	How It Works

	Concurrency
	Using Datasets and XML
	Try It Out: Extracting a Dataset to an XML File
	How It Works

	Using Data Tables Without Datasets
	Try It Out: Populating a Data Table with a Data Adapter
	How It Works

	Understanding Typed and Untyped Datasets
	Summary

	Building Windows Forms Applications
	Understanding Windows Forms
	User Interface Design Principles
	Best Practices for User Interface Design
	Simplicity
	Position of Controls
	Consistency
	Aesthetics
	Color
	Fonts
	Images and Icons

	Working with Windows Forms
	Understanding the Design and Code Views
	Sorting Properties in the Properties Window
	Categorized View
	Alphabetical View

	Setting Properties of Solutions, Projects, and Windows Forms
	Working with Controls
	Try It Out: Working with the TextBox and Button Controls
	How It Works

	Setting Dock and Anchor Properties
	Dock Property
	Anchor Property
	Try It Out: Working with the Dock and Anchor Properties
	How It Works

	Adding a New Form to the Project
	Try It Out: Adding a New Form to the Windows Project
	Try It Out: Setting the Startup Form
	How It Works

	Implementing an MDI Form
	Try It Out: Creating an MDI Parent Form with a Menu Bar
	Try It Out: Creating an MDI Child Form and Running an MDI Application
	How It Works

	Summary

	Building ASP.NET Applications
	Understanding Web Functionality
	The Web Server
	The Web Browser and HTTP

	Introduction to ASP.NET and Web Pages
	Understanding the Visual Studio 2008 Web Site Types
	File System Web Site
	FTP Web Site
	HTTP Web Site

	Layout of an ASP.NET Web Site
	Web Pages
	Application Folders
	The web.config File
	Try It Out: Working with a Web Form
	Try It Out: Working with Split View

	Using Master Pages
	Try It Out: Working with a Master Page

	Summary

	Handling Exceptions
	Handling ADO.NET Exceptions
	Try It Out: Handling an ADO.NET Exception (Part 1)
	How It Works
	Try It Out: Handling an ADO.NET Exception (Part 2)
	How It Works

	Handling Database Exceptions
	Try It Out: Handling a Database Exception (Part 1): RAISERROR
	How It Works
	Try It Out: Handling a Database Exception (Part 2): Stored Procedure Error
	How It Works
	Try It Out: Handling a Database Exception (Part 3): Errors Collection
	How It Works

	Summary

	Working with Events
	Understanding Events
	Properties of Events
	Design of Events
	Common Events Raised by Controls
	Event Generator and Consumer
	Try It Out: Creating an Event Handler
	How It Works
	Try It Out: Working with Mouse Movement Events
	How It Works
	Try It Out: Working with the Keyboard’s KeyDown and KeyUp Events
	How It Works
	Try It Out: Working with the Keyboard’s KeyPress Event
	How It Works

	Summary

	Working with Text and Binary Data
	Understanding SQL Server Text and Binary Data Types
	Storing Images in a Database
	Try It Out: Loading Image Binary Data from Files
	How It Works
	Rerunning the Program

	Retrieving Images from a Database
	Try It Out: Displaying Stored Images
	How It Works

	Working with Text Data
	Try It Out: Loading Text Data from a File
	How It Works
	Retrieving Data from Text Columns
	Try It Out: Retrieving Text Data
	How It Works

	Summary

	Using LINQ
	Introduction to LINQ
	Architecture of LINQ
	LINQ Project Structure
	Using LINQ to Objects
	Try It Out: Coding a Simple LINQ to Objects Query
	How It Works

	Using LINQ to SQL
	Try It Out: Coding a Simple LINQ to SQL Query
	How It Works
	Try It Out: Using the where Clause
	How It Works

	Using LINQ to XML
	Try It Out: Coding a Simple LINQ to XML Query
	How It Works

	Summary

	Using ADO.NET 3.5
	Understanding ADO.NET 3.5 Entity Framework
	Understanding the Entity Data Model
	Working with the Entity Data Model
	Try It Out: Creating an Entity Data Model
	How It Works
	Try It Out: Schema Abstraction Using an Entity Data Model

	Summary

	Index

