
Beginning Visual C#

Karli Watson
David Espinosa
Zach Greenvoss
Christian Nagel
Jacob Hammer Pedersen
Jon D. Reid
Matthew Reynolds
Morgan Skinner
Eric White

Wrox Press Ltd. ©

© 2002 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or transmitted in any
form or by any means, without the prior written permission of the publisher, except in the case of brief
quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the accuracy of the
information. However, the information contained in this book is sold without warranty, either express or

implied. Neither the authors, Wrox Press, nor its dealers or distributors will be held liable for any damages
caused or alleged to be caused either directly or indirectly by this book.

Beginning Visual C# is a revised edition of Beginning C# (Wrox Press, ISBN 1-86100-498-2).

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,
Birmingham, B27 6BH, UK

Printed in the United States
ISBN 1-86100-758-2

Trademark Acknowledgments

Wrox has endeavored to provide trademark information about all the companies and products mentioned in
this book by the appropriate use of capitals. However, Wrox cannot guarantee the accuracy of this information.

Credits

Authors
Karli Watson
David Espinosa
Zach Greenvoss
Christian Nagel
Jacob Hammer Pedersen
Jon D. Reid
Matthew Reynolds
Morgan Skinner
Eric White

Authors (1st Edition)
Marco Bellinaso
Ollie Cornes

Commissioning Editor (1st Edition)
Julian Skinner

Managing Editor
Louay Fatoohi

Technical Editors
Mankee Cheng
Matthew Cumberlidge
Douglas Paterson

Project Manager
Claire Robinson

Author Agent
Charlotte Smith

Production Coordinator
Sarah Hall

Cover
Natalie O'Donnell

Indexers
Andrew Criddle
Michael Brinkman (1st Edition)
Fiona Murray (1st Edition)

Technical Reviewers
Cristian Darie
Karli Watson

Technical Reviewers (1st Edition)
Kenneth Avellino
Ramesh Balaji
Christopher Blexrud
Brandon Bohling
Richard Bonneau
Paul Brazdzionis
Beth Breidenbach
Andreas Christiansen
Steve Danielson
Scott Hanselman
Ben Hickman
Mark Horner
Deepak Kumer
Ron Landers
Don Lee
Shaun Mcaravey
Angela Mallet
Jason Montgomery
Johan Normén
Aruna Panangipally
Phil Powers-DeGeorge
Jawaharlal Puvvala
Matthew Reynolds
Scott Robertson
Kristy Saunders
Keyur Shah
Helmut Watson
Donald Xie

Proofreaders
Fiona Berryman
Chris Smith

About the Authors

Karli Watson

Karli Watson is an in-house author for Wrox Press with a penchant for multicolored clothing. He started out
with the intention of becoming a world famous nanotechnologist, so perhaps one day you might recognize his
name as he receives a Nobel Prize. For now, though, Karli's computing interests include all things mobile, and
upcoming technologies such as C#. He can often be found preaching about these technologies at
conferences, as well as after hours in drinking establishments. Karli is also a snowboarding enthusiast, and
wishes he had a cat.

Thanks go to the Wrox team, both for helping me get into writing, and then dealing with the
results when I started. Finally, and most importantly, thanks to my wife, Donna, for continuing to
put up with me.

David Espinosa

David Espinosa is a Senior Programmer and owner of Espinosa Consulting. Born in Barcelona, Spain, David
moved to the United States at an early age. He attended the University of Nevada and received a Bachelor of
Arts degree in Political Science.

David concentrates on Microsoft technologies and tools. In 1999, he worked with Microsoft as a Lead Author
for the Desktop Visual FoxPro Certification Exam. Recently, David has been focusing on e-commerce and
data integration solutions and works for the a manufacturing company based out of Reno, Nevada.

I would like to dedicate my work to Mom and Dad, who sacrificed so much so I could have a
better chance.

I would also like to dedicate my work to my three favorite girls in the world: Cynthia, Jayme, and
Emily. Thank you for all your support.

Zach Greenvoss

Zach Greenvoss, MCSD is a Senior Consultant with Magenic Technologies, a Microsoft Gold Certified
consulting firm in Northern California. He specializes in middle-tier architecture and implementation, utilizing
various technologies including COM+, MSMQ, BizTalk, and XML. Before Magenic, Zach worked at the
Defense Manpower Data Center in Monterey California, where he developed client-server applications for the
Department of Defense. Zach and his wife Amanda enjoy globetrotting, caving, gaming, and playing with their
two cats. He can be reached at zachg@magenic.com.

I would like to thank my wife Amanda for all her patience, love, and understanding of the time
required to both work and write. I would also like to thank Kay Rigg for his mentorship and
guidance: without you I would not be where I am today. Finally, I am proud to say that I am a
CSU Monterey Bay graduate - Go Otters!

Christian Nagel

Christian Nagel works as a trainer and consultant for Global Knowledge, the largest independent information
technology training provider. Christian started his computing career with PDP 11 and VAX/VMS platforms.
Since then he has used a variety of languages and platforms, including Pascal, C, X-Windows, Motif, C++,
Java, COM/ATL, COM+, and currently C# and .NET. With his profound knowledge of Microsoft technologies -
he's certified as Microsoft Certified Trainer (MCT), Solution Developer (MCSD), and Systems Engineer
(MCSE) - he enjoys teaching others programming and architecting distributed solutions. As founder of the .
NET User Group Austria and as MSDN Regional Director he is speaker at European conferences (TechEd,
VCDC), and is contacted by many developers for coaching, consulting, and teaching customized courses and
boot camps. You will find Christian's web site at http://christian.nagel.net/.

I would like to thank the people at Wrox who got me started writing books, and Christian Seidler
who supports my activities at Global Knowledge. Special thanks are also sent to the people at
Microsoft, primarily to Alex Holy in Vienna for his organization of Visual Studio events and for his
support of the .NET user community. Finally, and most importantly, I would like to thank my wife
Elisabeth for her love and support.

Jacob Hammer Pedersen

mailto:zachg@magenic.com
http://christian.nagel.net/

Jacob Hammer Pedersen is a systems developer at ICL Invia - a member of the Fujitsu Group.

He pretty much started programming when he was able to spell the word 'BASIC', which, incidentally is the
language he's primarily using today. He started programming the PC in the early 90s, using Pascal, but soon
changed his focus to C++, which still holds his interest. In the mid 90s his focus changed again, this time to
Visual Basic. In the summer of 2000 he discovered C# and has been happily exploring it ever since.

Primarily working on the Microsoft platforms, other expertise includes MS Office development, COM, COM+
and Visual Basic .Net.

A Danish citizen, he works and lives in Aarhus, Denmark.

Jon D. Reid

Jon is the Chief Technology Officer for Micro Data Base Systems, Inc. (www.mdbs.com), maker of the
TITANIUM Database Engine and GURU Expert System tool. His primary current activity is developing
database tools for the Microsoft .NET environment. He was editor for the C++ and Object Query Language
(OQL) components of the Object Data Management Group (ODMG) standard, and has co-authored other
Wrox titles including ADO.NET Programmer's Reference and Professional SQL Server 2000 XML. When not
working, writing, or bicycling, he enjoys spending time with his wife and two young sons. Jon would like to
thank his family and the team at Wrox for their support and encouragement.

Matthew Reynolds

After working with Wrox Press on a number of projects since 1999, Matthew is now an in-house author for
Wrox Press writing about and working with virtually all aspects of Microsoft .NET. He's also a regular
contributor to Wrox's ASPToday, C#Today and Web Services Architect. He lives and works in North London
and can be reached on matthewr@wrox.com.

Thanks very much to the following in their support and assistance in writing this book: Len,
Edward, Darren, Alex, Jo, Tim, Clare, Martin, Niahm, Tom, Ollie, Amir, Gretchen, Ben, Brandon,
Denise, Rob, Waggy, Mark, Elaine, James, Zoe, Faye, and Sarah. And, also thanks to my new
friends at Wrox, which include Charlotte, Laura, Karli, Dom S, Dom L, Ian, Kate, Joy, Pete,
Helen, John, Dave, Adam, Craig, Jake, Julian, and Paul.

Morgan Skinner

I started my computing at a tender age on a ZX80 at school, where I was underwhelmed by some code my
teacher had put together and decided I could do better in assembly language. After getting hooked on Z80
(much better than those paltry three registers in 6502 land!) I graduated through the school ZX81s to my own
ZX Spectrum.

Since then I've used all sorts of languages and platforms, including VAX Macro Assembler (way cool!),
Pascal, Modula2, Smalltalk, x86 assembly language, PowerBuilder, C/C++, Visual Basic, and currently C#.
I've managed to stay in the same company for nearly 12 years, largely down to the diversity of the job and a
good working environment.

In my spare time I'm a bit of a DIY nut, I spend lots of money on bicycles, and 'relax' by fighting weeds on my
allotment.

I can be reached by e-mail at morgan.skinner@totalise.co.uk.

Eric White

Eric White is an independent consultant, specializing in managing offshore development with some hotshot

http://www.mdbs.com/
mailto:matthewr@wrox.com
mailto:morgan.skinner@totalise.co.uk

developers in India. Having written well over a million lines of code, Eric has over 20 years experience in
building Management Information Systems, accounting systems, and other types of fat-client and n-tier
database applications. Eric has particular interest in Object-Oriented design methodologies, including use
case analysis, UML, and design patterns. After years of working with too many varieties of technologies to list,
he is currently specializing in C#, VB.NET, ASP.NET, ADO.NET, XML, COM+, GDI+, SQL Server, and other
Microsoft technologies.

He loves meeting new people and traveling to far-flung places, and is equally at ease wandering around the
streets of Bangalore, London, and San Francisco. When he is not in front of a computer, he loves hiking in the
mountains of Colorado and India. He can be reached at eric@ericwhite.com.

mailto:eric@ericwhite.com

Beginning Visual C#

byKarli Watsonet al. ISBN:0764543822

Wrox Press 2003 (903 pages)

By using this book, you’ll come to understand the
fundamentals of the C# language and learn to program the .
NET Framework; the book will help you succeed—from your
first steps in the language up to where you are ready to
write real world C# applications.

Table of Contents Back Cover

Table of Contents

Beginning Visual C#

Introduction

Chapter 1 - Introducing C#

Chapter 2 - Writing a C# Program

Chapter 3 - Variables and Expressions

Chapter 4 - Flow Control

Chapter 5 - More About Variables

Chapter 6 - Functions

Chapter 7 - Debugging and Error Handling

Chapter 8 - Introduction to Object-Oriented Programming

Chapter 9 - Defining Classes

Chapter 10 - Defining Class Members

Chapter 11 - More About Classes

Chapter 12 - Events

Chapter 13 - Using Windows Form Controls

Chapter 14 - Advanced Windows Forms Features

Chapter 15 - Using Common Dialogs

Chapter 16 - Introduction to GDI+

Chapter 17 - Deploying Windows Applications

Chapter 18 - Getting At Your Data

Chapter 19 - Data Access with ADO.NET

Chapter 20 - Working With Files

Chapter 21 - .NET Assemblies

Chapter 22 - Attributes

Chapter 23 - ASP.NET Applications

Chapter 24 - Web Services

Appendix A - Setting the PATH Environment Variable

Appendix B - Installing MSDE

Appendix C - Further References

Index

http://www.wrox.com/

Beginning Visual C#

byKarli Watsonet al. ISBN:0764543822

Wrox Press 2003 (903 pages)

By using this book, you’ll come to understand the
fundamentals of the C# language and learn to program the .
NET Framework; the book will help you succeed—from your
first steps in the language up to where you are ready to
write real world C# applications.

Table of Contents Back Cover

Back Cover
With Beginning Visual C#, you will learn how to use Visual C# from first principles.
Visual C# is an object-oriented programming language, designed specifically for
programming Microsoft’s new platform, the .NET Framework. You’ll quickly and
easily learn how to write Visual C# code and create your own applications—for
both Windows and the Web.

This book will be an indispensable guide as you learn to write C# programs,
gradually explaining the key concepts of Visual C# and .NET as your skills develop,
with exercises at the end of chapters to test yourself. Starting with a thorough
tutorial of the Visual C# language and object-oriented programming, you will
progress to learn how to apply your understanding to programming the .NET
Framework.

What you need to know

Beginning Visual C# is ideal for beginners with little background in programming,
or relatively inexperienced programmers who want to move from a language that
doesn’t support object-oriented programming techniques. The book moves at a
fast enough pace that if you have programmed in another language, then you will
still find the book valuable.

What you will learn from this book

With clear explanations and hands-on examples, you will learn about the following:

● The C# language from the ground up
● Designing and writing object-oriented programs
● .NET programming with Visual C#
● Working with Windows forms and controls
● Creating graphics, and printing
● Accessing databases and files
● Writing web applications and web services in Visual C#

http://www.wrox.com/

Introduction
byKarli Watsonet al.

Wrox Press 2003

Introduction

Why should I learn C#? If you've bought this book, you've probably answered that question for yourself
anyway, but it's worth reiterating. C# is Microsoft's brand new language, designed for its brand new platform,
the .NET Framework. As such, C# is likely to be the language of choice for developing applications in the
Microsoft world. That alone would make C# a great choice as a first language to learn. But, perhaps more
importantly, C# is a very elegantly designed language, which encourages good programming practice (in
particular with regard to object-oriented programming). C# is descended directly from the powerful but
complex C++ language, and inherits most of the power without the complexity. C# has also been deeply
influenced by other languages, including Java and Delphi, and its fans believe that it has been able to take the
best of these languages - while avoiding their mistakes.

This book has been designed to teach you C# from first principles, without assuming any prior programming
experience. We'll give you a thorough grounding in the syntax of the C# language itself, and then we'll look at
the most common different types of applications you can build with C# - Windows applications, ASP.NET web
applications, and web services. It's important to stress from the outset that C# programming cannot be
separated from .NET programming (in fact, the C# compiler comes as part of the .NET Framework), and
everything you do in C# will rely very heavily on the .NET Framework. Therefore, this book goes beyond the
mere syntax of the C# language and shows you how to use the .NET classes from within C# to build real
applications. As a result, once you've learned C#, you won't have too much difficulty picking up other .NET
languages, such as Visual Basic .NET or Managed C++.

Who Is This Book For?

This book is aimed at relatively inexperienced programmers who want to learn how to build applications using
C#. Developers who have a little experience with earlier languages such as Visual Basic will also find this
book helpful as a hands-on tutorial to C#. This book is for everyone who's tired of C# books that assume
you've got ten-plus years' experience of writing C++ programs!

Important This is a Wrox Beginning… series book, so we will aim to teach you everything you need to
know from scratch. If you already have experience of programming in C++, VB, or Java, you
may be more comfortable starting at a somewhat quicker pace with the natural follow-up title
Professional C# 2nd Edition (Wrox Press, ISBN 1-86100-704 3).

This book will be ideal for two types of beginner:

● You're a beginner to programming and you've chosen C# as your first language. As we said earlier, C#
is an excellent language to learn programming through, and this book will help you through the challenge
of learning some strange new concepts!

● You have some experience programming in another language, but you're a beginner to .NET
programming. .NET represents a revolution in programming concepts, and the fundamental importance
of object-oriented programming (OOP) to .NET can be confusing if you're not familiar with this technique.
If you're coming to C# from a language which doesn't support (or only partially supports) OOP, you will
appreciate the entire section dedicated to OOP in this book.

Introduction
byKarli Watsonet al.

Wrox Press 2003

What Does This Book Cover?

This book was written using Version 1.0 of the .NET Framework, released in January 2002, and Version 1.0 of
Visual Studio .NET, released in February 2002. These versions are the release versions of these products,
and no major changes are expected in the near future.

The book is divided into seven main sections:

Getting Started

In the first two chapters we quickly introduce the major concepts you need to understand before writing a C#
application, and then go on to create a very simple C# program using Visual Studio .NET to do most of the
hard work for us.

C# Language Basics

7 introduce the basic building blocks of the C# language. This section looks at how we store data in C#
variables, how we control the flow of our program with conditional branches and loops, and how we structure
code with functions.

Programming with Objects

Objects and the principles of object-oriented programming (OOP) play a fundamental role in C#, so 12 will
introduce the notion of OOP and the philosophy behind it, and look at how we use objects within our C# code.

Working with Windows Forms

The first sections concentrate mostly on creating simple console applications in order to give you a thorough
grounding in the C# language itself. In this section, we go beyond those to look in detail at how we create real
Windows applications in C#.

Programming on the .NET Framework

As already mentioned, almost everything we do in C# is totally dependent on the .NET Framework. This
section looks at some important topics where we need to use classes from the .NET Framework, including
accessing databases and working with files on the local machine or network. We also take a more detailed
look at two features specific to .NET programming – assemblies (the actual unit of deployment of a .NET
program), and attributes (a feature of .NET that allows us to provide additional information about parts of our
program).

C# and the Web

Once we've come so far, we'll take a quick look at a whole new topic, but one that's integral to the whole idea
of the .NET Framework – programming for the Internet. In this last section of the book we look at ASP.NET
and web services. ASP.NET allows us to write dynamic web pages in C#, and web services enable
applications to exchange information across the Internet.

Important Most of the chapters in the book have a series of exercises at the end, to help you as you learn
C#. The answers to these exercises can be found on the P2P web site at http://p2p.wrox.
com. We'll tell you how to register for P2P at the end of this introduction.

http://p2p.wrox.com/
http://p2p.wrox.com/

Introduction
byKarli Watsonet al.

Wrox Press 2003

What Do I Need to Use This Book?

Obviously, the most important thing you need to write C# programs is the C# compiler itself. This comes with
the .NET Framework SDK, which can be downloaded from Microsoft's site the following URL:
http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/MSDN-
FILES/027/000/976/msdncompositedoc.xml

This is the current link, but may be subject to change. (We've broken the link up in two lines here for
formatting purposes – the URL should be entered as one continuous string). Be warned that this currently
weighs in at a hefty 131 MB, so it will take a while to download! This runs on Windows 2000, Windows XP,
and Windows NT4, and contains all you need to write all types of C# applications. A minimal version of the .
NET Framework can be installed on Windows 95, 98, and ME, but this installation does not include many of
the tools you will need.

However, in this book we will be making heavy use of the Visual Studio .NET development environment,
which simplifies writing C# code in many ways, but is particularly useful for writing Windows applications
because it contains a visual form designer. If you are not using Visual Studio .NET, then you will not be able
to get full value from this book.

Version 1.0 of Visual Studio .NET is available in three editions (Professional, Enterprise Developer, and
Enterprise Architect), any of which will do for the code in this book. Full information is available at http://
msdn.microsoft.com/vstudio/, including the system requirements. Like the .NET Framework SDK,
Visual Studio.NET also runs on Windows 2000, XP, and NT4.

Alternatively, and if you are on a tighter budget, you might like to check out Microsoft Visual C# .NET
Standard Edition, a C# only developer environment has many of the features of Visual Studio .NET – but not
all of them. Because of the feature limitations of Visual C# .NET Standard Edition compared to Visual Studio .
NET, not every aspect of the book can be used from Visual C# .NET Standard Edition, and we've highlighted
these areas. If you are using Visual C# .NET Standard Edition, remember that the C# compiler has not been
restricted – this is separate from the development environment – it is only features of the development
environment that are limited.

Important This book is intended for users of Visual Studio .NET or Visual C# .NET Standard Edition.

http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/MSDN-FILES/027/000/976/msdncompositedoc.xml
http://msdn.microsoft.com/downloads/default.asp?URL=/code/sample.asp?url=/MSDN-FILES/027/000/976/msdncompositedoc.xml
http://msdn.microsoft.com/vstudio/
http://msdn.microsoft.com/vstudio/

Introduction
byKarli Watsonet al.

Wrox Press 2003

Conventions

We've used a number of different styles of text and layout in this book to help differentiate between the
different kinds of information. Here are examples of the styles we used and an explanation of what they mean.

Code has several styles. If it's a word that we're talking about in the text - for example, when discussing a for
(...) loop, it's in this font. If it's a block of code that can be typed as a program and run, then it's also in a
gray box:
for (int i=0; i<10; i++)
{
 Console.WriteLine(i);
}

Sometimes we'll see code in a mixture of styles, like this:
for (int i=0; i<10; i++)
{
 Console.Write("The next number is: ");
 Console.WriteLine(i);
}

In cases like this, the code with a white background is code we are already familiar with; the line highlighted in
gray is a new addition to the code since we last looked at it.

Advice, hints, and background information comes in this type of font.

Important Important pieces of information come in boxes like this.

Bullets appear indented, with each new bullet marked as follows:

● Important words are in a bold type font.

● Words that appear on the screen, or in menus like the File or Window, are in a similar font to the one you
would see on a Windows desktop.

● Keys that you press on the keyboard like Ctrl and Enter, are in italics.

Introduction
byKarli Watsonet al.

Wrox Press 2003

Customer Support

We always value hearing from our readers, and we want to know what you think about this book: what you
liked, what you didn't like, and what you think we can do better next time. You can send us your comments,
either by returning the reply card in the back of the book, or by e-mail to feedback@wrox.com. Please be sure
to mention the book title in your message.

How to Download the Sample Code for the Book

When you visit the Wrox site, http://www.wrox.com/, simply locate the title through our Search facility or by
using one of the title lists. Click on Download in the Code column, or on Download Code on the book's detail
page.

When you click to download the code for this book, you are presented with a page with three options:

● If you are already a member of the Wrox Developer Community (if you have already registered on
ASPToday, C#Today, or Wroxbase), you can log in with your usual username and password combination
to receive your code.

● If you are not already a member, you are asked if you would like to register for free code downloads. In
addition you will also be able to download several free articles from Wrox Press. Registering will allow us
to keep you informed about updates and new editions of this book.

● The third option is to bypass registration completely and simply download the code.

Registration for code download is not mandatory for this book, but should you wish to register for your code
download, your details will not be passed to any third party. For more details, you may wish to view our terms
and conditions, which are linked from the download page.

Once you reach the code download section, you will find that the files that are available for download from our
site have been archived using WinZip. When you have saved the files to a folder on your hard drive, you will
need to extract the files using a de-compression program such as WinZip or PKUnzip. When you extract the
files, the code is usually extracted into chapter folders. When you start the extraction process, ensure your
software (WinZip, PKUnzip, etc.) is set to use folder names.

Errata

We've made every effort to make sure that there are no errors in the text or in the code. However, no one is
perfect and mistakes do occur. If you find an error in one of our books, like a spelling mistake or a faulty piece
of code, we would be very grateful for feedback. By sending in errata you may save another reader hours of
frustration, and of course, you will be helping us provide even higher quality information. Simply e-mail the
information to support@wrox.com, where your information will be checked and, if correct, posted to the errata
page for that title, or used in subsequent editions of the book.

To find errata on the web site, go to http://www.wrox.com/, and simply locate the title through our Advanced

mailto:feedback@wrox.com
http://www.wrox.com/
mailto:support@wrox.com
http://www.wrox.com/

Search or title list. Click on the Book Errata link, which is below the cover graphic on the book's detail page.

E-mail Support

If you wish to directly query a problem in the book with an expert who knows the book in detail then e-mail
support@wrox.com, with the title of the book and the last four numbers of the ISBN in the subject field of the e-
mail. A typical e-mail should include the following things:

● The title of the book, last four digits of the ISBN (7582), and page number of the problem in the
Subject field

● Your name, contact information, and the problem in the body of the message

We won't send you junk mail. We need the details to save your time and ours. When you send an e-mail
message, it will go through the following chain of support:

● Customer Support - Your message is delivered to our customer support staff, who are the first people to
read it. They have files on most frequently asked questions and will answer anything general about the
book or the web site immediately.

● Editorial - Deeper queries are forwarded to the technical editor responsible for that book. They have
experience with the programming language or particular product, and are able to answer detailed
technical questions on the subject.

● The Authors - Finally, in the unlikely event that the editor cannot answer your problem, they will forward
the request to the author. We do try to protect the author from any distractions to their writing; however,
we are quite happy to forward specific requests to them. All Wrox authors help with the support on their
books. They will e-mail the customer and the editor with their response, and again all readers should
benefit.

The Wrox Support process can only offer support to issues that are directly pertinent to the content of our
published title. Support for questions that fall outside the scope of normal book support, is provided via the
community lists of our http://p2p.wrox.com/ forum.

p2p.wrox.com

For author and peer discussion join the P2P mailing lists. Our unique system provides programmer to
programmer™ contact on mailing lists, forums, and newsgroups, all in addition to our one-to-one e-mail
support system. If you post a query to P2P, you can be confident that it is being examined by the many Wrox
authors and other industry experts who are present on our mailing lists. At p2p.wrox.com you will find a number
of different lists that will help you, not only while you read this book, but also as you develop your own
applications. Particularly appropriate to this book are the beginning_c_sharp and c_sharp (for more advanced
discussion) lists in the .NET category of the web site.

To subscribe to a mailing list just follow these steps:

1. Go to http://p2p.wrox.com/

2. Choose the appropriate category from the left menu bar

3. Click on the mailing list you wish to join

4. Follow the instructions to subscribe and fill in your e-mail address and password

mailto:support@wrox.com
http://p2p.wrox.com/
http://p2p.wrox.com/

5. Reply to the confirmation e-mail you receive

6. Use the subscription manager to join more lists and set your e-mail preferences

Why This System Offers the Best Support

You can choose to join the mailing lists or you can receive them as a weekly digest. If you don't have the time,
or facilities, to receive the mailing list, then you can search our online archives. Junk and spam mails are
deleted, and your own e-mail address is protected by the unique Lyris system. Queries about joining or
leaving lists, and any other general queries about lists, should be sent to listsupport@p2p.wrox.com.

Exercise Answers

The answers to the exercises in this book can also be found on the P2P web site. To view these, you will
need to register for the Beginning C# exercises discussion list. Once you've registered with P2P follow these
steps:

1. Click on the Exercises link on the P2P home page (in the list of Categories on the left-hand side)

2. Enter your e-mail address to log in to P2P.

3. Select Beginning C# (csharp_beginners_exercises) from the Subscribe to an exercises discussion list textbox,
and click the Subscribe button next to it.

4. Enter and confirm a password to use for this list (or leave these boxes blank if you don't want to use a
password) and select the subscription type you want (message by message, daily digest, etc.), and click
on Subscribe.

5. You will now be sent a confirmation e-mail; reply to this e-mail to confirm your subscription, and P2P will
now send another e-mail to confirm that you are subscribed to the list.

6. Return to the Exercises page (you may need to log in again), and click on the csharp_beginners_exercises
link.

7. You will now be presented with a list of all the chapters with exercises, and you can click on any of the
chapter names to view the exercises for that chapter. For each exercise, there is a link that will take you
straight to the answer!

mailto:listsupport@p2p.wrox.com

Chapter 1 - Introducing C#
byKarli Watsonet al.

Wrox Press 2003

Chapter 1: Introducing C#

Overview

Welcome to the first chapter of the first section of this book. Over the course of this section we'll be taking a
look at the basic knowledge required to get up and running. In this first chapter we'll be looking at an overview
of C# and the .NET Framework, and we'll consider what these technologies are, the motivation behind using
them, and how they relate to each other.

We'll start with a general discussion of the .NET Framework. This is a new technology, and contains many
concepts that are tricky to get to grips with at first (mainly because the Framework introduces a "new way of
doing things" to application development). This means that the discussion will, by necessity, cover many new
concepts in a short space of time. However, a quick look at the basics is essential to understand how to
program in C#, so this is a necessary evil. Later on in the book we'll revisit many of the topics covered here in
more detail.

After this discussion, we'll move on to a simple description of C# itself, including its origins and similarities to C
++.

Finally, we'll look at the main tool that will be used throughout this book: Visual Studio .NET (VS).

Chapter 1 - Introducing C#
byKarli Watsonet al.

Wrox Press 2003

What is the .NET Framework?

The .NET Framework is a new and revolutionary platform created by Microsoft for developing applications.

The most interesting thing about this statement is how vague I've been - but there are good reasons for this.
For a start, note that I didn't say "developing applications on the Windows operating system". Although the
first release of the .NET Framework runs on the Windows operating system, future plans include versions that
will work on others, such as FreeBSD, Linux, Macintosh, and even personal digital assistant (PDA) class
devices. One of the key motivational forces behind this technology is its intention as a means of integrating
disparate operating systems.

In addition, the definition of the .NET Framework given above includes no restriction on the type of
applications that are possible. This is because there is no restriction - the .NET Framework allows the creation
of Windows applications, web applications, web services, and pretty much anything else you can think of.

The .NET Framework has been designed such that it can be used from any language. This includes the
subject of this book, C#, as well as C++, Visual Basic, JScript, and even older languages such as COBOL. In
order for this to work, .NET-specific versions of these languages have also appeared: Managed C++, Visual
Basic .NET, JScript .NET, J#, and so on - and more are being released all the time. Not only do all of these
have access to the .NET Framework, they can also communicate with each other. It is perfectly possible for
C# developers to make use of code written by Visual Basic .NET programmers, and vice versa.

All of this provides a hitherto unthinkable level of versatility, and is part of what makes using the .NET
Framework such an attractive prospect.

What's in the .NET Framework?

The .NET Framework consists primarily of a gigantic library of code that we use from our client languages
(such as C#) using object-oriented programming (OOP) techniques. This library is categorized into different
modules - we use portions of it depending on the results we want to achieve. For example, one module
contains the building blocks for Windows applications, another for network programming, and another for web
development. Some modules are divided into more specific sub-modules, such as a module for building web
services within the module for web development.

The intention here is that different operating systems may support some or all of these modules, depending
on their characteristics. A PDA, for example, would include support for all the core .NET functionality, but is
unlikely to require some of the more esoteric modules.

Part of the .NET Framework library defines some basic types. A type is a representation of data, and
specifying some of the most fundamental of these (such as "a 32-bit signed integer") facilitates interoperability
between languages using the .NET Framework. This is called the Common Type System (CTS).

As well as supplying this library, the framework also includes the .NET Common Language Runtime (CLR),
which is responsible for maintaining the execution of all applications developed using the .NET library.

How do I Write Applications using the .NET Framework?

Writing an application using the .NET Framework means writing code (using any of the languages that
support the framework) using the .NET code library. In this book we'll be using VS for our development, which
is a powerful integrated development environment that supports C# (as well as managed and unmanaged C+
+, Visual Basic .NET, and some others). The advantage of this environment is the ease with which .NET
features may be integrated into our code. The code that we will create will be entirely C#, but will use the .
NET Framework throughout, and we'll make use of the additional tools in VS where necessary.

In order for C# code to execute it must be converted into a language that the target operating system
understands, known as native code. This conversion is called compiling code, an act that is performed by a
compiler. Under the .NET Framework, however, this is a two-stage process.

MSIL and JIT

When we compile code that uses the .NET Framework library, we don't immediately create operating system-
specific native code. Instead, we compile our code into Microsoft Intermediate Language (MSIL) code. This
code isn't specific to any operating system, and isn't specific to C#. Other .NET languages - for example,
Visual Basic .NET - also compile to this language as a first stage. This compilation step is carried out by VS
when we use it to develop C# applications.

Obviously, in order to execute an application more work is necessary. This is the job of a Just-In-Time (JIT)
compiler, which compiles MSIL into native code that is specific to the OS and machine architecture being
targeted. Only at this point can the OS execute the application. The "just-in-time" part of the name here
reflects the fact that MSIL code is only compiled as and when it is needed.

In the past it has often been necessary to compile your code into several applications, each of which targets a
specific operating system and CPU architecture. Often, this was a form of optimization (in order to get code to
run faster on an AMD chipset, for example), but at times it was critical (for applications to work on both Win9x
and WinNT/2000 environments, for example). This is now unnecessary, as JIT compilers (as their name
suggests) use MSIL code, which is independent of the machine, operating system, and CPU. Several JIT
compilers exist, each targeting a different architecture, and the appropriate one will be used to create the
native code required.

The beauty of all this is that it requires a lot less work on our part - in fact we can just forget about system-
dependent details, and concentrate on the more interesting functionality of our code.

Assemblies

When we compile an application, the MSIL code created is stored in an assembly. Assemblies include both
executable application files that we can run directly from Windows without the need for any other programs
(these have a .exe file extension), and libraries for use by other applications (which have a .dll extension).

As well as containing MSIL, assemblies also contain meta information (that is, information about the
information contained in the assembly, also known as metadata) and optional resources (additional data
used by the MSIL, such as sound files and pictures). The meta information allows assemblies to be fully self-
descriptive. We need no other information in order to use an assembly, meaning that we avoid situations such
as failing to add required data to the system registry and so on, which was often a problem when developing
using other platforms.

This means that deploying applications is often as simple as copying the files into a directory on a remote
computer. Since no additional information is required on the target systems, we can just run an executable file
from this directory and (assuming the .NET CLR is installed) away we go.

Of course, we won't necessarily want to include everything required to run an application in one place. We

might write some code that performs tasks required by multiple applications. In situations like this, it is often
useful to place this reusable code in a place accessible to all applications. In the .NET Framework, this is the
Global Assembly Cache (GAC). Placing code in this cache is simple - we just place the assembly containing
the code in the directory containing this cache.

Managed Code

The role of the CLR doesn't end once we have compiled our code to MSIL and a JIT compiler has compiled
this to native code. Code written using the .NET Framework is managed when it is executed (this stage is
usually referred to as being at "runtime"). This means that the CLR looks after our applications, by managing
memory, handling security, allowing cross-language debugging, and so on. By contrast, applications that do
not run under the control of the CLR are said to be unmanaged and certain languages such as C++ can be
used to write such applications, that, for example, access low-level functions of the operating system.
However, in C# we can only write code that runs in a managed environment. We will make use of the
managed features of the CLR and allow .NET itself to handle any interaction with the operating system.

Garbage Collection

One of the most important features of managed code is the concept of garbage collection. This is the .NET
method of making sure that the memory used by an application is freed up completely when the application is
no longer in use. Prior to .NET this has mostly been the responsibility of programmers, and a few simple
errors in code could result in large blocks of memory mysteriously disappearing as a result of being allocated
to the wrong place in memory. This usually meant a progressive slowdown of your computer followed by a
system crash.

.NET garbage collection works by inspecting the memory of your computer every so often, and removing
anything from it that is no longer needed. There is no set timeframe for this, it might happen thousands of
times a second, once every few seconds, or whenever, but you can rest assured that it will happen.

There are some implications for programmers here. Since this work is done for you at an unpredictable time
applications have to be designed with this in mind. Code that requires a lot of memory to run should tidy itself
up rather than waiting for garbage collection to happen, but this isn't anything like as tricky as it sounds.

Fitting it Together

Before moving on, let's summarize the steps required to create a .NET application as discussed above:

1. Application code is written using a .NET-compatible language such as C#:

2. This code is compiled into MSIL, which is stored in an assembly:

3. When this code is executed (either in its own right if it is an executable, or when it is used from other
code) it must first be compiled into native code using a JIT compiler:

4. The native code is executed in the context of the managed CLR, along with any other running
applications or processes:

Linking

There is one additional point to note concerning the above process. The C# code that compiles into MSIL in
step 2 needn't be contained in a single file. It is possible to split application code across multiple source code
files, which are then compiled together into a single assembly. This process is known as linking, and is
extremely useful. The reason for this is that it is far easier to work with several smaller files that one enormous
one. You can separate out logically related code into an individual file, so that it can be worked on
independently, and then practically forgotten about when completed. This also makes it much easier to locate
specific pieces of code when you need them, and enables teams of developers to divide up the programming
burden into manageable chunks, where individuals can "check out" pieces of code to work on without risking
damage to otherwise satisfactory sections, or sections that other people are working on.

Chapter 1 - Introducing C#
byKarli Watsonet al.

Wrox Press 2003

What is C#?

C#, as mentioned above, is one of the languages that can be used to create applications that will run in the .
NET CLR. It is an evolution of the C and C++ languages and has been created by Microsoft specifically to
work with the .NET platform. As it is a recent development, the C# language has been designed with
hindsight, taking into account many of the best features from other languages while clearing up their problems.

Developing applications using C# is simpler than using C++, as the language syntax is simpler. However, C#
is a powerful language and there is little we might want to do in C++ that we can't do in C#. Having said that,
those features of C# which parallel the more advanced features of C++, such as directly accessing and
manipulating system memory, can only be carried out using code marked as unsafe. This advanced
programmatic technique is potentially dangerous (hence its name), as it is possible to overwrite system-critical
blocks of memory with potentially catastrophic results. For this reason, and others, we are not going to cover
this topic in this book.

At times, C# code is slightly more verbose than C++. This is a consequence of C# being a type-safe
language (unlike C++). In layman's terms, this means that once some data has been assigned to a type, it
cannot subsequently transform itself into another unrelated type. Consequently, there are strict rules that must
be adhered to when converting between types, which means that we will often need to write more code to
carry out the same task in C# as we might do in C++, but we get the benefit that code is more robust and
debugging is simpler – .NET can always track what type a piece of data is at any time. In C# we therefore
may not be able to do things such as "take the region of memory 4 bytes into this data and 10 bytes long and
interpret it as X", but that's not necessarily a bad thing.

C# is just one of the languages available for .NET development, but in my opinion it is certainly the best. It has
the advantage of being the only language designed from the ground-up for the .NET Framework and may be
the principal language used in versions of .NET that are ported to other operating systems. To keep
languages such as Visual Basic .NET as similar as possible to their predecessors yet compliant with the CLR,
certain features of the .NET code library are not fully supported. By contrast C# is able to make use of every
feature that the .NET Framework code library has to offer.

What Kind of Applications Can I Write with C#?

The .NET Framework has no restrictions on the types of application possible, as we discussed above. C#
uses the framework, and so also has no restrictions on possible applications. However, let's look at a few of
the more common application types:

● Windows Applications – These are applications such as Microsoft Office, which have a familiar Windows
look and feel about them. This is made simple using the Windows Forms module of the .NET
Framework, which is a library of controls (such as buttons, toolbars, menus, and so on) that we can use
to build a Windows user interface (UI).

● Web Applications – These are web pages such as might be viewed through any web browser. The .NET
Framework includes a powerful system of generating web content dynamically, allowing personalization,
security, and much more. This system is called Active Server Pages.NET (ASP.NET), and we can use

C# to create ASP.NET applications using Web Forms.

● of the language used to create a web service, or the system that it resides on.

Any of these types may also require some form of database access, which can be achieved using the
Active Data Objects.NET (ADO.NET) section of the .NET Framework. Many other resources can be
drawn on, such as tools for creating networking components, outputting graphics, performing
complex mathematical tasks, and so on.

C# in This Book

The second and third sections of this book deal with the syntax and usage of the C# language without
too much emphasis on the .NET Framework. This is necessary, as we won't be able to use the .NET
Framework at all without a firm grounding in C# programming. We'll start off even simpler, in fact, and
leave the more involved topic of Object-Oriented Programming (OOP) until we've covered the basics.
These will be taught from first principles, assuming no programming knowledge at all.

Once we have done this, we will be ready to move on to developing the types of application listed in
the last section. Section four of this book will look at Windows Forms programming, section five will
look at some other .NET topics of interest (such as accessing databases), and section six will look at
web application and web service programming. Finally, we'll have a look at some more involved case
studies that make use of what we have learned in the earlier parts of the book.

Chapter 1 - Introducing C#
byKarli Watsonet al.

Wrox Press 2003

Visual Studio .NET

In this book we'll use Visual Studio .NET (VS) for all of our C# development, from simple command line
applications, to the more complex project types considered. VS isn't essential for developing C# applications,
but it makes things much easier for us. We can (if we wish to) manipulate C# source code files in a basic text
editor, such as the ubiquitous Notepad application, and compile code into assemblies using the command line
compiler that is part of the .NET Framework. However, why do this when we have the full power of VS to help
us?

The following is a quick list of some of the features of VS that make it an appealing choice for .NET
development:

● VS automates the steps required to compile source code, but at the same time gives us complete control
over any options used should we wish to override them.

● The VS text editor is tailored to the languages VS supports (including C#), such that it can intelligently
detect errors and suggest code where appropriate as we are typing.

● VS includes designers for Windows Forms and Web Forms applications, allowing simple drag-and-drop
design of UI elements.

● Many of the types of project possible in C# may be created with "boilerplate" code already in place.
Instead of starting from scratch, we will often find that various code files are started off for us, reducing the
amount of time spent getting started on a project.

● VS includes several wizards that automate common tasks, many of which can add appropriate code to
existing files without us having to worry about (or even, in some cases, remember) the correct syntax.

● VS contains many powerful tools for visualizing and navigating through elements of our projects, whether
they are C# source code files, or other resources such as bitmap images or sound files.

● As well as simply writing applications in VS, it is possible to create deployment projects, making it easy to
supply code to clients and for them to install it without much trouble.

● VS enables us to use advanced debugging techniques when developing projects, such as the ability to
step through code one instruction at a time while keeping an eye on the state of our application.

There is much more than this, but hopefully you've got the idea!

Visual C# .NET Standard Edition

Visual C# .NET Standard Edition is a cut-down version of Visual Studio .NET Professional, and at a cut-down
price too. While it offers many of the same features as Visual Studio .NET Professional, there are some
notable feature absences, although not so many that they will prevent you from using the Standard Edition to
work through this book.

Throughout the book, unless stated otherwise, the term "Visual Studio .NET" (or simply "VS") will refer to
either version - Visual Studio .NET or the Visual C# .NET Standard Edition. There will be some occasions
where we mean one version or the other in particular, and we shall mark these carefully, so that if you are an
owner of the version not being discussed, you will not get confused!

VS Solutions

When we use VS to develop applications, we do so by creating solutions. A solution, in VS terms, is more
than just an application. Solutions contain projects, which might be "Windows Forms projects", "Web Form
projects", and so on. However, solutions can contain multiple projects, so that we can group together related
code in one place, even if it will eventually compile to multiple assemblies in various places on our hard disk.

This is very useful, as it allows us to work on "shared" code (which might be placed in the Global Assembly
Cache) at the same time as applications that use this code. Debugging code is a lot easier when only one
development environment is used, as we can step through instructions in multiple code modules.

Chapter 1 - Introducing C#
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we've looked at the .NET Framework in general terms, and discussed how it makes it easy for
us to create powerful and versatile applications. We've seen what is necessary to turn code in languages such
as C# into working applications, and what benefits we gain from using managed code running in the .NET
Common Language Runtime.

We've also seen what C# actually is, and how it relates to the .NET Framework, and described the tool that
we'll be using for C# development - Visual Studio .NET.

In the next chapter we'll get some C# code running using VS, which will give us enough knowledge to sit back
and concentrate on the C# language itself, rather than worrying too much about how VS works.

Chapter 2 - Writing a C# Program
byKarli Watsonet al.

Wrox Press 2003

Chapter 2: Writing a C# Program

Overview

Now we've spent some time discussing what C# is, and how it fits into the .NET Framework, it's time to get
our hands dirty and write some code. We'll be using Visual Studio .NET (VS) throughout this book, so the first
thing to do is to have a look at some of the basics of this development environment. VS is an enormous and
complicated product, and can be daunting to first time users, but using it to create simple applications can be
surprisingly simple. As we start to use VS in this chapter, we will see that we don't need to know a huge
amount about it in order to start playing with C# code. Later on in the book we will see some of the more
complicated operations that VS can perform, but for now a basic working knowledge is all that is required.

Once we've had a look at VS, we'll put together two simple applications. We won't worry too much about the
code in these for now, we'll just prove that things work and run through the application creation procedures
that will become second nature before too long.

The first application we'll create will be a simple console application. Console applications are those that
don't make use of the graphical windows environment, so we won't have to worry about buttons, menus,
interaction with the mouse pointer, and so on. Instead, we will run our application in a command prompt
window, and interact with it in a much simpler way.

The second application will be a Windows Forms application. The look and feel of this will be very familiar
to Windows users, and (surprisingly) the application doesn't require much more effort to create. However, the
syntax of the code required is more complicated, even though in many cases we don't actually have to worry
about details.

We'll be using both types of application over the next two sections of the book, with slightly more emphasis on
console applications to start with. The additional flexibility of windows applications isn't necessary when we
are learning the C# language, while the simplicity of console applications allows us to concentrate on learning
the syntax and not worrying about the look and feel of the application.

So, without further ado, it's time to get started!

Chapter 2 - Writing a C# Program
byKarli Watsonet al.

Wrox Press 2003

The Visual Studio .NET Development Environment

When VS is first loaded, it immediately presents us with a host of windows, most of which are empty, along
with an array of menu items and toolbar icons. We will be using most of these in the course of this book, and
you can rest assured that they will look far more familiar before too long.

If this is the first time you have run VS you will be presented with a list of preferences intended for users with
experience of previous releases of this development environment. The default settings for these are fine, so
just accept them for now – there is nothing here that can't be changed later.

The VS environment layout is completely customizable, but again the default is fine for us. It is arranged as
follows:

The main window, which displays an introductory "start page" when VS is started, is the one where all our
code will be displayed. This window is tabbed so that we can switch between several files with ease by
clicking on their filenames. It also has other functions: it can display graphical user interfaces that we are
designing for our projects, plain text files, HTML, and various tools that are built into VS. We'll describe all of
these as we come across them in the course of this book.

Above the main window, we have toolbars and the VS menu. There are several different toolbars that can be
placed here, with functionality ranging from saving and loading files, to building and running projects, to
debugging controls. Again, we'll discuss these as and when we need to use them.

Here are brief descriptions of each of the main features of VS that you will use the most:

● The Server Explorer and toolbox toolbars pop up when the mouse moves over them, and provide various
additional capabilities, such as providing access to server settings and services, and access to the user
interface building blocks for Windows applications.

● The Solution Explorer window displays information about the currently loaded solution. A solution is VS
terminology for one or more projects along with their configuration. The Solution Explorer window displays
various views of the projects in a solution, such as what files they contain, and what is contained in those

files.

● The Properties window allows a more detailed view of the contents of a project, allowing us to perform
additional configuration of individual elements. For example, we can use this window to change the
appearance of a button in a Windows form. The same window is also used to display dynamic help
information.

● The Task List and Output window displays information when projects are compiled, along with tasks to be
completed (in a similar kind of display as is found in the task list in Microsoft Outlook). These tasks might
be entered manually, or may be automatically generated by VS.

This may seem like a lot to take in, but don't worry, it doesn't take long to get used to. Let's start building the
first of our example projects, which will involve the use of many of the VS elements described above.

Chapter 2 - Writing a C# Program
byKarli Watsonet al.

Wrox Press 2003

Console Applications

We will be using console applications regularly in this book, particularly to start off with, so let's step through the
creation of a simple one.

Try it Out – Creating a Simple Console Application

1. Create a new console application project by selecting the File | New | Project... menu item:

2. Select the Visual C# Projects folder from the Project Types: pane of the window that appears, and the Console
Application project type in the Templates: pane (you'll have to scroll down a bit). Change the Location: text box
to C:\BegVCSharp\Chapter2 (this directory will be created automatically if it doesn't already exist), and leave
the default text in the Name: text box as it is:

3. Click the OK button.

4. Once the project is initialized, add the following line of code to the file displayed in the main window:
using System;

namespace ConsoleApplication1
{
/// <summary>
 /// Summary description for Class1.
 /// </summary>
 class Class1
 {

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 //
 // TODO: Add code to start application here
 //
 Console.WriteLine("The first app in Beginning C# Programming!");
 }
 }
}

5. Select the Debug | Start Without Debugging menu item. After a few moments you should see the following:

6. Press a key to exit the application.

How it Works

For now, we won't dissect the code we have used in this project, as we're more concerned with how to use VS to
get code up and running. As you can see, VS does an awful lot for us, and makes the process of compiling and
executing code very simple. In fact, there are multiple ways of performing even these simple steps. For example,
creating a new project can be achieved using the File | New | Project... menu item as above, or by pressing Ctrl+Shift
+N, or by clicking on the corresponding icon in the toolbar.

Similarly, our code can be compiled and executed in several ways. The process we used above, selecting the
Debug | Start Without Debugging menu item, also has a keyboard shortcut (Ctrl+F5) and a toolbar icon. We can also
run code in debug mode using the Debug | Start menu item (also possible by pressing F5 or clicking on the
corresponding toolbar icon), or compile our project without running it (with debugging on or off) using Build | Build,
Ctrl+Shift+B, or another toolbar icon. Once we have compiled our code, we can also execute it simply by running
the .exe file produced in Windows Explorer, or from the command prompt. To do this, we'd open a command
prompt window, change the directory to C:\BegVCSharp\Chapter2\ConsoleApplication1\bin\Debug\,
type ConsoleApplication1 and hit return.

In future examples, I'll just say "create a new console project" or "execute the code", and you can choose
whichever method you wish to perform these steps. Unless otherwise stated, all code should be run with
debugging enabled.

One point to note here is that the "Press any key to continue" prompt that we saw in the example only appears if you
execute code without debugging. If we run our project in debug mode, then the console window it runs in will close
as soon as the code has executed. In general this is fine, but for the last example it was helpful to have this prompt
so that the window didn't disappear as soon as it popped up, which would have made it difficult to see the results.

Now we've created a project we can take a more detailed look at some of the regions of the development
environment.

The Solution Explorer

The first window to look at is the Solution Explorer / Class View window in the top right of the screen, shown below
in both modes of operation (you can toggle between them by clicking on the tabs at the bottom of the window):

This Solution Explorer view shows the files that make up our ConsoleApplication1 project. The file we added
code to, Class1.cs, is shown along with another code file, AssemblyInfo.cs. (All C# code files have a .cs file
extension.) This other code file isn't one we have to worry about for the moment; it contains extra information
about our project that doesn't concern us yet. An icon, Appl.ico, is also included, which initially contains a
default icon for use with our application (since we are using a console application, however, this icon will not be
used in the rendering of the start bar tab – the default console application icon will be used instead).

We can use this window to change what code is displayed in the main window by double-clicking on .cs files,
right-clicking on them and selecting View Code, or selecting them and clicking on the toolbar button that appears at
the top of the window. We can also perform other operations on files here, such as renaming them or deleting
them from our project. Other types of files can appear here as well, such as project resources (resources are files
used by the project that might not be C# files, such as bitmap images and sound files, as well as the icon file
App1.ico). Again, we can manipulate them through the same interface.

The References entry contains a list of the .NET libraries we are using in our project. Again, this is something we'll
look at later, as the standard references are fine for us to get started with.

The other view, Class View, presents an alternative view of our project by looking at the structure of the code we
have created. We'll come back to this later in the book, so for now the Solution Explorer display is our display of
choice.

As you click on files or other icons in these windows, you may notice that the contents of the window below
changes. This is another window that has multiple views, but the most important of these is the Properties view.

The Properties Window

This window shows additional information about whatever we select in the window above it. For example, the
above view is displayed when the Class1.cs file from our project is selected. This window will also display
information about other things that might be selected, such as user interface components as we will see in the
windows application section of this chapter.

Often, changes we make to entries in the Properties window will affect our code directly, adding lines of code or
changing what we have in our files. With some projects, we'll spend as much time manipulating things through this
window as making manual code changes.

Next, lets take a look at the Output window. When we executed our example code you probably noticed that a
section of text appeared here before the console window created by our application appeared. On my computer
this appeared:
------ Build started: Project: ConsoleApplication1, Configuration: Debug .NET ------

Preparing resources...
Updating references...
Performing main compilation...

Build complete -- 0 errors, 0 warnings
Building satellite assemblies...

---------------------- Done ----------------------

 Build: 1 succeeded, 0 failed, 0 skipped
 Deploy: 0 succeeded, 0 failed, 0 skipped

As you can probably guess, this is showing us a status report as our files are compiled. This is also where we will
get reports of any errors that occur during compilation. As an example, try removing the semicolon from the line of
code we added in the last section and recompiling. This time you should see:

------ Build started: Project: ConsoleApplication1, Configuration: Debug .NET ------

Preparing resources...
Updating references...

Performing main compilation...
c:\begvcsharp\chapter2\consoleapplication1\class1.cs(19,67): error CS1002: ; expected

Build complete -- 1 errors, 0 warnings
Building satellite assemblies...

---------------------- Done ----------------------

 Build: 0 succeeded, 1 failed, 0 skipped
 Deploy: 0 succeeded, 0 failed, 0 skipped

This time the project won't run.

In the next chapter, when we start looking at C# syntax, we will see how semicolons are expected
throughout our code – at the end of most lines in actual fact.

Since we have something to do now in order to get the code working, VS automatically adds a task to the task list
that shares space with the Output window:

This window will help us eradicate bugs in our code, as it keeps track of what we have to do in order to compile
projects. If we double click on the error shown here, the cursor will jump to the position of the error in our source
code (the source file containing the error will be opened if it isn't already open), so we can fix it quickly. We will
also see red wavy lines at the positions of errors in the code, so we can quickly scan source code to see where
problems lie.

Note that the error location was specified as a line number. By default line numbers aren't displayed in the VS text
editor, but this is something that is well worth turning on. To do this, we need to tick the relevant check box in the
Options dialog, obtained through the Tools | Options... menu item. The check box is called Line Numbers, and is
found in the Text Editor | C# | General category, as shown below:

There are many useful options that can be found through this dialog, and we will use several of them throughout
this book.

Chapter 2 - Writing a C# Program
byKarli Watsonet al.

Wrox Press 2003

Windows Forms Applications

It is often easier to demonstrate code by running it as part of a Windows application rather than through a
console window or via a command prompt. We can do this using user interface building blocks to piece
together a user interface.

For now, we'll just see the basics of doing this and show you how to get a Windows application up and
running, though we will not go into too much detail about what the application is actually doing. Later on in the
book, we will take a detailed look at Windows applications.

Try it Out - Creating a Simple Windows Application

1. Create a new project of type Windows Application in the same location as before (C:\BegVCSharp
\Chapter2) with the default name WindowsApplication1. If the first project is still open, then make sure the
Close Solution option is selected in order to start a new solution:

2. Move the mouse pointer to the Toolbox bar on the left of the screen, then to the Button entry of the
Windows Forms tab, and double-click the left mouse button on the entry to add a button to the main form
of the application (Form1):

3. Double-click on the button that has been added to the form.

4. The C# code in Form1.cs should now be displayed. Modify it as follows (only part of the code in the file
is shown here for brevity):

 private void button1_Click(object sender, System.EventArgs e)
 {
 MessageBox.Show("The first windows app in the book!");
 }

5. Run the application.

6. Click on the button presented to open a message dialog box:

How it Works

Again, it is plain that VS has done a lot of work for us, and made it simple to create functional Windows
applications with little effort. The application we have created behaves just like other windows - we can move
it around, resize it, minimize it, and so on. We don't have to write the code to do that - it just works. The same
goes for the button we added. Simply by double clicking on it, VS knew that we wanted to write code to
execute when a user clicked on the button in the running application. All we had to do was to provide that
code, getting full button-clicking functionality for free.

Of course, Windows applications aren't limited to plain forms with buttons. If you have a look at the toolbar
where we found the Button option you will see a whole host of user interface building blocks, some of which
may be familiar, and some not. We'll get to use most of these at some point in the book, and you'll find that
they are all just as easy to use, saving us a lot of time and effort.

The code for our application, in Form1.cs, may look a fair bit more complicated than the code in the controls
on the form, which is why we can view the code in design view in the main window, which is a visual
translation of this layout code. A button is an example of a control that we can use, as are the rest of the UI
building blocks found in the Windows Forms section of the Toolbox bar.

Let's take a closer look at the button as a control example. Switch back to the Design View of the form using
the tab on the main window, and click once on the button to select it. When we do this, the Properties window
in the bottom right of the screen will show the properties of the button control (controls have properties much
like the files we saw in the last example). Scroll down to the Text property, which is currently set to button1,
and change the value to Click Me:

The text written on the button in Form1 should also change to reflect this.

There are many properties for this button, ranging from simple formatting of the color and size of the button, to
more obscure settings such as data binding settings, which allow links to databases. As briefly mentioned in
the last example, changing properties often results in direct changes to code, and this is no exception. Switch
back to the code view of Form1.cs, and we'll take a little peek at the change we just made.

At a cursory glance, you might not notice anything different in the code at all. This is because the sections of
C# code that deal with the layout and formatting of controls on a form are hidden from us (after all, we hardly
need to look at the code if we have a graphical display of the results).

VS uses a system of code outlining to achieve this subterfuge. We can see this in the following screenshot:

Looking down the left hand side of the code (just next to the line numbers if you've turned them on), you may
notice some gray lines and boxes with + and - symbols in them. These boxes are used to expand and
contract regions of code. Around the middle of the file (line 48 in mine, although this may vary) is a box with a
+ in it and a box in the main body of the code reading Windows Form Designer generated code. This label
basically is saying "here is some code generated by VS that you don't need to know about". We can look at it
if we want, however, and see what we have done by changing the button properties. Simply click on the box
with the + in it and the code will become visible, and somewhere in there you should see the following line:
 this.button1.Text = "Click Me";

Without worrying too much about the syntax used here, we can see that the text we typed in to the Properties
window has popped up directly in our code.

This outlining method can be very handy when we are writing code, as we can expand and contract many
other regions, not just those that are normally hidden from us. Just as looking at the table of contents of a
book can help us by giving us a quick summary of the contents, looking at a series of collapsed regions of
code can make it much easier for us to navigate through what can be vast amounts of C# code.

Chapter 2 - Writing a C# Program
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter, we've introduced some of the tools that we'll be using throughout the rest of this book. We
have had a quick tour around the Visual Studio .NET development environment, and used it to build two types
of applications. The simpler of these, the console application, is quite enough for most of our needs, and
allows us to focus on the basics of C# programming. Windows applications are more complicated, but are
visually more impressive and intuitive to use to anyone accustomed to a Windows environment (and let's face
it, that's most of us).

Now we know how we can create simple applications, we can get down to the real task of learning C#. The
next section of this book will deal with basic C# syntax and program structure, before we move on to more
advanced object-oriented methods later. Once we've covered all that, we can start to look at how we use C#
to gain access to the power available in the .NET Framework.

Chapter 3 - Variables and Expressions
byKarli Watsonet al.

Wrox Press 2003

Chapter 3: Variables and Expressions

Overview

Perhaps the most fundamental description of a computer program is that it is a series of operations that
manipulate data. This is true even of the most complicated examples, such as vast, multi-featured Windows
applications like the Microsoft Office Suite. Although this is often completely hidden from the users of
applications, it is always going on behind the scenes.

To illustrate this further, consider the display unit of your computer. What you see on screen is often so
familiar that it is difficult to imagine it as anything other than a 'moving picture'. In actual fact, however, what
you see is only a representation of some data, which in its raw form is merely a stream of zeros and ones
stashed away somewhere in the memory of your computer. Anything you do on screen, then, whether it is
moving a mouse pointer, clicking on an icon, or typing text into a word processor, will result in the shunting
around of data in memory.

Of course, there are less abstract situations that show this just as well. If you use a calculator application, you
are supplying data in the form of numbers and performing operations on these numbers in much the same
way as you would do with piece of paper and a pencil - although a lot quicker!

If computer programs are fundamentally performing operations on data, then this implies that we need some
way of storing that data, and some methods of manipulating it. These two functions are provided by
expressions respectively, and in this chapter we will explore what this means both in general and specific
terms.

Before we start with that, though, we should take a look at the basic syntax involved in C# programming.

Chapter 3 - Variables and Expressions
byKarli Watsonet al.

Wrox Press 2003

Basic C# Syntax

The look and feel of C# code is similar to that of C++ and Java. At first this syntax can look quite confusing,
and is a lot less like written English than some other languages. However, you will find as you immerse
yourself in the world of C# programming that the style used is a sensible one, and it is possible to write very
readable code without too much trouble.

Unlike the compilers of some other languages, C# compilers take no notice of additional spacing in code,
whether made up of spaces, carriage return, or tab characters (these characters are known collectively as
white space characters). This means that we have a lot of freedom in the way that we format our code,
although conforming to certain rules can help to make things easier to read.

C# code is made up of a series of statements, each of which is terminated with a semicolon. Since white
space is ignored therefore, we can have multiple statements on one line, but for readability's sake it is usual to
add carriage return statements after semicolons, so we don't have multiple statements on one line. It is
perfectly acceptable (and quite normal), however, to use statements that span several lines of code.

C# is a block-structured language, meaning that all statements are part of a block of code. These blocks,
which are delimited with "curly brackets" ("{" and "}"), may contain any number of statements, or none at all.
Note that the curly bracket characters do not need accompanying semicolons.

So, a simple block of C# code could take the following form:
{
 <code line 1, statement 1>;
 <code line 2, statement 2>
 <code line 3, statement 2>;
}

Here the <code line x, statement y> sections are not actual pieces of C# code, I've just used this text as
a placeholder for where C# statements would go. Note that in this case, the second and third lines of code are
part of the same statement, as there is no semicolon after the second line.

In this simple section of code, I have also used indentation to clarify the C# itself. This isn't some random
invention of mine, it is standard practice, and in fact VS will automatically do this for you by default. In general,
each block of code has its own level of indentation, meaning how far to the right it is. Blocks of code may be
nested inside each other (that is, blocks may contain other blocks), in which case nested blocks will be
indented further:
{
 <code line 1>;
 {
 <code line 2>;
 <code line 3>;
 }
 <code line 4>;
}

Also, lines of code that are continuations of previous lines are usually indented further as well, as in the third
line of code in the first example above.

Remember, this kind of style is by no means mandatory. If you don't use it, however, you will quickly find that
things can get very confusing as we move through this book!

Another thing you will often see in C# code is comments. A comment is not strictly speaking C# code at all,
but happily cohabits with it. Comments do exactly what it says on the tin; they allow you to add descriptive text
to your code – in plain English (or French, German, Outer Mongolian, and so on) – that will be ignored by the
compiler. When we start dealing with lengthy sections of code, it can be useful to add reminders about exactly
what we are doing, like "this line of code asks the user for a number" or "this section of code was written by
Bob". C# has two ways of doing this. We can either place markers at the beginning and end of a comment, or
we can use a marker that means "everything on the rest of this line is a comment". This latter method is an
exception to the rule mentioned above about C# compilers ignoring carriage returns, but it is a special case.

To mark out comments using the first method, we use "/*" characters at the start of the comment and "*/"
characters at the end. These may occur on a single line, or on different lines, in which case all lines in
between are part of the comment. The only thing we can't type in the body of a comment is "*/", as this is
interpreted as the end marker. So the following are OK:
/* This is a comment */

/* And so...

 ... is this! */

But the following will cause problems:
/* Comments often end with "*/" characters */

Here the end of the comment (the characters after "*/") will be interpreted as C# code, and errors will occur.

The other commenting approach involves starting a comment with "//". Next we can write whatever we like...
as long as we keep to one line! The following is OK:
// This is a different sort of comment.

But the following will fail however, as the second line will be interpreted as C# code:
// So is this,
 but this bit isn't.

This sort of commenting is useful to document statements, as both can be placed on a single line:
<A statement>; // Explanation of statement

There is a third type of comment in C# which allows you to document your code. They are single line
comments that start with three "/" symbols instead of two like this.

 /// A special comment

Under normal circumstances, they are ignored by the compiler – just like other comments, but you can
configure VS to extract the text after these comments and create a specially formatted text file when a project
is compiled, which we can then use to create documentation. We'll look at this in detail in Chapter 18.

A very important point to note about C# code is that it is case-sensitive. Unlike some other languages, we
must enter code using exactly the right case, as simply using an upper case letter instead of a lower case one
will prevent a project compiling.

Basic C# Console Application Structure

Let's take another look at the console application example from the
using System;

namespace ConsoleApplication1
{
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class Class1
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 //
 // TODO: Add code to start application here
 //
 Console.WriteLine("The first app in Beginning Visual C#!");
 }
 }
}

We can immediately see that all the syntactic elements discussed in the last section are present here. We see
semicolons, curly braces, and comments, along with appropriate indentation.

The most important section of code as far as we're concerned at the moment is the following:
 static void Main(string[] args)
 {
 //
 // TODO: Add code to start application here
 //
 Console.WriteLine("The first app in Beginning Visual C#!");
 }

This is the code that is executed when we run our console application, or to be more precise, the code block
enclosed in curly braces is what is executed. The only line of code that will actually do anything here is the
one we added to the automatically generated code, which is the only line in the code block that isn't a
comment. This code simply outputs some text to the console window, though the exact mechanisms of this
shouldn't concern us for now.

For now we won't worry about the other code in the example, as the purpose of these first few chapters is to
explain basic C# syntax, so the exact method of how the application execution gets to the point where
Console.WriteLine() is called is not our concern. Later on, the significance of this additional code will be
made clear.

Chapter 3 - Variables and Expressions
byKarli Watsonet al.

Wrox Press 2003

Variables

As discussed in the introduction to this chapter, variables are concerned with the storage of data. Essentially,
we can think of variables in computer memory as boxes sitting on a shelf. With boxes we can put things in and
take them out again, or we can just look inside a box to see if anything is there. The same goes for variables;
we place data in them and can take it out or look at it, as required.

Although all data in a computer is effectively the same thing (a series of zeros and ones), variables come in
different flavors, known as types. Again, using our box analogy we can imagine that our boxes come in
different shapes and sizes, and some things will only fit in certain boxes. The reasoning behind this type
system is that different types of data may require different methods of manipulation, and by restricting
variables into individual types we can avoid getting mixed up. It wouldn't, for example, make much sense to
treat the series of zeros and ones that make up a digital picture as an audio file.

In order to use variables, we have to declare them. This means that we have to assign them a name and a
type. Once we have declared variables we can use them as storage units for the type of data that we
declared them to hold.

The C# syntax for declaring variables simply involves specifying the type and variable name as follows:
<type> <name>;

If we try to use a variable that hasn't been declared, then our code won't compile, but in this case the compiler
will tell us exactly what the problem was, so this isn't really a disastrous error. In addition, trying to use a
variable without assigning it a value will also cause an error, but again, the compiler will detect this.

So, what are the types that we can use?

Well, in actual fact there are an infinite number of types that we can use. The reason for this is that we can
define our own types to hold whatever convoluted data we like.

Having said this, there are certain types of data that just about everyone will want to use at some point or
another, such as a variable that stores a number, for example. Because of this there are a number of simple,
pre-defined types that we should be aware of.

Simple Types

Simple types are those types such as numbers and Boolean (true or false) values that make up the
fundamental building blocks for our applications, and for other, more complex types. Most of the simple types
available are numeric, which at first glance seems a bit strange – surely we only need one type to store a
number?

The reason for the plethora of numeric types is down to the mechanics of storing numbers as a series of zeros
and ones in the memory of a computer. For integer values, we simply take a number of bits (individual digits
that can be zero or one) and represent our number in binary format. A variable storing N bits will allow us to
represent any number between 0 and (2N – 1). Any numbers above this value will be too big to fit into this

variable.

As an example, let's say we have a variable that can store 2 bits. The mapping between integers and the bits
representing those integers is therefore as follows:
0 = 00
1 = 01
2 = 10
3 = 11

If we want to be able to store more numbers, we need more bits (3 bits will let us store the numbers from 0 to
7, for example).

The inevitable conclusion of this argument is that we would need an infinite number of bits to be able to store
every imaginable number, which isn't going to fit in our trusty PC. Even if there were an amount of bits we
could use for every number, it surely wouldn't be efficient to use all these bits for a variable that, for example,
was only required to store the numbers between 0 and 10 (as storage would be wasted). 4 bits would do the
job fine here, allowing us to store many more values in this range in the same space of memory.

Instead, we have a number of different integer types that can be used to store various ranges of numbers, and
take up differing amounts of memory (up to 64 bits). The list of these is as follows:

Note that each of these types makes use of one of the standard types defined in the .NET
Framework. As discussed in Chapter 1, this use of standard types is what allows interoperability
between languages. The names we use for these types in C# are aliases for the types defined in
the framework. The table lists the names of these types as they are referred to in the .NET
Framework library.

Type Alias for Allowed Values
sbyte System.SByte Integer between –128 and 127.

byte System.Byte Integer between 0 and 255.

short System.Int16 Integer between –32768 and 32767.

ushort System.UInt16 Integer between 0 and 65535.

int System.Int32 Integer between –2147483648 and 2147483647.

uint System.UInt32 Integer between 0 and 4294967295.

long System.Int64 Integer between – 9223372036854775808 and
9223372036854775807.

ulong System.UInt64 Integer between 0 and 18446744073709551615.

The "u"s before some variable names are shorthand for "unsigned", meaning that we can't store negative
numbers in variables of those types, as can be seen in the Allowed Values column of the table.

Of course, as well as integers we also need to store floating point values, which are those that aren't whole
numbers. There are three floating point variable types that we can use: float, double, and decimal. The
first two of these store floating points in the form +/– m x 2e, where the allowed values for m and e differ for
each type. decimal uses the alternative form +/– m x 10e. These three types are shown below, along with
their allowed values of m and e, and these limits in real numeric terms:

Type Alias for Minm Maxm Mine Maxe
Approx
Min
Value

Approx
Max
Value

float System.
Single

0 224 -149 104 1.5 x 10-
45

3.4 x
1038

double System.
Double

0 253 -1075 970 5.0 x 10-
324

1.7 x
10308

decimal System.
Decimal

0 296 -26 0 1.0 x 10-
28

7.9 x
1028

In addition to numeric types there are three other simple types available:

Type Alias for Allowed Values
char System.Char Single Unicode character, stored as an integer between 0

and 65535.
bool System.Boolean Boolean value, true or false.

string System.String A sequence of characters.

Note that there is no upper limit on the amount of characters making up a string, as it can use varying
amounts of memory.

The Boolean type bool is one of the most commonly used variable types in C#, and indeed similar types are
equally prolific in code in other languages. Having a variable that can be either true or false has important
ramifications when it comes to the flow of logic in an application. As a simple example, consider how many
questions there are that can be answered with true or false (or yes and no). Performing comparisons between
variable values or validating input are just two of the programmatic uses of Boolean variables that we'll be
examining very soon.

Now we've seen these types, let's have a quick example of declaring and using them.

Try it Out – Using Simple Type Variables

1. Create a new console application called Ch03Ex01 in the directory C:\BegVCSharp\Chapter3.

2. Add the following code to Class1.cs (and delete the comment lines):

 static void Main(string[] args)
 {
 int myInteger;
 string myString;
 myInteger = 17;
 myString = "\"myInteger\" is";
 Console.WriteLine("{0} {1}.", myString, myInteger);
 }

3. Execute the code (remember that running in debug mode will cause the console application window to
close before you can see what has happened!):

How it Works

The code we have added does three things:

● It declares two variables

● It assigns values to those two variables

● It outputs the values of the two variables to the console

Variable declaration occurs in the following code:
 int myInteger;
 string myString;

The first line declares a variable of type int with a name of myInteger, and the second line declares a
variable of type string called myString.

Note that variable naming is restricted and we can't just use any sequence of characters. We'll
look at this in the section on naming variables below.

The next two lines of code assign values:
 myInteger = 17;
 myString = "\"myInteger\" is";

Here we assign two fixed values (known as literal values in code) to our variables using the = assignment
operator (we will cover more on operators in the Expressions section of this chapter). We assign the integer
value 17 to myInteger, and the string "myInteger" is (including the quotes) to myString. When we assign
string literal values in this way, note that double quotes are required to enclose the string. Due to this, there
are certain characters that may cause problems if they are included in the string itself, such as the double
quote characters, and we must escape some characters by substituting a sequence of characters (an escape
sequence) that represents the character we want to use. In this example, we use the sequence \" to escape
a double quote:
 myString = "\"myInteger\" is";

If we didn't use these escape sequences and tried coding this:
 myString = ""myInteger" is";

We would get a compiler error.

Note that assigning string literals is another situation where we must be careful with line breaks – the C#
compiler will reject string literals that span more than one line. If we want to add a line break we can use the
escape sequence for a carriage return in our string, which is \n. For example, the following assignment:

 myString = "This string has a\nline break.";

would be displayed on two lines in the console view as follows:
This string has a

line break.

All escape sequences consist of the backslash symbol followed by one of a small set of characters (we'll look
at the full set a little later). Because this symbol is used for this purpose there is also an escape sequence for
the backslash symbol itself, which is simply two consecutive backslashes, \\.

Getting back to the code, there is one more line that we haven't looked at:
 Console.WriteLine("{0} {1}.", myString, myInteger);

This looks similar to the simple method of writing out text to the console that we saw in our first example, but
now we are specifying our variables. Now, we don't want to get ahead of ourselves here, so I'm not going to
go into too much detail about this line of code at this point. Suffice to say that it is the technique we will be
using in the first part of this book to output text to the console window. Within the brackets we have two things:

● A string

● A list of variables whose values we want to insert into the output string, separated by commas

The string we are outputting, "{0} {1}.", doesn't seem to contain much useful text. As you will have seen,
however, this is not what you actually see when you run the code. The reason for this is that the string is
actually a template into which we insert the contents of our variable. Each set of curly brackets in the string is
a placeholder that will contain the contents of each of the variables in the list. Each placeholder (or format
string) is represented as an integer enclosed in curly brackets. The integers start at 0 and increment by 1, and
the total number of placeholders should match the number of variables specified in the comma-separated list
following the string. When the text is output to the console, each placeholder is replaced by the corresponding
value for each variable. In this above example, the {0} is replaced with the actual value of the first variable,
myString, and {1} is replaced with the contents of myInteger.

This method of outputting text to the console is what we will use to display output from our code in the
examples that follow.

Variable Naming

As mentioned in the last section, we can't just choose any sequence of characters as a variable name. This
isn't as worrying as it might sound at first, however, as we are still left with a very flexible naming system.

The basic variable naming rules are as follows:

● The first character of a variable name must be either a letter, an underscore character ("_"), or "@"

● Subsequent characters may be letters, underscore characters, or numbers

In addition, there are certain keywords that have a specialized meaning to the C# compiler, such as the
using and namespace keywords we saw earlier. If you should use one of these by mistake the compiler will
complain and you'll soon know you've done something wrong, so don't worry about this too much.

For example, the following variable names are fine:
myBigVar
VAR1
_test

These aren't however:

99BottlesOfBeer
namespace
It's-All-Over

And remember, C# is case sensitive, so we have to be careful not to forget the exact casing used when we
declare our variables. References to them made later in the program with even so much as a single letter in
the wrong case will prevent compilation.

A further consequence of this is the fact that we can have multiple variables whose names differ only in
casing, for example the following are all separate names:
myVariable
MyVariable
MYVARIABLE

Naming Conventions

Variable names are something you will use a lot. Because of this, it's worth spending a bit of time discussing
the sort of names that you should use. Before we get started, though, it is worth bearing in mind that this is
controversial ground. Over the years, different systems have come and gone, and some developers will fight
tooth and nail to justify their personal system.

Up until recently the most popular system was what is known as Hungarian notation. This system involves
placing a lower case prefix on all variable names that identifies the type. For example, if a variable was of type
int then we might place an i (or n) in front of it, for example iAge. Using this system it is easy to see at a
glance what types different variables are.

More modern languages, however, such as C# make this system tricky to implement. OK, so with the types
we've seen so far we could probably come up with one or two letter prefixes signifying each type. However,
since we can create our own types, and there are many hundreds of these more complex types in the basic .
NET framework, this quickly becomes unworkable. With several people working on a project it can be easy for
different people to come up with different and confusing prefixes, with potentially disastrous consequences.

Developers have now realized, that it is far better to name variables appropriately to their purpose. If any
doubt arises it is easy enough to work out what the type of a variable is. In VS, we just have to hover the
mouse pointer over a variable name and a pop-up box will tell us what the type is soon enough.

There are currently two naming conventions in use in the .NET framework namespaces, known as
PascalCase and camelCase. The casing used in the names is indicative of their usage. They both apply to
names that are made up of multiple words, and specify that each word in a name should be in lower case
except for its first letter, which should be upper case. In camelCasing, there is an additional rule: that the first
word should start with a lower case letter.

The following are camelCase variable names:
age
firstName
timeOfDeath

Then the following are PascalCase:
Age
LastName
WinterOfDiscontent

For our simple variables we shall stick to camelCase, and use PascalCase for certain more advanced naming,
which is the Microsoft recommendation.

Finally, it is worth noting that many past naming systems involved frequent use of the underscore character,
usually as separators between words of variable names, such as my_first_variable. This usage is now
discouraged (one thing I'm happy about – I always thought it looked ugly!).

Literal Values

In the earlier example, we saw two examples of literal values, integer and string. The other variable types also
have associated literal values, as shown in the table below. Many of these involve suffixes, where we add a
sequence of characters to the end of the literal value in order to specify the type desired. Some literals have
multiple types, determined at compile time by the compiler based on their context:

Type(s) Category Suffix Example / Allowed Values
bool Boolean None true or false

int, uint, long, ulong Integer None 100

uint, ulong Integer u or U 100U

long, ulong Integer l or L 100L

ulong Integer ul, uL, Ul,
UL, lu, lU,
Lu, or LU

100UL

float Real f or F 1.5F

double Real None, d or D 1.5

decimal Real m or M 1.5M

char Character None 'a', or escape sequence

string String None "a...a", may include escape
sequences

String Literals

Earlier on in this chapter, we saw a few of the escape sequences that we can use in string literals. It is worth
presenting a full table of these here for reference purposes:

Escape
Sequence Character Produced Unicode Value of Character

\' Single quote 0x0027

\" Double quote 0x0022

\\ Backslash 0x005C

\0 Null 0x0000

\a Alert (causes a beep) 0x0007

\b Backspace 0x0008

\f Form feed 0x000C

\n New line 0x000A

\r Carriage return 0x000D

\t Horizontal tab 0x0009

\v Vertical tab 0x000B

The Unicode value column of the above table shows the hexadecimal values of the characters as they are
found in the Unicode character set.

As well as the above, we can specify any Unicode character using a Unicode escape sequence. These
consist of the standard \ character followed by a u and a four digit hexadecimal value (for example, the four
digits after the x in the above table).

This means that the following strings are equivalent:
"Karli\'s string."
"Karli\u0027s string"

Obviously, we have more versatility using Unicode escape sequences.

We can also specify strings verbatim. This means that all characters contained between two double quotes
are included in the string, including end of line characters and characters that would otherwise need escaping.
The only exception to this is the escape sequence for the double quote character, which must be specified in
order to avoid ending the string. To do this, we place a @ character before the string:

@"Verbatim string literal."

This string could just as easily be specified in the normal way, but the following requires this method:
@"A short list:
item 1
item 2"

Verbatim strings are particularly useful in filenames, since these use plenty of backslash characters. Using
normal strings we have to use double backslashes all the way along the string, for example:
"C:\\Temp\\MyDir\\MyFile.doc"

With verbatim string literals we can make this more readable. The following verbatim string is equivalent to the
above:
@"C:\Temp\MyDir\MyFile.doc"

Note that, as we will see later in the book, strings are reference types, unlike the other types
we've seen in this chapter which are value types. One consequence of this is that strings can
also be assigned the value null, which means that the string variable doesn't reference a string.
This will be explained in more detail later on in this book.

Variable Declaration and Assignment

As a quick recap, recall that we declare variables simply using their type and name, for example:
int age;

We then assign values to variables using the = assignment operator:

age = 25;

Remember that variables must be initialized before we use them. The above assignment could
be used as an initialization.

There are a couple of other things we can do here that you are likely to see in C# code. The first, is declaring
multiple variables of the same type at the same time, which we can do by separating their names with
commas after the type, for example:
int xSize, ySize;

Here xSize and ySize are both declared as integer types.

The second technique you are likely to see, is assigning values to variables at the same time as declaring
them, which basically means combining two lines of code:
int age = 25;

We can use both these techniques together:
int xSize = 4, ySize = 5;

Here both xSize and ySize are assigned different values.

Note that the following:
int xSize, ySize = 5;

will result in only ySize being initialized – xSize is just declared.

Chapter 3 - Variables and Expressions
byKarli Watsonet al.

Wrox Press 2003

Expressions

Now that we've seen how to declare and initialize variables, it's time to look at manipulating them. C# contains
a number of operators for this purpose, including the = assignment operator we've used already. By
combining operators with variables and literal values (together referred to as operands when used with
operators) we can create expressions, which are the basic building blocks of computation.

The operators available range from the simple to highly complex ones, some of which you might never
encounter outside of mathematical applications. The simple ones include all the basic mathematical
operations, such as the + operator to add two operands, and the complex ones include manipulations of
variable content via the binary representation of this content. There are also logical operators specifically for
dealing with Boolean values, and assignment operators like =.

In this chapter, we'll concentrate on the mathematical and assignment operators, leaving the logical ones to
the next chapter, where we will examine Boolean logic in the context of controlling program flow.

Operators can be roughly classified into three categories:

● Unary operators, which act on single operands

● Binary operators, which act on two operands

● Ternary operators, which act on three operands

Most operators fall into the binary category, with a few unary ones, and a single ternary one called the
conditional operator (the conditional operator is a logical one, that is it returns a Boolean value, and we'll
discuss it in the

Let's start by looking at the mathematical operators, which span both unary and binary categories.

Mathematical Operators

There are five simple mathematical operators, two of which have binary and unary forms. In the table below
I've listed each of these operators, along with a quick example of their use and results when used with simple
numeric types (integer and floating point):

Operator Category Example Expression Result
+ binary var1 = var2 + var3; var1 is assigned the value that is the

sum of var2 and var3.

- binary var1 = var2 - var3; var1 is assigned the value that is the
value of var3 subtracted from the value
of var2.

* binary var1 = var2 * var3; var1 is assigned the value that is the
product of var2 and var3.

/ binary var1 = var2 / var3; var1 is assigned the value that is the
result of dividing var2 by var3.

% binary var1 = var2 % var3; var1 is assigned the value that is the
remainder when var2 is divided by
var3.

+ unary var1 = +var2; var1 is assigned the value of var2.

- unary var1 = -var2; var1 is assigned the value of var2
multiplied by -1.

I've shown examples using simple numeric types, since the result can be unclear when using the other simple
types. What would you expect if you add two Boolean values together, for example? In this case, nothing, as
the compiler will complain if you try to use + (or any of the other mathematical operators) with bool variables.
Adding char variables is also slightly confusing. Remember, char variables are actually stored as numbers,
so adding two char variables together will also give you a number (of type int, to be precise). This is an
example of implicit conversion, and I'll have a lot more to say about this subject, and explicit conversion
shortly, as it also applies to cases where var1, var2, and var3 are of mixed types.

Having said all this, the binary + operator does make sense when used with string type variables. In this case,
the table entry should read:

Operator Category Example Expression Result
+ binary var1 = var2 + var3; var1 is assigned the value that is

the concatenation of the two strings
stored in var2 and var3.

None of the other mathematical operators, however, will work with strings.

The other two operators we should look at here are the increment and decrement operators, both of which are
unary operators that can be used in two ways: either immediately before or immediately after the operand.
Let's take a quick look at the results obtained in simple expressions and then discuss them.

Operator Category Example Expression Result
++ unary var1 = ++var2; var1 is assigned the value of var2 + 1.

var2 is incremented by 1.

-- unary var1 = --var2; var1 is assigned the value of var2 - 1.
var2 is decremented by 1.

++ unary var1 = var2++; var1 is assigned the value of var2.
var2 is incremented by 1.

-- unary var1 = var2--; var1 is assigned the value of var2.
var2 is decremented by 1.

The key factor here is that these operators always result in a change to the value stored in their operand:

● ++ always results in its operand being incremented by one

● -- always results in its operand being decremented by one

The difference between the results stored in var1 are a consequence of the fact that the placement of the
operator determines when it takes effect. Placing one of these operators before its operand means that the
operand is affected before any other computation takes place. Placing it after the operand means that the
operand is affected after all other computation of the expression is completed.

This merits another example! Consider this code:
int var1, var2 = 5, var3 = 6;
var1 = var2++ * --var3;

The question is, what value will be assigned to var1? Before the expression is evaluated, the -- operator
preceding var3 will take effect, changing its value from 6 to 5. We can ignore the ++ operator that follows
var2, as it won't take effect until after the calculation is completed, so var1 will be the product of 5 and 5, or
25.

These simple unary operators come in very handy in a surprising amount of situations. OK, so they are really
just a shorthand for expressions such as:
var1 = var1 + 1;

This sort of expression has many uses, however, particularly where

Let's look at an example of how to use the mathematical operators, and introduce a couple of other
useful concepts as well.

Try it Out – Manipulating Variables with Mathematical Operators

1. Create a new console application called Ch03Ex02 in the directory C:\BegVCSharp\Chapter3.

2. Add the following code to Class1.cs:
 static void Main(string[] args)
 {
 double firstNumber, secondNumber;
 string userName;
 Console.WriteLine("Enter your name:");
 userName = Console.ReadLine();
 Console.WriteLine("Welcome {0}!", userName);
 Console.WriteLine("Now give me a number:");
 firstNumber = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("Now give me another number:");
 secondNumber = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("The sum of {0} and {1} is {2}.", firstNumber,
 secondNumber, firstNumber + secondNumber);
 Console.WriteLine("The result of subtracting {0} from {1} is {2}.",
 secondNumber, firstNumber, firstNumber - secondNumber);
 Console.WriteLine("The product of {0} and {1} is {2}.", firstNumber,
 secondNumber, firstNumber * secondNumber);
 Console.WriteLine("The result of dividing {0} by {1} is {2}.",
 firstNumber, secondNumber, firstNumber / secondNumber);
 Console.WriteLine("The remainder after dividing {0} by {1} is {2}.",
 firstNumber, secondNumber, firstNumber % secondNumber);
 }

3. Execute the code:

4. Enter your name and press enter:

5. Enter a number, press enter, then another number, then enter again:

How it Works

As well as demonstrating the mathematical operators, this code introduces two important concepts,
which we will come across many times in our worked examples:

● User input

● Type conversion

User input uses a similar syntax to the Console.WriteLine() command we've already seen – we use
Console.ReadLine(). This command prompts the user for input, which is stored in a string
variable:
 string userName;
 Console.WriteLine("Enter your name:");
 userName = Console.ReadLine();
 Console.WriteLine("Welcome {0}!", userName);

This code writes the contents of the assigned variable, userName, straight to the screen.

We also read in two numbers in this example. This is slightly more involved, as the Console.
ReadLine() command generates a string, and we want a number. This introduces the topic of type
conversion. We'll look at this in more detail in Chapter 5, but let's have a look at the code used in this
example first.

First, we declare the variables we want to store the number input in:
 double firstNumber, secondNumber;

Next, we supply a prompt and use the command Convert.ToDouble() on a string obtained by
Console.ReadLine() to convert the string into a double type. We assign this number to the
firstNumber variable we have declared:
 Console.WriteLine("Now give me a number:");
 firstNumber = Convert.ToDouble(Console.ReadLine());

This syntax is remarkably simple, and you may not be surprised to learn that many other conversions
can be performed in a similar way.

The remainder of the code obtains a second number in the same way:
 Console.WriteLine("Now give me another number:");
 secondNumber = Convert.ToDouble(Console.ReadLine());

Next we output the results of adding, subtracting, multiplying, and dividing the two numbers, in
addition to displaying the remainder after division, using the remainder (%) operator:
 Console.WriteLine("The sum of {0} and {1} is {2}.", firstNumber,
 secondNumber, firstNumber + secondNumber);
 Console.WriteLine("The result of subtracting {0} from {1} is {2}.",
 secondNumber, firstNumber, firstNumber - secondNumber);
 Console.WriteLine("The product of {0} and {1} is {2}.", firstNumber,
 secondNumber, firstNumber * secondNumber);
 Console.WriteLine("The result of dividing {0} by {1} is {2}.",
 firstNumber, secondNumber, firstNumber / secondNumber);
 Console.WriteLine("The remainder after dividing {0} by {1} is {2}.",
 firstNumber, secondNumber, firstNumber % secondNumber);

Note that we are supplying the expressions, firstNumber + secondNumber and so on, as a
parameter to the Console.WriteLine() statement, without going via an intermediate variable:
 Console.WriteLine("The sum of {0} and {1} is {2}.", firstNumber,
 secondNumber, firstNumber + secondNumber);

This kind of syntax can make our code very readable, and cut down on the amount of lines of code we
need to write.

Assignment Operators

Up till now, we've been using the simple = assignment operator, and it may come as a surprise that
any other assignment operators exist at all. There are more, however, and the biggest surprise is
probably that they're quite useful!

All of the assignment operators other than = work in a similar way. As with = they all result in a value
being assigned to the variable on their left hand side based on the operands and operators on their
right hand side.

As we did before, let's look at the operators and their explanations in tabular form:

Operator Category Example Expression Result

= Binary var1 = var2; var1 is assigned the value of var2

+= Binary var1 += var2; var1 is assigned the value that is the sum of
var1 and var2

-= Binary var1 -= var2; var1 is assigned the value that is the value
of var2 subtracted from the value of var1

*= Binary var1 *= var2; var1 is assigned the value that is the
product of var1 and var2

/= Binary var1 /= var2; var1 is assigned the value that is the result
of dividing var1 by var2

%= Binary var1 %= var2; var1 is assigned the value that is the
remainder when var1 is divided by var2

As you can see, the additional operators result in var1 being included in the calculation so, code like:
var1 += var2;

gives exactly the same result as:
var1 = var1 + var2;

Note that the += operator can also be used with strings, just like +.

Using these operators, especially when employing long variable names, can make code much easier
to read.

Operator Precedence

When an expression is evaluated each operator is processed in sequence. However, this doesn't
necessarily mean evaluating these operators from left to right.

As a trivial example, consider the following:
var1 = var2 + var3;

Here, the + operator acts before the = operator.

There are other situations where operator precedence isn't so obvious, for example:
var1 = var2 + var3 * var4;

Here the * operator acts first, followed by the + operator, and finally the = operator. This is the
standard mathematical order of doing things, and gives the same result as you would expect from
working out the equivalent algebraic calculation on paper.

Like such calculations, we can gain control over operator precedence by using parentheses, for
example:
var1 = (var2 + var3) * var4;

Here the content of the parentheses is evaluated first, meaning that the + operator acts before the *
operator.

Of the operators we've encountered so far the order of precedence is as follows, where operators of

equal precedence (such as * and /) are evaluated in a left to right manner:

Precedence Operators
Highest ++, -- (used as prefixes); +, - (unary)

 *, /, %

 +, -

 =, *=, /=, %=, +=, -=

Lowest ++, -- (used as suffixes)

Note that parentheses can be used to override this precedence order, as described above.

Namespaces

Before we move on, it's worth spending some time on one more important subject – namespaces.
These are the .NET way of providing containers for application code, such that code and its contents
may be uniquely identified. Namespaces are also used as a means of categorizing items in the .NET
Framework. Most of these items are type definitions, such as the simple types detailed in this chapter
(System.Int32 and so on).

C# code, by default, is contained in the global namespace. This means that items contained in this
code are accessible from other code in the global namespace simply by referring to them by name.
We can use the namespace keyword, however, to explicitly define the namespace for a block of code
enclosed in curly brackets. Names in such a namespace must be qualified if they are to be used from
code outside of this namespace.

A qualified name is one that contains all of its hierarchical information. In basic terms, this means that
if we have code in one namespace that needs to use a name defined in a different namespace, we
must include a reference to this namespace. Qualified names use period characters (".") between
namespace levels.

For example:
namespace LevelOne
{
 // code in LevelOne namespace

 // name "NameOne" defined
}

// code in global namespace

This code defines one namespace, LevelOne, and a name in this namespace, NameOne (note that I
haven't shown any actual code here in order to keep the discussion general, instead I've placed a
comment where this definition would go). Code written inside the LevelOne namespace can simply
refer to this name using "NameOne" – no classification is necessary. Code in the global namespace,
however, must refer to this name using the classified name "LevelOne.NameOne".

Within a namespace, we can define nested namespaces, also using the namespace keyword. Nested
namespaces are referred to via their hierarchy, again using periods to classify each level of the
hierarchy. This is best illustrated with an example. Consider the following namespaces:
namespace LevelOne

{
 // code in LevelOne namespace

 namespace LevelTwo
 {
 // code in LevelOne.LevelTwo namespace

 // name "NameTwo" defined
 }
}

// code in global namespace

Here, NameTwo must be referred to as LevelOne.LevelTwo.NameTwo from the global namespace,
LevelTwo.NameTwo from the LevelOne namespace, and NameTwo from the LevelOne.LevelTwo
namespace.

The important point to note here is that names are uniquely defined by their namespace. We could
define the name NameThree in the LevelOne and LevelTwo namespaces:
namespace LevelOne
{
 // name "NameThree" defined

 namespace LevelTwo
 {
 // name "NameThree" defined
 }
}

This defines two separate names, LevelOne.NameThree and LevelOne.LevelTwo.NameThree, that
can be used independently of each other.

Once namespaces are set up, we can use the using statement to simplify access to the names they
contain. In effect, the using statement says "OK, we'll be needing names from this namespace, so
don't bother asking me to classify them every time". For example, in the following code we are saying
that code in the LevelOne namespace should have access to names in the LevelOne.LevelTwo
namespace without classification:
namespace LevelOne
{
 using LevelTwo;

 namespace LevelTwo
 {
 // name "NameTwo" defined
 }
}

Code in the LevelOne namespace can now refer to LevelTwo.NameTwo by simply using NameTwo.

There are times, as with our NameThree example above, when this can lead to problems with clashes
between identical names in different namespaces (in which case code is unlikely to compile). In cases
such as these, we can provide an alias for a namespace as part of the using statement:
namespace LevelOne

{
 using LT = LevelTwo;

 // name "NameThree" defined

 namespace LevelTwo
 {
 // name "NameThree" defined
 }
}

Here, code in the LevelOne namespace can refer to LevelOne.NameThree as NameThree and
LevelOne.LevelTwo.NameThree as LT.NameThree.

using statements apply to the namespace they are contained in, and any nested namespaces that
might also be contained in this namespace. In the above code, the global namespace can't use LT.
NameThree. However, if this using statement were declared as follows:
using LT = LevelOne.LevelTwo;

namespace LevelOne
{
 // name "NameThree" defined

 namespace LevelTwo
 {
 // name "NameThree" defined
 }
}

Then code in the global namespace and the LevelOne namespace can use LT.NameThree.

There is one more important point to note here. The using statement doesn't in itself give you access
to names in another namespace. Unless the code in a namespace is in some way linked to your
project, by being defined in a source file in the project, or being defined in some other code linked to
the project, we won't have access to the names contained. Also, if code containing a namespace is
linked to our project, we have access to the names contained, regardless of whether we use using.
using simply makes it easier for us to access these names, and can shorten otherwise lengthy code
to make it more readable.

Going back to the code in ConsoleApplication1 we saw at the start of this chapter, we see the
following lines that apply to namespaces:
using System;

namespace ConsoleApplication1
{
 ...
}

The first line uses using to declare that the System namespace will be used in this C# code, and
should be accessible from all namespaces in this file without classification. The System namespace is
the root namespace for .NET Framework application, and contains all the basic functionality we need
for console applications.

Next, a namespace is declared for the application code itself, ConsoleApplication1.

Chapter 3 - Variables and Expressions
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter, we've covered a fair amount of ground on the way to creating usable (if basic) C# applications.
We've looked at the basic C# syntax and analyzed the basic console application code that VS generated for
us when we create a console application project.

The major part of this chapter concerned the use of variables. We have seen what variables are, how we
create them, how we assign values in them, and how we manipulate them and the values that they contain.
Along the way, we've also looked at some basic user interaction, by showing how we can output text to a
console application and read user input back in. This involved some very basic type conversion, a complex
subject that we'll be covering in more depth in Chapter 5.

We have also seen how we can assemble operators and operands into expressions, and looked at the way
these are executed, and the order in which this takes place.

Finally, we looked at namespaces, which will become more and more important as the book progresses. By
introducing this topic in a fairly abstract way here, the groundwork is completed for later discussions.

So far all of our programming has taken the form of line-by-line execution. In the next chapter, we will see how
we can make our code more efficient by controlling the flow of execution using looping techniques and
conditional branching.

Chapter 3 - Variables and Expressions
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. In the following code, how would we refer to the name great from code in the namespace fabulous?

namespace fabulous
{
 // code in fabulous namespace
}

namespace super
{
 namespace smashing
 {
 // great name defined
 }
}

2. Which of the following is not a legal variable name:

❍ myVariableIsGood

❍ 99Flake

❍ _floor

❍ time2GetJiggyWidIt

❍ wrox.com

3. Is the string "supercalifragilisticexpialidocious" too big to fit in a string variable? Why?

4. By considering operator precedence, list the steps involved in the computation of the following
expression:
resultVar += var1 * var2 + var3 % var4 / var5;

5. Write a console application that obtains four int values from the user and displays the product. Hint:
you may recall that the Convert.ToDouble() command was used to covert the input from the console
to a double; the equivalent command to convert from a string to an int is Convert.ToInt32().

Chapter 4 - Flow Control
byKarli Watsonet al.

Wrox Press 2003

Chapter 4: Flow Control

Overview

All of the C# code we've seen so far has had one thing in common. In each case, program execution has
proceeded from one line to the next in top-to-bottom order, missing nothing. If all applications worked like this
then we would be very limited in what we could do.

In this chapter we will look at two methods of controlling program flow, that is, the order of execution of lines of
C# code. These two methods are:

● Branching – where we execute code conditionally, depending on the outcome of an evaluation, such as
"only execute this code if myVal is less than 10".

● Looping – repeatedly executing the same statements (for a certain number of times or until a test
condition has been reached).

Both of these techniques involve the use of Boolean logic. In the last chapter we saw the bool type, but
didn't actually do much with it. In this chapter we'll be using it a lot, and so we will start by discussing what we
mean by Boolean logic so that we can use it in flow control scenarios.

Chapter 4 - Flow Control
byKarli Watsonet al.

Wrox Press 2003

Boolean Logic

The bool type introduced in the particular, bool types are used to store the result of a comparison.

As an historical aside, it is worth remembering (and respecting) the English mathematician
George Boole, whose work in the mid-nineteenth century forms the basis of Boolean logic.

As an example, consider the situation (as mentioned in the introduction to this chapter) that we want to
execute code based on whether a variable, myVal, is less than 10. In order to do this we need some
indication of whether the statement "myVal is less than 10" is true or false, that is, we need to know the
Boolean result of a comparison.

Boolean comparisons require the use of Boolean comparison operators (also known as relational
operators), which are shown in the table below. In all cases here var1 is a bool type variable, while the
types of var2 and var3 may vary.

Operator Category Example Expression Result
== binary var1 = var2 ==

var3;
var1 is assigned the value true if var2
is equal to var3, or false otherwise.

!= binary var1 = var2 !=
var3;

var1 is assigned the value true if var2
is not equal to var3, or false otherwise.

< binary var1 = var2 < var3; var1 is assigned the value true if var2
is less than var3, or false otherwise.

> binary var1 = var2 > var3; var1 is assigned the value true if var2
is greater than var3, or false otherwise.

<= binary var1 = var2 <=
var3;

var1 is assigned the value true if var2
is less than or equal to var3, or false
otherwise.

>= binary var1 = var2 >=
var3;

var1 is assigned the value true if var2
is greater than or equal to var3, or
false otherwise.

We might use operators such as these on numeric values in code such as:
bool isLessThan10;
isLessThan10 = myVal < 10;

This code will result in isLessThan10 being assigned the value true if myVal stores a value less than 10,
or false otherwise.

We can also use these comparison operators on other types, such as strings:

bool isKarli;
isKarli = myString == "Karli";

Here isKarli will only be true if myString stores the string "Karli".

We can also focus on Boolean values:
bool isTrue;
isTrue = myBool == true;

Although here we are limited to the use of == and != operators.

Note that a common code error occurs if you unintentionally assume that because val1 < val2
is false, then val1 > val2 is true. If val1 == val2 then both these statements will be
false. I'm mentioning this here as it's a mistake I've made in the past!

There are some other Boolean operators that are intended specifically for working with Boolean values:

Operator Category Example Expression Result
! unary var1 = ! var2; var1 is assigned the value true if var2 is

false, or false if var2 is true. (Logical
NOT.)

& binary var1 = var2 & var3; var1 is assigned the value true if var2
and var3 are both true, or false
otherwise. (Logical AND.)

| binary var1 = var2 | var3; var1 is assigned the value true if either
var2 or var3 (or both) are true, or false
otherwise. (Logical OR.)

^ binary var1 = var2 ^ var3; var1 is assigned the value true if either
var2 or var3, but not both, are true, or
false otherwise. (Logical XOR, or
exclusive OR.)

So the last code snippet above could also be expressed as:
bool isTrue;
isTrue = myBool & true;

The & and | operators also have two similar operators:

Operator Category Example Expression Result
&& binary var1 = var2 &&

var3;
var1 is assigned the value true if var2
and var3 are both true, or false
otherwise. (Logical AND.)

|| binary var1 = var2 ||
var3;

var1 is assigned the value true if either
var2 or var3 (or both) are true, or
false otherwise. (Logical OR.)

The result of these operators is exactly the same as & and |, but there is an important difference in the way
this result is obtained, which can result in better performance. Both of these look at the value of their first

operand (var2 in the table above), and based on the value of this operand may not need to process the
second operator (var3 above) at all.

If the value of the first operand of the && operator is false then there is no need to consider the value of the
second operand, as the result will be false regardless. Similarly, the || operator will return true if its first
operand is true, regardless of the value of the second operand.

This isn't the case for the & and | operators we saw above. With these, both operands will always be
evaluated.

Because of this conditional evaluation of operands we will see a small performance increase if we use && and
|| instead of & and |. This will be particularly apparent in applications that use these operators a lot. As a
rule of thumb, always use && and || where possible.

Bitwise Operators

In the light of the discussion in the last section, you may be asking why the & and | operators exist at all. The
reason is that these operators may be used to perform operations on numeric values. In fact, they operate on
the series of bits stored in a variable rather than the value of the variable.

Let's consider these in turn, starting with &. Each bit in the first operand is compared with the bit in the same
position in the second operand, resulting in the bit in the same position in the resultant value being assigned a
value as follows:

Operand 1 bit Operand 2 bit & Result bit
1 1 1
1 0 0
0 1 0
0 0 0

| is similar, but the result bits are different, as follows:

Operand 1 bit Operand 2 bit | Result bit

1 1 1
1 0 1
0 1 1
0 0 0

For example, consider the operation shown in the following code:
int result, op1, op2;
op1 = 4;
op2 = 5;
result = op1 & op2;

Here we must consider the binary representations of op1 and op2, which are 100 and 101 respectively. The
result is obtained by comparing the binary digits in equivalent positions in these two representations as follows:

● The leftmost bit of result is 1 if the leftmost bit of op1 and op2 are both 1, or 0 otherwise.

● The next bit of result is 1 if the next bit of op1 and op2 are both 1, or 0 otherwise.

● Continue for all remaining bits.

In this example the leftmost bits of op1 and op2 are both 1, so the leftmost bit of result will be 1, too. The
next bits are both 0, and the third bits are 1 and 0 respectively, so the second and third bits of result will be
0. The final value of result in binary representation is therefore 100, so result is assigned the value 4.

The following illustrates this:

 1 0 0 4
& 1 0 1 & 5

 1 0 0 4

The same process occurs if we use the | operator, except that in this case each result bit is 1 if either of the
operand bits in the same position is 1:

 1 0 0 4
| 1 0 1 | 5

 1 0 1 5

We can also use the ^ operator in the same way, where each result bit is 1 if one or other of the operand bits
in the same position is one, but not both:

Operand 1 bit Operand 2 bit ^ Result bit

1 1 0
1 0 1
0 1 1
0 0 0

C# also allows the use of a unary bitwise operator "~", which acts on its operand by inverting each of its bits,
such that the result is a variable having values of 1 for each bit in the operand that is 0, and vice versa:

Operand bit ~ Result bit

1 0
0 1

These bitwise operations are quite useful in certain situations, as they allow a simple method of making use of
individual variable bits to store information. Consider a simple representation of a color using three bits to
specify red, green, and blue content. We can set these bits independently to change the three bits to one
of the following configurations:

Bits Decimal Representation Meaning
000 0 black
100 4 red
010 2 green

001 1 blue
101 5 magenta
110 6 yellow
011 3 cyan
111 7 white

Let's say we store these values in a variable of type int. Starting from a black color, that is, an int variable
with the value of 0, we can perform operations like:
int myColor = 0;
bool containsRed;
myColor = myColor | 2; // Add green bit, myColor now stores 010
myColor = myColor | 4; // Add red bit, myColor now stores 110
containsRed = (myColor & 4) == 4; // Check value of red bit

The final line of code assigns a value of true to containsRed, as the 'red bit' of myColor is 1.

This technique can be quite useful for making efficient use of information, particularly as the operations
involved can be used to check the values of multiple bits simultaneously (32 in the case of int values).
However, there are better ways of storing extra information in single variables, making use of the advanced
variable types discussed in the next chapter.

In addition to these four bitwise operators there are two others that I'd like to look at in this section. These are
as follows:

Operator Category Example Expression Result
>> binary var1 = var2 >>

var3;
var1 is assigned the value obtained
when the binary content of var2 is
shifted var3 bits to the right.

<< binary var1 = var2 <<
var3;

var1 is assigned the value obtained
when the binary content of var2 is
shifted var3 bits to the left.

These operators, commonly called bitwise shift operators, are best illustrated with a quick example:
int var1, var2 = 10, var3 = 2;
var1 = var2 << var3;

Here, var1 is assigned the value 40. This can be explained by considering that the binary representation of
10 is "1010", which shifted to the left by two places is "101000" - the binary representation of 40. In effect what
we have done is carried out a multiplication operation. Each bit shifted to the left multiplies the value by 2, so
two bit-shifts to the left results in multiplication by 4. Conversely each bit shifted to the right has the effect of
dividing the operand by 2 with any integer remainder being lost:
int var1, var2 = 10;
var1 = var2 >> 1;

In this example, var1 contains the value 5, whereas the following code gives a value of 2:

int var1, var2 = 10;
var1 = var2 >> 2;

You are unlikely to use these operators in most code, but it is worth being aware of their existence. Their

primary use is in highly optimized code, where the overhead of other mathematical operations just won't do.
For this reason they are often used in, for example, device drivers or system code.

Boolean Assignment Operators

The last operators to look at in this section are those that combine some of the operators we've seen above
with assignment, much like the mathematical assignment operators in the last chapter (+=, *=, etc.). These
are as follows:

Operator Category Example Expression Result
&= binary var1 &= var2; var1 is assigned the value that is the result

of var1 & var2.

|= binary var1 |= var2; var1 is assigned the value that is the result
of var1 | var2.

^= binary var1 ^= var2; var1 is assigned the value that is the result
of var1 ^ var2.

These work with both Boolean and numeric values in the same way as &, |, and ^.

Note that &= and |= use & and |, not && and ||, and get the overhead associated with these
simpler operators.

The bitwise shift operators also have assignment operators as follows:

Operator Category Example
Expression Result

>>= unary var1 >>=
var2;

var1 is assigned the value obtained when the
binary content of var1 is shifted var2 bits to the
right.

<<= unary var1 <<=
var2;

var1 is assigned the value obtained when the
binary content of var1 is shifted var2 bits to the
left.

Try it Out - Using the Boolean and Bitwise Operators

1. Create a new console application called Ch04Ex01 in the directory C:\BegVCSharp\Chapter4.

2. Add the following code to Class1.cs:

 static void Main(string[] args)
 {
 Console.WriteLine("Enter an integer:");
 int myInt = Convert.ToInt32 (Console.ReadLine());
 Console.WriteLine("Integer less than 10? {0}", myInt < 10);
 Console.WriteLine("Integer between 0 and 5? {0}",
 (0 <= myInt) && (myInt <= 5));
 Console.WriteLine("Bitwise AND of Integer and 10 = {0}", myInt & 10);
 }

3. Execute the application and enter an integer when prompted.

How it Works

The first two lines of code prompt for and accept an integer value using techniques we've already seen:
 Console.WriteLine("Enter an integer:");
 int myInt = Convert.ToInt32(Console.ReadLine());

We use Convert.ToInt32()to obtain an integer from the string input, which is simply another conversion
command in the same family as the Convert.ToDouble() command we used previously.

The remaining three lines of code perform various operations on the number obtained and display results.
We'll work through this code assuming that the user enters 6, as shown in the screenshot.

The first output is the result of the operation myInt < 10. If myInt is 6, which is less than 10, then the result
will be true, which is what we see displayed. Values of myInt of 10 or above will result in false.

The second output is a more involved calculation: (0 <= myInt) && (myInt <= 5). This involves two
comparison operations, to see whether myInt is greater than or equal to 0 and less than or equal to 5, and a
Boolean AND operation on the results obtained. With a value of 6 (0 <= myInt) returns true, and (myInt
<= 5) returns false. The end result is then (true) && (false), which is false as we can see from the
display.

Finally, we perform a bitwise AND on the value of myInt. The other operand is 10, which has the binary
representation 1010. If myInt is 6, which has the binary representation 110, then the result of this operation is
10, or 2 in decimal:

 0 1 1 0 6
& 1 0 1 0 & 10

 0 0 1 0 2

Operator Precedence Updated

Now we have a few more operators to consider we should update our operator precedence table from the last
chapter to include them:

Precedence Operators
Highest ++, -- (used as prefixes); (), +, - (unary), !, ~

 *, /, %

 +, -

 <<, >>

 <, >, <=, >=

 ==, !=

 &

 ^

 |

 &&

 ||

 =, *=, /=, %=, +=, -=, <<=, >>=, &=, ^=, |=

Lowest ++, -- (used as suffixes)

This adds quite a few more levels, but explicitly defines how expressions such as the following will be
evaluated:
var1 = var2 <= 4 && var2 >= 2;

Where the && operator is processed after the <= and >= operators.

One point to note here is that it doesn't hurt to add parentheses to make expressions such as this one clearer.
The compiler knows what order to process operators in, but we humans are prone to forget such things (and
we might want to change the order). Writing the above expression as:
var1 = (var2 <= 4) && (var2 >= 2);

Solves this problem by being explicit about the order of computation.

The goto Statement

C# allows us to label lines of code and then jump straight to them using the goto statement. This has its
benefits and problems. The main benefit is that it is a very simple way of controlling what code is executed
when. The main problem is that excessive use of this technique can result in difficult to understand "spaghetti"
code.

Let's look at how we use this technique to clarify this.

The goto statement is used as follows:

goto <labelName>;

And labels are defined in the following way:
<labelName>:

For example, consider the following:
int myInteger = 5;
goto myLabel;
myInteger += 10;
myLabel:
Console.WriteLine("myInteger = {0}", myInteger);

Execution proceeds as follows:

● myInteger is declared as an int type and assigned the value 5

● The goto statement interrupts normal execution and transfers control to the line marked myLabel:

● The value of myInteger is written to the console

The line of code highlighted below is never executed:
int myInteger = 5;
goto myLabel;
myInteger += 10;
myLabel:
Console.WriteLine("myInteger = {0}", myInteger);

In fact, if you try this out in an application you will see that this is noted in the task list as a warning when you
try to compile the code, labeled "Unreachable code detected" along with a line number.

goto statements have their uses, but they can make things very confusing indeed.

As an example of some "spaghetti" code arising from the use of goto, consider the following:

start:
int myInteger = 5;
goto addVal;
writeResult:
Console.WriteLine("myInteger = {0}", myInteger);
goto start;
addVal:
myInteger += 10;
goto writeResult;

This is perfectly valid code, but very difficult to read! You might like to try this out for yourself and see what
happens. Before doing that, though, try and work out what this code will do by looking at it, so you can give
yourself a pat on the back if you're right.

We'll come back to this statement a little later, as it has implications for use with some of the other structures
in this chapter (although, to be honest, I don't advocate its use).

Chapter 4 - Flow Control
byKarli Watsonet al.

Wrox Press 2003

Branching

Branching is the act of controlling which line of code should be executed next. The line to jump to is controlled
by some kind of conditional statement. This conditional statement will be based on a comparison between a
test value and one or more possible values using Boolean logic.

In this section we will look at the three branching techniques available in C#:

● The ternary operator

● The if statement

● The switch statement

The Ternary Operator

The simplest way of performing a comparison is to use the ternary (or conditional) operator mentioned in the
come as no surprise that this operator works on three operands. The syntax is as follows:
<test> ? <resultIfTrue> : <resultIfFalse>

Here, <test> is evaluated to obtain a Boolean value, and the result of the operator is either
<resultIfTrue> or <resultIfFalse> based on this value.

We might use this as follows:
string resultString = (myInteger < 10) ? "Less than 10"
 : "Greater than or equal to 10";

Here the result of the ternary operator is one of two strings, both of which may be assigned to
resultString. The choice of which string to assign is made by comparing the value of myInteger to 10,
where a value of less than 10 results in the first string being assigned, and a value of greater than or equal to
10 the second string. For example, if myInteger is 4 then resultString will be assigned the string "Less
than 10".

This operator is fine for simple assignments such as this, but isn't really suitable for executing larger amounts
of code based on a comparison. A much better way of doing this is to use the if statement.

The if Statement

The if statement is a far more versatile and useful way of making decisions. Unlike ?: statements, if
statements don't have a result (so we can't use them in assignments); instead we use the statement to
conditionally execute other statements.

The simplest use of an if statement is as follows:

if (<test>)
 <code executed if <test> is true>;

Where <test> is evaluated (it must evaluate to a Boolean value for the code to compile) and the line of code
shown below the statement is executed if <test> evaluates to true. After this code is executed, or if it isn't
executed due to <test> evaluating to false, program execution resumes at the next line of code.

We can also specify additional code using the else statement in combination with an if statement. This
statement will be executed if <test> evaluate to false:

if (<test>)
 <code executed if <test> is true>;
else
 <code executed if <test> is false>;

Both sections of code can span multiple lines using blocks in braces:

if (<test>)
{
 <code executed if <test> is true>;
}
else
{
 <code executed if <test> is false>;
}

As a quick example, let's rewrite the code from the last section that used the ternary operator:

string resultString = (myInteger < 10) ? "Less than 10" : "Greater than 10";

Since the result of the if statement cannot be assigned to a variable we have to assign a value to the
variable in a separate step:
string resultString;
if (myInteger < 10)
 resultString = "Less than 10";
else
 resultString = "Greater than or equal to 10";

Code such as this, although more verbose, is far easier to read and understand than the equivalent ternary
form, and allows far more flexibility.

Let's look at an example.

Try it Out – Using the if Statement

1. Create a new console application called Ch04Ex02 in the directory C:\BegVCSharp\Chapter4.

2. Add the following code to Class1.cs:

 static void Main(string[] args)
 {
 string comparison;
 Console.WriteLine("Enter a number:");
 double var1 = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("Enter another number:");
 double var2 = Convert.ToDouble(Console.ReadLine());

 if (var1 < var2)
 comparison = "less than";
 else
 {
 if (var1 == var2)
 comparison = "equal to";
 else
 comparison = "greater than";
 }
 Console.WriteLine("The first number is {0} the second number.",
 comparison);
 }

3. Execute the code, and enter two numbers at the prompts:

How it Works

The first section of code is familiar, and simply obtains two double values from user input:

 string comparison;
 Console.WriteLine("Enter a number:");
 double var1 = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("Enter another number:");
 double var2 = Convert.ToDouble(Console.ReadLine());

Next we assign a string to the string variable comparison based on the values obtained for var1 and
var2. First we check to see if var1 is less than var2:

 if (var1 < var2)
 comparison = "less than";

If this isn't the case then var1 is either greater than or equal to var2. In the else section of the first
comparison we need to nest a second comparison:
 else
 {
 if (var1 == var2)
 comparison = "equal to";

The else section of this second comparison will only be reached if var1 is greater than var2:

 else
 comparison = "greater than";
 }

Finally we write the value of comparison to the console:
 Console.WriteLine("The first number is {0} the second number.",
 comparison);

The nesting we have used here is just one way of doing things. We could equally have written:

 if (var1 < var2)
 comparison = "less than";
 if (var1 == var2)
 comparison = "equal to";
 if (var1 > var2)
 comparison = "greater than";

The disadvantage with this method is that we are performing three comparisons regardless of the values of
var1 and var2. With the first method we only perform one comparison if var1 < var2 is true and two
comparisons otherwise (we also perform the var1 == var2 comparison), resulting in fewer lines of code
being executed. The difference in performance here will be slight, but would be significant in applications
where speed of execution is crucial.

Checking More Conditions Using if Statements

In the above example we checked for three conditions involving the value of var1. This covered all possible
values for this variable. At other times we might want to check for specific values, say if var1 is equal to 1, 2,
3 or 4, and so on. Using code such as that above can result in annoyingly nested code, for example:
if (var1 == 1)
{
 // do something
}
else
{
 if (var1 == 2)
 {
 // do something else
 }
 else
 {
 if (var1 == 3 || var1 == 4)
 {
 // do something else
 }
 else
 {
 // do something else
 }
 }
}

Note that it is a common mistake to write conditions such as the third condition as
if (var1 == 3 || 4). Here, owing to operator precedence, the == operator is processed first,
leaving the || operator to operate on a Boolean and a numeric operand. This will cause an
error.

In these situations it can be worth using a slightly different indentation scheme and contracting the block of
code for the else blocks (that is, using a single line of code after the else blocks rather than a block of
code). When we do this we end up with a structure involving else if statements:

if (var1 == 1)
{
 // do something

}
else if (var1 == 2)
{
 // do something else
}
else if (var1 == 3 || var1 == 4)
{
 // do something else
}
else
{
 // do something else
}

These else if statements are really two separate statements, and the code is functionally identical to the
above code. However, this code is much easier to read.

When making multiple comparisons such as this, it can be worth considering the switch statement as an
alternative branching structure.

The switch Statement

The switch statement is very similar to the if statement in that it executes code conditionally based on the
value of a test. However, switch allows us to test for multiple values of a test variable in one go, rather than
just a single condition. This test is limited to discrete values, rather than clauses such as "greater than X", so
its use is slightly different, but it can be a powerful technique.

The basic structure of a switch statement is as follows:

switch (<testVar>)
{
 case <comparisonVal1>:
 <code to execute if <testVar> == <comparisonVal1> >
 break;
 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal2> >
 break;
 ...
 case <comparisonValN>:
 <code to execute if <testVar> == <comparisonValN> >
 break;
 default:
 <code to execute if <testVar> != comparisonVals>
 break;
}

The value in <testVar> is compared to each of the <comparisonValX> values (specified with case
statements), and if there is a match then the code supplied for this match is executed. If there is no match
then the code in the default section is executed if this block exists.

On completion of the code in each section, we have an additional command, break. It is illegal for the flow of
execution to reach a second case statement after processing one case block.

Note that this behavior is one area where C# differs from C++, where the processing of case

statements is allowed to run from one to another.

The break statement here simply terminates the switch statement, and processing continues on the
statement following the structure.

There are alternative methods of preventing flow from one case statement to the next in C# code. We can use
the return statement, which results in termination of the current function rather than just the switch
structure (see Chapter 6 for more details about this), or a goto statement. goto statements (as detailed
earlier) work here, since case statements in effect define labels in C# code. For example:

switch (<testVar>)
{
 case <comparisonVal1>:
 <code to execute if <testVar> == <comparisonVal1> >
 goto case <comparisonVal2>;
 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal2> >
 break;
 ...

There is one exception to the rule that the processing of one case statement can't run freely into the next. If
we place multiple case statements together (stack them) before a single block of code, we are in effect
checking for multiple conditions at once. If any of these conditions is met the code is executed, for example:

switch (<testVar>)
{
 case <comparisonVal1>:
 case <comparisonVal2>:
 <code to execute if <testVar> == <comparisonVal1> or
 <testVar> == <comparisonVal2> >
 break;
 ...

Note that these conditions also apply to the default statement. There is no rule saying that this statement
must be the last in the list of comparisons, and we can stack it with case statements if we wish. Adding a
break point with break, goto, or return ensures that a valid execution path exists through the structure in
all cases.

Each of the <comparisonValX> comparisons must be a constant value. One way of doing this is to provide
literal values, for example:
switch (myInteger)
{
 case 1:
 <code to execute if myInteger == 1 >
 break;
 case -1:
 <code to execute if myInteger == -1 >
 break;
 default:
 <code to execute if myInteger != comparisons>
 break;
}

Another way is to use constant variables. Constant variables are just like any other variable, except for one
key factor: the value they contain never changes. Once we assign a value to a constant variable that is the
value it will have for the duration of code execution. Constant variables can come in handy here, as it is often
easier to read code where the actual values being compared are hidden from us at the time of comparison.

We declare constant variables using the const keyword in addition to the variable type, and must assign
them values at this time, for example:
const int intTwo = 2;

This code is perfectly valid, but if we try:
const int intTwo;
intTwo = 2;

we will get a compile error. This also happens if we try and change the value of a constant variable through
any other means after initial assignment.

Let's look at an example of a switch statement that uses constant variables.

Try it Out – Using the switch Statement

1. Create a new console application called Ch04Ex03 in the directory C:\BegVCSharp\Chapter4.

2. Add the following code to Class1.cs:

 static void Main(string[] args)
 {
 const string myName = "karli";
 const string sexyName = "angelina";
 const string sillyName = "ploppy";
 string name;
 Console.WriteLine("What is your name?");
 name = Console.ReadLine();
 switch (name.ToLower ())
 {
 case myName:
 Console.WriteLine("You have the same name as me!");
 break;
 case sexyName:
 Console.WriteLine("My, what a sexy name you have!");
 break;
 case sillyName:
 Console.WriteLine("That's a very silly name.");
 break;
 }
 Console.WriteLine("Hello {0}!", name);
 }

3. Execute the code and enter a name:

How it Works

Our code sets up three constant strings, accepts a string from the user, and then writes out text to the console
based on the string entered. In this case the strings are names.

When we compare the name entered (in the variable name) to our constant values we first force it into lower
case with name.ToLower(). This is a standard command that will work with all string variables, and comes
in handy when you're not sure what has been entered by the user. Using this technique the strings "Karli",
"kArLi", "karli", and so on will all match the test string "karli".

The switch statement itself attempts to match the string entered with the constant values we have defined,
and writes out a personalized message, if successful, to greet the user. If no match is made we simply greet
the user.

switch statements have no limit on the amount of case: sections they contain, so you could extend this
code to cover every name you can think of should you wish... but it might take a while!

Chapter 4 - Flow Control
byKarli Watsonet al.

Wrox Press 2003

Looping

Looping is where statements are executed repeatedly. This technique can come in very handy, as it means we
can repeat operations as many times as we want (thousands, even millions, of times) without having to write the
same code each time.

As a simple example, consider the following code for calculating the amount of money in a bank account after
10 years, assuming that interest is paid each year and no other money flows into or out of the account:
double balance = 1000;
double interestRate = 1.05; // 5% interest/year
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;
balance *= interestRate;

Writing the same code out 10 times seems a bit wasteful, and what if we want to change the duration from 10
years to some other value? We'd have to manually copy the line of code the required amount of times, which
would be a bit of a pain!

Luckily we don't have to do this. Instead we can just have a loop that executes the instruction we want the
required number of times.

Another important type of loop is one where we loop until a certain condition is fulfilled. These loops are slightly
simpler than the situation detailed above (although no less useful), so we'll start with them.

do Loops

do loops operate in the following way. The code we have marked out for looping is executed, then a Boolean
test is performed, and the code executes again if this test evaluates to true, and so on. When the test
evaluates to false the loop exits.

The structure of a do loop is as follows:

do
{
 <code to be looped>
} while (<Test>);

Where <Test> evaluates to a Boolean value.

The semicolon after the while statement is required, and it's a common error to miss this out.

For example, we could use this to write out the numbers from 1 to 10 in a column:
int i = 1;
do
{
 Console.WriteLine("{0}", i++);
} while (i <= 10);

Here we use the suffix version of the ++ operator to increment the value of i after it is written to the screen, so
we need to check for i <= 10 in order to include ten in the numbers written to the console.

Let's use this for a slightly modified version of the code in the introduction to this section, where we calculated
the balance in an account after 10 years. Here we will use a loop to calculate how many years it will take to get
a specified amount of money in your account based on a starting amount and an interest rate.

Try it Out - Using do Loops

1. Create a new console application called Ch04Ex04 in the directory C:\BegVCSharp\Chapter4.

2. Add the following code to Class1.cs:

 static void Main(string[] args)
 {
 double balance, interestRate, targetBalance;
 Console.WriteLine("What is your current balance?");
 balance = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("What is your current annual interest rate (in %)?");
 interestRate = 1 + Convert.ToDouble(Console.ReadLine()) / 100.0;
 Console.WriteLine("What balance would you like to have?");
 targetBalance = Convert.ToDouble(Console.ReadLine());

 int totalYears = 0;
 do
 {
 balance *= interestRate;
 ++totalYears;
 }
 while (balance < targetBalance);
 Console.WriteLine("In {0} year{1} you'll have a balance of {2}.",
 totalYears, totalYears == 1 ? "" : "s", balance);
 }

3. Execute the code and enter some values:

How it Works

This code simply repeats the simple annual calculation of balance with a fixed interest rate as many times as is
necessary for the balance to satisfy the terminating condition. We keep a count of how many years have been

accounted for by incrementing a counter variable with each loop cycle:
 int totalYears = 0;
 do
 {
 balance *= interestRate;
 ++totalYears;
 }
 while (balance < targetBalance);

We can then use this counter variable as part of the result output:
 Console.WriteLine("In {0} year{1} you'll have a balance of {2}.",
 totalYears, totalYears == 1 ? "" : "s", balance);

Note that this is perhaps the most common usage of the ?: (ternary) operator - to conditionally
format text with the minimum of code. Here we output an 's' after 'year' if totalYears isn't equal
to 1.

Unfortunately this code isn't perfect. Consider the situation where the target balance is less than the current
balance. Here the output will be along the lines of:

do loops always execute at least once. Sometimes, as in this situation, this isn't ideal. Of course, we could add
an if statement:

 int totalYears = 0;
 if (balance < targetBalance)
 {
 do
 {
 balance *= interestRate;
 ++totalYears;
 }
 while (balance < targetBalance);
 }
 Console.WriteLine("In {0} year{1} you'll have a balance of {2}.",
 totalYears, totalYears == 1 ? "" : "s", balance);

But this does seem like we're adding unnecessary complexity. A far better solution is to use a while loop.

while Loops

while loops are very similar to do loops, but have one important difference. The Boolean test in a while loop
takes place at the start of the loop cycle, not the end. If the test evaluates to false then the loop cycle is never
executed. Instead, program execution jumps straight to the code following the loop.

while loops are specified in the following way:

while (<Test>)

{
 <code to be looped>
}

And can be used in almost the same way as do loops, for example:

int i = 1;
while (i <= 10)
{
 Console.WriteLine("{0}", i++);
}

This code gives the same result as the do loop we saw earlier, as it outputs the numbers 1 to 10 in a column.

So, let's modify the last example to use a while loop.

Try it Out - Using while Loops

1. Create a new console application called Ch04Ex05 in the directory C:\BegVCSharp\Chapter4.

2. Modify the code as follows (use the code from Ch04Ex04 as a starting point, and remember to delete the
while statement at the end of the original do loop):

 static void Main(string[] args)
 {
 double balance, interestRate, targetBalance;
 Console.WriteLine("What is your current balance?");
 balance = Convert.ToDouble(Console.ReadLine());
 Console.WriteLine("What is your current annual interest rate (in %)?");
 interestRate = 1 + Convert.ToDouble(Console.ReadLine()) / 100.0;
 Console.WriteLine("What balance would you like to have?");
 targetBalance = Convert.ToDouble(Console.ReadLine());

 int totalYears = 0;
 while (balance < targetBalance)
 {
 balance *= interestRate;
 ++totalYears;
 }
 Console.WriteLine("In {0} year{1} you'll have a balance of {2}.",
 totalYears, totalYears == 1 ? "" : "s", balance);
 }

3. Execute the code again, but this time use a target balance that is less than the starting balance:

How it Works

This simple change from a do loop to a while loop has solved the problem in the last example. By moving the
Boolean test to the start we provide for the circumstance where no looping is required, and we can jump straight
to the result.

There are, of course, other alternatives in this situation. For example, we could check the user input to ensure
that the target balance is greater than the starting balance. In situations like this we can place the user input
section in a loop as follows:
 Console.WriteLine("What balance would you like to have?");
 do
 {
 targetBalance = Convert.ToDouble(Console.ReadLine());
 if (targetBalance <= balance)
 Console.WriteLine("You must enter an amount greater than " +
 "your current balance!\nPlease enter another value.");
 }
 while (targetBalance <= balance);

This will reject values that don't make sense, so we'll get output as follows:

This validation of user input is an important topic when it comes to application design, and we'll see many
examples of it over the course of this book.

for Loops

The last type of loop we'll look at in this chapter is the for loop. This type of loop is one that executes a set
number of times, and maintains its own counter. To define a for loop we need the following information:

● A starting value to initialize the counter variable

● A condition for continuing the loop, involving the counter variable

● An operation to perform on the counter variable at the end of each loop cycle

For example, if we want a loop with a counter that increments from 1 to 10 in steps of one then the starting
value is 1, the condition is that the counter is less that or equal to 10, and the operation to perform at the end of
each cycle is to add one to the counter.

This information must be placed into the structure of a for loop as follows:

for (<initialization>; <condition>; <operation>)
{
 <code to loop>
}

This works in exactly the same way as the following while loop:

<initialization>
while (<condition>)
{
 <code to loop>

 <operation>
}

But the format of the for loop makes the code easier to read, as the syntax involves the complete specification
of the loop in one place, rather than being divided over several statements in different areas of the code.

Earlier we used do and while loops to write out the numbers from 1 to 10. Let's look at the code required to do
this using a for loop:

int i;
for (i = 1; i <= 10; ++i)
{
 Console.WriteLine("{0}", i);
}

The counter variable, an integer called i, starts with a value of 1, and is incremented by 1 at the end of each
cycle. During each cycle the value of i is written to the console.

Note that when code resumes after the loop i has a value of 11. This is because at the end of the cycle where
i was equal to 10, i gets incremented to 11. This happens before the condition that i <= 10 is processed, at
which point the loop ends.

As with while loops, for loops only execute if the condition evaluates to true before the first cycle, so the
code in the loop doesn't necessarily run at all.

As a final note, we can declare the counter variable as part of the for statement, rewriting the above code as:

for (int i = 1; i <= 10; ++i)
{
 Console.WriteLine("{0}", i);
}

If we do this, though, the variable i won't be accessible from code outside this loop (see the section on variable
scope in the next chapter).

Let's look at an example using for loops. Since we have used loops quite a bit now I'll make this example a bit
more interesting: it will display a Mandelbrot set (using plain text characters, so it won't look that spectacular!).

Try it Out - Using for Loops

1. Create a new console application called Ch04Ex06 in the directory C:\BegVCSharp\Chapter4.

2. Add the following code to Class1.cs:

 static void Main(string[] args)
 {
 double realCoord, imagCoord;
 double realTemp, imagTemp, realTemp2, arg;
 int iterations;
 for (imagCoord = 1.2; imagCoord >= -1.2; imagCoord -= 0.05)
 {
 for (realCoord = -0.6; realCoord <= 1.77; realCoord += 0.03)
 {
 iterations = 0;
 realTemp = realCoord;
 imagTemp = imagCoord;
 arg = (realCoord * realCoord) + (imagCoord * imagCoord);

 while ((arg < 4) && (iterations < 40))
 {
 realTemp2 = (realTemp * realTemp) - (imagTemp * imagTemp)
 - realCoord;
 imagTemp = (2 * realTemp * imagTemp) - imagCoord;
 realTemp = realTemp2;
 arg = (realTemp * realTemp) + (imagTemp * imagTemp);
 iterations += 1;
 }
 switch (iterations % 4)
 {
 case 0:
 Console.Write(".");
 break;
 case 1:
 Console.Write("o");
 break;
 case 2:
 Console.Write("O");
 break;
 case 3:
 Console.Write("@");
 break;
 }
 }
 Console.Write("\n");
 }
 }

3. Execute the code:

How it Works

Now, I don't want to get into too much detail about how to calculate Mandelbrot sets, but I will go through the
basics to explain why we need the loops that we have used in this code. Feel free to skim through the following

two paragraphs if the mathematics doesn't interest you, as it's an understanding of the code that is important
here.

Each position in a Mandelbrot image corresponds to an imaginary number of the form N = x + y*i, where the
real part is x, the imaginary part is y, and i is the square root of -1. The x and y coordinates of the position in
the image correspond to the x and y parts of the imaginary number.

For each position on the image we look at the argument of N, which is the square root of x*x + y*y. If this value
is greater than or equal to 2 we say that the position corresponding to this number has a value of 0. If the
argument of N is less than 2 we change N to a value of N*N - N (giving us N = (x*x-y*y-x) + (2*x*y-y)
*i), and check the argument of this new value of N again. If this value is greater than or equal to 2 we say that
the position corresponding to this number has a value of 1. This process continues until we either assign a
value to the position on the image or perform more than a certain number of iterations.

Based on the values assigned to each point in the image we would, in a graphical environment, place a pixel of
a certain color on the screen. However, as we are using a text display we simply place characters on screen
instead.

Let's look at the code, and the loops contained in it.

We start by declaring the variables we will need for our calculation:
 double realCoord, imagCoord;
 double realTemp, imagTemp, realTemp2, arg;
 int iterations;

Here, realCoord and imagCoord are the real and imaginary parts of N, and the other double variables are
for temporary information during computation. iterations records how many iterations it takes before the
argument of N (arg) is 2 or greater.

Next we start two for loops to cycle through coordinates covering the whole of the image (using slightly more
complex syntax for modifying our counters than ++ or --, a common and powerful technique):

 for (imagCoord = 1.2; imagCoord >= -1.2; imagCoord -= 0.05)
 {
 for (realCoord = -0.6; realCoord <= 1.77; realCoord += 0.03)
 {

I've chosen appropriate limits to show the main section of the Mandelbrot set. Feel free to play around with
these if you want to try 'zooming in' on the image.

Within these two loops we have code that pertains to a single point in the Mandelbrot set, giving us a value for N
to play with. This is where we perform our calculation of iteration required, giving us a value to plot for the
current point.

First we initialize some variables:
 iterations = 0;
 realTemp = realCoord;
 imagTemp = imagCoord;
 arg = (realCoord * realCoord) + (imagCoord * imagCoord);

Next we have a while loop to perform our iterating. We use a while loop rather than a do loop, in case the
initial value of N has an argument greater than 2 already, in which case iterations = 0 is the answer we are
looking for and no further calculations are necessary.

Note that I'm not quite calculating the argument fully here, I'm just getting the value of x*x + y*y and checking
to see if that value is less than 4. This simplifies the calculation, as we know that 2 is the square root of 4 and
don't have to calculate any square roots ourselves:
 while ((arg < 4) && (iterations < 40))
 {
 realTemp2 = (realTemp * realTemp) - (imagTemp * imagTemp)
 - realCoord;
 imagTemp = (2 * realTemp * imagTemp) - imagCoord;
 realTemp = realTemp2;
 arg = (realTemp * realTemp) + (imagTemp * imagTemp);
 iterations += 1;
 }

The maximum number of iterations of this loop, which calculates values as detailed above, is 40.

Once we have a value for the current point stored in iterations we use a switch statement to choose a
character to output. We just use four different characters here, instead of the 40 possible values, and use the
modulus operator (%) such that values of 0, 4, 8, and so on give one character, values of 1, 5, 9, and so on give
another character, etc.:
 switch (iterations % 4)
 {
 case 0:
 Console.Write(".");
 break;
 case 1:
 Console.Write("o");
 break;
 case 2:
 Console.Write("O");
 break;
 case 3:
 Console.Write("@");
 break;
 }

Note that we use Console.Write() here rather than Console.WriteLine(), as we don't want to start a
new line every time we output a character.

At the end of one of the innermost for loops, we do want to end a line, so we simply output an end of line
character using the escape sequence we saw earlier:
 }
 Console.Write("\n");
 }

This results in each row being separated from the next and lining up appropriately.

The final result of this application, though not spectacular, is fairly impressive, and certainly shows how useful
looping and branching can be.

Interrupting Loops

There are times when we want finer grained control over the processing of looping code. C# provides four
commands that help us here, three of which we've seen before in other situations:

● break - causes the loop to end immediately

● continue - causes the current loop cycle to end immediately (execution continues with the next loop cycle)

● goto - allows jumping out of a loop to a labeled position (not recommended if you want your code to be
easy to read and understand)

● return - jumps out of the loop and its containing function (see Chapter 6)

The break command simply exits the loop, and execution continues at the first line of code after the loop, for
example:
int i = 1;
while (i <= 10)
{
 if (i == 6)
 break;
 Console.WriteLine("{0}", i++);
}

This code will write out the numbers from 1 to 5, as the break command causes the loop to exit when i
reaches 6.

continue only stops the current cycle, not the whole loop, for example:

int i;
for (i = 1; i <= 10; i++)
{
 if ((i % 2) == 0)
 continue;
 Console.WriteLine(i);
}

In the above example, whenever the remainder of i divided by 2 is zero, the continue statement stops the
execution of the current cycle, and so only the numbers 1,3,5,7,9 are displayed.

The third method of interrupting a loop is to use goto as we saw earlier, for example:

int i = 1;
while (i <= 10)
{
 if (i == 6)
 goto exitPoint;
 Console.WriteLine("{0}", i++);
}
Console.WriteLine("This code will never be reached.");
exitPoint:
Console.WriteLine("This code is run when the loop is exited using goto.");

Note that exiting a loop with goto is legal (if slightly messy), but it is illegal to use goto to jump into a loop from
outside.

Infinite Loops

It is possible, through both coding errors or design, to define loops that never end, so-called infinite loops. As a

very simple example, consider the following:
while (true)
{
 // code in loop
}

This situation can be useful at times, and we can always exit such loops using code such as break statements.

However, when this occurs by accident it can be annoying. Consider the following loop, which is similar to the
for loop in the last section:

int i = 1;
while (i <= 10)
{
 if ((i % 2) == 0)
 continue;
 Console.WriteLine("{0}", i++);
}

Here, i doesn't get incremented until the last line of code in the loop, which occurs after the continue
statement. If this continue statement is reached (which it will be when i is 2,) the next loop cycle will be using
the same value of i, continuing the loop, testing the same value of i, continuing the loop and so on. This will
cause the application to freeze. Note that it's still possible to quit the frozen application in the normal way, so
you won't have to reboot your computer if this happens.

Chapter 4 - Flow Control
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we have developed our programming knowledge by considering various structures that we can
use in our code. The proper use of these structures is essential when we start making more complex
applications, and we will see them time and again throughout this book.

First we spent some time looking at Boolean logic, with a bit of bitwise logic thrown in for good measure.
Looking back on this after working through the rest of the chapter confirms the starting assumption that we
made, which is that this topic is very important when it comes to implementing branching and looping code in
our programs. It is essential to become very familiar with the operators and techniques detailed in this section.

Branching enables us to conditionally execute code, which, when combined with looping, allows us to create
convoluted structures in our C# code. When you have loops inside loops inside if structures inside loops,
you start to see why code indentation is so useful! If we shift all our code to the left of the screen it instantly
becomes difficult to parse by eye, and even more difficult to debug. It is well worth making sure you've got the
hang of indentation at this stage - you'll appreciate it later on! OK, so VS does a lot of this for us, but it's a
good idea to indent code as you type it anyway.

Chapter 4 - Flow Control
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. If we have two integers stored in variables var1 and var2, what Boolean test can we perform to see if

one or the other (but not both) is greater than 10?

2. Write an application that includes the logic from Exercise 1, that obtains two numbers from the user and
displays them, but rejects any input where both numbers are greater than 10 and asks for two new
numbers.

3. What is wrong with the following code?
int i;
for (i = 1; i <= 10; i++)
{
 if ((i % 2) = 0)
 continue;
 Console.WriteLine(i);
}

4. Modify the Mandelbrot set application to request image limits from the user and display the chosen
section of the image. The current code outputs as many characters as will fit on a single line of a
console application; consider making every image chosen fit in the same amount of space to maximize
the viewable area.

Chapter 5 - More About Variables
byKarli Watsonet al.

Wrox Press 2003

Chapter 5: More About Variables

Overview

Now we've seen a bit more of the C# language it's time to go back and tackle some of the more involved
topics concerning variables.

The first topic we'll look at is type conversion, where we convert values from one type into another. We've
already seen a bit of this, but we'll look at it formally here. A grasp of this topic gives us a greater
understanding of what happens when we mix types in expressions (intentionally or unintentionally), and tighter
control over the way in which data is manipulated. This helps us to streamline our code, and avoid nasty
surprises.

Once we've covered this we'll look at a few more types of variable that you can use:

● Enumerations – variable types that have a user defined discrete set of possible values that can be used
in a human-readable way.

● Structs – composite variable types made up of a user-defined set of other variable types.

● Arrays – types that hold multiple variables of one type, allowing index access to the individual values.

These are slightly more complex than the simple types we've been using up to now, but can make our lives
much easier.

Once we've covered these topics we'll look at another useful subject concerning strings – basic string
manipulation.

Type Conversion

Earlier in this book we discussed the fact that all data, regardless of type, is simply a sequence of bits, that is,
a sequence of zeros and ones. The meaning of the variable comes through the way in which this data is
interpreted. The simplest example of this is the char type. This type represents a character in the Unicode
character set using a number. In fact, this number is stored in exactly the same way as a ushort – both of
them store a number between 0 and 65535.

However, in general you will find that the different types of variable use varying schemes to represent data.
This implies that even if it is possible to place the sequence of bits from one variable into a variable of a
different type (perhaps they use the same amount of storage, or perhaps the target type has enough storage
space to include all the source bits), the results might not be what you expect!

Instead of this one-to-one mapping of bits from one variable into another, we need to use type conversion on
the data.

Type conversion takes two forms:

● Implicit conversion – where conversion from type A to type B is possible in all circumstances and the
rules for performing the conversion are simple enough for us to trust in the compiler.

● Explicit conversion – where conversion from type A to type B is only possible in certain circumstances,
or where the rules for conversion are complicated enough to merit additional processing of some kind.

Let's look at these in turn.

Implicit Conversions

Implicit conversion requires no work on our part, and no additional code. Consider the code

shown below:
var1 = var2;

This assignment may involve an implicit conversion, if the type of var2 can be implicitly converted into the
type of var1, but it could just as easily involve two variables with the same type, and no implicit conversion is
necessary.

Let's look at an example.

The values of ushort and char are effectively interchangeable, as both store a number between 0 and
65535. We can convert values between these types implicitly, as illustrated by the following code:
ushort destinationVar;
char sourceVar = 'a';
destinationVar = sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

Here the value stored in sourceVar is placed in destinationVar. When we output the variables with the
two Console.WriteLine() commands we get the following output:

sourceVar val: a
destinationVar val: 97

Even though the two variables store the same information, they are interpreted in different ways using their
type.

There are many implicit conversions of simple types; bool and string have no implicit conversions, but the
numeric types have a few. For reference, the following table shows the numeric conversions which the
compiler can perform implicitly (remember that chars are stored as numbers, so char counts as a numeric
type):

Type Can safely be converted to
byte short, ushort, int, uint, long, ulong, float, double, decimal

sbyte short, int, long, float, double, decimal

short int, long, float, double, decimal

ushort int, uint, long, ulong, float, double, decimal

int long, float, double, decimal

uint long, ulong, float, double, decimal

long float, double, decimal

ulong float, double, decimal

float double

char ushort, int, uint, long, ulong, float, double, decimal

Don't worry – you don't need to learn this table off by heart, as it's actually quite easy to work out which
conversions the compiler can do implicitly. Back in Chapter 3 we saw a table showing the range of possible
values for every simple numeric type. The implicit conversion rule for these types is this: any type A whose
range of possible values completely fits inside the range of possible values of type B can be implicitly
converted into that type.

The reasoning for this is simple. If you try to fit a value into a variable and that value is outside of the range of
values that the variable can take, then there will be a problem. For example, a short type variable is capable
of storing values up to 32767, and the maximum value allowed into a byte is 255, so there could be problems
if we try to convert a short value into a byte value. If the short holds a value between 256 and 32767, it
simply won't fit into a byte.

However, if you know that the value in your short type variable is less than 255 then surely you should be
able to convert the value, right?

The simple answer is that of course you can. The slightly more complex answer is that of course you can, but
you must use an explicit conversion. Performing an explicit conversion is a bit like saying "OK, I know you've
warned me about doing this, but I'll take responsibility for what happens".

Explicit Conversions

As their name suggests, explicit conversions occur when we explicitly ask the compiler to convert a value from
one data type to another. Because of this, they require extra code, and the format of this code may vary
depending on the exact conversion method. Before we look at any of this explicit conversion code, let's look at
what happens if we don't add any.

For example, the following modification to the code from the last section attempts to convert a short value
into a byte:

byte destinationVar;
short sourceVar = 7;
destinationVar = sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

If you attempt to compile this code you will receive the following error:
Cannot implicitly convert type 'short' to 'byte'

Luckily for us, the C# compiler can detect missing explicit conversions!

In order to get this code to compile, we need to add the code to perform an explicit conversion. The easiest
way to do this in this context is to cast the short variable into a byte. Casting basically means forcing data
from one type into another, and involves the following simple syntax:

(destinationType)sourceVar

This will convert the value in sourceVar into destinationType.

Note that this is only possible in some situations. Types that bear little or no relation to each
other are likely not to have casting conversions defined.

We can therefore modify our example using this syntax to force the conversion from a short to a byte:

byte destinationVar;
short sourceVar = 7;
destinationVar = (byte)sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

Resulting in the following output:
sourceVar val: 7
destinationVar val: 7

So, what happens when we try to force a value into a variable that won't fit? Modifying our code as follows
illustrates this:
byte destinationVar;
short sourceVar = 281;
destinationVar = (byte)sourceVar;
Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

This results in:
sourceVar val: 281
destinationVar val: 25

What happened? Well, if we look at the binary representations of these two numbers, along with the maximum
value that can be stored in a byte, which is 255:
281 = 100011001
 25 = 000011001
255 = 011111111

We can see that the leftmost bit of the source data has been lost. This immediately raises a question: how we
can tell when this happens? Obviously there will be times where we will need to explicitly cast one type into
another, and it would be nice to know if any data has been lost along the way. If we didn't detect this, it could
cause serious errors, for example in an accounting application, or an application determining the trajectory of
a rocket to the moon.

One way of doing this is simply to check the value of the source variable and compare it with the known limits
of the destination variable. We also have another technique, which is to force the system to pay special
attention to the conversion at run-time. Attempting to fit a value into a variable when that value is too big for
the type of that variable results in an overflow, and this is the situation we want to check for.

Two keywords exist for setting what is called the overflow checking context for an expression: checked
and unchecked. We use these in the following way:

checked(expression)
unchecked(expression)

Let's force overflow checking in our last example:
byte destinationVar;
short sourceVar = 281;
destinationVar = checked((byte)sourceVar);

Console.WriteLine("sourceVar val: {0}", sourceVar);
Console.WriteLine("destinationVar val: {0}", destinationVar);

When this code is executed it will crash with the following error message (I've compiled this in a project called
OverflowCheck):

However, if we replace checked with unchecked in this code we will get the result we saw earlier, and no
error will occur. This is identical to the default behavior we saw earlier.

As well as these two keywords, we can configure our application to behave as if every expression of this type
includes the checked keyword, unless that expression explicitly uses the unchecked keyword (in other
words, we can change the default setting for overflow checking). To do this, we modify the properties for our
project in VS by right-clicking on the project in the Solution Explorer window and selecting the Properties option.
Click on the Configuration Properties folder on the left-hand side of the window, and this will bring up a list of
three sub-items (Build, Debugging, and Advanced). The property we want to change is one of the compiler
settings, so make sure that the Build sub-item is selected. In the top group of properties (Code Generation),
there is an option called Check for Arithmetic Overflow/Underflow. By default, this setting is False, but changing
it to True gives the checked behavior detailed above:

Explicit Conversions Using the Convert Commands

The type of explicit conversion we have been using in many of the Try it Out examples in this book is a bit
different to those we have seen so far in this chapter. We have been converting string values into numbers
using commands such as Convert.ToDouble(), which is obviously something that won't work for every
possible string.

If, for example, we try to convert a string like "Number" into a double value using Convert.ToDouble(), we
will see the following dialog when we execute the code:

As you can see, the operation fails. In order for this type of conversion to work, the string supplied must be a
valid representation of a number, and that number must be one that won't cause an overflow. A valid
representation of a number is one that contains an optional sign (that is, plus or minus), zero or more digits,
an optional period followed by one or more digits, and an optional "e" or "E" followed by an optional sign and
one or more digits and nothing else except spaces (before or after this sequence). Using all of these optional
extras we can recognize strings as complex as -1.2451e-24 as being a number.

There are many such explicit conversions that we can specify in this way, for example:

Command Result
Convert.ToBoolean(val) val converted to bool.

Convert.ToByte(val) val converted to byte.

Convert.ToChar(val) val converted to char.

Convert.ToDecimal(val) val converted to decimal.

Convert.ToDouble(val) val converted to double.

Convert.ToInt16(val) val converted to short.

Convert.ToInt32(val) val converted to int.

Convert.ToInt64(val) val converted to long.

Convert.ToSByte(val) val converted to sbyte.

Convert.ToSingle(val) val converted to float.

Convert.ToString(val) val converted to string.

Convert.ToUInt16(val) val converted to ushort.

Convert.ToUInt32(val) val converted to uint.

Convert.ToUInt64(val) val converted to ulong.

Here val can be most types of variable (if it's a type that can't be handled by these commands the compiler
will tell you).

Unfortunately, as the table above shows, the names of these conversions are slightly different to the C# type
names; for example, to convert to an int we use Convert.ToInt32(). This is because these commands
come from the .NET Framework System namespace, rather than being native C#. This allows them to be
used from other .NET-compatible languages besides C#.

The important thing to note about these conversions is that they are always overflow-checked, and the
checked and unchecked keywords and project property settings have no effect.

Let's look at an example that covers many of the conversion types from this section.

Try it Out – Type Conversions in Practice

1. Create a new console application called Ch05Ex01 in the directory C:\BegVCSharp\Chapter5.

2. Add the following code to Class1.cs:

 static void Main(string[] args)
 {
 short shortResult, shortVal = 4;
 int integerVal = 67;
 long longResult;
 float floatVal = 10.5F;
 double doubleResult, doubleVal = 99.999;
 string stringResult, stringVal = "17";
 bool boolVal = true;

 Console.WriteLine("Variable Conversion Examples\n");

 doubleResult = floatVal * shortVal;
 Console.WriteLine("Implicit, -> double: {0} * {1} -> {2}", floatVal,
 shortVal, doubleResult);

 shortResult = (short)floatVal;
 Console.WriteLine("Explicit, -> short: {0} -> {1}", floatVal,
 shortResult);

 stringResult = Convert.ToString(boolVal) +
 Convert.ToString(doubleVal);
 Console.WriteLine("Explicit, -> string: \"{0}\" + \"{1}\" -> {2}",
 boolVal, doubleVal, stringResult);

 longResult = integerVal + Convert.ToInt64(stringVal);
 Console.WriteLine("Mixed, -> long: {0} + {1} -> {2}",
 integerVal, stringVal, longResult);
 }

3. Execute the code:

How it Works

This example contains all of the conversion types we've seen so far, both in simple assignments as in the
short code examples in the discussion above, and in expressions. We need to consider both cases, as the
processing of every non-unary operator may result in type conversions, not just assignment operators. For
example:
shortVal * floatVal

Here we are multiplying a short value by a float value. In situations such as these, where no explicit
conversion is specified, implicit conversion will be used if possible. In this example the only implicit conversion
that makes sense is to convert the short into a float (as converting a float into a short requires explicit
conversion), so this is the one that will be used.

However, we can override this behavior should we wish, using:
shortVal * (short)floatVal

This doesn't mean a short will be returned from this operation. Since the result of multiplying
two shorts is quite likely to exceed 32767 (the maximum value a short can hold), this
operation actually returns an int.

Explicit conversions performed using this casting syntax take the same operator precedence as other unary
operators (such as ++ used as a prefix), that is, the highest level of precedence.

When we have statements involving mixed types, conversions occur as each operator is processed,
according to the operator precedence. This means that "intermediate" conversions may occur, for example:
doubleResult = floatVal + (shortVal * floatVal);

The first operator to be processed here is *, which, as discussed above, will result in shortVal being
converted to a float. Next we process the + operator, which won't require any conversion, as it acts on two
float values (floatVal and the float type result of shortVal * floatVal). Finally, the float result of
this calculation is converted into a double when the = operator is processed.

This conversion process can seem complex at first glance, but as long as you break expressions down into
parts by taking the operator precedence order into account you should be able to work things out.

Chapter 5 - More About Variables
byKarli Watsonet al.

Wrox Press 2003

Complex Variable Types

So far we've looked at all the simple variable types that C# has to offer. There are three slightly more complex
(but very useful) sorts of variable that we will look at here:

● Enumerations

● Structures

● Arrays

Enumerations

Each of the types we've seen so far (with the exception of string) has a clearly defined set of allowed
values. Admittedly this set is so large in types such as double that it can practically be considered a
continuum, but it is a fixed set nevertheless. The simplest example of this is the bool type, which can only
take one of two values: true or false.

There are many other situations where you might want to have a variable that can take one of a fixed set of
results. For example, you might want to have an orientation type that can store one of the values north,
south, east, or west.

In situations like this, enumerations can be very useful. Enumerations do exactly what we want for this
orientation type: they allow the definition of a type that can take one of a finite set of values that we
supply.

What we need to do, then, is create our own enumeration type called orientation that can take one of the
four possible values shown above.

Note that there is an additional step involved here – we don't just declare a variable of a given type, we
declare and detail a user-defined type and then we declare a variable of this new type.

Defining Enumerations

Enumerations can be defined using the enum keyword as follows:

enum typeName
{
 value1,
 value2,
 value3,
 ...
 valueN
}

Next we can declare variables of this new type with:
typeName varName;

And assign values using:
varName = typeName.value;

Enumerations have an underlying type used for storage. Each of the values that an enumeration type can
take is stored as a value of this underlying type, which by default is int. We can specify a different underlying
type by adding the type to the enumeration declaration:
enum typeName : underlyingType
{
 value1,
 value2,
 value3,
 ...
 valueN
}

Enumerations can have underlying types of byte, sbyte, short, ushort, int, uint, long and ulong.

By default, each value is assigned a corresponding underlying type value automatically according to the order
in which it is defined, starting from zero. This means that value1 will get the value 0, value2 will get 1,
value3 will get 2, and so on. We can override this assignment by using the = operator and specifying actual
values for each enumeration value:

enum typeName : underlyingType
{
 value1 = actualVal1,
 value2 = actualVal2,
 value3 = actualVal3,
 ...
 valueN = actualValN
}

In addition, we can specify identical values for multiple enumeration values by using one value as the
underlying value of another:

enum typeName : underlyingType
{
 value1 = actualVal1,
 value2 = value1,
 value3,
 ...
 valueN = actualValN
}

Any values left unassigned will be given an underlying value automatically, where the values used are in a
sequence starting from 1 greater that the last explicitly declared one. In the above code, for example, value3
will get the value value1 + 1.

Note that this can cause unpredicted problems, where values specified after a definition such as
value2 = value1 will be identical to other values. For example, in the following code value4 will have the
same value as value2:

enum typeName : underlyingType
{
 value1 = actualVal1,
 value2,
 value3 = value1,
 value4,
 ...
 valueN = actualValN
}

Of course, if this is the behavior you want then this code is fine.

Note also that assigning values in a circular fashion will cause an error, for example:

enum typeName : underlyingType
{
 value1 = value2,
 value2 = value1
}

Let's look at an example of all of this.

Try it Out – Using an Enumeration

1. Create a new console application called Ch05Ex02 in the directory C:\BegVCSharp\Chapter5.

2. Add the following code to Class1.cs:

namespace Ch05Ex02
{
 enum orientation : byte
 {
 north = 1,
 south = 2,
 east = 3,
 west = 4
 }
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class Class1
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 orientation myDirection = orientation.north;
 Console.WriteLine("myDirection = {0}", myDirection);
 }
 }
}

3. Execute the application. You should see the following output to the console:

4. Quit the application and modify the code as follows:
 byte directionByte;
 string directionString;
 orientation myDirection = orientation.north;
 Console.WriteLine("myDirection = {0}", myDirection);
 directionByte = (byte)myDirection;
 directionString = Convert.ToString(myDirection);
 Console.WriteLine("byte equivalent = {0}", directionByte);
 Console.WriteLine("string equivalent = {0}", directionString);

5. Execute the application again:

How it Works

This code defines and uses an enumeration type called orientation. The first thing to notice is that the
type definition code is placed in our namespace, Ch05Ex02, but not in the same place as the rest of our code.
This is because definitions are not executed as such; that is, at run-time we don't step through the code in a
definition as we do the lines of code in our application. Application execution starts in the place we're used to,
and has access to our new type as it belongs to the same namespace.

The first iteration of the example demonstrates the basic method of creating a variable of our new type,
assigning it a value, and outputting it to the screen.

Next we modified our code to show the conversion of enumeration values into other types. Note that we must
use explicit conversions here. Even though the underlying type of orientation is byte, we still have to use
the (byte) cast to convert the value of myDirection into a byte type:

directionByte = (byte)myDirection;

The same explicit casting is necessary in the other direction too, if we want to convert a byte into an
orientation. For example, we could use the following code to convert a byte variable called myByte into
an orientation and assign this value to myDirection:

myDirection = (orientation)myByte;

Of course, care must be taken here as not all permissible values of byte type variables map to defined
orientation values. The orientation type can store other byte values, so we won't get an error straight
away, but this may break logic later in the application.

To get the string value of an enumeration value we can use Convert.ToString():

directionString = Convert.ToString(myDirection);

Using a (string) cast won't work, as the processing required is more complicated than just placing the data
stored in the enumeration variable into a string variable.

Alternatively, we can use the ToString() command of the variable itself. The following code gives us the
same result as using Convert.ToString():

directionString = myDirection.ToString();

Converting a string to an enumeration value is also possible, except that here the syntax required is slightly
more complex. A special command exists for this sort of conversion, Enum.Parse(), which is used in the
following way:
(enumerationType)Enum.Parse(typeof(enumerationType), enumerationValueString);

This uses another operator, typeof, which obtains the type of its operand. We could use this for our
orientation type as follows:

string myString = "north";
orientation myDirection = (orientation)Enum.Parse(typeof(orientation),
 myString);

Of course, not all string values will map to an orientation value! If we pass in a value that doesn't map to
one of our enumeration values, we will get an error. Like everything else in C#, these values are case-
sensitive, so we'll still get an error if our string agrees with a value in everything but case (for example, if
myString is set to "North" rather than "north").

Structs

The next sort of variable that we will look at is the struct (short for "structure"). Structs are just that – data
structures are composed of several pieces of data, possibly of different types. They allow us to define our own
types of variable based on this structure. For example, suppose we want to store the route to a location from a
starting point, where the route consists of a direction and a distance in miles. For simplicity we'll assume that
the direction is one of the compass points (such that it can be represented using the orientation
enumeration from the last section), and that distance in miles can be represented as a double type.

Now, we could use two separate variables for this using code we've seen already:
orientation myDirection;
double myDistance;

There is nothing wrong with using two variables like this, but it is would be far simpler (especially where
multiple routes are required) to store this information in one place.

Defining Structs

Structs are defined using the struct keyword as follows:

struct <typeName>
{
 <memberDeclarations>
}

The <memberDeclarations> section contains declarations of variables (called the data members of the
struct) in almost the same format as usual. Each member declaration takes the form:
<accessibility> <type> <name>;

To allow the code that calls the struct to access the struct's data members, we use the keyword public for

<accessibility>. For example:

struct route
{
 public orientation direction;
 public double distance;
}

Once we have a struct type defined, we use it by defining variables of the new type:
route myRoute;

And have access to the data members of this composite variable via the period character:
myRoute.direction = orientation.north;
myRoute.distance = 2.5;

Let's put this type into an example.

Try it Out – Using a Struct

1. Create a new console application called Ch05Ex03 in the directory C:\BegVCSharp\Chapter5.

2. Add the following code to Class1.cs:

namespace Ch05Ex03
{
 enum orientation : byte
 {
 north = 1,
 south = 2,
 east = 3,
 west = 4
 }
 struct route
 {
 public orientation direction;
 public double distance;
 }
 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class Class1
 {
 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 route myRoute;
 int myDirection = -1;
 double myDistance;
 Console.WriteLine("1) North\n2) South\n3) East\n4) West");
 do
 {
 Console.WriteLine("Select a direction:");

 myDirection = Convert.ToInt32(Console.ReadLine());
 }
 while ((myDirection < 1) || (myDirection > 4));
 Console.WriteLine("Input a distance:");
 myDistance = Convert.ToDouble(Console.ReadLine());
 myRoute.direction = (orientation)myDirection;
 myRoute.distance = myDistance;
 Console.WriteLine("myRoute specifies a direction of {0} and a " +
 "distance of {1}", myRoute.direction, myRoute.distance);
 }
 }
}

3. Execute the code, select a direction, and then enter a distance:

How it Works

Structs, like enumerations, are declared outside of the main body of the code. We declare our route struct
just inside the namespace declaration, along with the orientation enumeration that it uses:

 enum orientation : byte
 {
 north = 1,
 south = 2,
 east = 3,
 west = 4
 }
 struct route
 {
 public orientation direction;
 public double distance;
 }

The main body of the code follows a similar structure to some of the example code we've already seen,
requesting input from the user and displaying it. We perform some simple validation of user input by placing
the direction selection in a do loop, rejecting any input that isn't an integer between 1 and 4 (with values
chosen such that they map onto the enumeration members for easy assignment).

The interesting point to note is that when we refer to the members of route they are treated in exactly the
same way as variables of the same type as the member would be. The assignment is as follows:
 myRoute.direction = (orientation)myDirection;
 myRoute.distance = myDistance;

We could simply take the input value directly into myRoute.distance with no ill effects as follows:

 myRoute.distance = Convert.ToDouble(Console.ReadLine());

The extra step allows for more validation, although none is performed in this code.

Any access to members of a structure is treated in the same way. Expressions of the form structVar.
memberVar can be said to evaluate to a variable of the type of memberVar.

Arrays

All the types we've seen so far have one thing in common: each of them stores a single value (or a single set
of values in the case of structs). Sometimes, in situations where we want to store a lot of data, this isn't very
convenient. Sometimes we want to store several values of the same type at the same time, without having to
use a different variable for each value.

For example, let's say you want to perform some processing that involves the names of all of your friends.
You could use simple string variables such as:
string friendName1 = "Robert Barwell";
string friendName2 = "Mike Parry";
string friendName3 = "Jeremy Beacock";

But this looks like it will need a lot of effort, especially as we'll need to write different code to process each
variable. We couldn't, for example, iterate through this list of strings in a loop.

The alternative is to use an array. Arrays are indexed lists of variables stored in a single array type variable.
For example, let's say we have an array that stores the three names shown above, called friendNames. We
can access individual members of this array by specifying their index in square brackets as shown below:
friendNames[<index>]

This index is simply an integer, starting with 0 for the first entry, 1 for the second, and so on. This means that
we can go through the entries using a loop, for example:
int i;
for (i = 0; i < 3; i++)
{
 Console.WriteLine("Name with index of {0}: {1}", i, friendNames[i]);
}

Arrays have a single base type, that is, individual entries in an array are all of the same type. This
friendNames array has a base type of string, as it is intended for storing string variables.

Array entries are often referred to as elements.

Declaring Arrays

Arrays are declared in the following way:
<baseType>[] <name>;

Here, <baseType> may be any variable type, including the enumeration and struct types we've seen in this
chapter.

Arrays must be initialized before we have access to them. We can't just access or assign values to the array
elements like this:
int[] myIntArray;
myIntArray[10] = 5;

Arrays can be initialized in two ways. We can either specify the complete contents of the array in a literal form,
or we can specify the size of the array and use the new keyword to initialize all array elements.

Specifying an array using literal values simply involves providing a comma-separated list of element values
enclosed in curly braces, for example:
int[] myIntArray = {5, 9, 10, 2, 99};

Here myIntArray has five elements, each with an assigned integer value.

The other method requires syntax as follows:
int[] myIntArray = new int[5];

Here we use the new keyword to explicitly initialize the array, and a constant value to define the size. This
method results in all the array members being assigned a default value, which is 0 for numeric types. We can
also use non-constant variables for this initialization, for example:
int[] myIntArray = new int[arraySize];

We can also combine these two methods of initialization if we wish:
int[] myIntArray = new int[5] {5, 9, 10, 2, 99};

With this method the sizes must match. We can't, for example, write:
int[] myIntArray = new int[10] {5, 9, 10, 2, 99};

Here the array is defined as having 10 members, but only 5 are defined, so compilation will fail. A side effect
of this is that if we define the size using a variable that variable must be a constant, for example:
const int arraySize = 5;
int[] myIntArray = new int[arraySize] {5, 9, 10, 2, 99};

If we omit the const keyword this code will fail.

As with other variable types, there is no need to initialize an array on the same line that we declare it. The
following is perfectly legal:
int[] myIntArray;
myIntArray = new int[5];

We've done enough to look at an example, so let's try out some code.

Try it Out – Using an Array

1. Create a new console application called Ch05Ex04 in the directory C:\BegVCSharp\Chapter5.

2. Add the following code to Class1.cs:

 static void Main(string[] args)
 {
 string[] friendNames = {"Robert Barwell", "Mike Parry",
 "Jeremy Beacock"};
 int i;
 Console.WriteLine("Here are {0} of my friends:",
 friendNames.Length);
 for (i = 0; i < friendNames.Length; i++)
 {
 Console.WriteLine(friendNames[i]);

 }
 }

3. Execute the code:

How it Works

This code sets up a string array with three values, and lists them in the console in a for loop. Note that we
have access to the number of elements in the array using friendNames.Length:

Console.WriteLine("Here are {0} of my friends:", friendNames.Length);

This is a handy way to get the size of an array.

Outputting values in a for loop is easy to get wrong. For example, try changing < to <= as follows:

 for (i = 0; i <= friendNames.Length; i++)
 {
 Console.WriteLine(friendNames[i]);
 }

Compiling this results in the following dialog popping up:

Here we have attempted to access friendNames[3]. Remember, array indices start from 0, so the last
element is friendNames[2]. If we attempt to access elements outside of the array size the code will fail.

It just so happens that there is a more resilient method of accessing all the members of an array, using
foreach loops.

foreach Loops

A foreach loop allows us to address each element in an array using the simple syntax:

foreach (<baseType> <name> in <array>)
{
 // can use <name> for each element
}

This loop will cycle through each element, placing each one in the variable <name> in turn, without danger of
accessing illegal elements. We don't have to worry about how many elements there are in the array, and we
can be sure that we'll get to use each one in the loop. Using this, we can modify the code in the last example

as follows:
 static void Main(string[] args)
 {
 string[] friendNames = {"Robert Barwell", "Mike Parry",
 "Jeremy Beacock"};
 Console.WriteLine("Here are {0} of my friends:", friendNames.Length);
 foreach (string friendName in friendNames)
 {
 Console.WriteLine(friendName);
 }
 }

The output of this code will be exactly the same as the previous example.

The main difference between using this method and a standard for loop is that foreach gives us read-only
access to the array contents, so we can't change the values of any of the elements. We couldn't, for example,
do the following:
 foreach (string friendName in friendNames)
 {
 friendName = "Rupert the bear";
 }

If we try this, compilation will fail. If we use a simple for loop, however, we can assign values to array
elements.

Multi-dimensional Arrays

From the title of this section you would be forgiven for thinking that we are about to discuss some low-budget
science fiction addition to the C# language. In actual fact, a multi-dimensional array is simply one that uses
multiple indices to access its elements.

For example, consider the situation where you want to plot the height of a hill against the position measured.
We might specify a position using two coordinates, x and y. We want to use these two coordinates as indices,
such that an array called hillHeight would store the height at each pair of coordinates. This involves using
multi-dimensional arrays.

A two-dimensional array such as this is declared as follows:
<baseType>[,] <name>;

Arrays of more dimensions simply require more commas; for example:
<baseType>[,,,] <name>;

This would declare a four-dimensional array.

Assigning values also uses a similar syntax, with commas separating sizes. To declare and initialize the two-
dimensional array hillHeight discussed above with a base type of double, an x size of 3, and a y size of
4 requires the following:
double[,] hillHeight = new double[3,4];

Alternatively, we can use literal values for initial assignment. Here we use nested blocks of curly braces,
separated by commas; for example:
double[,] hillHeight = {{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}};

This array has the same dimension sizes as the previous one, but has values explicitly defined.

To access individual elements of a multidimensional array, we simply specify the indices separated by
commas; for example:
hillHeight[2,1]

We can then manipulate this element just as with other elements.

This expression will access the second element of the third nested array as defined above (the value will be
4). Remember that we start counting from 0, and that the first number is the nested array. In other words, the
first number specifies the pair of curly braces, and the second number the element within that pair of braces.
We can represent this array visually like this:

The foreach loop allows us access to all elements in a multi-dimensional way just as with single-dimensional
arrays; for example:
double[,] hillHeight = {{1, 2, 3, 4}, {2, 3, 4, 5}, {3, 4, 5, 6}};
foreach (double height in hillHeight)
{
 Console.WriteLine("{0}", height);
}

The order in which the elements are output is the same as the order used to assign literal values:
hillHeight[0,0]
hillHeight[0,1]
hillHeight[0,2]
hillHeight[0,3]
hillHeight[1,0]
hillHeight[1,1]
hillHeight[1,2]

... and so on.

Arrays of Arrays

Multidimensional arrays as discussed in the last section are said to be rectangular. This is because each
"row" is the same size. Using the last example, we can have a y coordinate of 0 to 3 for any of the possible x
coordinates.

It is also possible to have jagged arrays, where "rows" may be different sizes. To do this we need to have an
array where each element is another array. We could also have arrays of arrays of arrays if we want, or even
more complex situations. However, note that all this is only possible if the arrays have the same base type.

The syntax for declaring arrays of arrays involves specifying multiple sets of square brackets in the

declaration of the array, for example:
int[][] jaggedIntArray;

Unfortunately, initializing arrays such as this isn't as simple as initializing multi-dimensional arrays. We can't,
for example, follow this declaration with:
jaggedIntArray = new int[3][4];

Even if we could do this, it wouldn't be that useful, as we can achieve the same effect with simple multi-
dimensional arrays with less effort. We also can't use code such as:
jaggedIntArray = {{1, 2, 3}, {1}, {1, 2}};

We have two options. We can initialize the array that contains other arrays (I'll call these sub-arrays for clarity)
and then initialize the sub-arrays in turn:
jaggedIntArray = new int[2][];
jaggedIntArray[0] = new int[3];
jaggedIntArray[1] = new int[4];

Or we can use a modified form of the above literal assignment:
jaggedIntArray = {new int[] {1, 2, 3}, new int[] {1}, new int[] {1, 2}};

We can use foreach loops with jagged arrays, but we'll often need to nest these to get to the actual data.
For example, let's say we have the following jagged array that contains ten arrays, each of which contains an
array of integers that are divisors of an integer between one and ten:
int[][] divisors1To10 = {new int[] {1},
 new int[] {1, 2},
 new int[] {1, 3},
 new int[] {1, 2, 4},
 new int[] {1, 5},
 new int[] {1, 2, 3, 6},
 new int[] {1, 7},
 new int[] {1, 2, 4, 8},
 new int[] {1, 3, 9},
 new int[] {1, 2, 5, 10}};

The following code will fail:
foreach (int divisor in divisors1To10)
{
 Console.WriteLine(divisor);
}

This is because the array divisors1To10 contains int[] elements, not int elements. Instead we have to
loop through every sub-array as well as through the array itself:
foreach (int[] divisorsOfInt in divisors1To10)
{
 foreach(int divisor in divisorsOfInt)
 {
 Console.WriteLine(divisor);
 }
}

As you can see, the syntax for using jagged arrays can quickly become complex! In most cases it is easier to
use rectangular arrays, or a simpler storage method. However, there may well be situations where we are

forced to use this method, and a working knowledge can't hurt!

Chapter 5 - More About Variables
byKarli Watsonet al.

Wrox Press 2003

String Manipulation

Our use of strings so far has consisted of writing strings to the console, reading strings from the console, and
concatenating strings using the + operator. In the course of programming more interesting applications you
will soon discover that the manipulation of strings is something that we end up doing a lot. Because of this it is
worth us spending a few pages looking at some of the more common string manipulation techniques available
in C#.

To start with, it is well worth noting that a string type variable can be treated as a read-only array of char
variables. This means that we can access individual characters using syntax like:
string myString = "A string";
char myChar = myString[1];

However, we can't assign individual characters in this way.

To get a char array that we can write to, we can use the following code. This uses the ToCharArray()
command of the array variable:
string myString = "A string";
char[] myChars = myString.ToCharArray();

And then we can manipulate the char array in the standard way.

We can also use strings in foreach loops, for example:

foreach (char character in myString)
{
 Console.WriteLine("{0}", character);
}

As with arrays we can also get the number of elements using myString.Length. This gives us the number
of characters in the string, for example:
string myString = Console.ReadLine();
Console.WriteLine("You typed {0} characters.", myString.Length);

Other basic string manipulation techniques use commands with a similar format to this <string>.
ToCharArray() command. Two simple, but useful, ones are <string>.ToLower() and <string>.
ToUpper(). These enable strings to be converted into lower and upper case respectively. To see why this is
useful, consider the situation where you want to check for a specific response from a user, for example the
string "yes". If we convert the string entered by the user into lower case then we can also check for the
strings "YES", "Yes", "yeS", and so on - we saw an example of this in the

string userResponse = Console.ReadLine();
if (userResponse.ToLower() == "yes")
{
 // act on response

}

Note that this command, like the others in this section, doesn't actually change the string to which it is applied.
Instead, combining this command with a string results in a new string being created, which we can compare to
another string (as shown above), or assign to another variable. This other variable may be the same one that
is being operated on, for example:
userResponse = userResponse.ToLower();

This is an important point to remember, as just writing:
userResponse.ToLower();

doesn't actually achieve very much!

Let's see what else we can do to ease the interpretation of user input. What if the user accidentally put an
extra space at the beginning or end of their input? In this case the above code won't work. We need to trim the
string entered, which we can do using the <string>.Trim() command:

string userResponse = Console.ReadLine();
userResponse = userResponse.Trim();
if (userResponse.ToLower() == "yes")
{
 // act on response
}

Using this, we will also be able detect strings like:
" YES"
"Yes "

We can also use these commands to remove any other characters, by specifying them in a char array, for
example:
char[] trimChars = {' ', 'e', 's'};
string userResponse = Console.ReadLine();
userResponse = userResponse.ToLower();
userResponse = userResponse.Trim(trimChars);
if (userResponse == "y")
{
 // act on response
}

This gets rid of any occurrences of spaces, the letter "e", and the letter "s" from the beginning or end of our
string. Providing there isn't any other character in the string, this will result in the detection of strings such as:
"Yeeeees"
" y"

And so on.

We can also use the <string>.TrimStart() and <string>.TrimEnd() command, which will trim
spaces from the beginning and end of a string respectively. These can also have char arrays specified.

There are two other string commands that we can use to manipulate the spacing of strings: <string>.
PadLeft() and <string>.PadRight(). These allow us to add spaces to the left or right of a string in
order to force it to the desired length. We use these as follows:
<string>.PadX(<desiredLength>);

For example:
myString = "Aligned";
myString = myString.PadLeft(10);

This would result in three spaces being added to the left of the word "Aligned" in myString. These
methods can be useful for aligning strings in columns, which is particularly useful for placing number strings
below others.

As with the trimming commands, we can also use these commands in a second way, by supplying the
character to pad the string with. This involves a single char, not an array of chars as with trimming. For
example:
myString = "Aligned";
myString = myString.PadLeft(10, '-');

This would add three dashes to the start of myString.

There are many more of these string manipulation commands, many of which are only useful in very specific
situations. I'll discuss these as and when we use them in the forthcoming chapters. Before moving on, though,
it is worth looking at one of the features of VS that you may have noticed over the course of the last few
chapters, and especially this one.

Try it Out - Statement Auto-completion in VS

1. Create a new console application called Ch05Ex05 in the directory C:\BegVCSharp\Chapter5.

2. Type the following code to Class1.cs, exactly as written:

 static void Main(string[] args)
 {
 string myString = "This is a test.";
 char[] separator = {' '};
 string[] myWords;
 myWords = myString.
 }

3. As you type the final period, note the following window that pops up:

4. Without moving the cursor, type "s". The pop-up window changes, and a yellow tooltip pop-up appears:

5. Type the following characters: "(separator);". The code should look as follows, and the pop-up
windows should disappear:
 static void Main(string[] args)
 {
 string myString = "This is a test.";
 char[] separator = {' '};
 string[] myWords;
 myWords = myString.Split(separator);
 }

6. Add the following code, noting the windows as they pop up:
 static void Main(string[] args)
 {
 string myString = "This is a test.";
 char[] separator = {' '};
 string[] myWords;
 myWords = myString.Split(separator);
 foreach (string word in myWords)
 {
 Console.WriteLine("{0}", word);
 }
 }

7. Execute the code:

How it Works

There are two main points to note in this code. The first is the new string command we have used, and the
second is the use of the auto-completion function in VS. We'll tackle these one at a time.

The command we have used, <string>.Split(), converts a string into a string array by splitting it at
the points specified. These points take the form of a char array, which in this case is simply populated by a
single element, the space character:
 char[] separator = {' '};

The following code obtains the sub-strings we get when the string is split at each space, that is, we get an
array of individual words:
 string[] myWords;
 myWords = myString.Split(separator);

Next we loop through the words in this array using foreach, and write each one to the console:

 foreach (string word in myWords)
 {
 Console.WriteLine("{0}", word);
 }

Note that each word obtained will have no spaces, neither embedded in the word nor at either
end. The separators are removed when we use Split().

Next, let's look at the auto-completion. VS is a very intelligent package, and works out a lot of information
about your code as you type it in. By the time you type the period after myString, it knows that myString is
a string, detects that you want to specify a string command, and presents the available options. At this point
you can stop typing should you wish, and select the command you want using the up and down arrow keys.
As you move through what is available, VS tells you what the currently selected command means, and what
the syntax for using it is.

When we start typing more characters VS moves the selected command to the top of the commands you
might mean automatically. Once it shows the command you want, you can simply carry on typing as if you'd
typed the whole name, so typing "(" takes us straight to the point where we specify the additional information
that some commands require - and VS even tells us the format this extra information must be in, presenting
options for those commands that accept varying amounts of information.

This feature of VS can come in very handy, and allows us to find out information about strange types with
ease. You may find it interesting to look at all the commands that the string type exposes and experiment -
nothing you do is going to break the computer, so play away!

Chapter 5 - More About Variables
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we've spent some time expanding our current knowledge of variables and filling in some of the
blanks from earlier on. Perhaps the most important topic covered in this chapter is type conversion, as this is
one that will come back and haunt you throughout this book. Getting a sound grasp of the concepts involved
now will make things a lot easier later!

We've also seen a few more variable types that we can use to help us to store data in a more developer-
friendly way. We've seen how enumerations can make our code much more readable with easily discernable
values, how structs can be used to combine multiple related data elements in one place, and how we can
group similar data together in arrays. We'll see all of these types used many times throughout the rest of this
book.

Finally, we turned our attention to string manipulation, discussing some of the basic techniques and principles
involved. There are many individual string commands available here, and we only looked at a few, but we also
saw how we can look at the available commands in VS. Using this technique you can have some fun trying
things out. At least one of the examples below can be solved using one or more string commands we haven't
discussed yet, but I'm not telling you which!

Chapter 5 - More About Variables
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Which of the following conversions can't be performed implicitly:

❍ int to short

❍ short to int

❍ bool to string

❍ byte to float

2. Give the code for a color enumeration based on the short type containing the colors of the rainbow
plus black and white. Can this enumeration be based on the byte type?

3. Modify the Mandelbrot set generator example from the last chapter to use the following struct for
complex numbers:
struct imagNum
{
 public double real, imag;
}

4. Will the following code compile? If not, why not?
string[] blab = new string[5]
string[5] = 5th string.

5. Write a console application that accepts a string from the user and outputs a string with the characters in
reverse order.

6. Write a console application that accepts a string and replaces all occurrences of the string "no" with
"yes".

7. Write a console application that places double quotes around each word in a string.

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Chapter 6: Functions

Overview

All the code we have seen so far has taken the form of a single block, perhaps with some looping to repeat
lines of code and branching to execute statements conditionally. If we've needed to perform an operation on
our data then this has meant placing the code required right where we want it to work.

This kind of code structure is limited. We will often find that some tasks, for example finding the highest value
in an array, may need to be performed at several points in a program. We can just place identical (or near
identical) sections of code in our application whenever necessary, but this has its own problems. Changing
even one minor detail concerning a common task (to correct a code error, for example) may require changes
to multiple sections of code, which may be spread throughout the application. Missing one of these could have
dramatic consequences, and cause the whole application to fail. In addition, the application could get very
lengthy.

The solution to this problem is to use functions. Functions in C# are a means of providing blocks of code that
can be executed at any point in an application.

Functions of the specific type we are considering in this chapter are known as methods.
However, this term has a very specific meaning in .NET programming that will only become clear
later in the book, so for now we'll avoid the use of this term.

For example, we could have a function that calculates the maximum value in an array. We can use this
function from any point in our code, and use the same lines of code in each case. Since we only need to
supply this code once any changes we make to it will affect this calculation wherever it is used. This function
can be thought of as containing reusable code.

Functions also have the advantage of making our code more readable, as we can use them to group related
code together. If we do this, then our application body itself can be made very short, as the inner workings of
the code are separated out. This is similar to the way in which we can collapse regions of code together in VS
using the outline view, and gives a more logical structure to our application.

Functions can also be used to create multi-purpose code, allowing them to perform the same operations on
varying data. We can supply a function with information to work with in the form of parameters, and we can
obtain results from functions in the form of return values. In the above example, we could supply an array to
search as a parameter and obtain the maximum value in the array as a return value. This means that we can
use the same function to work with a different array each time. The parameters and return value of a function
collectively define the signature of a function.

In this chapter, we'll start by looking at the way in which we can define and use simple functions that don't
accept or return any data. After this, we'll move on to look at the way in which we can achieve transfer of data
to and from functions.

Next we'll take a look at the issue of variable scope. This concerns the way in which data in a C# application

is localized to specific regions of code, an issue that becomes especially important when we are separating
our code into multiple functions.

After this, we'll take an in depth look at an important function in C# applications: Main(). We'll see how we
can use the built in behavior of this function to make use of command line arguments, which enable us to
transfer information into applications when we run them.

Next, we'll take a look at an additional feature of the struct types that we saw in the last chapter, the fact that
you can supply functions as members of struct types.

Finally we'll turn our attention to two more advanced topics: function overloading and delegates. Function
overloading is a technique that allows us to provide multiple functions with the same name, but different
signatures. A delegate is a variable type that allows us to use functions indirectly. The same delegate can be
used to call any function that matches a specific signature, giving us the ability to choose between several
functions at run time.

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Defining and Using Functions

In this section, we'll look at how we can add functions to our applications and then use (call) them from our
code. We'll start with the basic, looking at simple functions that don't exchange any data with code that calls
them, and then move on to look at more advanced function usage.

To get things moving, let's look at an example.

Try it Out – Defining and Using a Basic Function

1. Create a new console application called Ch06Ex01 in the directory C:\BegVCSharp\Chapter6.

2. Add the following code to Class1.cs:

 class Class1
 {
 static void Write()
 {
 Console.WriteLine("Text output from function.");
 }

 /// <summary>
 /// The main entry point for the application.
 /// </summary>
 [STAThread]
 static void Main(string[] args)
 {
 Write();
 }
 }

3. Execute the code:

How it Works

The following four lines of our code define a function called Write():

 static void Write()
 {
 Console.WriteLine("Text output from function.");
 }

The code contained here simply outputs some text to the console window. However, this behavior isn't that

important to us at the moment, as we're more concerned with the mechanisms behind function definition and
use.

The function definition here consists of the following:

● Two keywords, static and void.

● A function name followed by parentheses, Write().

● A block of code to execute enclosed in curly braces.

The code that defines the Write() function looks very similar to some of the other code in our application:

 static void Main(string[] args)
 {
 ...
 }

This is because all the code we have written so far (apart from type definitions) has been part of a function.
This function, Main(), is (as suggested by the comment in the auto-generated code) the entry point function
for a console application. When a C# application is executed, the entry point function it contains is called, and
when this function completes the application terminates. All C# executable code must have an entry point.

The only difference between the Main() function and our Write() function (apart from the lines of code they
contain), is that there is some code inside the parentheses after the function name Main. This is how we
specify parameters, which we'll discuss in more detail shortly.

As mentioned above, both Main() and Write() are defined using static and void keywords. The
static keyword relates to object-oriented concepts, which we'll come back to later in the book. For now you
only need to remember that all the functions we'll use in our applications in this section of the book must use
this keyword.

void, on the other hand, is much simpler to explain. This keyword is to indicate the function does not return a
value. Later on in this chapter, we'll see what we need to write when a function has a return value.

Moving on, the code that calls our function is as follows:
 Write();

We simply type the name of the function followed by empty parentheses. When program execution reaches
this point the code in the Write() function will run.

Note that the parentheses used, both in the function definition and where the function is called,
are mandatory. Try removing them if you like – the code won't compile.

Return Values

The simplest way of exchanging data with a function is to make use of a return value. Functions that have
return values evaluate to that value, in exactly the same way as variables evaluate to the value they contain
when we use them in expressions. Just like variables, return values have a type.

For example, we might have a function called getString() whose return value is a string. We could use this

in code, such as:
string myString;
myString = getString();

Alternatively, we might have a function called getVal() that returns a double value, which we could use in
a mathematical expression:
double myVal;
double multipler = 5.3;
myVal = getVal() * multiplier;

When a function returns a value, we have to modify your function in two ways:

● Specify the type of the return value in the function declaration instead of using the void keyword

● Use the return keyword to end the function execution and transfer the return value to the calling code

In code terms, this looks like the following in a console application function of the type we've been looking at:
static <returnType> <functionName>()
{
 ...
 return <returnValue>;
}

The only limitation here is that <returnValue> must be a value that is either of type <returnType>, or can
be implicitly converted to that type. However, <returnType> can be any type we want, including the more
complicated types we've seen.

This might be as simple as:
static double getVal()
{
 return 3.2;
}

However, return values are usually the result of some processing carried out by the function, as the above
could be achieved just as easily by using a const variable.

When the return statement is reached, program execution returns to the calling code immediately. No lines
of code after this statement will be executed. However, this doesn't mean that return statements can only be
placed on the last line of a function body. We can use return earlier in the code, perhaps after performing
some branching logic. Placing return in a for loop, an if block, or any other structure causes the structure
to terminate immediately and the function to terminate. For example:
static double getVal()
{
 double checkVal;
 // checkVal assigned a value through some logic.
 if (checkVal < 5)
 return 4.7;
 return 3.2;
}

Here one of two values may be returned depending on the value of checkVal.

The only restriction here is that a return statement must be processed before reaching the closing } of the
function. The following is illegal:
static double getVal()
{
 double checkVal;
 // checkVal assigned a value through some logic.
 if (checkVal < 5)
 return 4.7;
}

If checkVal is >= 5, then no return statement is met, which isn't allowed. All processing paths must reach a
return statement.

As a final note, return can be used in functions declared using the void keyword (that don't have a return
value). If we do so, then the function will simply terminate. When we use return in this way, it is an error to
provide a return value in between the return keyword and the semicolon that follows.

Parameters

When a function is to accept parameters, we must specify the following:

● A list of the parameters accepted by a function in its definition, along with the types of those parameters

● A matching list of parameters in each function call

This involves the following code:
static <returnType> <functionName>(<paramType> <paramName>, ...)
{
 ...
 return <returnValue>;
}

Where we can have any number of parameters, each with a type and a name. The parameters are separated
using commas. Each of these parameters is accessible from code within the function as a variable.

For example, a simple function might take two double parameters and return their product:

static double product(double param1, double param2)
{
 return param1 * param2;
}

Let's look at a more complex example.

Try it Out – Exchanging Data with a Function

1. Create a new console application called Ch06Ex02 in the directory C:\BegVCSharp\Chapter6.

2. Add the following code to Class1.cs (comments, etc. have been removed for clarity):

 class Class1
 {
 static int MaxValue(int[] intArray)
 {

 int maxVal = intArray[0];
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 maxVal = intArray[i];
 }
 return maxVal;
 }

 static void Main(string[] args)
 {
 int[] myArray = {1, 8, 3, 6, 2, 5, 9, 3, 0, 2};
 int maxVal = MaxValue(myArray);
 Console.WriteLine("The maximum value in myArray is {0}", maxVal);
 }
 }

3. Execute the code:

How it Works

This code contains a function that does what the example function discussed in the introduction to this chapter
hoped to do. It accepts an array of integers as a parameter and returns the highest number in the array. The
function definition is as follows:
 static int MaxValue(int[] intArray)
 {
 int maxVal = intArray[0];
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 maxVal = intArray[i];
 }
 return maxVal;
 }

The function, MaxValue(), has a single parameter defined, an int array called intArray. It also has a
return type of int. The calculation of the maximum value is simple. A local integer variable called maxVal is
initialized to the first value in the array, and then this value is compared with each of the subsequent elements
in the array. If an element contains a higher value than maxVal, then this value replaces the current value of
maxVal. When the loop finishes, maxVal contains the highest value in the array, and is returned using the
return statement.

The code in Main() declares and initializes a simple integer array to use with the MaxValue() function:

 int[] myArray = {1, 8, 3, 6, 2, 5, 9, 3, 0, 2};

The call to MaxValue() is used to assign a value to the int variable maxVal:

 int maxVal = MaxValue(myArray);

Next, we write this value to the screen using Console.WriteLine():

 Console.WriteLine("The maximum value in myArray is {0}", maxVal);

Parameter Matching

When we call a function, we must match the parameters as specified in the function definition exactly. This
means matching the parameter types, the number of parameters, and the order of the parameters. This
means, for example, that the following function:
static void myFunction(string myString, double myDouble)
{
 ...
}

can't be called using:
myFunction (2.6, "Hello");

Here we are attempting to pass a double value as the first parameter and a string value as the second
parameter, which is not the order in which the parameters are defined in the function definition.

We also can't use:
myFunction("Hello");

Here we are only passing a single string parameter, where two parameters are required.

Attempting to use either of the two function calls above will result in a compiler error, as the compiler forces us
to match the signatures of the functions we use.

Going back to our example, this means that MaxValue() can only be used to obtain the maximum int in an
array of int values. If we replace the code in Main() with the following code:

 static void Main(string[] args)
 {
 double[] myArray = {1.3, 8.9, 3.3, 6.5, 2.7, 5.3};
 double maxVal = MaxValue(myArray);
 Console.WriteLine("The maximum value in myArray is {0}", maxVal);
 }

then the code won't compile, as the parameter type is wrong.

Later on in this chapter, in the Overloading Functions section, we'll see a useful technique for getting round
this problem.

Parameter Arrays

C# allows us to specify one (and only one) special parameter for a function. This parameter, which must be
the last parameter in the function definition, is known as a parameter array. Parameter arrays allow us to call
functions using a variable amount of parameters, and are defined using the params keyword.

Parameter arrays can be a useful way to simplify our code, as we don't have to pass arrays from our calling
code. Instead, we pass several parameters of the same type that are placed in an array that we can use from
within our function.

The following code is required to define a function that uses a parameter array:

static <returnType> <functionName>(<p1Type> <p1Name>, ... ,
 params <type>[] <name>)
{
 ...
 return <returnValue>;
}

We can call this function using code like:
<functionName>(<p1>, ... , <val1>, <val2>, ...)

Here <val1>, <val2>, and so on are values of type <type> that are used to initialize the <name> array.
There is no limit on the amount of parameters that we can specify here; the only restriction is that they are all
of type <type>. We can even specify no parameters at all.

This final point makes parameter arrays particularly useful for specifying additional information for functions to
use in their processing. For example, let's say we have a function called getWord() that takes a string
value as its first parameter and returns the first word in the string:
string firstWord = getWord("This is a sentence.");

Here firstWord will be assigned the string "This".

We might add a params parameter to getWord() allowing us to optionally select an alternative word to
return by its index:
string firstWord = getWord("This is a sentence.", 2);

Assuming that we start counting at 1 for the first word, this would result in firstWord being assigned the
string "is".

We might also add the capability to limit the amount of characters returned in a third parameter, also
accessible through the params parameter:

string firstWord = getWord("This is a sentence.", 4, 3);

Here firstWord would be assigned the string "sen".

Let's see a full example.

Try it Out – Exchanging Data with a Function Part 2

1. Create a new console application called Ch06Ex03 in the directory C:\BegVCSharp\Chapter6.

2. Add the following code to Class1.cs:

 class Class1
 {
 static int sumVals(params int[] vals)
 {
 int sum = 0;
 foreach (int val in vals)
 {
 sum += val;
 }
 return sum;
 }

 static void Main(string[] args)
 {
 int sum = sumVals(1, 5, 2, 9, 8);
 Console.WriteLine("Summed Values = {0}", sum);
 }
 }

3. Execute the code:

How it Works

In this example, the function sumVals() is defined using the params keyword to accept any number of int
parameters (and no others):
 static int sumVals(params int[] vals)
 {
 ...
 }

The code in this function simply iterates through the value in the vals array, and adds the values together,
returning the result.

In Main() we call this function with five integer parameters:

 int sum = sumVals (1, 5, 2, 9, 8);

However, we could just as easily have called this function with none, one, two, or a hundred integer
parameters – there is no limit to the amount we can specify.

Reference and Value Parameters

All the functions we have defined so far in this chapter have had value parameters. What I mean by this is
that when we have used parameters we have passed a value into a variable used by the function. Any
changes made to this variable in the function have no effect on the parameter specified in the function call.
For example, consider a function that doubles and displays the value of a passed parameter:
static void showDouble(int val)
{
 val *= 2;
 Console.WriteLine("val doubled = {0}", val);
}

Here the parameter, val, is doubled in this function. If we call it in the following way:

int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
showDouble(myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

The text output to the console is as follows:

myNumber = 5
val doubled = 10
myNumber = 5

Calling showDouble() with myNumber as a parameter doesn't affect the value of myNumber in Main(),
even though the parameter it is assigned to, val, is doubled.

This is all very well, but if we want the value of myNumber to change we have a problem. We could use a
function that returns a new value for myNumber, and call it using:

int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
myNumber = showDouble(myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

But this code is hardly intuitive, and won't cope with changing the values of multiple variables used as
parameters (as functions have only one return value).

Instead, we want to pass the parameter by reference. This means that the function will work with exactly the
same variable as the one used in the function call, not just a variable that has the same value. Any changes
made to this variable will, therefore, be reflected in the value of the variable used as a parameter. To do this
we simply have to use the ref keyword to specify the parameter:

static void showDouble(ref int val)
{
 val *= 2;
 Console.WriteLine("val doubled = {0}", val);
}

And again in the function call (this is mandatory, as the fact that the parameter is a ref parameter is part of
the function signature):
int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
showDouble(ref myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

The text output to the console is now follows:
myNumber = 5
val doubled = 10
myNumber = 10

This time myNumber has been modified by showDouble().

There are two limitations on the variable used as a ref parameter. First, the function may result in a change
to the value of a reference parameter, so we must use a non-constant variable in the function call. The
following is therefore illegal:
const int myNumber = 5;
Console.WriteLine("myNumber = {0}", myNumber);
showDouble(ref myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

Second, we must use an initialized variable. C# doesn't allow us to assume that a ref parameter will be
initialized in the function that uses it. The following code is also illegal:
int myNumber;

showDouble(ref myNumber);
Console.WriteLine("myNumber = {0}", myNumber);

Out Parameters

In addition to passing values by reference, we can also specify that a given parameter is an out parameter
using the out keyword, which is used in the same way as the ref keyword (as a modifier to the parameter in
the function definition and in the function call). In effect, this gives us almost exactly the same behavior as a
reference parameter in that the value of the parameter at the end of the function execution is returned to the
variable used in the function call. However, there are important differences:

● Whereas it is illegal to use an unassigned variable as a ref parameter, we can use an unassigned
variable as an out parameter

● In addition, an out parameter must be treated as an unassigned value by the function that uses it

This means that while it is permissible for calling code to use an assigned variable as an out parameter, the
value stored in this variable will be lost when the function executes.

As an example, consider an extension to the MaxValue() function we saw earlier that returns the maximum
value of an array. We'll modify the function slightly such that we obtain the index of the element with the
maximum value within the array. To keep things simple, we'll just obtain the index of the first occurrence of
this value where there are multiple elements with the maximum value. To do this, we add an out parameter by
modifying the function as follows:
 static int MaxValue(int[] intArray, out int maxIndex)
 {
 int maxVal = intArray[0];
 maxIndex = 0;
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 {
 maxVal = intArray[i];
 maxIndex = i;
 }
 }
 return maxVal;
 }

We might use this function as follows:
int[] myArray = {1, 8, 3, 6, 2, 5, 9, 3, 0, 2};
int maxIndex;
Console.WriteLine("The maximum value in myArray is {0}",
 MaxValue(myArray, out maxIndex));
Console.WriteLine("The first occurrence of this value is at element {0}",
 maxIndex + 1);

This results in:
The maximum value in myArray is 9
The first occurrence of this value is at element 7

An important point to note here is that we must use the out keyword in the function call, just as with the ref
keyword.

Note that I've added one to the value of maxIndex returned here when it is displayed on screen.
This is to translate the index to a more readable form, such that the first element in the array is
referred to element 1 rather than element 0.

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Variable Scope

Throughout the last section, you may have been wondering why exchanging data with functions is necessary.
The reason is that variables in C# are only accessible from localized regions of code. A given variable is said
to have a scope from where it is accessible.

Variable scope is an important subject, and one best introduced with an example.

Try it Out – Defining and Using a Basic Function

1. Make the following changes to Ch06Ex01 in Class1.cs:

 class Class1
 {
 static void Write()
 {
 Console.WriteLine("myString = {0}", myString);
 }

 static void Main(string[] args)
 {
 string myString = "String defined in Main()";
 Write();
 }
 }

2. Compile the code, and note the error and warning that appear in the task list:
The name 'myString' does not exist in the class or namespace 'Ch06Ex01.Class1'
The variable 'myString' is assigned but its value is never used

How it Works

So, what went wrong? Well, the variable myString defined in the main body of our application (the Main()
function) isn't accessible from the Write()function.

The reason for this inaccessibility is that variables have a scope within which they are valid. This scope
encompasses the code block that they are defined in and any directly nested code blocks. The blocks of code
in functions are separate from the blocks of code from which they are called. Inside Write() the name
myString is undefined, and the myString variable defined in Main() is out of scope – it can only be used
from within Main().

In fact, we can have a completely separate variable in Write() called myString. Try modifying the code as
follows:
 class Class1
 {

 static void Write()
 {
 string myString = "String defined in Write()";
 Console.WriteLine("Now in Write()");
 Console.WriteLine("myString = {0}", myString);
 }
 static void Main(string[] args)
 {
 string myString = "String defined in Main()";
 Write();
 Console.WriteLine("\nNow in Main()");
 Console.WriteLine("myString = {0}", myString);
 }
 }

This code does compile, and results in the following:

The operations performed by this code are as follows:

● Main() defines and initializes a string variable called myString

● Main() transfers control to Write()

● Write() defines and initializes a string variable called myString, which is a different variable to the
myString defined in Main()

● Write() outputs a string to the console containing the value of myString as defined in Write()

● Write() transfers control back to Main()

● Main() outputs a string to the console containing the value of myString as defined in Main()

Variables whose scope covers a single function in this way are known as local variables. It is also possible to
have global variables, whose scope covers multiple functions. Modify the code as follows:
 class Class1
 {
 static string myString;

 static void Write()
 {
 string myString = "String defined in Write()";
 Console.WriteLine("Now in Write()");
 Console.WriteLine("Local myString = {0}", myString);
 Console.WriteLine("Global myString = {0}", Class1.myString);
 }

 static void Main(string[] args)

 {
 string myString = "String defined in Main()";
 Class1.myString = "Global string";
 Write();
 Console.WriteLine("\nNow in Main()");
 Console.WriteLine("Local myString = {0}", myString);
 Console.WriteLine("Global myString = {0}", Class1.myString);
 }
 }

The result is now:

Here we have added another variable called myString, this time further up the hierarchy of names in the
code. This variable is defined as follows:
 static string myString;

Note that again we require the static keyword here. Again, I'm not going to say any more about this at this
point other than that in console applications of this form we must use either the static or const keyword for
global variables of this form. If we want to modify the value of the global variable we need to use static, as
const prohibits the value of the variable changing.

In order to differentiate between this variable and the local variables in Main() and Write() with the same
names, we have to classify the variable name using a fully qualified name, as introduced in variable the global
variable is said to be hidden.

The value of the global variable is set in Main() with:

 Class1.myString = "Global string";

and accessed in Write() with:

 Console.WriteLine("Global myString = {0}", Class1.myString);

Now, you may be wondering why we shouldn't just use this technique to exchange data with functions, rather
than the parameter passing we saw earlier; there are indeed situations where this is the preferable way to
exchange data, but there are just as many (if not more) where it isn't. The choice of whether to use global
variables depends on the intended use of the function in question. The problem with using global variables is
that they are generally unsuitable for "general purpose" functions, which are capable of working with whatever
data we supply, not just limited to data in a specific global variable. We'll look at this in more depth a little later.

Variable Scope in Other Structures

Before we move on, it is worth noting that one of the points made in the last section has consequences above
and beyond variable scope between functions. I stated that the scope of variables encompasses the code
block that they are defined in and any directly nested code blocks. This also applies to other code blocks,
such as those in branching and looping structures. Consider the following code:

int i;
for (i = 0; i < 10; i++)
{
 string text = "Line " + Convert.ToString(i);
 Console.WriteLine("{0}", text);
}
Console.WriteLine("Last text output in loop: {0}", text);

Here the string variable text is local to the for loop. This code won't compile, as the call to Console.
WriteLine() that occurs outside of this loop attempts to use the variable text, which is out of scope
outside of the loop. Try modifying the code as follows:
int i;
string text;
for (i = 0; i < 10; i++)
{
 text = "Line " + Convert.ToString(i);
 Console.WriteLine("{0}", text);
}
Console.WriteLine("Last text output in loop: {0}", text);

This code will also fail. The reason for this is that variables must be declared and be initialized before use, and
text is only initialized in the for loop. The value assigned to text is lost when the loop block is exited.
However, we can also make the following change:
int i;
string text = "";
for (i = 0; i < 10; i++)
{
 text = "Line " + Convert.ToString(i);
 Console.WriteLine("{0}", text);
}
Console.WriteLine("Last text output in loop: {0}", text);

This time text is initialized outside of the loop, and we have access to its value. The result of this simple
code is shown in the following screenshot:

Here the last value assigned to text in the loop is accessible from outside the loop.

As you can see, this topic requires a bit of work to get to grips with. It is not immediately obvious why, in the
light of the earlier example, text doesn't retain the empty string it is assigned before the loop in the code
after the loop.

The explanation for this behavior concerns the memory allocation for the text variable, and indeed any
variable. Simply declaring a simple variable type doesn't result in very much happening. It is only when values
are assigned to the variable that values are allocated a place in memory to be stored. When this allocation
takes place inside a loop, the value is essentially defined as a local value, and goes out of scope outside of

the loop.

Even though the variable itself isn't localized to the loop, the value it contains is. However, assigning a value
outside of the loop ensures that the value is local to the main code, and is still in scope inside the loop. This
means that the variable doesn't go out of scope before the main code block is exited, so we have access to its
value outside of the loop.

Luckily for us, the C# compiler will detect variable scope problems, and responding to the error messages it
generates certainly helps us to understand the topic of variable scope.

As a final note, we should turn to "best practice". In general, it is worth declaring and initializing all variables
before using them in any code blocks. An exception to this is where we declare looping variables as part of a
loop block, for example:
for (int i = 0; i < 10; i++)
{
 ...
}

Here i is localized to the looping code block, but this is fine as we will rarely require access to this counter
from external code.

Parameters and Return Values versus Global Data

In this section, we'll take a closer look at exchanging data with functions via global data and via parameters
and return values. To recap, consider the following code:
 class Class1
 {
 static void showDouble(ref int val)
 {
 val *= 2;
 Console.WriteLine("val doubled = {0}", val);
 }

 static void Main(string[] args)
 {
 int val = 5;
 Console.WriteLine("val = {0}", val);
 showDouble(ref val);
 Console.WriteLine("val = {0}", val);
 }
 }

Note that this code is slightly different to the code we saw earlier in this chapter, where we used
the variable name myNumber in Main(). This illustrates the fact that local variables can have
identical names and yet not interfere with each other. It also means that the two code samples
shown here are more similar, allowing us to focus more on the specific differences without
worrying about variable names.

And compare it with this code:
 class Class1
 {
 static int val;

 static void showDouble()
 {
 val *= 2;
 Console.WriteLine("val doubled = {0}", val);
 }

 static void Main(string[] args)
 {
 val = 5;
 Console.WriteLine("val = {0}", val);
 showDouble();
 Console.WriteLine("val = {0}", val);
 }
 }

The result of both of these showDouble() functions is identical.

Now, there are no hard and fast rules for using one method rather than another, and both techniques are
perfectly valid. However, there are some guidelines you might like to consider.

To start with, as we mentioned when we first introduced this topic, the showDouble() version that uses the
global value will only ever use the global variable val. In order to use this version, we must use this global
variable. This limits the versatility of the function slightly, and means that we must continuously copy the
global variable value into other variables if we intend on storing results. In addition, global data might be
modified by code elsewhere in our application, which could cause unpredicted results (values might change
without us realizing until too late).

However, this loss of versatility can often be a bonus. There are times when we only ever want to use a
function for one purpose, and using a global data store reduces the possibility that we will make an error in a
function call, perhaps passing it the wrong variable.

Of course, it could also be argued that this simplicity actually makes our code more difficult to understand.
Explicitly specifying parameters allows us to see at a glance what is changing. If we see a call that reads
myFunction(val1, out val2), we instantly know that val1 and val2 are the important variables to
consider, and that val2 will be assigned a new value when the function completes. Conversely, if this
function took no parameters we would be unable to make any assumptions as to what data it manipulated.

Finally, it should be remembered that using global data isn't always possible. Later on in the book, we will see
code written in different files and/or belonging to different namespaces communicating with each other via
functions. In cases such as this, the code is often separated to such a degree that there is no obvious choice
for a global storage location.

So, to summarize, feel free to use either technique to exchange data. I would, in general, urge you to use
parameters rather than global data, but there are certainly cases where global data might be more suitable,
and it certainly isn't an error to use this technique.

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

The Main() Function

Now we've covered most of the simple techniques used in the creation and use of functions, let's go back and
take a closer look at the Main() function.

Earlier on, we said that Main() is the entry point for a C# application and that the execution of this function
encompasses the execution of the application. We also saw that this function has a parameter, string[]
args, but we haven't as yet seen what this parameter represents. In this section, we'll see what this
parameter is, and how we use it.

Note that there are four possible signatures that we can use for the Main() function:

● static void Main()

● static void Main(string[] args)

● static int Main()

● static int Main(string[] args)

We can, if we wish, omit the args argument discussed here. The reason we've used the
version with this argument up till now, is that it is the version that is generated automatically for
us when we create a console application in VS.

The third and fourth versions shown above return an int value, which can be used to signify
how the application terminates, often used as an indication of an error (although this is by no
means mandatory). In general, returning a value of 0 reflects "normal" termination (that is, the
application has completed and can terminate safely).

The args parameter of Main() is a method for accepting information from outside the application, specified
at runtime. This information takes the form of command-line parameters.

You may well have come across command-line parameters already. When we execute an application from the
command-line, we are often able to specify information directly, such as a file to load on application execution.
As an example, consider the Notepad application in Windows. We can run this application simply by typing
Notepad in a command prompt window, or in the window that appears when we select the Run option from the
Windows Start Menu. We can also type something like notepad "myfile.txt" in these locations. The result of this
is that Notepad will load the file myfile.txt when it runs, or offer to create this file if it doesn't already exist.
Here, "myfile.txt" is a command-line argument. We can write console applications that work in much the same
way by making use of the args parameter.

When a console application is executed, any command line parameters that are specified are placed in this
args array. We can then use these parameters in our application as required.

Let's look at an example of this in action.

Try it Out - Command Line Arguments

1. Create a new console application called Ch06Ex04 in the directory C:\BegVCSharp\Chapter6.

2. Add the following code to Class1.cs:

 class Class1
 {
 static void Main(string[] args)
 {
 Console.WriteLine("{0} command line arguments were specified:",
 args.Length);
 foreach (string arg in args)
 Console.WriteLine(arg);
 }
 }

3. Open up the property pages for the project (right-click on the Ch06Ex04 project name in the Solution
Explorer window and select Properties).

4. Select the Configuration Properties | Debugging page and add whatever command line arguments you
want to the Command Line Arguments setting:

5. Run the application:

How it Works

The code used here is very simple:
 Console.WriteLine("{0} command line arguments were specified:",
 args.Length);
 foreach (string arg in args)
 Console.WriteLine(arg);

We're just using the args parameter like we would any other string array. We're not doing anything fancy with
the arguments, we're just writing whatever is specified to the screen.

In this example, we supplied the arguments via the Project Properties dialog in VS. This is a handy way of
using the same command line arguments whenever you run the application from VS, rather than having to
type them at a command-line prompt every time. The same result as above could be obtained by opening a
command prompt window in the same directory as the project output (C:\BegCSharp\Chapter6\Ch06Ex04
\bin\Debug) and typing the following:

Ch06Ex04 256 myFile.txt "a longer argument"

Note that each argument is separated from the next by spaces, but we can also enclose arguments in double
quotes should we want a longer argument (this is necessary if the argument includes spaces, so as not to be
interpreted as multiple arguments).

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Struct Functions

In the capability they offer is the ability to contain functions as well as data. This is something that may seem a
little strange at first, but is in fact very useful indeed.

As a simple example, consider the following struct:
struct customerName
{
 public string firstName, lastName;
}

If we have variables of type customerName, and we want to output a full name to the console, we are forced
to build the name from its component parts. We might use the following syntax for a customerName variable
called myCustomer, for example:

customerName myCustomer;
myCustomer.firstName = "John";
myCustomer.lastName = "Franklin";
Console.WriteLine("{0} {1}", myCustomer.firstName, myCustomer.lastName);

By adding functions to structs, we can simplify this by centralizing the processing of common tasks such as
this. We can add a suitable function to the struct type as follows:
struct customerName
{
 public string firstName, lastName;

 public string Name ()
 {
 return firstName + " " + lastName;
 }
}

This looks much like any other function we've looked at in this chapter, except that we haven't used the
static modifier. The reasons for this will become clear later in the book, for now it is enough to know that
this keyword isn't required for struct functions. We can use this function as follows:
customerName myCustomer;
myCustomer.firstName = "John";
myCustomer.lastName = "Franklin";
Console.WriteLine(myCustomer.Name());

This syntax is much simpler, and much easier to understand, than the earlier one.

An important point to note here is that the Name() function has direct access to the firstName and
lastName struct members. Within the customerName struct they can be thought of as global.

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Overloading Functions

Earlier on in this chapter, we saw how we must match the signature of a function when we call it. This implied
that we would need to have separate functions to operate on different types of variable. Function overloading
provides us with the ability to create multiple functions with the same name, but each working with different
parameter types.

For example, we used the following code earlier, that contained a function called MaxValue():

 class Class1
 {
 static int MaxValue(int[] intArray)
 {
 int maxVal = intArray[0];
 for (int i = 1; i < intArray.Length; i++)
 {
 if (intArray[i] > maxVal)
 maxVal = intArray[i];
 }
 return maxVal;
 }

 static void Main(string[] args)
 {
 int[] myArray = {1, 8, 3, 6, 2, 5, 9, 3, 0, 2};
 int maxVal = MaxValue(myArray);
 Console.WriteLine("The maximum value in myArray is {0}", maxVal);
 }
 }

This function can only be used with arrays of int values. Now, we could provide different named functions for
different parameter types, perhaps renaming the above function as IntArrayMaxValue() and adding
functions such as DoubleArrayMaxValue() to work with other types. Alternatively, we could just add the
following function to our code:
 ...
 static double MaxValue(double[] doubleArray)
 {
 double maxVal = doubleArray[0];

 for (int i = 1; i < doubleArray.Length; i++)
 {
 if (doubleArray[i] > maxVal)
 maxVal = doubleArray[i];
 }
 return maxVal;
 }

 ...

The difference here is that we are using double values. The function name, MaxValue(), is the same, but
(crucially) it's signature is different. It would be an error to define two functions with the same name and
signature, but since these two functions have different signatures, this is fine.

Now we have two versions of MaxValue(), which accept int and double arrays, and return an int or
double maximum respectively.

The beauty of this type of code is that we don't have to explicitly specify which of these two functions we wish
to use. We simply provide an array parameter and the correct function will be executed depending on the type
of the parameter used.

At this point, it is worth noting another feature of the IntelliSense feature in VS. If we have the two functions
shown above in an application, and then proceed to type the name of the function in (for example) Main(),
VS will show us the available overloads for the function. If we type the following:
 double result = MaxValue(

VS gives us information about both versions of MaxValue(), which we can scroll between using the up and
down arrow keys:

All aspects of the function signature are included when overloading functions. We might, for example, have
two different functions that take parameters by value and by reference respectively:
static void showDouble(ref int val)
{
 ...
}

static void showDouble(int val)
{
 ...
}

The choice as to which of these versions to use is based purely on whether the function call contains the ref
keyword. The following would call the reference version:
showDouble(ref val);

And the following would call the value version:
showDouble(val);

Alternatively, we could have functions that differ in the number of parameters they require, and so on.

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Delegates

A delegate is a type that enables us to store references to functions. Although this sounds quite involved, the
mechanism is surprisingly simple. The most important purpose of delegates won't become clear until later in
this book when we look at events and event handling, but we can get a fair amount of mileage by looking at
delegates here. When we come to use them later on they'll look familiar, which will make some more
complicated topics a lot easier to comprehend.

Delegates are declared much like functions, but with no function body and using the delegate keyword. The
delegate declaration specifies a function signature consisting of a return type and the parameter list. After
defining a delegate we can declare a variable with the type of that delegate. We can then initialize this variable
to be a reference to any function that has the same signature as that delegate. Once we have done this we
can call that function by using the delegate variable as if it were a function.

We have a variable that refers to a function we can also perform other operations that would be impossible by
any other means. For example, we can pass a delegate variable to a function as a parameter, then that
function can use the delegate to call whatever function it refers to, without having knowledge as to what
function will be called until runtime.

Let's look at an example.

Try it Out - Using a Delegate to Call a Function

1. Create a new console application called Ch06Ex05 in the directory C:\BegVCSharp\Chapter6.

2. Add the following code to Class1.cs:

 class Class1
 {
 delegate double processDelegate(double param1, double param2);

 static double Multiply(double param1, double param2)
 {
 return param1 * param2;
 }

 static double Divide(double param1, double param2)
 {
 return param1 / param2;
 }
 static void Main(string[] args)
 {
 processDelegate process;
 Console.WriteLine("Enter 2 numbers separated with a comma:");
 string input = Console.ReadLine();
 int commaPos = input.IndexOf(',');
 double param1 = Convert.ToDouble(input.Substring(0, commaPos));

 double param2 = Convert.ToDouble(input.Substring(commaPos + 1,
 input.Length - commaPos - 1));
 Console.WriteLine("Enter M to multiply or D to divide:");
 input = Console.ReadLine();
 if (input == "M")
 process = new processDelegate(Multiply);
 else
 process = new processDelegate(Divide);
 Console.WriteLine("Result: {0}", process(param1, param2));
 }
 }

3. Execute the code:

How it Works

This code defines a delegate (processDelegate) whose signature matches that of the two functions
(Multiply() and Divide()). The delegate definition is as follows:

 delegate double processDelegate(double param1, double param2);

The delegate keyword specifies that the definition is for a delegate, rather than a function (the definition
appears in the same place as a function definition might). Next, we have a signature that specifies a double
return value and two double parameters. The actual names used are arbitrary, so we can call the delegate
type and parameter name whatever we like. Here, we've used a delegate name of processDelegate and
double parameters called param1 and param2.

The code in Main() starts by declaring a variable using our new delegate type:

 static void Main(string[] args)
 {
 processDelegate process;

Next, we have some fairly standard C# code that requests two numbers separated by a comma and places
these numbers in two double variables:

 Console.WriteLine("Enter 2 numbers separated with a comma:");
 string input = Console.ReadLine();
 int commaPos = input.IndexOf(',');
 double param1 = Convert.ToDouble(input.Substring(0, commaPos));
 double param2 = Convert.ToDouble(input.Substring(commaPos + 1,
 input.Length - commaPos - 1));

Note that, for demonstration purposes, I've included no user input validation here. If this were
"real" code, we'd spend much more time ensuring that we got valid values in the local param1
and param2 variables.

Next we ask the user whether to multiply or divide these numbers:
 Console.WriteLine("Enter M to multiply or D to divide:");

 input = Console.ReadLine();

Based on the user choice we initialize the process delegate variable:

 if (input == "M")
 process = new processDelegate(Multiply);
 else
 process = new processDelegate(Divide);

To assign a function reference to a delegate variable, we use slightly odd looking syntax. Much like assigning
array values, we must use the new keyword to create a new delegate. After this keyword we specify the
delegate type and supply a parameter referring to function we want to use, namely the Multiply() or
Divide() function. Note that this parameter doesn't match the parameters of the delegate type or the target
function, it is a syntax unique to delegate assignment. The parameter is simply the name of the function to
use, without any parentheses.

Finally, we call the chosen function using the delegate. The same syntax works here, regardless of which
function the delegate refers to:
 Console.WriteLine("Result: {0}", process(param1, param2));
 }

Here, we treat the delegate variable just as if it were a function name. Unlike functions, however, we can also
perform additional operations on this variable, such as passing it to a function via a parameter. A simple
example of such a function might be:
static void executeFunction(processDelegate process)
{
 process(2.2, 3.3);
}

This means that we can control the behavior of functions by passing them function delegates, much like
choosing a "snap-in" to use. For example, we might have a function that sorts a string array alphabetically.
There are several methods of sorting lists with varying performance depending on the characteristics of the list
being sorted. By using delegates, we could specify the method to use by passing a sorting algorithm function
delegate to a sorting function.

There are many such uses for delegates, but, as mentioned earlier, their most prolific use is in event handling.
We'll come to this subject in Chapter 12.

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter, we've seen a fairly complete overview of the use of functions in C# code. Much of the
additional features that functions offer (delegates in particular) are more abstract, and we'll only need to
discuss them in the light of object-oriented programming, which is a subject that we'll be discussing very soon.

To summarize what has been covered in this chapter:

● Defining and using functions in console applications

● Exchanging data with functions via return values and parameters

● Parameter arrays

● Passing values by reference or by value

● Specifying out parameters for additional return values

● The concept of variable scope

● Details of the Main() function, including command line parameter usage

● Using functions in struct types

● Function overloading

● Delegates

Chapter 6 - Functions
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. The following two functions have errors. What are they?
static bool Write()
{
 Console.WriteLine("Text output from function.");
}
static void myFunction(string label, params int[] args, bool showLabel)
{
 if (showLabel)
 Console.WriteLine(label);
 foreach (int i in args)
 Console.WriteLine("{0}", i);
}

2. Write an application that uses two command line arguments to place values into a string and an integer
variable respectively. Then display these values.

3. Create a delegate and use it to impersonate the Console.ReadLine() function when asking for user input.

4. Modify the following struct to include a function that returns the total price of an order:
struct order
{
 public string itemName;
 public int unitCount;
 public double unitCost;
}

5. Add another function to the order struct that returns a formatted string as follows, where italic entries
enclosed in angle brackets are replaced by appropriate values:

Order Information: <unit count> <item name> items at $<unit cost> each, total cost
$<total cost>

Chapter 7 - Debugging and Error Handling
byKarli Watsonet al.

Wrox Press 2003

Chapter 7: Debugging and Error Handling

Overview

So far in this book, we have covered all the basics of simple programming in C#. Before we move on to look
at object-oriented programming in the next section of the book, it's time to look at debugging and error
handling in C# code.

Errors in code are something that will always be with us. No matter how good a programmer is, there will
always be problems that slip through, and part of being a good programmer is realizing that this is the case
and being prepared to deal with it. Of course, these may be minor problems that don't affect the execution of
an application, perhaps a spelling mistake on a button or such like. They may also be glaring errors that cause
applications to fail completely (usually known as fatal errors). Fatal errors include both simple errors in code
that will prevent compilation (syntax errors), but may be more involved and only occur at runtime.
Alternatively, errors may be subtler. Perhaps your application will fail to add a record to a database if a
requested field is missing, or adds a record with the wrong data in other restricted circumstances. Errors such
as these, where application logic is in some way flawed, are known as semantic errors (also known as logic
errors).

Often the first that you might hear about the more subtle errors will be when a user of your application
complains that something isn't working properly. This then leaves you with the task of tracing through your
code to try to find out what is happening, and how you can change your code so that it does what it was
intended to do.

In situations like this, you will find that the debugging capabilities of VS are a fantastic help. In the first part of
this chapter, we'll look at some of the techniques on offer and apply them to some common problems.

In addition to this, we will also look at the error handling techniques available in C#. These enable us to take
precautions in cases where errors are likely, and write code that is resilient enough to cope with errors that
might otherwise be fatal. These techniques are part of the C# language rather than a debugging feature of
VS, but VS does provide some tools to help us here too.

Chapter 7 - Debugging and Error Handling
byKarli Watsonet al.

Wrox Press 2003

Debugging in Visual Studio

When programs are run in debug mode, there is more going on than simply the code you have written being executed.
Debug builds maintain symbolic information about your application, such that VS is capable of knowing exactly what
is happening as each line of code is executed. Symbolic information means keeping track of, for example, the names of
variables used in uncompiled code, such that they can be matched up to the values that exist in the compiled machine
code application, which won't contain such human-readable information. This information is contained in .pdb files,
which you may have seen appearing in Debug directories on your computer. This enables us to perform many useful
operations, which include:

● Outputting debugging information to VS

● Looking at (and editing) the values of variables in scope during application execution

● Pausing and restarting program execution

● Automatically halting execution at certain points in the code

● Stepping through program execution a line at a time

● Monitoring changes in variable content during application execution

● Modifying variable content at runtime

● Performing test calls of functions

In this section, we'll take a look at these techniques and how we can use them to identify and fix those areas of code
which do not work as expected, a process more commonly known as debugging.

We'll divide up the techniques into two sections by the way in which they are used. In general, debugging is performed
either by interrupting program execution or by making notes for later analysis. In VS terms, an application is either
running or is in break mode, that is, normal execution is halted. We'll look at the non-break mode (runtime or normal)
techniques first.

Debugging in Non-Break (Normal) Mode

One of the commands we've been using throughout this book is the Console.WriteLine() function that outputs text
to the console. When we are developing applications this function can come in handy for getting extra feedback on
operations, for example:
Console.WriteLine("MyFunc() Function about to be called.");
MyFunc ("Do something.");
Console.WriteLine("MyFunc() Function execution completed.");

This code snippet shows how we can give extra information concerning a function called MyFunc().

Doing this is all very well, but can make our console output a bit cluttered. As an alternative, we can output text to a
separate location - the Output window in VS.

Back in Chapter 2 we took a quick look at the Output window, which is (by default) located at the bottom of the VS
development environment, sharing space with the Task List window. We saw how this window displays information

relating to the compilation and execution of code, including errors encountered during compilation and so forth. We can
also use this window to display custom diagnostic information by writing to it directly. We can see this window in the
screenshot below:

Note that this window has three modes that can be selected using the drop-down box it contains. We can
toggle between Build, Debug, and Test Run modes. The Build and Debug modes show us compilation and
run time information respectively. When I refer to "writing to the Output window" in this section I actually
mean "writing to the Debug mode view of the Output window".

Alternatively, we might want to create a logging file, which would have information appended to it when our application
is executed. The techniques for doing this are much the same as for writing text to the Output window, although it
requires an understanding of how to access the file system from C# applications. For now, we'll leave this functionality
on the back burner, as there is plenty we can do without getting bogged down by file access techniques.

Outputting Debugging Information

Writing text to the Output window at run time is a very simple thing to do. We simply need to replace calls to Console.
WriteLine() with the required call to write text where we want it. There are two commands we can use to do this:

● Debug.WriteLine()

● Trace.WriteLine()

These commands function in almost exactly the same way - with one key difference. The first of these two commands
only works in debug builds, the latter will work for release builds as well. In fact, the Debug.WriteLine() command
won't even be compiled into a release build; it'll just disappear, which certainly has its advantages (the compiled code
will be smaller in size for a start). We can in effect have two versions of our application created from a single source file.
The debug version displays all kinds of extra diagnostic information whereas the release version won't have this
overhead, and won't display messages to users that might otherwise be annoying!

Note that these functions don't work exactly like Console.WriteLine(). They only work with a single string
parameter for the message to output, rather than letting us insert variable values using {X} syntax. This means that we
must use the + operator to insert variable values in strings. However, we can (optionally) supply a second string
parameter, which is used to display a category for the output text. This allows us to see at a glance what output
messages are displayed in the Output window, useful for when similar messages are output from different places in the
application.

The general output of these functions is as follows:
<category>: <message>

For example, the following statement, which has "MyFunc" as the optional category parameter:

Debug.WriteLine("Added 1 to i", "MyFunc");

would result in:
MyFunc: Added 1 to i

Let's look at an example.

Try it Out - Writing Text to the Output Window

1. Create a new console application called Ch07Ex01 in the directory C:\BegVCSharp\Chapter7.

2. Modify the code as follows:
using System;
using System.Diagnostics;

namespace Ch07Ex01
{
 class Class1
 {
 static void Main(string[] args)
 {
 int[] testArray = {4, 7, 4, 2, 7, 3, 7, 8, 3, 9, 1, 9};
 int[] maxValIndices;
 int maxVal = Maxima(testArray, out maxValIndices);
 Console.WriteLine("Maximum value {0} found at element indices:",
 maxVal);
 foreach (int index in maxValIndices)
 {
 Console.WriteLine(index);
 }
 }

 static int Maxima(int[] integers, out int[] indices)
 {
 Debug.WriteLine("Maximum value search started.");
 indices = new int[1];
 int maxVal = integers[0];
 indices[0] = 0;
 int count = 1;
 Debug.WriteLine("Maximum value initialized to " + maxVal +
 ", at element index 0.");
 for (int i = 1; i < integers.Length; i++)
 {
 Debug.WriteLine("Now looking at element at index " + i + ".");
 if (integers[i] > maxVal)
 {
 maxVal = integers[i];
 count = 1;
 indices = new int[1];
 indices[0] = i;
 Debug.WriteLine("New maximum found. New value is " + maxVal +
 ", at element index " + i + ".");
 }
 else
 {
 if (integers[i] == maxVal)
 {
 count++;
 int[] oldIndices = indices;
 indices = new int[count];
 oldIndices.CopyTo(indices, 0);
 indices[count - 1] = i;
 Debug.WriteLine("Duplicate maximum found at element index " +
 i + ".");
 }
 }
 }

 Trace.WriteLine("Maximum value " + maxVal + " found, with " + count +
 " occurrences.");
 Debug.WriteLine("Maximum value search completed.");
 return maxVal;
 }
 }
}

3. Execute the code in debug mode:

4. Terminate the application, and look at the contents of the Output window (in Debug mode):
'DefaultDomain': Loaded 'c:\winnt\microsoft.net\framework\v1.0.3705\mscorlib.dll', No
symbols loaded.
'Ch07Ex01': Loaded 'C:\BegVCSharp\Chapter7\Ch07Ex01\bin\Debug\Ch07Ex01.exe', Symbols
loaded.
'Ch07Ex01.exe': Loaded 'c:\winnt\assembly\gac\system\1.0.3300.0__b77a5c561934e089
\system.dll', No symbols loaded.
'Ch07Ex01.exe': Loaded 'c:\winnt\assembly\gac\system.xml\1.0.3300.0__b77a5c561934e089
\system.xml.dll', No
symbols loaded.
Maximum value search started.
Maximum value initialized to 4, at element index 0.
Now looking at element at index 1.
New maximum found. New value is 7, at element index 1.
Now looking at element at index 2.
Now looking at element at index 3.
Now looking at element at index 4.
Duplicate maximum found at element index 4.
Now looking at element at index 5.
Now looking at element at index 6.
Duplicate maximum found at element index 6.
Now looking at element at index 7.
New maximum found. New value is 8, at element index 7.
Now looking at element at index 8.
Now looking at element at index 9.
New maximum found. New value is 9, at element index 9.
Now looking at element at index 10.
Now looking at element at index 11.
Duplicate maximum found at element index 11.
Maximum value 9 found, with 2 occurrences.
Maximum value search completed.
The program '[1840] Ch07Ex01.exe' has exited with code 0 (0x0).

5. Change to Release mode using the drop-down menu on the Standard toolbar:

6. Run the program again, this time in Release mode, and take another look at the Output window when execution
terminates:

'DefaultDomain': Loaded 'c:\winnt\microsoft.net\framework\v1.0.3705\mscorlib.dll', No
symbols loaded.

'Ch07Ex01': Loaded 'C:\BegVCSharp\Chapter7\Ch07Ex01\bin\Release\Ch07Ex01.exe', No
symbols loaded.
'Ch07Ex01.exe': Loaded 'c:\winnt\assembly\gac\system\1.0.3300.0__b77a5c561934e089
\system.dll', No symbols loaded.
'Ch07Ex01.exe': Loaded 'c:\winnt\assembly\gac\system.xml\1.0.3300.0__b77a5c561934e089
\system.xml.dll', No symbols loaded.
Maximum value 9 found, with 2 occurrences.
The program '[1840] Ch07Ex01.exe' has exited with code 0 (0x0).

How it Works

This application is an expanded version of one that we saw in the last chapter, using a function to calculate the
maximum value in an integer array. This version also returns an array of the indices where maximum values are found
in an array, so that the calling code can manipulate these elements. Let's look through the code.

To start with, note that an additional using directive appears at the start of the code:

using System.Diagnostics;

This simplifies access to the functions discussed above this example, as they are contained in the System.
Diagnostics namespace. Without this using directive, code such as:

Debug.WriteLine("Bananas");

Would need further qualification, and would need to be rewritten as:
System.Diagnostics.Debug.WriteLine("Bananas");

The using directive keeps our code simple and reduces verbosity.

The code in Main() simply initializes a test array of integers called testArray; it also declares another integer array
called maxValIndices to store the index output of Maxima() (the function that performs the calculation), then calls
this function. Once the function returns, the code simply outputs the results.

Maxima() is slightly more complicated, but doesn't use much code that we haven't already seen. The search through
the array is performed in a similar way to the MaxVal() function in the last chapter, except that a record is kept of the
indices of maximum values.

Perhaps the key point to note in the code (other than those lines that output debugging information) is the function used
to keep track of the indices. Rather than returning an array that would be large enough to store every index in the
source array (needing the same dimensions as the source array), Maxima()returns an array just large enough to hold
the indices found. It does this by continually recreating arrays of different sizes as the search progresses. This is
necessary as arrays can't be resized once created.

To start with, the search is initialized by assuming that the first element in the source array (called integers locally) is
the maximum value, and that there is only one maximum value in the array. Values can, therefore, be set for maxVal
(the return value of the function, and the maximum value found) and indices, the out parameter array that stores the
indices of the maximum values found. maxVal is assigned the value of the first element in integers, and indices is
assigned a single value, simply 0, which is the index of the first element in the array. We also store the number of
maximum values found in a variable called count, which allows us to keep track of the indices array.

The main body of the function is a loop that cycles through the values in the integers array, omitting the first one as
this has already been processed. Each value is compared to the current value of maxVal, and ignored if maxVal is
greater. If the currently inspected array value is greater than maxVal then maxVal and indices are changed to reflect
this. If the value is equal to maxVal then count is incremented and a new array is substituted for indices. This new
array is one element bigger than the old indices array, containing the new index found.

The code for this last piece of functionality is as follows:
 if (integers[i] == maxVal)

 {
 count++;
 int[] oldIndices = indices;
 indices = new int[count];
 oldIndices.CopyTo(indices, 0);
 indices[count - 1] = i;
 Debug.WriteLine("Duplicate maximum found at element index " +
 i + ".");
 }

Note that this works by "backing up" the old indices array into oldIndices, an integer array local to this if code
block. Note also that the values in oldIndices are copied into the new indices array using the <array>.CopyTo()
function. This function simply takes a target array and an index to use for the first element to copy to, and pastes all
values into the target array.

Throughout the code, various pieces of text are output using the Debug.WriteLine() and Trace.WriteLine()
functions. The end result of this when run in debug mode is a complete record of the steps taken in the loop that give us
our result. In release mode, we just see the end result of the calculation, as no Debug.WriteLine() functions work.

As well as these WriteLine() functions there are a few more we should be aware of. To start with, there are
equivalents to Console.Write():

● Debug.Write()

● Trace.Write()

Both these functions use the same syntax as the WriteLine() functions (one or two parameters, with a message and
an optional category), but differ in that they don't add end of line characters.

There are also the following commands:

● Debug.WriteLineIf()

● Trace.WriteLineIf()

● Debug.WriteIf()

● Trace.WriteIf()

Each of these has the same parameters as the non-If counterparts, with the addition of an extra mandatory parameter
that precedes them in the parameter list. This parameter takes a Boolean value (or an expression that evaluates to a
Boolean value), and will result in the function only writing text if this value evaluates to true. We can use these
functions to conditionally output text to the Output window.

For example, we might only require debugging information to be output in certain situations, so we can have a great
many Debug.WriteLineIf() statements in our code that all depend on a certain condition being met. If this condition
doesn't occur, then they won't be displayed, which will stop the Output window getting cluttered up with superfluous
information.

Debugging in Break Mode

The rest of the debugging techniques we'll look at in this chapter work in break mode. This mode can be entered in
several ways, all of which result in the program pausing in some way. The first thing we will look at in this section is how
we go about this, and then we'll look at what we can achieve once break mode is entered.

Entering Break Mode

The simplest way of entering break mode is to hit the pause button in VS while an application is running. This pause
button is found on the Debug toolbar, which we should add to the toolbars that appear by default in VS. To do this, right-
click in the toolbar area and select the Debug toolbar:

The toolbar that appears looks like this:

The first four buttons on this toolbar allow manual control of breaking. In the screenshot above, three of these are
grayed out, as they won't work with a program that isn't currently being executed. The one that is enabled, Start, is
identical to the button that exists on the standard toolbar. In the following sections we'll look at the rest of the buttons
when needed.

When an application is running, the toolbar changes to look like the following:

Now the three buttons that were grayed out before are enabled, and let us:

● Pause the application and enter break mode

● Stop the application completely (this doesn't enter break mode, it just quits)

● Restart the application

Pausing the application is perhaps the simplest way of entering break mode, but it doesn't give us fine-grained control
over exactly where to stop. We are likely to stop in a natural pause in the application, perhaps where we request user
input. We might also be able to enter break mode during a lengthy operation, or a long loop, but the exact point we stop
at is likely to be fairly random.

In general, it is far better to use breakpoints.

Breakpoints

A breakpoint is a marker in your source code that triggers automatic entry into break mode. They may be configured to:

● Enter break mode immediately when the breakpoint is reached

● Enter break mode when the breakpoint is reached if a Boolean expression evaluates to true

● Enter break mode once the breakpoint is reached a set number of times

● Enter break mode once the breakpoint is reached and a variable value has changed since the last time the

breakpoint was reached

Note that the above is only available in debug builds. If you compile a release build then all breakpoints will be ignored.

There are three ways of adding breakpoints. To add simple breakpoints that break when a line is reached we simply left-
click on the gray area to the left of the line of code, or right-click on the line, and select the Insert Breakpoint menu option:

The breakpoint will appear as a red circle next to the line of code, and a highlight on the line of code:

We can also see information about the breakpoints in a file using the Breakpoints window. We need to enable this
window first, by selecting the Debug | Windows | Breakpoints menu option. The following window will then appear at the
bottom of the screen, in the same place as the Task List and Output windows:

Here, we can disable breakpoints (by removing the tick to the left of a description; a disabled breakpoint shows up as an
unfilled red circle), delete breakpoints, and edit the properties of breakpoints.

The properties shown in this window, Condition and Hit Count, are only two of the available ones, but they are the most
useful. We can edit these by right-clicking on a breakpoint (in code or in this window) and selecting the Properties menu
option. We can then use the three tabs, Function, File, and Address, to change the location of the breakpoint (Address lets
us specify an absolute memory address for a breakpoint, an involved subject that we won't cover here), and the
Condition... and Hit Count... buttons to change the two properties mentioned above.

Selecting the Condition button pops up the following dialog:

Here, we can type any Boolean expression, which may involve any variables that are in scope at the breakpoint. The
above screenshot shows a breakpoint that will trigger when it is reached and the value of maxVal is greater than 4. We
can also check to see if this expression has changed, and only trigger the breakpoint then (in the above case, we might

trigger if maxVal had changed from 2 to 6 between breakpoint encounters).

Selecting the Hit Count button pops up the following dialog:

Here we can specify how many times a breakpoint needs to be hit before it is triggered. The drop-down list offers the
following options:

The option chosen, combined with the value entered in the text box next to the list, determines the behavior of the
breakpoint.

This hit count is useful in long loops, when we might want to break after, say, the first 5000 cycles. It would be a pain to
break and restart 5000 times if we couldn't do this!

Other Ways of Entering Break Mode

There are two additional ways to get into break mode. One is to choose to enter it when an unhandled exception is
thrown. This subject is covered later in this chapter, when we look at error handling. The other way is to break when an
assertion is generated.

Assertions are instructions that can interrupt application execution with a user-defined message. They are often used in
the development of an application as a means to test that things are going smoothly. For example, we might at some
point in our application require a given variable to have a value less than 10. We can use an assertion to check that this
is true and interrupt the program if this isn't the case. When the assertion occurs we have the option to Abort, which will
terminate the application; Retry, causing break mode to be entered; or Ignore, and the application will continue as normal.

As with the debug output functions we saw earlier, there are two versions of the assertion function:

● Debug.Assert()

● Trace.Assert()

Again, the debug version will only be compiled into debug builds.

These functions take three parameters. The first is a Boolean value, where a value of false will cause the assertion to
trigger. The second and third are two string parameters to write information both to a pop-up dialog and the Output
window. The above example would need a function call such as:
Debug.Assert(myVar < 10, "myVar is 10 or greater.",
 "Assertion occurred in Main().");

Assertions are often useful in the early stages of user adoption of an application. We can distribute release builds of our
application containing Trace.Assert() functions to keep tabs on things. Should an assertion be triggered, the user
will be informed, and they can pass this information on to us developers. We'll then be able to work out what has gone
wrong even if we don't know how it went wrong.

We might, for example, provide a brief description of the error in the first string with instructions as to what to do next as
the second string:

Trace.Assert(myVar < 10, "Variable out of bounds.",
 "Please contact vendor with the error code KCW001.");

Should this assertion occur, the user will see the following:

If the user has VS installed and hits the Retry button for a release build they won't see our code, they'll see the assembly
language instructions for our application, which aren't nearly as revealing. The following is an example section of
assembly code from the example in the last section:

00000196 nop
00000197 pop ebx
00000198 pop esi
00000199 pop edi
0000019a mov esp,ebp
0000019c pop ebp
0000019d ret 4

This isn't the easiest thing to understand, and only people who have assembly language experience will have a hope.
This means that our code is safe from (most) prying eyes!

The next topics to cover concern what we can actually do once application execution is halted and we find ourselves in
break mode. In general, we will be entering break mode in order to track down an error in our code (or just to reassure
ourselves that things are working properly). Once we are in break mode there are various techniques that we can draw
on, all of which enable us to analyze our code and the exact state of our application at the point in its execution where it
is paused.

Monitoring Variable Content

Monitoring variable content is just one example of an area where VS helps us a great deal by making things simple. The
easiest way of checking the value of a variable is to hover the mouse over its name in the source code while in break
mode. A yellow tooltip showing information about the variable will appear, including the current value of the variable.

We can also highlight whole expressions to get information about their results in the same way. This technique is limited
however, and won't, for example, show us the contents of an array.

Now, you may have noticed that when we run an application through VS, the layout of the various windows in the
environment changes. By default, the following occurs at runtime:

● The Properties window disappears

● A Running Documents tab is added to the Solution Explorer window, showing us what documents in the project are in
use, if any

● The size of the Output window changes, as half the bottom of the screen is replaced by a new window

The new window that appears is a particularly useful one for debugging. It allows us to keep tabs on the values of
variables in our application when in break mode. It has three tabs, which have the following uses:

● Autos - variables in use in the current and previous statements

● Locals - all variables in scope

● Watch N - customizable variable and expression display (where N is 1 to 4)

The new screen layout can be seen in the screenshot below:

All these windows work in more or less the same way, with various additional features depending on their specific
function. In general, each window will contain a list of variables, with information on variable name, value, and type.
More complex variables, such as arrays, may be further interrogated using the + and - tree expansion/contraction
symbols to the left of their names, allowing a tree view of their content. For example, this is a display obtained by
placing a breakpoint in the code for the earlier example, just after the call to Maxima():

Here, I've expanded the view for one of the array variables, maxValIndices.

We can also edit the content of variables from this view. This effectively bypasses any other variable assignment that
might have happened in earlier code. To do this, we simply type a new value into the Value column for the variable we
want to edit. We might do this to try out some scenarios that might otherwise require code changes, for example.

The Watch windows, of which there may be up to 4, allow us to monitor specific variables or expressions involving
specific variables. To use this window, we simply type the name of a variable or expression into the Name column and
observe the results. Note that not all variables in an application will be in scope all the time, and will be labeled as such
in a Watch window. For example, the following screenshot shows a Watch window with a few sample variables and
expressions in it. Again, the code from the last example is used here, paused in the execution of the Maxima()
function:

The testArray array is local to Main(), so we don't see a value here. Instead, we get a message informing us that
the variable isn't in scope.

We can also add variables to a Watch window by dragging them from the source code into the widow.

To add more windows, we can use the Debug | Windows | Watch | Watch N menu options to toggle the four possible
windows on or off. Each window may contain an individual set of watches on variables and expressions, so we can
group related variables together for easy access.

As well as these watch windows, there is also a QuickWatch window that can give us detailed information about a
variable in the source code quickly. To use this, we simply right-click on the variable we want to interrogate and select
the QuickWatch menu option. In most cases, though, it is just as easy to use the standard Watch windows.

An important point to note about watches is that they are maintained between application executions. If we terminate an
application then re-run it we don't have to add watches again - VS will remember what we were looking at the last time.

Stepping Through Code

So far, we've seen how to discover what is going on in our applications at the point where break mode is entered. Next,
we will look at how we can use VS to "step through" code while remaining in break mode, allowing us to see exactly the
results of the code being executed. This is an extremely valuable technique for those of us who can't think as fast as
computers can.

When break mode is entered, a cursor appears to the left of the code view (which may initially appear inside the red
circle of a breakpoint if a breakpoint has been used to enter break mode), by the line of code that is about to be
executed:

This shows us what point execution has reached when break mode is entered. At this point, we can choose to have
execution proceed on a line-by-line basis. To do this, we use some more of the Debug toolbar buttons we saw earlier:

The sixth, seventh, and eighth icons control program flow in break mode. In order, they are:

● Step Into - execute and move to the next statement to execute

● Step Over - as above, but won't enter nested blocks of code

● Step Out - run to end of code block, and resume break mode at the statement that follows

If we want to look at every single operation carried out by the application then we can use Step Into to follow the
instructions sequentially. This includes moving inside functions, such as Maxima() in the above example. Clicking on
this icon when the cursor reaches line 15, the call to Maxima(), will result in the cursor moving to the first line inside the
Maxima() function. Alternatively, clicking on Step Over when we reach line 15, will move the cursor straight to line 16,
without having to go through the code in Maxima() (although this code is still executed). If we do step into a function
that we aren't interested in we can hit Step Out to return to the code that called the function.

As we step through code, the values of variables are likely to change. By keeping an eye on the monitoring windows
discussed in the last section, we can see this happening with ease.

In code that has semantic errors, this technique is perhaps the most useful one at our disposal. We can step through
code right up to the point where we expect problems to occur and the errors will be generated as if we were running the
program normally. Along the way, we can keep an eye on data and see just what is going wrong. Later on in this
chapter we will use this technique to find out what is happening in an example application.

There are a couple of other windows left to cover: two more tabs appear on the Task List / Output window during
debugging - Command Window and Call Stack.

Immediate Commands

The Command Window has two modes: Command and Immediate. Command mode allows us to perform VS operations
manually (such as menu and toolbar operations), and Immediate mode allows us to execute additional code in addition
to the source code lines being executed and to evaluate expressions.

In Command mode the window contains a right angle bracket (>) symbol at the start of each line. We can swap to
immediate mode by typing "immed" in this window and hitting return, and back by typing ">cmd" and hitting return.

We'll concentrate on the Immediate mode here, as the Command mode is only really useful for complex operations.

The simplest use of this window is simply to evaluate expressions, a bit like a "one shot" use of the Watch windows. To
do this, we simply type an expression and hit return. The information requested will then be displayed. For example:

We can also change variable content here, for example:

In most cases, we can get the effects we want more easily using the variable monitoring windows we saw earlier, but
this technique can still be handy for tweaking values, and is good for testing expressions where we are unlikely to be
interested in the results at a later date.

The Call Stack Window

The final window we'll look at here shows us the way in which the current location was reached. In simple terms, this
means showing the current function along with the function that called it, the function that called that, and so on (that is,
a list of nested function calls). The exact points where calls are made are also recorded.

In our earlier example, entering break mode when in Maxima(), or moving into this function using code stepping,
reveals the following:

This window is particularly useful when errors are first detected, as they allow us to see what has happened immediately
before the error. Where errors occur in commonly used functions, this will help us to see the source of the error.

Note that sometimes this window will show some very confusing information. Sometimes, for example,
errors occur outside of our applications due to using external functions in the wrong way. At times like this,
there could be a long list of entries in this window, but only one or two look familiar.

Chapter 7 - Debugging and Error Handling
byKarli Watsonet al.

Wrox Press 2003

Error Handling

The first part of this chapter has dealt with finding and correcting errors during application development so that
they won't occur in release level code. There are times, however, when we know that errors are likely to occur
and there is no way of being 100% sure that they won't. In these situations it may be preferable to anticipate
problems and write code that is robust enough to deal with these errors gracefully, without interrupting execution.

Error handling is the name for all techniques of this nature, and here we'll look at exceptions and how we can
deal with them.

Exceptions

An exception is an error generated either in our code or in a function called by our code that occurs at runtime.
The definition of "error" here is more vague than it has been up until now, as exceptions may be generated
manually in functions and so on. For example, we might generate an exception in a function if one of its string
parameters doesn't start with the letter "a" This isn't strictly speaking an error outside of the context of this
function, although it is treated as one by the code that calls the function.

We've come across exceptions a few times already in this book. Perhaps the simplest example is attempting to
address an array element that is out of range, for example:
int[] myArray = {1, 2, 3, 4};
int myElem = myArray[4];

This generates the following exception message, and then terminates the application:
An unhandled exception of type 'System.IndexOutOfRangeException' occurred in <file>.
exe

Where <file> is the name of the file containing the exception.

Exceptions are defined in namespaces, and most have names that make it clear what they are intended for. In
this example, the exception generated is called System.IndexOutOfRangeException, which makes sense
as we have supplied an index that is not in the range of indices permissible in myArray.

This message only appears and the application only terminates when the exception is unhandled. So, what
exactly do we have to do to "handle" an exception?

try...catch...finally

The C# language includes syntax for Structured Exception Handling (SEH). Keywords exist to mark code out
as being able to handle exceptions, along with instructions as to what to do if an exception occurs. The three
keywords we use for this are try, catch, and finally. Each of these has an associated code block, and must
be used in consecutive lines of code. The basic structure is as follows:
try
{
 ...

}
catch (<exceptionType> e)
{
 ...
}
finally
{
 ...
}

It is also possible, however, to have a try block and a finally block with no catch block, or a try block with
multiple catch blocks. If one or more catch blocks exist then the finally block is optional, else it is
mandatory.

The usage of the blocks is as follows:

● try - contains code that might throw exceptions ("throw" is the C# way of saying "generate" or "cause" when
talking about exceptions).

● catch - contains code to execute when exceptions are thrown. catch blocks may be set to respond only to
specific exception types (such as System.IndexOutOfRangeException) using <exceptionType>,
hence the ability to provide multiple catch blocks. It is also possible to omit this parameter entirely, to get a
general catch block that will respond to all exceptions.

● finally - contains code that is always executed, either after the try block if no exception occurs, after a
catch block if an exception is handled, or just before an unhandled exception terminates the application (the
fact that this block is processed at this time is the reason for its existence, otherwise we might just as well
place code after the block).

The sequence of events that occurs after an exception occurs in code in a try block is as follows:

● The try block terminates at the point where the exception occurred.

● If a catch block exists then a check is made to see if the block matches the type of exception that has been
thrown. If no catch block exists, then the finally block (which must be present if there are no catch
blocks) executes.

● If a catch block exists, but there is no match, then a check is made for other catch blocks.

● If a catch block matches the exception type, then the code it contains executes, and then the finally
block executes if it is present.

● If no catch blocks match the exception type then the finally block of code executes if it is present.

Let's look at an example to demonstrate handling exceptions.

Try it Out - Writing Text to the Output Window

1. Create a new console application called Ch07Ex02 in the directory C:\BegVCSharp\Chapter7.

2. Modify the code as follows:
 class Class1
 {
 static string[] eTypes = {"none", "simple", "index", "nested index"};

 static void Main(string[] args)
 {
 foreach (string eType in eTypes)
 {
 try
 {
 Console.WriteLine("Main() try block reached."); // Line 18
 Console.WriteLine("ThrowException(\"{0}\") called.", eType);
 // Line 19
 ThrowException(eType);
 Console.WriteLine("Main() try block continues."); // Line 21
 }
 catch (System.IndexOutOfRangeException e) // Line 23
 {
 Console.WriteLine("Main() System.IndexOutOfRangeException catch"
 + " block reached. Message:\n\"{0}\"",
 e.Message);
 }
 catch // Line 29
 {
 Console.WriteLine("Main() general catch block reached.");
 }
 finally
 {
 Console.WriteLine("Main() finally block reached.");
 }
 Console.WriteLine();
 }
}

 static void ThrowException(string exceptionType)
 {
 // Line 43
 Console.WriteLine("ThrowException(\"{0}\") reached.", exceptionType);
 switch (exceptionType)
 {
 case "none" :
 Console.WriteLine("Not throwing an exception.");
 break; // Line 48
 case "simple" :
 Console.WriteLine("Throwing System.Exception.");
 throw (new System.Exception()); // Line 51
 break;
 case "index" :
 Console.WriteLine("Throwing System.IndexOutOfRangeException.");
 eTypes[4] = "error"; // Line 55
 break;
 case "nested index" :
 try // Line 58
 {
 Console.WriteLine("ThrowException(\"nested index\") " +
 "try block reached.");
 Console.WriteLine("ThrowException(\"index\") called.");
 ThrowException("index"); // Line 63
 }
 catch // Line 65

 {
 Console.WriteLine("ThrowException(\"nested index\") general"
 + " catch block reached.");
 }
 finally
 {
 Console.WriteLine("ThrowException(\"nested index\") finally"
 + " block reached.");
 }
 break;
 }
 }
 }

3. Run the application:

How it Works

This application has a try block in Main() that calls a function called ThrowException(). This function may
throw exceptions, depending on the parameter it is called with:

● ThrowException("none") - doesn't throw an exception

● ThrowException("simple") - generates a general exception

● ThrowException("index") - generates a System.IndexOutOfRangeException exception

● ThrowException("nested

Each of these string parameters is held in the global eTypes array, which is
iterated through in the Main() function to call ThrowException() once with each
possible parameter. During this iteration various messages are written to the
console to indicate what is happening.

This code gives us an excellent opportunity to use the code stepping techniques we
saw earlier in this chapter. By working our way through the code a line at a time
you can see exactly how code execution progresses.

Add a new breakpoint (with the default properties) to line 18 of the code, which
reads:

 Console.WriteLine("Main() try block reached.");

Note that I'll refer to code by line numbers as they appear in the
downloadable version of this code. If you have line numbers turned off,
remember that you can turn them back on through the Tools | Options...
menu item and the Text Editor | C# | General option section. Comments are
included in the code shown above so that you can follow the text without
having the file open in front of you.

Run the application in debug mode.

Almost immediately, the program will enter break mode, with the cursor on line 18.
If you select the Locals tab in the variable monitoring window, you should see that
eType is currently "none". Use the Step Into button to process lines 18 and 19, and
check that the first line of text has been written to the console. Next, use the
Step Into button to step into the ThrowException() function on line 20.

Once in the ThrowException() function (on line 43), the Locals window changes. eType
and args are no longer in scope (they are local to Main()); instead, we see the
local exceptionType argument, which is of course "none". Keep pressing Step Into and
you'll reach the switch statement that checks the value of exceptionType and
execute the code that writes out the string "Not throwing an exception" to the screen.
When we execute the break statement (on line 48) we exit the function and resume
processing in Main() at line 21. As no exception was thrown the try block
continues.

Next, processing continues with the finally block. Click Step Into a few more times
to complete the finally block and the first cycle of the foreach loop. The next
time we reach line 20, ThrowException() is called using a different parameter,
"simple".

Continue using Step Into through ThrowException() and you'll eventually reach line 51:

 throw (new System.Exception());

Here we use the C# throw keyword to generate an exception. This keyword simply
needs to be provided with a new-initialized exception as a parameter, and it will
throw that exception. Here we are using another exception from the System
namespace, System.Exception.

When we process this statement with Step Into we find ourselves at the general catch
block starting on line 29. There was no match with the earlier catch block starting
on line 23, so this one is processed instead. Stepping through this code takes us
through this block, through the finally block, and back into another loop cycle
that calls ThrowException() with a new parameter on line 20. This time the
parameter is "

This time, ThrowException() generates an exception on line 55:

 eTypes[4] = "error";

The eTypes array is global, so we have access to it here. However, here we are
attempting to access the 5th element in the array (remember counting starts at 0),
which generates a System.IndexOutOfRangeException exception.

This time there is a matched catch block in Main(), and stepping into the code

takes us to this block, starting at line 23.

The Console.WriteLine() call in this block writes out the message stored in the
exception using e.Message (we have access to the exception through the parameter of
the catch block). Again, stepping through takes us through the finally block (but
not the second catch block, as the exception is already handled) and back into the
loop cycle, again calling ThrowException() on line 20.

When we reach the switch structure in ThrowException() this time we enter a new try
block, starting on line 58. When we reach line 63, we perform a nested call to
ThrowException(), this time with the parameter "index". If you like, use the Step
Over button to skip the lines of code that are executed here, as we've been through
them already. As before, this call generates a System.IndexOutOfRangeException
exception. However, this time the exception is handled in the nested try...catch...
finally structure, the one in ThrowException(). This structure has no explicit
match for this type of exception, so the general catch block (starting on line 65)
deals with it.

As with the earlier exception handling, we now step through this catch block, and
the associated finally block, and reach the end of the function call. However,
there is one crucial difference. Although an exception has been thrown, it has also
been handled - by the code in ThrowException(). This means that there is no
exception left to handle in Main(), so we go straight to the finally block, and
after that the application terminates.

Listing and Configuring Exceptions

The .NET Framework contains a whole host of exception types, and we are free to
throw and handle any of these in our own code, or even throw them from our code so
that they may be caught in more complex applications. VS supplies a dialog for
examining and editing the available exceptions, which can be called up with the
Debug | Exceptions... menu item (or pressing Ctrl+Alt+E):

Exceptions are listed by category and .NET library namespace. We can see the
exceptions in the System namespace by expanding the Common Language Runtime Exceptions
tab, and then the System tab. This list includes the System.IndexOutOfRangeException

exception we used above.

Each exception may be configured using the radio buttons at the bottom of the
dialog. Most are set to Use parent setting by default, which means that they use the
category level options (which are all as shown in the above screenshot). We can use
the first option, When the exception is thrown, to cause a break into the debugger even
for exceptions that are handled. The second option allows us to ignore unhandled
exceptions, and suffer the consequences.

In most cases the default settings here are fine for us.

Notes on Exception Handling

Note that we must always supply catch blocks for more specific exceptions before
more general catching. If we get this the wrong way round the application will fail
to compile.

Note also that we can throw exceptions from within catch blocks, either in the ways
used in the last example or by simply using the expression:

throw;

This expression results in the exception handled by the catch block being re-thrown.

If we throw an exception in this way, it will not be handled by the current try...
catch...finally block, but by parent code (although the finally block in the nested
structure will still execute).

For example, if we changed the try...catch...finally block in ThrowException() as
follows:

 try
 {
 Console.WriteLine("ThrowException(\"nested index\") " +
 "try block reached.");
 Console.WriteLine("ThrowException(\"index\") called.");
 ThrowException("index");
 }
 catch
 {
 Console.WriteLine("ThrowException(\"nested index\") general"
 + " catch block reached.");
 throw;
 }
 finally
 {
 Console.WriteLine("ThrowException(\"nested index\") finally"
 + " block reached.");
 }

then execution would proceed first to the finally block shown here, then with the
matching catch block in Main(). The resulting console output changes as follows:

In this screenshot, we see extra lines of output from the Main() function, as the
System.IndexOutOfRangeException is caught in this function.

Chapter 7 - Debugging and Error Handling
byKarli Watsonet al.

Wrox Press 2003

Summary

This chapter has concentrated on techniques that you can use to debug your applications. There are a variety
of techniques available here, most of which are available for whatever type of project you are creating, not just
console applications.

We have looked at:

● Using Debug.WriteLine() and Trace.WriteLine() to write text to the Output window

● Break mode and how to enter it, including the versatile breakpoints

● Debugging information windows in VS

● Stepping through code

● Exception handling using try...catch...finally

We have now covered everything that we need to produce simple console applications, along with the
methods of debugging them. In the next section of this book, we will look at the powerful technique of object-
oriented programming.

Chapter 7 - Debugging and Error Handling
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. "Using Trace.WriteLine() is preferable to using Debug.WriteLine() as the Debug version only

works in debug builds." Do you agree with this statement? Why?

2. Provide code for a simple application containing a loop that generates an error after 5000 cycles. Use a
breakpoint to enter break mode just before the error is caused on the 5000th cycle (note: a simple way
to generate an error is to attempt to access a non existent array element, such as myArray[1000] in
an array with a hundred elements).

3. "finally code blocks only execute if a catch block isn't executed." True or false?

4. Given the enumeration data type orientation defined below, write an application that uses Structured
Exception Handling (SEH) to cast a byte type variable into an orientation type variable in a safe
way. Note that you can force exceptions to be thrown using the checked keyword, an example of which
is shown below. This code should be used in your application:
enum orientation : byte
{
 north = 1,
 south = 2,
 east = 3,
 west = 4
}
myDirection = checked((orientation)myByte);

Chapter 8 - Introduction to Object-Oriented
Programming
byKarli Watsonet al.

Wrox Press 2003

Chapter 8: Introduction to Object-Oriented Programming

Overview

At this point in the book we've covered all the basics of C# syntax and programming, and seen how to debug
our applications. Already, we can assemble usable console applications. However, to get access to the real
power of the C# language and the .NET Framework we need to make use of object-oriented programming
(OOP) techniques. In actual fact, as we will soon see, we've been using these techniques already, although,
to keep things simple, we have not focused on this when presenting the code examples.

In this chapter we will steer away from code temporarily and focus instead on the principles behind OOP. This
will soon lead us back into the C# language, as it has a symbiotic relationship with OOP. All of the concepts
introduced in this chapter will be returned to in later chapters, with illustrative code – so don't panic if you don't
grasp everything in the first read-through of this material.

To start with, we'll look at the basics of OOP, which will include answering that most fundamental of questions
"What is an Object?". We will quickly find that there is a lot of terminology related to OOP that can be quite
confusing at first, and there will be plenty of explanation of the language used. We will also see that using
OOP requires us to look at programming in a different way.

As well as discussing the general principles of OOP, we will also take a look at one area where a thorough
understanding of OOP is essential: in Windows Forms applications. This type of application (which makes use
of the Windows environment with features such as menus, buttons, etc.) provides plenty of scope for
description, and we will be able to illustrate OOP points effectively in the Windows Forms environment.

Note that OOP as presented in this chapter is really .NET OOP, and that some of the techniques
presented here don't apply to other OOP environments. Since when programming in C#, we use .
NET-specific OOP, it makes good sense to concentrate on these aspects.

So, let's start from the beginning.

Chapter 8 - Introduction to Object-Oriented
Programming
byKarli Watsonet al.

Wrox Press 2003

What is Object-Oriented Programming?

Object-oriented programming is a relatively new approach to creating computer applications that seeks to
address many of the problems with so-called "traditional" programming techniques. The type of programming
we have seen so far is known as functional (or procedural) programming, often resulting in so-called
monolithic applications, meaning that all functionality is contained in a few modules of code (often just one).
With OOP techniques we often use many more modules of code, each offering specific functionality, and
where each module may be isolated or even completely independent of others. This modular method of
programming gives us much more versatility, and provides more opportunity for code-reuse.

To illustrate this further, imagine that a high performance application on your computer is a top-of-the-range
racing car. If written with traditional programming techniques this sports car is basically a single unit. If we
want to improve this car we have to replace the whole unit, by sending it back to the manufacturer and getting
their expert mechanics to upgrade it, or by buying a new one. If OOP techniques are used then we could
simply buy a new engine from the manufacturer and follow their instructions to replace it ourselves.

In a more "traditional" application the flow of execution is often simple and linear. Applications are loaded into
memory, start executing at point A, end at point B, and are then unloaded from memory. Along the way
various other entities might be used, such as files on storage media, or the capabilities of a video card, but the
main body of the processing goes on in one place. The code along the way is generally concerned with
manipulating data through various mathematical and logical means. The methods of manipulation are usually
quite simple, using basic types such as integers and Boolean values to build up more complex
representations of data.

With OOP things are rarely so linear. Although the same results are achieved, the way of getting there is often
very different. OOP techniques are firmly rooted in the structure and meaning of data, and the interaction
between that data and other data. This usually means putting more effort into the design stages of a project,
but has the benefit of extensibility. Once an agreement is made as to the representation of a specific type of
data, that agreement can be worked into later versions of an application, and even entirely new applications.
The fact that an agreement exists can reduce development time dramatically. This explains how the above
racing car example works. The agreement here is how the code for the "engine" is structured, such that new
code (for a new engine) can be substituted with ease, rather than requiring a trip back to the manufacturers.

As well as agreeing on data representation, OOP programming often simplifies things by agreeing on the
structure and usage of more abstract entities. For example, an agreement can be made not just on the format
of data that should be used to send output to a device such as a printer, but also on the methods of data
exchange with that device. This would include what instructions it understands, and so on.

As the name of the technology suggests, this is achieved using objects. So, what is an object?

What is an Object?

An object is a building block of an OOP application. This building block encapsulates part of the application,
which may be a process, a chunk of data, or some more abstract entity.

In the simplest sense an object may be very similar to a struct type such as we have seen earlier in the book,
containing members of variable and function types. The variables contained make up the data stored in the
object, and the functions contained give access to the functionality of the object. Slightly more complex
objects might not maintain any data; instead they can represent a process by containing only functions. For
example, an object representing a printer might be used, which would have functions enabling control over a
printer (allowing you to print a document, print a test page, and so on).

Objects in C# are created from types, just like the variables we've seen already. The type of an object is
known by a special name in OOP, its class. We can use class definitions to instantiate objects, which means
to create a real, named instance of a class. The phrases "instance of a class" and "object" mean the same
thing here; be sure to note at this point that "class" and "object" mean fundamentally different things.

In this chapter we'll picture classes and objects using Universal Modeling Language (UML) syntax. UML is a
language designed for modeling applications, from the objects that build them up, to the operations they
perform, and to the use cases that are expected. Here we'll only be using the basics of this language,
explaining these as we go along, and won't worry about the more complex aspects.

The diagrams in this chapter have been created using Microsoft Visio, which ships with the
Enterprise Architect edition of VS.

The following is a UML representation of our printer class, called Printer:

The class name is shown in the top section of this box (we'll worry about the bottom two sections a little later).

The following is a UML representation of an instance of this Printer class called myPrinter:

Here the instance name is shown first in the top section, followed by the name of its class. These two names
are separated by a colon.

Properties and Fields

Properties and fields provide access to the data contained in an object. This object data is what differentiates
separate objects, as it is possible for different objects of the same class to have different values stored in
properties and fields.

At this point it is worth introducing another term - the various pieces of data contained in an object together
make up the state of that object.

Imagine an object class that represents a cup of coffee, called CupOfCoffee. When we instantiate this class
(that is, we create an object of this class) we must provide it with state for it to be meaningful. Here we might
use properties and fields to enable code using this object to set the type of coffee used, whether the coffee

contains milk or sugar, whether the coffee is instant, and so on. A given coffee cup object would then have a
given state, such as "Columbian filter coffee with milk and two sugars".

Both fields and properties are typed, so we can store information in them as string variables, as int
variables, and so on. However, properties differ from fields in that they don't provide direct access to data.
Objects are capable of shielding users from the nitty-gritty details of their data, which needn't be represented
on a 1-to-1 basis in the properties that exist. If we used a field for the number of sugars in a CupOfCoffee
instance then users could place whatever value they liked in the field, but if we used a property then we could
limit this value to, say, a number between 0 and 2.

In general, it is better to provide properties rather than fields for state access, as we have more control over
what goes on. This choice doesn't affect code that uses object instances, as the syntax for using properties
and fields is the same.

Read/write access to properties may also be clearly defined by an object. Certain properties may be read-
only, allowing us to see what they are but not change them (at least not directly). This is often a useful
technique for reading several pieces of state simultaneously. We might have a read-only property of our
CupOfCoffee class called Description, returning a string representing the state of an instance of this
class (such as the string given earlier) when requested. We might be able to assemble the same data by
interrogating several properties, but a property such as this one may save us time and effort. We might also
have write-only properties operating in a similar way.

As well as this read/write access for properties, it is also possible to specify a different sort of access
permission for both fields and properties, known as accessibility. Accessibility determines what code can
access these members, that is, whether they are available to all code (public), only to code within the class
(private), or a more complex scheme (we'll cover this in more detail later on in the chapter, as it becomes
pertinent). One very common practice is to make fields private and provide access to them via public
properties. This means that code within the class can have direct access to the data stored in the field, while
the public property shields external users from this data and prevents them from placing invalid content here.
Public members are said to be exposed by the class.

One way of visualizing this is to equate it with variable scope. Private fields and properties, for example, can
be thought of as local to the object that possesses them, whereas the scope of public fields and properties
also encompasses code external to the object.

In the UML representation of a class we use the second section to display properties and fields, for example:

This is a representation of our CupOfCoffee class, with five members (properties or fields, as no distinction
is made in UML) defined as discussed earlier. Each of the entries contains the following information:

● Accessibility: a + symbol is used for a public member, a - symbol is used for a private member. In
general, though, I won't show private members in the diagrams in this chapter, as this information is
internal to the class. No information is provided as to read/write access.

● The member name.

● The type of the member.

A colon is used to separate the member names and types.

Methods

"Method" is the term used to refer to functions exposed by objects. These may be called in the same way as
any other function, and may use return values and parameters in the same way - we looked at functions in
detail in Chapter 6.

Methods are used to give access to the functionality of objects. Like fields and properties they can be public or
private, restricting access to external code as necessary. They will often make use of object state to affect
their operation, and have access to private members such as private fields if required. For example, our
CupOfCoffee class might define a method called AddSugar(), which would provide a more readable
syntax for incrementing the sugar property than setting the corresponding Sugar property.

In UML, class boxes show methods in the third section:

The syntax here is similar to that for fields and properties, except that the type shown at the end is the return
type and method parameters are shown. Each parameter is displayed in UML with one of the following
identifiers: in, out, or inout. These are used to signify the direction of data flow, where out and inout roughly
correspond to the use of the C# keywords out and ref described in Chapter 6. in roughly corresponds to the
C# behavior where neither of these keywords is used.

Everything's an Object

At this point it's time for me to come clean - we have been using objects, properties, and methods throughout
this book. In fact, everything in C# and the .NET Framework is an object! The Main() function in a console
application is a method of a class. Every variable type we've looked at is a class. Every command we have
used has been a property or a method, such as <String>.Length and <String>.ToUpper() and so on.
The period character here separates the object instance name from the property or method name.

Objects really are everywhere, and the syntax to use them is often very simple. It has certainly been simple
enough for us to concentrate on some of the more fundamental aspects of C# up until now.

From here on in, we'll start to look at objects in more detail. Bear in mind that the concepts introduced here
have far-reaching consequences - applying even to that simple little int variable you've been happily playing
around with.

The Lifecycle of an Object

Every object has a clearly defined lifecycle. Apart from the normal state of "being in use", this lifecycle
includes two important stages:

● Construction - when an object is first instantiated it needs to be initialized. This initialization is known as
construction, and is carried out by a constructor function.

● Destruction - when an object is destroyed there will often be some clean up tasks to perform, such as
freeing up memory. This is the job of a destructor function.

Constructors

Basic initialization of an object is automatic. For example, we don't have to worry about finding the memory to
fit a new object into. However, there are times where we will want to perform additional tasks during an
object's initialization stage. For example, we will often need to initialize the data stored by an object. A
constructor function is what we use to do this.

All objects have a default constructor, which is a parameterless method with the same name as the class
itself. In addition, a class definition might include several constructor methods with parameters, known as non-
default constructors. These enable code that instantiates an object to do so in many ways, perhaps
providing initial values for data stored in the object.

In C#, constructors are called using the new keyword. For example, we could instantiate a CupOfCoffee
object using its default constructor in the following way:
CupOfCoffee myCup = new CupOfCoffee();

Objects may also be instantiated using non-default constructors. For example, our CupOfCoffee class might
have a non-default constructor that uses a parameter to set the bean type at instantiation:
CupOfCoffee myCup = new CupOfCoffee("Blue Mountain");

Constructors, like fields, properties, and methods, may be public or private. Code external to a class can't
instantiate an object using a private constructor; it must use a public constructor. In this way we can, for
example, force users of our classes to use a non-default constructor.

Some classes have no public constructors, meaning that it is impossible for external code to instantiate them.
However, this doesn't make them completely useless, as we will see shortly.

Destructors

Destructors are used by the .NET Framework to clean up after objects. In general, we don't have to provide
code for a destructor method; instead the default operation works for us. However, we can provide specific
instructions if anything important needs to be done before the object instance is deleted.

Important It is important to remember that the destructor method of an object doesn't get called as soon as
we stop using that object.

When a variable goes out of scope, for example, it may not be accessible from our code, but it may still exist
somewhere in your computer's memory. It is only when the .NET runtime performs its garbage collection
clean up that the instance is completely destroyed.

This means that we shouldn't rely on the destructor to free up resources that are used by an

object instance, as this may be a long time after the object is of no further use to us. If the
resources in use are critical this can cause problems. However, there is a solution to this - see
the Disposable Objects section later in this chapter.

Chapter 8 - Introduction to Object-Oriented
Programming
byKarli Watsonet al.

Wrox Press 2003

Static and Instance Class Members

As well as having members such as properties, methods, and fields that are specific to object instances, it is
also possible to have static (also known as shared) members, which may be methods, properties, or fields.
Static members are shared between instances of a class, so they can be thought of as global for objects of a
given class. Static properties and fields allow us access to data that is independent of any object instances,
and static methods allow us to execute commands related to the class type but not specific to object
instances. When using static members, in fact, we don't even need to instantiate an object.

For example, the Console.WriteLine() and Convert.ToString() methods we have been using are
static. At no point do we need to instantiate the Console or Convert classes (indeed, if we try it we'll find
that we can't, as the constructors of these classes aren't publicly accessible, as discussed earlier).

There are many situations such as these where static properties and methods can be used to good effect. For
example, we might use a static property to keep track of how many instances of a class have been created.

In UML syntax, static members of classes are shown underlined:

Chapter 8 - Introduction to Object-Oriented
Programming
byKarli Watsonet al.

Wrox Press 2003

OOP Techniques

Now we've covered the basics and know what objects are and how they work, we should spend some time
looking at some of the other features of objects. We'll look at:

● Interfaces

● Inheritance

● Polymorphism

● Relationships between objects

● Operator overloading

● Events

Interfaces

An interface is a collection of implicitly public methods and properties that are grouped together to
encapsulate specific functionality. Once an interface has been defined, we can implement it in a class. This
means that the class will then support all of the properties and members specified by the interface.

Note that interfaces cannot exist on their own. We can't "instantiate an interface" as we can a class. In
addition, interfaces cannot contain any code that implements its members; it just defines the members
themselves. The implementation must come from classes that implement the interface.

In our earlier coffee example, we might group together many of the more general purpose properties and
methods into an interface, such as AddSugar(), Milk, Sugar, and Instant. We could call this interface
something like IHotDrink (interface names are normally prefixed with a capital I). We could use this
interface on other objects, perhaps those of a CupOfTea class. We could therefore treat these objects in a
similar way, and they may still have their own individual properties (BeanType for CupOfCoffee and
LeafType for CupOfTea, for example).

Interfaces implemented on objects in UML are shown using a "lollipop" syntax. In the diagram below I've split
the members of IHotDrink into a separate box using class-like syntax (unfortunately the current version of
Visio doesn't allow interfaces to possess fields or properties):

A class can support multiple interfaces, and multiple classes can support the same interface. The concept of
an interface, therefore, makes life easier for users and other developers. For example, you might have some
code that uses an object with a certain interface. Provided you don't use other properties and methods of this
object it is possible to replace one object with another (code using the IHotDrink interface shown above
could work with both CupOfCoffee and CupOfTea instances, for example). In addition, the developer of the
object itself could supply you with an updated version of an object, and as long as it supports an interface that
is already in use it becomes easy to use this new version in your code.

Disposable Objects

One interface of particular interest is IDisposable. An object that supports the IDisposable interface
must implement the Dispose() method, that is, they must provide code for this method. This method can be
called when an object is no longer needed (just before it goes out of scope, for example), and should be used
to free up any critical resources which might otherwise linger until the destructor method is called on garbage
collection. This gives you more control over the resources used by your objects.

C# allows us to use a structure that makes excellent use of this method. The using keyword allows us to
initialize an object that uses critical resources in a code block, where Dispose() is automatically called at the
end of this code block. The usage is as follows:
using (<ClassName> <VariableName> = new <ClassName>())
{
 ...
}

Here the variable <VariableName> will be usable within this code block, and will be disposed of
automatically at the end (that is, Dispose() is called when the code block finishes executing).

Inheritance

Inheritance is one of the most important features of OOP. Any class may inherit from another, which means
that it will have all the members that the class it inherits from has. In OOP terminology, the class being
inherited (also known as derived) from is the parent class (also known as the base class). Note that objects
in C# may only descend from a single base class.

Inheritance allows us to extend or create more specific classes from a single, more generic base class. For
example, consider a class that represents a farm animal (as used by ace octogenarian developer Old
MacDonald in his livestock application). This class might be called Animal, and possess methods such as
EatFood() or Breed(). We could create a derived class called Cow, which would support all of these
methods, but might also supply its own, such as Moo() and SupplyMilk(). We could also create another
derived class, Chicken, with Cluck() and LayEgg() methods.

In UML we indicate inheritance using arrows, for example:

Here I've omitted the member return types for clarity.

When inheriting from a base class the question of member accessibility becomes an important one. Private
members of the base class will not be accessible from a derived class, but public members will. However,
public members are accessible to both the derived class and external code. This means that if we could only
use these two levels of accessibility we couldn't have a member that was accessible by the base class and
the derived class but not external code.

To get round this, there is a third type of accessibility, protected, where only derived classes have access to
a member. As far as external code is aware, this is identical to a private member - it doesn't have access in
either case.

As well as the protection level of a member, we can also define an inheritance behavior for it. Members of a
base class may be virtual, which means that the member can be overridden by the class that inherits it.
What this means is that the derived class may provide an alternative implementation for the member. This
alternative implementation doesn't delete the original code, which is still accessible from within the class, but it
does shield it from external code. If no alternative is supplied the external code has access to the base class
implementation of the member.

Note that virtual members cannot be private, as this would cause a paradox - it is impossible to say that a
member can be overridden by a derived class at the same time as saying that it is inaccessible from the
derived class.

In our animals example, we could make EatFood() virtual, and provide a new implementation for it on any
derived class, for example just on the Cow class:

Here I've displayed the EatFood() method on the Animal and Cow classes to signify that they have their
own implementations.

Base classes may also be defined as abstract classes. An abstract class can't be instantiated directly; to use
it you need to inherit from it. Abstract classes may have abstract members, which have no implementation in
the base class, so an implementation must be supplied in the derived class.

If Animal were an abstract class then the UML would be as follows:

Abstract classes are shown with their name in italics (or sometimes with a dashed line for their box).

Finally, a class may be sealed. A sealed class may not be used as a base class, so no derived classes are
possible.

In C# there is a common base class for all objects called object (which is an alias for the next chapter.

Interfaces, described earlier in this chapter, may also inherit from
other interfaces. Unlike classes, interfaces may inherit from multiple
base interfaces (in the same way that classes can support multiple
interfaces).

Polymorphism

One consequence of inheritance is that classes deriving from a base class have
an overlap in the methods and properties that they expose. Because of this, it
is often possible to treat objects instantiated from classes with a base type in
common using identical syntax. For example, if a base class called Animal has a
method called EatFood() then the syntax for calling this method from the derived
classes Cow and Chicken will be similar:

Cow myCow = new Cow();
Chicken myChicken = new Chicken();
myCow.EatFood();
myChicken.EatFood();

Polymorphism takes this a step further. We can assign a variable that is of the
base type to a variable of one of the derived types, for example:

Animal myAnimal = myCow;

No casting is required for this. We can then call methods of the base class
through this variable:

myAnimal.EatFood();

This will result in the implementation of EatFood() in the derived class being
called. Note that we can't call methods defined on the derived class in the same
way. The following code won't work:

myAnimal.Moo();

However, we can cast a base type variable into a derived class variable and call
the method of the derived class that way:

Cow myNewCow = (Cow)myAnimal;
myNewCow.Moo();

This casting will cause an exception to be raised if the type of the original
variable was anything other than Cow or a class derived from Cow. There are ways
of telling what type an object is, but we'll leave that until the next chapter.

Polymorphism is an extremely useful technique for performing tasks on different
objects descending from a single class with the minimum of code.

Note that it isn't just classes sharing the same parent class that can make use
of polymorphism. It is also possible to treat, say, a child and a grandchild
class in the same way, as long as there is a common class in their inheritance
hierarchy.

As a further note here, remember that in C# all classes derive from the base
class object at the root of their inheritance hierarchy. It is therefore
possible to treat all objects as instances of the class object. This is how
Console.WriteLine() is able to process an infinite number of parameter
combinations when building up strings. Every parameter after the first is
treated as an object instance, allowing output from any object to be written to
the screen. To do this the method ToString() (a member of object) is called. We
can override this method to provide an implementation suitable for our class, or
simply use the default, which returns the class name (qualified according to any
namespaces it is in).

Interface Polymorphism

Earlier on we introduced the concept of interfaces for grouping together related
methods and properties. Although we cannot instantiate interfaces in the same
way as objects, it is possible to have a variable of an interface type. We can
then use this variable to get access to methods and properties exposed by this
interface on objects that support it.

For example, let's say that instead of an Animal base class being used to supply
the EatFood() method we place this EatFood() method on an interface called
IConsume. The Cow and Chicken classes could both support this interface; the
only difference being that they are forced to provide an implementation for
EatFood() (as interfaces contain no implementation). We can then access this
method using code such as:

Cow myCow = new Cow();
Chicken myChicken = new Chicken();
IConsume consumeInterface;
consumeInterface = myCow;
consumeInterface.EatFood();
consumeInterface = myChicken;
consumeInterface.EatFood();

This provides a simple way for multiple objects to be called in the same way,
and doesn't rely on a common base class. In this code, calling consumeInterface.
EatFood() results in the EatFood() method of the Cow or Chicken class being
called, depending on which instance has been assigned to the interface type
variable.

Relationships Between Objects

Inheritance is a simple relationship between objects that results in a base
class being completely exposed by a derived class, where the derived class may
also have some access to the inner working of its base class (through protected
members). There are other situations where relationships between objects become
important.

In this section we'll take a brief look at:

● Containment - where one class contains another. This is similar to
inheritance but allows the containing class to control access to the members
of the contained class, and even perform additional processing before using
members of a contained class.

● Collections - where one class acts as a container for multiple instances of
another class. This is similar to having arrays of objects, but has
additional scope, including indexing, sorting, resizing, and more.

Containment

Containment is simple to achieve by using a member field to hold an object
instance. This member field might be public, in which case users of the
container object will have access to its exposed methods and properties much
like inheritance. However, we won't have access to the internals of the class
via the derived class as we would with inheritance.

Alternatively, we can make the contained member object a private member. If we
do this, none of its members will be accessible directly by users, even if they
are public. Instead, we can provide access to these members using members of the
containing class. This means we have complete control over what members of the
contained class to expose, if any, and can also perform additional processing in
the containing class members before accessing the contained class members.

For example, a Cow class might contain an Udder class with the public method Milk
(). The Cow object could call this method as required, perhaps as part of its
SupplyMilk() method, but these details will not be apparent (or important) to
users of the Cow object.

Contained classes may be visualized in UML using an association line. For simple
containment we label the ends of the lines with 1s, showing a one-to-one
relationship (one Cow instance will contain one Udder instance). We can also
show the contained Udder class instance as a private field of the Cow class for
clarity:

Collections

Back in how we can use arrays to store multiple variables of the same type. This
also works for objects (remember, the variable types we have been using are
really objects, so this is no real surprise). For example:

Animal[] animals = new Animal[5];

A collection is basically an array with bells and whistles. Collections are
implemented as classes in much the same way as other objects. They are often
named in the plural form of the objects they store, for example a class called
Animals might contain a collection of Animal objects.

The main difference from arrays is that collections usually implement additional
functionality, such as Add() and Remove() methods to add and remove items from
the collection. There is also usually an Item property that returns an object
based on its index. More often than not this property is implemented in such a
way as to allow more sophisticated access. For example, it would be possible to
design Animals such that a given Animal object could be accessed by its name.

In UML we can visualize this as follows:

I've left off the members here, as it's the relationship that is being
illustrated. The numbers on the ends of the connecting lines here show that one
Animals object will contain zero or more Animal objects

We'll be taking a more detailed look at collections in Chapter 11.

Operator Overloading

Earlier on in the book we saw how operators can be used to manipulate simple
variable types. There are times when it would be logical to use operators with
objects instantiated from our own classes. This is possible because classes can
contain instructions as to how operators should be treated.

For example, we might add a new property to our Animal class called Weight. We
could then compare animal weights using:

if (cowA.Weight > cowB.Weight)
{
 ...
}

Using operator overloading we could provide logic that used the Weight property
implicitly in our code, such that we could write code such as:

if (cowA > cowB)
{
 ...
}

Here the greater than operator > has been overloaded. An overloaded operator is
one for which we have written the code to perform the operation involved - this
code is added to the class definition of one of the classes that it operates on.
In the above example we are using two Cow objects, so the operator overload
definition is contained in the Cow class. We can also overload operators to work
with different classes in the same way, where one (or both) of the class
definitions contains the code to achieve this.

Note that we can only overload existing C# operators in this way; we can't
create new ones. However, we can provide implementations for both unary and
binary usages of operators such as +.

We'll see how to do this in C# in Chapter 11.

Events

Objects may raise (and consume) for example, want some specific code to execute
when an Animal object is added to an Animals collection, where that code isn't
part of either the Animals class or the code that calls the Add() method. To do
this we need to add an event handler to our code, which is a special kind of
function that is called when the event occurs. We also need to configure this
handler to listen for the event we are interested in.

Using events, we can create event-driven applications, which are far more
prolific than you might think at this stage. As an example, it is worth bearing
in mind that Windows-based applications are entirely dependent on events. Every
button click or scrollbar drag you perform is achieved through event handling,
where the events are triggered by the mouse or keyboard.

Later on in this chapter we'll see how this works in Windows applications, and
we'll have a more in-depth discussion of events in Chapter 12.

Reference versus. Value Types

Data in C# is stored in a variable in one of two ways depending on the type of
the variable. This type will fall into one of two categories; it is either a
reference type or a value type. The difference is as follows:

● Value types store themselves and their content in one place in memory

● Reference types hold a reference to somewhere else in memory (called the
heap) where content is stored

In actual fact we don't have to worry about this too much when using C#. So far
we've used string variables (which are reference types) and other simple
variables (most of which are value types, such as int) in pretty much the same
way.

The only simple types that are reference types are string and object, although
arrays are implicitly reference types as well. Every class we create will be a
reference type, which is why I'm making this point now.

Structs

At this point there is an important point to note. The key difference between
struct types and classes is that struct types are value types.

The fact that struct types and classes are similar may have occurred to you,
particularly as we saw in next chapter.

Chapter 8 - Introduction to Object-Oriented
Programming
byKarli Watsonet al.

Wrox Press 2003

OOP in Windows Applications

Back in made in this chapter. To do this we'll work through a simple example.

Try it Out - Objects in Action

1. Create a new Windows application in the directory C:\BegVCSharp\Chapter8 called Ch08Ex01.

2. Add a new Button control using the Toolbox bar, and position it in the center of Form1:

3. Double-click on the button to add code for a mouse click. Modify the code that appears as follows:
 private void button1_Click(object sender, System.EventArgs e)
 {
 ((Button)sender).Text = "Clicked!";
 Button newButton = new Button();
 newButton.Text = "New Button!";
 newButton.Click += new EventHandler(newButton_Click);
 Controls.Add(newButton);
 }

 private void newButton_Click(object sender, System.EventArgs e)
 {
 ((Button)sender).Text = "Clicked!!";
 }
 }

4. Run the application:

5. Click on the button marked button1:

6. Click on the button marked New Button!:

How it Works

By adding just a few lines of code we've created a Windows application that does something, while at the
same time illustrating some OOP techniques in C#. The phrase "Everything's an object" is even more true
when it comes to Windows applications. From the form that runs, to the controls on the form, we need to
make use of OOP techniques all the time. Throughout this example description I've highlighted some of the
concepts that we've looked at earlier in this chapter to show how everything fits together.

The first thing we did in our application was to add a new button to the Form1 form. This button is an object,
called Button. Next, by double-clicking on the button we added an event handler to listen out for the Click
event that the Button object generates. This event handler is added into the code for the Form object that
encapsulates our application, as a private method:
 private void button1_Click(object sender, System.EventArgs e)
 {
 }

This uses the C# keyword private as a qualifier. Don't worry too much about this for now; in the next
chapter we'll be looking at the C# code required for the OOP techniques we've seen in this chapter.

The first line of code we added changes the text on the button that is clicked. This makes use of
polymorphism as seen earlier in this chapter. The Button object representing the button that we click is
sent to the event handler as an object parameter, which we cast into a Button type (this is possible as the
Button object inherits from System.Object, which is the .NET class that object is an alias for). We then
change the Text property of the object to change the text displayed:

 ((Button)sender).Text = "Clicked!";

Next, we create a new Button object with the new keyword (note that namespaces are set up in this project
to enable this simple syntax, otherwise we'd need to use the fully qualified name of this object, System.
Windows.Forms.Button):

 Button newButton = new Button();
 newButton.Text = "New Button!";

Elsewhere in the code a new event handler is added, which we'll use to respond to the Click event

generated by our new button:
 private void newButton_Click(object sender, System.EventArgs e)
 {
 ((Button)sender).Text = "Clicked!!";
 }

We then register this event handler as a listener for the Click event using some overloaded operator
syntax. Along the way we create a new EventHandler object using a non-default constructor, using the
name of the new event handler function:
 newButton.Click += new EventHandler(newButton_Click);

Finally, we make use of the Controls property. This property is an object that is a collection of all the
controls on our form, and we use its Add() method to add our new button to the form:

 Controls.Add(newButton);

The Controls property illustrates that properties need not necessarily be simple types such as strings or
integers, but can be any kind of object.

This short example has used almost all the techniques introduced in this chapter. As you can see, OOP
programming needn't be complicated - it just requires a different point of view to get right.

Chapter 8 - Introduction to Object-Oriented
Programming
byKarli Watsonet al.

Wrox Press 2003

Summary

This chapter has presented us with a full description of object-oriented techniques. We have gone through this
in the context of C# programming, but this has mainly been illustrative. The vast majority of this chapter is
relevant to OOP in any language.

We started by covering the basics, such as what is meant by the term object, and how an object is an
instance of a class. Next we saw how objects can have various members, such as fields, properties, and
methods. These members can have restricted accessibility, and we looked at what we mean by public and
private members. Later on, we saw that members can also be protected, as well as being able to be virtual
and abstract (where abstract methods are only permissible on abstract classes). We also looked at the
difference between static (shared) and instance members.

Next we took a quick look at the lifecycle of an object, including how constructors are used in object creation,
and destructors in object deletion. Later on, after examining groups of members in interfaces, we looked at
more advanced object destruction with disposable objects supporting the IDisposable interface.

Most of the remainder of the chapter looked at features of OOP, many of which we'll be seeing in more depth
in the chapters that follow. We looked at inheritance, where classes inherit from base classes, two versions
of polymorphism, through base classes and shared interfaces, and saw how objects can be used to contain
one or more other objects (through containment and events.

The last part of this chapter demonstrated much of the theory in this chapter using a Windows application as
an example.

In the next chapter we'll look at defining classes using C#.

Chapter 8 - Introduction to Object-Oriented
Programming
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Which of the following are real levels of accessibility in OOP?

❍ Friend

❍ Public

❍ Secure

❍ Private

❍ Protected

❍ Loose

❍ Wildcard

2. "We must call the destructor of an object manually, or it will waste memory." True or False?

3. Do you need to create an object in order to call a static method of its class?

4. Draw a UML diagram similar to the ones shown in this chapter for the following classes and interface:

❍ An abstract class called HotDrink that has the methods Drink(), AddMilk(), and AddSugar
(), and the properties Milk, and Sugar.

❍ An interface called ICup that has the methods Refill() and Wash(), and the properties Color
and Volume.

❍ A class called CupOfCoffee that derives from HotDrink, supports the ICup interface, and has
the additional property BeanType.

❍ A class called CupOfTea that derives from HotDrink, supports the ICup interface, and has the
additional property LeafType.

5. Write some code for a function that would accept either of the two cup objects in the above example as
a parameter. The function should call the AddMilk(), Drink(), and Wash() methods for any cup
object it is passed.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Chapter 9: Defining Classes

Overview

In the last chapter we looked at the features of object-oriented programming (OOP). In this chapter we'll put
theory into practice and look at defining classes in C#.

We won't go so far as to define class members in this chapter, as we'll concentrate on the class definitions
themselves for now. This may sound a little limiting, but don't worry, there's plenty here to get your teeth into!

To start off with, we'll look at the basic class definition syntax, the keywords we can use to determine class
accessibility and so on, and the way in which we can specify inheritance. We'll also look at interface
definitions, as they are similar to class definitions in many ways.

The rest of the chapter will look at various topics that apply when defining classes in C#, including:

● The System.Object class

● Helpful tools provided by Visual Studio .NET (VS)

● Class libraries

● A comparison between interfaces and abstract classes

● Struct types

● Copying objects

So, to start with let's dive into the basics.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Class Definitions in C#

C# uses the class keyword to define classes. The basic structure required is as follows:

class MyClass
{
 // class members
}

This code defines a class called MyClass. Once we have defined a class we are free to instantiate it
anywhere else in our project that has access to the definition. By default, classes are declared as internal,
meaning that only code in the current project will have access to it. We can specify this explicitly using the
internal access modifier keyword as follows (although we don't have to):

internal class MyClass
{
 // class members
}

Alternatively, we can specify that the class is public, and should also be accessible to code in other projects.
To do this we use the public keyword:

public class MyClass
{
 // class members
}

Note that classes declared in their own right in this way cannot be private or protected. However,
it is possible to use these modifiers for declaring classes as class members, which we'll look at in
the next chapter.

As well as these two access modifier keywords, we can also specify that the class is either abstract (cannot
be instantiated, only inherited, and can have abstract members) or sealed (cannot be inherited). To do this we
use one of the two mutually exclusive keywords abstract or sealed. An abstract class must therefore be
declared in the following way:
public abstract class MyClass
{
 // class members, may be abstract
}

Here MyClass is a public abstract class, while internal abstract classes are also possible.

Sealed classes are declared as follows:
public sealed class MyClass
{
 // class members

}

As with abstract classes, sealed classes may be public or internal.

Inheritance can also be specified in the class definition. To do this we simply put a colon after the class name,
followed by the base class name. For example:
public class MyClass : MyBase
{
 // class members
}

Note that only one base class is permitted in C# class definitions, and that if we inherit from an abstract class
we must implement all the abstract members inherited (unless the derived class is also abstract).

The compiler will not allow a derived class to be more accessible than its base class. This means that an
internal class can inherit from a public base, but a public class can't inherit from an internal base. This means
that the following code is legal:
public class MyBase
{
 // class members
}

internal class MyClass : MyBase
{
 // class members
}

But the following code won't compile:
internal class MyBase
{
 // class members
}

public class MyClass : MyBase
{
 // class members
}

If no base class is used then the class will inherit only from the base class System.Object at the root of
their inheritance hierarchy. We'll take a closer look at this fundamental class a little later.

As well as specifying base classes in this way, we can also specify interfaces supported after the colon
character. If a base class is specified it must be the first thing after the colon, with interfaces specified
afterwards. If there is no base class specified we specify the interfaces straight after the colon. Commas must
be used to separate the base class name (if there is one) and the interface names from one another.

For example, we could add an interface to MyClass as follows:

public class MyClass : IMyInterface
{
 // class members
}

All interface members must be implemented in any class that supports the interface, although we can provide

an "empty" implementation (with no functional code) if we don't want to do anything with a given interface
member.

The following declaration is invalid, as the base class MyBase isn't the first entry in the inheritance list:

public class MyClass : IMyInterface, MyBase
{
 // class members
}

The correct way to specify a base class and an interface is as follows:
public class MyClass : MyBase, IMyInterface
{
 // class members
}

And remember that multiple interfaces are possible, so the following is also valid:
public class MyClass : MyBase, IMyInterface, IMySecondInterface
{
 // class members
}

As a quick recap, here is a table of allowed access modifier combinations for class definitions:

Modifier Meaning
none or internal Class accessible only from within the current

project.
public Class accessible from anywhere.

abstract or internal abstract Class accessible only from within the current
project, cannot be instantiated, only derived from.

public abstract Class accessible from anywhere, cannot be
instantiated, only derived from.

sealed or internal sealed Class accessible only from within the current
project, cannot be derived from, only instantiated.

public sealed Class accessible from anywhere, cannot be
derived from, only instantiated.

Interface Definitions

Interfaces are declared in a similar way to classes, but using the interface keyword rather than class. For
example:
interface IMyInterface
{
 // interface members
}

The access modifier keywords public and internal are used in the same way, so to make an interface
publicly accessible we must use the public keyword:

public interface IMyInterface
{

 // interface members
}

The keywords abstract and sealed are not allowed in interfaces because neither modifier makes sense in
the context of interfaces (they contain no implementation, so can't be instantiated directly, and they must be
inheritable to be useful).

Interface inheritance is also specified in a similar way to class inheritance. The main difference here is that
multiple base interfaces can be used, for example:
public interface IMyInterface : IMyBaseInterface, IMyBaseInterface2
{
 // interface members
}

Interfaces inherit from System.Object in the same way as classes. This is the mechanism through which
interface polymorphism is possible. However, as already discussed, it is impossible to instantiate an interface
in the same way as a class. Let's look at an example of some class definitions, along with some code that
uses them.

Try it Out – Defining Classes

1. Create a new console application called Ch09Ex01 in the directory C:\BegVCSharp\Chapter9.

2. Modify the code in Class1.cs as follows:

namespace Ch09Ex01
{
 public abstract class MyBase
 {
 }

 internal class MyClass : MyBase
 {
 }

 public interface IMyBaseInterface
 {
 }

 internal interface IMyBaseInterface2
 {
 }

 internal interface IMyInterface : IMyBaseInterface, IMyBaseInterface2
 {
 }

 internal sealed class MyComplexClass : MyClass, IMyInterface
 {
 }

 class Class1
 {
 static void Main(string[] args)
 {

 MyComplexClass myObj = new MyComplexClass();
 Console.WriteLine(myObj.ToString());
 }
 }
}

3. Execute the project:

How it Works

This project defines classes and interfaces in the following inheritance hierarchy:

I've included Class1 here as it is a class defined in the same way as our other classes, even though it isn't
part of the main class hierarchy. The Main() method possessed by this class is the entry point for our
application as discussed earlier in the book.

MyBase and IMyBaseInterface are public definitions, so they are available from other projects. The other
classes and interfaces are internal, and are only available in this project.

The code in Main() calls the ToString() method of myObj, an instance of MyComplexClass:

 MyComplexClass myObj = new MyComplexClass();
 Console.WriteLine(myObj.ToString());

This is one of the methods inherited from System.Object (not shown in the diagram as I've omitted the
members of this class for clarity), and simply returns the class name of the object as a string, qualified by any
relevant namespaces.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

System.Object

Since all classes inherit from System.Object, all classes will have access to the protected and public
members of this class. This means that it is well worth taking a look at what is available there. System.
Object contains the following methods:

Method Return
Type Virtual Static Description

Object() N/A No No Constructor for the System.
Object type. Automatically
called by constructors of
derived types.

~Object() (also known
as Finalize() - see
next section)

N/A No No Destructor for the System.
Object type. Automatically
called by destructors of
derived types, cannot be
called manually.

Equals(object) bool Yes No Compares the object for
which this method is called
with another object, and
returns true if they are equal.
The default implementation
checks to see if the object
parameter refers to the same
object (as objects are
reference types). This
method can be overridden if
you wish to compare objects
in a different way, such as if
they hold equivalent data.

Equals(object,

object)

bool No Yes This method compares the
two objects passed to it and
checks to see if they are
equal This check is
performed using the Equals
(object) method. Note that
if both objects are null
references this method
returns true.

ReferenceEquals

(object, object)

bool No Yes This method compares the
two objects passed to it and
checks to see if they are
references to the same
instance.

ToString() string Yes No Returns a string
corresponding to the object
instance. By default this is
the qualified name of the
class type (see earlier
example), but this can be
overridden to provide an
implementation appropriate
to the class type.

MemberwiseClone() object No No Copies the object by creating
a new object instance and
copying members. Note that
this member copying will not
result in new instances of
these members. Any
reference type members of
the new object will refer to
the same objects as the
original class. This method is
protected, and so can only be
used from within the class or
from derived classes.

GetType() System.
Type

No No Returns the type of the object
in the form of a System.
Type object.

GetHashCode() int Yes No Used as a hash function for
objects where this is
required. A hash function is
one that returns a value
identifying the object state in
some compressed form.

These methods are the basic ones that must be supported by object types in the .NET Framework, although
we might never use some of them (or use them only in special circumstances, such as GetHashCode()).

GetType() is a useful method when we are using polymorphism, as it allows us to perform different
operations with objects depending on their type, rather than the same operation for all objects as is often the
case. For example, if we have a function that accepts an object type parameter (meaning that we can pass
it just about anything) we might perform additional tasks if certain objects are encountered. Using a
combination of GetType() and typeof() (a C# operator that converts a class name into a System.Type
object) we can perform comparisons such as:
if (myObj.GetType() == typeof(MyComplexClass))
{
 // myObj is an instance of the class MyComplexClass
}

The System.Type object returned is capable of a lot more than this, but we won't cover this here. This topic

is covered in more detail in Chapter 22.

It can also be very useful to override the ToString() method, particularly in situations where the contents
of an object can be easily represented with a single human-readable string.

We'll be seeing these System.Object methods repeatedly over the coming chapters, so we'll end this
discussion for now, and go into more detail as necessary.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Constructors and Destructors

When we define a class in C# there is often no need to define associated constructors and destructors, as the
base class System.Object provides a default implementation for us. However, we can provide our own if
required, enabling us to initialize and clean up after our objects respectively.

A simple constructor can be added to a class using the following syntax:
class MyClass
{
 public MyClass()
 {
 // Constructor code
 }
}

This constructor has the same name as the class that contains it, has no parameters (making it the default
constructor for the class), and is public so that objects of the class may be instantiated using this constructor
(check back to the discussion in the last chapter for more information on this).

We can also use a private default constructor, meaning that object instances of this class cannot be created
using this constructor (see discussion in the last chapter):
class MyClass
{
 private MyClass()
 {
 // Constructor code
 }
}

Finally, we can add non-default constructors to our class in a similar way, simply by providing parameters. For
example:
class MyClass
{
 public MyClass()
 {
 // Default constructor code
 }

 public MyClass(int myint)
 {
 // Non-default constructor code (uses myInt)
 }
}

There is no limit to the amount of constructors we can supply.

Destructors are declared using a slightly different syntax. The destructor used in .NET (and supplied by the
System.Object class) is called Finalize(), but this isn't the name we use to declare a destructor. Instead
of overriding Finalize() we use the following:

class MyClass
{
 ~MyClass()
 {
 // destructor body
 }
}

Thus the destructor of a class is declared by the class name (like the constructor is), with the ~ prefix. The
code in the destructor will be executed when garbage collection occurs, allowing us to free resources. After
this destructor is called, implicit calls to the destructors of base classes also occur, including a call to
Finalize() in the next chapter).

Constructor Execution Sequence

If we perform multiple tasks in the constructors of a class it can be handy to
have this code in one place, which has the same benefits as splitting code into
functions as we saw earlier in the book. We could do this using a method (see
next chapter), but C# provides a nice alternative. Any constructor can be
configured to call any other constructor before it executes it's own code.

Before looking at this, though, we need to take a closer look at what happens by
default when we instantiate a class instance.

In order for a derived class to be instantiated its base class must be
instantiated. In order for this base class to be instantiated the base class of
this base class must be instantiated, right the way back to System.Object. The
result of this is that whatever constructor we use to instantiate a class,
System.Object.Object() is always called first.

If we use a non-default constructor of a class then the default behavior is to
use a constructor on the base class that matches the signature of this
constructor. If none is found then the default constructor for the base class is
used (which will always happen for the ultimate root System.Object, as this
class has no non-default constructors). Let's look at a quick example of this to
illustrate the sequence of events. Consider the following object hierarchy:

public class MyBaseClass
{
 public MyBaseClass()
 {
 }

 public MyBaseClass(int i)
 {
 }
}

public class MyDerivedClass : MyBaseClass
{

 public MyDerivedClass()
 {
 }

 public MyDerivedClass(int i)
 {
 }

 public MyDerivedClass(int i, int j)
 {
 }
}

We could instantiate MyDerivedClass in the following way:

MyDerivedClass myObj = new MyDerivedClass();

In this case the following sequence of events will occur:

● The System.Object.Object() constructor will execute.

● The MyBaseClass.MyBaseClass() constructor will execute.

● The MyDerivedClass.MyDerivedClass() constructor will execute.

Alternatively, we could use the following:

MyDerivedClass myObj = new MyDerivedClass(4);

Here the sequence will be as follows:

● The System.Object.Object() constructor will execute.

● The MyBaseClass.MyBaseClass(int i) constructor will execute.

● The MyDerivedClass.MyDerivedClass(int i) constructor will execute.

Finally, we could use the following:

MyDerivedClass myObj = new MyDerivedClass(4, 8);

This results in the following sequence:

● The System.Object.Object() constructor will execute.

● The MyBaseClass.MyBaseClass() constructor will execute.

● The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

This system works fine, and ensures that any inherited members are accessible to
constructors in our derived classes. However, there are times when a little more
control over the events that take place is required, or just desirable. For
example, in the last instantiation example we might want to have the following
sequence:

● The System.Object.Object() constructor will execute.

● The MyBaseClass.MyBaseClass(int i) constructor will execute.

● The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

Using this we could place the code that uses the int i parameter in MyBaseClass
(int i), meaning that the MyDerivedClass(int i, int j) constructor would have
less work to do - it would only need to process the int j parameter. (This
assumes that the int i parameter has an identical meaning in both cases, which
might not always be the case, but in practice with this kind of arrangement it
usually is.) C# allows us to specify this kind of behavior should we wish.

To do this we simply specify the base class constructor to use in the definition
of the constructor in our derived class as follows:

public class MyDerivedClass : MyBaseClass
{
 ...

 public MyDerivedClass(int i, int j) : base(i)
 {
 }
}

The base keyword directs the .NET instantiation process to use the base class
constructor matching the signature specified. Here we are using a single int
parameter, so MyBaseClass(int i) will be used. Doing this means that MyBaseClass
() will not be called, giving us the sequence of events listed prior to this
example - exactly what we wanted here.

We can also use this keyword to specify literal values for base class
constructors, perhaps using the default constructor of MyDerivedClass to call a
non-default constructor of MyBaseClass:

public class MyDerivedClass : MyBaseClass
{
 public MyDerivedClass() : base(5)
 {
 }
 ...
}

This gives us the following sequence:

● The System.Object.Object() constructor will execute.

● The MyBaseClass.MyBaseClass(int i) constructor will execute.

● The MyDerivedClass.MyDerivedClass() constructor will execute.

As well as this base keyword, there is one more keyword that we can use here:
this. This keyword instructs the .NET instantiation process to use a non-default
constructor on the current class before the specified constructor is called. For
example:

public class MyDerivedClass : MyBaseClass
{
 public MyDerivedClass() : this(5, 6)
 {

 }

 ...

 public MyDerivedClass(int i, int j) : base(i)
 {
 }
}

Here we will have the following sequence:

● The System.Object.Object() constructor will execute.

● The MyBaseClass.MyBaseClass(int i) constructor will execute.

● The MyDerivedClass.MyDerivedClass(int i, int j) constructor will execute.

● The MyDerivedClass.MyDerivedClass() constructor will execute.

The only limitation to all this is that we can only specify a single constructor
using the this or base keywords. However, as demonstrated in the last example
above, this isn't much of a limitation, as we can still construct fairly
sophisticated execution sequences.

We'll see this technique in action a little later in the book.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

OOP Tools in Visual Studio .NET

Since OOP is such a fundamental subject in the .NET Framework there are several tools provided by VS to
aid development of OOP applications. In this section we'll look at some of these.

The Class View Window

Back in modes for viewing this information, the default of which is Sort By Type. For the example project in the
earlier section the view is as follows:

There are many symbols that may be used here, including:

● Project

● Namespace

● Class

● Interface

● Method

● Property

● Field

● Struct

● Enumeration

● Enumeration item

● Event

Note that some of these are used for type definitions other than classes, such as enumerations and struct
types.

Some of the entries may have other symbols placed below them signifying their access level (no symbol
appears for public entries):

● Private

● Protected

● Internal

No symbols are used to denote abstract, sealed, or virtual entries.

All the available modes work in basically the same way, and allow us to expand the definitions of classes
using the standard tree view controls. Expanding our classes and interfaces down to the System.Object
level reveals the following:

Here we can see all the class information in a project.

As well as being able to look at this information here, we can also get access to the relevant code for many of
these items. Double-clicking on an item, or right-clicking and selecting Go to Definition, takes us straight to the
code in our project that defines the item, if it is available. If the code isn't available, such as code in an
inaccessible base type like System.Object, we will instead be taken into the Object Browser view.

The Object Browser

The Object Browser is an expanded version of the Class View window, allowing us to view other classes
available to our project, and even completely external classes. It is entered either automatically (for example
in the situation noted in the last section), or manually via View | Other Windows | Object Browser. The view
appears in the main window, and we can browse it in the same way as the Class View window:

This window shows classes and members of classes in different places, unlike Class View, and includes all
the .NET modules referenced by our project. We can browse through, for example, entries in the System
namespace using this tool.

When an item is selected we also get information about it below the window. Here we can see the access
level, base class, and namespace for Class1. We can use this information to navigate as well – clicking on
Summary information here. This is generated by the XML documentation comments in the code (which begin
with ///):

 /// <summary>
 /// Summary description for Class1.
 /// </summary>
 class Class1
 {
 static void Main(string[] args)
 {
 MyComplexClass myObj = new MyComplexClass();
 Console.WriteLine(myObj.ToString());
 }
 }

We'll look at XML documentation comments in more depth in Chapter 18.

Adding Classes

VS contains tools that can speed up some common tasks, and some of these are applicable to OOP. One of
these tools allows us to add new classes to our project with the minimum of typing.

This tool is accessible through the File | Add New Item... menu item, or by right-clicking on our project in the
Solution Explorer window and selecting the appropriate item. Either way, a dialog appears, allowing us to
choose the type of item to add. To add a class we select the Class entry in the window on the right, provide a
filename for the file that will contain the class, then click Open. The class created will be named according to
the filename chosen.

In the example earlier in this chapter we added class definitions manually to our Class1.cs file. It is often the
case that keeping classes in separate files makes it easier to keep track of our classes.

Entering the information in the dialog above when the Ch09Ex01 project is open results in the following code
being generated in MyNewClass.cs:

using System;

namespace Ch09Ex01
{
 /// <summary>
 /// Summary description for MyNewClass.
 /// </summary>
 public class MyNewClass
 {
 public MyNewClass()
 {
 //
 // TODO: Add constructor logic here
 //
 }
 }
}

This class, MyNewClass, is defined in the same namespace as our entry point class, Class1, so we can use
it from code just as if it were defined in the same file.

As you can see from the code (or, more specifically, the comment in the code) the class that is generated for
us contains a default constructor.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Class Library Projects

As well as placing classes in separate files within our project, we can also place them in completely separate
projects. A project that contains nothing but classes (along with other relevant type definitions, but no entry
point) is called a class library.

Class library projects compile into .dll assemblies, and we can gain access to their contents by adding
references to them from other projects (which might be part of the same solution, but don't have to be). This
extends the encapsulation that objects provide, as class libraries may be revised and updated without
touching the projects that use them, allowing you to upgrade services provided by classes easily (which might
affect multiple consumer applications).

Important There is a minor problem with creating class libraries in Visual C# Standard Edition - it doesn't
allow you to create them directly. However, it is possible to get round this, and for users of the
Standard Edition, you can see how to create a class library after the How it Works section for
the next example. I recommend that you skip ahead to read about that now, and once you have
created your class library in the Standard Edition, you return to work through this example.

Let's look at an example of a class library project and a separate project that makes use of the classes that it
contains.

Try it Out - Using a Class Library

1. Create a new project of type Class Library called Ch09ClassLib in the directory C:\BegVCSharp
\Chapter9:

2. Rename the file Class1.cs as MyExternalClass.cs (you can do this by right-clicking on the file in
the Solution Explorer window and selecting Rename).

3. Modify the code in MyExternalClass.cs to reflect this class name change:

 public class MyExternalClass
 {
 public MyExternalClass()
 {
 //
 // TODO: Add constructor logic here
 //
 }
 }

4. Add a new class to the project, using the filename MyInternalClass.cs.

5. Modify the code to make the class MyInternalClass internal:

 internal class MyInternalClass
 {
 public MyInternalClass()
 {
 //
 // TODO: Add constructor logic here
 //
 }
 }

6. Compile the project (note that this project has no entry point, so you can't run it as normal - instead you
can build it by selecting the Build | Build menu option).

7. Create a new console application project called Ch09Ex02 in the directory C:\BegVCSharp
\Chapter9.

8. Select the Project | Add Reference... menu item, or select the same option after right-clicking on References
in the Solution Explorer window.

9. Click on the Browse... button, navigate to C:\BegVCSharp\Chapter9\Ch09ClassLib\bin\Debug\,
and double-click on Ch09ClassLib.dll.

10. Click OK.

11. When the operation completes, check that a reference has been added in the Solution Explorer window:

12. Open the Object Browser window and examine the new reference to see what objects it contains:

13. Modify the code in Class1.cs as follows:

using System;
using Ch09ClassLib;

namespace Ch09Ex02
{
 class Class1
 {
 static void Main(string[] args)
 {
 MyExternalClass myObj = new MyExternalClass();
 Console.WriteLine(myObj.ToString());
 }
 }
}

14. Run the application:

How it Works

In this example we have created two projects, one class library project and one console application project.
The class library project, Ch09ClassLib, contains two classes: MyExternalClass - which is publicly
accessible - and MyInternalClass - which is internally accessible. The console application, Ch09Ex02,
contains simple code that makes use of the class library project.

In order to use the classes in Ch09ClassLib we added a reference to Ch09ClassLib.dll to the console
application. For the purposes of this example we simply pointed at the output file for the class library, although
it would have been just as easy to copy this file to a location local to Ch09Ex02, allowing us to continue
development of the class library without affecting the console application. To replace the old version of the
assembly with the new one, we would simply copy the newly generated DLL file over the old one.

After adding the reference we took a look at the available classes using the object browser. Since one of the
two classes (MyInternalClass) is internal we can't see it in this display - it isn't accessible to external
projects. However, the other class (MyExternalClass) is accessible, and this is the one we use in the
console application.

We could replace the code in the console application with code attempting to use the internal class as follows:
 static void Main(string[] args)
 {
 MyInternalClass myObj = new MyInternalClass();
 Console.WriteLine(myObj.ToString());
 }

If we attempt to compile this code we will receive the following compilation error:
C:\BegVCSharp\Chapter9\Ch09Ex02\Class1.cs(13): 'Ch09ClassLib.MyInternalClass' is
inaccessible due to its protection level

This technique of making use of classes in external assemblies is key to programming with C# and the .NET
Framework. It is in fact exactly what we are doing when we make use of any of the classes in the .NET
Framework, as they are treated in the same way.

Creating a Class Library with C# Standard Edition

As we have already mentioned, Visual C# .NET Standard Edition does not have the ability to create a class
library project. However, there is a simple process for creating a class library that will work in the Standard
Edition - this section need only be read by users of the Standard Edition, so if that's not you, skip ahead to the
Interfaces versus Abstract Classes.

The following process will create a class library project called Ch09ClassLib:

1. Create a new console application project (or add a new one to the current solution), giving it the name
that you want for your class library (in our case Ch09ClassLib). Remember where it is being created
(in our case we will still be in C:\BegVCSharp\Chapter9).

2. Right-click on the auto-generated Class1.cs source code file in the Solution Explorer, and select
Delete.

3. Select File | Close Solution, and save any changes.

4. Run Notepad, and open the .csproj file that was created in the location of your console application
project.

5. The .csproj file is an XML file that describes your project (you can read more about XML in Chapter
18, but it is not important right now). In the <Settings> element, find the line with OutputType =
"Exe" - and change the value from "Exe" to "Library":

<VisualStudioProject>
 <CSHARP
 ProjectType = "Local"
 ProductVersion = "7.0.9466"
 SchemaVersion = "1.0"
 ProjectGuid = "{16EB2B73-60D5-4C18-BC46-956DF31D58BD}"
 >
 <Build>
 <Settings
 ApplicationIcon = "App.ico"
 AssemblyKeyContainerName = ""
 AssemblyName = "DataLayer"
 AssemblyOriginatorKeyFile = ""

 DefaultClientScript = "JScript"
 DefaultHTMLPageLayout = "Grid"
 DefaultTargetSchema = "IE50"
 DelaySign = "false"
 OutputType = "Library"
 RootNamespace = "Ch09ClassLib"
 StartupObject = ""
 >
...

6. Save the file.

7. Now return to Visual C# .NET, and re-open the solution. It should be the first item in the File | Recent Files
menu.

Your console application will now have become a class library. It will now build to a .dll file, and you will be
able to reference it from other projects, as you will see when you return to the previous Try It Out example.

This project is currently empty, and for it to be useful you will need to add some classes, as we saw in the
Adding Classes section earlier. Before you can return to the previous Try it Out example that I advised you to
skip, we need to add a class called MyExternalClass.cs. You can do this, for example, by right-clicking on
the project in Solution Explorer, selecting Add | Add New Item and choosing Class from the Add New Item dialog.

Now that your class library has been created and you've added a class to it, you can return to the previous Try
it Out example, and start from step 3. (The first two steps simply create the class library and add the class
MyExternalClass - but we've already done this!)

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Interfaces versus Abstract Classes

In this chapter we've seen how we can create both interfaces and abstract classes (without members for now
- we'll be getting to them in the next chapter). The two types are similar in a number of ways, and it is worth
taking a look at this and seeing the situation where we would want to use one technique or the other.

First, the similarities: both abstract classes and interfaces may contain members that can be inherited by a
derived class. Neither interfaces nor abstract classes may be directly instantiated, but we can declare
variables of these types. If we do so, we can use polymorphism to assign objects that inherit from these types
to variables of these types. In both cases we can then use the members of these types through these
variables, although we don't have direct access to the other members of the derived object.

And now, the differences: derived classes may only inherit from a single base class, which means that only a
single abstract class may be inherited directly (although it is possible for a chain of inheritance to include
multiple abstract classes). Conversely, classes may use as many interfaces as they wish. However, this
doesn't make a massive difference - similar results can be achieved in either case. It's just that the interface
way of doing things is slightly different.

Abstract classes may possess both abstract members (these have no code body and must be implemented in
the derived class unless the derived class is itself abstract) and non-abstract members (these possess a code
body, and can be virtual so that they may be overridden in the derived class). Interface members, on the other
hand, must all be implemented on the class that uses the interface - they do not possess code bodies. Also,
interface members are by definition public (as they are intended for external use), but members of abstract
classes may also be private (as long as they aren't abstract), protected, internal, or protected internal (where
protected internal members are accessible only from code within the application or from a derived class). In
addition, interfaces can't contain fields, constructors, destructors, static members, or constants.

This indicates that the two types are intended for different purposes. Abstract classes are
intended for use as the base class for families of objects that share certain central
characteristics, such as a common purpose and structure. Interfaces are intended for use by
classes that might differ on a far more fundamental level, but can still do some of the same
things.

As an example, consider a family of objects representing trains. The base class, Train, contains the core
definition of a train, such as wheel gauge and engine type (which could be steam, diesel, and so on).
However, this class is abstract, as there is no such thing as a "generic" train. In order to create an "actual"
train we need to add characteristics specific to that train. To do this we derive classes such as
PassengerTrain, FreightTrain and 424DoubleBogey:

A family of car objects might be defined in the same way, with an abstract base class of Car, and derived
classes such as Compact, SUV, and PickUp. Car and Train might even derive from a common base class,
such as Vehicle:

Now, some of the classes further down the hierarchy may share characteristics because of their purpose, not
just because of what they derive from. For example, PassengerTrain, Compact, SUV, and Pickup are all
capable of carrying passengers, so they might possess an IPassengerCarrier interface. FreightTrain
and PickUp can carry heavy loads so they might both have an IHeavyLoadCarrier interface as well.

By breaking down an object system in this way before going about assigning specifics, we can clearly see
which situations should use abstract classes rather than interfaces, and vice versa. The result of this example
couldn't have been achieved using only interfaces or only abstract inheritance.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Struct Types

In the us? Well, the simplest way of looking at this is to look at an example.

Try it Out - Classes versus Structs

1. Create a new console application project called Ch09Ex03 in the directory C:\BegVCSharp
\Chapter9.

2. Modify the code as follows:
namespace Ch09Ex03
{
 class MyClass
 {
 public int val;
 }

 struct myStruct
 {
 public int val;
 }

 class Class1
 {
 static void Main(string[] args)
 {
 MyClass objectA = new MyClass();
 MyClass objectB = objectA;
 objectA.val = 10;
 objectB.val = 20;
 myStruct structA = new myStruct();
 myStruct structB = structA;
 structA.val = 30;
 structB.val = 40;
 Console.WriteLine("objectA.val = {0}", objectA.val);
 Console.WriteLine("objectB.val = {0}", objectB.val);
 Console.WriteLine("structA.val = {0}", structA.val);
 Console.WriteLine("structB.val = {0}", structB.val);
 }
 }
}

3. Run the application:

How it Works

This application contains two type definitions, one for a struct called myStruct, which has a single public int
field called val, and one for a class called MyClass that contains an identical field (we'll be looking at class
members such as fields in the next chapter, for now it's enough just to point out that the syntax is the same
here). Next we perform the same operations on instances of both of these types:

● Declare a variable of the type.

● Create a new instance of the type in this variable.

● Declare a second variable of the type.

● Assign the first variable to the second variable.

● Assign a value to the val field in the instance in the first variable.

● Assign a value to the val field in the instance in the second variable.

● Display the values of the val fields for both variables.

Although we are performing the same operations on variables of both types the outcome is different. When we
display the values of the val field we find that both object types have the same value, while the struct types
have different values.

So, what has happened?

Objects are reference types. When we assign an object to a variable we are actually assigning that variable
with a pointer to the object it refers to. A pointer, in real code terms, is an address in memory. In this case the
address is the point in memory where the object is found. When we assign the first object reference to the
second variable of type MyClass with the following line, we are actually copying this address.

 MyClass objectB = objectA;

This means that both variables contain pointers to the same object.

Structs are value types. Instead of the variable holding a pointer to the struct, the variable contains the struct
itself. When we assign the first struct to the second variable of type myStruct with the following line, we are
actually copying all the information from one struct to the other.
 myStruct structB = structA;

This behavior is identical to that we have observed earlier in this book for simple variable types such as int.
The end result is that the two struct type variables contain different structs.

This whole technique of using pointers is hidden from us in managed C# code, making our code much
simpler. It is possible to get access to lower level operations such as pointer manipulation in C# using unsafe
code, but that is an advanced topic that we won't cover here.

Shallow versus Deep Copying

Copying objects from one variable to another by value instead of by reference (that is, copying them in the
same way as structs) can be quite complex. Because a single object may contain references to many other
objects, as field members and so on, there may be an awful lot of processing involved. Simply copying each
member from one object to another might not work, as some of these members might be reference types in
their own right.

The .NET Framework takes this into account. Simple object copying by members is achievable through the
method MemberwiseClone(), inherited from System.Object. This is a protected method, but it would be
easy to define a public method on an object that called this method. The copying supplied by this method is
known as shallow copying, in that it doesn't take reference type members into account. This means that
reference members in the new object will refer to the same objects as the equivalent members in the source
object, which isn't ideal in many cases. If we want to create new instances of the members in question,
copying the values across rather than the references, then we need to perform a deep copy.

There is an interface we can implement that allows us to do this in a standard way: ICloneable. If we use
this interface we must implement the single method it contains, Clone(). This method returns a value of type
System.Object. We can use whatever processing we wish to obtain this object, by implementing the
method body however we choose. This means that we can implement a deep copy if we wish to (although the
exact behavior isn't mandatory, so we could perform a shallow copy if we want).

We'll take a closer look at this in Chapter 11.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we've seen how we can define classes and interfaces in C#, which has put the theory from the
last chapter into a more concrete form. We've seen the C# syntax required for basic declarations as well as
the accessibility keywords we can use, the way in which we can inherit from interfaces and other classes, how
to define abstract and sealed classes to control this inheritance, and how to define constructors and
destructors.

We took a look at System.Object, which is the root base class of any class that we define. This class
supplies several methods for us to use, some of which are virtual such that we can override their
implementation. This class also allows us to treat any object instance as an instance of this type, enabling
polymorphism with any object.

We also took a look at some of the tools supplied by VS.NET for OOP development, including the Class View
window, the Object Browser window, and a quick way to add new classes to a project. As an extension of this
multi-file concept, we also saw how we can create assemblies that we can't execute, but that contain class
definitions that we can use in other projects.

Next we drilled down into abstract classes and interfaces, looking at the similarities and differences between
them and the situations where we might use one or the other.

Finally, we resumed our discussion of reference and value types, looking at structs (the value type equivalent
of objects) in slightly more detail. This led to a discussion on shallow and deep copying of objects, a subject
we'll be returning to later on in the book.

In the next chapter we'll look at defining class members, such as properties and methods, which will allow us
to take OOP in C# to the level required to create real applications.

Chapter 9 - Defining Classes
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. What is wrong with the following code?

public sealed class MyClass
{
 // class members
}

public class myDerivedClass : MyClass
{
 // class members
}

2. How would you define a non-creatable class?

3. Why are non-creatable classes still useful? How do we make use of their capabilities?

4. Write code in a class library project called Vehicles that implements the Vehicle family of objects
discussed earlier in this chapter, in the section on interfaces versus abstract classes. There are nine
objects and two interfaces that require implementation.

5. Create a console application project, Traffic, which references Vehicles.dll (created in Q4
above). Include a function called AddPassenger() that accepts any object with the
IPassengerCarrier interface. To prove that the code works, call this function using instances of each
object that supports the interface, calling the ToString() method inherited from System.Object on
each one and writing the result to the screen.

Chapter 10 - Defining Class Members
byKarli Watsonet al.

Wrox Press 2003

Chapter 10: Defining Class Members

Overview

In this chapter we'll continue our discussion of class definitions in C# by looking at how we define field, property,
and method class members.

We'll start by looking at the code required for each of these types, and also look at how to generate the
structure of this code using VS wizards. We'll also see how we can modify members quickly by editing their
properties.

When we've covered the basics of member definition we'll take a look at some more advanced techniques
involving members: hiding base class members, calling overridden base class members, and nested type
definitions.

Finally, we'll put theory into practice and create a class library that we can build on and use in later chapters.

Member Definitions

Within a class definition we provide definitions for all members of the class, including fields, methods, and
properties. All members have their own accessibility level, defined in all cases by one of the following keywords:

● public - member accessible from any code

● private - member accessible only from code that is part of the class (the default if no keyword is used)

● internal - member accessible only from code within the project (assembly) where it is defined

● protected - member accessible only from code that is part of either the class or a derived class

The last two of these can be combined, such that protected internal members are also possible. These
are only accessible from code-derived classes within the project (more accurately, the assembly - we will cover
assemblies in Chapter 21).

Fields, methods, and properties can also be declared using the keyword static, which means that they will be
static members owned by the class rather than by object instances, as discussed in Chapter 8.

Defining Fields

Fields are defined using standard variable declaration format (with optional initialization), along with the
modifiers discussed above. For example:
class MyClass
{
 public int MyInt;
}

Public fields in the .NET Framework are named using PascalCasing rather than camelCasing, and
I'll use this casing methodology here. This is why the field above is called MyInt instead of myInt.
This is only a suggested casing scheme, but it makes a lot of sense to me. There is no
recommendation for private fields, which are usually named using camelCasing.

Fields can also use the keyword readonly, meaning that the field may only be assigned a value during
constructor execution or by initial assignment. For example:
class MyClass
{
 public readonly int MyInt = 17;
}

As noted in the introduction to this chapter, fields may be declared as static using the static keyword, for
example:
class MyClass
{
 public static int MyInt;
}

Static fields may be accessed via the class that defines them (MyClass.MyInt in the above example), not
through object instances of that class.

In addition, we can use the keyword const to create a constant value. const members are static by definition,
so there is no need to use the static modifier (indeed, it is an error to do so).

Defining Methods

Methods use standard function format, along with accessibility and optional static modifiers. For example:

class MyClass
{
 public string GetString()
 {
 return "Here is a string.";
 }
}

Public methods in the .NET framework, like fields, are named using PascalCasing rather than
camelCasing.

Note that if we use the static keyword this method will only be accessible through the class, not the object
instance.

We can also use the following keywords with method definitions:

● virtual - method may be overridden

● abstract - method must be overridden (only permitted in abstract classes)

● override - method overrides a base class method (must be used if a method is being overridden)

● extern - method definition is found elsewhere

The following code shows an example of a method override:
public class MyBaseClass
{
 public virtual void DoSomething()
 {
 // Base implementation
 }
}

public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething()
 {
 // Derived class implementation, overrides base implementation
 }
}

If override is used then sealed may also be used to specify that no further modifications can be made to this
method in derived classes, that is, this method can't be overridden by derived classes. For example:
public class MyDerivedClass : MyBaseClass
{
 public override sealed void DoSomething()
 {
 // Derived class implementation, overrides base implementation
 }
}

Using extern allows us to provide the implementation of a method externally to the project. This is an
advanced topic and I won't go into any more detail here.

Defining Properties

Properties are defined in a similar way to fields, but there's more to them. Properties, as already discussed, are
more involved than fields in that they can perform additional processing before modifying state - and, indeed,
might not modify state at all. They achieve this by possessing two function-like blocks, one for getting the value
of the property and one for setting the value of the property.

These blocks, also known as accessors, defined using get and set keywords respectively, may be used to
control the access level of the property. It is possible to omit one or the other of these blocks to create read-only
or write-only properties (where omitting the get block gives us write-only access, and omitting the set block
gives us read-only access). Of course, this only applies to external code, as code elsewhere within the class will
have access to the same data that these code blocks have. We must include at least one of these blocks to
obtain a valid property (and, let's face it, a property you can neither read nor change wouldn't be that useful).

The basic structure of a property consists of the standard access modifying keyword (public, private, and
so on), followed by a type name, the property name, and one or both of the get and set blocks that contain the
property processing, for example:
public int MyIntProp
{
 get
 {
 // Property get code
 }
 set

 {
 // Property set code
 }
}

Public properties in the .NET Framework are also named using PascalCasing rather than
camelCasing, and as with fields and methods, I'll use this casing here.

The first line of the definition is the bit that is very similar to a field definition. The difference is that there is no
semicolon at the end of the line; instead we have a code block containing nested get and set blocks.

get blocks must have a return value of the type of the property. Simple properties are often associated with a
single private field controlling access to that field, in which case the get block may return the value of that field
directly, for example:
// Field used by property
private int myInt;

// Property
public int MyIntProp
{
 get
 {
 return myInt;
 }
 set
 {
 // Property set code
 }
}

Note that code external to the class cannot access this myInt field directly due to its accessibility level (it's
private). Instead it must use the property to get access to the field.

The set function assigns a value to the field in a similar way. Here we can use the keyword value to refer to
the value received from the user of the property:
// Field used by property
private int myInt;

// Property
public int MyIntProp
{
 get
 {
 return myInt;
 }
 set
 {
 myInt = value;
 }
}

value equates to a value of the same type as the property, so if the property uses the same type as the field
we never have to worry about casting in situations like this.

This simple property does little more than shield direct access to the myInt field. The real power of properties
comes when we exert a little more control over the proceedings. For example, we might implement our set
block using:
 set
 {
 if (value >= 0 && value <= 10)
 myInt = value;
 }

Here we only modify myInt if the value assigned to the property is between 0 and 10. In situations like this we
have an important design choice to make: what should we do if an invalid value is used? We have four options:

● Do nothing (as in the code above).

● Assign a default value to the field.

● Continue as if nothing had gone wrong but log the event for future analysis.

● Throw an exception.

In general, the last two options are the preferable ones. The choice between these two options depends on how
the class will be used, and how much control should be assigned to the users of the class. Exception throwing
gives users a fair amount of control, and lets them know what is going on so that they can respond
appropriately. We can use a standard System exception for this, for example:

 set
 {
 if (value >= 0 && value <= 10)
 myInt = value;
 else
 throw (new ArgumentOutOfRangeException("MyIntProp", value,
 "MyIntProp must be assigned a value between 0 and 10."));
 }

This can be handled using try...catch...finally logic in the code that uses the property, as we saw in
Chapter 7.

Logging data, perhaps to a text file, can be useful in (for example) production code where problems really
shouldn't occur. They allow developers to check up on performance, and perhaps debug existing code if
necessary.

Properties can use the virtual, override, and abstract keywords just like methods, something that isn't
possible with fields.

Try it Out - Using Fields, Methods, and Properties

1. Create a new console application project called Ch10Ex01 in the directory C:\BegVCSharp\Chapter10.

2. Add a new class called MyClass using the VS shortcut, in the file MyClass.cs.

3. Modify the code in MyClass.cs as follows:

 public class MyClass
 {
 public readonly string Name;
 private int intVal;

 public int Val
 {
 get
 {
 return intVal;
 }
 set
 {
 if (value >= 0 && value <= 10)
 intVal = value;
 else
 throw (new ArgumentOutOfRangeException("Val", value,
 "Val must be assigned a value between 0 and 10."));
 }
 }
 public override string ToString()
 {
 return "Name: " + Name + "\nVal: " + Val;
 }

 private MyClass() : this("Default Name")
 {
 }

 public MyClass(string newName)
 {
 Name = newName;
 intVal = 0;
 }
 }

4. Modify the code in Class1.cs as follows:

 static void Main(string[] args)
 {
 Console.WriteLine("Creating object myObj...");
 MyClass myObj = new MyClass("My Object");
 Console.WriteLine("myObj created.");
 for (int i = -1; i <= 0; i++)
 {
 try
 {
 Console.WriteLine("\nAttempting to assign {0} to myObj.Val...",
 i);
 myObj.Val = i;
 Console.WriteLine("Value {0} assigned to myObj.Val.", myObj.Val);
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception {0} thrown.", e.GetType().FullName);
 Console.WriteLine("Message:\n\"{0}\"", e.Message);
 }
 }
 Console.WriteLine("\nOutputting myObj.ToString()...");
 Console.WriteLine(myObj.ToString());

 Console.WriteLine("myObj.ToString() Output.");
 }

5. Run the application:

How it Works

The code in Main() creates and uses an instance of the MyClass class defined in MyClass.cs. Instantiating
this class must be performed using a non-default constructor, as the default constructor of MyClass is private:

 private MyClass() : this("Default Name")
 {
 }

Note that I've used this("Default Name") to ensure that Name gets a value if this constructor ever gets
called, which is possible if this class is used to derive a new class. This is necessary as not assigning a value to
the Name field could be a source of errors later.

The non-default constructor used assigns values to the readonly field name (we can only do this by
assignment in the field declaration or in a constructor), and the private field intVal.

Next, Main() attempts two assignments to the Val property of myObj (the instance of MyClass). A for loop
is used to assign the values -1 and 0 in two cycles, and a try...catch structure is used to check for any
exception thrown. When -1 is assigned to the property an exception of type System.
ArgumentOutOfRangeException is thrown, and code in the catch block outputs information about the
exception to the console window. In the next loop cycle, the value 0 is successfully assigned to the Val
property, and through that property to the private intVal field.

Finally, we use the overridden ToString() method to output a formatted string representing the contents of
the object:
 public override string ToString()
 {
 return "Name: " + Name + "\nVal: " + Val;
 }

This method must be declared using the override keyword, as it is overriding the virtual ToString() method
of the base System.Object class. The code here uses the property Val directly rather than the private field
intVal. There is no reason why we shouldn't use properties from within classes in this way, although there
may be a small performance hit (so small that we are unlikely to notice it). Of course, using the property also
gives us the validation inherent in property use, which may be beneficial for code within the class as well.

VS Member Wizards

In the last chapter we saw how we can use a shortcut in VS to create a new class, complete with its own .cs
file. There are a few more of these shortcuts (known as wizards) that we can use to modify our classes.
Specifically, there are wizards to add properties, methods, and fields to classes. In this section we'll take a quick
look at these.

All the member wizards are accessed in the same way. In the Class View window, which displays the classes
defined in our projects along with their members, we right-click on a class and select an option from the Add
submenu:

There are four options here, but we will only discuss three of them in this section, as we will be covering
indexers in the next chapter.

The Add Method Wizard

This wizard allows us, surprisingly enough, to add a method to a class. This is achieved through the following
dialog (I've filled in a few fields already here):

This dialog provides access to all the method features we've looked at. We can change the accessibility level
through the Method access drop-down, a return type with the Return type drop-down (or we can type our own type
into this field), a name with Method name, and other modifiers with Method modifiers. These modifier check boxes

only permit valid combinations, and only allow abstract methods in abstract classes. We can also add
parameters using the series of text and listboxes on the second row of the dialog in the Parameter type and
Parameter name fields. The Modifier box allows us to specify the type of parameter: ordinary (None), ref or out.
Added parameters appear in the Parameter list view when we click the Add button, and we can remove
parameters from this list using the Remove button.

This dialog also allows us to provide a comment to place before the method definition with the Comment field,
and shows us a preview of the code that will be generated in the Method signature box.

With the settings as shown above, clicking on Finish will add the following code to our class:
public double myMethod(double paramX, double paramY)
{
 return 0;
}

Obviously, this wizard can't provide the method implementation for us, but it does provide the basic structure,
and certainly cuts down on typing errors!

The Add Property Wizard

The Add Property wizard uses the following dialog (again, I've filled in some values):

We select an accessibility type in the Property access drop-down, a type in the Property type drop-down, enter a
name in the Property name field, choose whether we want get, set, or both get and set blocks, and optionally
add modifiers and a comment. Clicking on Finish with the above choices generates the following code:
public static int myInt
{
 get
 {
 return 0;
 }
}

Note that we are left to provide the complete implementation ourselves, which includes matching up the
property with a field for simple properties. However, the basic structure is provided for us.

The Add Field Wizard

Finally, the Add Field wizard. This dialog is even simpler:

This is basically the same as adding a property, except that we don't have the choice of get or set blocks, and
we can't use the virtual or abstract keywords. However, we can define a field as being constant, in which
case we can use the Field value field to provide the value of the field.

The code generated is simple and self-explanatory:
private double myDouble;

Member Properties

The last basic topic to look at here is modifying member properties using the Properties window. If we select a
member from the Class View window we will see the properties of the member in the Properties window:

We can change many of these properties directly from this window, such as accessibility level through the
Access property (shown highlighted above). If we do this, the code will be modified automatically, without us
having to do any typing ourselves.

Note that CanOverride defines whether the member is virtual, and IsShared whether the member is static.

Chapter 10 - Defining Class Members
byKarli Watsonet al.

Wrox Press 2003

Additional Class Member Topics

Now we've covered the basics of member definition, it's time to look at some more advanced member topics.
In this section we'll look at:

● Hiding base class methods

● Calling overridden or hidden base class methods

● Nested type definitions

Hiding Base Class Methods

When we inherit a (non-abstract) member from a base class we also inherit an implementation. If the inherited
member is virtual we can override this implementation with the override keyword. Regardless of whether
the inherited member is virtual we can, if we want to, hide the implementation. This is useful when, for
example, a public inherited member doesn't work quite as we would want it to.

We can do this simply by using code such as:
public class MyBaseClass
{
 public void DoSomething()
 {
 // Base implementation
 }
}
public class MyDerivedClass : MyBaseClass
{
 public void DoSomething()
 {
 // Derived class implementation, hides base implementation
 }
}

Although this code works fine, it will generate a warning that we are hiding a base class member. This gives
us the chance to correct things if we have accidentally hidden a member that we actually want to use. If we
really do want to hide the member, we can say explicitly that this is what we want to do using the new keyword:

public class MyDerivedClass : MyBaseClass
{
 new public void DoSomething()
 {
 // Derived class implementation, hides base implementation
 }
}

This will work in exactly the same way, but won't show a warning.

At this point it is worth pointing out the difference between hiding and overriding base class members.
Consider the following code:
public class MyBaseClass
{
 public virtual void DoSomething()
 {
 Console.WriteLine("Base imp");
 }
}

public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething()
 {
 Console.WriteLine("Derived imp");
 }
}

Here the overriding method replaces the implementation in the base class, such that the following code will
use the new version, even though it does so through the base class type (using polymorphism):
MyDerivedClass myObj = new MyDerivedClass();
MyBaseClass myBaseObj;
myBaseObj = myObj;
myBaseObj.DoSomething();

This gives the output:
Derived imp

Alternatively, we could hide the base class method instead, using:
public class MyBaseClass
{
 public virtual void DoSomething()
 {
 Console.WriteLine("Base imp");
 }
}

public class MyDerivedClass : MyBaseClass
{
 new public void DoSomething()
 {
 Console.WriteLine("Derived imp");
 }
}

The base class method needn't be virtual for this to work, but the effect is exactly the same and the above
code only requires changes to one line of code. The result, for a virtual or non-virtual base class method, is
the following:
Base imp

Although the base implementation is hidden we still have access to it through the base class.

Calling Overridden or Hidden Base Class Methods

Whether we override or hide a member we still have access to the base class member from the derived class.
There are many situations when this can be useful, for example:

● When we want to hide an inherited public member from users of a derived class, but still want access to
its functionality from within the class.

● When we want to add to the implementation of an inherited virtual member rather than simply replacing it
with a new overridden implementation.

To achieve this, we can use the base keyword, which refers to the implementation of the base class that is
contained within a derived class (in a similar way to its use in controlling constructors as we saw in the last
chapter), for example:
public class MyBaseClass
{
 public virtual void DoSomething()
 {
 // Base implementation
 }
}

public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething()
 {
 // Derived class implementation, extends base class implementation
 base.DoSomething();
 // More derived class implementation
 }
}

This code executes the version of DoSomething() contained in MyBaseClass, the base class of
MyDerivedClass, from within the version of DoSomething() contained in MyDerivedClass.

As base works using object instances it is an error to use it from within a static member.

The this Keyword

As well as using base in the last chapter we also used the this keyword. As with base, this can also be
used from within class members, and, like base, this keyword refers to an object instance. The object
instance referred to by this is the current object instance (which means that we can't use this keyword in
static members, as static members are not part of an object instance).

The most useful function of the this keyword is the ability to pass a reference to the current object instance
to a method, for example:
 public void doSomething()
 {
 MyTargetClass myObj = new MyTargetClass();
 myObj.DoSomethingWith(this);
 }

Here, the MyTargetClass that is instantiated has a method called DoSomethingWith() that takes a single
parameter of a type compatible with the class that contains the above method. This parameter type might be
of this class type, a class type that is inherited by this class, an interface implemented by the class, or (of
course) System.Object.

Nested Type Definitions

As well as defining types such as classes in namespaces, we can also define them inside other classes. If we
do this then we can use the full range of accessibility modifiers for the definition, rather than just public and
internal, and may also use the new keyword to hide a type definition inherited from a base class.

For example, the following code defining MyClass also defines a nested class called myNestedClass:

public class MyClass
{
 public class myNestedClass
 {
 public int nestedClassField;
 }
}

If we want to instantiate myNestedClass from outside MyClass we must qualify the name, for example:

MyClass.myNestedClass myObj = new MyClass.myNestedClass();

However, we may not be able to do this at all if the nested class is declared as private, or another accessibility
level that is incompatible with the code at the point at which this instantiation is performed.

The main reason for the existence of this feature is to define classes that are private to the containing class,
such that no other code in the namespace has access to it.

Chapter 10 - Defining Class Members
byKarli Watsonet al.

Wrox Press 2003

Interface Implementation

Before moving on, it's worth taking a closer look at how we go about defining and implementing interfaces. In
the last chapter we saw that interfaces are defined in a similar way to classes, using code such as:
interface IMyInterface
{
 // interface members
}

Interface members are defined like class members except for a few important differences:

● No access modifiers (public, private, protected, or internal) are allowed – all interface members
are implicitly public

● Interface members can't contain code bodies

● Interfaces can't define field members

● Interface members can't be defined using the keywords static, virtual, abstract, or sealed

● Type definition members are forbidden

We can, however, define members using the new keyword if we wish to hide members inherited from base
interfaces, for example:
interface IMyBaseInterface
{
 void DoSomething();
}

interface IMyDerivedInterface : IMyBaseInterface
{
 new void DoSomething();
}

This works in exactly the same way as hiding inherited class members.

Properties defined in interfaces define the access blocks, get and/or set, that are permitted for the property,
for example:
interface IMyInterface
{
 int MyInt
 {
 get;
 set;
 }

}

Here the int property MyInt has both get and set accessors. Either of these may be omitted for a property
with more restricted access.

Note, though, that interfaces do not specify how the property should be stored. Interfaces cannot specify
fields, for example, which might be used to store property data.

Finally, interfaces, like classes, may be defined as members of classes (but not as members of other
interfaces, since interfaces cannot contain type definitions).

Implementing Interfaces in Classes

A class that implements an interface must contain implementations for all members of that interface, which
must match the signatures specified (including matching the specified get and set blocks), and must be
public. It is possible to implement interface members using the keywords virtual or abstract, but not
static or const. For example:

public interface IMyInterface
{
 void DoSomething();
 void DoSomethingElse();
}

public class MyClass : IMyInterface
{
 public void DoSomething()
 {
 }

 public void DoSomethingElse()
 {
 }
}

Interface members may also be implemented on base classes, for example:
public interface IMyInterface
{
 void DoSomething();
 void DoSomethingElse();
}
public class MyBaseClass
{
 public void DoSomething()
 {
 }
}

public class MyDerivedClass : MyBaseClass, IMyInterface
{
 public void DoSomethingElse()
 {
 }
}

Inheriting from a base class that implements a given interface means that the interface is implicitly supported
by the derived class, for example:
public interface IMyInterface
{
 void DoSomething();
 void DoSomethingElse();
}

public class MyBaseClass : IMyInterface
{
 public virtual void DoSomething()
 {
 }

 public virtual void DoSomethingElse()
 {
 }
}

public class MyDerivedClass : MyBaseClass
{
 public override void DoSomething()
 {
 }
}

As shown above, it is useful to define implementations in base classes as virtual, such that derived classes
can replace the implementation rather than hiding it. If we were to hide a base class member using the new
keyword rather than overriding it in this way then the method IMyInterface.DoSomething() would
always refer to the base class version, even if the derived class were being accessed via this interface.

Explicit Interface Member Implementation

Interface members can also be implemented explicitly by a class. If we do this then the member can only be
accessed through the interface, not through the class. Implicit members, which are what we used in the code
in the last section, can be accessed either way.

For example, if the class MyClass implemented the DoSomething() method of IMyInterface implicitly,
as shown above, then the following code is valid:
MyClass myObj = new MyClass();
myObj.DoSomething();

As is:
MyClass myObj = new MyClass();
IMyInterface myInt = myObj;
myInt.DoSomething();

Alternatively, if MyDerivedClass implements DoSomething() explicitly then only the latter technique is
permitted. The code for doing this is as follows:
public class MyClass : IMyInterface
{
 void IMyInterface.DoSomething()

 {
 }

 public void DoSomethingElse()
 {
 }
}

Here DoSomething() is implemented explicitly and DoSomethingElse() implicitly. Only the latter is
accessible directly through an object instance of MyClass.

Chapter 10 - Defining Class Members
byKarli Watsonet al.

Wrox Press 2003

Example Application

To illustrate some of the techniques we've been using so far we'll develop a class module that we'll be able to
build on and make use of in subsequent chapters. This class module will contain two classes:

● Card - represents a standard playing card, with a suit of club, diamond, heart, or spade, and a rank that
lies between Ace and King

● Deck - represents a full deck of 52 cards, with access to cards by position in the deck and the ability to
shuffle the deck

We'll also develop a simple client to make sure things are working, but we won't use the deck in a full card
game application - yet!

Planning the Application

The class library for this application, Ch10CardLib, will contain our classes. Before we get down to any code,
though, we should plan out the required structure and functionality of our classes.

The Card Class

The Card class is basically a container for two read-only fields: suit and rank. The reason for making the
fields read-only is that it doesn't make sense to have a "blank" card, and cards shouldn't be able to change
once they have been created. To facilitate this we'll make the default constructor private, and provide an
alternative constructor that builds a card from a supplied suit and rank.

Other than this, the Card class will override the ToString() method of System.Object, so that we can
easily obtain a human-readable string representing the card. To make things a little simpler we'll provide
enumerations for the two fields suit and rank.

The Card class looks like this:

The Deck Class

The Deck class will maintain 52 Card objects. We'll just use a simple array type for this. This array won't be
directly accessible, as access to the Card objects will be achieved through a GetCard() method, which will
return the Card object with the given index.

This class should also expose a Shuffle() method to rearrange the cards in the array, so it looks like this:

Writing the Class Library

For the purposes of this example I'll assume that you are familiar enough with VS to move away from the

standard "Try it Out" way of doing things, so I won't list the steps explicitly.

Both our classes and our enumerations will be contained in a class library project called Ch10CardLib. This
project will contain two .cs files, Card.cs that contains the Card class definition along with Suit and Rank
enumerations, and Deck.cs that contains the Deck class definition.

Card.cs

In this section we'll break down and work through the code for Card.cs. To start with we have the usual
using directive and namespace declaration:

using System;

namespace Ch10CardLib
{

Next we have the Suit enumeration definition:

 public enum Suit
 {
 Club,
 Diamond,
 Heart,
 Spade
 }

Next we have the Rank enumeration definition, which will start with a base type representation of 1 for Ace for
simplicity:
 public enum Rank
 {
 Ace = 1,
 Deuce,
 Three,
 Four,
 Five,
 Six,
 Seven,
 Eight,
 Nine,
 Ten,
 Jack,
 Queen,
 King
 }

Both these enumeration types are public, as we can expect to use them from outside of this class library.

Now we move on to the main section of this file, the Card class definition:

 public class Card
 {

The first section of code in the Card definition defines the two read-only fields, which use the enumeration
types defined at the beginning of the file:
 public readonly Suit suit;

 public readonly Rank rank;

The overridden ToString() method is made very simple due to the enumeration types used:

 public override string ToString()
 {
 return "The " + rank + " of " + suit + "s";
 }

Placing the field names in a string in this way simply writes the string representation of the enumeration value
stored to the returned string.

Next we have our constructors. First the private default constructor:
 private Card()
 {
 }

And next the constructor that must be used to create Card instances, which simply takes Suit and Rank
parameters and initializes the read-only fields:
 public Card(Suit newSuit, Rank newRank)
 {
 suit = newSuit;
 rank = newRank;
 }
 }
}

And that completes the code for this file.

Deck.cs

This file starts in the same way as Card.cs, with the standard code:

using System;

namespace Ch10CardLib
{

There are no types other than the Deck class to define here, so we dive straight into the class definition:

 public class Deck
 {

The first member we'll define is the private array of Card objects, which we'll call cards.

 private Card[] cards;

Next we have the constructor, which simply creates and assigns 52 cards in the cards field. We'll iterate
through all combinations of the two enumerations, using each to create a card. This results in cards initially
containing an ordered list of cards:
 public Deck()
 {
 cards = new Card[52];
 for (int suitVal = 0; suitVal < 4; suitVal++)
 {

 for (int rankVal = 1; rankVal < 14; rankVal++)
 {
 cards[suitVal * 13 + rankVal -1] = new Card((Suit)suitVal,
 (Rank)rankVal);
 }
 }
 }

Next we implement the GetCard() method, which either returns the Card object with the requested index or
throws an exception in the same way we saw earlier:
 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 return cards[cardNum];
 else
 throw (new System.ArgumentOutOfRangeException("cardNum", cardNum,
 "Value must be between 0 and 51."));
 }

Finally, we implement the Shuffle() method. This method works by creating a temporary card array and
copying cards from the existing cards array into this array at random. The main body of this function is a loop
that counts from 0 to 51. On each cycle we generate a random number between 0 and 51 using an instance
of the System.Random class from the .NET Framework. Once instantiated, an object of this class will
generate a random number between 0 and X using the method Next(X). When we have a random number
we simply use that as the index of the Card object in our temporary array in which to copy a card from the
cards array.

To keep a record of assigned cards we also have an array of bool variables, and assign these to true as
each card is copied. When we are generating random numbers we check against this array to see if we have
already copied a card to the location in the temporary array specified by the random number, and if we have
we simply generate another.

This isn't the most efficient way of doing things, as many random numbers may be generated before a vacant
slot to copy a card into is found. However, it works, and because C# code executes so quickly we will hardly
notice a delay.

The code is as follows:
 public void Shuffle()
 {
 Card[] newDeck = new Card[52];
 bool[] assigned = new bool[52];
 Random sourceGen = new Random();
 for (int i = 0; i < 52; i++)
 {
 int destCard = 0;
 bool foundCard = false;
 while (foundCard == false)
 {
 destCard = sourceGen.Next(52);
 if (assigned[destCard] == false)
 foundCard = true;
 }
 assigned[destCard] = true;

 newDeck[destCard] = cards[i];
 }
 newDeck.CopyTo(cards, 0);
 }
 }
}

The last line of this method uses the CopyTo() method of the System.Array class (used whenever we
create an array) to copy each of the cards in newDeck back into cards. This means that we are using the
same set of Card objects in the same cards object rather than creating any new instances. If we had instead
used cards = newDeck then we would be replacing the object instance referred to by cards with another.
This could cause problems if code elsewhere was retaining a reference to the original cards instance - which
wouldn't be shuffled!

That completes our class library code.

A Client Application for the Class Library

To keep things simple here we can add a client console application to the solution containing the class library.
To do this we simply need to ensure that the Add to Solution option is selected when we create the project,
which we'll call Ch10CardClient.

In order to use the class library we have created from this new console application project we simply need to
add a reference to our Ch10CardLib class library project. Once the project has been created we can do this
though the Projects tab of the Add Reference dialog:

Select the project, click on Select, then on OK, and the reference is added.

As this new project was the second one to be created we also need to specify that it is the startup project for
the solution, meaning that it is the one that will be executed when we hit the run button. To do this we simply
right-click on the project name in the Solution Explorer window and select the Set as StartUp Project menu option.

Next we need to add the code that uses our new classes. This doesn't require anything particularly special, so
the following code will do:
using System;
using Ch10CardLib;

namespace Ch10CardClient
{
 class Class1
 {
 static void Main(string[] args)
 {
 Deck myDeck = new Deck();
 myDeck.Shuffle();
 for (int i = 0; i < 52; i++)
 {
 Card tempCard = myDeck.GetCard(i);
 Console.Write(tempCard.ToString());
 if (i != 51)
 Console.Write(", ");
 else
 Console.WriteLine();
 }
 }
 }
}

The result is as follows:

This is a random arrangement of the 52 playing cards in the deck.

We'll continue to develop and use this class library in later chapters.

Chapter 10 - Defining Class Members
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we have completed our discussion on how to define basic classes. There's plenty still to cover,
but the techniques covered so far enable us to create quite complicated applications already.

We looked at how to define fields, methods, and properties, discussing the various access levels and modifier
keywords as we went along. To cap this off we looked at the VS wizards and tools that can be used to get the
outline of a class together in double-quick time.

Once we had covered these basic subjects we looked in greater detail at inheritance behavior, by seeing how
we can hide unwanted inherited members with the new keyword, and extend base class members rather than
replacing their implementation using the base keyword. We also looked at nested class definitions.

After this, we took a more detailed look at interface definition and implementation, including the concepts of
explicit and implicit implementation.

Finally, we developed and used a simple class library representing a deck of playing cards. We'll make further
use of this library in later chapters.

In the next chapter we'll look at some of the more advanced possibilities of class generation, such as
collections, operator overloading, and deep copying.

Chapter 10 - Defining Class Members
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Write code that defines a base class, MyClass, with the virtual method GetString(). This method

should return the string stored in the protected field myString, accessible through the write-only public
property ContainedString.

2. Derive a class, MyDerivedClass, from MyClass. Override the GetString() method to return the
string from the base class using the base implementation of the method, but add the text " (output from
derived class)" to the returned string.

3. Write a class called MyCopyableClass that is capable of returning a copy of itself using the method
GetCopy(). This method should use the MemberwiseClone() method inherited from System.
Object. Add a simple property to the class, and write client code that uses the class to check that
everything is working.

4. Write a console client for the Ch10CardLib library that "draws" five cards at a time from a shuffled
Deck object. If all five cards are the same suit then the client should display the card names on screen
along with the text "Flush!", else it should quit after 50 cards with the text "No flush".

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Chapter 11: More About Classes

Overview

We've covered all the basic OOP techniques in C# now, but there are some more advanced techniques that
are worth becoming familiar with. In this chapter we'll look at the following:

● Collections - objects that can contain arrays of other objects, and which contain functionality that controls
access to these objects

● Operator overloading - configuring classes such that we can use operators such as + with instances of
the class

● Advanced conversion - some of the more advanced C# type-conversion capabilities

● Deep copying - ensuring that cloned objects don't contain references to data stored in their source object

● Custom exceptions - creating your own exceptions in order to provide additional information to code that
catches the exception

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Collections

In

Arrays in C# are implemented as instances of the System.Array class, and are just one type of what are
known as collection classes. Collection classes in general are used for maintaining lists of objects, and may
expose additional functionality above that of simple arrays. This functionality comes through implementing
interfaces from the System.Collections namespace, thus standardizing collection syntax. This namespace
also contains some other interesting things, such as classes that implement these interfaces in ways other than
System.Array.

As the collection functionality (including basic functions such as accessing collection items using [index]
syntax) is available through interfaces we aren't limited to using basic collection classes such as System.Array.
Instead, we can create our own customized collection classes. These can be made more specific to the objects
we wish to enumerate (that is, the objects we want to maintain collections of). One advantage of doing this, as we
will see, is that custom collection classes can be strongly typed. This means that when we extract items from
the collection we don't need to cast them into the correct type.

There are a number of interfaces in the System.Collections namespace that provide basic collection
functionality:

● IEnumerable - provides the capability to loop through items in a collection

● ICollection - provides the ability to obtain the number of items in a collection, and to copy items into a
simple array type (inherits from IEnumerable)

● IList - provides a list of items for a collection along with the capabilities for accessing these items, and
some other basic capabilities related to lists of items (inherits from IEnumerable and ICollection)

● IDictionary - similar to IList, but provides a list of items accessible via a key value rather than an index
(inherits from IEnumerable and ICollection)

The System.Array class implements IList, ICollection, and IEnumerable, but doesn't support some of
the more advanced features of IList, and represents a list of items with a fixed size.

Using Collections

One of the classes in the Systems.Collections namespace, System.Collections.ArrayList, also
implements IList, ICollection, and IEnumerable, but does so in a more sophisticated way than System.
Array. Whereas arrays are fixed in size (we can't add or remove elements), this class may be used to represent
lists of items with a variable size. To get more of a feel for what is possible with such a more advanced collection,
let's look at an example that uses this class, as well as a simple array.

Try it Out - Arrays versus More Advanced Collections

1. Create a new console application called Ch11Ex01 in the directory C:\BegVCSharp\Chapter11.

2. Add a new class, Animal, to the project in the file Animal.cs using the Add Class wizard.

3. Modify the code in Animal.cs as follows:

namespace Ch11Ex01
{
 public abstract class Animal
 {
 protected string name;

 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }

 public Animal()
 {
 name = "The animal with no name";
 }

 public Animal(string newName)
 {
 name = newName;
 }

 public void Feed()
 {
 Console.WriteLine("{0} has been fed.", name);
 }
 }
 public class Cow : Animal
 {
 public void Milk()
 {
 Console.WriteLine("{0} has been milked.", name);
 }

 public Cow(string newName) : base(newName)
 {
 }
 }

 public class Chicken : Animal
 {
 public void LayEgg()
 {
 Console.WriteLine("{0} has laid an egg.", name);
 }

 public Chicken(string newName) : base(newName)
 {
 }
 }
}

4. Modify the code in Class1.cs as follows:

using System;
using System.Collections;

namespace Ch11Ex01

{
 class Class1
 {
 static void Main(string[] args)
 {

 Console.WriteLine("Create an Array type collection of Animal " +
 "objects and use it:");

 Animal[] animalArray = new Animal[2];
 Cow myCow1 = new Cow("Deirdre");
 animalArray[0] = myCow1;
 animalArray[1] = new Chicken("Ken");

 foreach (Animal myAnimal in animalArray)
 {
 Console.WriteLine("New {0} object added to Array collection, " +
 "Name = {1}", myAnimal.ToString(), myAnimal.Name);
 }

 Console.WriteLine("Array collection contains {0} objects.",
 animalArray.Length);
 animalArray[0].Feed();
 ((Chicken)animalArray[1]).LayEgg();
 Console.WriteLine();

 Console.WriteLine("Create an ArrayList type collection of Animal " +
 "objects and use it:");
 ArrayList animalArrayList = new ArrayList();
 Cow myCow2 = new Cow("Hayley");
 animalArrayList.Add(myCow2);
 animalArrayList.Add(new Chicken("Roy"));

 foreach (Animal myAnimal in animalArrayList)
 {
 Console.WriteLine("New {0} object added to ArrayList collection," +
 " Name = {1}", myAnimal.ToString(), myAnimal.Name);
 }
 Console.WriteLine("ArrayList collection contains {0} objects.",
 animalArrayList.Count);
 ((Animal)animalArrayList[0]).Feed();
 ((Chicken)animalArrayList[1]).LayEgg();
 Console.WriteLine();

 Console.WriteLine("Additional manipulation of ArrayList:");
 animalArrayList.RemoveAt(0);
 ((Animal)animalArrayList[0]).Feed();
 animalArrayList.AddRange(animalArray);
 ((Chicken)animalArrayList[2]).LayEgg();
 Console.WriteLine("The animal called {0} is at index {1}.",
 myCow1.Name, animalArrayList.IndexOf(myCow1));
 myCow1.Name = "Janice";
 Console.WriteLine("The animal is now called {0}.",
 ((Animal)animalArrayList[1]).Name);
 }
 }
}

5. Run the application:

How it Works

This example creates two collections of objects, the first using the System.Array class (that is, a simple array),
and the second using the System.Collections.ArrayList class. Both collections are of Animal objects,
which are defined in Animal.cs. The Animal class is abstract so it can't be instantiated, although we can
(through polymorphism) have items in our collection that are instances of the Cow and Chicken classes, which
are derived from Animal.

Once created in the Main() method in Class1.cs, these arrays are manipulated to show their characteristics
and capabilities. Several of the operations performed apply to both Array and ArrayList collections, although
their syntax differs slightly. There are some, however, that are only possible using the more advanced
ArrayList type.

Let's look at the similar operations first, comparing the code and results for both types of collection.

First, collection creation. With simple arrays we must initialize the array with a fixed size in order to use it. We do
this to an array called animalArray using the standard syntax we saw in

Animal[] animalArray = new Animal[2];

ArrayList collections, on the other hand, don't need a size to be initialized, so we can create our list (called
animalArrayList) simply using:

ArrayList animalArrayList = new ArrayList();

There are two other constructors we can use with this class. The first copies the contents of an existing collection
to the new instance by specifying the existing collection as a parameter; the other sets the capacity of the
collection, also via a parameter. This capacity, specified as an int value, sets the initial number of items that can
be contained in the collection. This is not an absolute capacity, however, as it will be doubled automatically if the

number of items in the collection ever exceeds this value.

With arrays of reference types (such as our Animal and Animal-derived objects), simply initializing the array
with a size doesn't initialize the items it contains. In order to use a given entry that entry needs initializing, which
means we need to assign initialized objects to the items:
Cow myCow1 = new Cow("Deirdre");
animalArray[0] = myCow1;
animalArray[1] = new Chicken("Ken");

This code does this in two ways, once by assignment using an existing Cow object, and once by assignment
through the creation of a new Chicken object. The main difference here is that the former method leaves us with
a reference to the object in the array - a fact that we make use of later in the code.

With our ArrayList collection there are no existing items, not even null-referenced ones. This means that we
can't assign new instances to indices in the same way. Instead, we use the Add() method of the ArrayList
object to add new items:
Cow myCow2 = new Cow("Hayley");
animalArrayList.Add(myCow2);
animalArrayList.Add(new Chicken("Roy"));

Apart from the slightly different syntax, we can add new or existing objects to the collection in the same way.

Once we have added items in this way, we can overwrite them using syntax identical to that for arrays, for
example:
animalArrayList[0] = new Cow("Alma");

We won't do this in this example though.

In
foreach (Animal myAnimal in animalArray)
{
 Console.WriteLine("New {0} object added to Array collection, " +
 "Name = {1}", myAnimal.ToString(), myAnimal.Name);
}

The ArrayList object we use also supports the IEnumerable interface, and can also be used with foreach.
In this case, the syntax is identical:
foreach (Animal myAnimal in animalArrayList)
{
 Console.WriteLine("New {0} object added to ArrayList collection, " +
 "Name = {1}", myAnimal.ToString(), myAnimal.Name);
}

Next, we use the Length property of the array to output the number of items in the array to the screen:

Console.WriteLine("Array collection contains {0} objects.",
 animalArray.Length);

We can achieve the same thing with our ArrayList collection, except that we use the Count property that is
part of the ICollection interface:

Console.WriteLine("ArrayList collection contains {0} objects.",
 animalArrayList.Count);

Collections - whether simple arrays or more complex collections - wouldn't be much use unless they provided

access to the items that belong to them. Simple arrays are strongly typed - that is, they allow direct access to the
type of the items they contain. This means that we can call the methods of the item directly:
animalArray[0].Feed();

The type of the array is the abstract type Animal, therefore we can't call methods supplied by derived classes
directly. Instead we must use casting:
((Chicken)animalArray[1]).LayEgg();

The ArrayList collection is a collection of System.Object objects (we have assigned Animal objects via
polymorphism). This means that we must use casting for all items:
((Animal)animalArrayList[0]).Feed();
((Chicken)animalArrayList[1]).LayEgg();

The remainder of the code looks at some of the capabilities of the ArrayList collection that go beyond those of
the Array collection.

First, we can remove items using the Remove() and RemoveAt() methods, part of the IList interface
implementation in the ArrayList class. These remove items from an array based on an item reference or index
respectively. In our example, we use the latter method to remove the first item added to the list, the Cow object
with a Name property of "Hayley":

animalArrayList.RemoveAt(0);

Alternatively, we could use:
animalArrayList.Remove(myCow2);

as we already have a local reference to this object - we added an existing reference to the array via Add(),
rather than creating a new object.

Either way, the only item left in the collection is the Chicken object, which we access in the following way:

((Animal)animalArrayList[0]).Feed();

Any modifications to the items in the ArrayList object resulting in N items being left in the array will be
executed in such a way as to maintain indices from 0 to N-1. For example, removing the item with the index 0
results in all other items being shifted one place in the array, so we access the Chicken object with the index 0,
not 1. There is no longer an item with an index of 1 (because we only had two items in the first place), so an
exception would be thrown if we tried the following:
((Animal)animalArrayList[1]).Feed();

ArrayList collections allow us to add several items at once with the AddRange() method. This method
accepts any object with the ICollection interface, which includes the animalArray array we created earlier
in the code:
animalArrayList.AddRange(animalArray);

To check that this works, we can attempt to access the third item in the collection, which will be the second item
in animalArray:

((Chicken)animalArrayList[2]).LayEgg();

The AddRange() method isn't part of any of the interfaces exposed by ArrayList. This method is specific to
the ArrayList class, and demonstrates the fact that we can exhibit customized behavior in our collection
classes, above and beyond what is required by the interfaces we have looked at. This class exposes other
interesting methods too, such as InsertRange(), for inserting an array of objects at any point in the list, and

methods for tasks such as sorting and reordering the array.

Finally, we come back to the fact that we can have multiple references to the same object. Using the IndexOf()
method (part of the IList interface) we can see not only that myCow1 (an object originally added to
animalArray) is now part of the animalArrayList collection, but also what its index is:

Console.WriteLine("The animal called {0} is at index {1}.",
 myCow1.Name, animalArrayList.IndexOf(myCow1));

As an extension of this, the next two lines of code rename the object via the object reference and display the new
name via the collection reference:
myCow1.Name = "Janice";
Console.WriteLine("The animal is now called {0}.",
 ((Animal)animalArrayList[1]).Name);

Defining Collections

Now we've seen what is possible using more advanced collection classes, it's time to look at how we can create
our own, strongly typed collection. One way of doing this is to implement the required methods manually, but this
can be quite time consuming, and in some cases quite complex. Alternatively, we can derive our collection from a
class, such as System.Collections.CollectionBase, an abstract class that supplies much of the
implementation of a collection for us. This is the recommended option.

The CollectionBase class exposes the interfaces IEnumerable, ICollection, and IList, but only
provides some of the required implementation, notably the Clear() and RemoveAt() methods of IList, and
the Count property of ICollection. We need to implement everything else ourselves if we want the
functionality provided.

To facilitate this, CollectionBase provides two protected properties that give access to the stored objects
themselves. We can use List, which gives us access to the items through an IList interface, and InnerList,
which is the ArrayList object used to store items.

For example, the basics of a collection class to store Animal objects could be defined as follows (we'll see a
fuller implementation shortly):
public class Animals : CollectionBase
{
 public void Add(Animal newAnimal)
 {
 List.Add(newAnimal);
 }

 public void Remove(Animal oldAnimal)
 {
 List.Remove(oldAnimal);
 }

 public Animals()
 {
 }
}

Here, Add() and Remove() have been implemented as strongly typed methods that use the standard Add()
method of the IList interface used to access the items. The methods exposed will now only work with Animal

classes or classes derived from Animal, unlike the ArrayList implementations we saw earlier that work with
any object.

The CollectionBase class allows us to use the foreach syntax with our derived collections. We can, for
example, use code, such as:
Console.WriteLine("Using custom collection class Animals:");
Animals animalCollection = new Animals();
animalCollection.Add(new Cow("Sarah"));
foreach (Animal myAnimal in animalCollection)
{
 Console.WriteLine("New {0} object added to custom collection, " +
 "Name = {1}", myAnimal.ToString(), myAnimal.Name);
}

We can't however, do the following:
animalCollection[0].Feed();

In order to access items via their indices in this way, we need to use an indexer.

Indexers

An indexer is a special kind of property that we can add to a class to provide array-like access. In actual fact we
can provide more complex access via an indexer, as we can define and use complex parameter types with the
square bracket syntax as we wish. Implementing a simple numeric index for items, however, is the most common
usage.

We can add an indexer to our Animals collection of Animal objects as follows:

 public class Animals : CollectionBase
 {
 ...
 public Animal this[int animalIndex]
 {
 get
 {
 return (Animal)List[animalIndex];
 }
 set
 {
 List[animalIndex] = value;
 }
 }
 }

The this keyword is used along with parameters in square brackets, but otherwise this looks much like any
other property. This syntax is logical, because we'll access the indexer using the name of the object followed by
the index parameter(s) in square brackets (for example, MyAnimals[0]).

This code uses an indexer on the List property (that is, on the IList interface that gives us access to the
ArrayList in CollectionBase that stores our items):

return (Animal)List[animalIndex];

Explicit casting is necessary here, as the IList.List property returns a System.Object object.

The important thing to note here is that we define a type for this indexer. This is the type that will be obtained

when accessing an item using this indexer. This means that we can write code such as:
animalCollection[0].Feed();

Rather than:
((Animal)animalCollection[0]).Feed();

This is another handy feature of strongly typed custom collections. Let's expand the last example properly to put
this into action.

Try it Out - Implementing an Animals Collection

1. Create a new console application called Ch11Ex02 in the directory C:\BegVCSharp\Chapter11.

2. Right-click on the project name in the Solution Explorer window, and select the Add | Add Existing Item...
option:

3. Select the Animal.cs file from the C:\BegVCSharp\Chapter11\Ch11Ex01 directory, and click on Open:

4. Modify the namespace declaration in Animal.cs to be as follows:

namespace Ch11Ex02

5. Add a new class using the Add Class wizard, called Animals, and store it in Animals.cs.

6. Modify the code in Animals.cs as follows:

using System;
using System.Collections;

namespace Ch11Ex02
{
 public class Animals : CollectionBase
 {
 public void Add(Animal newAnimal)
 {
 List.Add(newAnimal);
 }

 public void Remove(Animal newAnimal)
 {
 List.Remove(newAnimal);
 }

 public Animals()
 {
 }

 public Animal this[int animalIndex]
 {
 get
 {
 return (Animal)List[animalIndex];
 }
 set
 {
 List[animalIndex] = value;
 }
 }
 }
}

7. Modify Class1.cs as follows:

 static void Main(string[] args)
 {
 Animals animalCollection = new Animals();
 animalCollection.Add(new Cow("Jack"));
 animalCollection.Add(new Chicken("Vera"));
 foreach (Animal myAnimal in animalCollection)
 {
 myAnimal.Feed();
 }
 }

8. Execute the application:

How it Works

This example uses code detailed in the last section to implement a strongly typed collection of Animal objects in
a class called Animals. The code in Main() simply instantiates an Animals object called

animalCollection, adds two items (an instance each of Cow and Chicken), and uses a foreach loop to call
the Feed() method that both these objects inherit from their base class Animal.

The Add Indexer Wizard

VS contains another wizard for use in C# OOP, the Add Indexer wizard. This is found in the same place as the
wizards for adding properties, methods, and fields (right-click on the class name in the Class View window and
select Add | Add Indexer...) The wizard presents us with the following dialog:

The wizard allows us to specify the protection level (public, as we want the indexer to be available from outside
the collection), and type of our indexer (here Animal, because we want the indexer to be strongly typed and
return items of the Animal class). We can also specify the types and names of the parameters; for our example,
we just want the typical one int parameter, with the name animalIndex. Finally, we can specify whether we
want any modifiers for the indexer - we can specify that we want our indexer to be virtual, or (for an abstract
class) abstract. If an indexer is declared as virtual, then we allow the indexer to be overridden in any classes
derived from the indexed class - just like the virtual methods we saw in the

The above entries would give us the structure for the Animals class indexer shown earlier:

public Animal this[int animalIndex]
{
 get
 {
 return null;
 }
 set
 {
 }
}

Note that we have to provide the workings ourselves, by filling in the get and set code blocks.

Keyed Collections and IDictionary

Instead of the IList interface, it is also possible for collections to implement the similar IDictionary interface,
which allows items to be indexed via a key value (such as a string name), rather than by an index.

This is also achieved by using an indexer, although this time the indexer parameter used is a key associated with

a stored item, rather than an int index, which can make the collection a lot more user friendly.

As with indexed collections, there is a base class that we can use to simplify implementation of the
IDictionary interface: DictionaryBase. This class also implements IEnumerable and ICollection,
providing the basic collection manipulation capabilities that are the same for any collection.

DictionaryBase, like CollectionBase, implements some (but not all) of the members obtained through its
supported interfaces. Like CollectionBase the Clear() and Count members are implemented, although
RemoveAt() isn't. This is because RemoveAt() is a method on the IList interface and doesn't appear on the
IDictionary interface. IDictionary does, however, have a Remove() method, which is one of the methods
we should implement in a custom collection class based on DictionaryBase.

The following code shows an alternative version of the Animals class from the last section, this time derived
from DictionaryBase. Implementations are included for Add(), Remove(), and a key-accessed indexer:

public class Animals : DictionaryBase
{
 public void Add(string newID, Animal newAnimal)
 {
 Dictionary.Add(newID, newAnimal);
 }

 public void Remove(string animalID)
 {
 Dictionary.Remove(animalID);
 }

 public Animals()
 {
 }

 public Animal this[string animalID]
 {
 get
 {
 return (Animal)Dictionary[animalID];
 }
 set
 {
 Dictionary[animalID] = value;
 }
 }
}

The differences in these members are:

● Add() - takes two parameters, a key and a value, to store together. Our dictionary collection has a member
called Dictionary inherited from DictionaryBase, which is an IDictionary interface. This interface
has its own Add() method, which takes two object parameters. Our implementation takes a string value
as a key, and an Animal object as the data to store alongside this key.

● Remove() - takes a key parameter rather than an object reference. The item with the key value specified is
removed.

● Indexer - uses a string key value rather than an index, which is used to access the stored item via the

Dictionary inherited member. Again, casting is necessary here.

One other difference between collections based on DictionaryBase and collections based on
CollectionBase is that foreach works slightly differently. The collection from the last section allowed us to
extract Animal objects directly from the collection. Using foreach with the DictionaryBase derived class
gives us DictionaryEntry structs, another type defined in the System.Collections namespace. To get to
the Animal objects themselves we must use the Value member of this struct, or we can use the Key member of
the struct to get the associated key. To get code equivalent to the earlier:
foreach (Animal myAnimal in animalCollection)
{
 Console.WriteLine("New {0} object added to custom collection, " +
 "Name = {1}", myAnimal.ToString(), myAnimal.Name());
}

We need the following:
foreach (DictionaryEntry myEntry in animalCollection)
{
 Console.WriteLine("New {0} object added to custom collection, " +
 "Name = {1}", myEntry.Value.ToString(),
 ((Animal)myEntry.Value).Name);
}

It is possible to override this behavior such that we can get at Animal objects directly through foreach, but this
topic is quite complex and we won't go into it in this book.

Upgrading CardLib Part 1

In the simple array.

In this chapter, we'll add a new class to this library, which we'll rename as Ch11CardLib. This new class,
Cards, will be a custom collection of Card objects, giving us all the benefits described earlier in this chapter. You
may find it easier to create a new class library called Ch11CardLib in the C:\BegVCSharp\Chapter11
directory, and from File | Add Existing Item, select the Card.cs and Deck.cs files from the C:\BegVCSharp
\Chapter10\Ch10CardLib directory and add them to your project.

Don't forget that when copying the source files from Ch10CardLib to Ch11CardLib, we must
change the namespace declarations to refer to Ch11CardLib. This also applies to the
Ch10CardClient console application that we will use for testing.

The code for our new class, in Cards.cs, is as follows (where code that is modified from that generated by the
wizard is highlighted):
using System;
using System.Collections;

namespace Ch11CardLib
{
 public class Cards : CollectionBase
 {
 public void Add(Card newCard)
 {
 List.Add(newCard);
 }

 public void Remove(Card oldCard)
 {
 List.Remove(oldCard);
 }

 public Cards()
 {
 }

 public Card this[int cardIndex]
 {
 get
 {
 return (Card)List[cardIndex];
 }
 set
 {
 List[cardIndex] = value;
 }
 }
 // Utility method for copying card instances into another Cards
 // instance - used in Deck.Shuffle(). This implementation assumes that
 // source and target collections are the same size.
 public void CopyTo(Cards targetCards)
 {
 for (int index = 0; index < this.Count; index++)
 {
 targetCards[index] = this[index];
 }
 }

 // Check to see if the Cards collection contains a particular card.
 // This calls the Contains method of the ArrayList for the collection,
 // which we access through the InnerList property.
 public bool Contains(Card card)
 {
 return InnerList.Contains(card);
 }
 }
}

Next, we need to modify Deck.cs to make use of this new collection, rather than an array:

using System;

namespace Ch11CardLib
{
 public class Deck
 {
 private Cards cards = new Cards();

 public Deck()
 {
 // line of code removed here.
 for (int suitVal = 0; suitVal < 4; suitVal++)
 {
 for (int rankVal = 1; rankVal < 14; rankVal++)

 {
 cards.Add(new Card((Suit)suitVal, (Rank)rankVal));
 }
 }
 }

 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 return cards[cardNum];
 else
 throw (new System.ArgumentOutOfRangeException("cardNum", cardNum,
 "Value must be between 0 and 51."));
 }
 public void Shuffle()
 {
 Cards newDeck = new Cards();
 bool[] assigned = new bool[52];
 Random sourceGen = new Random();
 for (int i = 0; i < 52; i++)
 {
 int sourceCard = 0;
 bool foundCard = false;
 while (foundCard == false)
 {
 sourceCard = sourceGen.Next(52);
 if (assigned[sourceCard] == false)
 foundCard = true;
 }
 assigned[sourceCard] = true;
 newDeck.Add(cards[sourceCard]);
 }
 newDeck.CopyTo(cards);
 }
 }
}

There aren't that many changes necessary here. Most of those involve changing the shuffling logic to cater for
the fact that cards are added to the beginning of the new Cards collection newDeck from a random index in
cards, rather than to a random index in newDeck from a sequential position in cards.

The client console application for the Ch10CardLib solution, Ch10CardClient, may be used with this new
library with the same result as before, as the method signatures of Deck are unchanged. Clients of this class
library can now make use of the Cards collection class, however, rather than relying on arrays of Card objects,
for example in defining hands of cards in a card game application.

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Operator Overloading

The next subject we will cover in this chapter is that of operator overloading. This enables us to use standard
operators, such as +, >, and so on, with classes that we design. This is called overloading, because we are
supplying our own implementations for these operators when used with specific parameter types, in much the
same way that we overload methods by supplying different parameters for methods with the same name.

Operator overloading is useful as we can perform whatever processing we want in the implementation of the
operator overload, which might not be as simple as, say, + meaning "add these two operands together". In a little
while, we'll see a good example of this in a further upgrade of the CardLib library. We'll provide implementations
for comparison operators that compare two cards to see which would beat the other in a "trick" (one round of card
game play). As a trick in many card games depends on the suits of the cards involved, this isn't as straightforward
as comparing the numbers on the cards. If the second card laid down is a different suit to the first, then the first
card will win regardless of its rank. We can implement this by considering the order of the two operands. We can
also take a "trump" suit into account, where trumps beat other suits, even if that isn't the first suit laid down. This
means that calculating that card1 > card2 is true (that is, card1 will beat card2, if card1 is laid down first),
doesn't necessarily imply that card2 > card1 is false. If neither card1 nor card2 are trumps and they belong
to different suits, then both these comparisons will be true.

To start with, though, let's look at the basic syntax for operator overloading.

Operators may be overloaded by adding operator type members (which must be static) to a class. Some
operators have multiple uses (such as -, which has unary and binary capabilities), therefore we also specify how
many operands we are dealing with, and what the types of these operands are. In general, we will have operands
that are the same type as the class where the operator is defined, although it is possible to define operators that
work on mixed types, as we will see shortly.

As an example, consider the simple type AddClass1, defined as follows:

public class AddClass1
{
 public int val;
}

This is just a wrapper around an int value, but will serve to illustrate the principles.

With this class, code, such as the following, will fail to compile:
AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass1 op2 = new AddClass1();
op2.val = 5;
AddClass1 op3 = op1 + op2;

The error you get informs you that the + operator cannot be applied to operands of the AddClass1 type, as we
haven't defined an operation to perform yet.

Code such as the following, will work, although it won't give you the result you might want:

AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass1 op2 = new AddClass1();
op2.val = 5;
bool op3 = op1 == op2;

Here, op1 and op2 are compared using the == binary operator to see if they refer to the same object, and not to
verify whether their values are equal. op3 will be false in the above code, even though op1.val and op2.val
are identical.

To overload the + operator, we use the following code:

public class AddClass1
{
 public int val;

 public static AddClass1 operator +(AddClass1 op1, AddClass1 op2)
 {
 AddClass1 returnVal = new AddClass1();
 returnVal.val = op1.val + op2.val;
 return returnVal;
 }
}

As you can see, operator overloads look much like standard static method declarations, except that they use the
keyword operator and the operator itself rather than a method name.

We can now successfully use the + operator with this class, as in the previous example:

AddClass1 op3 = op1 + op2;

Overloading all binary operators fits the same pattern. Unary operators look similar, but only have one parameter:
public class AddClass1
{
 public int val;

 public static AddClass1 operator +(AddClass1 op1, AddClass1 op2)
 {
 AddClass1 returnVal = new AddClass1();
 returnVal.val = op1.val + op2.val;
 return returnVal;
 }

 public static AddClass1 operator -(AddClass1 op1)
 {
 AddClass1 returnVal = new AddClass1();
 returnVal.val = -op1.val;
 return returnVal;
 }
}

Both these operators work on operands of the same type as the class, and have return values that are also of that
type. Consider, however, the following class definitions:
public class AddClass1
{
 public int val;

 public static AddClass3 operator +(AddClass1 op1, AddClass2 op2)
 {
 AddClass3 returnVal = new AddClass3();
 returnVal.val = op1.val + op2.val;
 return returnVal;
 }
}

public class AddClass2
{
 public int val;
}

public class AddClass3
{
 public int val;
}

This will allow the following code:
AddClass1 op1 = new AddClass1();
op1.val = 5;
AddClass2 op2 = new AddClass2();
op2.val = 5;
AddClass3 op3 = op1 + op2;

Where appropriate, we can mix types in this way. Note, however, that if we added the same operator to
AddClass2, the above code would fail, as it would be ambiguous as to which operator to use. We should,
therefore, take care not to add operators with the same signature to more than one class.

Also note, that if we mix types, the operands must be supplied in the same order as the parameters to the operator
overload. If we attempt to use our overloaded operator with the operands in the "wrong" order, the operation will
fail. So we can't use the operator like this:
AddClass3 op3 = op2 + op1;

Unless, of course, we supply another overload with the parameters reversed:
public static AddClass3 operator +(AddClass2 op1, AddClass1 op2)
{
 AddClass3 returnVal = new AddClass3();
 returnVal.val = op1.val + op2.val;
 return returnVal;
}

The following operators can be overloaded:

● Unary operators: +, -, !, ~, ++, --, true, false

● Binary operators: +, -, *, /, %, &, |, ^, <<, >>

● Comparison operators: ==, !=, <, >, <=, >=

If we overload the true and false operators then we can use classes in Boolean expressions,
such as if (op1) {}.

We can't overload assignment operators, such as +=, but these operators use their simple counterparts, such as
+, so we don't have to worry about that. Overloading + will mean that += will function as expected. The = operator

is included in this – it would make little sense to overload this operator, since it has such a fundamental usage.
This operator, however, is related to the user-defined conversion operators, which we talk about in the next
section.

We also can't overload && and ||, but these operators use the & and | operators to perform their calculations, so
overloading these is enough.

Some operators, such as < and >, must be overloaded in pairs. That is to say, we can't overload < unless we also
overload >. In many cases, we can simply call other operators from these to reduce the code required (and the
errors that might occur), for example:
public class AddClass1
{
 public int val;

 public static bool operator >=(AddClass1 op1, AddClass1 op2)
 {
 return (op1.val >= op2.val);
 }

 public static bool operator <(AddClass1 op1, AddClass1 op2)
 {
 return !(op1 >= op2);
 }

 // Also need implementations for <= and > operators
}

In more complex operator definitions this can save on lines of code, and it also means that we have less code to
change should we wish to change the implementation of these operators.

The same applies to == and !=, but with these operators it is often worth overriding Object.Equals()and
Object.GetHashCode(), as both of these functions may also be used to compare objects. By overriding these
methods, we ensure that whatever technique users of the class use, they get the same result. This isn't essential,
but is worth adding for completeness. It requires the following non-static override methods:
public class AddClass1
{
 public int val;

 public static bool operator ==(AddClass1 op1, AddClass1 op2)
 {
 return (op1.val == op2.val);
 }

 public static bool operator !=(AddClass1 op1, AddClass1 op2)
 {
 return !(op1 == op2);
 }

 public override bool Equals(object op1)
 {
 return val == ((AddClass1)op1).val;
 }

 public override int GetHashCode()
 {
 return val;

 }
}

Note that Equals() uses an object type parameter. We need to use this signature or we will be overloading this
method rather than overriding it, and the default implementation will still be accessible to users of the class. This
means that we must use casting to get the result we require (although more code might be added here to make
this more robust than the above example, which will fail unless the op1 parameter is an AddClass1 instance, or
an instance of a class derived from this class).

GetHashCode() is used to obtain a unique int value for an object instance based on its state. Here, using val
is fine, as it is also an int value.

Conversion Operators

As well as overloading the mathematical operators as shown above, we can also define both implicit and explicit
conversions between types. This is necessary if we want to convert between types that aren't related, if there is no
inheritance relationship between them and no shared interfaces, for example.

Let's say we define an implicit conversion between ConvClass1 and ConvClass2. This means that we can write
code, such as:
ConvClass1 op1 = new ConvClass1();
ConvClass2 op2 = op1;

Alternatively, we can define an explicit conversion, called in the following code:
ConvClass1 op1 = new ConvClass1();
ConvClass2 op2 = (ConvClass2)op1;

As an example, consider the following code:
public class ConvClass1
{
 public int val;

 public static implicit operator ConvClass2(ConvClass1 op1)
 {
 ConvClass2 returnVal = new ConvClass2();
 returnVal.val = op1.val;
 return returnVal;
 }
}

public class ConvClass2
{
 public double val;

 public static explicit operator ConvClass1(ConvClass2 op1)
 {
 ConvClass1 returnVal = new ConvClass1();
 checked {returnVal.val = (int)op1.val;};
 return returnVal;
 }
}

Here, ConvClass1 contains an int value and ConvClass2 contains a double value. Since int values may be
converted into double values implicitly, we can define an implicit conversion between ConvClass1 and

ConvClass2. The reverse is not true, however, and we should define the conversion operator between
ConvClass2 and ConvClass1 as explicit.

In the code, we specify this using the implicit and explicit keywords as shown.

With these classes the following code is fine:
ConvClass1 op1 = new ConvClass1();
op1.val = 3;
ConvClass2 op2 = op1;

A conversion in the other direction, however, requires the following explicit casting conversion:
ConvClass2 op1 = new ConvClass2();
op1.val = 3e15;
ConvClass1 op2 = (ConvClass1)op1;

Note that as we have used the checked keyword in our explicit conversion, we will get an exception in the above
code, since the val property of op1 is too large to fit into the val property of op2.

Upgrading CardLib Part 2

Let's upgrade our Ch11CardLib project again, adding operator overloading to the card class. First, though, we'll
add the extra fields to the Card class that allow for trump suits and a choice to place Aces high. We make these
static, since when they are set, they apply to all Card objects:

 public class Card
 {
 // Flag for trump usage. If true, trumps are valued higher
 // than cards of other suits.
 public static bool useTrumps = false;

 // Trump suit to use if useTrumps is true.
 public static Suit trump = Suit.Club;

 // Flag that determines whether Aces are higher than Kings or lower
 // than deuces.
 public static bool isAceHigh = true;

As we have done this, it is worth adding a few more constructors to the Deck class, in order to initialize decks with
different characteristics:
 public Deck()
 {
 for (int suitVal = 0; suitVal < 4; suitVal++)
 {
 for (int rankVal = 1; rankVal < 14; rankVal++)
 {
 cards.Add(new Card((Suit)suitVal, (Rank)rankVal));
 }
 }
 }

 // Non-default constructor. Allows aces to be set high.
 public Deck(bool isAceHigh) : this()
 {
 Card.isAceHigh = isAceHigh;
 }

 // Non-default constructor. Allows a trump suit to be used.
 public Deck(bool useTrumps, Suit trump) : this()
 {
 Card.useTrumps = useTrumps;
 Card.trump = trump;
 }

 // Non-default constructor. Allows aces to be set high and a trump suit
 // to be used.
 public Deck(bool isAceHigh, bool useTrumps, Suit trump) : this()
 {
 Card.isAceHigh = isAceHigh;
 Card.useTrumps = useTrumps;
 Card.trump = trump;
 }

Each of these constructors is defined using the : this() syntax we saw in

Next, we add our operator overloads (and suggested overrides) to the Card class:

 public Card(Suit newSuit, Rank newRank)
 {
 suit = newSuit;
 rank = newRank;
 }

 public static bool operator ==(Card card1, Card card2)
 {
 return (card1.suit == card2.suit) && (card1.rank == card2.rank);
 }

 public static bool operator !=(Card card1, Card card2)
 {
 return !(card1 == card2);
 }

 public override bool Equals(object card)
 {
 return this == (Card)card;
 }
 public override int GetHashCode()
 {
 return 13*(int)rank + (int)suit;
 }

 public static bool operator >(Card card1, Card card2)
 {
 if (card1.suit == card2.suit)
 {
 if (isAceHigh)
 {
 if (card1.rank == Rank.Ace)
 {
 if (card2.rank == Rank.Ace)
 return false;
 else

 return true;
 }
 else
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return (card1.rank > card2.rank);
 }
 }
 else
 {
 return (card1.rank > card2.rank);
 }
 }
 else
 {
 if (useTrumps && (card2.suit == Card.trump))
 return false;
 else
 return true;
 }
 }

 public static bool operator <(Card card1, Card card2)
 {
 return !(card1 >= card2);
 }

 public static bool operator >=(Card card1, Card card2)
 {
 if (card1.suit == card2.suit)
 {
 if (isAceHigh)
 {
 if (card1.rank == Rank.Ace)
 {
 return true;
 }
 else
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return (card1.rank >= card2.rank);
 }
 }
 else
 {
 return (card1.rank >= card2.rank);
 }
 }
 else
 {
 if (useTrumps && (card2.suit == Card.trump))
 return false;
 else

 return true;
 }
 }

 public static bool operator <=(Card card1, Card card2)
 {
 return !(card1 > card2);
 }

There's not much to note about this code, except perhaps the slightly lengthy code for the > and >= overloaded
operators. If we step through the code for > we can see how it works, and why these steps are necessary.

We are comparing two cards, card1 and card2, where card1 is assumed to be the first one laid down on the
table. As discussed earlier, this becomes important when we are using trump cards, as a trump will beat a non-
trump, even if the non-trump has a higher rank. Of course, if the suits of the two cards are identical then whether
the suit is the trump suit or not is irrelevant, so this is the first comparison we make:
public static bool operator >(Card card1, Card card2)
{
 if (card1.suit == card2.suit)
 {

If the static isAceHigh flag is true, then we can't compare the card ranks directly via their value in the Rank
enumeration, as the rank of Ace has a value of 1 in this enumeration, which is less than that of all other ranks.
Instead, we need the following steps:

● If the first card is an Ace we check to see if the second card is also an Ace. If it is then the first card won't beat
the second. If the second card isn't an Ace then the first card will win:
 if (isAceHigh)
 {
 if (card1.rank == Rank.Ace)
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return true;
 }

● If the first card isn't an Ace we also need to check to see if the second one is. If it is, then the second card
wins, otherwise we can compare the rank values as we know that Aces aren't an issue:
 else
 {
 if (card2.rank == Rank.Ace)
 return false;
 else
 return (card1.rank > card2.rank);
 }
 }

● Alternatively, if Aces aren't high, we can just compare the rank values:
 else
 {
 return (card1.rank > card2.rank);
 }

The remainder of the code concerns the case where the suits of card1 and card2 are different. Here the static

useTrumps flag is important. If this flag is true and card2 is of the trump suit, then we can say definitively that
card1 isn't a trump (because the two cards have different suits), and trumps always win, so card2 is the higher
card:
 else
 {
 if (useTrumps && (card2.suit == Card.trump))
 return false;

If card2 isn't a trump (or useTrumps is false) then card1 wins, as it was the first card laid down:

 else
 return true;
 }
}

Only one other operator (>=) uses similar code to this, and the other operators are very simple, so I needn't go into
any more detail about them.

The following simple client code tests out these operators (place it in the Main() function of a client project to test
it out, like the client code we've seen earlier in the earlier CardLib examples):

Card.isAceHigh = true;
Console.WriteLine("Aces are high.");
Card.useTrumps = true;
Card.trump = Suit.Club;
Console.WriteLine("Clubs are trumps.");

Card card1, card2, card3, card4, card5;
card1 = new Card(Suit.Club, Rank.Five);
card2 = new Card(Suit.Club, Rank.Five);
card3 = new Card(Suit.Club, Rank.Ace);
card4 = new Card(Suit.Heart, Rank.Ten);
card5 = new Card(Suit.Diamond, Rank.Ace);
Console.WriteLine("{0} == {1} ? {2}",
 card1.ToString(), card2.ToString(), card1 == card2);
Console.WriteLine("{0} != {1} ? {2}", card1.ToString(), card3.ToString(), card1 !
= card3);
Console.WriteLine("{0}.Equals({1}) ? {2}",
 card1.ToString(), card4.ToString(), card1.Equals(card4));
Console.WriteLine("Card.Equals({0}, {1}) ? {2}",
 card3.ToString(), card4.ToString(), Card.Equals(card3, card4));
Console.WriteLine("{0} > {1} ? {2}",
 card1.ToString(), card2.ToString(), card1 > card2);
Console.WriteLine("{0} <= {1} ? {2}",
 card1.ToString(), card3.ToString(), card1 <= card3);
Console.WriteLine("{0} > {1} ? {2}",
 card1.ToString(), card4.ToString(), card1 > card4);
Console.WriteLine("{0} > {1} ? {2}",
 card4.ToString(), card1.ToString(), card4 > card1);
Console.WriteLine("{0} > {1} ? {2}",
 card5.ToString(), card4.ToString(), card5 > card4);
Console.WriteLine("{0} > {1} ? {2}",
 card4.ToString(), card5.ToString(), card4 > card5);

The results are as follows:

In each case, the operators are applied taking the specified rules into account. This is particularly apparent in the
last four lines of output, demonstrating how trump cards always beat non-trumps.

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Advanced Conversions

Now that we know how to define conversion operators we are in a position to round off our knowledge of type
conversion by looking at a few more features of the C# language. In this section, we'll look at:

● Boxing and unboxing - conversion between reference and value types

● The is operator - used to check a variable to see if it is of a given type, or if it is compatible with that type

● The as operator - used to convert a variable into a given type, in a slightly different way to casting

Boxing and Unboxing

In System.Object type, or to an interface type that is implemented by the value type. Unboxing is the opposite
conversion.

For example, suppose we have the following struct type:
struct MyStruct
{
 public int Val;
}

We can box a struct of this type by placing it into an object-type variable:

MyStruct valType1 = new MyStruct();
valType1.Val = 5;
object refType = valType1;

Here we create a new variable (valType1) of type MyStruct, assign a value to the Val member of this
struct, then box it into an object-type variable (refType).

The object created by boxing a variable in this way contains a reference to a copy of the value-type variable,
not a reference to the original value-type variable. We can verify this by modifying the contents of the original
struct, then unboxing the struct contained in the object into a new variable and examining its contents:
valType1.Val = 6;
MyStruct valType2 = (MyStruct)refType;
Console.WriteLine("valType2.Val = {0}", valType2.Val);

This code would give us the following output:
valType2.Val = 5

When we assign a reference type to an object, however, we get a different behavior. We can illustrate this by
changing MyStruct into a class (ignoring the fact that the name of this class isn't appropriate any more):

class MyStruct

{
 public int Val;
}

With no changes to the client code shown above (again ignoring the misnamed variables), we get the
following output:
valType2.Val = 6

We can also box value types into interface types, so long as they implement that interface. For example,
suppose our MyStruct type implements the IMyInterface interface as follows:

interface IMyInterface
{
}

struct MyStruct : IMyInterface
{
 public int Val;
}

We can then box the struct into an IMyInterface type as follows:

MyStruct valType1 = new MyStruct();
IMyInterface refType = valType1;

and we can unbox it using the normal casting syntax:
MyStruct ValType2 = (MyStruct)refType;

As you can see from these examples, boxing is performed without our intervention (that is, we don't have to
write any code to make this possible). Unboxing a value requires an explicit conversion, however, and
requires us to make a cast (boxing is implicit and doesn't have this requirement).

You might be wondering why we would actually want to do this. There are actually two very good reasons why
boxing is extremely useful. Firstly, it allows us to use value types in collections (such as ArrayList), where
the items are of type object. Secondly, it's the internal mechanism that allows us to call object methods on
value types, such as ints and structs.

As a final note, it is worth remarking that unboxing is necessary before access to the value type contents is
possible.

The is Operator

The is operator allows us to check whether an unknown variable (perhaps one passed as an object
parameter to a method) can be converted into a given type, evaluating to true if a conversion is possible. We
can use this before calling methods on the object to check that the object is of a type that implements that
method.

Important The is operator does not check whether two types are identical, but whether they are
compatible.

The is operator has the syntax:

<operand> is <type>

The possible results of this expression are as follows:

● If <type> is a class type then the result is true if <operand> is of that type, if it inherits from that type,
or if it can be boxed into that type.

● If <type> is an interface type then the result is true if <operand> is of that type, or if it is a type that
implements the interface.

● If <type> is a value type then the result is true if <operand> is of that type, or if it is a type that can be
unboxed into that type.

Let's look at a few examples to see how this works in practice.

Try it Out - Using the is Operator

1. Create a new console application called Ch11Ex03 in the directory C:\BegVCSharp\Chapter11.

2. Modify the code in Class1.cs as follows:

namespace Ch11Ex03
{
 class Checker
 {
 public void Check(object param1)
 {
 if (param1 is ClassA)
 Console.WriteLine("Variable can be converted to ClassA.");
 else
 Console.WriteLine("Variable can't be converted to ClassA.");
 if (param1 is IMyInterface)
 Console.WriteLine("Variable can be converted to IMyInterface.");
 else
 Console.WriteLine("Variable can't be converted to IMyInterface.");

 if (param1 is MyStruct)
 Console.WriteLine("Variable can be converted to MyStruct.");
 else
 Console.WriteLine("Variable can't be converted to MyStruct.");
 }
 }

 interface IMyInterface
 {
 }

 class ClassA : IMyInterface
 {
 }

 class ClassB : IMyInterface
 {
 }
 class ClassC
 {
 }

 class ClassD : ClassA
 {
 }

 struct MyStruct : IMyInterface
 {
 }

 class Class1
 {
 static void Main(string[] args)
 {
 Checker check = new Checker();
 ClassA try1 = new ClassA();
 ClassB try2 = new ClassB();
 ClassC try3 = new ClassC();
 ClassD try4 = new ClassD();
 MyStruct try5 = new MyStruct();
 object try6 = try5;
 Console.WriteLine("Analyzing ClassA type variable:");
 check.Check(try1);

 Console.WriteLine("\nAnalyzing ClassB type variable:");
 check.Check(try2);
 Console.WriteLine("\nAnalyzing ClassC type variable:");
 check.Check(try3);
 Console.WriteLine("\nAnalyzing ClassD type variable:");
 check.Check(try4);
 Console.WriteLine("\nAnalyzing MyStruct type variable:");
 check.Check(try5);
 Console.WriteLine("\nAnalyzing boxed MyStruct type variable:");
 check.Check(try6);
 }
 }
}

3. Execute the code:

How it Works

This example illustrates the various results possible when using the is operator. Three classes, an interface,
and a structure are defined and used as parameters to a method of a class that uses the is operator to see if
they can be converted into the ClassA type, the interface type, and the struct type.

Only ClassA and ClassD (which inherits from ClassA) types are compatible with ClassA. Types that don't
inherit from a class are not compatible with that class.

The ClassA, ClassB, and MyStruct types all implement IMyInterface, so these are all compatible with
the IMyInterface type. ClassD inherits from ClassA, so that it too is compatible. Therefore, only ClassC
is incompatible.

Finally, only variables of type MyStruct itself and boxed variables of that type are compatible with
MyStruct, as we can't convert reference types to value types (except, of course, that we can unbox
previously boxed variables).

The as Operator

The as operator converts a type into a specified reference type using the following syntax:

<operand> as <type>

This is only possible in certain circumstances:

● If <operand> is of type <type>

● If <operand> can be implicitly converted to type <type>

● If <operand> can be boxed into type <type>

If no conversion from <operand> to <type> is possible then the result of the expression will be null.

Note that conversion from a base class to a derived class is possible using an explicit conversion, but won't
always work. Consider the two classes ClassA and ClassD from our last example, where ClassD inherits
from ClassA. The following code uses the as operator to convert from a ClassA instance stored in obj1 into
the ClassD type:

ClassA obj1 = new ClassA();
ClassD obj2 = obj1 as ClassD;

This will result in obj2 being null.

However, it is possible to store ClassD instances in ClassA-type variables using polymorphism. The
following code illustrates this, and uses the as operator to convert from a ClassA-type variable containing a
ClassD-type instance into the ClassD type:

ClassD obj1 = new ClassD();
ClassA obj2 = obj1;
ClassD obj3 = obj2 as ClassD;

This time the result is that obj3 ends up containing a reference to the same object as obj1, not null.

This functionality makes the as operator very useful, as the following code using simple casting results in an
exception being thrown:
ClassA obj1 = new ClassA();
ClassD obj2 = (ClassD)obj1;

The as equivalent of this code results in a null value being assigned to obj2 - no exception is thrown. This
means that code such as the following (using two of the classes developed earlier in this chapter, Animal
and a class derived from Animal called Cow) is very common in C# applications:

public void MilkCow(Animal myAnimal)
{
 Cow myCow = myAnimal as Cow;
 if (myCow != null)
 {
 myCow.Milk();
 }
 else
 {
 Console.WriteLine("{0} isn't a cow, and so can't be milked.",
 myAnimal.Name);
 }
}

This is much simpler than checking for exceptions!

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Deep Copying

In
public class Cloner
{
 public int Val;

 public Cloner(int newVal)
 {
 Val = newVal;
 }

 public object GetCopy()
 {
 return MemberwiseClone();
 }
}

Suppose we have fields that are reference types rather than value types (for example, objects):
public class Content
{
 public int Val;
}

public class Cloner
{
 public Content MyContent = new Content();

 public Cloner(int newVal)
 {
 MyContent.Val = newVal;
 }
 public object GetCopy()
 {
 return MemberwiseClone();
 }
}

In this case, the shallow copy obtained though GetCopy() will have a field that refers to the same object as
the original object.

The following code demonstrates this using this class:
Cloner mySource = new Cloner(5);
Cloner myTarget = (Cloner)mySource.GetCopy();
Console.WriteLine("myTarget.MyContent.Val = {0}", myTarget.MyContent.Val);

mySource.MyContent.Val = 2;
Console.WriteLine("myTarget.MyContent.Val = {0}", myTarget.MyContent.Val);

The fourth line, which assigns a value to mySource.MyContent.Val, the Val public field of the
MyContent public field of the original object, also changes the value of myTarget.MyContent.Val. This is
because mySource.MyContent refers to the same object instance as myTarget.MyContent. The output
of the above code is as follows:
myTarget.MyContent.Val = 5
myTarget.MyContent.Val = 2

To get round this we need to perform a deep copy. We could just modify the GetCopy() method used above
to do this, but it is preferable to use the standard .NET Framework way of doing things. To do this, we
implement the ICloneable interface, which has the single method Clone(). This method takes no
parameters, and returns an object type result, giving it a signature identical to the GetCopy() method used
above.

Modifying the classes used above, we might use the following deep copy code:
public class Content
{
 public int Val;
}

public class Cloner : ICloneable
{
 public Content MyContent = new Content();

 public Cloner(int newVal)
 {
 MyContent.Val = newVal;
 }

 public object Clone()
 {
 Cloner clonedCloner = new Cloner(MyContent.Val);
 return clonedCloner;
 }
}

Here we create a new Cloner object using the Val field of the Content object contained in the original
Cloner object (MyContent). This field is a value type, so no deeper copying is necessary.

Using code similar to that shown above to test the shallow copy, but using Clone() instead of GetCopy(),
gives us the following result:
myTarget.MyContent.Val = 5
myTarget.MyContent.Val = 5

This time the contained objects are independent.

Note that there are times where calls to Clone() will be made recursively, in more complex object systems.
For example, if the MyContent field of the Cloner class also required deep copying, we might need the
following:
public class Cloner : ICloneable

{
 public Content MyContent = new Content();

 ...

 public object Clone()
 {
 Cloner clonedCloner = new Cloner();
 clonedCloner.MyContent = MyContent.Clone();
 return clonedCloner;
 }
}

We're calling the default constructor here to simplify the syntax of creating a new Cloner object. In order for
this code to work we would also need to implement ICloneable on the Content class.

Upgrading CardLib Part 3

Let's put this into practice by implementing the ability to copy Card, Cards, and Deck objects using the
ICloneable interface. This might be useful in some card games, where we might not necessarily want two
decks with references to the same set of Card objects, although we might conceivably want to set up one
deck to have the same card order as another.

Implementing cloning functionality for the Card class in Ch11CardLib is simple, as shallow copying is
sufficient (Card only contains value-type data, in the form of fields). We just need to make the following
changes to the class definition:
 public class Card : ICloneable
 {
 public object Clone()
 {
 return MemberwiseClone();
 }

Note that this implementation of ICloneable is just a shallow copy. There is no rule determining what should
happen in the Clone() method, and this is sufficient for our purposes.

Next we need to implement ICloneable on the Cards collection class. This is slightly more complicated as
it involves cloning every Card object in the original collection - so we need to make a deep copy:

 public class Cards : CollectionBase, ICloneable
 {
 public object Clone()
 {
 Cards newCards = new Cards();
 foreach (Card sourceCard in List)
 {
 newCards.Add(sourceCard.Clone() as Card);
 }
 return newCards;
 }

Finally, we need to implement ICloneable on the Deck class. There is a slight problem here: the Deck
class has no way of modifying the cards it contains, short of shuffling them. There is no way, for example, to

modify a Deck instance to have a given card order. To get round this we define a new private constructor for
the Deck class that allows a specific Cards collection to be passed in when the Deck object is instantiated.
The code to implement cloning in this class is therefore:
 public class Deck : ICloneable
 {
 public object Clone()
 {
 Deck newDeck = new Deck(cards.Clone() as Cards);
 return newDeck;
 }

 private Deck(Cards newCards)
 {
 cards = newCards;
 }

Again, we can test this out with some simple client code (as before, this should be placed within the Main()
method of a client project to test this out):
Deck deck1 = new Deck();
Deck deck2 = (Deck)deck1.Clone();
Console.WriteLine("The first card in the original deck is: {0}",
 deck1.GetCard(0));
Console.WriteLine("The first card in the cloned deck is: {0}",
 deck2.GetCard(0));
deck1.Shuffle();
Console.WriteLine("Original deck shuffled.");
Console.WriteLine("The first card in the original deck is: {0}",
 deck1.GetCard(0));
Console.WriteLine("The first card in the cloned deck is: {0}",
 deck2.GetCard(0));

The output will be something like this:

One point to note here is that the current card rules, which are defined in static members of the Card class,
apply to all Card objects in every Deck. It is not possible to have two decks of cards with cards contained in
each that obey different rules. This is fine for this class library, however, as we can safely assume that if a
single application wants to use separate rules then it could maintain these itself, perhaps setting the static
members of Card whenever decks are switched.

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Custom Exceptions

Earlier in the book, we discussed exceptions and how we can use try...catch...finally blocks to act
on them. We also saw several standard .NET exceptions, including the base class for exceptions System.
Exception. Sometimes it can be useful to derive your own exception classes from this base class and use
them in your applications, instead of using the standard exceptions. This allows you to be more specific about
the information you send to whatever code catches the exception, and allows catching code to be more
specific about which exceptions it handles. You might, for example, add a new property to your exception
class that permits access to some underlying information, making it possible for the receiver of the exception
to make the required changes, or just giving more information as to the exception cause.

Once we have defined an exception class we can add it to the list of exceptions recognized by VS using the
Debug | Exceptions... menu item. Through this dialog we can control how VS responds when an unhandled
exception of that type is thrown. The dialog allows us to get VS to stop execution and start the debugger or to
continue executing. We can choose to do this either as soon as an exception of this type is thrown or only if
the exception is not handled:

Upgrading CardLib Part 4

The use of custom exceptions is, once again, best illustrated by upgrading the Ch11CardLib project. The
Deck.GetCard() method currently throws a standard .NET exception if an attempt is made to access a card
with an index less than 0 or greater than 51, but we'll modify this to use a custom exception.

First, we need to define the exception. We do this with a new class defined in a new class file called
Exceptions.cs, which we can add to the Ch11CardLib project with File | Add New Item:

 public class CardOutOfRangeException : Exception
 {
 private Cards deckContents;

 public Cards DeckContents
 {
 get
 {
 return deckContents;
 }
 }

 public CardOutOfRangeException(Cards sourceDeckContents) :
 base("There are only 52 cards in the deck.")
 {
 deckContents = sourceDeckContents;
 }
 }

An instance of the Cards class is required for this classes's constructor. It allows access to this Cards object
through a DeckContents property, and supplies a suitable error message to the base Exception
constructor, so that it is available through the Message property of the class.

Next we add code to throw this exception to Deck.cs (replacing the old standard exception):

 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 return cards[cardNum];
 else
 throw new CardOutOfRangeException(cards.Clone() as Cards);
 }

The DeckContents property is initialized with a deep copy of the current contents of the Deck object, in the
form of a Cards object. This means that we see what the contents were at the point where the exception was
thrown, so subsequent modification to the deck contents won't "lose" this information.

To test this out, we can use the following client code:
Deck deck1 = new Deck();
try
{
 Card myCard = deck1.GetCard(60);
}
catch (CardOutOfRangeException e)
{
 Console.WriteLine(e.Message);
 Console.WriteLine(e.DeckContents[0]);
}

resulting in:

Here the catching code has written the exception Message property to the screen. We also displayed the first
card in the Cards object obtained through DeckContents, just to prove that we can access the Cards
collection through our custom exception object.

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we have covered many of the techniques that we can use to make our OOP applications far
more powerful, and more interesting. Although these techniques take a little effort to accomplish they can
make our classes much easier to work with, and therefore simplify the task of writing the rest of the code.

Each of the topics covered has many uses. You're likely to come across collections of one form or another in
almost any application, and creating strongly typed collections can make our life much easier if we need to
work with a group of objects of the same type. Once we have our collection, we saw how we can add indexers
to get easy access to objects within the collection.

We also looked at operator overloading, which allows us to define how operators such as + and - work with
our classes, and at deep copying, which can be fundamentally important to avoid one of the most common
errors in OOP – accidentally passing a reference to internal data to a user. Finally, we saw how to implement
our own exception objects, and pass more detailed information to the exception handler.

In the next chapter we'll look at one last, and very important, aspect of OOP in .NET – events.

Chapter 11 - More About Classes
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Create a collection class called People that is a collection of the Person class shown below. The items

in the collection should be accessible via a string indexer that is the name of the person, identical to the
Person.Name property:

public class Person
{
 private string name;
 private int age;

 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }

 public int Age
 {
 get
 {
 return age;
 }
 set
 {
 age = value;
 }
 }
}

2. Extend the Person class from the above exercise so that the >, <, >=, and <= operators are overloaded,
and compare the Age properties of Person instances.

3. Add a GetOldest() method to the People class that returns an array of Person objects with the
greatest Age property (1 or more objects, as multiple items may have the same value for this property),
using the overloaded operators defined above.

4. Implement the ICloneable interface on the People class to provide deep copying capability.

Chapter 12 - Events
byKarli Watsonet al.

Wrox Press 2003

Chapter 12: Events

Overview

This is the

We'll start, as usual, with the basics – looking at what events actually are. After this we'll move on to see some
simple events in action and look at what we can do with them. Once this is described, we'll move on to look at
how we can create and use events of our own.

In the second part of this chapter we'll polish off our CardLib class library by adding an event. In addition,
and since this is the last port of call before hitting some more advanced topics, we'll have a bit of fun. We'll
create a card game application that uses this class library.

To start with, then, let's look at what events are.

Chapter 12 - Events
byKarli Watsonet al.

Wrox Press 2003

What is an Event?

Events are similar to exceptions in that they are raised (thrown) by objects and we can supply code that acts
on them. However, there are several important differences. The most important of these is that there is no
equivalent to the try...catch structure for handling events. Instead we must subscribe to them.
Subscribing to an event means supplying code that will be executed when an event is raised, in the form of an
event handler.

An event can have many handlers subscribed to it, which will all be called when the event is raised. This may
include event handlers that are part of the class of the object that raises the event, but event handlers are just
as likely to be found in other classes.

Event handlers themselves are simply functions. The only restriction on an event handler function is that it
must match the signature (return type and parameters) required by the event. This signature is part of the
definition of an event, and is specified by a delegate.

The fact that delegates are used in events is what makes delegates such useful things. This is
the reason we devoted some time to them back in Chapter 6, and you may wish to re-read that
section to refresh your memory as to what delegates are and how we use them.

The sequence of processing goes something like this.

First, an application creates an object that can raise an event. As an example, let's say that the application is
an instant messaging application, and that the object it creates represents a connection to a remote user. This
connection object might raise an event, say, when a message arrives through the connection from the remote
user.

Next, the application subscribes to the event. Our instant messaging application would do this by defining a
function that could be used with the delegate type specified by the event, and passing a reference to this
function to the event. This event handler function might be a method on another object, let's say an object
representing a display device to display instant messages on when they arrive.

When the event is raised, the subscriber is notified. When an instant message arrives through the connection
object, the event handler method on the display device object is called. As we are using a standard method,
the object that raises the event may pass any relevant information via parameters, making events very
versatile. In our example case, one parameter might be the text of the instant message, which the event
handler could display on the display device object.

Chapter 12 - Events
byKarli Watsonet al.

Wrox Press 2003

Using Events

In this section we'll look at the code required for handling events, then move on to look at how we can define
and use our own.

Handling Events

As we have discussed, to handle an event we need to subscribe to the event by providing an event handler
function whose signature matches that of the delegate specified for use with the event. Let's look at an
example that uses a simple timer object to raise events, which will result in a handler function being called.

Try it Out – Handling Events

1. Create a new console application called Ch12Ex01 in the directory C:\BegVCSharp\Chapter12.

2. Modify the code in Class1.cs as follows:

using System;
using System.Timers;

namespace Ch12Ex01
{
 class Class1
 {
 static int counter = 0;

 static string displayString =
 "This string will appear one letter at a time. ";

 static void Main(string[] args)
 {
 Timer myTimer = new Timer(100);
 myTimer.Elapsed += new ElapsedEventHandler(WriteChar);
 myTimer.Start();
 Console.ReadLine();
 }

 static void WriteChar(object source, ElapsedEventArgs e)
 {
 Console.Write(displayString[counter++ % displayString.Length]);
 }
 }
}

3. Run the application (once running, hitting enter will terminate the application):

How it Works

The object we are using to raise events is an instance of the System.Timers.Timer class. This object is
initialized with a time period (in milliseconds). When the Timer object is started using its Start() method a
stream of events will be raised, spaced out in time according to the specified time period. Main() initializes a
Timer object with a timer period of 100 milliseconds, so it will raise events 10 times a second when started:

 static void Main(string[] args)
 {
 Timer myTimer = new Timer(100);

The Timer object possesses an event called Elapsed, and the event handler signature required by this
event is that of the System.Timers.ElapsedEventHandler delegate type, which is one of the standard
delegates defined in the .NET Framework. This delegate is used for functions that match the following
signature:
void functionName(object source, ElapsedEventArgs e);

The Timer object sends a reference to itself in the first parameter, and an instance of an
ElapsedEventArgs object in its second parameter. It is safe to ignore these parameters for now, but we'll
take a look at them a little later.

In our code we have a method that matches this signature:
 static void WriteChar(object source, ElapsedEventArgs e)
 {
 Console.Write(displayString[counter++ % displayString.Length]);
 }

This method uses the two static fields of Class1, counter and displayString, to display a single
character. Every time the method is called the character displayed will be different.

The next task is to hook this handler up to the event – to subscribe to it. To do this we use the += operator to
add a handler to the event in the form of a new delegate instance initialized with our event handler method:
 static void Main(string[] args)
 {
 Timer myTimer = new Timer(100);
 myTimer.Elapsed += new ElapsedEventHandler(WriteChar);

This command (which uses slightly strange looking syntax, specific to delegates) adds a handler to the list
that will be called when the Elapsed event is raised. We can add as many handlers as we like to this list, as
long as they all meet the criteria required. Each handler will be called in turn when the event is raised.

All that is left for Main() is to start the timer running:

 myTimer.Start();

Since we don't want the application terminating before we have handled any events, we then put the Main()
function on hold. The simplest way of doing this is to request user input, since this command won't finish
processing until the user has entered a line of text and/or pressed enter.

 Console.ReadLine();

Although processing in Main() effectively ceases here, processing in the Timer object continues. When it
raises events it calls our WriteChar() method, which runs concurrently with the Console.ReadLine()
statement.

Defining Events

Next, let's look at defining and using our own events. We'll implement an example version of the instant
messaging case set out in the introduction to events in this chapter, and create a Connection object that
raises events that are handled by a Display object.

Try it Out – Defining Events

1. Create a new console application called Ch12Ex02 in the directory C:\BegVCSharp\Chapter12.

2. Add a new class, Connection, stored in Connection.cs:

using System;
using System.Timers;

namespace Ch12Ex02
{
public delegate void MessageHandler(string messageText);
 public class Connection
 {
 public event MessageHandler MessageArrived;

 private Timer pollTimer;

 public Connection()
 {
 pollTimer = new Timer(100);
 pollTimer.Elapsed += new ElapsedEventHandler(CheckForMessage);
 }

 public void Connect()
 {
 pollTimer.Start();
 }

 public void Disconnect()
 {
 pollTimer.Stop();
 }

 private void CheckForMessage(object source, ElapsedEventArgs e)
 {
 Console.WriteLine("Checking for new messages.");
 Random random = new Random();
 if ((random.Next(9) == 0) && (MessageArrived != null))
 {
 MessageArrived("Hello Mum!");

 }
 }
 }
}

3. Add a new class, Display, stored in Display.cs:

using System;

namespace Ch12Ex02
{
 public class Display
 {
 public void DisplayMessage(string message)
 {
 Console.WriteLine("Message arrived: {0}", message);
 }
 }
}

4. Modify the code in Class1.cs as follows:

using System;

namespace Ch12Ex02
{
 class Class1
 {
 static void Main(string[] args)
 {
 Connection myConnection = new Connection();
 Display myDisplay = new Display();
 myConnection.MessageArrived +=
 new MessageHandler (myDisplay.DisplayMessage);
 myConnection.Connect();
 Console.ReadLine();
 }
 }
}

5. Run the application:

How it Works

The class that does most of the work in this application is the Connection class. Instances of this class
make use of a Timer object much like the one we saw in the first example of this chapter, initializing it in the
class constructor and giving access to its state (enabled or disabled) via Connect() and Disconnect():

 public class Connection
 {
 private Timer pollTimer;

 public Connection()
 {
 pollTimer = new Timer(100);
 pollTimer.Elapsed += new ElapsedEventHandler(CheckForMessage);
 }

 public void Connect()
 {
 pollTimer.Start();
 }
 public void Disconnect()
 {
 pollTimer.Stop();
 }

 ...
 }

Also in the constructor, we register an event handler for the Elapsed event in the same way as we did in the
first example. The handler method, CheckForMessage(), will raise an event on average once every ten
times it is called. Before we look at the code for this, though, let's look at the event definition itself.

Before we define an event we must define a delegate type to use with the event, that is, a delegate type that
specifies the signature that an event handling method must conform to. We do this using standard delegate
syntax, defining it as public inside the Ch11Ex02 namespace in order to make the type available to external
code:
namespace Ch12Ex02
{
 public delegate void MessageHandler(string messageText);

This delegate type, which we've called MessageHandler here, is a signature for a void function that has a
single string parameter. We can use this parameter to pass an instant message received by the
Connection object to the Display object.

Once a delegate has been defined (or a suitable existing delegate has been located) we can define the event
itself, as a member of the Connection class:

 public class Connection
 {
 public event MessageHandler MessageArrived;

We simply name the event (here we have used the name MessageArrived), and declare it using the event
keyword and the delegate type to use (the MessageHandler delegate type defined earlier).

Once we have declared an event in this way we can raise it simply by calling it by its name as if it were a
method with the signature specified by the delegate. For example, we could raise this event using:

MessageArrived("This is a message.");

If the delegate had been defined without any parameters we could use simply:
MessageArrived();

Alternatively we could have defined more parameters, which would have required more code to raise the
event.

Our CheckForMessage() method looks like this:

 private void CheckForMessage(object source, ElapsedEventArgs e)
 {
 Console.WriteLine("Checking for new messages.");
 Random random = new Random();
 if ((random.Next(9) == 0) && (MessageArrived != null))
 {
 MessageArrived("Hello Mum!");
 }
 }

We use an instance of the Random class that we have seen in earlier chapters to generate a random number
between 0 and 9, and raise an event if the number generated is 0, which should happen 10% of the time. This
simulates polling the connection to see if a message has arrived, which won't be the case every time we
check.

Note that we supply additional logic. We only raise an event if the expression MessageArrived != null
evaluates to true. This expression, which again uses the delegate syntax in a slightly unusual way, means:
"Does the event have any subscribers?" If there are no subscribers, MessageArrived will evaluate to null,
and there would be no point in raising the event.

The class that will subscribe to the event is called Display, and contains the single method
DisplayMessage() defined as follows:

 public class Display
 {
 public void DisplayMessage(string message)
 {
 Console.WriteLine("Message arrived: {0}", message);
 }
 }

This method matches the delegate type method signature (and is public, which is a requirement of event
handlers in classes other than the class that generates the event), so we can use it to respond to the
MessageArrived event.

All that is left now is for the code in Main() to initialize instances of the Connection and Display classes,
hook them up, and start things going. The code required here is similar to that from the first example:
 static void Main(string[] args)
 {
 Connection myConnection = new Connection();
 Display myDisplay = new Display();
 myConnection.MessageArrived +=
 new MessageHandler(myDisplay.DisplayMessage);
 myConnection.Connect();

 Console.ReadLine();
 }

Again, we call Console.ReadLine() to pause the processing of Main() once we have started things
moving with the Connect() method of the Connection object.

Multi-Purpose Event Handlers

The signature we saw earlier, for the Timer.Elapsed event, contained two parameters that are of a type
often seen in event handlers. These parameters are:

● object source – a reference to the object that raised the event

● ElapsedEventArgs e – parameters sent by the event

The reason that the object type parameter is used in this event, and indeed in many other events, is that we
will often want to use a single event handler for several identical events generated by different objects and still
tell which object generated the event.

To explain and illustrate this, let's extend our last example a little.

Try it Out – Using a Multi-Purpose Event Handler

1. Create a new console application called Ch12Ex03 in the directory C:\BegVCSharp\Chapter12.

2. Copy the code across for Class1.cs, Connection.cs, and Display.cs from Ch12Ex02, making
sure you change the namespaces in each file from Ch12Ex02 to Ch12Ex03.

3. Add a new class, MessageArrivedEventArgs, stored in MessageArrivedEventArgs.cs:

using System;

namespace Ch12Ex03
{
 public class MessageArrivedEventArgs : EventArgs
 {
 private string message;

 public string Message
 {
 get
 {
 return message;
 }
 }

 public MessageArrivedEventArgs()
 {
 message = "No message sent.";
 }

 public MessageArrivedEventArgs(string newMessage)
 {
 message = newMessage;

 }
 }
}

4. Modify Connection.cs as follows:

namespace Ch12Ex03
{
 public delegate void MessageHandler(Connection source,
 MessageArrivedEventArgs e);

 public class Connection
 {
 public event MessageHandler MessageArrived;

 private string name;

 public string Name
 {
 get
 {
 return name;
 }
 set
 {
 name = value;
 }
 }

 ...

 private void CheckForMessage(object source, EventArgs e)
 {
 Console.WriteLine("Checking for new messages.");
 Random random = new Random();
 if ((random.Next(9) == 0) && (MessageArrived != null))
 {
 MessageArrived(this, new MessageArrivedEventArgs("Hello Mum!"));
 }
 }

 ...

 }
}

5. Modify Display.cs as follows:

 public void DisplayMessage(Connection source, MessageArrivedEventArgs e)
 {
 Console.WriteLine("Message arrived from: {0}", source.Name);
 Console.WriteLine("Message Text: {0}", e.Message);
 }

6. Modify Class1.cs as follows:

 static void Main(string[] args)
 {
 Connection myConnection1 = new Connection();
 myConnection1.Name = "First connection.";
 Connection myConnection2 = new Connection();
 myConnection2.Name = "Second connection.";
 Display myDisplay = new Display();
 myConnection1.MessageArrived +=
 new MessageHandler(myDisplay.DisplayMessage);
 myConnection2.MessageArrived +=
 new MessageHandler(myDisplay.DisplayMessage);
 myConnection1.Connect();
 myConnection2.Connect();
 Console.ReadLine();
 }

7. Run the application:

How it Works

By sending a reference to the object that raises an event as one of the event handler parameters we can
customize the response of the handler to individual objects. The reference gives us access to the source
object, including its properties.

By sending parameters that are contained in a class that inherits from System.EventArgs (as
ElapsedEventArgs does) we can supply whatever additional information necessary as parameters (such as
the Message parameter on our MessageArrivedEventArgs class).

In addition, these parameters will benefit from polymorphism. We could define a handler for the
MessageArrived event such as:

 public void DisplayMessage(object source, EventArgs e)
 {
 Console.WriteLine("Message arrived from: {0}",
 ((Connection)source).Name);
 Console.WriteLine("Message Text: {0}",
 ((MessageArrivedEventArgs)e).Message);
 }

and modify the delegate definition in Connection.cs as follows:

 public delegate void MessageHandler(object source, EventArgs e);

The application will execute exactly as it did before, but we have made the DisplayMessage() function

more versatile (in theory at least – more implementation would be needed to make this production quality).
This same handler could work with other events, such as the Timer.Elapsed, although we'd have to modify
the internals of the handler a bit more such that the parameters sent when this event is raised are handled
properly (casting them to Connection and MessageArrivedEventArgs objects in this way will cause an
exception; we should use the as operator instead).

Return Values and Event Handlers

All the event handlers we've seen so far have had a return type of void. It is possible to provide a return type
for an event, but this can lead to problems. This is because a given event may result in several event handlers
being called. If all of these handlers return a value it leaves us in some doubt as to which value was actually
returned.

The system deals with this by only allowing us access to the last value returned by an event handler. This will
be the value returned by the last event handler to subscribe to an event.

Perhaps this functionality might be of use in some situations, although I can't think of one off the top of my
head. I'd recommend using void type event handlers, as well as avoiding out type parameters.

Chapter 12 - Events
byKarli Watsonet al.

Wrox Press 2003

Expanding and Using CardLib

Now we've had a look at defining and using events, let's add to the class library developed in the

The event we'll add to our library will be generated when the last Card object in a Deck object is obtained
using GetCard, and will be called LastCardDrawn. This event will allow subscribers to reshuffle the deck
automatically, cutting down on the processing necessary by a client. The delegate defined for this event
(LastCardDrawnHandler) needs to supply a reference to the Deck object such that the Shuffle()
method will be accessible from wherever the handler is. Add the following code to Deck.cs:

namespace Ch12CardLib
{
 public delegate void LastCardDrawnHandler(Deck currentDeck);

The code to define the event and raise it is simply:
 public event LastCardDrawnHandler LastCardDrawn;

 public Card GetCard(int cardNum)
 {
 if (cardNum >= 0 && cardNum <= 51)
 {
 if ((cardNum == 51) && (LastCardDrawn != null))
 LastCardDrawn(this);
 return cards[cardNum];
 }
 else
 throw new CardOutOfRangeException((Cards)cards.Clone());
 }

This is all the code required to add the event to our Deck class definition. Now we just need to use it.

A Card Game Client for CardLib

After spending all this time developing the CardLib library it would be a shame not to use it. Before finishing
this section on OOP in C# and the .NET Framework, it's time to have a little fun, and write the basics of a card
game application that uses our familiar playing card classes.

As in previous chapters, we'll add a client console application to the Ch12CardLib solution, add a reference
to the Ch12CardLib project, and make it the startup project. This application will be called
Ch12CardClient.

To start with we'll create a new class called Player in a new file in Ch12CardClient, Player.cs. This
class will contain a private Cards field called hand, a private string field called name, and two read-only
properties: Name and PlayHand. These properties simply expose the private fields. Note that even though

the PlayHand property is read-only we will have write access to the reference to the hand field returned,
allowing us to modify the cards in the player's hand.

We'll also hide the default constructor by making it private, and supply a public non-default constructor that
accepts an initial value for the Name property of Player instances.

Finally, we'll provide a bool type method called HasWon(). This will return true if all the cards in the
player's hand are of the same suit (a simple winning condition, but that doesn't matter too much).

The code for Player.cs is as follows:

using System;
using Ch12CardLib;

namespace Ch12CardClient
{
 public class Player
 {
 private Cards hand;
 private string name;
 public string Name
 {
 get
 {
 return name;
 }
 }

 public Cards PlayHand
 {
 get
 {
 return hand;
 }
 }

 private Player()
 {
 }

 public Player(string newName)
 {
 name = newName;
 hand = new Cards();
 }

 public bool HasWon()
 {
 bool won = true;
 Suit match = hand[0].suit;
 for (int i = 1; i < hand.Count; i++)
 {
 won &= hand[i].suit == match;
 }
 return won;

 }
 }
}

Next we define a class that will handle the card game itself, called Game. This class is found in the file Game.
cs of the Ch12CardClient project.

This class has four private member fields:

● playDeck – a Deck type variable containing the deck of cards to use

● currentCard – an int value used as a pointer to the next card in the deck to draw

● players – an array of Player objects representing the players of the game

● discardedCards – a Cards collection for the cards that have been discarded by players but not
shuffled back into the deck

The default constructor for the class initializes and shuffles the Deck stored in playDeck, sets the
currentCard pointer variable to 0 (the first card in playDeck), and wires up an event handler called
Reshuffle() to the playDeck.LastCardDrawn event. This handler simply shuffles the deck, including the
cards in discardedCards, and resets currentCard to 0, ready to read cards from the new deck.

The Game class also contains two utility methods, SetPlayers() for setting the players for the game (as an
array of Player objects), and DealHands() for dealing hands to the players (7 cards each). The number of
players allowed is restricted from 2 to 7 in order to make sure that there are enough cards to go round.

Finally, there is a PlayGame() method that contains the game logic itself. We'll come back to this function
shortly, after we've looked at the code in Class1.cs. The rest of the code in Game.cs is as follows:

using System;
using Ch12CardLib;

namespace Ch12CardClient
{
 public class Game
 {
 private int currentCard;
 private Deck playDeck;
 private Player[] players;
 private Cards discardedCards;

 public Game()
 {
 currentCard = 0;
 playDeck = new Deck(true);
 playDeck.LastCardDrawn += new LastCardDrawnHandler(Reshuffle);
 playDeck.Shuffle();
 }

 private void Reshuffle(Deck currentDeck)
 {
 currentDeck.Shuffle();
 discardedCards = new Cards();

 currentCard = 0;
 }

 public void SetPlayers(Player[] newPlayers)
 {
 if (newPlayers.Length > 7)
 throw new ArgumentException("A maximum of 7 players may play this" +
 " game.");

 if (newPlayers.Length < 2)
 throw new ArgumentException("A minimum of 2 players may play this" +
 " game.");

 players = newPlayers;
 }

 private void DealHands()
 {
 for (int p = 0; p < players.Length; p++)
 {
 for (int c = 0; c < 7; c++)
 {
 players[p].PlayHand.Add(playDeck.GetCard(currentCard++));
 }
 }
 }

 public int PlayGame()
 {
 // Code to follow.
 }
 }
}

Class1.cs contains our Main() function, which will initialize and run the game. This function performs the
following steps:

● An introduction is displayed.

● The user is prompted for a number of players between 2 and 7.

● An array of Player objects is set up accordingly.

● Each player is prompted for a name, used to initialize one Player object in the array.

● A Game object is created, and players assigned using the SetPlayers() method.

● The game is started using the PlayGame() method.

● The int return value of PlayGame() is used to display a winning message (the value returned is the
index of the winning player in the array of Player objects).

The code for this (commented for clarity) is shown below:
 static void Main(string[] args)

 {
 // Display introduction.
 Console.WriteLine("KarliCards: a new and exciting card game.");
 Console.WriteLine("To win you must have 7 cards of the same suit in" +
 " your hand.");
 Console.WriteLine();

 // Prompt for number of players.
 bool inputOK = false;
 int choice = -1;
 do
 {
 Console.WriteLine("How many players (2-7)?");
 string input = Console.ReadLine();
 try
 {
 // Attempt to convert input into a valid number of players.
 choice = Convert.ToInt32(input);
 if ((choice >= 2) && (choice <= 7))
 inputOK = true;
 }
 catch
 {
 // Ignore failed conversions, just continue prompting.
 }
 } while (inputOK == false);

 // Initialize array of Player objects.
 Player[] players = new Player[choice];

 // Get player names.
 for (int p = 0; p < players.Length; p++)
 {
 Console.WriteLine("Player {0}, enter your name:", p + 1);
 string playerName = Console.ReadLine();
 players[p] = new Player(playerName);
 }

 // Start game.
 Game newGame = new Game();
 newGame.SetPlayers(players);
 int whoWon = newGame.PlayGame();

 // Display winning player.
 Console.WriteLine("{0} has won the game!", players[whoWon].Name);
 }

Next we come to PlayGame(), the main body of the application. Now, I'm not going to go into a huge amount
of detail about this method, but I have filled it with comments to make it a bit more comprehensible. In actual
fact, none of the code is that complicated, there's just quite a bit of it.

Play proceeds with each player viewing their cards and an upturned card on the table. They may either pick
up this card or draw a new one from the deck. After drawing a card they must discard one, replacing the card
on the table with another one if it has been picked up, or placing the discarded card on top of the one on the
table (adding the previous card on the table to the discardedCards collection.

One key point to bear in mind when digesting this code is the way in which the Card objects are manipulated.
The reason why these objects are defined as reference types rather than as value types (using a struct)
should now become clear. A given Card object may appear to exist in several places at once, as references
can be held by the Deck object, the hand fields of the Player objects, the discardedCards collection, and
the playCard object (the card currently on the table). This makes it easy to keep track of the cards, and is
used in particular in the code that draws a new card from the deck. The card is only accepted if it isn't in any
player hand, on the table, or in the discardedCards collection.

The code is as follows:
 public int PlayGame()
 {
 // Only play if players exist.
 if (players == null)
 return -1;

 // Deal initial hands.
 DealHands();

 // Initialize game vars, including an initial card to place on the
 // table: playCard.
 bool GameWon = false;
 int currentPlayer;
 Card playCard = playDeck.GetCard(currentCard++);

 // Main game loop, continues until GameWon == true.
 do
 {
 // Loop through players in each game round.
 for (currentPlayer = 0; currentPlayer < players.Length;
 currentPlayer++)
 {
 // Write out current player, player hand, and the card on the
 // table.
 Console.WriteLine("{0}'s turn.", players[currentPlayer].Name);
 Console.WriteLine("Current hand:");
 foreach (Card card in players[currentPlayer].PlayHand)
 {
 Console.WriteLine(card);
 }
 Console.WriteLine("Card in play: {0}", playCard);

 // Prompt player to pick up card on table or draw a new one.
 bool inputOK = false;
 do
 {
 Console.WriteLine("Press T to take card in play or D to " +
 "draw:");
 string input = Console.ReadLine();
 if (input.ToLower() == "t")
 {
 // Add card from table to player hand.
 Console.WriteLine("Drawn: {0}", playCard);
 players[currentPlayer].PlayHand.Add(playCard);

 inputOK = true;
 }
 if (input.ToLower() == "d")
 {
 // Add new card from deck to player hand.
 Card newCard;
 // Only add card if it isn't already in a player hand.
 bool cardIsInPlayerHand;
 do
 {
 newCard = playDeck.GetCard(currentCard++);
 cardIsInPlayerHand = false;
 // Loop through all player hands to see if newCard is
 // already in a hand.
 foreach (Player testPlayer in players)
 {
 cardIsInPlayerHand |=
 testPlayer.PlayHand.Contains(newCard);
 }
 } while (cardIsInPlayerHand);
 // Add the card found to player hand.
 Console.WriteLine("Drawn: {0}", newCard);
 players[currentPlayer].PlayHand.Add(newCard);
 inputOK = true;
 }
 } while (inputOK == false);

 // Display new hand with cards numbered.
 Console.WriteLine("New hand:");
 for (int i = 0; i < players[currentPlayer].PlayHand.Count; i++)
 {
 Console.WriteLine("{0}: {1}", i + 1,
 players[currentPlayer].PlayHand[i]);
 }

 // Prompt player for a card to discard.
 inputOK = false;
 int choice = -1;
 do
 {
 Console.WriteLine("Choose card to discard:");
 string input = Console.ReadLine();
 try
 {
 // Attempt to convert input into a valid card number.
 choice = Convert.ToInt32(input);
 if ((choice > 0) && (choice <= 8))
 inputOK = true;
 }
 catch
 {
 // Ignore failed conversions, just continue prompting.
 }
 } while (inputOK == false);

 // Place reference to removed card in playCard (place the card
 // on the table), then remove card from player hand.
 playCard = players[currentPlayer].PlayHand[choice - 1];
 players[currentPlayer].PlayHand.RemoveAt(choice - 1);
 Console.WriteLine("Discarding: {0}", playCard);

 // Space out text for players
 Console.WriteLine();

 // Check to see if player has won the game, and exit the player
 // loop if so.
 GameWon = players[currentPlayer].HasWon();
 if (GameWon == true)
 break;
 }
 } while (GameWon == false);

 // End game, noting the winning player.
 return currentPlayer;
 }

Have fun playing the game – and make sure you spend some time going through it in detail. One thing to try is
to put a breakpoint in the Reshuffle() method and play the game with 7 players. If you keep drawing cards
and discarding the cards drawn it won't take long for reshuffles to occur, as with 7 players there are only three
cards spare. This way you can prove to yourself that things are working properly by noting the three cards
when they reappear.

Chapter 12 - Events
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we have looked at the important topic of events and event handling. Although quite subtle, and
initially difficult to get your head around, the code involved is quite simple – and you'll certainly be using event
handlers a lot in the rest of the book.

As well as looking at some simple illustrative examples of events and how to handle them, we also made one
final addition to the CardLib library we've been building up over the last few chapters. Once complete, we
used this library to create a simple card game application. This application should serve as a demonstration of
pretty much all the techniques we've looked at in the first part of this book.

With this chapter we have completed not only a complete description of OOP as applied to C# programming,
but also a complete description of the C# language. From this point on we will be applying this knowledge to
more complex scenarios, such as creating Windows and Web applications, as well as making more use of
the .NET Framework.

Chapter 12 - Events
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Show the code for an event handler that uses the general-purpose (object sender, EventArgs e)

syntax that will accept either the Timer.Elapsed event or the Connection.MessageArrived event
from the code earlier in this chapter. The handler should output a string specifying which type of event
has been received, along with the Message property of the MessageArrivedEventArgs parameter or
the SignalTime property of the ElapsedEventArgs parameter, depending on which event occurs.

2. Modify the card game example to check for the more interesting winning condition of the popular card
game rummy. This means that a player wins the game if their hand contains two "sets" of cards, one of
which consists of three cards, and one of which consists of four cards. A set is defined as either a
sequence of cards of the same suit (such as 3H, 4H, 5H, 6H) or several cards of the same rank (such as
2H, 2D, 2S).

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

Chapter 13: Using Windows Form Controls

Overview

In recent years Visual Basic has won great acclaim for granting programmers the tools for creating highly
detailed user interfaces via an intuitive form designer, along with an easy to learn programming language that
together produced probably the best environment for rapid application development out there. One of the
advantages offered by Rapid Application Development (RAD) tool such as Visual Basic is that it provided
access to a number of prefabricated controls that could be used to quickly build the user interface for an
application.

At the heart of the development of most Visual Basic Windows applications is the form designer. You create a
user interface by dragging and dropping controls from a toolbox to your form, placing them where you want
them to be when you run the program, double-clicking the control adds a handler for that control. The controls
provided by Microsoft along with further custom controls that could be bought at reasonable prices have
supplied programmers with an unprecedented pool of reusable, thoroughly tested code that is no more than a
mouse-click away. Such application development is now available to C# developers through Visual Studio .
NET.

In this chapter, we'll look at working with Windows forms, and use some of the many controls that ship with
the .NET Framework. These controls cover a wide range of functionality, and through the design capabilities
of Visual Studio .NET, developing user interfaces and handling user interaction is very straightforward – and
fun! Presenting all of the controls present in Visual Studio .NET would be impossible within the scope of this
book, and so in this chapter we'll look at some of the most commonly used controls, ranging from labels and
text boxes to list views and status bars.

First, let's have a look at the form itself.

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

Working with Windows Forms

Let's start straight away – create a new Windows application called FormTest in the C:\BegVCSharp
\Chapter13 folder. You will see the Windows Form Designer, the main surface for the design of your user
interface:

From the design view, we can drag and drop controls onto our form, adjust their size, position and a great
many more properties that range from determining the text displayed on the control to specifying a data
source from which to populate the control. Before we look at the controls available, let's take a look at the form
itself – right-click on the form, select View Code from the menu that appears, and you'll be taken to the code
editor. Here's the top portion of the code that you'll see:
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;

namespace FormTest
{
 /// <summary>

 /// Summary description for Form1.
 /// </summary>
 public class Form1 : System.Windows.Forms.Form
 {

As you can see, there is a number of using directives at the top of the code for importing a number of
namespaces that are commonly used in writing a Windows applications – we've highlighted the System.
Windows.Forms namespace. The functionality for creating Windows applications such as interface display,
and user interaction is provided by the classes in this namespace. The other line highlighted above is the
class definition for the Form1 class – the : System.Windows.Forms.Form syntax indicates that this class
derives from the Form class of the System.Windows.Forms namespace. The form that is displayed to the
user with all its controls making up your carefully crafted user interface is in fact an instance of a class that
derives from System.Windows.Forms.Form (in this case it would be our Form1 class). This means we
have access to all the basic functionality of the System.Windows.Forms.Form class. We'll see in a
moment where the instance of the class is actually created in the code.

Click on the Form1.cs [Design] tab to return to the design view, click on the form to select it, and then set its
Name property to MyForm in the Properties window. Now if you return to the code view, you will find the class
has been renamed:
public class MyForm : System.Windows.Forms.Form

However, if you attempt to run the application at this point you will receive the error The type or namespace name
'Form1' could not be found – it seems that not all references to Form1 have been changed to MyForm. The
culprit is found in the Main() method:

static void Main()
{
 Application.Run(new Form1());
}

Application is a class of the System.Windows.Forms namespace, providing the functionality that take
cares of the behind the scenes activities for the execution of Windows applications. Here a new instance of
our Form1 class is passed to the Run() method, which starts our application and displays the form. This is
code we don't have to worry about, except when we change the name of the form in the form designer – in
Visual Studio .NET, if you change the name of the form in the form designer, you have to manually change its
name in the Run() parameter in the Main() method as well. Thus, our Main() method needs to become:

static void Main()
{
 Application.Run(new MyForm());
}

We'll keep reminding you of this point when we change the name of forms in our examples; it's easy to forget!

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The Toolbox

Let's have a closer look at the Toolbox. If you haven't already, move your mouse pointer over the toolbox on
the left of the screen, and pin it to the foreground by clicking the pin at the top right of the panel that unfolds.

If you accidentally remove the toolbox by clicking the X instead, you can make it reappear by
selecting Toolbox from the View menu, or by pressing Ctrl-Alt-X.

The Toolbox contains a selection of all the controls available to you as a .NET developer. The controls
available from the Windows Forms section of the Toolbox are the ones of interest to us in this chapter, and as
you can see, there's quite a few of them (we only show some of them here!):

The Toolbox consists of the controls that ship with the .NET Framework – you are not limited to use this
selection, and it is possible to customize the Toolbox by adding your own custom built or bought controls.
Building custom controls is something we'll look at in the next chapter, but for now we'll concentrate on a
subset of the controls that are found in the picture above.

Now that your Toolbox is open, double-click on the Button control, and an instance will appear on your form.
Drag the Button to the middle of your form:

Well, we've not written Microsoft Word just yet, but it's a start! Double-click on the Button and you'll be taken
back to the code editor with the following method signature provided for you:
private void button1_Click(object sender, System.EventArgs e)
{

}

The code generated by Visual Studio .NET is the event handler for the Button control's Click event – we'll
take a closer look at the events available to controls in a moment, but for now we'll just mention the Click
event is the event raised when the Button is clicked with the left mouse button. Each control has a default
event, and when you double-click on the control in the design view of Visual Studio .NET, code will be added
to your file that allows the control to subscribe to the event, and the method signature for handling the event
will also be added, and you will be taken to this code. We've seen the event handler, but where is the code for
subscribing to the event?

If you look through the file you will find a region labeled Windows Form Designer generated code that you can
expand – we looked briefly at this region in Chapter 2. When you expand this region, you will see the following
code:
 #region Windows Form Designer generated code
 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 this.button1 = new System.Windows.Forms.Button();

 this.SuspendLayout();
 //
 // button1
 //
 this.button1.Location = new System.Drawing.Point(96, 112);
 this.button1.Name = "button1";
 this.button1.TabIndex = 0;
 this.button1.Text = "button1";
 this.button1.Click += new System.EventHandler(this.button1_Click);
 //
 // MyForm
 //
 this.AutoScaleBaseSize = new System.Drawing.Size(5, 13);
 this.ClientSize = new System.Drawing.Size(292, 273);
 this.Controls.AddRange(new System.Windows.Forms.Control[] {
 this.button1});
 this.Name = "MyForm";
 this.Text = "Form1";
 this.ResumeLayout(false);
 }

The InitializeComponent() method contains the code automatically generated by Visual Studio .NET.

Be very careful if you modify the code in this method, (the comment before the method advises
you against it!) since it is possible to introduce errors that prevent your form from being displayed
in the designer until you have corrected the error.

The highlighted lines above show the Button control's (button1) contribution to this method, including the
line that subscribes the Button to the Click event:

 this.button1.Click += new System.EventHandler(this.button1_Click);

You should take a minute to look over the statements in this section. You will see exactly why it is possible to
create a Windows Application without using Visual Studio .NET. Everything in this section could simply be
entered in Notepad or a similar text editor and compiled. You will also see why that is not advisable. Keeping
track of everything in here is difficult at the best of times; it is easy to introduce errors and, because you
cannot see the effects of what you are doing, arranging the controls on the form to look right is a cumbersome
task. This does, however, open the door for third-party software producers to write their own programming
environments to rival Visual Studio .NET because the compilers used to create the actual applications are
included with the .NET Framework rather than being dedicated to Visual Studio .NET.

Now that we know where we'll be doing our work, and we've had a quick peek behind the scenes, let's look at
controls in general.

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

Controls

Most controls in .NET derive from the System.Windows.Forms.Control class. This class defines the
basic functionality of the controls, which is why many properties and events in the controls we'll see are
identical. Many of these classes are themselves base classes for other controls, as is the case with the Label
and TextBoxBase classes in the diagram below.

Some controls, named custom or user controls, derive from another class: System.Windows.
Forms.UserControl. This class is itself derived from the Control class and provides the
functionality we need to create controls ourselves. We'll cover this class in Chapter 14.
Incidentally, controls used for designing Web user interfaces derive from yet another class,
System.Web.UI.Control.

Properties

All controls have a number of properties that are used to manipulate the behavior of the control. The base
class of most controls, System.Windows.Forms.Control, has a number of properties that other controls
either inherit directly or override to provide some kind of custom behavior.

The table below shows some of the most common properties of the Control class. These properties will be
present in most of the controls we'll visit in this chapter, and they will therefore not be explained in detail
again, unless the behavior of the properties is changed for the control in question. Note that this table is not
meant to be exhaustive; if you want to see all of the properties in the class, please refer to the .NET
Framework SDK Documentation.

Name Description
Anchor Using this property, you can specify how the control behaves when its

container is resized. See below for a detailed explanation of this
property.

BackColor The background color of a control.

Bottom By setting this property, you specify the distance from the top of the
window to the bottom of the control. This is not the same as specifying
the height of the control.

Dock Allows you to make a control dock to the edges of a window. See below
for a more detailed explanation of this property.

Enabled Setting Enabled to true usually means that the control can receive
input from the user. Setting Enabled to false usually means that it
cannot.

ForeColor The foreground color of the control.

Height The distance from the top to the bottom of the control.

Left The left edge of the control relative to the left edge of the window.

Name The name of the control. This name can be used to reference the
control in code.

Parent The parent of the control.

Right The right edge of the control relative to the left edge of the window.

TabIndex The number the control has in the tab order of its container.

TabStop Specifies whether the control can be accessed by the Tab key.

Tag This value is usually not used by the control itself and is there for you to
store information about the control on the control itself. When this
property is assigned a value through the Windows Form designer, you
can only assign a string to it.

Text Holds the text that is associated with this control.

Top The top edge of the control relative to the top of the window.

Visible Specifies whether or not the control is visible at runtime.

Width The width of the control.

If you have experience with Visual Basic you may notice that in .NET, the Text property is used
to set the text that is displayed, rather than a Caption property. You will find that all intrinsic .
NET controls use the name Text to describe the main text for a control. Before .NET, Caption
and Text were used interchangeably between different controls.

Anchor and Dock Properties

These two properties are especially useful when you are designing your form. Ensuring that a window doesn't
become a mess to look at if the user decides to resize the window is far from trivial, and numerous lines of
code have been written to achieve this. Many programs solve the problem by simply disallowing the window
from being resized, which is clearly the easiest way around the problem, but not always the best. The Anchor
and Dock properties that have been introduced with .NET let you solve this problem without writing a single
line of code.

The Anchor property is used to specify how the control behaves when a user resizes the window. You can
specify if the control should resize itself, anchoring itself in proportion to its own edges, or stay the same size,
anchoring its position relative to the window's edges.

The Dock property is used to specify that a control should dock to an edge of its container. If a user resizes
the window, the control will continue to be docked to the edge of the window. If, for instance, you specify that
a control should dock with the bottom of its container, the control will resize and/or move itself to always
occupy the bottom part of the window, no matter how the window is resized.

See the text box example later in this chapter for the exact use of the Anchor property.

Events

In the last chapter, we saw what events are, and how we can use them. Here we will talk about a particular
kind of events, specifically the events generated by Windows Forms controls. These events are usually
associated with actions of the user. For example, when the user clicks or presses a button, that button
generates an event in which it says what just happened to it. Handling the event is the means by which the
programmer can provide some functionality for that button.

The Control class defines a number of events that are common to the controls we'll use in this chapter. The
table below describes a number of these events. Once again, this is just a selection of the most common
events; if you need to see the entire list, please refer to the .NET Framework SDK Documentation.

Name Description
Click Occurs when a control is clicked. In some cases, this event will also occur when a

user presses Enter.
DoubleClick Occurs when a control is double-clicked. Handling the Click event on some

controls, such as the Button control will mean that the DoubleClick event can
never be called.

DragDrop Occurs when a drag-and-drop operation is completed, in other words, when an
object has been dragged over the control, and the user releases the mouse button.

DragEnter Occurs when an object being dragged enters the bounds of the control.

DragLeave Occurs when an object being dragged leaves the bounds of the control.

DragOver Occurs when an object has been dragged over the control.

KeyDown Occurs when a key becomes pressed while the control has focus. This event
always occurs before KeyPress and KeyUp.

KeyPress Occurs when a key becomes pressed while a control has focus. This event always
occurs after KeyDown and before KeyUp. The difference between KeyDown and
KeyPress is that KeyDown passes the keyboard code of the key that has been
pressed, while KeyPress passes the corresponding char value for the key.

KeyUp Occurs when a key is released while a control has focus. This event always
occurs after KeyDown and KeyPress.

GotFocus Occurs when a control receives focus. Do not use this event to perform validation
of controls. Use Validating and Validated instead.

LostFocus Occurs when a control loses focus. Do not use this event to perform validation of
controls. Use Validating and Validated instead.

MouseDown Occurs when the mouse pointer is over a control and a mouse button is pressed.
This is not the same as a Click event because MouseDown occurs as soon as
the button is pressed and before it is released.

MouseMove Occurs continually as the mouse travels over the control.

MouseUp Occurs when the mouse pointer is over a control and a mouse button is released.

Paint Occurs when the control is drawn.

Validated This event is fired when a control with the CausesValidation property set to
true is about to receive focus. It fires after the Validating event finishes and
indicates that validation is complete.

Validating Fires when a control with the CausesValidation property set to true is about
to receive focus. Note that the control which is to be validated is the control which
is losing focus, not the one that is receiving it.

We will see many of these events in the examples in the rest of the chapter. All our examples will follow the
same format, where we first create the form's visual appearance, choosing and positioning controls, etc.,
before we then move onto adding the event handlers – this is where the main work of our examples takes
places.

To handle a particular event, there are three basic ways of going about it. The first is to double-click on the
control in question, and you will be taken to the event-handler for the control's default event – this event is
different for different controls. If that's the event you want, then you're fine. If you want an event different from
the default one of the control, there are two possible ways of proceeding.

One way is to use the Events list in the Properties window:

The grayed event is that control's default event. To add a handler for a particular event, double-click on that
event in the Events list, and the code to subscribe the control to the event will be generated, along with the
method signature to handle the event. Alternatively, you can type a name for the method to handle the
particular event next to that event in the Events list, and when you press enter the event handler will be
generated with your chosen name.

Another option is to add the code to subscribe to the event yourself – we'll do this often in this and the next
chapter by adding the code to the form's constructor after the InitializeComponent() call. Of course, we

still have to add the method signature to handle the event ourselves as well, and this method has the
drawback that you need to know the exact method signature for that event.

Note that each of these two options require two steps – subscription to the event and the correct signature for
the method handler. If you double-click on a control and try to handle another event by editing the method
signature of the default event for the event that you actually want handled, you will fail – you also need to alter
the event subscription code in InitializeComponent(), and so this "cheating" method is not really a quick
way to handle particular events.

We are now ready to start looking at the controls themselves, and we'll start with one that we've seen in
previous chapters, the Button control.

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The Button Control

When you think of a button, you are probably thinking of a rectangular button that can be clicked to perform
some task. However, the .NET Framework provides a class derived from Control - System.Windows.
Forms.ButtonBase - that implements the basic functionality needed in button controls, so any programmer
can derive from this class and create his or hers custom button controls.

The System.Windows.Forms namespace provides us with three controls that derive from ButtonBase -
Button, CheckBox and RadioButton. In this section we will focus on the Button control (which is the
standard, well known rectangular button), and we'll cover the other two later in this chapter.

The Button control exists on just about any Windows dialog you can think of. A button is primarily used to
perform three kinds of tasks:

● To close a dialog with a state (for example, OK and Cancel buttons)

● To perform an action on data entered on a dialog (for example clicking Search after entering some search
criteria)

● To open another dialog or application (for example, Help buttons)

Working with the button control is very straightforward. It usually consists of adding the control to your form
and double-clicking it to add the code to the Click event, which will probably be enough for most applications
you'll work on.

Let's look at some of the commonly used properties and events of the control. This will give you an idea what
can be done with it. After that, we'll create a small example that demonstrates some of the basic properties
and events of a button.

Button Properties

We'll list the most commonly used properties of the Button class, even if technically they are defined in the
ButtonBase base class. Only the most commonly used properties are explained here. Please refer to the .
NET Framework SDK Documentation for a complete listing.

Name Description
FlatStyle The style of the button can be changed with this property. If you set the style to

Popup, the button will appear flat until the user moves the mouse pointer over it.
When that happens, the button pops up to its normal 3D look.

Enabled We'll mention this here even though it is derived from Control, because it's a
very important property for a button. Setting the Enabled property to false
means that the button becomes grayed out and nothing happens when you click
it.

Image Allows you to specify an image (bitmap, icon, etc.), which will be displayed on
the button.

ImageAlign With this property, you can set where the image on the button should appear.

Button Events

By far the most used event of a button is the Click event. This happens whenever a user clicks the button,
by which we mean pressing the left mouse button and releasing it again while over the button. This means
that if you left-click on the button and then draw the mouse away from the button before releasing it the Click
event will not be raised. Also, the Click event is raised when the button has focus and the user presses
Enter. If you have a button on a form, you should always handle this event.

Let's move to the example. We'll create a dialog with three buttons. Two of the buttons will change the
language used from English to Danish and back. (Feel free to use whatever language you prefer.) The last
button closes the dialog.

Try it Out - Button Test

1. Create a new Windows application called ButtonTest in the directory C:\BegVCSharp\Chapter13.

2. Pin the Toolbox down, and double-click the Button control three times. Then move the buttons and
resize the form as shown in the picture below.

3. Right-click a button and select Properties. Then change the name of each button as indicated in the
picture above by selecting the (Name) edit field in the Properties window and typing the relevant text.

4. Change the Text property of each button the be the same as the name, but omit the btn prefix for the
Text property value.

5. We want to display a flag in front of the text to make it clear what we are talking about. Select the English
button and find the Image property. Click (…) to the right of it to bring up a dialog where you can select
an image. The flag icons we want to display come with Visual Studio .NET. If you installed to the default
location (on an English language installation) they should be located in C:\Program Files
\Microsoft Visual Studio .NET\Common7\Graphics\icons\Flags. Select the icon flguk.
ico. Repeat this process with the Danish button, selecting the flgden.ico file instead. (If you want to
use a different flag here, then this directory will have other flags to choose from.)

6. You'll notice at this point that the button text and icon are placed on top of each other, so we need to
change the alignment of the icon. For both the English and Danish buttons, change the ImageAlign
property to MiddleLeft.

7. At this point you may want to adjust the width of the buttons so that the text doesn't start right where the
images end. Do this by selecting each of the buttons and pulling the notch on the right-hand edge of the

button.

8. Finally, click on the form and change the Text property to Do you speak English?

That's it for the user interface of our dialog. You should now have something that looks like this:

Now we are ready to add the event handlers to the dialog. Double-click the English button. This will take you
directly to the event handler for the control's default event - the Click event is the default event for the button
and so that is the handler created.

Adding the Event Handlers

Double-click on the Button and add the following code to the event handler:

private void btnEnglish_Click(object sender, System.EventArgs e)
{
 this.Text = "Do you speak English?";
}

When Visual Studio .NET creates a method to handle such an event, the method name is a concatenation of
the name of the control, followed by an underscore and the name of the event that is handled.

For the Click event, the first parameter, object sender, will hold the control that was clicked. In this
example, this will always be the control indicated by the name of the method, but in other cases many controls
may use the same method to handle an event, and in that case you can find out exactly which control is
calling by checking this value. The text box example later in this chapter demonstrates how to use a single
method for multiple controls. The other parameter, System.EventArgs e, holds information about what
actually happened. In this case, we'll not be needing any of this information.

Return to the design view and double-click the Danish button and you will be taken to the event handler for
that button. Here is the code:
private void btnDanish_Click(object sender, System.EventArgs e)
{
 this.Text = "Taler du dansk?";
}

This method is identical to the btnEnglish_Click, except that the text is in Danish. Finally, we add the
event handler for the OK button in the same way as we've done twice now. The code is a little different though:
private void btnOK_Click(object sender, System.EventArgs e)
{
 Application.Exit();
}

With this we exit the application and, with it, this first example. Compile it, run it and press a few of the

buttons. You will get output similar to this:

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The Label and LinkLabel Controls

The Label control is probably the most used control of them all. Look at any Windows application and you'll
see a Label on just about any dialog you can find. The Label is a simple control with one purpose only – to
display text on the form.

The .NET Framework includes two label controls that present themselves to the user in two distinct ways:

● Label, the standard Windows label

● LinkLabel, a label similar to the standard one (and derived from it), but presents itself as an Internet link
(a hyperlink)

In the picture below, one of each of the two types of Label has been dragged to a form to illustrate the
difference in appearance between the two:

And that's it for most uses of the Label control. Usually you need to add no event handling code for a
standard Label, although it does support events like all controls. In the case of the LinkLabel, however,
some extra code is needed if you want to allow the user to click it and take him or her to the web page shown
in the text.

The Label control has a surprising number of properties that can be set. Most of these are derived from
Control, but some are new. The following table lists the most common ones. Unless stated otherwise, the
properties are common to both the Label and LinkLabel controls.

Name Description
BorderStyle Allows you to specify the style of the border around the Label. The

default is no border.
DisabledLinkColor (LinkLabel only) The color of the LinkLabel after the user has

clicked it.
FlatStyle Controls how the control is displayed. Setting this property to Popup

will make the control appear flat until the user moves the mouse
pointer over the control. At that time, the control will appear raised.

Image This property allows you to specify a single image (bitmap, icon, etc.)
to be displayed in the label.

ImageAlign (Read/Write) Where in the Label the image is shown.

LinkArea (LinkLabel only) The range in the text that should be displayed as
a link.

LinkColor (LinkLabel only) The color of the link.

Links (LinkLabel only) It is possible for a LinkLabel to contain more
than one link. This property allows you to find the link you want. The
control keeps track of the links displayed in the text. Not available at
design time.

LinkVisited (LinkLabel only) Returns whether a link has been visited or not.

TextAlign Where in the control the text is shown.

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The TextBox Control

Text boxes should be used when you want the user to enter text that you have no knowledge of at design time
(for example the name of the user). The primary function of a text box is for the user to enter text, but any
characters can be entered, and it is quite possible to force the user to enter numeric values only.

The .NET Framework comes with two basic controls to take text input from the user: TextBox and
RichTextBox. Both controls are derived from a base class called TextBoxBase which itself is derived from
Control.

TextBoxBase provides the base functionality for text manipulation in a text box, such as selecting text,
cutting to and pasting from the Clipboard, and a wide range of events. We'll not focus so much now on what is
derived from where, but instead look at the simpler of the two controls first – TextBox. We'll build one
example that demonstrates the TextBox properties and build on that to demonstrate the RichTextBox
control later.

TextBox Properties

As has been stated earlier in this chapter, there are simply too many properties for us to describe them all,
and so this listing includes only the most common ones.

Name Description
CausesValidation When a control that has this property set to true is about to receive

focus, two events are fired: Validating and Validated. You can
handle these events in order to validate data in the control that is
losing focus. This may cause the control never to receive focus. The
related events are discussed below.

CharacterCasing A value indicating if the TextBox changes the case of the text
entered. The possible values are:

● Lower: All text entered is converted lower case.

● Normal: No changes are made to the text.

● Upper: All text entered is converted to upper case.

MaxLength A value that specifies the maximum length in characters of any text,
entered into the TextBox. Set this value to zero if the maximum limit
is limited only by available memory.

Multiline Indicates if this is a multiline control, which means it is able to show
multiple lines of text. When Multiline property is set to true,
you'll usually want to set WordWrap to true as well.

PasswordChar Specifies if a password character should replace the actual
characters entered into a single line TextBox. If the Multiline
property is true then this has no effect.

ReadOnly A Boolean indicating if the text is read only.

ScrollBars Specifies if a multiline TextBox should display scrollbars.

SelectedText The text that is selected in the TextBox.

SelectionLength The number of characters selected in the text. If this value is set to
be larger than the total number of characters in the text, it is reset by
the control to be the total number of characters minus the value of
SelectionStart.

SelectionStart The start of the selected text in a TextBox.

WordWrap Specifies if a multiline TextBox should automatically wrap words if a
line exceeds the width of the control.

TextBox Events

Careful validation of the text in the TextBox controls on a form can make the difference between happy users
and angry ones.

You have probably experienced how annoying it is when a dialog only validates its contents when you click
OK. This approach to validating the data usually results in a message box being displayed informing you that
the data in "TextBox number three" is incorrect. You can then continue to click OK until all the data is correct.
Clearly this is not a good approach to validating data, so what can we do instead?

The answer lies in handling the validation events a TextBox control provides. If you want to make sure that
invalid characters are not entered in the text box or only values within a certain range are allowed, then you
will want to indicate to the user of the control whether the value entered is valid or not.

The TextBox control provides these events (all of which are inherited from Control):

Name Description
Enter

GotFocus

Leave

Validating

Validated

LostFocus

These six events occur in the order they are listed here. They are known as
"Focus Events" and are fired whenever a control's focus changes, with two
exceptions. Validating and Validated are only fired if the control that
receives focus has the CausesValidation property set to true. The reason
why it's the receiving control that fires the event is that there are times where you
do not want to validate the control, even if focus changes. An example of this is if
the user clicks a Help button.

KeyDown

KeyPress

KeyUp

These three events are known as "Key Events". They allow you to monitor and
change what is entered into your controls.

KeyDown and KeyUp receive the key code corresponding to the key that was
pressed. This allows you to determine if special keys such as Shift or Control and
F1 were pressed.

KeyPress, on the otherhand, receives the character corresponding to a keyboard
key. This means that the value for the letter "a" is not the same as the letter "A". It
is useful if you want to exclude a range of characters, for example, only allowing
numeric values to be entered.

TextChanged Occurs whenever the text in the TextBox is changed, no matter what the change.

Try it Out – TextBoxTest

We'll create a dialog on which you can enter your name, address, occupation, and age. The purpose of this
example is to give you a good grounding in manipulating properties and using events, not to create something
that is incredibly useful.

We'll build the user interface first.

1. Create a new Windows application called TextBoxTest in the directory C:\BegVCSharp\Chapter13.

2. Create the form shown below by dragging some Label, TextBox, and Button controls onto the
design surface. Before you can resize the two TextBox controls txtAddress and txtOutput as shown you
must set their Multiline property to true. Do this by right-clicking the controls and select Properties.

3. Name the controls as indicated in the picture above.

4. Set the Text property of each TextBox to an empty string, which means that they will contain nothing
when the application is first run.

5. Set the Text property of all the other controls to the same as the name of the control, except for the first
three letters. Set the Text property to TextBoxTest.

6. Set the Scrollbars property of the two controls txtOutput and txtAddress to Vertical.

7. Set the ReadOnly property of the txtOutput control to true.

8. Set the CausesValidation property of the btnHelp Button to false. Remember from the
discussion of the Validating and Validated events that setting this to false will allow the user to
click this Button without having to be concerned about entering invalid data.

9. When you have sized the form to fit snugly around the controls, it is time to anchor the controls so they
behave properly when the form is resized. Let's set the Anchor property for each type of control in one
go – first of all, select all the Label controls by holding down the Ctrl key while you select each Label
in turn. Once you've selected them all, set the Anchor property to Top, Left from the Properties window,
and the Anchor property for each of the selected Label controls will be set as well. Repeat this
procedure to set the Anchor property for each TextBox to Top, Left, Right, and additionally set the
Anchor property for the txtOutput TextBox to Top, Bottom, Left, Right. Now set the Anchor property
for both Button controls to Top, Right.

The reason why txtOutput is anchored rather than docked to the bottom of the form is that we want
the output text area to be resized as we pull the form. If we had docked the control to the bottom of the
form, it would be moved to stay at the bottom, but it would not be resized.

10. One final thing should be set. On the form, find the Size and MinimumSize properties. Our form has
little meaning if it is sized to something smaller than it is now, therefore you should set the
MinimumSize property to the same as the Size property.

The job of setting up the visual part of the form is now complete. If you run it nothing happens when you click
the buttons or enter text, but if you maximize or pull in the dialog, the controls behave exactly as you want
them to in a proper user interface, staying put and resizing to fill the whole of the dialog.

Adding the Event Handlers

From the design view, double-click the btnOK button. Repeat this with the other button. As we saw in the
button example earlier in this chapter this causes event handlers for the Click event of the buttons to be
created. When the OK button is clicked, we want to transfer the text in the input text boxes to the read-only
output box.

Here is the code for the two Click event-handlers.

private void btnOK_Click(object sender, System.EventArgs e)
{
 // No testing for invalid values are made, as that should
 // not be necessary

 string output;

 // Concatenate the text values of the four TextBoxes
 output = "Name: " + this.txtName.Text + "\r\n";
 output += "Address: " + this.txtAddress.Text + "\r\n";
 output += "Occupation: " + this.txtOccupation.Text + "\r\n";
 output += "Age: " + this.txtAge.Text;

 // Insert the new text
 this.txtOutput.Text = output;
}

private void btnHelp_Click(object sender, System.EventArgs e)
{
 // Write a short description of each TextBox in the Output TextBox
 string output;

 output = "Name = Your name\r\n";
 output += "Address = Your address\r\n";
 output += "Occupation = Only allowed value is 'Programmer'\r\n";
 output += "Age = Your age";

 // Insert the new text
 this.txtOutput.Text = output;
}

In both functions the Text property of each TextBox is used, either retrieved, set in the btnOK_Click()
function, or simply set as in the btnHelp_Click() function.

We insert the information the user has entered without bothering to check if it is correct. This means that we
must do the checking elsewhere. In this example, there are a number of criteria that we wish to enforce in
order for the values to be correct:

● The name of the user cannot be empty

● The age of the user must be a number greater than or equal to zero

● The occupation of the user must be "Programmer" or be left empty

● The address of the user cannot be empty

From this we can see that the check that must be done for two of the text boxes (txtName and txtAddress)
is the same. We also see that we should prevent the user from entering anything invalid into the Age box, and
finally we must check if the user claims to be a programmer.

To prevent the user from clicking OK before anything is entered we start by setting the OK button's Enabled
property to false – this time we'll do it in the constructor of our form rather than from the Properties window.
If you do set properties in the constructor, make sure not to set them until after the generated code in
InitializeComponent() has been called.

public Form1()
{
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 this.btnOK.Enabled = false;
}

Now we'll create the handler for the two text boxes that must be checked to see if they are empty. We do this
by subscribing to the Validating event of the text boxes. We inform the control that the event should be
handled by a method named txtBoxEmpty_Validating(), so that's a single event-handling method for
two different controls.

We also need a way to know the state of our controls. For this purpose, we use the Tag property of the
TextBox control. If you recall the discussion of this property from earlier in the chapter, we said that only
strings can be assigned to the Tag property from the Forms Designer. However, as we are setting the Tag
value from code, we can do pretty much what we want with it, since the Tag property takes an object, and it
is more appropriate to enter a Boolean value here.

To the constructor we add the following statements:
this.btnOK.Enabled = false;

// Tag values for testing if the data is valid
this.txtAddress.Tag = false;
this.txtAge.Tag = false;
this.txtName.Tag = false;
this.txtOccupation.Tag = false;
// Subscriptions to events
this.txtName.Validating += new
 System.ComponentModel.CancelEventHandler(this.txtBoxEmpty_Validating);
this.txtAddress.Validating += new

 System.ComponentModel.CancelEventHandler(this.txtBoxEmpty_Validating);

Unlike the button event handler we've seen previously, the event handler for the Validating event is a
specialized version of the standard handler System.EventHandler. The reason this event needs a special
handler is that should the validation fail, there must be a way to prevent any further processing. If we were to
cancel further processing, that would effectively mean that it would be impossible to leave a text box until the
data entered is valid.

The Validating and Validated events combined with the CausesValidation property fix a nasty
problem that occurred when using the GotFocus and LostFocus events to perform validation of controls.
The problem occurred when the GotFocus and LostFocus events were continually fired because validation
code was attempting to shift the focus between control, which created an infinite loop.

We add the event handler as follows:
private void txtBoxEmpty_Validating(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // We know the sender is a TextBox, so we cast the sender object to that
 TextBox tb = (TextBox)sender;

 // If the text is empty we set the background color of the
 // Textbox to red to indicate a problem. We use the tag value
 // of the control to indicate if the control contains valid
 // information.
 if (tb.Text.Length == 0)
 {
 tb.BackColor = Color.Red;
 tb.Tag = false;

 // In this case we do not want to cancel further processing,
 // but if we had wanted to do this, we would have added this line:
 // e.Cancel = true;
 }
 else
 {
 tb.BackColor = System.Drawing.SystemColors.Window;
 tb.Tag = true;
 }

 // Finally, we call ValidateAll which will set the value of
 // the OK button.
 ValidateAll();
}

Because more than one text box is using this method to handle the event, we cannot be sure which is calling
the function. We do know, however, that the effect of calling the method should be the same no matter who is
calling, so we can simply cast the sender parameter to a TextBox and work on that:

 TextBox tb = (TextBox)sender;

If the length of the text in the text box is zero, we set the background color to red and the Tag to false. If it is
not, we set the background color to the standard Windows color for a window.

You should always use the colors found in the System.Drawing.SystemColors enumeration

when you want to set a standard color in a control. If you simply set the color to white, your
application will look strange if the user has changed the default color settings.

We'll postpone our description of the ValidateAll()function until the end of this example.

Keeping with the Validating event, the next handler we'll add is for the Occupation text box. The
procedure is exactly the same as for the two previous handlers, but the validation code is different because
occupation must be Programmer or an empty string to be valid. We therefore add a new line to the constructor.
this.txtOccupation.Validating += new
 System.ComponentModel.CancelEventHandler(this.txtOccupation_Validating);

And then the handler itself:
private void txtOccupation_Validating(object sender,
 System.ComponentModel.CancelEventArgs e)
{
 // Cast the sender object to a textbox
 TextBox tb = (TextBox)sender;

 // Check if the values are correct
 if (tb.Text.CompareTo("Programmer") == 0 || tb.Text.Length == 0)
 {
 tb.Tag = true;
 tb.BackColor = System.Drawing.SystemColors.Window;
 }
 else
 {
 tb.Tag = false;
 tb.BackColor = Color.Red;
 }

 // Set the state of the OK button
 ValidateAll();
}

Our second to last challenge is the age text box. We don't want the user to type anything but positive numbers
(including 0 to make the test simpler). To achieve this we'll use the KeyPress event to remove any unwanted
characters before they are shown in the text box.

First, we subscribe to the KeyPress event. Select the txtAge text box and double-click on the KeyPress
event in the Events list of the Properties window. The KeyPress event handler is specialized as well. The
System.Windows.Forms.KeyPressEventHandler is supplied because the event needs information
about the key that was pressed.

Add the following code to the event handler itself:
private void txtAge_KeyPress(object sender,
 System.Windows.Forms.KeyPressEventArgs e)
{
 if ((e.KeyChar < 48 || e.KeyChar > 57) && e.KeyChar != 8)
 e.Handled = true; // Remove the character
}

The ASCII values for the characters between 0 and 9 lie between 48 and 57, so we make sure that the
character is within this range. We make one exception though. The ASCII value 8 is the Backspace key, and

for editing reasons, we allow this to slip through.

Setting the Handled property of KeyPressEventArgs to true tells the control that it shouldn't do anything
else with the character, and so if the key pressed isn't a digit or a backspace, it is not shown.

As it is now, the control is not marked as invalid or valid. This is because we need another check to see if
anything was entered at all. This is a simple thing as we've already written the method to perform this check
and we simply subscribe to the Validating event for the Age control as well by adding this line to the
constructor:
this.txtAge.Validating += new
 System.ComponentModel.CancelEventHandler(this.txtBoxEmpty_Validating);

One last case must be handled for all the controls. If the user has entered valid text in all the textboxes and
then changes something, making the text invalid, the OK button remains enabled. So we have to handle one
last event handler for all of the text boxes: the Change event which will disable the OK button should any text
field contain invalid data.

The TextChanged event is fired whenever the text in the control changes. We subscribe to the event by
adding the following lines to the constructor:
this.txtName.TextChanged += new System.EventHandler(this.txtBox_TextChanged);
this.txtAddress.TextChanged += new
 System.EventHandler(this.txtBox_TextChanged);
this.txtAge.TextChanged += new System.EventHandler(this.txtBox_TextChanged);
this.txtOccupation.TextChanged += new
 System.EventHandler(this.txtBox_TextChanged);

The TextChanged event uses the standard event handler we know from the Click event. Finally, we add
the event itself.
private void txtBox_TextChanged(object sender, System.EventArgs e)
{
 // Cast the sender object to a Textbox
 TextBox tb = (TextBox)sender;

 // Test if the data is valid and set the tag and background
 // color accordingly.
 if (tb.Text.Length == 0 && tb != txtOccupation)
 {
 tb.Tag = false;
 tb.BackColor = Color.Red;
 }
 else if (tb == txtOccupation &&
 (tb.Text.Length != 0 && tb.Text.CompareTo("Programmer") != 0))
 {
 // Don't set the color here, as it will color change while the user
 // is typing
 tb.Tag = false;
 }
 else
 {
 tb.Tag = true;
 tb.BackColor = SystemColors.Window;
 }

 // Call ValidateAll to set the OK button
 ValidateAll();
}

This time we must find out exactly which control is calling the event handler, because we don't want the
background color of the Occupation text box to change to red when the user starts typing. We do this by
checking the Name property of the text box that was passed to us in the sender parameter.

Only one thing remains: the ValidateAll method that enables or disables the OK button.

private void ValidateAll()
{
 // Set the OK button to enabled if all the Tags are true
 this.btnOK.Enabled = ((bool)(this.txtAddress.Tag) &&
 (bool)(this.txtAge.Tag) &&
 (bool)(this.txtName.Tag) &&
 (bool)(this.txtOccupation.Tag));
}

The method simply sets the value of the Enabled property of the OK button to true if all of the Tag
properties are true. We need to cast the value of the Tag properties to a Boolean because it is stored as an
object type.

If you test the program now, you should see something like this:

Notice that you can click the Help button while you are in a text box with invalid data without the background
color changing to red.

The example we've just completed is quite long compared to the others you will see in this chapter – this is
because we'll build on this example rather than starting from scratch with each example.

Remember you can download the source code for all the examples in this book from www.wrox.
com.

http://www.wrox.com/
http://www.wrox.com/

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The RadioButton and CheckBox Controls

As mentioned earlier, the RadioButton and CheckBox controls share their base class with the Button
control, although their appearance and use differs substantially from the button.

Radio buttons traditionally display themselves as a label with a dot to the left of it, which can be either
selected or not. You should use the radio buttons when you want to give the user a choice between several
mutually exclusive options. An example of this could be, if you want to ask for the gender of the user.

To group radio boxes together so that they create one logical unit you must use a GroupBox control. By first
placing a GroupBox onto a form, and then placing the RadioButton controls you need within the borders of
the GroupBox, the RadioButton controls will know to change their state to reflect that only one within the
group box can be selected. If you do not place them within a GroupBox, only one RadioButton on the form
can be selected at any given time.

A CheckBox traditionally displays itself as a label with a small box with a checkmark to the left of it. You
should use the check box when you want to allow the user to choose one or more options. An example could
be a questionnaire asking which operating systems the user has tried (for example, Windows 95, Windows
98, Linux, etc.).

We'll look at the important properties and events of the two controls, starting with the RadioButton, and then
move on to a quick example of their use.

RadioButton Properties

As the control derives from ButtonBase and we've already seen in our example that used the button earlier,
there are only a few properties to describe. As always, should you need a complete list, please refer to the .
NET Framework SDK Documentation.

Name Description
Appearance A RadioButton can be displayed either as a label with a circular check to

the left, middle or right of it, or as a standard button. When it is displayed as
a button, the control will appear pressed when selected and not pressed
otherwise.

AutoCheck When this property is true, a check mark is displayed when the user clicks
the radio button. When it is false the radio button must be manually
checked in code from the Click event handler.

CheckAlign By using this property, you can change the alignment of the check box
portion of the radio button. The default is ContentAlignment.
MiddleLeft.

Checked Indicates the status of the control. It is true if the control has a check mark,
and false otherwise.

RadioButton Events

You will commonly only use one event when working with RadioButton controls, but as always there are
many others that can be subscribed to. We'll only cover two in this chapter, and the only reason the second
event is mentioned is that there is a subtle difference between the two that should be noted.

Name Description
CheckedChanged This event is sent when the check of the RadioButton changes.

Click This event is sent every time the RadioButton is clicked. This is not the
same as the CheckedChange event, because clicking a RadioButton
two or more times in succession only changes the Checked property once -
and only if it wasn't checked already. Moreover, if the AutoCheck property
of the button being clicked is false, the button will not get checked at all,
and again only the Click event will be sent.

CheckBox Properties

As you would imagine, the properties and events of this control are very similar to those of the RadioButton,
but there are two new ones.

Name Description
CheckState Unlike the RadioButton, a CheckBox can have three states:

Checked, Indeterminate, and Unchecked. When the state of the
check box is Indeterminate, the control check next to the label is
usually grayed, indicating that the current value of the check is not
valid or has no meaning under the current circumstances.

ThreeState When this property is false, the user will not be able to change the
CheckState state to Indeterminate. You can, however, still
change the CheckState property to Indeterminate from code.

CheckBox Events

You will normally use only one or two events on this control. Note that, even though the CheckChanged
event exists on both the RadioButton and the CheckBox controls, the effects of the events differ.

Name Description
CheckedChanged Occurs whenever the Checked property of the check box changes.

Note that in a CheckBox where the ThreeState property is true, it
is possible to click the check box without changing the Checked
property. This happens when the check box changes from checked
to indeterminate state.

CheckedStateChanged Occurs whenever the CheckedState property changes. As
Checked and Unchecked are both possible values of the
CheckedState property, this event will be sent whenever the
Checked property changes. In addition to that, it will also be sent
when the state changes from Checked to Indeterminate.

This concludes the events and properties of the RadioButton and CheckBox controls. But before we look at
an example using these, let's take a look at the GroupBox control which we mentioned earlier.

The GroupBox Control

The GroupBox control is often used to logically group a set of controls such as the RadioButton and
CheckBox, and provide a caption and a frame around this set.

Using the group box is as simple as dragging it onto a form, and then dragging the controls it should contain
onto it (but not the other way round - you can't lay a group box over some pre-existing controls). The effect of
this is that the parent of the controls becomes the group box, rather than the form, and it is therefore possible
to have more than one RadioButton selected at any given time. Within the group box, however, only one
RadioButton can be selected.

The relationship between parent and child probably needs to be explained a bit more. When a control is
placed on a form, the form is said to become the parent of the control, and hence the control is the child of the
form. When you place a GroupBox on a form, it becomes a child of a form. As a group box can itself contain
controls, it becomes the parent of these controls. The effect of this is that moving the GroupBox will move all
of the controls placed on it.

Another effect of placing controls on a group box is that it allows you to affect the contained controls by setting
the corresponding property on the group box. For instance, if you want to disable all the controls within a
group box, you can simply set the Enabled property of the GroupBox to false.

We will demonstrate the use of the GroupBox in the following example.

Try it Out - RadioButton and CheckBox Example

We'll modify the TextBoxTest example we created earlier when we demonstrated the use of text boxes. In
that example, the only possible occupation was Programmer. Instead of forcing the user to type this out in full,
we'll change this text box to a check box.

To demonstrate the use of the RadioButton, we'll ask the user to provide one more piece of information:
their gender.

Change the text box example like this:

1. Remove the label named lblOccupation and the text box named txtOccupation.

2. Add a CheckBox, a GroupBox and two RadioButton controls, and name the new controls as shown
in the picture below.

3. The Text property of the RadioButton and CheckBox controls should be the same as the names of
the controls without the first three letters, and for the GroupBox the Text property should be Sex.

4. Set the Checked property of the chkProgrammer check box to true.

5. Set the Checked property of either rdoMale or rdoFemale to true. Note that you cannot set both to
true. If you try to, the value of the other RadioButton is automatically changed to false.

No more needs to be done on the visual part of the example, but there are a number of changes in the
code. First, we need to remove all the references to the text box that we've removed. Go to the code and
complete the following steps.

6. In the constructor of the form, remove the three lines which refer to txtOccupation. This includes
subscriptions to the Validating and TextChanged events and the line which sets the Tag property to
false.

7. Remove the txtOccupation_Validating() method entirely.

Adding the Event Handlers

The txtBox_TextChanged method included tests to see if the calling control was the txtOccupation
TextBox. We now know for sure that it will not be (since we removed it), and so we change the method by
removing the else if block and modify the if test as follows:

private void txtBox_TextChanged(object sender, System.EventArgs e)
{
 // Cast the sender object to a Textbox
 TextBox tb = (TextBox)sender;

 // Test if the data is valid and set the tag background
 // color accordingly.
 if (tb.Text.Length == 0)
 {
 tb.Tag = false;
 tb.BackColor = Color.Red;
 }
 else
 {
 tb.Tag = true;

 tb.BackColor = SystemColors.Window;
 }

 // Call ValidateAll to set the OK button
 ValidateAll();
}

Another place in which we check the value of the text box we've removed is in the ValidateAll() method.
Remove the check entirely so the code becomes:
private void ValidateAll()
{
 // Set the OK button to enabled if all the Tags are true
 this.btnOK.Enabled = ((bool)(this.txtAddress.Tag) &&
 (bool)(this.txtAge.Tag) &&
 (bool)(this.txtName.Tag));
}

Since we are using a check box rather than a text box we know that the user cannot enter any invalid
information, as he or she will always be either a programmer or not.

We also know that the user is either male or female, and because we set the property of one of the
RadioButtons to true, the user is prevented from choosing an invalid value. Therefore, the only thing left to
do is change the help text and the output. We do this in the button event handlers:
private void btnHelp_Click(object sender, System.EventArgs e)
{
 // Write a short descrption of each TextBox in the Output TextBox
 string output;

 output = "Name = Your name\r\n";
 output += "Address = Your address\r\n";
 output += "Programmer = Check 'Programmer' if you are a programmer\r\n";
 output += "Sex = Choose your sex\r\n";
 output += "Age = Your age";

 // Insert the new text
 this.txtOutput.Text = output;
}

Only the help text is changed, so nothing surprising in the help method. It gets slightly more interesting in the
OK method:
private void btnOK_Click(object sender, System.EventArgs e)
{
 // No testing for invalid values are made, as that should
 // not be neccessary

 string output;

 // Concatenate the text values of the four TextBoxes
 output = "Name: " + this.txtName.Text + "\r\n";
 output += "Address: " + this.txtAddress.Text + "\r\n";
 output += "Occupation: " + (string)(this.chkProgrammer.Checked ?
 "Programmer" : "Not a programmer") + "\r\n";
 output += "Sex: " + (string)(this.rdoFemale.Checked ? "Female" :
 "Male") + "\r\n";

 output += "Age: " + this.txtAge.Text;

 // Insert the new text
 this.txtOutput.Text = output;
}

The first of the highlighted lines is the line in which the occupation of the user is printed. We investigate the
Checked property of the CheckBox, and if it is true, we write the string Programmer. If it is false, we write Not
a programmer.

The second line examines only the radio button rdoFemale. If the Checked property is true on that control,
we know that the user claims to be female. If it is false we know that the user claims to be male. It is
possible to have radio buttons without any of them being checked when we start the program - but because
we checked one of the radio buttons at design time, we know for sure that one of the two radio buttons will
always be checked.

When you run the example now, you should get a result similar to this:

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The RichTextBox Control

Like the normal TextBox, the RichTextBox control is derived from TextBoxBase. Because of this, it
shares a number of features with the TextBox, but is much more diverse. Where a TextBox is commonly
used with the purpose of obtaining short text strings from the user, the RichTextBox is used to display and
enter formatted text (for example bold, underline and italic). It does so using a standard for formatted text
called Rich Text Format or RTF.

In the previous example, we used a standard TextBox. We could just as well have used a RichTextBox to
do the job. In fact, as we'll see in the example later, you can remove the TextBox name txtOutput and
insert a RichTextBox in its place with the same name, and the example behaves exactly as it did before.

RichTextBox Properties

If this kind of text box is more advanced than the one we explored in the previous section, you'd expect there
are new properties that can be used, and you'd be correct. Here are descriptions of the most commonly used
properties of the RichTextBox:

Name Description
CanRedo This property is true when the last undone operation can be

reapplied using Redo.

CanUndo This property is true if it is possible to undo the last action on the
RichTextBox. Note that CanUndo is defined in TextBoxBase, so it
is available to TextBox controls as well.

RedoActionName This property holds the name of an action that would be performed
by the Redo method.

DetectUrls Set this property to true to make the control detect URLs and format
them (underline as in a browser).

Rtf This corresponds to the Text property, except that this holds the text
in RTF.

SelectedRtf Use this property to get or set the selected text in the control, in RTF.
If you copy this text to another application, for example, Word, it will
retain all formatting.

SelectedText Like SelectedRtf you can use this property to get or set the
selected text. However, unlike the RTF version of the property, all
formatting is lost.

SelectionAlignment This represents the alignment of the selected text. It can be Center,
Left, or Right.

SelectionBullet Use this property to find out if the selection is formatted with a bullet
in front of it, or use it to insert or remove bullets.

BulletIndent Use this property to specify the number of pixels a bullet should be
indented.

SelectionColor Allows you to change the color of the text in the selection.

SelectionFont Allows you to change the font of the text in the selection.

SelectionLength Using this property, you either set or retrieve the length of a selection.

SelectionType This property holds information about the selection. It will tell you if
one or more OLE objects are selected or if only text is selected.

ShowSelectionMargin If you set this property to true, a margin will be shown at the left of
the RichTextBox. This will make it easier for the user to select text.

UndoActionName Gets the name of the action that will be used if the user chooses to
undo something.

SelectionProtected You can specify that certain parts of the text should not be changed
by setting this property to true.

As you can see from the listing above, most of the new properties have to do with a selection. This is
because, any formatting you will be applying when a user is working on his or her text will probably be done
on a selection made by that user. In case no selection is made, the formatting will start from the point in the
text where the cursor is located, called the insertion point.

RichTextBox Events

Most of the events used by the RichTextBox are the same as those used by the TextBox. There are a few
new ones of interest though:

Name Description
LinkedClick This event is sent when a user clicks on a link within the text.

Protected This event is sent when a user attempts to modify text that has been
marked as protected.

SelectionChanged This event is sent when the selection changes. If for some reason you
don't want the user to change the selection, you can prevent the change
here.

Try it Out - RichTextBox Example

We'll create a very basic text editor in this example. It demonstrates how to change basic formatting of text
and how to load and save the text from the RichTextBox. For the sake of simplicity, the example loads from
and saves to a fixed file.

As always, we'll start by designing the form:

1. Create a new C# Windows application called RichTextBoxTest in the C:\BegVCSharp\Chapter13
directory.

2. Create the form as shown in the picture below. The text box named txtSize should be a TextBox
control. The text box named rtfText should be a RichTextBox control.

3. Name the controls as indicated in the picture above and clear the Text property of both rtfText and
txtSize.

4. Apart from the text boxes, set the Text of all controls to the same as the names except for the first three
letters.

5. Change the Text property of the txtSize text box to 10.

6. Anchor the controls as in the following table.

Control name Anchor value
btnLoad and btnSave Bottom

RtfText Top, Left, Bottom, Right

All others Top

7. Set the MinimumSize property of the form to the same as the Size property.

Adding the Event Handlers

That concludes the visual part of the example and we'll move straight to the code. Double-click the Bold button
to add the Click event handler to the code. Here is the code for the event:

private void btnBold_Click(object sender, System.EventArgs e)
{
 Font oldFont;
 Font newFont;

 // Get the font that is being used in the selected text
 oldFont = this.rtfText.SelectionFont;

 // If the font is using bold style now, we should remove the
 // Formatting
 if (oldFont.Bold)
 newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Bold);
 else
 newFont = new Font(oldFont, oldFont.Style | FontStyle.Bold);

 // Insert the new font and return focus to the RichTextBox
 this.rtfText.SelectionFont = newFont;

 this.rtfText.Focus();
}

We start by getting the font that is being used in the current selection and assigning it to a local variable
oldFont. Then we check if this selection is already bold. If it is, we want to remove the bold setting;
otherwise we want to set it. We create a new font using oldFont as the prototype but add or remove the bold
style as needed.

Finally, we assign the new font to the selection and return focus to the RichTextBox - we'll look more at the
Font object in 16.

The event handlers for btnItalic and btnUnderline are the same as the one above, except we are
checking the appropriate styles. Double-click the two buttons Italic and Underline and add this code:
private void btnItalic_Click(object sender, System.EventArgs e)
{
 Font oldFont;
 Font newFont;

 // Get the font that is being used in the selected text
 oldFont = this.rtfText.SelectionFont;

 // If the font is using Italic style now, we should remove it
 if (oldFont.Italic)
 newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Italic);
 else
 newFont = new Font(oldFont, oldFont.Style | FontStyle.Italic);

 // Insert the new font
 this.rtfText.SelectionFont = newFont;
 this.rtfText.Focus();
}

private void btnUnderline_Click(object sender, System.EventArgs e)
{
 Font oldFont;
 Font newFont;

 // Get the font that is being used in the selected text
 oldFont = this.rtfText.SelectionFont;

 // If the font is using Underline style now, we should remove it
 if (oldFont.Underline)
 newFont = new Font(oldFont, oldFont.Style & ~FontStyle.Underline);
 else
 newFont = new Font(oldFont, oldFont.Style | FontStyle.Underline);

 // Insert the new font
 this.rtfText.SelectionFont = newFont;
 this.rtfText.Focus();
}

Double-click the last of the formatting buttons, Center, and add the following code:

private void btnCenter_Click(object sender, System.EventArgs e)

{
 if (this.rtfText.SelectionAlignment == HorizontalAlignment.Center)
 this.rtfText.SelectionAlignment = HorizontalAlignment.Left;
 else
 this.rtfText.SelectionAlignment = HorizontalAlignment.Center;
 this.rtfText.Focus();
}

Here we must check another property, SelectionAlignment, to see if the text in the selection is already
centered. HorizontalAlignment is an enumeration with values Left, Right, Center, Justify, and
NotSet. In this case we simply check if Center is set, and if it is, we set the alignment to left. If it isn't we set
it to Center.

The final formatting our little text editor will be able to perform is setting the size of text. We'll add two event
handlers for the text box Size, one for controlling the input, and one to detect when the user has finished
entering a value.

Add the following lines to the constructor of the form:
public Form1()
{
 InitializeComponent();

 // Event Subscription
 this.txtSize.KeyPress += new
 System.Windows.Forms.KeyPressEventHandler(this.txtSize_KeyPress);
 this.txtSize.Validating += new
 System.ComponentModel.CancelEventHandler(this.txtSize_Validating);
}

We saw these two event handlers in the previous example. Both of the events use a helper method called
ApplyTextSize that takes a string with the size of the text.

private void txtSize_KeyPress(object sender,
 System.Windows.Forms.KeyPressEventArgs e)
{
 // Remove all characters that are not numbers, backspace and enter
 if ((e.KeyChar < 48 || e.KeyChar > 57) &&
 e.KeyChar != 8 && e.KeyChar != 13)
 {
 e.Handled = true;
 }
 else if (e.KeyChar == 13)
 {
 // Apply size if the user hits enter
 TextBox txt = (TextBox)sender;

 if (txt.Text.Length > 0)
 ApplyTextSize(txt.Text);
 e.Handled = true;
 this.rtfText.Focus();
 }
}

private void txtSize_Validating(object sender,

 System.ComponentModel.CancelEventArgs e)
{
 TextBox txt = (TextBox)sender;
 ApplyTextSize(txt.Text);
 this.rtfText.Focus();
}

private void ApplyTextSize(string textSize)
{
 // Convert the text to a float because we'll be needing a float shortly
 float newSize = Convert.ToSingle(textSize);
 FontFamily currentFontFamily;
 Font newFont;

 // Create a new font of the same family but with the new size
 currentFontFamily = this.rtfText.SelectionFont.FontFamily;
 newFont = new Font(currentFontFamily, newSize);

 // Set the font of the selected text to the new font
 this.rtfText.SelectionFont = newFont;
}

The work we are interested in takes place in the helper method ApplyTextSize(). It starts by converting
the size from a string to a float. We've prevented the user from entering anything but integers, but when we
create the new font, we need a float, so convert it to the correct type.

After that, we get the family to which the font belongs and we create a new font from that family with the new
size. Finally, we set the font of the selection to the new font.

That's all the formatting we can do, but some is handled by the RichTextBox itself. If you try to run the
example now, you will be able to set the text to bold, italic, and underline, and you can center the text. That is
what you expect, but there is something else that is interesting - try to type a web address, for example www.
wrox.com in the text. The text is recognized by the control as an Internet address, is underlined, and the
mouse pointer changes to a hand when you move it over the text. If that leads you to believe that you can
click it and be brought to the page, you are almost correct. We need to handle the event that is sent when the
user clicks a link: LinkClicked.

We do this by subscribing to the event in the constructor:
this.rtfText.LinkClicked += new
 System.Windows.Forms.LinkClickedEventHandler(this.rtfText_LinkedClick);

We haven't seen this event handler before - it is used to provide the text of the link that was clicked. The
handler is surprisingly simple and looks like this:
private void rtfText_LinkedClick(object sender,
 System.Windows.Forms.LinkClickedEventArgs e)
{
 System.Diagnostics.Process.Start(e.LinkText);
}

This code opens the default browser if it isn't open already and navigates to the site to which the link that was
clicked is pointing.

The editing part of the application is now done. All that remains is to load and save the contents of the control.

http://www.wrox.com/
http://www.wrox.com/

We'll use a fixed file to do this.

Double-click the Load button, and add the following code:
private void btnLoad_Click(object sender, System.EventArgs e)
{
 // Load the file into the RichTextBox
 try
 {
 rtfText.LoadFile("../../Test.rtf");
 }
 catch (System.IO.FileNotFoundException)
 {
 MessageBox.Show("No file to load yet");
 }
}

That's it! Nothing else has to be done. Because we are dealing with files, there is always a chance that we
might encounter exceptions, and we have to handle these. In the Load method we handle the exception that is
thrown if the file doesn't exist. It is equally simple to save the file. Double-click the Save button and add this:
private void btnSave_Click(object sender, System.EventArgs e)
{
 // Save the text
 try
 {
 rtfText.SaveFile("../../Test.rtf");
 }
 catch (System.Exception err)
 {
 MessageBox.Show(err.Message);
 }
}

Run the example now, format some text and click Save. Clear the text box and click Load and the text you just
saved should reappear.

This concludes the RichTextBox example. When you run it, you should be able to produce something like
this:

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The ListBox and CheckedListBox Controls

List boxes are used to show a list of strings from which one or more can be selected at a time. Just like check
boxes and radio buttons, the list box provides a means of asking the user to make one or more selections.
You should use a list box when at design time you don't know the actual number of values the user can
choose from (an example could be a list of co-workers). Even if you know all the possible values at design
time, you should consider using a list box if there are a great number of values.

The ListBox class is derived from the ListControl class, which provides the basic functionality for list-
type controls that ship with the .NET Framework.

Another kind of list box available is called CheckedListBox and is derived from the ListBox class. It
provides a list just like the ListBox, but in addition to the text strings it provides a check for each item in the
list.

ListBox Properties

In the list below all the properties exist in both the ListBox class and CheckedListBox class unless
explicitly stated.

Name Description
SelectedIndex This value indicates the zero-based index of the selected item in the

list box. If the list box can contain multiple selections at the same
time, this property holds the index of the first item in the selected list.

ColumnWidth In a list box with multiple columns, this property specifies the width
of the columns.

Items The Items collection contains all of the items in the list box. You
use the properties of this collection to add and remove items.

MultiColumn A list box can have more than one column. Use this property to get
or set the number of columns in the list box.

SelectedIndices This property is a collection, which holds all of the zero-based
indices of the selected items in the list box.

SelectedItem In a list box where only one item can be selected, this property
contains the selected item if any. In a list box where more than one
selection can be made, it will contain the first of the selected items.

SelectedItems This property is a collection, which contains all of the items currently
selected.

SelectionMode You can choose between four different modes of selection from the
ListSelectionMode enumeration in a list box:

● None: No items can be selected

● One: Only one item can be selected at any time

● MultiSimple: Multiple items can be selected

● MultiExtended: Multiple items can be selected and the user
can use the Ctrl, Shift and arrows keys to make selections

Sorted Setting this property to true will cause the ListBox to sort the
items it contains alphabetically.

Text We've seen Text properties on a number of controls, but this one
works differently from any we've seen so far. If you set the Text
property of the list box control, it searches for an item that matches
the text, and selects it. If you get the Text property, the value
returned is the first selected item in the list. This property cannot be
used if the SelectionMode is None.

CheckedIndices (CheckedListBox only) This property is a collection which
contains indexes of all the items in the CheckedListBox that have
a checked or indeterminate state.

CheckedItems (CheckedListBox only) This is a collection of all the items in a
CheckedListBox that are in a checked or indeterminate state.

CheckOnClick (CheckedListBox only) If this property is true, an item will
change its state whenever the user clicks it.

ThreeDCheckBoxes (CheckedListBox only) You can choose between CheckBoxes
that are flat or normal by setting this property.

ListBox Methods

In order to work efficiently with a list box, you should know a number of methods that can be called. The
following table lists the most common methods. Unless indicated, the methods belong to both the ListBox
and CheckedListBox classes:

Name Description
ClearSelected() Clears all selections in the ListBox.

FindString() Finds the first string in the ListBox beginning with a string you
specify (for example FindString("a") will find the first string in
the ListBox beginning with a.

FindStringExact() Like FindString but the entire string must be matched.

GetSelected() Returns a value that indicates whether an item is selected.

SetSelected() Sets or clears the selection of an item.

ToString() Returns the currently selected item.

GetItemChecked() (CheckedListBox only) Returns a value indicating if an item is
checked or not.

GetItemCheckState() (CheckedListBox only) Returns a value indicating the check state
of an item.

SetItemChecked() (CheckedListBox only) Sets the item specified to a checked state.

SetItemCheckState() (CheckedListBox only) Sets the check state of an item.

ListBox Events

Normally the events you will want to be aware of when working with a ListBox or CheckedListBox are
those that have to do with the selections that are being made by the user:

Name Description
ItemCheck (CheckedListBox only) Occurs when the check state of one of the

list items changes.
SelectedIndexChanged Occurs when the index of the selected item changes.

Try it Out – ListBox Example

We will create a small example with both a ListBox and a CheckedListBox. The user can check items in
the CheckedListBox and then click a button which will move the checked items to the normal ListBox. We
create the dialog as follows:

1. Create a new Windows application called Lists in directory C:\BegVCSharp\Chapter13.

2. Add a ListBox, a CheckedListBox and a button to the form and change the names as shown in the
picture below.

3. Change the Text property of the button to Move.

4. Change the CheckOnClick property of the CheckedListBox to true.

Adding the Event Handlers

Now we are ready to add some code. When the user clicks the Move button, we want to find the items that are
checked, and copy those into the right-hand list box.

Double-click the button and enter this code:

private void btnMove_Click(object sender, System.EventArgs e)
{
 // Check if there are any checked items in the CheckedListBox
 if (this.chkListPossibleValues.CheckedItems.Count > 0)
 {
 // Clear the ListBox we'll move the selections to
 this.lstSelected.Items.Clear();

 // Loop through the CheckedItems collection of the CheckedListBox
 // and add the items in the Selected ListBox
 foreach (string item in this.chkListPossibleValues.CheckedItems)
 {
 this.lstSelected.Items.Add(item.ToString());
 }

 // Clear all the checks in the CheckedListBox
 for (int i = 0; i < this.chkListPossibleValues.Items.Count; i++)
 this.chkListPossibleValues.SetItemChecked(i, false);
 }
}

We start by checking the Count property of the CheckedItems collection. This will be greater than zero if
any items in the collection are checked. We then clear all items in the lstSelected list box, and loop
through the CheckedItems collection, adding each item to the lstSelected list box. Finally, we remove all
the checks in the CheckedListBox.

Now we just need something in the CheckedListBox to move. We can add the items while in design mode,
by selecting the Items property in the Properties window and adding the items there:

Also we can add items in code, for example in the constructor of our form:
public Form1()
{
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 // Add a tenth element to the CheckedListBox
 this.chkListPossibleValues.Items.Add("Ten");
}

Here we add a tenth element to the CheckedListBox, since we already have entered nine from the designer.

This concludes the list box example, and if you run it now, you will get something like this:

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The ListView Control

The list from which you select files to open in the standard dialog boxes in Windows is a ListView control.
Everything you can do to the view in the standard list view dialog (Large icons, details view, etc.), you can do with
the ListView control provided with the .NET Framework.

The list view is usually used to present data where the user is allowed some control over the detail and style of the
presentation. It is possible to display the data contained in the control as columns and rows much like in a grid, as a
single column or with varying icon representations. The most commonly used list view is like the one seen above
which is used to navigate the folders on a computer.

The ListView control is easily the most complex control we're going to encounter in this chapter, and covering all
of it is beyond the scope of this book. What we'll do is provide a solid base for you to work on by writing an example
that utilizes many of the most important features of the ListView control, and by a thorough description of the
numerous properties, events, and methods that can be used. We'll also take a look at the ImageList control,
which is used to store the images used in a ListView control.

ListView Properties

Name Description
Activation By using this property, you can control how a user activates an item in

the list view.

The possible values are:

● Standard: This setting is that which the user has chosen for his or
her machine.

● OneClick: Clicking an item activates it.

● TwoClick: Double-clicking an item activates it.

Alignment This property allows you to control how the items in the list view are
aligned. The four possible values are:

● Default: If the user drags and drops an item it remains where he or
she dropped it.

● Left: Items are aligned to the left edge of the ListView control.

● Top: Items are aligned to the top edge of the ListView control.

● SnapToGrid: The ListView control contains an invisible grid to
which the items will snap.

AllowColumnReorder If you set this property to true, you allow the user to change the order of
the columns in a list view. If you do so, you should be sure that the
routines that fill the list view are able to insert the items properly, even
after the order of the columns is changed.

AutoArrange If you set this property to true, items will automatically arrange
themselves according to the Alignment property. If the user drags an
item to the center of the list view, and Alignment is Left, then the item
will automatically jump to the left of the list view. This property is only
meaningful if the View property is LargeIcon or SmallIcon.

CheckBoxes If you set this property to true, every item in the list view will have a
CheckBox displayed to the left of it. This property is only meaningful if
the View property is Details or List.

CheckedIndices

CheckedItems

These two properties gives you access to a collection of indices and
items respectively, containing the checked items in the list.

Columns A list view can contain columns. This property gives you access to the
collection of columns through which you can add or remove columns.

FocusedItem This property holds the item that has focus in the list view. If nothing is
selected, it is null.

FullRowSelect When this property is true, and an item is clicked, the entire row in
which the item resides will be highlighted. If it is false, only the item
itself will be highlighted.

GridLines Setting this property to true will cause the list view to draw grid lines
between rows and columns. This property is only meaningful when the
View property is Details.

HeaderStyle You can control how the column headers are displayed. There are three
styles:

● Clickable: The column header works like a button.

● NonClickable: The column headers do not respond to mouse
clicks.

● None: The column headers are not displayed.

HoverSelection When this property is true, the user can select an item in the list view by
hovering the mouse pointer over it.

Items The collection of items in the list view.

LabelEdit When this property is true, the user can edit the content of the first
column in a Details view.

LabelWrap If this property is true, labels will wrap over as many lines is needed to
display all of the text.

LargeImageList This property holds the ImageList, which holds large images. These
images can be used when the View property is LargeIcon.

MultiSelect Set this property to true to allow the user to select multiple items.

Scrollable Set this property to true to display scrollbars.

SelectedIndices

SelectedItems

These two properties contain the collections that hold the indices and
items that are selected, respectively.

SmallImageList When the View property is SmallIcon this property holds the
ImageList that contain the images used.

Sorting You can allow the list view to sort the items it contains. There are three
possible modes:

● Ascending

● Descending

● None

StateImageList The ImageList contains masks for images that are used as overlays on
the LargeImageList and SmallImageList images to represent
custom states.

TopItem Returns the item at the top of the list view.

View A list view can display its items in four different modes:

● LargeIcon: All items are displayed with a large icon (32x32) and a
label.

● SmallIcon: All items are displayed with a small icon (16x16) and a
label.

● List: Only one column is displayed. That column can contain an
icon and a label.

● Details: Any number of columns can be displayed. Only the first
column can contain an icon.

ListView Methods

For a control as complex as the list view, there are surprisingly few methods specific to it. They are described in the
table below.

Name Description
BeginUpdate() By calling this method you tell the list view to stop drawing updates until

EndUpdate() is called. This is useful when you are inserting many items at
once, because it stops the view from flickering and dramatically increases
speed.

Clear() Clears the list view completely. All items and columns are removed.

EndUpdate() Call this method after calling BeginUpdate. When you call this method, the
list view will draw all of its items.

EnsureVisible() When you call this method, the list view will scroll itself to make the item with
the index you specified visible.

GetItemAt() Returns the ListViewItem at position x,y in the list view.

ListView Events

The ListView control events that you might want to handle are:

Name Description
AfterLabelEdit This event occurs after a label has been edited.

BeforeLabelEdit This event occurs before a user begins editing a label.

ColumnClick This event occurs when a column is clicked.

ItemActivate This event occurs when an item is activated.

ListViewItem

An item in a list view is always an instance of the ListViewItem class. The ListViewItem holds information
such as text and the index of the icon to display. ListViewItem objects have a SubItems property that holds
instances of another class, ListViewSubItem. These sub items are displayed if the ListView control is in
Details mode. Each of the sub items represents a column in the list view. The main difference of the sub items
and the main items is that a sub item cannot display an icon.

You add ListViewItems to the ListView through the Items collection and ListViewSubItems to a
ListViewItem through the SubItems collection on the ListViewItem.

ColumnHeader

To make a list view display column headers you add instances of a class called ColumnHeader to the Columns
collection of the ListView. ColumnHeaders provide a caption for the columns that can be displayed when the
ListView is in Details mode.

The ImageList Control

The ImageList control provides a collection that can be used to store images that is used in other controls on your
form. You can store images of any size in an image list, but within each control every image must be of the same
size. In the case of the ListView, this means that you need two ImageList controls to be able to display both
large and small images.

The ImageList is the first control we've visited in this chapter that does not display itself at runtime. When you
drag it to a form you are developing, it'll not be placed on the form itself, but below it in a tray, which contains all
such components. This nice feature is provided to stop controls that are not part of the user interface from clogging
up the forms designer. The control is manipulated in exactly the same way as any other control, except that you
cannot move it around.

You can add images to the ImageList at both design-time and run-time. If you know at design-time what images
you want to display, you can add the images by clicking the button at the right-hand side of the Images property.
This will bring up a dialog on which you can browse to the images you wish to insert. If you choose to add the
images at run-time, you add them through the Images collection.

Try it Out – ListView Example

The best way of learning about using a ListView control and its associated image lists is through an example.
We'll create a dialog with a ListView and two ImageLists. The ListView will display files and folders on your
hard drive. For the sake of simplicity, we will not be extracting the correct icons from the files and folders, but rather
use a standard folder icon for the folders and an information icon for files.

By double-clicking the folders you can browse into the folder tree and a back button is provided to move up the tree.
Four radio buttons are used to change the mode of the list view at runtime. If a file is double-clicked we'll attempt to
execute it.

As always we'll start by creating the user interface:

1. Create a new Windows application called ListView in the C:\BegVCSharp\Chapter13 directory.

2. Add a ListView, a Button, a Label, and a GroupBox to the form. Then, add four radio buttons to the
group box to get a form looking like the picture below.

3. Name the controls as shown in the picture above. The ListView will not display its name as in the picture
above; I've added an extra item just to show the name here – you don't need to add this item.

4. Change the Text properties of the radio buttons and button to be the same as the name, except for the first
three letters, and set the Text property of the form to ListView.

5. Clear the Text property of the label.

6. Add two ImageList controls to the form by double-clicking the control's icon in the Toolbox. Rename the
controls ilSmall and ilLarge.

7. Change the Size property of the ImageList named ilLarge to 32, 32.

8. Click the button to the right of the Images property of the ilLarge image list to bring up the dialog on which
you can browse to the images you want to insert.

9. Click Add and browse to the folder under Visual Studio .NET that contains the images. The files are:
<Drive>:\Program Files\Microsoft Visual Studio .NET\Common7\Graphics\Icons\Win95
\clsdfold.ico

and
<Drive>:\Program Files\Microsoft Visual Studio .NET\Common7\Graphics\Icons\Computer
\msgbox04.ico

10. Make sure the folder icon is at the top of the list.

11. Repeat steps 8 and 9 with the other ImageList, ilSmall.

12. Set the Checked property of the radio button rdoDetails to true.

13. Set the following properties on the list view:

Property Value
MultiSelect true
LargeImageList ilLarge

SmallImageList ilSmall

View Details

Adding the Event Handlers

That concludes our user interface and we can move on to the code. First of all, we'll need a field to hold the folders
we've browsed through in order to be able to return to them when the back button is clicked. We will store the
absolute path of the folders, and so we choose a StringCollection for the job:

public class Form1 : System.Windows.Forms.Form
{
 // Member field to hold previous folders
 private System.Collections.Specialized.StringCollection folderCol;

We didn't create any column headers in the forms designer, so we'll have to do that now. We create them in a
method called CreateHeadersAndFillListView():

private void CreateHeadersAndFillListView()
{
 ColumnHeader colHead;
 // First header
 colHead = new ColumnHeader();
 colHead.Text = "Filename";
 this.lwFilesAndFolders.Columns.Add(colHead); // Insert the header

 // Second header
 colHead = new ColumnHeader();
 colHead.Text = "Size";
 this.lwFilesAndFolders.Columns.Add(colHead); // Insert the header

 // Third header
 colHead = new ColumnHeader();
 colHead.Text = "Last accessed";
 this.lwFilesAndFolders.Columns.Add(colHead); // Insert the header
}

We start by declaring a single variable, colHead, which we will use to create the three column headers. For each of
the three headers we declare the variable as new, and assign the Text to it before adding it to the Columns
collection of the ListView.

The final initialization of the form as it is displayed the first time is to fill the list view with files and folders from your
hard disk. This is done in another method:
private void PaintListView(string root)
{
 try

 {
 // Two local variables that is used to create the items to insert
 ListViewItem lvi;
 ListViewItem.ListViewSubItem lvsi;

 // If there's no root folder, we can't insert anything
 if (root.CompareTo("") == 0)
 return;

 // Get information about the root folder.
 System.IO.DirectoryInfo dir = new System.IO.DirectoryInfo(root);

 // Retrieve the files and folders from the root folder.
 DirectoryInfo[] dirs = dir.GetDirectories(); // Folders
 FileInfo[] files = dir.GetFiles(); // Files

 // Clear the ListView. Note that we call the Clear method on the
 // Items collection rather than on the ListView itself.
 // The Clear method of the ListView remove everything, including column
 // headers, and we only want to remove the items from the view.
 this.lwFilesAndFolders.Items.Clear();

 // Set the label with the current path
 this.lblCurrentPath.Text = root;

 // Lock the ListView for updates
 this.lwFilesAndFolders.BeginUpdate();
 // Loop through all folders in the root folder and insert them
 foreach (System.IO.DirectoryInfo di in dirs)
 {
 // Create the main ListViewItem
 lvi = new ListViewItem();
 lvi.Text = di.Name; // Folder name
 lvi.ImageIndex = 0; // The folder icon has index 0
 lvi.Tag = di.FullName; // Set the tag to the qualified path of the
 // folder

 // Create the two ListViewSubItems.
 lvsi = new ListViewItem.ListViewSubItem();
 lvsi.Text = ""; // Size - a folder has no size and so this column
 // is empty
 lvi.SubItems.Add(lvsi); // Add the sub item to the ListViewItem

 lvsi = new ListViewItem.ListViewSubItem();
 lvsi.Text = di.LastAccessTime.ToString(); // Last accessed column
 lvi.SubItems.Add(lvsi); // Add the sub item to the ListViewItem

 // Add the ListViewItem to the Items collection of the ListView
 this.lwFilesAndFolders.Items.Add(lvi);
 }

 // Loop through all the files in the root folder
 foreach (System.IO.FileInfo fi in files)
 {
 // Create the main ListViewItem
 lvi = new ListViewItem();
 lvi.Text = fi.Name; // Filename
 lvi.ImageIndex = 1; // The icon we use to represent a folder has

 // index 1
 lvi.Tag = fi.FullName; // Set the tag to the qualified path of the
 // file

 // Create the two sub items
 lvsi = new ListViewItem.ListViewSubItem();
 lvsi.Text = fi.Length.ToString(); // Length of the file
 lvi.SubItems.Add(lvsi); // Add to the SubItems collection

 lvsi = new ListViewItem.ListViewSubItem();
 lvsi.Text = fi.LastAccessTime.ToString(); // Last Accessed Column
 lvi.SubItems.Add(lvsi); // Add to the SubItems collection

 // Add the item to the Items collection of the ListView
 this.lwFilesAndFolders.Items.Add(lvi);
 }

 // Unlock the ListView. The items that have been inserted will now
 // be displayed
 this.lwFilesAndFolders.EndUpdate();
 }
 catch (System.Exception err)
 {
 MessageBox.Show("Error: " + err.Message);
 }
}

Before the first of the two foreach blocks we call BeginUpdate() on the ListView control. Remember that the
BeginUpdate() method on the ListView signals the ListView control to stop updating its visible area until
EndUpdate() is called. If we did not call this method, filling the list view would be slower and the list may flicker as
the items are added. Just after the second foreach block we call EndUpdate(), which makes the ListView
control draw the items we've filled it with.

The two foreach blocks contain the code we are interested in. We start by creating a new instance of a
ListViewItem and then setting the Text property to the name of the file or folder we are going to insert. The
ImageIndex of the ListViewItem refers to the index of an item in one of the ImageLists. Because of that, it is
important that the icons have the same indexes in the two ImageLists. We use the Tag property to save the fully
qualified path to both folders and files, for use when the user double-clicks the item.

Then, we create the two sub items. These are simply assigned the text to display and then added to the SubItems
collection of the ListViewItem.

Finally, the ListViewItem is added to the Items collection of the ListView. The ListView is smart enough to
simply ignore the sub items, if the view mode is anything but Details, so we add the sub items no matter what the
view mode is now.

Note that there are some aspects of the code we haven't discussed here – namely the lines that actually obtain
information about the files:
 // Get information about the root folder.
 System.IO.DirectoryInfo dir = new System.IO.DirectoryInfo(root);

 // Retrieve the files and folders from the root folder.
 DirectoryInfo[] dirs = dir.GetDirectories(); // Folders
 FileInfo[] files = dir.GetFiles(); // Files

These lines use classes from the System.IO namespace for accessing files, so we need to add the following

using directive to the top of our code:

using System.IO;

We'll talk more about file access and System.IO in Chapter 20, but to give you an idea of what's going on, the
GetDirectories() method of the DirectoryInfo object returns a collection of objects that represent the
folders in the directory we're looking in, and the GetFiles() method returns a collection of objects that represent
the files in the current directory. We can loop through these collections, as we do in the code above, using the
object's Name property to return the name of the relevant directory or file, and create a ListViewItem to hold this
string.

All that remains to be done for the list view to display the root folder is to call the two functions in the constructor of
the form. At the same time we instantiate the folderCol StringCollection with the root folder:

InitializeComponent();

// Init ListView and folder collection
folderCol = new System.Collections.Specialized.StringCollection();
CreateHeadersAndFillListView();
PaintListView(@"C:\");
folderCol.Add(@"C:\");

In order to allow the user to double-click an item in the ListView to browse the folders, we need to subscribe to the
ItemActivate event. We add the subscription to the constructor:

this.lwFilesAndFolders.ItemActivate += new
 System.EventHandler(this.lwFilesAndFolders_ItemActivate);

The corresponding event handler looks like this:
private void lwFilesAndFolders_ItemActivate(object sender, System.EventArgs e)
{
 // Cast the sender to a ListView and get the tag of the first selected
 // item.
 System.Windows.Forms.ListView lw = (System.Windows.Forms.ListView)sender;
 string filename = lw.SelectedItems[0].Tag.ToString();

 if (lw.SelectedItems[0].ImageIndex != 0)
 {
 try
 {
 // Attempt to run the file
 System.Diagnostics.Process.Start(filename);
 }
 catch
 {
 // If the attempt fails we simply exit the method
 return;
 }
 }
 else
 {
 // Insert the items
 PaintListView(filename);
 folderCol.Add(filename);
 }
}

The Tag of the selected item contains the fully qualified path to the file or folder that was double-clicked. We know

that the image with index 0 is a folder, so we can determine whether the item is a file or a folder by looking at that
index. If it is a file, we attempt to load the file.

If it is a folder, we call PaintListView() with the new folder and then add the new folder to the folderCol
collection.

Before we move on to the radio buttons we'll complete the browsing abilities by adding the click event to the Back
button. Double-click the button and fill the event handle with this code:
private void btnBack_Click(object sender, System.EventArgs e)
{
 if (folderCol.Count > 1)
 {
 PaintListView(folderCol[folderCol.Count-2].ToString());
 folderCol.RemoveAt(folderCol.Count-1);
 }
 else
 {
 PaintListView(folderCol[0].ToString());
 }
}

If there is more than one item in the folderCol collection then we are not at the root of the browser, and we call
PaintListView() with the path to the previous folder. The last item in the folderCol collection is the current
folder, which is why we need to take the second to last item. We then remove the last item in the collection, and
make the new last item the current folder. If there is only one item in the collection we simply call PaintListView
() with that item.

All that remains is to be able to change the view type of the list view. Double-click each of the radio buttons and add
the following code:
private void rdoLargeIcon_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;
 if (rdb.Checked)
 this.lwFilesAndFolders.View = View.LargeIcon;
}

private void rdoList_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;
 if (rdb.Checked)
 this.lwFilesAndFolders.View = View.List;
}

private void rdoSmallIcon_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;
 if (rdb.Checked)
 this.lwFilesAndFolders.View = View.SmallIcon;
}

private void rdoDetails_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;
 if (rdb.Checked)
 this.lwFilesAndFolders.View = View.Details;
}

We check the radio button to see if it has been changed to Checked – if it has we set the View property of the
ListView accordingly.

That concludes the ListView example. When you run it, you should see something like this:

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The StatusBar Control

A status bar is commonly used to provide hints for the selected item or information about an action currently
being performed on a dialog. Normally the status bar is placed at the bottom of the screen, as it is in Microsoft
Office applications, but it can be located anywhere you like. The StatusBar control provided with the .NET
Framework can be used to simply display text, or you can add panels to it and display text, or create your own
routines for drawing the contents of the panel.

The above picture shows the status bar as it looks in Word. The panels in the status bar can be identified as
the sections that appear sunken.

StatusBar Properties

As mentioned above, you can simply assign to the Text property of a StatusBar control to display simple
text to the user, but it is possible to create panels and use them to the same effect.

Name Description
BackgroundImage It is possible to assign an image to the status bar that will be drawn in the

background.
Panels This is the collection of panels in the status bar. Use this collection to add

and remove panels.
ShowPanels If you want to display panels, this property must be set to true.

Text When you are not using panels this property holds the text that is displayed
in the status bar.

StatusBar Events

There are not a whole lot of new events for the status bar, but if you are drawing a panel manually, the
DrawItem event is of crucial importance.

Name Description
DrawItem Occurs when a panel that has the OwnerDraw style set needs to be redrawn. You

must subscribe to this event if you want to draw the contents of a panel yourself.
PanelClick Occurs when a panel is clicked.

The StatusBarPanel Class

Each panel in a status bar is an instance of the StatusBarPanel class. This class contains all the

information about the individual panels in the Panels collection. The information that can be set ranges from
simple text and alignment of text to icons to be displayed and the style of the panel.

If you want to draw the panel yourself, you must set the Style property of the panel to OwnerDraw and
handle the DrawItem event of the StatusBar.

Try it Out - Working with a Status Bar

We'll change the ListView example we created earlier to demonstrate the use of the StatusBar control.
We'll remove the label used to display the current folder and move that piece of information to a panel on a
status bar. We'll also display a second panel, which will display the current view mode of the list view.

1. Remove the label lblCurrentFolder.

2. Double-click the StatusBar control in the toolbox to add it to the form (again it is near to the bottom of
the list). The new control will automatically dock with the bottom edge of the form.

3. Change the name of the StatusBar to sbInfo and clear the Text property.

4. Find the Panels property and double-click the button to the right of it to bring up a dialog to add panels.

5. Click Add to add a panel to the collection. Set the AutoSize property to Spring. This means that the
panel will share the space in the StatusBar with other panels.

6. Click Add again, and change the AutoSize property to Contents. This means that the panel will resize
itself to the size of the text it contains. Set the MinSize property to 0.

7. Click OK to close the dialog.

8. Set the ShowPanels property on the StatusBar to true.

Adding the Event Handlers

That's it for the user interface and we'll move on to the code. We'll start by setting the current path in the
PaintListView method. Remove the line that set the text in the label and insert the following in its place:

this.sbInfo.Panels[0].Text = root;

The first panel has index 0, and we simply set its Text property just as we set the Text property of the label.
Finally we change the four radio button CheckedChanged events to set the text of the second panel:

private void rdoLarge_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;
 if (rdb.Checked)
 {
 this.lwFilesAndFolders.View = View.LargeIcon;
 this.sbInfo.Panels[1].Text = "Large Icon";
 }
}

private void rdoList_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;

 if (rdb.Checked)
 {
 this.lwFilesAndFolders.View = View.List;
 this.sbInfo.Panels[1].Text = "List";
 }
}

private void rdoSmall_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;
 if (rdb.Checked)
 {
 this.lwFilesAndFolders.View = View.SmallIcon;
 this.sbInfo.Panels[1].Text = "Small Icon";
 }
}

private void rdoDetails_CheckedChanged(object sender, System.EventArgs e)
{
 RadioButton rdb = (RadioButton)sender;
 if (rdb.Checked)
 {
 this.lwFilesAndFolders.View = View.Details;
 this.sbInfo.Panels[1].Text = "Details";
 }
}

The panel text is set in exactly the same way as in PaintListView above.

That concludes the StatusBar example. If you run it now, you should see something like this:

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

The TabControl Control

The TabControl provides an easy way of organizing a dialog into logical parts that can be accessed through
tabs located at the top of the control. A TabControl contains TabPages that essentially work like a
GroupBox control, in that they group controls together, although they are somewhat more complex.

The above screenshot shows the Options dialog in Word 2000 as it is typically configured. Notice the two rows
of tabs at the top of the dialog. Clicking each of them will show a different selection of controls in the rest of
the dialog. This is a very good example of how to use a tab control to group related information together,
making it easier for the user to find the information s/he is looking for.

Using the tab control is easy. You simply add the number of tabs you want to display to the control's collection
of TabPage objects and then drag the controls you want to display to the respective pages.

TabControl Properties

The properties of the TabControl are largely used to control the appearance of the container of TabPage
objects, in particular the tabs displayed.

Name Description
Alignment Controls where on the tab control the tabs are displayed. The default is at

the top.
Appearance Controls how the tabs are displayed. The tabs can be displayed as

normal buttons or with flat style.

HotTrack If this property is set to true the appearance of the tabs on the control
change as the mouse pointer passes over them.

Multiline If this property is set to true, it is possible to have several rows of tabs.

RowCount Returns the number of rows of tabs that is currently displayed.

SelectedIndex Returns or sets the index of the selected tab.

TabCount Returns the total number of tabs.

TabPages This is the collection of TabPage objects in the control. Use this collection
to add and remove TabPage objects.

Working with the TabControl

The TabControl works slightly differently from all other controls we've seen so far. When you drag the
control on to a form, you will see a gray rectangle that doesn't look very much like the control in the
screenshot as shown above. You will also see, below the Properties window, two buttons that look like links
with the captions Add Tab and Remove Tab. Clicking Add Tab will insert a new tab page on the control and the
control will start to be recognizable. Obviously, you can remove the tab with the Remove Tab link button.

The above procedure is provided in order for you to get up and running quickly with the control. If, on the other
hand, you want to change the behavior or style of the tabs you should use the TabPages dialog - accessed
through the button when you select TabPages in the Properties window.

The TabPages property is also the collection used to access the individual pages on a tab control. Let's
create an example to demonstrate the basics of the control. The example demonstrates how to develop
controls located on different pages on the tab control.

Try it Out - Working with Tab Pages

1. Create a new Windows application called TabControl in the directory C:\BegVCSharp\Chapter13.

2. Drag a TabControl control from the Toolbox to the form.

3. Click Add Tab from under the Properties window to add a tab page to the control.

4. Find the TabPages property and click the button to the right of it after selecting it, to bring up the
following dialog:

5. Add another tab page to the control by clicking Add.

6. Change the Text property of the tab pages to Tab One and Tab Two respectively, and click OK to close
the dialog.

7. You can select the tab pages to work on by clicking on the tabs at the top of the control. Select the tab
with the text Tab One. Drag a button on to the control. Be sure to place the button within the frame of the
TabControl. If you place it outside then the button will be placed on the form rather than on the control.

8. Change the name of the button to btnShowMessage and the Text of the button to Show Message.

9. Click on the tab with the Text property Tab Two. Drag a TextBox control onto the TabControl
surface. Name this control txtMessage and clear the Text property.

10. The two tabs should look like these two screenshots:

Adding the Event Handler

We are now ready to access the controls. If you run the code as it is, you will see the tab pages displayed
properly. All that remains for us to do to demonstrate the use of the tab control is to add some code such that
when the user clicks the Show Message button on one tab, the text entered in the other tab will be displayed in
a message box. First, we add a handler for the Click event by double-clicking the button on the first tab and
adding the following code:
private void btnShowMessage_Click(object sender, System.EventArgs e)
{
 // Access the TextBox

 MessageBox.Show(this.txtMessage.Text);
}

You access a control on a tab just as you would any other control on the form. We get the Text property of
the TextBox and display it in a message box.

Earlier in the chapter, we saw that it is only possible to have one radio button selected at a time on a form
(unless you put them in group boxes). The TabPages work in precisely the same way as group boxes and it is
therefore possible to have multiple sets of radio buttons on different tabs without the need to have group
boxes.

The last thing you must know to be able to work with a tab control is how to determine which tab is currently
being displayed. There are two properties you can use for this purpose: SelectedTab and SelectedIndex.
As the names imply, SelectedTab will return the TabPage object to you or null if no tab is selected, and
SelectedIndex will return the index of the tab or -1 if no tab is selected.

Chapter 13 - Using Windows Form Controls
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we visited some of the most commonly used controls when creating Windows applications and
saw how they can be used to create simple, yet powerful user interfaces. We discussed the properties and
events of these controls, with examples of their use, and looked at how to add event handlers for the
particular events of a control.

The controls discussed in this chapter were:

● Label

● Button

● RadioButton

● CheckBox

● ListBox

● ListView

● GroupBox

● RichTextBox

● StatusBar

● ImageList

● TabControl

In the next chapter, we will be looking at more complex controls such as menus and toolbars, and we will use
them to develop Multi-Document Interface (MDI) Windows applications. Also, we'll demonstrate how to create
a user control which combines the functionality of simple controls into a composite control.

Chapter 14 - Advanced Windows Forms
Features
byKarli Watsonet al.

Wrox Press 2003

Chapter 14: Advanced Windows Forms Features

Overview

In the

We will start this chapter as we left off the previous one, by looking at controls, starting with the menu control
and then moving on to toolbars, where we'll see how to link buttons on toolbars to specific menu items and
vice versa. Then we'll move on to creating SDI and MDI applications, with the focus on MDI applications, as
SDI applications are basically subsets of MDI applications.

So far we've only consumed controls that ship with the .NET Framework. These controls are, as we've seen,
very powerful and provide a wide range of functionality, but there are times where they are not sufficient. To
overcome this, it is possible to create custom controls, and we'll look at how this is done towards the end of
this chapter.

Chapter 14 - Advanced Windows Forms
Features
byKarli Watsonet al.

Wrox Press 2003

Menus

How many Windows applications can you think of that do not contain a menu of some kind? The chances are
that the number is very close to none. Menus are therefore likely to be an important part of any application
you will write for the Windows operating system. To assist us in creating menus for our applications, Visual
Studio .NET provides us with a control that lets us create simple menus quickly, and more refined menus with
a little more work.

Using the Menu Control

The menu control we'll be using here is called MainMenu and it is, like the two other kinds of menus that
come with Visual Studio .NET, derived from a base class called Menu located in the System.Windows.
Forms namespace.

There is another kind of menu that we'll discuss briefly after the discussion of the MainMenu – the
ContextMenu. A context menu appears when a user right-clicks on an item, and will typically display
information relevant to that item. Technically there is a third menu type, named MenuItem, which is also
derived from the Menu class. A MenuItem represents the individual items displayed in a menu. In the picture
below, the Type Here field represents a MenuItem. The MenuItem will be discussed in detail shortly.
ContextMenu and MenuItem are also derived from the base class Menu.

When you drag the MainMenu control from the Toolbox to the design surface you will see that this control
places itself both on the form itself and in the control tray, but can be edited directly on the form. To create
new menu items you simply place the pointer in the box marked Type Here:

Type the caption of the menu in the highlighted box, including an ampersand (&) in front of the letter you want
to function as the mnemonic character for the menu item – this is the character that appears underlined in the
menu item and which can be selected pressing Alt and the key together.

Note that it is quite possible to create several menu items in the same menu with the same mnemonic
character. The rule is, that a character can be used only once for each pop-up menu (for example, once in the
Files pop-up menu, once in the View menu etc.). If you accidentally assign the same mnemonic character to
multiple menu items in the same pop-up menu, you'll find that only the one closest to the top of the control will
respond to the character.

To create a separator in the menu, you simply type a single dash (-) as the text. Note that you cannot do this
for top-level menu items, only for submenu items, which we will come to very shortly.

When you click in the highlighted box, you will notice that the properties displayed in the Properties window
changed. This is because the majority of the properties that can be used with menus are used with respect to
the individual menu items.

The MenuItem Control

If you select a MenuItem by clicking on it in the MainMenu control, you will see several properties that are
used to control the appearance and behavior of the item. Each menu item can contain other menu items,
which allows you to create submenus for each item in the main menu. A collection is defined in the base Menu
class to hold all the MenuItem objects, MenuItemCollection, as shown in the class diagram earlier.

Let's look at the properties provided by MenuItem. Some of these properties are inherited from Menu. This list
is not exhaustive – if you require a complete listing please refer to .NET Framework SDK Documentation.

Name Description
BarBreak By setting this value to true, you specify that the menu should appear on a

new line. Using this property you can create menus with multiple top-level
rows. Submenu items with this property set will be placed in a new column.
This property is not visible in the Properties window.

Checked Indicates whether the menu is checked.

DefaultItem A default item is drawn with boldface. If a user double-clicks a MenuItem that
contain subitems, and one of these items is a default item, that item is
selected.

Enabled An item with Enabled set to false will be grayed and cannot be selected.

MdiList Indicates whether the menu will be populated with a list of the child windows
in an MDI.

MergeOrder This property indicates where a menu will be positioned when it is merged
with another menu. We'll look at menu merging when we discuss MDI
applications later in this chapter.

MergeType This property controls how a menu behaves when it should be merged, but
has the same MergeOrder as another menu.

Mnemonic This property returns the mnemonic character that is associated with the
MenuItem. The mnemonic character is the first character following an
ampersand (&). This property is not visible in the Properties window.

OwnerDraw If you set this property to true, you take responsibility for all drawing of the
MenuItem. If you want to add images to your menus, you must set this
property to true and implement handlers for the item's DrawItem and
MeasureItem events.

RadioCheck If this property is set to true, a check is displayed as a radio button rather
than a check mark.

Shortcut The shortcut is a key combination which access the menu item directly (for
example, Ctrl+S for Save).

ShowShortcut Setting this property to true means that the shortcut text is displayed in the
MenuItem.

Text The text of the MenuItem. Include an ampersand (&) before a character in
the string to assign the mnemonic character.

MenuItem Events

How many events are needed for a MenuItem? One you would think – the Click event. In fact there are five
events of interest you can subscribe to, two of which you must use if you are drawing the items yourself. Let's
look at the events now, and then move on to an example using the control.

Name Description
Click() This event occurs when a user clicks a menu item. You can also raise this

event manually by calling the PerformClick() method of the MenuItem.

DrawItem() Occurs when the MenuItem needs to be drawn. If you set the OwnerDraw
property to true, you must handle this event.

MeasureItem() Occurs before a MenuItem is drawn. If you are drawing the MenuItem
yourself, you should calculate and return the width and height for the item in
this event.

Popup() Occurs when the MenuItems list of subitems is displayed. You can use this
event to perform validation of the availability of the items and set their state
appropriately.

Select() Occurs when a user places the mouse pointer over the item or when he or she
changes the focus using the keyboard.

The ContextMenu Control

A context menu is a menu that is opened when the user right-clicks on an item on the form. The context menu
in the screenshot below is the menu I get when I right-click the desktop of my computer:

In Visual Studio .NET, you can create a context menu by dragging it onto the form and adding items to it, in
exactly the same way as you would a MainMenu control. The only difference is that you cannot have any top-
level items in a context menu. To bind the context menu to a particular control on the form, you select the
control and set its ContextMenu property to point to the context menu you've created.

Try it Out – Menu Example

We are now ready to create an example using menus. We'll keep this example basic as we'll see more
advanced examples of menus as we discuss MDI applications. We'll create one main menu and a context
menu in this example.

1. Begin by creating a new Windows application called MenuExample in the directory C:\BegVCSharp
\Chapter14.

2. Add a MainMenu control and a ContextMenu control to the form by double-clicking the controls in the
Toolbox. Name the controls MainMenuFiles and ContextMenuFonts respectively.

3. Add the following items to the MainMenu control by selecting it and typing the text into the menu items.
When you type text in the menu item using the designer, you are setting the Text property of the item.
After setting the text for an item, use the Properties window to change the default name chosen by
Visual Studio .NET. The menu named menuItemFiles is known as a top-level menu. Remember that
you create a separator by typing a single dash in the menu and create a mnemonic character by adding
an ampersand (&) in front of the letter you wish to choose:

Name Text
menuItemFiles &Files

menuItemNew &New

menuItemOpen &Open

menuItemSave &Save

menuItemSeperator0 -

menuItemExit E&xit

1. Now select the context menu, and create the following menu items just as you did above.

Name Text
menuItemBold &Bold

menuItemItalic &Italic

menuItemUnderline &Underline

2. Now add a single RichTextBox control to the form. Name it rtfText and set its Dock property to Fill
to make it fill the entire form, and clear its Text property.

3. Select the RichTextBox control and select the ContextMenu property. From the drop-down list, select
ContextMenuFonts to bind the context menu to the rich text box.

You should now have a form that looks something like this:

Adding the Event Handlers

We are now ready to add code to our menus. We'll keep the Open, Save, and New methods simple, and we'll
use a fixed file for the demonstration – in the

Begin by double-clicking the New menu item:
private void menuItemNew_Click(object sender, System.EventArgs e)
{
 this.rtfText.Clear();
}

We said we'd keep this simple, and we did. The sender parameter is a reference to the menu item that was

clicked. In this case we know that it was the New item, but an event handler can be assigned to many items, in
which case this identifies the menu to be used.

Repeat the process with the Open, Save, and Exit:
private void menuItemOpen_Click(object sender, System.EventArgs e)
{
 // Load the file
 try
 {
 this.rtfText.LoadFile("../../test.rtf");
 }
 catch (System.Exception err)
 {
MessageBox.Show("Error while loading:\n" + err.Message);
 }
}

private void menuItemSave_Click(object sender, System.EventArgs e)
{
 // Save the file
 try
 {
 this.rtfText.SaveFile("../../test.rtf");
 }
 catch (System.Exception err)
 {
 MessageBox.Show("Error while saving file:\n" + err.Message);
 }
}

private void menuItemExit_Click(object sender, System.EventArgs e)
{
 // Exit the application
 Application.Exit();
}

The LoadFile() method of the RichTextBox class does exactly that – it loads the contents of an RTF (as
can be exported from WordPad or Word), or ASCII file into the rich text box. Note that we have put error
handling in here to deal with situations where the text file does not exist. However, there is another way of
achieving this check, which we will look at now.

The menuItemFiles item contains the other items in our main menu. Because of that, every time the menu
item is asked to show its members, it dispatches a Popup event. If we subscribe to that event, we can check if
the file exists and disable the Open menu item if it doesn't. We'll subscribe to the event by selecting the
menuItemFiles control, and double-clicking on the Popup event in the Events list in the Properties window.

Then we add the code to the event handler itself:
private void menuItemFiles_Popup(object sender, System.EventArgs e)
{
 // Check to see if the file exist by setting the Enabled property to the
 // return value of the File.Exists method.
 this.menuItemOpen.Enabled = System.IO.File.Exists("../../test.rtf");
}

The static method Exists of the File class returns a Boolean which is true if the file exists and false
otherwise – which is exactly what we want the Open menu item to reflect, so we simply set the value of the
Enabled property to the return value of this function.

We are now done with the main menu and can move on to the context menu. We add the Click events just
as we did in the main menu – by double-clicking the items and adding the following code:
private void menuItemBold_Click(object sender, System.EventArgs e)
{
 Font newFont = new Font(rtfText.SelectionFont,
 (rtfText.SelectionFont.Bold ?
 rtfText.SelectionFont.Style & ~FontStyle.Bold :
 rtfText.SelectionFont.Style | FontStyle.Bold));
 rtfText.SelectionFont = newFont;
}

private void menuItemItalic_Click(object sender, System.EventArgs e)
{
 Font newFont = new Font(rtfText.SelectionFont,
 (rtfText.SelectionFont.Italic ?
 rtfText.SelectionFont.Style & ~FontStyle.Italic :
 rtfText.SelectionFont.Style | FontStyle.Italic));
 rtfText.SelectionFont = newFont;
}

private void menuItemUnderline_Click(object sender, System.EventArgs e)
{
 Font newFont = new Font(rtfText.SelectionFont,
 (rtfText.SelectionFont.Underline ?
 rtfText.SelectionFont.Style & ~FontStyle.Underline :
 rtfText.SelectionFont.Style| FontStyle.Underline));
 rtfText.SelectionFont = newFont;
}

In each of the three functions we create a new font from the one that is currently being used by the selection
in the rich text box. If the style of the font is already set, we remove it from the new font, otherwise we include
the style in the font. We then set the font of the selection to the new font.

The single line that creates the objects can look a bit daunting so we'll explain it here. To create the objects
we make use of the ternary operator – we first saw this in
Font newFont = new Font(rtfText.SelectionFont,
 (rtfText.SelectionFont.Bold ?
 rtfText.SelectionFont.Style & ~FontStyle.Bold :
 rtfText.SelectionFont.Style | FontStyle.Bold));
rtfText.SelectionFont = newFont;

On the second line of the first statement, we examine whether the Bold property of the selected font is true.
If it is, then we must create a new style for the font we are creating, which retains all the styles that are
currently set except for the bold style, which is the code between the ? and the : on the third line. On the
fourth line of the statement, after the colon, this code is run if the value of the Bold property is false,
whereby we add in the bold style rather than remove it. Finally the entire sequence of events just discussed is
wrapped in parentheses, often used to separate out the ternary operator logic from other code and aid
readability.

This concludes the first example of menus. If you run the code, you should be able to create something like

this:

Chapter 14 - Advanced Windows Forms
Features
byKarli Watsonet al.

Wrox Press 2003

Toolbars

While menus are great for providing access to a multitude of functionality in your application, some items
benefit from being placed in a toolbar as well as on the menu. These items are those that are used frequently
by the user, such as Open and Save, and a toolbar provides one-click access to such commonly-used
functionality.

The screenshot below shows the selection of toolbars that are visible as I'm writing this chapter in Word.

A button on a toolbar usually contains a picture and no text, though it is possible to have buttons with both.
Examples of toolbars with no text are those found in Word (see above), and examples of toolbars that include
text can be found in Internet Explorer. If you let the mouse pointer rest above a button in a toolbar, it should
display a tooltip that provides some clue as to the purpose of the button, especially when only an icon is
displayed.

Unlike the menu controls we've just discussed, the ToolBar control is not merely a container for other
objects. You can set several properties on the control itself, such as where it is positioned on the screen. All
the buttons on the toolbar are, however, objects in their own right. Each button in a ToolBar control is a
ToolBarButton object, and they hold information about which image to display, the style of any text
displayed along with the icon, and tooltips.

We'll start by describing the properties and events of the ToolBar control and then move on to the
ToolBarButton.

ToolBar Properties

The properties of the ToolBar control manage how and where the control is displayed. They also manage
some display settings for the buttons of the control, which would be the same for all the buttons contained in
the control:

Name Description
Appearance This property controls the appearance of all the buttons contained within the

control. You can set this property to Flat or to Normal. The normal setting
will draw a 3D border around the button.

AutoSize Setting this property to false allows you to change the size of the control.
The default, true, allows the control to size itself to make room for images
and text.

Buttons Returns the collection of buttons contained in the control.

ButtonSize This property controls the size of the buttons. If the AutoSize property is
true this property has no effect.

Divider If this property is set to true, the control will draw a border at the top of the
ToolBar control.

DropDownArrows If you have toolbar buttons that provide a drop-down list, this property
determines whether an arrow is drawn to the right of the button.

ImageList The image list from which the images used on the buttons contained in the
control are taken.

ShowToolTips Setting this property to true will make the control display tooltips for each
button contained in the control.

Wrappable If this property is true, and the toolbar is too long to display all the buttons it
contains in one line, it will wrap to the next line.

ToolBar Events

The two events on the Toolbar class that are not derived from Control are raised when a button or down
arrow on a drop-down list is clicked. You could be forgiven for thinking that the buttons themselves would
more logically raise these events, but Microsoft has chosen otherwise. The result is that a single event
handler must handle clicks on all the buttons in a toolbar, and thus be able to distinguish between the buttons.

Name Description
ButtonClick This event occurs whenever a button contained in the toolbar is clicked. To

determine which button was clicked you should use the Button property of
the ToolBarButtonClickEventArgs parameter that is sent to the event
handler. By examining this property you can determine which action you
should take.

ButtonDropDown This event occurs when a toolbar button with its Style property set to
DropDownButton or its corresponding arrow is clicked. The
ToolBarButtonClickEventArgs can be used to determine which
button was clicked and thus which action to take.

The ToolBarButton Properties

The ToolBarButton class manages individual settings for each button in a toolbar, including image, style
and text and tool tip. One interesting feature of the ToolBarButton is, that if its style is set to
DropDownButton, it is able to contain a menu - more specifically a MenuItem containing the menu items to
display.

Name Description
DropDownMenu By using this property you can assign a MenuItem to the button. If the Style

property of the button is DropDownButton (see below) the MenuItem will be
displayed when the user clicks the button.

Enabled By setting this property to false you make the button unavailable to the user. If
you are using bitmap images on the button, then the button is only able to draw
the image in monochrome.

ImageIndex The index of the image to use. The image list is assigned to the Toolbar
control.

PartialPush You can use this property when the style of the toolbar button is set to
ToggleButton. Setting this property to true will make the button appear
grayed. Unlike setting the Enabled property to false, this setting causes the
entire button face to become hazed.

Pushed If the style of the ToolBarButton is ToggleButton then setting this property
to true will make the button appear pressed.

Style There are four different styles that can be used:

● PushButton: Appears like a normal button.

● ToggleButton: When this style is selected the button can appear to be
pressed and will remain in that state until pressed again. An example of
such a button is the Bold button on the toolbars used in Word.

● Separator: A button with this style is not drawn - which is exactly the point;
it creates a small space between buttons.

● DropDownButton: A button with this style can be assigned a
ContextMenu. This menu will be dropped down when the user clicks the
button.

Text The text to display in the toolbar button.

ToolTipText The tooltip text of the button.

Try it Out - Toolbar Example

We will extend our first menus example to include a toolbar. The toolbar will contain three buttons, each of
which corresponds to one of the three items we placed in the context menu of the previous example - bold,
italic, and underline. There will also be a fourth button, a drop-down button from which you can select a font.
(Note that the bitmap we've used here for the button that selects the font can be found in the code download.)

So, starting with the MenuExample code from earlier in the chapter make the following changes:

1. Because of the toolbar we are going to add, you should change the Dock property of the RichTextBox
to None, and set the Anchor property to Left, Top, Right, Bottom.

2. Add an ImageList and an additional ContextMenu to the form by double-clicking the controls in the
toolbox. Name them ImageListToolbar and ContextMenuFontFamilies respectively. The
ImageList will contain the images we'll use on the buttons and the ContextMenu will be the menu
that we'll use in the drop-down list button.

3. Add three MenuItems to the ContextMenuFontFamilies control and set the properties as follows:

Name Text
menuItemMS MS Sans Serif

menuItemTimes Times New Roman

4. Add four images to the ImageListToolbar control by clicking the button to the right of the Images

property on the ImageList. Three of these bitmaps can be found under the Common7 directory where
you installed Visual Studio:
<VS.NET install directory>\Common7\Graphics\bitmaps\Tlbr_W95

The names are: BLD.BMP, ITL.BMP and UNDRLN.BMP

You can use any bitmap you like for the final item, or you can download the source code from Wrox to
get the bitmap used in this book (Font.bmp).

5. Double-click the ToolBar control in the Toolbox to add it to the form. Name it toolBarFonts. The
toolbar may now be obscuring some of the RichTextBox - to correct that, click the RichTextBox and
move it to be below the toolbar. If you haven't already, modify the RichTextBox as presented at Step 1.

6. Set the ImageList property of the ToolBar to ImageListToolbar.

7. Select the Toolbar's Buttons property and click the button at the right of it to add buttons to the
Toolbar control.

8. Add five buttons to the tool bar, and set the properties of the five buttons like this:

ToolBarButton Properties
First button Name = toolBarButtonBold

ImageIndex = Index of the bold image (B)

Style = ToggleButton

Second button Name = toolBarButtonItalic

ImageIndex = Index of the italic image (I)

Style = ToggleButton

Third button Name = toolBarButtonUnderline

ImageIndex = Index of the underline image (U)

Style = ToggleButton

Fourth button Name = toolBarButtonSeparator

Style = Separator

Fifth button Name = toolBarButtonFonts

ImageIndex = Index of the last remaining image (the font bitmap)

Style = DropDownButton

DropDownMenu = ContextMenuFontFamilies

The form should now look something like this:

Adding the Event Handlers

Now we are ready to add code to the event handler for the ButtonClick event of the ToolBar. You can
add the event handler by double-clicking on the control:
private void toolBarFonts_ButtonClick(object sender,
 System.Windows.Forms.ToolBarButtonClickEventArgs e)
{
 Font newFont;

 // Switch on the index of the button in the Buttons collection of the
 // ToolBar
 switch (toolBarFonts.Buttons.IndexOf(e.Button))
 {
 case 0: // Bold
 if (e.Button.Pushed)
 // Create a new font with Bold face
 newFont = new Font(rtfText.SelectionFont,
 rtfText.SelectionFont.Style | FontStyle.Bold);
 else
 // Create a new font without bold face
 newFont = new Font(rtfText.SelectionFont,
rtfText.SelectionFont.Style & ~FontStyle.Bold);
 rtfText.SelectionFont = newFont;
 break;
 case 1: // Italic
 if (e.Button.Pushed)
 // Create a new font with italic
 newFont = new Font(rtfText.SelectionFont,
 rtfText.SelectionFont.Style | FontStyle.Italic);
 else
 // Create a new font without italic
 newFont = new Font(rtfText.SelectionFont,
 rtfText.SelectionFont.Style & ~FontStyle.Italic);
 rtfText.SelectionFont = newFont;
 break;
 case 2: // Underline
 if (e.Button.Pushed)
 // Create a new font with underline
 newFont = new Font(rtfText.SelectionFont,
 rtfText.SelectionFont.Style | FontStyle.Underline);

 else
 // Create a new font without underline
 newFont = new Font(rtfText.SelectionFont,
 rtfText.SelectionFont.Style & ~FontStyle.Underline);
 rtfText.SelectionFont = newFont;
 break;
 }
}

In this function we first check the index of the button that has been clicked - this is necessary because each
Button in the Buttons collection of the ToolBar uses this event to signal a click. After we've found the
button that was clicked, we test its Pushed property to see if we should set or remove the font style, and we
create a new font accordingly, in much the same way as we did earlier. Finally, we set the SelectionFont
of the rtfText control to that new font.

One final touch for each ToolBarButton that controls the style of the font is that they should reflect the font
used on the current selection. To do this, double-click on the SelectionChanged event of the
RichTextBox control in its list of Events in the Properties window, and add the following code to the handler:

private void rtfText_SelectionChanged(object sender, System.EventArgs e)
{
 // Set the toolbar buttons to the correct state of pushed or not
 this.toolBarButtonBold.Pushed = rtfText.SelectionFont.Bold;
 this.toolBarButtonItalic.Pushed = rtfText.SelectionFont.Italic;
 this.toolBarButtonUnderline.Pushed = rtfText.SelectionFont.Underline;
}

The RichTextBox control can tell us the style of the current font, so we simply assign the appropriate
properties to the Enabled property of the toolbar buttons.

All that remains is to handle the Click event of the two menu items in our DropDownButton style fonts
button. We do this by adding the Click events to the menu items just like we did in the menu example earlier
in this chapter (just double-click the items):
private void menuItemMS_Click(object sender, System.EventArgs e)
{
 // Create a new font with the correct font family.
 Font newFont = new Font("MS Sans Serif", rtfText.SelectionFont.Size,
 rtfText.SelectionFont.Style);
 rtfText.SelectionFont = newFont;
}

private void menuItemTimes_Click(object sender, System.EventArgs e)
{
 // Create a new font with the correct font family.
 Font newFont = new Font("Times New Roman", rtfText.SelectionFont.Size,
 rtfText.SelectionFont.Style);
 rtfText.SelectionFont = newFont;
}

We create a new font from the font family we wish to use, and then set the SelectionFont to the new font.

Now compile and run the application to try it out.

Chapter 14 - Advanced Windows Forms
Features
byKarli Watsonet al.

Wrox Press 2003

SDI and MDI Applications

Traditionally there are three kinds of application that can be programmed for Windows. These are:

● Dialog based applications. These present themselves to the user as a single dialog from which all
functionality can be reached.

● Single Document Interfaces (SDI). These present themselves to the user with a menu, one or more
toolbars and one window in which the user can perform some task.

● Multiple Document Interfaces (MDI). These present themselves to the user in the same manner as an SDI
does, but have the ability to hold multiple open windows at a time.

Dialog based applications are usually small single purpose applications that aim themselves at a specific task
that needs a minimum of data entered by the user, or targets a very specific type of data. An example of such
an application is the Calculator, which comes with Windows.

Single Document Interfaces are usually aimed at solving one specific task, as they allow the user to load a
single document into the application to be worked on. This task however, usually involves a lot of user
interaction, and very often the user will want the ability to save or load the result of his or her work. Good
examples of SDI applications are WordPad, and Paint, that both come with Windows:

However, only one document can be open at any one time, so if a user wants to open a second document, a
fresh instance of the SDI application will be opened which will have no reference to the first instance and so
any configuration you do to one instance will not be carried over into the other. Thus in one instance of Paint,
you might set the drawing color to red, and if you open a second instance of Paint the drawing color will be the
default, which is black.

Multiple Document Interfaces are very much the same as SDI applications, except they are able to hold more
than one document open in different windows at any given time. A tell-tale sign of an MDI application is the
inclusion of the Window menu at the right-hand side of the menu bar, just before the Help menu. Examples of
MDI applications are Adobe Acrobat Reader and Word 97.

A fourth type of application was introduced with Office 2000. This type of application appears to be a cross
between an SDI and MDI in that the windows presented to the user do not occupy the same area and each
window shows up in the task bar. Essentially the applications themselves are MDI applications because the
main application will not shut down until all the windows are closed, and you can select which open document
to view using the Windows menu item, but the user interface itself is presented as an SDI.

In this chapter we will focus on creating an MDI application and the tasks involved in doing so. The reasoning
behind this is that any SDI application is basically a subset of an MDI, so if you are able to create an MDI you
can also create an SDI. In fact in Chapter 15, we will create a simple SDI application that we will use to

demonstrate using the Windows Common Dialogs.

Building MDI Applications

What is involved in creating an MDI? First of all, the task you want the user to be able to accomplish should
be one where he or she would want to have multiple documents open at a time. A good example of this is a
text editor or, as in the screenshot above, a text viewer. Secondly, you should provide toolbars for the most
commonly used tasks in the application, such as setting the font style, and loading and saving documents.
Thirdly, you should provide a menu that includes a Window menu item, which allows the user to reposition the
open windows in respect of each other (tile and cascade) and presents a list of all open windows. Another
feature of MDI applications is that if a window is open and that window contains a menu, that menu should be
integrated into the main menu of the application.

An MDI application consists of at least two distinct windows. The first window you create is called an MDI
container. A window that can be displayed within that container is called an MDI child. We will refer to the
MDI container as "MDI container" or "main window" interchangeably and to the MDI child as "MDI child" or
"child window".

To create an MDI application, you start out in just the same way as you do any other application, by creating a
Windows application in Visual Studio .NET. To change the main window of the application from a form to an
MDI container you simply set the IsMdiContainer property of the form to true. The background of the
form changes color to indicate that it is now merely a background that you should not place visible controls on,
although it is possible to do so, and may even be reasonable under certain circumstances.

To create a child window you add a new form to the project by selecting a Windows Form from the dialog
brought up by selecting Project | Add New Item. This form becomes a child window when you set the
MdiParent property of the child window to a reference to the main window. You cannot set this property
through the Properties panel, so you will have to do this using code.

Two things remain before the MDI application is able to display itself in its most basic mode. You must tell the
MDI container which windows to display, and then you must then display them. You simply do this by creating
a new instance of the form you wish to display, and then calling Show() on it. The constructor of the form to
display as a child should hook itself up with the parent container. It does so by setting its MdiParent property
to the instance of the MDI container.

Let's look at a small example that takes us through these steps, before moving on to more complicated tasks.

Try it Out – Creating an MDI Application

1. Create a new Windows application called MdiBasic in the directory C:\BegVCSharp\Chapter14.

2. Select the form and set the following properties:

Property Value
Name frmContainer

IsMdiContainer True

Text MDI Basic

WindowState Maximized

3. Add a new form to the solution by choosing Windows Form from the Project | Add New Item menu. Name
the form frmChild.

All the code that we need to display a child form is found in the constructors of the forms. First we'll look
at the constructor for the child window:
public frmChild(MdiBasic.frmContainer parent)
{
 InitializeComponent();

 // Set the parent of the form to the container
 this.MdiParent = parent;
}

In order to bind a child form to the MDI container, the child must register itself with the container. This is
done by setting the MdiParent property of the form as shown in the code above. You will notice that
the constructor we are using includes the parameter parent.

Because C# does not provide default constructors for a class that defines its own constructor, the above
code prevents us from creating an instance of the form that is not bound to the MDI container.

Finally we want to display the form. We do so in the constructor of the MDI container:
public frmContainer()
{
 InitializeComponent();

 // Create a new instance of the child form
 MdiBasic.frmChild child = new MdiBasic.frmChild(this);

 // Show the form
 child.Show();
}

We create a new instance of the child class and pass this to the constructor, where this represents
the current instance of the MDI container class. Then we call Show() on the new instance of the child
form and that's it. If you want to show more than one child window, all you have to do is repeat the two
highlighted lines in the above code for each window.

If you run the code now, you should see something like this (although the MDI Basic form will initially be
maximized, we've resized it here to fit on the page):

It's not the most intriguing user interface ever designed, but it is clearly a solid start. The next example we'll
produce is a simple text editor, based on what we have already achieved in this chapter using menus and
toolbars.

Try it Out – Creating an MDI Text Editor

Let's create the basic project first and then discuss what is happening:

1. Create a new Windows application called SimpleTextEditor in the C:\BegVCSharp\Chapter14
directory. Set the following properties on the form:

Properties Value
Name frmContainer

IsMdiParent True

Text Simple Text Editor

WindowState Maximized

2. Rename the file that contains the form (the file itself, not the property) to frmContainer.cs and
change the following code in Main():

static void Main()
{
 Application.Run(new frmContainer());
}

3. We'll add the code from the previous toolbar example (in the MenuExample project) – select Project |
Add Existing Item and browse to the MenuExample folder, and add the file Form1.cs.

4. Rename the newly inserted form frmEditor, and rename the file that contains it frmEditor.cs. Set
the Text property to Editor, and ensure that you change the namespace in the frmEditor.cs from
MenuExample to SimpleTextEditor.

These steps are very similar to those of the MDI Basic application, other than using an existing form
rather than creating a new one. However what follows is where things get interesting.

5. Find the Main method of the frmEditor form and remove it.

6. Change the constructor of the frmEditor form to:

public frmEditor(SimpleTextEditor.frmContainer parent)
{
 InitializeComponent();

 // Bind to the parent
 this.MdiParent = parent;
}

7. Change the constructor of the frmContainer form to:

public frmContainer()
{
 InitializeComponent();

 SimpleTextEditor.frmEditor newForm = new frmEditor(this);
 newForm.Show();
}

If you run the application now, you will see something like this:

Notice that a bit of magic has happened. We haven't created any menus for the container, yet the menu
Files is right there at the top. What has happened? The answer is that we did create a menu for the
Editor form, and as that form is now a child of the container, the main menu items have been merged.
Since there are no menus in the container yet, we only see one menu item.

The menus that should be contained on child windows are those that are specific to that window. The
Files menu should be general for all windows, and shouldn't be contained in the child windows. The
reason for this becomes apparent if you close the editor window – the Files menu disappears! To change
this behavior we need to go though a few more steps:

8. Remove the menu named MainMenuFiles from the frmEditor form.

9. Go to the code and remove the event handlers for this menu:

❍ menuItemFiles_Popup

❍ menuItemSave_Click

❍ menuItemNew_Click

❍ menuItemOpen_Click

❍ menuItemExit_Click

10. Remove the line in the constructor where the menuItemFiles_Popup event is subscribed.

A more appropriate menu for the frmEditor form is an Edit menu. Create this by going through the
following steps:

11. Add a new MainMenu to the editor form. Name the control MainMenuEdit.

12. Add seven items to it and set the following properties:

Name Text
menuItemEdit &Edit

menuItemUndo &Undo

menuItemRedo &Redo

menuItemSeperatorEdit0 -

menuItemCut Cu&t

menuItemCopy &Copy

menuItemPaste &Paste

13. Set the Menu property of the frmEditor form to MainMenuEdit. The menu will now be merged with
the menu of the container.

It is now time to create the menu that should be displayed no matter which window is selected. Follow
the steps below carefully to add the menu to the container:

14. Add a MainMenu to the form frmContainer. Name this menu MainMenuContainer.

15. Add the following items to it. Notice that the MenuItemWindow should be a top-level menu item – that
is, it should be placed to the right of the Files menu:

Name Text Top level
menuItemFiles &Files Yes

menuItemNew &New No

menuItemOpen &Open No

menuItemClose &Close No

menuItemSepFiles0 - No

menuItemSave &Save No

menuItemSaveAll Save &All No

menuItemSepFiles1 - No

menuItemExit E&xit No

menuItemWindow &Window Yes

menuItemTile &Tile No

menuItemCascade &Cascade No

menuItemSepWindow0 - No

menuItemWindowsOpen Open Windows No

Finally, set the MergeOrder property for menuItemWindowsOpen to 1, and its MdiList property to True.

If you run the application now, you will see that the Edit menu has been nicely inserted between the Files
menu and the Window menu. The reason this has happened is that we set the MergeOrder property of the
Window MenuItem to 1 and the MergeOrder of the Edit menu is 0 (this is the default value and we haven't
changed it). Because the MergeType is Add, the Edit menu is added to the right of all top-level menu items
that have a MergeOrder less than or equal to its MergeOrder.

Another thing you will notice is that the Open Windows menu item contains a subitem with a check mark. The
text of this subitem is the same as the text of the frmEditor form. In this menu all open windows will be
listed – without us having to code a single line. This is the result of setting the MdiList property of the
MenuItemWindowsOpen menu item to true:

Adding the Event Handlers

Let's move on to the code. First we'll create the menu handlers for the Edit menu. Double-click all the menu
items in the menu except for the separator and top-level item, and add the following code:
private void menuItemUndo_Click(object sender, System.EventArgs e)
{
 rtfText.Undo();
}

private void menuItemRedo_Click(object sender, System.EventArgs e)
{
 rtfText.Redo();
}

private void menuItemCut_Click(object sender, System.EventArgs e)
{

 rtfText.Cut();
}

private void menuItemCopy_Click(object sender, System.EventArgs e)
{
 rtfText.Copy();
}

private void menuItemPaste_Click(object sender, System.EventArgs e)
{
 rtfText.Paste();
}

Happily, the RichTextBox control provides us with methods that correspond exactly to all of our menu items,
so we simply call these functions. Just as we did in the MenuExample earlier, we need to check if the menus
should be enabled or disabled, and we do this in the Popup event handler. This time we'll subscribe to the
event in the constructor of the form frmEditor:

public frmEditor(SimpleTextEditor.frmContainer parent)
{
 InitializeComponent();

 // Bind to the parent
 this.MdiParent = parent;

 // Subscribe to the popup event of the Edit menu
 this.menuItemEdit.Popup += new EventHandler(this.menuItemEdit_Popup);
}

Then we add the event handler:
private void menuItemEdit_Popup(object sender, System.EventArgs e)
{
 // If there is no text selected, we cannot cut it.
 this.menuItemCut.Enabled = rtfText.SelectedText.Length > 0 ? true : false;

 // If there is no text selected, we cannot copy it.
 this.menuItemCopy.Enabled = rtfText.SelectedText.Length > 0 ? true : false;

 // The CanPaste method of the RichTextBox tells us if there's anything to
 // paste
 this.menuItemPaste.Enabled =
 rtfText.CanPaste(DataFormats.GetFormat(DataFormats.Rtf));

 // The CanUndo property of the RichTextBox tells us if we can undo an
 // action
 this.menuItemUndo.Enabled = rtfText.CanUndo;

 // The CanRedo property of the RichTextBox tells us if we can redo an
 // action
 this.menuItemRedo.Enabled = rtfText.CanRedo;
}

Once again, the RichTextBox control helps us out. It is possible to check all of the items to see if they
should be enabled or not, simply by calling a function or querying a property. The only method that needs

further explanation is CanPaste(). This method takes the text that you want to paste and returns a Boolean
value which is true if it is possible to do the paste.

Now let's move on to the menus in the MDI container. We'll start with the New menu item on the Files menu.
When New is clicked we want to create an additional window. We've already seen how to do this, as it already
happens in the constructor, but there's a problem. At the moment all of our windows have the exact same
caption – Editor – which makes it impossible to distinguish between them in the MdiList we created. To
change this, we'll add a new parameter to the constructor of the frmEditor form in which we'll send the text
that should be displayed in the new windows caption:
public frmEditor(SimpleTextEditor.frmContainer parent, string caption)
{
 InitializeComponent();

 // Bind to the parent
 this.MdiParent = parent;
 // Set the caption
 this.Text = caption;

 // Subscribe to the popup event of the Edit menu
 this.menuItemEdit.Popup += new EventHandler(this.menuItemEdit_Popup);
}

This change means that we have to change the call to the constructor that is made in the constructor of the
container:
public frmContainer()
{
 InitializeComponent();

 SimpleTextEditor.frmEditor newForm = new frmEditor(this, "Editor 1");
 newForm.Show();
}

Now we are ready to create new windows. Double-click the New menu item and add the following code:
private void menuItemNew_Click (object sender, System.EventArgs e)
{
 string caption = "Editor " + nextFormNumber++; // The caption

 // Create the new window
 SimpleTextEditor.frmEditor newForm = new SimpleTextEditor.frmEditor(this,
 caption);
 newForm.Show(); // Show the form
}

First, we create the new caption. The nextFormNumber variable is defined at the top of the class as:

private int nextFormNumber = 2;

If we chose to use the number of windows currently in the array of forms (MdiChildren) we would have a
problem if two forms had been opened, and the form with number 1 was subsequently closed. We'll therefore
simply add one to this number each time a new form is opened. The reason the next form number is two
rather than one when we start is that the constructor used the text "Editor 1" to initialize the first window.

After that we create a new instance of the editor form and show it.

If you run the code and add a new window, you will notice that the events in the Edit menu target the correct
window – which is lucky, because we didn't do anything to achieve this. Because the events handlers are
defined for each instance of the form, the events are sent to the correct place every time. Also you will see the
two windows showing up in the Open Windows list:

Next, we want to be able to close the window again. The frmContainer form has a property called
ActiveMdiChild, which lets us identify the child window we want to close. Double-click the Close menu and
add the following code:
private void menuItemClose_Click(object sender, System.EventArgs e)
{
 // Get the active MDI child
 SimpleTextEditor.frmEditor frm =
 (SimpleTextEditor.frmEditor)this.ActiveMdiChild;
 if (frm != null) // Make sure the child is valid before using it
 {
 frm.Close(); // Close the window
 }
}

First, we cast the form contained in the ActiveMdiChild property to a SimpleTextEditor class. Then we
make sure that the instance is not null before doing anything with it, and then call Close() on the window.

We are not going to cover implementing the other Files menu items, as the Open, Save and SaveAll options use
the standard open and save file dialogs which are discussed in full in the next chapter. The Exit menu item
uses the very same code as we have seen in earlier examples.

Now we move on to the two remaining menus in the Window menu – Tile and Cascade. There are two possible
ways to tile open documents – vertically or horizontally, but in this example we'll just use one, and tile the
windows horizontally. There is only one option for cascading multiple document windows. Double-click the Tile
menu, and add the following code:
private void menuItemTile_Click(object sender, System.EventArgs e)
{
 this.LayoutMdi(MdiLayout.TileHorizontal);
}

Now double-click the Cascade menu and add the following code:
private void menuItemCascade_Click(object sender, System.EventArgs e)
{

 this.LayoutMdi(MdiLayout.Cascade);
}

The LayoutMdi() method on the container window allows you to change the layout of all the MDI children.

This concludes our discussion of SDI and MDI applications. If you run the code you should be able to create
something like this (the figure shows a tiled layout of three open documents):

Chapter 14 - Advanced Windows Forms
Features
byKarli Watsonet al.

Wrox Press 2003

Creating Controls

There are times where the controls that ship with Visual Studio .NET just don't meet your needs. The reasons
for this can be many - the controls don't draw themselves in the way you want them to, or the controls are
restrictive in some way, or the control you need simply doesn't exist. Recognizing this, Microsoft has provided
us with the means to create controls that meet our needs. Visual Studio .NET provides a project type named
Windows Control Library, which you use when you want to create a control yourself.

Important The Windows Control Library project is not available from Visual C# Standard Edition.

Two distinct kinds of home-made controls can be developed, named user controls (or composite controls) and
custom controls:

● User or composite controls - these controls build on the functionality of existing controls to create a new
control. Such controls are generally made to encapsulate functionality with the user interface of the
control, or to enhance the interface of a control by combining several other controls into one unit.

● Custom controls - these controls can be created when no control fits your needs, that is, you start from
scratch. It draws its entire user interface itself and no existing controls are used in the creation of the
control. You will normally need to create a control like this when the user interface control you want to
create is unlike that of any other available control.

In this chapter we'll focus on user controls as the second option of designing and drawing a custom control
from scratch is beyond the scope of this book. Chapter 16 on GDI+ gives you the means to draw items by
yourself, and you should then be able to move on to custom controls easily.

ActiveX controls as used in Visual Studio 6 existed in a special kind of file with the extension
ocx. These files were essentially COM DLLs. In .NET a control exists in exactly the same way as
any other assembly, and because of that the ocx extension has disappeared and controls exist
in DLLs.

User controls inherit from the System.Windows.Forms.UserControl class. This base class provides the
control you are creating with all the basic features a control in .NET should include - leaving you only the task
of creating the control. Virtually anything can be created as a control, ranging from a label with a nifty design
to full-blown grid controls.

Unlike user controls, custom controls derive from the System.Windows.Forms.Control class
rather than UserControl.

We take a number of things for granted when we are working with controls. If your control doesn't fulfill those
expectations, the chances are that people will be discouraged from using it. These criteria are:

● The behavior of the design-time control should be very similar to its behavior at run-time. This means that
if the control consists of a Label and a TextBox that have been combined to create a LabelTextbox,
the Label and TextBox should both be displayed at design time and the text entered for the Label
should also be shown at design time. While this is fairly easy in the above example, it can present
problems in more complex cases, where you'll need to find an appropriate compromise.

● Access to the properties of the control should be possible from the form designer in a logical manner. A
good example of this is the ImageList control that presents a dialog from which you can browse to the
images you want to include, and once the images are imported, they are shown in a list in the dialog.

Over the next few pages we will introduce you to the creation of controls by means of an example. The
example creates the LabelTextbox and demonstrates the basics of creating a user control project, creating
properties and events and debugging controls.

Try it Out - LabelTextbox Example

As the name of the control implies, this is a control that combines two existing controls to create a single one
that performs in, one go, a task extremely common in Windows programming: adding a label to a form, then
adding a text box to the same form and positioning the text box in relation to the label. Let's look at what a
user of this control will expect it to do:

● It should be possible for the user to position the text box either to the right of the label or below it. If the
text box is positioned to the right of the label, it should be possible to specify a fixed distance from the left
edge of the control to the text box in order to align text boxes below each other.

● The usual properties and events of the text box and label should be available to the user.

Now that we know what we are up against, it is time to start Visual Studio and create a new project:

1. Create a new Windows Control Library project called LabelTextbox in the C:\BegVCSharp

\Chapter14 directory:

The form designer presents you with a design surface that looks somewhat different from what we're used
to. First of all the surface is much smaller than normal, and secondly it doesn't look like a dialog at all. You
should not let this new look discourage you in any way - things still work as usual. The main difference is
that up until now we have been placing controls on a form, but now we are creating a control to be placed
on a form:

2. Click the design surface and bring up the properties for the control. Change the Name of the control to
ctlLabelTextbox.

3. Double-click a Label in the Toolbox to add it to the control, placing it in the top left-hand corner of the
surface. Change its Name property to lblTextBox. Set the Text property to Label. Set the AutoSize
property to True. This will make the label control size itself to the size of the text.

4. Double-click a TextBox in the Toolbox. Change its Name property to txtLabelText and clear the Text
property.

At design time we do not know how the user will want to position these controls. Because of that we are going
to write code that will position the Label and TextBox. That same code will determine the position of the
controls when a LabelTextbox control is placed on a form.

The design of the control looks anything but encouraging - not only is the TextBox floating freely on the
surface, the surface is too large. However this is of no consequence, because unlike what we've been used to

up until now, what you see is not what you get! The code we are about to add to the control will change the
appearance of the control, but only when the control is added to a form.

The first thing we want to do is position the controls relative to each other. The user should be able to decide
how the controls are positioned and for that we add not one but two properties to the control. One property is
called Position and gives the user a choice between two options: Right and Below. If the user chooses
Right then the other property comes into play. This property is called TextboxMargin and is an int that
represents the number of pixels from the left edge of the control to where the TextBox should be placed. If
the user specifies 0 the TextBox is placed with its right edge aligned with the right edge of the control.

Adding Properties

In order to give the user a choice between Right and Below we start by defining an enumeration with these
two values. Return to the control project , go to the code editor and add this code:
public class ctlLabelTextbox : System.Windows.Forms.UserControl
{
 // Enumeration of the two possible positions
 public enum PositionEnum
 {
 Right,
 Below
 }

This is just a normal enumeration as we saw in Chapter 5. Now for the magic - we want the position to be a
property the user can set through code and the designer. We do this by adding a property to the
ctlLabelTextbox class. First, however, we create two member fields that will hold the values the user
selects:
// Member field that will hold the choices the user makes
private PositionEnum mPosition = PositionEnum.Right;
private int mTextboxMargin = 0;

public ctlLabelTextbox()
{
 ...

Then we add the Position property as follows:

public PositionEnum Position
{
 get
 {
 return mPosition;

 }
 set
 {
 mPosition = value;
 MoveControls();
 }
}

The property is added to the class like any other property. If we are asked to return the property, we return the
mPosition member field, and if we are asked to change the Position, we assign the value to mPosition
and call the method MoveControls(). We'll return to MoveControls() in a short while, for now it is
enough to know that this method positions the two controls by examining the values of mPosition and
mTextboxMargin.

The TextboxMargin property is the same, except it works with an integer:

public int TextboxMargin
{
 get
 {
 return mTextboxMargin;
 }
 set
 {
 mTextboxMargin = value;
 MoveControls();
 }
}

Adding the Event Handlers

Before we move on to test the two properties, we'll add two event handlers as well. When the control is placed
on the form, the Load event is called. You should use this event to initialize the control and any resources the
control may use. We handle this event in order to move the controls and to size the control to fit neatly around
the two controls it contains. The other event we'll add is the SizeChanged event. This event is called
whenever the control is resized, and we should handle the event to allow the control to draw itself correctly.
We subscribe to the events in the constructor of the control:
// Handle the SizeChanged event
this.SizeChanged += new System.EventHandler(this.OnSizeChanged);

// Handle the Load event
this.Load += new EventHandler(this.OnLoad);

Then we add the event handlers:
private void OnLoad(object sender, EventArgs e)
{
 lblTextBox.Text = this.Name; // Add a text to the label
 // Set the height of the control
 this.Height = txtLabelText.Height + lblTextBox.Height;
 MoveControls(); // Move the controls
}

private void OnSizeChanged(object sender, System.EventArgs e)
{

 MoveControls();
}

Once again, we call MoveControls() to take care of the positioning of the controls. It is time to see this
method, before we test the control again:
private void MoveControls()
{
 switch (mPosition)
 {
 case PositionEnum.Below:
 // Place the top of the Textbox just below the label
 this.txtLabelText.Top = this.lblTextBox.Bottom;
 this.txtLabelText.Left = this.lblTextBox.Left;

 // Change the width of the Textbox to equal the width of the control
 this.txtLabelText.Width = this.Width;
 this.Height = txtLabelText.Height + lblTextBox.Height;
 break;
 case PositionEnum.Right:
 // Set the top of the textbox to equal that of the label
 txtLabelText.Top = lblTextBox.Top;

 // If the margin is zero, we'll place the textbox next to the label
 if (mTextboxMargin == 0)
 {
 int width = this.Width-lblTextBox.Width-3;
 txtLabelText.Left = lblTextBox.Right + 3;
 txtLabelText.Width = width;
 }
 else
 {
 // If the margin isn't zero, we place the textbox where the user
 // has specified
 txtLabelText.Left = mTextboxMargin;
 txtLabelText.Width = this.Right-mTextboxMargin;
 }
 break;
 }
}

The value in mPosition is tested in a switch statement to determine whether we should place the text box
below or to the right of the label. If the user chooses Below, then we move the top of the text box to the
position that is the bottom of the label. We then move the left edge of the text box to the left edge of the
control and set the width of it to the width of the control.

If the user chooses Right, then there are two possibilities. If the TextboxMargin is zero, then we start by
determining the width that is left in the control for the text box. We then set the left edge of the text box to just
a nudge right of the text and set the width to fill the remaining space. If the user did specify a margin, then we
place the left edge of the text box at that position and set the width again.

We are now ready to test the control. Before we move on, build the project.

Debugging User Controls

Debugging a user control is quite different from debugging a Windows application. Normally you would just
add a breakpoint somewhere, hit F5 and see what happens. If you are still unfamiliar with debugging you
should refer to

A control needs a container in which to display itself, and we will have to supply it with one. We do this by
creating a Windows application project:

Try it Out - Debugging User Controls

1. In Solution Explorer, right click on the LabelTextbox solution and select Add | Add New Project. In the
Add New Project dialog, create a new Windows application called LabelTextboxTest in the directory
C:\BegVCSharp\Chapter14.

In Solution Explorer you should now see two projects open. The first project we created,
LabelTextbox, is written in bold face. This means that if we try to run the solution the debugger will
attempt to use the control project as the startup project. This will fail because the control isn't a stand-
alone type of project. In order to fix this, right-click the name of the new project - LabelTextboxTest
and select Set as Startup Project. If you run the solution now, the Windows application project will be run
and no errors will occur.

2. In order for the Windows application project to know about the control we are creating we need to add a
reference to it. Right-click the References heading in the Solution Explorer under the project
LabelTextboxTest and select Add Reference...

3. Choose the tab named Projects. Here you should see the control project listed. Click Select and click OK
to add a reference to the LabelTextBox project. You should now be able to find the LabelTextBox
control in the Windows Form section of the Toolbox, along side the standard Windows forms controls.

4. Add the control ctlLabelTextbox to the form by double-clicking it. Note: If you get an error when you
double-click ctlLabelTextbox then try the following: Right-click LabelTextBox in the Solution Explorer
and select Remove. Repeat step 3 but instead of selecting the project on the Projects tab, click Browse
and browse to the location of the DLL named LabelTextbox.dll. Select it and click OK.

5. Go to the code and find the line which you will find in the InitializeComponent()method.

this.MyControl = new LabelTextbox.ctlLabelTextbox();

To get at this line you will probably have to unfold the region marked as "Windows Form Designer
generated code".

6. Place a breakpoint on this line.

7. Run the code. As you would expect the code stops at the breakpoint we placed. Now step into the code
(if you are using the default keyboard maps, then press F11 to do so). When you step into the code you
are transferred to the constructor of our new control, which is exactly what we want in order to debug the
component. You are also able to place breakpoints. Hit F5 to allow the application to run.

Extending the LabelTextbox Control

Finally, we are ready to test the properties of the control. Go through the steps to create a project in a new
instance of Visual Studio .NET that includes the LabelTextbox control. Drag the control onto the form. You
will see the label displaying the name of the control and the text box occupying the remaining area of the
control. Also notice that the controls within the LabelTextbox control move to the correct positions when the

control is added to the form:

Adding More Properties

We can't do much with the control at the moment, as it is sadly missing the ability to change the text in the
label and text box. We'll add two properties to handle this: LabelText and TextboxText. The properties
are added in the same way as we did the two previous properties:
public string LabelText
{
 get
 {
 return lblTextBox.Text;
 }
 set
 {
 lblTextBox.Text = value;
 MoveControls();
 }
}

public string TextboxText
{
 get
 {
 return txtLabelText.Text;
 }
 set
 {
 txtLabelText.Text = value;
 }
}

We simply assign the text to the Text property of the Label and TextBox controls if we want to insert the
text, and return the value of the Text properties. In the case that the label text is changed, we need to call
MoveControls(), because the label text may influence where the text box is positioned. Text inserted into

the text box on the other hand does not move the controls, and if the text is longer than the text box, it will
disappear out of sight.

Adding More Event Handlers

Now it is time for us to begin thinking about which events the control should provide. Because the control is
derived from the UserControl class, we have inherited a lot of functionality that we don't need to worry
about. There are, however, a number of events that we don't want to hand to the user in the standard way.
Examples of this include the KeyDown, KeyPress, and KeyUp events. The reason we need to change these
events is that the user will expect them to be sent when he or she presses a key in the text box. As they are
now, the events are only sent when the control itself has focus, and the user presses a key.

To change this behavior, we must handle the events sent by the text box, and pass them on to the user. We
start by subscribing to the events in the constructor of the form:
// Handle the SizeChanged event
this.SizeChanged += new System.EventHandler(this.OnSizeChanged);

// Textbox Keyboard events
this.txtLabelText.KeyDown += new KeyEventHandler(this.txtLabelText_KeyDown);
this.txtLabelText.KeyUp += new KeyEventHandler(this.txtLabelText_KeyUp);
this.txtLabelText.KeyPress += new
 KeyPressEventHandler(this.txtLabelText_KeyPress);

Then we add the three event handlers:
private void txtLabelText_KeyDown(object sender, KeyEventArgs e)
{
 OnKeyDown(e);
}

private void txtLabelText_KeyUp(object sender, KeyEventArgs e)
{
 OnKeyUp(e);
}

private void txtLabelText_KeyPress(object sender, KeyPressEventArgs e)
{
 OnKeyPress(e);
}

Calling the OnKeyXXX method invokes a call to any methods that are subscribed to the event.

Adding a Custom Event Handler

When we want to create an event that does not exist in one of the base classes, we need to do a bit more
work. We will create an event called PositionChanged that will occur when the Position property
changes.

In order to create this event we need three things:

● We need an appropriate delegate that can be used to invoke the methods the user assigns to the event.

● The user must be able to subscribe to the event by assigning a method to it.

● We must invoke the method the user has assigned to the event.

The delegate we will use is the EventHandler delegate that is provided by the .NET Framework. As we
learned in Chapter 12, this is a special kind of delegate that is declared by its very own keyword, event. The
following line declares the event, and enables the user to subscribe to it:
public event System.EventHandler PositionChanged;

// Constructor
public ctlLabelTextbox()
{

Now all that remains for us to do is raise the event. As it should occur when the Position property changes,
we raise the event in the set accessor of the Position property:

public PositionEnum Position
{
 get
 {
 return mPosition;
 }
 set
 {
 mPosition = value;
 MoveControls();
 if (PositionChanged != null) // Make sure there are subscribers
 {
 // Get the list of methods to call
 System.Delegate[] subscribers = PositionChanged.GetInvocationList();
 // Loop through the methods
 foreach (System.EventHandler target in subscribers)
 {
 target(this, new EventArgs()); // Call the method
 }
 }
 }
}

First we make sure that there are some subscribers by checking if PositionChanged is null. If it isn't we
call GetInvocationList on it, to retrieve a list of the delegates to call. Then we loop through all the
delegates and call them one by one.

Our custom event is subscribed to in the constructor of our LabelTextboxTest project:

 public Form1()
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 ctlLabelTextbox1.PositionChanged +=
 new EventHandler(this.myControl_PositionChanged);
 }
 }

Our custom event handler doesn't really do anything sparkling - it simply points out that the position has

changed!
 private void myControl_PositionChanged(object sender, EventArgs e)
 {
 MessageBox.Show("Changed");
 }

Now we can compile and run our test application that contains our user control. The application also contains
a button, which will toggle to appearance of the control by setting and resetting the Position property and
displaying a message box:

Our example is now finished. It could be refined rather a bit, but we will leave that to you and the exercises.

Chapter 14 - Advanced Windows Forms
Features
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we started where we left of in the

Chapter 14 - Advanced Windows Forms
Features
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Using the LabelTextbox example as the base, create a new property called MaxLength that stores

the maximum number of characters that can be entered into the textbox. Then create two new events
called MaxLengthChanged and MaxLengthReached. The MaxLengthChanged event should be
raised when the MaxLength property is changed and MaxLengthReached should be raised when the
user enters a character making the length of the text in the text box equal to the value of MaxLength.

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

Chapter 15: Using Common Dialogs

Overview

In the last two chapters we have looked at various aspects of programming Windows Forms applications, and
seen how to implement such things as menus, toolbars, and SDI and MDI forms. We also know how to
display simple message boxes to get information from the user, and how to create more sophisticated custom
dialogs to ask the user for specific information. However, for common tasks such as opening and saving files,
there are prewritten dialog classes that can be used instead of having to create your own custom dialog.

This not only has the advantage of requiring less code, but also that it uses the familiar Windows dialogs,
giving your application a standard look and feel. The .NET Framework has classes which hook up to the
Windows dialogs to open and save files, to access printers, and to select colors and fonts. Using these
dialogs instead of custom dialogs means that it's not necessary for you to have to learn the complex
methodology that would be required to code such functionality from scratch.

In this chapter we will learn how to use these standard dialog classes. In particular, we will:

● Use the OpenFileDialog and SaveFileDialog classes

● Learn about the .NET printing class hierarchy and use the PrintDialog, PageSetupDialog, and
PrintPreviewDialog classes to implement printing and print preview

● Look at how to change fonts and colors with the FontDialog and ColorDialog classes

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

Common Dialogs

A dialog is a window that is displayed within the context of another window. With a dialog we can ask the user
to enter some data before we continue the flow of our program. A common dialog is a dialog that used to get
information from the user that most applications will typically require, such as the name of a file, and is a part
of the Windows operating system.

With the .NET Framework we have the following dialog classes:

All these dialog classes, except the PrintPreviewDialog, derive from the abstract CommonDialog base
class that has methods to manage a Windows common dialog.

The CommonDialog class defines the following methods and events common to all common dialog classes:

Public Instance Methods and Events Description
ShowDialog() This method is implemented from the derived class to

display a common dialog.
Reset() Every derived dialog class implements the Reset()

method to set all properties of the dialog class to their
default values.

HelpRequest This event is thrown when the user clicks the Help button
on a common dialog.

All these dialog classes wrap up a Windows common dialog to make the dialog available for .NET
applications. PrintPreviewDialog is an exception because it adds its own elements to a Windows Form to
control the preview of a print, and hence is not really a dialog at all. The OpenFileDialog and
SaveFileDialog classes derive from the abstract base class FileDialog that adds file features that are
common to both the opening and closing file dialogs.

Let's get an overview of how the different dialogs can be used:

● To let the user select and browse files to open the OpenFileDialog is used. This dialog can be
configured to allow the selection of a single file or multiple files.

● With the SaveFileDialog the user can specify a filename and browse for a directory to save files.

● The PrintDialog is used to select a printer and set the printing options.

● To configure the margins of a page the PageSetupDialog is usually used.

● The PrintPreviewDialog is one way to preview on the screen what is to be printed on paper, with
options such as zoom.

● The FontDialog lists all installed Windows fonts with styles and sizes, and a preview to select the font
of choice.

● The ColorDialog class makes it easy to select a color.

I have seen some applications developed (by the same company) where not only were the
common dialogs not reused, but also no style guide for building custom dialogs was used. The
development of these dialogs resulted in functionality that was not consistent, with some
buttons and other controls found in different locations, such as the OK and Cancel buttons
being reversed between dialogs.

Sometimes that inconsistency can also be found within one application. That's frustrating for
the user and increases the time to do a task.

Be consistent in the dialogs you build and use! Consistency can be easy to attain by using the common
dialogs.

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

How to Use Dialogs

As CommonDialog is the base class for the dialog classes, all the dialog classes can be used similarly. Public
instance methods are ShowDialog() and Reset(). ShowDialog() invokes the protected RunDialog()
instance method to display the dialog and finally returns a DialogResult instance with the information on
how the user interacted with the dialog. Reset(), on the other hand, sets properties of the dialog class to
their default values.

The following code segment shows an example of how a dialog class can be used. Later, we will take a more
detailed look at each of the steps, but first let's introduce the overall concept of how dialogs can be used.

As you can see in the following code segment:

● First a new instance of the dialog class is created.

● Next, we have to set some properties to enable / disable optional features and set dialog state. In this
case we set the Title property to "Sample", and the ShowReadOnly property to true.

● By calling the ShowDialog() method, the dialog is displayed and waits and reacts to user inputs.

● If the user presses the OK button the dialog is closed, and we check for the OK by comparing the result of
the dialog with DialogResult.OK. After that we can get the values from the user input by querying for
the specific property values. In this case we are storing the value of the FileName property in the
fileName variable.

OpenFileDialog dlg = new OpenFileDialog();
dlg.Title = "Sample";
dlg.ShowReadOnly = true;

if (dlg.ShowDialog() == DialogResult.OK)
{
 string fileName = dlg.FileName;
}

It's really that easy! Of course every dialog has its own configurable options, which we look at in the following
sections.

If you use a dialog from within a Windows Forms application in Visual Studio .NET, it's even easier than the
few lines of code above. The Windows Forms designer creates the code to instantiate a new instance, and
the property values can be set from the Properties window. We just have to call ShowDialog() and get to
the changed values, as we shall see.

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

File Dialogs

With a file dialog the user can select a drive and browse through the file system to select a file. From the file dialog,
all we want returned is a file name from the user.

With the OpenFileDialog we can allow the user to select a name for the file that they want to open, whereas using
the SaveFileDialog, allows the user to specify a name for a file that they want to save. These dialog classes are
very similar since they derive from the same abstract base class, though there are some properties unique to each
class. In this section, we will at first have a look at the features of the OpenFileDialog, and then we will look at
where the SaveFileDialog differs. We will develop a sample application that uses both of them.

OpenFileDialog

The OpenFileDialog class enables the user to select a file to open. As we have seen in our example above, a new
instance of the OpenFileDialog class is created before the ShowDialog() method is called.

OpenFileDialog dlg = new OpenFileDialog();
dlg.ShowDialog();

Running a Windows application program with these two code lines will result in this dialog:

As we have seen already, we can set the properties of this class before calling ShowDialog(), which changes the
behavior and appearance of this dialog, or limits the files that can be opened. In the next sections we will look at
possible modifications.

Note that if you want to use the OpenFileDialog with console applications, the System.Windows.
Forms assembly must be referenced, and the System.Windows.Forms namespace must be included.

Dialog Title

The default title for the OpenFileDialog is Open. You can change the title of the dialog by setting the Title
property. Open is not always the best name if, for example, in the application you want to analyze log files to check
some information and to perform calculations on it, or to get file sizes, and after doing whatever processing is
required, you close the files straight away afterwards. In this case the files don't stay opened for the user, so a title of

Analyze Files would be better. Visual Studio .NET itself has different titles for the file open dialogs to differentiate the
file types that are opened: Open Project, Open File, Open Solution, and Open File from Web.

This code segment shows how a different title can be set.
OpenFileDialog dlg = new OpenFileDialog();
dlg.Title = "Open File";
dlg.ShowDialog();

Specifying Directories

By default, the dialog opens the directory that was opened by the user when they last ran the application, and
displays the files in this directory. Setting the InitialDirectory property changes this behavior. The default value
of InitialDirectory is an empty string, which represents the My Documents directory of the user, and is shown
the first time that the dialog is used in the application. The second time that the dialog is opened, the directory shown
will be the same one as for the previously opened file. The Windows common dialog called by the OpenFileDialog
uses the Registry to locate the name of the previously opened file.

You should never use a hard-coded directory string in your application as this directory may not exist on the user's
system. To get special system folders you can use the static method GetFolderPath() of the System.
Environment class. The GetFolderPath() method accepts an Environment.SpecialFolder enumeration
member that defines which system directory you want the path for.

In the following code example I'm using the common user directory for templates to set it as InitialDirectory.

string dir = Environment.GetFolderPath(Environment.SpecialFolder.Templates);
dlg.InitialDirectory = dir;

Setting the File Filter

The file filter defines the file types that the user can select to open. A simple filter string can look like this:
Text Documents (*.txt)|*.txt|All Files|*.*

The filter is used to display the entries in the Files of type: list box. Microsoft WordPad displays these entries:

A filter has multiple segments that are separated with the pipe character (|). Two strings are required for each entry,
so the number of segments should always be an even number. The first string for each entry defines the text that will
be presented in the listbox; the second string is used to specify the extension of the files to display in the dialog. We
can set the filter string with the Filter property as in the code below:

dlg.Filter = "Text documents (*.txt)|*.txt|All Files|*.*";

Setting a wrong Filter value results in a run-time exception, System.ArgumentException, with the error
message The provided filter string is invalid. A blank before or after the filter is also not allowed.

The FilterIndex property specifies the number of the default selection in the listbox. With WordPad the default
selection is Rich Text Format (*.rtf) as highlighted in the screenshot above. If you have multiple file types to
choose from then you can set the FilterIndex to the default file type. It's worth paying attention to the fact that the
FilterIndex is one-based!

Validation

The OpenFileDialog can do some automatic validation of the file before you attempt to open it. When the
ValidateNames property is true, the filename entered by the user is checked to see if it is a valid Windows
filename. Pressing the OK button of the dialog with an invalid filename displays the following dialog, and the user
must correct the filename or click Cancel to leave the OpenFileDialog. Invalid characters for a filename include
characters such as \\, /, or :.

With ValidateNames set to true, you can use CheckFileExists and CheckPathExists as additional
validation. With CheckPathExists the path is validated, whereas CheckFileExists validates the file. If the file
doesn't exist, the following dialog is displayed when the OK button is pressed:

The default for these three properties is true, so the validation happens automatically.

Help

The OpenFileDialog class supports a help button that is by default invisible. Setting the ShowHelp property to
true makes this button visible, and you can add an event handler to the HelpRequest event to display help
information to the user.

Results

The ShowDialog() method of the OpenFileDialog class returns a DialogResult enumeration value. The
DialogResult enumeration defines the members Abort, Cancel, Ignore, No, None, OK, Retry, and Yes.

None is the default value that is set as long as the user hasn't closed the dialog. Depending on the button pressed
the corresponding result is returned. With the OpenFileDialog, only DialogResult.OK and DialogResult.
Cancel are returned.

If the user pressed the OK button the selected file name can be accessed using the FileName property. If the user
cancelled the dialog the FileName is just an empty string. If the Multiselect property is set to true so that the
user can select more than one file you get all the selected filenames by accessing the FileNames property, which
returns a string array.

Note that the FileNames property contains the files in the reverse order to which they were selected - thus the first
string in the FileNames array is the last file selected. Also, the FileNames property always contains the file name
of the last file that is selected.

This small code extract shows how multiple file names can be retrieved from an OpenFileDialog:

 OpenFileDialog dlg = new OpenFileDialog();

 dlg.Multiselect = true;

 if (dlg.ShowDialog() == DialogResult.OK)
 {
 foreach (string s in dlg.FileNames)
 {
 // now display the filenames in a list box
 this.listBox1.Items.Add(s);
 }
 }

The ShowDialog() method opens up the dialog. Because the Multiselect property was set to true, the user
can select multiple files. Pressing the OK button of the dialog ends the dialog if all goes well, and DialogResult.
OK is returned. With the foreach statement, we go through all strings in the string array that is returned from the
FileNames property to display every selected file.

OpenFileDialog Properties

In summary, the diagram below shows the OpenFileDialog with its properties - you can easily see what properties
influence which user interface elements.

Try it Out - Creating the Simple Text Editor Windows Application

To demonstrate the use of the standard dialogs we will create a simple text editor Windows application called
SimpleEditor, that will allow the user to load, save, and edit text files. As we progress further through the chapter,
we will also see how to print the text file. First we'll start by seeing how to use the open and save file dialogs.

1. Create a new Windows application called SimpleEditor in the directory C:\BegVCSharp\Chapter15.

2. Rename the generated file Form1.cs to SimpleForm.cs and the class Form1 to SimpleEditorForm. I'm
also changing the namespace to Wrox.Editor.

Don't forget that when changing the name of the class you also have to change the implementation of the Main
() method to reflect the name change, because this isn't changed automatically by setting the Name property of
the Form class:

 [STAThread]
 static void Main()
 {
 Application.Run(new SimpleEditorForm());
 }

3. Set the Text property of the form to Simple Editor, and change its Size to 570,270. A multi-line text box will be

the area to read and modify the data of the file, so add a TextBox from the toolbox to the Windows Forms
designer. The text box should be multi-line and should cover the complete area of the application, so set these
properties to the specified values:

Property Value
(Name) textBoxEdit

Text

Multiline True

Dock Fill

ScrollBars Both

AcceptsReturn True

AcceptsTab True

4. Next, we add a MainMenu to the application. The main menu should have a File entry with sub menus New,
Open, Save, and Save As, as the following graphic demonstrates:

The … in the Text property of the Open and Save As menu entries advises the user that they will be asked for
some data before the action happens. When choosing the File, New, and Save menus the action happens without
additional intervention.

Menu item Name Text
miFile &File

miFileNew &New

miFileOpen &Open…

miFileSave &Save

miFileSaveAs Save &As…

5. The handler for the menu entry &New should clear the data of the text box by calling the Clear() method of
the TextBox:

 private void miFileNew_Click(object sender, System.EventArgs e)
 {
 fileName = "Untitled";
 textBoxEdit.Clear();
 }

6. Also, the fileName member variable should be set to "Untitled". We must declare and initialize this member
variable in the SimpleEditorForm class:

 private string fileName = "Untitled";

With the SimpleEditor it should be possible to pass a filename as an argument when starting the application. The
filename passed should be used to open the file and display it in the text box.

1. Change the implementation of the Main() method so that an argument can be passed.

 static void Main(string[] args)
 {
 string fileName = null;
 if (args.Length != 0)
 fileName = args[0];
 Application.Run(new SimpleEditorForm(fileName));
 }

2. Now we also have to change the implementation of the SimpleEditorForm constructor to use a string:

 public SimpleEditorForm(string fileName)
 {
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 if (fileName != null)
 {
 this.fileName = fileName;
 OpenFile();
 }
 }

3. And we have to implement the OpenFile() method that opens a file and fills the text box with data from the
file.

Note that the OpenFile() method actually accesses the file in question, and uses methods that we
will not discuss at length here. The subject of accessing files is covered in Chapter 20, and we will
not talk too much about such things so as not to interrupt our coverage of the dialogs.

 protected void OpenFile()
 {
 try
 {
 using (StreamReader reader = File.OpenText(fileName))
 {
 textBoxEdit.Clear();
 textBoxEdit.Text = reader.ReadToEnd();

 }
 }
 catch (IOException ex)
 {
 MessageBox.Show(ex.Message, "Simple Editor",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 }
 }

Here we use the StreamReader, and File classes to read the file - these classes are in the
System.IO namespace, so we also need to add the following using directive at the start of our
program:

using System.IO;

The StreamReader class and the System.IO namespace will be explored in Chapter 20 along
with other file access classes.

4. As we saw in Chapter 7, it's possible to define command line parameters within Visual Studio .NET for
debugging purposes. In the Solution Explorer you just have to select the project, and choose Project | Properties.
If you select Configuration Properties | Debugging in the left tree you can enter the Command Line Arguments. For
testing purposes here, enter the following:
C:\BegVCSharp\Chapter15\SimpleEditor\AssemblyInfo.cs

5. Now we can run the application, and the AssemblyInfo.cs file of our current project will be opened
immediately and displayed, as can be seen in the screenshot below:

How it Works

The first six steps simply set up the form - you should be familiar with this process from the previous two chapters,
and we will not discuss these steps any further.

Step 7 is where the meat of our application begins. By adding the string[] to the parameters of the Main()
method we can use any command line arguments that the user supplied when starting the application.
 static void Main(string[] args)

In the Main() method we check to see if arguments are passed by using the Length property. If at least one
argument was passed, the first argument is set to the fileName variable which is then passed to the constructor of
the SimpleEditorForm.

 {
 string fileName = null;
 if (args.Length != 0)
 fileName = args[0];
 Application.Run(new SimpleEditorForm(fileName));
 }

In the SimpleEditorForm constructor we check if the filename variable already has a value set. If it has, we set the
member variable fileName and call the OpenFile() method to open the file. We use a separate OpenFile()
method, and don't write the calls to open the file and fill the text box directly in the constructor of the class because
OpenFile() can be used again in other parts of the program.

 if (fileName != null)
 {
 this.fileName = fileName;
 OpenFile();
 }

In the OpenFile() method we read the data from the file. We use the static method OpenText() of the File class
to open a file and get a StreamReader returned. The StreamReader class is then used to read the file with
ReadToEnd(), which loads the text as a string that is passed to the TextBox object. The StreamReader should be
closed after use to free managed and unmanaged resources. We do this with the using statement. using calls
Dispose() at the end of the block, and the Dispose() implementation of the StreamReader class calls Close()
to close the file.
 using (StreamReader reader = File.OpenText(fileName))
 {
 textBoxEdit.Clear();
 textBoxEdit.Text = reader.ReadToEnd();
 }

Because file operations can easily generate exceptions, caused, for example, by the user not having the right access
permissions to the file, the code is wrapped in a try block. In the case of an IO exception a message box shows up
to inform the user about the problem, but the application keeps running.
 try
 {
 //...
 }
 catch (IOException ex)
 {
 MessageBox.Show(ex.Message, "Simple Editor",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 }

If we enter a non-existent filename for the command-line argument when starting the application, this message box is
displayed:

Try it Out - Adding and Using an Open File Dialog

Now we can read files with the simple editor by passing a filename when starting the application. Of course, we
would prefer to use a common dialog class, which we will add next to our application.

1. In the Windows Forms category of the Toolbox we can find the OpenFileDialog component. Drag this
component from the Toolbox and drop it onto the form in the Windows Forms designer. Here we'll just change
three properties: the name for the instance to dlgOpen, the Filter property will be set to the following string,
and the FilterIndex property is set to 2 to make Wrox Documents the default selection:

 Text Documents (*.txt)|*.txt|Wrox Documents (*.wroxtext)|*.wroxtext|All Files|*.*

2. Add a handler to the click event of the Open menu entry in which we display the dialog and read the selected file
with this code:

 private void miFileOpen_Click(object sender, System.EventArgs e)
 {
 if (dlgOpenFile.ShowDialog() == DialogResult.OK)
 {
 fileName = dlgOpenFile.FileName;
 OpenFile();
 }

 }

How it Works

By adding the OpenFileDialog component to the Windows Forms designer, a new private member is added to the
SimpleEditorForm class:

 public class SimpleEditorForm : System.Windows.Forms.Form
 {
 private System.Windows.Forms.TextBox textBoxEdit;
 private System.Windows.Forms.MenuItem miFile;
 private System.Windows.Forms.MenuItem miFileNew;
 private System.Windows.Forms.MenuItem miFileOpen;
 private System.Windows.Forms.MenuItem miFileSave;
 private System.Windows.Forms.MenuItem miFileSaveAs;
 private System.Windows.Forms.MainMenu mainMenu;
 private System.Windows.Forms.OpenFileDialog dlgOpenFile;

In the region of designer code by the Windows Forms, in InitializeComponent(), a new instance of this
OpenFileDialog class is created, and the specified properties are set. Click on the + character of the line Windows
Forms Designer generated code and then on the + character of the line private void InitializeComponent() to
see the following code.
 private void InitializeComponent()
 {
 this.textBoxEdit = new System.Windows.Forms.TextBox();
 this.mainMenu = new System.Windows.Forms.MainMenu();
 this.miFile = new System.Windows.Forms.MenuItem();
 this.miFileNew = new System.Windows.Forms.MenuItem();
 this.miFileOpen = new System.Windows.Forms.MenuItem();
 this.miFileSave = new System.Windows.Forms.MenuItem();
 this.miFileSaveAs = new System.Windows.Forms.MenuItem();
 this.dlgOpenFile = new System.Windows.Forms.OpenFileDialog();
 // ...
 //
 // dlgOpenFile
 //
 this.dlgOpenFile.Filter =
 "Text Documents (*.txt)|*.txt|Wrox Documents (*.wroxtext)|*.wroxtext|All
Files|*.*";
 this.dlgOpenFile.FilterIndex = 2;

Of course all that has happened here is exactly as we would expect if we dragged any another standard control onto
our form, but with the support of the Windows Forms designer we have created a new instance of the
OpenFileDialog and set the properties. Now we have to display the dialog.

The ShowDialog() method displays the file open dialog and returns the button that the user pressed. We do
nothing if the user presses anything other than the OK button. That's the reason why we check for DialogResult.
OK in the if statement. If the user cancels the dialog we just do nothing.

 if (dlgOpenFile.ShowDialog() == DialogResult.OK)
 {

Next we get the selected filename by accessing the FileName property of the OpenFileDialog class and setting
the member variable fileName to this value. This is the value that's used by the OpenFile() method. It would also
be possible to open the file directly with the OpenFileDialog class by calling dlgOpenFile.OpenFile() that
already returns a Stream object, but as we already have an OpenFile() method that opens and reads a file we will
use this.

 fileName = dlgOpenFile.FileName;
 OpenFile();

Now we can start our simple editor program. Only the New and Open… menu entries are functional at the moment.
Save and Save As… will be implemented in the next section.

Selecting the menu entry File | Open… the OpenFileDialog shows up and we can select a file. I assume you
currently don't have files with the file extension .wroxtext. Up to this time we cannot save files, so you can choose
a different file type in the dialog editor to open a file, or you can copy a text file to a file with the extension .
wroxtext.

Select a text file, press the Open button, and the text shows up in the text box of the dialog. I selected a sample text
file, GlobalKnowledge.txt, on my local system, as can be seen in the picture below.

At this point, we can only read existing files. Now it would be great to create new files and modify existing ones. We
will use the SaveFileDialog to do this now.

SaveFileDialog

The SaveFileDialog class is very similar to the OpenFileDialog and they have a set of common properties - we
will not talk about those properties that operate in the same way as those of the OpenFileDialog. Instead, we will
focus on the properties specific to the save dialog and where the application of the common properties differs.

Title

With the Title property you can set the title of the dialog similar to the OpenFileDialog. If nothing is set, the
default title is Save As.

File Extensions

File extensions are used to associate files with applications. It is best to add a file extension to a file, otherwise
Windows won't be able to know which application should be used to open the file, and it's likely that you would also
eventually forget this.

AddExtension is a Boolean property that defines if the file extension should be automatically added to the file name
the user enters - the default value is true. If the user enters a file extension, no additional extension will be
appended. Thus with AddExtension set to true, if the filename test entered by the user, the filename test.txt
will be stored. If the filename test.txt is entered, the filename will still be test.txt, and not test.txt.txt.

The DefaultExt property sets the file extension that will be used if the user doesn't enter one. If you leave the
property blank the file extension that's defined with the currently selected Filter will be used instead. If you set both
a Filter and the DefaultExt, the DefaultExt will be used regardless of the Filter.

Validation

For automatic file name validation we have the properties ValidateNames, CheckFileExists, and
CheckPathExists, as with the OpenFileDialog. The difference between OpenFileDialog and
SaveFileDialog is that with the SaveFileDialog the default value for CheckFileExists is false which
means you can supply the name of a brand new file to save.

Overwriting Existing Files

As we have seen, the validation of file names is similar to that of the OpenFileDialog. However, for the
SaveFileDialog class, there is more checking to do and some more properties to set. First, if the CreatePrompt
property is set to true the user will be asked if a new file is to be created. If the OverwritePrompt property is set
to true, that means that the user is asked if he really wants to overwrite an already existing file. The default setting
for OverwritePrompt is true, and CreatePrompt is false. With this setting the following dialog is displayed if
the user wants to save an already existing file:

SaveFileDialog Properties

Here is a diagram summarizing the properties of the SaveFileDialog:

Try it Out - Adding a SaveFileDialog

1. In the same way that we could add an OpenFileDialog to our form, so we can add a SaveFileDialog:
select the SaveFileDialog component from the Toolbox and drop it onto the form. Change the name to
dlgSaveFile, FileName to Untitled, the FilterIndex to 2, and the Filter property to the following
string as we did with the OpenFileDialog earlier. As we only want to allow the file extensions .txt and .
wroxtext to be saved with this editor, *.* will now be left out.

 Text Document (*.txt)|*.txt|Wrox Documents (*.wroxtext)|*.wroxtext

2. Double-click on the Save As menu entry to add a handler for its Click, and then add the following code. In this
code we will display the SaveFileDialog with the ShowDialog() method. As with the OpenFileDialog,
we are only interested in the results if the user has pressed the OK button. We call the SaveFile()method
that stores the file to the disk. This method will have to be implemented in the next step.

 private void miFileSaveAs_Click(object sender, System.EventArgs e)
 {
 if (dlgSaveFile.ShowDialog() == DialogResult.OK)
 {
 fileName = dlgSaveFile.FileName;
 SaveFile();
 }
 }

3. Add the SaveFile() method as can be seen here to your file:

 protected void SaveFile()
 {
 try
 {
 Stream stream = File.OpenWrite(fileName);
 using (StreamWriter writer = new StreamWriter(stream))
 {
 writer.Write(textBoxEdit.Text);
 }
 }
 catch (IOException ex)
 {
 MessageBox.Show(ex.Message, "Simple Editor",
 MessageBoxButtons.OK, MessageBoxIcon.Exclamation);
 }
 }

Similar to the OpenFile() method we use the File class to open the file, but now we open it for write access
with OpenWrite(). OpenWrite() returns a Stream object that is passed to the constructor of the

StreamWriter class. The Write() method of the StreamWriter writes all the data of the textBox to the
file. At the end of the using block the StreamWriter gets closed. Because the stream object is associated
with the writer, the stream gets closed too, and no additional Close() for the stream is needed.

Again, you can read more about the classes used for file access in Chapter 20.

4. After building the project we can start the application using the Debug | Start menu of Visual Studio .NET. Write
some text to the text box and choose the menu File | Save As… as shown in the picture below.

The SaveFileDialog as shown below will pop up. Now you can save the file and open it again to make some
more changes.

5. We can do a Save As, but the simple Save isn't available at the moment. Add a handler to the Click event of the
Save menu entry and add this code:

 private void miFileSave_Click(object sender, System.EventArgs e)
 {
 if (fileName == "Untitled")
 {
 miFileSaveAs_Click(sender, e);
 }
 else
 {
 SaveFile();
 }
 }

How it Works

With the Save menu, the file should be saved without opening any dialog. There's one exception to this rule, in that if
a new document is created and the user did not supply a filename, then the Save handler should work as the Save As

handler does and display the save file dialog.

With the fileName member variable we can easily check if a file is opened or if the file name is still set to the initial
value Untitled after creating a new document. If the if statement returns true we call the handler
miFileSaveAs_Click() that we implemented previously for the Save As menu.

In the other case when a file was opened and the user now chooses the Save menu, the thread of
execution passes into the else block. We can use the same SaveFile() method that we
implemented previously.

Try it Out - Setting the Title of the Form

With Notepad, Word, and other Windows applications the name of the file that's currently edited is displayed in the
title of the application. We should add this feature too.

1. Create a new member function SetFormTitle() and add this implementation:

 protected void SetFormTitle()
 {
 FileInfo fileinfo = new FileInfo (fileName);
 this.Text = fileinfo.Name + " - Simple Editor";
 }

The FileInfo class is used to get the file name without the preceding path that's stored in the fileName variable.
The FileInfo class and the StreamWriter class are covered in Chapter 20.

1. Add a call to this method in the miFileNew_Click(), miFileOpen_Click(), and miFileSaveAs_Click
() handler after setting the member variable fileName as can be seen in the following code segments:

 private void miFileNew_Click(object sender, System.EventArgs e)
 {
 fileName = "Untitled";
 SetFormTitle();
 textBoxEdit.Clear();
 }
 private void miFileOpen_Click(object sender, System.EventArgs e)
 {
 if (dlgOpenFile.ShowDialog() == DialogResult.OK)
 {
 fileName = dlgOpenFile.FileName;
 SetFormTitle();
 OpenFile();
 }
 }
 private void miFileSaveAs_Click(object sender, System.EventArgs e)
 {
 if (dlgSaveFile.ShowDialog() == DialogResult.OK)
 {
 fileName = dlgSaveFile.FileName;
 SetFormTitle();
 SaveFile();
 }
 }

How it Works

Every time the file name changes, the Text property of the actual form will be changed to the file name appended

with the name of the application.

Starting the application now you see the following screen. Here, as I'm editing the file sample.txt, this information
is displayed in the title of the form.

Now we have a simple editor - we can open, create, and save files (and edit them too). So are we finished? Not
really! Because the paperless office still doesn't exist, we should add some print functionality!

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

Printing

With printing there are many things to worry about, such as the selection of a printer, page settings, and how
to print multiple pages. By using classes from the System.Drawing.Printing namespace, we can get a
lot of help to solve these problems, and print documents from our own applications with ease.

Before we look at the PrintDialog class that makes it possible to select a printer we must take a quick look
at how .NET handles printing. The foundation of printing is the PrintDocument class which has a method
Print() that starts a chain of calls culminating in a call to OnPrintPage(), which is responsible for passing
the output to the printer. However, before we go deeper into how we implement printing code, let us look in a
little bit more detail at the .NET printing classes.

Printing Architecture

The following diagram shows the major parts of the printing architecture in a diagrammatic form, which shows
the relations between the classes and some of the properties and methods.

Let's look at the functionality of these classes.

● Let's start with the most important class, PrintDocument. In the diagram you can see that nearly all
other classes have a relationship with this class. To print a document an instance of PrintDocument is
required. In a moment we'll have a look at the printing sequence initiated by this class.

● The PrintController class controls the flow of a print job. From starting the print job, the print
controller has events for the start of the print, for each page, and for the end of the print. The class is
abstract since the implementation of normal printing is different from that of print preview.

● With the PrinterSettings class we can get and set the printer configurations such as duplex printing,
landscape or portrait, and number of copies.

● Which printer to print to and how the PrinterSettings should be configured is a job of the
PrintDialog class. This class is derived from CommonDialog like the other dialog classes we have
already dealt with.

● The PageSettings class specifies the sizes and boundaries of a page, and if the page is in black and
white or color. The configuration of this class can be done with the PageSetupDialog class that again is
a CommonDialog.

Printing Sequence

Now that we know about the roles of the classes in the printing architecture, let's look at the main printing
sequence. The diagram below shows the major players - our application, an instance of the PrintDocument
class, and a PrintController in a timely sequence.

The application has to call the Print() method of the PrintDocument. This starts the printing sequence.
As the PrintDocument itself is not responsible for the printing flow, the job is given to the
PrintController by calling the Print() method of this class. The print controller now takes the action
and informs the PrintDocument that the printing has started by calling OnBeginPrint(). If our application
should do something at the start of a print job, we have to register an event handler in the PrintDocument
so that we get informed in our application class. In the diagram above it is assumed that we registered the
handler OnBeginPrint(), so this handler is called from the PrintDocument class.

After the beginning phase has ended, the PrintController goes into a PrintLoop() to call the method
OnPrintPage() in the PrintDocument class for every page to print. OnPrintPage() invokes all
PrintPage event handlers. We have to implement such a handler in every case otherwise nothing would be
printed. In the diagram above you can see the handler is called OnPrintPage().

After the last page is printed the PrintController calls OnEndPrint() in the PrintDocument class.
Optionally, we can implement a handler to be invoked here, too.

To summarize, the most important thing for us to know is:

Important We can implement the printing code in the PrintDocument.PrintPage event handler. This
will be called for every page that is to be printed. If there's printing code that should be called
only once for a print job, we have to implement the BeginPrint and EndPrint event handlers.

PrintPage Event

So what we know now is that we have to implement an event handler for the PrintPage event. The delegate
PrintPageEventHandler defines the arguments of the handler:

public delegate void PrintPageEventHandler(object sender,
 PrintPageEventArgs e);

As you can see, we receive an object of type PrintPageEventArgs. You can have a look back to the class
diagram to see the main properties of this class. This class has associations to the PageSettings and
Graphics classes; the first enables us to set the paper size, the margins, and we can get device information
from the printer. The Graphics class, on the other hand, makes it possible to access the device context of
the printer and send such things as strings, lines, and curves to the printer.

GDI stands for Graphics Device Interface and makes it possible to do some graphical output to a
device like the screen or a printer. GDI+ is the next generation of GDI that adds features like
gradient brushes and alpha blending, and is the drawing technology of the .NET Framework.

In the next chapter you can read more about drawing with GDI+ and the Graphics class.

If at this point you think that printing is complex, don't be worried! The following example should convince you
that adding printing features to an application is quite an easy task.

Before we can add the PrintDialog we have to add some menu entries for printing. Add two separators
and Print, Print Preview, Page Setup, and Exit menu items to our Simple Editor application.

Here the Name and Text properties of the new menu items are listed:

Menu Item Name Text
miFilePrint &Print…

miFilePrintPreview Print Pre&view…

miFilePageSetup Page Set&up…

miFileExit E&xit

The menu should look like the following screenshot:

Try it Out - Adding a PrintDocument Component

1. Before we go any further, add the following using directive to the start of your code so we can make

use of the classes for printing:
 using System.Drawing.Printing;

2. Drag a PrintDocument component from the toolbox and drop it on to the form. Change the Name to
printDocument and add an event handler OnPrintPage() to the PrintPage event by selecting the

 private void OnPrintPage(object sender,
 System.Drawing.Printing.PrintPageEventArgs e)
 {
 char[] param = {'\n'};
 string[] lines = textBoxEdit.Text.Split(param);

 int i = 0;
 char[] trimParam = {'\r'};
 foreach(string s in lines)
 {
 lines[i++] = s.TrimEnd(trimParam);
 }

 int x = 20;
 int y = 20;
 foreach (string line in lines)
 {
 e.Graphics.DrawString(line, new Font("Arial", 10),
 Brushes.Black, x, y);
 y += 15;
 }
 }

3. Then add a handler to the Click event of the Print menu to call the Print() method of the PrintDocument
class.

 private void menuItemFilePrint_Click(object sender,
 System.EventArgs e)
 {
 printDocument.Print();
 }

4. Now you can build and start the application and print a document. Of course, you must have a printer installed for
the example to work.

How it Works

The Print() method of the printDocument object invokes the PrintPage event of the printDocument with
the help of the PrintController class.

 printDocument.Print();

In the OnPrintPage() handler, we split up the text in the text box line by line using the String.Split() method
and the newline character \n. The resultant strings are written to the string array lines.

 char[] param = {'\n'};
 string[] lines = textBoxEdit.Text.Split(param);

Depending on how the text file was created, the lines are not only separated with the \n (newline) character, but also the
\r (return) character. With the TrimEnd() method of the string class the character \r is removed from every string:

 int i = 0;
 char[] trimParam = {'\r'};
 foreach(string s in lines)
 {
 lines[i++] = s.TrimEnd(trimParam);
 }

In the second foreach statement in the code below, you can see that we go through all lines and send every line to the
printer by a call to e.Graphics.DrawString(). e is a variable of type PrintPageEventArgs where the
property Graphics is connected to the printer context. The printer context makes it possible to draw to a printing
device; the Graphics class has some methods to draw into this context.

As we cannot yet select a printer, the default printer, whose details are stored in the Windows Registry, is used.

With the DrawString() method we use the Arial font with a size of 10 points and a black brush for the print output.
The position for the output is defined with the x and y variables. The horizontal position is fixed to 20 pixels; the vertical
position is incremented with every line.

 int x = 20;
 int y = 20;
 foreach (string line in lines)
 {
 e.Graphics.DrawString(line, new Font("Arial", 10),
 Brushes.Black, x, y);
 y += 15;
 }

The printing we have done so far has a problem:

● Printing multiple pages doesn't work. If the document to print spans multiple pages, only the first page gets printed.
It would also be nice, if a header (for example, the file name) and footer (for example, the page number) were printed.

● Page boundaries are fixed to hard-coded values in our program. To let the user set values for other page boundaries
we use the PageSetupDialog class.

● The print output is sent to the default printer, as set through the Control Panel by the user. It would be better for our
application to allow the user to choose a printer. We will use the PrintDialog class for this problem.

● The font is fixed. To enable the user to choose the font, we can use the FontDialog class, which we will look at
later in more detail.

So let's continue with the printing process to get these items fixed.

Printing Multiple Pages

The PrintPage event gets called for every page to print. We just have to inform the PrintController that the
current page printed was not the last page by setting the HasMorePages property of the PrintPageEventArgs
class to true.

Try it Out - Modifying OnPrintPage() for Multiple Pages

1. You must also declare a member variable lines of type string[] and a variable linesPrinted of type
int in the class SimpleEditorForm:

 private string[] lines;
 private int linesPrinted;

2. Modify the OnPrintPage() handler. In the previous implementation of OnPrintPage() we split the text
into lines. Because the OnPrintPage()method is called with every page, and splitting the text into the lines is
just needed once at the beginning of the printing operation, remove all the code from OnPrintPage() and
replace it with the new implementation:

 private void OnPrintPage(object sender,
 System.Drawing.Printing.PrintPageEventArgs e)
 {
 int x = 20;
 int y = 20;

 while (linesPrinted < lines.Length)
 {
 e.Graphics.DrawString (lines[linesPrinted++],
 new Font("Arial", 10), Brushes.Black, x, y);
 y += 15;
 if (y >= e.PageBounds.Height - 80)
 {
 e.HasMorePages = true;
 return;
 }
 }

 linesPrinted = 0;
 e.HasMorePages = false;
 }

3. Add an event handler to the BeginPrint event of the printDocument object called OnBeginPrint().
OnBeginPrint() is called just once for each print job and here we create our lines array:

 private void OnBeginPrint(object sender,
 System.Drawing.Printing.PrintEventArgs e)
 {
 char[] param = {'\n'};
 lines = textBoxEdit.Text.Split(param);

 int i = 0;
 char[] trimParam = {'\r'};
 foreach (string s in lines)
 {
 lines[i++] = s.TrimEnd(trimParam);
 }
 }

4. After building the project you can start a print job of a multi-page document.

How it Works

Starting the print job with the Print() method of the PrintDocument in turn calls OnBeginPrint() once and
OnPrintPage() for every page.

In OnBeginPrint() we split up the text of the text box into a string array. Every string in the array represents a single

line because we split it up at the newline (\n) character and removed the carriage return character (\r), as we've done
before.

 char[] param = {'\n'};
 lines = textBoxEdit.Text.Split(param);
 int i = 0;
 char[] trimParam = {'\r'};
 foreach (string s in lines)
 {
 lines[i++] = s.TrimEnd(trimParam);
 }

OnPrintPage() is called after OnBeginPrint(). We want to continue printing as long as the number of lines
printed is less than the total number of lines we have to print. The lines.Length property returns the number of
strings in the array lines. The linesPrinted variable gets incremented with every line we send to the printer.

 while (linesPrinted < lines.Length)
 {
 e.Graphics.DrawString(lines[linesPrinted++],
 new Font("Arial", 10), Brushes.Black, x, y);

After printing a line, we check if the newly calculated vertical position is outside of the page boundaries. Additionally,
we decrement the boundaries by 80 pixels, because we don't really want to print to the very end of the paper, particularly
since many printers can't do this anyway. If this position is reached, the HasMorePages property of the
PrintPageEventArgs class is set to true in order to inform the controller that the OnPrintPage() method
must be called once more, and another page needs to be printed - remember that PrintController has the
PrintLoop() method that has a sequence for every page to print, and PrintLoop() will stop if HasMorePages is
false. (The default value of the HasMorePages property is false so that only one page is printed).

 y += 15;
 if (y >= e.PageBounds.Height - 80)
 {
 e.HasMorePages = true;
 return;
 }

Page Setup

The margins of the page so far are hard-coded in the program. Let's modify the application to allow the user to set the
margins on a page. To make this possible another dialog class is available: PageSetupDialog.

This class makes it possible to configure paper sizes and sources, orientation, paper margins, and because these options
depend on a printer, the selection of the printer can be done from this dialog too.

The following picture gives an overview about the properties that enable or disable specific options of this dialog and
what properties can be used to access the values. We will discuss these properties in a moment:

Paper

A value of true for the AllowPaper property means that the user can choose paper size and paper source. The
PageSetupDialog.PageSettings.PaperSize property returns a PaperSize instance where we can read the
height, width, and name of the paper with the properties Height, Width, and PaperName. PaperName specifies
names like Letter, and A4. The Kind property returns an enumeration where we can get a value of the PaperKind
enumeration. This can be one of three values representing European, American, or Japanese paper sizes.

The PageSetupDialog.PageSettings.PaperSource property returns a PaperSource instance where we
can read the name of the printer paper source and the type of paper that fits in there (as long as the printer is correctly
configured with the printer settings).

Margins

Setting the AllowMargins property to true allows the user to set the margin value for the printout. We can define
minimum values for the user to enter by specifying the MinMargins property. To read the margins, we use the
PageSetupDialog.PageSettings.Margins property. The returned Margins object has Bottom, Left,
Right, and Top properties.

Orientation

The AllowOrientation property defines if the user can choose between portrait and landscape printing. The selected
value can be read by querying the value of PageSetupDialog.PageSettings.Landscape which is a Boolean
value specifying landscape mode with true and portrait mode with false.

Printer

The AllowPrinter property defines if the user can choose a printer. Depending on the value of this property the
Printer button is enabled (true) or not (false). The handler to this button in turn opens up the PrintDialog that we
will use next.

Try it Out - Adding a Page Setup Dialog

1. Drag a PageSetupDialog component from the Toolbox and drop it onto the form in the Windows Forms
designer. Set its Name to dlgPageSetup, and the Document property to printDocument to associate the dialog
with the document to print.

2. Now add a Click event handler to the Page Setup menu entry and add the code below to display the dialog using
the ShowDialog() method. It's not necessary to check the return value of ShowDialog() here because the
implementation of the handler for the OK click event already sets the new values in the associated
PrintDocument object.

 private void menuItemFilePageSetup_Click(object sender,
 System.EventArgs e)
 {
 dlgPageSetup.ShowDialog();
 }

3. Now change the implementation of OnPrintPage() to use the margins that are set by the
PageSetupDialog. In our code, the x and y variables are set to the properties MarginBounds.Left and
MarginBounds.Top of the PrintPageEventArgs class. We check the boundary of a page with
MarginBounds.Bottom.

 private void OnPrintPage(object sender,
 System.Drawing.Printing.PrintPageEventArgs e)
 {
 int x = e.MarginBounds.Left;
 int y = e.MarginBounds.Top;

 while (linesPrinted < lines.Length)
 {
 e.Graphics.DrawString(lines[linesPrinted++],
 new Font("Arial", 10), Brushes.Black, x, y);

 y += 15;
 if (y >= e.MarginBounds.Bottom)
 {
 e.HasMorePages = true;
 return;
 }
 }

 linesPrinted = 0;
 e.HasMorePages = false;
 }

4. Now you can build the project and run the application. Selecting File | Page Setup displays the following dialog.
You can change the boundaries and print with the configured boundaries.

Important If the display of the PageSetupDialog fails, an exception of type System.
ArgumentException is thrown; this is probably because you forgot to associate the
PrintDocument object with the PageSetupDialog. The PageSetupDialog needs an
associated PrintDocument to query and set the values that are displayed in the dialog.

Print Dialog

The PrintDialog class allows the user to select a printer from the installed printers, and choose a number of copies,
and some printer settings like the layout and paper sources of the printer. Because the PrintDialog is very easy to
use, we will start immediately by adding the PrintDialog to our Editor application.

Try it Out - Adding a PrintDialog

1. Add a PrintDialog component from the Toolbox onto the form. Set the Name to dlgPrint and the
Document property of this object to printDocument.

Change the implementation of the event handler to the click event of the Print menu to the following code:

 private void miFilePrint_Click(object sender, System.EventArgs e)
 {
 if (dlgPrint.ShowDialog() == DialogResult.OK)
 {
 printDocument.Print();
 }
 }

2. Build and run the application. Selecting File | Print opens up the PrintDialog. Now you can select a printer to
print the document.

Options for the Print Dialog

In our SimpleEditor program we didn't change any of the properties of the PrintDialog. But this dialog has some
options, too. In the dialog above you can see three groups: Printer, Print range, and Copies.

● In the Printer group not only the printer can be chosen, but there's also a Print to File option. By default this option is
enabled, but it is not checked. Selecting this check box enables the user to write the printing output to a file instead of
to the printer. You can disable this option by setting the AllowPrintToFile property to false.

If the user selects this option the following dialog is opened by the printDocument.Print()call to ask for a
file name where the printout should be written to.

● In the Print Range section of the dialog, only All can be selected - Pages and Selection are disabled by default. We
will look at how these options can be implemented in the following section.

● The Copies group allows the user to select the number of copies to print.

Printing Selected Text

Setting the AllowSelection property to true allows the user to print selected text, but you also have to change the
printing code so that only the text selected gets printed.

Try it Out - Adding a Print Selection

1. Add the highlighted code to the click handler of the Print button.

 private void miFilePrint_Click(object sender, System.EventArgs e)
 {
 if (textBoxEdit.SelectedText != "")
 {
 dlgPrint.AllowSelection = true;
 }
 if (dlgPrint.ShowDialog() == DialogResult.OK)
 {
 printDocument.Print();
 }
 }

2. In our program all the lines that will be printed are setup in the OnBeginPrint() handler. Change the
implementation of this method:

 private void OnBeginPrint(object sender,
 System.Drawing.Printing.PrintEventArgs e)
 {
 char[] param = {'\n'};

 if (dlgPrint.PrinterSettings.PrintRange == PrintRange.Selection)
 {
 lines = textBoxEdit.SelectedText.Split(param);
 }
 else
 {
 lines = textBoxEdit.Text.Split(param);
 }

 int i = 0;
 char[] trimParam = {'\r'};
 foreach (string s in lines)
 {
 lines[i++] = s.TrimEnd(trimParam);
 }
 }

3. Now you can build and start the program. Open a file, select some text, start the print dialog with the menu File |
Print, and select the Selection option button from the Print Range group. With this selected, pressing the Print
button will only print the selected text.

How it Works

We set the AllowSelection property to true only if some text is selected. Before we show the PrintDialog we
have to check if some text is selected, and this is done by simply checking that the value of the SelectedText
property of the text box is not null. If there is some text selected the property AllowSelection is set to true.

 if (textBoxEdit.SelectedText != "")
 {
 dlgPrint.AllowSelection = true;
 }

OnBeginPrint() is called at the start of every print job. Accessing the printDialog.PrinterSettings.
PrintRange property, we get the information on whether the user has chosen the Selection option. The PrintRange
property takes a value from the PrintRange enumeration: AllPages, Selection, or SomePages.

 if (printDialog.PrinterSettings.PrintRange == PrintRange.Selection)
 {

If the option is indeed Selection, we get the selected text from the SelectedText property of the TextBox. This
string is split up the same way as the complete text.

 lines = textBoxEdit.SelectedText.Split(param);
 }

Printing Page Ranges

Printing a range of pages can be implemented in similar way to printing a selection. The option button can be enabled by
setting the AllowSomePages property to true. The user can now select the page range to print. However, where are
the page boundaries in our Simple Editor? What's the last page? We should set the last page by setting the

PrintDialog.PrinterSettings.ToPage property. How does the user know the page numbers he wants to
print? This is no problem in a document processing application like Microsoft Word where a Print Layout can be selected
as a view on the screen. This is not possible with the simple TextBox that's used in our Simple Editor application.
That's the reason why we will not implement this feature in our application.

Of course, you could do this as an exercise. What must be done? The AllowSomePages property must be set to true.
Before displaying the PrintDialog, you can also set the PrinterSettings.FromPage to 1 and the
PrinterSettings.ToPage to the maximum page number.

PrintDialog Properties

Let's summarize the properties influencing the layout of the PrintDialog again with a single picture.

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

Print Preview

For the user to see what the printout will actually look like, we use a Print Preview. Implementing Print
Preview can easily be done in .NET - we can use a PrintPreviewControl class that is used to preview the
document in a form to show how it will be printed. The PrintPreviewDialog is a dialog that wraps the
control.

PrintPreviewDialog

If you look at the properties and inheritance list from the MSDN documentation of the PrintPreviewDialog
class, you can see that it is actually a Form and not a wrapped common dialog - the class derives from
System.Windows.Forms.Form, and you can work with it as with the forms we created in the

We will add a PrintPreviewDialog class to our Simple Editor application.

Try it Out - Adding a Print Preview Dialog

1. Add a PrintPreviewDialog component from the Toolbox onto the Windows Forms designer. Set the
Name to dlgPrintPreview and the Document property to printDocument.

2. Add and implement a handler for the Click event of the Print Preview menu entry.

 private void miFilePrintPreview_Click(object sender,
 System.EventArgs e)
 {
 dlgPrintPreview.ShowDialog();
 }

PrintPreviewControl

The print preview in Microsoft Word and WordPad is different from the PrintPreviewDialog in that the

preview in these applications doesn't show up in its own dialog, but in the main window of the application.

To do the same, you can place the PrintPreviewControl class in your form. The Document property
must be set to the printDocument object, and the Visible property to false - when you want to display
the print preview, you simply set the Visible property to true. Then the PrintPreviewControl is in front
of the other control as shown in the following graphic.

You can see from the title and the single File menu item that it is the main window of the Simple Editor
application that is displayed. What still needs to be done is to add some elements to control the
PrintPreviewControl class to do zooming, printing and display several pages of text at once. A specific
toolbar can be used to make these features available. The PrintPreviewDialog class already has this
implemented as you can see in the following picture with a 4-pages preview.

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

FontDialog and ColorDialog

The last dialogs in this chapter we will look at are the FontDialog and the ColorDialog.

Here again we will only concentrate on discussing the dialogs to set the font and color, and not
the Font and Color classes, as these are covered in the next chapter.

FontDialog

The FontDialog lets the user of the application choose a font. The user can change the font, the style, size,
and the color of the font.

The following picture gives you an overview of the properties that change the elements in the dialog.

How to Use the FontDialog

The dialog can be used in the same way as the previous dialogs. In the Windows Forms Designer the dialog
can be dragged from the Toolbox and dropped to the Form such that an instance of the FontDialog gets
created.

The code to use the FontDialog can look like this:

 if (dlgFont.ShowDialog() == DialogResult.OK)
 {
 textBoxEdit.Font = dlgFont.Font;
 }

The FontDialog is displayed by calling the ShowDialog() method. If the user presses the OK button,
DialogResult.OK is returned from the method. The selected font can be read by using the Font property
of the FontDialog class; this font is then passed to the Font property of the TextBox.

Properties of the FontDialog

We have already seen a picture with properties of the FontDialog class; but now let's see what these
properties are used for:

Property Description
AllowVectorFonts Boolean value that defines if vector fonts can be selected in the font

list. The default is true.

AllowVerticalFonts Boolean value that defines if vertical fonts can be selected in the font
list. Vertical texts are used in far eastern countries. There probably
isn't a vertical font installed on your system. The default is true.

FixedPitchOnly Setting the property FixedPitchOnly displays only fixed pitch fonts
in the font list. With a fixed pitch font every character has the same
size. The default is false.

MaxSize Specifying a value for the MaxSize property defines the maximum
font size the user can select.

MinSize Similar to MaxSize you can set the minimum font size the user can
select with MinSize.

ShowApply If the Apply button should be displayed you have to set the
ShowApply property to true. By pressing the Apply button the user
can see an updated font in the application without leaving the font
dialog.

ShowColor By default the Color selection is not shown in the dialog. If you want
the user to select the font color in the font dialog you just have to set
the ShowColor property to true.

ShowEffects By default the user can select the Strikeout and Underline check boxes
to manipulate the font. If you don't want these options to be displayed
you have to set the ShowEffects property to false.

AllowScriptChange Setting the AllowScriptChange property to false prevents the
user from changing the script of a font. The available scripts depend
on the selected font, for example, the font Arial supports Western,
Hebrew, Arabic, Greek, Turkish, Baltic, Central European, Cyrillic,
Vietnamese scripts.

Enabling the Apply Button

An interesting difference from the other dialogs presented so far is that the FontDialog supports an Apply
button, which is not displayed by default. If the user presses the Apply button the dialog stays opened, but the
font should be applied.

By selecting the FontDialog in the Windows Forms designer you can set the ShowApply property in the
Properties window to True. But how are we informed if the user now presses the Apply button? The dialog is
still opened, so the ShowDialog() method will not return. Instead, we can add an event handler to the
Apply event of the FontDialog class. You can do this by pressing the window, and by writing a handler name
to the Apply event.

As you can see in the following code, I have entered the name OnApplyFontDialog. In this handler you can access

the selected font of the FontDialog using the member variable of the FontDialog class:

 private void OnApplyFontDialog(object sender, System.EventArgs e)
 {
 textBoxEdit.Font = dlgFont.Font;
 }

ColorDialog

There isn't as much to configure in the ColorDialog as for the FontDialog. With the ColorDialog it is possible
for the user to configure custom colors, if he doesn't want any of the basic colors on offer; this is done by setting the
AllowFullOpen property. The custom color configuration part of the dialog can also be automatically expanded with
the FullOpen property. If AllowFullOpen is false, then the value of FullOpen will be ignored. The
SolidColorOnly property specifies that only solid colors may be selected. The CustomColors property can be
used to get and set the configured custom color values.

How to Use the Color Dialog

The ColorDialog can be dragged from the Toolbox and dropped onto the form in the Windows Forms designer, as we
have done with the other dialogs. ShowDialog() displays the dialog until the user presses the OK or Cancel button.
You can read the selected color by accessing the Color property of the dialog as can be seen in the following code
example:

 if (dlgColor.ShowDialog() == DialogResult.OK)
 {
 textBoxEdit.ForeColor = dlgColor.Color;
 }

Properties of the Color Dialog

The properties to influence the look of the dialog are summarized in this table:

Properties Description
AllowFullOpen Setting this property to false disables the Define Custom Colors button,

thus preventing the user from defining custom colors. The default value of
this property is true.

FullOpen Setting the FullOpen property to true before the dialog is displayed
opens up the dialog with the custom color selection automatically displayed.

AnyColor Setting this property to true shows all available colors in the list of basic
colors.

CustomColors With the CustomColors property you can preset an array of custom
colors, and you can read the custom colors defined by the user.

SolidColorOnly By setting the SolidColorOnly property to true the user can only select
solid colors.

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we have seen how to use the dialog classes in applications. We looked at how to open and to
save files, and after reviewing the .NET framework printing classes, we showed you how to add printing
capabilities to your applications. To summarize, in our Simple Editor application we've used the following
dialog classes:

● FileOpenDialog to ask the user for a file to open

● FileSaveDialog to ask for a file name to save the data

● PrintDialog to get the printer to print to and the printing configurations

● PageSetupDialog to modify the margins of the page where we do the print

● PrintPreviewDialog to view a preview of the print so that the user knows in advance what the print
will look like

● We've also shown you the basics of the FontDialog and ColorDialog classes; adding these classes
to the Simple Editor application is part of your exercises

Chapter 15 - Using Common Dialogs
byKarli Watsonet al.

Wrox Press 2003

Exercises

Because the FontDialog and the ColorDialog work in a similar way to the other dialogs we went through
in this chapter, it's an easy job to add these dialogs to our Simple Editor application.

1. Let the user change the font of the text box. To make this possible add a new menu entry to the main
menu: F&ormat, and a sub menu for Format: &Font... Add a handler to this menu item. Add a
FontDialog to the application with the help of the Windows Forms Designer. Display this dialog in the
menu handler, and set the Font property of the text box to the selected font.

You also have to change the implementation of the OnPrintPage()method to use the selected font for
a printout. In the previous implementation we created a new Font object in the DrawString() method
of the Graphics object. Now use the font of the textBoxEdit object by accessing the Font property
instead. We also have to be aware of a font location problem if the user chooses a big font. To avoid one
line partly overwriting the one above/below, change the fixed value we used to change the vertical
position of the lines. A better way to do this would be to use the size of the font to change the vertical
increment: use the Height property of the Font class.

2. Another great extension to the Simple Editor application would be to change the font color. Add a
second submenu to the Format menu entry: Color… Add a handler to this menu entry where you open up
a ColorDialog. If the user presses the OK button, set the selected color of the ColorDialog to the
ForeColor property of the text box.

In the OnPrintPage()method make sure that the chosen color is used only if the printer supports
colors. You can check the color support of the printer with the PageSettings.Color property of the
PrintPageEventArgs argument. You can create a brush object with the color of the text box with this
code:
Brush brush = new SolidBrush(textBoxEdit.ForeColor);

This brush can then be used as an argument in the DrawString() method instead of the black brush
we used in the example before.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Chapter 16: Introduction to GDI+

Overview

In the

Writing graphics code is one of the most enjoyable programming tasks. It is very rewarding to change your
code and see the results in a visible form immediately. Whether you are writing a custom graphics window
that presents something in your application in a new and different way, or writing a custom control that makes
your application more stylish and more usable, your application will be well received by the general public.

First, we will explain the mechanics of drawing using GDI+, and write a few simple graphical example
programs. Then we will take a high-level look at some of the extensive capabilities of GDI+ such as clipping.

After the overview on each of the above topics, we'll look at what classes we can use to implement the
features. Knowing what we can do and understanding the class hierarchy is half the battle.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Overview of Graphical Drawing

The first idea to learn about writing graphics code is that Windows does not remember what every open
window looks like if that window is obscured by other windows. Instead, if a covered-up window comes to the
forefront so that it becomes visible, Windows will tell our application, "Your window (or some portion of it) has
now become visible. Will you please draw it?" We only need to draw the contents of our window. Windows
itself takes care of the border of the window, the title bar, and all of the other window features.

In programming terms, when we create a window into which we want to draw, we will typically declare a class
that derives from System.Windows.Forms.Form. If we are writing a custom control, we will declare a class
that derives from System.Windows.Forms.UserControl. In either of these cases, we override the virtual
function OnPaint(). Windows will call this function whenever any portion of our window needs to be
repainted.

With this event, a PaintEventArgs class is passed as an argument. There are two pertinent pieces of
information in PaintEventArgs: a Graphics object, and a ClipRectangle. We'll explore the Graphics
class first. We'll touch on clipping near the end of the chapter.

The Graphics Class

The Graphics class encapsulates a GDI+ drawing surface. There are three basic types of drawing surfaces:

● Windows and controls on the screen

● Pages being sent to a printer

● Bitmaps and images in memory

The Graphics class provides us with functions so that we can draw on any of these drawing surfaces.
Among other capabilities, we can use it to draw arcs, curves, Bezier curves, ellipses, images, lines,
rectangles, and text.

We can get a Graphics object for the window in two different ways. The first is to override the OnPaint()
method. The Form class inherits the OnPaint() method from Control, and this method is the event
handler for the Paint event that is raised whenever the control is redrawn. We can get the Graphics object
from the PaintEventArgs that is passed in with the event:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;

 // do our drawing here

}

At other times, we may want to draw directly into our window without waiting for the Paint event to be raised.
This would be the case if we are writing code for selecting some graphical object on the window (similar to
selecting icons in Windows Explorer), or dragging some object with the mouse. We can get a Graphics
object by calling the CreateGraphics() method on the form, which is another method that Form inherits
from Control:

protected void Form1_Click (object sender, System.EventArgs e)
{
 Graphics g = this.CreateGraphics();

 // do our drawing here

 g.Dispose(); // this is important
}

Building an application that handles dragging and dropping is a somewhat involved affair, and is beyond the
scope of this chapter. In any case, this is a less common technique. Primarily, we will do almost all of our
drawing in response to an OnPaint() method.

There are other ways to get a Graphics object, which we'll examine later.

Disposing of Objects

Everybody is familiar with the behavior of Windows when it runs out of resources. It starts to run very slowly
and sometimes applications will not be drawn correctly. Well-behaved applications free up their resources
after they are done with them. When developing using the .NET Framework, there are several data types on
which it is important to call the Dispose() method, or else some resources will not be freed. These classes
implement the IDisposable interface, and Graphics is one of these classes.

Important However, it is important that if we get a Graphics object by calling CreateGraphics(), then
we should call Dispose().

When we get a Graphics object from the OnPaint() method, this was not created by us, so it is not our
responsibility to call Dispose(), but in the example just above, it is our responsibility.

The Dispose() method is automatically called in the destructor for the various classes that implement
IDisposable. You might think that this removes our responsibility to call Dispose(), but it does not. The
reason is that only the garbage collector (GC) ever calls the destructor, and you cannot guarantee when the
GC will run. In particular, on a Windows 9X operating system with lots of memory, the GC may run very
infrequently, and all resources may very well be used up before the GC runs. Whereas running out of memory
will trigger the GC to run, running out of resources does not. However, Windows 2000 is much less sensitive
to running out of resources. According to the specifications, Windows 2000 does not have any finite limits on
these types of resources; however, I have seen this operating system misbehave when too many applications
are open, and closing some applications quickly restores correct behavior. In any case, it is better coding
practice to manually dispose of any resource-hungry objects correctly, and in a timely fashion.

A using construct automatically calls Dispose() when an object goes out of scope. The following code
shows the correct use of the using keyword in this context:

using (Graphics g = this.CreateGraphics())
{
 g.DrawLine(Pens.Black, new Point(0, 0), new Point(3, 5));
}

According to the documentation the above code is precisely equivalent to:
Graphics g = this.CreateGraphics();
try
{
 g.DrawLine(Pens.Black, new Point(0, 0), new Point(3, 5));
}
finally
{
 if (g != null)
 ((IDisposable)g).Dispose();
}

Don't confuse this use of the using keyword with the using directive that creates an alias for a namespace,
or that permits the use of types in a namespace such that we do not need to fully qualify the use of the type.
This is an entirely separate use of the using keyword – if you like, the block of code enclosed by the using
keyword can be referred to as a using block.

Examples in this chapter will handle calls to Dispose() using both styles. Sometimes we will call Dispose
() directly, and other times we will use the using block. The latter is a much cleaner solution, as you can see
from the above code snippets, but there is no recommendation as to which is the preferred method.

Before we jump into our first example, there are two other aspects of drawing graphics that we should
examine – the coordinate system and colors.

Coordinate System

When designing a program that will draw a complicated, intricate graphic, it is very important that our code
draws exactly what we intend, and nothing but what we intend. It is possible for a single misplaced pixel to
have a negative influence on the visual impact of a graphic, so it is important to understand exactly what
pixels are drawn when invoking drawing operations. This is most important when creating custom controls,
where we would draw lots of rectangles, horizontal lines, and vertical lines. Having a line run one pixel too
long, or fall one pixel short is very noticeable. However, this is somewhat less important with curves, diagonal
lines, and other graphical operations.

GDI+ has a coordinate system based on imaginary mathematical lines that run through the center of the
pixels. These lines are numbered starting at zero – the intersection of these mathematical lines in the upper
left pixel in any coordinate space is point X=0, Y=0. As a shorter notation, we can say point 1, 2, which is
shorthand for saying X=1, Y=2. Each window into which we will draw has its own coordinate space. If we
would create a custom control that can be used in other windows, this custom control itself has its own
coordinate space. In other words, the upper-left pixel of the custom control is point 0, 0 when drawing in that
custom control. We don't need to worry about where the custom control is placed on its containing window.

When drawing lines, GDI+ centers the pixels drawn on the mathematical line that we specify. When drawing a
horizontal with integer coordinates, it can be thought of that half of each pixel falls above the imaginary
mathematical line, and half of each pixel falls below it. When we draw a horizontal line that is one pixel wide
from point 1, 1 to point 5, 1, the following pixels will be drawn:

When we draw a vertical line that is one pixel wide and four pixels long, from point 2, 1 to point 2, 4, the
following pixels will be colored in:

When we draw a diagonal line from point 1, 0 to point 4, 3, the following pixels will be drawn:

When we draw a rectangle with the upper left corner at 1, 0 and a size of 5, 4, the rectangle drawn is:

There is something interesting to note here. We specified a width of 5, and there are 6 pixels drawn in the
horizontal direction. However, if you consider the mathematical lines running through the pixels, this rectangle
is only five pixels wide, and the line drawn falls half a pixel outside and half a pixel inside of the mathematical
line that we specified.

There is more to the story than this. If we draw with anti-aliasing, other pixels will be "half" colored in, creating
an appearance of a smooth line, and partially avoiding a "stair step" appearance to diagonal lines.

Here is a line drawn without anti-aliasing:

The same line drawn with anti-aliasing appears as follows:

When viewed at a high resolution, this line will appear much smoother, without a stair step effect.

Understanding the relationship between the coordinates passed to drawing functions, and the resulting effect
on the drawing surface makes it easy to visualize exactly which pixels will get affected by a given call to a
drawing function.

There are three structs that we will use often to specify coordinates when drawing: Point, Size, and
Rectangle.

Point

GDI+ uses Point to represent a single point with integer coordinates. This is a point in a two dimensional
plane – a specification of a single pixel. Many GDI+ functions, such as DrawLine(), take a Point as an
argument. We declare and construct a Point struct as follows:

Point p = new Point(1, 1);

There are public properties, X and Y, to get and set the X and Y coordinates of a Point.

Size

GDI+ uses Size to represent a size in pixels. A Size struct contains both width and height. We declare and
construct a Size as follows:

Size s = new Size(5, 5);

There are public properties, Height and Width, to get and set the height and width of a Size.

Rectangle

GDI+ uses this structure in many different places to specify the coordinates of a rectangle. A Point structure
defines the upper left corner of the rectangle and a Size structure defines its size. There are two constructors
for Rectangle. One takes as arguments the X position, the Y position, the width, and the height. The other
takes a Point and a Size structure. Two examples of declaring and constructing a Rectangle are as
follows:
Rectangle r1 = new Rectangle(1, 2, 5, 6);

Point p = new Point(1, 2);
Size s = new Size(5, 6);
Rectangle r2 = new Rectangle(p, s);

There are public properties to get and set all aspects of the location and size of a Rectangle. In addition,
there are other useful properties and methods to do such activities as determining if the rectangle intersects
with another rectangle, taking the intersection of two rectangles, and taking the union of two rectangles.

GraphicsPaths

There are two more important data types that we can use as arguments to various drawing functions in GDI+.
The GraphicsPath class represents a series of connected lines and curves. When constructing a path, we
can add lines, Bezier curves, arcs, pie shapes, polygons, rectangles, and more. After constructing a complex
path, we can draw the path with one operation: a call to DrawPath(). You can fill the path with a call to
FillPath().

We construct a GraphicsPath using an array of points and PathTypes. PathTypes is a byte array,
where each element in the array corresponds to an element in the array of points, and gives additional
information about how the path is to be constructed through each particular point. The information about the
path through a point can be gleaned by using the PathPointType enumeration. For instance, if the point is
the beginning of the path, the path type for that point is PathPointType.Start. If the point is a junction
between two lines, the path type for that point is PathPointType.Line. If the point is used to construct a
Bezier curve from the point before and after, the path type is PathPointType.Bezier.

Try it Out – Creating a Graphics Path

1. Create a new Windows application called DrawingPaths in the directory C:\BegVCSharp
\Chapter16.

2. Add the following using directive for System.Drawing.Drawing2D to the top of the code:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;

using System.Windows.Forms;
using System.Data;
using System.Drawing.Drawing2D;

3. Enter the following code into the body of Form1.

protected override void OnPaint (PaintEventArgs e)
{
 GraphicsPath path;
 path = new GraphicsPath(new Point[]{ new Point(10, 10),
 new Point(150, 10),
 new Point(200, 150),
 new Point(10, 150),
 new Point(200, 160)},
 new byte[] {(byte)PathPointType.Start,
 (byte)PathPointType.Line,
 (byte)PathPointType.Line,
 (byte)PathPointType.Line,
 (byte)PathPointType.Line });
 e.Graphics.DrawPath(Pens.Black, path);
}

4. Run the application, and you should see the following path drawn:

How it Works

The code to construct this path is a quite complex. The constructor for GraphicsPath takes two arguments.
The first argument is a Point array; here we use the C# syntax for declaring and initializing the array in the
same place, and create each new Point object as we go:

new Point[]{
 new Point(10, 10),
 new Point(150, 10),
 new Point(200, 150),
 new Point(10, 150),
 new Point(200, 160)

}

The second argument is an array of bytes that we also construct right in place:
new byte[] {
 (byte)PathPointType.Start,
 (byte)PathPointType.Line,
 (byte)PathPointType.Line,
 (byte)PathPointType.Line,
 (byte)PathPointType.Line
}

Finally, we call the DrawPath() method:

e.Graphics.DrawPath(Pens.Black, path);

Regions

The Region class is a complex graphical shape that is comprised of rectangles and paths. After constructing
a Region, we can draw that region using the method FillRegion().

Try it Out – Creating a Region

The following code creates a region, adds a Rectangle to it, adds a GraphicsPath to it, and then fills that
region with the color blue:

1. Create a new Windows application called DrawingRegions in the directory C:\BegVCSharp
\Chapter16.

2. Add a using directive for System.Drawing.Drawing2D to the top of the code:

using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Drawing.Drawing2D;

3. Enter the following code into the body of Form1.

protected override void OnPaint (PaintEventArgs e)
{
 Rectangle r1 = new Rectangle(10, 10, 50, 50);
 Rectangle r2 = new Rectangle(40, 40, 50, 50);
 Region r = new Region(r1);
 r.Union(r2);

 GraphicsPath path = new GraphicsPath(new Point[] {
 new Point(45, 45),
 new Point(145, 55),
 new Point(200, 150),
 new Point(75, 150),
 new Point(45, 45)
 }, new byte[] {
 (byte)PathPointType.Start,

 (byte)PathPointType.Bezier,
 (byte)PathPointType.Bezier,
 (byte)PathPointType.Bezier,
 (byte)PathPointType.Line
 });
 r.Union(path);
 e.Graphics.FillRegion(Brushes.Blue, r);
}

4. When you run this code, it will display the following:

How it Works

The code to construct a region is also quite complex, though the most complex part of our example is
constructing any paths that will go into the region, and you have already seen how to construct these from the
previous example.

Constructing regions consists of constructing rectangles and paths, before calling the Union() method. If we
desired the intersection of a rectangle and a path, we could have used the Intersection() method instead
of the Union() method.

Further information on paths and regions is not particularly needed for an introduction to GDI+, so we will not
explore them in any more depth in this chapter.

Colors

Many of the drawing operations in GDI+ involve a color. When drawing a line or rectangle, we will need to
specify what color it should be.

In GDI+, colors are encapsulated in the Color structure. We can create a color by passing red, green, and
blue values to a function of the Color structure, but this is almost never necessary. The Color structure
contains approximately 150 properties that get a large variety of preset colors. Forget about red, green, blue,
yellow and black – if we need to do some drawing in the color of LightGoldenrodYellow or

LavenderBlush, there is a predefined color made just for us! We declare a variable of type Color and
initialize it with a color from the Color structure as follows:

Color redColor = Color.Red;
Color anotherColor = Color.LightGoldenrodYellow;

We're almost ready to do some drawing, but a couple of notes before we go on.

Another way to represent a color is to break it down into three components: Hue, Saturation, and Brightness.
The Color structure contains utility methods to do this, namely: GetBrightness(), GetHue(), and
GetSaturation().

You can use the ColorDialog that we met in the previous chapter to experiment with colors. In a new
Windows application, drag a ColorDialog control onto your form, and add the following line to the Form1
constructor, after the InitializeComponent() call:

this.colorDialog1.ShowDialog();

Run the application, and click the Define Custom Colors button. You will see a dialog box that allows you to pick
a color using the mouse and see the RGB values for the color. You can also get the Hue, Saturation, and
Luminosity values for the color (where Luminosity corresponds to Brightness). You can also directly enter the
RGB values and see the resulting color.

Colors in GDI+ have a fourth component, the Alpha component. Using this component, we can set the opacity
of the color, and this allows us to create fade in / fade out effects, such as the menu effects in Windows 2000
and Windows XP. Using the Alpha component is beyond the scope of this chapter.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Drawing Lines Using the Pen Class

Our first example here draws lines. We draw lines using the Pen class, which allows us to define the color,
width, and pattern of the line that our code is drawing. The color and width properties are obvious. However,
the pattern of a line indicates whether the line is a solid line, or is comprised of dashes and dots. The Pen
class is in the System.Drawing namespace.

Try it Out - Pen Example

1. Create a new Windows application called DrawingLines in the directory C:\BegVCSharp
\Chapter16.

2. Enter the following code into the body of Form1.

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;

 using (Pen blackPen = new Pen(Color.Black, 1))
 {
 if (ClientRectangle.Height/10>0)
 {
 for (int y = 0; y < ClientRectangle.Height;
 y += ClientRectangle.Height / 10)
 {
 g.DrawLine(blackPen, new Point(0, 0),
 new Point(ClientRectangle.Width, y));
 }
 }
 }
}

3. Now press F5 to compile and run the code. When you run it, it will create this window:

How it Works

Earlier in the chapter, we introduced the Graphics class. The first thing that we do in the OnPaint()
method is to get the Graphics object from the PaintEventArgs parameter:

 Graphics g = e.Graphics;

Note that because we are passed the reference to the Graphics object, and we did not create it, we do not
need to (and should not) manually call Dispose() on it. However, since we are using a potentially resource-
hungry Pen object for this example we have wrapped the rest of the code in a using block, as described
earlier, which will ensure that the object is destroyed as soon as possible.

When we construct the pen, we pass as parameters to the constructor a color and a width of the pen. In this
example, the color is black, and the width is one. This is the line of code to construct the pen:
using (Pen blackPen = new Pen(Color.Black, 1))

Every window into which we can draw has a client area, which is a rectangle that exists within the border and
defines the exact area into which we can draw. We can get the client area from ClientRectangle, which is
a public, read-only property of the form (inherited from Control). It contains the size (that is the width and
height) of the client area of the window into which we are drawing. The following code starts a loop that goes
from zero up to the height of the client area (given by ClientRectangle.Height) in steps of 10. Note that
we first check that ClientRectangle.Height/10 is bigger than zero - without this, the loop will run
indefinitely if the form is resized below a certain height, since ClientRectangle.Height/10 is the loop
increment, and if this is zero we'll loop forever.
 if (ClientRectangle.Height/10>0)
 {
 for (int y = 0; y < ClientRectangle.Height;
 y += ClientRectangle.Height / 10)

Now we can draw the lines - when we draw each line, we pass the Pen that we just created, along with the
starting point and ending point of the line:
 g.DrawLine(blackPen, new Point(0, 0),
 new Point(ClientRectangle.Width, y));

Just as for Graphics objects, it is important to either call Dispose() on Pen objects when we are finished
with them, or use the using block, otherwise our application may deplete the Windows resources.

In this example, we constructed a Pen. However, there is an easier way to get a Pen. The Pens class
contains properties for getting approximately 150 pens, one for each of the pre-defined colors that we learned
about previously. The following version of the example works identically to the previous one, but instead of
constructing a Pen, we get it from the Pens class:

protected override void OnPaint(PaintEventArgs e)
{
 if (ClientRectangle.Height/10>0)
 {
 for (int y = 0; y < ClientRectangle.Height;
 y += ClientRectangle.Height / 10)
 {
 e.Graphics.DrawLine(Pens.Black, new Point(0, 0),
 new Point(ClientRectangle.Width, y));
 }
 }
}

In this case, we did not create the Pen, so it is not necessary to call Dispose().

There are many more features of the Pen class. We could create a pen to draw a dashed line, or we could
create a pen with a width thicker than one pixel. There is an Alignment property of the Pen class that allows
us to define whether the pen is drawn to the left or right (or above/below) of the line that we specify. By setting
the StartCap and EndCap properties, we can specify that our lines are ended with an arrow, a diamond, a
square, or rounded off. We can even program a custom start cap and end cap using the CustomStartCap
and CustomEndCap properties. After learning about images, we will see how to specify a Brush with a Pen,
so that we can draw the line using a bitmap instead of a solid color.

Important Always call Dispose() on Pen objects.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Drawing Shapes using the Brush Class

Our next example uses the Brush class to draw shapes, such as rectangles, ellipses, pie charts, and
polygons. The Brush class is an abstract base class. To instantiate a Brush object, we use classes derived
from Brush, such as SolidBrush, TextureBrush, and LinearGradientBrush.

The Brush and SolidBrush classes are in the System.Drawing namespace. However, the
TextureBrush and LinearGradientBrush are in the System.Drawing.Drawing2D namespace. This
is what each brush class achieves:

● SolidBrush – fills a shape with a solid color.

● TextureBrush – fills a shape with a bitmap. When constructing this brush, we also specify a bounding
rectangle, and a wrap mode. The bounding rectangle specifies what portion of the bitmap to use for the
brush – we don't need to use the entire bitmap if we don't want to. The wrap mode has a number of
options, including Tile, which tiles the texture, TileFlipX, TileFlipY, and TileFlipXY, which tile
while flipping the image for successive tiles. We can create very interesting and imaginative effects using
the TextureBrush.

● LinearGradientBrush – encapsulates a brush that draws a gradient of two colors, where the first color
transitions to the second color at a specified angle. We specify angles in terms of degrees. An angle of
zero specifies that the colors will transition from left to right. An angle of 90 degrees means that the colors
will transition from top to bottom.

One more brush that we will mention is the PathGradientBrush, which creates an elaborate shading effect,
where the shading runs from the center of the path to the edge of the path. This brush reminds me of when I
was a child, and I would shade maps with colored pencils, making the color darker at the boundary between
different states or countries.

Important Always call Dispose() on Brush objects.

Just as for Graphics objects and Pen objects, it is important to call Dispose() on Brush objects that we
create, or use the using block, otherwise our application may deplete the Windows resources.

Try it Out – Brush Example

1. Create a new Windows application called UsingBrushes in the directory C:\BegVCSharp
\Chapter16.

2. Add a using directive for System.Drawing.Drawing2D for the LinearGradientBrush to the top
of the code:
using System;
using System.Drawing;
using System.Collections;

using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.Drawing.Drawing2D;

3. In the constructor of the Form1 class, add a call to SetStyle() after the call to
InitializeComponent().

public Form1()
{
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 SetStyle(ControlStyles.Opaque, true);

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
}

4. Now, add an OnPaint() method to our class:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;
 g.FillRectangle(Brushes.White, ClientRectangle);
 g.FillRectangle(Brushes.Red, new Rectangle(10, 10, 50, 50));

 Brush linearGradientBrush = new LinearGradientBrush(
 new Rectangle(10, 60, 50, 50), Color.Blue, Color.White, 45);
 g.FillRectangle(linearGradientBrush, new Rectangle(10, 60, 50, 50));

 // Manually call Dispose()
 linearGradientBrush.Dispose();

 g.FillEllipse(Brushes.Aquamarine, new Rectangle(60, 20, 50, 30));
 g.FillPie(Brushes.Chartreuse, new Rectangle(60, 60, 50, 50), 90, 210);
 g.FillPolygon(Brushes.BlueViolet, new Point[] {
 new Point(110, 10),
 new Point(150, 10),
 new Point(160, 40),
 new Point(120, 20),
 new Point(120, 60),
 });
}

5. When you compile and run this program, it will display the following:

How it Works

The first thing to remark about is the call to SetStyle() in the form's constructor. SetStyle() is a method
of the Form class:

 SetStyle(ControlStyles.Opaque, true);

This method changes the behavior of the Form class, so that it will not automatically draw the background of
the window. If we include this line, but we don't draw the background of the window ourselves, then anything
underneath the window at the time of creation would show through, which is not what we want. Thus our next
activity is to draw our own background onto the client area of our window.

Just as with the Pens class, there is a Brushes class that contains properties for getting approximately 150
brushes, one for each pre-defined color. We use this class to get most of the brushes in this example, with the
exception of the LinearGradientBrush which we create ourselves.

The first call to FillRectangle() draws the background of the client area of our window:

 g.FillRectangle(Brushes.White, ClientRectangle);

The creation of the LinearGradientBrush takes a rectangle specifying the size of the rectangle, the two
colors to be used for the gradient, and the angle, in this case 45:
 Brush linearGradientBrush = new LinearGradientBrush(
 new Rectangle(10, 60, 50, 50), Color.Blue, Color.White, 45);
 g.FillRectangle(linearGradientBrush, new Rectangle(10, 60, 50, 50));
 linearGradientBrush.Dispose();

When we specified the rectangle for the brush, we used a rectangle of width 50, and height 50, which is the
same size as the rectangle used when we defined the brush. The result of this is that the brush area just fits
the rectangle that we want filling in. Try changing the rectangle defined in the creation of the brush so that the
width and height are 10 and see what happens. Also, try changing the angle to different values to see the
change in effect.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Drawing Text using the Font Class

Our next example uses the Font class to draw text. The Font class encapsulates the three main
characteristics of a font, which are the font family, the font size, and the font style. The Font class is in the
System.Drawing namespace.

According to the .NET documentation, a font family "abstracts a group of type faces having a similar basic
design". This is a fancy way of saying that font families are things like Courier, Arial, or Times New Roman.

The font Size property represents the size of the font type. However, in the .NET Framework, this size is not
strictly the point size. It can be the point size, but we can change a property called the GraphicsUnit via the
Unit property, which defines the unit of measure for the font. To refresh your memory, one point is equal to
1/72 of an inch, so a 10-point font is 10/72 of an inch high. Based on the GraphicsUnit enumeration, we
can specify the unit for the font as one of the following:

● point (1/72 of an inch)

● display (1/75 of an inch)

● document (1/300 of an inch)

● inch

● millimeter

● pixel

This means that we have an unprecedented flexibility in specifying the desired size of our font. One possible
use for this might be if we are writing a text drawing routine that needs to work in an acceptable way on very
high-resolution displays, low-resolution displays, and printers.

When drawing text, given a specific font, and given a specific drawing surface, we often need to know the
width in pixels of a specified string of text. It is pretty clear why different fonts will have an effect on the width
in pixels of a string – a smaller font will result in a width of fewer pixels. However, it is equally as important to
know the drawing surface, because the pixel resolutions of different drawing surfaces are different. Typically,
the screen has 72 pixels per inch. Printers can be 300 pixels per inch, 600 pixels per inch, and sometimes
even more. We use the MeasureString() method of the Graphics object to calculate the width of a string
for a given font.

The font Style property refers to whether the type is italicized, emboldened, struck-through, or underlined.

Important Always call Dispose() on Font objects.

It is important to call Dispose() on Font objects that we create, or use the using block, otherwise our
application may deplete Windows resources.

When drawing text, we use a Rectangle to specify the bounding coordinates of the text to be drawn.
Typically, the height of this rectangle should be the height of the font or a multiple of the height of the font.
This would only be different when drawing some special effect using clipped text.

The StringFormat class encapsulates text layout information, including alignment and line spacing. The
following example shows right and centered text justification using the StringFormat class.

Try it Out – Font Example

1. Create a new Windows application called DrawText in the directory C:\BegVCSharp\Chapter16.

2. In the constructor of the Form1 class, add a call to SetStyle() after the call to
InitializeComponent(). We also change the bounds of the window to give us enough room to
display the text that we want to display. The modified constructor is as follows:

public Form1()
{
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 SetStyle(ControlStyles.Opaque, true);
 Bounds = new Rectangle(0, 0, 500, 300);

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
}

3. Now, add an OnPaint() method to our class:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;
 int y = 0;

 g.FillRectangle(Brushes.White, ClientRectangle);

 // Draw left justified text
 Rectangle rect = new Rectangle(0, y, 400, Font.Height);
 g.DrawRectangle(Pens.Blue, rect);
 g.DrawString("This text is left justified.", Font,
 Brushes.Black, rect);
 y += Font.Height + 20;

 // Draw right justified text
 Font aFont = new Font("Arial", 16, FontStyle.Bold | FontStyle.Italic);
 rect = new Rectangle(0, y, 400, aFont.Height);
 g.DrawRectangle(Pens.Blue, rect);

 StringFormat sf = new StringFormat();
 sf.Alignment = StringAlignment.Far;
 g.DrawString("This text is right justified.", aFont, Brushes.Blue,
 rect, sf);
 y += aFont.Height + 20;

 // Manually call Dispose()
 aFont.Dispose();

 // draw centered text
 Font cFont = new Font("Courier New", 12, FontStyle.Underline);
 rect = new Rectangle(0, y, 400, cFont.Height);
 g.DrawRectangle(Pens.Blue, rect);
 sf = new StringFormat();
 sf.Alignment = StringAlignment.Center;
 g.DrawString("This text is centered and underlined.", cFont,
 Brushes.Red, rect, sf);
 y += cFont.Height + 20;

 // Manually call Dispose()
 cFont.Dispose();

 // Draw multiline text
 Font trFont = new Font("Times New Roman", 12);
 rect = new Rectangle(0, y, 400, trFont.Height * 3);
 g.DrawRectangle(Pens.Blue, rect);
 String longString = "This text is much longer, and drawn ";
 longString += "into a rectangle that is higher than ";
 longString += "one line, so that it will wrap. It is ";
 longString += "very easy to wrap text using GDI+.";
 g.DrawString(longString, trFont, Brushes.Black, rect);

 // Manually call Dispose()
 trFont.Dispose();
}

4. When you compile and run the code, it will create this window:

How it Works

This example contains a few of the most common text drawing operations.

As usual, we assign a reference to the Graphics object to a local variable, for our convenience. We also
paint the background of the window white.

When drawing the text, we calculate the bounding rectangle for our text. We get the height of the font using
the Height property. For illustrative purposes, we draw this rectangle in blue, so that the bounding rectangle
of our text is very clear. When we draw the text, we pass the text, the font, a brush, and a bounding rectangle:

 // Draw left justified text
 Rectangle rect = new Rectangle(0, y, 400, Font.Height);
 g.DrawRectangle(Pens.Blue, rect);
 g.DrawString("This text is left justified.", Font,
 Brushes.Black, rect);

We only specify the rectangle in which the text will go. The baseline of a font is the imaginary line that most of
the characters of the font "sit" on. GDI+ and the font itself determine where the actual baseline will go – we
have no control over that.

When we draw the text, we pass a brush to the DrawString() function. In this example, we only pass
brushes that have a solid color. We could just as easily have passed other types of brushes, such as a
gradient brush. After we have introduced images in the next section, we will demonstrate drawing text using a
TextureBrush.

The first time that we draw text in this example, we use the default font for the form. This font is referenced in
the Font property, which is inherited from Control.

g.DrawString("This is a left justified string.", Font,
 Brushes.Black, rect);

The next time that we draw text in this example, we create a new instance of a Font:

Font aFont = new Font("Arial", 16, FontStyle.Bold | FontStyle.Italic);

This example shows not only how to create a new instance of a font, but how to give it a style. In this case,
the style is bold and italic.

The example also shows creating a StringFormat object, so that we can draw right-justified and centered
text. In GDI+, right-justified text alignment is referred to as Far alignment. Left-justified text is Near alignment.

StringFormat sf = new StringFormat();
sf.Alignment = StringAlignment.Far;

Finally, we draw some multi-line text. Using GDI+, it could not be easier. All we need to do is to specify a
rectangle where the width is less than the length of the string (in pixels), and the height is sufficient to draw
multiple lines. In this case, we made the height equal to three times the font height.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Drawing Using Images

Images have many uses in GDI+. Of course, we can draw images into our windows, but we can also create a
brush (TextureBrush) with an image, and draw shapes that are then filled in with the image. We can create
a pen from the TextureBrush, and draw lines using the image. We can supply a TextureBrush when
drawing text, and the text will then be drawn using the image. The Image class is in the System.Drawing
namespace.

Another very important use of images is the graphics programming technique of double buffering.
Sometimes the drawing that we wish to create is very elaborate and intricate, and takes quite a bit of time to
draw, even with today's fast machines. It is not a pleasing effect to see the graphic "creep" onto the screen as
it is being drawn. Examples of these types of applications are mapping applications, and complex CAD/CAM
applications. In this technique, instead of drawing into a window, we draw into an image, and after our drawing
into the image is completed, we draw the image to the window. This is the technique known as double
buffering. Certain other graphics techniques involve drawing in layers, where first we draw the background,
then we draw objects on top of the background, and finally we draw some text on top of the objects. If this
drawing is done directly to the screen, the user will see a flickering effect. Double buffering eliminates this
flickering effect. We'll take a look at a double buffering example a bit later.

Image itself is an abstract class. There are two descendants of Image: Bitmap, and Metafile.

The Bitmap class is a general-purpose image, with height and width properties. Our examples in this section
will use the Bitmap class. We will load a Bitmap image from a file and draw it. We will also create a brush
from it and use that brush to create a pen to draw lines, and also use that brush to draw some text.

We'll take a look at the Metafile class near the end of this chapter, when we are taking an overview of the
advanced capabilities of GDI+.

Important Always call Dispose() on Image objects.

It is important to call Dispose() on Image objects that we create, or use the using blocks, otherwise our
application may deplete the Windows resources.

There are several possible sources for a bitmap. We can load the bitmap from a file, or create the bitmap from
another existing image, or it can be created as an empty image, onto which we can draw. When we read the
image from a file, it can be in the JPEG, GIF, or BMP format.

Try it Out - Image Example

The following is a very simple example to read an image from a file and draw it in a window.

1. Create a new Windows application called DrawImage in the directory C:\BegVCSharp\Chapter15.

2. First, we need to declare a private variable in our Form1 class to hold the image after we read it from a
file. After the declaration of the components variable, add the declaration of theImage as follows:

public class Form1 : System.Windows.Forms.Form
{
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components;
 private Image theImage;

3. Modify the constructor so that it appears as follows:
public Form1()
{
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 SetStyle(ControlStyles.Opaque, true);
 theImage = new Bitmap("Person.bmp");
 //
 // TODO: Add any constructor code after InitializeComponent call
 //
}

4. Now, add an OnPaintEvent() method to our class:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;

 g.DrawImage(theImage, ClientRectangle);
}

5. Finally, we need to dispose of the Image that is stored in a member variable of our class. Modify the
Dispose() method of the form class as follows:

protected override void Dispose(bool disposing)
{
 if(disposing)
 {
 theImage.Dispose();
 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
}

Before building this class, you must get the BMP file called Person.bmp and place it in the DrawBitmap\bin
\Debug directory. The Person.bmp file can be found in the code download, or else you can use another
bitmap you have, but remember to change the line
 theImage = new Bitmap("Person.bmp");

that you added in step 3 above to hold the filename of your own bitmap.

When you compile and run this code, you should see the following display:

How it Works

In the constructor, we instantiate a Bitmap object and assign it to our Image variable that we declared.

Then, in the OnPaint() method, we draw the image. When we draw the image, we pass a Rectangle as
one of the arguments to the DrawImage() method. If the image is not the same size as the rectangle that we
pass to DrawImage(), GDI+ automatically resizes the image to fit in the specified rectangle. One way to
enforce that GDI+ will not resize the image is to pass the size of the image, retrieved from the Width and
Height properties, to the DrawImage() method.

Drawing with a Texture Brush

We will now create a TextureBrush from the image we have just used, and look at the following three
different examples of its use:

● Drawing an ellipse

● Creating a Pen

● Drawing text

We will start with the last code example and make a few modifications to it.

Try it Out - Drawing an Ellipse with an Image

1. Starting with the code in the previous DrawImage example, add another Image variable declaration to
the Form1 class:

public class Form1 : System.Windows.Forms.Form
{
 /// <summary>
 /// Required designer variable.
 /// </summary>
 private System.ComponentModel.Container components;

 private Image theImage;
 private Image smallImage;

2. In the form's constructor, we will create smallImage from theImage. When we create it, we specify a
rectangle that is half the height and half the width of theImage. This creates a smaller version of the
original image:

public Form1()
{
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();
 SetStyle(ControlStyles.Opaque, true);
 theImage = new Bitmap("Person.bmp");
 smallImage = new Bitmap(theImage,
 new Size(theImage.Width / 2, theImage.Height / 2));

 //
 // TODO: Add any constructor code after InitializeComponent call
 //
}

3. Replace the OnPaint() method with this one:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;

 g.FillRectangle(Brushes.White, ClientRectangle);

 Brush tBrush = new TextureBrush(smallImage, new Rectangle(0, 0,
 smallImage.Width, smallImage.Height));
 g.FillEllipse(tBrush, ClientRectangle);
 tBrush.Dispose();
}

4. Finally, we need to dispose of the two images that are stored in member variables of our class. Modify
the Dispose() method of the class as follows:

protected override void Dispose(bool disposing)
{
 if(disposing)
 {
 theImage.Dispose();
 smallImage.Dispose();

 if (components != null)
 {
 components.Dispose();
 }
 }
 base.Dispose(disposing);
}

5. When we run this application, the window looks like this:

How it Works

When we create the TextureBrush, we pass a rectangle to the constructor to specify what part of the image
will be used for the brush. In this case, we specify that we will use the entire image. Whatever is drawn using
the TextureBrush uses the bitmap instead of a solid color.

Most of the code for this example has already been explained in this chapter. The difference is that we call the
FillEllipse() method of the Graphics class, passing our newly created texture brush, and the
ClientRectangle draws the ellipse in the window:

 g.FillEllipse(tBrush, ClientRectangle);

ry it Out - Creating a Pen from an Image

Now that we have created a TextureBrush, we can create a pen using that brush.

1. Starting with the code in the DrawImage example that we modified in the previous Try it Out, change
the OnPaint() method so that it looks like this:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;

 g.FillRectangle(Brushes.White, ClientRectangle);

 Brush tBrush = new TextureBrush(smallImage, new Rectangle(0, 0,
 smallImage.Width, smallImage.Height));
 Pen tPen = new Pen(tBrush, 40);
 g.DrawRectangle(tPen, 0, 0,
 ClientRectangle.Width, ClientRectangle.Height);
 tPen.Dispose();
 tBrush.Dispose();
}

2. When we run this code, it looks like the following:

Try it Out - Drawing Text with an Image

We can draw text using our TextureBrush also.

1. Continuing with the code from the previous Try it Out, modify the OnPaint method as follows:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;
 g.FillRectangle(Brushes.White, ClientRectangle);

 Brush tBrush = new TextureBrush(smallImage, new Rectangle(0, 0,
 smallImage.Width, smallImage.Height));
 Font trFont = new Font("Times New Roman", 32,
 FontStyle.Bold | FontStyle.Italic);
 g.DrawString("Hello from Beginning Visual C#",
 trFont, tBrush, ClientRectangle);
 tBrush.Dispose();
 trFont.Dispose();
}

2. For this example, we'll actually use a different bitmap - change the line in the form constructor that sets
the source for theImage to:

 theImage = new Bitmap("Tile.bmp");

The Tile.bmp file can also be found in the download code.

3. When we run this code, it appears as follows:

The call to the DrawString() method is similar to previous uses of that method. It takes as arguments the
text, the font, our texture brush, and a bounding rectangle:
 g.DrawString("Hello from Beginning Visual C#",
 trFont, tBrush, ClientRectangle);

Double Buffering

We previously touched on the problems when drawing takes too long, and the user has to wait a long time to
see the graphics drawn. As we explained before, the solution is to draw into an image, and when we have
completed all drawing operations, draw the complete image to the window.

Try it Out - Double Buffering Example

1. Create a new Windows application called DoubleBuffer, and add the following OnPaint() method,
which a draws large number of lines in random colors.

protected override void OnPaint(PaintEventArgs e)
{
 Graphics g = e.Graphics;
 Random r = new Random();

 g.FillRectangle(Brushes.White, ClientRectangle);

 for (int x = 0; x < ClientRectangle.Width; x++)
 {
 for (int y = 0; y < ClientRectangle.Height; y += 10)
 {
 Color c = Color.FromArgb(r.Next(255), r.Next(255), r.Next(255));
 using (Pen p = new Pen(c, 1))
 {
 g.DrawLine(p, new Point(0, 0), new Point(x, y));
 }
 }
 }

}

2. When you run this, you can see the drawing take place before your eyes (that is, if your machine is not
too fast). After all the drawing is completed, the window looks like this:

3. Now we'll add the double buffering - if you replace the OnPaint() method with this version, the
graphics are drawn all at once, after a second or two:

protected override void OnPaint(PaintEventArgs e)
{
 Graphics displayGraphics = e.Graphics;
 Random r = new Random();
 Image i = new Bitmap(ClientRectangle.Width, ClientRectangle.Height);
 Graphics g = Graphics.FromImage(i);

 g.FillRectangle(Brushes.White, ClientRectangle);

 for (int x = 0; x < ClientRectangle.Width; x++)
 {
 for (int y = 0; y < ClientRectangle.Height; y += 10)
 {
 Color c = Color.FromArgb (r.Next(255), r.Next(255), r.Next(255));
 Pen p = new Pen(c, 1);
 g.DrawLine(p, new Point(0, 0), new Point(x, y));
 p.Dispose();
 }
 }
 displayGraphics.DrawImage(i, ClientRectangle);
 i.Dispose();
}

How it Works

The part of the code responsible for drawing the lines is straightforward - we've seen the DrawLine()
method earlier in the chapter. The only real thing of note in this part of the code is the FromArgb() static
Color method, which creates a Color struct from the three supplied integer values, corresponding to the

red, green and blue parts of the color.

In the double buffering code, (step 3 above), we create a new image that has the same height and width of
the ClientRectangle with the following line:

Image i = new Bitmap(ClientRectangle.Width, ClientRectangle.Height);

We then get a Graphics object from the image using the following line:

Graphics g = Graphics.FromImage(i);

All of the drawing operations are the same as the previous code, except that they now draw into the image
instead of directly onto the window.

Finally, at the end of the function, we draw the image to the window:
displayGraphics.DrawImage(i, ClientRectangle);

Because the lines are drawn first to an invisible image, you do have to wait a short while before you see
anything.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Advanced Capabilities of GDI+

We have only just touched on the many capabilities of GDI+. There is much more that you can do with it – far
more than can be achieved in a single chapter. However, to round off this chapter, we will introduce several
areas of these advanced capabilities.

Clipping

There are three contexts where clipping is important.

First, when the OnPaint() method gets called, in addition to the Graphics object, the event is passed a
clipping rectangle. For simple drawing routines, we don't need to pay much attention to this clipping rectangle,
but if we have a very elaborate drawing routine that takes a lot of time, we can reduce this drawing time by
testing against this clipping rectangle before we draw. We know the bounding rectangle of whatever graphic
or figure that we need to draw. If this bounding rectangle does not intersect with the clipping rectangle, then
we can skip the drawing operation.

The following screenshot shows one window containing a bar chart that is partially obscured by another
window:

After the calculator has been closed, and after the Windows operating system has drawn the border of the
window, the bar chart window would look like this:

At this point, the OnPaint() method for the bar chart window would now be called, with the clipping
rectangle set to the area exposed by the closed window, shown above in black. The bar chart would now
need to draw the portions of its window that were previously underneath the overlying window. It would not
need to redraw the car or trains bars, and in fact, even if the OnPaint() method tried to draw into the window
in an area other than the exposed area, it could not. Any drawing that it did would be ignored. The bar chart
window knows the bounding rectangle for the cars bar, and can determine if this rectangle intersects with the
exposed portion of the window. Having determined that it does not intersect, the drawing routine will not
redraw the part of the display covering the cars bar.

Sometimes when drawing, if we need to draw only part of a figure or graphic, it is more convenient to draw the
entire figure, and clip the drawing to just what we want to see. We may have an image, and want to draw just
a portion of that image. Rather than create a new image that is just a portion of the original image, we can set
the clipping rectangle, and then draw the image such that just the portion that we want to see "shows through"
the clipping area. When creating a marquee, this is the technique that we would use. By successively
changing where we draw the text, and at the same time setting a clipping region, we can create the effect of
horizontally moving text.

Finally, there is a technique where we can create a "view port" into a larger graphic. The user can move this
view port around, perhaps by dragging the mouse on the graphic, or manipulating scroll bars. The view port
also may be moved programmatically based on other actions that the user takes. In this case, setting a
clipping region and drawing such that only what we want to see shows through is a good technique.

See the Clip property of the Graphics class for more information.

System.Drawing.Drawing2D

The classes in this namespace provide advanced two-dimensional and vector graphics functionality. We could
use these classes to build a sophisticated drawing and image processing application.

Vector graphics is a technique where the programmer doesn't address pixels at all. Rather, the programmer
records multiple "vectors", indicating such operations as "draw from one point to another", draw a rectangle at
a certain location, etc. Then the developer can apply scaling, rotation, and other transformations. Having
applied the transformations, all the operations are rendered at once to the window.

This namespace includes advanced brushes. We have already seen the LinearGradientBrush and we
touched on the PathGradientBrush. There is also a HatchBrush, which draws using a hatch style, a
foreground color, and a background color.

This namespace also includes the Matrix class, which defines geometric transforms. Using this class, we
can do transforms on the drawing operations. For instance, using the Matrix class, we can draw an oval that
is at a slant.

Also included in this namespace is the GraphicsPath class, which we have already touched on. Using this
class, we can define a complex path and draw the entire path at once.

System.Drawing.Imaging

The classes in this namespace provide advanced imaging support, such as support for metafiles. A metafile
describes a sequence of graphics operations that can be recorded and later played back, and there are
classes within the System.Drawing.Imaging namespace that allow us to extend GDI+ to support other
image formats.

Chapter 16 - Introduction to GDI+
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter, we covered some of the classes in the System.Drawing namespace. We saw how the
Graphics class encapsulates a drawing surface. We reviewed the mechanics of drawing, where the
OnPaint event is called whenever our window needs to be redrawn.

We explored colors and coordinate systems. We covered the Point, Size, and Rectangle structures that
we use to specify positions and sizes on our drawing surface. Next, we saw some examples of drawing lines,
shapes, text, and images.

Overall, the topics that we covered were:

● The Graphics class

● The Color structure

● Drawing lines using the Pen class

● Drawing shapes using the Brush class

● Drawing text using the Font class

● Drawing images using the Bitmap class

● Drawing into images (double-buffering)

We learned that it is very important to call Dispose() on certain classes when we are done with them. Those
classes are:

● Graphics

● Pen

● Brush

● Font

● Image

Finally, we had an overview of additional graphical capabilities in the .NET Framework.

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

Chapter 17: Deploying Windows Applications

Overview

One of the big features of .NET is that installation can often be done using a simple xcopy. In .NET,
assemblies simply consist of a number of files, and the Registry is no longer needed to store assembly
configurations, so copying files can often be enough to install an application.

However, you will soon come to find some good reasons not to use xcopy for installing Windows applications
– for the deployment of Windows applications xcopy should be used only for the simplest applications. With
small applications that are only installed on a few systems, xcopy can do a good job, but for bigger
applications or applications that are installed to a lot of systems we have to think about a better installation
mechanism. xcopy does not register or verify assembly locations and it cannot take advantage of Windows
Installer Zero Administration Windows (ZAW) features, which means that files can be overwritten
unintentionally, and there's no built-in uninstall.

Microsoft's Zero Administrative Initiative facilitates the job of system administrators to update and
to install applications automatically on client systems, and to do central administration of
applications.

In this chapter we will look at:

● Microsoft Windows Installer and its advantages for deploying applications

● Deployment Project Types in Visual Studio .NET

● Features of the Windows Installer

● Creating Windows Installer Packages using Visual Studio .NET

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

What is Deployment?

Deployment is the process of installing applications to the target systems.

The Process Model of the Microsoft Solutions Framework (http://www.microsoft.com/business/
services/mcsmsf.asp) defines the process model with four phases in a development lifecycle:
Envisioning, here the idea of the solution gets articulated. The Planning phase is mainly used to analyze
and design the solution. In the Developing phase most of the development takes place, and Stabilizing is
where no more new features are introduced, but instead bugs are fixed, and beta and finally release versions
of the product are sent to the customer's site.

Between these four phases you can see three major milestones - but these major milestones don't finalize a
sequence as with today's application development, the customer's goals can often change, and in a later
process phase you can detect that some parts don't work as expected. Thus developing can also happen in
the planning phase to get some prototypes to work, and design can still change in the developing phase.

Important It is good practice to think about deployment of projects early in the process cycle, as
deployment strategies can influence the design of applications.

http://www.microsoft.com/business/services/mcsmsf.asp
http://www.microsoft.com/business/services/mcsmsf.asp

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

Deployment Project Types

Starting the Visual Studio .NET Add New Project dialog, we get this screen after selecting Setup and Deployment
Projects:

These are the project types and what can be done with them:

● With the Cab Project template, cabinet files can be created. Cabinet files can be used to merge multiple
assemblies into a single file and compress it. Since the cabinet files can be compressed, a Web client can
download a smaller file from the server.

Creating components is not in the scope of this book, so we will not look at the creation of
cabinet projects. You can read Professional C# 2nd Edition (Wrox Press, ISBN 1-86100-704-3)
for information on how to create .NET components for download from a Web Server.

● The Merge Module Project template is used to create Windows Installer merge modules. A merge module is
an installer file that can be included in multiple Microsoft Installer installation packages. For components
that should be installed with more than one installation program a merge module can be created to include
this module in the installation packages. One example of a merge module is t he .NET runtime itself: it is
delivered in a merge module, and as such the .NET runtime can be included with the installer package of
an application. We will use a merge module in our sample application.

● The Setup Project template is the one we will use. This template is used to create Windows Installer
Packages, and so it is the best way for deploying of Windows Applications.

● The Setup Wizard is a step-by-step way to choose the other templates. The first question to ask yourself is
this: do you want to create a setup program to install an application or a redistributable package?
Depending on your choice a Windows Installer Package, a Merge Module, or a CAB File will be created.

The last template in this list is the Web Setup Project. We will not be using this template in this chapter because
the main focus of this book is on developing Windows desktop applications.

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

Microsoft Windows Installer Architecture

Before the Windows Installer existed, programmers had to create custom installation programs. It was not
only much more work to build such installation programs, but also many of these programs didn't follow the
Windows rules. Often system-DLLs were overwritten with older versions because the installation program
didn't check the version. In addition to this, the directory where the application files were copied to was often
wrong; for example, a hard-coded directory string C:\Program Files was used. If the system administrator
changed the default drive letter, or an international version of the operating system was used where this
directory is named differently, the installation failed.

The first version of the Windows Installer was released as part of Microsoft Office 97, and as a distributable
package that could be included with other application packages. Version 1.1 added support to register COM+
components, and with 1.2 the file protection mechanism of Windows ME was supported. Version 1.5 added
support for .NET assemblies and for the 64-bit release of Windows. With Visual Studio .NET we get a new
version: 2.0.

Windows Installer Terms

Working with the Windows Installer requires us to be familiar with some terms that are used with the Windows
Installer technology: Packages, Features, and Components.

Be aware of one important note about the term component, used for installer programs:

Important In the context of the Windows Installer, a component is not the same as a component in the .
NET Framework. A Windows Installer component is just a single file (or multiple files that
logically belong together). Such a file can be an executable, a DLL, or even a simple text file.

As you can see in the following picture, a package consists of one or more features. A package is a single
Microsoft Installer (MSI) database. A feature is the user's view of the capabilities of a product and can consist
of features and components. A component is the developer's view of the installation; it is the smallest unit of
installation and consists of one or more files. The differentiation of features and components is used because
a single component can be included in multiple features (as shown in the diagram below by Component 2). A
single feature cannot be included within multiple features.

Let's look at the features of a real world example that you should already have: Visual Studio .NET. Using the
Add/Remove Programs option from the Control Panel, we can change the installed features of Visual Studio .
NET after installation by pressing the Change/Remove button:

By pressing the Change/Remove button, you can visit the Visual Studio .NET Maintenance wizard. This is a
good way to see features in action. As you can see in the picture below, the Visual Studio .NET package
includes the features Language Tools, .NET Framework SDK, Crystal Reports for Visual Studio .NET, Tools for
Redistributing Apps, and Server Components. The Language Tools feature has the sub-features Visual Basic .NET,
Visual C++ .NET, and Visual C# .NET:

Advantages of the Windows Installer

The advantages of the Windows installer are as follows:

● Features can be installed, not installed, or advertised. With advertisement, a feature of the package will
be installed at first time use. Maybe you have already seen the Windows Installer starting during your work
with Microsoft Word. If you use an advertised feature of Word that was not installed, it will be installed
automatically as soon as you use this feature.

● If an application gets corrupted, the applications can self-repair by using the repair feature of Windows
Installer packages.

● An automatic rollback will be done if the installation fails. After the installation fails everything is left as
before: no additional Registry keys, no files, etc. are left on the system.

● With an uninstall, all the relevant files, Registry keys, etc. are removed – the application can be
completely uninstalled. No temporary files are left out, and the Registry is also reinstated.

By reading the tables of the MSI database file it's possible to get the information about such things as what
files are copied, and what registry keys are written.

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

Creating an Installation Package for the Simple Editor

We will use the Simple Editor solution from just have to change some of the names used accordingly.

Planning the Installation

Before we can start building the installation program, we have to plan what we are going to put in it. There are some
questions to be considered first:

● What files are needed for the application? Of course the executable and probably some component assemblies.
It won't be necessary for you to identify all dependencies of these items because the dependencies will
automatically be included. Maybe some other files are needed, too. What about a documentation file, a readme.
txt, a license file, a document template, pictures, configuration files, among others. We have to know all required
files.

For our Simple Editor we need the executable, and we will also include the files readme.rtf, license.rtf, and
a bitmap from Wrox Press to show in the installation dialogs.

● What directories should be used? Application files should be installed in Program Files\Application name.
The Program Files directory is named differently for each language variant of the operating system. Also, the
administrator can choose different paths for this application. It is not necessary to know where this directory really is
because there's an API function call to get this directory. With the installer, we can use a special predefined folder to
put files in the Program Files directory.

Important It's worth making this point again – under no circumstances should the directories be hard-coded. With
international versions these directories are named differently! Even if your application just supports
English versions of Windows (which you really shouldn't do), the System Administrator could have
moved these directories to different drives.

The Simple Editor will have the executable in the default application directory unless the installing user selects a
different path.

● How should the user access the application? We can put a shortcut to the executable in the Start menu, or place
an icon on the desktop, for example. If you want to place an icon on the desktop, you should check whether the user
is happy with that. With Windows XP, the guideline is to have the desktop as clean as possible.

The Simple Editor should be accessible from the Start menu.

● What is the distribution media? Do we want to put the installation packages on a CD, floppy disks, or a
network share?

● What will we ask the user? Should he or she accept license information, display a ReadMe file, ask for the path to
install? Are some other options required for the installation?

The default dialogs that are supplied with the Visual Studio .NET Installer will be ample for this example. We will ask
for the directory where the program should be installed (the user may choose a path that is different from the
default), show a ReadMe file, and ask the user to accept the license agreement.

Create the Project

After knowing what should be in the installation package we can use the Visual Studio .NET installer to create an
installer project and add all files that should be installed. In the first steps we will use the Project wizard and configure
the project.

Try it Out – Creating a Windows Installer Project

1. Open the solution file of the Simple Editor project we created in Chapter 15 yourself (shame on you!), you'll find it
in the download code.

2. Add a Setup Project called SetupSimpleEditor to the solution with the File | Add Project | New Project menu.

Project Properties

Up to this point we only have a project file for the setup solution. The files to be installed must be defined. But we also
have to configure the project properties. To do this we have to know what the Packaging and Bootstrapper options
mean.

Packaging

MSI is where the installation is started, but we can define how the files that are to be installed are packaged with three
options in the dialog shown. This dialog is opened if you right-click on the SetupSimpleEditor project, and select
Properties:

Let's look at options in the Package files drop-down list:

● With As loose uncompressed files all program and data files are stored as they are. No compressing takes place.

● With In setup file means that all the files are merged and compressed into the MSI file. This option can be overridden
for single components in the package. If you put all your files into a single MSI file you have to pay attention that the
size of the installation program fits in the target you want to use, for example, CDs or floppy disks. If you have so
many files to install that they exceed the capacity of a single floppy, you can try to change the compression rate by
selecting the Optimized for size option from the Compression drop-down list. If the size still doesn't fit you can choose
the next option for packaging.

● The third way to package files is In cabinet file(s). With this method the MSI file is just used to load and install the
CAB files. With CAB files it is possible to set file sizes that enable installations on CDs or floppy disks (we can set
sizes of 1440 KB for installations from floppy disks).

Bootstrapper

Another option we can configure in the same dialog is the bootstrapper. A bootstrapper is a program that must be
executed before the actual application can run.

On the target system where your application should be installed, version 1.5 of the Windows Installer is required for
installer packages created with Visual Studio .NET. Version 1.5 of the Windows Installer was first delivered with
Windows XP, and if your program needs to be deployed to earlier systems you will need a bootstrapper that installs the
new version of the Windows Installer. Selecting the Windows Installer Bootstrapper includes the bootstrapper in the
installation program, and on installation it installs version 1.5 of the Windows Installer before starting the installation of
the target program. The space that's needed for this option is around 3 MB.

If we use the Web Bootstrapper we have to place the bootstrapper program on a web site. When selecting this option in
the Property pages we are asked for the URL of the download. This URL will then allow the user installing the
application to download and install the bootstrapper. With this option you don't need additional space in your installation
package, but the user installing the application must have access to the Internet.

If you select the option None to not install the bootstrapper, and the target system doesn't have the Windows Installer
1.5 installed you will get this error message at installation time:

Try it Out – Configuring the Project

1. Change the Bootstrapper option in the Property page that we've just been looking at to Windows Installer
Bootstrapper so that the application can be installed on systems where the Windows Installer 1.5 is not available.
Also change the output file name to WroxSimpleEditor.msi.

2. Set the project properties to the values in the following table:

Property Value
Author Christian Nagel

Description Simple Editor to print and edit text files.

Keywords Installer, Wrox Press, Simple Editor

Manufacturer Wrox Press

ManufacturerUrl http://www.wrox.com

Product Name Simple Editor

SupportUrl http://p2p.wrox.com

Title Installation Database for Simple Editor

Version 1.0.0

Setup Editors

With a Visual Studio .NET Setup Project we have six editors available. You can select the editor by opening a
deployment project, and selecting the menu View | Editor as you see in the picture below:

● The File System editor is used to add files to the installation package.

● With the Registry editor, Registry keys can be created for the application.

http://www.wrox.com/
http://p2p.wrox.com/

● The File Types editor allows registration of specific file extensions for an application

● With the User Interface editor we can add and configure dialogs that are shown during installation of the product

● The Custom Actions editor allows it to start custom programs during installation and uninstallation

● With the Launch Conditions editor we can specify requirements for our application, for example, that the .NET
runtime already has to be in place

File System Editor

With the File System Editor we can add files to the installation package and configure the locations where they should
be installed. This editor is opened with View | Editor | File System menu. Some of the predefined special folders are
automatically opened as shown in the following picture:

● The Application Folder is used to store the executables and libraries. The location is defined as
[ProgramFilesFolder][Manufacturer][ProductName]. On English language systems the
[ProgramFilesFolder] is resolved to C:\Program Files. The directories for [Manufacturer] and
[ProductName] are defined with the Manufacturer and ProductName project properties.

● If we want to place an icon on the desktop the User Desktop option can be used. The default path to this folder is C:
\Documents and Settings\[username]\Desktop or C:\Documents and Settings\All Users\Desktop
depending if the installation is done for a single user or for all users.

● The user will usually start a program by starting it from the User Programs Menu. The default path is C:
\Documents and Settings\[username]\Start Menu\[Programs]. You can put a shortcut to the application
in this menu. The shortcut should have a name that includes the company and the application name, so that the
user can easily identify the application, for example, Microsoft Excel.

Some applications create a sub menu where more than one application can be started, for example, Microsoft Visual
Studio.NET 7.0. According to the Windows Guidelines, many programs do this for the wrong reason, listing programs
which are not necessary: you shouldn't put an uninstall program in these menus, because this feature is available from
Add/Remove Programs in the Control Panel, and should be used from there. A help file should also not be placed in this
menu because this should be available directly from the application. Thus for many applications it will be enough to
place a shortcut to the application directly in the User's Programs Menu. The goal of these restrictions is that the Start
menu doesn't get too cluttered with too many items in it.

A great reference to this information can be found in "Application Specification for Microsoft Windows 2000". You can
download this paper at http://msdn.microsoft.com, by following the Partners & Certification | Windows Logo

Program links.

There are other folders that you can add by right-clicking and selecting Add Special Folder. Some of these folders include:

● In the Global Assembly Cache Folder we can install shared assemblies. The Global Assembly Cache is used for
assemblies that should be shared between multiple applications. You can read more about sharing assemblies in

● The User Personal Data Folder is the default folder of a user where documents should be stored. C:\Documents
and Settings\[username]\My Documents is the default path. This path is the default directory used by Visual
Studio .NET to store projects.

http://msdn.microsoft.com/

● Adding a shortcut to User Send To Menu extends the Send To context menu when a file is selected. With this
context menu the user can typically send a file to the target program like the floppy drive, a mail recipient, or the My
Documents folder.

Adding Items to Special Folders

Selecting a folder and choosing the menu Action | Add, we can choose from a list to add items to a special folder as you
can see in the picture:

We can select project output, folders, files, or assemblies. Selecting the output of a project to a folder automatically
adds the generated output files, a .DLL or .EXE depending if the added project is a component library or an application.
Selecting one of the menus Project Output or Assembly automatically adds all dependencies (all referenced assemblies)
to the folder.

File Properties

Selecting the properties of a file in a folder we can set the following properties. Depending on the file types some of
these properties don't apply, and there are additional properties not listed below.

Property Description
Condition With this property a condition can be defined to determine if the selected file

should be installed. This can be useful if you want to add this file only for
specific operating system versions, or something the user has to choose in
a dialog.

Exclude Can be set to True if this file should not be installed. This way the file can
stay in the project but doesn't install. You can exclude a file if you are sure
that it's not a dependency or that it already exists on every system where
the application gets deployed.

PackageAs With PackageAs we can override the default how the file should be added
to the installer package; for example, if the project configuration says In
Setup File we can change the package configuration with this option for a
specific file to Loose, so that this file will not be added to the MSI database
file. This is specifically useful if we want to add a Readme file that the user
should read before starting the installation. Obviously we would not
compress this file even if all the others were.

Permanent Setting this property to True means that the file will stay on the target
computer after uninstallation of the product. This can be used for
configuration files. One example where you may have already seen this, is
when installing a new version of Microsoft Outlook: if you configure
Microsoft Outlook, uninstall the product and install it again, it's not
necessary to configure it again as the configuration of the last install is not
deleted.

ReadOnly This property sets the read only file attribute at installation.

Vital This property means that this file is essential for the installation of this
product. If installation of this file fails, the complete installation is aborted
and a rollback occurs.

Try it Out – Add Files to the Installer Package

1. Add the primary output of the Simple Editor project to the installer project using the Project | Add | Project Output
menu. In the Add Project Output Group dialog, select the Primary Output as follows:

Pressing the OK button adds the primary output of the SimpleEditor project to the Application Folder in the
automatically opened File System Editor. In our case the primary output is SimpleEditor.exe. As you can see in
the Solution Explorer, the dependencies are automatically detected; the merge module
dotnetfxredist_x86_enu.msm is added to the project, but is by default excluded from the project. This merge
module includes all files of the .NET runtime. If the .NET runtime is not already installed on the target system, it will
be installed along with our application.

Our installation program will require the runtime to be already installed. The runtime needs around 15 MB, thus not
including it makes our installation file about 15 MB smaller. With the runtime excluded from our solution, the
installation will be successful even if the .NET runtime is not installed on the target system, but SimpleEditor.
exe will not start. A better way would be if we get an error message during installation if the runtime is not installed.
We can do this by defining a .NET Framework Launch Condition. We will do this later.

2. Additional files we want to add are a logo, a license, and a ReadMe file. In the File System Editor create a
subdirectory named Setup in the Application Folder. You can do this by selecting the Application Folder, and
choosing the menu Action | Add | Folder.

Important The Action menu in Visual Studio .NET is only available if you select items in the Setup Editors. If an
item in the Solution Explorer or Class View is selected, the Action menu is not available.

3. Add the files wroxlogo.bmp, wroxsetuplogo.bmp, readme.rtf and license.rtf to the folder Setup by
right-clicking on the Setup folder and selecting Add | File. These files are available with the code download for this
chapter, but you can easily create these files yourself. You can fill the text files with license and ReadMe
information. It is not necessary to change the properties of these files. These files will be used in the dialogs of the
installation program.

4. Drag and drop the file readme.txt to the application folder. We want this file to be available for the user to read
before the installation is started. Set the property PackageAs to vsdpaLoose, so that this file will not be
compressed into the Installer package. Also set the ReadOnly property to True so that this file cannot be
changed.

5. Drag and drop the file demo.wroxtext to the User's Desktop folder. This file should only be installed after asking
the user whether he or she really wants to install it. Therefore set the Condition property of this file to
CHECKBOXDEMO. The value must be written in uppercase. The file will only be installed if the CHECKBOXDEMO
condition is set to true. Later we will define a dialog where this property will be set.

We want to make the program available from the Start | Programs menu – we need a shortcut to the
SimpleEditor program.

6. Select the Primary output from SimpleEditor item in the Application Folder and open the menu Action | Create Shortcut
to Primary output from SimpleEditor. Set the Name property of the generated shortcut to Wrox Simple Editor, and drag
and drop this shortcut to the User's Programs Menu.

File Types Editor

If your application uses custom file types, and you want to register file extensions that should start up your application
when the user double-clicks on the file, you can use the File Types Editor. This editor can be started with View | Editor |
File Types.

With the File Types Editor you can configure a file extension that should be handled from your application. The file
extension has these properties:

Property Description
Name Here you should add a useful name describing the file type. This name is

displayed in the File Types Editor and is also written to the Registry. The
name should be unique. An example for .doc file types is Word.
Document.8. It's not necessary to use a ProgID as in the Word example; a
simple text like wordhtmlfile as used for the .dochtml file extension
can also be used.

Command With the Command property you can specify the executable that should be
started when the user opens a file with this type.

Description Here you can add a description.

Extensions The file extension where your application should be registered.

The file extension will be registered in a section of the registry.
Icon Specify an icon to display it for the file extension.

Create Actions

After creating the file types in the File Types Editor you can add actions. The default action that is automatically added
is Open. You can add additional actions like New and Print or whatever actions your program can do with files. With the
actions the Arguments and Verb properties must be defined. The Arguments property specifies the argument that is
passed to the program, which is registered for the file extension; for example "%1" means that the file name is passed to
the application. The Verb property specifies the action that should occur. With a print action a /print can be added if
supported by the application.

Let's add an action to our Simple Editor installation program. We want to register a file extension, so that the Simple
Editor application can be used from Windows Explorer to open files with the extension .wroxtext. After this

registration we can double-click on these files to open them, and the Simple Editor application will be started
automatically.

Try it Out – Set the File Extension

1. Start the File Types Editor with View | Editor | File Types. Add a new file type using the menu Action | Add File Type
with the following properties set. Because we don't want to change the ownership for Notepad of the .txt file
extension, we are using the .wroxtext file extension.

Property Value
(Name) Wrox.SimpleEditor.Text

Command Primary output from SimpleEditor

Description Wrox Text Documents

Extensions wroxtext

You can also set the Icon property to define an icon for the opening of files.

Leave the properties of the Open action with the default values, so that the file name is passed as an application
argument.

Launch Condition Editor

With the Launch Condition Editor we can specify some requirements of the target system before the installation can
take place. The Launch Condition Editor can be started by selecting the menu View | Editor | Launch Conditions.

The editor has two sections to specify the requirements: Search Target Machine and Launch Conditions. With the first
section we specify what specific file, or Registry key to search for, and the second section defines the error message if
the search was not successful.

Let's look into some of the launch conditions that we can define using the Action menu:

● With the File Launch Condition we can search for installed files on the target system.

● The Registry Launch Condition allows it to look for registry keys before the installation starts.

● The Windows Installer Launch Condition makes it possible to search for Windows Installer files.

● The .NET Framework Launch Condition checks if the .NET Framework is already installed on the target system.

● The Internet Information Services Launch Condition checks for an installed Internet Information Server. Of
course you can also check for the version of this server.

By default, a .NET Framework Launch Condition is included, and its properties have been set to predefined values:
Condition is set to MsiNetAssemblySupport and Message is set to [VSDNETMSG]. The property
MsiNetAssemblySupport is set at installation time to true by Windows Installer 1.5 if the Common Language
Runtime is installed on the system. The message [VSDNETMSG] displays the following error message to the user at

installation time if the .NET runtime is not installed.

User Interface Editor

With the User Interface Editor we can define the dialogs that the user will see to configure the installation. Here we can
inform the user about license agreements, ask for installation paths and other information to configure the application.

Try it Out – Start the User Interface Editor

1. Start the User Interface Editor by selecting View | Editor | User Interface. We use the User Interface Editor to set
properties for predefined dialog boxes. You should see the following view with automatic generated dialogs and
two installation modes:

Install and Administrative Install

As can be seen in the above picture, we have two installation modes: Install and Administrative Install. The Install mode
is the typical installation that is used to install the application on a target system. With an Administrative Install we can
install an image of the application on a network share. A user can then install the application from the network.

Default Dialogs

In both installation modes we have three sequences where dialogs can be shown: Start, Progress, and End. Let's look at
the default dialogs:

● The Welcome dialog displays a welcome message to the user. You can replace the default welcome text with your
own message. The user can just cancel the installation or press the next button.

● With the second dialog, Installation Folder, the user can choose the folder where the application should be
installed. If you add custom dialogs (we'll look at this in a moment) you have to add the dialogs before this one.

● The Confirm Installation dialog is the last dialog before the installation starts.

● The Progress dialog displays a progress control so that the user can see the progress of the installation.

● When installation is finished the Finished dialog shows up.

The default dialogs that we looked at will show up automatically at installation time, even if you never opened the User
Interface Editor in the solution. But we should configure these dialogs so that useful messages for our application are
displayed.

Try it Out – Configuring the Default Dialogs

1. Select the Welcome dialog. In the Properties window you can see three properties that can be changed for this
dialog: BannerBitmap, CopyrightWarning, and WelcomeText. Select the BannerBitmap property by
pressing (Browse…) in the combo box, and select the file wroxsetuplogo.bmp that we have placed in the folder
Application Folder\Setup. This bitmap will show up on top of this dialog.

The default text for the property CopyrightWarning says:

WARNING: This computer program is protected by copyright law and international
treaties. Unauthorized duplication or distribution of this program, or any portion of
it, may result in severe civil or criminal penalties, and will be prosecuted to the
maximum extent possible under the law.

This text will show up in the Welcome dialog, too. Change this text if you want a stronger warning. The
WelcomeText property defines more text that is displayed in the dialog – its default value is:

The installer will guide you through the steps required to install [ProductName] on
your computer.

You can change this text, too. The string [ProductName] will automatically be replaced with the property
ProductName that we defined with the properties of the project.

2. Select the Installation Folder dialog. This dialog just has a single property: BannerBitmap. We will change the
value of this property to the wroxsetuplogo.bmp file as we did with the Welcome dialog. Since each dialog can
display a bitmap with this property, change this property in all the other dialogs too.

Additional Dialogs

With the Visual Studio .NET installer we cannot design a custom dialog and add it to the installation sequence. A more
sophisticated tool like InstallShield or Wise for Windows is required to do this – but with the Visual Studio .NET installer
we can add and customize many of the predefined dialogs in the Add Dialog screen.

By selecting the Start sequence in the User Interface Editor and by choosing the menu Action | Add Dialog, the Add
Dialog is displayed as can be seen in the picture below. All these dialogs are configurable.

There are dialogs in which two, three, or four radio buttons show up, check box dialogs that show up to four check
boxes, and text box dialogs that show up to four text boxes. We can configure these dialogs by setting their properties.

Let's have a quick discussion of some of the dialogs: the Customer Information dialog will ask the user for the name,
company, and serial number. If you don't have a serial number with the product, you can hide the serial number by
setting the ShowSerialNumber property to False. With the License Agreement dialog the user can accept a license
before the installation starts. A license file is defined with the LicenseFile property. With the Register User dialog the
user can press a Register Now button where a program defined with the Executable property will be started. The
custom program can send the data to an FTP server, or do the data transfer by e-mail. The Splash dialog just displays a
splash screen before the installation starts with a bitmap specified by the SplashBitmap property.

Try it Out – Adding Other Dialogs

1. Add a Read Me, a License Agreement, and a Checkboxes (A) dialog to the Start sequence with the menu Action | Add
Dialog. Define the order in the start sequence by dragging and dropping in this way:

Welcome – Read Me – License Agreement – Checkboxes (A) - Installation Folder – Confirm Installation.

Important All customizable dialogs must be put before the Installation Folder dialog; otherwise you will get a
warning when building the installation package.

2. We have to configure the BannerBitmap property for all these dialogs as we did earlier. For the Read Me dialog,
set the ReadmeFile property to readme.rtf, the file we have added earlier to Application Folder\Setup.

3. For the License Agreement dialog set the LicenseFile property to license.rtf.

4. The Checkboxes (A) dialog should be used to ask the user if the file demo.wroxtext (that we have put into the
User's Desktop) should be installed or not. Change the properties of this dialog according to this table:

Property Values
BannerText Optional Files

BodyText Installation of optional files

Checkbox1Label Do you want a demo file put on to the desktop?

Checkbox1Property CHECKBOXDEMO

Checkbox2Visible False

Checkbox3Visible False

Checkbox4Visible False

The Checkbox1Property property is set to the same value as the Condition property of the file demo.
wroxtext – we set this Condition value earlier when we added the file to package using the File System Editor.
If the user checks this check box, the value of CHECKBOXDEMO will be true, and the file will be installed; if the
check box is not checked, the value will be false, and the file will not be installed.

The CheckboxXVisible property of the other check boxes is set to False, because we only need a single check
box.

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

Building the Project

Now you can start the build of the installer project.

Try it out - Build the Project

1. To create the Microsoft Installer Package, right-click on the SetupSimpleEditor project and select
Build. With a successful build you will find the following files in the Debug or Release directory
(depending on your build settings):

Setup.exe will start the installation of the MSI database file WroxSimpleEditor.msi. All files that we
have added to the installer project (with one exception) are merged and compressed into the MSI file
because we have set the project properties to Package Files in Setup File. The exception to this is the file
readme.txt. With this file we changed the PackageAs property so that it can be read immediately
before installation of the application. The Windows Installer itself is represented in the files InstMsiA.
exe and InstMsiW.exe; an ASCII version for Windows 98/ME and a Unicode version for Windows
NT4/2000/XP.

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

Installation

We can now start the installation of our Simple Editor application. You can double-click on the Setup.exe
file, or select the file WroxSimpleEditor.msi and right-click to open the context menu and choose the
Install option. You can also start the installation from within Visual Studio .NET by right-clicking on the opened
installation project in the Solution Explorer and selecting Install:

As you can see in the following screenshots, all the dialogs have the Wrox logo, and the inserted ReadMe and
License Agreement dialogs show up with the configured files.

Let's walk through the installation sequence.

Welcome

The first dialog to be seen is the Welcome dialog. Here in this dialog we can see the Wrox logo that was
inserted by setting the value of the BannerBitmap property. The text that can be seen is defined with the
WelcomeText and CopyrightWarning properties. The title of this dialog results in the ProductName
property that we have set with the project properties.

Read Me

After pressing the Next button we can see the Read Me dialog that we configured. It shows the rich text file
readme.rtf that was configured by setting the ReadmeFile property.

License Agreement

The third dialog to show up is the license agreement. Here we have only configured the BannerBitmap and
the LicenseFile properties. The radio buttons to agree to the license are added automatically. As you can
see in the picture below, the Next button stays disabled until the I agree button is pressed. This functionality is
automatic with this dialog.

Optional Files

Agreeing to the license information and pressing the Next button displays the Checkboxes (A) dialog. With this
dialog, we should have not only the bitmap, but also the text for the BannerText, BodyText, and
Checkbox1Label properties. All the other check boxes are not visible because the specific
CheckboxVisible property was set to False.

Selecting the check box will install the file demo.wroxtext to the desktop.

Select Installation Folder

With this dialog the user can select the path where the application should be installed. This dialog just allowed
us to set the property BannerBitmap. The default path shown is [Program Files]\[Manufacturer]
\[Product Name].

The user can also select if the application should be installed for everyone or just for the currently logged on
user. Depending on this option the shortcut to the program file will be put in the user specific or in the All
Users directory.

Disk Cost

Pressing the Disk Cost button opens up a dialog that is shown below where the disk space of all disks is
displayed, and the required space for every disk is calculated. This helps the user to choose a disk where the
application should be installed.

Confirm Installation

The next dialog is the last one before the installation finally starts. No more questions are asked, this is just
the last place where we can cancel the installation before it really starts.

Progress

The Progress dialog shows a progress control during installation to keep the user informed that the installation
is going on and to give a rough idea of how long the installation will last. Because our editor is a small
program, this dialog finishes very fast.

Installation Complete

With a successful installation we see the last dialog: Installation Complete.

Running the Application

The Editor can be started from the menu entry Start | Programs | Wrox Simple Editor as can be seen in the
following picture.

Because we registered a file extension there's another way to start the application: double-click on a file with
the file extension .wroxtext. If you selected the check box with the Optional Files dialog you can find demo.
wroxtext on your desktop, otherwise you can create such a file with the now installed Wrox Simple Editor
tool.

Self-Repair

So the Simple Editor is installed. Now let's assume a file gets corrupted. In order to do this exercise I'm
deleting the file C:\Program Files\Wrox Press\Simple Editor\SimpleEditor.exe. Now we could
select the context menu of the msi file and select the Repair menu. You can try a much cooler way instead:
double-click on a .wroxtext file, or start the editor with Start | Programs | Wrox Simple Editor. The repair is
automatically started, because a mandatory file is missing!

You will just see the dialog below when the repair takes place if the setup files can be found at the same place
where the installation was done.

If you installed the files from a CD, or the installation directory is not available anymore, another dialog pops
up to ask for the installation file:

Uninstall

If you really want to get rid of the Wrox Simple Editor you can use Add / Remove Programs from the Control
Panel and press the Remove button for the Simple Editor.

Chapter 17 - Deploying Windows
Applications
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we have covered the functionality of the Windows Installer and how to create Installer
packages using Visual Studio .NET. The Windows Installer makes it easy to do standardized installations,
uninstalls, and repairs.

The Visual Studio .NET Installer is restricted in functionality and doesn't propose all functionality of the
Windows Installer, but for many applications the features of the Visual Studio .NET Installer are more than
enough. We have a lot of Editors where the generated Windows Installer file can be configured. With the File
System Editor we specify all files and shortcuts, the Launch Conditions Editor can define some mandatory
prerequisites, the File Types Editor is used to register file extensions for applications, and the User Interface
Editor makes it easy to adapt the dialogs used for the installation.

When developing Windows Applications, the best way is to build a Windows Installer package, and with Visual
Studio .NET this can easily be done.

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Chapter 18: Getting At Your Data

Overview

Despite the title of this chapter, we've actually been manipulating data in C# since

The heart of any business application is data. Think of all the data any company holds describing employee
details, such as salary and job descriptions, customer details, and so on. Most of the programs you write will
access external data like this in some way, whether it's a simple data-entry application that allows personnel
staff to enter and edit employee details in their database, or a full-blown e-commerce web site that reads the
product catalog and customer details such as credit card numbers and shipping addresses from a back-end
database.

The .NET Framework provides a special set of objects within the System.Data namespace that provides us
with relatively easy access to all of this data. Collectively these objects are known as ADO.NET (the name
derives from an earlier data access technology called ActiveX Data Objects). We will look at ADO.NET in
detail in the next chapter, but in this chapter we'll look at how we can get Visual Studio.NET to do almost all of
the hard work for us. We'll use VS's powerful features to write a simple data-driven application. This will allow
us to look at the most important concepts for working with databases, without having to worry too much about
the code. For those of you that love to write pages upon pages of code to get even the simplest task done,
this chapter is not for you! For those of you that enjoy getting your job done well but quickly in order to have a
life, welcome!

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Data Access in VS

ADO.NET is a large enough topic to fill a book on its own, and while we will look at it in more detail in the next
chapter, we will cover enough of the basics here to get you up and running very quickly. ADO.NET builds on and
can make use of earlier data access technologies, so we'll start off by reviewing the situation before the arrival of .
NET.

A (Very) Brief History of Data Access

When the first database systems, such as Oracle and IBM's DB2, were written, any developers who wanted their
programs to access the data in them needed to use sets of functions that were specific to that database system.
Each system had its own library of functions, such as the Oracle Call Interface (OCI) for Oracle, or DBLib for
Sybase's SQL Server (later bought by Microsoft). This allowed the programs to have fast access to the data,
because their programs communicated directly with the database. However, it meant that programmers had to be
familiar with a different library for every database they worked with, so the task of writing data-driven applications
was very complicated. It also meant that if a company changed the database system they used, their applications
had to be completely rewritten.

This problem was solved by Open Database Connectivity (ODBC). ODBC was developed by Microsoft, in
collaboration with other companies, in the early 1990s. ODBC provided a common set of functions that developers
could use against any database system. These functions were translated into database-specific function calls by
drivers for that specific database system.

This solved the main problems of the proprietary database libraries - developers only needed to know how to use
one set of functions (the ODBC functions), and if a company changed their database system, all they needed to
change in their applications was the code to connect to the database. However, there was still one problem. While
the "paperless office" is still largely a myth, companies do have a vast amount of electronic data stored in a whole
variety of places - e-mails, web pages, Project 2000 files, and so on. ODBC was fine for accessing data in
traditional databases, but couldn't access other types of data, which aren't stored in nice neat columns and rows,
and don't necessarily have a coherent structure at all.

The answer to this problem was provided by OLE DB. OLE DB works in a similar way to ODBC, providing a layer of
abstraction between the database and applications that need access to the data. Client applications communicate
with the data source, which can be a traditional database or any other place where data is held, through an OLE DB
provider for that data source. Data from any source is exposed to the application in table format - just as if it came
from a database. And because OLE DB allowed access to data exposed by the existing ODBC drivers, it could be
used to access all the databases supported by ODBC. As we'll see shortly, ADO.NET supports both OLE DB and
ODBC in a very similar way.

The last "legacy" data access technology we'll mention is ActiveX Data Objects (ADO). ADO is simply a thin layer,
which sits on top of OLE DB, and allows programs written in high-level languages such as Visual Basic to access
OLE DB data.

An Introduction to ADO.NET

Although it derives its name from ADO, ADO.NET is actually a very different beast. In terms of its architecture, it's
actually more similar to OLE DB. ADO.NET consists of a set of objects in the System.Data namespace which

communicate with the database via .NET data providers. The ADO.NET objects allow us to connect to the
database, to retrieve, edit, delete and insert data in the database, and to manipulate the data within our program.

.NET Data Providers

There are two fundamental parts to ADO.NET - the DataSet and the .NET data provider. The DataSet is used to
hold a set of data within our program in table format; it doesn't care where that data actually comes from. The data
provider consists of a number of data source-specific components that allow us to connect to and communicate
with individual data sources. Each data provider resides in its own namespace within the System.Data
namespace. At the time of writing, there are three data providers available:

● The data provider for SQL Server. This resides in the System.Data.SqlClient namespace, and is used to
connect to SQL Server 7.0 or greater and MSDE databases (MSDE is a cut-down version of SQL Server). The
SQL Server provider is shipped as part of the .NET Framework. If you need to connect to a SQL Server 6.5 or
earlier database, you will need to use the OLE DB provider.

● The data provider for OLE DB. This is used to connect to data sources through OLE DB and resides in the
System.Data.OleDb namespace. Like the SQL Server provider, it also ships with the .NET Framework. The
OLE DB provider cannot be used to connect to databases through ODBC drivers.

● The data provider for ODBC. The ODBC provider can be used to connect to databases which have ODBC
drivers. The ODBC data provider namespace is Microsoft.Data.Odbc. It can be downloaded from
Microsoft's web site, at:

http://msdn.microsoft.com/downloads/default.asp?URL=/downloads/sample.asp?url=/MSDN-
FILES/027/001/668/msdncompositedoc.xml

Although at the moment we can only connect directly to SQL Server and MSDE databases, the number of data
providers available is expected to rise as more people move to .NET. In particular, a data provider for Oracle can't
be too far away. For the moment, though, if you want to connect to any other data source, you will need to go
through either OLE DB or ODBC.

The data providers consist of four main components:

Component
Name Description

Connection Used to connect to a database or other data source.

Command Used to retrieve, edit, delete, or insert data in the database.

DataReader Provides a stream of data from the data source. This data can only be read (it can't be
modified), and we can only move forwards through the data.

DataAdapter Used to fill a DataSet with data from the data source, and to update the data source
with any changes made in the DataSet.

However, when we use these objects, we don't actually refer to them by these names. Each of the providers has its
own implementation of these classes. The provider-specific classes implement the same interfaces, so they all
have the same methods and properties (although there's nothing to stop a specific class adding other methods and
properties of its own). For example, if we want to create a connection to a SQL Server database, then we use a
SqlConnection object, or if we want a connection to an ODBC data source, we use an OdbcConnection. Both
of these objects implement IDbConnection, so they both have the same set of methods and properties.

The DataSet

Once we've created a connection to the database and retrieved data from it, we can manipulate that data within our
program using a DataSet object. The DataSet contains a collection of DataTable objects, and any relations
between them. A DataTable - as its name suggests - stores data in a tabular format; that is, in columns and rows.

Because the DataSet doesn't form part of the data provider (there's only one type of DataSet object, regardless
of whether the data comes from SQL Server, or an OLE DB data source), the DataSet doesn't maintain a
connection to the data source. This means that when we manipulate data in a DataSet, we're just working with a
copy of the data in memory on the local machine. This eases the strain on the database server and on the network,
because we only connect to the data source when we first get the data, and when we've finished editing it and want
to upload our changes back to the database.

However, with the advantages of a disconnected architecture there also come problems. When in a completely
disconnected environment, the user is not notified of data changes made by other users. Therefore, if we use the
data we see on the screen to make decisions, we may have out-of-date information if other users are editing the
same data.

But for now, that's enough theory - we'll talk more about ADO.NET and the DataSet and its parts in the next
chapter.

Fire up Visual Studio .NET, create a new Windows application in the C:\BegVCSharp\Chapter18 directory,
name it GettingData, and let's connect to a database!

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Viewing Data in VS

First of all, though, we'll need a database to connect to! For this example, we'll connect to the SQL Server
Northwind database. However, don't worry if you haven't got SQL Server! The Microsoft Data Engine
(MSDE), which is shipped with both Visual Studio .NET and Visual C# Standard Edition, is nothing other than
a cut-down version of the SQL Server engine, and you can access that exactly as if you had the full version of
SQL Server installed. MSDE isn't installed by default, but if you haven't already got it on your system, there's a
step-by-step guide to installing it and importing the Northwind database in

Important If you are using Visual C# Standard Edition, then you will find that its Server Explorer allows
access only to MSDE or Access databases – you are not able to connect to a SQL Server
database.

Connecting to the Database

Once VS.NET is open, open up Server Explorer by hovering the mouse pointer over the tab on the right-hand
side of the screen (by default, the Server Explorer tab is just above the Toolbox tab). If Server Explorer isn't
visible, you can select it from View | Server Explorer. This window shows the services available on the local
machine, and also those on any other accessible machines. What interests us, though, is the top node in the
Server Explorer treeview, because this allows us to add data connections to our project:

Right-click on this Data Connections node, and select Add Connection... This will bring up the Data Link Properties
window:

By default, the connection provider assumes that we will be accessing a SQL Server database, so all the
settings displayed are for the OLE DB Provider for SQL Server. For this example, we will be accessing the
Northwind sample database in MSDE or SQL Server, so we want to leave these settings. However, if you
want to use another database system, you will need to move back to the Provider tab, and select the
appropriate provider for your database:

Clicking on the Provider tab will bring up a list of the providers installed on your system. However, we want to
use the default SQL Server provider, so just click on Next >>.

Important In this chapter, we are using SQL Server/MSDE and the Northwind sample database.
However, if you want to use another database, simply select the appropriate OLE DB provider
for your database system (for example, the Microsoft Jet provider to connect to an Access
database). Do not, however, confuse this with the .NET data providers. Data Link doesn't let us
choose a .NET data provider, so we have to use the data provider for OLE DB, even with SQL
Server. However, VS will recognize that it is connecting to a SQL Server database, and create a
SqlConnection object for us.

Clicking on the Next >> button brings us back to the Connection tab. Here we need to fill out all the information
VS needs to connect to our database. First of all, in the top text box, either type the name of the server where

SQL Server or MSDE is installed, or select the server name from the drop-down list.

Next, you need to specify the user account you want to use to connect to the database. If you select Use
Windows NT Integrated Security, VS will attempt to connect to the database with the same user account that
you used to log onto Windows. If you use a different username and password to connect to your SQL Server,
select the next option (Use a specific username and password), and enter them in the appropriate boxes. The
default user account installed with both MSDE and SQL Server has the username sa, and a blank password.

Finally, select the Northwind database from the Select the database on the server drop-down list. If you're using
MSDE and Northwind doesn't appear in the list, please see Appendix B for details on how to import the
database.

When you've finished entering this information, click on the Test Connection button. Hopefully, you will now see
a dialog box saying that the connection succeeded:

Congratulations, you have just successfully added your first ADO.NET database connection! You can now
see it nested under the Data Connections section of the Server Explorer:

The Database Diagrams feature is only available in the Visual Studio .NET Enterprise Architect

edition

We now have access to the database and all the data in it, without even leaving VS! Let's have a look at this
data, so we can see how it's structured. This will help us once we come to write code to access the data in the
next chapter.

Database Tables and Relationships

In Server Explorer, open up the Tables node underneath the connection we've just added. You should now see
a list of the tables in the database:

Relational databases such as SQL Server and Oracle store data within a series of related tables. These
tables consist of rows and columns; each row represents a record within the database, and the columns
represent the individual fields for each record. To see a visual representation of this, right-click on the
Customers node in Server Explorer, and select Retrieve Data from Table. VS will now load and display the data
from the Customers table in the Northwind database:

The Northwind sample database contains the data for a fictional food wholesaler that supplies various
restaurants and food shops. The Customers table contains the details of each of these customers. Each row
in this table represents a specific company that Northwind supplies, and each column contains a specific
piece of data about the company, such as the company's name, its address, and the name of Northwind's
contact in the company.

Each row in the table is distinguished by a unique five-character ID code, which is stored in the CustomerID
field. This distinguishing field is known as the primary key, and is vital for relating the Customers table to the
other tables in the database. To see how this works, right-click on the Orders node, and again select Retrieve
Data from Table:

This table represents the orders received by the Northwind company. Again, each row represents one order.
Notice that this table also has a CustomerID field with the same five-character ID codes as in the
Customers table. The values in this column serve as a pointer to the row in the Customers table where
more information about the customer can be found. This type of column is known as a foreign key.

Visual Studio .NET (not the Visual C# Standard Edition) provides us with a tool for creating diagrammatic
representations of these relationships between the primary and foreign keys in a database. To see this in
action, right-click on the Database Diagrams node for our Northwind connection in Server Explorer, and select
New Diagram. VS will now ask us which tables we want to add to the diagram:

Select all the tables in the list box, and click on Add. Then click on Close to get rid of the Add Table dialog.

VS will now create a diagram showing the tables and the relationships between them:

If you are using MSDE and imported the Northwind database using the Import and Export Data
wizard, the relationships won't show up in the diagram, as the wizard doesn't import primary and
foreign key information.

To view the entire diagram in one go, right-click on some blank space in the diagram and select Zoom | To Fit
from the pop-up menu. However, you might not be able to read all the column names! The relationships are
represented by lines between the tables, with symbols at both ends. A key symbol next to a table indicates
that a primary key in that table relates to a foreign key in the table at the other end of the line. Conversely, an
infinity sign indicates a foreign key that points to a primary key in the related table.

However, you didn't buy VS to use it as a front-end for your database, so let's see how we can use our
connection from our C# programs!

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Accessing the Database from an Application

Go back to the design view for the form in the GettingData project, add a TextBox and a Label, and
change the properties of these objects as follows:

Control Property Value
Form Text GettingData

TextBox Name txtCustID

 Text (blank)

Label Name lblCustID

 Text Customer ID

The finished result should look something like this:

Now let's add a database connection to the project. Open the Toolbox window, and select the Data section. In
this menu, we can see all the data-related controls that are available to us:

As you can see, there are separate DataAdapter, Connection, and Command objects for the SQL Server
and OLE DB data providers. The SQL Server objects are prefixed with Sql, while the OLE DB objects begin
with OleDb. In our case, as we are accessing a SQL Server database, we will be working with the SQL
Server provider. Double-click on the SqlDataAdapter; this will open the Data Adapter Configuration wizard.

The Data Adapter Configuration Wizard

After a splash screen, the wizard will first ask which connection we would like to use:

Since we only have one connection configured (the one we set up earlier to access the Northwind
database), this is the only one available in our list. If we had not built one yet, we could also select New
Connection... and add it here.

Click Next > to move on to the next screen, where the wizard asks us to choose how we want to select the
data to retrieve:

Select the Use SQL statements option for this example. This option allows us to use Structured Query Language
(SQL) commands to choose the data we want to retrieve. SQL (not to be confused with SQL Server) is a
special language used to communicate with relational databases, and we will look at this shortly.

Click on Next >; this takes us to a screen where we can type in the SQL statement we want to use to retrieve
the data. However, we don't have to write the SQL statement ourselves - we'll get VS to do it for us!

To get VS to build the SQL statement, click on the Query Builder... button:

We're now presented with a list of the tables in the Northwind database. In the Add Table window, select
Customers. Click on the Add button to add the Customers table to the Query Builder, and then click on Close.

We now have the chance to select individual columns from the Customers table:

Structured Query Language

At this point, we need to say a little bit about SQL. As we've said, SQL (variously pronounced either "Sequel"
or "ess-queue-ell", according to taste) is a language used for communicating with databases. SQL provides
commands for retrieving data from the database, for inserting and deleting data, and for changing data. We'll
have a look at the SQL language in more detail in the

SELECT statements take the form SELECT column1, column2, ... columnx FROM table; for example:

SELECT CompanyName, ContactName FROM Customers

This command will retrieve the value of the CompanyName and ContactName columns for every row in the
Customers table.

We can also limit the number of rows to be retrieved by adding a WHERE clause to the SELECT statement. The
WHERE clause allows us to specify a value for a specific column, and only rows with that value for that column
will be retrieved from the database. For example:
SELECT CompanyName FROM Customers WHERE Region = 'WA'

This query retrieves the company names within the Washington region.

We can also use an asterisk instead of a list of column names. This will select all the columns in the table. For
example:
SELECT * FROM Customers

This will select the entire Customers table.

Important Be careful when selecting the "*" option. While this option is available and tempting, almost any
database administrator or database programmer will advise against this. If you use *, all
columns in the table at the time of execution are retrieved, not just the ones available when you
built the project. If someone were to add fields to the table, your application would select them
as well as the ones you intended for use in your application. All this additional data being
transferred can have a significant performance impact on your application.

Generating the SQL Statement

Let's get back to the Query Builder in the Data Adapter Configuration wizard. For our example, we will select
three columns - CompanyName, ContactName, and CustomerID. Select these columns in the Customers box
in the Query Builder, and click on OK. The Query Builder will now create the SQL statement shown below for
us:

Click Next >, and the data adapter will now verify all settings and configure itself for further use within your
application. When complete, click Finish. You will now see two objects added below your form, a
SqlDataAdapter and a SqlConnection:

The data adapter contains the basic information for the data that we can expect to return from the database.
Think of the data adapter as the bridge between the DataSet and the database. The data adapter, which is
one of the components of the .NET data provider, is used to fill a DataSet with data from the database, and
to send changes made in the DataSet back to the database. The SqlConnection object contains all the
information that ADO.NET needs to connect to our database.

Now that we have a data adapter and a connection to the database, we will want to add a DataSet, so that
we can work with the data in our application. Right-click on the sqlDataAdapter1 we have just created and
select Generate Dataset... In the resulting dialog, we can specify whether we want to associate our data adapter
with an existing DataSet, or to create a new one:

In our case, we will create a new DataSet. As we do not have an existing DataSet in our project, New will
be selected by default. Change the name of the DataSet to be created to dsCustomers and click OK.

There is now a new DataSet object next to the connection and data adapter - notice that VS has rather
sneakily appended a 1 to the name of the DataSet - this is because dsCustomers1 is the first instance of
the dsCustomers DataSet. (VS also changes the first letter of the name to lower case if it isn't already, so
watch out for these changes!)

What you may not have noticed is the addition to the Solution Explorer. If you look, a new file has been added
to our project, named dsCustomers.xsd:

This file is the schema for our DataSet. The XSD (XML Schema Definition) schema is a document by which
we can verify the structure of an XML document. XML is a text format used to represent data, which has
become particularly important with the growth of the Internet. We will look at XML and at XSD schemas in the
last section of this chapter. The schema is an important tool for ADO.NET because a DataSet object uses
XML under the covers to organize and structure data. Automatically generated by Visual Studio, the schema
file specifies the structure of the DataSet, each table, and all relationships between tables.

With our DataSet created, we can now bind the TextBox on the form to the data from the database. Click
on the txtCustID TextBox, and scroll down the properties for the text box until you come to the
DataBindings subsection. If you click on the Text section under DataBindings, you will notice a combo box
containing dsCustomers1 - clicking on this will reveal the tables it contains, and clicking on one of these
tables will reveal its columns. By selecting any column within that combo box, you will be binding that column
to the text box. This simply means that, as the DataSet is scrolled through, the value of that column will be
visible in the text box. Any changes made by the user in the text box will also be made in the DataSet.
However, because the DataSet doesn't maintain a permanent connection to the data source, the data source

itself won't be updated until we specifically request this.

In this case, we want to bind the text box to the CustomerID column, so select CustomerID from the combo
box:

If you now save and run your project, you will see a blank text box. Why is that? Shouldn't the data we have
labored over for the last few pages be ready at our disposal? The short answer is no. Bear in mind that so far
we have only been defining the structure we can expect for the data coming from the table. At no point did we
request any actual data. To retrieve some data, we will need to add some code to the example. (In fact, this
will be one of only a handful of lines of code that we use in this chapter.)

We need to tell the data adapter to fill the DataSet. Double-click on the background of the form to go to the
handler for the Load event of the form, and add the following code:

private void frmMain_Load(object sender, System.EventArgs e)
{
 // Fill the dataset with the data in the Northwind database,
 // Customers table
 this.sqlDataAdapter1.Fill(this.dsCustomers1,0,0,"Customers");
}

This line executes the Fill() method of the data adapter. The Fill() method fills a DataTable within the
DataSet with data from the data source. The method used here takes four parameters (but note that the
Fill() method has many overloads).

● The first parameter specifies the DataSet we want to fill, in this case our dsCustomers1 DataSet.

● The second parameter specifies that it should start at the first record. (This parameter is zero-based.)

● The third parameter indicates how many records we want to be returned. If we place a zero here, all
records will be returned.

● The fourth parameter specifies the name of the table the data originates from.

Now, save and run the application again. You should now see the first record's CustomerID value:

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Seeing the Whole Picture

Seeing the first value is all well and good, but not very useful. I'm sure users would like to see the customer
and contact names that correspond to the IDs as well, so let's add some more text boxes to this form:

Control Property Value
Label Name lblCustName

 Text Customer Name

TextBox Name txtCustName

 Text (blank)

 DataBindings/Text dsCustomers1 – Customers.
CompanyName

Label Name lblContactName

 Text Contact Name

TextBox Name txtContactName

 Text (blank)

 DataBindings/Text dsCustomers1 – Customers.
ContactName

The DataBindings properties for the two new text boxes are set in exactly the same way as our
original txtCustID TextBox – just select the appropriate column from the combo box next to
the Text subsection underneath the DataBindings property of the TextBox.

Your form should now look something like this:

If you now run the application, you should see the additional information from the database. At this point you
can add as many, or as few, fields as you want. In our case, we only included three columns from the table in
our data adapter. If we wanted to display more, we could do so by right-clicking on the data adapter, and
selecting the Configure Data Adapter... option. This brings up the same Configure Data Adapter wizard that we
used earlier, and allows us to modify the number of columns we want to retrieve from the data source.

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Navigating through the DataSet

So now we have the first record displayed, but the user wants to see the next record. I bet once they see that
second they'll want to see the third. I swear, there's no appeasing them!

All joking aside, navigating through a DataSet is very important. Because every aspect of .NET is object-
based, the DataSet is also an object with tables, columns, and rows as collections. As such, navigating
through these objects is much like navigating through any collection - you increment a counter representing
the current position in the collection.

Add the following objects to the form:

Control Property Value
Button Name cmdBack

 Text Back

Button Name cmdNext

 Text Next

Double-click on the cmdNext button and add the following code to the Click event handler:

private void cmdNext_Click(object sender, System.EventArgs e)
{
 // Move to the next record in the DataSet, Customers table
 this.BindingContext[this.dsCustomers1,"Customers"].Position++;
}

This code uses the BindingContext of the form to change the current position. All Windows forms can have
a BindingContext object, which manages the data-bound controls on the form. By incrementing the
Position property returned from the BindingContext for the Customers table of our DataSet, we move
to the next record in the table, and display new data in all the text boxes.

We can move backwards through the data in the same way. Type the following in the cmdBack click event:

private void cmdBack_Click(object sender, System.EventArgs e)
{
 // Move to the previous record in the dataset, customer table
 this.BindingContext[this.dsCustomers1,"Customers"].Position--;
}

Now when you execute the application, you are able to move backwards and forwards through the DataSet
by clicking on the Back and Next buttons, and the text boxes are updated accordingly.

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Adding Lists

It is just as easy to bind a ListBox to a DataSet as it is to bind a TextBox. Add the following object to the
form:

Control Property Value
ListBox Name lstCustID

 DataSource dsCustomers1.Customers

 DisplayMember CustomerID

Seeing as how we will be using this list box for the CustomerIDs, go ahead and remove the Customer ID text
box. Your form should look something like this:

Now save and run the application.

You now have a list box that lists all the CustomerIDs in the DataSet. However, did you notice that
selecting the items in the list box did not move the pointer in the BindingContext and therefore did not
change the data in the text boxes? Working around this problem may sound daunting at first, but it is a good
exercise in object-oriented problem solving.

Let's start with what we know. We know that the user can only select one item from the list box. We also know
that object collections have indexes - numeric indexes. Each item in the list box is represented by an object,
with the list box as a container, and each object has a corresponding index number. If the list box is populated
in the same order as the records in the DataSet table, then we know that the index number for each record
will match the index numbers for the list box items. We also know that to move the pointer in a DataSet, we
need to specify the new position. Therefore, if we can pass the index for the selected list box item to the
DataSet, we will be able to move the pointer and have that record displayed in the text boxes.

Happily, this does work, and (conveniently) the first event handler we get access to when we double-click on
the list box while in design mode is for the SelectedIndexChanged event. This is the event that is raised
when an item is selected. Double-click on the list box and add this code to the event handler:
private void lstCustID_SelectedIndexChanged(object sender,System.EventArgs e)

{
 // Pass the new index number to the bindingcontext
 this.BindingContext[this.dsCustomers1,"Customers"].Position =
 this.lstCustID.SelectedIndex;
}

Again, we set the Position property using the BindingContext object. This time, however, rather than
specifying that we are incrementing or decrementing the current index number, we simply pass the index of
the item selected in the list box.

This still leaves us with two more changes to make. The command buttons don't change the item selected in
the list box. Although the pointer in the DataSet is moved, the list box does not reflect this move. In the same
way that we moved the position in the DataSet, we can change the index of the selected item in the list box.
Modify the click event of the cmdNext button as follows:

private void cmdNext_Click(object sender, System.EventArgs e)
{
 // Move to the next record in the DataSet, Customers table
 this.BindingContext[this.dsCustomers1,"Customers"].Position++;

 // Synchronize the pointers of the ListBox and DataSet
 this.lstCustID.SelectedIndex =
 this.BindingContext[this.dsCustomers1,"Customers"].Position;
}

The line we've just added sets the index of the selected item in the list box to the new position in the
DataSet. In other words, we select the list box item that corresponds to the current record in the DataSet.
We can make exactly the same change for the cmdBack button:

private void cmdBack_Click(object sender, System.EventArgs e)
{
 // Move to the previous record in the dataset, Customers table
 this.BindingContext[this.dsCustomers1,"Customers"].Position--;

 // Synchronize the pointers of the listbox and DataSet
 this.lstCustID.SelectedIndex =
 this.BindingContext[this.dsCustomers1,"Customers"].Position;
}

Now that we have fixed the user interface, run the project and give it a shot:

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Adding a DataGrid

There is, however, one last thing we can add. Although not typically added to a form that is as complete as
ours, the DataGrid is a fast and convenient object that can be added to Windows forms to display data and
even provide a user interface for changes.

Add the following DataGrid to the form:

Control Property Value
DataGrid Name dgCustomers

 DataSource dsCustomers1.Customers

Your form should now look something like this:

The only additional change we need to make to implement data binding with a DataGrid is to set its
DataSource property – in this case to point to dsCustomers1.Customers. For this example, no other properties
need to be modified. Of course, if you're using a DataGrid without any other bound controls, you'll still need
to configure the connection and DataSet as we did earlier in the chapter, and you'll also need to populate the
DataSet by calling the Fill() method of the relevant data adapter.

Save and run the application. Your DataGrid should be populated with the entire table contents.

Formatting the DataGrid

You can even change the appearance of the DataGrid to make your application look more polished. The
easiest way to do this is simply to apply one of the many templates built into the object. For example, if you do
not like the basic blue and gray, you can modify the template; begin by right-clicking on the DataGrid and
selecting Auto Format:

Within the Auto Format dialog, you can select any of the predefined templates to spruce up your DataGrid.
However, if you'd prefer to alter the look manually, for example if you have a corporate color scheme you
would like to match, you can adjust all the properties for the background colors or font styles.

For example, let's change the caption background color from blue to red. Scroll through the properties for the
DataGrid until you find CaptionBackColor. If you click on the current value, you will see a list with three
tabs: Custom, Web, and System:

The System has predefined colors, supplied by Windows. For example, if you select the color Desktop from
System, this color will change if the user alters the color of his desktop. This can sometimes cause unexpected
side effects, such as poor legibility. Therefore, be careful when you alter these values. For now, we'll select
the DarkOrchid color on the Web tab. The color across the top of the grid will turn to this interesting shade of
purple.

Updating the Database

So far, we can read the data from the database, and we can change it in the text boxes and the DataGrid,
but that's not much use if we can't save the changes we make to the database itself. Therefore, we will quickly
see how to update the data in the database with the data in our DataSet. For this portion, we will use a little
bit of code, instead of using the wizards. Add a button to the form named cmdUpdate, and set its Text to
Update, so your form looks something like this:

Now add the following code to the cmdUpdate_Click event:

private void cmdUpdate_Click(object sender, System.EventArgs e)
{
 // Pass the DataSet back to the database
 int rowsUpdated = this.sqlDataAdapter1.Update(this.dsCustomers1.Customers);
 MessageBox.Show(rowsUpdated.ToString() +
 ((rowsUpdated==1) ? " row" : " rows") + " updated.");
}

Any changes made to the DataSet will be passed back to the database when our button is pressed with the
Update() method. This method and its use for updating databases will be covered more in depth in the
Chapter 4 to ensure that our report is grammatically correct – if only one row is returned, (rowsUpdated==1)
" row" is displayed, otherwise " rows" is displayed.

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

XML

So far we've been concentrating solely on relational databases, but before we leave this chapter, we must say
something about one other data format – Extensible Markup Language (XML). XML is a way of storing data
in a simple text format, which means that it can be read by pretty well any computer. As we shall see in some
of the later chapters about web programming, this makes it a perfect format for transferring data over the
Internet. It's even not too difficult for humans to read!

The ins and outs of XML can be very complicated, so we won't look at every single detail here. However, the
basic format is very simple, and most of the time you won't require a detailed knowledge of XML, as VS will
normally take care of most of the work for you – you will rarely have to write an XML document by hand.
Having said that, XML is hugely important in the .NET world, as it's used as the default format for transferring
data, so it's vital to understand the basics.

If you need a fuller understanding of XML, please check out "Beginning XML 2nd Edition", (Wrox
Press, ISBN 1-86100-559-8).

XML Documents

A complete set of data in XML is known as an XML document. An XML document could be a physical file on
your computer, or just a string in memory. However, it has to be complete in itself, and must obey certain rules
(we'll see what these are shortly). An XML document is made up of a number of different parts. The most
important of these are XML elements, which contain the actual data of the document.

XML Elements

XML elements consist of an opening tag (the name of the element enclosed in angled brackets, such as
<myElement>), the data within the element, and a closing tag (the same as the opening tag, but with a
forward slash after the opening bracket: </myElement>).

For example, we might define an element to hold the title of a book like this:
<book>Tristram Shandy</book>

If you already know some HTML, you might be thinking that this looks very similar – and you'd be right! In fact,
HTML and XML share much of the same syntax. The big difference is that XML doesn't have any predefined
elements – we choose the names of our own elements, so there's no limit to the number of elements we can
have. The most important point to remember is that XML – despite its name – isn't actually a language at all.
Rather, it's a standard for defining languages (known as XML applications). Each of these languages has its
own distinct vocabulary – a specific set of elements that can be used in the document and the structure these
elements are allowed to take. As we'll see shortly, we can explicitly limit the elements allowed in our XML
document. Alternatively, we can allow any elements, and allow the program using the document to work out
for itself what the structure is.

Element names are case-sensitive, so <book> and <Book> are counted as different elements. This means

that if you attempt to close a <book> element using a closing tag that doesn't have identical casing (for
example, </BOOK>), your XML document won't be legal. Programs that read XML documents and analyze
them into their individual elements are known as XML parsers, and they will reject any document which
contains illegal XML.

Elements can also contain other elements, so we could modify this <book> element to include the author as
well as the title by adding two sub-elements:
<book>
 <title>Tristram Shandy</title>
 <author>Lawrence Sterne</author>
</book>

However, overlapping elements aren't allowed, so we must close all sub-elements before the closing tag of
the parent element. This means, for example, that we can't do this:
<book>
 <title>Tristram Shandy
 <author>Lawrence Sterne
 </title></author>
</book>

This is illegal, because the <author> element is opened within the <title> element, but the closing </
title> tag comes before the closing </author> tag.

There's one exception to the rule that all elements must have a closing element. It's possible to have "empty"
elements, with no nested data or text. In this case, we can simply add the closing tag straight after the
opening element, as above, or we can use a shorthand syntax, adding the slash of the closing element to the
end of the opening element:
<book />

This is identical to the full syntax:
<book></book>

Attributes

As well as storing data within the body of the element, we can also store data within attributes, which are
added within the opening tag of an element. Attributes are in the form:
name="value"

where the value of the attribute must be enclosed in either single or double quotes. For example:
<book title="Tristram Shandy"></book>

or:
<book title='Tristram Shandy'></book>

These are both legal, but this is not:
<book title=Tristram Shandy></book>

At this point, you may be wondering why we need both these ways of storing data in XML. What's the
difference between:
<book>
 <title>Tristram Shandy</title>

</book>

And:
<book title="Tristram Shandy"></book>

The honest answer is that there isn't any earth-shatteringly fundamental difference between the two. There
isn't really any big advantage in using either. Elements are a better choice if there's a possibility that you'll
need to add more information about that piece of data later – you can always add a sub-element or an
attribute to an element, but you can't do that for attributes. Arguably, elements are more readable and more
elegant (but that's really a matter of personal taste). On the other hand, attributes consume less bandwidth if
the document is sent over a network without compression (with compression there's not much difference), and
are convenient for holding information which isn't essential to every user of the document. Probably the best
advice is to use both, using whichever you're most comfortable with storing a particular item of data in. But
there really are no hard and fast rules.

The XML Declaration

Besides elements and attributes, XML documents can contain a number of constituent parts (the individual
parts of an XML document are known as nodes – so elements, the text within elements, and attributes are all
nodes of the XML document). Many of these are only important if you really want to delve deeply into XML.
However, there's one type of node that occurs in almost every XML document. This is the XML Declaration,
and, if we include it, it must occur as the first node of the document.

The XML declaration is similar in format to an element, but has question marks inside the angled brackets. It
always has the name xml, and it always has an attribute named version; currently, the only possible value
for this is "1.0". The simplest possible form of the XML declaration is therefore like this:

<?xml version="1.0"?>

Optionally, it can also contain the attributes encoding (with a value indicating the character set that should
be used to read the document, such as "UTF-16" to indicate that the document uses the 16-bit Unicode
character set) and standalone (with the value "yes" or "no" to indicate whether or not the XML document
depends on any other files). However, these attributes are not required, and you will probably normally include
only the version attribute in your own XML files.

Structure of an XML Document

One of the most important things about XML is that it offers a way of structuring data that is very different to
relational databases. As we've seen, most modern database systems store data in tables that are related to
each other through values in individual columns. Each table stores data in rows and columns – each row
represents a single record, and each column a particular item of data about that record. In contrast, XML data
is structured hierarchically, a little like the folders and files in Windows Explorer. Each document must have a
single root element, within which all elements and text data is contained. If there is more than one element at
the top level of the document, the document will not be legal XML. However, we can include other XML nodes
at the top level – notably the XML declaration. So this is a legal XML document:
<?xml version="1.0"?>
<books>
 <book>Tristram Shandy</book>
 <book>Moby Dick</book>
 <book>Ulysses</book>
</books>

But this isn't:

<?xml version="1.0"?>
<book>Tristram Shandy</book>
<book>Moby Dick</book>
<book>Ulysses</book>

Under this root element, we have a great deal of flexibility about how we structure the data. Unlike relational
data, in which every row has the same number of columns, there's no restriction on the number of sub-
elements an element can have. And, although XML documents are often structured in a similar way to
relational data, with an element for each record, XML documents don't actually have to have any predefined
structure at all. This makes XML far better suited than relational databases to store irregular data. For
example, XML can be used to mark up a text document. The web markup language, HTML, although not
strictly an XML application, is very closely related.

XML Namespaces

Just as everyone can define their own C# classes, everyone can define their own XML elements; and this
gives rise to exactly the same problem – how do we know which elements belong to which vocabulary? If you
noticed the title of this section, you will already have realized that this question is answered in a similar way.
Just as we define namespaces to organize our C# types, we use XML namespaces to define our XML
vocabularies. This allows us to include elements from a number of different vocabularies within a single XML
document, without the risk of misinterpreting elements because (for example) two different vocabularies
define a <customer> element.

XML namespaces can be quite complex, so we won't go into great detail here, but the basic syntax is simple.
We associate specific elements or attributes with a specific namespace using a prefix, followed by a colon.
For example, <wrox:book> represents a <book> element that resides in the wrox namespace. But how do
we know what namespace wrox represents? For this approach to work, we need to be able to guarantee that
every namespace is unique. The easiest way to do this is to map the prefixes to something that's already
known to be unique. And this is exactly what happens: somewhere in our XML document we need to
associate any namespace prefixes we use with a Uniform Resource Identifier (URI). URIs come in several
flavors, but the most common type is simply a web address, such as "http://www.wrox.com".

To identify a prefix with a specific namespace, we use the xmlns:<prefix> attribute within an element,
setting its value to the unique URI which identifies that namespace. The prefix can then be used anywhere
within that element, including any nested child elements. For example:
<?xml version="1.0"?>
<books>
 <book xmlns:wrox="http://www.wrox.com">
 <wrox:title>Beginning C#</wrox:title>
 <wrox:author>Karli Watson</wrox:author>
 </book>
</books>

Here we can use the wrox: prefix with the <title> and <author> elements, because they are within the
<book> element, where the prefix is defined. However, if we tried to add this prefix to the <books> element,
the XML would be illegal, as the prefix isn't defined for this element.

We can also define a default namespace for an element using the xmlns attribute:

<?xml version="1.0"?>
<books>
 <book xmlns="http://www.wrox.com">
 <title>Beginning Visual C#</title>

http://www.wrox.com/

 <author>Karli Watson</author>
 <html:img src="begvcsharp.gif"
 xmlns:html="http://www.w3.org/1999/xhtml" />
 </book>
</books>

Here, we define the default namespace for our <book> element as "http://www.wrox.com". Everything
within this element will therefore belong to this namespace, unless we explicitly request otherwise by adding a
different namespace prefix, as we do for the element (we set it to the namespace used by XML-
compatible HTML documents).

Well-formed and Valid XML

We've been talking up till now about "legal" XML. In fact, XML distinguishes between two forms of "legality".
Documents that obey all the rules required by the XML standard itself are said to be well-formed. If an XML
document is not well-formed, parsers will be unable to interpret it correctly, and will reject the document. In
order to be well-formed, a document must:

● Have one and only one root element

● Have closing tags for every element (except for the shorthand syntax mentioned above)

● Not have any overlapping elements – all child elements must be fully nested within the parent

● Have all attributes enclosed in quotes

This isn't a complete list, by any means, but it does highlight the most common pitfalls made by programmers
who are new to XML.

However, XML documents can obey all these rules, and still not be valid. Remember that we said earlier that
XML is not itself a language, but a standard for defining XML applications. Well-formed XML documents
simply comply with the XML standard; in order to be valid, they also need to conform to any rules specified for
the XML application. Not all parsers check whether documents are valid; those that do are said to be
validating parsers. But in order to check whether a document adheres to the rules of the application, we first
need a way of specifying what those are.

Validating XML Documents

XML supports two ways of defining which elements and attributes can be placed in a document and in what
order – Document Type Definitions and Schemas. DTDs use a non-XML syntax inherited from the parent of
XML, and are gradually being replaced by schemas. DTDs don't allow us to specify the data types of our
elements and attributes, and so are relatively inflexible and not used that much in the context of the .NET
Framework. Schemas, on the other hand, are – they do allow us to specify data types, and are written in an
XML-compatible syntax. However, unfortunately schemas are very complex, and there are different formats
for defining them – even within the .NET world!

Schemas

There are two separate formats for schemas supported by .NET – XML Schema Definition language (XSD),
and XML-Data Reduced schemas (XDR). Schemas can be either included within our XML document, or kept
in a separate file. These formats are mutually incompatible, and you really need to be very familiar with XML
before you attempt to write one, so we won't go into great detail here. It is, however, useful to be able to
recognize the main elements in a schema, so we will explain the basic principles. To do this, we'll look at
sample XSD and XDR schemas for this simple XML document, which contains basic details about a couple of

http://www.wrox.com/

Wrox's C# books:
<?xml version="1.0"?>
<books>
 <book>
 <title>Beginning Visual C#</title>
 <author>Karli Watson</author>
 <code>7582</code>
 </book>
 <book>
 <title>Professional C# 2nd Edition</title>
 <author>Simon Robinson</author>
 <code>7043</code>
 </book>
</books>

XSD Schemas

Elements in XSD schemas must belong to the namespace "http://www.w3.org/2001/XMLSchema". If
this namespace isn't included, the schema elements won't be recognized.

In order to associate our XML document with an XSD schema in another file, we need to add a
schemalocation element to the root element:

<?xml version="1.0"?>
<books schemalocation="file://C:\BegVCSharp\XML\books.xsd">
 ...
</books>

Let's have a quick look at an example XSD schema:
<schema xmlns="http://www.w3.org/2001/XMLSchema">
 <element name="books">
 <complexType>
 <choice maxOccurs="unbounded">
 <element name="book">
 <complexType>
 <sequence>
 <element name="title" />
 <element name="author" />
 <element name="code" />
 </sequence>
 </complexType>
 </element>
 </choice>
 <attribute name="schemalocation" />
 </complexType>
 </element>
</schema>

The first thing to notice here is that we set the default namespace to the XSD namespace. This tells the
parser that all the elements in the document belong to the schema. If we don't specify this namespace, the
parser will think that the elements are just normal XML elements, and won't realize it needs to use them for
validation.

The entire schema is contained within an element called <schema> (with a lower-case "s" – remember that

http://www.w3.org/2001/XMLSchema

case is important!). Each element which can occur within the document must be represented by an
<element> element. This element has a name attribute which indicates the name of the element. If the
element is to contain nested child elements, we must include the <element> tags for these within a
<complexType> element. Inside this, we specify how the child elements must occur. For example, we use a
<choice> element to specify that any selection of the child elements can occur, or <sequence> to specify
that the child elements must appear in the same order as they are listed in the schema. If an element may
appear more than once (as our <book> element does), we need to include a maxOccurs attribute within its
parent element. Setting this to "unbounded" means that the element can occur as often as we like. Finally,
any attributes must be represented by <attribute> elements, including our schemalocation attribute that
tells the parser where to find the schema. We place this after the end of the list of child elements.

XDR Schemas

To attach an external XDR schema to an XML document, we specify a namespace for the document with the
value "x-schema:<schema_filename>":

<?xml version="1.0"?>
<books xmlns="x-schema:books.xdr">
 ...
</books>

The schema below is the XDR equivalent of the XSD schema we've just looked at. As you can see, it is very
different:
<Schema xmlns="urn:schemas-microsoft-com:xml-data">
 <ElementType name="title" content="textOnly" />
 <ElementType name="author" content="textOnly" />
 <ElementType name="code" content="textOnly" />
 <ElementType name="book" content="eltOnly">
 <group order="seq">
 <element type="title" />
 <element type="author" />
 <element type="code" />
 </group>
 </ElementType>
 <ElementType name="books" content="eltOnly">
 <element type="book" />
 </ElementType>
</Schema>

Again we set the default namespace to tell the parser that all the elements in the document belong to the
schema definition, this time to "urn:schemas-microsoft-com:xml-data". Notice that (unlike XSD
schemas) this is a proprietary format, so won't work at all with non-Microsoft products. In fact, XDR schemas
are particularly useful when working with SQL Server, Microsoft's database server, as this has in-built support
for XDR.

This time our root element is <Schema> with a capital "S". This root element again contains the entire schema
definition (remember that XML documents must have a single root element). After this, though, there's a big
difference – the elements that will appear in our document are defined in reverse order! The reason for this is
that each element in the document is represented in the schema by an <ElementType> element, and this
contains an <element> element (note the lower-case "e" here) for each child element. Within the
<element> tags, we set the type attribute to point to an <ElementType> element – and this must already
have been defined. If we want to restrict how child elements can appear, we can use a <group> element
within the <ElementType>, and set its order attribute. In the case, we set it to "seq", to specify that the

elements occur in the same sequence as in the schema – just like the <sequence> tag in the XSD schema!

Try it Out – Creating an XML Document in VS

Now we've covered the basic theory behind XML, we can have a go at creating XML documents. Fortunately,
VS does a lot of the hard work for us, and will even create an XSD schema based on our XML document,
without us having to write a single line of code!

1. Open up VS and select File | New | File... from the menu (you don't need to have a project already open):

2. In the New File menu, select XML File and click on Open. VS will create a new XML document for us.
Notice how VS adds the XML declaration, complete with an encoding attribute (it also colors the
attributes and elements, but this won't show up well in black and white print):

3. Save the file by pressing Ctrl + S or by selecting File | Save XMLFile1 from the menu. VS will ask you
where to save the file and what to call the file; save it in the BegCSharp\Chapter18 folder as
GhostStories.xml.

4. Move the cursor to the line underneath the XML declaration and type the text <stories>. Notice how VS
automatically puts the end tag in as soon as we type the greater than sign to close the opening tag:

5. Type in this XML file:
<?xml version="1.0" encoding="utf-8" ?>
<stories>
 <story>
 <title>A House in Aungier Street</title>
 <author>
 <name>Sheridan Le Fanu</name>
 <nationality>Irish</nationality>
 </author>
 <rating>eerie</rating>
 </story>
 <story>
 <title>The Signalman</title>

 <author>
 <name>Charles Dickens</name>
 <nationality>English</nationality>
 </author>
 <rating>atmospheric</rating>
 </story>
 <story>
 <title>The Turn of the Screw</title>
 <author>
 <name>Henry James</name>
 <nationality>American</nationality>
 </author>
 <rating>a bit dull</rating>
 </story>
</stories>

6. Right-click on the XML in the code window and select View Data from the pop-up menu. This gets VS to
display the data from the XML file in a tabular format, as though it came from a relational database:

7. We can actually edit the data in this table, so we can modify our XML document here without even
having to type the tags. Click on the box for the title column in the empty row at the bottom of the grid,
and type Number 13. Now move to the rating box beside it, and type mysterious. This enters a new story,
but we still need to enter the author. To do this, click on the plus sign next to the new row. This will bring
up a link for the <author> element:

8. Click on this link, and another table will be displayed, where we can enter the name and nationality of
the author. Enter MR James and English in the two columns (make sure you press Enter after typing the
nationality, or the data will be lost):

9. Now right-click on the table and select XML Source. A new <story> element should have been added
just before the closing </stories> tag:

<story>
 <title>Number 13</title>
 <rating>mysterious</rating>
 <author>
 <name>MR James</name>
 <nationality>English</nationality>
 </author>
</story>

10. As its final party trick, we'll get VS to create an XSD schema for this XML document. Right-click in the
code window and select Create Schema. VS will create an XSD schema, but it also creates a diagram to
represent the schema visually:

11. To view the actual schema, right-click on the diagram and select View XML Source.

XML Auto-documentation in C#

So far, we've really only been looking at XML in a very abstract way, and you might be wondering, "But what's
that got to do with C#? What can XML do for me?" We'll see a few more practical uses of XML throughout the
remaining chapters of this book, but there's one use of XML that's very specifically to do with C#, and that we
hinted at way back in

VS automatically puts a few of these special comments in our code, so you've probably noticed them already.
They start with three forward slashes (///), rather than the usual two. For example, VS adds these lines
before the definition for the Class1 class that VS automatically adds to our project when we create a
Windows or console application:
/// <summary>
/// Summary description for Class1.
/// </summary>

Hopefully, you'll instantly recognize <Chapter 4.

Try it Out – Documenting a Class

1. Open up the Ch04Ex06 project from

2. Let's start by adding something a bit more useful to the <summary> element
that VS has created for us for Class1. Change the text between the tags as
follows (making sure you don't delete the three slashes at the start of the
line):

 /// <summary>
 /// This class generates Mandelbrot sets in the console window!
 /// </summary>

3. Next, let's add some documentation for the Main() method. Add a blank line
before the start of the method definition, and type three slashes on it. See
what happens next!

VS adds the XML tags for a <summary> element (the same as for Class1), but it
also looks at the following line, realizes it's a method definition, and
examines its parameters. It then creates a <param> element for each one
(there's just the one parameter here – a string array called args, which we
can use to read in data from the command line when a console application is
executed). The name of the parameter is stored in a name attribute.

4. Add some descriptive text to the <summary> and <param> elements:

 /// <summary>
 /// This is the Main() method for Class1 -
 /// this is where we call the Mandelbrot generator!
 /// </summary>
 /// <param name="args">
 /// The args parameter is used to read in
 /// arguments passed from the console window
 /// </param>

(Incidentally, notice how VS knows you're in the middle of an autodoc
comment, and when you reach the edge of the screen and press Enter, it
automatically adds the three slashes on the new line!)

5. Now let's turn these comments into documentation! From the menu, select Tools |
Build Comment Web Pages...:

If our VS solution contains more than one project, we can choose here whether
to build the documentation for the entire solution, or just for particular
projects. We only have one project in our solution, so leave Build for entire Solution
selected. We can also select the directory where we want to save the
generated web pages.

6. Click on OK to get VS to generate the web pages. Internet Explorer is
integrated into VS, so when we click OK, VS will automatically display the
main page for the solution documentation:

7. Click on the Ch04Ex06 link to open up the documentation for our project (the
only one in the solution):

8. Open up the documentation for the Class1 class by clicking on the plus sign
next to the Ch04Ex06 link, and then clicking on the Class1 link that appears
underneath it:

This is where we get to see the actual pages generated from our comments! The
page for our documented class has the summary description we typed in and a
list of the members of the class, together with their summaries. It also
gives some information that VS worked out for itself – the full name of the
class, including the namespace, the access level of the class, and the class
from which it is derived.

9. Finally, click on the Main link to view the documentation for the Main()
method. This page shows our description of the method and its parameter, and
the full signature for the method:

Unfortunately this isn't quite as nicely formatted, as the table for the args
parameter is a bit scrunched up!

Chapter 18 - Getting At Your Data
byKarli Watsonet al.

Wrox Press 2003

Summary

Visual Studio.NET provides us with a whole range of tools for quickly creating applications that connect to
databases, requiring only a small amount of code to be written by hand. Throughout this chapter, we have
looked at several mechanisms for displaying data. From the basic TextBox, to the more advanced
DataGrid, they all rely on the power and flexibility of ADO.NET and the BindingContext object inherent to
all Windows forms.

In this chapter, we looked at how we could use these tools to connect to a data source, and to create a data-
driven application with only a handful of lines of code. However, automatically generated code is never quite
as efficient as hand-written code, so in the next chapter we'll see how we can build on what we've learned
here, and go on to write our own ADO.NET code.

In the next chapter, we'll see how XML and ADO.NET are inextricably linked.

Exercises
1. Modify our first example by adding the column ContactTitle to sqlDataAdapter1.

2. Add a text box to the form that will display the ContactTitle information.

3. Create a new application that displays data from the Products table of the Northwind database.

4. Modify the code for the Navigating through the DataSet example to scroll back to the beginning of the
DataSet when the Next button is pressed on the last record, and to scroll to the end of the DataSet
when the Back button is pressed on the first record.

5. Create a set of XML auto-documentation web pages for the final version of the GettingData
application.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Chapter 19: Data Access with ADO.NET

Overview

In the

In this chapter we'll look at how you accomplish this same data access with C# code written directly by the
programmer, as opposed to the wizard-generated code used in the previous chapter. We will use the ADO.
NET data access classes to accomplish this. In particular, we will look at:

● An overview of ADO.NET, and the structure of its main classes

● Reading data with a data reader and with a DataSet

● Updating the database, adding records and deleting records

● Working with relationships in ADO.NET

● Reading and writing XML documents in ADO.NET

● Direct execution of SQL commands from ADO.NET

First, let's look at an overview of ADO.NET.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

What is ADO.NET?

ADO.NET is the name for the set of classes you use with C# and the .NET Framework to access data in a
relational, table-oriented format. This includes relational databases such as Microsoft Access and SQL
Server, as well as other databases and even non-relational data sources. ADO.NET is integrated into the .
NET Framework and is designed to be used with any .NET language, especially C#.

ADO.NET is located in the System.Data.dll assembly. In a sense ADO.NET is the System.Data.dll
assembly; because any class contained in this assembly is by definition part of ADO.NET. This includes all of
the System.Data namespace and its nested namespaces such as System.Data.SqlClient and
System.Data.OleDb, plus the odd class from the System.Xml namespace. We looked at XML in the
previous chapter; we will follow on in this chapter to see ADO.NET's support for XML.

Why is it Called ADO.NET?

You might ask, why does this part of the .NET Framework get its own weird moniker, ADO.NET? Why not just
call it System.Data and be done with it? ADO.NET takes its name from ADO (ActiveX Data Objects), a
widely used set of classes used for data access in the previous generation of Microsoft technologies. The
ADO.NET name is used because Microsoft wants to make it clear that this is the preferred data access
interface in the .NET programming environment.

ADO.NET serves the same purpose as ADO, providing an easy-to-use set of classes for data access,
updated and enhanced for the .NET programming environment. While it fulfills the same role as ADO, the
classes, properties, and methods in ADO.NET are quite different from ADO.

Design Goals of ADO.NET

Let's quickly look at the design goals of ADO.NET. These include:

● Simple access to relational and non-relational data

● Extensibility to support even more data sources than its predecessor technologies

● Support for multi-tier applications across the Internet

● Unification of XML and relational data access

Simple Access to Relational Data

The primary goal of ADO.NET is to provide simple access to relational data. Straightforward, easy-to-use
classes represent the tables, columns, and rows within relational databases. Additionally, ADO.NET
introduces the DataSet class, which represents a set of data from related tables encapsulated as a single
unit, preserving the integrity of the relationships between them. This is a new concept in ADO.NET that
significantly extends the capabilities of the data access interface.

Extensibility

ADO.NET is extensible – it provides a framework for plug-in .NET data providers (also called managed
providers) that can be built to read and write data from any data source. ADO.NET comes with two built-in .
NET data providers, one for OLE DB data sources and another for Microsoft SQL Server. Data formats such
as Microsoft Access, third-party databases, and non-relational data can be accessed via OLE DB. In addition,
an ODBC .NET data provider is available for ADO.NET that allows .NET access to even more legacy data
formats and third-party databases.

Support for Multi-Tier Applications

ADO.NET is designed for multi-tier applications. This is the most common architecture today for business and
e-commerce applications. In multi-tier architecture, different parts of the application logic are separated into
layers, or tiers, and communicate only with the layer around them.

One of the most common approaches is the 3-tier model, which consists of the following:

● Data tier – contains the database, and data access code.

● Business tier – contains the business logic, which defines the unique functionality of this application, and
abstracts this away from other tiers. This tier is sometimes referred to as the "middle tier".

● Presentation tier – provides the user interface and control of process flow to the application, as well as
such things as validating of user input.

ADO.NET uses the open Internet-standard XML format for communications between the tiers, allowing data to
pass through Internet firewalls and allowing the possibility of a non-Microsoft implementation of one or more
tiers.

Unification of XML and Relational Data Access

Another important goal of ADO.NET is to provide a bridge between relational data in rows and columns, and
XML documents which have a hierarchical data structure. The .NET technology is built around XML and ADO.
NET makes extensive use of it.

Now that we've seen what ADO.NET's goals are, let's look at the actual ADO.NET classes themselves.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Overview of ADO.NET Classes and Objects

This diagram shows the basic classes in ADO.NET. Note that this is not an inheritance diagram, but rather
shows the relationships between the most commonly used classes:

Here we divide the classes into .NET data provider objects and consumer objects.

● Provider objects are specific to each type of data source - the actual reading and writing to and from the
data source is done with the provider-specific objects

● Consumer objects are what you use to access and manipulate the data once you have read it into memory

The provider objects require an active connection; you use these first to read the data, then depending on
your needs, you may work with the data in memory using the consumer objects and/or update the data in the
data source using the provider objects to write the changes back to the data source. Thus the consumer
objects operate in a disconnected fashion; you can work with the data in memory even if the database
connection is down.

Provider Objects

These are the objects defined in each .NET data provider. The names are prefaced with a name unique to the
provider; so for example the actual connection object for the OLE DB provider is OleDbConnection; the
class for the SQL Server .NET provider is SqlConnection.

Connection Object

The connection object is the first object that you will typically use, before using most of the other ADO.NET
objects - it provides the basic connection to your data source. If you are using a database that requires a user
and password, or one on a remote network server, the connection object takes care of the details of
establishing the connection and logging in.

If you are familiar with classic ADO, you'll note that Connection and other objects that serve a
similar function in classic ADO have similar names in ADO.NET.

Command Object

You use this object to give a command such as a SQL query to a data source, such as "SELECT * FROM
Customers" to query the data in the Customers table.

The provider-specific names include SqlCommand for SQL Server and OleDbCommand for OLE DB.

CommandBuilder Object

This object is used to build SQL commands for data modification from objects based on a single-table query.
We'll look at this object in more detail when we study how to update data.

The provider-specific names include SqlCommandBuilder for SQL Server and OleDbCommandBuilder for
OLE DB.

DataReader Object

This is a fast, simple-to-use object that reads a forward-only read-only stream of data (such as the set of
customers found) from a data source. This object gives the maximum performance for simply reading data;
our first example will demonstrate how to use this object.

The provider-specific names include SqlDataReader for SQL Server and OleDbDataReader for OLE DB.

DataAdapter Object

This is a general-purpose class that performs various operations specific to the data source, including
updating changed data, filling DataSet objects (see below) and other operations, which we'll see in the
following examples.

The provider-specific names include SqlDataAdapter for SQL Server and OleDbAdapter for OLE DB.

Consumer Objects

These are the objects defined for the disconnected, consumer side of ADO.NET. These aren't related to any
specific .NET data provider, and live within the System.Data namespace:

DataSet Object

The DataSet is the king of consumer objects - we had an introduction to it in the

The DataSet has features that let you access lower-level objects that represent individual tables and
relationships. These objects are:

DataTable Object

This object represents one of the tables in the DataSet, such as Customers, Orders, or Products.

The DataTable object has features that allow you to access its rows and columns:

● DataColumn object - this represents one column in the table, for example OrderID or CustomerName

● DataRow object - this represents one row of related data from a table; for example a particular customer's

CustomerID, name, address, and so on

DataRelation Object

This object represents the relationship between two tables via a shared column; for example the Orders
table might have a CustomerID column identifying the customer who placed the order. A DataRelation
object might be created representing the relationship between Customers and Orders via the shared
column CustomerID.

You now have an idea of the overall structure of the objects in ADO.NET. There are more objects than the
ones just listed, but let's skip the details for now and get into some examples that show how this all works.

Using the System.Data Namespace

The first step in using ADO.NET within your C# code is to reference the System.Data namespace, in which
all the ADO.NET classes are located. Put the following using directive at the beginning of any program using
ADO.NET:
using System.Data;

Next, you'll need to reference the .NET data provider for the specific data source you'll be using.

SQL Server .NET Data Provider

If you are using SQL Server (version 7 or greater) or MSDE, the best performance and most direct access to
the underlying features is available with the SQL Server-specific .NET data provider, referenced with this
using directive:

using System.Data.SqlClient;

OLE DB .NET Data Provider

For most data sources other than SQL Server (such as Microsoft Access, Oracle, versions of SQL Server
earlier than version 7, and others) you'll use the OLE DB .NET data provider, referenced with this using
directive:
using System.Data.OleDb;

If there is a .NET data provider available specifically for your database then you may want to use that .NET
data provider instead, which will have its own specific using directive. The SQL Server .NET data provider is
an example of a product-specific .NET data provider.

ODBC .NET Data Provider

If you have a data source for which no native or OLE DB provider is available (such as PostgreSQL or some
other third-party databases), the ODBC .NET data provider is a good alternative. As we mentioned in the
using Microsoft.Data.Odbc;

The Microsoft.Data.Odbc namespace follows the vendor.Data.xxx convention recommended for third-
party supplied data providers.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Reading Data with the Data Reader

In our first example we'll just get some data from one table, the Customers table in the SQL Server/MSDE
Northwind sample database - the same database that we looked at in the from this table.

Try it Out - Reading Data with the Data Reader

1. Create a new console application called DataReading in the directory C:\BegVCSharp\Chapter19.

2. We begin by adding the using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

public static void Main()
{
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 // Open connection
 thisConnection.Open();

 // Create command for this connection
 SqlCommand thisCommand = thisConnection.CreateCommand();

 // Specify SQL query for this command
 thisCommand.CommandText =
 "SELECT CustomerID, CompanyName from Customers";

 // Execute DataReader for specified command
 SqlDataReader thisReader = thisCommand.ExecuteReader();

 // While there are rows to read
 while (thisReader.Read())
 {
 // Output ID and name columns
 Console.WriteLine("\t{0}\t{1}",
 thisReader["CustomerID"], thisReader["CompanyName"]);
 }

 // Close reader
 thisReader.Close();

 // Close connection
 thisConnection.Close ();

}

4. Compile and execute this program. You will see the list of customer IDs and company names, as follows. If
you don't see the output below, don't worry, we'll come to the possible problems in a moment:

How it Works

The first step is to reference the System.Data namespace and our provider as described before. We're going to
use the SQL Server .NET provider in these examples, so we need the following lines at the start of our program:
using System.Data;
using System.Data.SqlClient;

There are five steps to retrieving the data from our program:

1. Connect to the data source

2. Open the connection

3. Issue a SQL query

4. Read and display the data with the data reader

5. Close the data reader and the connection

We'll look at each of these steps in turn.

First, we need to connect to our data source. This is done by creating a connection object using a connection string.
The connection string is just a character string containing the name of the provider for the database you want to
connect to, the login information (database user, password, and so on), and the name of the particular database
you want to use. Let's look at the specific elements of this connection string; however, keep in mind that these
strings differ significantly between data providers so you'll need to look up the specific connection information for
your data provider if it is different from this example (the connection information for Access is shown a little later in
the chapter).

The line where we create the connection object looks like this:
SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

SqlConnection is the name of the connection object for the SQL .NET data provider; if we were using OLE DB
we would create an OleDbConnection, but we'll see this in our next example. The connection string consists of
named entries separated by semicolons; let's look at each one. The first is:
Data Source=(local);

This is just the name of the SQL Server you are accessing. (local) is a handy SQL Server shorthand name that
refers to the server instance running on the current machine. If you already have SQL Server running on your
machine, this name should work as is.

The .NET Framework SDK Samples will optionally install a SQL Server desktop engine (also called MSDE) for

executing the samples. The default name of this instance is (local)\NetSDK. Therefore an alternative server
name to try is:
Data Source=(local)\NetSDK;

Note that the @ sign prefacing the connection string indicates a string literal, making the backslash in this name
work; otherwise double backslashes (\\) are necessary to escape the backslash character inside a C# string. I
could have also specified my actual machine name:
Data Source=ROADRUNNER\NetSDK;

If you installed the SQL Server you are working with, you'll know the name of the SQL Server instance. Otherwise,
you'll have to check with your SQL Server or network administrator to find out what name to use.

The next part of the connection string specifies how to log in to the database; here we use the integrated security of
the Windows login so no separate user and password needs to be specified:
Integrated Security=SSPI;

SSPI stands for Security Support Provider Interface; this just specifies the standard built-in security for SQL
Server and Windows. Finally the particular database you want to use is specified, in our case the Northwind
sample:
Initial Catalog=northwind

The Northwind sample is always present in a default SQL Server installation, though many database
administrators choose to omit it for space reasons.

Anyway, we now have a connection object that is configured for our machine and database (but the connection is
not yet active; to do this we must open it).

Once we have a connection object, we can move on to our second step. The first thing you want to do with the
connection object is open it, which establishes the connection to the database:
thisConnection.Open();

If the Open() method fails, for example if the SQL Server cannot be found, a SqlException exception will be
thrown and you will see a message such as:
Unhandled Exception: System.Data.SqlClient.SqlException: SQL Server does not exist or
access denied.
 at System.Data.SqlClient.SqlConnection.Open()
 at DataReading.Class1.Main(String[] args) in c:\begvcsharp\chapter19\datareading
\class1.cs:line 25
Press any key to continue

This particular message indicates that the program couldn't find the SQL Server specified. Check that the server
name in the connection string is correct.

Our third step is to create a command object and give it a SQL command to perform a database operation (such as
retrieving some data). The code to do this is as follows:
SqlCommand thisCommand = thisConnection.CreateCommand();
thisCommand.CommandText = "SELECT CustomerID, CompanyName from Customers";

The connection object has a method called CreateCommand() to create a command associated with this
connection, so we will use this to get our command object. The command itself is assigned to the CommandText
property of the command object. We're going to get a list of the customer IDs and the company names from the
Northwind database, so that is the basis for our SQL query command:

SELECT CustomerID, CompanyName from Customers

The SELECT command is the SQL command to get the data from one or more tables. A common error is to mistype
the name of one of the tables, resulting in another exception:
thisCommand.CommandText = "SELECT CustomerID, CompanyName from Customer";

Whoops! I forgot the "s" in "Customers" - I get this exception:

Unhandled Exception: System.Data.SqlClient.SqlException: Invalid object name
'Customer'.
 at System.Data.SqlClient.SqlCommand.ExecuteReader(....)
 at System.Data.SqlClient.SqlCommand.ExecuteReader()
 at DataReading.Class1.Main(String[] args) in c:\begvcsharp\chapter19\datareading
\class1.cs:line 35
Press any key to continue

Our fourth step is to read and display the data. First, we have to read the data - we do this with a data reader. The
data reader is a lightweight, fast object for quickly getting the results of a query. It is read-only, so you can't use it to
update data - we'll get to that after we finish this example. As we saw in the previous section, you use a method
from the last object you created, the command object, to create an associated instance of the object you need next -
in this case, the data reader:
SqlDataReader thisReader = thisCommand.ExecuteReader();

ExecuteReader() executes the SQL command at the database, so any database errors are generated here; it
also creates the reader object for reading the generated results - here we assign it to thisReader.

There are several methods for getting the results out of the reader, but the following is the usual process. The Read
() method of DataReader reads a single row of the data resulting from the query, and returns true while there is
more data to read, false if there is not. So, we set up a while loop to read data with the Read() method and
print out the results as we get them on each iteration:
while (thisReader.Read())
{
 Console.WriteLine("\t{0}\t{1}",
 thisReader["CustomerID"], thisReader["CompanyName"]);
}

So, while Read() returns true, Console.WriteLine("\t{0}\t{1}"writes out a line with two pieces of data
separated by tab characters (\t). The data reader object provides an indexer property (see Chapter 11 for a
discussion of indexers). The indexer is overloaded, and allows you to reference the columns as an array reference
by column name: thisReader["CustomerID"], thisReader["CompanyName"], or by an integer:
thisReader[0], thisReader[1].

When Read() returns false at the end of the results, the while loop ends.

The fifth and final step is to close the objects we opened, which include the reader object and the connection object.
Each of these objects has a Close() method, which we call before exiting the program:

thisReader.Close();
thisConnection.Close();

That's all there is to accessing a single table!

The same program can be written with just a few simple changes to use the Microsoft Access version of this
database (nwind.mdb). This can be found in the C:\Program Files\Microsoft Office\Office\Samples
directory, but don't use that directly; make a copy of the file (in a temporary directory such as C:\tmp\nwind.
mdb), so you can always go back to the original.

Try it Out - Reading from an Access Database

Except for the details of the connection string, these changes will work for any other OLE DB data source.

1. Create a new console application called ReadingAccessData in the directory C:\BegVCSharp
\Chapter19.

2. We begin by adding the using directives for the OLE DB provider classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.OleDb; // Use namespace for OLE DB .NET Data Provider

3. Now add the following code to the Main() method:

 public static void Main ()
 {
 // Create connection object for Microsoft Access OLE DB Provider;
 // note @ sign prefacing string literal so backslashes in path name;
 // work
 OleDbConnection thisConnection = new OleDbConnection(
 @"Provider=Microsoft.Jet.OLEDB.4.0;Data Source=C:\tmp\nwind.mdb");

 // Open connection object
 thisConnection.Open();

 // Create SQL command object on this connection
 OleDbCommand thisCommand = thisConnection.CreateCommand();

 // Initialize SQL SELECT command to retrieve desired data
 thisCommand.CommandText =
 "SELECT CustomerID, CompanyName FROM Customers";

 // Create a DataReader object based on previously defined command object
 OleDbDataReader thisReader = thisCommand.ExecuteReader();

 while (thisReader.Read())
 {
 Console.WriteLine("\t{0}\t{1}",
 thisReader["CustomerID"], thisReader["CompanyName"]);
 }
 thisReader.Close();
 thisConnection.Close();
 }
 }

How it Works

Instead of the SqlConnection, SqlCommand, and SqlDataReader objects, we create OleDbConnection,
OleDbCommand, and OleDbDataReader objects. These objects work essentially the same as their SQL Server
counterparts.

Accordingly, we change the using directive that specifies the data provider from:

using System.Data.SqlClient;

to:
using System.Data.OleDb;

The only other difference is in the connection string, which we need to change completely. The first part of an OLE
DB connection string, the Provider clause, specifies the name of the OLE DB provider for this type of database.
For Microsoft Access databases, this is always the following name ("Jet" is the name of the database engine
included in Access):
Provider=Microsoft.Jet.OLEDB.4.0;

If you are using a different OLE DB provider for a different database or data format, then specify the name of that
provider in the Provider clause.

The second part of the connection string is the Data Source clause, and in the OLE DB/Microsoft Access case,
this simply specifies the name of the Microsoft Access database file (.mdb file) we are going to open:

Data Source=C:\tmp\nwind.mdb

Once again we have the @ sign preceding the connection string to specify a string literal, so that the backslashes in
the path name work; otherwise, double backslashes (\\) would be necessary to escape the file name in C#.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Reading Data with the DataSet

We've just seen how to read data with a data reader, so now let's look at how to accomplish the same task
with the DataSet. First, let's take a detailed look at the structure of the DataSet.

The DataSet is the central object in ADO.NET; all operations of any complexity use it.

A DataSet contains a set of DataTable objects representing the database tables that you are working with.
Each DataTable object has children DataRow and DataColumn objects representing the rows and columns
of the database table. You can get to all the individual elements of the tables, rows, and columns through
these objects, as we will see in a moment.

Filling the DataSet with Data

Our favorite activity with the DataSet will probably be to fill it with data – we saw how to do this in the
previous chapter, using the Fill() method of a data adapter object.

Why is Fill() a method of the data adapter and not the DataSet? This is because the DataSet is an
abstract representation of data in memory, while the data adapter is the object that ties the DataSet to a
particular database. Fill() has many overloads, but the one we will be using in this chapter takes two
parameters – the first specifies the DataSet we want filled, and the second is the name of the DataTable
within the DataSet that will contain the data we want loaded:

Accessing Tables, Rows, and Columns in the DataSet

The DataSet object has a property named Tables that is a collection of all the DataTable objects within
the DataSet. Tables is of type DataTableCollection, and has an overloaded indexer, which means that
you can access each individual DataTable in one of two possible ways:

● By table name – thisDataSet.Tables["Customers"] specifies the DataTable called Customers

● By index (the index is zero-based) – thisDataSet.Tables[0] specifies the first DataTable in the
DataSet

Within each DataTable, there is a Rows property that is a collection of the individual DataRow objects. Rows
is of type DataRowCollection, and is an ordered list, indexed by row number. Thus:

myDataSet.Tables["Customers"].Rows[n]

specifies row number n - 1 (remember the index is zero-based) in the Customers DataTable of
thisDataSet. (Of course we could have used the alternative index syntax to specify the DataTable as
well.)

You might expect DataRow to have a property of type DataColumnCollection, but it's not as simple as

that, because we want to take advantage of the data type of the individual columns in each row, so that a
column containing character data becomes a string, a column containing an integer becomes an integer
object, and so on.

The DataRow object itself has an indexer property that is overloaded, allowing you to access individual
columns by name, and also by number. Thus:
thisDataSet.Tables["Customers"].Rows[n]["CompanyName"]

specifies the CompanyName column of row number n - 1 in the Customers DataTable of thisDataSet –
the DataRow object here is thisDataSet.Tables["Customers"].Rows[n].

If the structure we just discussed is a little confusing, let's try a picture:

Now let's see all of this in practice.

Try it Out – Reading Data with the DataSet

1. Create a new console application called DataSetRead in the directory C:\BegVCSharp\Chapter19.

2. We begin by adding the using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(

 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 // Create DataAdapter object

 SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, ContactName FROM Customers", thisConnection);

 // Create DataSet to contain related data tables, rows, and columns
 DataSet thisDataSet = new DataSet();

 // Fill DataSet using query defined previously for DataAdapter
 thisAdapter.Fill(thisDataSet, "Customers");
 foreach (DataRow theRow in thisDataSet.Tables["Customers"].Rows)
 {
 Console.WriteLine(theRow["CustomerID"] + "\t" +
 theRow["ContactName"]);
 }
 }

4. Compile and execute this program. You will see the list of customer IDs and company names, as follows

How It Works

First, we create a connection, and then use this connection to create a SqlDataAdapter object:

 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, ContactName FROM Customers", thisConnection);

The next step is to create the DataSet that we want filled with data:

 DataSet thisDataSet = new DataSet();

Now we have our DataSet and our data adapter object in place (SqlDataAdapter here since we are using
the SQL Server provider), we can proceed to fill a DataTable in the DataSet:

 thisAdapter.Fill(thisDataSet, "Customers");

A DataTable named Customers will be created in this DataSet. Note that this occurence of the word
Customers does not refer to the Customers table in the Northwind database – it specifies the name of the
DataTable in the DataSet to be created, and then filled with data.

Now that the DataSet has been filled, we can access the individual rows and columns. The process for this
is straightforward – we loop through all the DataRow objects in the Rows collection of the Customers
DataTable. For each DataRow, we retrieve the values in the CustomerID and ContactName column:

 foreach (DataRow theRow in thisDataSet.Tables["Customers"].Rows)
 {
 Console.WriteLine(theRow["CustomerID"] + "\t" +
 theRow["ContactName"]);

 }

We mentioned earlier that the DataRow object has an indexer property that lets you access its individual
columns by name, and also by number. Thus theRow["CustomerID"] specifies the CustomerID column
of theRow DataRow, and theRow["ContactName"] specifies the ContactName column of theRow
DataRow. Alternatively, we could have referred to the columns by number – CustomerID would be theRow
[0] (it is the first column retrieved from the database), and ContactName as theRow[1].

You may have noticed that we have not explicitly opened or closed a connection in this example – the data
adapter takes care of this for us. The data adapter object will open a connection as needed, and close it again
once finished its work. The data adapter will leave the state of the connection unchanged – so if the
connection was open before the data adapter started its work, it will be still be open after the data adapter has
finished.

OK – we've seen how to read in data from a database. We've used a data reader, which requires a
connection to the database to be maintained while it is doing its work. We've also just used the data adapter
to fill a DataSet – with this method the data adapter deals with the connection for us, opening it and closing it
as needed. The data reader also reads in a forward-only manner – it can navigate through records or jump to
a given record. The data reader only (its name suggests) reads data – the DataSet offers tremendous
flexibility for reading and writing data, and working with data from different sources. We will see the power of
the DataSet unfold as we move through the chapter.

Reading data is only ever going to be half of what you want – you will usually want to modify data, add new
data, or delete data. So let's get on with that – our next step is to look at updating a database.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Updating the Database

Now that we can read data from databases, how do we change it? We'll show a very simple example again
using just one table, and at the same time introduce a few new objects we will use later in the chapter.

All the actions that we typically wish to perform on the database (updating, inserting and deleting records) can
be accomplished with the same pattern:

1. Fill a DataSet with the data from the database we wish to work with

2. Modify the data held in the DataSet (update, insert, or delete records for example)

3. Once all the modifications are made, persist the DataSet changes back to the database

You will see this theme recurring as we move through the examples – there is no need for us to worry about
the exact SQL syntax for updating the database, say, and all the modifications to the data in the database can
be performed at one time.

Let's begin by looking at how to update data in a database, before moving on to add and delete records.

Try it Out – Updating the Database

Let's imagine that one of our customers, Bottom-Dollar Markets, has changed its name to Acme, Inc. We need
to change the company name in our databases. Again, we'll use the SQL Server/MSDE version of the
Northwind database.

1. Create a new console application called UpdatingData in the directory C:\BegVCSharp\Chapter19.

2. We begin by adding the using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");
 // Create DataAdapter object for update and other operations
 SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, CompanyName FROM Customers", thisConnection);

 // Create CommandBuilder object to build SQL commands

 SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

 // Create DataSet to contain related data tables, rows, and columns
 DataSet thisDataSet = new DataSet();

 // Fill DataSet using query defined previously for DataAdapter
 thisAdapter.Fill(thisDataSet, "Customers");

 // Show data before change
 Console.WriteLine("name before change: {0}",
 thisDataSet.Tables["Customers"].Rows[9]["CompanyName"]);

 // Change data in Customers table, row 9, CompanyName column
 thisDataSet.Tables["Customers"].Rows[9]["CompanyName"] = "Acme, Inc.";

 // Call Update command to mark change in table
 thisAdapter.Update(thisDataSet, "Customers");

 Console.WriteLine("name after change: {0}",
 thisDataSet.Tables["Customers"].Rows[9]["CompanyName"]);

 }

4. Running the program produces the following output:

How it Works

The first part of the program is similar to the previous SQL Server example; we create a connection object
using a connection string:
SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

Then we create a SqlDataAdapter object,with the next statement:

SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, CompanyName FROM Customers", thisConnection);

Next, we want to create the correct SQL statements to update the database – we don't have to do this
ourselves, the SqlCommandBuilder will take care of this for us:

SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

Note that we pass thisAdapter to the SqlCommandBuilder constructor as an argument. The correct SQL
commands are generated and associated with the passed data adapter by the constructor when the
SqlCommandBuilder object is created. A bit later in the chapter we'll look at different SQL statements; but
for now the SQL has been taken care of for us.

Now we create our illustrious DataSet object, and fill it with data:

DataSet thisDataSet = new DataSet();

thisAdapter.Fill(thisDataSet, "Customers");

In our case it is the Customers table we want, so we will call the associated DataTable in the DataSet by
the same name. Now that the DataSet has been filled, we can access the individual rows and columns.

Before we change the data, we output a "before" picture of the data we want to change:
Console.WriteLine("name before change: {0}",
 thisDataSet.Tables["Customers"].Rows[9]["CompanyName"]);

What are we doing here? We are printing the value in the CompanyName column in the row with index number
nine in the Customers table. This whole line outputs the following:

name before change: Bottom-Dollar Markets

We're cheating a little bit here; we just happen to know that we are interested in the row with index number
nine (which is actually the tenth row since the indexer is zero-based – the first row is Rows[0]). In a real
program, rather than an example, we would have probably put a qualifier in our SQL query to select just the
rows we were interested in, rather than having to know to go to the row with an index number of nine. In the
next example, we'll discuss how to find only the rows we are interested in.

Another way to understand what is going on with all of this is to look at an equivalent example that breaks out
each separate object in the expression:
// Example using multiple objects
DataTable customerTable = thisDataSet.Tables["Customers"];
DataRow rowTen = customerTable.Rows[9];
object companyName = rowTen["CompanyName"];
Console.WriteLine("name before change: {0}", companyName);

In this example, we declare customerTable as a DataTable and assign the Customers table from the
Tables property of thisDataSet. We declare rowTen as a DataRow and to it we assign the tenth element
of the Rows property of customerTable. Finally, we declare companyName as an object and use the
indexer property of rowTen to assign the CompanyName field to it.

This example helps us follow the process as we follow the chain of related objects, but it is often simpler to
use the one-line expression which gives the same result:
Console.WriteLine("name before change: {0}",
 thisDataSet.Tables["Customers"].Rows[9]["CompanyName"]);

If the code using multiple objects is more understandable to you, by all means use this method. For a one-
time reference like this one it is potentially inefficient to create variables for each object and assign to them
every time; however, if the objects are going to be reused the multiple-object method may be more efficient.
The compiler's optimizer may compensate for any inefficiency in one way of coding over another; therefore it's
often best to code in the most readable manner.

Back to the example – we've displayed the value of the column before we make a change, so now let's make
a change to the column. To change the value of a DataColumn, simply assign to it, as in the next line of the
example:
thisDataSet.Tables["Customers"].Rows[9]["CompanyName"] = "Acme, Inc.";

This line changes the value of the CompanyName column in the row with index number nine of Customers to
"Acme, Inc.".

However, this change only changes the value of the column in the DataSet in memory, not in

the database itself.

The DataSet, DataTable, DataRow, and DataColumn are in-memory representations of the data in the
table. In order to update the database, we need to call the Update() method.

Update() is a method of the data adapter object. To call it, specify the DataSet you want the update to be
based on, and the name of the DataTable in the DataSet to update. It's important that the DataTable
name ("Customers") match the one we used when calling the Fill() method previously:

thisAdapter.Update(thisDataSet, "Customers");

The Update() method automatically goes through the rows in the DataTable to check for changes that
need to be made to the database. Each DataRow object in the Rows collection has a property, RowState,,
that tracks whether this row is deleted, added, modified, or is unchanged. Any changes made are reflected in
the database.

Now we confirm the change by printing out the "after" state of the data:
Console.WriteLine("name after change: {0}",
 thisDataSet.Tables["Customers"].Rows[9]["CompanyName"]);

That's all there is to it!

Before we move on, let's have a quick reminder of the new characters we met here:

● SqlCommandBuilder – the SqlCommandBuilder object takes care of the correct SQL statements for
updating the database – we don't have to craft these statements ourselves.

● SqlDataAdapter.Update() – this method goes through the rows in a DataTable to check for
changes that need to be made to the database. Each DataRow object in the Rows collection has a
property, RowState,, tracking whether this row is deleted, added, modified, or is unchanged. Any
changes made are reflected in the database.

These, of course, are the SQL Server provider versions – there are corresponding OLE DB provider versions
that work in the same way.

Adding Rows to the Database

In the previous example we updated values in existing rows, and our next step is to add an entirely new row.
We'll see that our procedure to add a new record to the database involves, exactly like the update example
earlier, adding a new row to an existing DataSet (this is where most of the work is required), and then
persisting this change back to the database.

The process for adding a new row to the database is straightforward:

1. Create a new DataRow

2. Populate it with some data

3. Add it to the Rows collection of the DataSet

4. Persist this change back to the database by calling the Update() method of the data adapter

Sounds like a perfectly sensible scheme – let's see exactly how it's done.

Try it Out – Adding Rows

1. Create a new console application called AddingData in the directory C:\BegVCSharp\Chapter19.

2. We begin by adding our usual using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 // Create DataAdapter object for update and other operations
 SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, CompanyName FROM Customers", thisConnection);

 // Create CommandBuilder object to build SQL commands
 SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

 // Create DataSet to contain related data tables, rows, and columns
 DataSet thisDataSet = new DataSet();

 // Fill DataSet using query defined previously for DataAdapter
 thisAdapter.Fill(thisDataSet, "Customers");

 Console.WriteLine("# rows before change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);

 DataRow thisRow = thisDataSet.Tables["Customers"].NewRow();
 thisRow["CustomerID"] = "ZACZI";
 thisRow["CompanyName"] = "Zachary Zithers Ltd.";
 thisDataSet.Tables["Customers"].Rows.Add(thisRow);

 Console.WriteLine("# rows after change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);

 // Call Update command to mark change in table
 thisAdapter.Update(thisDataSet, "Customers");
 }

4. On executing, the output of this example is:

How it Works

The lines of interest here are the lines between the thisAdapter.Fill() and thisAdapter.Update()
method calls.

First, to see the "before" picture we introduce a new property of the Rows collection – Count. This gives us a
count of how many rows are in this table:
Console.WriteLine("# rows before change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);

Next, we create the new row object, using the NewRow() method of the DataTable object:

DataRow thisRow = thisDataSet.Tables["Customers"].NewRow();

Note that this creates a new row object using the same columns as the Customers table, but does not
actually add it to the DataSet; we need to assign some values to the columns before that can be done:

thisRow["CustomerID"] = "ZACZI";
thisRow["CompanyName"] = "Zachary Zithers Ltd.";

Now we can actually add the row using the Add() method of the Rows collection:

thisDataSet.Tables["Customers"].Rows.Add(thisRow);

If we check the Count property again after calling Add(), we see that we have indeed added one row:

Console.WriteLine("# rows after change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);

The output shows 92 rows, one more than the "before change" output. As with the previous example, the call
to Update() is needed to actually add the new row to the database on disk:

thisAdapter.Update (thisDataSet, "Customers");

Remember, the DataSet is an in-memory, disconnected copy of the data; it is the DataAdapter which is
actually connected to the database on disk and therefore its Update() method needs to be called to
synchronize the in-memory data in the DataSet with the database on disk.

If we look at the table in Visual Studio .NET after executing this program, we can see that we have indeed
successfully added a row by scrolling to the bottom of the table display:

Notice that only the Customer ID and Company Name columns are filled, since that's all we used in our
program. The remaining columns are blank (actually, they contain the value NULL in SQL terms). You might
think filling in, say, Contact Name is simply a matter of adding the line to the code:

thisRow["ContactName"] = "Zylla Zithers";

However, this not all you do. Recall that when we made the original query, we built the DataSet specifying
just two columns CustomerID and CompanyName:

SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, CompanyName FROM Customers", thisConnection);

The reference to ContactName would cause an error, as there is no such column in the DataSet that we
built. We could rectify this by adding the ContactName column to the original SQL query:

SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, ContactName, CompanyName FROM Customers",
 thisConnection);

Or we could select all the columns from Customers using this command:

SqlDataAdapter thisAdapter = new SqlDataAdapter("SELECT * FROM Customers",
 thisConnection);

As we saw in the previous chapter, the asterisk (*) in a SQL SELECT command is a shorthand for all the
columns in the table; with this change you can add values for any of the columns in the database. However,
getting all the columns when you are only working with two or three is inefficient; this is something you should
generally avoid.

Finding Rows

If you tried to run the previous example more than once, you would have seen a message like this:
Unhandled Exception: System.Data.SqlClient.SqlException:
Violation of PRIMARY KEY constraint 'PK_Customers'.
Cannot insert duplicate key in object 'Customers'.

This indicates that the Add() failed because it would have created a duplicate row. The definition of the
Customers table requires that the CustomerID field contain unique values, which is required when a
column is designated the primary key. The value "ZACZI" was already present when we tried to run the code
for the second time, as it was placed in the table the first time that we ran the sample.

Let's change the logic so that we search for the row first before we try to add it. The DataTable Rows
collection provides a method called Find() that is very useful for this purpose; let's rewrite the logic
surrounding our row addition to use Find() instead of counting rows.

Try it Out – Finding Rows

1. Create a new console application called FindingData in the directory C:\BegVCSharp\Chapter19.

2. We begin by adding our usual using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 // Create DataAdapter object for update and other operations
 SqlDataAdapter thisAdapter = new SqlDataAdapter(

 "SELECT CustomerID, CompanyName FROM Customers", thisConnection);
 // Create CommandBuilder object to build SQL commands
 SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

 // Create DataSet to contain related data tables, rows, and columns
 DataSet thisDataSet = new DataSet();

 // Fill DataSet using query defined previously for DataAdapter
 thisAdapter.Fill(thisDataSet, "Customers");

 Console.WriteLine("# rows before change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);

 // Set up keys object for defining primary key
 DataColumn[] keys = new DataColumn[1];
 keys[0] = thisDataSet.Tables["Customers"].Columns["CustomerID"];
 thisDataSet.Tables["Customers"].PrimaryKey = keys;

 DataRow findRow = thisDataSet.Tables["Customers"].Rows.Find("ZACZI");

 if (findRow == null)
 {
 Console.WriteLine("ZACZI not found, will add to Customers table");

 DataRow thisRow = thisDataSet.Tables["Customers"].NewRow();
 thisRow["CustomerID"] = "ZACZI";
 thisRow["CompanyName"] = "Zachary Zithers Ltd.";
 thisDataSet.Tables["Customers"].Rows.Add(thisRow);
 if ((findRow =
 thisDataSet.Tables["Customers"].Rows.Find("ZACZI")) != null)
 {
 Console.WriteLine("ZACZI successfully added to Customers table");
 }
 }
 else
 {
 Console.WriteLine("ZACZI already present in database");
 }

 thisAdapter.Update(thisDataSet, "Customers");

 Console.WriteLine("# rows after change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);
 }

How it Works

The beginning of the program up to the Fill() method call is the same as previous examples. We use the
Count property to output the number of rows currently existing, then proceed to use Find() to check that the
row we want to add is already present.

Before we can use Find() we need to set up a primary key. The primary key is what you will use when
searching; it is made of one or more of the columns of the table and contains a value or set of values that
uniquely identifies this particular row in the table, so that when we search by the key we will find one and only

one row. The Customers table in the Northwind database uses the CustomerID column as its primary key:

DataColumn[] keys = new DataColumn[1];
keys[0] = thisDataSet.Tables["Customers"].Columns["CustomerID"];
thisDataSet.Tables["Customers"].PrimaryKey = keys;

First we create a DataColumn array – since the key can consist of one or more columns, an array is the
natural structure to use; we call our DataColumn array keys. Next, we assign the first element of the keys
array, keys[0], to the CustomerID column in our Customers table. Finally, we assign keys to the
PrimaryKey property of the Customers DataTable object.

Alternatively, it is possible to load primary key information directly from the database, which is not done by
default. You can explicitly tell ADO.NET to load the primary key information by setting the DataAdapter
MissingSchemaAction property before filling the DataSet, as follows:

thisAdapter.MissingSchemaAction = MissingSchemaAction.AddWithKey;
thisAdapter.Fill(thisDataSet, "Customers");

This accomplishes the same primary key setup by initializing the PrimaryKey property of the DataTable
implicitly.

In any case, now we're ready to find a row!
DataRow findRow = thisDataSet.Tables["Customers"].Rows.Find("ZACZI");

Find() returns a DataRow, so we set up a DataRow object named findRow to get the result. Find() takes
a parameter which is the value to look up; this can be an array of objects for a multi-column primary key, but
in our case with only one primary key column, we need just one value which we pass as a string containing
the value "ZACZI" – this is the CustomerID we want to look up.

If Find() locates a matching row, it returns the DataRow matching that row; if it does not find a match, it
returns a null reference, which we can check for:

if (findRow == null)
{
 Console.WriteLine("ZACZI not found, will add to Customers table");

 DataRow thisRow = thisDataSet.Tables["Customers"].NewRow();
 thisRow["CustomerID"] = "ZACZI";
 thisRow["CompanyName"] = "Zachary Zithers Ltd.";
 thisDataSet.Tables["Customers"].Rows.Add(thisRow);
 if ((findRow = thisDataSet.Tables["Customers"].Rows.Find("ZACZI")) != null)
 {
 Console.WriteLine("ZACZI successfully added to Customers table");
 }
}
else
{
 Console.WriteLine("ZACZI already present in database");
}

If findRow is null, we go ahead and add the row as in the previous example. Just to make sure that the Add
() was successful, we do a Find() again immediately after the add operation to prove to ourselves that it
worked.

As we mentioned at the start of this section, this version using Find() is repeatable; you can run it multiple

times without errors. However, it never executes the Add() code once the "ZACZI" row is in the database.
Let's learn how to make it repeat that part of the program also.

Deleting Rows

Once we can add rows to the DataSet and to the database, it is logical to follow with the opposite action,
removing rows.

The DataRow object has a Delete() method that deletes the current row. Our next example changes the
sense of the if statement on findRow so that we test for findRow not equal to null (in other words, the
row we were searching for was found). Then we remove the row by calling Delete() on findRow.

Try it Out – Deleting Rows

1. Create a new console application called DeletingData in the directory C:\BegVCSharp\Chapter19.

2. As usual, we begin by adding the using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 // Create DataAdapter object for update and other operations
 SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, CompanyName FROM Customers", thisConnection);

 // Create CommandBuilder object to build SQL commands
 SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

 // Create DataSet to contain related data tables, rows, and columns
 DataSet thisDataSet = new DataSet();

 // Fill DataSet using query defined previously for DataAdapter
 thisAdapter.Fill(thisDataSet, "Customers");

 Console.WriteLine("# rows before change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);
 // Set up keys object for defining primary key
 DataColumn[] keys = new DataColumn[1];
 keys[0] = thisDataSet.Tables["Customers"].Columns["CustomerID"];
 thisDataSet.Tables["Customers"].PrimaryKey = keys;

 DataRow findRow = thisDataSet.Tables["Customers"].Rows.Find("ZACZI");

 if (findRow != null)

 {
 Console.WriteLine("ZACZI already in Customers table");
 Console.WriteLine("Removing ZACZI . . .");

 findRow.Delete();

 thisAdapter.Update(thisDataSet, "Customers");
 }

 Console.WriteLine("# rows after change: {0}",
 thisDataSet.Tables["Customers"].Rows.Count);
 }

How it Works

The code to create the DataSet and the data adapter objects is standard – we've seen it before several
times in this chapter and we won't go through it again.

The difference between this code and the previous example is that if the row is found, it is deleted! Note that
when Delete() is called it doesn't remove the row in the database until Update is called to commit the
change.

The Delete() method doesn't actually delete a row, it just marks it for deletion.

Each DataRow object in the Rows collection has a property, RowState, that tracks whether this row is
deleted, added, modified, or is unchanged. The Delete() method sets the RowState of the row to
Deleted, and then Update() deletes any rows it finds in the Rows collection marked as Deleted from the
database.

A word of caution about calling the AcceptChanges() method of the DataSet after Delete() – doing so
will remove the row from the DataSet, which means that there will be no effect on the row in the actual
database, because Update() acts only on the rows it finds in the Rows collection, and a missing row is
simply ignored.

This same issue applies to the Remove() method; call this only if you want to remove rows from the Rows
collection of the DataSet, but not from the database itself.

Important Do not call AcceptChanges() before Update() if you want to delete the row in the database
itself.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Accessing Multiple Tables in a DataSet

One of the big advantages of the ADO.NET model over previous data access models lies in the fact that the
DataSet object tracks multiple tables and the relationships between them all within itself. This means that
you can pass an entire set of related data between parts of your program in one operation, and the
architecture inherently maintains the integrity of the relationships between the data.

Relationships in ADO.NET

The DataRelation object is used to describe the relationships between multiple DataTable objects in a
DataSet. Each DataSet has a Relations collection of DataRelations that enables you to find and
manipulate related tables.

Let's start with just the Customers and Orders tables. Each customer may place several orders; how can
we see the orders placed by each customer? Each row of the Orders table contains the CustomerID of the
customer placing the order; you match all the order rows containing a particular CustomerID with that
customer's row in the Customers table, as shown here:

The matching CustomerID fields in the two tables define a one-to-many relationship between Customers
table and the Orders table. We can use that relationship in ADO.NET by creating a DataRelation object to
represent it.

Creating a DataRelation Object

The DataSet has a Relations property that is a collection of all the DataRelation objects representing
relationships between tables in this DataSet.

To create a new DataRelation we use the Add() method of Relations which accepts a string name for
the relationship and two DataColumns - the parent column, followed by the child column. Thus to create the
relationship described above between the CustomerID column of the Customers table and the
CustomerID table of the Orders table, we would use the following syntax, giving the relationship the name
CustOrders:

DataRelation custOrderRel = thisDataSet.Relations.Add("CustOrders",
 thisDataSet.Tables["Customers"].Columns["CustomerID"],
 thisDataSet.Tables["Orders"].Columns["CustomerID"]);

We'll see this syntax again in our next example.

Navigating with Relationships

To use the relationship, we need to go from a row of one of our tables to the related rows in the other table.
This is called navigating the relationship. Often navigations consist of traveling from a parent row in the first
table to the related children in the other table. In the diagram shown earlier, the row in the Customers table
can be considered the parent row and each of the related rows in the Orders table can be considered
children. Navigations can also go in the opposite direction.

Fetching the Child Rows

Given a row in the parent table, how do we obtain all the rows in the child table that correspond to this row?
We can retrieve this set of rows with the GetChildRows() method of the DataRow object. The
DataRelation object that we have created between the parent and child tables is passed to the method,
and a DataRowCollection object is returned, which is a collection of the related DataRow objects in the
child DataTable.

For example, with our DataRelation that we created above, if the given DataRow in the parent DataTable
(Customers) is customerRow, then:

customerRow.GetChildRows(custOrderRel);

returns the collection of corresponding DataRow objects from the Orders table. We'll see how to handle this
set of objects in our next example.

Try it Out - Getting the Related Rows

1. Create a new console application called DataRelationExample in the directory C:\BegVCSharp
\Chapter19.

2. We begin by adding the using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 // Create DataAdapter object for update and other operations
 SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT CustomerID, CompanyName FROM Customers", thisConnection);
 // Create CommandBuilder object to build SQL commands
 SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

 // Create DataSet to contain related data tables, rows, and columns

 DataSet thisDataSet = new DataSet();

 // Set up DataAdapter objects for each table and fill
 SqlDataAdapter custAdapter = new SqlDataAdapter(
 "SELECT * FROM Customers", thisConnection);
 SqlDataAdapter orderAdapter = new SqlDataAdapter(
 "SELECT * FROM Orders", thisConnection);
 custAdapter.Fill(thisDataSet, "Customers");
 orderAdapter.Fill(thisDataSet, "Orders");

 // Set up DataRelation between customers and orders
 DataRelation custOrderRel = thisDataSet.Relations.Add("CustOrders",
 thisDataSet.Tables["Customers"].Columns["CustomerID"],
 thisDataSet.Tables["Orders"].Columns["CustomerID"]);

 // Print out nested customers and their order ids
 foreach (DataRow custRow in thisDataSet.Tables["Customers"].Rows)
 {
 Console.WriteLine("Customer ID: " + custRow["CustomerID"] +
 " Name: " + custRow["CompanyName"]);
 foreach (DataRow orderRow in custRow.GetChildRows(custOrderRel))
 {
 Console.WriteLine(" Order ID: " + orderRow["OrderID"]);
 }
 }
 }

4. Execute the application, and you will see the following output:

How it Works

Before we construct the DataRelation we need to create our DataSet object and link the database tables
we are going to use with it, as shown here:
DataSet thisDataSet = new DataSet();
SqlDataAdapter custAdapter = new SqlDataAdapter(
 "SELECT * FROM Customers", thisConnection);
SqlDataAdapter orderAdapter = new SqlDataAdapter(
 "SELECT * FROM Orders", thisConnection);
custAdapter.Fill(thisDataSet, "Customers");
orderAdapter.Fill(thisDataSet, "Orders");

We create a DataAdapter object for each table we will reference. We then fill the DataSet with data from
the columns we're going to work with; in this case we're not worried about efficiency so we'll just use all of the

available columns (SELECT * FROM <table>).

Next, we make the DataRelation object and link it to the DataSet:

DataRelation custOrderRel = thisDataSet.Relations.Add("CustOrders",
 thisDataSet.Tables["Customers"].Columns["CustomerID"],
 thisDataSet.Tables["Orders"].Columns["CustomerID"]);

Now we're ready to find the customers and orders. First, let's set up a foreach loop to display the customer
information for each customer:
foreach (DataRow custRow in thisDataSet.Tables["Customers"].Rows)
{
 Console.WriteLine("Customer ID: " + custRow["CustomerID"] +
 " Name: " + custRow["CompanyName"]);

We're just looping through the Rows collection of the Customers table, printing the CustomerID and
CompanyName for each customer. Once we've displayed the customer, we'd like to display the related orders
for that customer.

To do that, we add a nested foreach loop, initialized by calling the GetChildRows() method of DataRow.
We pass our DataRelation object to GetChildRows(), and it returns a DataRowCollection containing
just the related rows in the Orders table for this customer. To display these related rows we simply loop
through each DataRow in this collection with our foreach loop:

 foreach (DataRow orderRow in custRow.GetChildRows(custOrderRel))
 {
 Console.WriteLine(" Order ID: " + orderRow["OrderID"]);
 }
}

Now we repeat the process for each customer. We added some leading spaces to the display of the
OrderID, so the orders for each customer are displayed indented underneath the customer information. With
the indented display you can see the parent-child relationship between each customer and its orders more
clearly. Customer ID "Zachary Zithers Ltd." has no Orders as we just added it to the table in the previous
examples.

That's one relation between two tables - let's go further, and look at relations between more tables. Let's
extend this program to see what specific items each customer is placing in each order, and what the names of
the products are. This information is available through the other tables in the Northwind database. Let's
review these relationships; an easy way to see these is to create a database diagram for the Northwind
database in VS containing all the tables, as we saw in the previous chapter:

If you're using MSDE and the relationships weren't imported, that's all right - just refer to the diagram shown
here. The lines between the tables represent the relationships, with the line on each side going to the column
that identifies the relationship. A primary key-foreign key relationship is shown with a key symbol by the parent
column and an infinity symbol by the child column.

We're going to display the details of each customer order including the product names, by following the
relationships between four tables in the diagram above: Customers, Orders, Order Details, and
Products tables.

Try It Out - Working with Multiple Relations

1. Create a new console application called ManyRelations in the directory C:\BegVCSharp
\Chapter19.

2. We begin by adding the using directives for the ADO.NET classes we will be using:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

3. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string

 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 DataSet thisDataSet = new DataSet();
 SqlDataAdapter custAdapter = new SqlDataAdapter(
 "SELECT * FROM Customers", thisConnection);
 custAdapter.Fill(thisDataSet, "Customers");

 SqlDataAdapter orderAdapter = new SqlDataAdapter(
 "SELECT * FROM Orders", thisConnection);
 orderAdapter.Fill(thisDataSet, "Orders");

 SqlDataAdapter detailAdapter = new SqlDataAdapter(

 "SELECT * FROM [Order Details]", thisConnection);
 detailAdapter.Fill(thisDataSet, "Order Details");

 SqlDataAdapter prodAdapter = new SqlDataAdapter(
 "SELECT * FROM Products", thisConnection);
 prodAdapter.Fill(thisDataSet, "Products");

 DataRelation custOrderRel = thisDataSet.Relations.Add("CustOrders",
 thisDataSet.Tables["Customers"].Columns["CustomerID"],
 thisDataSet.Tables["Orders"].Columns["CustomerID"]);

 DataRelation orderDetailRel = thisDataSet.Relations.Add("OrderDetail",
 thisDataSet.Tables["Orders"].Columns["OrderID"],
 thisDataSet.Tables["Order Details"].Columns["OrderID"]);

 DataRelation orderProductRel = thisDataSet.Relations.Add(
 "OrderProducts",thisDataSet.Tables["Products"].Columns["ProductID"],
 thisDataSet.Tables["Order Details"].Columns["ProductID"]);

 foreach (DataRow custRow in thisDataSet.Tables["Customers"].Rows)
 {
 Console.WriteLine("Customer ID: " + custRow["CustomerID"]);

 foreach (DataRow orderRow in custRow.GetChildRows(custOrderRel))
 {
 Console.WriteLine("\tOrder ID: " + orderRow["OrderID"]);
 Console.WriteLine("\t\tOrder Date: " + orderRow["OrderDate"]);

 foreach (DataRow detailRow in
 orderRow.GetChildRows(orderDetailRel))
 {
 Console.WriteLine("\t\tProduct: " +
 detailRow.GetParentRow(orderProductRel)["ProductName"]);
 Console.WriteLine("\t\tQuantity: " + detailRow["Quantity"]);
 }
 }
 }
 }

4. Execute the application, and you will see output like the following (we've shown an abbreviated version
here, with only the last part of the output):
Customer ID: WOLZA
 ...
 Order ID: 10998
 Order Date: 4/3/1998 12:00:00 AM
 Product: Guaraná Fantástica
 Quantity: 12
 Product: Sirop d'érable
 Quantity: 7
 Product: Longlife Tofu
 Quantity: 20
 Product: Rhönbräu Klosterbier
 Quantity: 30
 Order ID: 11044

 Order Date: 4/23/1998 12:00:00 AM
 Product: Tarte au sucre
 Quantity: 12
Customer ID: ZACZI

How it Works

As usual, we begin by initializing a connection, and then creating a new DataSet. Next, we create a data
adapter for each of the four tables that will be used:
 SqlDataAdapter custAdapter = new SqlDataAdapter(
 "SELECT * FROM Customers", thisConnection);
 custAdapter.Fill(thisDataSet, "Customers");

 SqlDataAdapter orderAdapter = new SqlDataAdapter(
 "SELECT * FROM Orders", thisConnection);
 orderAdapter.Fill(thisDataSet, "Orders");

 SqlDataAdapter detailAdapter = new SqlDataAdapter(
 "SELECT * FROM [Order Details]", thisConnection);
 detailAdapter.Fill(thisDataSet, "Order Details");

 SqlDataAdapter prodAdapter = new SqlDataAdapter(
 "SELECT * FROM Products", thisConnection);
 prodAdapter.Fill(thisDataSet, "Products");

Next, we build DataRelation objects for each of the relationships between the four tables:

 DataRelation custOrderRel = thisDataSet.Relations.Add("CustOrders",
 thisDataSet.Tables["Customers"].Columns["CustomerID"],
 thisDataSet.Tables["Orders"].Columns["CustomerID"]);

 DataRelation orderDetailRel = thisDataSet.Relations.Add("OrderDetail",
 thisDataSet.Tables["Orders"].Columns["OrderID"],
 thisDataSet.Tables["Order Details"].Columns["OrderID"]);

 DataRelation orderProductRel = thisDataSet.Relations.Add(
 "OrderProducts",thisDataSet.Tables["Products"].Columns["ProductID"],
 thisDataSet.Tables["Order Details"].Columns["ProductID"]);

The first relationship is exactly the same as in the previous example. The next one adds the relationship
between Orders and Order Details, using the OrderID as the linking column. The last relationship is the
one between Order Details and Products, using ProductID as the linking column. Notice that in this
relationship, Products is actually the parent table (second of the three parameters). This is because it is the
"one" side of the one-to-many relation (one Product may appear in many Orders).

Now that we've set up the relationships we can do processing with them. Again the basic structure is a nested
foreach loop, this time with three nested levels:

 foreach (DataRow custRow in thisDataSet.Tables["Customers"].Rows)
 {
 Console.WriteLine("Customer ID: " + custRow["CustomerID"]);

 foreach (DataRow orderRow in custRow.GetChildRows(custOrderRel))
 {
 Console.WriteLine("\tOrder ID: " + orderRow["OrderID"]);

 Console.WriteLine("\t\tOrder Date: " + orderRow["OrderDate"]);

 foreach (DataRow detailRow in
 orderRow.GetChildRows(orderDetailRel))
 {
 Console.WriteLine("\t\tProduct: " +
 detailRow.GetParentRow(orderProductRel)["ProductName"]);
 Console.WriteLine("\t\tQuantity: " + detailRow["Quantity"]);
 }
 }
 }

Just as before, we output the data for the parent row, then use GetChildRows() to obtain the child rows
related to this parent. The outer loop is the same as the previous example. Next, we print out the additional
detail of the OrderDate to the OrderID, and then get the OrderDetails for this OrderID.

The innermost loop is different; to get the Product row we call GetParentRow()which gets the parent
object, going from the "many" side to the "one" side of the relationship. Sometimes this navigation from child
to parent is called navigating "upstream" as opposed to the normal parent-to-child "downstream" navigation.
Upstream navigation requires the GetParentRow() call.

The output of the program shows all the details of the orders processed for each customer, indented to show
the parent and child hierarchy. Again, the Customer ID "ZACZI" has no orders as we just added it to the table
in the previous examples.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

XML and ADO.NET

As we said in the introduction, XML support is one of the major design goals of ADO.NET and is also central
to ADO.NET's internal implementation. Therefore, it makes sense that ADO.NET would have lots of support
for XML built into its object model. XML was introduced in the previous chapter, and we are now going to talk
about the support for it in ADO.NET.

XML Support in ADO.NET DataSets

The XML support in ADO.NET is centered around the DataSet object, as XML is all about relationships and
hierarchically structured data. The DataSet has several methods that process XML, and one of the easiest to
use is WriteXml(), which writes out the contents of the DataSet as an XML document.

To use WriteXml(), simply construct a DataSet from existing data using the same code as in our previous
examples; use the Fill() method of a data adapter to load the data, define DataRelation objects for the
relationships, and so on. Then, simply call WriteXml() on the DataSet you have constructed:

 thisDataSet.WriteXml("nwinddata.xml");

WriteXml() can write to various targets; this version of the method simply writes the XML to a file. An
external program that accepts XML as an input format can easily read and process the XML.

A ReadXml() method is available also to read the contents of an XML file into a DataSet.

Try it Out – Writing XML from a DataSet

This example takes the code from the DataRelationExample, and simply writes out the data in the
DataSet to an XML file – the nested foreach loops are simply replaced by the single call to WriteXml().
You will need to ensure that you have a directory named C:\tmp before running this program.

1. Open the DataRelationExample project, and replace the foreach loop:

 // Print out nested customers and their order ids
 foreach (DataRow custRow in thisDataSet.Tables["Customers"].Rows)
 {
 ...
 }

with the following code:
 custOrderRel.Nested = true;

 thisDataSet.WriteXml(@"c:\tmp\nwinddata.xml");
 Console.WriteLine(
 @"Successfully wrote XML output to file c:\tmp\nwinddata.xml");

2. Open Internet Explorer, and browse the C:\tmp\nwinddata.xml file:

How it Works

The Nested property of the DataRelation objects tells the WriteXml() method to nest the order details
and orders underneath each parent customer in the XML output. The file nwinddata.xml contains all the
data in our tables (including all the columns since we specified SELECT * FROM when filling the DataSet). It
is in human-readable, easy-to-parse XML format, and the file can be browsed directly in Microsoft Internet
Explorer.

So the DataSet has a WriteXml() – guess what, it also has a ReadXml() method! The ReadXml()
method creates and populates a DataTable in a DataSet with the data from an XML file. Furthermore, the
DataTable created is given the name of the root element in the XML document.

Try it Out – Reading XML into a DataSet

Having just created an XML file in our previous example, let's now read it back in and display it!

1. Create a new console application called ReadingXML in the directory C:\BegVCSharp\Chapter19,
and add a using directive for the System.Data namespace to the top of the code.

2. Add the following code to the Main() method:

 static void Main(string[] args)
 {
 DataSet thisDataSet = new DataSet();
 thisDataSet.ReadXml(@"c:\tmp\nwinddata.xml");

 foreach (DataRow custRow in thisDataSet.Tables["Customers"].Rows)
 {
 Console.WriteLine("Customer ID: " + custRow["CustomerID"] +

 " Name: " + custRow["CompanyName"]);
 }

 Console.WriteLine("Table created by ReadXml is called {0}",
 thisDataSet.Tables[0].TableName);
 }

3. Execute the application, and you should see output like the following, provided you ran the previous
example to create the C:\tmp\nwinddata.xml file:

How it Works

Note that we are only using one data namespace here – System.Data. We aren't using any database
access so we don't have any need for the System.Data.SqlClient or System.Data.OleDb. All we do is
create a new DataSet, and then use the ReadXml() method to load the data from the C:\tmp
\nwinddata.xml file. The overload of ReadXml() that we use here simply requires us to specify the name
of the XML file:
 DataSet thisDataSet = new DataSet();
 thisDataSet.ReadXml(@"c:\tmp\nwinddata.xml");

Next we output the contents of the Customers table – this code should be familiar from the
DataRelationExample code – we loop through each DataRow in the Rows collection of the Customers
table, and display the value of the CustomerID and CompanyName columns:

 foreach (DataRow custRow in thisDataSet.Tables["Customers"].Rows)
 {
 Console.WriteLine("Customer ID: " + custRow["CustomerID"] +
 " Name: " + custRow["CompanyName"]);
 }

How did we know the table was called Customers? As we mentioned above, the DataTable is named from
the root node of the XML document that is read in – if you look back at the screenshot for the WriteXml()
method, you will see that the root node of the XML document produced is indeed Customers. Just to prove
the point, we write out the name of the first DataTable in the Tables collection of the DataSet, using the
TableName property of the DataTable:

 Console.WriteLine("Table created by ReadXml is called {0}",
 thisDataSet.Tables[0].TableName);

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

SQL Support in ADO.NET

In this chapter we have covered the basic ADO.NET operations without having to know anything about the
SQL database query language. All ADO.NET commands that read and write from the data source are
translated to SQL commands that execute the raw database operations.

Practical use of ADO.NET in real-life working situations will require some knowledge of SQL; for a much more
complete introduction to SQL than we have space for here, refer to a good book on SQL such as Beginning
SQL Programming (ISBN 1-7100-180-0) or Beginning SQL Server 2000 Programming (ISBN 1-71000-523-7),
both from Wrox Press.

That said, there are a few basics we will cover here.

SQL Commands in Data Adapters

In the examples given earlier, we've used SQL SELECT commands that return all the rows of a table, such as:

SqlDataAdapter thisAdapter = new SqlDataAdapter(
 "SELECT * FROM Customers", thisConnection);

This SELECT command returns all the rows and columns of the customer table when the Fill() method is
called, and loads them into the memory of your program. This is fine for a small table like the Customers
table of Northwind, which has only 11 columns and less than 100 rows of data; however, it is not likely to
work well for a large table typical of those encountered in many business applications with 100,000 or even
1,000,000 rows.

You need to construct the SELECT command so that it only brings in the data you actually need to process.
One way is to limit the number of columns used if your program really only interacts with some of the columns,
with a SELECT statement specifying only the desired columns, such as:

SELECT CustomerID, CompanyName FROM Customers

However, you typically don't want to do this when adding rows, as you will want to specify values for all
columns.

Use of WHERE with SELECT

Another technique for minimizing the amount of data loaded into memory is to always specify a WHERE clause
on the SQL SELECT statement, which limits the number of rows selected. For example, the statement:

SELECT * FROM Customers WHERE CustomerID = "ZACZI"

will load only the one row containing Zachary Zithers into memory, using a fraction of the memory required to
load the entire table. A range can be specified with WHERE clauses as well, so a statement like:

SELECT * FROM Orders WHERE OrderID BETWEEN 10900 AND 10999

will only load the rows with OrderID in the range shown.

If you can limit the number of rows being loaded from a large table with a WHERE clause, always do so. Never
load all the rows of a table into your DataSet and then search them with a foreach loop; use the SELECT
statement with WHERE to do this kind of search instead.

Your goal is to find the most effective balance between processing data locally on the client where your ADO.
NET program is executing, and processing on the server where the SQL is executed. The ADO.NET object
model and C# are better suited than SQL for complex calculations or navigational logic. Fill your DataSet
with the data from the tables you want to process and execute this kind of logic on the client. However, limiting
the number of rows selected from each table with appropriate conditions will greatly increase the
performance, especially if the data is being transferred across a network, and decrease the memory usage.

Viewing SQL SELECT, UPDATE, INSERT, and DELETE Commands

SQL uses four basic commands for querying, updating, adding, and deleting rows from a table. These are,
respectively, the SELECT, UPDATE, INSERT, and DELETE commands. In our earlier examples we have used
the CommandBuilder object to create the SQL commands used to update the database:

SqlDataAdapter thisAdapter =
 new SqlDataAdapter("SELECT CustomerID from Customers", thisConnection);

SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

The command builder generates the SQL commands for modifying the data (UPDATE, INSERT, and DELETE)
based on the SELECT command.

In the program which we create here, we can see the generated commands with the GetUpdateCommand(),
GetInsertCommand(), and GetDeleteCommand() methods of the CommandBuilder object:

Try it Out – Show SQL Example

1. Create a new console application called ShowSQL in the C:\BegVCSharp\Chapter19 directory, and
add our usual using directives to the top of the code:

using System;
using System.Data; // Use ADO.NET namespace
using System.Data.SqlClient; // Use SQL Server data provider namespace

2. Now add the following code to the Main() method:

 public static void Main()
 {
 // Specify SQL Server-specific connection string
 SqlConnection thisConnection = new SqlConnection(
 @"Data Source=(local);Integrated Security=SSPI;" +
 "Initial Catalog=northwind");

 thisConnection.Open();

 SqlDataAdapter thisAdapter = new
 SqlDataAdapter("SELECT CustomerID from Customers", thisConnection);

 SqlCommandBuilder thisBuilder = new SqlCommandBuilder(thisAdapter);

 Console.WriteLine("SQL SELECT Command is:\n{0}\n",
 thisAdapter.SelectCommand.CommandText);

 SqlCommand updateCommand = thisBuilder.GetUpdateCommand();
 Console.WriteLine("SQL UPDATE Command is:\n{0}\n",
 updateCommand.CommandText);

 SqlCommand insertCommand = thisBuilder.GetInsertCommand();
 Console.WriteLine("SQL INSERT Command is:\n{0}\n",
 insertCommand.CommandText);

 SqlCommand deleteCommand = thisBuilder.GetDeleteCommand();
 Console.WriteLine("SQL DELETE Command is:\n{0}",
 deleteCommand.CommandText);

 thisConnection.Close();
 }

The output of this example is:

How it Works

Note that the UPDATE and DELETE commands use a WHERE clause that was generated by the
CommandBuilder object.

The question marks (?) are markers for parameters, where the ADO.NET runtime will substitute an actual
value into the command; for example when we used the Delete() method to delete the row containing
CustomerID "ZACZI", at the time Update() was called the command:

DELETE FROM Customers WHERE (CustomerID = 'ZACZI')

was executed to remove the ZACZI row.

Notice that to output the SELECT command we used the SelectCommand property to get the command
directly from the DataAdapter. The DataAdapter also has the UpdateCommand, InsertCommand, and
DeleteCommand properties to get or set the SQL commands used at update time directly. A developer
familiar with SQL can optimize these commands to perform better than the commands automatically
generated by CommandBuilder, especially when all columns are included in the SQL SELECT statement.

Direct Execution of SQL Commands

If your program needs to perform a set-oriented operation such as deleting or updating all rows meeting a
certain condition, it is much more efficient, especially for large tables, to do this as a single SQL command
than to do extended processing in C# code.

ADO.NET provides the SqlCommand or OleDbCommand objects for executing SQL commands. These
objects provide methods for executing SQL commands directly. We used the ExecuteReader() method at
the beginning of the chapter when we looked at the data reader object. Here we'll look at the other methods
for executing SQL statements – ExecuteScalar() and ExecuteNonQuery().

Retrieving Single Values

On many occasions it is necessary to return a single result from a SQL query, such as the number of records
in a given table. The ExecuteScalar() method allows you to achieve this – this method is used to execute
SQL commands that return only a scalar (a single value), as opposed to returning multiple rows, as with
ExecuteReader().

This example uses the ExecuteScalar() method of SqlCommand to execute the query.

Try it Out – Retrieving Single Values with ExecuteScalar()

As a first example, let's consider a program that gets a count of the rows in the Customers table; this is
similar to the data reader example at the start of the chapter, but uses a different SQL statement and method
of execution.
using System;
using System.Data;
using System.Data.SqlClient;

class ExecuteScalarExample
{
 public static void Main()
 {
 SqlConnection thisConnection = new
 SqlConnection("Data Source=(local);" +
 "Integrated Security=SSPI;Initial Catalog=northwind");
 thisConnection.Open();
 SqlCommand thisCommand = thisConnection.CreateCommand();
 thisCommand.CommandText = "SELECT COUNT(*) FROM Customers";
 Object countResult = thisCommand.ExecuteScalar();
 Console.WriteLine("Count of Customers = {0}", countResult);
 thisConnection.Close();
 }
}

How it Works

This program uses the SQL Server .NET data provider. The core of the program is the same as the first
example in this chapter, opening a connection to SQL Server on the local machine with SSPI security and the
Northwind database.

We create a SqlCommand object and assign the SELECT COUNT(*) command to its CommandText property.
COUNT() is a SQL function that returns the count of rows that match the WHERE condition. Then, we call the
ExecuteScalar() method of SqlCommand to execute the query to retrieve the count. We display the count
and exit. When executed against the Northwind database, the program displays:

Count of Customers = 91

(Provided you've deleted Zachary Zithers Ltd!) This is equivalent to loading the Customers table into the
DataTable object and using the Count property of the Rows object as in our earlier examples; why would
you want to do the job this way? It depends on the structure of your data and what else you are doing in your
program. If you have a small amount of data, or are loading all the rows into your DataSet for any other
reason, it makes sense to just use DataTable.Rows.Count. However, if you wanted to count the exact
number of rows in a very large table with 1,000,000 rows, it is much more efficient to issue a SELECT COUNT
(*) query with the ExecuteScalar() method rather than trying to load 1,000,000 rows into memory.

Retrieving No Data

A rather strange heading, but bear in mind that data modification operations such as SQL INSERT, UPDATE,
and DELETE do not return data; what is interesting for these commands is the number of rows affected. This
number is returned by the ExecuteNonQuery() method.

Try it Out – Data Modification with ExecuteNonQuery

Let's assume one of our suppliers has increased all prices by 5% for all of its products. The program below
shows how to use the SqlCommand object to execute a SQL UPDATE command to increase all the prices by
5% for products supplied by that supplier:
using System;
using System.Data;
using System.Data.SqlClient;

class ExecuteNonQueryExample
{
 public static void Main()
 {
 SqlConnection thisConnection = new SqlConnection(
 "Data Source=(local);" +
 "Integrated Security=SSPI;Initial Catalog=northwind");
 thisConnection.Open();

 SqlCommand thisCommand = thisConnection.CreateCommand();
 thisCommand.CommandText = "UPDATE Products SET " +
 "UnitPrice=UnitPrice*1.05 WHERE SupplierId=12";
 int rowsAffected = thisCommand.ExecuteNonQuery();
 Console.WriteLine("Rows Updated = {0}", rowsAffected);
 thisConnection.Close();
 }
}

How it Works

This program opens the connection just as in the previous example. We create a SqlCommand object and
assign the UPDATE command shown as the text of the command. Then we call the ExecuteNonQuery()
method of SqlCommand to execute the query, returning the number of rows affected in the database. We
display the number of rows and exit. When executed against the Northwind database, the program displays:

Rows Updated = 5

Indicating that the prices were adjusted for 5 products.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Summary

We have learned that ADO.NET is the part of the .NET Framework that enables access to relational
databases and other data sources. ADO.NET is designed to provide a simple, flexible framework for data
access; it is designed for multi-tier application architectures and integrates relational data with XML.

The ADO.NET classes are contained in the System.Data namespace. We reviewed the object model of
ADO.NET and learned the roles of its major objects, including the connection, command, data reader, data
adapter, DataSet, DataTable, DataRow, and DataColumn objects.

We learned that .NET data providers give access to specific data sources, and that ADO.NET can be
extended to new data sources by writing .NET data providers for the new data source. We examined the .NET
data providers included with ADO.NET for Microsoft SQL Server and OLE DB data sources, and learned that
these are contained in the System.Data.SqlClient and System.Data.OleDb namespaces, respectively.

We saw how to implement quick read-only access to data via the data reader object, and how to write an
equivalent program for both the SqlClient and OleDb .NET data providers. We learned how to update data
and add rows via the DataSet, data adapter, and CommandBuilder objects. We saw how to find rows using
the primary key, and also how to delete rows.

We learned how to access multiple tables in a DataSet via the DataRelation object, and how to generate
an XML view of that data. Finally we looked briefly at how to take advantage of the SQL database language
support within ADO.NET, including display of automatically generated SQL commands, and direction
execution of SQL.

Chapter 19 - Data Access with ADO.NET
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Modify the program given in the first sample to use the Employees table in the Northwind database.

Retrieve the EmployeeID and LastName columns.

2. Modify the first program showing the Update() method to change the company name back to Bottom-
Dollar Markets.

3. Write a program that asks the user for a Customer ID.

4. Write a program to create some orders for the customer "Zachary Zithers"; use the sample programs to
view the orders.

5. Write a program to display a different part of the relationship hierarchies in the Northwind database
than the one used in this chapter; for example, Products, Suppliers, and Categories.

6. Write out the data generated in the previous exercise as an XML document.

7. Change the program used to print all customer order details and products to use a WHERE clause in the
SELECT statement for Customers limiting the customers processed.

8. Modify the program shown to print out UPDATE, INSERT, and DELETE statements to use "SELECT *
FROM Customers" as the SQL SELECT command. Note the complexity of the generated statements.

Chapter 20 - Working With Files
byKarli Watsonet al.

Wrox Press 2003

Chapter 20: Working With Files

Overview

In this chapter you will learn how to read and write text files, an essential aspect of many .NET applications.
We will discuss the major classes used to create files, read from and write to them, and the supporting
classes used to manipulate the file system from C# code. Although we won't be able to cover all of the classes
in detail, we will go into enough depth to give you a good idea of the concepts and fundamentals.

Files can be a great way to store data between instances of your application, or they can be used to transfer
data between applications. User and application configuration settings can be stored to be retrieved the next
time your application is run. Delimited files, such as comma-separated files, are used by many legacy
systems, and to interoperate with such systems you will need to know how to work with delimited data. As we
will see, the .NET Framework provides us with the tools to use files effectively in our applications.

By the end of this chapter, you will have learned:

● What a stream is and how .NET uses stream classes to access files

● How to use the File object to manipulate the file structure

● How to write to a file

● How to read from a file

● How to read and write formatted data from and to files

● How to populate a DataSet from a delimited file

● How to monitor files and directories for changes

Chapter 20 - Working With Files
byKarli Watsonet al.

Wrox Press 2003

Streams

All input and output in the .NET Framework involves the use of streams. A stream is an abstract
representation of a serial device. A serial device is something that stores data in a linear manner, and is
accessed the same way: one byte at a time. This device can be a disk file, a network channel, a memory
location, or any other object that supports reading and writing to it in a linear manner. By keeping the device
abstract, the underlying destination/source of the stream can be hidden. This level of abstraction enables
code reuse and allows us to write more generic routines. Therefore, similar code can be transferred and
reused when the application is reading from either a file input stream or a network input stream. Also, by using
a stream we can ignore the physical mechanics of each device. Thus to read from a file stream we don't need
to worry about hard disk heads or memory allocation.

An output stream is used when data is written to some external destination. This can point to a physical disk
file, a network location, a printer, or another program. Understanding stream programming opens many
advanced possibilities. For this chapter we will limit our discussion to writing to disk files.

An input stream is used to read data into memory or variables that our program can access. The most
common form of input stream we have worked with so far is the keyboard. An input stream can come from
almost any source but we will concentrate on reading disk files. The concepts applied to reading/writing of
disk files will apply to most devices, so we will gain a basic understanding of streams and see a proven
approach that can be applied to many situations.

Chapter 20 - Working With Files
byKarli Watsonet al.

Wrox Press 2003

The Classes for Input and Output

The System.IO namespace contains all of the classes that we will be covering in this chapter. System.IO contains
the classes for reading and writing data to files, and you must reference this namespace in your C# application to
gain access to these classes. There are quite a few classes contained in System.IO, as you can see in the following
diagram, but we will be covering only the primary classes needed for file input and output:

● File – a utility class that exposes many static methods for moving, copying, and deleting files.

● Directory – a utility class that exposes many static methods for moving, copying, and deleting directories.

● Path – a utility class used to manipulate path names.

● FileInfo – represents a physical file on disk, and has methods to manipulate this file. For any reading and
writing to the file, a Stream object must be created.

● DirectoryInfo – represents a physical directory on disk, and has methods to manipulate this directory.

● FileStream – represents a file that can be written to or read from, or both. This file can be written to and read
from asynchronously or synchronously.

● StreamReader – reads character data from a stream and can be created by using a FileStream as a base.

● StreamWriter – writes character data to a stream and can be created by using a FileStream as a base.

● FileSystemWatcher – the FileSystemWatcher is the most advanced class we will be examining in this
chapter. It is used to monitor files and directories, and exposes events that your application can catch when
changes occur in these locations. This functionality has always been missing from Windows programming, but
now the .NET Framework makes it much easier to respond to file system events.

The File and Directory Classes

As utility classes, both the File and Directory classes expose many methods for manipulating the file system and
the files and directories within it. These are the static methods that involve moving files, querying and updating
attributes, and creating FileStream objects. As we learned in

Some of the most useful static methods of the File class are:

Method Description
Copy() Copies a file to the specified location.

Create() Creates a file in the specified path.

Delete() Deletes a file.

Open() Returns a FileStream object at the specified path.

Move() Moves a specified file to a new location. We can specify a different name
for the file in the new location.

Some useful static methods of the Directory class are:

Method Description
CreateDirectory() Creates a directory with the specified path.

Delete() Deletes the specified directory and all the files within it.

GetDirectories() Returns an array of Directory objects that represent the directories
below the current directory.

GetFiles() Returns an array of File objects in the current directory.

Move() Moves the specified directory to a new location. We can specify a new
name for the folder in the new location.

The FileInfo Class

Unlike the File class, the FileInfo class does not have static methods, and can only be used on instantiated
objects. The FileInfo object represents a file on a disk or network location, but note that it is not a stream. To read
or write to a file, a Stream object has to be created. The FileInfo object aids you in doing this by exposing several
methods that return instantiated Stream objects. But first, to create a FileInfo object you must supply a path to a
file or directory.
FileInfo aFile = new FileInfo(@"C:\Log.txt");

Since we will be working with strings representing the path of a file throughout this chapter, which will
mean a lot of \ characters in our strings, it's worth reminding yourself that the @ that prefixes the string
above means that this string will be interpreted literally. Thus \ will be interpreted as \, and not as an
escape character. Without the @ prefix, we would need to use \\ instead of \ to avoid this character
being interpreted as an escape character. In this chapter we will stick to the @ prefix for our strings.

Many of the methods exposed by the FileInfo class are similar to those of the File class but because File is a
static class, it requires a string parameter specifying the file location for every method call. Therefore, the following
calls do the same thing:
FileInfo aFile = new FileInfo("Data.txt");
if (aFile.Exists)
 Console.WriteLine("File Exists");

if (File.Exists("Data.txt"))
 Console.WriteLine("File Exists");

Most of the FileInfo methods mirror the File methods in this manner. The question is when should you use the
instance methods, and when should you use the static methods?

● It makes sense to use the static File class if you are only making a single method call on the object – the single
call will be faster because the .NET Framework will not have to go through the process of instantiating a new
object and then calling the method.

● However, if your application is performing several operations on a file it makes more sense to instantiate the
FileInfo object and use its methods – this will save time because the object will already be referencing the
correct file on the file system, whereas the static class will have to find it every time.

The FileInfo class also exposes the following properties about the underlying file, which can be manipulated to
update the file:

Property Description
Attributes Gets or sets the attributes of the current file.

CreationTime Gets the creation date and time of the current file.

DirectoryName Returns the path to the file's directory.

Exists Determines whether a file exists.

FullName Retrieves the full path of the file.

Length Gets the size of the file.

Name Returns just the name of the file, not the full file location path.

The DirectoryInfo Class

The DirectoryInfo class works exactly like the FileInfo class. It is an instantiated object that represents a
single directory on a machine. Like the FileInfo class, many of the method calls are duplicated across Directory
and DirectoryInfo. The same guideline applies as to when to use each: if you are making a single call use the
static Directory class. If you are making a series of calls, use an instantiated DirectoryInfo object.

The DirectoryInfo class shares almost all of the same properties as the FileInfo class, except that they
operate on directories not files.

Pathnames and Relative Paths

When specifying a path name in .NET code you can use either absolute or relative path names. An absolute path
name explicitly specifies where a file or directory is from a known location – like the C: drive. An example of this
would be C:\Work\LogFile.txt. Note that it is defined exactly where it is, with no ambiguity.

Relative pathnames are relative to where the application is running on the file system. By using relative pathnames,
no drive or known location needs to be specified; the current directory is the starting point. For example, if the
application is running in the C:\Development\FileDemo directory, and uses a relative path "LogFile.txt," that
file would be C:\Development\FileDemo\LogFile.txt. To move "up" a directory the .. character is used.
Thus, in the same application, the path ..\Log.txt points to a file in C:\Development called Log.txt.

The tricky part about using relative pathnames in the development process is that it is relative to where the
application is running. When you are developing with the Visual Studio .NET this means the application is several
directories beneath the project folder you created. It is usually located in ProjectName\bin\Debug. This means to
access a file in the project's root folder, you will have to move up two directories with ..\..\ – you will see this

happen often in the chapter.

The FileStream Object

The FileStream object represents a stream pointing to a file on a disk or a network path. While the class does
expose methods for reading and writing bytes from and to the files, most often you will use a StreamReader or
StreamWriter to perform these functions. This is because the FileStream class operates on bytes and byte
arrays, while the Stream classes operate on character data. Character data is easier to work with, but we will see
that there are certain operations, such as random file access, that can only be performed by a FileStream object,
which we will examine later.

There are several ways to create a FileStream object. The constructor has many different overloads/versions but
the simplest takes just two arguments, the filename and a FileMode enumeration.

FileStream aFile = new FileStream("Log.txt", FileMode.OpenOrCreate);

The FileMode enumeration has several members that specify how the file is opened or created. These can be
combined to work together.

FileMode Enumeration Members Description
Append Opens the file if it exists and moves the file position to the end of the

file, or creates a new file. FileMode.Append can only be used in
conjunction with the enum FileAccess.Write.

Create A new file is created; if one already exists it is destroyed.

CreateNew A new file is created, but if one already exists an exception will be
thrown.

Open Opens an existing file. If the file specified does not exist, an exception
is thrown.

OpenOrCreate Specifies that the file should be opened if it exists, otherwise a new
file is created. If it exists, the data in the file is retained.

Truncate An existing file is opened and its contents erased. We can then write
completely new data to the file, but the original creation date will be
retained. The file must exist or an exception is thrown.

The previous constructor opens the file in read-write mode by default. An additional parameter is required to specify a
different level of access, the FileAccess parameter.

FileStream aFile = new FileStream("Log.txt", FileMode.OpenOrCreate, FileAccess.Write)

This line of code would open the file with write access to the file. Any attempt to read from the file would result in an
exception being thrown. The FileAccess enumeration has three values: Read, Write, and ReadWrite. Therefore,
you can open a file for reading only, writing only, or both. This property is often used as a way of varying user access
to the file based on the authorization level of the user.

Both the File and FileInfo classes expose OpenRead() and OpenWrite() methods that make it easier to
create FileStream objects. The first opens the file for read-only access, and the second allows you to write to the
file as well. These provide shortcuts, so you do not have to provide all of the previous information. For example, the
following line opens the Data.txt file for read-only access:

FileStream aFile = File.OpenRead("Data.txt");

Note that the following code performs the same function:
FileInfo aFileInfo = new FileInfo("Data.txt");
FileStream aFile = aFileInfo.OpenRead();

File Position

The FileStream class maintains an internal file pointer. This points to the location within the file where the next
read or write operation will occur. In most cases, when a file is opened it points to the beginning of the file, but this
pointer can be modified. This allows an application to read or write anywhere within the file. This allows for random-
access to a file, or the ability to seek directly to a specific location in the file. This can be very time saving when
dealing with very large files, because you can instantly seek to the correct location.

The method that implements this functionality is the Seek() method. Seek takes two parameters, the first parameter
specifying how far to move the file pointer, in bytes. The second parameter specifies where to start counting from,
and this parameter takes values from the SeekOrigin enumeration – this enumeration contains three values:
Begin, Current, and End.

For example, the following line would move the file pointer to the eighth byte in the file, starting from the very first byte
in the file:
aFile.Seek(8,SeekOrigin.Begin);

The following line would move the file pointer two bytes forward, starting from the current position. If this were
executed directly after the previous line, the file pointer would now point to the tenth byte in the file:
aFile.Seek(2,SeekOrigin.Current);

Note that when you read from or write to a file the file pointer changes as well. After you have read ten bytes, the file
pointer now points to the byte after the tenth byte read.

You can specify negative seek positions as well, which could be combined with the SeekOrigin.End enumeration
value to seek near the end of the file. The following line will seek to the fifth byte from the end of the file:
aFile.Seek(-5, SeekOrigin.End);

Files accessed in this manner are sometimes referred to as random access files, because an application can access
any position within the file. The Stream classes we will look at later access files sequentially, and do not allow the
manipulation of the file pointer.

Reading Data

Reading data using the FileStream class is not as easy as the StreamReader class that we will look at later in
this chapter. This is because the FileStream class deals exclusively with raw bytes. Working in raw bytes makes
the FileStream class useful for any kind of data file, not just text files. By reading byte data, the FileStream
object can be used to read files such as images, or sound files. The cost of this flexibility is that you cannot use the
FileStream to read data directly into a string as you can with the StreamReader class. However, there are several
conversion classes that make it fairly easy to convert byte arrays into character arrays and vice versa.

The FileStream.Read() method is the primary means to access data from a file that a FileStream object points
to. This method reads the data from a file, and then writes this data into a byte array. There are three parameters,
the first parameter being a byte array passed in to accept data from the FileStream object. The second parameter
is the position in the byte array to begin writing data to – this will normally be zero to begin writing data from the file
at the beginning of the array. The last parameter specifies how many bytes to read from the file.

The following example will demonstrate reading data from a random access file. The file we will read from will
actually be the class file we create for the example.

Try it Out – Reading Data from Random Access Files

1. Create a new console application called ReadFile in the directory C:\BegVCSharp\Chapter20.

2. Add the following two using directives to the top of the Class1.cs file. System.IO is needed for our
FileStream class, and System.Text is required for the conversion we must do on the bytes read from the

file.
using System;
using System.IO;
using System.Text;

3. Add the following code to the Main() method:

static void Main(string[] args)
{
 byte[] byData = new byte[100];
 char[] charData = new Char[100];

 try
 {
 FileStream aFile = new FileStream("../../Class1.cs",FileMode.Open);
 aFile.Seek(55,SeekOrigin.Begin);
 aFile.Read(byData,0,100);
 }
 catch(IOException e)
 {
 Console.WriteLine("An IO exception has been thrown!");
 Console.WriteLine(e.ToString());
 Console.ReadLine();
 return;
 }

 Decoder d = Encoding.UTF8.GetDecoder();
 d.GetChars(byData, 0, byData.Length, charData, 0);

 Console.WriteLine(charData);
 Console.ReadLine();

 return;

4. Run the application. You should see output similar to the following:

How it Works

This application opens its own .cs file to read from. It does this by navigating two directories up the file structure with
the .. symbol in the following line:

FileStream aFile = new FileStream("../../Class1.cs",FileMode.Open);

The two lines that implement the actual seeking and reading from a specific point in the file are:
 aFile.Seek(55,SeekOrigin.Begin);
 aFile.Read(byData,0,100);

The first line moves the file pointer to byte number 55 in the file. This is the "n" of namespace in the Class1.cs file;
the 54 characters preceding it are the three lines of using directives. The second line reads the next 100 bytes into
the byte array byData.

Note that these two lines were enclosed in try...catch blocks to handle any exceptions that may be thrown:

try
{
 aFile.Seek(55,SeekOrigin.Begin);
 aFile.Read(byData,0,100);
}
catch(IOException e)
{
 Console.WriteLine("An IO exception has been thrown!");
 Console.WriteLine(e.ToString());
 Console.ReadLine();
 return;
}

Almost all operations involving file IO can throw an exception of type IOException. All production code must
contain error handling, especially when dealing with the file system. The examples in this chapter will all have a basic
form of error handling.

Once we have the byte array from the file, then we need to convert it into a character array so that we can display it
to the console. To do this we will use the Decoder class from the System.Text namespace. This class is designed
to convert raw bytes into more useful items, such as characters:
Decoder d = Encoding.UTF8.GetDecoder();
d.GetChars(byData, 0, byData.Length, charData, 0);

These lines create a Decoder object based on the UTF8 encoding schema. This is the Unicode encoding schema.
Then the GetChars() method is called, which takes an array of bytes and converts it to an array of characters.
Once this has been done, the character array can be printed to the console.

Writing Data

The process for writing data to a random access file is very similar. A byte array must be created; the easiest way to
do this is to first build the character array we wish to write to the file. Then use the Encoder object to convert it to a
byte array, very much like we used the Decoder object. Lastly, call the Write() method to send the array to the file.

Let's build a simple example to demonstrate how this is done.

Try it Out – Writing Data to Random Access Files

1. Create a new console application called WriteFile in the directory C:\BegVCSharp\Chapter20.

2. Just like before, add the following two using directives to the top of the Class1.cs file:

using System;
using System.IO;
using System.Text;

3. Add the following code to the Main() method:

static void Main(string[] args)
{
 byte[] byData = new byte[100];
 char[] charData = new Char[100];

 try
 {
 FileStream aFile = new FileStream("Temp.txt",FileMode.OpenOrCreate);
 charData = "Hello World".ToCharArray();

 Encoder e = Encoding.UTF8.GetEncoder();
 e.GetBytes(charData,0,charData.Length, byData,0,true);

 //Move file pointer to beginning of file
 aFile.Seek(0,SeekOrigin.Begin);
 aFile.Write(byData,0,byData.Length);
 }
 catch(IOException ex)
 {
 Console.WriteLine("An IO exception has been thrown!");
 Console.WriteLine(ex.ToString());
 Console.ReadLine();
 return;
 }

 return;
}

4. Run the application. It should run briefly then close.

5. Navigate to the application directory – the file will have been saved there because we used a relative path. This
is located in the WriteFile\bin\Debug folder. Open the Temp.txt file. You should see the following text in
the file:

How it Works

This application opens up a file in its own directory and writes a simple string to it. In structure, this example is very
similar to the previous example, except we use Write() instead of Read(), and Encoder instead of Decoder!

The following line creates a character array by using the ToCharArray() static method of the String class.
Because everything in C# is an object, and the text "Hello World" is actually a string object, these static
methods can be called even on a string of characters.
CharData = "Hello World".ToCharArray();

The following lines show how to convert the character array to the correct byte array needed by the FileStream
object.
Encoder e = Endoding.UTF8.GetEncoder();
e.GetBytes(charData,0,charData.Length, byData,0,true);

This time, an Encoder object is created based on the UTF8 encoding. We used Unicode for the decoding as well,
and this time we need to encode the character data into the correct byte format before we can write to the stream.
The GetBytes() method is where the magic happens. This converts the character array to the byte array. It accepts
a character array as the first parameter (charData in our example), and the index to start in that array as the second
parameter (0 for the start of the array). The third parameter is the number of characters to convert (charData.
Length – the number of elements in the charData array). The fourth parameter is the byte array to place the data
into (byData), and the fifth parameter is the index to start writing in the byte array (0 for the start of the byData

array).

The sixth and final parameter determines if the Encoder object should flush its state after completion. This refers to
the fact that the Encoder object retains an in memory record of where it was in the byte array. This aids in
subsequent calls to the Encoder object, but is meaningless when only a single call is made. The final call to the
Encoder must set this parameter to true to clear its memory and free the object for garbage collection.

After this it is a simple matter of writing the byte array to the FileStream using the Write() method::

aFile.Seek(0,SeekOrigin.Begin);
aFile.Write(byData,0,byData.Length);

Like the Read() method, the Write() method has three parameters; the array to write from, the index in the array
to start writing from, and the number of bytes to write.

The StreamWriter Object

Working with arrays of bytes is not most people's idea of fun – having worked with the FileStream object you may
be wondering if there is an easier way. Fear not, for once you have a FileStream object you will usually wrap it in a
StreamWriter or StreamReader and use their methods to manipulate the file. If you do not need the ability to
change the file pointer to any arbitrary position, then these classes make working with the file much easier.

The StreamWriter class allows us to write characters and strings to the file, handling the underlying conversions
and writing to the FileStream object.

There are many ways to create a StreamWriter object. If you already have a FileStream object then you can
use this to create a StreamWriter:

FileStream aFile = new FileStream("Log.txt",FileMode.CreateNew);
StreamWriter sw = new StreamWriter(aFile);

A StreamWriter object can also be created directly from a file:

StreamWriter sw = new StreamWriter("Log.txt",true);

This constructor takes the file name, and a Boolean value that specifies whether to append to the file or create a new
one:

● If this is set to false then a new file is created, or the existing file is truncated and then opened.

● If it is set to true then the file is opened, and the data is retained. If there is no file, a new one is created.

Unlike when creating a FileStream object, creating a StreamWriter does not provide you with a similar range of
options – other than the Boolean value to append or create a new file, you have no option for specifying the
FileMode property as we did with the FileStream class. Also, you do not have an option of setting the
FileAccess property, so you will always have read/write privileges to the file. To use any of the advanced
parameters you must first specify them in the FileStream constructor, and then create a StreamWriter from the
FileStream object.

Try it Out – Output Stream

1. Create a new console application called StreamWrite in the directory C:\BegVCSharp\Chapter20.

2. We will be using the System.IO namespace again, so add the following using directive near the top of the
Class1.cs file.

using System;

using System.IO;

3. Add the following code to the Main() method:

static void Main(string[] args)
{
 try
 {
 FileStream aFile = new FileStream("Log.txt",FileMode.OpenOrCreate);
 StreamWriter sw = new StreamWriter(aFile);

 bool truth = true;
 //Write data to file
 sw.WriteLine("Hello to you.");
 sw.WriteLine("It is now {0} and things are looking good.",
 DateTime.Now.ToShortDateString());
 sw.Write("More than that,");
 sw.Write(" it's {0} that C# is fun.",truth);
 sw.Close();
 }
 catch(IOException e)
 {
 Console.WriteLine("An IO exception has been thrown!");
 Console.WriteLine(e.ToString());
 Console.ReadLine();
 return;
 }
 return;
}

4. Build and run the project. If no errors are found it should quickly run and close. Since we are not displaying
anything on the console, it is not a very exciting program to watch.

5. Go to the application directory and find the Log.txt file. This is located in the StreamWrite\bin\Debug
folder because we used a relative path.

6. Open up the file and you should see the following characters:

How it Works

This simple application demonstrates the two most important methods of the StreamWriter class, Write() and
WriteLine(). Both of them have many overloaded versions for doing more advanced file output, but we use basic
string output in this example.

The WriteLine() method will write the string passed to it, followed immediately by a newline character. We can
see in the example that this causes the next write operation to begin on a new line.

Just as you can write formatted data to the console, so you can also do this to files. For example, we can write out
the value of variables to the file using standard format parameters:
 sw.WriteLine("It is now {0} and things are looking good.",
 DateTime.Now.ToShortDateString());

DateTime.Now holds the current date, the ToShortDateString() method is used to convert this date into the
shorter, easier to read form.

The Write() method simply writes the string passed to it to the file, without a newline character appended, allowing
us to write a complete sentence or paragraph using more than one Write() statement.

 sw.Write("More than that,");
 sw.Write(" it's {0} that C# is fun.",truth);

Here again we use format parameters, this time with Write() to display the Boolean value truth – we set this
variable to true earlier, and its value is automatically converted into True for the formatting.

We can use Write() and format parameters to write comma-separated files:

Write("{0},{1},{2}",100,"A nice product",10.50);

In a more sophisticated example this data could come from a DataSet or other data source. In fact, you'll find an
exercise at the end of the chapter to write comma-separated files from a DataSet.

The StreamReader Object

Input streams are used to read data from an external source. Many times this will be a file on a disk or network
location. But remember that this source could be almost anything that can send data, such as a network application,
web service, or even the console.

The StreamReader class is the one that we will be using to read data from files. Like the StreamWriter class, this
is a generic class that can be used with any stream. We will again be constructing it around a FileStream object so
it points to the correct file.

StreamReader objects are created in much the same way as StreamWriter objects. The most common way to
create one is to use a previously created FileStream object:

FileStream aFile = new FileStream("Log.txt",FileMode.Open);
StreamReader sr = new StreamReader(aFile);

Like the StreamWriter, the StreamReader class can be created directly from a string containing the path to a
particular file:
StreamReader sr = new StreamReader("Log.txt");

Try it Out – Stream Input

1. Create a new console application called StreamRead in the directory C:\BegVCSharp\Chapter20.

2. Again we must import the System.IO namespace, so place the following line of code near the top of Class1.
cs:

using System;
using System.IO;

3. Add the following code to the Main() method:

static void Main(string[] args)
{
 string strLine;

 try
 {
 FileStream aFile = new FileStream("Log.txt",FileMode.Open);

 StreamReader sr = new StreamReader(aFile);
 strLine = sr.ReadLine();
 //Read data in line by line
 while(strLine != null)
 {
 Console.WriteLine(strLine);
 strLine = sr.ReadLine();
 }
 sr.Close();
 }
 catch(IOException e)
 {
 Console.WriteLine("An IO exception has been thrown!");
 Console.WriteLine(e.ToString());
 return;
 }

 return;
}

4. Copy the Log.txt file, created in the previous example, into the StreamRead\bin\Debug directory. If you
don't have a file named Log.txt , the FileStream constructor will throw an exception when it doesn't find the
file.

5. Run the application – you should see the text of the file written to the console:

How it Works

This application is very similar to the previous one, with the obvious difference being that it is reading a file rather
than writing one. As before you must import the System.IO namespace to be able to access the necessary classes.

We use the ReadLine() method to read text from the file. This method reads text until a carriage return is found,
and returns the resulting text as a string. The method returns a null when the end of the file has been reached,
which we use to test for the end of the file. Note that we use a while loop, which checks the line read isn't null
before any code in the body of the loop is executed – this way only the genuine contents of the file are displayed:
strLine = sr.ReadLine();
while(strLine != null)
{
 Console.WriteLine(strLine);
 strLine = sr.ReadLine();
}

Reading Data

The ReadLine() method is not the only way we have of accessing data in a file. The StreamReader class has
many methods for reading data.

The simplest of the reading methods is Read(). This method returns the next character from the stream as a positive
integer value or a -1 if it has reached the end. This value can be converted into a character by using the Convert
utility class. In the example above the main parts of the program could be rewritten as such:

int nChar;
nChar = sr.Read();
while(nChar != -1)
{
 Console.Write(Convert.ToChar(nChar));
 nChar = sr.Read();
}

A very convenient method to use with smaller files is the ReadToEnd() method. This method reads the entire file
and returns it as a string. In this case the earlier application could be simplified to this:
strLine = sr.ReadToEnd();
Console.WriteLine(strLine);

While this may seem very easy and convenient, care must be taken. By reading all the data into a string object you
are forcing the data in the file to exist in memory. Depending on the size of the data file, this can be prohibitive. If the
data file is extremely large, it is better to leave the data in the file and access it with the methods of the
StreamReader.

Delimited Files

Delimited files are a common form of data storage, and are used by many legacy systems – if your application must
interoperate with such a system then you will encounter the delimited data format quite often. A particularly common
form of delimiter is a comma – for example, the data in an Excel spreadsheet, an Access database, or a SQL Server
database can be exported as a comma-separated value (CSV) file.

We've seen how to use the StreamWriter class to write such files using this approach – it is also easy to read
comma-separated files. If you cast your mind back to

Our example for dealing with comma-separated values will make use of the DataSet object that you met in the
previous chapter, and will read data from a comma-delimited file and populate a DataSet object with this data.

This way our example will become more useful, since you can then use it from within your own applications if you
need to work with comma-separated values.

Try it Out– Comma-Separated Values

1. Create a new console application called CommaValues in the directory C:\BegVCSharp\Chapter20.

2. Place the following line of code near the top of Class1.cs. We need to import the System.IO namespace for
our file-handling, and also the System.Data namespace for our data-handling:

using System;
using System.IO;
using System.Data;

3. Now add the following GetData() method into the body of Class1, before the Main() method:

 private static DataSet GetData()
 {
 string strLine;
 string[] strArray;
 char[] charArray = new char[] {','};

 DataSet ds = new DataSet();
 DataTabel dt = ds.Tables.Add("TheData");
 try
 {
 FileStream aFile = new FileStream("../../../SomeData.txt",FileMode.Open);
 StreamReader sr = new StreamReader(aFile);

 strLine = sr.ReadLine();

 // Obtain the columns from the first line

 //Split row of data into string array
 strArray = strLine.Split(charArray);

 for(int x=0;x<=strArray.GetUpperBound(0);x++)
 {
 dt.Columns.Add(strArray[x]);
 }

 strLine = sr.ReadLine();
 while(strLine != null)
 {
 //Split row of data into string array
 strArray = strLine.Split(charArray);

 DataRow dr = dt.NewRow();
 for(int x=0;x<=strArray.GetUpperBound(0);x++)
 {
 dr[x] = strArray[x];
 }
 dt.Rows.Add(dr);
 strLine = sr.ReadLine();
 }

 sr.Close();
 return ds;

 }
 catch(IOException ex)
 {
 Console.WriteLine("An IO exception has been thrown!");
 Console.WriteLine(ex.ToString());
 Console.ReadLine();
 return ds;
 }
 }
}

4. Now add the following code to the Main() method:

static void Main(string[] args)
{
 DataSet myDataSet = GetData();
 foreach (DataColumn c in myDataSet.Tables["TheData"].Columns)
 {
 Console.Write("{0,-20}",c.ColumnName);
 }
 Console.WriteLine();

 foreach (DataRow r in myDataSet.Tables["TheData"].Rows)
 {
 foreach (DataColumn c in myDataSet.Tables["TheData"].Columns)
 {
 Console.Write("{0,-20}",r[c]);
 }

 Console.WriteLine();
 }
}

5. In VS, create a new text file by choosing Text File from the File | New File dialog:

6. Enter the following text into this new text file:
ProductID,Name,Price
1,Spiky Pung,1000
2,Gloop Galloop Soup,25
4,Hat Sauce,12

7. Save the file as SomeData.txt in the CommaValues project directory.

8. Run the application– you should see the text of the file written to the console:

How it Works

Like the previous example, this application reads the file line by line into a string. However, since we know this is a
file containing comma-separated text values, we are going to handle it differently. Not only that, but we will actually
store the values we read in a DataSet.

First, let's look at the some of the comma-separated data itself:
ProductID,Name,Price
1,Spiky Pung,1000

Note that the first line holds the names of the columns of data, and subsequent lines hold the data. Thus our
procedure will be to obtain the column names from the first line of the file, and then proceed to retrieve the data in the
remaining lines.

Now let's look at the GetData() method – this method is declared as static so we can call this method without
creating an instance of our class. This method returns a DataSet object that we will create and then populate with
data from the comma-separated text file. The following lines create the DataSet, add a new DataTable called
TheData to the DataSet object's Tables collection:

 DataSet ds = new DataSet();
 DataTable dt = ds.Tables.Add("TheData");

This DataTable will hold all the values that we read in from the comma-separated text file, and each row in the file
will correspond to a DataRow in the DataTable. The first row of the file actually holds the names of the columns for
the DataTable, and it is these that we must retrieve first.

We create our FileStream object, and then construct our StreamReader around that as we did in our earlier
examples. Now we can read the first line of the file, and create an array of strings from that one string:
 strLine = sr.ReadLine();
 strArray = strLine.Split(charArray);

We saw the Split() method in splitting strLine at each instance of ,. Since we are currently reading from the
first line of the file, and this line holds the names of the columns of data, we wish to loop through each string in
strArray and add a new DataColumn to our DataTable, with the name of the column taken from strArray:

 for(int x=0;x<=strArray.GetUpperBound(0);x++)
 {
 dt.Columns.Add(strArray[x]);
 }

Now that we have the names of the columns for our data, we can read in the data. The code for this is essentially the
same as for the earlier StreamRead example, except for the presence of the DataRow code:

 strLine = sr.ReadLine();
 while(strLine != null)
 {
 //Split row of data into string array
 strArray = strLine.Split(charArray);

 DataRow dr = dt.NewRow();
 for(int x=0;x<=strArray.GetUpperBound(0);x++)
 {
 dr[x] = strArray[x];
 }
 dt.Rows.Add(dr);
 strLine = sr.ReadLine();
 }

For each line in the file, we create a new DataRow with the NewRow() method. We fill that row with data by setting
column x of that row to the value of strArray[x] – thus the x-th piece of data in the line is placed into the x-th
DataColumn of the DataRow. Once we have looped through all the pieces of data in the line, we add the DataRow
to the DataTable object's DataRow collection.

Once we've read all the data in from the file, we close the StreamReader and return our populated DataSet.

The code in the Main() method obtains the DataSet from the GetData() method, and displays this information to
the console. First, the name of each column is displayed:
 foreach (DataColumn c in myDataSet.Tables["TheData"].Columns)
 {
 Console.Write("{0,-20},c.ColumnName);
 }
 Console.WriteLine();

The -20 part of the formatting string {0,-20} ensures that the name we display is left-aligned in a column of 20
characters – this will help to format the display. Finally, we loop through each DataRow in the Rows collection and
display the values in that row, once again using the formatting string to format our output. This process of looping
through the Rows collection should be familiar from the last chapter.

 foreach (DataRow r in myDataSet.Tables["TheData"].Rows)
 {

 foreach (DataColumn c in myDataSet.Tables["TheData"].Columns)
 {
 Console.Write("{0,-20},r[c]);
 }
 Console.WriteLine();
 }

As you can see, it is very simple to extract meaningful data from comma-separated value (CSV) files using the .NET
Framework, and combined with the data access techniques we learned from the last chapter, we have been able to
put this data into a form that means it can be used like data from any other data source, thanks to the DataSet.
However, there is currently no information about the data types of the data in our DataSet – for an enterprise level
business application we will to go this extra step and add type information to the DataSet, then our comma-
separated data from a text file is as good as data from most other sources, once again thanks to the DataSet.

Even though XML is a much superior method of storing and transporting data, you will find that CSV files are still very
common, and will be for quite some time. Delimited files such as comma-separated files also have the advantage of
being very terse and therefore smaller than their XML counterparts.

Chapter 20 - Working With Files
byKarli Watsonet al.

Wrox Press 2003

Monitoring the File Structure

Sometimes an application must do more than just read and write files to the file system. Sometimes it is
important to know when files or directories are being modified. The .NET Framework has made it easy to
create custom applications that do just that.

The class that helps us to do this is the FileSystemWatcher class. This class exposes several events that
our application can catch. This enables our application to respond to file system events.

The basic procedure for using the FileSystemWatcher is simple. First we must set a handful of properties,
which specify where to monitor, what to monitor, and when it should raise the event that our application will
handle. Then we give it the addresses of our custom event handlers, so that it can call these when significant
events occur. Then we turn it on and wait for the events.

The properties that must be set before a FileSystemWatcher object is enabled are:

Property Description
Path This must be set to the file location or directory to monitor.

NotifyFilter This is a combination of NotifyFilters enumeration values that specify what
to watch for within the monitored files. These represent properties of the file or
folders being monitored. If any of the specified properties change, an event is
raised. The possible enumeration values are: Attributes, CreationTime,
DirectoryName, FileName, LastAccess, LastWrite, Security, Size.
Note that these can be combined using the binary OR operator.

Filter A filter on which files to monitor, for example *.txt.

Once these settings have been set, you must write event handlers for the four events, Changed, Created,
Deleted, and Renamed. As we saw in creating your own method and assigning it to the object's event. By
assigning your own event handler to these methods, your method will be called when the event is fired. Each
event will fire when a file or directory matching the Path, NotifyFilter, and Filter property is modified.

Once you have set the properties and the events, set the EnableRaisingEvents property to true to begin
the monitoring.

Try it Out - Monitoring the File System

Let's build a more sophisticated example utilizing most of what we have learned in this chapter.

1. Create a new Windows application called FileWatch in the directory C:\BegVCSharp\Chapter20.

2. Set the various form properties using the table below:

Property Setting

FormBorderStyle FixedDialog

MaximizeBox False

MinimizeBox False

Size 302, 160

StartPosition CenterScreen

Text FileMonitor

3. Using the list below, add the required controls to the form and set the appropriate properties:

Control Name Location Size Text

TextBox txtLocation 8, 24 184,20

Button cmdBrowse 208, 24 64, 24 Browse...

Button cmdWatch 88, 56 80, 32 Watch!

Label lblWatch 8, 104 264, 32

Ensure that you see the Enabled property of the cmdWatch Button to False, since we can't watch a file
before one has been specified. Also add an OpenFileDialog control to the form, set its Name to
FileDialog, and its Filter to All Files|*.*. When you are finished your form should look like the following
picture. The expanse of gray at the bottom is the Label control that will display the current status of the
application:

4. Now that our form looks good, let's add some code to make it do some work. The first thing we need to
do is add our usual using directive for the System.IO namespace to the existing list of using
directives:
using System;
using System.Drawing;
using System.Collections;
using System.ComponentModel;
using System.Windows.Forms;
using System.Data;
using System.IO;

5. Now we must add the FileSystemWatcher class to the Form1 class. Below the private declarations
for the Windows Forms objects write the following line of code:
private System.Windows.Forms.TextBox txtLocation;
private System.Windows.Forms.Button cmdBrowse;
private System.Windows.Forms.Button cmdWatch;

private System.Windows.Forms.Label lblWatch;
private System.Windows.Forms.OpenFileDialog FileDialog;
//File System Watcher object
private FileSystemWatcher watcher;

6. We need to add some code to the InitializeComponent() method. First, expand the region marked
Windows Form Designer generated code to view the InitializeComponent() method. At the end of the
InitializeComponent() method add the following code. This code is needed to initialize the
FileSystemWatcher object and associates the events to methods that we are going to create next:

this.watcher = new System.IO.FileSystemWatcher ();
this.watcher.Deleted += new System.IO.FileSystemEventHandler(this.OnDelete);
this.watcher.Renamed += new System.IO.RenamedEventHandler(this.OnRenamed);
this.watcher.Changed += new System.IO.FileSystemEventHandler(this.OnChanged);
this.watcher.Created += new System.IO.FileSystemEventHandler(this.OnCreate);

7. Add the following four methods after the InitializeComponent() method. These are our methods
that will handle the events that the FileSystemWatcher raises:

// Define the event handlers.
public void OnChanged(object source, FileSystemEventArgs e)
{
 try
 {
 StreamWriter sw = new StreamWriter("C:/FileLogs/Log.txt",true);
 sw.WriteLine("File: {0} {1}", e.FullPath, e.ChangeType.ToString());
 sw.Close();
 lblWatch.Text = "Wrote change event to log";
 }
 catch(IOException ex)
 {
 lblWatch.Text = "Error Writing to log";
 }
}
public void OnRenamed(object source, RenamedEventArgs e)
{
 try
 {
 StreamWriter sw =new StreamWriter("C:/FileLogs/Log.txt",true);
 sw.WriteLine("File renamed from {0} to {1}", e.OldName, e.FullPath);
 sw.Close();
 lblWatch.Text = "Wrote renamed event to log";
 }
 catch(IOException ex)
 {
 lblWatch.Text = "Error Writing to log";
 }
}
public void OnDelete(object source, FileSystemEventArgs e)
{
 try
 {
 StreamWriter sw = new StreamWriter("C:/FileLogs/Log.txt",true);
 sw.WriteLine("File: {0} Deleted", e.FullPath);
 sw.Close();

 lblWatch.Text = "Wrote delete event to log";
 }
 catch(IOException ex)
 {
 lblWatch.Text = "Error Writing to log";
 }
}

public void OnCreate(object source, FileSystemEventArgs e)
{
 try
 {
 StreamWriter sw = new StreamWriter("C:/FileLogs/Log.txt",true);
 sw.WriteLine("File: {0} Created", e.FullPath);
 sw.Close();
 lblWatch.Text = "Wrote create event to log";
 }
 catch(IOException ex)
 {
 lblWatch.Text = "Error Writing to log";
 }
}

8. We will now add the Click event handler for the Browse... button. The code in this event handler will
open the Open File dialog, allowing the user to select a file to monitor. Double-click on the Browse…
button and enter the following code:

private void cmdBrowse_Click(object sender, System.EventArgs e)
{
 if (FileDialog.ShowDialog() != DialogResult.Cancel)
 {
 txtLocation.Text = FileDialog.FileName;
 cmdWatch.Enabled = true;
 }
}

The ShowDialog() method returns a DialogResult enumeration value representing how the user
exited the File Open dialog. The user could have clicked OK or hit the Cancel button. We need to check
that the user did not click the Cancel button, so we compare the result from the method call to the
DialogResult.Cancel enumeration value before saving the user's file selection to the TextBox.
Finally we set the Enabled property of the Watch button to true so that we can watch the file.

9. Now for the last bit of code. Follow the same procedure as above with the Watch button. Add the
following code to launch the FileSystemWatcher:

private void cmdWatch_Click(object sender, System.EventArgs e)
{
 watcher.Path =Path.GetDirectoryName(txtLocation.Text);
 watcher.Filter = Path.GetFileName(txtLocation.Text);
 watcher.NotifyFilter = NotifyFilters.LastWrite | NotifyFilters.FileName |
NotifyFilters.Size;
 lblWatch.Text = "Watching " + txtLocation.Text;
 // Begin watching.
 watcher.EnableRaisingEvents = true;
}

10. We need to make sure the FileLogs directory exists for us to write data to. Add the following code to
the Form1 constructor that will check to see if the directory exists, and create the directory if it does not
already exist.
public Form1()
{
 //
 // Required for Windows Form Designer support
 //
 InitializeComponent();

 DirectoryInfo aDir = new DirectoryInfo("C:/FileLogs");
 if(!aDir.Exists)
 aDir.Create();
}

11. Build the project. If everything builds successfully click the Browse button and select a text file
somewhere on your computer.

12. Click the Watch button to begin monitoring the file. The only change you will see in your application is the
label control showing the file is being watched.

13. Using Windows Explorer navigate to the same file you are currently watching. Open it in Notepad and
add some text to the file. Save the file.

14. We can now check the log file to see the changes. Navigate to the C:\FileLogs\Log.txt file and
open it in Notepad. You should see a description of the changes to the file you selected to watch.

How it Works

This application is fairly simple, but it demonstrates how the FileSystemWatcher works. Try playing with
the string you put into the monitor text box. If you specify *.* in a directory it will monitor all changes in the
directory.

Most of the code in the application is based around setting up the FileSystemWatcher object to watch the
correct location:
watcher.Path = Path.GetDirectoryName(txtLocation.Text);
watcher.Filter = Path.GetFileName(txtLocation.Text);
watcher.NotifyFilter = NotifyFilters.LastWrite | NotifyFilters.FileName |
NotifyFilters.Size;

lblWatch.Text = "Watching " + txtLocation.Text;

// Begin watching.
watcher.EnableRaisingEvents = true;

The code first sets the path to the directory to monitor. This uses a new object we have not looked at yet: the
System.IO.Path object. This is a static class, very much like the static File object. It exposes many static
methods to manipulate and extract information out of file location strings. We first use it to extract the directory
name the user typed in from the text box, using the GetDirectoryName() method.

The next line sets the filter for the object. This can be an actual file, in which case it would only monitor the
file, or it could be something like *.txt, in which case it would monitor all the .txt files in the directory
specified. Again we use the Path static object to extract the information from the supplied file location.

The NotifyFilter is a combination of NotifyFilters enumeration values that specify what constitutes a
change. In this example we have said that if the last write timestamp, the filename, or the size of the file
changes then it will notify our application of the change. After updating the UI we set the
EnableRaisingEvents property to true to begin monitoring.

But before this we have to create the object and set the event handlers.
this.watcher = new System.IO.FileSystemWatcher();
this.watcher.Deleted += new System.IO.FileSystemEventHandler(this.OnDelete);
this.watcher.Renamed += new System.IO.RenamedEventHandler(this.OnRenamed);
this.watcher.Changed += new System.IO.FileSystemEventHandler(this.OnChanged);
this.watcher.Created += new System.IO.FileSystemEventHandler(this.OnCreate);

This is how we hook up the event handlers for the watcher object with the private methods we have created.
Here we will have event handlers for the event raised by the watcher object when a file is deleted, renamed,
changed or created. In our own methods we decide how to handle the actual event. Note that we are notified
after the event takes place.

In the actual event handler methods we simply write the event to a log file. Obviously this could be a more
sophisticated response depending on our application. When a file is added to a directory we could move it
somewhere else or read the contents and fire off a new process using the information. The possibilities are
endless!

Chapter 20 - Working With Files
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter, we have learned about streams and why they are used in the .NET Framework to access files
and other serial devices. We looked at the basic classes in the System.IO namespace, including:

● File

● FileInfo

● FileStream

We saw that the File class exposes many static methods for moving, copying, and deleting files, FileInfo
represents a physical file on disk, and has methods to manipulate this file. A FileStream object represents a
file that can be written to, or read from, or both.

We also explored StreamReader and StreamWriter classes and saw how useful they were for writing to
streams. We saw how to read and write to random files using the FileStream class. Finally, we built an
entire application to monitor files and directories using the FileSystemWatcher class.

In summary, we have covered:

● Opening a file

● Reading from a file

● Writing to a file

● The difference between the StreamWriter and StreamReader classes and the FileStream class

● Working with delimited files to populate a DataSet

● Monitoring the file system with the FileSystemWatcher class

Chapter 20 - Working With Files
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. What is the namespace that must be imported to allow an application to work with files?

2. When would you use a FileStream object to write to a file instead of using a StreamWriter object?

3. What methods of the StreamReader class allow you to read data from files and what does each one
do?

4. What events does the FileSystemWatcher class expose and what are they for?

5. Modify the FileWatch application we built in this chapter. Add the ability to turn the file system monitoring
on and off without exiting the application.

6. Modify the previous chapter so that instead of displaying the data read in, the data is written to a comma
separated value file.

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Chapter 21: .NET Assemblies

Overview

An assembly is a .NET executable program (or part of an executable program) delivered as a single unit.
Assemblies are the means used to package C# programs for execution and delivery. When you build a C#
program, the .exe file produced is an assembly. If you build a class library, the DLL (Dynamic Link Library)
file produced is also an assembly.

All the code in an assembly is built, delivered, and assigned a version number as a single unit. The assembly
makes the public classes, properties, and methods visible to other programs. Everything private to your
program is kept inside the assembly.

In this chapter we will explore assemblies. In particular, we will look at:

● A brief review of components

● Features of an assembly, including its self-description ability

● The structure of an assembly, and how to view its contents

● Assembly versioning

● Private and shared assemblies

● Signing assemblies and the Global Assembly Cache

While every C# program is packaged as an assembly, many of the features of assemblies are designed to
make it easy to deliver a special class of programs called components. Understanding components is
essential to understanding the benefits of assemblies, so let's review what a component is.

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Components

A component is a subprogram or part of a program designed to be used by other programs. In addition, a
component is a binary unit (executable code as opposed to source code) that can be used by other programs
without having to recompile either the source code of the component itself or the program using the
component. This means that third-party suppliers don't have to provide the source code for their components.

In the loosest sense, a component includes any binary subprogram; thus any DLL is by definition a
component since it is a subprogram containing executable code.

A stricter definition of a component requires it to provide a means of advertising its contents to other
programs. Assemblies provide this advertising ability within .NET.

The strictest definition of a component requires it to provide known interfaces to release no-longer-used
system resources and to support integration with design tools. In the .NET Framework, a component in this
strictest sense is required to implement the System.ComponentModel.IComponent interface, which
provides these features.

For understanding the benefits of assemblies, we're using the less strict definition, including the requirement
of advertising the contents of the component.

Benefits of Components

Components provide improved reusability, flexibility, and delivery of subprograms. In addition, binary reuse
saves time and increases reliability.

For example, consider a class named Shapes that contains objects for representing circles, triangles, or other
shapes. It might contain methods for calculating the area of a shape or performing other operations with
shapes. Many kinds of programs might use a Shapes class: painting/drawing programs, engineering,
architecture/building design, computer-aided design, games, and others.

Wouldn't it be great if the routines for drawing and manipulating shapes could be defined just once and reused
by all these programs? This is the reusability benefit.

What if this reuse could be accomplished without having to recompile and link the Shapes class library for
every program that uses it? This saves time and helps reliability, since it removes the possibility of introducing
problems each time you compile and link.

Even better, maybe some other person or company has already written a shapes component that does what
you want; then you can use the component (by downloading and/or purchasing it) without having to write it
yourself. If you could share components at the binary level, you wouldn't have to worry about what
programming language was used to develop the component. The .NET Framework and assemblies provide
all of these benefits.

A Brief History of Components

In order for different programs to reuse components at the binary level, there must be some standard for
implementing the way classes and objects are named and used at the binary level. The standard for doing this
in Microsoft-based products has evolved over time.

Microsoft Windows introduced the DLL (Dynamic-Link Library) where one or more programs could use a
chunk of code stored in a separate file. This worked at a very basic level if the programs were written in the
same language (typically C). However, programs needed to know a lot in advance about the DLLs they used,
and DLLs did not enable programs to use one another's data.

To exchange data, DDE (Dynamic Data Exchange) was developed. This defined a format and mechanism for
piping data from one program to another, but was not flexible. OLE 1.0 (Object Linking and Embedding)
followed, which enabled a document such as a Word document to actually contain a document from another
program (such as Excel). This was something like components, but OLE 1.0 was not truly a general-purpose
component standard.

Microsoft defined its first true component standard with the COM (Component Object Model) standard
implemented in Windows in the mid-1990s. OLE version 2 and many successor technologies were built on
COM. DCOM (Distributed COM) introduced the ability for COM components to interact over a network, and
COM+ added services that components could call on to ensure high performance in multi-tier environments.

COM works well but is difficult to learn (especially when used from C++) and to use. COM requires
information about components to be inserted into the Windows system registry, making installation more
complex and component removal more difficult.

COM was originally designed for use with C/C++; it was enhanced so that Visual Basic could use it
("Automation") and indeed this works well, but it became even harder for the C/C++ programmer to make
components compatible with Visual Basic (you still could not inherit from a class defined in another language,
for example).

Additionally, as users installed multiple versions of DLLs and COM components from Microsoft and other
companies over time, problems arose with programs using different versions of the same shared DLL. It was
very easy for one program to install a different version of a DLL already used by another program, and this
would cause the original program to break (this phenomenon was the infamous "DLL Hell"). The burden of
tracking all the information about the different DLLs installed on a system made it very hard to upgrade and
maintain components.

The .NET programming model brings a new standard that addresses these problems, the .NET assembly.

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

.NET Assembly Features

Before we look at the structure of an assembly, let's first discuss some of the features of .NET assemblies.

Self-Description

The most important aspect of .NET assemblies that distinguishes them from their predecessors is that they
are fully self-describing; the description is contained within the assembly so the system or calling program
does not have to look up information in the Registry or elsewhere about the objects contained within the
assembly.

The self-description of .NET assemblies goes beyond names of objects and methods, and the data types of
parameters; it also contains information about what version the objects are (think of Shapes 1.0 followed by
Shapes 1.1 or Shapes 2.0), and controls the security for the contained objects. All of this information is
contained within the assembly itself – there is no need to look up information elsewhere. This makes
installation of a .NET component much easier and more straightforward than with the existing Windows
technologies. In fact, it can be literally as easy as copying the assemblies onto the disk of the target system.

.NET Assemblies and the .NET Framework Class Library

Every .NET program, including all C# programs, makes extensive use of the .NET Framework Class Library.
You are using these classes whenever you call a method from the System namespace with the using
System directive – all the System namespaces (System.Data, System.Drawing, and so on) belong to
the .NET Framework Class Library.

Each class within this library is part of a self-describing assembly. The drawing classes, for example, are
contained in the System.Drawing.dll assembly. If you add a reference to this assembly in Visual Studio .
NET, the compiler will include a reference to that assembly when it builds the assembly for your program. At
run-time, the CLR reads the metadata in your program's assembly to see what other assemblies it needs,
then locates and loads those assemblies for your program to use. Assemblies referenced by your program
may reference other assemblies, so that even a simple program with a single using directive may actually be
referencing several different assemblies. The self-description in each assembly keeps track of all these
references, without you having to even be aware of it.

I should clarify something here so as to not cause confusion later on.

Important The correspondence between namespaces and assemblies is not necessarily one-to-one. In
other words, an assembly may contain information from more than one namespace, and
conversely, a single namespace may be spread across several assemblies.

For example, the System.Data.dll assembly actually contains some functionality from both the System.
Data and System.Xml namespaces, while other functionality in the System.Xml namespace is
implemented in the System.Xml.dll assembly. Within your program you are referring to a namespace
when specifying the using directive; the references in your Visual Studio .NET project specify the actual

assemblies used.

Cross-Language Programming

One additional benefit of assemblies and .NET is that they enable cross-language programming, since
components can be called from any .NET language, regardless of the language they were originally written in.

.NET provides a number of features which enable cross-language programming:

● The Common Language Runtime (CLR), which manages the execution of all .NET assemblies.

● MSIL (Microsoft Intermediate Language), generated by all the .NET language compilers. This is a
common standard for the binary code generated by the compilers and is what is executed by the CLR.
The CLR also defines the format for storing an assembly's metadata, and this means that all assemblies,
whatever language they were written in, share a common format for storing their metadata.

● The Common Language Specification (CLS), provided so that programs written in C#, Visual Basic .NET,
Visual C++.NET, or any other .NET language that is CLS-compliant can share components with full
inheritance across language boundaries. The CLS defines the features that languages must support in
order to support interoperability with other .NET languages. It is possible to use features that are not in the
CLS, but there is no guarantee that these will be supported by other languages.

● The Common Type System (CTS), which defines the basic types used by all .NET languages and rules for
defining our own classes. This prevents languages implementing, say, the String type in incompatible
ways.

By following the CLS specification, you can write a component in C# and the assembly containing the
component can be used by a program written in another .NET language, such as Visual Basic .NET, because
both the C# and Visual Basic .NET components will be executed by the CLR. Similarly, C# programs can use
components written in Visual Basic .NET, Visual C++.NET, and so on. At the assembly level, all classes,
objects, and data types used by .NET languages are shared, so you can inherit classes and make full use of
components no matter what language they are written in.

Interoperation with COM and Other Legacy Code

The .NET Framework also allows components or libraries written using COM and other "legacy" technologies
to be used with C# and other .NET languages.

This mechanism also works via self-describing assemblies; what happens is that a wrapper assembly is
created for the legacy code that allows it to describe itself to the .NET runtime and convert the COM data
types to .NET data types and allow calls back and forth from the .NET languages to the legacy code and vice-
versa. Visual Studio .NET automatically creates a wrapper assembly when you add a reference to a COM
component (using the COM tab in the Add Reference dialog).

This diagram shows such a wrapper (also called a Runtime Callable Wrapper) in use; calls made by the .NET
client assembly go through the wrapper to get to the COM component; from the .NET assembly's point of
view, the wrapper is the component:

There are difficulties to interoperating with legacy technologies such as COM, and such a subject is beyond
the scope of this book.

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Structure of Assemblies

The parts of an assembly provide the means for .NET programs to find out about one another and resolve the
references between programs and components.

An assembly contains the executable code for a program or class library, along with metadata (data
describing other data), which enables other programs to look up classes, methods, and properties of the
objects defined within the assembly. The metadata acts in two ways: as a table of contents, describing what is
contained inside the assembly; and as a bibliography describing references to data outside the assembly.
Let's look at this in more detail.

Single-file .NET assemblies have the following general format:

Each assembly contains a manifest, which describes the contents of the assembly (like a manifest for a
shipment of goods). The manifest is also called the assembly metadata, as it describes the assembly itself –
what modules it contains, what other assemblies it references, and so on. We'll examine this in more detail
later on in this chapter when we view the contents of an assembly we've created. Previous component
technologies such as COM have no in-built concept like the manifest; the manifest is the heart of the self-
description built into .NET assemblies.

The .NET runtime uses the manifest in the program's assembly when executing the program for resolving
references to other assemblies, such as System, that contains the Console.WriteLine() method for
printing out "Hello, World!".

The manifest is followed by the type metadata – the description of the classes, properties, methods, and so
on contained within the assembly along with the data types for their parameters and return values. This is
followed by the actual binary code for each of the types, stored as machine-independent Microsoft
Intermediate Language (MSIL) code. Finally, there are any resources that form part of the assembly.
Resources are non-executable parts of your program (specified in .Resources files) such as images, icons,
or message files.

Although an assembly often consists of only one file, it can also be composed of several files, as shown here:

From the .NET runtime's point of view, a multiple-file assembly is a single logical DLL or EXE that just
happens to consist of multiple files. Only one file contains the manifest. The manifest points to the other files
that make up the multiple-file assembly. The files that contain executable code are called modules; these
contain type metadata and MSIL code. There may also be resource files containing no executable code.

Multiple-file assemblies are usually needed only in certain advanced applications. A module or resource is
loaded only when it is actually executed or brought into use, so you can save download time and memory
when modules and resources that are rarely used are stored in separate files. For example, an application
delivered internationally may have modules or resources written in different languages; you would separate
these so only the module for the language actually in use is loaded into memory.

Now we've seen what assemblies are, let's create one and look at its properties. First, we need to create a
simple class library in C# that we'll refer to in the rest of this chapter. Let's make a simple version of the
Shapes component we imagined in the first part of the chapter.

Try it Out – Creating the Shapes Component

1. Create a new class library project called Shapes in the directory C:\BegVCSharp\Chapter21.
Rename the default Class1.cs file created by default to Shapes.cs and type in the source code
shown below. The binary file built from Shapes.cs will be Shapes.dll, and we will be using that as
our example of an assembly.

2. Enter the following code for into the Shapes namespace as follows:

namespace Shapes
{
 public class Circle
 {
 double Radius;

 public Circle()
 {
 Radius = 0;
 }

 public Circle(double givenRadius)
 {
 Radius = givenRadius;
 }
 public double Area()
 {
 // area = pi r squared
 return System.Math.PI * (Radius * Radius);
 }
 }

 public class Triangle
 {
 double Base;
 double Height;

 public Triangle()
 {
 Base = 0;
 Height = 0;
 }

 public Triangle(double givenBase, double givenHeight)
 {
 Base = givenBase;
 Height = givenHeight;
 }

 public double Area()
 {
 return 0.5F * Base * Height; // area = 1/2 base * height
 }
 }
}

The code is very simple and obviously not a complete implementation of everything you might want to do
with a set of shapes, but it will do for our purposes. The one bit of complexity is that the Circle and
Triangle classes each have two constructors, one that takes no parameters and another that takes
parameters to initialize the instance variables. We will see this again later on, when we examine the
contents of the assembly that is produced.

3. Before we move on, build the Shapes project with Build | Build (Ctrl-Shift-B).

Viewing the Contents of an Assembly

Let's view the contents of the assembly we just created using the self-description in the shapes.dll
assembly. The tool we can use to view the contents of an assembly is Ildasm, the .NET Framework
Intermediate Language DisASseMbler tool. This is a handy tool for viewing and understanding the internal
structure of assemblies, and can also be used by the curious to view the contents of the System assemblies.
However, it is not something you will need to use in day-to-day development of C# programs; don't feel that
you have to memorize the details of using it.

Adding Ildasm as an External Tool to VS

Ildasm is an external tool that can be added to the Visual Studio .NET environment. To do this, go to the
Tools | External Tools... menu in Visual Studio .NET. Click on the Add button in this dialog. You will see [New
Tool 1] in the Menu Contents list and the Title entry box; type in Ildasm in the Title entry box, then click on the
browse button (...) to the right of the Command entry box. In the Open dialog that appears, navigate to this path:
C:\Program Files\Microsoft Visual Studio .NET\FrameworkSDK\Bin

Click on Ildasm.exe in the Bin directory, and then click Open. Ildasm will now appear in the Menu Contents
list:

Now click on OK, and Ildasm will appear as a choice in the Tools menu of Visual Studio .NET.

Try it Out – Viewing the Contents of an Assembly with Ildasm

1. Now that Ildasm has been added to Visual Studio .NET, open it by selecting Tools | Ildasm. Ildasm will
appear in a separate window:

2. Use the File | Open menu to find the directory containing Shapes.dll and open it. Shapes.dll will be
located in the bin subdirectory of your project, probably in the Debug subdirectory if you built the default
configuration.

Once you have located Shapes.dll, click on the Open button. The view of the assembly then appears
in the Ildasm main window, as shown in the following screenshot:

We can see the manifest and the Shapes class in the display. The manifest is the assembly information;
we'll look at that in a bit. The Shapes shield icon represents the Shapes namespace; it comes from the type
metadata for this assembly.

3. Expand the tree view by clicking on the + sign in front of the Shapes shield icon. We now see the two
classes defined in our source file, Circle and Triangle:

4. Expand the view of each class by clicking on the + signs in front of Circle and Triangle respectively:

Now we begin to see something that corresponds to the source code we created. We can see the class
instance variables radius for the Circle class and Base and Height for the Triangle class, as well as
the Area method for both. Since private is the default access modifier for class instance variables such as
radius and Base, this explains why we can see these variables marked with private in the screenshot above.
We can also see some funny-looking lines of text that seem to be additional to our source code, such as the
lines beginning with .ctor and .class.

If we look closely, we notice that the .ctor lines actually correspond to the constructors we defined for
Circle and Triangle. There are two constructors for each, one that takes no parameters and another that
takes parameters to initialize the instance variables. In Circle's case, the constructor with parameters takes
one float value, which corresponds to the line:

.ctor void(float64)

in the Ildasm display of the assembly. For the Triangle class, the parameterized constructor takes two
float parameters. This corresponds to the line:

.ctor(float64, float64)

The lines beginning with the period are directives in MSIL, which is the language C# code is compiled into for
execution in the .NET environment. The .ctor directive is the MSIL instruction to make a class constructor.
We don't need to understand MSIL completely in order to examine the contents of assemblies; we'll just point
out interesting aspects of it as we come across them.

We also see the line at the top that is labeled MANIFEST; let's talk a little bit about that now.

Manifests

We talked about the manifest of an assembly earlier – it describes each file or module within the assembly
(remember we said an assembly could consist of multiple files though typically it is just one file).

More importantly, it also describes the external assemblies that are referenced by this assembly. For example,
if your program uses System.Data.dll, that fact is reflected in the manifest. This makes it much easier to
keep track of the dependencies between assemblies, making deployment and verification of correct installation
of a program much easier. The manifest also tracks the version number of the assembly, making upgrading to
new versions of programs easier. Let's take a look at the manifest of the assembly we just created.

Double-click on the line labeled MANIFEST at the top of the Ildasm listing for shapes.dll. This opens a
new window with the manifest details:

The manifest for Shapes.dll contains two .assembly directives and a .module directive. Don't worry
about the contents of the .assembly blocks; that is, ignore everything inside the curly braces {} for now. The
first line we can see is:
.assembly extern mscorlib

This is an external assembly reference to mscorlib.dll, which is where most of the base System classes
in the .NET Framework are defined. This external reference is needed for every C# and .NET program that
uses the classes in the System namespace. The .assembly Shapes line is the declaration of the Shapes
assembly itself. This is followed by a .module declaration for the shapes.dll file. Our assembly has just
one file, so there is a single .module declaration for that file.

Let's see what happens when an additional reference is added to the source file. Suppose we wanted to draw
a shape using some of the methods from the System.Drawing namespace. Close Ildasm and go back to
the Shapes project in Visual Studio .NET. Modify Shapes.cs as follows. First, add a using directive
referencing the System.Drawing namespace:

namespace Shapes
{
 using System.Drawing;

 public class Circle
 {

Then, add a Draw() method for Circle following the Area() method:

public void Draw()
{
 Pen p = new Pen(Color.Red);
}

This isn't enough code to actually draw anything, but you see where we're going!

Now we need to add a reference to the System.Drawing.dll assembly to the project. If we don't add this
reference, we will see the following error:
error CS0234: The type or namespace name 'Drawing' does not exist in the class or
namespace 'System' (are you missing an assembly reference?)

To add a reference in VS, select Project | Add Reference... from the menu. The Add Reference dialog will appear
as shown below. The .NET tab shows the .NET system assemblies that are available; scroll down the list,
select the System.Drawing.dll assembly, and then click the Select button:

Now press OK to add the reference. This adds the System.Drawing.dll reference to the Shapes.dll file.
Save your source file changes, close Ildasm (otherwise you get a compiler error because Ildasm has
Shapes.dll open), and then recompile Shapes.cs with the above changes.

Now, start Ildasm again and open Shapes.dll. You'll notice the Draw() method under the Circles object
now:

Now, double-click on MANIFEST again to see the changes we have made to it. Now there is an external
assembly reference to the System.Drawing assembly:

The Shapes assembly will now inform the system that it requires the System.Drawing assembly whenever
Shapes itself is referenced. We'll look at how another program makes use of the Shapes assembly in just a
bit, but after looking at the screen above your curiosity about the stuff inside the .assembly directives (that
we told you to ignore earlier) is probably getting too much. Let's put you out of your misery, and discuss that
information now.

Assembly Attributes

Besides the external assembly references, the manifest of an assembly contains other information that
pertains to the assembly itself. These are called assembly attributes.

AssemblyInfo.cs

When building your class library project in Visual Studio .NET, you have probably noticed that it creates a
second C# source file as part of your project. This file is called AssemblyInfo.cs, and is used to set
properties of the assembly in the manifest such as the assembly version number, name, and so on. Let's have
a look at the contents of this file (some comments have been removed to save space):
using System.Reflection;
using System.Runtime.CompilerServices;

//
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify the information
// associated with an assembly.
//
[assembly: AssemblyTitle("")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("")]
[assembly: AssemblyCopyright("")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

//
// Version information for an assembly consists of the following four values:
//
// Major Version
// Minor Version
// Build Number
// Revision
//
// You can specify all the values or you can default the Revision and

// Build Numbers by using the '*' as shown below:

[assembly: AssemblyVersion("1.0.*")]

[assembly: AssemblyDelaySign(false)]
[assembly: AssemblyKeyFile("")]
[assembly: AssemblyKeyName("")]

Each of the statements in square brackets that look like [assembly: Assembly...] is an attribute, a
special syntax in C# that is covered in more depth in the

Visual Studio .NET supplies this file containing the assembly attributes as a template for you to fill in with the
properties you want your assembly to have. You could use these attributes in a source file compiled with csc
as well (we'll look at compiling with csc at the end of the chapter). Most of the attributes such as title,
company, and so on, are purely informational, and can be filled in with any descriptive value you want
associated with your component, such as:
[assembly: AssemblyTitle("MyCompany Shapes Class Library")]
[assembly: AssemblyDescription("Classes for Manipulation of Shapes")]
[assembly: AssemblyConfiguration("Enterprise Version")]
[assembly: AssemblyCompany("MyCompany, Inc.")]
[assembly: AssemblyProduct("Shapes")]
[assembly: AssemblyCopyright("Copyright 2001, MyCompany, Inc.")]
[assembly: AssemblyTrademark("Shapes is a trademark of MyCompany, Inc.")]

The AssemblyCulture attribute refers to the national language used for this assembly and if it is specified, it
is a special abbreviation following an international standard. For more information, see the System.
Globalization namespace and culture topics in the .NET Framework online documentation. You don't
need to set the culture unless you're distributing different language versions of a component; if you are doing
this then the .NET runtime will automatically search for the version of your assembly that matches the current
culture, so that, for example, in France you display the French messages (using your French message
resources and/or code) and in Britain you display English messages (using your English message resources
and/or code). You mark the appropriate assembly with the correct culture attribute for this to happen.

Because they appear in the AssemblyInfo.cs file, they are also included in the assembly's manifest. For
example, if you look again at the manifest for Shapes.dll, you'll see this line within the .assembly Shapes
section:
.custom instance void [mscorlib]System.Reflection.AssemblyTitleAttribute::
.ctor(string) =
 (01 00 1E 4D 79 43 6F 6D 70 61 6E 79 20 53 68 61 // ...MyCompany Sha
 70 65 73 20 43 6C 61 73 73 20 4C 69 62 72 61 72 // pes Class Librar
 79 00 00) // y..

This line indicates that the assembly contains an AssemblyTitle attribute, and the value of this attribute.

Version Numbers

The version for a .NET assembly has four parts, as shown here:

Major version Minor version Build Number Revision

The first two parts are probably familiar to you if you are a user of consumer software – they are a major
version number and a minor version number, as in Shapes version 1.0 (where 1 is the major version and 0 the
minor version).

The next two parts take the versioning to a finer level of detail. The build number indicates which build of the
assembly this is; the build number would typically change every time the assembly is rebuilt.

The revision number goes one level deeper, and is designed to be used for a patch or a "hot fix" to an
assembly that is exactly the same as its predecessor, except for this one bug fix.

Version Attributes

You can see an assembly's version attributes in Ildasm. Look in the manifest of the shapes.dll file, and
you will see that each referenced assembly has a .ver directive inside the .assembly block for that
assembly.

You may also notice that the version information for the external assembly references, such as the references
to the mscorlib and System assemblies, are all the same. This is because the .NET runtime uses assembly
version numbers for compatibility checking. We'll talk more about this when we discuss version compatibility.

If you were to use the command-line C# compiler (csc), then the .ver directive for the shapes assembly has
all zeros in it, like this:
.ver 0:0:0:0

This is because we haven't assigned a version number to the shapes assembly yet. However, when using
VS, it adds some version information automatically, and the version number you will see probably looks
something like:
.ver 1:0:486:7484

AssemblyVersion attribute

Within the AssemblyInfo.cs file created by Visual Studio .NET, the version number is set with the
AssemblyVersion attribute:

[assembly: AssemblyVersion("1.0.*")]

The AssemblyVersion attribute allows an asterisk (*) to be specified for the last two parts of the version
number. This directs VS to set the build and revision numbers automatically. You can also specify the asterisk
just for the revision number (as in 1.1.1.*) but not the major and minor version numbers (1.* is not
allowed). If you look at the assembly version number with Ildasm, you'll see that the actual version number
VS sets will be something like:
.ver 1:0:585:24784

If you change some code in your classes and build again; you'll see the number change automatically to
something like:
.ver 1:0:585:25005

You can directly set all the parts of the version by specifying a specific number instead of the asterisk:
[assembly: AssemblyVersion("1.0.1.2")]

This will force VS to produce an assembly with this specific major, minor, build, and revision number.

If you are just developing a program for your own use, you won't need to set or care about version numbers.
However, if you are releasing software to other end users, you will want to change major and minor version
numbers as you add significant new functionality to your releases: 1.0 for the first production release, 1.1 for a
release introducing minor enhancements, 2.0 for major changes, and so on. It's OK to let VS set the build/

revision numbers automatically, and you won't even need to be aware of them most of the time.

It is handy to be able to use Ildasm to check the full version number. For example, if an end user reports a
bug, you can compare the version of the assembly on your computer and the one installed on the end-user's
computer. You can tell exactly which version that user has; with the revision and build numbers you can even
distinguish between the build made this morning and the one made just before noon.

Version Compatibility

The .NET runtime checks version numbers when loading assemblies to determine version compatibility. This
is done only for shared assemblies, which we'll look at later in this chapter. However, the way version
checking works with version numbers can be described here.

You'll recall that the manifest of an assembly contains the version number of the current assembly as well as
the version numbers of referenced external assemblies. When the .NET runtime loads a referenced assembly,
it checks the version in that assembly's manifest and compares it to the version stored in the reference to
make sure the versions are compatible.

If the assemblies have different major or minor version numbers they are assumed to be incompatible and the
referenced assembly will not load – for example, Shapes version 1.1 is not compatible with a program
referencing Shapes version 1.0, 1.2, or 2.0.

What if you have program A that uses Shapes 1.0 and program B that uses Shapes 1.1 on the same system?
This is actually taken care of in the .NET runtime; there is a feature called side-by-side execution, which
enables Shapes 1.0 and Shapes 1.1 to both be installed on the same computer and both be available to the
programs that need each version.

The next two parts of the version number take the versioning to a finer level of detail. The build number
indicates which build of the assembly this is; this typically changes every time the assembly is rebuilt. Two
assemblies with the same major/minor version number and a differing build number may or may not be
compatible; the runtime assumes that they are compatible so that they are allowed to load; it is up to the
developer to make sure to change the major or minor version if incompatible changes are introduced.

You'll notice in our earlier examples that the version number of the mscorlib assembly and the System.
Drawing assembly were both version 1.0 with a build number of 3300; that is the build number of the .NET
System assemblies currently on my system as I write this. If one of these libraries were updated to build
number 3302 or even 9999 the .NET runtime would try to use the new build; however, the build number is not
guaranteed to be compatible.

The revision number goes one more level, enabling you to specify a very specific patch or fix to a particular
build number. 1.0.3300.0 and 1.0.3300.1 are assumed to be totally compatible. In the side-by-side scenario, if
the major and minor versions of two co-existing assemblies match and differ only by build number and/or
revision, the system will execute the newer assembly (namely, the one with a higher build/revision number).

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Calling Assemblies

Now let's look at what happens when Shapes is referenced by a program. We'll make a simple client for
Shapes named ShapeUser, and take a look at this client in Ildasm before we execute it.

Try it Out – Creating a Shapes Client

1. Create a new console application project named ShapeUser in the directory C:\BegVCSharp
\Chapter21, rename the Class1.cs source file to ShapeUser.cs, and enter the following code:

using System;
using Shapes;

namespace ShapeUser
{

 public class ShapeUser
 {
 public static void Main()
 {
 Circle c = new Circle(1.0F);

 Console.WriteLine("Area of Circle(1.0) is {0}", c.Area());
 }
 }
}

2. This project will need a reference to the Shapes project to compile, so choose Add Reference… from the
Project menu (or right-click on References in the Solution Explorer and select Add Reference...), and the
Add Reference dialog will appear. From the .NET tab, press the Browse button (at the top right), navigate
to the Shapes.dll file in your Shapes\bin\Debug project directory, and click the Open button. The
Shapes.dll file will appear in the list of Selected Components:

Press OK and Shapes is added to the list of references for the ShapesUser project:

A private copy of Shapes.dll has been added to the ShapeUser bin\Debug directory – we'll discuss
this more in the next section.

3. Build the ShapeUser application.

4. Now that ShapeUser.exe has been built, open up Ildasm to examine its contents:

5. Note that even though this is a stand-alone program, it has metadata just like a class library does.
Double-click on MANIFEST to see the external reference to the Shapes component:

6. Finally, execute ShapeUser.exe:

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Private and Shared Assemblies

Up to now we have been dealing only with private assemblies – assemblies that are deployed as part of a single
application. However, the .NET Framework also has special facilities to provide for shared assemblies that are used by
multiple programs simultaneously.

Private Assemblies

By default, an assembly is private to your project. Private assemblies must be in the same directory as the application.

Our Shapes.dll assembly is private; in order to refer to it from our ShapeUser project we had to browse into the
Shapes development directory from the ShapeUser project when adding the reference in Visual Studio .NET – in
which case Visual Studio .NET makes a private copy of Shapes.dll and places it in the ShapeUser directory.

Copying the Shapes.dll assembly ensures that ShapeUser can execute even if the original Shapes.dll is
unavailable because of ongoing development. However, making copies of every referenced DLL is not very efficient for
widely used components, so the .NET Framework provides for shared assemblies.

Shared Assemblies

Shared assemblies are available for use by all the programs on the system. A program does not need to know the
location of a shared assembly because all shared assemblies are stored in a special .NET system directory called the
Global Assembly Cache (GAC). Because they are available system-wide, the .NET runtime imposes several extra
checks on shared assemblies to ensure that they are valid for the program requesting them, such as security and
version compatibility.

Security and Strong Names

A shared assembly must provide proof that it has not been replaced by another assembly using the same name and
version, and that it has not been altered in any way, for example by a virus. This is done by requiring that a shared
assembly be signed with a cryptographic key before it is loaded into the Global Assembly Cache. The key helps protect
not only against a security breach but also against a simple name/version collision due to two components having the
same name and version number.

If the keys are different, the components are considered to be different even if they have the same name.

The unique combination of the assembly name, version, and key is called a strong name.

Global Assembly Cache

The Global Assembly Cache is a special directory, located in the WINNT\assembly directory. All shared assemblies,
including the .NET Framework System assemblies supplied by Microsoft, are located and loaded from here. If you
browse this directory with the Windows Explorer, a special Windows shell extension displays the properties of the
assemblies, including the key incorporated into the strong name of each.

The Windows shell extension (called shfusion.dll) plugs into Windows Explorer and extends its capabilities beyond
a normal file listing. This screenshot shows the GAC viewed in Windows Explorer. The name, version, key, and other
properties of the assemblies are listed:

The Windows shell extension enforces the security policy for the Global Assembly Cache, enabling assemblies to be
copied into this directory via drag and drop, but only if the rules are adhered to. Let's look at the rules we have to follow
to allow us to place an assembly into the Global Assembly Cache.

Creating a Shared Assembly

In order to create a shared assembly with a strong name, you must generate a public/private key pair that is used to
sign an assembly. Public/private key cryptographic systems use a private key known only to the originator of the
information to be encrypted, and a public key published to the world. The .NET environment uses this same mechanism
to ensure that a referenced shared assembly is really the assembly wanted (assemblies from different companies could
have the same name and version number, for example, or a hacker could try to "spoof" a program by creating an
assembly with the same name/version, or try to tamper with an existing assembly). The keys in the reference to the
assembly and the key in the (signed) shared assembly itself are checked to make sure they match; if they do not, the
shared assembly will not load.

The combination of the assembly name, version, and public key are guaranteed to be unique; this combination is called
a strong name.

The .NET Framework provides a tool for generating the strong name called sn.exe (sn stands for Strong Name).
Unfortunately, this can only be used from the command prompt, and you may need to set the PATH environment
variable before using it (please see Appendix A for instructions on how to do this).

Try it Out – Signing the Shapes Assembly

1. From the command-line, change the directory to C:\BegVCSharp\Chapter21\Shapes. Use the following
command to generate a key file, giving a filename (usually with the .snk extension) that you will reference from
your assembly:
>sn –k Shapes.snk

2. This creates the key file Shapes.snk in the current directory. To sign the assembly with this key, modify the
AssemblyKeyFile attribute in the last part of the AssemblyInfo.cs file for your project:

[assembly: AssemblyKeyFile("Shapes.snk")]

In Visual Studio .NET, the key file location is relative to the obj\Debug or obj\Release directory in your project;
if you place the file in another directory, such as the project root directory, include a path relative to this file, such
as [assembly: AssemblyKeyFile(@"..\..\Shapes.snk")] – you may recall the .. notation from Chapter
20, which is used to signify moving back up a directory level.

3. Now recompile the Shapes.dll assembly. If Visual Studio .NET can't find the Shapes.snk file, the project won't
compile, and you will get an error such as:

Cryptographic failure while signing assembly 'C:\BegVCSharp\Chapter21\Shapes\obj\Debug
\Shapes.dll' --
'Error reading key file 'Shapes.snk' -- The system cannot find the file specified.'

This tells you exactly where Visual Studio .NET is looking for the key file, and you can either move the file to that

directory, or specify a directory relative to it.

4. Once you have successfully rebuilt the project, the assembly is now signed.

5. Open up Ildasm, and examine the manifest of the Shapes.dll assembly – we can see that a public key has
been generated and embedded within:

6. We need to recompile ShapeUser.cs to update the external assembly reference inside ShapeUser.exe with
the signed version of Shapes.dll. Once recompiled, it works just as before, still using the local copy of Shapes.
dll.

Now that our assembly is signed, we are able to install it into the Global Assembly Cache. This can be done simply by
dragging and dropping the .dll file into the GAC folder (WINNT\assembly), or alternatively, we can use a .NET
command-line tool called Gacutil (Global Assembly Cache Utility). To install Shapes.dll into the Global Assembly
Cache, use the Gacutil with the /i option from a command-line prompt:

>Gacutil /i Shapes.dll

The message "Assembly successfully added to the cache" will indicate successful installation of the assembly.

Note that for deployment of a commercial application, the preferred way to add a shared assembly to the
Global Assembly Cache is to use the Windows Installer.

To prove that Shapes.dll is in the cache, delete the copy of Shapes.dll in the current directory. Now, from the
command-line, go to the directory containing the ShapeUser executable, which is:

C:\BegVCSharp\Chapter21\ShapeUser\bin\Debug

and run ShapeUser.exe. You should see the output:

Area of Circle(1.0) is 3.14159265358979

It still runs, even with Shapes.dll absent, because it is loading the Shapes assembly from the GAC. To test this
further, use Gacutil with the /u option to uninstall shapes:

>Gacutil /u shapes

Note that the .dll extension is omitted for the uninstall option.

Note that you must have local administrator privileges on a computer to uninstall assemblies from the
Global Assembly Cache for that machine.

Now try to run ShapeUser as above, and you will see the following message:

Unhandled Exception: System.IO.FileNotFoundException: File or assembly name Shapes, or
one of its dependencies, was not found.

This shows that Shapes.dll was indeed being loaded from the GAC.

Assembly Searching

The .NET runtime follows a predefined set of rules in order to locate an external assembly when it is referenced. We
have just seen how the local directory is searched first for shared assemblies, followed by the GAC.

For private assemblies, the local directory is searched first, and then the system looks for a subdirectory with the same
name as the assembly. The runtime also looks for either a DLL or EXE file with the same name as the requested
assembly. For our Shapes class the combination of these results in the following set of searches:

./Shapes.DLL.

./Shapes/Shapes.dll

./Shapes/Shapes.exe

./Shapes.exe

Additional search paths or even URLs for downloading an assembly from a remote location via the Internet may be
specified with a configuration file. Configuration files for an assembly are XML-format files that specify rules for the .
NET runtime to apply when searching for an assembly. Configuration files can also override the default behavior for
version checking. The details of configuration files and XML are quite complex and beyond the scope of this book.

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Compiling C# Code from the Command-Line

So far in the book, we've been working exclusively with Visual Studio .NET to construct and compile our
applications. The C# compiler that compiles all of our code is in fact independent of Visual Studio .NET, and can
be used from a command-line prompt with the following command:
>csc <filename.cs>

Often you may find that you don't want to create an entire project in Visual Studio .NET if you wish to test a very
simple piece of code - in this case you may prefer to use a simple text editor (such as the one we created in
Chapter 15!) and compile and run your program from the command-line. By doing this you are of course sacrificing
the benefits of Visual Studio .NET's IDE.

Let's take the opportunity to have a quick look at compiling our Shapes.cs and ShapeUser.cs files from the
command-line, and also adding references to external assemblies as we do. Before you start this Try it Out,
ensure that your PATH environment variable is set properly, otherwise the C# compiler won't be found. Please see
Appendix A for instructions on how to set this variable correctly.

Try it Out - Compiling and Linking from the Command-Line

1. Copy the files Shapes.cs and ShapeUser.cs into the directory C:\BegVCSharp\Chapter21.

2. Start a command-line prompt, and change to the directory C:\BegVCSharp\Chapter21 (see Appendix A
for a quick tip on how to start the command-line prompt in any directory).

3. Compile Shapes.cs with the following command:

>csc /target:library Shapes.cs

This will create Shapes.dll in the current directory. The /target:library option directs the compiler to
create the result assembly as a DLL instead of an executable (.exe) file.

4. Compile ShapeUser.cs with this command:

>csc /reference:Shapes.dll ShapeUser.cs

This will create ShapeUser.exe in the current directory. The /reference:Shapes.dll option specifies a
reference to the Shapes.dll assembly.

5. Execute ShapeUser, and it will run happily.

Now we'll look at signing the Shapes assembly, and compiling Shapes.cs and its AssemblyInfo.cs file
together.

6. Copy AssemblyInfo.cs from the Shapes directory into C:\BegVCSharp\Chapter21, and modify the
line that specifies the key file to the following:
[assembly: AssemblyKeyFile(@"NewShapesKey.snk")]

7. Now, we'll create a new key file in the Chapter21 directory in the same way as we did earlier:

>sn -k NewShapesKey.snk

8. To recompile Shapes.cs along with its AssemblyInfo.cs file, use the following command:

>csc /target:library Shapes.cs AssemblyInfo.cs

If we try to execute ShapeUser.exe now, without recompiling, we get the following error because the
Shapes.dll assembly no longer matches:

Unhandled Exception: System.IO.FileLoadException: The located assembly's manifest
definition with name 'Shapes' does not match the assembly reference. File name:
"Shapes"
 at ShapeUser.ShapeUser.Main()

This is because Shapes.dll has now been signed, and as such, is a different assembly to the one originally
specified when ShapeUser.cs was compiled. Note this error didn't occur earlier when we created and
compiled ShapeUser with VS, as VS creates a private copy of the assembly in the project directory, and
obviously this copy hasn't changed.

9. To finish, recompile ShapeUser.cs as we did earlier, and it will work properly now.

This whole process has been reasonably straightforward, but then we were only compiling (at most) two files
at once, and only referencing one external assembly. We also made things easier for ourselves by copying
all the required files into the same directory!

The C# compiler has many options to control its output - you can find a full list of these in the .NET
Framework documentation. For example, we've already used the /reference and /target options - the /
target option tells the C# compiler what kind of project it needs to build:

❍ The /target:exe argument tells the C# compiler to produce a console application.

❍ The /target:winexe argument tells the C# compiler to produce a Windows Form application.

❍ The /target:library argument tells the C# compiler to produce a stand-alone assembly containing a
manifest.

❍ The /target:module argument also tells the C# compiler to produce an assembly file, but without a
manifest. Manifest-less assemblies produced with the /target:module argument can be subsumed
into other assembly components that do contain manifests.

The /reference option can be shortened to /r, and the /target option to /t. Another useful option is /
recurse - this searches subdirectories for source files to compile. For example,

>csc /recurse:*.cs

will compile all the .cs source files in the current directory.

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Summary

C# programs and class libraries are delivered as assemblies, which have many features that ease the delivery
of components in the Microsoft .NET Framework. Components provide for binary reuse of objects. The
essential feature of .NET components is self-description; this distinguishes them from their historical
ancestors (such as COM components).

Self-description has a number of benefits, including ease of installation and integration with the Common
Language Runtime (CLR) to provide cross-language and legacy support, as well as C# development.

We created a C# class library component and compiled it into an assembly. We then created a C# application
that used this component, and learned how to view the contents of assemblies using Ildasm. This helped us
to understand the structure of assemblies.

We examined the various parts of an assembly, including the manifest, version number, and other assembly
attributes. Besides helping us to understand the structure, this enables us to compare version numbers in
external references for debugging purposes.

Assemblies can be either private assemblies local to an application, or shared assemblies, which are
available system-wide. We learned how to create shared assemblies by creating a key file and signing the
assembly to create a strong name for the assembly. We learned about version checking for shared
assemblies, and looked at the Global Assembly Cache where shared assemblies are stored.

Finally, we examined briefly how references to assemblies are searched and resolved in the .NET runtime.

These features of assemblies all help to make development in the .NET environment much easier.

Chapter 21 - .NET Assemblies
byKarli Watsonet al.

Wrox Press 2003

Exercises
1. Change the version number and other assembly attributes in AssemblyInfo.cs or Shapes.cs, and

view the resulting changes in Shapes.dll using Ildasm.

2. Make a new MoreShapes assembly with a Square class in addition to Circle and Triangle, and
then examine its properties with Ildasm.

3. Change the assembly reference in ShapeUser.exe to use MoreShapes.dll, and then view the
changed properties in Ildasm.

4. Make your own client for MoreShapes that uses the Square and Triangle objects as well as
Circle. Examine the assembly for this client with Ildasm.

5. Display the command options for Gacutil with the /? flag, then use its options to list the properties of
all the global assemblies on your system.

6. Create a strong name for MoreShapes and sign the assembly. View the results with Ildasm. Try
executing your client program, then recompile to reference the signed assembly.

7. Install MoreShapes.dll into the Global Assembly Cache using Gacutil, and experiment with
ShapeUser and your own client by running with and without the MoreShapes assembly present in the
local directory and/or GAC.

Chapter 22 - Attributes
byKarli Watsonet al.

Wrox Press 2003

Chapter 22: Attributes

Overview

This chapter introduces the subject of attributes. It will describe what they are and what they can be used for,
and will give examples of several of the attributes available with the .NET Framework.

We'll also discuss custom attributes - attributes that you can write yourself to extend the system - and provide
several worked examples. We'll also show how the Intermediate Language Disassembler (Ildasm) can be
used to discover the attributes of existing assemblies.

Attributes are one of the most useful features of the .NET Framework, used frequently by Microsoft. To use
them effectively, we need to make a significant time investment, but it is worth the effort. In the following
sections we'll see how they can be applied to areas such as:

● Debugging

● Providing information about an assembly

● Marking methods and classes as obsolete

● Conditional compilation

● Database access

We'll also describe in detail how to write your own attributes that extend the system, and show several worked
examples of custom attributes. By the end of the chapter you should have enough knowledge of what
attributes are and how to use them to apply to your own projects.

Chapter 22 - Attributes
byKarli Watsonet al.

Wrox Press 2003

What is an Attribute?

It's difficult to define an attribute in a single sentence – it's best to learn by examining how they are used. For
now we'll define an attribute as extra information that can be applied to chunks of code within an assembly –
such as a class, method, or property. This information is accessible to any other class that uses the assembly.

In the previous chapter we discussed assemblies, and mentioned the AssemblyInfo.cs file. Let's have a
look at this file – create a new Windows application called AttributePeek in the C:\BegVCSharp
\Chapter22 folder, and open Solution Explorer.

You will see something like the following:

If you double-click on this file, you'll see some code created by VS. Part of this code is shown below:
using System.Reflection;
using System.Runtime.CompilerServices;

//
// General Information about an assembly is controlled through the following
// set of attributes. Change these attribute values to modify
// the information associated with an assembly.
//
[assembly: AssemblyTitle("")]
[assembly: AssemblyDescription("")]
[assembly: AssemblyConfiguration("")]
[assembly: AssemblyCompany("")]
[assembly: AssemblyProduct("")]
[assembly: AssemblyCopyright("")]
[assembly: AssemblyTrademark("")]
[assembly: AssemblyCulture("")]

For brevity only part of the file is shown here. Within this file there are a number of lines beginning
"[assembly:" – these are attribute definitions. When the file is compiled, any attributes defined are saved
into the resulting assembly – this process is known as "pickling". To see this in action, modify one of the

attributes above – say the AssemblyTitle attribute, and compile your assembly:

[assembly: AssemblyTitle("Wrox rocks")]

Once compiled, right-click on the assembly (which you can find in the project \bin\Debug directory) in
Windows Explorer and select Properties. The image below shows the Version information tab in Windows 2000
Professional. The Description field contains the description contained in the AssemblyTitle attribute:

The assembly attributes and their corresponding names on the Version information tab are listed below:

Attribute Version Information
AssemblyTitle Description

AssemblyDescription Comments

AssemblyCompany Company Name

AssemblyTrademark Legal Trademarks

AssemblyVersion Assembly Version and Product Version

AssemblyCopyright Copyright

AssemblyProduct Product Name

You may have noticed that the list of attributes available through the assemby's Properties sheet is fewer than
the list of attributes defined within the assembly. Microsoft has mapped some of the most common attributes
onto the Properties sheet but to get at the other attributes you'll either have to write code (shown in the
upcoming section on Reflection), or you can use Ildasm.

In order to find all attributes on a given assembly, you can use Ildasm to inspect the assembly and look for
the attribute(s) defined. We were introduced to Ildasm in the previous chapter, and saw how to add it as an
external tool to Visual Studio .NET – if you haven't done so, now is a good opportunity to go back and see
how to do this.

Open Ildasm and select the assembly using File | Open. Double-clicking on the highlighted MANIFEST
section will open a secondary window that contains the assembly manifest as described in the
.assembly AttributePeek
{

 .custom instance void
 [mscorlib]System.Reflection.AssemblyCopyrightAttribute::.ctor(string)
 = (01 00 00 00 00)

 .custom instance void
 [mscorlib]System.Reflection.AssemblyKeyNameAttribute::.ctor(string)
 = (01 00 00 00 00)

 ...

 .custom instance void
 [mscorlib]System.Reflection.AssemblyTitleAttribute::.ctor(string)
 = (01 00 0A 57 72 6F 78 20 72 6F 63 6B 73 00 00) // ...Wrox rocks..

. hash algorithm 0x00008004
 .ver 1:0:907:40521
}

Looking down through the file, you'll notice a number of declarations that look something like type declarations:
[mscorlib]System.Reflection.AssemblyTitleAttribute::.ctor(string)
 = (01 00 0A 57 72 6F 78 20 72 6F 63 6B 73 00 00) // ...Wrox rocks..

The AssemblyTitle that we typed in has been persisted into the assembly manifest – if you get your hex/
ASCII conversion tables out you'll see that the set of characters after01 00 0A are the ASCII codes for "Wrox
rocks". Just in case you are curious, the prolog bytes 01 00 are a two-byte ID, and 0A is the length of the
string (ten characters). This process of storing the attribute within the assembly is known as "pickling", which
you may come across if you look at some of the background .NET material available on the Web.

You may have noticed that in the code snippet from AssemblyInfo.cs, the term AssemblyTitle was
used; however, in the IL code that we have just looked at, this is shown as AssemblyTitleAttribute. The
C# compiler will look up an attribute class called AssemblyTitle first, and if it is not found it will then append
the word Attribute and search again. So whether you type the whole class name, or omit the final
Attribute, both versions generate the same code. Throughout the chapter the Attribute suffix has been
dropped.

The attribute declaration persisted (pickled) into the manifest looks suspiciously like an object and its
constructor. The bytes in brackets are the parameters passed to the constructor.

Having examined the background, we can define what an attribute is:

Important An attribute is a class that can include additional data within an assembly, concerning the
assembly or any type within that assembly.

Given that an attribute is a class, and in the manifest the attribute is stored in the format shown above, let's
revisit the attribute definition from earlier in the chapter:
[assembly: AssemblyTitle("Wrox rocks")]

The syntax is a little different to normal C#, as the square brackets are there to enclose the attribute. The
assembly: tag defines the scope of the attribute (which is covered later in the chapter), and the rest of the
code declares the attribute. The AssemblyTitle attribute has a constructor that takes only one argument –
a string value. The compiler includes this value in the assembly. This value can be accessed by the standard
Windows Explorer Properties sheet, by viewing the assembly within Ildasm, or programmatically by reflection
– which we will discuss next.

In addition to the simple attributes dealing with assembly information, the .NET Framework defines nearly two
hundred attributes used for things as diverse as debugging, design-time control behavior, serialization, and
much more. We'll see some standard attributes after the Reflection section, and then continue by showing
how to extend .NET with our own custom attributes.

Chapter 22 - Attributes
byKarli Watsonet al.

Wrox Press 2003

Reflection

Unless you have a grounding in Java, reflection is probably a new topic so we will spend a couple of pages
defining it and showing how it can be used.

Reflection allows you to programmatically inspect an assembly, and get information about the assembly,
including all object types contained within. This information includes the attributes you have added to those
types. The reflection objects reside within the System.Reflection namespace.

In addition to reading the types defined within a given assembly, we can also generate (emit) our own
assemblies and types using the services of System.Reflection.Emit. This topic is a little too hectic for a
beginning book on C#, but if you are interested, then MSDN contains some information on emitting dynamic
assemblies.

The first example in this section will inspect an assembly and display a list of all attributes defined on the
assembly – this should produce a list similar to that shown above.

In this chapter we're going to be a bit more relaxed about the format of our code examples, since if you've got
to this point in the book you must be pretty confident with what you're doing! All of the code can be found in
the Chapter22 folder of the code download – for some examples we may only show you the most important
parts of the code, so don't forget to look through the download code to see the whole picture.

Our first example can be found in the Chapter22\FindAttributes directory. The entire source file is
reproduced here:
// FindAttributes.cs
// Import types from System and System.Reflection
using System;
using System.Reflection;

/// <summary>
/// Corresponds to section titled 'Reflection' in Chapter 22
/// </summary>
public class FindAttributes
{
 /// <summary>
 /// Main .exe entry point
 /// </summary>
 /// <param name="args">Command line args - should be an assembly</param>
 static void Main(string[] args)
 {
 // Output usage information if necessary
 if (args.Length == 0)
 Usage ();
 else if ((args.Length == 1) && (args[0] == "/?"))
 Usage ();

 else
 {
 // Load the assembly
 string assemblyName = null;

 foreach (string arg in args)
 {
 if (assemblyName == null)
 assemblyName = arg;
 else
 assemblyName = string.Format("{0} {1}" , assemblyName , arg);
 }

 try
 {
 // Attempt to load the named assembly
 Assembly a = Assembly.LoadFrom(assemblyName);

 // Now find the attributes on the assembly
 object[] attributes = a.GetCustomAttributes(true);

 // If there were any attributes defined...
 if (attributes.Length > 0)
 {
 Console.WriteLine("Assembly attributes for '{0}'...",
 assemblyName);

 // Dump them out...
 foreach (object o in attributes)
 Console.WriteLine(" {0}" , o.ToString ());
 }
 else
 Console.WriteLine("Assembly {0} contains no Attributes.",
 assemblyName);
 }
 catch (Exception ex)
 {
 Console.WriteLine("Exception thrown loading assembly {0}...",
 assemblyName);
 Console.WriteLine ();
 Console.WriteLine(ex.ToString ());
 }
 }
 }

 /// <summary>
 /// Display usage information for the .exe
 /// </summary>
 static void Usage()
 {
 Console.WriteLine("Usage:");
 Console.WriteLine(" FindAttributes <Assembly>");
 }
}

Now build the executable in Visual Studio .NET, or if you prefer use the command line compiler:
>csc FindAttributes.cs

This will compile the file and produce a console executable, which you can then call.

To run the FindAttributes application, you need to supply the name of an assembly to inspect. For now,
we can use the FindAttributes.exe assembly itself:

The example code first checks the parameters passed to the command-line – if none are supplied, or if the
user types FindAttributes /? then the Usage() method will be called, which will display a simple
command usage summary:
 if (args.Length == 0)
 Usage ();
 else if ((args.Length == 1) && (args[0] == "/?"))
 Usage ();

Next we reconstitute the command-line arguments into a single string. The reason for this is that it's common
to have spaces in directory names, such as "Program Files", and this would be considered as two
arguments by virtue of there being a space. So, we iterate through all the arguments stitching them back into
a single string, and use this as the name of the assembly to load:
 foreach (string arg in args)
 {
 if (assemblyName == null)
 assemblyName = arg;
 else
 assemblyName = string.Format ("{0} {1}" , assemblyName , arg);
 }

We then attempt to load the assembly, and retrieve all custom attributes defined on that assembly with the
GetCustomAttributes() method:

 Assembly a = Assembly.LoadFrom (assemblyName);

 // Now find the attributes on the assembly
 object[] attributes = a.GetCustomAttributes(true);

Any attributes that are found are output to the console. When we tested the program against the
FindAttributes.exe file, an attribute called DebuggableAttribute was displayed. Although we have not
specified the DebuggableAttribute, it has been added by the C# compiler, and you will find that most of
your executables have this attribute.

We can alter the code as appropriate to add on as many assembly attributes as you wish. As an example, try
updating the source code for FindAttributes as follows:

using System;
using System.Reflection;

[assembly: AssemblyTitle("Wrox rocks")]

public class FindAttributes

Then when you recompile and run the code you will see output similar to that shown below:

We'll return to reflection later in the chapter, to show how to retrieve attributes on classes and methods
defined within an assembly.

Chapter 22 - Attributes
byKarli Watsonet al.

Wrox Press 2003

Built In Attributes

We saw in previous sections that the .NET Framework includes a number of attributes, such as the
DebuggableAttribute and AssemblyTitleAttribute attributes. This section will discuss some of the
more common attributes defined in the .NET Framework, and discuss when you might want to use them.

The attributes covered in this section are:

● System.Diagnostics.ConditionalAttribute

● System.ObsoleteAttribute

● System.SerializableAttribute

● System.Reflection.AssemblyDelaySignAttribute

There is more information about the other attributes that ship with the .NET Framework in the .NET Framework
SDK documentation.

Another extremely useful tool when working with .NET is a program called "Reflector" which is downloadable
from http://www.aisto.com/roeder/dotnet/. This uses reflection to inspect assemblies. We can use it to find all
classes that derive from System.Attribute with a few mouse clicks. It's one tool you shouldn't be without.

System. Diagnostics. ConditionalAttribute

This is one of the most useful attributes of all, as it permits sections of code to be included or excluded based on
the definition of a symbol at compilation time. This attribute is contained within the System.Diagnostics
namespace, which includes classes for debug and trace output, event logging, performance counters, and
process information. The following code shows an example of using this attribute:
using System;
using System.Diagnostics;

class TestConditional
{
 static void Main(string[] args)
 {
 // Construct a new TestConditional object
 TestConditional tc = new TestConditional ();

 // Call a method only available if DEBUG is defined...
 tc.DebugOnly ();
 }

 // Class constructor
 public TestConditional ()
 {

http://www.aisto.com/roeder/dotnet/

 }

 // This method is attributed, and will ONLY be included in
 // the emitted code if the DEBUG symbol is defined when
 // the program is compiled
 [Conditional("DEBUG")]
 public void DebugOnly ()
 {
 // This line will only be displayed in debug builds...
 Console.WriteLine ("This string only displays in Debug");
 }
}

The source code for this example is available in the Chapter22/Conditional directory. The code constructs
an instance of the TestConditional class within the static Main() function. It then calls the DebugOnly()
method, which is attributed with the Conditional attribute. This function just displays a line of text on the
console.

When a C# source file is compiled, you can define symbols on the command line. The Conditional attribute
will prevent calls to a method that is conditional on a symbol that is not present.

The DEBUG symbol will be set automatically for you if you compile a Debug build within Visual Studio .NET. If
you want to define or refine the symbols for a particular project then display the project Properties dialog and
navigate to the Build option of Configuration Properties as shown below:

Notice that the defaults for a Debug build are to define DEBUG and TRACE.

To define a symbol on the command line you use the /d: switch (the short form for /define: – you can type
the entire string if you wish):
>csc /d:DEBUG conditional.cs

If you compile and run the file with the command-line shown, you'll see the output string This string only displays in
Debug. If you compile without defining the DEBUG symbol on the command line then the program will display
nothing. Note that the options for csc are case-sensitive.

To get a clearer picture of what is happening within the generated code, use Ildasm to view the generated code:

When the DEBUG symbol is not defined, the IL generated for the Main() method is as follows:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 7 (0x7)
 .maxstack 1
 .locals init (class TestConditional V_0)
 IL_0000: newobj instance void TestConditional::.ctor()
 IL_0005: stloc.0
 IL_0006: ret
} // end of method TestConditional::Main

This code simply creates an instance of the TestConditional() object (IL_0000), stores this in a local
variable, and returns.

If, however, you compile the file with the /d:DEBUG switch, you'll see code produced as shown below:

.method private hidebysig static void Main(string[] args) cil managed
{
 .entrypoint
 // Code size 13 (0xd)
 .maxstack 1
 .locals init (class TestConditional V_0)
 IL_0000: newobj instance void TestConditional::.ctor()
 IL_0005: stloc.0
 IL_0006: ldloc.0
 IL_0007: callvirt instance void TestConditional::DebugOnly()
 IL_000c: ret
} // end of method TestConditional::Main

The two lines highlighted are added to call the conditional method. Use of Conditional() will remove calls to a
method, but not the method itself.

Important The Conditional attribute can only be used on methods that return void – otherwise removing
the call would mean that no value was returned; however, you can attribute a method that has out
or ref parameters – the variables will retain their original value.

System. ObsoleteAttribute

It may seem strange to include such an attribute in something as new the .NET Framework, but it shows the
attention to detail that the Microsoft engineers have put into the .NET Framework. The Obsolete attribute can
be used to mark a class, method, or any other entry in an assembly as being no longer used.

This attribute would be useful, for example, when publishing a library of classes. It is inevitable that through the
course of developing a set of classes, some of those classes/methods/properties will be superseded. This

attribute can be used to prepare the users of your code for the eventual withdrawal of a particular feature.

Suppose in version one of your application, you have a class like this:
public class Developer
{
 public Developer ()
 {
 }

 public void OriginalMethod ()
 {
 }
}

You compile and use this class for several years, but then something new comes along to replace the old
functionality:
public void NewMethod ()
{
}

Naturally you want to allow the users of your library to use OriginalMethod() for some time, but you would
also like to alert them to the fact that there is a newer method by displaying a warning message at compile time,
informing your users of the existence of NewMethod(). To do this, all you need to add is the Obsolete attribute
as shown below:
[Obsolete("Use NewMethod instead.")]
public void OriginalMethod ()
{
}

When you compile again, for Debug or Release, you'll receive a warning from the C# compiler that you are using
an obsolete (or soon to be obsolete) method:
Obsolete.cs(20,1): warning CS0618: 'Developer.OriginalMethod()' is obsolete:
 'Use NewMethod instead.'

Over the course of time, everyone will become tired of seeing this warning message each time the code is
compiled, so eventually everyone (well, almost everyone) will utilize NewMethod(). Eventually you'll want to
entirely drop support for OriginalMethod(), so you add an extra parameter to the Obsolete attribute:

[Obsolete("You must use NewMethod instead.", true)]
public void OriginalMethod()
{
}

When a user attempts to compile this method, the compiler will generate an error and halt the compilation with
the following message:
Obsolete.cs(20,1): error CS0619: 'Developer.OriginalMethod()' is obsolete:
 'You must use NewMethod instead.'

Using this attribute provides users of your class with help in modifying applications that use your class, as the
class evolves.

For binary classes, such as components that you purchase without source code, this isn't a good way to do
versioning – the .NET Framework has excellent built-in versioning capabilities that we looked at in the

System. SerializableAttribute

Serialization is the name for storing and retrieving an object, either in a disk file, memory, or anywhere else you
can think of. When serialized, all instance data is persisted to the storage medium, and when deserialized, the
object is reconstructed and is indistinguishable from its original instance.

For any of you who have programmed in MFC, ATL, or VB before, and had to worry about storing and retrieving
instance data, this attribute will save you a great deal of typing. Suppose you have a C# object instance that you
would like to store in a file, such as:
public class Person
{
 public Person ()
 {
 }

 public int Age;
 public int WeightInPounds;
}

In C# (and indeed any of the languages built on the .NET Framework) you can serialize an instance's members
without writing any code – well almost. All you need to do is add the Serializable attribute to the class, and
the .NET runtime will do the rest for you.

When the runtime receives a request to serialize an object, it checks if the object's class implements the
ISerializable interface, and if not checks if the class is attributed with the Serializable attribute. We will
not discuss ISerializable any further here – it is an advanced topic.

If the Serializable attribute is found on the class, then .NET uses Reflection to get all instance data – whether
public, protected, or private – and store this as the representation of the object. Deserialization is the opposite of
the process – data is read from the storage medium and this data is assigned to instance variables of the class.

The following shows a class marked with the Serializable attribute:

[Serializable]
public class Person
{
 public Person ()
 {
 }

 public int Age;
 public int WeightInPounds;
}

The entire code for this example is available in the Chapter22/Serialize subdirectory. To store an instance
of this Person class, we use a Formatter object – which converts the data stored within your class into a
stream of bytes. The system comes with two default formatters, BinaryFormatter and SoapFormatter
(these have their own namespaces below System.Runtime.Serialization.Formatters). The code below
shows how to use the BinaryFormatter to store a person object:

using System;
using System.Runtime.Serialization.Formatters.Binary;
using System.IO;

 public static void Serialize ()
 {

 // Construct a person object
 Person me = new Person ();

 // Set the data that is to be serialized
 me.Age = 34;
 me.WeightInPounds = 200;

 // Create a disk file to store the object to...
 Stream s = File.Open ("Me.dat" , FileMode.Create);

 // And use a BinaryFormatted to write the object to the stream...
 BinaryFormatter bf = new BinaryFormatter ();

 // Serialize the object
 bf.Serialize (s , me);

 // And close the stream
 s.Close ();
 }

The code first creates the person object and sets the Age and WeightInPounds data, and then it constructs a
stream on a file called Me.dat. The binary formatter utilizes the stream to store the instance of the person class
into Me.dat, and the stream is closed.

The default serialization code will store all the public contents of the object, which in most cases is what you
would want. But under some circumstances you may wish to define one or more fields that should not be
serialized. That's easy too:
[Serializable]
public class Person
{
 public Person ()
 {
 }

 public int Age;
 [NonSerialized]
 public int WeightInPounds;
}

When this class is serialized, only the Age member would be stored – the WeightInPounds member would not
be persisted and so would also not be retrieved on deserialization.

Deserialization is basically the opposite of the above serialization code. The example below opens a stream on
the Me.dat file created earlier, constructs a BinaryFormatter to read the object, and calls its Deserialize
method to retrieve the object. It then casts this into a Person, and writes the age and weight to the console:

 public static void DeSerialize ()
 {
 // Open the file this time
 Stream s = File.Open ("Me.dat" , FileMode.Open);

 // And use a BinaryFormatted to read object(s) from the stream
 BinaryFormatter bf = new BinaryFormatter ();

 // Deserialize the object
 object o = bf.Deserialize (s);

 // Ensure it is of the correct type...
 Person p = o as Person;

 if (p != null)
 Console.WriteLine ("DeSerialized Person aged: {0} weight: {1}" ,
 p.Age , p.WeightInPounds);

 // And close the stream
 s.Close ();
 }

You can use the NonSerialized attribute to mark data that does not need to be serialized, such as data that
can be recomputed or calculated when necessary. An example would be where you have a class which
computes prime numbers – you may well cache primes to speed up response times whilst using the class;
however, serializing and deserializing a list of primes would be unnecessary as they can simply be recomputed
on request. At other times the member may only be relevant to that specific use of the object. For example in an
object representing a word processor document, we would want to serialize the content of the document but
usually not the position of the insertion point – when the document next loads we simply place the insertion point
at the start of the document.

If you want yet more control over how an object is serialized, you can implement the ISerializable interface.
This is an advanced topic and we won't take this discussion any further in this book.

System. Reflection. Assembly Delay Sign Attribute

The System.Reflection namespace provides a number of attributes, some of which have been shown earlier
in the chapter. One of the more complex to use is AssemblyDelaySign. From the

One scenario where you might use delayed signing is when developing commercial software. Each assembly
that is developed in-house needs to be signed with your company's private key before being shipped to your
customers. So when you compile your assembly you reference the key file before you can register the assembly
in the GAC.

However, many organizations would not want their private key to be on every developer's machine. For this
reason the runtime enables us to partially sign the assembly, and tweak a few settings so that your assembly can
be registered within the GAC. When fully tested it can be signed by whoever holds the private key file. This may
be your QA department, one or more trusted individuals, or the marketing department.

In the following example we'll show how you can delay sign a typical assembly, register it in the GAC for testing,
and finally complete the signing by adding in the private key.

Extracting the Public Key

Firstly we need to create a key file with the sn.exe utility – we saw how to do this in the

>sn –k Company.Key

Then we need to extract the public key portion for use by developers with the –p option:

>sn –p Company.Key Company.Public

This command will produce a key file Company.Public with only the public part of the key. This public key file
can be copied onto all machines and doesn't need to be kept safe – it's the private key file that needs to be
secure. Store the Company.Key file somewhere safe, as it only needs to be used when you wish to finally sign
your assemblies.

In order to delay-sign an assembly and register that assembly within the GAC, you also need to obtain the public
key token – this is basically a shorter version of the public key, used when registering assemblies. You can
obtain the token in one of two ways:

● From the public key file itself:
>sn –t Company.Public

● From any assembly signed with the key:
>sn –T <assembly>

Both of these will display a hashed version of the public key, and are case-sensitive. We'll explain this more when
we register the assembly.

Delay Signing the Assembly

The following code shows how to attribute an assembly for delayed signing. It is available in the Chapter22/
DelaySign directory:

using System;
using System.Reflection;

// Define the file which contains the public key
[assembly: AssemblyKeyFile ("Company.Public")]
// And that this assembly is to be delay signed
[assembly: AssemblyDelaySign (true)]

public class DelayedSigning
{
 public DelayedSigning ()
 {
 }
}

The AssemblyKeyFile attribute defines which file the key is to be found in. This can be either the public key
file, or for more trusted individuals the file containing both public and private keys. The AssemblyDelaySign
attribute defines whether the assembly will be fully signed (false) or delay-signed (true).

The AssemblyInfo.cs file created for a project by Visual Studio .NET contains various attributes, such as the
versioning and file information shown earlier in the chapter. It's also the place to define the
AssemblyDelaySign attributes, and default values are created with every new project.

When compiled, the assembly will contain an entry in the manifest for the public key. In fact, the manifest will also
contain enough room for the private key too, so re-signing the assembly will not change it in any way (other than
writing a few extra bytes into the manifest).

Registering in the GAC

Attempting to use the Gacutil tool (which we met in the

Microsoft (R) .NET Global Assembly Cache Utility. Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Failure adding assembly to the cache: Strong name signature could not be verified.
Was the assembly built delay-signed?

The assembly is only partially signed at the moment, and by default the GAC will only accept assemblies with a
complete strong name. We can however instruct the GAC to skip verification of the strong name on a delay
signed assembly by using the sn utility. Remember the public key token from earlier? This is where it comes into
play.
>sn -Vr *,34AAA4146EE01E4A

This instructs the GAC to permit any assemblies with a public key token of 34AAA4146EE01E4A4A to be
registered. Typing this at the command prompt will generate the following message:
Microsoft (R) .NET Framework Strong Name Utility Version 1.0.3705.0
Copyright (C) Microsoft Corporation 1998-2001. All rights reserved.

Verification entry added for assembly '*,34AAA4146EE01E4A4A'

Attempting to install the assembly into the GAC with Gacutil will now succeed. We don't need to use the public
key value when adding a verification entry for your assembly – we can specify that all assemblies can be
registered by using:
>sn –Vr *

Or we can specify the assembly by typing its full name like so:
>sn –Vr DelaySign.dll

This data is permanently held in what is called the "Verification Skip Table", which is a file stored on disk. To
obtain a list of the entries in the verification skip table, type the following (these commands are case-sensitive):
>sn -Vl

This is the output on my machine:
Microsoft (R) .NET Framework Strong Name Utility Version 1.0.3705.0
Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.

Assembly/Strong Name Users
===
*,03689116d3a4ae33 All users
*,33aea4d316916803 All users
*,34AAA4146EE01E4A All users
*,631223CD18E5C371 All users
*,b03f5f7f11d50a3a All users
*,b77a5c561934e089 All users

Notice the Users column – we can define that a given assembly can be loaded into the GAC by a subset of all
users. Check out the sn.exe documentation for further details of this and other assembly naming options.

Completing the Strong Name

The last stage in the process is to compile the public and private keys into the assembly – an assembly with both
entries is said to be strong named, and can be registered in the GAC without a skip verification entry.

Once again we use the sn.exe utility, this time with the –R switch. The –R switch means that we want to re-sign
the assembly and add in the private key portion:
>sn -R delaysign.dll Company.Key

This will display the following:
Microsoft (R) .NET Framework Strong Name Utility Version 1.0.3705.0
Copyright (C) Microsoft Corp. 1998-2001. All rights reserved.

Assembly 'delaysign.dll' successfully re-signed

The other parameters along with the –R switch are the name of the assembly to be re-signed and the key file that
contains the public and private keys.

Chapter 22 - Attributes
byKarli Watsonet al.

Wrox Press 2003

Custom Attributes

The first half of this chapter has concentrated on some of the attributes that are contained within the .NET
Framework. That's not the whole story though - we can also create our own attributes.

In this chapter we will only scratch the surface of what can be done with custom attributes. In this section we
will look at the following - invented - attributes:

● TestCaseAttribute - links the code used to test a class to the class itself

● BugFixAttribute - records who altered what and when within the source code

● DatabaseTableAttribute and DatabaseColumnAttribute - shows how to produce database schemas
from .NET classes

A custom attribute is simply a special class that must comply with these two specifications:

● A custom attribute must derive from System.Attribute

● The constructor(s) for an attribute may only contain types that can be resolved at compile time - such as
strings and integers

The restriction on the types of parameters allowable on the attribute constructor(s) is due to the way that
attributes are persisted into the assembly metadata. When you use an attribute within code, you are using the
attribute's constructor inline. For example:
[assembly: AssemblyKeyFile ("Company.Public")]

This attribute is persisted into the assembly metadata as an instruction to call a constructor of
AssemblyKeyFileAttribute, which accepts a string. In the above example that string is "Company.
Public". If we define a custom attribute, users of the attribute are basically writing parameters to the
constructor of the class.

The first example, TestCaseAttribute, shows how test classes can be coupled with the code that they test.

Test Case Attribute

When unit testing software it is common to define a set of test classes that exercise your classes to ensure
that they perform as expected. This is especially true in regression testing, where you want to ensure that by
fixing a bug or adding extra functionality, you have not broken something else.

When working with regulated customers (such as producing software for Pharmaceutical companies who
work under strict controls from government agencies), it is necessary to provide cross-references between
code and tests. The TestCaseAttribute presented here can help to trace between a class and its test
class.

The full source code is available in the Chapter22/TestCase directory.

In order to create a custom attribute class, we must:

● Create a class derived from System.Attribute

● Create the constructor(s) and public properties as required

● Attribute the class to define where it is valid to use your custom attribute

We will discuss each of these steps in turn.

Creating the Custom Attribute Class

This is the simplest step. All you need to do here is create a class derived from System.Attribute:

public class TestCaseAttribute : Attribute
{
}

Creating Constructors and Properties

As mentioned earlier, when the user uses an attribute they are effectively calling the attribute's constructor.
For the test case attribute, we want to define the type of object used to test a given class, so we'll use a
System.Type value:

using System;
public class TestCaseAttribute : Attribute
{
 /// <summary>
 /// Constructor for the class
 /// </summary>
 /// <param name="testCase">The object which contains
 /// the test case code</param>
 public TestCaseAttribute (System.Type testCase)
 {
 TestCase = testCase;
 }

 /// <summary>
 /// The test case object
 /// </summary>
 public readonly System.Type TestCase;

 /// <summary>
 /// Perform the test
 /// </summary>
 public void Test ()
 {
 // Create an instance of the class under test
 // The test case object created is assumed to
 // test the object in its' constructor
 object o = Activator.CreateInstance (TestCase);
 }

}

This defines a single constructor, and a read only member variable TestCase. The Test method is used to
instantiate the test case, as this simple example will perform the tests within the constructor of the test case
class.

Attributing the Class for Usage

The last thing we need to do is attribute your attribute class to indicate where your attribute class can be used.
For the test case attribute we want to say "this attribute is only valid on classes". We can decide where an
attribute that we create is valid. This will be explained in more detail later in the chapter:
[AttributeUsage(AttributeTargets.Class,
 AllowMultiple=false,
 Inherited=true)]
public class TestCaseAttribute : Attribute
...

The AttributeUsage attribute has a single constructor, which takes a value from the AttributeTargets
enum (described in full later in this section). Here we have stated that the only valid place to put a TestCase
attribute is on a class. We can specify several values in this enum using the | symbol for a logical OR - so
other attributes might be valid on classes, or constructors, or properties.

In the definition of the attribute here we have also utilized two properties of that attribute - AllowMultiple
and Inherited. We will discuss these properties more fully later in the section.

Now we need an object to test with a test case. There's nothing particularly magic about this class:
[TestCase (typeof(TestAnObject))]
public class SomeCodeOrOther
{
 public SomeCodeOrOther ()
 {
 }

 public int Do ()
 {
 return 999;
 }
}

The class is prefixed with the TestCase attribute, and uses typeof() to define the class used to test the
code in question. To complete this example we need to write the test class. This object is used to exercise an
instance of the code under test, and is presented below:
public class TestAnObject
{
 public TestAnObject ()
 {
 // Exercise the class under test
 SomeCodeOrOther scooby = new SomeCodeOrOther ();

 if (scooby.Do () != 999)
 throw new Exception ("Pesky Kids");
 }
}

This class simply instantiates the class under test, calls a method, and throws an exception if the returned
value is not what was expected. A more complete test case would exercise the object under test completely,
by calling all methods on that class, passing in values out of range to check for error conditions, and possibly
setting up some other classes used for contextual information - if testing a class that accesses a database,
you might pass in a connection object.

Now for the main code. This class will loop through all types in the assembly, looking for those that have the
TestCaseAttribute defined. When found, the attribute is retrieved and the Test() method called:

using System;
using System.Reflection;

[AttributeUsage(AttributeTargets.Class,AllowMultiple=false,Inherited=true)]
public class TestCaseAttribute : Attribute
{
 // Code removed for brevity
}

/// <summary>
/// A class that uses the TestCase attribute
/// </summary>
[TestCaseAttribute(typeof(TestAnObject))]
public class SomeCodeOrOther
{
 // Code removed for brevity
}

// Main program class
public class UnitTesting
{
 public static void Main ()
 {
 // Find any classes with test cases in the current assembly
 Assembly a = Assembly.GetExecutingAssembly ();

 // Loop through the types in the assembly and test them if necessary
 System.Type[] types = a.GetExportedTypes ();

 foreach (System.Type t in types)
 {
 // Output the name of the type...
 Console.WriteLine ("Checking type {0}", t.ToString ());

 // Does the type include the TestCaseAttribute custom attribute?
 object[] atts = t.GetCustomAttributes(typeof(TestCaseAttribute),
 false);
 if (1 == atts.Length)
 {
 Console.WriteLine (" Found TestCaseAttribute: Running Tests");

 // OK, this class has a test case. Run it...
 TestCaseAttribute tca = atts[0] as TestCaseAttribute;

 try
 {

 // Perform the test...
 tca.Test ();
 Console.WriteLine (" PASSED!");
 }
 catch (Exception ex)
 {
 Console.WriteLine (" FAILED!");
 Console.WriteLine (ex.ToString ());
 }
 }
 }
 }
}

The new section of code is highlighted. When run, the program gets the executing assembly via the static
GetExecutingAssembly() method of the Assembly class. It then calls GetExportedTypes() on that
assembly to find a list of all object types publicly accessible in the assembly.

For each exported type in the assembly, it then checks to see if it includes the TestCase attribute. It retrieves
the attribute if it exists (which internally constructs the attribute instance, passing the parameters used within
the code to the constructor of the object) and calls the Test method, which tests the code.

When run, the output from the program is as follows:
Checking type TestCaseAttribute
Checking type SomeCodeOrOther
 Found TestCaseAttribute: Running Tests
 PASSED!
Checking type TestAnObject
Checking type UnitTesting

System. Attribute Usage Attribute

When defining a custom attribute class, it is necessary to define the type or types that the attribute may be
used on. In the preceding example, the TestCase attribute is valid only for use on classes. In order to define
where an attribute can be placed, you add another attribute - AttributeUsage.

In its simplest form, this can be used as shown below:
[AttributeUsage(AttributeTargets.Class)]

The single parameter is an enumeration of where your attribute is valid. If you attempt to attribute a method
with the TestCase attribute, you'll receive an error message from the compiler. An invalid usage could be:

public class TestAnObject
{
 [TestCase (typeof(System.String))] // Invalid here
 public TestAnObject ()
 {
 etc...
 }
}

The error reported is:
TestCase.cs(54,4): error CS0592: Attribute 'TestCase' is not valid on this

 declaration type. It is valid on 'class' declarations only.

The AttributeTargets enum defines the following members, which can be combined together using the or
operator (|) to define a set of elements that this attribute is valid on:

AttributeTargets value Description
All The attribute is valid on anything within the assembly.

Assembly The attribute is valid on the assembly - an example is the
AssemblyKeyFile attribute shown earlier in the chapter.

Class The attribute is valid on a class definition. Our TestCase attribute used
this value. Another example is the Serializable attribute.

Constructor The attribute is valid only on class constructors.

Delegate The attribute is valid only on a delegate.

Enum The attribute can be added to enumerated values. One example of this
attribute is the System.FlagsAttribute, which when applied to an
enum defines that the user can use the bitwise or operator to combine
values from the enumeration. The AttributeTargets enum uses this
attribute.

Event The attribute is valid on event definitions.

Field The attribute can be placed on a field, such as an internal member
variable. An example of this is the NonSerialized attribute, which was
used earlier to define that a particular value should not be stored when the
class was serialized.

Interface The attribute is valid on an interface. One example of this is the
GuidAttribute defined within System.Runtime.InteropServices,
which permits you to explicitly define the GUID for an interface.

Method The attribute is valid on a method. The OneWay attribute from System.
Runtime.Remoting.Messaging uses this value.

Module The attribute is valid on a module. An assembly may be created from a
number of code modules, so you can use this to place the attribute on an
individual module and not the whole assembly.

Parameter The attribute can be applied to a parameter within a method definition.

Property The attribute can be applied to a property.

ReturnValue The attribute is associated with the return value of a function.

Struct The attribute is valid on a structure.

Attribute Scope

In the first examples in the chapter we saw the Assembly* attributes, which all included syntax similar to that
below:
[assembly: AssemblyTitle("Wrox rocks")]

The assembly: string defines the scope of the attribute, which in this case tells the compiler that the
AssemblyTitle attribute should be applied to the assembly itself. You only need to use the scope modifier
when the compiler cannot work out the scope itself. For example, if you wish to add an attribute to the return
value of a function:

[MyAttribute ()]
public long DoSomething ()
{
 ...
}

When the compiler reaches this attribute, it takes an educated guess that you are applying the attribute to the
method itself, which is not what we want here, so you can add a modifier to indicate exactly what the attribute
is attached to:
[return:MyAttribute ()]
public long DoSomething ()
{
 ...
}

If you wish to define the scope of the attribute, choose one of the following values.

● assembly - attribute applies to the assembly

● field - attribute applies to a field of an enum or class

● event -attribute applies to an event

● method - attribute applies to the method it precedes

● module - attribute is stored in the module

● param - attribute applies to a parameter

● property - attribute is stored against the property

● return - apply the attribute to the return value of a function

● type - the attribute applies to a class, interface, or struct

Many of these are rarely used as the scope is not normally ambiguous. However for assembly, module, and
return values you will have to use the scope flag. If there is some ambiguity as to where the attribute is
defined, the compiler will choose which object the attribute will be assigned to. This is most common when
attributing the return value of a function as shown below.
[SomeAttribute]
public string DoSomething ();

Here the compiler guesses that the attribute applies to the method, and not the return value. You need to
define the scope in the following way to get the desired effect.
[return:SomeAttribute]
public string DoSomething ();

AttributeUsage.AllowMultiple

We define whether the user can add one or more of the same attributes to the element. For example you
could create an attribute that lists all of the bug fixes applied to a section of code. As the assembly evolves,
you may want to supply details of several bug fixes on a method.

BugFixAttribute

The code below defines a simple BugFixAttribute, and uses the AllowMultiple flag so that the
attribute can be used more than once on any given chunk of code:
[AttributeUsage (AttributeTargets.Class | AttributeTargets.Property |
 AttributeTargets.Method | AttributeTargets.Constructor ,
 AllowMultiple=true)]
public class BugFixAttribute : Attribute
{
 public BugFixAttribute (string bugNumber , string comments)
 {
 BugNumber = bugNumber;
 Comments = comments;
 }

 public readonly string BugNumber;
 public readonly string Comments;
}

The BugFix attribute constructor takes a bug number and a comment string, and is marked with
AllowMultiple=true to indicate that it can be used as follows:

[BugFix("101","Created some methods")]
public class MyBuggyCode
{
 [BugFix("90125","Removed call to base()")]
 public MyBuggyCode ()
 {
 }

 [BugFix("2112","Returned a non null string")]
 [BugFix("38382","Returned OK")]
 public string DoSomething ()
 {
 return "OK";
 }
}

The syntax for setting the AllowMultiple flag is a little strange. The constructor for AttributeUsage only
takes a single parameter - the list of flags where the attribute can be used. AllowMultiple is a property on
the AttributeUsage attribute, and so the syntax below means "construct the attribute, and then set the
value of the AllowMultiple property to true":

[AttributeUsage (AttributeTargets.Class | AttributeTargets.Property |
 AttributeTargets.Method | AttributeTargets.Constructor ,
 AllowMultiple=true)]
public class BugFixAttribute : Attribute
{
 ...
}

A similar method is used for the Inherited property shown later in the chapter. If a custom attribute has
properties, you can set these in the same manner. One example might be to add on the name of the person
who fixed the bug:

 public readonly string BugNumber;
 public readonly string Comments;
 public string Author = null;

 public override string ToString ()
 {
 if (null == Author)
 return string.Format ("BugFix {0} : {1}" ,
 BugNumber , Comments);
 else
 return string.Format ("BugFix {0} by {1} : {2}" ,
 BugNumber , Author , Comments);
 }

This adds the Author property, and an overridden ToString() implementation which will display the full
details if the Author property is set or else just show the bug number and comments. The ToString()
method would be used to display a list of bug fixes for a given section of code - perhaps to print and file away
somewhere.

Once you have written the BugFix attribute, you need some way to report the fixes made on a class and the
members of that class.

The method of reporting bug fixes for a class is to pass the class type (again a System.Type) to the
DisplayFixes function shown below. This also uses reflection to find any bug fixes applied to the class, and
then iterates through all methods of that class looking for bug fix attributes.

This example can be found in the Chapter22\BugFix directory:

 public static void DisplayFixes (System.Type t)
 {
 // Get all bug fixes for the given type,
 // which is assumed to be a class
 object[] fixes = t.GetCustomAttributes (typeof (BugFixAttribute) , false);

 Console.WriteLine ("Displaying fixes for {0}" , t);

 // Display the big fix information
 foreach (BugFixAttribute bugFix in fixes)
 Console.WriteLine (" {0}" , bugFix);

 // Now get all members (i.e. functions) of the class
 foreach (MemberInfo member in t.GetMembers (BindingFlags.Instance |
 BindingFlags.Public |
 BindingFlags.NonPublic |
 BindingFlags.Static))
 {
 // And find any big fixes applied to these too
 object[] memberFixes = member.GetCustomAttributes(typeof(BugFixAttribute)
 , false);

 if (memberFixes.Length > 0)
 {
 Console.WriteLine (" {0}" , member.Name);

 // Loop through and display these

 foreach (BugFixAttribute memberFix in memberFixes)
 Console.WriteLine (" {0}" , memberFix);
 }
 }
 }

The first thing the code does is to retrieve all BugFix attributes from the type itself:

object[] fixes = t.GetCustomAttributes (typeof (BugFixAttribute) ,
 false);

These are enumerated and displayed. The code then loops through all members defined on the class, by
using the GetMembers() method:

foreach (MemberInfo member in t.GetMembers (
 BindingFlags.Instance | BindingFlags.Public |
 BindingFlags.NonPublic | BindingFlags.Static))

GetMembers retrieves properties, methods and fields from a given type. To limit the list of members that are
returned, the BindingFlags enum is used (which is defined within System.Reflection).

The binding flags passed to this method indicate which members we are interested in - in this case we'd like
all instance and static members, regardless of visibility, so we specify Instance and Static, together with
Public and NonPublic members.

After getting all members, we then loop through these finding any BugFix attributes associated with the
particular member, and output these to the console. To output a list of bug fixes for a given class, all you do is
call the static DisplayFixes() method, passing in the class type:

 BugFixAttribute.DisplayFixes (typeof (MyBuggyCode));

For the MyBuggyCode class presented earlier, this results in the following output:

Displaying fixes for MyBuggyCode
 BugFix 101 : Created some methods
 DoSomething
 BugFix 2112 : Returned a non null string
 BugFix 38382 : Returned OK
 .ctor
 BugFix 90125 : Removed call to base()

If you wanted to display fixes for all classes in a given assembly, you could use reflection to get all the types
from the assembly, and pass each one to the static BugFixAttribute.DisplayFixes method.

AttributeUsage.Inherited

An attribute may be defined as inheritable by setting this flag when defining the custom attribute:
[AttributeUsage (AttributeTargets.Class,
 Inherited = true)]
public class BugFixAttribute { ... }

This indicates that the BugFix attribute will be inherited by any subclasses of the class using the attribute,
which may or may not be desirable. In the case of the BugFix attribute, this behavior would probably not be
desirable, as a bug fix normally applies to a single class and not the derived classes.

Say you have the following abstract class with a bug fix applied:

[BugFix("38383","Fixed that abstract bug")]
public abstract class GenericRow : DataRow
{
 public GenericRow (System.Data.DataRowBuilder builder) : base (builder)
 {
 }
}

If we create a subclass from this class, we wouldn't want the same BugFix attribute to be reflected in the
subclass - the subclass has not had that fix done on it. However, if we were defining a set of attributes that
linked members of a class to fields in a database table, then we probably would want to inherit these attributes.

It's fairly common when defining database schema to come up with a set of standard columns that most tables
include, such as Name and Description. You could code up a base class with these fields, and include a
custom attribute that links a property in the class with a database column. Further subclasses could add more
fields in as appropriate.

In the following example, we'll create DatabaseTable and DatabaseColumn attributes that can be applied
to a class so that a database table suitable for persisting that class can be generated automatically.

Generating Database Tables using Attributes

This final example will show how attributes can be used from .NET classes to generate the database schema
- a database design including tables, columns, and data types - so that .NET objects can create their own
database tables to be persisted into. We will see how to extract this schema information to generate the SQL
to create the tables in a database, and to construct in-memory DataTable objects.

As we saw in Chapter 19, we use DataSet, DataTable, DataRow and DataAdapter objects to access
data in ADO.NET. It is important to keep our use of these objects in synch with the underlying database
structure. If a database structure changes over time then we need to ensure that updates to tables, such as
adding in new columns, are reflected in the classes that access the database.

In this example we will create subclasses of DataRow that are designed specifically for storing data from a
particular database table. In cases where the underlying database schema will not change often, this can
provide a very effective way to access databases. If your schema is likely to change frequently, or if you
permit users to modify the database structure, it might be better to generate the DataTable objects
dynamically by requesting schema information from the database and building the data tables on the fly.

The following diagram shows the relationship between the ADO.NET classes and the underlying database
table:

The DataSet consists of one or more DataTable objects, each one having DataRow objects that map to a
single row within the database table. The data adapter is used to retrieve data from the database into the
DataTable, and to write data from the DataTable back to the database.

The DataTable consists largely of boilerplate code, so we will define a base class DataTable object that
can serve as a generic container for DataRow objects. The DataRow, however, needs to provide type-safe
access to columns within the database, so we will subclass it. The relationship between this object and the
underlying table is shown below:

For this example we are concentrating on Books and Authors. The example consists of just these two
tables, which are shown over the course of the next few pages. Although the example is designed to work
with SQL Server, you could alter the code to work with Oracle or any other database engine.

The AuthorRow class derives from DataRow, and includes properties for each of the columns within the
underlying Author table. A DatabaseTable attribute has been added to the row class, and for each
property that links to a column in the table there is now a DatabaseColumn attribute. Some of the
parameters to these attributes have been removed so that the image will fit on screen. The full details will
appear in the following sections.

DatabaseTable Attribute

The first attribute in this example is used to mark a class, in this instance a DataRow, with the name of the
database table where the DataRow will be saved. The example code is available in the Chapter22/
DatabaseAttributes directory:

// Excerpt from DatabaseAttributes.cs
/// <summary>
/// Attribute to be used on a class to define which database table is used
/// </summary>
[AttributeUsage (AttributeTargets.Class , Inherited = false ,
 AllowMultiple=false)]
public class DatabaseTableAttribute : Attribute
{
 /// <summary>
 /// Construct the attribute
 /// </summary>
 /// <param name="tableName">The name of the database table</param>
 public DatabaseTableAttribute (string tableName)
 {
 TableName = tableName;
 }

 /// <summary>
 /// Return the name of the database table
 /// </summary>
 public readonly string TableName;
}

The attribute consists of a constructor that accepts the name of the table as a string, and is marked with the
Inherited=false and AllowMultiple=false modifiers. It's unlikely that you would want to inherit this
attribute by any subclasses, and it is marked as single use as a class will only link to a single table.

Within the attribute class we store the name of the table as a field rather than a property. This is a matter of
personal choice. In this instance there is no method to alter the value of the table name so a read only field
will suffice. If you prefer using properties then feel free to alter the example code.

DatabaseColumn Attribute

This attribute is designed to be placed on public properties of the DataRow class, and is used to define the
name of the column that the property will link to, together with such things as whether the column can contain
a null value:
// Excerpt from DatabaseAttributes.cs
/// <summary>
/// Attribute to be used on all properties exposed as database columns
/// </summary>
[AttributeUsage (AttributeTargets.Property , Inherited=true ,
 AllowMultiple=false)]
public class DatabaseColumnAttribute : Attribute
{
 /// <summary>
 /// Construct a database column attribute
 /// </summary>
 /// <param name="column">The name of the column</param>
 /// <param name="dataType">The datatype of the column</param>
 public DatabaseColumnAttribute (string column , ColumnDomain dataType)
 {
 ColumnName = column;
 DataType = dataType;
 Order = GenerateOrderNumber ();
 }

 /// <summary>
 /// Return the column name
 /// </summary>
 public readonly string ColumnName;
 /// <summary>
 /// Return the column domain
 /// </summary>
 public readonly ColumnDomain DataType;
 /// <summary>
 /// Get/Set the nullable flag. A property might be better
 /// </summary>
 public bool Nullable = false;
 /// <summary>
 /// Get/Set the Order number. Again a property might be better.
 /// </summary>

 public int Order;
 /// <summary>
 /// Get/Set the Size of the column (useful for text columns).
 /// </summary>
 public int Size;

 /// <summary>
 /// Generate an ascending order number for columns
 /// </summary>
 /// <returns></returns>
 public static int GenerateOrderNumber ()
 {
 return nextOrder++;
 }

 /// <summary>
 /// Private value used whilst generating the order number
 /// </summary>
 private static int nextOrder = 100;
}

/// <summary>
/// Enumerated list of column data types
/// </summary>
public enum ColumnDomain
{
 /// <summary>
 /// 32 bit
 /// </summary>
 Integer,
 /// <summary>
 /// 64 bit
 /// </summary>
 Long,
 /// <summary>
 /// A string column
 /// </summary>
 String,
 /// <summary>
 /// A date time column
 /// </summary>
 DateTime
}

This class is again marked with AllowMultiple=false, as there is always a one to one correspondence
between a property of a DataRow and the column to which it is linked.

We have marked this attribute as inheritable so that we can create a class hierarchy for database rows, as it is
likely that we will have some similar columns throughout each table within the schema.

The constructor accepts two arguments. The first is the name of the column that is to be defined within the
database. The second argument is an enumerated value from the ColumnDomain enumeration, which
consists of four values for this example, but which would be insufficient for production code.

The attribute also has three other properties, which are summarized below:

● Nullable - Defaulting to false, this property is used when the column is generated to define whether
the database value can be set to NULL.

● Order - Defines the order number of the column within the table. When the table is generated, the
columns will be output in ascending order. The default is to generate an incrementing value, which is done
within the constructor. You can naturally override this value as necessary.

● Size - Defines the maximum number of characters allowed in a string type.

To define a Name column we might use the following code:

 [DatabaseColumn("NAME",ColumnDomain.String,Order=10,Size=64)]
 public string Name
 {
 get { return (string) this ["NAME"]; }
 set { this["NAME"] = value; }
 }

This defines a field called NAME, and it will be generated as a VARCHAR(64) because the column domain is
set to String and the size parameter has been set to 64. It sets the order number to 10 - we will see why
later in the chapter. The column will also not allow null values, as the default for the Nullable property is
false (thus the column will be generated as NON NULL).

The DataRow class has an indexer that takes the name of a field (or ordinal) as the parameter. This returns
an object, which is cast to a string before returning it in the get accessor shown above.

Creating Database Rows

The point of this example is to produce a set of strongly typed DataRow objects. In this example we'll create
two classes, Author and Book, which both derive from a common base class as each shares some common
fields.

The GenericRow class defines the Name and Description properties, and the code for this is included
below. It is derived from DataRow, the base class for all database rows in the framework.

For the example, two classes derive from GenericRow - one to represent an Author (AuthorRow) and
another representing a Book (BookRow). These both contain additional properties, which are linked to fields
within the database:

// Excerpt from DatabaseTables.cs
/// <summary>
/// Base class row - defines Name and Description columns
/// </summary>
public abstract class GenericRow : DataRow
{
 /// <summary>
 /// Construct the object
 /// </summary>
 /// <param name="builder">Passed in from System.Data</param>
 public GenericRow (System.Data.DataRowBuilder builder)
 : base (builder)
 {
 }

 /// <summary>
 /// A column for the record name
 /// </summary>
 [DatabaseColumn("NAME",ColumnDomain.String,Order=10,Size=64)]
 public string Name
 {
 get { return (string) this["NAME"]; }
 set { this["NAME"] = value; }
 }

 /// <summary>
 /// A column for the description, which may be null
 /// </summary>
 [DatabaseColumn("DESCRIPTION",ColumnDomain.String,Nullable=true,Order=11,
 Size=1000)]
 public string Description
 {
 get { return (string) this["DESCRIPTION"]; }
 set { this["DESCRIPTION"] = value; }
 }
}

Deriving from DataRow requires that you create a constructor that accepts a single parameter, a
DataRowBuilder. This class is internal to the System.Data assembly.

Two properties are then defined, Name and Description, and each of these is attributed accordingly. The
name field is attributed as follows:
[DatabaseColumn("NAME",ColumnDomain.String,Order=10,Size=64)]

This defines the column name as NAME, defines its domain as a string of size 64 characters, and sets its order
number to 10. I've done this because when creating database tables I always prefer the primary key fields to
be emitted before any other fields within the table. Setting this value to ten gives me space for numerous
identity fields. Any more than ten fields in a primary key will require a redesign!

The description column is also given a name, domain, and size. The Nullable property is set to true so
that we are not forced to define a description column. The other option would be to define a "default" property
and set this to an empty string, which would avoid the use of NULL in the database. The order number is set
to eleven, so that the name and description columns are always kept together in the generated schema:

[DatabaseColumn("DESCRIPTION",ColumnDomain.String,Nullable=true,
 Order=11,Size=1000)]

Each property accessor defines a get and set method for the value of the property, and these are strongly
typed so that in the case of a string column, a string value is returned to the caller:

 get { return (string) this["NAME"]; }
 set { this["NAME"] = value; }

There is some duplication of code here, as the attribute defines the name of the column, so you could use
reflection within these methods to retrieve the value of the appropriate column. However, reflection is not the
most efficient of API's - as these classes are used to access the underlying columns we want them to be as
fast as possible. To squeeze every last ounce of performance from these accessors we could use numeric
indexes for the columns, as using strings involves a look up for the numeric index value. Be careful when
using numeric indexers as they are slightly more difficult to maintain, especially in the instance where a
subclass is defined.

The Author row is constructed as follows:

// Excerpt from DatabaseTables.cs
/// <summary>
/// Author table, derived from GenericRow
/// </summary>
 [DatabaseTable("AUTHOR")]
public class AuthorRow : GenericRow
{
 public AuthorRow (DataRowBuilder builder)
 : base (builder)
 {
 }

 /// <summary>
 /// Primary key field
 /// </summary>
 [DatabaseColumn("AUTHOR_ID",ColumnDomain.Long,Order=1)]
 public long AuthorID
 {
 get { return (long) this["AUTHOR_ID"]; }
 set { this["AUTHOR_ID"] = value; }
 }

 /// <summary>
 /// Date the author was hired
 /// </summary>
 [DatabaseColumn("HIRE_DATE",ColumnDomain.DateTime,Nullable=true)]
 public DateTime HireDate
 {
 get { return (DateTime) this["HIRE_DATE"]; }
 set { this["HIRE_DATE"] = value; }
 }
}

Here we have subclassed the GenericRow class, and added in AuthorID and HireDate properties. Note
the order number chosen for the AUTHOR_ID column - it is set to one so that it appears as the first column
within the emitted table. The HireDate property has no such order number, so its value is generated by the

attribute, and these generated values all start from 100, so the table will be laid out as AUTHOR_ID, NAME,
DESCRIPTION, and finally HIRE_DATE.

The BookRow class again derives from GenericRow, so as to include the name and description properties. It
adds BookID, PublishDate and ISBN properties:

// Excerpt from DatabaseTables.cs
/// <summary>
/// Table for holding books
/// </summary>
[DatabaseTable("BOOK")]
public class BookRow : GenericRow
{
 public BookRow (DataRowBuilder builder)
 : base (builder)
 {
 }

 /// <summary>
 /// Primary key column
 /// </summary>
 [DatabaseColumn("BOOK_ID",ColumnDomain.Long,Order=1)]
 public long BookID
 {
 get { return (long) this["BOOK_ID"]; }
 set { this["BOOK_ID"] = value; }
 }

 /// <summary>
 /// Author who wrote the book
 /// </summary>
 [DatabaseColumn("AUTHOR_ID",ColumnDomain.Long,Order=2)]
 public long AuthorID
 {
 get { return (long) this["AUTHOR_ID"]; }
 set { this["AUTHOR_ID"] = value; }
 }

 /// <summary>
 /// Date the book was published
 /// </summary>
 [DatabaseColumn("PUBLISH_DATE",ColumnDomain.DateTime,Nullable=true)]
 public DateTime PublishDate
 {
 get { return (DateTime) this["PUBLISH_DATE"]; }
 set { this["PUBLISH_DATE"] = value; }
 }

 /// <summary>
 /// ISBN for the book
 /// </summary>
 [DatabaseColumn("ISBN",ColumnDomain.String,Nullable=true,Size=10)]
 public string ISBN
 {
 get { return (string) this["ISBN"]; }

 set { this["ISBN"] = value; }
 }
}

Generating the SQL

Now that the database rows have been defined, it's time for the code that will generate a database schema
from these classes. The example dumps its output to the console, so we could for example pipe the output to
a text file by running the .exe from a command prompt.

The following class calls OutputTable for each type that we wish to create a database table for:

public class DatabaseTest
{
 public static void Main ()
 {
 OutputTable (typeof (AuthorRow));
 OutputTable (typeof (BookRow));
 }
 public static void OutputTable (System.Type t)
 {
 // Code in full below
 }
}

We could utilize reflection to loop through each class in the assembly, check if it is derived from GenericRow,
and output the classes automatically. For simplicity's sake we have hard-coded the name of the tables that
are to be generated: AuthorRow and BookRow.

The OutputTable method is shown below:

// Excerpt from Database.cs
/// <summary>
/// Produce SQL Server style SQL for the passed type
/// </summary>
/// <param name="t"></param>
public static void OutputTable (System.Type t)
{
 // Get the DatabaseTable attribute from the type
 object[] tableAttributes = t.GetCustomAttributes
 (typeof (DatabaseTableAttribute) , true) ;

 // Check there is one...
 if (tableAttributes.Length == 1)
 {
 // If so output some SQL
 Console.WriteLine ("CREATE TABLE {0}" ,
 ((DatabaseTableAttribute)tableAttributes[0]).TableName);
 Console.WriteLine ("(");
 SortedList columns = new SortedList ();

 // Roll through each property
 foreach (PropertyInfo prop in t.GetProperties ())
 {
 // And get any DatabaseColumnAttribute that is defined
 object[] columnAttributes = prop.GetCustomAttributes

 (typeof (DatabaseColumnAttribute) , true);

 // If there is a DatabaseColumnAttribute
 if (columnAttributes.Length == 1)
 {
 DatabaseColumnAttribute dca = columnAttributes[0]
 as DatabaseColumnAttribute;

 // Convert the ColumnDomain into a SQL Server data type
 string dataType = ConvertDataType (dca);

 // And add this column SQL into the sorted list - I want the
 // columns to come out in ascending order of order number
 columns.Add (dca.Order, string.Format (" {0,-31}{1,-20}{2,8}," ,
 dca.ColumnName ,
 dataType ,
 dca.Nullable ? "NULL" : "NOT NULL"));
 }
 }
 // Now loop through the SortedList of columns
 foreach (DictionaryEntry e in columns)
 // And output the string...
 Console.WriteLine (e.Value);

 // Then terminate the SQL
 Console.WriteLine (")");
 Console.WriteLine ("GO");
 Console.WriteLine ();
 }
}

This code reflects over the type passed in, and looks for the DatabaseTable attribute. If the
DatabaseTable attribute is found, it writes a CREATE TABLE clause to the console, including the name of
the table from the attribute.

We then loop through all properties of the type to find any DatabaseColumn attributes. Any property that has
this attribute will become a column in the generated table:
 foreach (PropertyInfo prop in t.GetProperties ())
 {
 object[] columnAttributes = prop.GetCustomAttributes (
 typeof (DatabaseColumnAttribute) , true);

The string representation of the column is constructed by calling the ConvertDataType() method, shown in
a moment. This is stored within a sorted collection so that the columns are generated based on the value of
the Order property of the attribute.

After looping through all attributes and creating entries within the sorted list, we then loop through the sorted
list and write each value to the console:
 foreach (DictionaryEntry e in columns)
 Console.WriteLine(e.Value);

Finally we add the closing bracket and a GO command, which will instruct SQL Server to execute the batch of
statements and thereby create the table.

The last function in this assembly, ConvertDataType(), converts values from the ColumnDomain
enumeration into a database specific data type. In addition, for string columns, we create the column
representation to include the size of the column, so for instance the Name property from the generic base
class is constructed as VARCHAR(64). This column type represents a varying array of characters up to 64
characters in length.
// Excerpt from Database.cs
/// <summary>
/// Convert a ColumnDomain to a SQL Server data type
/// </summary>
/// <param name="dca">The column attribute</param>
/// <returns>A string representing the data type</returns>
private static string ConvertDataType (DatabaseColumnAttribute dca)
{
 string dataType = null;

 switch (dca.DataType)
 {
 case ColumnDomain.DateTime:
 {
 dataType = "DATETIME";
 break;
 }
 case ColumnDomain.Integer:
 {
 dataType = "INT";
 break;
 }
 case ColumnDomain.Long:
 {
 dataType = "BIGINT";
 break;
 }
 case ColumnDomain.String:
 {
 // Include the size of the string...
 dataType = string.Format ("VARCHAR({0})" , dca.Size);
 break;
 }
 }

 return dataType;
}

For each member of the enumeration, we create a column string appropriate for SQL Server. The SQL
emitted for the Author and Book classes from this example is shown below:

CREATE TABLE AUTHOR
(
 AUTHOR_ID BIGINT NOT NULL,
 NAME VARCHAR(64) NOT NULL,
 DESCRIPTION VARCHAR(1000) NULL,
 HIRE_DATE DATETIME NULL,
)
GO

CREATE TABLE BOOK
(
 BOOK_ID BIGINT NOT NULL,
 AUTHOR_ID BIGINT NOT NULL,
 NAME VARCHAR(64) NOT NULL,
 DESCRIPTION VARCHAR(1000) NULL,
 PUBLISH_DATE DATETIME NULL,
 ISBN VARCHAR(10) NULL,
)
GO

This SQL can be run against an empty or pre-existing SQL Server database to create the tables. The
DataRow classes created can be used to provide type safe access to the data within these tables.

To utilize the derived DataRow classes, we need to provide some code such as the following. This class
overrides the minimum set of functions from DataTable, and is passed the type of the row in the constructor:

// Excerpt from DatabaseTables.cs
/// <summary>
/// Boilerplate data table class
/// </summary>
public class MyDataTable : DataTable
{
 /// <summary>
 /// Construct this object based on a DataRow
 /// </summary>
 /// <param name="rowType">A class derived from DataRow</param>
 public MyDataTable (System.Type rowType)
 {
 m_rowType = rowType;
 ConstructColumns ();
 }

 /// <summary>
 /// Construct the DataColumns for this table
 /// </summary>
 private void ConstructColumns ()
 {
 SortedList columns = new SortedList ();

 // Loop through all properties
 foreach (PropertyInfo prop in m_rowType.GetProperties ())
 {
 object[] columnAttributes = prop.GetCustomAttributes
 (typeof (DatabaseColumnAttribute) , true);

 // If it has a DatabaseColumnAttribute
 if (columnAttributes.Length == 1)
 {
 DatabaseColumnAttribute dca = columnAttributes[0]
 as DatabaseColumnAttribute;

 // Create a DataColumn
 DataColumn dc = new DataColumn (dca.ColumnName ,

 prop.PropertyType);
 // Set its nullable flag
 dc.AllowDBNull = dca.Nullable;
 // And add it to a temporary column collection
 columns.Add (dca.Order , dc);
 }
 }

 // Add the columns in ascending order
 foreach (DictionaryEntry e in columns)
 this.Columns.Add (e.Value as DataColumn);
 }

 /// <summary>
 /// Called from within System.Data
 /// </summary>
 /// <returns>The type of the rows that this table holds</returns>
 protected override System.Type GetRowType ()
 {
 return m_rowType;
 }

 /// <summary>
 /// Construct a new DataRow
 /// </summary>
 /// <param name="builder">Passed in from System.Data</param>
 /// <returns>A type safe DataRow</returns>
 protected override DataRow NewRowFromBuilder (DataRowBuilder builder)
 {
 // Construct a new instance of my row type class
 return (DataRow) Activator.CreateInstance (GetRowType() ,
 new object[1] { builder });
 }

 /// <summary>
 /// Store the row type
 /// </summary>
 private System.Type m_rowType;
}

The ConstructColumns() function, called from the constructor, will generate a DataColumn array for the
DataTable - these are again retrieved using reflection. The other methods, GetRowType() and
NewRowFromBuilder(), override methods in the base DataTable class.

Once you have this derived MyDataTable class, you can easily use it in your own code. The following shows
an example of adding a couple of author records into the Author table, then outputting these rows to an XML
file:
 DataSet ds = new DataSet ();
 MyDataTable t = new MyDataTable (typeof (AuthorRow));

 ds.Tables.Add (t);
 AuthorRow author = (AuthorRow)t.NewRow ();
 author.AuthorID = 1;
 author.Name = "Me";

 author.HireDate = new System.DateTime (2000,12,9,3,30,0);

 t.Rows.Add (author);

 author = (AuthorRow) t.NewRow ();
 author.AuthorID = 2;
 author.Name = "Paul";
 author.HireDate = new System.DateTime (2001,06,06,23,56,33);

 t.Rows.Add (author);

 t.DataSet.WriteXml (@"c:\BegVCSharp\Chapter22\authors.xml");

When run, this code produces the following output:
<?xml version="1.0" standalone="yes"?>
<NewDataSet>
 <Table1>
 <AUTHOR_ID>1</AUTHOR_ID>
 <NAME>Me</NAME>
 <HIRE_DATE>2000-12-09T03:30:00.0000000-00:00</HIRE_DATE>
 </Table1>
 <Table1>
 <AUTHOR_ID>2</AUTHOR_ID>
 <NAME>Paul</NAME>
 <HIRE_DATE>2001-06-06T23:56:33.0000000+01:00</HIRE_DATE>
 </Table1>
</NewDataSet>

This example has shown a practical example of using custom attributes in your code. If you don't mind
coupling the database structure into the classes that access the database then this is a good starting point.
Tying database tables to classes is acceptable if your schema doesn't change very often, but for more
dynamic back ends it may be better to work in a way that keeps data access classes in step with the database
tables they access.

In a full implementation, we might also include attributes to define some or all of the following:

● Primary key columns

● Constraints - foreign key and check

● Versions - a version number on each column attribute and table attribute would simplify generation of
upgrade scripts - you could in fact generate the whole upgrade based on attributes

● Default values for columns

Chapter 22 - Attributes
byKarli Watsonet al.

Wrox Press 2003

Summary

This chapter described what attributes are, and discussed some of the attributes defined within the
framework. There are many more attribute classes within the framework, and the best way to find out what
they are used for is to take a look through the .NET Framework SDK documentation.

We discussed the attributes that could be placed within an assembly, to provide the end user with details that
show up on the file properties dialog, and used Ildasm to explore how attributes are stored within an
assembly. We touched on the subject of reflection to show how to read attributes from within code, and then
described some of the inbuilt attributes such as Conditional, Obsolete and Serializable.

We then saw how to create custom attributes, which included a discussion of the AttributeUsage attribute.
We created a BugFix attribute using many of the tactics demonstrated earlier. Finally we explored a lengthy
example on generating database schema information from classes.

Chapter 23 - ASP.NET Applications
byKarli Watsonet al.

Wrox Press 2003

Chapter 23: ASP.NET Applications

Overview

ASP.NET is .NET's way of letting us build dynamic web sites. As with ADO.NET, ASP.NET takes its name
from a previous technology, Active Server Pages or ASP, but again, the similarities don't extend much beyond
the name. Whereas ASP pages were interpreted and written in functionally limited scripting languages (such
as VBScript and JScript), ASP.NET applications are compiled into MSIL, just like other .NET applications.
This means that we can write them in the powerful languages available to other .NET projects. What matters
to us, of course (since this is a book about C#), is that we can write our ASP.NET applications in C#.

The second big advantage to ASP.NET is the introduction of server-side controls. In ASP, we could add
HTML controls (such as buttons and other form elements) to our pages – but we had to do this by hand, and
we had to react to any user input to these (such as the user clicking on a button) either in client-side
JavaScript or by resubmitting the page to the server. The problem with the first of these is that different
browsers implement JavaScript in different ways, so it's almost impossible to write sophisticated routines that
will work on both Netscape and IE, and in any case some older browsers don't support JavaScript at all. If we
resubmit to the server, the stateless nature of the Internet means that we will lose any information held in
variables on the page, unless we set up complex code to store them in HTML elements or a URL query string.

ASP.NET solves these problems through server-side controls. These controls generate the HTML code that is
sent to the browser to display the control, but they also generate JavaScript functions and hidden HTML
elements that store their current state. When the page is submitted, this information is passed back to the
server, and the control will automatically process this information and alter the HTML to display the control. At
its simplest, this means that we can have text boxes that "remember" the values entered by the user, but
taking the technique further, it allows ASP.NET to have far more complicated controls (a calendar control, for
example) than ASP could ever cope with.

Finally, and perhaps most importantly, ASP.NET provides us with an easy way of creating next chapter to
them.

To see some server-side code in action, visit Amazon.com and look up your favorite novel. The page
that you see detailing the novel doesn't exist on the server. What does exist is a template describing
the general look of the page, and when you request the page, code on the server executes and
extracts information about the book from a database and inserts it into the template. What gets
passed back to you is HTML – and we talk about this later.

What's important is that throughout this chapter we're concentrating on code that is run on the server-
side. Your web browser has to do relatively little to display the page.

Important From here on, whenever we refer to "active pages" we're talking about pages that can be built
with classic ASP and ASP.NET. Both technologies use the same basic approach for building
pages – it's just that ASP.NET is far more powerful and you'll find putting together dynamic web
sites far easier with ASP.NET.

Here's an example. This looks like an ordinary web page:

However, notice at the bottom of the page the copyright message. Imagine that this message appears
on each page of our web site. Currently, this is set to 2002, and this means that when the year changes
to 2003, we'll have to go through our site and update every page from 2002 to 2002-2003.

With "active pages" we can configure the page in such a way that it determines the year for itself and
makes the change automatically. This means that this simple yet frustrating administration task goes
away, year on year.

OK, so this is a fairly trite example. Active page technology really comes into its own when you
connect the web site to some database or some other form of functionality, like an e-commerce
shopping cart. In this chapter, we're going to take a look at how to build a "Weblog". A Weblog is the
web equivalent of a diary, which instead of being written down on paper and locked away in a drawer,
is available on the web for everyone to see. The principle is the same – you have a date and under the
date is a list of thoughts and events of the day. They are sometimes known as "blogs" and you can
find a cool list of them here: www.bloghop.com.

http://www.bloghop.com/

Chapter 23 - ASP.NET Applications
byKarli Watsonet al.

Wrox Press 2003

Building our Weblog

To illustrate the power and functionality of ASP.NET, we shall develop a Weblog application from first
principles - starting with a single blank web page and adding features bit by bit explaining everything as we go
along. We will first show how to display Weblog entries, either one at a time or multiple entries. Then we'll
move onto sorting, adding, and editing entries before looking briefly at security issues, such as restricting
access to the site and authenticating users using a login page. As you progress through this worked example,
you will learn about the following things:

● Adding dynamic (active) content to your web pages using Web Form controls

● Implementing event handlers for each control using C# code

● Creating a visually appealing user interface

● Extending the user interface to support additional features

The Application Basics

We can build applications in Visual Studio .NET using the ASP.NET Web Application template. This will create
a new project for us and automatically configure IIS so that we can debug our project as we build it.

The first thing we'll do is to build a simple static page (in other words, one that has no dynamic elements) on
the web site so that we can make sure everything works as intended. We're going to create this as an ASP.
NET page (with the .aspx extension) because although initially this page will have no dynamic elements, it
will eventually have some.

Important In order to build ASP.NET projects you will need to have the local web server IIS installed. To
install IIS open Add/Remove Programs from the Control Panel, switch to the Add/Remove Windows
Components screen, and check the Internet Information Services (IIS) option. Click Next and follow
the installation instructions to install.

Try it Out - Creating the Weblog Page

1. Open Visual Studio .NET and select File | New | Project from the menu. From the Project Types list, select
Visual C# Projects and from the Templates list select ASP.NET Web Application. In the Location box, enter
http://localhost/WebLog.

http://localhost/WebLog

2. Notice that in the Location box we are specifying the URL http://localhost/WebLog. This tells you where
your new web site will be created, and when we're talking about the Internet, localhost always refers to
your own computer.

3. Click OK to create the new project.

Using Solution Explorer, right-click on the WebLog project and select Add | Add Web Form. Enter the
name as Default.aspx and click Open.

The new page should open in Designer mode; however, there is a chance that it won't if you've
previously experimented with ASP.NET. If the page is in design mode, you'll see this:

If you see what appears to be a ton of HTML, select View | Design from the menu. You should see the
grid layout that we see above.

4. With the Designer, you can build pages in two ways - in GridLayout mode or in FlowLayout mode. In
my opinion, it's better to use FlowLayout mode. From the Properties window, change the pageLayout
property to FlowLayout. The dots will disappear from the Designer.

The Designer also offers you a bunch of tools to make building a web site easier. In effect, this means that
you can build web pages as if you were using Microsoft Word to write a letter. However, the tools offered to
you by the Designer are quite restrictive as they are aimed at people who are only interested in designing web
interfaces and not in programming. I think I can be confident in saying that as you have progressed this far in
the book you enjoy writing computer software, so we're going to go "old school" and build our pages in HTML.

1. From the menu, select View | HTML Source. The HTML editor will appear. (Alternatively, at the bottom of
the code editor you'll see small buttons marked Design and HTML. You can use these two to swap
between views if you prefer.)

2. To the skeleton HTML code add the lines shown in gray:
<%@ Page language="c#" Codebehind="Default.aspx.cs" AutoEventWireup="false"
 Inherits="webLog._Default" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >

http://localhost/WebLog

<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body>
 <form id="Default" method="post" runat="server">
 <div>
 Disraeli's Weblog
 </div>

 <div>
 Copyright © Wrox Press 2002
 </div>
 </form>
 </body>
</HTML>

3. Before we run the project, we have to tell Visual Studio that our new Default.aspx page is the page
we want to debug. Using Solution Explorer, right-click Default.aspx and select Set as Start Page.

Compile and run the project as normal. You should see this output:

How it Works

All we've done is create a new project and add a page to it. Visual Studio .NET has dealt with most of the
magic behind the scenes.

However, there's nothing active about that page - it's just static text that we've typed in. Now let's take a look
at how we can add active elements to the page.

Adding Active Elements

If you've ever built ASP pages before, or built dynamic web pages using a competing technology, it's time to
throw away everything you thought you knew about building active pages. ASP.NET uses a totally different
approach to anything you've seen before.

For Microsoft, taking on board the fact that Visual Basic was so phenomenally successful now means that you
use a similar paradigm for building web applications as you do with Windows Forms applications. Everything
is control-centric and event-driven.

For example, imagine you have a Windows application, either one written in VB.NET or C#. If you want to add
a button to the form and make it do something you use the Toolbox to draw one onto the form, double-click on
it to create an event handler and add some code. This is both a "control-centric" and "event-driven" way of
programming.

Previously on the web, there was no concept of controls. Everything was flat HTML. If I wanted to draw a
button, my server-side script had to send the HTML to get the browser to display the button. When the button
was pressed, the browser would request the page again, but add some extra information to the page
indicating that the button was pressed. My server-side script could then react to the presence of this extra
information and send new or different information back to the browser.

With .NET, a lot of this happens under the hood. I draw a button on the Designer, and ASP.NET deals with
turning that control into HTML and sending it to the browser, whereupon the browser draws it. If the button is
pressed, a request is sent back to the server, but we "feel" that button press as an event that we can react to.
In this section we'll see this in action.

Try it Out - Adding a Copyright Element

1. If the project is running, close the Internet Explorer window.

2. From the menu, select View | Design. Whenever we add active elements to the page, we have to be in
Design View.

3. To help you lay out the controls, select View | Details from the menu. You'll see something like this:

4. Select and delete the copyright message, but not the div tags.

5. Using the Toolbox, drag a Label control and drop it between the two div tags that once delineated the
copyright message. You'll see this:

The small <?> box you can see is telling you that the tag created is not an HTML tag per se. This is
actually a tag that only ASP.NET understands, so it chooses to show it as a <?>. (You would imagine that
Microsoft would want to draw a small icon here indicating what it is - perhaps they will in a later release!)

6. The important thing to realize here is that conceptually, the Web Forms label control is no different to the
Windows Forms label control that you already know how to use. In fact, if you look at the Properties
window with the control selected you can change its properties, which is what we will do:

❍ Set the ID property to labelCopyright

❍ Set the Text property to (copyright)

7. Double-click on the background of the page. This is conceptually similar to double-clicking on the
background of a Windows Forms form and does exactly the same thing! It creates an event handler that
will be called when the page loads.

8. Enter this code into the Page_Load() method:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // what year is this?
 int year = DateTime.Now.Year;
 if(year == 2002)
 labelCopyright.Text = "Copyright © Disraeli " + year;
 else
 labelCopyright.Text = "Copyright © Disraeli 2002-" + year;
 }

Compile and run the project. (You can't right-click the code editor and select View in Browser. You have to run
the code as you did before.) You'll see what you saw before:

Now, set your system clock one year in the future. Refresh the page. You'll see this.

How it Works

What we've done is proved that the copyright message is dynamic. When the page is built, it uses DateTime.
Now() to get the current date and alter the copyright message.

But how did the active element get onto the page? To find out, open the HTML editor for the page. Some way
down, you'll find this tag:
<%@ Page language="c#" Codebehind="Default.aspx.cs" AutoEventWireup="false"
 Inherits="WebLog._Default" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body>
 <form id="Default" method="post" runat="server">
 <div>
 Disraeli's Weblog
 </div>

 <div>
 <asp:Label id="labelCopyright"
 runat="server">(copyright)</asp:Label>
 </div>
 </form>
 </body>
</HTML>

When a request for an .aspx page is received, ASP.NET examines the entire page before it does anything
with it. What it's trying to do is discover which parts of the page are static and which parts of the page are
active. In the above code sample, I've highlighted the <asp:Label> tag. ASP.NET knows that this tag is an
active part of the page. By a process of elimination, it determines that the rest of the page is static.

Ultimately, though, ASP.NET needs the entire page to be static, so in a way you can look at the primary role
of ASP.NET as turning the dynamic elements of the page into static HTML. Most web browsers today are very
limited on what they can do. ASP.NET's approach is to keep the vast majority of the processing happening on
the server and sending back HTML that the browser can display. In some cases, ASP.NET can send code to

the browser that the browser should execute, and it's likely that over the next few years more and more work
will be done on the browser, but today we want everything to happen on the server. That's actually exactly
what's happened here. Here's the ASP.NET code again:
 <div>
 <asp:Label id="labelCopyright" runat="server">(copyright)</ asp:Label>
 </div>

And here's the code that IE actually receives:
 <div>
 Copyright © Disraeli 2002-2003
 </div>

By writing ASP.NET pages using Visual Studio .NET, we default to the model whereby a page is actually
coded in two halves. The first part is an .aspx file that contains the template of the page and defines where
the active elements actually appear. The second part is a .cs or .vb file that contains the event handling
code. Microsoft calls this second part the code-behind. When we double-clicked on the background of the
page to access the Load event handler, we actually opened a new file.

This C# source file, the code-behind file, shares the same base name as the .aspx file and is intrinsically
linked to the .aspx file. If you look at this file, you'll notice that it contains a class definition. You'll also notice
that this class is derived from System.Web.UI.Page.

 /// <summary>
 /// Summary description for _Default.
 /// </summary>
 public class _Default : System.Web.UI.Page

This class exposes a Load event that gets fired when, unsurprisingly, the page is loaded. This happens after
ASP.NET has loaded the .aspx file and examined it to learn what dynamic elements exist on the page.

But, there's more. Each dynamic element we define on the page also exists as a protected member of the
class. We changed the ID property of our label control to labelCopyright, and here is that member
defined on the form:
 /// <summary>
 /// Summary description for _Default.
 /// </summary>
 public class _Default : System.Web.UI.Page
 {
 protected System.Web.UI.WebControls.Label labelCopyright;

Again, this is another classic illustration of how similar Web Forms and Windows Forms actually are. When
we paint a control onto a Windows Form, we also get the same kind of member added. With the member in
place, we can access it through code:
 private void Page_Load(object sender, System.EventArgs e)
 {
 // what year is this?
 int year = DateTime.Now.Year;
 if(year == 2002)
 labelCopyright.Text = "Copyright © Disraeli " + year;
 else

 labelCopyright.Text = "Copyright © Disraeli 2002-" + year;
 }

Let's look at what's happening here. At this point, ASP.NET has loaded the .aspx file and looked for the
dynamic elements. Effectively, ASP.NET has an HTML code image of the page stored in memory, but has
inserted placeholders in the HTML code wherever it found an active element. ASP.NET now gives the page
and the controls on the page as much opportunity as possible to put their own HTML code into those
placeholders. By setting the Text property on the label control, we're telling the control that when ASP.NET
finally asks for the HTML code to put into the placeholder in the HTML code image that ASP.NET has
reserved for it, the label control will supply some HTML that looks like this:
Copyright © Disraeli 2002-2003

In other words, it takes the value stored in Text and wraps and tags around it.

Eventually, ASP.NET decides that all of the controls have supplied the HTML that makes up the part of the
page that they are responsible for, and sends the entire HTML image down to the browser where it can be
rendered.

Important VERY IMPORTANT! If you're running Outlook or another program that supports scheduling
CLOSE IT! We're about to set the system clock forward and unless you want twelve months of
schedule reminders appearing in an instant, you will want to close it. This may also happen with
other applications that are sensitive for date changes - if you're unsure of what will happen if
you change the date, don't. It's not that exciting anyway!

Chapter 23 - ASP.NET Applications
byKarli Watsonet al.

Wrox Press 2003

Weblog Entries

Now you understand the principle of building ASP.NET pages using the control/event paradigm, let's take a look at how we
can use that principle to build something that's useful. What we'll do now is build a separate page that lists an entire Weblog
entry, a list of events and thoughts for a given day.

One of the advantages of building an active web site is that each time you want to add or change the content you don't have
to resort to writing HTML code. This means that firstly, people who don't understand HTML can add content to the site and
secondly, experienced HTML coders can add content quickly and simply.

The traditional method to add content to the site is to present a form that the user can enter his or her content into. When
the Save Changes button is clicked, the new content appears on the site. This content is usually stored in a database of some
kind.

In this example, we're going to store the content in separate XML files on the web server, rather than in a database, as it is a
more flexible format. Each file will contain one Weblog "entry", or something that happened at a specific time. We'll look at
how to create these entries first and then how to store them on the page.

Storing Weblog Entries

As we said, we're going to store the XML files containing the Weblog entries on the server. However, we have to go through
a few hoops before we can do this.

You might have noticed that although we've created the new project, we don't actually know where the files are being
stored. That's because Visual Studio communicates with the web server through something called "FrontPage Extensions"
to store the files.

FrontPage Extensions have had a chequered history. The principle behind them is that it's supposed to make
updating a remote web site on the Internet as simple as copying files from one folder on your computer to
another. In reality FrontPage Extensions have historically been hard for systems administrators to configure,
have problems with web site security, and have generally been a little flaky. We can only hope that the version
included in .NET sorts these problems out.

This causes us our first problem because ideally we need to know where these files are so that we can back them up.
Luckily, ASP.NET is able to tell us where they are.

Try it Out - Finding Where the Web Site is Stored

1. Open the HTML editor for Default.aspx and add the code shown in gray. (I've omitted some of the code that
already exists for brevity.)

 <form id="Default" method="post" runat="server">
 <div>
 Disraeli's Weblog
 </div>

 <div>
 <asp:Label id="labelCopyright"
 runat="server">(copyright)</asp:Label>
 </div>

 <div>
 </div>

 </form>

2. Select View | Design from the menu to show the Designer.

3. Using the toolbox, drag a new Label control and drop it between the two new div tags. Set the ID property of the
control to labelServerPath and the Text property to (serverpath).

4. Double-click on the page background to open the Load handler again. Add this code:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // what year is this?
 int year = DateTime.Now.Year;
 if(year == 2002)
 labelCopyright.Text = "Copyright © Disraeli " + year;
 else
 labelCopyright.Text = "Copyright © Disraeli 2002-" + year;

 // set the server path...
 labelServerPath.Text = Server.MapPath("");
 }

Run the project. You should see this:

How it Works

In the first instance, we added a new control to the form. We want to use this control to report the path that the web site is
stored in.

System.Web.UI.Page, which our _Default class is derived from, has a number of properties that help us understand
what has been asked of the page and lets us access some information about the environment. The Server property
contains a method called MapPath that can transform a virtual path on the web site into a physical path on the web server.
In our instance, we've asked it to transform a blank string, which tells it that we want the folder containing the root of the web
site.
 // set the server path...
 labelServerPath.Text = Server.MapPath("");

If we use Windows Explorer and navigate to the path given on the web page, we can indeed see the files. I've highlighted
the .aspx file and the .cs "code behind" file.

Let's now create an XML file that can be used to hold an entry in the Weblog.

Try it Out - Creating an Entry XML File

1. Create a new folder called Entries in the folder containing the web site. For example, on my computer, this new
folder would be here:
c:\Inetpub\wwwroot\webLog\Entries

Throughout the rest of this chapter, we'll call this file the "entries folder".

2. Open Notepad. Create this file:
<?xml version="1.0" ?>
<Entry xmlns:xsi="http://www.w3.org/2002/XMLSchema-instance"
 xmlns:xsd="http://www.w3.org/2002/XMLSchema">
 <Title>Hello!</Title>
 <Details>These are the details of the Weblog entry</Details>
</Entry>

XML is case-sensitive, so make sure you enter the file exactly as you see here, so where it says "<Title>" make sure
you enter "<Title>" and not "<title>", "<TItLe>", etc.

3. Save the file as Entry.xml and place it into the entries folder you created a moment ago.

Displaying Weblog Entries

Now that we have an XML file that contains a single entry, we can go ahead and create more files for each of the entries
that we want our Weblog to display. We can also build a class that can load up those files and present the data contained
within as properties.

Let's look now at how we can load in the files.

Try it Out - Loading Weblog Files

1. To load the XML files, we're going to add a static method to a class already created by Visual Studio .NET called
Global. This class is a neat place to put shared methods and properties that need to be available to all of the pages
in a web application and you'll find it by looking inside the Global.asax page.

2. To find Global, using Solution Explorer right-click on the Global.asax file and select View Code.

3. You'll notice that the Global class is derived from System.Web.HttpApplication. This class provides some
events that we can respond to when certain application-scope events happen. (In ASP.NET, "application scope" can
be considered to be "web site scope".)

4. Add this member to Global:

 /// <summary>
 /// Summary description for Global.
 /// </summary>
 public class Global : System.Web.HttpApplication
 {
 // members...
 public static String EntryFilePath;

Note that we have used the class name String (capital 's') rather than the C# keyword string (smalls 's').

1. Next, add this code to the Application_Start() method:

 protected void Application_Start(Object sender, EventArgs e)
 {
 // set the shared entry path member...
 EntryFilePath = Server.MapPath("Entries");
 }

2. Using Solution Explorer, create a new class called Entry. First, add these using statements to the top of the new file:

using System;
using System.IO;
using System.Xml.Serialization;

3. Then, add these members and corresponding properties:
 /// <summary>
 /// Summary description for Entry.
 /// </summary>
 public class Entry
 {
 // members...

 private DateTime _timestamp;
 private String _title;
 private String _details;

 public Entry()
 {
 //
 // TODO: Add constructor logic here
 //
 }

 [XmlIgnore()] public DateTime Timestamp
 {

 get
 {
 return _timestamp;
 }
 set
 {
 _timestamp = value;
 }
 }

 public String Title
 {
 get
 {
 return _title;
 }
 set
 {
 _title = value;
 }
 }

 public String Details
 {
 get
 {
 return _details;
 }
 set
 {
 _details = value;
 }
 }

You'll notice that the names of these properties match the names of the entries in the XML file that we created. That's
quite deliberate!

4. Now, flip back to the code editor for Global.asax.cs. Add the same namespace references to the top of the file:

using System;
using System.Collections;
using System.ComponentModel;
using System.Web;
using System.Web.SessionState;
using System.IO;
using System.Xml.Serialization;

5. Next, add this static method to the Global class:

 // LoadEntry - load an entry from disk...
 public static Entry LoadEntry(String filename)
 {
 // we have the name, but we need the path...
 String filepath = EntryFilePath + "\\" + filename;

 // open the file...
 FileStream file = new FileStream(filepath, FileMode.Open);

 // create a serializer...
 XmlSerializer serializer = new XmlSerializer(typeof(Entry));
 Entry newEntry = (Entry)serializer.Deserialize(file);

 // close the file...

 file.Close();

 // return the entry...
 return newEntry;
 }

6. Technically, we can now create new Entry objects and populate their Title and Details properties from the data
stored in the XML file. We now need to create some controls on the Default.aspx page so that we can see the
results.

7. Open the HTML editor for Default.aspx. Add this code:

<form id="Default" method="post" runat="server">
 <div>
 Disraeli's Weblog
 </div>

 <div>
 </div>
 <div>
 </div>

 <div>
 <asp:label id="labelCopyright" runat="server">(copyright)</asp:label>
 </div>
...
</form>

8. Now flip over to design view for Default.aspx. Into the two new div elements that have appeared, drop a new
Label control into each.

❍ On the first new control, set the ID property to labelEntryTitle. Set the Text property to (entryTitle).

❍ On the second new control, set the ID property to labelEntryDetails. Set the Text property to (entryDetails).

1. Double-click on the background of the page to open the Load event handler. First of all, change the last line to use
the Global.EntryFilePath shared property:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // what year is this?
 int year = DateTime.Now.Year;
 if(year == 2002)
 labelCopyright.Text = "Copyright © Disraeli " + year;
 else
 labelCopyright.Text = "Copyright © Disraeli 2002-" + year;

 // set the server path...

 labelServerPath.Text = Global.EntryFilePath;
 }

2. Then, add this code to use the shared method on Global to create a new Entry object based on the data stored
in Entry.xml and then populate the two new controls we just added: labelEntryTitle and
labelEntryDetails.

 private void Page_Load(object sender, System.EventArgs e)
 {
 ...

 // set the server path...
 labelServerPath.Text = Global.EntryFilePath;

 // load the entry from disk...
 Entry entry = Global.LoadEntry("Entry.xml");
 labelEntryTitle.Text = entry.Title;
 labelEntryDetails.Text = entry.Details;
 }

Important In order for the ASP.NET process to be able to see the XML file, you will need to give it permissions
to read and write the file. This is very easy to do. Simply right-click the Entries folder in Windows
Explorer, choose Properties from the context menu, and switch to the Security tab. Click the Add
button, then click on the ASPNET user in the top pane. Choose Add, then OK, then check the Full
Control box in the Allow column, then click OK again. The ASP.NET worker process now has
permission to read and write to this folder.

Run the project. You should see this:

3. To convince yourself that the changes are being loaded from disk, use Notepad to edit the Entry.xml file once
more. Change the data so that it looks like this:

<?xml version="1.0"?>
<Entry xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:xsd="http://www.w3.
org/2001/XMLSchema">
 <Title>Hello, again!</Title>
 <Details>I have changed the details in the XML file...</Details>
</Entry>

4. Save the file and refresh the Internet Explorer page. You should see the changes.

How it Works

In Global.asax, the first thing we did was use Server.MapPath again to resolve the virtual Entries directory into a
physical path that we can use from code. Application_Start() is called the instant the first request for an .aspx page
is received. It gives you the opportunity to set up application global (or "web site global") data. In this case, we're storing the
physical path in the shared EntryFilePath member.

 protected void Application_Start(Object sender, EventArgs e)
 {

 // set the shared entry path member...
 EntryFilePath = Server.MapPath("Entries");
 }

Now we come to the static LoadEntry() method which loads the XML data files from the entries folder and places the
contents into the Entry class we defined. To do this, we use a class in the System.Xml.Serialization namespace
called XmlSerializer, and call its Deserialize() method which takes the XML string from the file and converts
(deserializes) its data to a set of object properties which are stored in the Entry class instance.

 // LoadEntry - load an entry from disk...
 public static Entry LoadEntry(String filename)
 {
 // we have the name, but we need the path...
 String filepath = EntryFilePath + "\\" + filename;

 // open the file...
 FileStream file = new FileStream(filepath, FileMode.Open);

 // create a serializer and use it to populate the properties of the
 // a newly created Entry object...
 XmlSerializer serializer = new XmlSerializer(typeof(Entry));
 Entry newEntry = (Entry)serializer.Deserialize(file);

 // close the file...
 file.Close();

 // return the entry...
 return newEntry;
 }

From Default.aspx.cs, we again customize the Load event handler. This time, we always assume our XML file is called
Entry.xml and then set the Text property on each of the label controls, like this:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // what year is this?
 int year = DateTime.Now.Year;
 if(year == 2002)
 labelCopyright.Text = "Copyright © Disraeli " + year;
 else
 labelCopyright.Text = "Copyright © Disraeli 2002-" + year;

 // set the server path...
 labelServerPath.Text = Global.EntryFilePath;

 // load the entry from disk...
 Entry entry = Global.LoadEntry("Entry.xml");
 labelEntryTitle.Text = entry.Title;
 labelEntryDetails.Text = entry.Details;
 }

Displaying the Time

What we haven't done is displayed the time next to the entry. To do this, we're going to take the time that file was last saved
and store the date in the Timestamp property of the entry. We can then tweak our code to display the time and date before
we render the details.

Try it Out - Displaying the Time

1. To get the time, we're going to use the date that the entry was last modified. In most cases, this will be the time the
entry was last saved to disk.

2. Using Solution Explorer, right-click on Global.asax and select View Code. Find the LoadEntry method and add this
code:

 // LoadEntry - load an entry from disk...
 public static Entry LoadEntry(String filename)
 {
 ...

 // close the file...
 file.Close();

 // update timestamp...
 newEntry.Timestamp = new FileInfo(filepath).LastWriteTime;

 // return the entry...
 return newEntry;
 }

3. Now, open the code editor for Default.aspx.cs. Make this change:

 private void Page_Load(object sender, System.EventArgs e)
 {
 ...

 // set the server path...
 labelServerPath.Text = Global.EntryFilePath;

 // load the entry from disk...
 Entry entry = Global.LoadEntry("Entry.xml");
 labelEntryTitle.Text = entry.Title;
 labelEntryDetails.Text = entry.Timestamp.ToString("dddd") + ", " +
 entry.Timestamp.ToLongDateString() + " - " + entry.Details;
 }

Run the project. You should now see that the time is displayed.

How it Works

The Entry object already contained a member for holding the timestamp. We used the XmlIgnore attribute to tell the
XmlSerializer not to worry about it, which is why we didn't have to include it in our XML file. Anything marked with this
attribute will not be saved to an XML file, nor will it be loaded from an XML file.
 /// <summary>
 /// Summary description for Entry.
 /// </summary>
 public class Entry
 {
 // members...
 [XmlIgnore()] public DateTime Timestamp;

 public String Title;
 public String Details;

When we created the Entry object, we used a System.IO.FileInfo object to tell us the date that the file was last
changed.
 // LoadEntry - load an entry from disk...
 public static Entry LoadEntry(String filename)
 {
 ...

 // close the file...
 file.Close();

 // update timestamp...
 newEntry.Timestamp = new FileInfo(filepath).LastWriteTime;

 // return the entry...
 return newEntry;
 }

When we actually came to render the page, we used two methods to transform the date into strings. The first call, ToString
(), was configured to render the name of the day. The second call, ToLongDateString(), renders the rest of the long
date using the locale settings of the computer. If you're in the US, the month will be written before the day. If you're in the
UK, the day will be written before the month and so on. It's a good idea to use the localization-aware versions of date
functions in this way, otherwise you could confuse your users.
 private void Page_Load(object sender, System.EventArgs e)
 {
 ...

 // set the server path...
 labelServerPath.Text = Global.EntryFilePath;

 // load the entry from disk...
 Entry entry = Global.LoadEntry("Entry.xml");
 labelEntryTitle.Text = entry.Title;
 labelEntryDetails.Text = entry.Timestamp.ToString("dddd") + ", " +
 entry.Timestamp.ToLongDateString()+ " - " + entry.Details;
 }

Improving the Look

It won't have escaped your attention that the look of our page is very ugly indeed! HTML is (in today's terms) an old
technology that was primarily designed for sharing drab, scientific documents. It's primarily the consumer adoption of the
web that's driven it to look fresh and contemporary. If we want a fresh, contemporary look, we have to do it ourselves.

There are a number of technologies we can use to improve the design of the page, but the easiest one for us to use here is
going to be Cascading Style Sheets or CSS. CSS is a huge topic, so we won't be going into it in much detail here. Suffice
to say that a CSS is a specially formatted text file that contains all the fonts, colors and styles that the browser needs to
render the HTML to a more visually pleasing format.

Try it Out - Improving the Look

1. The first thing we need to do is build a style sheet that all of the pages on the site will share. To do this, from Solution
Explorer, right-click on the WebLog project and select Add | Add New Item. Search through the Templates list until you
find Style Sheet. Select it and set the name to Style.css.

2. Add this code to the new style sheet:
body
{

 padding-right: 0px;
 padding-left: 0px;
 font-size: 8pt;
 padding-bottom: 0px;
 margin: 0px;
 padding-top: 0px;
 font-family: Verdana, Arial;
}
.header
{
 padding-right: 5px;
 padding-left: 5px;
 padding-bottom: 10px;
 padding-top: 10px;
 background-color: #000099;
 font-weight: bold;
 font-size: 14pt;
 color: white;
}
.normal
{
 padding-right: 5px;
 padding-left: 5px;
 font-size:8pt;
}
.normalHeading
{
 padding-right: 5px;
 padding-left: 5px;
 font-size:12pt;
 font-weight: bold;
}
.entryTitle
{
 padding-right: 5px;
 padding-left: 5px;
 padding-bottom: 1px;
 padding-top: 1px;
 font-weight: bold;
 font-size: 10pt;
 color: white;
 background-color: #66cc99;
}
.entryDate
{
 font-weight: bold;
 color: #333399;
 font-size: 8pt;
}
.entry
{
 padding-right: 5px;
 padding-left: 5px;
 padding-top: 2px;
 font-size: 8pt;
}

If you don't want to type this all out, then you can add the Styles.css file from the code download; if it is not already
included in your project, right-click on the WebLog project node in the Solution Explorer, select Add | Add Existing Item
and browse to the CSS file.

3. To use a style sheet, we have to associate it with a page. Open the HTML editor for Default.aspx and add this line
to the top:

<HTML>
 <HEAD>
 <title>Default</title>
 <meta name="GENERATOR" content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript" >
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5" >
 <link rel="stylesheet" href="Style.css">
 </HEAD>

4. Now, change the highlighted lines and add code where necessary:
<%@ Page language="c#" Codebehind="Default.aspx.cs" AutoEventWireup="false"
 Inherits="webLog.CDefault" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <title>Default</title>
 <meta name="GENERATOR" content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript" >
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5" >
 <link rel="stylesheet" href="Style.css">
 </HEAD>
 <body>
 <form id="Default" method="post" runat="server">
 <div class="header">
 Disraeli's Weblog
 </div>

 <div class="entryTitle">
 <asp:label id="labelEntryTitle" runat="server">
 (entryTitle)</asp:label>
 </div>
 <div class="entry">
 <asp:label id="labelEntryDetails" runat="server">
 (entryDetails)</asp:label>
 </div>

 <hr color="#000000">
 <div class="normal">
 <asp:label id="labelCopyright" runat="server">
 (copyright)</asp:label>
 </div>

 <div class="normal">
 <asp:Label id="labelServerPath" runat="server">
 (serverpath)</asp:Label>
 </div>
 </form>
 </body>
</HTML>

5. The last code change we need to make is in Default.aspx.cs. View the code editor for this file and make this
change to Page_Load():

 private void Page_Load(object sender, System.EventArgs e)
 {

 ...

 // set the server path...
 labelServerPath.Text = Global.EntryFilePath;

 // load the entry from disk...
 Entry entry = Global.LoadEntry("Entry.xml");
 labelEntryTitle.Text = entry.Title;
 labelEntryDetails.Text = "" +
 entry.Timestamp.ToString("dddd") + ", " +
 entry.Timestamp.ToLongDateString() + " - " +
 entry.Details;
 }

Compile and run the project and you should see this:

How it Works

Cascading Style Sheets allow you to define styles that can then be applied to any element on the page. We build those
styles in .css files, like the Style.css file that we created.

A discussion of CSS is beyond the scope of this book, but the general gist is this: you can either change the style of
standard HTML elements, like <body> and or you can define new classes, which is the CSS term for the grouping of
styles into one unit. To modify an existing element, you just enter the name of the element and then add CSS codes. This is
how we redefined how the <body> tag is displayed:

body
{
 padding-right: 0px;
 padding-left: 0px;
 font-size: 8pt;
 padding-bottom: 0px;
 margin: 0px;
 padding-top: 0px;
 font-family: Verdana, Arial;
}

New classes can be given any arbitrary name you like, but must be prefixed with a period. This is how we built the header
class:
.header
{
 padding-right: 5px;
 padding-left: 5px;
 padding-bottom: 10px;
 padding-top: 10px;
 background-color: #000099;
 font-weight: bold;
 font-size: 14pt;
 color: white;

}

Technically, you don't have to understand CSS in order to edit it with Visual Studio .NET. Make sure you're looking at the
code for the style sheet. If the style sheet is the currently selected document, select View | Other Windows | Document Outline
from the menu, and you'll see the CSS editor.

If you right-click on any of the elements or classes and select Build Style, you'll be shown a dialog that you can use to adjust
the various CSS codes in a reasonably intuitive manner.

Once you have the style sheet built, you need to associate it with the page. This will prompt the browser to download the
styles and apply them to the document. This is done with a link element, like this:

<HTML>
 <HEAD>
 <title>Default</title>
 <meta name="GENERATOR" content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript" >
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5" >
 <link rel="stylesheet" href="Style.css">
 </HEAD>

Finally, to set the class that should be used with an element on the page, you use the class attribute. This tells the browser
which style to apply to the element. Here's how we told the div element containing the Disraeli's Weblog to use the header
class:
<div class="header">
 Disraeli's Weblog
</div>

We'll be using this style sheet as we work through the rest of the chapter but, just a reminder here, we won't be going into
style sheets in any more detail.

Displaying Lists of Entries

We're able to display a single Weblog entry, but how do we display many entries on the same page?

Displaying lists is a common activity for active web sites to undertake, whether it's displaying a list of products for sale on an
e-commerce site, or displaying customer records from a database. ASP.NET has a number of ways to make displaying lists
easier, and we'll be examining some of them here.

Try it Out - Displaying Lists of Weblog Entries

1. Before we can view a list of Weblog entries, we need more than one to be stored in the Entries folder! Using
Explorer and Notepad, create some entries. You can use any name you like.

2. In the Global class, we need a new static method that can return a list of all of the entries. Open the code editor for
Global.asax.cs and add this code:

 // LoadAllEntries - load all entries from disk...
 public static Entry[] LoadAllEntries()
 {
 // get the path containing the entries...
 DirectoryInfo entryFolder = new DirectoryInfo(EntryFilePath);

 // get a list of files...
 FileInfo[] files = entryFolder.GetFiles();

 // create an array of entries...
 Entry[] entries = new Entry[files.Length];

 // loop through and load each file...
 int index = 0;
 foreach(FileInfo file in files)
 {
 entries[index] = LoadEntry(file.Name);
 index++;
 }

 // return the list...
 return entries;
 }

3. Now we need to remove the code from Default.aspx that uses the two label controls. Open the designer and delete
the top two Label controls. You should see this:

4. Now, delete the two div tags:

5. Next, using the toolbox drop a DataList control in between the two carriage return characters. This is what you
should get:

6. I would describe the DataList control as being "fiddly". It requires a great deal of tweaking and UI manipulation, but it
is a pretty powerful control. It uses data binding in a big way, which means that in Page_Load(), we have to give the
control the array of Entry objects. It will iterate through the whole list and per iteration renders a set of controls that
we define. Each of those controls is data bound to a property on the Entry class. So, we might add a Label control
to the DataList and bind the Text property of the Label control to the Title property, and so on.

7. Before we do anything, change the ID property of the DataList control to datalistEntries.

8. Right-click on the DataList control and select Edit Template | Item Templates. This puts the control into a separate
mode where we can manipulate what happens per iteration of the array of Entry objects.

9. Using the toolbox, drag a Label control and drop it into the white area directly beneath ItemTemplate.

Any controls that appear within the ItemTemplate entry will be rendered once per iteration of the array. So, if we have
three Entry objects in our array, we'll end up with three label controls.

10. With the Label control selected, using the Properties window, change the CssClass property to entryTitle. The look
of the control should change to reflect the style you just selected.

11. Now, find the (DataBindings) property and select it. Click the ellipsis (...) next to it to bring up the data bindings
window.

The left-hand list shows all of the properties on the Label control that can be data-bound. The Text property should
be selected. With this selected, anything we do to the controls on the right-hand side of the window will configure the
data binding for the Text property.

12. Select the Custom binding expression radio button and enter this code into the text box beneath the radio button.
DataBinder.Eval(Container, "DataItem.Title")

You should end up with this:

13. Click OK to save the data bindings.

14. What we'll do is prove this part works and then move on to rendering the date and other details. Double-click on the
background of the page to open the Load event handler. Remove the previous code which added the entry from the
XML file and replace it with this:
 private void Page_Load(object sender, System.EventArgs e)
 {
 ...

 // set the server path...
 labelServerPath.Text = Global.EntryFilePath;

 // load all of the entries from disk...
 Entry[] entries = Global.LoadAllEntries();
 datalistEntries.DataSource = entries;
 datalistEntries.DataBind();
 }

Now compile and run the project. You should see this:

How it Works

The code to create an array of all the Entry objects on disk is pretty straightforward. All we do is ask the System.IO.

DirectoryInfo object to return a list of System.IO.FileInfo objects for the Entries folder and iterate through the list
calling LoadEntry.

 // LoadAllEntries - load all entries from disk...
 public static Entry[] LoadAllEntries()
 {
 // get the path containing the entries...
 DirectoryInfo entryFolder = new DirectoryInfo(EntryFilePath);

 // get a list of files...
 FileInfo[] files = entryFolder.GetFiles();

 // create an array of entries...
 Entry[] entries = new Entry[files.Length];

 // loop through and load each file...
 int index = 0;
 foreach(FileInfo file in files)
 {
 entries[index] = LoadEntry(file.Name);
 index++;
 }

 // return the list...
 return entries;
 }

Once we have the list, on Page_Load(), we pass it over the DataList control and call DataBind().

 private void Page_Load(object sender, System.EventArgs e)
 {
...

 // set the server path...
 labelServerPath.Text = Global.EntryFilePath;

 // load all of the entries from disk...
 Entry[] entries = Global.LoadAllEntries();
 datalistEntries.DataSource = entries;
 datalistEntries.DataBind();
 }

This has the effect of asking the DataList to go through each of the Entry objects in turn following the rules defined in the
template. The only template rule we defined was that once per iteration, we have to render a Label control - and that the
Text property of this Label control should be set to the current value of the Title property of the Entry object that's
currently being looked at.

Rendering Details

So, we can render the title, but what about the rest of the information? In this section, we'll look at how we can render the
details and the date.

Try it Out - Rendering the Remainder of the Weblog Entry

1. If you recall, the way we rendered the date of the Weblog entry previously was quite complex. As DataList is
designed to work with public properties, we'll build a property on Entry that can return the date as a string. Open the
code editor for Entry and add this code:

 public String TimestampAsString
 {
 get
 {
 return Timestamp.ToString("dddd") + ", " +
 Timestamp.ToLongDateString();
 }
 }

2. Open the Designer for Default.aspx. The DataList control may have dropped into a state where it's not directly
editable, which will look like this:

3. If the DataList isn't editable, right-click on it and select Edit Template | Item Templates again. Position the cursor after
the green Label control, hold down Shift and press Return. This will add a line break rather than a carriage return. If
you add a carriage return, there will be too much space between the title and the entry.

4. Add a Label control beneath the existing, green Label control. After the control add a space, a dash and another
space and then add one last Label control.

In case you're wondering, the small green arrows in the top-left hand corner of each control denotes a
control.

5. Select the first new Label control. Set its CssClass property to entryDate.

6. Find and select the (DataBindings) property. Click the ellipsis to open the DataBindings window. Make sure
Text is selected in the left-hand list and click the Custom binding expression radio button. Add this code:

DataBinder.Eval(Container, "DataItem.TimestampAsString")

7. Click OK to save the binding.

8. Select the other new Label control. Set its CssClass property to entry.

9. Find and select the (DataBindings) property. Click the ellipsis to open the DataBindings window. Make sure
Text is selected in the left-hand list and click the Custom binding expression radio button. Add this code:

DataBinder.Eval(Container, "DataItem.Details")

Now compile and run the project. You'll see something like this:

How it Works

As the DataList control works best with properties, we created a read-only property called TimestampAsString that

would return a formatted version of the Timestamp property. We didn't bother adding a set clause to this property, as this
would imply that the object consumer could ask us to build a System.DateTime value out of a string. Although achievable,
that's well outside the scope of what we want this object to do.
 public String TimestampAsString
 {
 get
 {
 return Timestamp.ToString("dddd") + ", " +
 Timestamp.ToLongDateString();
 }
 }

Once we added that property, adding more label controls to the item template was simply an issue of repeating what we had
done before.

Important Note about the DataList and Public Members

The expression that we enter into Custom binding expression field for the DataList control will only work with properties. It
will not work with public members. If you had this:
 public class Entry
 {
 // members...
 Public String Title;

And tried to bind to Title with this expression:

DataBinder.Eval(Container, "DataItem.Title")

You'd see an error claiming that the property could not be found. Your only option at this point would be to convert the
member into a property, like this:
 public String Title
 {
 get
 {
 return _title;
 }
 set
 {
 _title = value;
 }
 }

Chapter 23 - ASP.NET Applications
byKarli Watsonet al.

Wrox Press 2003

Creating New Weblog Entries

At this point, all the functionality we need to get and display a list of entries to appear on the site is in place.
However, we can't at this point create new entries without using Notepad! Ideally, we'd like to add a form to
the site that we can use to create new entries.

Try it Out - Creating Weblog Entries

1. Using Solution Explorer, right-click on the Weblog project and select Add | Add Web Form. Enter the
name as Edit.aspx.

2. Open the Designer for the page. Click once on the background and using the Properties window change
the pageLayout property to FlowLayout.

3. Select View | HTML Source from the menu. Add this code:
<%@ Page language="c#" Codebehind="Edit.aspx.cs" AutoEventWireup="false"
 Inherits="webLog.Edit" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 <link rel="stylesheet" href="Style.css">
 </HEAD>
 <body>
 <form id="Edit" method="post" runat="server">
 <div class="header">
 Disraeli's Weblog
 </div>

 <div class="normalHeading">
 Create a New Entry
 </div>

 <div class="normal">
 <table cellspacing="0" cellpadding="3">
 <tr>
 <td class="normal">
 Title:
 </td>
 <td>
 </td>

 </tr>
 <tr>
 <td class="normal">
 Details:
 </td>
 <td>
 </td>
 </tr>
 <tr>
 <td colspan="2" align="right">
 </td>
 </tr>
 </table>
 </div>
 </form>
 </body>
</HTML>

4. Select View | Design from the menu and you should see this:

5. Using the Toolbox, drag and drop a TextBox control into the small box to the right of Title. Repeat
this action but this time drop the control into the small box to the right of Details.

❍ Change the ID property of the top TextBox control to textTitle.

❍ Change the ID property of the bottom TextBox control to textDetails. Also, change the TextMode
property to Multiline.

1. Using the Toolbox, drop a button control into the long, empty box at the bottom. Change its ID

property to buttonOk and its Text property to Save Changes.

2. Make the two text box controls slightly bigger, like this:

3. When the Save Changes button is pressed, we don't want to create the new entry unless the user has
filled in both text boxes. We can use ASP.NET's validation functionality to automatically make sure
that the details have been entered and display a message if they have not been.

4. Drag a RequiredFieldValidator control from the toolbox and drop it to the right of the Title
text box. Change its ErrorMessage property to Required and set its ControlToValidate
property to textTitle.

5. Do this again but this time drop the new control to the right of the Details box. Change its
ErrorMessage property to Required and set its ControlToValidate property to textDetails.

6. Using Solution Explorer, view the code editor for Entry.cs. Add this member:

 /// <summary>
 /// Summary description for Entry.
 /// </summary>
 public class Entry
 {
 // members...
 private String _filename;
 private DateTime _timestamp;
 private String _title;
 private String _details;

7. Next, add this property:
 [XmlIgnore()] public String Filename
 {
 get
 {
 return _filename;
 }
 set
 {
 _filename = value;
 }
 }

8. Now, add this method to the Entry class:

 public void Save()
 {
 // do we have a filename?
 if(Filename == null)
 {
 // get a filename based on the date...
 Timestamp = DateTime.Now;
 Filename =
 String.Format("{0:d4}{1:d2}{2:d2}_{3:d2}{4:d2}.xml",
 (int)Timestamp.Year, (int)Timestamp.Month,
 (int)Timestamp.Day, (int)Timestamp.Hour,
 (int)Timestamp.Minute);
 }

 // get the whole filename...
 String filepath = Global.EntryFilePath + "\\" + Filename;

 // create a serializer and save...
 FileInfo fileInfo = new FileInfo(filepath);
 if(fileInfo.Exists == true)
 fileInfo.Delete();
 FileStream stream =
 new FileStream(fileInfo.FullName, FileMode.Create);
 XmlSerializer serializer = new XmlSerializer(this.GetType());
 serializer.Serialize(stream, this);
 stream.Close();
 }

9. Open the code editor for Edit.aspx.cs. Find the Page_Load() method and add this code:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // is the page being saved?
 if(IsPostBack == true)
 {
 // create a new entry object...
 Entry newEntry = new Entry();

 // set the values...
 newEntry.Title = textTitle.Text;
 newEntry.Details = textDetails.Text;

 // save it...
 newEntry.Save();

 // show the list...
 Response.Redirect("default.aspx");
 }
 }

10. Next, open the HTML editor for Default.aspx. Add this code to the page - I've omitted some of
the code we've already added to the page for brevity:

 <asp:DataList id="datalistEntries" runat="server">

 ...
 </asp:DataList>

 <div class="normal">
 Create a new entry
 </div>

 <hr color="#000000">
 <div class="normal">
 <asp:label id="labelCopyright" runat="server">(copyright)</asp:label>
 </div>

Run the project. Click the Create a new entry link. The form will appear. Fill it out and click Save Changes. The
page will reload and the new entry will be visible.

If you look in the Entries folder, you notice that a new file has been created:

How it Works

Building the form in Edit.aspx itself is not really any different to building the Default.aspx page. We used
a combination of HTML code and the editor in both cases.

When the button on the form is pressed, two things happen. First, the validation code executes in line with the
validation controls that we added to the page. Each of these was assigned to a single text box control. When
the button is pressed, code runs that checks to make sure the controls are populated and, if not, a message

will appear:

If, however, the validation is successful, the page is posted back to ASP.NET. At this point, the Page_Load()
method is called again, but we can check to see if the page has indeed been posted back by using the
IsPostBack property.

 private void Page_Load(object sender, System.EventArgs e)
 {
 // is the page being saved?
 if(IsPostBack == true)
 {

If the page is posted back, we create a new Entry object.

 // create a new entry object...
 Entry newEntry = new Entry();

When the page is posted back, the Text property of the text box controls becomes automatically populated
with whatever the user filled in. This means that we can do this:
 // set the values...
 newEntry.Title = textTitle.Text;
 newEntry.Details = textDetails.Text;

Then, we tell the Entry object to save itself. (We'll see this in detail in a moment.)

 // save it...
 newEntry.Save();

After the entry has been saved, we tell ASP.NET to ask the browser to navigate to default.aspx so that we
can see the new entry.
 // show the list...
 Response.Redirect("default.aspx");
 }
 }

When we come to save an entry, we need a filename. This filename has to be unique (otherwise we'd erase
other entries), and so we decide to base the filename on the date and time that the entry was saved.
 public void Save()

 {
 // do we have a filename?
 if(Filename == null)
 {
 // get a filename based on the date...
 Timestamp = DateTime.Now;
 Filename =
 String.Format("{0:d4}{1:d2}{2:d2}_{3:d2}{4:d2}.xml",
 (int)Timestamp.Year, (int)Timestamp.Month,
 (int)Timestamp.Day, (int)Timestamp.Hour,
 (int)Timestamp.Minute);
 }

We store the filename as a property - the reason why we do this will become apparent later - and in order for
us to save it we need to transform the filename into a full, physical path.
 // get the whole filename...
 String filepath = Global.EntryFilePath + "\\" + Filename;

Once we have that, we use an XmlSerializer object to save the object to disk. The Serialize() method
takes a stream object representing the file to be written to and the Entry object and converts the latter's
properties to an XML string; exactly the opposite of what the Deserialize() function did earlier on:

 // create a serializer and save...
 FileInfo fileInfo = new FileInfo(filepath);
 if(fileInfo.Exists == true)
 fileInfo.Delete();
 FileStream stream =
 new FileStream(fileInfo.FullName, FileMode.Create);
 XmlSerializer serializer = new XmlSerializer(this.GetType());
 serializer.Serialize(stream, this);
 stream.Close();
 }

Once Default.aspx has been reloaded, GetAllEntries() will return a complete list of files, including the
new one that we've just created.

Editing Weblog Entries

So, we have a form that we can use to create new entries. Can we use it to edit existing entries stored as
XML files on disk?

In this section, we'll see how we can tweak our application so that we can edit an entry once it is in place.

Try it Out - Editing Weblog Entries

1. Open the Designer for Default.aspx.

2. Right-click on the DataList control select Edit Template | Item Templates.

3. Using the Toolbox, drag a new Hyperlink control and drop it next to the green Label control.

4. Using the Properties window, select the (DataBindings) property for the hyperlink control, and click
the ellipsis. From the left-hand list, select NavigateUrl.

5. Click the Custom binding expression radio button and enter this expression:
"edit.aspx?filename=" + DataBinder.Eval(Container, "DataItem.Filename")

6. Click OK to save changes to the binding.

7. Again using the Properties window, change the Text property of the link control to Edit. Change the
CssClass property to entry.

8. Open the code editor for Global.asax. Find the LoadEntry method and make this change:

 // LoadEntry - load an entry from disk...
 public static Entry LoadEntry(String filename)
 {
 // we have the name, but we need the path...
 String filepath = EntryFilePath + "\\" + filename;

 // open the file...
 FileStream file = new FileStream(filepath, FileMode.Open);

 // create a serializer...
 XmlSerializer serializer = new XmlSerializer(typeof(Entry));
 Entry newEntry = (Entry)serializer.Deserialize(file);

 // close the file...
 file.Close();

 // update timestamp and filename...
 newEntry.Timestamp = new FileInfo(filepath).LastWriteTime;
 newEntry.Filename = filename;

 // return the entry...
 return newEntry;
 }

Run the project. Click one of the Edit links and you'll notice that the Create New Entry form appears. However,
what's really interesting is the Address bar. If you look at this you'll notice that the filename of the XML file
containing the data for the entry has been "embedded" into the URL:

How it Works

OK, so we can't edit the page yet, but the next stage is to alter Edit.aspx and Edit.aspx.cs so that we
look for the filename entry in the URL and load the entry.

The interesting thing here was the data binding. On the new hyperlink control, we bound the NavigateUrl
property to this expression:
"edit.aspx?filename=" + DataBinder.Eval(Container, "DataItem.Filename")

You can see how, per iteration of the array of Entry objects, the Filename property of the object is
extracted and tacked onto the end of the edit.aspx?filename= string. This gives us the complete URL.

Loading the Chosen Entry

To load the chosen entry when we view Edit.aspx, all we have to do is look for the filename "parameter"
that may or may not be included in the URL.

Try it Out - Loading the Chosen Entry

1. Open the code editor for Edit.aspx.cs. Find the Page_Load() method and add this code:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // is the page being saved?
 if(IsPostBack == true)
 {
 // create a new entry object...
 Entry newEntry = new Entry();

 // do we have a filename to use?
 if(Request.Params["filename"] != null)
 newEntry.Filename = Request.Params["filename"];

 // set the values...
 newEntry.Title = textTitle.Text;
 newEntry.Details = textDetails.Text;

 // save it...
 newEntry.Save();

 // show the list...
 Response.Redirect("default.aspx");
 }
 else
 {
 // did we get a filename?
 String filename = Request.Params["filename"];
 if(filename != null)
 {
 // load the entry object...
 Entry entry = Global.LoadEntry(filename);

 // populate the fields...
 textTitle.Text = entry.Title;
 textDetails.Text = entry.Details;
 }
 }
 }

Run the project. If you click on an Edit link, the entry should load into the new page. Any changes you make to
the data on the form will be saved to the XML file when you click Save Changes.

How it Works

With .NET, parameters can come into the page in two ways: through form variables or through "the query
string". By and large, ASP.NET does such a good job of abstracting away the way that forms work on the
web, the only ones we need to worry about are query string variables.

These kinds of variables are ones that appear after a question mark in the URL. In our case, we have a single
variable called filename whose value is 20020718_1419.xml:

http://localhost/WebLog/edit.aspx?filename=20020718_1419.xml

The URL below, by contrast, has two variables: a and b; a is set to Jack and b is set to Coffee. The
variables are separated with an ampersand character (&):
http://anotherserver/page.aspx?a=Jack&b=Coffee

In Page_Load(), if IsPostBack returns false, we know that the page is being loaded for the first time. We
can take this opportunity to set the initial Text properties to whatever is stored in the file. (I've omitted some
code here for brevity.)
 private void Page_Load(object sender, System.EventArgs e)
 {
 // is the page being saved?
 if(IsPostBack == true)
 {
 …
 }
 else
 {
 // did we get a filename?
 String filename = Request.Params["filename"];
 if(filename != null)
 {

The Request.Params property, shown highlighted above, can be used to access the parameters that have
been passed into the page. In this instance, we try and get hold of the filename parameter. Of course, if
we've clicked the Create a new entry link, this parameter will be blank. If we have a parameter, we load the
entry from disk and update the Text property on each of the controls.

 // load the entry object...
 Entry entry = Global.LoadEntry(filename);

 // populate the fields...
 textTitle.Text = entry.Title;
 textDetails.Text = entry.Details;
 }

 }
 }

The other half of this problem comes when we post the page back to the server. We again need to look in
Request.Params to see if we already have a filename. If we do, we want to use that, in which case Save()
will replace the existing file with a new file containing the changes that we made. If we do not, Save() will use
the current date and time to create a new filename for us. (Again, I've omitted some code here.)
 private void Page_Load(object sender, System.EventArgs e)
 {
 // is the page being saved?
 if(IsPostBack == true)
 {
 // create a new entry object...
 Entry newEntry = new Entry();

 // do we have a filename to use?
 if(Request.Params["filename"] != null)
 newEntry.Filename = Request.Params["filename"];

 // set the values...
 newEntry.Title = textTitle.Text;
 newEntry.Details = textDetails.Text;

 // save it...
 newEntry.Save();

 // show the list...
 Response.Redirect("default.aspx");
 }

So, now we can display lists of entries and we can use the web site itself to create new entries and make
changes to existing ones.

Sorting Entries

You'll notice that as we add more entries, the last one we create does not appear at the top of the page.
However, this is traditionally how Weblogs work - the first entry is the latest entry.

What we need to do is sort the entries into date order as we read them from the directory. Luckily for us, .NET
returns the files in alphabetical order, which is why we've used the filename format that we have done.
Consider these three filenames:
20020718_1318.xml
20020719_1003.xml
20020720_1823.xml

The format we've gone for is: yyyymmdd_hhmm. This has the drawback that only one file per minute can be
created for use with the site. This isn't really a problem in our case as we should usually only have one new
file being created per day. Files in this format, when sorted alphabetically, automatically sort from the earliest
to the latest. All we have to do is reverse the order that the files were stored on disk.

Try it Out - Sorting Entries

1. First of all, create at least two entries using the tool we've just made. Delete the existing XML files that

don't follow the date format we just spoke about. In my case, I have three files:

You can see that the files are listed in alphabetical order: an order totally opposite to the way we want it.

2. Open the code editor for Global.asax. Find the LoadAllEntries() method and make these two
changes to the method:

 // LoadAllEntries - load all entries from disk...
 public static Entry[] LoadAllEntries()
 {
 // get the path containing the entries...
 DirectoryInfo entryFolder = new DirectoryInfo(EntryFilePath);

 // get a list of files...
 FileInfo[] files = entryFolder.GetFiles();

 // create an array of entries...
 Entry[] entries = new Entry[files.Length];

 // loop through and load each file...
 int index = files.Length - 1;
 foreach(FileInfo file in files)
 {
 entries[index] = LoadEntry(file.Name);
 index--;
 }

 // return the list...
 return entries;
 }

Compile and run the project. The files will be displayed in the correct order.

How it Works

The trick with this is to fill the array in the reverse order to the way the files are presented on disk. When we
create the array, we know how big it's supposed to be by virtue of the fact it's supposed to be exactly the
same size as the array of FileInfo objects returned by GetFiles().

 // LoadAllEntries - load all entries from disk...
 public static Entry[] LoadAllEntries()
 {
 // get the path containing the entries...
 DirectoryInfo entryFolder = new DirectoryInfo(EntryFilePath);

 // get a list of files...
 FileInfo[] files = entryFolder.GetFiles();

 // create an array of entries...
 Entry[] entries = new Entry[files.Length];

As we loop through each FileInfo object, we ask Global.LoadEntry() to create a new Entry object.
We store this new object in the array at the position indicated by index, which starts off as the last position in
the array and, per iteration, is decremented by one until the files array has been complete iterated.

 // loop through and load each file...
 int index = files.Length - 1;
 foreach(FileInfo file in files)
 {
 entries[index] = LoadEntry(file.Name);
 index--;
 }

 // return the list...
 return entries;
 }

Chapter 23 - ASP.NET Applications
byKarli Watsonet al.

Wrox Press 2003

User Sessions and Cookies

It can't have escaped your attention that we appear to have built a web site that allows anyone to come along
and create new Weblog entries and edit old ones. This is a little silly – ideally only the web site owner should
be allowed to make changes.

What we need to do now is provide a way that the owner of the site can authenticate him or herself. Once
that's done, whenever we offer the web site user the opportunity to make changes to the site, we can check
the user's identity and allow or disallow this as appropriate.

Sessions work by allowing the web server to associate a set of data with a specific web browser. In this
scenario, the browser is somehow "tagged" on its first page request from a given site. This tag is unique and
on subsequent requests, this tag is used as a key to "unlock" data associated with it.

The web server tags the user's browser by using a cookie. (For those of you who do not know, a cookie is a
small piece of information that a web server sends to your client machine which is read whenever you
subsequently visit the web site.) On the first page request that you make to a site, that cookie will not exist, so
the web server creates a new user session and places the ID of that session in a cookie before sending it to
the browser. In ASP.NET code, you set various properties, which we'll introduce in a moment, to add
information to the session.

You can store pretty much anything you want in a session, although as they take up memory on the server, try
to store as little as possible in them. For example, do you need to store all the details of a customer in a
session when you can store just the relatively small ID of the customer in a session and look up the finer
details when you need them?

Restricting Access to the Web Site

In this particular example we're going to store a Boolean value in the session that tells us whether or not the
user is allowed to edit the information on the site.

Try it Out – Preventing Editing

1. First of all, open the code editor for Global.asax. Find the Session_Start() method and add this
code:

 protected void Session_Start(Object sender, EventArgs e)
 {
 // configure the session...
 Session["canedit"] = false;
 }

2. Next, open the code editor for Edit.aspx. Find the Page_Load() method and add this code to the top:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // are we allowed to edit...

 if((bool)Session["canedit"] == false)
 Response.Redirect("CannotEdit.aspx");

 ...

3. Next, using Solution Explorer, right-click on the WebLog project and select Add | Add Web Form. Call the
new form CannotEdit.aspx. Open the HTML editor for the new page and add this code:

<%@ Page language="c#" Codebehind="CannotEdit.aspx.cs" AutoEventWireup="false"
 Inherits="webLog.CannotEdit" %>
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN" >
<HTML>
 <HEAD>
 <meta name="GENERATOR" Content="Microsoft Visual Studio 7.0">
 <meta name="CODE_LANGUAGE" Content="C#">
 <meta name="vs_defaultClientScript" content="JavaScript">
 <meta name="vs_targetSchema"
 content="http://schemas.microsoft.com/intellisense/ie5">
 </HEAD>
 <body MS_POSITIONING="GridLayout">
 <form id="CannotEdit" method="post" runat="server">
 Sorry, you're not allowed to make changes to the site.

 Continue...
 </form>
 </body>
</HTML>

Compile and run the project. You should notice straight away that the Edit links and the Create a new entry link
take you to the new error page rather than to the page we were previously able to access.

How it Works

The magic here is all done by something called a "session". A session is something ASP.NET gives us that
let's us identify a user. The first time a user requests a page from an ASP or ASP.NET site, you're allocated a
session that's unique to you – no one else can have the same session as you.

Whenever a new session is created, that is, whenever a new user requests the first page from the site,
Session_Start() is called. System.Web.HttpApplication and System.Web.UI.Page each support
a property called Session. This property is a basic collection that we can store values in. In this case, we've
created a value called canedit and stored the value false against it:

 protected void Session_Start(Object sender, EventArgs e)
 {
 // configure the session...

 Session["canedit"] = false;
 }

These values are called "session variables".

We can retrieve this value from any of the pages on the site. When we do so, we're guaranteed that in
accessing the session variables we're getting values back that are unique to the user. So, if we have a
hundred users all using the site, each one will have his or her own unique session. The canedit variable will
be set to an initial value of false when the session is created. However, if we change canedit to true for
just one of those users, the change will only have scope for the user that we change it for. Ultimately, we want
to change canedit to true for a user that can supply the correct password.

In Edit.aspx.cs, when the page is loaded we check to see if this value is false and, if it is, we redirect the
user to another page.
 private void Page_Load(object sender, System.EventArgs e)
 {
 // are we allowed to be edited...
 if((bool)Session["canedit"] == false)
 Response.Redirect("CannotEdit.aspx");

Authenticating the User

In this exercise, we're going to create a very simple authentication routine. Basically, we're going to ask the
user for a password and if that password matches what we want, we'll set canedit to true and that specific
user will be able to edit pages.

Try it Out – Authenticating the User

1. Using Solution Explorer, right-click on the Weblog project and select Add | Add Web Form. Call it Login.
aspx.

2. When the Designer for the form appears, click once on the background of the page and using the
Properties window change pageLayout to FlowLayout.

3. We won't bother making this page look pretty as this is an administration tool and I'm sure you get the
general idea of how to make the pages look appealing. Instead, just drop a new TextBox control and
Button control onto the page.

4. Select the TextBox control and change its ID property to textPassword. Change its TextMode property
to Password.

5. Select the Button control and change its Text property to Login.

6. Double-click on the background of the form to open the Page_Load() method. Add this code:

 private void Page_Load(object sender, System.EventArgs e)
 {
 // posting back?
 if(IsPostBack == true)
 {
 // do we have the correct password?
 if(textPassword.Text.CompareTo("stringy") == 0)
 {

 // update the session...
 Session["canedit"] = true;

 // redirect...
 Response.Redirect("default.aspx");
 }
 }
 }

Run the project. Click one of the Edit links and you should, ultimately, be returned to the start page. In the
Address bar, change Default.aspx to Login.aspx, and click the Go button.

Enter the password as stringy. (Case is important.) Click the Login button and you should be transported to
Default.aspx. Now if you click on an Edit link you will be able to make changes.

How it Works

As we know, whenever we load Edit.aspx the code checks to make sure that the canedit session
variable is true. If it isn't, we're redirected to an error page.

In Login.aspx, when the Login button is pressed, the Page_Load() method is called. At this point, we look
to see if we're being posted back, and then we look at the Text property of textPassword to see if the
password has been given as stringy.

 private void Page_Load(object sender, System.EventArgs e)
 {
 // posting back?
 if(IsPostBack == true)
 {
 // do we have the correct password?
 if(textPassword.Text.CompareTo("stringy") == 0)
 {

If it has, we change the canedit session variable to true and redirect the user back to the home page.

 // update the session...
 Session["canedit"] = true;

 // redirect...
 Response.Redirect("default.aspx");
 }
 }
 }

Now, whenever we click on a link and open Edit.aspx, the check does indeed discover that canedit is set
to true and therefore the page is displayed as normal. We can then make the desired changes.

Chapter 23 - ASP.NET Applications
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter we took a look at "Active Server Pages .NET", or ASP.NET. This technology is the next
generation technology from Microsoft building on the success of its previous ASP technology that has been
available since 1996.

We started off by looking at how the control/event model in ASP.NET works and learned that this is a very
similar paradigm to the one employed in Windows Forms. In fact, ASP.NET should be quite easy for
newcomers to building active web sites to pick up. However, hardened web developers will find the transition
difficult, as the paradigm is completely different.

To illustrate some of the techniques used to develop an ASP.NET application, we created a web site on which
we can view entries in a Weblog. These entries are stored as XML files that could be read from and written to
using the XmlSerializer, an extremely useful .NET Framework class. We created static methods on the
Global class that are available to all of the pages in the site that could retrieve single Entry objects or an
array of all of the Entry objects from disk. We used the DataList control and other built-in ASP.NET
controls to display the list of Entry objects.

Finally, we looked at how we could create a form that would let the user create and edit new Entry objects
directly on the web site itself. We also looked at the Session collection and learned a little about session
state.

Chapter 23 - ASP.NET Applications
byKarli Watsonet al.

Wrox Press 2003

Questions
1. What's the general principle behind ASP.NET?

2. With Visual Studio .NET, how many files are associated with an .aspx file?

3. What does the DataList control allow us to do?

4. What is a style sheet?

5. What was special about the filename format we used for our XML files?

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Chapter 24: Web Services

Overview

You may have come across the term web service before, though you may not be aware of what they are or
how they fit into they way the Web operates, both now and in the future. Suffice to say that web services
provide the foundation of the new generation of web applications. Whatever the client application is, whether a
Windows application, an ASP.NET Web Forms application, and whatever system the client is running,
whether Windows, Pocket Windows, or some other device, they will regularly communicate over the Internet
using a web service. Web services are similar to the components we saw in from client applications and pass
back specific information. This information may come from the web service itself, from other components in
the same domain, or from other web services. Though the whole of the web service concept is evolving as I
write, there are several different types of web service which carry out different functions: some provide
information specific to a particular industry like manufacturing or healthcare; there are portal services that use
services from different providers to offer information on a specific theme; there are services that are specific to
single applications, and building block services that can be used by many different applications.

Web services give us the ability to combine, share, exchange or plug in separate services from various
vendors and developers to form entirely new services or custom applications created on the fly to meet the
requirements of the client.

In this chapter we will look at:

● Predecessors of web services

● What is a web service

● Protocols used for web services

● Creating an ASP.NET web service

● Testing the web service

● Building a client to use web services

We will not go into the inner workings of web services, especially the XML-based SOAP and WSDL formats,
but you will get an overview of what all these protocols are used for. After reading this chapter, you can start
creating and consuming simple web services with the help of Visual Studio .NET.

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Before Web Services

Connecting computers to transfer data was already an important concept in 1969 when just four computers
were connected via telephone lines to form the ARPANET. In 1976 the TCP/IP protocol was invented. To
make this protocol easy to use the University of Berkeley created the socket model for network programming.

When programming with the Sockets API, the client had to initiate a connection to the server, and then send
and receive data. To call some operations on the server to get results, additional protocols are needed to
describe request and response codes. Examples of such so-called application protocols are FTP, Telnet and
HTTP. The FTP protocol is used to get some files from the server and to put the files on the server. The FTP
protocol supports request codes like GET and PUT that are sent across the wire from the client to the server.
The server analyzes the data stream it receives, and according to the request codes invokes the
corresponding method. The HTTP protocol works very similarly to the FTP protocol.

Remote Procedure Call (RPC)

With the Sockets API and the TCP/IP protocol calling custom methods on the server, the programmer would
have had to create a means by which the server analyzes the data stream to invoke the corresponding
method. To make all this work easier, some companies created an RPC (Remote Procedure Calls) protocol,
an example of which is the still popular DCE-RPC protocol (Distributed Computing Environment – Remote
Procedure Calls) from the Open Software Foundation (OSF), who later became the Open Group (see www.
opengroup.org). Using RPC, we define methods in an IDL (Interface Definition Language) format, which the
server has to implement, and which the client can call. We no longer had to deal with the definition of a
custom protocol, and to parse the request codes to invoke the methods. This work is done by a special
program, called a stub, generated by an interface compiler.

RPC is designed to invoke methods, which means that you have to do procedural programming. The RPC
technology came in relatively late, when most developers had already started to work with the object-oriented
paradigm. In order to bridge the technology gap, several technologies came into being, including CORBA and
DCOM.

CORBA

The Object Management Group (OMG, www.omg.org) initiated CORBA (Common Object Request Broker
Architecture) in 1991 to add object-orientation to network programming. Many vendors like Digital
Equipment, HP, IBM, and others implemented CORBA servers. Because the OMG didn't define a reference
implementation though, only a specification, the servers of these vendors didn't really interoperate. The HP
server needed an HP client, the IBM server an IBM client, and so on.

DCOM

With Windows NT 4, Microsoft extended the DCE-RPC protocol with object-oriented features. The DCOM
(Distributed COM) protocol made it possible to call COM components across the network and is used in COM
+ applications. After some years in which Microsoft operating systems were a requirement to use DCOM,
Microsoft opened the protocol for others with The Active Group. DCOM was made available for Unix, VMS,

http://www.opengroup.org/
http://www.opengroup.org/
http://www.omg.org/

and IBM systems. DCOM was used heavily in the Microsoft environments, but the initiative to bring it to other
systems was not really successful. Which IBM mainframe administrator would like to add some Microsoft
technology to his system?

RMI

Sun took a different route with its Java technologies. In a pure Java world, the RMI (Remote Method
Invocation) protocol can be used to call objects remotely. Sun added some bridges to the CORBA and COM
world, but the major goal for Sun was to bring the masses to a Java-only solution.

SOAP

All the technologies that we have seen were used for application-to-application communication, but if you
have a CORBA, a DCOM, and a RMI solution it is hard to get these different technologies to talk together.
Another problem with these technologies is that their architectures are not designed for thousands of clients to
achieve the scalability that's required for Internet solutions.

As a result, several companies, including Microsoft, and Userland Software, (www.userland.com) created
SOAP (Simple Object Access Protocol) in 1999 as a completely new and novel way of invoking objects
over the Internet, one that builds upon already accepted standard protocols. SOAP uses an XML based
format to describe methods and parameters to make remote calls across the network. A SOAP server in the
COM world could translate the SOAP messages to COM calls, whereas a SOAP Server in the CORBA world
translates it to CORBA calls. Originally the SOAP definition made use of the HTTP protocol, so that SOAP
calls could be done across the Internet.

With SOAP the term web service was born.

The W3C spec on SOAP 1.1 can be found at http://www.w3.org/TR/SOAP/.

Nowadays, in a broad sense, every application that supplies services through the web is a web service. It is
not necessary that a web service uses the SOAP protocol as message format and the HTTP protocol to talk
between client and server; other protocols may be used instead. With the SOAP specification 1.0 HTTP was a
requirement, but version 1.1 was changed so that other transport protocols may be used. To use web services
across the Internet though, SOAP and HTTP are the primary protocols. With .NET Remoting, it is possible to
create web services that make use of a binary message format and a TCP connection.

In this chapter, the focus will be on web services that can be created with the Visual Studio .NET Project
Wizard that itself makes use of .NET Remoting, SOAP, and HTTP behind the scenes.

http://www.userland.com/
http://www.w3.org/TR/SOAP/

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Where to Use Web Services

To get another view of what web services are, we can distinguish between user-to-application
communication and application-to-application communication.

Let us start with a user-to-application communication example, getting some weather information from the
web. There are a large number of web sites like http://www.msnbc.com and http://www.weather.com that present
the weather information in an easy to digest format for a human reader. So, these pages normally are read
directly by a user.

If we wanted to create a rich client application to display the weather (application to application
communication) our application would have to connect to the web site with a URL string containing the city
for which we want to know the weather. We would then have to parse the resulting HTML message returned
from the web site to get the temperatures and weather conditions, and then we can finally display this
information in an appropriate format for the rich client application.

That is a lot of work, considering the fact that we just want to get some temperature readings for a particular
city. And, what's more, the process of getting the data from the HTML is not trivial. This is because HTML data
is designed to be displayed in the web browser and is not meant to be used by any other client-side business
application. Consequently, the data is embedded in the text and is not easily extracted, and you would need to
rewrite or adapt the client application to retrieve different data information (such as rainfall) from the same
web page. By contrast, using a web browser, users can immediately pick out the data they need and can
overlook what is not needed.

To get round the problem of processing HTML data, a web service provides a useful means for returning only
the data we requested. Just call a method on the remote server, and get the information that we need, which
can be used directly by the client application. At no point do we have to deal with the preformatted text that is
meant for the user interface, because the web service presents the information in XML format, and tools
already exist to process XML data. All it requires from the client application is to call some methods of the .
NET Framework XML classes to get the required information. Better still though, if we are writing a client in C#
for a .NET web service, we don't even need to write the code to do that - there are tools which will generate
C# code for us!

The weather application we have talked about is one example where web services can be used, but there are
a lot of other ones, too.

A Hotel Travel Agency Application Scenario

How do you book your holiday? Going to a travel agency that does all the work for you. Have you already
booked your holiday on the Internet? With an airline's web site you can look for possible flights and book
them. A web search engine can be used to look for a hotel in the required city. Maybe you are lucky and find a
map to get to the hotel. When you find the hotel's home page, you navigate to the booking form page,
whereupon you can go ahead and book the room. Next you would search out a car rental firm...

A lot of work you have today is finding the web sites with the help of search engines, and finding ways to

http://www.msnbc.com/
http://www.weather.com/

navigate on these sites. Instead we could create a Home Travel Agency Application that uses web services
containing details on hotels, airlines, car rental firms, etc. and present the client with a an easy to use
interface to deal with all the holiday issues, including a not-to-be-forgotten early booking of a special musical
event. Using your Pocket PC in the location of your holiday you can use the same web services to get a map
for some walks, to get actual information about the programs in the cinemas, and so on.

A Book Distributor Application Scenario

Web services can also be useful for two companies that have some partnership. Let's say that a book
distributor wants to give information about the books on stock to the bookshops. This could be implemented
as a web service. An ASP.NET application using the web service can be created to offer this service directly
to users. Another client application of this service is a Windows application for the bookshop, where first the
local stock gets checked and then the stock of the distributor. The sales person can immediately answer
delivery dates without having to check some different stocks in different applications.

Client Application Types

The client of a web service can be a rich Windows application created using Windows Forms, or an ASP.NET
application using Web Forms. A Windows PC, a Unix system, or a Pocket PC can be used to consume (use)
the web service. With the .NET Framework, web services can be consumed in every application type:
Windows Forms, Web Forms, or console applications.

Application Architecture

What does an application using web services actually look like? Regardless if you develop ASP.NET or
Windows applications, or applications for small devices, as you have seen in the presented application
scenarios, web services is an important technology in all kind of applications.

The next figure shows a scenario of how web services can be used. Devices and browsers are connected
through the Internet to an ASP.NET application developed with Web Forms. This ASP.NET application uses
some local web services, and other remote web services that can be reached across the network: portal web
services, application specific web services, and building block web services. The following list should help to
elaborate the meaning of these service types:

● Portal web services offer services from different companies with the same subject matter. This is an
easy to use access point for multiple services.

● Application-specific web services are created just for the use of a single application.

● Building block web services are services that can easily be used within multiple applications.

The Windows application in this figure can use the web services directly without going through the ASP.NET
application:

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Web Services Architecture

If we want to use existing web services, we have to find one that meets our needs. If we know of a web service
that fits, we have to get the information on how we can communicate with it. The following figure shows the
important mechanisms for calling web services:

● We first find a web service that has already been registered in a registration directory service. This directory
service returns binding information for the web service.

● The next sequence is called discovery. If we know the server which hosts the web services we can ask the
server to get a description of the service. For this sequence the discovery protocol (DISCO) is used.

● The description of the service is presented in the Web Services Description Language (WSDL) format.
The description describes what methods a service has, and what argument types can be passed. To use a
service that doesn't support discovery and isn't registered in the UDDI directory, all we get is a WSDL
document.

● With the description of the web service we know what methods can be called. The methods will be called
using SOAP, so all the method calls including the arguments must be converted to the SOAP protocol.

Both SOAP and WSDL are defined with an XML grammar.

Let's look into the steps of the sequence in more detail.

Search Engine for Web Services

Maybe you can use a web service that is already supported by another company. In order to seek out and find
pre-existing web services, Microsoft, IBM, and Ariba got together and initiated the www.uddi.org web site with
the UDDI (Universal Description, Discovery, and Integration) service. UDDI is a platform-independent, open
framework for describing services, discovering businesses, and integrating business services using the web as
well as an operational registry. A company that wants to advertise its web service can register it here. With the
UDDI business registry and the UDDI API, it is possible to programmatically locate information about web
services.

After the initiation of UDDI by three companies, more than 220 companies now support the UDDI project.
Among them are Boeing, BT, Compaq, DataChannel, Dell, Fujitsu, HP, Hitachi, KPMG Consulting, Merrill
Lynch, Nortel Networks, Oracle, Rational, SAP, Sun Microsystems, VeriSign, and many more.

To find an existing web service, you can search by business name and after a successful search of a service,
you get the description of the web service, any information on the classification of the web service, that is the
groups it belongs to, and binding information - included in a discovery (DISCO) file and maybe also a WSDL
document.

In Visual Studio .NET we can search in Microsoft's UDDI Site by going to Project | Add Web Reference:

As you can see in the screenshot, beside the Microsoft UDDI Directory there is also a
Test Microsoft UDDI Directory. During development time you can register your service in the test directory, the
other directory should only be used for production-stable, active services.

Selecting the Microsoft UDDI Directory link, we can specify search strings to find a registered web service. If the
result of the search has binding information, a reference to the web service can be added with the Add Reference
button.

Entering the string Continental lists two web services from Continental Airlines as can be seen in the next
screenshot:

http://www.uddi.org/

You can find a lot of web services at these pages: www.xmethods.net and www.gotdotnet.com.

Web Services Discovery

As soon as you know the server that supports web services, the discovery process can be used to get
information about the web services for that server. The web server uses a file with the extension vsdisco to
return information about web services.

The vsdisco file defines the rules that govern how the server finds web services. Such a file defines either that
the services should be found dynamically with the exclusion of some directories, or statically in the way that
some directories to search are specified.

Requesting the file default.vsdisco with the browser, the links to other vsdisco files are returned with the
discoveryRef element. One of the <discoveryRef> elements shows the reference to http://localhost/
WebServiceSample/WebServiceSample.vsdisco. I am using this link to get more information about this service:

Entering the address http://localhost/WebServiceSample/WebServiceSample.vsdisco in the address box of the
browser returns a link to the WSDL information of the service with the <contractRef> element: http://localhost/
WebServiceSample/Service1.asmx?wsdl:

http://www.xmethods.net/
http://www.gotdotnet.com/
http://localhost/WebServiceSample/WebServiceSample.vsdisco
http://localhost/WebServiceSample/WebServiceSample.vsdisco
http://localhost/WebServiceSample/WebServiceSample.vsdisco
http://localhost/WebServiceSample/Service1.asmx?wsdl
http://localhost/WebServiceSample/Service1.asmx?wsdl

What Methods Can I Call?

A Web Services Description Language (WSDL) document has the information about what methods a web
service supports and how they can be called, parameter types passed to the service, and parameter types
returned from the service.

Using the link we get from the discovery process with the <contractRef> element we can have a look at the
WSDL document in the browser:

It is not necessary for us to deal with this information directly. The WSDL document will be generated
dynamically with the WebMethod attribute; we will have a look at this attribute later on in this chapter. On the
client side, adding the web reference using Visual Studio .NET not only gets the discovery information about
what web services a server supports, but also requests a WSDL document. This WSDL document in turn is
used to create a client proxy with the same methods and arguments. With this proxy, the client application has
the advantage that it only needs to call the methods as they are implemented in the server, because the proxy
converts them to SOAP calls to make the call across the network.

The WSDL specification is maintained by the World Wide Web Consortium (W3C). You can read the
specification at the W3C Web site www.w3.org/TR/wsdl.

Calling a Method

To call a method on a web service the call must be converted to the SOAP message as it is defined in the
WSDL document. The SOAP specification defines how method names and arguments can be passed.

A SOAP message is the basic unit of communication between a client and a server. The following figure
demonstrates the parts of a SOAP message. A SOAP message includes a SOAP envelope, which, as you
might guess, wraps all the SOAP information in a single block. The SOAP envelope itself consists of two parts:
a SOAP header and a SOAP body. The optional header defines how the client and server should process the
body. The mandatory SOAP body includes blocks of the methods that are called. In the SOAP body the client

http://www.w3.org/TR/wsdl

sends, along with the method call itself, the serialized values of all the method arguments. The SOAP server
sends back the return values in the SOAP body of the SOAP message that is sent back:

In the following example you see what a SOAP message that is sent from the client to the server looks like. The
client calls the web service method ReverseString(). The string Hello World! is passed as an argument
to this method. You can see that the method call is inside the SOAP body, it is within the XML element <soap:
Body>. The body itself is contained within the envelope <soap:Envelope>. Before the start of the SOAP
message, you can see the HTTP header, because the SOAP message is sent with a HTTP POST request.

It is not necessary that we have to create such a message, as this is done by the client proxy:
POST /WebServiceSample/Service1.asmx HTTP/1.1
Host: localhost
Content-Type: text/xml; charset=utf-8
Content-Length: 508
SOAPAction: "http://www.wrox.com/webservice/ReverseString"

<?xml version="1.0" encoding="utf-8"?>
<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:
xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/">
 <soap:Body>
 <ReverseString xmlns="http://www.wrox.com/webservice">
 <message>Hello World!</message>
 </ReverseString>
 </soap:Body>
</soap:Envelope>

The server answers with a SOAP message with the result !dlroW olleH in the response of the call as can be
seen with the ReverseStringResult XML element:

HTTP/1.1 200 OK
Content-Type: text/xml; charset=utf-8
Content-Length: 446

<?xml version="1.0" encoding="utf-8"?>

<soap:Envelope xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns:
xsd="http://www.w3.org/2001/XMLSchema" xmlns:soap="http://schemas.xmlsoap.org/soap/
envelope/">
 <soap:Body>
 <ReverseStringResponse xmlns="http://www.wrox.com/webservice">
 <ReverseStringResult>!dlroW olleH</ReverseStringResult>
 </ReverseStringResponse>
 </soap:Body>
</soap:Envelope>

The SOAP specification is maintained by the XML Protocol Working Group of the W3C (see www.w3.org/TR/
soap and www.w3.org/TR/2001/WD-soap12-20010709 for version 1.2).

SOAP and Firewalls

System administrators often ask if the SOAP protocol breaks the security boundaries of the firewalls, or in other
words, does SOAP violate the concept of firewalls? In reality there are no more security issues to consider than
for normal web servers. With normal web servers the system administrator of the firewall opens the HTTP port
80 to allow the server to communicate with the outside world. Users on the Internet can have direct access to
these servers even though they sit behind the firewall. A user can request an HTML file with an HTTP request
and the server returns either a static page, or a page created on the fly using ASP or CGI scripts. Web services
are just another type of server side application that communicates using HTTP, though instead of receiving
simple HTTP GET or POST requests, it receives an HTTP POST request containing an embedded SOAP
message, and instead of returning HTML, it returns an HTTP response containing the SOAP response
message. As far as the firewall is concerned, the communication is through HTTP and hence it will allow it
through port 80.

However, if this web service does not behave as it should, such as leaking confidential data or breaking the
server, then we do have a problem, but such problems are common to all server side applications whether they
be traditional web pages, server side business objects or web services.

If the system administrator of the firewall is still worried about the security implications of web services, they can
use an application filter to not allow SOAP calls with an HTTP request.

http://www.w3.org/TR/soap
http://www.w3.org/TR/soap
http://www.w3.org/TR/2001/WD-soap12-20010709

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Web Services and the .NET Framework

With the .NET Framework, it is easy to create and consume web services. The four major namespaces that
deal with web services are listed as follows:

● The classes in the namespace System.Web.Services are used to create web services

● With the namespace System.Web.Services.Description, we can describe web services via WSDL

● To discover web services with the DISCO protocol, classes from the namespace System.Web.
Services.Discovery are used

● With System.Web.Services.Protocols we can create SOAP requests and responses

In this book we will not cover the use of the System.Web.Services.Description and the
System.Web.Services.Discovery namespaces. Indeed, we shall only touch on the other
two namespaces in this chapter. More information can be found in the Wrox book ASP.NET
Programmer's Reference (ISBN 1-86100-530-X).

Creating a Web Service

For the implementation of a web service, we can derive the web service class from System.Web.Services.
WebService. The WebService class provides access to ASP.NET Application and Session objects:

WebService Property Description
Application Gets an HttpApplicationState object for the current request.

Context Gets an HttpContext object that encapsulates HTTP specific
information. With this context the HTTP header information can be read.

Server Gets an HttpServerUtility object. This class has some helper
methods to do URL encoding and decoding.

Session Gets an HttpSessionState object to store some state for the client.

User Gets a user object implementing the IPrincipal interface. With this
interface we can get the name of the user and the authentication type.

WebService Attribute

The sub class of WebService should be marked with the WebService attribute. The class
WebServiceAttribute has the following properties:

Property Description

Description A description of the service that will be used in the WSDL document.

Name Gets or sets the name of the web service.

Namespace Gets or sets the XML namespace for the web service. The default value
is http://tempuri.org, which is OK for testing, but before you make the
service public you should change the namespace.

We covered attributes in Chapter 22. Here you can see attributes in action once more.

WebMethod Attribute

All methods available from the web service must be marked with the WebMethod attribute. Of course the
service can have other methods that are not marked using WebMethod. Such methods can be called from the
WebMethods, but they cannot be called from the client. With the attribute class WebMethodAttribute, the
method will be callable from remote clients, and we can define if the response is buffered, how long the cache
should be valid, and if the session state should be stored with named parameters. The following table lists the
properties of the WebMethodAttribute class:

Property Description
BufferResponse Gets or sets a flag if the response should be buffered. The default is

true. With a buffered response only the finished package is sent to the
client.

CacheDuration With this property you can set the length of time that the result should be
cached. If the same request is done a second time, only the cached
value will be returned if the request is made during the period set by this
property. The default value is 0; which means that the result will not be
cached.

Description The description is used for the generation of service help pages for
prospective consumers.

EnableSession A Boolean value, indicating if the session state is valid. The default is
false, so that the Session property of the WebService class cannot
be used for storing session state.

MessageName By default the name of the message is set to the name of the method.

TransactionOption This property indicates the transaction support for the method. The
default value is Disabled.

Client

To call a method, the client has to create an HTTP connection to the server of the web service, and send an
HTTP request to pass a SOAP message. The method call must be converted to a SOAP message. All this is
done by the client proxy. The implementation of the client proxy is in the SoapHttpClientProtocol class.

SoapHttpClientProtocol

The class System.Web.Services.Protocols.SoapHttpClientProtocol is the base class for the
client proxy. The Invoke() method converts the arguments to build a SOAP message that is sent to the web
service. Which web service gets called is defined with the Url property.

The SoapHttpClientProtocol class also supports asynchronous calls with the BeginInvoke() and

http://tempuri.org/

EndInvoke() methods.

Alternative Client Protocols

Instead of using the SoapHttpClientProtocol class, other proxy classes can be used, too.
HttpGetClientProtocol and HttpPostClientProtocol just do a simple HTTP GET or HTTP POST
request without the overhead of a SOAP call.

The HttpGetClientProtocol and HttpPostClientProtocol classes can be used if your
solution uses .NET on the client and the server. If you want to support different technologies you
have to use the SOAP protocol.

Compare the HTTP POST request below with the SOAP call we have seen earlier in this chapter:
POST /WebServiceSample/Service1.asmx/ReverseString HTTP/1.1
Host: localhost
Content-Type: application/x-www-form-urlencoded
Content-Length: length

message=string

The HTTP GET request is even shorter. The disadvantage of the GET request is that the size of the
parameters sent is limited. If the size goes beyond 1k you should consider using POST:
GET /WebServiceSample/Service1.asmx/ReverseString?message=string HTTP/1.1
Host: localhost

With the HttpGetClientProtocol and the HttpPostClientProtocol the overhead compared to SOAP
methods is smaller; the disadvantage here is that there is no support from web services on other platforms.

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Creating a Simple ASP.NET Web Service

Let's create a simple web service with Visual Studio .NET.

Try it Out – Creating a Web Service Project

1. Create a new project with File | New | Project..., choose the ASP.NET Web Service template as shown
here, name the project WebServiceSample, and hit OK:

Generated Files

The files generated by the wizard are listed here:

● AssemblyInfo.cs – Used to supply the assembly attributes, as we know from all other project types.

● Global.asax – Application and session begin and end requests, the same as in Web Forms applications
we have seen in the last chapter.

● Service1.asmx – Holds our web service class. All ASP.NET web services are identified with the .asmx
extension. The file that has the source code is Service1.asmx.cs, as the code-behind feature is used
with Visual Studio .NET. However this file is, by default, not visible in Solution Explorer and to get to it, you
click the Show All Files button in the Solution Explorer's toolbar.

The wizard generates a class Service1 that derives from System.Web.Services.WebService. In
the Service1.asmx.cs file, you can also see some sample code showing how a method for a web
service should be coded – it should be public, and marked with the WebMethod attribute:

using System;
using System.Collections;

using System.ComponentModel;
using System.Data;
using System.Diagnostics;
using System.Web;
using System.Web.Services;

namespace WebServiceSample
{
 /// <summary>
 /// Summary description for Service1.
 /// </summary>
 public class Service1 : System.Web.Services.WebService
 {
 public Service1()
 {
 //CODEGEN: This call is required by the ASP.NET Web Services Designer
 InitializeComponent();
 }

 #region Component Designer generated code

 //Required by the Web Services Designer
 private IContainer components = null;

 /// <summary>
 /// Required method for Designer support - do not modify
 /// the contents of this method with the code editor.
 /// </summary>
 private void InitializeComponent()
 {
 }

 /// <summary>
 /// Clean up any resources being used.
 /// </summary>
 protected override void Dispose(bool disposing)
 {
 if(disposing && components != null)
 {
 components.Dispose();
 }
 base.Dispose(disposing);
 }

 #endregion

 // WEB SERVICE EXAMPLE
 // The HelloWorld() example service returns the string Hello World
 // To build, uncomment the following lines then save and build the project
 // To test this web service, press F5

// [WebMethod]
// public string HelloWorld()
// {
// return "Hello World";

// }
 }
}

● Web.config is the configuration file for this application. In this file, we can configure tracing, session
state, and debug mode.

● WebServiceSample.vsdisco is the discovery file for this application. The XML element
<dynamicDiscovery> means that a search should happen for the web services in all directories, except
the ones excluded with the <exclude> element:

<?xml version="1.0" encoding="utf-8" ?>
<dynamicDiscovery xmlns="urn:schemas-dynamicdiscovery:disco.2000-03-17">
<exclude path="_vti_cnf" />
<exclude path="_vti_pvt" />
<exclude path="_vti_log" />
<exclude path="_vti_script" />
<exclude path="_vti_txt" />
<exclude path="Web References" />
</dynamicDiscovery>

Adding a Web Method

The next thing we should do is add a method to our web service. We will add a simple method
ReverseString() that receives a string, and returns the reversed string to the client.

Try it Out – Adding a Method

1. Add the following code to the file Service1.asmx.cs:

 [WebMethod]
 public string ReverseString(string message)
 {
 char[] arr = message.ToCharArray();
 Array.Reverse(arr);
 message = new string(arr);

 return message;
 }

To uniquely identify the XML elements in the generated description of the web service a namespace
should be added. Add the WebService attribute with the namespace http://www.wrox.com/
webservices to the class Service1. Of course, you can use any other string that uniquely identifies
the XML elements. You can use the URL link to your company's page. It is not necessary that the web
link really exists; it is just used for unique identification. If you use a namespace based on your
company's web address, you can almost guarantee that no other company is using the very same
namespace.

If you don't enter a namespace the default namespace used is http://tempuri.org. For learning
purposes, this default namespace is good enough, but you shouldn't deploy a production web service
using it.

2. So, modify the example code as follows:
 [WebService(Namespace="http://www.wrox.com/webservices")]

http://www.wrox.com/webservices
http://www.wrox.com/webservices
http://tempuri.org/

 public class Service1 : System.Web.Services.WebService
 {

3. Now compile the project.

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Testing the Web Service

Now we can test our service. Opening the file Service1.asmx in the browser (you can start it from within
Visual Studio .NET by going to Debug | Start Without Debugging) lists all methods of the service as can be seen
in the following picture. In our service the only method is ReverseString():

Choosing the link to the ReverseString method, we get a dialog to test the web service. The test dialog has
edit fields for every parameter we can pass with this method; in our case it is only a single parameter.

In this page, we also get information on what the SOAP calls from the client and the responses from the
server will look like. There is an example with SOAP, HTTP GET and HTTP POST:

Pressing the Invoke button after entering the string Hello web services! into the text box, we receive this result
from the server:

The result is of type string, and, as expected, it is the reverse of the entered string.

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Implementing a Windows Client

The test is working, but we want to create a Windows client that uses the web service. The client must create
a SOAP message that will be sent across an HTTP channel. It is not necessary to make this message
ourselves. The System.Web.Services.Protocols.SoapHttpClientProtocol class does all the work
behind the scenes.

Try it Out - Creating a Client Windows Application

1. Create a new C# Windows Application, call it SimpleClient and on the form, add two text boxes and a
button. We will use the button's Click handler to invoke the web service:

2. Add a web reference using the Project | Add Web Reference... menu and enter the URL of the web service
we have just generated, http://localhost/WebServiceSample/Service1.asmx. Then, you can view the contract
and documentation, if they exist that is, before pressing the Add Reference button:

In the Solution Explorer you can now see a new Web Reference to localhost with the corresponding DISCO
and WSDL documents that were sent to the client:

http://localhost/WebServiceSample/Service1.asmx

What cannot be seen in the Solution Explorer is that a new class was created which implements the client
proxy that converts method calls to the SOAP format. To see this class, we have to switch to the Class
View window. A new namespace with the name of the server, in our case localhost, was created. The
Service1 class derives from System.Web.Services.Protocols.SoapHttpClientProtocol, and
implements the method of the web service, ReverseString():

Double-click on the ReverseString()method to open the auto-generated service1.cs file. Let's look
into this wizard-generated code.

The Service1 class derives from the SoapHttpClientProtocol class. This base class creates a
SOAP message in the Invoke() method. The WebServiceBindingAttribute attribute sets binding
values to the web service:
 [System.Web.Services.WebServiceBindingAttribute(Name="Service1Soap",
 Namespace="http://www.wrox.com/webservices")]
 public class Service1 :
 System.Web.Services.Protocols.SoapHttpClientProtocol {

In the constructor, the Url property is set to the web service. This property will be used from the
SoapHttpClientProtocol class to request a service:

 public Service1() {

 this.Url = "http://localhost/WebServiceSample/Service1.asmx";
 }

The most important method is the method that the web service supplies: ReverseString(). The
method here has the same parameter as we implemented on the server. The implementation of the client-
side version of ReverseString() calls the Invoke() method of the base class
SoapHttpClientProtocol. Invoke() creates a SOAP message using the method name
ReverseString and the parameter message:

 [System.Web.Services.Protocols.SoapDocumentMethodAttribute(
 "http://www.wrox.com/webservices/ReverseString",
 RequestNamespace="http://www.wrox.com/webservices",
 ResponseNamespace="http://www.wrox.com/webservices",
 Use=System.Web.Services.Description.SoapBindingUse.Literal,
 ParameterStyle
 =System.Web.Services.Protocols.SoapParameterStyle.Wrapped)]
 public string ReverseString(string message) {
 object[] results = this.Invoke("ReverseString", new object[]
 { message});
 return ((string)(results[0]));
 }

The client may also call the web service asynchronously. The method BeginReverseString() only
has the parameters that are sent to the server, and EndReverseString() returns the result:

 public System.IAsyncResult BeginReverseString(string message,
 System.AsyncCallback callback, object asyncState) {
 return this.BeginInvoke("ReverseString", new object[] {
 message}, callback, asyncState);
 }

 public string EndReverseString(System.IAsyncResult asyncResult) {
 object[] results = this.EndInvoke(asyncResult);
 return ((string)(results[0]));
 }

Until now we have not written a single line of code ourselves for the client. We have designed a small
user interface, and used the Add Web Reference menu to create a proxy class. Now we just have to create
the link between the two.

3. Add a Click event handler to the button and add these two lines of code:

 private void button1_Click(object sender, System.EventArgs e)
 {
 localhost.Service1 ws = new localhost.Service1();
 textBox2.Text = ws.ReverseString(textBox1.Text);
 }

How it Works

With this line, we create a new instance of the proxy class. As we have seen in the implementation of the
constructor the Url property is set to the web service:

 localhost.Service1 ws = new localhost.Service1();

By calling the ReverseString() method of the proxy class, a SOAP message is sent to the server, and so,

the web service gets called:
 textBox2.Text = ws.ReverseString(textBox1.Text);

Running the program gives us output like this:

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Implementing an ASP.NET Client

The same service now can be used from an ASP.NET Client application. Referencing the web service can be
done the same way as with the Windows application.

Try it Out - Creating an ASP.NET Client Application

1. Create a new C# ASP.NET Web Application, call it ASPNETClient, and add two text boxes and a button to
the web form, as seen below:

2. Add a web reference to http://localhost/webservicesample/service1.asmx in the same way as we did with the
Windows application.

3. With the Web reference added, again, a client proxy class was generated. Add a click handler to the
button and write the following lines of code to this handler:

 private void Button1_Click(object sender, System.EventArgs e)
 {
 ASPNETClient.localhost.Service1 ws =
 new ASPNETClient.localhost.Service1();
 TextBox2.Text = ws.ReverseString(TextBox1.Text);
 }

4. Now build the project and with Debug | Start, you can start the browser and enter a test message in the
first text box. Pressing the button, the web service gets invoked, and you will get the reversed message
returned in the second text box:

http://localhost/webservicesample/service1.asmx

As you have just seen, using web services is as easy in web applications as it is in Windows applications!

Chapter 24 - Web Services
byKarli Watsonet al.

Wrox Press 2003

Summary

In this chapter, we have seen what web services are, and briefly looked at the protocols that are used with
them. To locate and run web services, we have to carry out some or all of the following:

● Directory - Find a web service by UDDI

● Discovery - Discover web services from a well-known server

● Description - WSDL describes the methods and arguments

● Calling - Platform-independent method calls are done with the SOAP protocol.

We have seen how easy it is to create web services with Visual Studio .NET, where the WebService class is
used to define some methods with the WebMethod attribute. Creating the client that consumes web services
is as easy as creating web services - adding a web reference to the client project and using the proxy. The
heart of the client is the SoapHttpClientProtocol class that converts the method call to a SOAP
message.

Appendix A - Setting the PATH Environment
Variable
byKarli Watsonet al.

Wrox Press 2003

Appendix A: Setting the PATH Environment Variable

In order to use the C# compiler and other .NET tools from the Windows command line, we need to ensure that
the PATH environment variable has been updated. The command prompt looks for files within the current
directory; if we want to run a file in another directory, we need to supply information about where Windows
can find that file. We do this by setting the PATH environment variable. The PATH variable contains a list of
directory names, separated by semi-colons, where Windows will look if it can't find a requested file in the
current directory. There are two folders we need to add to this to ensure that Windows can find all the .NET
tools: C:\Program Files\Microsoft.Net\FrameworkSDK\Bin, which contains a number of .NET
command-line tools, such as Ildasm, Gacutil, and sn. The second is the C:\WINNT\Microsoft.NET
\Framework\v1.0.3705 folder (the number in the last sub-directory name may vary, depending on what
version of the .NET Framework you have installed). This is where the C# compiler itself (csc), and the
System class libraries reside.

Windows 2000/XP

To set the PATH variable on a Windows 2000 or XP machine, open up the System applet from the Control
Panel, and click on the Advanced tab:

On the Advanced tab, click on the Environment Variables... button, and scroll down the System variables
listbox until you find the Path variable:

Select this, and click on the Edit... button below the listbox:

In the Variable Value box, add the full paths to the directories you want to include in the PATH variable at the
end. The PATH variable is a semicolon-delimited list, so you'll need to add a semi-colon before the first path,
and between the two paths. For example, with the current version of the .NET Framework, we need to add the
following text to the end of the string:
;C:\Program Files\Microsoft.Net\FrameworkSDK\Bin;C:\WINNT\
Microsoft.NET\Framework\v1.0.3705

Click on OK to close the Edit System Variable dialog, then twice more to close the Environment Variables and
System Properties dialogs. The PATH variable has now been updated. If you already have a command
window open, you will need to re-open it, as the new value won't be available to existing windows.

Appendix A - Setting the PATH Environment
Variable
byKarli Watsonet al.

Wrox Press 2003

Windows NT

There are a few slight differences in the procedure for setting environment variables under Windows NT4.
Open up the System applet from the Control Panel as with Windows 2000, and then click on the Environment
tab:

Select the Path variable from the System Variables list box. The current value of this variable will now appear
in the Value list box; add the .NET Framework paths to the end of this value as with Windows 2000 (again
separated by semi-colons). Click on Set to update the value, and on OK to accept the new value. This value
will now be available to any new command windows that you open.

Appendix A - Setting the PATH Environment
Variable
byKarli Watsonet al.

Wrox Press 2003

Windows 95/98/ME

If you're running Windows 9x or Windows ME, you need to update the autoexec.bat text file to set the
PATH variable. This text file contains information used to configure Windows as it starts up, and resides in the
root directory of your hard drive (for example, C:\autoexec.bat). Open up this file in Notepad or another
text editor, and add the line:
SET PATH=%PATH%;C:\Windows\Microsoft.NET\Framework\v1.0.3705

Again, adjust the path if necessary according to your system and the version of the .NET Framework. This will
add the path to the existing PATH variable. Note that not all tools will be installed with the .NET Framework on
machines running Windows 9x or ME. Finally, restart Windows for the change to take effect.

Appendix A - Setting the PATH Environment
Variable
byKarli Watsonet al.

Wrox Press 2003

Starting the Command Line from any Directory

If you're going to be doing any amount of work from the command-line, continually typing the name of the
directory you wish to work from can become quite tiresome. To help you with this, here is a quick tip that
allows you to select a folder in Windows Explorer, and then open a command-line prompt starting in that
particular folder.

In Windows Explorer, choose Tools | Folder Options, and select the File Types tab. Scroll down to the find the
file types with Extensions N/A (pressing N will take you there quicker), and select the Folder File Type, as
shown in the screenshot below:

Click on Advanced, and this brings you to the Edit File Type dialog. From here you can set the actions for a
particular file type – in this case, we can set the actions that are displayed in the context menu in Windows
Explorer when you right-click on a folder:

Click on New..., and you will be brought to the following dialog. Enter a name for our action (I've chosen
Command Line), and then select the application that will actually carry out our action by clicking the Browse
button and navigating to the command-line program. This is the file CMD.EXE in the <WINDOWS>\System32
folder. Once you have selected the file, enclose the name in double quotes (as seen in the screenshot below),
and then add %1 to the end of the line. This specifies that the file you right-click on in Windows Explorer will
be passed to the application as a parameter, and this is the little piece of magic that starts the command-line
prompt from our chosen folder.

Click OK to close this dialog, then click OK again to close the Edit File Type dialog, and then once you click
OK on the File Types tab of the Folder Options dialog you're ready to go!

Appendix B - Installing MSDE
byKarli Watsonet al.

Wrox Press 2003

Appendix B: Installing MSDE

In this appendix, we're going to provide instructions on how to start the MSDE service and set up the sample
databases, including the Northwind database that we use extensively in 19.

First of all, you should have chosen to install MSDE when you initially installed Visual Studio .NET, or Visual
C# Standard Edition.

To setup MSDE, follow these steps:

1. From your Start menu, select Microsoft .NET Framework SDK | Samples and QuickStart Tutorials.

2. Read the instructions on the page that opens, then click Install the .NET Samples Database, and then
select Open when prompted from the save or open file dialog.

3. To start the MSDE service, open a command-line prompt (click Start | Run and type cmd). From the
command-line type:
>net start MSSQL$NetSDK

4. The following messages should be displayed:
The MSSQL$NetSDK service is starting.
The MSSQL$NetSDK service was started successfully.

5. Now the service is started, we can set up the sample databases by returning to the Samples and
QuickStart Tutorials page, and clicking the Setup the QuickStarts link. On the dialog that appears, select
Open, and the sample SQL Server databases that ship with MSDE (including two extras called
IPortal and GrocerToGo) will be created and populated.

Appendix C - Further References
byKarli Watsonet al.

Wrox Press 2003

Appendix C: Further References

We've covered a lot of ground in this book, but C# and the .NET Framework are topics of monstrous size.
There will be times when working with C# and Visual Studio .NET that you will become stuck, and this book
has not been able to cover that scenario, or maybe you want to develop your skills further, and learn more
about C# and the .NET Framework. Where do you turn to for help? There are many resources around to help
you solve your problems when this book can't, and this appendix will point you in the direction of some of
those resources, both online and in book form.

.NET Framework SDK Documentation

Available as an option to install with Visual Studio .NET and Visual C# .NET Standard Edition, the .NET
Framework SDK documentation contains a vast amount of information, covering almost every aspect of the .
NET Framework. Of particular interest and use is the comprehensive class library reference, which has details
of almost all the methods, properties, etc. of the classes of the .NET Framework, even including some
examples of their use.

Let's take a look at using the documentation - you can find it on your Start menu under Programs | Microsoft .
NET Framework SDK | Documentation. You will find a layout similar to that of Visual Studio .NET:

The above screenshot shows the Index view - the Index Results tab at the bottom right-hand corner shows the
results of your searches. Browsing the documentation is quite straightforward, but there is an enormous
amount of information available and it is quite easy to get lost, or return more information than you actually are
after.

Let's have a look first at the class library reference. From the View menu, select Navigation | Contents (or press
Alt + Ctrl + F1), and expand the .NET Framework SDK node to see the following pane:

As you can see, there is much available from here, including such things as the Glossary, which provides an A-
to-Z guide to most of the terms you will encounter when working with the .NET Framework, and their meaning.
The Reference node is the one of interest to us here, so expand that node, and you will see the following
categories:

Expand the Class Library node, and a list of the namespaces of classes in the .NET Framework class library
will appear - the screenshot below shows the System.Data namespace expanded, and some classes within that
namespace expanded.

When you select an item from the pane, an overview of that item will appear in the right-hand window. Select
DataSet Class, and information about the DataSet will appear in the right-hand window, including some
remarks about the class, describing its main objects and purpose:

You can see links to other objects pertaining to the DataSet, and at the top of the window is the link to see all
the DataSet Members. Click this link, and you will be taken to one of the C# developer's most hallowed areas -
the list of the methods, properties, and events of the class:

This list contains almost all the information you'd ever need about the specifics of particular objects in the .
NET Framework, but this information is sometimes quite limited and occasionally cryptic. The page that
displays the members of a class will soon become one of your first stops when you begin working on new C#
programming activities. Scroll down to the find the Tables property of the DataSet, and click the link:

This screenshot shows how the information is structured - you have the name of the object in the header at
the top of the window, and then a quick description of it below.

Underneath that you have the definition of the object, in different languages (Visual Basic .NET, C#, Visual C+
+.NET, and JScript .NET). The C# definition of the DataSet.Tables property is:
public DataTableCollection Tables {get;}

If we were looking at a method, then we would see the method signature(s) here, or if we were looking at a
class we'd see the class definition.

Following that is a Remarks section, which contains a brief remark about the usage of the object, or some
caveat to its use. Underneath that is (possibly) an Example of its use, usually in several languages, but often
not a particularly detailed example, but useful if you're looking for a basic example to see syntax just to get
you started. Below that (not shown on the screenshot above) is a Requirements section, which lists the system

requirements to support this class, and a See Also section, which includes links to related topics or objects. If
you start to follow these links to move between topics and find yourself getting lost, then you can always click
the back arrow at the top-left hand corner of the application to navigate to your previously viewed page.

If you look at the previous screenshot, then you can see three buttons at the top of the window - clicking the
first displays the See Also links, the second displays the Requirements, and the third button is the Language Filter:

Selecting one of the languages here will ensure that information about an object is displayed only in the
language you have chosen - thus you will only see the one class definition or method signature, and the only
example shown will be in your chosen language (if one exists at all).

You can also search the documentation index; from the View menu, select Navigation | Index, and the index is
displayed in its own pane. The displayed index automatically updates as you start typing in the Look for
textbox:

Here I'm looking for some information about default events - you may remember that in Chapter 22) specifies
the default event for that particular class - so that's how Visual Studio .NET knows!

You will also find that items are indexed under a variety of different expressions, so, for example, you can look
up the System.Windows.Forms.Control.DataGrid.HitTestInfo class, but you can also find it under HitTestInfo.

Spend some time playing with the documentation - it is something you will be using on a very regular basis
when programming with the .NET Framework - there are very few people who do not regard the
documentation as an essential tool for working with the .NET Framework.

Appendix C - Further References
byKarli Watsonet al.

Wrox Press 2003

Online Resources

As you develop your C# programming skills, and your thirst for more C# knowledge increases, you will find
that you need to go beyond the documentation, and want to look at other people's already developed
applications to learn more about building your own, or you may have a question to which you don't know the
answer, and you want to contact other C# programmers to see if they know the answer.

To help with the first situation, C# Today is the place for you.

C# Today

C# Today at www.csharptoday.com, is a subscription site that offers you weekly in-depth case studies
written by leading professionals, giving you solutions and insight into real-world problems that are relevant to
your career. In addition to this, there is an archive of over 170 articles covering a vast range of topics on the
C# language and using it to program the .NET Framework.

Although a subscription site, you are welcome to visit the site and view an abridged form of the weekly case
study for free. These case studies are the ideal way to enhance your knowledge of application development,
and see real-world code in action, and clearly explained.

If you have questions that you want answered, then you can post your question to a mailing list, opening it up
to a much wider community of developers than you would otherwise have access to. A good place to start is
the beginning_csharp list at http://p2p.wrox.com.

P2P Lists

http://www.csharptoday.com/
http://p2p.wrox.com/

The P2P lists were described in the introduction to the book. Of particular interest is the beginning_csharp list,
at http://p2p.wrox.com/list.asp?list=beginning_c_sharp, not just because it is where you
register to obtain the answers to the exercises from the book, but also because it is a list dedicated to this
book. It contains questions asked (and answered) mainly by readers of this book, so when you post your
question, the response isn't likely to be a suggestion to code your method directly in IL, or that your question
is too trivial to answer, but a response from someone who's probably been having the same problems that
you've had, and has learned the answer and can now help you.

If you're looking for a community of other C# programmers like yourself, this is the place to start.

Other Online Resources

Possibly the most obvious place to look for more information is at Microsoft's own site, including its online
library at http://msdn.microsoft.com/library, and it's .NET community site at http://msdn.
microsoft.com/vstudio/community/default.asp.

There are many other sites with C# information, such as the following:

● GotDotNet, the .NET Framework community site, at http://www.gotdotnet.com

● C# Corner, at http://www.csharp-corner.com

● C# Help, at http://www.csharphelp.com

When you visit these sites, not only will you find information, articles, and code to help you, you'll also find
links to other C# sites and various discussion forums.

http://p2p.wrox.com/list.asp?list=beginning_c_sharp
http://msdn.microsoft.com/library
http://msdn.microsoft.com/vstudio/community/default.asp
http://msdn.microsoft.com/vstudio/community/default.asp
http://www.gotdotnet.com/
http://www.csharp-corner.com/
http://www.csharphelp.com/

Appendix C - Further References
byKarli Watsonet al.

Wrox Press 2003

Books

There are many books on C# out there to help you take the next step, but if you've enjoyed this one, then the
style in which Wrox presents its books will probably suit you best. There are many directions you might take,
or supplements to the knowledge you may already have; here a few ideas for books to develop your C#
knowledge.

The first book you'll probably want to get your hands on is one about data. Every program, no matter what
language or environment it is written in, is concerned with manipulating data. At its simplest, this might just
involve variables whose initial values are hard-coded into the application. For more complex programs,
though, this is almost certain to mean extracting data from an external data source, displaying it to the user,
allowing the user to add, delete, and edit parts of that data, and saving changes back to the original data
source. The subject of Beginning C# Databases is how to achieve those universal tasks using Microsoft's
brand-new C# language - we've already had a hefty introduction to data access with C# in this book, but
there's much more to learn.

Beginning C# Databases

ISBN : 1-86100-609-8

This book is aimed at anyone who is using, or planning to use, the .NET Framework and the C#
language to build Windows applications or ASP.NET web applications that access and
manipulate data from a relational database.

Beginning C# Databases explains clearly, in easy-to-follow language, the concepts behind relational
databases, with concise explanations of how to design databases, and how to optimize their performance, for
example by using indexes to reduce the look-up time for frequently accessed fields. We also examine SQL -
the Structured Query Language - which is used to communicate with database systems and allows us to
access and update data in the data store, and we see how we can access the database more efficiently by
writing precompiled stored procedures in this language.

However, the core of the book is about accessing databases with C#. C# is dependent on the classes defined
in the .NET Framework for most of its functionality, and data access and manipulation is no exception. For
this, a set of special classes together known as ADO.NET is provided. ADO.NET provides easy and intuitive
classes and methods for connecting to databases, retrieving data (by executing SQL commands or stored
procedures), and updating the database. We also see how we can display our data to the user in Windows
applications and in ASP.NET web applications, and how we can validate the user's input before saving it to
the database.

Once we've got a solid understanding of ADO.NET, we can turn to look in detail at some more advanced
database concepts, such as improving the design of your databases, more advanced SQL statements that
allow us to join data from multiple tables, creating views and stored procedures and calling them from C#
code, optimizing performance with indexes, and assigning permissions for specific database operations to
prevent unwanted access to your data.

The later chapters of the book look at some of the more advanced features of ADO.NET, such as using XML
documents with ADO.NET, implementing transactions to ensure that if one operation fails, any related
operations will also fail, handling exceptions and events raised by ADO.NET, and retrieving and updating
irregular data, such as images stored in the database.

Beginning C# Databases assumes that you have one of the various flavors of Visual Studio .NET
installed: either Visual Studio .NET Professional (or higher), or Visual C# .NET Standard Edition.
If you have the Standard Edition installed, it is recommended that you also have Access 2000 or
later installed for use as a front end to MSDE. Both of these require installation of the .NET
Framework. You will also need either MSDE or SQL Server; however, MSDE can be installed
free of charge with the .NET Framework, Visual C# Standard Edition, or Visual Studio .NET.

Developing Windows Software

ISBN : 1-81600-737-X

This book is for developers who want to learn how to create powerful, robust, user-friendly
Windows applications based upon Windows Forms.

The power of the C# language, coupled to the simplicity of developing Windows Forms in Visual Studio .NET,
makes real-world Windows application development faster and easier than ever before.

Developing C# Windows Software teaches you how to design, implement, and deploy powerful Windows
applications based upon Windows Forms and C#. We will show you how to make the most effective use of the
Microsoft .NET Framework classes in your applications, and guide you around the Visual Studio .NET IDE -
the development tool of choice for Windows applications. In each chapter we will discuss important aspects of
Windows application design, and illustrate their use by building up practical, real-world sample applications. In
no time at all you will become a skilled Windows application developer.

Professional C# 2nd Edition

ISBN : 1-86100-704-3

You've learned a lot about C# in this book, and worked on some pretty tricky concepts to get a good
grounding in C# - congratulations. But if you're serious about programming with C#, the time will come when
you need a more detailed reference, code examples, and explanation that take you way beyond the
documentation, and a style and level of presentation that is appropriate for your information needs - clear, and
fast-paced. That is the time for Professional C# 2nd Edition.

Professional C# 2nd Edition begins with a concise and in-depth guide to the C# language, expanding on
concepts that we haven't been able to talk about in this book. Wherever we have written "beyond the scope of
the book" in this book, the answer is usually to be found in Professional C# 2nd Edition.

The span of topics we have met in this book is encompassed by Professional C# 2nd Edition, but there the
pace is quicker, and the depth of coverage is deeper. It also contains many topics we haven't even been able
to touch on this book, but will becoming increasingly important parts of your programming world as you grow:

● Threading

● Manipulating XML

● Working with the Active Directory

● Accessing the Internet with C#, and network programming

● Integrating COM and C#

● Creating Windows Services

● .NET Remoting

● Controlling .NET security

When you are ready, Professional C# 2nd Edition is there for the next level of your C# development.

Index
byKarli Watsonet al.

Wrox Press 2003

Index
Symbols
! Boolean operators

used on boolean values', Boolean Logic

!= Boolean comparison operator', Boolean Logic

& Boolean operators
bitwise example', Bitwise Operators
used on boolean values', Boolean Logic

&& Boolean operators
used on boolean values', Boolean Logic

&= Boolean Assignment operators', Boolean Assignment Operators

+ operator
overloading, Operator Overloading

+= operator, Try it Out - Handling Events

.NET assemblies, see assemblies

.NET framework, What is the .NET Framework?
ADO.NET, What Kind of Applications Can I Write with C#?
attributes, Built In Attributes
CLR, What's in the .NET Framework?
CTS, What's in the .NET Framework?
delayed signing, System.Reflection.AssemblyDelaySignAttribute
interoperation between .NET and COM, Interoperation with COM and Other Legacy Code
obsolete entries, System.ObsoleteAttribute
serialization, System.SerializableAttribute
streams, Streams
versioning, System.ObsoleteAttribute
Web Applications, What Kind of Applications Can I Write with C#?
Web Services, What Kind of Applications Can I Write with C#?
Web Services and .NET Framework, Web Services and the .NET Framework
Windows Forms, What Kind of Applications Can I Write with C#?
writing applications, Linking

.NET Framework Class Library
assemblies, .NET Assemblies and the .NET Framework Class Library

.NET Framework Launch Condition, Launch Condition Editor

.NET Remoting, SOAP

/recurse option

compiling C# code from command line, Try it Out - Compiling and Linking from the Command-Line

/reference option
compiling C# code from command line, Try it Out - Compiling and Linking from the Command-Line

/target option
compiling C# code from command line, Try it Out - Compiling and Linking from the Command-Line

< Boolean comparison operator', Boolean Logic

<< bitwise shift operator', Bitwise Operators

<<= assignment operators, bitwise shift operators', Boolean Assignment Operators

<= Boolean comparison operator', Boolean Logic

<asp\
Label> tags;asp\

Label tags, Try it Out - Adding a Copyright Element

<attribute> element;attribute element
XSD schema, XSD Schemas

<body> tags, displaying;body tags displaying, Try it Out - Improving the Look

<complexType> element;complexType element
XSD schema, XSD Schemas

<div> tags;div tags
Label control, Try it Out - Finding Where the Web Site is Stored

<element> element;element element
XDR schema, XDR Schemas
XSD schema, XSD Schemas

<ElementType> element;ElementType element
XDR schema, XDR Schemas

<param> element;param element
auto-documentation, Try it Out - Documenting a Class
name attribute, Try it Out - Documenting a Class

<schema> element;schema element
XDR schema, XDR Schemas
XSD schema, XSD Schemas

<schemalocation> element;schemalocation element, XSD Schemas

 tags;span tags, Try it Out - Adding a Copyright Element

<summary> element;summary element, XML Auto-documentation in C#
auto-documentation, XML Auto-documentation in C#

= assignment operator, Assignment Operators
assigning variables, Variable Declaration and Assignment
underlying types', Defining Enumerations

== Boolean comparison operator', Boolean Logic

==binary operator, Operator Overloading

> Boolean comparison operator
operator overload, Upgrading CardLib Part 2

> Boolean comparison operator', Boolean Logic

>= Boolean comparison operator
operator overload, Upgrading CardLib Part 2

>= Boolean comparison operator', Boolean Logic

>> bitwise shift operator', Bitwise Operators

>>= assignment operators, bitwise shift operators ', Boolean Assignment Operators

?\
statements, The if Statement

^ Boolean operators
example', Bitwise Operators
used on boolean values', Boolean Logic

^= Boolean Assignment operators', Boolean Assignment Operators

| Boolean operators
bitwise example', Bitwise Operators
used on boolean values', Boolean Logic

|= Boolean Assignment operators', Boolean Assignment Operators

|| Boolean operators
used on boolean values', Boolean Logic

~ unary bitwise operator', Bitwise Operators

Index
byKarli Watsonet al.

Wrox Press 2003

Index
A
abstract classes, Class Definitions in C#

casting, Try it Out - Arrays versus More Advanced Collections
compared to interfaces, Interfaces versus Abstract Classes
inheritance, Inheritance
intended for use as base classes for families of objects, Interfaces versus Abstract Classes
may be public or internal, Class Definitions in C#
may possess abstract and non-abstract members, Interfaces versus Abstract Classes

abstract indexers, The Add Indexer Wizard

abstract keyword
class definitions, Class Definitions in C#
method definitions, Defining Methods
property definitions, Defining Properties

AcceptChanges method, DataSet class
care in using, Try it Out - Deleting Rows

access modifier combinations
class definitions, Class Definitions in C#

access modifying keywords
property definitions, Defining Properties

actions, adding, Create Actions
example, Try it Out - Set the File Extension

Activation property, ListView control, ListView Properties

Active Data Objects.NET, see ado.net

active elements, Try it Out - Adding a Copyright Element
determining active elements of static page, Try it Out - Adding a Copyright Element

active elements, adding to static pages, Adding Active Elements
example, Try it Out - Adding a Copyright Element

Active Server Pages, see asp

Active X Data Objects, see ado

ActiveMdiChild property, Form class, Building MDI Applications

ActiveX Data Objects, see ado

Add Field Wizard, The Add Field Wizard

Add Indexer wizard, The Add Indexer Wizard

specifying protection levels, The Add Indexer Wizard

Add Method Wizard, The Add Method Wizard

Add method, ArrayList class, Try it Out - Arrays versus More Advanced Collections

Add method, DataColumnCollection class, Try it Out- Comma-Separated Values

Add method, DataRelationCollection class, Creating a DataRelation Object

Add method, DataRowCollection class, Try it Out- Comma-Separated Values

Add method, DataTableCollection class, Try it Out- Comma-Separated Values

Add method, IDictionary interface, Keyed Collections and IDictionary

Add Property Wizard, The Add Property Wizard

Add Reference option, Manifests

AddExtension property, SaveFileDialog class, File Extensions

AddingData example, Try it Out - Adding Rows

AddRange method, ArrayList class, Try it Out - Arrays versus More Advanced Collections

Administrative Install mode
User Interface editor, Install and Administrative Install

ADO, Why is it Called ADO.NET?
compared to ADO.NET, Why is it Called ADO.NET?

ADO.NET, Chapter 18: Getting At Your Data
accessing multiple tables in DataSet, Accessing Multiple Tables in a DataSet
accessing tables, rows and columns, Try it Out - Updating the Database
AddingData example, Try it Out - Adding Rows
Command object, Command Object
CommandBuilder object, CommandBuilder Object
compared to ADO, Why is it Called ADO.NET?
Connection object, Connection Object
consumer objects, Consumer Objects
data providers, SQL Server .NET Data Provider
DataAdapter object, Generating Database Tables using Attributes
DataReader object, DataReader Object
DataReading example, Reading Data with the Data Reader
DataRelation example, Try it Out - Getting the Related Rows
DataSet object, DataSet Object
DataSetRead example, Try it Out - Reading Data with the DataSet
definition, What is ADO.NET?
DeletingData example, Try it Out - Deleting Rows
design, Design Goals of ADO.NET
direct execution of SQL, Direct Execution of SQL Commands
extensibility, Extensibility
FindingData example, Finding Rows
introduction, Chapter 19: Data Access with ADO.NET
ManyRelations example, Try It Out - Working with Multiple Relations
multi-tier applications, Support for Multi-Tier Applications
navigating with relationships, Navigating with Relationships

objects, Overview of ADO.NET Classes and Objects
obtaining data from table example, Reading Data with the Data Reader
provider objects, Provider Objects
ReadingAccessData example, Try it Out - Reading from an Access Database
ReadingXML example, Try it Out - Reading XML into a DataSet
relational data, access to, Simple Access to Relational Data
ShowSQL example, Try it Out - Show SQL Example
SQL example, Viewing SQL SELECT, UPDATE, INSERT, and DELETE Commands
SQL support, SQL Support in ADO.NET
summary, Summary
System.Data namespace, Using the System.Data Namespace
System.Data.OleDb namespace, What is ADO.NET?
System.Data.SqlClient namespace, What is ADO.NET?
System.Xml namespace, What is ADO.NET?
UpdatingData example, Updating the Database
XML and relational data, XML and ADO.NET
XML example, Try it Out - Writing XML from a DataSet

advertisement, Advantages of the Windows Installer

AfterLabelEdit event, ListView control, ListView Events

aliases
namespaces, Namespaces

Alignment property, ListView control, ListView Properties

Alignment property, StringFormat class, Try it Out - Font Example

Alignment property, TabControl control, TabControl Properties

AllowColumnReorder property, ListView control, ListView Properties

AllowFullOpen property, ColorDialog class, Properties of the Color Dialog

AllowMargins property, PageSetupDialog class, Margins

AllowMultiple property, AttributeUsageAttribute class, BugFixAttribute

AllowOrientation property, PageSetupDialog class, Orientation

AllowPaper property, PageSetupDialog class, Paper

AllowPrinter property, PageSetupDialog class, Printer

AllowScriptChange property, FontDialog class, Properties of the FontDialog

AllowSelection property, PrintDialog class, Printing Selected Text

AllowSomePages property, PrintDialog class, Printing Page Ranges

AllowVectorFonts property, FontDialog class, Properties of the FontDialog

AllowVerticalFonts property, FontDialog class, Properties of the FontDialog

Alpha component, Colors

Anchor property, Control class, Anchor and Dock Properties

anti-aliasing, Coordinate System

AnyColor property, ColorDialog class, Properties of the Color Dialog

Appearance property, RadioButton control, RadioButton Properties

Appearance property, TabControl control, TabControl Properties

Appearance property, Toolbar control, ToolBar Properties

application architecture, Web Services, Application Architecture

Application Folder, File System Editor

Application property, WebService class, Creating a Web Service

application-specific web services, Application Architecture

application-to-application communication, Where to Use Web Services

applications
subscribing to events, What is an Event?

Apply event, FontDialog class, Enabling the Apply Button

ArgumentException class, System namespace, Setting the File Filter

ArgumentOutOfRangeException class, System namespace, Try it Out - Using Fields, Methods, and
Properties

Array class, System namespace, Try it Out - Arrays versus More Advanced Collections
compared to ArrayList class, Try it Out - Arrays versus More Advanced Collections
CopyTo method, Deck.cs
CopyTo method', Try it Out - Writing Text to the Output Window
Length property, Try it Out - Arrays versus More Advanced Collections

ArrayList class, System.Collections namespace, Try it Out - Arrays versus More Advanced Collections
Add method, Try it Out - Arrays versus More Advanced Collections
AddRange method, Try it Out - Arrays versus More Advanced Collections
casting, Try it Out - Arrays versus More Advanced Collections
compared to Array class, Try it Out - Arrays versus More Advanced Collections
Count property, Try it Out - Arrays versus More Advanced Collections
IndexOf method, Try it Out - Arrays versus More Advanced Collections
InsertRange method, Try it Out - Arrays versus More Advanced Collections
Remove method, Try it Out - Arrays versus More Advanced Collections
RemoveAt method, Try it Out - Arrays versus More Advanced Collections

arrays, Collections
base types', Arrays
casting, Try it Out - Arrays versus More Advanced Collections
compared to collections, Try it Out - Arrays versus More Advanced Collections
const keyword', Declaring Arrays
declaring arrays', Declaring Arrays
elements', Arrays
example', Declaring Arrays
explanation', Try it Out - Using an Array
foreach loops, Try it Out - Arrays versus More Advanced Collections
introduction', Arrays
jagged arrays, Arrays of Arrays
jagged arrays', Arrays of Arrays
loops, foreach Loops
loops', Arrays

multi-dimensional arrays, Multi-dimensional Arrays
multi-dimensional arrays', Multi-dimensional Arrays
new keyword', Declaring Arrays
parameter arrays, Parameter Arrays
size of arrays, Try it Out - Arrays versus More Advanced Collections
size of arrays', Try it Out - Using an Array
strong typing, Try it Out - Arrays versus More Advanced Collections

arrays of arrays, see jagged arrays'

as operator, The as Operator
explicit conversion, The as Operator
implicit conversion, The as Operator
syntax, The as Operator

ASP, Chapter 23: ASP.NET Applications
compared to ASP.NET, Chapter 23: ASP.NET Applications

ASP.NET, Chapter 23: ASP.NET Applications
adding active elements to static pages, Adding Active Elements
code-behind files, Try it Out - Adding a Copyright Element
compared to ASP, Chapter 23: ASP.NET Applications
controls, Try it Out - Authenticating the User
server side technology, Chapter 23: ASP.NET Applications
session variables, Try it Out - Preventing Editing
string variables, Try it Out - Loading the Chosen Entry
tags, Try it Out - Adding a Copyright Element
user sessions, Try it Out - Preventing Editing
Web Forms, What Kind of Applications Can I Write with C#?
Web Services, Chapter 23: ASP.NET Applications
web sites, access restricting, Restricting Access to the Web Site

ASP.NET applications, web applications
Weblogs, building, The Application Basics

ASP.NET Web Application template, The Application Basics

ASP.NET web service creation, Creating a Simple ASP.NET Web Service
add web method, Adding a Web Method
create client windows application, Try it Out - Creating a Client Windows Application
create web service project, Generated Files
implementing a windows client, Implementing a Windows Client
implementing an ASP.NET client, Implementing an ASP.NET Client
testing web service, Testing the Web Service

assemblies, Chapter 21: .NET Assemblies
.NET Framework Class Library, .NET Assemblies and the .NET Framework Class Library
adding references to, Manifests
attributes, storing, What is an Attribute?
calling, Calling Assemblies
components, Chapter 21: .NET Assemblies
configuration files, Assembly Searching
creating, Structure of Assemblies
cross-language programming, Cross-Language Programming

delayed signing, Delay Signing the Assembly
introduction, Chapter 21: .NET Assemblies
manifests, What is an Attribute?
metadata, Structure of Assemblies
modules, Structure of Assemblies
namespaces, .NET Assemblies and the .NET Framework Class Library
numeric indexers, Creating Database Rows
private assemblies, Private Assemblies
registering with gacutil, Registering in the GAC
resources, Structure of Assemblies
searching, Assembly Searching
self-describing, Interoperation with COM and Other Legacy Code
shared assemblies, Shared Assemblies
structure, Structure of Assemblies
summary, Summary
type metadata, Structure of Assemblies
versions, Version Compatibility
viewing the contents, Reflection
wrappers, Interoperation with COM and Other Legacy Code

assembly attribute scope, Attribute Scope

assembly attributes, What is an Attribute?
AssemblyCulture attribute, AssemblyInfo.cs
AssemblyInfo.cs file, AssemblyInfo.cs
syntax, AssemblyInfo.cs
version attributes, Version Attributes

Assembly class, System.Reflection namespace
GetCustomAttributes method, Reflection
GetExecutingAssembly method, Attributing the Class for Usage
GetExportedTypes method, Attributing the Class for Usage
LoadFrom method, Reflection

assembly metadata see Structure of Assemblies

AssemblyCulture attribute, System.Globalization namespace, AssemblyInfo.cs

AssemblyDelaySignAttribute class, System.Reflection namespace, System.Reflection.
AssemblyDelaySignAttribute

AssemblyInfo.cs file, AssemblyInfo.cs

AssemblyKeyFileAttribute class, System.Reflection namespace, Custom Attributes

AssemblyVersion attribute, AssemblyVersion attribute

Assert method, Debug class', Other Ways of Entering Break Mode

Assert method, Trace class', Other Ways of Entering Break Mode

assertions', Other Ways of Entering Break Mode

assignment operators, Assignment Operators
= assignment operator, Assignment Operators
can not be overloaded, Operator Overloading

Attribute class, System namespace, Test Case Attribute

custom attributes must derive from, Test Case Attribute

attribute definitions, What is an Attribute?
syntax, What is an Attribute?

attribute scope, Attribute Scope
defining scope, Attribute Scope

attributes
.NET Framework, Built In Attributes
assembly attributes, What is an Attribute?
custom attributes, Generating Database Tables using Attributes
debugging using attributes, System. Diagnostics. ConditionalAttribute
defined, What is an Attribute?
defining inheritable attributes, DatabaseColumn Attribute
defining multiple attributes, AttributeUsage.AllowMultiple
defining types, System.AttributeUsageAttribute
delayed signing, System.Reflection.AssemblyDelaySignAttribute
introduction, Chapter 22: Attributes
marking assembly members as obsolete, System.ObsoleteAttribute
numeric indexers, Creating Database Rows
reflection, System.SerializableAttribute
serialization using attributes, System.SerializableAttribute
storing within assemblies, What is an Attribute?
using ildasm, What is an Attribute?
XML documents, Attributes

Attributes property, FileInfo class, The FileInfo Class

AttributeTargets enumeration, System namespace, System.AttributeUsageAttribute
table of values, System.AttributeUsageAttribute

AttributeUsageAttribute class, System namespace, System.AttributeUsageAttribute
AllowMultiple property, BugFixAttribute
custom attributes, creating, System.AttributeUsageAttribute
Inherited property, AttributeUsage.Inherited

authentication
user authentication, Authenticating the User

auto-completion
exercise', String Manipulation
explanation', Try it Out - Statement Auto-completion in VS

auto-documentation, XML Auto-documentation in C#
<param> element;param element, Try it Out - Documenting a Class
<summary> element;summary element, XML Auto-documentation in C#
example, Try it Out - Documenting a Class

AutoArrange property, ListView control, ListView Properties

AutoCheck property, RadioButton control, RadioButton Properties

Autos tab
variables, monitoring content', Monitoring Variable Content

AutoSize property, Toolbar control, ToolBar Properties

Index
byKarli Watsonet al.

Wrox Press 2003

Index
B
BackColor property, Control class, Properties

BackgroundImage property, StatusBar control, StatusBar Properties

BarBreak property, MenuItem control, The MenuItem Control

Base keyword
calling overridden or hidden base class methods, Calling Overridden or Hidden Base Class Methods
using base class constructor, Constructor Execution Sequence

base types
arrays”, Arrays

BeforeLabelEdit event, ListView control, ListView Events

BeginInvoke method, SoapHttpClientProtocol class, Try it Out – Creating a Client Windows Application

BeginPrint event, PrintDocument class, Try it Out – Modifying OnPrintPage() for Multiple Pages

BeginUpdate method, ListView control, Adding the Event Handlers

binary operators, Expressions
overloading, Operator Overloading

binary reuse, Benefits of Components

binary units
components, Components

BinaryFormatter class, System.Runtime.Serialization.Formatters.Binary namespace, System.
SerializableAttribute

Deserialize method, System.SerializableAttribute
Serialize method, System.SerializableAttribute

BindingContext object,System.Windows.Forms namespace, Navigating through the DataSet
returning Position property, Adding Lists

Bitmap class, System.Drawing namespace, Drawing Using Images

bitwise and Boolean operators example”, Try it Out – Using the Boolean and Bitwise Operators

bitwise operators
& operator example”, Bitwise Operators
^operator example”, Bitwise Operators
| operator example”, Bitwise Operators
~ unary bitwise operator”, Bitwise Operators
operate on the series of bits stored in a variable”, Bitwise Operators

bitwise operators”, Bitwise Operators

bitwise shift operators
<< bitwise shift operator”, Bitwise Operators
<<= assignment operators”, Boolean Assignment Operators
>> bitwise shift operator”, Bitwise Operators
>>= assignment operators”, Boolean Assignment Operators
examples”, Bitwise Operators

bitwise shift operators”, Bitwise Operators

blocks of code, Basic C# Syntax

blogs, see weblogs

book distributor application using web services, A Book Distributor Application Scenario

bool types, Simple Types
used to store the result of a comparison”, Boolean Logic

bool types”, Boolean Logic

Boolean and bitwise operators example”, Try it Out – Using the Boolean and Bitwise Operators

Boolean Assignment operators”, Boolean Assignment Operators

Boolean comparison operators, relational operators”
operator overloading, Upgrading CardLib Part 2
table”, Boolean Logic
used on boolean values”, Boolean Logic
used on numeric values and strings”, Boolean Logic

Boolean comparison operators”, Boolean Logic

boolean logic”, Boolean Logic

bootstrappers, Bootstrapper
Web Bootstrapper, Bootstrapper

BorderStyle property, Label control, The Label and LinkLabel Controls

BorderStyle property, LinkLabel control, The Label and LinkLabel Controls

Bottom property, Control class, Properties

boxing, implicit conversion
implicit conversion and, Boxing and Unboxing

branching
flow control”, Chapter 4: Flow Control
if statement”, The if Statement
ternary operators”, The Ternary Operator
variable scope, Variable Scope in Other Structures

branching”, Branching

break command
interrupting loops”, Interrupting Loops
terminating switch statement”, The switch Statement

break mode
debugging in Visual Studio .NET, The Call Stack Window
debugging in Visual Studio .NET”, Debugging in Break Mode

breakpoints

adding”, Breakpoints
deck of cards example, A Card Game Client for CardLib
description”, Breakpoints
disabling”, Breakpoints
triggering”, Breakpoints

breakpoints”, Entering Break Mode

Brush class, System.Drawing namespace, Drawing Shapes using the Brush Class

Brushes class, System.Drawing namespace, Try it Out – Brush Example

BufferResponse property, WebMethodAttribute class, WebMethod Attribute

BugFixAttribute custom attribute, BugFixAttribute

building block web services, Application Architecture

BulletIndent property, RichTextBox control, RichTextBox Properties

Button control, Try it Out – Authenticating the User
add button to main form”, Try it Out – Creating a Simple Windows Application
Click event, Button Events
Design View, Try it Out – Creating a Simple Windows Application
Enabled property, Try it Out – Monitoring the File System
table of properties, Button Properties
tasks, The Button Control

ButtonClick event, Toolbar control, ToolBar Events

ButtonDropDown event, Toolbar control, ToolBar Events

Buttons property, Toolbar control, ToolBar Properties

buttons, Toolbar controls, see toolbarbutton control

ButtonSize property, Toolbar control, ToolBar Properties

ButtonTest example, Try it Out – Button Test
adding event handlers, Adding the Event Handlers
interface creation, Try it Out – Button Test

byte types, Simple Types
converting byte types to orientation types”, Try it Out – Using an Enumeration
converting orientation types to byte types”, Try it Out – Using an Enumeration
converting short types to byte types”, Explicit Conversions

Index
byKarli Watsonet al.

Wrox Press 2003

Index
C
C#

compiling C# code from command line, Try it Out - Compiling and Linking from the Command-Line
introduction, What Kind of Applications Can I Write with C#?
syntax, Basic C# Syntax
type-safety, What is C#?
unsafe code, What is C#?
writing a program, Windows Forms Applications
writing a program', Chapter 2: Writing a C# Program

C# introduction, Chapter 1: Introducing C#

Cab Project template, Deployment Project Types
cabinet files, Deployment Project Types

cabinet files, Packaging

CacheDuration property, WebMethodAttribute class, WebMethod Attribute

Call Stack Window
debugging in break mode', The Call Stack Window

Call Stack Window', The Call Stack Window

camelCase, Naming Conventions

CanPaste method, RichTextBox control, Building MDI Applications

CanRedo property, RichTextBox control, RichTextBox Properties

CanUndo property, RichTextBox control, RichTextBox Properties

card class
deck of cards example, The Card Class
writing class library, Card.cs

CardLib example, see deck of cards example

Cards collection class
deck of cards example, Upgrading CardLib Part 1

Cascading Style Sheets, see css

cascading windows, Building MDI Applications

case sensitivity, Basic C# Syntax
XML elements, XML Elements

case statement
checking for multiple conditions at once', The switch Statement

preventing flow from one statement to the next', The switch Statement

case statement', The switch Statement

casting, Try it Out - Arrays versus More Advanced Collections
explicit conversion, Indexers
explicit conversion', Explicit Conversions
operator overloading, Operator Overloading
unboxing, Boxing and Unboxing

catch blocks', Try it Out - Writing Text to the Output Window

CausesValidation property, TextBox control, TextBox Properties

char types, Simple Types
implicit conversion example', Implicit Conversions
type conversion', Type Conversion

CharacterCasing property, TextBox control, TextBox Properties

CheckAlign property, RadioButton control, RadioButton Properties

CheckBox control, The RadioButton and CheckBox Controls
adding event handlers, Adding the Event Handlers
events, CheckBox Events
example, Try it Out - RadioButton and CheckBox Example
properties, CheckBox Properties

CheckBoxes property, ListView control, ListView Properties

CheckChanged event, RadioButton control, RadioButton Events

checked keyword', Explicit Conversions

Checked property, MenuItem control, The MenuItem Control

Checked property, RadioButton control, RadioButton Properties

CheckedChanged event, CheckBox control, CheckBox Events

CheckedIndices property, CheckedListBox control, ListBox Properties

CheckedIndices property, ListView control, ListView Properties

CheckedItems property, CheckedListBox control, ListBox Properties
Count property, Adding the Event Handlers

CheckedItems property, ListView control, ListView Properties

CheckedListBox control, The ListBox and CheckedListBox Controls
adding event handlers, Adding the Event Handlers
events, ListBox Events
example, Try it Out - ListBox Example
methods, ListBox Methods
table of properties, ListBox Properties

CheckedStateChanged event, CheckBox control, CheckBox Events

CheckFileExists property, OpenFileDialog class, Validation

CheckFileExists property, SaveFileDialog class, Validation

CheckOnClick property, CheckedListBox control, ListBox Properties

CheckPathExists property, OpenFileDialog class, Validation

CheckPathExists property, SaveFileDialog class, Validation

CheckState property, CheckBox control, CheckBox Properties

child window, see mdi child

class definitions, Chapter 9: Defining Classes
abstract keyword, Class Definitions in C#
access modifier combinations, Class Definitions in C#
class keyword, Class Definitions in C#
classes declared as internal by default, Class Definitions in C#
constructors and destructors, Constructors and Destructors
example, Try it Out - Defining Classes
inheritance, Class Definitions in C#
interface definitions, Interface Definitions
interface members, Class Definitions in C#
internal keyword, Class Definitions in C#
Object class, System namespace, Class Definitions in C#
public keyword, Class Definitions in C#
sealed keyword, Class Definitions in C#

class keyword
class definitions, Class Definitions in C#

class libraries, Class Library Projects
creating with C# Standard Edition, Creating a Class Library with C# Standard Edition
example, Try it Out - Using a Class Library

class libraries, creating, Try it Out - Creating the Shapes Component
AssemblyInfo.cs file, AssemblyInfo.cs
compiling from command line, Try it Out - Compiling and Linking from the Command-Line
source code, Try it Out - Creating the Shapes Component

class library, writing
adding custom collection classes, Upgrading CardLib Part 1
adding events, Expanding and Using CardLib
creating new classes, A Card Game Client for CardLib
creating new methods, A Card Game Client for CardLib
custom exceptions, Upgrading CardLib Part 4
deck of cards example, A Card Game Client for CardLib
deep copying, Upgrading CardLib Part 3
operator overloading, Upgrading CardLib Part 2

class member definitions, Chapter 10: Defining Class Members
example, Try it Out - Using Fields, Methods, and Properties
fields, Defining Fields
internal keyword, Member Definitions
method definitions, Calling Overridden or Hidden Base Class Methods
modifying member properties using Properties window, Member Properties
nested type definitions, Nested Type Definitions
private keyword, Member Definitions
property definitions, Defining Properties
protected keyword, Member Definitions

public keyword, Member Definitions
static class members, Member Definitions
Visual Studio .NET member wizards, VS Member Wizards

class members
static and instance, Member Definitions

Class View window
member wizards, VS Member Wizards
object-oriented programming tools, The Class View Window
Solution Explorer window and', The Solution Explorer
Sort By Type, The Class View Window

Class View window', The Solution Explorer

classes
abstract classes, Inheritance
collection classes, Collections
compared to structs, Try it Out - Classes versus Structs
contained classes, Containment
implementing interfaces, Explicit Interface Member Implementation
reference types, Struct Types
sealed classes, Inheritance

classes, adding to project
object-oriented programming tools, Adding Classes

classic ASP, see asp

Clear method, CollectionsBase class, Defining Collections

Clear method, DictionaryBase class, Keyed Collections and IDictionary

Clear method, ListView control, ListView Methods

ClearSelected method, ListBox control, ListBox Methods

Click event, Button control, Button Events

Click event, Control class, Events

Click event, MenuItem control, MenuItem Events

Click event, RadioButton control, RadioButton Events

client for .NET Web Services, Client
HttpGetClientProtocol class, Alternative Client Protocols
HttpPostClientProtocol class, Alternative Client Protocols
SoapHttpClientProtocol class, Implementing a Windows Client

ClientRectangle property, Form class, Try it Out - Pen Example

Clip property, Graphics class, Clipping

clipping, Clipping
creating a view port, Clipping
drawing part of a figure, Clipping
testing against the clipping rectangle, Clipping

Clone method, ICloneable interface, Upgrading CardLib Part 3
deep copying, Deep Copying

Close method, Connection object, Try it Out - Reading Data with the Data Reader

Close method, DataReader object, Try it Out - Reading Data with the Data Reader

closing tags, XML, XML Elements

CLR, Cross-Language Programming

CLS, Cross-Language Programming

co-ordinate system
anti-aliasing, Coordinate System
drawing lines, Coordinate System
pixels, Coordinate System
points, Point
Rectangle structures, Rectangle
size, Size

code outlining', Try it Out - Creating a Simple Windows Application

code, stepping through
debugging in break mode', Stepping Through Code
exception handling', Try it Out - Writing Text to the Output Window
line by line', Stepping Through Code
Step Into', Stepping Through Code
Step Out', Stepping Through Code
Step Over', Stepping Through Code

code, stepping through', Stepping Through Code

code-behind files, Try it Out - Adding a Copyright Element

collection classes, Collections
arrays, Collections
Cards collection class, Upgrading CardLib Part 1
custom collection classes, Collections
functionality, Collections
keyed collection classes, Keyed Collections and IDictionary
using, Using Collections

collection classes, creating, Try it Out - Arrays versus More Advanced Collections
adding items, Try it Out - Arrays versus More Advanced Collections
adding multiple items, Try it Out - Arrays versus More Advanced Collections
foreach loops, Try it Out - Arrays versus More Advanced Collections
removing items, Try it Out - Arrays versus More Advanced Collections

collection classes, defining, Defining Collections

collections, collection classes
Cards collection class, Upgrading CardLib Part 1
compared to arrays, Try it Out - Arrays versus More Advanced Collections
creating, Try it Out - Arrays versus More Advanced Collections
creating collections, Try it Out - Arrays versus More Advanced Collections
object-oriented programming, Collections
UML representations, Collections

CollectionsBase class, System.Collections namespace, Defining Collections
Clear method, Defining Collections

Count property, Defining Collections
InnerList property, Defining Collections
List property, Defining Collections
RemoveAt method, Defining Collections

Color property, ColorDialog class, How to Use the Color Dialog

Color structure, System.Drawing namespace, Colors
FromArgb method, Try it Out - Double Buffering Example
GetBrightness method, Colors
GetHue method, Colors
GetSaturation method, Colors

ColorDialog class, System.Windows.Forms namespace
AllowFullOpen property, ColorDialog
Color property, How to Use the Color Dialog
CustomColors property, ColorDialog
FullOpen property, ColorDialog
properties table, Properties of the Color Dialog
ShowDialog method, How to Use the Color Dialog
SolidColorOnly property, ColorDialog

colors, Colors
predefined colors, Formatting the DataGrid
setting for DataGrid, Formatting the DataGrid

ColumnClick event, ListView control, ListView Events

ColumnHeader class, System.Windows.Forms namespace, ColumnHeader

ColumnName property, DataColumn class, Try it Out- Comma-Separated Values

Columns property, DataTable class, Try it Out- Comma-Separated Values

Columns property, ListView control, ListView Properties

columns, database tables, Database Tables and Relationships

ColumnWidth property, ListBox control, ListBox Properties

COM, A Brief History of Components
interoperation between .NET and COM, Interoperation with COM and Other Legacy Code

command line
compiling C# code, Try it Out - Compiling and Linking from the Command-Line
defining DEBUG symbol, System. Diagnostics. ConditionalAttribute

command line arguments, Try it Out - Command Line Arguments

Command mode, Command Window', Immediate Commands

Command object, ADO.NET, Direct Execution of SQL Commands
CommandText property, Try it Out - Retrieving Single Values with ExecuteScalar()
ExecuteNonQuery method, Try it Out - Data Modification with ExecuteNonQuery
ExecuteReader method, Try it Out - Reading Data with the Data Reader
ExecuteScalar method, Try it Out - Retrieving Single Values with ExecuteScalar()

Command Window, Command mode', Immediate Commands

Command Window, Immediate mode
debugging in break mode', Immediate Commands

Command Window, Immediate mode', Immediate Commands

CommandBuilder object, ADO.NET, CommandBuilder Object
updating database, Try it Out - Updating the Database

CommandText property, Command object, Try it Out - Retrieving Single Values with ExecuteScalar()

commas, separating data, Delimited Files
example, Try it Out- Comma-Separated Values

comments, Basic C# Syntax
auto-documentation, XML Auto-documentation in C#

Common Language Runtime, see clr

Common Language Specification, see cls

Common Object Request Broker Architecture, see corba

Common Type System, see cts

CommonDialog class, System.Windows.Forms namespace
DialogResult method, How to Use Dialogs
HelpRequest method, Common Dialogs
Reset method, How to Use Dialogs
RunDialog method, How to Use Dialogs
ShowDialog method, How to Use Dialogs
source for other dialogs, Common Dialogs

comparison operators
overloading, Upgrading CardLib Part 2

complex types
arrays', Arrays
enumerations', Enumerations
structs', Structs

complex types', Complex Variable Types

Component Object Model, see com

components, Chapter 21: .NET Assemblies
benefits of using, Benefits of Components
binary units, Components
definition, Components
development, A Brief History of Components
IComponent interface, Components

components, Windows Installer
definition, Windows Installer Terms

composite controls, see user controls

conditional operators, ternary operator'

conditional operators', The Ternary Operator

ConditionalAttribute class, System.Diagnostics namespace, System. Diagnostics. ConditionalAttribute
limitations, System. Diagnostics. ConditionalAttribute

configuration files, Assembly Searching

Confirm Installation dialog, Confirm Installation

Connection object, ADO.NET, sqlconnection object
Close method, Try it Out - Reading Data with the Data Reader
CreateCommand method, Try it Out - Reading Data with the Data Reader
Open method, Try it Out - Reading Data with the Data Reader

console application
AddingData example, Try it Out - Adding Rows
client console for deck of cards example, A Card Game Client for CardLib
DataReading example, Reading Data with the Data Reader
DataRelation example, Try it Out - Getting the Related Rows
DataSetRead example, Try it Out - Reading Data with the DataSet
Debug | Start Without Debugging menu item', Try it Out - Creating a Simple Console Application
DeletingData example, Try it Out - Deleting Rows
FindingData example, Try it Out - Finding Rows
ManyRelations example, Try It Out - Working with Multiple Relations
New Project', Try it Out - Creating a Simple Console Application
Press any key to continue prompt', Try it Out - Creating a Simple Console Application
ReadingAccessData example, Try it Out - Reading from an Access Database
ReadingXML example, Try it Out - Reading XML into a DataSet
ShowSQL example, Try it Out - Show SQL Example
structure, Basic C# Console Application Structure
UpdatingData example, Updating the Database
Visual C# Projects folder', Try it Out - Creating a Simple Console Application
Visual Studio .NET', Try it Out - Creating a Simple Console Application
writing code', Try it Out - Creating a Simple Console Application

console application', Console Applications

Console class, System namespace
ReadLine method, A Card Game Client for CardLib
Write method, Try it Out - Handling Events
Write method', Try it Out - Using for Loops
WriteLine method, A Card Game Client for CardLib
WriteLine method', Debugging in Non-Break (Normal) Mode

const keyword
arrays', Declaring Arrays
declaring constant variables', The switch Statement
field definitions, Defining Fields
global variables in console applications, Try it Out - Defining and Using a Basic Function
prohibits the value of the variable changing, Try it Out - Defining and Using a Basic Function

constant variables
declaring using const keyword', The switch Statement
switch statement example', Try it Out - Using the switch Statement
value contained never changes', The switch Statement

constructor execution sequence, Constructor Execution Sequence
instantiating a class instance, Constructor Execution Sequence

constructors
adding to class definitions, Constructors and Destructors

custom attributes, Creating Constructors and Properties
default constructor, Constructors and Destructors
non-default constructor, Constructors and Destructors
objects, Constructors

consumer objects, Consumer Objects
DataColumn object, DataTable Object
DataRelation object, DataRelation Object
DataRow object, DataTable Object
DataSet object, DataSet Object
DataTable object, DataTable Object

contained classes
object-oriented programming, Containment
UML representation, Containment

Context property, WebService class, Creating a Web Service

ContextMenu control, The ContextMenu Control
example, The ContextMenu Control
using with Toolbar control, Try it Out - Toolbar Example

continue command
interrupting loops', Interrupting Loops

Control class, System.Windows.Forms namespace
Anchor property, Anchor and Dock Properties
Dock property, Anchor and Dock Properties
most controls in .NET derive from, Controls
properties inherited by other controls, Properties
table of events, Events
table of properties, Properties

control properties, Properties

controls
creating controls, Creating Controls
functionality, Creating Controls
Windows Form Controls, Chapter 14: Advanced Windows Forms Features

controls, ASP.NET, Try it Out - Rendering the Remainder of the Weblog Entry
Button control, Try it Out - Authenticating the User
DataList control, Try it Out - Displaying Lists of Weblog Entries
Hyperlink control, Try it Out - Editing Weblog Entries
Label control, Try it Out - Adding a Copyright Element
RequiredFieldValidator control, Try it Out - Creating Weblog Entries
TextBox control, Try it Out - Authenticating the User

ControlToValidate property, RequiredFieldValidator control, Try it Out - Creating Weblog Entries

conversion
as operator, The as Operator
boxing and unboxing, Boxing and Unboxing
explicit conversion, Mathematical Operators
explicit conversion', Explicit Conversions
implicit conversion, Mathematical Operators

implicit conversion', Implicit Conversions
is operator, The is Operator

conversion operators
explicit conversion, Conversion Operators
implicit conversion, Conversion Operators
overloading, Conversion Operators

Convert class, System namespace
explicit conversion', Explicit Conversions Using the Convert Commands
ToChar method, Reading Data
ToDouble method, Try it Out - Manipulating Variables with Mathematical Operators
ToDouble method', Explicit Conversions Using the Convert Commands
ToInt32 method', Explicit Conversions Using the Convert Commands
ToString method', Try it Out - Using an Enumeration

convert commands
explicit conversion', Explicit Conversions Using the Convert Commands
table', Explicit Conversions Using the Convert Commands

cookies, User Sessions and Cookies
user sessions, User Sessions and Cookies

Copy method, File class, The File and Directory Classes

CopyTo method, Array class, Deck.cs

CopyTo method, Array class', Try it Out - Writing Text to the Output Window

CORBA, CORBA

Count property, CollectionsBase class, Defining Collections

Count property, DataRowCollection class, Try it Out - Finding Rows

Count property, DictionaryBase class, Keyed Collections and IDictionary

Count property, ICollection interface, Try it Out - Arrays versus More Advanced Collections

COUNT() function, SQL, Try it Out - Retrieving Single Values with ExecuteScalar()

Create method, File class, The File and Directory Classes

CreateCommand method, Connection object, Try it Out - Reading Data with the Data Reader

CreateDirectory method, Directory class, The File and Directory Classes

CreateGraphics method, Form class, The Graphics Class

CreatePrompt property, SaveFileDialog class, Overwriting Existing Files

CreationTime property, FileInfo class, The FileInfo Class

cross-language programming
assemblies, Cross-Language Programming

CSS, Try it Out - Improving the Look
<body> tags, displaying;body tags displaying, Try it Out - Improving the Look
editing with Visual Studio .NET, Try it Out - Improving the Look
improving Weblog appearance, Try it Out - Improving the Look
introduction, Try it Out - Improving the Look

CTS, Cross-Language Programming

curly brackets, Basic C# Syntax

Custom Actions editor, Setup Editors

custom attributes, creating, Custom Attributes
attribute scope, Attribute Scope
AttributeUsageAttribute class, System.AttributeUsageAttribute
attributing the class for usage, Attributing the Class for Usage
BugFixAttribute custom attribute, BugFixAttribute
constructors and properties, Creating Constructors and Properties
custom attribute class, Creating the Custom Attribute Class
DatabaseColumnAttribute custom attribute, DatabaseColumn Attribute
DatabaseTableAttribute custom attribute, DatabaseTable Attribute
generating database rows using attributes, Creating Database Rows
generating database tables using attributes, Generating Database Tables using Attributes
must derive from Attribute class, Test Case Attribute
TestCaseAttribute custom attribute, Test Case Attribute
testing custom attributes, Attributing the Class for Usage

custom collection classes, creating, Defining Collections
access via indexers, Indexers
Cards class, Upgrading CardLib Part 1
casting, Indexers
example, Upgrading CardLib Part 1
foreach loops, Defining Collections
strong typing, Indexers

custom controls, Creating Controls

custom dialogs, Additional Dialogs
example, Try it Out - Adding Other Dialogs

custom event handlers, Adding a Custom Event Handler
adding event handler to user controls, Adding a Custom Event Handler

custom exceptions, Custom Exceptions
example, Upgrading CardLib Part 4

custom file types, File Types Editor
adding actions, Try it Out - Set the File Extension
configuring file extensions, Try it Out - Set the File Extension

CustomColors property, ColorDialog class, Properties of the Color Dialog

Index
byKarli Watsonet al.

Wrox Press 2003

Index
D
data

encoding and decoding, Try it Out - Writing Data to Random Access Files
reading, Reading Data
separating with commas, Delimited Files
updating, Updating the Database

data access, Chapter 18: Getting At Your Data
accessing data from applications, Database Tables and Relationships
ADO, A (Very) Brief History of Data Access
ADO.NET, Chapter 19: Data Access with ADO.NET
ODBC, A (Very) Brief History of Data Access
OLE DB, A (Very) Brief History of Data Access
System.Data namespace, Chapter 18: Getting At Your Data
viewing data in Visual Studio .NET, Viewing Data in VS
XML, XML

Data Adapter Configuration Wizard, The Data Adapter Configuration Wizard
SQL statements, The Data Adapter Configuration Wizard

data binding
Hyperlink control, Try it Out - Editing Weblog Entries
Label control, Try it Out - Rendering the Remainder of the Weblog Entry

data members
defining structs', Defining Structs

data providers, Connecting to the Database
components, .NET Data Providers
connecting to databases, Connecting to the Database
ODBC .NET data provider, ODBC .NET Data Provider
OLE DB .NET data provider, OLE DB .NET Data Provider
SQL Server data provider, SQL Server .NET Data Provider

data, viewing in Visual Studio .NET
database tables, Database Tables and Relationships
Northwind database example, Viewing Data in VS

DataAdapter object, ADO.NET, sqldataadapter object
generating database tables using attributes, Generating Database Tables using Attributes

DataAdapter object, ADO.NET namespace
Fill method, Reading Data with the DataSet

database schema, Generating the SQL

generating using attributes, Generating the SQL

database tables, Database Tables and Relationships
accessing from an application, Adding a DataGrid
adding records, Generating the SQL
adding rows, Adding Rows to the Database
attributes, using to generate, Generating the SQL
columns and rows, Database Tables and Relationships
creating rows using attributes, Creating Database Rows
deleting rows, Deleting Rows
finding rows, Finding Rows
foreign keys, Database Tables and Relationships
generating database schema using attributes, Generating the SQL
navigating through the DataSet object, Navigating through the DataSet
primary keys, Database Tables and Relationships
relationships diagram, Database Tables and Relationships
updating, Updating the Database

DatabaseColumnAttribute custom attribute, DatabaseColumn Attribute
generating database tables using attributes, DatabaseColumn Attribute

databases, connecting, Connecting to the Database
connecting to application, The Data Adapter Configuration Wizard
data providers, Connecting to the Database
user account, Connecting to the Database

DatabaseTableAttribute custom attribute, DatabaseTable Attribute
generating database tables using attributes, DatabaseTable Attribute

DataBind method, DataList control, Try it Out - Displaying Lists of Weblog Entries

DataColumn class, System.Data namespace, DataTable Object
ColumnName property, Try it Out- Comma-Separated Values

DataColumnCollection class, System.Data namespace
Add method, Try it Out- Comma-Separated Values

DataGrids
DataSource property, Adding a DataGrid
formatting, Formatting the DataGrid
viewing database tables, Adding a DataGrid

DataList control, Try it Out - Displaying Lists of Weblog Entries
DataBind method, Try it Out - Displaying Lists of Weblog Entries
displaying lists of entries, Try it Out - Displaying Lists of Weblog Entries
limitations, Important Note about the DataList and Public Members

DataReader object, ADO.NET, DataReader Object
Close method, Try it Out - Reading Data with the Data Reader
Read method, Try it Out - Reading Data with the Data Reader

DataReading example, Reading Data with the Data Reader

DataRelation example, Try it Out - Getting the Related Rows

DataRelation object, System.Data namespace, Creating a DataRelation Object
creating, Creating a DataRelation Object

multiple relations, Try It Out - Working with Multiple Relations
navigating with relationships, Navigating with Relationships
Nested property, Try it Out - Writing XML from a DataSet

DataRelationCollection class, System.Data namespace
Add method, Creating a DataRelation Object

DataRow object, System.Data namespace, DataTable Object
accessing database tables, Generating the SQL
Delete method, Try it Out - Deleting Rows
deriving subclasses from, Creating Database Rows
generating database tables using attributes, DatabaseColumn Attribute
GetChildRows method, Try It Out - Working with Multiple Relations
GetParentRow method, Try It Out - Working with Multiple Relations
RowState property, Try it Out - Deleting Rows

DataRowCollection class, System.Data namespace
Add method, Try it Out- Comma-Separated Values
Count property, Try it Out - Finding Rows
Find method, Try it Out - Finding Rows

DataSet class, System.Data namespace, Reading Data with the DataSet
AcceptChanges method, Try it Out - Deleting Rows
adding rows, Adding Rows to the Database
creating new DataSet object, Generating the SQL Statement
generating database tables using attributes, Generating Database Tables using Attributes
navigating through DataSet, Navigating through the DataSet
ReadXml method, Try it Out - Reading XML into a DataSet
Relations property, Creating a DataRelation Object
Tables property, Try it Out- Comma-Separated Values
WriteXml method, Try it Out - Writing XML from a DataSet
XSD schema, Generating the SQL Statement

DataSetRead example, Try it Out - Reading Data with the DataSet

DataSource property, DataGrids, Adding a DataGrid

DataTable class, System.Data namespace, DataTable Object
accessing database tables, Generating the SQL
Columns property, Try it Out- Comma-Separated Values
generating database tables using attributes, Generating Database Tables using Attributes
NewRow method, Try it Out- Comma-Separated Values
PrimaryKey property, Try it Out - Finding Rows
Rows property, Try it Out- Comma-Separated Values
TableName property, Try it Out - Reading XML into a DataSet

DataTableCollection class, System.Data namespace
Add method, Try it Out- Comma-Separated Values

date, displaying in Weblog entries, Displaying the Time
localization, Try it Out - Displaying the Time

DateTime structure, System namespace
Now property, Try it Out - Adding a Copyright Element
ToLongDateString method, Try it Out - Displaying the Time
ToShortDateString method, Try it Out - Output Stream

ToString method, Try it Out - Displaying the Time

DCE-RPC protocol, Remote Procedure Call (RPC)

DCOM, DCOM

Debug class, System.Diagnostics namespace
Assert method', Other Ways of Entering Break Mode
Write method', Try it Out - Writing Text to the Output Window
WriteIf method', Try it Out - Writing Text to the Output Window
WriteLine method', Try it Out - Writing Text to the Output Window
WriteLineIf method', Try it Out - Writing Text to the Output Window

debug mode
debugging in break mode', Debugging in Break Mode
debugging in non-break mode', Try it Out - Writing Text to the Output Window

DEBUG symbol
defining using command line, System. Diagnostics. ConditionalAttribute

DebuggableAttribute class, System.Diagnostics class, Reflection

debugging
debugging in break mode, The Call Stack Window
debugging in break mode', Debugging in Break Mode
debugging in non-break mode, Outputting Debugging Information
debugging in non-break mode', Debugging in Non-Break (Normal) Mode
debugging in Visual Studio .NET', Debugging in Visual Studio
introduction', Chapter 7: Debugging and Error Handling
summary', Summary
symbolic information', Debugging in Visual Studio
user controls, Debugging User Controls
using attributes, System. Diagnostics. ConditionalAttribute

debugging user controls, Debugging User Controls

decimal types, Simple Types

deck class
deck of cards example, The Deck Class
writing class library, Deck.cs

deck of cards example, A Card Game Client for CardLib
add client console application, A Card Game Client for CardLib
adding custom collection classes, Upgrading CardLib Part 1
adding events, Expanding and Using CardLib
breakpoints, A Card Game Client for CardLib
card class, Card.cs
Cards collection class, Upgrading CardLib Part 1
creating new methods, A Card Game Client for CardLib
custom exceptions, Upgrading CardLib Part 4
deck class, Deck.cs
deep copying, Upgrading CardLib Part 3
Game class, A Card Game Client for CardLib
manipulating objects, A Card Game Client for CardLib
operator overloading, Upgrading CardLib Part 2

player class, A Card Game Client for CardLib
writing class library, A Card Game Client for CardLib

Decoder class, System.Text namespace
GetChars method, Try it Out - Reading Data from Random Access Files

DEE, A Brief History of Components

deep copying, Deep Copying
Clone method, ICloneable interface, Deep Copying
compared to shallow copying, Deep Copying
example, Upgrading CardLib Part 3

default constructor, Constructors and Destructors
objects, Constructors
private default constructor, Constructors and Destructors

default dialogs, Default Dialogs
configuring, Try it Out - Configuring the Default Dialogs

default statement', The switch Statement

DefaultExt property, SaveFileDialog class, File Extensions

DefaultItem property, MenuItem control, The MenuItem Control

defining classes, see class definitions

delayed signing, System.Reflection.AssemblyDelaySignAttribute
assemblies, Delay Signing the Assembly

delegate keyword
declaring delegates, Delegates
specifies that the definition is for a delegate rather than a function, Try it Out - Using a Delegate to Call a
Function

delegates, What is an Event?
assigning function reference to delegate variable, Try it Out - Using a Delegate to Call a Function
declaring, Delegates
declaring delegates, Delegates
example, Try it Out - Defining Events
storing references to functions, Delegates
using a delegate to call a function, Try it Out - Using a Delegate to Call a Function

Delete method, DataRow object, Try it Out - Deleting Rows

Delete method, Directory class, The File and Directory Classes

Delete method, File class, The File and Directory Classes

DeletingData example, Try it Out - Deleting Rows

delimited files, Delimited Files
example, Try it Out- Comma-Separated Values

deployment
definition, What is Deployment?
Windows applications, Chapter 17: Deploying Windows Applications

deployment project types, Deployment Project Types
Cab Project template, Deployment Project Types

Merge Module Project template, Deployment Project Types
Setup Project template, Deployment Project Types
Setup Wizard, Deployment Project Types
Web Setup Project template, Deployment Project Types

derived classes, Inheritance

Description property, WebMethodAttribute class, WebMethod Attribute

Description property, WebServiceAttribute class, WebService Attribute

deserialization, System.SerializableAttribute

Deserialize method, BinaryFormatter class, System.SerializableAttribute

Deserialize method, XmlSerializer class, Try it Out - Loading Weblog Files

Designer, Try it Out - Creating the Weblog Page
FlowLayout mode, Try it Out - Creating the Weblog Page
GridLayout mode, Try it Out - Creating the Weblog Page

destructors
declarations, Constructors and Destructors
objects, Destructors

DetectUrls property, RichTextBox control, RichTextBox Properties

Developing phase, What is Deployment?

dialog based applications, see windows dialog applications

dialog classes, Chapter 15: Using Common Dialogs
creating, How to Use Dialogs
setting properties, How to Use Dialogs

dialog titles
OpenFileDialog class, Dialog Title

DialogResult enumeration, System.Windows.Forms namespace, Results

DialogResult method, CommonDialog class, How to Use Dialogs

dialogs
adding dialogs, Try it Out - Adding a SaveFileDialog
colors, Common Dialogs
consistency, importance of, Common Dialogs
custom dialogs, Try it Out - Adding Other Dialogs
default dialogs, Try it Out - Configuring the Default Dialogs
fonts, Common Dialogs
introduction, Chapter 15: Using Common Dialogs
opening files, OpenFileDialog
page setup, Common Dialogs
previewing print-out, Common Dialogs
printing, Common Dialogs
saving files, Common Dialogs
showing dialogs, Try it Out - Adding and Using an Open File Dialog
summary, Summary
titles, Title
using common dialogs, How to Use Dialogs

using in Windows Forms applications, How to Use Dialogs

DictionaryBase class, System.Collections namespace
Clear method, Keyed Collections and IDictionary
Count property, Keyed Collections and IDictionary

directories, specifying
OpenFileDialog class, Specifying Directories

Directory class, System.IO namespace
methods table, The File and Directory Classes

DirectoryInfo class, System.IO namespace, Try it Out - Displaying Lists of Weblog Entries
GetFiles method, Try it Out - Sorting Entries

DirectoryName property, FileInfo class, The FileInfo Class

DisabledLinkColor property, LinkLabel control, The Label and LinkLabel Controls

DISCO, Chapter 24: Web Services
vsdisco file, Web Services Discovery
Web Services discovery, Web Services Architecture

Discovery of Web Services, see disco

Disk Space dialog, Disk Cost

disks, installing applications on, Disk Cost

disposable objects
IDisposable interface, Disposable Objects

Dispose method, Graphics class, Disposing of Objects
using statement, Disposing of Objects

Dispose method, IDisposable interface, Disposable Objects

disposing of Graphics objects, Disposing of Objects

Distributed COM, see dcom

Distributed Computing Environment - Remote Procedure Calls, see dce-rpc protocol

Divider property, Toolbar control, ToolBar Properties

DLL, Chapter 21: .NET Assemblies
version difficulties, A Brief History of Components

do loops
example', Try it Out - Using do Loops
if statement, adding', Try it Out - Using do Loops
incrementing counter variable with each loop cycle', Try it Out - Using do Loops
structure', do Loops

do loops', do Loops

Dock property, Control class, Anchor and Dock Properties

Document Type Definitions, see dtds

double buffering, Drawing Using Images

double types, Simple Types

DoubleClick event, Control class, Events

DragDrop event, Control class, Events

DragEnter event, Control class, Events

DragLeave event, Control class, Events

DragOver event, Control class, Events

DrawImage method, Graphics class, Try it Out - Double Buffering Example

drawing, see gdi+

DrawItem event, MenuItem control, MenuItem Events

DrawItem event, StatusBar control, StatusBar Events

DrawLine method, Graphics class, Try it Out - Pen Example

DrawPath method, GraphicsPath class, Try it Out - Creating a Graphics Path

DrawString method, Graphics class, Try it Out - Drawing Text with an Image

DropDownArrows property, Toolbar control, ToolBar Properties

DropDownMenu property, ToolbarButton control, The ToolBarButton Properties

DTDs, Validating XML Documents
validating XML documents, Validating XML Documents

Dynamic Data Exchange, see dee

dynamic elements, see active elements

Dynamic Link Library, see dll

Index
byKarli Watsonet al.

Wrox Press 2003

Index
E
Elapsed event, Timer class, Try it Out – Using a Multi-Purpose Event Handler

ElapsedEventArgs class, System.Timers namespace, Try it Out – Handling Events

ElapsedEventHandler delegate, System.Timers namespace, Try it Out – Handling Events

elements
arrays”, Arrays
XML elements, XML Elements

else if statements”, Checking More Conditions Using if Statements

else statement
using with if statement, Try it Out – Using the if Statement
using with if statement”, The if Statement

Enabled property, Button control, Try it Out – Monitoring the File System

Enabled property, Control class, Properties

Enabled property, MenuItem control, The MenuItem Control

Enabled property, ToolbarButton control, The ToolBarButton Properties

EnableRaisingEvents property, FileSystemWatcher class, Try it Out – Monitoring the File System

EnableSession property, WebMethodAttribute class, WebMethod Attribute

Encoder class, System.Text namespace
GetBytes method, Try it Out – Writing Data to Random Access Files

encoding attribute, XML declaration, Try it Out – Creating an XML Document in VS

EndInvoke method, SoapHttpClientProtocol class, Try it Out – Creating a Client Windows Application

EndUpdate method, ListView control, Adding the Event Handlers

EnsureVisible method, ListView control, ListView Methods

Enter event, TextBox control, TextBox Events

entering break mode
assertions”, Other Ways of Entering Break Mode
breakpoints”, Entering Break Mode
unhandled exceptions”, Other Ways of Entering Break Mode

entering break mode”, Entering Break Mode

entry XML files, creating, Try it Out – Finding Where the Web Site is Stored

Enum class, System namespace
Parse method”, Try it Out – Using an Enumeration

enum keyword”, Defining Enumerations

enumerations
conversion into other types”, Try it Out – Using an Enumeration
defining enumerations”, Defining Enumerations
difficulties”, Defining Enumerations
enum keyword”, Defining Enumerations
example”, Defining Enumerations
multiple enumeration values”, Defining Enumerations
orientation types”, Enumerations
underlying types”, Defining Enumerations

enumerations”, Enumerations

Environment class, System namespace
GetFolderPath method, Specifying Directories

Environment.SpecialFolder enumeration, System namespace, Specifying Directories

Envisioning phase, What is Deployment?

Equals method, Object class, Operator Overloading

error handling
exceptions”, Exceptions
menu controls, The ContextMenu Control
summary”, Summary

error handling”, Error Handling

ErrorMessage property, RequiredFieldValidator control, Try it Out – Creating Weblog Entries

errors
fatal errors”, Chapter 7: Debugging and Error Handling
semantic errors”, Chapter 7: Debugging and Error Handling
syntax errors”, Chapter 7: Debugging and Error Handling

escape sequences, Try it Out – Using Simple Type Variables
string literals, String Literals

event attribute scope, Attribute Scope

event driven applications, Events

event handler, What is an Event?
adding event handlers to Button, Adding the Event Handlers
adding event handlers to CheckBox, Adding the Event Handlers
adding event handlers to CheckedListBox, Adding the Event Handlers
adding event handlers to ListBox, Adding the Event Handlers
adding event handlers to ListView, Adding the Event Handlers
adding event handlers to MDI application, Building MDI Applications
adding event handlers to Menu, The ContextMenu Control
adding event handlers to RadioButton, Adding the Event Handlers
adding event handlers to RichTextBox, Adding the Event Handlers
adding event handlers to StatusBar, Adding the Event Handlers
adding event handlers to TabControl, Adding the Event Handler
adding event handlers to TextBox, Adding the Event Handlers
adding event handlers to Toolbar, The ToolBarButton Properties

adding event handlers to user controls, Adding More Event Handlers
custom event handlers, Adding a Custom Event Handler
customizing responses to objects, Try it Out – Using a Multi-Purpose Event Handler
example, Try it Out – Defining Events
FileSystemWatcher class, Try it Out – Monitoring the File System
multi-purpose event handlers, Try it Out – Using a Multi-Purpose Event Handler
object-oriented programming in Windows applications, Try it Out – Objects in Action
parameters, Multi-Purpose Event Handlers
return values, Return Values and Event Handlers

event keyword, Try it Out – Defining Events

EventArgs class, System namespace, Try it Out – Using a Multi-Purpose Event Handler

events
adding to class libraries, Expanding and Using CardLib
deck of cards example, Expanding and Using CardLib
defined, What is an Event?
defining, Defining Events
delegates, What is an Event?
introduction, Chapter 12: Events
object-oriented programming, Events
processing sequence diagram, What is an Event?
raising events, Try it Out – Defining Events
subscribing to events, Try it Out – Handling Events
summary, Summary
using, Defining Events

Exception class, System namespace, Custom Exceptions

Exception class, System namespace”, Try it Out – Writing Text to the Output Window

exceptions
code, stepping through”, Try it Out – Writing Text to the Output Window
custom exceptions, Upgrading CardLib Part 4
difficulties in handling”, Notes on Exception Handling
examining and editing”, Listing and Configuring Exceptions
examples”, try...catch...finally
Structured Exception Handling”, try...catch...finally
unhandled exceptions”, Exceptions

exceptions”, Exceptions

ExecuteNonQuery method, Command object, Try it Out – Data Modification with ExecuteNonQuery

ExecuteReader method, Command object, Try it Out – Reading Data with the Data Reader

ExecuteScalar method, Command object, Try it Out – Retrieving Single Values with ExecuteScalar()

Exists method, File class, The ContextMenu Control

Exists property, FileInfo class, The FileInfo Class

explicit conversion, Boxing and Unboxing
as operator, The as Operator
casting variables, Indexers
casting variables”, Try it Out – Type Conversions in Practice

convert commands”, Explicit Conversions Using the Convert Commands
difficulties”, Explicit Conversions
example”, Explicit Conversions
introduction”, Explicit Conversions
operator precedence”, Try it Out – Type Conversions in Practice
overflows”, Explicit Conversions Using the Convert Commands
required for unboxing, Boxing and Unboxing

explicit keyword, Conversion Operators

expressions, variables
introduction, Chapter 3: Variables and Expressions
looping, Mathematical Operators
operands, Expressions
operator precedence, Operator Precedence
operators, Assignment Operators
summary, Summary

Extensible Markup Language, see xml

extern keyword
method definitions, Defining Methods

Index
byKarli Watsonet al.

Wrox Press 2003

Index
F
fatal errors”, Chapter 7: Debugging and Error Handling

features
definition, Windows Installer Terms
selecting for installation, Advantages of the Windows Installer

field attribute scope, Attribute Scope

field definitions, Defining Fields
const keyword, Defining Fields
readonly keyword, Defining Fields
static keyword, Defining Fields

fields, Properties and Fields
UML representation, Properties and Fields

File class, System.IO namespace
Exists method, The ContextMenu Control
methods table, The File and Directory Classes
OpenRead method, The FileStream Object
OpenText method, Try it Out – Creating the Simple Text Editor Windows Application
OpenWrite method, The FileStream Object

file extensions, File Extensions
configuring, Try it Out – Set the File Extension

file filters, setting
OpenFileDialog class, Setting the File Filter

File Launch Condition, Launch Condition Editor

file name validation, Validation

File System editor, File System Editor
folders, File Properties

file system, monitoring, Monitoring the File Structure
example, Try it Out – Monitoring the File System

File Types editor, Setup Editors
adding actions, Create Actions
file extension properties, File Types Editor

FileAccess enumeration, System.IO namespace, The FileStream Object

FileDialog class, System.Windows.Forms namespace, File Dialogs

FileInfo class, System.IO namespace, Try it Out – Sorting Entries

Name property, Try it Out – Setting the Title of the Form
OpenRead method, The FileStream Object
OpenWrite method, The FileStream Object
properties, The FileInfo Class

FileMode enumeration, System.IO namespace, The FileStream Object
table of values, The FileStream Object

FileName property, OpenFileDialog class, Try it Out – Adding and Using an Open File Dialog

FileNames property, OpenFileDialog class, Results

files
converting, Try it Out – Reading Data from Random Access Files
delimited files, Delimited Files
file extensions, File Extensions
file name validation, Validation
introduction, Chapter 20: Working With Files
opening, OpenFileDialog
output stream example, The StreamWriter Object
overwriting, Overwriting Existing Files
pathnames, Pathnames and Relative Paths
pointers, File Position
reading, Try it Out – Creating the Simple Text Editor Windows Application
reading data, Try it Out – Stream Input
reading data example, Reading Data
repairing files, Self-Repair
setting file properties for deployment, File Properties
sorting files, Sorting Entries
streams, Streams
structure, Monitoring the File Structure
summary, Summary
System.IO namespace, The Classes for Input and Output
uninstalling, Uninstall
writing data example, Writing Data

FileStream class, System.IO namespace, The FileStream Object
FileMode enumeration, The FileStream Object
pointers, File Position
Read method, Reading Data
Seek method, File Position
Write method, Try it Out – Writing Data to Random Access Files

FileSystemWatcher class, System.IO namespace, Monitoring the File Structure
EnableRaisingEvents property, Try it Out – Monitoring the File System
event handler, Try it Out – Monitoring the File System
Filter property, Try it Out – Monitoring the File System
NotifyFilter property, Try it Out – Monitoring the File System
Path property, Try it Out – Monitoring the File System
properties, Monitoring the File Structure

Fill method, DataAdapter object, Reading Data with the DataSet

Fill method, SqlDataAdapter object, Try it Out – Finding Rows

FillEllipse method, Graphics class, Try it Out – Drawing an Ellipse with an Image

FillPath method, GraphicsPath class, GraphicsPaths

FillRectangle method, Graphics class, Try it Out – Brush Example

Filter property, FileSystemWatcher class, Try it Out – Monitoring the File System

Filter property, OpenFileDialog class, Setting the File Filter

Filter property, OpenFileDialog control, Try it Out – Monitoring the File System

Filter property, SaveFileDialog class, File Extensions

FilterIndex property, OpenFileDialog class, Setting the File Filter

Finalize method, Object class, Constructors and Destructors

finally blocks”, Try it Out – Writing Text to the Output Window

Find method, DataRowCollection class, Try it Out – Finding Rows

FindingData example, Try it Out – Finding Rows

FindString method, ListBox control, ListBox Methods

FindStringExact method, ListBox control, ListBox Methods

Finished dialog, Default Dialogs

firewalls
SOAP, SOAP and Firewalls

FixedPitchOnly property, FontDialog class, Properties of the FontDialog

FlatStyle property, Button control, Button Properties

FlatStyle property, Label control, The Label and LinkLabel Controls

FlatStyle property, LinkLabel control, The Label and LinkLabel Controls

float types, Simple Types
converting short types to float types”, Try it Out – Type Conversions in Practice

floating point values, Simple Types
list of types, Simple Types

flow control
boolean logic”, Chapter 4: Flow Control
branching”, Branching
looping”, Looping

flow control”, Chapter 4: Flow Control

FlowLayout mode, Try it Out – Creating the Weblog Page

FocusedItem property, ListView control, ListView Properties

folders
adding items for deployment, Adding Items to Special Folders
File System editor, File System Editor
setting file properties for deployment, File Properties

Font class, System.Drawing namespace, Drawing Text using the Font Class
Height property, Try it Out – Font Example
Size property, Drawing Text using the Font Class

Style property, Drawing Text using the Font Class
Unit property, Drawing Text using the Font Class

font families, Drawing Text using the Font Class

Font property, FontDialog class, How to Use the FontDialog

Font property, Form class, Try it Out – Font Example

font style
ToolbarButton control, The ToolBarButton Properties

FontDialog class, System.Windows.Forms namespace, Common Dialogs
Apply event, Enabling the Apply Button
enabling the Apply button, Enabling the Apply Button
Font property, How to Use the FontDialog
properties table, Properties of the FontDialog
ShowDialog method, How to Use the FontDialog
System.Windows.Forms namespace, FontDialog

fonts
calculating the width of strings, Drawing Text using the Font Class
default fonts, Try it Out – Font Example
example, Try it Out – Font Example
font size, Drawing Text using the Font Class
font style, Try it Out – Font Example

for loops
arrays”, Try it Out – Using an Array
calculating Mandelbrot sets”, Try it Out – Using for Loops
compared to foreach loops”, foreach Loops
compared to while loops”, for Loops
defining”, for Loops
example”, Try it Out – Using for Loops
using while loop to perform iterating”, Try it Out – Using for Loops
writing numbers 1-10”, for Loops

for loops”, for Loops

foreach loops
arrays, Try it Out – Arrays versus More Advanced Collections
arrays”, foreach Loops
compared to for loops”, foreach Loops
custom collection classes, Defining Collections
keyed collection classes, Keyed Collections and IDictionary
string types”, String Manipulation

ForeColor property, Control class, Properties

foreign keys, Database Tables and Relationships

Form class, System.Windows.Forms namespace, Overview of Graphical Drawing
ActiveMdiChild property, Building MDI Applications
ClientRectangle property, Try it Out – Pen Example
CreateGraphics method, The Graphics Class
Font property, Try it Out – Font Example
IsMdiContainer property, Building MDI Applications

LayoutMdi method, Building MDI Applications
MinimumSize property, Try it Out – TextBoxTest
OnPaint method, ry it Out – Creating a Pen from an Image
SetStyle method, Try it Out – Brush Example
Show method, Building MDI Applications
Size property, Try it Out – TextBoxTest
Text property, Try it Out – Setting the Title of the Form

forms, setting titles, Try it Out – Setting the Title of the Form

FromArgb method, Color structure, Try it Out – Double Buffering Example

FromImage method, Geaphics class, Try it Out – Double Buffering Example

FrontPage Extensions, Storing Weblog Entries

FullName property, FileInfo class, The FileInfo Class

FullOpen property, ColorDialog class, Properties of the Color Dialog

FullRowSelect property, ListView control, ListView Properties

functional programming, What is Object-Oriented Programming?
compared to object-oriented programming, What is Object-Oriented Programming?

functions, Chapter 6: Functions
blocks of executable code, Chapter 6: Functions
create multi-purpose code, Chapter 6: Functions
defining and using a basic function, Try it Out – Defining and Using a Basic Function
defining function signature, Chapter 6: Functions
delegates, Try it Out – Using a Delegate to Call a Function
exchanging data with a function, Try it Out – Exchanging Data with a Function Part 2
global data compared to parameters and return values, Parameters and Return Values versus Global Data
Main() function, The Main() Function
overloading functions, Overloading Functions
parameter arrays, Parameter Arrays
parameter matching, Parameter Matching
parameters, Out Parameters
return values, Return Values
reusable code, Chapter 6: Functions
struct functions, Struct Functions
variable scope, Variable Scope

Index
byKarli Watsonet al.

Wrox Press 2003

Index
G
GAC, Try it Out - Signing the Shapes Assembly

copying strongly named assembly into GAC, Try it Out - Signing the Shapes Assembly
registering assemblies in GAC, Registering in the GAC
shared assemblies, Global Assembly Cache

gacutil, Try it Out - Signing the Shapes Assembly
copying strongly named assembly into GAC, Try it Out - Signing the Shapes Assembly
registering assemblies, Registering in the GAC

Game class
deck of cards example, A Card Game Client for CardLib

garbage collection, Garbage Collection

GDI+, Chapter 16: Introduction to GDI+
clipping, Clipping
co-ordinate system, Coordinate System
colors, Colors
graphical drawing overview, Overview of Graphical Drawing
Graphics class, The Graphics Class
graphics paths, constructing, Try it Out - Creating a Graphics Path
images, Drawing Using Images
images, advanced, System.Drawing.Imaging
images, creating pen using images, ry it Out - Creating a Pen from an Image
introduction, Chapter 16: Introduction to GDI+
regions, constructing, Try it Out - Creating a Region
shapes, drawing using the Brush class, Drawing Shapes using the Brush Class
summary, Summary
text, drawing using the Font class, Drawing Text using the Font Class

get keywords
property definitions, Defining Properties

GetBrightness method
Color structure, Colors

GetBytes method, Encoder class, Try it Out - Writing Data to Random Access Files

GetChars method, Decoder class, Try it Out - Reading Data from Random Access Files

GetChildRows method, DataRow object, Try It Out - Working with Multiple Relations

GetCustomAttributes method, Assembly class, Reflection

GetCustomAttributes method, Type class, BugFixAttribute

GetDirectories method, Directory class, The File and Directory Classes

GetDirectoryName method, Path class, Try it Out - Monitoring the File System

GetExecutingAssembly method, Assembly class, Attributing the Class for Usage

GetExportedTypes method, Assembly class, Attributing the Class for Usage

GetFileName method, Path class, Try it Out - Monitoring the File System

GetFiles method, Directory class, The File and Directory Classes

GetFiles method, DirectoryInfo class, Try it Out - Sorting Entries

GetFolderPath method, Environment class, Specifying Directories

GetHashCode method, Object class, Operator Overloading

GetHue method
Color structure, Colors

GetItemAt method, ListView control, ListView Methods

GetItemChecked method, CheckedListBox control, ListBox Methods

GetItemCheckState method, CheckedListBox control, ListBox Methods

GetMembers method, Type class, BugFixAttribute

GetParentRow method, DataRow object, Try It Out - Working with Multiple Relations

GetSaturation method
Color structure, Colors

GetSelected method, ListBox control, ListBox Methods

GettingData Windows application, The DataSet
accessing database tables, Accessing the Database from an Application
adding DataGrids, Adding a DataGrid
adding listboxes, Adding Lists
adding text boxes, Seeing the Whole Picture
connecting to database, Connecting to the Database
updating database, Updating the Database

GetType method, Object class, System.Object

GetUpperBound method, String class, Try it Out- Comma-Separated Values

Global Assembly Cache, see gac

Global Assembly Cache Folder, File System Editor

Global Assembly Cache Utility, see gacutil

global data
global data compared to parameters and return values, Parameters and Return Values versus Global Data

global namespace, Namespaces

global variables
const keyword, Try it Out - Defining and Using a Basic Function
hidden global variables, Try it Out - Defining and Using a Basic Function
scope covers multiple functions, Try it Out - Defining and Using a Basic Function
scope covers single function, Try it Out - Defining and Using a Basic Function
static keyword, Try it Out - Defining and Using a Basic Function

Global.asax file, Try it Out - Sorting Entries
web sites, access restricting, Try it Out - Preventing Editing

GotFocus event, Control class, Events

GotFocus event, TextBox control
TextBoxTest example, Adding the Event Handlers

goto statement
benefits and problems', The goto Statement
interrupting loops', Interrupting Loops
spaghetti code', The goto Statement
using', The goto Statement

goto statement', The goto Statement

graphical drawing overview, Overview of Graphical Drawing

Graphics class, System.Drawing namespace
Clip property, Clipping
Dispose method, Disposing of Objects
disposing of objects, Disposing of Objects
DrawImage method, Try it Out - Double Buffering Example
DrawLine method, Try it Out - Pen Example
DrawString method, Try it Out - Drawing Text with an Image
FillEllipse method, Try it Out - Drawing an Ellipse with an Image
FillRectangle method, Try it Out - Brush Example
FromImage method, Try it Out - Double Buffering Example
implements IDisposable interface, Disposing of Objects
MeasureString method, Drawing Text using the Font Class
obtaining objects for the window, The Graphics Class

Graphics Device Interface classes, see gdi+

Graphics property, PaintEventArgs class, Try it Out - Pen Example

GraphicsPath class, System.Drawing.Drawing2D namespace, System.Drawing.Drawing2D
creating GraphicsPath example, Try it Out - Creating a Graphics Path
DrawPath method, Try it Out - Creating a Graphics Path
FillPath method, GraphicsPaths
PathTypes property, GraphicsPaths

GraphicsUnit enumeration, System.Drawing namespace, Drawing Text using the Font Class

GridLayout mode, Try it Out - Creating the Weblog Page

GridLines property, ListView control, ListView Properties

GroupBox control
grouping radio boxes together, The RadioButton and CheckBox Controls
RadioButton and CheckBox example, The GroupBox Control
use in conjunction with RadioButton and CheckBox controls, The GroupBox Control

Index
byKarli Watsonet al.

Wrox Press 2003

Index
H
Handled property, KeyPressEventArgs class, Adding the Event Handlers

HasMorePages property, PrintPageEventArgs class, Try it Out – Modifying OnPrintPage() for Multiple Pages

HatchBrush class, System.Drawing.Drawing2D namespace, System.Drawing.Drawing2D

HeaderStyle property, ListView control, ListView Properties

Height property, Control class, Properties

Height property, Font class, Try it Out – Font Example

HelpRequest method, CommonDialog class, Common Dialogs

hidden base class methods
calling using base keyword, Calling Overridden or Hidden Base Class Methods

hidden global variables, Try it Out – Defining and Using a Basic Function

hiding base class methods, Hiding Base Class Methods
compared to overriding base class methods, Hiding Base Class Methods
override keyword, Hiding Base Class Methods

hotel travel agency application using web services, A Hotel Travel Agency Application Scenario

HotTrack property, TabControl control, TabControl Properties

HoverSelection property, ListView control, ListView Properties

HTML page creation
Weblogs, building, Try it Out – Creating the Weblog Page

HTML tags
compared to XML elements, XML Elements

HttpApplication class, System.Web namespace, Try it Out – Preventing Editing
Session property, Try it Out – Preventing Editing

HttpGetClientProtocol class, System.Web.Services.Protocols namespace, Alternative Client Protocols

HttpPostClientProtocol class, System.Web.Services.Protocols namespace, Alternative Client Protocols

HttpRequest class, System.Web namespace
Params property, Try it Out – Loading the Chosen Entry

HttpServerUtility class, System.Web namespace
MapPath method, Try it Out – Loading Weblog Files

Hungarian notation, Naming Conventions

Hyperlink control, Try it Out – Editing Weblog Entries
data binding, Try it Out – Editing Weblog Entries

NavigateUrl property, Try it Out – Editing Weblog Entries

Index
byKarli Watsonet al.

Wrox Press 2003

Index
I
ICloneable interface

Clone method, Upgrading CardLib Part 3

ICollection interface, System.Collections namespace, Collections
Count property, Keyed Collections and IDictionary

IComponent interface, Components

IDictionary interface, System.Collections namespace, Keyed Collections and IDictionary
Add method, Keyed Collections and IDictionary
Clear method, Keyed Collections and IDictionary
Remove method, Keyed Collections and IDictionary

IDisposable interface
disposable objects, Disposable Objects
Dispose method, Disposable Objects
implemented by Graphics class, Disposing of Objects

IEnumerable interface, System.Collections namespace, Collections
GetEnumerator method, Try it Out – Arrays versus More Advanced Collections

if statement
adding to do loops”, Try it Out – Using do Loops
checking more conditions, Checking More Conditions Using if Statements
checking more conditions”, Checking More Conditions Using if Statements
compared to ?\, The if Statement
compared to switch statement”, The switch Statement
compared to ternary operators”, The if Statement
else if statements”, Checking More Conditions Using if Statements
example”, Try it Out – Using the if Statement
using the else statement in combination, Try it Out – Using the if Statement
using the else statement in combination”, The if Statement

if statement”, The if Statement

ildasm, Viewing the Contents of an Assembly
adding as an external tool to Visual Studio .NET, Viewing the Contents of an Assembly
attributes, What is an Attribute?
using, Try it Out – Viewing the Contents of an Assembly with Ildasm
viewing assembly contents, Try it Out – Creating a Shapes Client
viewing manifest, What is an Attribute?
viewing version attributes, Version Attributes

IList interface, System.Collections namespace, Collections

Clear method, Defining Collections
IndexOf method, Try it Out – Arrays versus More Advanced Collections
Remove method, Try it Out – Arrays versus More Advanced Collections
RemoveAt method, Defining Collections

Image class, System.Drawing namespace, Drawing Using Images

Image property, Button control, Button Properties

Image property, Label control, The Label and LinkLabel Controls

Image property, LinkLabel control, The Label and LinkLabel Controls

ImageAlign property, Button control, Button Properties

ImageAlign property, Label control, The Label and LinkLabel Controls

ImageAlign property, LinkLabel control, The Label and LinkLabel Controls

ImageIndex property, ToolbarButton control, The ToolBarButton Properties

ImageList control, The ImageList Control
Size property, Try it Out – ListView Example
using with Toolbar control, Try it Out – Toolbar Example

ImageList property, Toolbar control, ToolBar Properties

images, drawing using images, Drawing Using Images
creating pen using images, ry it Out – Creating a Pen from an Image
double buffering, Drawing Using Images
drawing text using images, Try it Out – Drawing Text with an Image
example, Try it Out – Image Example
using brush, Drawing with a Texture Brush

Immediate mode, Command Window
debugging in break mode”, Immediate Commands

Immediate mode, Command Window”, Immediate Commands

implicit conversion, Boxing and Unboxing
as operator, The as Operator
boxing and, Boxing and Unboxing
example”, Implicit Conversions
introduction”, Implicit Conversions
numeric conversions”, Implicit Conversions

implicit keyword, Conversion Operators

indentation, Basic C# Syntax

indexers, Indexers
abstract and virtual, The Add Indexer Wizard
adding using Add Indexer wizard, The Add Indexer Wizard
keyed collection classes, Keyed Collections and IDictionary
this keyword, Indexers

IndexOf method, IList interface, Try it Out – Arrays versus More Advanced Collections

IndexOutOfRangeException class, System namespace”, Try it Out – Writing Text to the Output Window

infinite loops”, Infinite Loops

inheritance, derived classes
abstract classes, Inheritance
attributes, AttributeUsage.Inherited
class definitions, Class Definitions in C#
interfaces, Inheritance
member accessibility, Inheritance
object-oriented programming, Inheritance
object-oriented programming in Windows applications, Try it Out – Objects in Action
sealed classes, Inheritance
UML representations, Inheritance
virtual members of base class, Inheritance

Inherited property, AttributeUsageAttribute class, AttributeUsage.Inherited

InitialDirectory property
OpenFileDialog class, Specifying Directories

InnerList property, CollectionsBase class, Defining Collections

input streams, Streams
example, The StreamReader Object

InsertRange method, ArrayList class, Try it Out – Arrays versus More Advanced Collections

Install mode
User Interface editor, Install and Administrative Install

Installation Complete dialog, Installation Complete

installation modes
Administrative Install mode, Install and Administrative Install
custom dialogs, Try it Out – Adding Other Dialogs
default dialogs, Try it Out – Configuring the Default Dialogs
Install mode, Install and Administrative Install

installation, Windows applications, see windows applications, deployment

instance class members
compared to static class members, Static and Instance Class Members

int types, Simple Types
declaring, Try it Out – Using Simple Type Variables

integer types, Simple Types
list of values, Simple Types

intellisense
shows available overloads for function., Overloading Functions

interface definitions, Interface Definitions
abstract and sealed are not allowed, Interface Definitions
Object class, System namespace, Interface Definitions
public and internal keywords, Interface Definitions

interface implementation, Interface Implementation
classes, implementing in, Implementing Interfaces in Classes
defining members, Interface Implementation
explicit interface member implementation, Explicit Interface Member Implementation

interface members

class definitions, Class Definitions in C#

interface polymorphism, Interface Polymorphism

interfaces
compared to abstract classes, Interfaces versus Abstract Classes
disposable objects, Disposable Objects
IDisposable interface, Disposable Objects
inheritance, Inheritance
object-oriented programming, Interfaces
UML representations, Interfaces

Intermediate Language DisASseMbler tool, see ildasm

internal keyword
class definitions, Class Definitions in C#
class member definitions, Member Definitions
interface definitions, Interface Definitions

Internet Information Services Launch Condition, Launch Condition Editor

interrupting loops
commands”, Interrupting Loops

Intersection method, Region class, Try it Out – Creating a Region

Invoke method, SoapHttpClientProtocol class, Try it Out – Creating a Client Windows Application

is operator, The is Operator
example, The is Operator
syntax, The is Operator

ISerializable interface, System.SerializableAttribute

IsMdiContainer property, Form class, Building MDI Applications

IsPostBack property, Page class, Try it Out – Loading the Chosen Entry

ItemActivate event, ListView control, Adding the Event Handlers

ItemCheck event, CheckedListBox control, ListBox Events

Items property, ListBox control, ListBox Properties

Items property, ListView control, ListView Properties

Index
byKarli Watsonet al.

Wrox Press 2003

Index
J-K
jagged arrays

difficulties', Arrays of Arrays
example', Arrays of Arrays
foreach loops', Arrays of Arrays

jagged arrays', Arrays of Arrays

JIT, MSIL and JIT

Just-In-Time, see jit

key files, generating, Extracting the Public Key

KeyDown event, Control class, Events

keyed collection classes, Keyed Collections and IDictionary
foreach loops, Keyed Collections and IDictionary

KeyPress event, Control class, Events

KeyPress event, TextBox control
TextBoxTest example, Adding the Event Handlers

KeyPressEventArgs class, System.Windows.Forms namespace
Handled property, Adding the Event Handlers

KeyPressEventHandler delegate, System.Windows.Forms namespace, Adding the Event Handlers

KeyUp event, Control class, Events

Index
byKarli Watsonet al.

Wrox Press 2003

Index
L
Label control, The Label and LinkLabel Controls

<div> tags;div tags, Try it Out - Finding Where the Web Site is Stored
combining Label and Textbox controls, Try it Out - LabelTextbox Example
data binding, Try it Out - Rendering the Remainder of the Weblog Entry
table of properties, The Label and LinkLabel Controls
Text property, Try it Out - Rendering the Remainder of the Weblog Entry
Web Forms, Try it Out - Adding a Copyright Element

LabelEdit property, ListView control, ListView Properties

LabelWrap property, ListView control, ListView Properties

landscape printing, Orientation

LargeImageList property, ListView control, ListView Properties

Launch Conditions editor, Launch Condition Editor
defining launch conditions, Launch Condition Editor

LayoutMdi method, Form class, Building MDI Applications

Leave event, TextBox control, TextBox Events

Left property, Control class, Properties

legal XML, Well-formed and Valid XML

Length property, Array class, Try it Out - Arrays versus More Advanced Collections

Length property, FileInfo class, The FileInfo Class

License Agreement dialog, License Agreement

LinearGradientBrush class, System.Drawing.Drawing2D namespace, System.Drawing.Drawing2D

lines, drawing, Coordinate System
using the Pen class, Try it Out - Pen Example

LinkArea property, LinkLabel control, The Label and LinkLabel Controls

LinkClicked event, RichTextBox control, Adding the Event Handlers

LinkColor property, LinkLabel control, The Label and LinkLabel Controls

linking, Linking

LinkLabel control, The Label and LinkLabel Controls
table of properties, The Label and LinkLabel Controls

Links property, LinkLabel control, The Label and LinkLabel Controls

LinkVisited property, LinkLabel control, The Label and LinkLabel Controls

List property, CollectionsBase class, Defining Collections

ListBox control, The ListBox and CheckedListBox Controls
adding event handlers, Adding the Event Handlers
derived from the ListControl class, The ListBox and CheckedListBox Controls
events, ListBox Events
example, Try it Out - ListBox Example
methods, ListBox Methods
table of properties, ListBox Properties

listboxes
SelectedIndex property, Adding Lists
SelectedIndexChanged event, Adding Lists
viewing database tables, Adding Lists

ListView control, The ListView Control
adding event handlers, Adding the Event Handlers
BeginUpdate method, Adding the Event Handlers
ColumnHeader class, ColumnHeader
EndUpdate method, Adding the Event Handlers
events, ListView Events
example, Try it Out - ListView Example
ImageList control, The ImageList Control
item, ListViewItem
ItemActivate event, Adding the Event Handlers
methods, ListView Methods
table of properties, ListView Properties

ListViewItem class, System.Windows.Forms namespace, ListViewItem

literal values, Literal Values
string literals, String Literals
suffixes, Literal Values
verbatim strings, String Literals

Load event, Page class, Try it Out - Authenticating the User

LoadFile method, RichTextBox control, The ContextMenu Control

LoadFrom method, Assembly class, Reflection

local variables
scope covers single function, Try it Out - Defining and Using a Basic Function

Locals tab
variables, monitoring content', Monitoring Variable Content

logic errors, see semantic errors'

long types, Simple Types

looping
arrays', Arrays
do loops', do Loops
example', Looping
expressions, Mathematical Operators

flow control', Chapter 4: Flow Control
for loops', Try it Out - Using an Array
foreach loops', foreach Loops
infinite loops', Infinite Loops
interrupting loops', Interrupting Loops
statements executed repeatedly', Looping
variable scope, Variable Scope in Other Structures
while loops', while Loops

looping variables
variable scope, Variable Scope in Other Structures

loose uncompressed files, Packaging

LostFocus event, Control class, Events

LostFocus event, TextBox control
TextBoxTest example, Adding the Event Handlers

Index
byKarli Watsonet al.

Wrox Press 2003

Index
M
main window, see mdi container

Main() function, The Main() Function
command line arguments, Try it Out – Command Line Arguments
defined using static and void keywords, Try it Out – Defining and Using a Basic Function
entry point function for a console application, Try it Out – Defining and Using a Basic Function
outputting debugging information”, Try it Out – Writing Text to the Output Window
signatures, The Main() Function
string[] args parameter, The Main() Function

MainMenu control, Using the Menu Control
example, Try it Out – Menu Example
MDI applications text editor example, Try it Out – Creating an MDI Text Editor
using, Using the Menu Control

managed code, Managed Code
compared to unmanaged code, Managed Code

managed providers see Extensibility

Mandelbrot sets
for loops example”, Try it Out – Using for Loops

manifests, What is an Attribute?
assembly attributes, Assembly Attributes
description, Manifests
example, Manifests
references, Manifests
viewing using ildasm, What is an Attribute?

ManyRelations example, Try It Out – Working with Multiple Relations

MapPath method, HttpServerUtility class, Try it Out – Loading Weblog Files

MarginBounds property, PrintPageEventArgs class, Try it Out – Adding a Page Setup Dialog

margins, Margins

mathematical operators, Mathematical Operators
example, Try it Out – Manipulating Variables with Mathematical Operators

Matrix class, System.Drawing.Drawing2D namespace, System.Drawing.Drawing2D

Maxima() function
outputting debugging information”, Try it Out – Writing Text to the Output Window

MaxLength property, TextBox control, TextBox Properties

MaxSize property, FontDialog class, Properties of the FontDialog

maxValIndices variable
variables, monitoring content”, Monitoring Variable Content

MDI applications, SDI and MDI Applications
adding event handlers, Building MDI Applications
compared to SDI applications, SDI and MDI Applications
creating, Building MDI Applications
description, SDI and MDI Applications
MDI child, Building MDI Applications
MDI container, Building MDI Applications

MDI applications text editor example
adding event handlers, Building MDI Applications
cascading windows, Building MDI Applications
creating project, Try it Out – Creating an MDI Text Editor
MainMenu control, Try it Out – Creating an MDI Text Editor
naming forms, Building MDI Applications
tiling windows, Building MDI Applications

MDI child, Building MDI Applications

MDI container, Building MDI Applications
constructors, Try it Out – Creating an MDI Application

MdiList property, MenuItem control, The MenuItem Control

MdiParent property, Form class, Building MDI Applications

MeasureItem event, MenuItem control, MenuItem Events

MeasureString method, Graphics class, Drawing Text using the Font Class

member wizards, Visual Studio .NET, VS Member Wizards
Add Field Wizard, The Add Field Wizard
Add Method Wizard, The Add Method Wizard
Add Property Wizard, The Add Property Wizard

MemberwiseClone method, Object class, Deep Copying
shallow copying, Deep Copying

Menu class, System.Windows.Forms namespace, Using the Menu Control

menu controls, Menus
adding event handlers, The ContextMenu Control
ContextMenu, The ContextMenu Control
error handling, The ContextMenu Control
example, Try it Out – Menu Example
MainMenu, Using the Menu Control
MenuItem, The MenuItem Control
top-level menus, Try it Out – Menu Example
using with RichTextBox control, Try it Out – Menu Example

MenuItem control, Using the Menu Control
events, MenuItem Events
table of properties, The MenuItem Control

Merge Module Project template, Deployment Project Types

MergeOrder property, MenuItem control, The MenuItem Control

MergeType property, MenuItem control, The MenuItem Control

MessageName property, WebMethodAttribute class, WebMethod Attribute

messages, SOAP, Calling a Method
creating, Calling a Method
SOAP body, Calling a Method
SOAP header, Calling a Method

metadata, Structure of Assemblies
manifests, Structure of Assemblies
type metadata, Structure of Assemblies

Metafile class, System.Drawing.Imaging namespace, System.Drawing.Imaging

method attribute scope, Attribute Scope

method definitions, Defining Methods
abstract keyword, Defining Methods
extern keyword, Defining Methods
hiding base class methods, Hiding Base Class Methods
keywords that can be used, Defining Methods
overridden base class methods, Calling Overridden or Hidden Base Class Methods
override keyword, Defining Methods
sealed keyword, Defining Methods
static keyword, Defining Methods
this keyword, The this Keyword
virtual keyword, Defining Methods

methods
objects, Methods
public or private, Methods
UML representation, Methods

Microsoft Intermediate Language, see msil

Microsoft Windows Installer, see windows installer

Microsoft.Data.Odbc namespace
ODBC .NET data provider, ODBC .NET Data Provider

MinimumSize property, Form class, Try it Out – TextBoxTest

MinMargins property, PageSetupDialog class, Margins

MinSize property, FontDialog class, Properties of the FontDialog

MissingSchemaAction property, SqlDataAdapter object, Try it Out – Finding Rows

mnemonic characters
assigning to controls, Using the Menu Control

Mnemonic property, MenuItem control, The MenuItem Control

module attribute scope, Attribute Scope

modules, Structure of Assemblies

MouseDown event, Control class, Events

MouseMove event, Control class, Events

MouseUp event, Control class, Events

Move method, Directory class, The File and Directory Classes

Move method, File class, The File and Directory Classes

MS UDDI Site, searching
search engine for web services, Search Engine for Web Services
Visual Studio .NET, Search Engine for Web Services

MS Visio, What is an Object?

MSIL, Cross-Language Programming

multi-dimensional arrays
foreach loops”, Multi-dimensional Arrays

multi-dimensional arrays”, Arrays of Arrays

multi-purpose event handlers, Multi-Purpose Event Handlers
example, Multi-Purpose Event Handlers
using with other events, Try it Out – Using a Multi-Purpose Event Handler

multi-tier applications
ADO.NET, Support for Multi-Tier Applications

MultiColumn property, ListBox control, ListBox Properties

Multiline property, TabControl control, TabControl Properties

Multiline property, TextBox control, TextBox Properties

multiple comparisons
switch statement”, Checking More Conditions Using if Statements

Multiple Document Interfaces, see mdi applications

MultiSelect property, ListView control, ListView Properties

Multiselect property, OpenFileDialog class, Results

Index
byKarli Watsonet al.

Wrox Press 2003

Index
N
name attribute

<param> element;param element, Try it Out - Documenting a Class

Name property, Control class, Properties

Name property, FileInfo class, The FileInfo Class

Name property, OpenFileDialog control, Try it Out - Monitoring the File System

Name property, WebServiceAttribute class, WebService Attribute

Namespace property, WebServiceAttribute class, WebService Attribute

namespaces, Namespaces
aliases, Namespaces
assemblies, .NET Assemblies and the .NET Framework Class Library
global namespace, Namespaces
nested namespaces, Namespaces
qualified names, Namespaces
System namespace, Namespaces
using statement, Namespaces

naming variables, Variable Naming
camelCase, Naming Conventions
Hungarian notation, Naming Conventions
PascalCase, Naming Conventions

native code, How do I Write Applications using the .NET Framework?

NavigateUrl property, Hyperlink control, Try it Out - Editing Weblog Entries
data binding, Try it Out - Editing Weblog Entries

nested namespaces, Namespaces

Nested property, DataRelation object, Try it Out - Writing XML from a DataSet

nested type definitions
class member definitions, Nested Type Definitions

new keyword
arrays', Declaring Arrays
defining interface members, Interface Implementation

NewRow method, DataTable class, Try it Out- Comma-Separated Values

Next method, Random class, Try it Out - Defining Events

nodes, The XML Declaration

non-break mode
debugging in Visual Studio .NET, Try it Out - Writing Text to the Output Window
debugging in Visual Studio .NET', Debugging in Non-Break (Normal) Mode

non-break mode', Debugging in Non-Break (Normal) Mode

non-default constructor, Constructors and Destructors
objects, Constructors

NonSerializedAttribute class, System namespace, System.SerializableAttribute

normal mode, see non-break mode'

Northwind database example, Viewing Data in VS

NotifyFilter property, FileSystemWatcher class, Try it Out - Monitoring the File System

NotifyFilters enumeration, System.IO namespace, Try it Out - Monitoring the File System

Now property, DateTime structure, Try it Out - Adding a Copyright Element

numbers
generating random numbers, Try it Out - Defining Events

numeric conversions
implicit conversion', Implicit Conversions

numeric indexers, Creating Database Rows
compared to reflection, Creating Database Rows

numeric types, Simple Types
floating point values, Simple Types
integer types, Simple Types

Index
byKarli Watsonet al.

Wrox Press 2003

Index
O
Object Browser

object oriented-programming tools, The Object Browser
view Summary information, The Object Browser

Object class, System namespace, Try it Out – Arrays versus More Advanced Collections
all C# classes derive from, Polymorphism
class definitions, Class Definitions in C#
constructors, Constructor Execution Sequence
Equals method, Operator Overloading
Finalize method, Constructors and Destructors
GetHashCode method, Operator Overloading
GetType method, System.Object
interface definitions, Interface Definitions
MemberwiseClone method, Deep Copying
ReferenceEquals method, System.Object
table of methods, System.Object
ToString method, Try it Out – Using Fields, Methods, and Properties

object-oriented programming
classes, Summary
collection classes, Collections
compared to functional programming, What is Object-Oriented Programming?
conversion, Advanced Conversions
custom exceptions, Custom Exceptions
data representation, What is Object-Oriented Programming?
deep copying, Deep Copying
event driven applications, Events
events, Events
inheritance, Inheritance
interfaces, Interfaces
introduction, Chapter 8: Introduction to Object-Oriented Programming
modular method, What is Object-Oriented Programming?
objects, What is an Object?
operator overloading, Operator Overloading
polymorphism, Try it Out – Arrays versus More Advanced Collections
reference vs value types, Reference versus. Value Types
relationships between objects, Collections

object-oriented programming in Windows applications, OOP in Windows Applications
objects in action example, Try it Out – Objects in Action

object-oriented programming techniques, Chapter 12: Events
events, Chapter 12: Events

object-oriented programming tools
Class View window, The Class View Window
classes, adding to project, Adding Classes
Object Browser, The Object Browser
Visual Studio .NET, OOP Tools in Visual Studio .NET

objects
constructors, Constructors
created from types in C#, What is an Object?
definition, What is an Object?
destructors, Destructors
disposable objects, Disposable Objects
includes everything in C# and .NET Framework, Everything's an Object
life cycle, The Lifecycle of an Object
methods, Methods
pointers, Try it Out – Classes versus Structs
properties and fields, Properties and Fields
reference types, Try it Out – Classes versus Structs
similar to a struct type, What is an Object?
state, Properties and Fields
UML representations, What is an Object?

ObsoleteAttribute class, System namespace, System.ObsoleteAttribute
adding parameters, System.ObsoleteAttribute

ODBC, A (Very) Brief History of Data Access

ODBC .NET data provider, ODBC .NET Data Provider
Microsoft.Data.Odbc namespace, ODBC .NET Data Provider

OLE DB, A (Very) Brief History of Data Access

OLE DB .NET data provider, OLE DB .NET Data Provider
connecting to the data source, Try it Out – Reading from an Access Database
example, Try it Out – Reading from an Access Database
System.Data.OleDb namespace, OLE DB .NET Data Provider

OnBeginPrint method, PrintDocument class, Try it Out – Modifying OnPrintPage() for Multiple Pages

OnEndPrint method, PrintDocument class, Printing Sequence

OnPaint method, Form class, ry it Out – Creating a Pen from an Image
overriding method, The Graphics Class

OnPaint method, UserControl class, Overview of Graphical Drawing

OnPrintPage method, PrintDocument class, Try it Out – Modifying OnPrintPage() for Multiple Pages

OnStartPrint method, PrintController class, Printing Sequence

OOP techniques, see object-oriented programming techniques

Open Database Connectivity, see odbc

Open method, Connection object, Try it Out – Reading Data with the Data Reader

Open method, File class, The File and Directory Classes

OpenFile method, OpenFileDialog class, Try it Out – Adding and Using an Open File Dialog

OpenFile method, SimpleEditor application, Try it Out – Creating the Simple Text Editor Windows Application

OpenFileDialog class, System.Windows.Forms namespace, Common Dialogs
adding to Windows application, Try it Out – Adding and Using an Open File Dialog
CheckFileExists property, Validation
CheckPathExists property, Validation
FileName property, Try it Out – Adding and Using an Open File Dialog
FileNames property, Results
Filter property, Setting the File Filter
FilterIndex property, Setting the File Filter
InitialDirectory property, Specifying Directories
Multiselect property, Results
OpenFile method, Try it Out – Adding and Using an Open File Dialog
properties diagram, OpenFileDialog Properties
ShowDialog method, Try it Out – Adding and Using an Open File Dialog
ShowHelp property, Help
Title property, Dialog Title

OpenFileDialog control
Filter property, Try it Out – Monitoring the File System
Name property, Try it Out – Monitoring the File System
ShowDialog method, Try it Out – Monitoring the File System

opening tags, XML, XML Elements

OpenRead method, File class, The FileStream Object

OpenRead method, FileInfo class, The FileStream Object

OpenText method, File class, Try it Out – Creating the Simple Text Editor Windows Application

OpenWrite method, File class, The FileStream Object

OpenWrite method, FileInfo class, The FileStream Object

operands
expressions, Expressions

operator keyword, Operator Overloading

operator overloading, Operator Overloading
+ operator, Operator Overloading
adding operator type members, Operator Overloading
binary and unary operators, Operator Overloading
casting, Operator Overloading
comparison operators, Upgrading CardLib Part 2
conversion operators, Conversion Operators
example, Upgrading CardLib Part 2
list of operators, Operator Overloading
mixing operator types, Operator Overloading
object-oriented programming, Operator Overloading
reasons for using, Operator Overloading

operator precedence
explicit conversion”, Try it Out – Type Conversions in Practice

table”, Operator Precedence Updated

operators
assignment operators, Assignment Operators
binary operators, Expressions
bitwise operators”, Bitwise Operators
bitwise shift operators”, Bitwise Operators
Boolean Assignment operators”, Boolean Assignment Operators
Boolean comparison operators”, Boolean Logic
conditional operators, Expressions
conversion operators, Conversion Operators
explicit conversion, Mathematical Operators
expressions, Expressions
implicit conversion, Mathematical Operators
mathematical operators, Try it Out – Manipulating Variables with Mathematical Operators
operator overloadibf, Operator Overloading
precedence of operators, Operator Precedence
ternary operators, Expressions
ternary operators”, The Ternary Operator
typeof operator”, Try it Out – Using an Enumeration
unary operators, Expressions

Optional Files dialog, Optional Files

order numbers
creating rows using attributes, Creating Database Rows

orientation types
converting byte types to orientation types”, Try it Out – Using an Enumeration
converting orientation types to byte types”, Try it Out – Using an Enumeration
enumerations”, Enumerations

out keyword, Out Parameters

out parameters, Out Parameters
extending function using, Out Parameters
must use the out keyword in the function call, Out Parameters
out keyword, Out Parameters

output streams, Streams
example, The StreamWriter Object

Output Window, see task list and output window”

outputting debugging information
example”, Outputting Debugging Information
System.Diagnostics namespace”, Try it Out – Writing Text to the Output Window

outputting debugging information”, Outputting Debugging Information

overflow checking context
checked keyword”, Explicit Conversions
unchecked keyword”, Explicit Conversions

overflow checking example”, Explicit Conversions

overflows
explicit conversion”, Explicit Conversions Using the Convert Commands

overflows”, Explicit Conversions

overloading functions, Overloading Functions
example, Overloading Functions
function signature, Overloading Functions
using double as well as int values, Overloading Functions

overloading operators, see operator overloading

overridden base class methods
calling using base keyword, Calling Overridden or Hidden Base Class Methods

override keyword
method definitions, Hiding Base Class Methods
property definitions, Defining Properties

overriding base class methods
compared to hiding base class methods, Hiding Base Class Methods

overriding virtual class members
inheritance, Inheritance

OverwritePrompt property, SaveFileDialog class, Overwriting Existing Files

OwnerDrawn property, MenuItem control, The MenuItem Control

Index
byKarli Watsonet al.

Wrox Press 2003

Index
P
packages

creating installation package using Visual Studio .NET, Creating an Installation Package for the Simple
Editor
definition, Windows Installer Terms

packaging, Packaging
cabinet files, Packaging
loose uncompressed files, Packaging
setup files, Packaging

PadLeft method, String class', String Manipulation

PadRight method, String class', String Manipulation

Page class, System.Web.UI namespace, Try it Out - Preventing Editing
IsPostBack property, Try it Out - Loading the Chosen Entry
Load event, Try it Out - Authenticating the User
Server property, Try it Out - Finding Where the Web Site is Stored
Session property, Try it Out - Preventing Editing

page setup, Page Setup

PageSettings class, System.Drawing.Printing namespace, Printing Architecture

PageSettings property, PageSetupDialog class, Paper

PageSetupDialog class, System.Windows.Forms namespace, Page Setup
adding to Windows application, Try it Out - Adding a Page Setup Dialog
AllowMargins property, Margins
AllowOrientation property, Orientation
AllowPaper property, Paper
AllowPrinter property, Printer
MinMargins property, Margins
PageSettings property, Paper
properties diagram, Page Setup
ShowDialog method, Try it Out - Adding a Page Setup Dialog

Paint event, Control class, Events

PaintEventArgs class, System.Windows.Forms namespace, Overview of Graphical Drawing
Graphics property, Try it Out - Pen Example

PanelClick event, StatusBar control, StatusBar Events

Panels property, StatusBar control, StatusBar Properties

paper size and source, Paper

param attribute scope, Attribute Scope

parameter arrays, Parameter Arrays
defined using params keyword, Parameter Arrays
exchanging data with a function, Try it Out - Exchanging Data with a Function Part 2

parameter matching, Parameter Matching

parameters, Chapter 6: Functions
defining function signature, Chapter 6: Functions
event handler, Multi-Purpose Event Handlers
exchanging data with a function, Try it Out - Exchanging Data with a Function
global data compared to parameters and return values, Parameters and Return Values versus Global Data
must be included in function definition, Parameters
out parameters, Out Parameters
polymorphism, Try it Out - Using a Multi-Purpose Event Handler
reference and value parameters, Reference and Value Parameters
separated using commas, Parameters
string[] args parameter, The Main() Function

params keyword
defining parameter arrays, Parameter Arrays

Params property, HttpRequest class, Try it Out - Loading the Chosen Entry

Parent property, Control class, Properties

Parse method, Enum class', Try it Out - Using an Enumeration

parsers
validating parsers, Well-formed and Valid XML
XML parsers, XML Elements

PartialPush property, ToolbarButton control, The ToolBarButton Properties

PascalCase, Naming Conventions

PasswordChar property, TextBox control, TextBox Properties

Path class, System.IO namespace
GetDirectoryName method, Try it Out - Monitoring the File System
GetFileName method, Try it Out - Monitoring the File System

Path property, FileSystemWatcher class, Try it Out - Monitoring the File System

PathGradientBrush class, System.Drawing.Drawing2D namespace, System.Drawing.Drawing2D

pathnames, Pathnames and Relative Paths
relative pathnames, Pathnames and Relative Paths

PathPointType enumeration, System.Drawing.Drawing2D namespace, GraphicsPaths

PathTypes property, GraphicsPath class, GraphicsPaths

Pen class, System.Drawing namespace
useful properties, Try it Out - Pen Example

Pens class, System.Drawing namespace, Try it Out - Pen Example

pickling attributes, What is an Attribute?

pixels
GDI+ co-ordinate system, Coordinate System
points, Point
size, Size

Planning phase, What is Deployment?

player class
deck of cards example, A Card Game Client for CardLib

Point structure, System.Drawing namespace, Point

pointers
manipulating using unsafe code, Try it Out - Classes versus Structs
objects, Try it Out - Classes versus Structs

points, Point

polymorphism, Try it Out - Arrays versus More Advanced Collections
interface polymorphism, Interface Polymorphism
object-oriented programming, Polymorphism
object-oriented programming in Windows applications, Try it Out - Objects in Action
parameters, Try it Out - Using a Multi-Purpose Event Handler
variables, Polymorphism

Popup event, MenuItem control, MenuItem Events

portal web services, Application Architecture

portrait printing, Orientation

Position property, returning
BindingContext object,System.Windows.Forms namespace, Adding Lists

predefined colors, Formatting the DataGrid
care in altering, Formatting the DataGrid

Press any key to continue prompt
does not appear in debug mode', Try it Out - Creating a Simple Console Application

Press any key to continue prompt', Try it Out - Creating a Simple Console Application

primary keys, Database Tables and Relationships
creating, Try it Out - Finding Rows

PrimaryKey property, DataTable class, Try it Out - Finding Rows

Print method, PrintDocument class, Try it Out - Modifying OnPrintPage() for Multiple Pages

PrintController class, System.Drawing.Printing namespace, Printing Architecture
OnStartPrint method, Printing Sequence
PrintLoop method, Try it Out - Modifying OnPrintPage() for Multiple Pages

PrintDialog class, System.Windows.Forms namespace, Printing Architecture
adding to Windows application, Try it Out - Adding a PrintDialog
AllowSelection property, Printing Selected Text
AllowSomePages property, Printing Page Ranges
options, Options for the Print Dialog
PrinterSettings property, Try it Out - Adding a Print Selection
properties diagram, PrintDialog Properties

PrintDocument class, System.Drawing.Printing namespace, Printing Architecture
BeginPrint event, Try it Out - Modifying OnPrintPage() for Multiple Pages
OnBeginPrint method, Try it Out - Modifying OnPrintPage() for Multiple Pages
OnEndPrint method, Printing Sequence
OnPrintPage method, Try it Out - Modifying OnPrintPage() for Multiple Pages
Print method, Try it Out - Modifying OnPrintPage() for Multiple Pages
PrintPage event, Try it Out - Adding a PrintDocument Component

PrinterSettings class, System.Drawing.Printing namespace, Printing Architecture

PrinterSettings property, PrintDialog class, Try it Out - Adding a Print Selection

printing
architecture, Printing Architecture
margins, Margins
orientation, Orientation
page ranges, Printing Page Ranges
page setup, Page Setup
page setup example, Try it Out - Adding a Page Setup Dialog
paper size and source, Paper
print document component example, Try it Out - Adding a PrintDocument Component
print menu entries example, PrintPage Event
print preview example, Try it Out - Adding a Print Preview Dialog
printing selected text example, Printing Selected Text
sequence, Printing Sequence

PrintLoop method, PrintController class, Try it Out - Modifying OnPrintPage() for Multiple Pages

PrintPage event, PrintDocument class, Try it Out - Adding a PrintDocument Component

PrintPageEventArgs class, System.Drawing.Printing namespace, PrintPage Event
HasMorePages property, Try it Out - Modifying OnPrintPage() for Multiple Pages
MarginBounds property, Try it Out - Adding a Page Setup Dialog

PrintPageEventHandler delegate, System.Drawing.Printing namespace, PrintPage Event

PrintPreviewControl class, System.Windows.Forms namespace, PrintPreviewControl
setting properties, PrintPreviewControl

PrintPreviewDialog class, System.Windows.Forms namespace, PrintPreviewDialog
adding to Windows application, Try it Out - Adding a Print Preview Dialog

private assemblies, Private Assemblies

private default constructor, Constructors and Destructors

private keys, Delay Signing the Assembly

private keyword
class member definitions, Member Definitions
fields and properties, Properties and Fields
methods, Methods

procedural programming, see functional programming

Process Model, What is Deployment?
Developing phase, What is Deployment?
Envisioning phase, What is Deployment?
Planning phase, What is Deployment?

Stabilizing phase, What is Deployment?

programmer to programmer™, p2p.wrox.com

programming methods
Web Applications, Adding Active Elements

programming, cross-language
assemblies, Cross-Language Programming

Progress dialog, Default Dialogs

properties, Properties and Fields
control properties, Properties
custom attributes, Creating Constructors and Properties
read/write access, Properties and Fields
state access, Properties and Fields
UML representation, Properties and Fields

Properties window
modifying member properties, Member Properties
Solution Explorer window and', The Solution Explorer

Properties window', The Visual Studio .NET Development Environment

property attribute scope, Attribute Scope

property definitions, Defining Properties
abstract keyword, Defining Properties
access modifying keywords, Defining Properties
get and set keywords, Defining Properties
override keyword, Defining Properties
value keyword, Defining Properties
virtual keyword, Defining Properties

Protected event, RichTextBox control, RichTextBox Events

protected keyword
class member definitions, Member Definitions
inheritance, Inheritance

provider objects, Provider Objects
Command object, Command Object
CommandBuilder object, CommandBuilder Object
Connection object, Connection Object
DataAdapter object, DataAdapter Object
DataReader object, DataReader Object

providers, see data providers

public keys, Extracting the Public Key
tokens, Extracting the Public Key

public keyword
class definitions, Class Definitions in C#
class member definitions, Member Definitions
fields and properties, Properties and Fields
interface definitions, Interface Definitions
methods, Methods

structs', Defining Structs

Pushed property, ToolbarButton control, The ToolBarButton Properties

p2p.wrox.com, p2p.wrox.com

Index
byKarli Watsonet al.

Wrox Press 2003

Index
Q-R
qualified names, Namespaces

QuickWatch window
variables, monitoring content', Monitoring Variable Content

RadioButton control, The RadioButton and CheckBox Controls
adding event handlers, Adding the Event Handlers
events, RadioButton Events
example, Try it Out - RadioButton and CheckBox Example
table of properties, RadioButton Properties

RadioCheck property, MenuItem control, The MenuItem Control

raising events, What is an Event?
example, Try it Out - Defining Events

random access files
reading data example, Reading Data
writing data example, Writing Data

Random class, System namespace, Deck.cs
Next method, Try it Out - Defining Events

RCWs, see wrapper assemblies

read access, specifying
properties, Properties and Fields

Read Me dialog, Read Me

Read method, DataReader object, Try it Out - Reading Data with the Data Reader

Read method, FileStream class, Reading Data

Read method, StreamReader class, Reading Data

ReadingAccessData example, Try it Out - Reading from an Access Database

ReadingXML example, Try it Out - Reading XML into a DataSet

ReadLine method, Console class, A Card Game Client for CardLib

ReadLine method, StreamReader class, Try it Out- Comma-Separated Values

readonly keyword
field definitions, Defining Fields

ReadOnly property, TextBox control, TextBox Properties

ReadToEnd method, StreamReader class, Reading Data

ReadXml method, DataSet class, Try it Out - Reading XML into a DataSet

Rectangle structure, System.Drawing namespace, Rectangle

rectangular arrays, see multi-dimensional arrays'

RedoActionName property, RichTextBox control, RichTextBox Properties

ref keyword
reference parameters, Reference and Value Parameters

reference parameters
ref keyword, Reference and Value Parameters
two limitations, Reference and Value Parameters

reference types
classes, Struct Types
compared to value types, Reference versus. Value Types
objects, Try it Out - Classes versus Structs
stored in heap, Reference versus. Value Types
string types, String Literals

ReferenceEquals method, Object class, System.Object

references, Manifests
adding references, Manifests
sending, Try it Out - Using a Multi-Purpose Event Handler

reflection, System.SerializableAttribute
compared to numeric indexers, Creating Database Rows
generating database schema, Generating the SQL
System.Reflection namespace, Reflection
System.Reflection.Emit namespace, Reflection
viewing assembly, Built In Attributes

Reflector, Built In Attributes
viewing assembly using reflection, Built In Attributes

Region class, System.Drawing namespace
creating Region example, Try it Out - Creating a Region
Intersection method, Try it Out - Creating a Region
Union method, Try it Out - Creating a Region

Registry editor, Setup Editors

Registry Launch Condition, Launch Condition Editor

relational data
access via ADO.NET, Simple Access to Relational Data

relational operators, boolean comparison operators'

relational operators', Boolean Logic

Relations property, DataSet class, Creating a DataRelation Object

relative pathnames, Pathnames and Relative Paths

release mode
debugging in non-break mode', Try it Out - Writing Text to the Output Window

Remote Method Invocation, see rmi

Remote Procedure Call, see rpc

Remove method, IDictionary interface, Keyed Collections and IDictionary

Remove method, IList interface, Try it Out - Arrays versus More Advanced Collections

RemoveAt method, CollectionsBase class, Defining Collections

RemoveAt method, IList interface, Try it Out - Arrays versus More Advanced Collections

repairing files, Advantages of the Windows Installer
self-repair, Self-Repair

RequiredFieldValidator control, Try it Out - Creating Weblog Entries
ControlToValidate property, Try it Out - Creating Weblog Entries
ErrorMessage property, Try it Out - Creating Weblog Entries

Reset method, CommonDialog class, How to Use Dialogs

resources, Structure of Assemblies

return attribute scope, Attribute Scope

return command
interrupting loops', Interrupting Loops

return statement, Return Values
processing, Return Values

return values, Return Values
defining function signature, Chapter 6: Functions
double value, Return Values
event handler, Return Values and Event Handlers
global data compared to parameters and return values, Parameters and Return Values versus Global Data
modifying function to return value, Return Values
return statement, Return Values
string value, Return Values

RichTextBox control, The RichTextBox Control
adding event handlers, Adding the Event Handlers
CanPaste method, Building MDI Applications
events, RichTextBox Events
example, Try it Out - RichTextBox Example
LinkClicked event, Adding the Event Handlers
LoadFile method, The ContextMenu Control
SelectionAlignment property, Adding the Event Handlers
SelectionChanged event, The ToolBarButton Properties
SelectionFont property, The ToolBarButton Properties
table of properties, RichTextBox Properties
using with menu, Try it Out - Menu Example

Right property, Control class, Properties

RMI, RMI

rollback, Advantages of the Windows Installer

root elements, Structure of an XML Document

RowCount property, TabControl control, TabControl Properties

Rows property, DataTable class, Try it Out- Comma-Separated Values

rows, database tables, Database Tables and Relationships
adding rows, Adding Rows to the Database
creating rows using attributes, Creating Database Rows
deleting rows, Deleting Rows
finding rows, Finding Rows

RowState property, DataRow object, Try it Out - Deleting Rows

RPC, Remote Procedure Call (RPC)

Rtf property, RichTextBox control, RichTextBox Properties

RunDialog method, CommonDialog class, How to Use Dialogs

Runtime Callable Wrappers, see wrapper assemblies

Index
byKarli Watsonet al.

Wrox Press 2003

Index
S
SaveFile method, SimpleEditor application, Try it Out - Adding a SaveFileDialog

SaveFileDialog class, System.Windows.Forms namespace, SaveFileDialog
AddExtension property, File Extensions
adding to Windows application, Try it Out - Adding a SaveFileDialog
CheckFileExists property, Validation
CheckPathExists property, Validation
CreatePrompt property, Overwriting Existing Files
DefaultExt property, File Extensions
Filter property, File Extensions
OverwritePrompt property, Overwriting Existing Files
properties diagram, SaveFileDialog Properties
ShowDialog method, Try it Out - Adding a SaveFileDialog
Title property, Title
ValidateNames property, Validation

sbyte types, Simple Types

schemas, Schemas
database schema, Generating the SQL
validating XML documents, Schemas
XDR schemas, XDR Schemas
XSD schemas, XSD Schemas

scope
attribute scope, Attribute Scope

Scrollable property, ListView control, ListView Properties

ScrollBars property, TextBox control, TextBox Properties

SDI applications, SDI and MDI Applications
compared to MDI applications, SDI and MDI Applications
description, SDI and MDI Applications

sealed classes, Class Definitions in C#
inheritance, Inheritance
may be public or internal, Class Definitions in C#

sealed keyword
class definitions, Class Definitions in C#
method definitions, Defining Methods

search engine for web services, Search Engine for Web Services

UDDI service, Search Engine for Web Services

security
shared assemblies, Security and Strong Names
web sites, Authenticating the User

Seek method, FileStream class, File Position

SeekOrigin enumeration, System.IO namespace, File Position

SEH, see structured exception handling'

Select event, MenuItem control, MenuItem Events

Select Installation Folder dialog, Select Installation Folder

SELECT statements, Structured Query Language
SQL statements in ADO.NET, SQL Commands in Data Adapters
WHERE clause, Use of WHERE with SELECT

SelectCommand property, SqlDataAdapter object, Try it Out - Show SQL Example

SelectedIndex property, listboxes, Adding Lists

SelectedIndex property, TabControl control, TabControl Properties

SelectedIndexChanged event, listboxes, Adding Lists

SelectedIndices property, ListBox control, ListBox Properties

SelectedIndices property, ListView control, ListView Properties

SelectedItem property, ListBox control, ListBox Properties

SelectedItems property, ListBox control, ListBox Properties

SelectedItems property, ListView control, ListView Properties

SelectedRtf property, RichTextBox control, RichTextBox Properties

SelectedText property, RichTextBox control, RichTextBox Properties

SelectedText property, TextBox control, TextBox Properties

SelectionAlignment property, RichTextBox control, Adding the Event Handlers

SelectionBullet property, RichTextBox control, RichTextBox Properties

SelectionChanged event, RichTextBox control, The ToolBarButton Properties

SelectionColor property, RichTextBox control, RichTextBox Properties

SelectionFont property, RichTextBox control, The ToolBarButton Properties

SelectionLength property, RichTextBox control, RichTextBox Properties

SelectionLength property, TextBox control, TextBox Properties

SelectionMode property, ListBox control, ListBox Properties

SelectionProtected property, RichTextBox control, RichTextBox Properties

SelectionStart property, TextBox control, TextBox Properties

SelectionType property, RichTextBox control, RichTextBox Properties

self-description, Self-Description

self-repair, Self-Repair

semantic errors', Chapter 7: Debugging and Error Handling

semicolons, Basic C# Syntax

serial devices, Streams

SerializableAttribute class, System namespace, System.SerializableAttribute
example, System.SerializableAttribute

serialization, System.SerializableAttribute
ISerializable interface, System.SerializableAttribute

Serialize method, BinaryFormatter class, System.SerializableAttribute

Serialize method, XmlSerializer class, Try it Out - Creating Weblog Entries

Server Explorer
database tables, Database Tables and Relationships
databases, connecting, Connecting to the Database

Server Explorer', The Visual Studio .NET Development Environment

Server property, Page class, Try it Out - Finding Where the Web Site is Stored

Server property, WebService class, Creating a Web Service

server side technology, Chapter 23: ASP.NET Applications
templates, Chapter 23: ASP.NET Applications

Session property, HttpApplication class, Try it Out - Preventing Editing

Session property, Page class, Try it Out - Preventing Editing

Session property, WebService class, Creating a Web Service

session variables, Try it Out - Preventing Editing

sessions, see user sessions

set keywords
property definitions, Defining Properties

SetItemChecked method, CheckedListBox control, ListBox Methods

SetItemCheckState method, CheckedListBox control, ListBox Methods

SetSelected method, ListBox control, ListBox Methods

SetStyle method, Form class, Try it Out - Brush Example

setup files, Packaging

Setup Project template, Deployment Project Types

Setup Wizard, Deployment Project Types

shallow copying
compared to deep copying, Deep Copying
MemberwiseClone method, Object class, Deep Copying

shapes, drawing using the Brush classes, Drawing Shapes using the Brush Class
examples, Try it Out - Brush Example

shared assemblies, Shared Assemblies
compatibility, Version Compatibility
copying strongly named assembly into GAC, Try it Out - Signing the Shapes Assembly

creating, Creating a Shared Assembly
GAC, Global Assembly Cache
security, Security and Strong Names
signing with strong name, Try it Out - Signing the Shapes Assembly

short types, Simple Types
converting short types to byte types', Explicit Conversions
converting short types to float types', Try it Out - Type Conversions in Practice

Shortcut property, MenuItem control, The MenuItem Control

Show method, Form class, Building MDI Applications

ShowApply property, FontDialog class, Properties of the FontDialog

ShowColor property, FontDialog class, Properties of the FontDialog

ShowDialog method, ColorDialog class, How to Use the Color Dialog

ShowDialog method, CommonDialog class, How to Use Dialogs

ShowDialog method, FontDialog class, How to Use the FontDialog

ShowDialog method, OpenFileDialog class, Try it Out - Adding and Using an Open File Dialog

ShowDialog method, OpenFileDialog control, Try it Out - Monitoring the File System

ShowDialog method, PageSetupDialog class, Try it Out - Adding a Page Setup Dialog

ShowDialog method, SaveFileDialog class, Try it Out - Adding a SaveFileDialog

ShowEffects property, FontDialog class, Properties of the FontDialog

ShowHelp property, OpenFileDialog class, Help

ShowPanels property, StatusBar control, StatusBar Properties

ShowSelectionMargin property, RichTextBox control, RichTextBox Properties

ShowShortcut property, MenuItem control, The MenuItem Control

ShowSQL example, Try it Out - Show SQL Example

ShowToolTips property, Toolbar control, ToolBar Properties

Simple Object Access Protocol, see soap

simple types, Simple Types
bool types, Simple Types
char types, Simple Types
example, Simple Types
numeric types, Simple Types
string types, String Manipulation

SimpleEditor application, Try it Out - Creating the Simple Text Editor Windows Application
adding controls, Try it Out - Creating the Simple Text Editor Windows Application
adding open file dialog, Try it Out - Adding and Using an Open File Dialog
adding page setup dialog, Try it Out - Adding a Page Setup Dialog
adding print dialog, Try it Out - Adding a PrintDialog
adding print preview dialog, Try it Out - Adding a Print Preview Dialog
adding save file dialog, Try it Out - Adding a SaveFileDialog
creating installation package using Visual Studio .NET, Creating an Installation Package for the Simple
Editor

OpenFile method, Try it Out - Creating the Simple Text Editor Windows Application
print document component example, Try it Out - Adding a PrintDocument Component
print menu entries example, PrintPage Event
printing multiple pages example, Printing Multiple Pages
SaveFile method, Try it Out - Adding a SaveFileDialog
setting form properties, Try it Out - Creating the Simple Text Editor Windows Application
setting form title, Try it Out - Setting the Title of the Form
starting, Try it Out - Adding and Using an Open File Dialog

SimpleEditor package, Windows Installer example
adding files to package, Try it Out - Add Files to the Installer Package
building the project, Building the Project
configuring the project, Try it Out - Configuring the Project
Confirm Installation dialog, Confirm Installation
creating the project, Create the Project
Disk Space dialog, Disk Cost
Installation Complete dialog, Installation Complete
installing application, Installation
License Agreement dialog, License Agreement
Optional Files dialog, Optional Files
Read Me dialog, Read Me
running the application, Running the Application
Select Installation Folder dialog, Select Installation Folder
self-repair, Self-Repair
uninstalling applications, Uninstall
Welcome dialog, Welcome

Single Document Interfaces, see sdi applications

Size property, Font class, Drawing Text using the Font Class

Size property, Form class, Try it Out - TextBoxTest

Size property, ImageList control, Try it Out - ListView Example

Size structure, System.Drawing namespace, Size

SmallImageList property, ListView control, ListView Properties

sn.exe
assembly naming options, Registering in the GAC
completing strong name, Completing the Strong Name
generating strong names, Creating a Shared Assembly
key files, generating, Extracting the Public Key
registering assemblies in GAC, Registering in the GAC

SOAP, SOAP
beginnings of web services, SOAP
communication between a client and a server, Calling a Method
firewalls, SOAP and Firewalls
messages, Calling a Method
Web Services architecture, Web Services Architecture

SOAP body, Calling a Method

SOAP header, Calling a Method

SoapFormatter class, System.Runtime.Serialization.Formatters.Soap namespace, System.
SerializableAttribute

SoapHttpClientProtocol class, System.Web.Services.Protocols namespace, Try it Out - Creating a Client
Windows Application

BeginInvoke method, Try it Out - Creating a Client Windows Application
EndInvoke method, Try it Out - Creating a Client Windows Application
implementing windows client, Try it Out - Creating a Client Windows Application
Invoke method, Try it Out - Creating a Client Windows Application
Url property, Try it Out - Creating a Client Windows Application

Sockets API, Before Web Services

SolidBrush class, System.Drawing namespace, Drawing Shapes using the Brush Class

SolidColorOnly property, ColorDialog class, Properties of the Color Dialog

Solution Explorer window
Class View window and', The Solution Explorer
Designer, Try it Out - Creating the Weblog Page
Properties window and', The Solution Explorer
References', The Solution Explorer
Task List and Output window, The Properties Window
Task List and Output window', The Properties Window
View Code', The Solution Explorer

Solution Explorer window', The Solution Explorer

solutions, Visual Studio .NET, VS Solutions

Sorted property, ListBox control, ListBox Properties

Sorting property, ListView control, ListView Properties

Split method, String class, Try it Out- Comma-Separated Values

Split method, String class', Try it Out - Statement Auto-completion in VS

SQL, Structured Query Language
COUNT() function, Try it Out - Retrieving Single Values with ExecuteScalar()
direct execution of SQL using ADO.NET, Direct Execution of SQL Commands
generating database schema, Generating the SQL
introduction, Structured Query Language

SQL Server data provider, SQL Server .NET Data Provider
connecting to the data source, Try it Out - Reading Data with the Data Reader
establishing a connection to the database, Try it Out - Reading Data with the Data Reader
example, Reading Data with the Data Reader
issuing a query, Try it Out - Reading Data with the Data Reader
reading results, Try it Out - Reading Data with the Data Reader
System.Data.SqlClient namespace, SQL Server .NET Data Provider

SQL statements
building SQL statement, Generating the SQL Statement
Data Adapter Configuration Wizard, The Data Adapter Configuration Wizard
SELECT, Structured Query Language

SQL statements in ADO.NET, SQL Support in ADO.NET
example, Viewing SQL SELECT, UPDATE, INSERT, and DELETE Commands

SELECT, SQL Commands in Data Adapters

SqlCommand object, see command object, ado.net

SqlConnection object, connection object, ado.net

SqlDataAdapter object, dataadapter object, ado.net
Fill method, Try it Out - Finding Rows
MissingSchemaAction property, Try it Out - Finding Rows
SelectCommand property, Try it Out - Show SQL Example
Update method, Try it Out - Deleting Rows

Stabilizing phase, What is Deployment?

standalone attribute, XML declaration, The XML Declaration

Start method, Timer class, Try it Out - Handling Events

state, Properties and Fields
accessing using properties rather than fields, Properties and Fields

StateImageList property, ListView control, ListView Properties

statements, Basic C# Syntax
auto-completion in Visual Studio .NET, Try it Out - Statement Auto-completion in VS
using statement, Namespaces

static class members, Member Definitions
compared to instance class members, Static and Instance Class Members
UML representation, Static and Instance Class Members

static keyword
class member definitions, Member Definitions
field definitions, Defining Fields
global variables in console applications, Try it Out - Defining and Using a Basic Function
method definitions, Defining Methods

static pages
determining active elements of static page, Try it Out - Adding a Copyright Element

static pages, building
Weblogs, building, The Application Basics

StatusBar control, The StatusBar Control
events, StatusBar Events
example, Try it Out - Working with a Status Bar
properties, StatusBar Properties
StatusBarPanel class, The StatusBarPanel Class

StatusBar example
adding event handlers, Adding the Event Handlers

StatusBarPanel class, System.Windows.Forms namespace, The StatusBarPanel Class
Style property, The StatusBarPanel Class

Step Into
code, stepping through', Stepping Through Code

Step Out
code, stepping through', Stepping Through Code

Step Over
code, stepping through', Stepping Through Code

StreamReader class, System.IO namespace, The StreamReader Object
Read method, Reading Data
ReadLine method, Try it Out- Comma-Separated Values
ReadToEnd method, Reading Data

streams, Streams
input streams, The StreamReader Object
output streams, The StreamWriter Object
System.IO namespace, The Classes for Input and Output

StreamWriter class, System.IO namespace, The StreamWriter Object
Write method, Try it Out - Output Stream
WriteLine method, Try it Out - Output Stream

String class, System namespace, Try it Out - Loading Weblog Files
GetUpperBound method, Try it Out- Comma-Separated Values
PadLeft method', String Manipulation
PadRight method', String Manipulation
Split method, Try it Out- Comma-Separated Values
Split method', Try it Out - Statement Auto-completion in VS
ToCharArray method, Try it Out - Writing Data to Random Access Files
ToCharArray method', String Manipulation
ToLower method', String Manipulation
ToUpper method', String Manipulation
Trim method', String Manipulation
TrimEnd method, Try it Out - Adding a PrintDocument Component
TrimEnd method', String Manipulation
TrimStart method', String Manipulation

string literals, String Literals
escape sequences, String Literals
verbatim strings, String Literals

string types, Simple Types
commands, Try it Out - Statement Auto-completion in VS
declaring, Try it Out - Using Simple Type Variables
foreach loops', String Manipulation
manipulating strings', String Manipulation
reference types, String Literals

string variables, ASP.NET, Try it Out - Loading the Chosen Entry

StringFormat class, System.Drawing namespace
Alignment property, Try it Out - Font Example

strong names, Creating a Shared Assembly
completing strong name, Completing the Strong Name
copying strongly named assembly into GAC, Try it Out - Signing the Shapes Assembly
generating using sn.exe, Creating a Shared Assembly
signing assemblies, Try it Out - Signing the Shapes Assembly

strong typing

arrays, Try it Out - Arrays versus More Advanced Collections
custom collection classes, Indexers

struct functions, Struct Functions
example, Struct Functions
static keyword not required, Struct Functions

struct keyword
defining structs', Defining Structs

structs
ability to contain functions as well as data, Struct Functions
adding functions, Struct Functions
compared to classes, Try it Out - Classes versus Structs
defining structs, Defining Structs
defining structs', Defining Structs
evaluating to variables', Try it Out - Using a Struct
example', Defining Structs
explanation', Try it Out - Using a Struct
introduction', Structs
public keyword', Defining Structs
value types, Try it Out - Classes versus Structs

Structured Exception Handling
catch blocks', try...catch...finally
code, stepping through', Try it Out - Writing Text to the Output Window
difficulties', Notes on Exception Handling
finally blocks', try...catch...finally
try blocks', try...catch...finally

Structured Exception Handling', try...catch...finally

Structured Query Language, see sql

Style property, Font class, Drawing Text using the Font Class

Style property, StatusBarPanel class, The StatusBarPanel Class

subscribing to events, What is an Event?
example, Try it Out - Handling Events

suffixes, Literal Values

switch statement
basic structure, The switch Statement
basic structure', The switch Statement
compared to if statement', The switch Statement
example using constant variables', Try it Out - Using the switch Statement
multiple comparisons', Checking More Conditions Using if Statements
terminating with break statement', The switch Statement

symbolic information
debugging', Debugging in Visual Studio

syntax, Basic C# Syntax
attributes, AssemblyInfo.cs
blocks of code, Basic C# Syntax
case sensitivity, Basic C# Syntax

comments, Basic C# Syntax
console application structure, Basic C# Console Application Structure
curly brackets, Basic C# Syntax
indentation, Basic C# Syntax
semicolons, Basic C# Syntax
statements, Basic C# Syntax
white space characters, Basic C# Syntax

syntax errors', Chapter 7: Debugging and Error Handling

System namespace, Namespaces
ArgumentException class, Setting the File Filter
ArgumentOutOfRangeException class, Try it Out - Using Fields, Methods, and Properties
Array class, Try it Out - Arrays versus More Advanced Collections
Attribute class, Test Case Attribute
AttributeTargets enumeration, System.AttributeUsageAttribute
AttributeUsageAttribute class, System.AttributeUsageAttribute
Console class, A Card Game Client for CardLib
DateTime structure, Try it Out - Displaying the Time
Environment class, Specifying Directories
Environment.SpecialFolder enumeration, Specifying Directories
EventArgs class, Try it Out - Using a Multi-Purpose Event Handler
Exception class, Custom Exceptions
Exception class', Try it Out - Writing Text to the Output Window
ICloneable interface, Upgrading CardLib Part 3
IndexOutOfRangeException class', Try it Out - Writing Text to the Output Window
NonSerializedAttribute class, System.SerializableAttribute
Object class, Deep Copying
ObsoleteAttribute class, System.ObsoleteAttribute
Random class, Try it Out - Defining Events
SerializableAttribute class, System.SerializableAttribute
String class, Try it Out - Loading Weblog Files
Type class, BugFixAttribute

System.Collections namespace
ArrayList class, Try it Out - Arrays versus More Advanced Collections
CollectionsBase class, Defining Collections
DictionaryBase class, Keyed Collections and IDictionary
ICollection interface, Collections
IDictionary interface, Keyed Collections and IDictionary
IEnumerable interface, Try it Out - Arrays versus More Advanced Collections
IList interface, Collections

System.ComponentModel namespace
IComponent interface, Components

System.Data namespace, What is ADO.NET?
data providers, Using the System.Data Namespace
DataColumn object, DataTable Object
DataRelation object, Creating a DataRelation Object
DataRelationCollection class, Creating a DataRelation Object
DataRow object, Generating the SQL

DataSet class, Simple Access to Relational Data
DataSet object, Generating Database Tables using Attributes
DataTable object, Generating the SQL

System.Data.OleDb namespace, What is ADO.NET?
OLE DB .NET data provider, OLE DB .NET Data Provider

System.Data.SqlClient namespace, What is ADO.NET?
SQL Server data provider, SQL Server .NET Data Provider

System.Diagnostics namespace
ConditionalAttribute class, System. Diagnostics. ConditionalAttribute
DebuggableAttribute class, Reflection
debugging in non-break mode', Try it Out - Writing Text to the Output Window

System.Drawing namespace
Bitmap class, Drawing Using Images
Brush class, Drawing Shapes using the Brush Class
Brushes class, Try it Out - Brush Example
Color structure, Colors
Font class, Drawing Text using the Font Class
Graphics class, The Graphics Class
GraphicsUnit enumeration, Drawing Text using the Font Class
Image class, Drawing Using Images
Pens class, Try it Out - Pen Example
Point structure, Point
Rectangle structure, Rectangle
Size structure, Size
SolidBrush class, Drawing Shapes using the Brush Class

System.Drawing.Drawing2D namespace, System.Drawing.Drawing2D
GraphicsPath class, System.Drawing.Drawing2D
HatchBrush class, System.Drawing.Drawing2D
LinearGradientBrush class, System.Drawing.Drawing2D
Matrix class, System.Drawing.Drawing2D
PathGradientBrush class, System.Drawing.Drawing2D
PathPointType enumeration, GraphicsPaths
TextureBrush class, ry it Out - Creating a Pen from an Image
vector graphics, System.Drawing.Drawing2D

System.Drawing.Imaging namespace
Metafile class, System.Drawing.Imaging

System.Drawing.Printing namespace, Printing
PageSettings class, Printing Architecture
PrintController class, Printing Architecture
PrintDocument class, Printing Architecture
PrinterSettings class, Printing Architecture
PrintPageEventArgs class, PrintPage Event
PrintPageEventHandler delegate, PrintPage Event

System.Globalization namespace
AssemblyCulture attribute, AssemblyInfo.cs

System.IO namespace, The Classes for Input and Output

Directory class, The File and Directory Classes
DirectoryInfo class, Try it Out - Displaying Lists of Weblog Entries
File class, The File and Directory Classes
FileAccess enumeration, The FileStream Object
FileInfo class, Try it Out - Sorting Entries
FileMode enumeration, The FileStream Object
FileStream class, The FileStream Object
FileSystemWatcher class, Monitoring the File Structure
NotifyFilters enumeration, Try it Out - Monitoring the File System
Path class, Try it Out - Monitoring the File System
SeekOrigin enumeration, File Position
StreamReader class, The StreamReader Object
StreamWriter class, The StreamWriter Object

System.Reflection namespace, Reflection
Assembly class, Reflection
AssemblyDelaySignAttribute class, System.Reflection.AssemblyDelaySignAttribute
AssemblyKeyFileAttribute class, Custom Attributes

System.Reflection.Emit namespace, Reflection

System.Runtime.Serialization.Formatters.Binary namespace
BinaryFormatter class, System.SerializableAttribute

System.Runtime.Serialization.Formatters.Soap namespace
SoapFormatter class, System.SerializableAttribute

System.Text namespace, Try it Out - Reading Data from Random Access Files
Decoder class, Try it Out - Reading Data from Random Access Files
Encoder class, Try it Out - Writing Data to Random Access Files

System.Timers namespace
ElapsedEventArgs class, Try it Out - Handling Events
ElapsedEventHandler delegate, Try it Out - Handling Events
Timer class, Try it Out - Using a Multi-Purpose Event Handler

System.Web namespace
HttpApplication class, Try it Out - Preventing Editing
HttpRequest class, Try it Out - Loading the Chosen Entry
HttpServerUtility class, Try it Out - Finding Where the Web Site is Stored

System.Web.Services namespace, Web Services and the .NET Framework
WebMethodAttribute class, Generated Files
WebService class, Generated Files
WebServiceAttribute class, Try it Out - Adding a Method
WebServiceBindingAttribute class, Try it Out - Creating a Client Windows Application

System.Web.Services.Description namespace, Web Services and the .NET Framework

System.Web.Services.Discovery namespace, Web Services and the .NET Framework

System.Web.Services.Protocols namespace, Web Services and the .NET Framework
HttpGetClientProtocol class, Alternative Client Protocols
HttpPostClientProtocol class, Alternative Client Protocols
SoapHttpClientProtocol class, Try it Out - Creating a Client Windows Application

System.Web.UI namespace

Page class, Try it Out - Authenticating the User

System.Windows.Forms namespace
BindingContext object, Navigating through the DataSet
ColorDialog class, Common Dialogs
ColumnHeader class, ColumnHeader
CommonDialog class, Common Dialogs
Control class, Controls
DialogResult enumeration, Results
FileDialog class, File Dialogs
FontDialog class, Properties of the FontDialog
Form class, Overview of Graphical Drawing
KeyPressEventArgs class, Adding the Event Handlers
KeyPressEventHandler delegate, Adding the Event Handlers
ListViewItem class, ListViewItem
Menu class, Using the Menu Control
OpenFileDialog class, Common Dialogs
PageSetupDialog class, Page Setup
PaintEventArgs class, Overview of Graphical Drawing
PrintDialog class, Printing Architecture
PrintPreviewControl class, PrintPreviewControl
PrintPreviewDialog class, PrintPreviewDialog
SaveFileDialog class, SaveFileDialog
StatusBarPanel class, The StatusBarPanel Class
UserControl class, Overview of Graphical Drawing

System.Xml namespace, What is ADO.NET?

System.Xml.Serialization namespace
XmlSerializer class, Try it Out - Creating Weblog Entries

Index
byKarli Watsonet al.

Wrox Press 2003

Index
T
TabControl control, The TabControl Control

adding the event handler, Adding the Event Handler
properties, TabControl Properties
working with, Working with the TabControl

TabCount property, TabControl control, TabControl Properties

TabIndex property, Control class, Properties

TableName property, DataTable class, Try it Out - Reading XML into a DataSet

Tables property, DataSet class, Try it Out- Comma-Separated Values

TabPages property, TabControl control, TabControl Properties

TabStop property, Control class, Properties

Tag property, Control class, Properties

tags, ASP.NET, Try it Out - Adding a Copyright Element

Task List and Output window
adding new tasks', The Properties Window
error location', The Properties Window
Solution Explorer window and', The Properties Window

Task List and Output window', The Properties Window

templates
ASP.NET Web Application template, The Application Basics
server side technology, Chapter 23: ASP.NET Applications

ternary operator', The Ternary Operator

ternary operators, conditional operators'
compared to if statement', The if Statement

ternary operators', The Ternary Operator

test classes
custom attributes, testing, Attributing the Class for Usage

TestCaseAttribute custom attribute, Test Case Attribute

text boxes
viewing database tables, Seeing the Whole Picture

text editor
MDI applications text editor example, Try it Out - Creating an MDI Application

Text property, Control class, Properties

Text property, Form class, Try it Out - Setting the Title of the Form

Text property, Label control, Try it Out - Loading Weblog Files
data binding, Try it Out - Rendering the Remainder of the Weblog Entry

Text property, ListBox control, ListBox Properties

Text property, MenuItem control, The MenuItem Control

Text property, StatusBar control, StatusBar Properties

Text property, ToolbarButton control, The ToolBarButton Properties

text, drawing using an image, Try it Out - Drawing Text with an Image

text, drawing using the Font class, Drawing Text using the Font Class

TextAlign property, Label control, The Label and LinkLabel Controls

TextAlign property, LinkLabel control, The Label and LinkLabel Controls

TextBox control, Try it Out - Authenticating the User
combining Label and Textbox controls, Try it Out - LabelTextbox Example
events, TextBox Events
table of properties, TextBox Properties

TextBoxTest example, Try it Out - TextBoxTest
adding event handlers, Adding the Event Handlers
build the user interface, Try it Out - TextBoxTest
GotFocus event, Adding the Event Handlers
KeyPress event, Adding the Event Handlers
LostFocus event, Adding the Event Handlers
TextChanged event, Adding the Event Handlers
Validated event, Adding the Event Handlers
Validating event, Adding the Event Handlers

TextChanged event, TextBox control, TextBox Events
TextBoxTest example, Adding the Event Handlers

TextureBrush class, System.Drawing.Drawing2D namespace, Drawing Using Images
creating pen using images, ry it Out - Creating a Pen from an Image
drawing text using images, Try it Out - Drawing Text with an Image

This keyword, Indexers
default constructor called before non-default, Upgrading CardLib Part 2
pass reference to current object instance to method, The this Keyword
using non-default constructor on the current class, Constructor Execution Sequence

ThreeDCheckBoxes property, CheckedListBox control, ListBox Properties

ThreeState property, CheckBox control, CheckBox Properties

throw keyword', Try it Out - Writing Text to the Output Window

tiling windows, Building MDI Applications

time, displaying in Weblog entries, Displaying the Time

Timer class, System.Timers namespace
Elapsed event, Try it Out - Using a Multi-Purpose Event Handler

Start method, Try it Out - Handling Events

Title property, OpenFileDialog class, Dialog Title

Title property, SaveFileDialog class, Title

ToChar method, Convert class, Reading Data

ToCharArray method, String class, Try it Out - Writing Data to Random Access Files

ToCharArray method, String class', String Manipulation

ToDouble method, Convert class, Try it Out - Manipulating Variables with Mathematical Operators
explicit conversion', Explicit Conversions Using the Convert Commands

ToInt32 method, Convert class
explicit conversion', Explicit Conversions Using the Convert Commands

ToInt32 method, Convert class', Try it Out - Using the Boolean and Bitwise Operators

tokens
public keys, Extracting the Public Key

ToLongDateString method, DateTime structure, Try it Out - Displaying the Time

ToLower method, String class', String Manipulation

Toolbar control, Toolbars
adding event handlers, The ToolBarButton Properties
buttons, The ToolBarButton Properties
events, ToolBar Events
example, Try it Out - Toolbar Example
properties, ToolBar Properties
tooltips, Toolbars
using with ContextMenu control, Try it Out - Toolbar Example
using with ImageList control, Try it Out - Toolbar Example

ToolbarButton control, The ToolBarButton Properties
example, Try it Out - Toolbar Example
font style, The ToolBarButton Properties
table of properties, The ToolBarButton Properties

ToolBox
control properties, Properties
Windows Form Designer, The Toolbox

tooltips, Toolbar controls, Toolbars

ToolTipText property, ToolbarButton control, The ToolBarButton Properties

Top property, Control class, Properties

top-level menus, Try it Out - Menu Example

TopItem property, ListView control, ListView Properties

ToShortDateString method, DateTime structure, Try it Out - Output Stream

ToString method, Convert class', Try it Out - Using an Enumeration

ToString method, DateTime structure, Try it Out - Displaying the Time

ToString method, ListBox control, ListBox Methods

ToString method, Object class, System.Object
overriding method, Try it Out - Using Fields, Methods, and Properties

ToUpper method, String class', String Manipulation

Trace class, System.Diagnostics namespace
Assert method', Other Ways of Entering Break Mode
Write method', Try it Out - Writing Text to the Output Window
WriteIf method', Try it Out - Writing Text to the Output Window
WriteLine method', Try it Out - Writing Text to the Output Window
WriteLineIf method', Try it Out - Writing Text to the Output Window

TransactionOption property, WebMethodAttribute class, WebMethod Attribute

Trim method, String class', String Manipulation

TrimEnd method, String class, Try it Out - Adding a PrintDocument Component

TrimEnd method, String class', String Manipulation

TrimStart method, String class', String Manipulation

try blocks', Try it Out - Writing Text to the Output Window

type attribute scope, Attribute Scope

Type class, System namespace, Creating Constructors and Properties
GetCustomAttributes method, BugFixAttribute
GetMembers method, BugFixAttribute

type conversion, Try it Out - Manipulating Variables with Mathematical Operators
benefits, Try it Out - Manipulating Variables with Mathematical Operators
enumerations', Try it Out - Using an Enumeration
example', Try it Out - Type Conversions in Practice
explicit conversion', Explicit Conversions
implicit conversion', Implicit Conversions
introduction', Type Conversion

type conversion', Chapter 5: More About Variables

type metadata, Structure of Assemblies
viewing, Try it Out - Viewing the Contents of an Assembly with Ildasm

type-safety, What is C#?

typeof operator', Try it Out - Using an Enumeration

typeof() operator, System.Object

Index
byKarli Watsonet al.

Wrox Press 2003

Index
U
UDDI service, Search Engine for Web Services

MS UDDI Site, searching, Search Engine for Web Services
search engine for web services, Search Engine for Web Services

uint types, Simple Types

ulong types, Simple Types

UML, What is an Object?
classes and objects, picturing using UML syntax, What is an Object?
representations of classes and objects, What is an Object?
representations of inheritance, Inheritance
representations of interfaces, Interfaces
representations of methods, Methods
representations of properties and fields, Properties and Fields
representations of static class members, Static and Instance Class Members
representing collections, Collections
representing contained classes, Containment

unary operators, Expressions
overloading, Operator Overloading

unboxing, explicit conversion
casting, Boxing and Unboxing
requires explicit conversion, Boxing and Unboxing

unchecked keyword”, Explicit Conversions

underlying types
= assignment operator”, Defining Enumerations
enumerations”, Defining Enumerations

UndoActionName property, RichTextBox control, RichTextBox Properties

unhandled exceptions”, Exceptions

Uniform Resource Identifiers, see uris

uninstalling applications, Uninstall

Union method, Region class, Try it Out – Creating a Region

Unit property, Font class, Drawing Text using the Font Class

Universal Description, Discovery and Integration, see uddi service

Universal Modeling Language, see uml

unmanaged code, Managed Code
compared to managed code, Managed Code

unsafe code, What is C#?
pointer manipulation, Try it Out – Classes versus Structs

Update method, SqlDataAdapter object, Try it Out – Deleting Rows

UpdatingData example, Updating the Database

URIs, XML Namespaces

Url property, SoapHttpClientProtocol class, Try it Out – Creating a Client Windows Application

user accounts
connecting to databases, Connecting to the Database

user authentication, Authenticating the User

user controls, Creating Controls
adding custom event handlers, Adding a Custom Event Handler
adding event handlers, Adding More Event Handlers
adding properties, Adding More Properties
debugging, Debugging User Controls
example, Creating Controls
extending user control, Extending the LabelTextbox Control
functionality, Creating Controls
testing, Extending the LabelTextbox Control

User Desktop, File System Editor

user input, Try it Out – Manipulating Variables with Mathematical Operators

User Interface editor, User Interface Editor
installation modes, Additional Dialogs
using, Try it Out – Start the User Interface Editor

User Personal Data Folder, File System Editor

User Programs Menu, File System Editor

User property, WebService class, Creating a Web Service

User Send To Menu, File System Editor

user sessions, Try it Out – Preventing Editing
cookies, User Sessions and Cookies

user-to-application communication, Where to Use Web Services

UserControl class, System.Windows.Forms namespace, Overview of Graphical Drawing
OnPaint method, Overview of Graphical Drawing

ushort types, Simple Types
implicit conversion example”, Implicit Conversions
type conversion”, Type Conversion

using keyword
disposing of objects, Disposing of Objects

using statement, Namespaces
limitations, Namespaces

System.Diagnostics namespace”, Try it Out – Writing Text to the Output Window

Index
byKarli Watsonet al.

Wrox Press 2003

Index
V
valid XML, Well-formed and Valid XML

Validated event, Control class, Events

Validated event, TextBox control
TextBoxTest example, Adding the Event Handlers

ValidateNames property, SaveFileDialog class, Validation

Validating event, Control class, Events

Validating event, TextBox control
TextBoxTest example, Adding the Event Handlers

validating parsers, Well-formed and Valid XML

validation controls
RequiredFieldValidDator control, Try it Out - Creating Weblog Entries

value keyword
property definitions, Defining Properties

value parameters, Reference and Value Parameters

value types
compared to reference types, Reference versus. Value Types
stored in stack, Reference versus. Value Types
structs, Try it Out - Classes versus Structs

variable scope, Variable Scope
branching and looping structures, Variable Scope in Other Structures
C#compiler will detect variable scope problems, Variable Scope in Other Structures
defining and using a basic function, Try it Out - Defining and Using a Basic Function
looping variables, Variable Scope in Other Structures
scope within which variables are valid, Try it Out - Defining and Using a Basic Function

variables, expressions
assigning variables, Variable Declaration and Assignment
declaring variables, Variable Declaration and Assignment
escape sequences, Try it Out - Using Simple Type Variables
exercises', Exercises
global variables, Try it Out - Defining and Using a Basic Function
introduction, Chapter 3: Variables and Expressions
literal values, String Literals
local variables, Try it Out - Defining and Using a Basic Function
manipulating strings', String Manipulation

naming variables, Naming Conventions
summary, Summary
summary', Summary
type conversion', Type Conversion
types, Complex Variable Types

simple types, Simple Types

variables, monitoring content
debugging in break mode', Monitoring Variable Content
example', Monitoring Variable Content
tabs', Monitoring Variable Content
Watch windows, Monitoring Variable Content
Watch windows', Monitoring Variable Content

variables, monitoring content', Monitoring Variable Content

variables', Chapter 5: More About Variables

vector graphics, System.Drawing.Drawing2D

verbatim strings, String Literals

verification skip tables, Registering in the GAC

version attribute, XML declaration, The XML Declaration

version attributes
assemblies, Version Attributes
viewing in ildasm, Version Attributes

version compatibility
assemblies, Version Compatibility

versioning, System.ObsoleteAttribute

View property, ListView control, ListView Properties

virtual indexers, The Add Indexer Wizard

virtual keyword
method definitions, Defining Methods
property definitions, Defining Properties

Visible property, Control class, Properties

Visual C# .NET Standard Edition, visual studio .net
creating class libraries, Creating a Class Library with C# Standard Edition

Visual Studio .NET, Visual C# .NET Standard Edition
Add Indexer wizard, The Add Indexer Wizard
Add Reference option, Manifests
auto-completion, Try it Out - Statement Auto-completion in VS
auto-documentation, XML Auto-documentation in C#
class library projects, Class Library Projects
Class View window, VS Member Wizards
classes, adding to project, Adding Classes
code outlining', Try it Out - Creating a Simple Windows Application
compiling and executing code', Try it Out - Creating a Simple Console Application
compiling projects example, Try it Out - Creating a Shapes Client

console application', Try it Out - Creating a Simple Console Application
controls, Chapter 14: Advanced Windows Forms Features
creating a class library, Try it Out - Creating the Shapes Component
creating XML documents, Try it Out - Creating an XML Document in VS
CSS editor, Try it Out - Improving the Look
data access, Chapter 18: Getting At Your Data
Data Adapter Configuration Wizard, The Data Adapter Configuration Wizard
data, viewing in Visual Studio .NET, Viewing Data in VS
debugging in Visual Studio .NET, Debugging in Break Mode
debugging in Visual Studio .NET', Debugging in Visual Studio
debugging using attributes, System. Diagnostics. ConditionalAttribute
deployment project types, Deployment Project Types
development environment, The Visual Studio .NET Development Environment
development environment', The Visual Studio .NET Development Environment
features for .NET development, Visual Studio .NET
FrontPage Extensions, Storing Weblog Entries
GettingData Windows application, The DataSet
ildasm, Viewing the Contents of an Assembly
intellisense, Overloading Functions
Object Browser, The Object Browser
object oriented programming tools, OOP Tools in Visual Studio .NET
Properties window, Member Properties
searching MS UDDI Site, Search Engine for Web Services
solutions, VS Solutions
starting a new project', Try it Out - Creating a Simple Console Application
Weblogs, building, Summary
Windows Form Designer generated code', Try it Out - Creating a Simple Windows Application
Windows Forms application', Try it Out - Creating a Simple Windows Application

Visual Studio .NET Installer
compared to Windows Installer, Summary

Visual Studio .NET', Chapter 2: Writing a C# Program

vsdisco file
Web Services discovery, Web Services Discovery

Index
byKarli Watsonet al.

Wrox Press 2003

Index
W
Watch N tab

variables, monitoring content', Monitoring Variable Content

Watch windows
QuickWatch window', Monitoring Variable Content
variables, monitoring content', Monitoring Variable Content

Web Applications, asp.net applications
implementing Web Services client, Implementing an ASP.NET Client
programming methods, Adding Active Elements

Web Bootstrapper, Bootstrapper

web browser, tagging, User Sessions and Cookies

Web Forms
ASP.NET, What Kind of Applications Can I Write with C#?
compared to Windows Forms, Try it Out - Adding a Copyright Element
Label control, Try it Out - Adding a Copyright Element

Web Services, Chapter 24: Web Services
.NET Remoting, SOAP
application architecture, Application Architecture
application-to-application communication, Where to Use Web Services
ASP.NET web service creation, Implementing an ASP.NET Client
book distributor application scenario, A Book Distributor Application Scenario
client application types, Client Application Types
hotel travel agency application scenario, A Hotel Travel Agency Application Scenario
predecessors, SOAP
SOAP, SOAP
user-to-application communication, Where to Use Web Services
weather application, Where to Use Web Services
where to use, Where to Use Web Services

Web Services and .NET Framework, Web Services and the .NET Framework
client, Implementing a Windows Client
namespaces, Web Services and the .NET Framework

Web Services architecture, Web Services Architecture
calling a method, Calling a Method
discovery, Web Services Discovery
important mechanisms for calling web services, Web Services Architecture
obtaining information on methods web service supports, What Methods Can I Call?

search engine for web services, Search Engine for Web Services
SOAP, Calling a Method
WSDL, What Methods Can I Call?

Web Services Description Language, see wsdl

web sites
access, restricting, Restricting Access to the Web Site
cookies, User Sessions and Cookies

Weblog entries, Weblog Entries
creating, Creating New Weblog Entries
displaying, Improving the Look
displaying lists of entries, Displaying Lists of Entries
displaying the time and date, Displaying the Time
editing, Editing Weblog Entries
loading, Loading the Chosen Entry
rendering details, Rendering Details
sorting, Sorting Entries
storing, Try it Out - Finding Where the Web Site is Stored

Weblogs, Chapter 23: ASP.NET Applications
building in Visual Studio .NET, Try it Out - Adding a Copyright Element
cookies, User Sessions and Cookies

WebMethodAttribute class, System.Web.Services namespace, Generated Files
properties, WebMethod Attribute

WebService class, System.Web.Services namespace, Generated Files
properties, Creating a Web Service

WebServiceAttribute class, System.Web.Services namespace, Try it Out - Adding a Method
properties, WebService Attribute

WebServiceBindingAttribute class, System.Web.Services namespace, Try it Out - Creating a Client Windows
Application

Welcome dialog, Welcome

well-formed XML, Well-formed and Valid XML

WHERE clause, SELECT statement, Structured Query Language

while loops
Boolean testing', while Loops
compared to for loops', for Loops
example', Try it Out - Using while Loops
specification', while Loops
using with for loop', Try it Out - Using for Loops
validation of user input', Try it Out - Using while Loops

whitespace characters, Basic C# Syntax

Width property, Control class, Properties

Windows applications
implementing Web Services client, Implementing a Windows Client

Windows applications, deployment, Chapter 17: Deploying Windows Applications

introduction, Chapter 17: Deploying Windows Applications
summary, Summary
Windows Installer, Microsoft Windows Installer Architecture
xcopy, Chapter 17: Deploying Windows Applications

Windows Control Library project
creating controls, Creating Controls

Windows dialog applications, SDI and MDI Applications
adding an open file dialog, Try it Out - Adding and Using an Open File Dialog
adding page setup dialog, Try it Out - Adding a Page Setup Dialog
adding print dialog, Try it Out - Adding a PrintDialog
adding print preview dialog, Try it Out - Adding a Print Preview Dialog
adding save file dialog, Try it Out - Adding a SaveFileDialog
description, SDI and MDI Applications
print document component example, Try it Out - Adding a PrintDocument Component
print menu entries example, PrintPage Event
printing multiple pages example, Printing Multiple Pages
SimpleEditor, Try it Out - Creating the Simple Text Editor Windows Application
starting, Try it Out - Adding and Using an Open File Dialog

Windows Form Controls, Chapter 13: Using Windows Form Controls
Button Control, The Button Control
CheckBox control, The RadioButton and CheckBox Controls
CheckedListBox control, The ListBox and CheckedListBox Controls
creating controls, Creating Controls
custom controls, Creating Controls
GroupBox control, The RadioButton and CheckBox Controls
ImageList control, The ImageList Control
introduction, Chapter 14: Advanced Windows Forms Features
Label control, The Label and LinkLabel Controls
LinkLabel control, The Label and LinkLabel Controls
ListBox control, The ListBox and CheckedListBox Controls
ListView control, The ListView Control
menu controls, Menus
RadioButton control, The RadioButton and CheckBox Controls
RichTextBox control, The RichTextBox Control
SDI and MDI applications, SDI and MDI Applications
StatusBar control, The StatusBar Control
summary, Summary
TabControl control, The TabControl Control
TextBox control, The TextBox Control
ToolbarButton control, The ToolBarButton Properties
toolbars, Toolbars
user controls, Creating Controls

Windows Form Designer
generated code', Try it Out - Creating a Simple Windows Application
ToolBox, The Toolbox

Windows Forms
compared to Web Forms, Try it Out - Adding a Copyright Element

Windows Forms application, What Kind of Applications Can I Write with C#?
add button to main form', Try it Out - Creating a Simple Windows Application
deployment, Chapter 17: Deploying Windows Applications
Design View, Try it Out - Creating a Simple Windows Application
dialogs, How to Use Dialogs
GettingData Windows application, The DataSet
layout of controls on the form', Try it Out - Creating a Simple Windows Application
New Project', Try it Out - Creating a Simple Windows Application
object-oriented programming in Windows applications, OOP in Windows Applications
viewing code in design view', Try it Out - Creating a Simple Windows Application
Visual Studio .NET', Try it Out - Creating a Simple Windows Application

Windows Forms application', Windows Forms Applications

Windows Installer, Microsoft Windows Installer Architecture
advantages, Advantages of the Windows Installer
advertisement, Advantages of the Windows Installer
architecture, Microsoft Windows Installer Architecture
bootstrappers, Bootstrapper
compared to Visual Studio .NET Installer, Summary
example, Windows Installer Terms
file repair, Advantages of the Windows Installer
packaging, Packaging
rollback, Advantages of the Windows Installer
selecting features for installation, Advantages of the Windows Installer
setup editors, User Interface Editor
summary, Summary
terminology, Windows Installer Terms
uninstalling applications, Advantages of the Windows Installer
ZAW features, Chapter 17: Deploying Windows Applications

Windows Installer Launch Condition, Launch Condition Editor

Windows Installer package
adding files, Try it Out - Add Files to the Installer Package
building the project, Building the Project
configuring the project, Try it Out - Configuring the Project
creating the project, Create the Project
installing application, Installation
project properties, Project Properties
running the application, Running the Application
self-repair, Self-Repair
uninstalling, Uninstall

windows, cascading, Building MDI Applications

windows, child, see mdi child

windows, main, see mdi container

windows, tiling, Building MDI Applications

WordWrap property, TextBox control, TextBox Properties

Wrappable property, Toolbar control, ToolBar Properties

wrapper assemblies, Interoperation with COM and Other Legacy Code
interoperation between .NET and COM, Interoperation with COM and Other Legacy Code

write access, specifying
properties, Properties and Fields

Write method, Console class, Try it Out - Handling Events

Write method, Console class', Try it Out - Using for Loops

Write method, Debug class', Try it Out - Writing Text to the Output Window

Write method, FileStream class, Try it Out - Writing Data to Random Access Files

Write method, StreamWriter class, Try it Out - Output Stream

Write method, Trace class', Try it Out - Writing Text to the Output Window

Write() function
definition, Try it Out - Defining and Using a Basic Function

WriteIf method, Debug class', Try it Out - Writing Text to the Output Window

WriteIf method, Trace class', Try it Out - Writing Text to the Output Window

WriteLine method, Console class, A Card Game Client for CardLib
compared to Debug.and Trace classes', Outputting Debugging Information
specifying variables, Try it Out - Using Simple Type Variables

WriteLine method, Console class', Implicit Conversions

WriteLine method, Debug class
compared to WriteLine method, Console class', Outputting Debugging Information

WriteLine method, Debug class', Try it Out - Writing Text to the Output Window

WriteLine method, StreamWriter class, Try it Out - Output Stream

WriteLine method, Trace class
compared to WriteLine method, Console class', Outputting Debugging Information

WriteLine method, Trace class', Try it Out - Writing Text to the Output Window

WriteLine method,Console class
debugging', Debugging in Non-Break (Normal) Mode

WriteLineIf method, Debug class', Try it Out - Writing Text to the Output Window

WriteLineIf method, Trace class', Try it Out - Writing Text to the Output Window

WriteXml method, DataSet class, Try it Out - Writing XML from a DataSet

WSDL, Web Services Architecture
document contains information on methods web service supports, What Methods Can I Call?
Web Services architecture, Web Services Architecture

Index
byKarli Watsonet al.

Wrox Press 2003

Index
X
xcopy

deploying Windows applications, Chapter 17: Deploying Windows Applications
limitations, Chapter 17: Deploying Windows Applications

XDR schemas, XDR Schemas
validating XML documents, XDR Schemas

XML, XML
introduction, XML
support in ADO.NET, Try it Out - Writing XML from a DataSet

XML Data-Reduced schemas, see xdr schemas

XML declaration, The XML Declaration
encoding attribute, Try it Out - Creating an XML Document in VS
standalone attribute, The XML Declaration
version attribute, The XML Declaration

XML documents, XML Documents
attributes, Attributes
auto-documentation, Try it Out - Documenting a Class
creating in Visual Studio .NET, Try it Out - Creating an XML Document in VS
DTDs, Validating XML Documents
elements, XML Elements
nodes, The XML Declaration
structure, Structure of an XML Document
valid documents, Well-formed and Valid XML
well-formed documents, Well-formed and Valid XML
XDR schemas, XDR Schemas
XML declaration, The XML Declaration
XSD schemas, Try it Out - Creating an XML Document in VS

XML elements, XML Elements
case sensitivity, XML Elements
compared to HTML tags, XML Elements

XML namespaces
URIs, XML Namespaces

XML parsers, XML Elements
validating parsers, Well-formed and Valid XML

XML Schema Definition Language, see xsd schemas

xmlns attribute, XML Namespaces

XmlSerializer class, System.Xml.Serialization namespace, Try it Out - Displaying the Time
Deserialize method, Try it Out - Loading Weblog Files
Serialize method, Try it Out - Creating Weblog Entries

XSD schemas, XSD Schemas
creating XML documents using Visual Studio .NET, Try it Out - Creating an XML Document in VS
DataSet object, Generating the SQL Statement
example, XSD Schemas
validating XML documents, XSD Schemas

Index
byKarli Watsonet al.

Wrox Press 2003

Index
Z
ZAW features, Chapter 17: Deploying Windows Applications

Zero Administration Windows features, see zaw features

List of Try It Outs
byKarli Watsonet al.

Wrox Press 2003

List of Try It Outs

Chapter 2: Writing a C# Program

Try it Out – Creating a Simple Console Application

Try it Out – Creating a Simple Windows Application

Chapter 3: Variables and Expressions

Try it Out – Using Simple Type Variables

Try it Out – Manipulating Variables with Mathematical Operators

Chapter 4: Flow Control

Try it Out – Using the Boolean and Bitwise Operators

Try it Out – Using the if Statement

Try it Out – Using the switch Statement

Try it Out – Using do Loops

Try it Out – Using while Loops

Try it Out – Using for Loops

Chapter 5: More About Variables

Try it Out – Type Conversions in Practice

Try it Out – Using an Enumeration

Try it Out – Using a Struct

Try it Out – Using an Array

Try it Out – Statement Auto-completion in VS

Chapter 6: Functions

Try it Out – Defining and Using a Basic Function

Try it Out – Exchanging Data with a Function

Try it Out – Exchanging Data with a Function Part 2

Try it Out – Defining and Using a Basic Function

Try it Out – Command Line Arguments

Try it Out – Using a Delegate to Call a Function

Chapter 7: Debugging and Error Handling

Try it Out – Writing Text to the Output Window

Try it Out – Writing Text to the Output Window

Chapter 8: Introduction to Object-Oriented Programming

Try it Out – Objects in Action

Chapter 9: Defining Classes

Try it Out – Defining Classes

Try it Out – Using a Class Library

Try it Out – Classes versus Structs

Chapter 10: Defining Class Members

Try it Out – Using Fields, Methods, and Properties

Chapter 11: More About Classes

Try it Out – Arrays versus More Advanced Collections

Try it Out – Implementing an Animals Collection

Try it Out – Using the is Operator

Chapter 12: Events

Try it Out – Handling Events

Try it Out – Defining Events

Try it Out – Using a Multi-Purpose Event Handler

Chapter 13: Using Windows Form Controls

Try it Out – Button Test

Try it Out – TextBoxTest

Try it Out – RadioButton and CheckBox Example

Try it Out – RichTextBox Example

Try it Out – ListBox Example

Try it Out – ListView Example

Try it Out – Working with a Status Bar

Try it Out – Working with Tab Pages

Chapter 14: Advanced Windows Forms Features

Try it Out – Menu Example

Try it Out – Toolbar Example

Try it Out – Creating an MDI Application

Try it Out – Creating an MDI Text Editor

Try it Out – LabelTextbox Example

Try it Out – Debugging User Controls

Chapter 15: Using Common Dialogs

Try it Out – Creating the Simple Text Editor Windows Application

Try it Out – Adding and Using an Open File Dialog

Try it Out – Adding a SaveFileDialog

Try it Out – Setting the Title of the Form

Try it Out – Adding a PrintDocument Component

Try it Out – Modifying OnPrintPage() for Multiple Pages

Try it Out – Adding a Page Setup Dialog

Try it Out – Adding a PrintDialog

Try it Out – Adding a Print Selection

Try it Out – Adding a Print Preview Dialog

Chapter 16: Introduction to GDI+

Try it Out – Creating a Graphics Path

Try it Out – Creating a Region

Try it Out – Pen Example

Try it Out – Brush Example

Try it Out – Font Example

Try it Out – Image Example

Try it Out – Drawing an Ellipse with an Image

ry it Out – Creating a Pen from an Image

Try it Out – Drawing Text with an Image

Try it Out – Double Buffering Example

Chapter 17: Deploying Windows Applications

Try it Out – Creating a Windows Installer Project

Try it Out – Configuring the Project

Try it Out – Add Files to the Installer Package

Try it Out – Set the File Extension

Try it Out – Start the User Interface Editor

Try it Out – Configuring the Default Dialogs

Try it Out – Adding Other Dialogs

Try it out – Build the Project

Chapter 18: Getting At Your Data

Try it Out – Creating an XML Document in VS

Try it Out – Documenting a Class

Chapter 19: Data Access with ADO.NET

Try it Out – Reading Data with the Data Reader

Try it Out – Reading from an Access Database

Try it Out – Reading Data with the DataSet

Try it Out – Updating the Database

Try it Out – Adding Rows

Try it Out – Finding Rows

Try it Out – Deleting Rows

Try it Out – Getting the Related Rows

Try It Out – Working with Multiple Relations

Try it Out – Writing XML from a DataSet

Try it Out – Reading XML into a DataSet

Try it Out – Show SQL Example

Try it Out – Retrieving Single Values with ExecuteScalar()

Try it Out – Data Modification with ExecuteNonQuery

Chapter 20: Working With Files

Try it Out – Reading Data from Random Access Files

Try it Out – Writing Data to Random Access Files

Try it Out – Output Stream

Try it Out – Stream Input

Try it Out– Comma-Separated Values

Try it Out – Monitoring the File System

Chapter 21: .NET Assemblies

Try it Out – Creating the Shapes Component

Try it Out – Viewing the Contents of an Assembly with Ildasm

Try it Out – Creating a Shapes Client

Try it Out – Signing the Shapes Assembly

Try it Out – Compiling and Linking from the Command-Line

Chapter 23: ASP.NET Applications

Try it Out – Creating the Weblog Page

Try it Out – Adding a Copyright Element

Try it Out – Finding Where the Web Site is Stored

Try it Out – Creating an Entry XML File

Try it Out – Loading Weblog Files

Try it Out – Displaying the Time

Try it Out – Improving the Look

Try it Out – Displaying Lists of Weblog Entries

Try it Out – Rendering the Remainder of the Weblog Entry

Try it Out – Creating Weblog Entries

Try it Out – Editing Weblog Entries

Try it Out – Loading the Chosen Entry

Try it Out – Sorting Entries

Try it Out – Preventing Editing

Try it Out – Authenticating the User

Chapter 24: Web Services

Try it Out – Creating a Web Service Project

Try it Out – Adding a Method

Try it Out – Creating a Client Windows Application

Try it Out – Creating an ASP.NET Client Application

	Beginning Visual C#
	Table of Content
	Back Cover
	Introduction
	What Does This Book Cover?
	What Do I Need to Use This Book?
	Conventions
	Customer Support

	Chapter 1: Introducing C#
	What is the .NET Framework?
	What is C#?
	Visual Studio .NET
	Summary

	Chapter 2: Writing a C# Program
	The Visual Studio .NET Development Environment
	Console Applications
	Windows Forms Applications
	Summary

	Chapter 3: Variables and Expressions
	Basic C# Syntax
	Variables
	Expressions
	Summary
	Exercises

	Chapter 4: Flow Control
	Boolean Logic
	Branching
	Looping
	Summary
	Exercises

	Chapter 5: More About Variables
	Complex Variable Types
	String Manipulation
	Summary
	Exercises

	Chapter 6: Functions
	Defining and Using Functions
	Variable Scope
	The Main() Function
	Struct Functions
	Overloading Functions
	Delegates
	Summary
	Exercises

	Chapter 7: Debugging and Error Handling
	Debugging in Visual Studio
	Error Handling
	Summary
	Exercises

	Chapter 8: Introduction to Object-Oriented Programming
	What is Object-Oriented Programming?
	Static and Instance Class Members
	OOP Techniques
	OOP in Windows Applications
	Summary
	Exercises

	Chapter 9: Defining Classes
	Class Definitions in C#
	System.Object
	Constructors and Destructors
	OOP Tools in Visual Studio .NET
	Class Library Projects
	Interfaces versus Abstract Classes
	Struct Types
	Summary
	Exercises

	Chapter 10: Defining Class Members
	Additional Class Member Topics
	Interface Implementation
	Example Application
	Summary
	Exercises

	Chapter 11: More About Classes
	Collections
	Operator Overloading
	Advanced Conversions
	Deep Copying
	Custom Exceptions
	Summary
	Exercises

	Chapter 12: Events
	What is an Event?
	Using Events
	Expanding and Using CardLib
	Summary
	Exercises

	Chapter 13: Using Windows Form Controls
	Working with Windows Forms
	The Toolbox
	Controls
	The Button Control
	The Label and LinkLabel Controls
	The TextBox Control
	The RadioButton and CheckBox Controls
	The RichTextBox Control
	The ListBox and CheckedListBox Controls
	The ListView Control
	The StatusBar Control
	The TabControl Control
	Summary

	Chapter 14: Advanced Windows Forms Features
	Menus
	Toolbars
	SDI and MDI Applications
	Creating Controls
	Summary
	Exercises

	Chapter 15: Using Common Dialogs
	Common Dialogs
	How to Use Dialogs
	File Dialogs
	Printing
	Print Preview
	FontDialog and ColorDialog
	Summary
	Exercises

	Chapter 16: Introduction to GDI+
	Overview of Graphical Drawing
	Drawing Lines Using the Pen Class
	Drawing Shapes using the Brush Class
	Drawing Text using the Font Class
	Drawing Using Images
	Advanced Capabilities of GDI+
	Summary

	Chapter 17: Deploying Windows Applications
	What is Deployment?
	Deployment Project Types
	Microsoft Windows Installer Architecture
	Creating an Installation Package for the Simple Editor
	Building the Project
	Installation
	Summary

	Chapter 18: Getting At Your Data
	Data Access in VS
	Viewing Data in VS
	Accessing the Database from an Application
	Seeing the Whole Picture
	Navigating through the DataSet
	Adding Lists
	Adding a DataGrid
	XML
	Summary

	Chapter 19: Data Access with ADO.NET
	What is ADO.NET?
	Overview of ADO.NET Classes and Objects
	Reading Data with the Data Reader
	Reading Data with the DataSet
	Updating the Database
	Accessing Multiple Tables in a DataSet
	XML and ADO.NET
	SQL Support in ADO.NET
	Summary
	Exercises

	Chapter 20: Working With Files
	Streams
	The Classes for Input and Output
	Monitoring the File Structure
	Summary
	Exercises

	Chapter 21: .NET Assemblies
	Components
	.NET Assembly Features
	Structure of Assemblies
	Calling Assemblies
	Private and Shared Assemblies
	Compiling C# Code from the Command-Line
	Summary
	Exercises

	Chapter 22: Attributes
	What is an Attribute?
	Reflection
	Built In Attributes
	Custom Attributes
	Summary

	Chapter 23: ASP.NET Applications
	Building our Weblog
	Weblog Entries
	Creating New Weblog Entries
	User Sessions and Cookies
	Summary
	Questions

	Chapter 24: Web Services
	Before Web Services
	Where to Use Web Services
	Web Services Architecture
	Web Services and the .NET Framework
	Creating a Simple ASP.NET Web Service
	Testing the Web Service
	Implementing a Windows Client
	Implementing an ASP.NET Client
	Summary

	Appendix A: Setting the PATH Environment Variable
	Windows NT
	Windows 95/98/ME
	Starting the Command Line from any Directory

	Appendix B: Installing MSDE
	Appendix C: Further References
	Online Resources
	Books
	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J-K
	L
	M
	N
	O
	P
	Q-R
	S
	T
	U
	V
	W
	X
	Z

	List of Try It Outs

