e = s e]
Recipes from the Python Community

Pythott
Cookbook

O’ RE"—LY' Edited by Alex Manelli & David Ascher

Table of Contents

For eword

Pref ace

1. Python Shortcuts
1.1 Swappi ng Val ues Wthout Using a Tenporary Vari abl e
1.2 Constructing a Dictionary Wthout Excessive Quoting
1.3 Getting a Value froma Dictionary
1.4 Adding an Entry to a Dictionary
1.5 Associating Multiple Values with Each Key in a Dictionary
1.6 Dispatching Using a Dictionary
1.7 Collecting a Bunch of Naned Itens
1.8 Finding the Intersection of Two Dictionaries
1.9 Assigning and Testing with One Statenent
1. 10 Using List Conprehensions Instead of map and filter
1. 11 Unzipping Sinple List-Like Objects
1.12 Flattening a Nested Sequence
1.13 Looping in Parallel over Index and Sequence |tens
1. 14 Looping Through Multiple Lists
1. 15 Spanning a Range Defined by Floats
1. 16 Transposi ng Two- Di nensi onal Arrays

1.17 Creating Lists of Lists Wthout Sharing References

2. Searching and Sorting
2.1 Sorting a Dictionary

2.2 Processing Selected Pairs of Structured Data Efficiently

3. Text

.9

.10

11

.12

.10

11

.12

.13

.14

Sorting While Guaranteeing Sort Stability

Sorting by One Field, Then by Anot her

Looking for Itens in a Sorted Sequence Using Binary Search
Sorting a List of Objects by an Attribute of the Objects
Sorting by Itemor by Attribute

Sel ecting Random El ements froma List Wthout Repetition
Perform ng Frequent Membership Tests on a Sequence

Finding the Deep Index of an Itemin an Enbedded Sequence
Showi ng OFf Quicksort in Three Lines

Sorting Objects Using SQ's ORDER BY Synt ax

Processing a String One Character at a Tine
Testing if an Object Is String-Like
Aligning Strings

Trimrming Space fromthe Ends of a String

Combi ni ng Strings

Checki ng Whether a String Contains a Set of Characters
Filtering a String for a Set of Characters
Controlling Case

Reversing a String by Words or Characters
Accessi ng Substrings

Changi ng the Indentation of a Miultiline String
Testing Whether a String Represents an |nteger
Expandi ng and Conpressi ng Tabs

Repl acing Multiple Patterns in a Single Pass

4. Files

.15

.16

.17

.18

.19

. 20

.21

.22

.23

©

.10

.11

.12

.13

.14

Converting Between Different Nami ng Conventions
Converting Between Characters and Val ues
Converting Between Unicode and Plain Strings
Printing Unicode Characters to Standard CQutput
Di spat chi ng Based on Pattern Matches

Eval uati ng Code Inside Strings

Repl aci ng Python Code with the Results of Executing That
Code

Modul e: Yet Another Python Templating Utility (YAPTU)

Modul e: Roman Nuneral s

Reading froma File
Witing to a File
Searching and Replacing Text in a File
Reading a Particular Line froma File
Retrieving a Line at Randomfroma File of Unknown Size
Counting Lines in a File
Processing Every Wrd in a File
Readi ng a Text File by Paragraphs
Readi ng Lines with Continuation Characters
Reading Data from ZIP Files
Reading I Nl Configuration Files
Sending Binary Data to Standard Qut put Under W ndows
Usi ng Random Access | nput/ Qut put

Updati ng a Random Access File

4.15 Splitting a Path into All of Its Parts

4.16 Treating Pathnanes as Objects

4,17 Creating Directories Including Necessary Parent Directories
4,18 Wal king Directory Trees

4.19 Swapping One File Extension for Another Throughout a
Directory Tree

4.20 Finding a File Gven an Arbitrary Search Path
4.21 Finding a File on the Python Search Path

4.22 Dynami cal |y Changing the Python Search Path

4.23 Conputing Directory Sizes in a Cross-Platform Wy
4.24 File Locking Using a Cross-Platform API

4. 25 Versioning Fil enanes

4.26 Mdul e: Versioned Backups

5. Object-Oriented Progranm ng
5.1 Overriding a Built-In Mthod
5.2 Getting Al Menbers of a Class Hierarchy
5.3 Calling a Superclass _ _init_ _ Method if It Exists
5.4 Calling a Superclass |Inplenmentation of a Method
5.5 I npl enenting Properties
5.6 I nplementing Static Methods
5.7 Inplenmenting Cl ass Mt hods
5.8 Del egating Automatically as an Alternative to |Inheritance
5.9 Decorating an Object with Print-Li ke Methods
5.10 Checking if an Object Has Necessary Attributes

5.11 Making a Fast Copy of an Object

5.12 Adding Methods to a Class at Runtinme

5.13 Modifying the Class Hierarchy of an Instance

5.14 Keepi ng References to Bound Methods W thout Inhibiting
Gar bage Col |l ection

5. 15 Defining Constants

5

16

.17

.18

.19

. 20

.21

.22

.23

6. Threads,

Managi ng Options

| mpl ementing a Set Cl ass

| npl enenting a Ring Buffer

I mpl emrenting a Collection

Del egati ng Messages to Miultiple Objects

I mpl ementing the Singleton Design Pattern

Avoi di ng the Singleton Design Pattern with the Borg Idi om

I mpl ementing the Null Object Design Pattern

Processes, and Synchroni zation

6.1 Storing Per-Thread I nformation

6.

6.

2

3

Term nating a Thread

Al'lowing Miultithreaded Read Access While Maintaining a Wite
Lock

Runni ng Functions in the Future
Synchroni zing All Methods in an Object

Capturing the Qutput and Error Streams from a Uni x Shel
Conmand

For ki ng a Daenon Process on Uni X

Determining if Another Instance of a Script Is Already
Runni ng in W ndows

Processi ng W ndows Messages Usi ng MsgWai t For Mul ti pl eObj ects

7. System Admi nistration

7.1 Running a Command Repeatedly

7.

2

.3

.10

.11

.12

.13

.14

.15

.16

Generati ng Random Passwor ds

Generating Non-Totally Random Passwor ds

Checking the Status of a Unix Network Interface

Cal cul ati ng Apache Hits per |P Address

Cal cul ating the Rate of Client Cache Hits on Apache
Mani pul ati ng the Environnment on W ndows NT/ 2000/ XP

Checki ng and Modifying the Set of Tasks W ndows
Automatically Runs at Logon

Exam ning the Mcrosoft Wndows Registry for a List of Nane
Server Addresses

Getting Information About the Current User on W ndows
NT/ 2000

Getting the Wndows Service Nanme fromlts Long Nane
Mani pul ati ng W ndows Services

| nper sonating Principals on Wndows

Changi ng a W ndows NT Password Usi ng ADSI

Working with Wndows Scripting Host (WSH) fr om Pyt hon

Di spl ayi ng Decoded Hot keys for Shortcuts in W ndows

8. Dat abases and Persi stence

8.1 Serializing Data Using the marshal Modul e

8.2 Serializing Data Using the pickle and cPi ckl e Modul es

8.3 Using the cPickle Mdule on Classes and | nstances

8.4 Mutating Objects with shelve

8.5 Accesssing a MySQL Dat abase

9. User

.6 Storing a BLOB in a MySQL Dat abase

.7 Storing a BLOB in a PostgreSQL Dat abase

.8 Generating a Dictionary Mapping from Field Nanes to Col umm

Numnber s

.9 Using dtuple for Flexible Access to Query Results

.10 Pretty-Printing the Contents of Database Cursors

.11 Establishing Database Connections Lazily

.12 Accessing a JDBC Dat abase froma Jython Servl et

.13 Module: jet2sql-Creating a SQ.L DDL from an Access Dat abase

(==Y

nterfaces

Avoi ding lanbda in Witing Call back Functions

.2 Creating Menus with Tkinter

.3 Creating Dialog Boxes with Tkinter

.4 Supporting Miultiple Values per Row in a Tkinter Listbox

.5 Enbedding Inline G Fs Using Tkinter

.6 Conbi ni ng Tki nter and Asynchronous |/ O with Threads

.7 Using a wxPython Not ebook with Panels

.8 Gving the User Unobtrusive Feedback During Data Entry with

Q

.9 Building GU Solutions |ndependent of the Specific GU

Tool ki t

.10 Creating Color Scales

.11 Using Publish/ Subscri be Broadcasting to Loosen the Coupling

Bet ween GUI and Busi ness Logi ¢ Systens

.12 Mbdule: Building GTIK GUI's Interactively

10. Networ k Progranm ng

10.1 Witing a TCP dient

10.2 Witing a TCP Server

10. 3 Passi ng Messages wi th Socket Datagrans
10. 4 Finding Your Om Nane and Address

10.5 Converting I P Addresses

10.6 Grabbing a Docunent fromthe Wb

10.7 Being an FTP dient

10. 8 Sending HTM. Mai |

10.9 Sending Miltipart MM Emai l

10.10 Bundling Files in a M ME Message

10. 11 Unpacking a Multipart M ME Message

10. 12 Modul e: PyHeartBeat - Detecting | nactive Conputers
10. 13 Modul e: Interactive POP3 Mil box | nspector

10. 14 Modul e: Watching for New | MAP Mail Using a GU

11. Web Progranm ng
11.1 Testing Whether CA I|s Wbrking
11.2 Witing a CAd Script
11.3 Using a Sinple Dictionary for CA Paraneters
11.4 Handling URLs Wthin a CA Script
11.5 Resuning the HTTP Downl oad of a File
11.6 Stripping Dangerous Tags and Javascript from HTM
11.7 Running a Servlet with Jython
11. 8 Accessing Netscape Cookie Information
11.9 Finding an Internet Explorer Cookie

11.10 Mbdul e: Fetching Latitude/Longitude Data fromthe Wb

12. Processing XM

13.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

12.

Distri

13.

13.

13.

13.

13.

13.

13.

13.

1

2

8

9

Checki ng XML Weél | - For nedness

Counting Tags in a Docunent

Extracting Text from an XM. Documnent
Transform ng an XM. Docunment Using XSLT
Transform ng an XM. Document Using Python
Parsing an XM File with xml . parsers. expat
Converting Ad- Hoc Text into XM. Markup

Nor mal i zi ng an XM. Docunent

Controlling XSLT Styl esheet Loading

10 Aut odet ecting XM. Encodi ng

11 Modul e: XML Lexi ng (Shall ow Parsi ng)

12 Modul e: Converting a List of Equal-Length Lists into XM

but ed Programm ng

1

Maki ng an XM.- RPC Met hod Cal |

Servi ng XM.- RPC Request s

Usi ng XM.- RPC wi t h Medusa

Witing a Wb Service That Supports Both XM.- RPC and SOAP
| mpl ementing a CORBA Client and Server

Perform ng Renpte Logins Using telnetlib

Usi ng Publish/Subscribe in a Distributed M ddl eware
Architecture

Usi ng Request/Reply in a Distributed M ddl eware
Architecture

14. Debuggi ng and Testing

14.1 Rel oading All Loaded Mdul es

14.

14.

14.

14.

14.

14.

14.

14.

14.

2

3

9

Traci ng Expressions and Comments in Debug Mde
W appi ng Tracebacks in HTM
Getting More Information from Tracebacks

Starting the Debugger Automatically After an Uncaught
Excepti on

Loggi ng and Traci ng Across Pl atforns
Determ ning the Nane of the Current Function
Introspecting the Call Stack with O der Versions of Python

Debuggi ng t he Garbage- Col | ecti on Process

10 Tracking Instances of Particular Cl asses

15. Prograns About Prograns

15.

15.

15.

15.

15.

15.

15.

15.

15.

15.

15

15.

1

Col ori zing Python Source Using the Built-in Tokenizer

I mporting a Dynami cally Generated Mdul e

I mporting froma Mdul e Whose Nane |s Determ ned at Runtine
| mporting Modules with Autonmatic End-of-Li ne Conversions

Si mul ati ng Enunerations in Python

Modi fyi ng Methods in Pl ace

Associ ating Paraneters with a Function (Currying)

Composi ng Functions

Addi ng Functionality to a Cl ass

10 Adding a Method to a Class Instance at Runtinme

.11 Defining a Custom Metaclass to Control C ass Behavi or

12 Modul e: Allowi ng the Python Profiler to Profile C Mdules

16. Extendi ng and Enbeddi ng

16.

16.

16.

16.

16.

16.

16.

16.

16.

17. Al gori

17.

17.

17.

17.

17.

17.

17.

17.

17.

17.

17.

1 Inplenmenting a Sinple Extension Type

2 Translating a Python Sequence into a C Array with the
PySequence_Fast Protocol

3 Accessing a Python Sequence Itemby-Itemwi th the Iterator
Pr ot ocol

4 Returning None froma Python-Callable C Function

5 Codi ng the Methods of a Python Class in C

6 I nplementing C Function Call backs to a Python Function

7 Debuggi ng Dynam cally Loaded C Extensions wi th gdb

8 Debuggi ng Menory Probl ens

9 Using SWG Cenerated Mddules in a Miultithreaded Environment

t his

1 Testing if a Variable Is Defined

2 Evaluating Predicate Tests Across Sequences

3 Renpving Duplicates froma Sequence

4 Renoving Duplicates froma Sequence Wil e Mintaining
Sequence Order

5 Sinulating the Ternary Operator in Python

6 Counting Itens and Sorting by Incidence (Histogramns)

7 Menpi zi ng (Caching) the Return Values of Functions

8 Looking Up Words by Sound Simlarity

9 Conputing Factorials with |anbda

10 Generating the Fibonacci Sequence

11 Wappi ng an Unbounded lterator to Restrict Its Qutput

17.

17.

17.

17.

17.

17.

17.

17.

12

13

14

15

16

17

18

19

Operating on Iterators

Rol ling Dice

| mpl enenting a First-In First-Out Contai ner

Modeling a Priority Queue

Converting Nunmbers to Rationals via Farey Fractions

Eval uati ng a Pol ynomi al

Modul e:

Modul e:

Fi nding the Convex Hull of a Set of 2D Points

Parsing a String into a Date/ Tinme Object Portably

Foreword

Forget the jokes about tasty snake dishes, here's the Python Cookbook! Python's famous comedian
namesakes would have known exactly what to do with this title: recipes for crunchy frog, spring
surprise, and, of course, blancmange (or was that a tennis-playing alien?). The not-quite-so-famous-
yet Python programming community hasfilled in the details a little differently: we like to have fun
here as much as the next person, but we're not into killing halibuts, especialy not if their first nameis
Eric.

So what exactly isaPython cookbook? It's a collection of recipes for Python programmers,
contributed by Python community members. The original contributions were made through aweb site
set up by ActiveState, from which a selection was made by editors Alex Martelli and David Ascher.

Other Python luminaries such as Fredrik Lundh, Paul Dubois, and Tim Peters were asked to write
chapter introductions.

Few cookbooks teach how to cook, and this one is no exception: we assume that you're familiar with
programming in Python. But most of these recipes don't require that you be an expert programmer,
either, nor an expert in Python (though we've sprinkled a few hard ones throughout just to give the
gurus something to watch for). And while these recipes don't teach Python programming basics, most
were selected because they teach something—for example, performance tips, advanced techniques,
explanations of dark corners of the language, warnings about common pitfalls, and even suggestions
that seem to go against accepted wisdom.

Most recipes are short enough for the attention span of the average Python programmer. For easy
access, they are grouped into chapters, which contain either recipes for a specific application area,
such as network programming or XML, or are about specific programming techniques, such as
searching and sorting or object-oriented programming. While there's some logical progression among
the chapters and among the recipes in a chapter, we expect that most readers will sample the recipes at
random or based on the job at hand (just as you would choose a food recipe based upon your appetite
or the contents of your refrigerator).

All in all, the breadth and depth of this collection are impressive. Thisis atestimony to Python's wide
range of application areas, but also to its user community. When | created the first version of Python,
more than 12 years ago now, al | wanted was a language that would et me write system+
administration scripts in less time. (Oh, and | wanted it to be elegant, too.) | never could have guessed
most of the application areas where Python is currently the language of choice for many—and that's
not just because the World Wide Web hadn't been invented yet. In many areas, code written by
generous Python users is as important as Python's standard library: think of numeric algorithms,
databases, and user interfaces, in which the number of third-party choices dwarfs Python's standard-
library offerings, despite the language's reputation that it comes with "batteries included.”

Python is an evolving language. This cookbook offers some recipes that work only with the latest
Python version, and a few that have been made obsolete by recent Python versions. Don't think this
means that Python has built-in obsolescence! Usually, these obsolete recipes work fine, and the code
that uses them will continue to work in future Python versions. It's just that when you're irked by a
roundabout way of expressing a particular idea in code, there's often a better way available in a newer
Python version, and we'd like you to know about it. On the other hand, it's sometimes useful to know
how to write code that works for several Python versions at once, without explicitly checking version
numbers al the time. Some recipes touch upon this topic, as well.

The increase in size of the community has caused some growing pains. Now that the early adopters
are aready using Python, growth must come from luring more conservative users to the language.
Thisis easy enough, as Python is a very friendly language, but it does present new challenges. For
example, as a specia case of Murphy's law, anything that can go wrong during the installation process
will go wrong for someone, somewhere, and they won't be pleased. The new Python users are often
not savvy enough to diagnose and correct problems themselves, so our solution has been to make the
installer even more bulletproof than it aready was.

The same holds for almost all aspects of the language: from the documentation and the error messages
to the runtime's behavior in long-running servers, Python gets more user -testing than | ever bargained
for. Of course, we also get more offersto help, so dl in all, things are working out very nicely. What
this means is that we've had to change some of our habits. Y ou could say that the Python developer
community is losing some of its innocence: we're no longer improving Python just for our own sake.
Many hundreds of thousands of individual Python users are affected, and an ever-growing number of
companies are using or selling software based on Python. For their benefit, we now issue strictly

backward-compatible bug-fix releases for Python versions up to 2 years old, which are distinct from
the feature-introducing major releases every 6 to 12 months.

Let me end on a different aspect of the community: the Python Software Foundation. After the failed
experiments of the Python Software Activity and the Python Consortium, | believe we have finaly
found the proper legal form for a nonprofit organization focused on Python. Keeping a fairly low
profile, the PSF is quietly becoming a safe haven for Python software, where no single individua or
organization can hold a monopoly on Python, and where everybody benefits. The PSF, in turn,
benefits from the sales of this book: a portion of the royalties goes to the PSF, representing the many
Python programmers who contributed one or more recipes to the cookbook project. Long live the
Python community!

—Guido van Rossum
Reston, Virginia
April 2002

Preface

This book is not atypical O'Reilly book, written as a cohesive manuscript by one or two authors.
Instead, it is a new kind of book—a first, bold attempt at applying some principles of open source
development to book authoring. About 200 members of the Python community contributed recipes to
this book. In this Preface, we, the editors, want to give you, the reader, some background regarding
how this book came about and the processes and people involved, and some thoughts about the
implications of this new form.

The Design of the Book

In early 2000, Frank Willison, then Editor-in-Chief of O'Reilly & Associates, Inc., contacted me
(David Ascher) to find out if | wanted to write a book. Frank had been the editor for Learning Python,
which | cowrote with Mark Lutz. Since | had just taken a job at what was then considered a Perl shop
(ActiveState), | didn't have the bandwidth necessary to write anather book, and plans for the project
were gently shelved. Periodically, however, Frank would send me an email or chat with me at a
conference regarding some of the book topics we'd discussed. One of Frank's ideas was to create a
Python Cookbook, based on the concept first used by Tom Christiansen and Nathan Torkington with
the Perl Cookbook . Frank wanted to replicate the success of the Perl Cookbook, but he wanted a
broader set of people to provide input. He thought that, much asin areal cookbook, a larger set of
authors would provide for a greater range of tastes. The quality, in his vision, would be ensured by the
oversight of atechnical editor, combined with O'Reilly's editorial review process.

Frank and Dick Hardt, ActiveState's CEO, redlized that Frank's goal could be combined with
ActiveState's goa of creating a community site for open source programmers, caled the ActiveState
Programmer's Network (ASPN). ActiveState had a popular web site, with the infrastructure required
to host awide variety of content, but it wasn't in the business of creating original content. ActiveState
always felt that the open source communities were the best sources of accurate and up-to-date content,
even if sometimes that content was hard to find.

The O'Reilly and ActiveState teams quickly realized that the two goals were aligned and that a joint
venture would be the best w ay to achieve the following key objectives:

Creating an online repository of Python recipes by Python programmers for Python
programmers

Publishing a book containing the best of those recipes, accompanied by overviews and
background material written by key Python figures

Learning what it would take to create a book with a different authoring model

At the same time, two other activities were happening. First, | and others at ActiveState, including

Paul Prescod, were actively looking for "stars' to join ActiveState's devel opment team. One of the
candidates being recruited was the famous (but unknown) Alex Martelli. Alex was famous because of
his numerous and exhaustive postings on the Python mailing list, where he exhibited an unending
patience for explaining Python's subtleties and joys to the increasing audience of Python programmers.
He was unknown because he lived in Italy and, since he was a relative newcomer to the Python
community, none of the old Python hands had ever met him—their paths had not happened to cross
back when Alex lived in the U.S., when he was working for IBM Research and enthusiastically using
and promoting other high-level languages.

ActiveState wooed Alex, trying to convince him to move to Vancouver. We came quite close, but his
employer put some golden handcuffs on him, and somehow Vancouver's weather couldn't compete
with Italy's. Alex stayed in Italy, much to my disappointment. As it happened, Alex was also at that
time negotiating with O'Reilly about writing a book. Alex wanted to write a cookbook, but O'Reilly
explained that the cookbook was already signed. Later, Alex and O'Reilly signed a contract for Python
in a Nutshell.

The second ongoing activity was the creation of the Python Software Foundation. For a variety of
reasons, best |eft to discussion over beers at a conference, everyone in the Python community wanted
to create a non-profit organization that would be the holder of Python'sintellectual property, to ensure
that Python would be on alegally strong footing. However, such an organization needed both financia
support and buy-in from the Python community to be successful.

Given all these parameters, the various parties agreed to the following plan:

ActiveState would build an online cookbook, a mechanism by which anyone could submit a
recipe (i.e., a snippet of Python code addressing a particular problem, accompanied by a
discussion of the recipe, much like a description of why one should use cream of tartar when
whipping egg whites). To foster a community of authors and encourage peer review, the web
site would also let readers of the recipes suggest changes, ask questions, and so on.

As part of my ActiveState job, | would edit and ensure the quality of the recipes. (Alex
Martelli joined the project as a co-editor as the material was being prepared for publication.)
O'Reilly would publish the best recipes as the Python Cookbook.

In lieu of author royalties for the recipes, a portion of the proceeds from the book sales would
be donated to the Python Software Foundation.

The Implementation of the Book

The online cookbook (at http://aspn.activestate.com/A SPN/Cookbook/Python/) was the entry point for
the recipes. Users got free accounts, filled in a form, and presto, their recipes became part of the
cookbook. Thousands of people read the recipes, and some added comments, and so, in the publishing

equivalent of peer review, the recipes matured and grew. (The online cookbook is still very much
active and growing.)

Going from the online version to the version you have in front of you was afairly complex process.
The data was first extracted from Zope and converted into XML. We then categorized the recipes and
selected those recipes that seemed most valuable, distinctive, and original. Then, it was just a matter
of editing the recipesto fit the format of the cookbook, checking the code for correctness (the
PyChecker tool deserves special thanks, as it was quite useful in this regard), adding a few recipes
here and there for completeness of coverage in some areas, and doing afina copyediting pass.

It sounds simple when you write it down in one paragraph. Somehow, we don't remember it as quite
as being simple as that!

A Note About Licenses

Software licenses are both the curse and the foundation of the open source movement. Every software
project needs to make careful, deliberate decisions about what kind of license should be used for the
code—who is alowed to use the code, under what conditions, and so on. Given the nature of the
cookbook, we wanted the recipes to be usable under any circumstances where Python could be used.

In other words, we wanted to ensure completely unfettered use, in the same spirit as the Python license.
Unfortunately, the Python license cannot really be used to refer to anything other than Python itself.
As a compromise, we chose to use the modified Berkeley license, which is considered among the most
liberal of licenses. We contacted each of the recipe authors and confirmed that they agreed to publish
these recipes under said license. The license template reads (substitute <OANER> and

<ORGANI ZATI ON> with the author of each recipe):

Copyright (c) 2001, <OANNER>
Al rights reserved.
Redi stribution and use in source and binary fornms, with or
wi t hout
nodi fication, are permtted provided that the follow ng
condi tions
are net:
* Redistributions of source code nmust retain the above
copyri ght
notice, this list of conditions and the follow ng
di scl ai ner.
* Redistributions in binary form nmust reproduce the above
copyright notice, this list of conditions and the

foll ow ng
disclainmer in the docunentati on and/ or other materials
provi ded

with the distribution.
* Neither the name of the <ORGANI ZATI ON> nor the nanes of

its

contributors nay be used to endorse or pronote products
derived

fromthis software without specific prior witten
pern ssion.
THI S SOFTWARE | S PROVI DED BY THE COPYRI GHT HOLDERS AND
CONTRI BUTORS
"AS | S" AND ANY EXPRESS OR | MPLI ED WARRANTI ES, | NCLUDI NG, BUT
NOT
LIMTED TO, THE | MPLI ED WARRANTI ES OF MERCHANTABI LI TY AND
FI TNESS
FOR A PARTI CULAR PURPOSE ARE DI SCLAI MED. I N NO EVENT SHALL THE
REGENTS
OR CONTRI BUTORS BE LI ABLE FOR ANY DI RECT, | NDI RECT, | NCI DENTAL,
SPECI AL,
EXEMPLARY, OR CONSEQUENTI AL DAMAGES (| NCLUDI NG, BUT NOT
LIMTED TO,

PROCUREMENT COF SUBSTI TUTE GOODS OR SERVI CES; LOSS OF USE, DATA,
OR PROFITS;

OR BUSI NESS | NTERRUPTI ON) HOWEVER CAUSED AND ON ANY THEORY OF
LI ABI LI TY,

VWHETHER | N CONTRACT, STRICT LIABILITY, OR TORT (I NCLUDI NG

NEGLI GENCE OR

OTHERW SE) ARI SING I N ANY WAY OQUT OF THE USE OF THI S SOFTWARE,
EVEN | F

ADVI SED OF THE PGOSSI BI LI TY OF SUCH DANMAGE.

Audience

We expect that you know at least some Python. This book does not attempt to teach Python as a whole;
rather, it presents some specific techniques (or tricks) for dealing with particular tasks. If you are
looking for an introduction to Python, consider some of the books described in Section P.6 of this
Preface. However, you don't need to know alot of Python to find this book helpful. Furthermore,
somewhat to the editors surprise, even if you do know alot about Python, you might very well learn a
few things—we did!

Organization

This book has 17 chapters, each of which is devoted to a particular kind of recipe, such as agorithms,
text processing, or databases. Each chapter contains an introduction, written by an expert in the field,
followed by recipes selected from the online cookbook (or, in some cases, specialy added) and edited
to fit the book's formatting and style requirements. Alex Martelli did the vast majority of the editing,
with some help from David Ascher. This editing proved to be quite a challenge, as the original recipes
varied widely in their organization and level of sophistication. Also, with about 200 authors involved,
there were about 200 different "voices' in the text. We tried to maintain this variety of styles, given
the collaborative nature of this book. However, each recipe was edited, sometimes considerably, to
make it as accessible and useful as possible, with enough uniformity in structure and presention to
maximize the usability of the book as awhole.

Chapter 1, Python Shortcuts introduction by David Ascher

This chapter includes recipes for many common techniques that don't really fit into any of the
other, more specific recipe categories.

David Ascher is a co-editor of this volume. David's background spans physics, vision
research, scientific visualization, computer graphics, a variety of programming languages, co-
authoring Learning Python (O'Reilly), teaching Python, and, these days, a slew of technical
and nontechnical tasks such as architecting developer tools and managing a team of
programmers. David aso gets roped into organizing Python conferences on aregular basis.

Chapter 2, Searching and Sorting, introduction by Tim Peters

This chapter covers techniques for searching and sorting in Python. Many of the recipes
explore creative usesof | i st . sort in conjunction with the decorate-sort-undecorate
(DSU) pattern.

Tim Peters, aso known as the tim-bot, is one of the mythological figures of the Python world.
He isthe oracle, channeling Guido van Rossum when Guido is busy, channeling the |EEE-
754 floating-point committee when anyone asks anything remotely relevant, and appearing

conservative while pushing for a constant evolution in the language. Tim is a member of the
PythonL abs team led by Guido.

Chapter 3, Text, introduction by Fred L. Drake, Jr.

This chapter contains recipes for manipulating text in a variety of ways, including combining,
filtering, and validating strings, as well as evaluating Python code inside textual data.

Fred Drake is yet another member of the PythonL abs group, working with Guido daily on
Python development. A father of three, Fred is best known in the Python community for

single-handedly maintaining the official documentation. Fred is a co-author of Python & XML
(O'Relilly).

Chapter 4, Files, introduction by Mark Lutz

This chapter presents techniques for working with data in files and for manipulating files and
directories within the filesystem.

Mark Lutz iswell known to most Python users as the most pralific author of Python books,
including Programming Python, Python Pocket Reference, and Learning Python, which he
co-authored with David Ascher (all from O'Rellly). Mark is also aleading Python trainer,
spreading the Python gospel throughout the world.

Chapter 5, Object-Oriented Programming, introduction by Alex Martelli

This chapter offers a wide range of recipes that demonstrate the power of object-oriented
programming with Python, from basic techniques such as overriding methods to advanced
implementations of various design patterns.

Alex Martelli, also known as the martelli-bot, is a co-editor of this volume. After dmost a
decade with IBM Research, then a bit more than that with think3, Alex now works for AB
Strakt, a Swedish Python-centered firm that develops exciting new technologies for real-time
workflow and groupware applications. He aso edits and writes Python articles and books,

including the forthcoming Python in a Nutshell (O'Reilly) and, occasionally, research works
on the game of contract bridge.

Chapter 6, Threads, Processes, and Synchronization, introduction by Greg Wilson

This chapter covers avariety of techniques for working with threads in Python.

Dr. Greg Wilson is an author of children's books. Oh, he's aso an author of books on parallel
programming, a contributing editor with Doctor Dobb's Journal, an expert on scientific
computing, and a Canadian. Greg provided a significant boost to the Python community as
coordinator of the Software Carpentry project, and he currently works for Baltimore
Technologies.

Chapter 7, System Administration, introduction by Donn Cave

This chapter includes recipes for a number of common system administration tasks, such as
generating passwords and interacting with the Windows registry.

Donn Cave is a Software Engineer at the University of Washington's central computer site.
Over the years, Donn has proven to be a fount of information on comp.lang.python on dl
matters related to system calls, Unix, system administration, files, signals, and the like.

Chapter 8, Databases and Persistence introduction by Aaron Waetters

This chapter presents techniques for interacting with databases and maintaining persistence in
Python.

Aaron Watters was one of the earliest advocates of Python and is an expert in databases. He's
known for having been the lead author on the first book on Python (Internet Programming
with Python (M& T Books), now out of print), and he has authored many widely used Python

extensions, such as kjBuckets and kwParsing. Aaron currently works for ReportLab, a
Python-based startup based in England and the U.S.

Chapter 9, User Interfaces introduction by Fredrik Lundh

This chapter contains recipes for common GUI tasks and includes techniques for working
with Tkinter, wxPython, GTk, and Qt.

Fredrik Lundh, also known as the eff-bot, isthe CTO of Secret Labs AB, a Swedish Pythorn+
focused company providing avariety of products and technologies, including the
PythonWorks Pro IDE. Fredrik is the world's leading expert on Tkinter, the most popular GUI
toolkit for Python, as well as the main author of the Python Imaging Library (PIL). Heisaso
the author of Python Sandard Library (OReilly) (a good complement to this volume), which
focuses on the modules in the standard Python library. Finally, heis a prolific contributor to
comp.lang.python, helping novices and experts alike.

Chapter 10, Network Programming, introduction by Guido van Rossum

This chapter covers a variety of network programming techniques, from writing basic TCP
clients and servers to manipulating MIME messages.

Guido created Python, nurtured it throughout its infancy, and is shepherding its growth. Need
we say more?

Chapter 11, Web Programming, introduction by Andy McKay

This chapter presents a variety of web-related recipes, including ones for CGI scripting,
running a Java servlet with Jython, and accessing the content of web pages.

Andy McKay was ActiveState's web guru and is currently employed by Merlin Technologies.
In the last two years, Andy went from being a happy Perl user to a fanatical Python and Zope

expert. He is professionally responsible for several very complex and high-bandwidth Zope
sites, and he runs the popular Zope discussion site, http://www.zopezen.org

Chapter 12, Processing XML, introduction by Paul Prescod

This chapter offers techniques for parsing, processing, and generating XML using a variety of
Python tools.

Paul Prescod is an expert in three technologies: Python, which he need not justify; XML,
which makes sense in a pragmatic world (Paul is ceauthor of the XML Handbook , with
Charles Goldfarb, published by Prentice Hall); and Unicode, which somehow must address
some deep-seated desire for pain and confusion that neither of the other two technologies
satisfies. Paul is currently an independent consultant and trainer, although some Perl folks
would challenge his independence based on his track record as, shall we say, afairly vocal
Python advocate.

Chapter 13, Distributed Programming, introduction by Jeremy Hylton

This chapter provides recipes for using Python in simple distributed systems, including XML-
RPC, SOAP, and CORBA.

Jeremy Hylton works for Zope Corporation as a member of the PythonLabs group. In
addition to his new twins, Jeremy's interests including programming-language theory, parsers,
and the like. As part of hiswork for CNRI, Jeremy worked on a variety of distributed systems.

Chapter 14, Debugging and Testing, introduction by Mark Hammond

This chapter includes a collection of recipes that assist with the debugging and testing process,

from customized error logging to traceback information to debugging the garbage collection
process.

Mark Hammond is best known for his work supporting Python on the Windows platform.
With Greg Stein, he built an incredible library of modules interfacing Python to a wide
variety of APIs, libraries, and component models such as COM. He is also an expert designer
and builder of developer tools, most notably Pythonwin and Komodo. Finally, Mark is an
expert at debugging even the most messy systems—during Komodo devel opment, for
example, Mark was often called upon to debug problems that spanned three languages
(Python, C++, JavaScript), multiple threads, and multiple processes. Mark is also co-author of
Python Programming on Win32 (O'Reilly), with Andy Robinson.

Chapter 15, Programs About Programs, introduction by Paul F. Dubois

This chapter contains Python techniques that involve parsing, lexing, program introspection,
and other program-related tasks.

Paul Dubois has been working & the Lawrence Livermore National Laboratory for many
years, building software systems for scientists working on everything from nuclear
simulations to climate modeling. He has considerable experience with a wide range of
scientific computing problems, aswell as experience with language design and advanced
objectoriented programming techniques.

Chapter 16, Extending and Embedding, introduction by David Beazley

This chapter offers techniques for extending Python and recipes that assist in the devel opment
of extensions.

David Beazley's chief claim to fame is SWIG, an amazingly powerful hack that lets one
quickly wrap C and other libraries and use them from Python, Tcl, Perl, and myriad other
languages. Behind this seemingly language-neutral tool lies a Python supporter of the first
order, as evidenced by his book, Python Essential Reference (New Riders). David Beazley is
afairly sick man (in a good way), leading us to believe that more scarily useful tools are

likely to emerge from his brain. He's currently inflicting his sense of humor on computer
science students at the University of Chicago.

Chapter 17, Algorithms, introduction by Tim Peters
This chapter provides a collection of useful algorithms implemented in Python.

See the discussion of Chapter 2 for information about Tim Peters.

Further Reading

There are many texts available to help you learn Python or refine your Python knowledge, from
introductory texts all the way to quite formal language descriptions.

We recommend the following books for general information about Python:

Learning Python, by Mark Lutz and David Ascher (O'Reilly), is a thorough introduction to
the fundamentals of the Python language.

Python Sandard Library, by Fredrik Lundh (O'Reilly), provides a use case for each module

in therich library that comes with every standard Python distribution.

Programming Python, by Mark Lutz (O'Reilly), is a thorough rundown of Python
programming techniques.

The forthcoming Python in a Nutshell, by Alex Martelli (O'Rellly), is a comprehensive quick
reference to the Python language and the key libraries used by most Python programmers.
Python Essential Reference, by David Beazley (New Riders), is a quick reference that focuses
on the Python language and the core Python libraries.

In addition, there are a few more special-purpose books that help you explore particular aspects of
Python programming:

Python & XML, by Christopher A. Jones and Fred L. Drake, Jr. (O'Reilly), covers everything
there is to know about how to use Python to read, process, and transform XML.

Jython Essentials by Samuele Pedroni and Noel Rappin (O'Reilly), is the authoritative book
on Jython, the port of Python to the Java Virtua Machine (JVM).

Python Web Programming, by Steve Holden (New Riders), covers building networked
systems using Python.

In addition to these books, there are other important sources of information that can help explain some
of the code in the recipes in this book. We've pointed out the information that seemed particularly
relevant in the "See Also" sections of each recipe. In these sections, we often refer to the standard
Python documentation: the Library Reference, the Reference Manual, and occasionaly the Tutorial.
This documentation is available in a variety of media:

On the python.org web site (at http://www.python.org/doc/), which aways contains the most
up-to-date, if sometimes dry, description of the language.

In Python itself. Recent versions of Python boast a nice online help system, which is worth
exploring if you've never used it. Just type hel p() at the interactive prompt to start
exploring.

As part of the online help in your Python installation. ActivePython's installer, for example,
includes a searchable Windows Help file. The standard Python distribution currently includes
HTML pages, but there are plans to include a similar Windows Help file in future rel eases.

Note that we have not included section numbers in our references to the standard Python
documentation, since the organization of these manuals can change from release to release. You
should be able to use the table of contents and indexes to find the relevant material.

Conventions Used in This Book

The following typographical conventions are used throughout this book:
Italic

Used for commands, URLS, filenames, file extensions, directory or folder names, emphasis,
and new terms where they are defined.

Constant wi dth

Used for all code listings and to designate anything that would appear literally in a Python or
C program. This includes module names, method names, class names, function names,
statements, and HTML tags.

Constant width italic

Used for genera placeholders that indicate that an item should be replaced by some actua
value in your own program.

Constant wi dth bold

Used to emphasize particular lines within code listings and show output that is produced.

How to Contact Us

We have tested and verified all the information in this book to the best of our abilities, but you may
find that features have changed or that we have let errors dlip through the production of the book.
Please let us know of any errors that you find, as well as suggestions for future editions, by writing to:

O'Reilly & Associates, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international/local)

(707) 829-0104 (fax)

We have aweb site for the book, where welll list examples, errata, and any plans for future editions.
Y ou can access this page at:

http://www.oreilly.com/catal og/pythoncook/

To ask technical questions or comment on the book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the O'Reilly Network, see
our web site at:

http://www.oreilly.com/

The online cookbook from which most of the recipes for this book were taken is available at:

http://aspn.activestate.com/A SPN/Cookbook/Python

Acknowledgments

Most publications, from mysteries to scientific papers to computer books, claim that the work being
published would not have been possible without the collaboration of many others, typically including
local forensic scientists, colleagues, and children, respectively. This book makes thisclaim to an
extreme degree. Most of the words, code, and ideas in this volume were contributed by people not
listed on the front cover. The original recipe authors, readers who submitted comments to the web site,

and the authors of the chapter introductions are the true authors of the book, and they deserve the
credit.

David Ascher

The online cookbook was the product of Andy McKay's constant and diligent effort. Andy was
ActiveState's key Zope developer during the online data-collection phase of this project, and one of
the key developers behind ASPN (http://aspn.activestate.com), ActiveState's content site, which serves
awide variety of information for and by programmers of open source languages such as Python, Perl,
PHP, Tcl, and XSLT. Andy McKay used to be a Perl developer, by the way. At about the same time
that | started at ActiveState, the company decided to use Zope to build what would become ASPN. In
the years that followed, Andy has become a Zope master and somewhat of a Python fanatic (without
any advocacy from me!). Based on an origina design by myself and Diane Mueller, aso of
ActiveState, Andy single-handedly implemented ASPN in record time, then proceeded to adjust it to
ever -changing requirements for new features that we hadn't anticipated in the early design phase,
staying cheerful and professional throughout. It's a pleasure to have him as the author of the
introduction to the chapter on web recipes.

Paul Prescod, then also of ActiveState, was a kindred spirit throughout the project, helping with the
online editoria process, suggesting changes, and encouraging readers of comp.lang.python to visit the
web site and submit recipes. Paul aso helped with some of his considerable XML knowkdge when it
came to figuring out how to take the data out of Zope and get it ready for the publication process.

The last activator 1'd like to thank, for two different reasons, is Dick Hardt, founder and CEO of
ActiveState. The first is that Dick agreed to let me work on the cookbook as part of my job. Had he
not, | wouldn't have been able to participate in it. The second reason I'd like to thank Dick isfor
suggesting at the outset that a share of the book royalties go to the Python Software Foundation. This
decision not only made it easier to enlist Python users into becoming contributors but will aso
hopefully result in at least some long-term revenue to an organization that | believe needs and
deserves financial support. All Python users will benefit.

Tranglating the original recipes into the versions you will see here was a more complex process than
any of us understood at the onset. Firgt, the whole community of readers of the online cookbook
reviewed and submitted comments on recipes, which in some cases helped turn rough recipes into
useful and polished code samples. Even with those comments, however, a great deal of editing had to
be done to turn the raw data into publishable material. While this was originally my assignment, my
work schedule madethat process painfully slow. Luckily, a secret weapon was waiting in the wings.
My opinion of Alex Martelli had only gone up since the beginning of the project, as Alex's numerous
submissions to the online cookbook were always among the most complete, thorough, and well - liked
recipes. At that point, | felt as editor that | owed Alex dinner. So, naturally, when help was needed to
edit the recipes into a book, | called upon Alex. Alex not only agreed to help, but did so heroicaly. He
categorized, filtered, edited, and corrected all of the material, incorporating the substance of the
comments from readers into coherent recipes and discussions, and he added a few recipes where they

were needed for completeness. What is more, he did all of this cheerfully and enthusiastically. At this
point, | feel | owe Alex breskfast, lunch, and dinner for a week.

Finally, I'd like to thank the O'Reilly editors who have had a big hand in shaping the cookbook. Laura
Lewin was the original editor, and she helped make sure that the project moved aong, securing and
coordinating the contributions of the introduction authors. Paula Ferguson then took the baton,
provided a huge amount of precious feedback, and copyedited the final manuscript, ensuring that the
prose was as readable as possible given the multiplicity of voicesin the book. Lauras, and then
Paulds, constant presence was essential to keeping me on the ball, even though | suspect it was
sometimes like dentistry. As we come to the end of the project, | can't help but remember Laura's
mentor, O'Rellly's Editor-in-Chief, Frank Willison. Frank died suddenly on a black day, July 30, 2001.
He was the person who most wanted to see this book happen, for the simple reason that he believed
the Python community deserved it. Frank was always willing to explore new ideas, and he was

generous to a fault. The idea of a book with over a hundred authors would have terrified most editors.
Frank saw it as a challenge and an experiment. | miss Frank.

Alex Martelli

| first met Python thanks to the gentle insistence of aformer colleague, Alessandro Bottoni. He kept
courteoudly repeating that | really should give Python atry, in spite of my claims that | already knew
more programming languages than | knew what to do with. If | hadn't trusted his technical and
aesthetic judgment enough to invest the needed time and energy on his suggestion, | most definitely

wouldn't be writing and editing Python books today. Thanks for your well-placed stubbornness,
Alessandro!

Of course, once | tasted Python, | wasirretrievably hooked—my lifelong taste for high-level
("scripting") languages at last congealed into one superb synthesis. Here, at long last, was a language
with the syntactic ease of Rexx (and then some), the semantic simplicity of Tcl (and then some), and
the awesome power of Perl (and then some). How could | resist? Still, | do owe a debt to Mike
Cowlishaw (inventor of Rexx), who | had the pleasure of having as a colleague when | worked for

IBM, for first getting me hooked on scripting. | must also thank John Ousterhout and Larry Wall, the
inventors of Tcl and Perl, respectively, for later reinforcing my addiction through their brainchildren.

Greg Wilson first introduced me to O'Rellly, so he must get his share of thanks, too—and I'm
overjoyed at having him as one of the introduction authors. | am also grateful to David Ascher and
Laura Lewin, for signing me up as co-editor of this book (which of course delayed Pythonin a
Nutshell, which I'm a so writing—double thanks to Laura for agreeing to let the nutshell's schedule
dlip!). Finally, Paula Ferguson's copious and excellent feedback steered the final stages of editingin a
superb way—more thanks!

And so, thanks to the good offices of all these people, | was at last faced with the task of editing this
book, to O'Relilly levels of quality, and fast. Could | do it? Not without an impressive array of
technology. | don't know the names of al the people | should thank for the Internet, ADSL, the
Google search engine, and the Opera browser, which, together, let me look things up so easily—or for
many of the other hardware and software technol ogies cooperating to amplify my productivity. But, |
do know | couldn't have made it without Theo de Raadt's OpenBSD operating system, Bram
Moolenar's VIM editor, and, of course, Guido van Rossum's Python language . . . o, I'll single out
Theo, Bram, and Guido for special thanks!

But equally, | couldn't have made it without the patience and support of al my friends and family,
who for so long saw me only rarely, and then with bleary eyes, muttering about recipes and cookbooks.
Special thanks and love for thisto my girlfriend Marina, my children Lucio and Flavia, and my sister

Elisabetta. But my father Lanfranco deserves a super-specia mention, because, in addition to al this,
he was also aways around to brew excellent espresso, indispensable for keeping me awake and aert.
Besides, how else did | learn to work hard and relentlessly, never sparing either energy or effort,
except from his lifelong example? So, thanks, Dad!

Chapter 1. Python Shortcuts

Section 1.1. Introduction

Section 1.2. Swapping Vaues WithoutUsing a Temporary Variable

Section 1.3. Constructing a Dictionary Without Excessive Quoting

Section 1.4. Getting a VVaue from a Dictionary

Section 1.5. Adding an Entry to a Dictionary

Section 1.6. Associating Multiple Vaues with Each Key in a Dictionary

Section 1.7. Dispatching Using a Dictionary

Section 1.8. Collecting a Bunch of Named Items

Section 1.9. Finding the Intersection of Two Dictionaries

Section 1.10. Assigning and Testing with One Statement

Section 1.11. Using List Comprehensions Instead of map and filter

Section 1.12. Unzipping Simple List-Like Objects

Section 1.13. Flattening a Nested Sequence

Section 1.14. Looping in Parallel over Index and Sequence Items

Section 1.15. Looping Through Multiple Lists

Section 1.16. Spanning a Range Defined by Floats

Section 1.17. Transposing Two-Dimensiona Arrays

Section 1.18. Creating Lists of Lists Without Sharing References

1.1 Introduction

Credit: David Ascher, ActiveState, co-author of Learning Python (O'Reilly)

Programming languages are like natural languages. Each has a set of qualities that polyglots
generally agree on as characteristics of the language. Russian and French are often admired for
their lyricism, while English is more often cited for its precision and dynamism: unlike the
Académie-defined French language, the English language routinely grows words to suit its
speakers needs, such as "carjacking,” "earwitness,” "snail mail," "email," "googlewhacking,” and
"blogging.” In the world of computer languages, Perl is well known for its many degrees of
freedom: TMTOWTDI (There's More Than One Way To Do It) is one of the mantras of the Perl
programmer. Conciseness is also seen as a strong virtue in the Perl and APL communities. In
contrast, as you'll see in many of the discussions of recipes throughout this volume, Python
programmers often express their belief in the value of clarity and elegance. As awell-known Perl
hacker once said, Python's prettier, but Perl is more fun. | agree with him that Python does have a
strong (as in well-defined) aesthetic, while Perl has more of a sense of humor. | still have more fun
coding in Python, though.

The reason | bring up these seemingly irrelevant bits at the beginning of this book is that the
recipes you see in this first chapter are directly related to Python's aesthetic and socia dynamics.
In most of the recipes in this chapter, the author presents a single elegant language feature, but one
that he feels is underappreciated. Much like I, a proud resident of VVancouver, will go out of my
way to show tourists the really neat things about the city, from the parks to the beaches to the
mountains, a Python user will seek out friends and colleagues and say, "Y ou gotta see this!"
Programming in Python, in my mind, is a shared social pleasure, not all that competitive. There's
great pleasure in learning a new feature and appreciating its design, elegance, and judicious use,
and there's a twin pleasure in teaching another or another thousand about that feature.

When we identified the recipe categories for this collection, our driving notion was that there
would be recipes of various kinds, each aiming to achieve something specific—a souffle recipe, a
tart recipe, an 0sso buco recipe. Those would naturally bunch into fairly typical categories, such as
desserts, appetizers, and meat dishes, or their perhaps |ess appetizing, nonmetaphorica

equivalents, such as files, algorithms, and so on. So we picked alist of categories, added the
categories to the Zope site used to collect recipes, and opened the floodgates.

Pretty soon, it became clear that some submissions were really hard to fit into the predetermined
categories. These recipes are the Pythonic equivalent of making a roux (melted butter or fat
combined with flour, used in sauce-making, for those of you without an Italian sauce background),
kneading dough, flouring, flipping a pan's contents, blanching, and the myriad other tricks that any
accomplished cook knows, but that you won't find in any "straight” recipe book. Many of these
tricks and techniques are used in preparing various kinds of meals, but it's hard to pigeonhole them
asrelevant for a given type of dish. And if you're a novice cook looking up afancy recipe, you're
likely to get frustrated quickly, as these techniques are typically found only in books like Cooking
for Divorced Middle-Aged Men. We didn't want to exclude this precious category from this book,
SO anew category was born. That explains why this chapter exists.

This chapter is pretty flimsy, though, in that while the title refers to shortcuts, there is nothing here
like what one could have expected had the language in question been Python's venerable cousin,
Perl. If this had been a community-authored Perl cookbook, entries in this category would
probably have outnumbered those in most other chapters. That is because Perl's syntax provides,
proudly, many ways to do pretty much anything. Furthermore, each way is "tricky" in a good way:
the writer gets alittle thrill out of exploiting an odd corner of the language. That chapter would be
impressive, and competitive, and fun. Python programmers just don't get to have that kind of fun
on that kind of scale (by which | mean the scale of syntactic shortcuts and semantic-edge cases).
No one gives multi-hour talks about tricks of the Python grand masters... Python grand masters
simply don't have that many frequently used tricks up their deeves!

| believe that the recipes in this chapter are among the most time-sensitive of the recipesin this
volume. That's because the aspects of the language that people consider shortcuts or noteworthy
techniques seem to be relatively straightforward, idiomatic applications of recent language
features. List comprehensions, zi p, and dictionary methods such asset def aul t areall
relatively recent additions to the language, dating from Python 2.0 or later. In fact, many of these
newish language features were added to Python to eliminate the need for what used to be fancy
recipes.

My favorite recent language features are list comprehensions and the new applicability of the *
and * * tokensto function calls as well as to function definitions. List comprehensions have
clearly become wildly successful, if the authors of this volume are representative of the Python
community at large, and have largely demoted the map and f i | t er built-in functions. Less
powerful, but equally elegant, are * and * * . Since Python 2.0, the oft-quoted recipe:

def nethod(self, argument, *args, **kw):
Do sonething with argunment
appl y(call abl e, args, kw)

can now be done much more elegantly as:

def nmethod(self, argunment, *args, **kw):
Do sonething with argunment
cal |l abl e(*args, **kw)

The appl vy built-in function is still somewhat useful, at least occasionally, but these new
syntactic forms are elegant and provably Pythonic. This leads me to my closing comment on
language shortcuts: the best source of shortcuts and language tricks is probably the list of language
changes that comes with each Python release. Special thanks should be extended to Andrew
Kuchling for publishing alist of "What's new with Python 2.x," available at http://amk.ca/python/,
for each magjor release since 2.0. It's the place | head for when | want a clear and concise view of
Python's recent evolution.

1.2 Swapping Values Without Using a Temporary Variable
Credit: Hamish Lawson

1.2.1 Problem

Y ou want to swap the values of some variables, but you don't want to use a temporary varigble.
1.2.2 Solution

Python's automatic tuple packing and unpacking make this a snap:

a, b, c =Db, c, a

1.2.3 Discussion

Most programming languages make you use temporary intermediate variables to swap variable
values:

tenmp = a
a=»>bt
b =c¢c
c = tenp

But Python lets you use tuple packing and unpacking to do a direct assignment:
a, b, ¢c =b, c, a

In an assignment, Python requires an expression on the righthand side of the =. What we wrote
there—b, ¢, a—isindeed an expression. Specificaly, it is a tuple, which is an immutable
sequence of three values. Tuples are often surrounded with parentheses, asin (b, ¢, a), but
the parentheses are not necessary, except where the commas would otherwise have some other

meaning (e.g., in afunction call). The commas are what create atuple, by packing the values that
are the tupl€e'sitems.

On the lefthand side of the = in an assignment statement, you normally use asingle target. The
target can be a simple identifier (also known as avariable), an indexing (suchasal i st[i] or
adi ct[' freep']), anattribute reference (such as anobj ect . soneat t ri but e), and
so on. However, Python aso lets you use severd targets (variables, indexings, etc.), separated by
commas, on an assignment's lefthand side. Such a multiple assignment is also called an unpacking
assignment. When there are two or more comma-separated targets on the lefthand side of an
assignment, the value of the righthand side must be a sequence of as many items as there are
comma-separated targets on the lefthand side. Each item of the sequence is assigned to the
corresponding target, in order, from left to right.

In this recipe, we have three comma-separated targets on the lefthand side, so we need a three-
item sequence on the righthand side, the three-item tuple that the packing built. The first target
(variable a) gets the value of the first item (which used to be the value of variable b), the second
target (b) gets the value of the second item (which used to be the value of ¢), and the third and
last target (C) gets the value of the third and last item (which used to be the value of a). The net

result is a swapping of values between the variables (equivalently, you could visualize this
particular example as a rotation).

Tuple packing, done using commas, and sequence unpacking, done by placing several comma:
separated targets on the lefthand side of a statement, are both useful, simple, general mechanisms.

By combining them, you can simply, elegantly, and naturally express any permutation of values
among a set of variables.

1.2.4 See Also

The Reference Manual section on assignment statements.

1.3 Constructing a Dictionary Without Excessive Quoting
Credit: Brent Burley
1.3.1 Problem

You'd like to construct a dictionary without having to quote the keys.

1.3.2 Solution

Once you get into the swing of Python, you may find yourself constructing a lot of dictionaries.
However, the standard way, also known as a dictionary display, is just a smidgeon more cluttered
than you might like, due to the need to quote the keys. For example:
data ={ 'red" : 1, 'green' : 2, '"blue' : 3}
When the keys are identifiers, there's a cleaner way:
def makedi ct (**kwargs):
return kwargs
data = nakedict(red=1, green=2, blue=3)

Y ou might also choose to forego some simplicity to gain more power. For example:

def dodict(*args, **kwds):

d = {}

for k, vin args: d[k] = v
d. updat e(kwds)

return d

tada = dodict(*data.itens(), yellow=2, green=4)

1.3.3 Discussion

The syntax for constructing a dictionary can be dightly tedious, due to the amount of quoting
required. This recipe presents a technique that avoids having to quote the keys, when they are
identifiers that you aready know at the time you write the code.

I've often found myself missing Perl's => operator, which is well suited to building hashes (Perl-
speak for dictionaries) from alitera list:

%data = (red => 1, green => 2, blue => 3);

The => operator in Perl is equivaent to Perl'sown , , except that it implicitly quotes the word to
its left.

Perl's syntax is very similar to Python's function-calling syntax for passing keyword arguments.
And the fact that Python collects the keyword arguments into a dictionary turned on alight bulb in
my head.

When you declare a function in Python, you may optionally conclude the list of formal arguments
with *ar gs or ** kwds (if you want to use both, the one with * * must be last). If you have

*ar gs, your function can be called with any number of extra actua arguments of the positional,

or plain, kind. Python collects all the extra positional arguments into a tuple and binds that tuple to
the identifier ar gs. Similarly, if you have * * kwds, your function can be called with any

number of extra actual arguments of the named, or keyword, kind. Python collects all the extra
named arguments into a dictionary (with the names as the keys and the values as the values) and
binds that dictionary to the identifier kwds. This recipe exploits the way that Python knows how

to perform the latter task.

The makedi ct function should be very efficient, since the compiler is doing work equivalent to
that done with a dictionary literal. It is admittedly idiomatic, but it can make large dictionary
literals alot cleaner and alot less painful to type. When you need to construct dictionaries from a
list of key/item pairs, possibly with explicit override of, or addition to, some specifically named
key, the dodi ct function (although less crystal-clear and speedy) can be just as handy. In
Python 2.2, the first two lines of dodi ¢t can be replaced with the more concise and faster
equivalent:

d = dict(args)
1.3.4 See Also

The Library Reference section on mapping types.

1.4 Getting a Value from a Dictionary
Credit: Andy McKay
1.4.1 Problem

Y ou need to obtain a value from a dictionary, without having to handle an exception if the key you
seek is not in the dictionary.

1.4.2 Solution
That'swhat the get method of dictionariesis for. Say you have a dictionary:
d = {"'key':"'"value'}

You can write atest to pull out the value of ' key' from d in an exception-safe way:

if d.has_key('key'): # or, in Python 2.2 or later: if
"key' in d:

print d['key']
el se:

print 'not found'

However, there is a much simpler syntax:

print d.get('key', '"not found")

1.4.3 Discussion

Want to get avalue from a dictionary but first make sure that the value exists in the dictionary?
Use the smple and useful get method.

If you try to get a value with a syntax such as d[x] , and the value of x is not akey in dictionary
d, your attempt raisesa KeyEr r or exception. This is often okay. If you expected the value of X
to be akey in d, an exception is just the right way to inform you that you're wrong (i.e., that you
need to debug your program).

However, you often need to be more tentative about it: as far as you know, the value of X may or
may not be akey in d. In this case, don't start messing with the has_key method or with
trylexcept statements. Instead, usethe get method. If youcall d. get (x) , no exception is
thrown: you get d[x] if X isakey ind, and if it's not, you get None (which you can check for
or propagate). If None is not what you want to get when x isnot akey of d, cal d. get (X,
somet hi ngel se) instead. In this case, if X isnot akey, you will get the vaue of

somet hi ngel se.

get isasimple, useful mechanism that is well explained in the Python documentation, but a
surprising number of people don't know about it. Thisidiom is aso quite common in Zope, for
example, when pulling variables out of the REQUEST dictionary.

1.4.4 See Also

The Library Reference section on mapping types.

1.5 Adding an Entry to a Dictionary
Credit: Alex Martelli
1.5.1 Problem

Working with a dictionary D, you need to use the entry D[k] if it's already present, or add a new
D[k] if k isn't yet akey in D.

1.5.2 Solution

Thisiswhat the set def aul t method of dictionary objectsisfor. Say we're building a word-
to-page numbers index. A key piece of code might be:

t hel ndex = {}
def addword(word, pagenunber):
i f thel ndex. has_key(word):
t hel ndex[wor d] . append(pagenunber)
el se:
t hel ndex[word] = [pagenunber]

Good Pythonic instincts suggest substituting this "look before you leap" pattern with an "easier to
get permission” pattern (see Recipe 5.4for a detailed discussion of these phrases):

def addword(word, pagenunber):
try: thel ndex[word].append(pagenunber)
except AttributeError: thelndex[word] = [pagenunber]

Thisisjust aminor simplification, but it satisfies the pattern of "use the entry if it is aready
present; otherwise, add a new entry." Here's how using set def aul t simplifies this further:

def addword(word, pagenunber):
t hel ndex. setdefaul t (word, []).append(pagenunber)

1.5.3 Discussion

The set def aul t method of adictionary is a handy shortcut for this task that is especially
useful when the new entry you want to add is mutable. Basicaly, di ct . set def aul t (k, V)
ismuchlikedi ct . get (k, V), except that if k isnot akey in the dictionary, the

set def aul t method assignsdi ct [k] =v as aside effect, in addition to returning v. (get
would just return v, without affecting di ct in any way.) Therefore, set def aul t is
appropriate any time you have get -like needs but aso want to produce this specific side effect on
the dictionary.

set def aul t isparticularly useful in a dictionary with values that are lists, as detailed in
Recipe 1.6. The single most typical usage form for set def aul t is

sonmedi ct. set def aul t (sonekey, []).append(soneval ue)

Note that set def aul t isnormally not very useful if the values are immutable. If you just want
to count words, for example, something like the following is no use:

t hel ndex. set defaul t (word, 1)

In this case, you want:
t hel ndex[word] = 1 + thelndex.get(word, 0)

since you will be rebinding the dictionary entry at t hel ndex[wor d] anyway (because
numbers are immutable).

1.5.4 See Also

Recipe 5.4; the Library Reference section on mapping types.

1.6 Associating Multiple Values with Each Key in a
Dictionary

Credit: Michael Chermside
1.6.1 Problem

You need a dictionary that maps each key to multiple values.

1.6.2 Solution

By nature, a dictionary is a one-to-one mapping, but it's not hard to make it one-to-many—in other
words, to make one key map to multiple values. There are two possible approaches, depending on
how you want to treat duplicationsin the set of values for a key. The following approach alows
such duplications:

di = {}
dl. setdefaul t(key, []).append(val ue)

while this approach automatically eliminates duplications:

d2 = {}
d2. setdefaul t (key, {})[value] =1

1.6.3 Discussion

A normal dictionary performs a simple mapping of akey to avalue. This recipe shows two easy,
efficient ways to achieve a mapping of each key to multiple values. The semantics of the two
approaches differ dlightly but importantly in how they deal with duplication. Each approach relies
onthe set def aul t method of adictionary to initialize the entry for akey in the dictionary, if
needed, and in any case to return said entry.

Of course, you need to be able to do more than just add values for a key. With the first approach,
which alows duplications, here's how to retrieve the list of values for a key:

list_of _values = dl] key]

Here's how to remove one value for akey, if you don't mind leaving empty lists asitems of d1
when the last value for akey is removed:

d1l[key] . renove(val ue)
Despite the empty lists, it's still easy to test for the existence of a key with at least one value:

def has_key with_sonme_val ues(d, key):
return d. has_key(key) and d[key]

This returns either O or alist, which may be empty. In most cases, it is easier to use a function that
aways returns alist (maybe an empty one), such as.

def get_values_if_any(d, key):
return d.get(key, [])

Y ou can use either of these functions in a statement. For example:

if get_values_if_any(dl, sonekey):
if has_key with_sone_val ues(dl, sonekey):

However, get _val ues_i f _any isgenerally handier. For example, you can use it to check if
"freep' isamongthevauesfor sonekey:

if "freep' in get _values if_any(dl, sonekey):

This extra handiness comes from get _val ues i f _any alwaysreturning alist, rather than
sometimes a list and sometimes O.

The first approach allows each value to be present multiple times for each given key. For example:

example = {}
exanpl e. setdefaul t (' a
exanpl e. setdefault('b
exanmpl e. setdefault('c',
('a
('a

.append(' appl e')
. append(' boots")
. append(' cat')
.append(' ant')

. append(' appl e')

exampl e. setdefaul t ('
exanpl e. set def aul t

Now exanple['a'] is[' apple', "ant', 'apple'].Ifwenow execute
exanple['a'].renove(' apple')

the following test is still satisfied:

if "apple' in exanple['a']

"appl e' was present twice, and we removed it only once. (Testing for ' appl €' with

get _values_ if_any(exanple, 'a') wouldbemoregenerd, although equivalent in

this case.)

The second approach, which eliminates duplications, requires rather similar idioms. Here's how to
retrieve the list of the values for akey:

list_of values = d2[key].keys()

Here's how to remove a key/value pair, leaving empty dictionaries as items of d2 when the last
value for akey is removed:

del d2[key] [val ue]

Thehas_key wi th_sone_val ues function shown earlier also works for the second
approach, and you aso have analogous alternatives, such as:

def get _values_ if_any(d, key):
return d. get(key, {}).keys()

The second approach doesn't allow duplication. For example:

example = {}

exanmpl e. setdefaul t (' a {1

exanmpl e. setdefault('b {1

exanpl e. setdefault('c', {})['cat']=1
a', {HI
a', {}I

exanpl e. setdefault (' a'
exampl e. set def aul t ('

Now exanpl e["a'] is{"apple':1, "ant':1}.Now,ifweexecute
del exanple['a][apple']

the following test is not satisfied:

if "apple' in exanple['a']

"appl e' was present, but we just removed it.

This recipe focuses on how to code the raw functionality, but if you want to use this functionality
in a systematic way, you'll want to wrap it up in aclass. For that purpose, you need to make some
of the design decisions that the recipe highlights. Do you want a value to be in the entry for akey
multiple times? (Is the entry a bag rather than a set, in mathematical terms?) If so, should

I enove just reduce the number of occurrences by 1, or should it wipe out al of them? Thisis
just the beginning of the choices you have to make, and the right choices depend on the specifics
of your application.

1.6.4 See Also

The Library Reference section on mapping types.

1.7 Dispatching Using a Dictionary
Credit: Dick Wall
1.7.1 Problem

Y ou need to execute appropriate pieces of code in correspondence with the value of some control
variable—the kind of problem that in some other languages you might approach with a case,
swi tch, or sel ect statement.

1.7.2 Solution

Object-oriented programming, thanks to its elegant concept of dispatching, does away with many
(but not all) such needs. But dictionaries, and the fact that in Python functions are first-class
values (in particular, they can be values in a dictionary), conspire to make the problem quite easy
to solve:

animals = []
nunber of felines =0

def deal with_a cat():
gl obal nunber _of felines
print "meow'
ani mal s. append(' feline')
nunmber _of felines += 1

def deal _with_a dog():
print "bark"
ani mal s. append(' cani ne')

def deal with_a bear():
print "watch out for the *HUG!"
ani mal s. append(' ursine')

tokenDi ct = {
"cat": deal _with_a cat,
"dog": deal _with_a_dog,
"bear": deal w th_a bear,

}
Simul ate, say, sonme words read froma file
words = ["cat", "bear", "cat", "dog"]

for word in words:

Look up the function to call for each word, then call
it

functionToCall = tokenDi ct[word]

functionToCall ()

You could also do it in one step, tokenDict[word]()

1.7.3 Discussion

The basic idea behind this recipe is to construct a dictionary with string (or other) keys and with
bound methods, functions, or other callables as values. During execution, at each step, use the
string keys to select which method or function to execute. This can be used, for example, for
simple parsing of tokens from a file through a kind of generalized c as e statement.

It's embarrassingly smple, but | use this technique often. Instead of functions, you can also use
bound methods (such as sel f . net hod1) or other callables. If you use unbound methods (such
ascl ass. net hod), you need to pass an appropriate object as the first actual argument when

you do call them. More generally, you can also store tuples, including both callables and
arguments, as the dictionary's values, with diverse possibilities.

| primarily use thisin places where in other languages | might want a case, swi t ch, or

sel ect statement. | also useit to provide a poor man's way to parse command files (e.g., an
X10 macro control file).

1.7.4 See Also

The Library Reference section on mapping types; the Reference Manual section on bound and
unbound methods.

1.8 Collecting a Bunch of Named Items
Credit: Alex Martelli
1.8.1 Problem

Y ou want to collect a bunch of items together, naming each item of the bunch, and you find
dictionary syntax a bit heavyweight for the purpose.

1.8.2 Solution
Any (classic) class inherently wraps a dictionary, and we take advantage of this:
cl ass Bunch:
def _ init_ (self, **kwds):
self._ _dict_ _.update(kwds)
Now, to group afew variables, create a Bunch instance

poi nt = Bunch(datunry, squared=y*y, coord=x)

Y ou can access and rebind the named attributes just created, add others, remove some, and so on.
For example:

i f point.squared > threshol d:
point.isok =1

1.8.3 Discussion

Often, we just want to collect a bunch of stuff together, naming each item of the bunch; a
dictionary's okay for that, but a small do-nothing class is even handier and is prettier to use.

A dictionary is fine for collecting a few items in which each item has a name (the item's key in the
dictionary can be thought of as the item's name, in this context). However, when all names are
identifiers, to be used just like variables, the dictionary-access syntax is not maximally clear:

if point['squared'] > threshold

It takes minimal effort to build alittle class, asin this recipe, to ease the initiaization task and
provide elegant attribute-access syntax:

i f bunch.squared > threshol d
An equally attractive aternative implementation to the one used in the solution is:

cl ass EvenSi npl er Bunch:
def _ _init_ _(self, **kwds): self._ _dict_ _ = kwds

The alternative presented in the Bunch class has the advantage of not rebinding sel f.
dict _ (itusesthedictionary's updat e method to modify it instead), so it will keep
working even if, in some hypothetica far-future dialect of Python, this specific dictionary became

nonrebindable (as long, of course, as it remains mutable). But this EvenSi npl er Bunch is
indeed even simpler, and marginally speedier, asit just rebinds the dictionary.

It is not difficult to add special methods to allow attributes to be accessed as
bunch[' squar ed'] andsoon. In Python 2.1 or earlier, for example, the simplest way is:

i nport operator

cl ass Mur ki er Bunch:

def _ _init_ _(self, **kwds):
self. _dict_ _ = kwds
def _ getitem_ (self, key):
return operator.getitenm(self._ _dict_ _, key)
def _ _setitem_ _(self, key, value):
return operator.setitenm(self.__dict_ _, key, value)
def _ delitem_ _(self, key):
return operator.delitemself._ _dict_ _, key)

In Python 2.2, we can get the same effect by inheriting from the di ct built-in type and
delegating the other way around:

cl ass Murki erBunch22(dict):

def _ init_ (self, **kwds): dict.__init_ (self, kwdls)
_ _getattr_ _ = dict._ _getitem _
_ _setattr_ = dict.__setitem _
_ _delattr_ = dict._ _delitem _

Neither approach makes these Bunch variants into fully fledged dictionaries. There are problems
with each—for example, what issonmeBunch. keys supposed to mean? Does it refer to the
method returning the list of keys, or isit just the same thing assonmeBunch|[' keys'] ?It's
definitely better to avoid such confusion: Python distinguishes between attributes and items for
clarity and simplicity. However, many newcomers to Python do believe they desire such
confusion, generally because of previous experience with JavaScript, in which attributes and items
are regularly confused. Such idioms, however, seem to have little usefulness in Python. For
occasiona access to an attribute whose name is held in a variable (or otherwise runtime-
computed), the built-in functionsget at t r, set att r, and del at t r are quite adequate, and
they are definitely preferable to complicating the delightfully simple little Bunch class with the
semantically murky approaches shown in the previous paragraph.

1.8.4 See Also

The Tutorial section on classes.

1.9 Finding the Intersection of Two Dictionaries
Credit: Andy McKay, Chris Perkins, Sami Hangaslammi

1.9.1 Problem

Given two dictionaries, you need to find the set of keys that are in both dictionaries.
1.9.2 Solution

Dictionaries are a good concrete representation for sets in Python, so operations such as
intersections are common. Say you have two dictionaries (but pretend that they each contain
thousands of items):

sone_dict = { 'zope':'zzz', 'python':'rocks' }
another _dict = { 'python':'rocks', 'perl':'$" }

Here's abad way to find their intersection that is very slow:

intersect = []
for itemin sone_dict.keys():
if itemin another_dict. keys():
i ntersect. append(item
print "Intersects:", intersect

And here's agood way that is simple and fast:

intersect = []
for itemin some_dict.keys():
i f anot her _dict. has_key(item:
i ntersect. append(item
print "Intersects:", intersect

In Python 2.2, the following is elegant and even faster:

print "Intersects:", [k for k in some_dict if k in
anot her _dict]

And her€'s an aternate approach that wins hands down in speed, for Python 1.5.2 and later:

print "Intersects:", filter(another _dict.has _key,
sonme_di ct. keys())

1.9.3 Discussion

The keys method produces alist of al the keys of a dictionary. It can be pretty tempting to fall
into the trap of just using i n, with thislist as the righthand side, to test for membership. However,
in the first example, you're looping through al of sone_di ct , then each time looping through
al of anot her _di ct.If some_di ct hasN1litems, and anot her _di ct has N2 items,

your intersection operation will have a compute time proportional to the product o N1x N2.
(O(N1x N2) is the common computer-science notation to indicate this.)

By using the has_key method, you are not looping on anot her _di ct any more, but rather
checking the key in the dictionary's hash table. The processing time for has_key isbasicaly
independent of dictionary size, so the second approach is O(N1). The difference is quite
substantial for large dictionaries! If the two dictionaries are very different in size, it becomes
important to use the smaller oneintherole of sonme_di ct, while the larger one takes on the
role of anot her _di ct (i.e., loop on the keys of the smaller dictionary, thus picking the
smaller N1).

Python 2.2 lets you iterate on a dictionary's keys directly, with the statement:
for key in dict

Y ou can test membership with the equally elegant:

if key in dict

rather than the equivalent but syntactically lessnice di ct . has_key(key) . Combining these
two small but nice innovations of Python 2.2 with the list-comprehension notation introduced in
Python 2.0, we end up with a very elegant approach, which is at the same time concise, clear, and
quite speedy.

However, the fastest approach isthe one that uses f i | t er with the bound method

anot her _di ct. has_key onthelistsone_di ct . keys. A typical intersection of two
500-item dictionaries with 50% overlap, on atypica cheap machine of today (AMD Athlon
1.4GHz, DDR2100 RAM, Mandrake Linux 8.1), took 710 microseconds using has _key, 450

microseconds using the Python 2.2 technique, and 280 microseconds using the f i | t er -based

way. While these speed differences are amost substantial, they pale in comparison with the timing
of the bad way, for which atypical intersection took 22,600 microseconds—30 times longer than
the simple way and 80 times longer thanthe f i | t er -based way! Here's the timing code, which

shows atypical example of how one goes about measuring relative speeds of equivaent Python
constructs:

inport tine

def tinmeo(fun, n=1000):
def void(): pass
start = tinme.clock()
for i in range(n): void()
stend = tine.clock()
overhead = stend - start
start = time.clock()
for i in range(n): fun()
stend = tinme.clock()
thetinme = stend-start

return fun. _ _name_ _, thetinme-overhead
t o500 = {}
for i in range(500): to500[i] =1
evens = {}

for i in range(0, 1000, 2): evens[i] =1

def sinpleway():
result =[]

for k in to500. keys():
i f evens. has_key(k):
resul t.append(k)

return result

def pyth22way():
return [k for k in to500 if k in evens]

def filterway():
return filter(evens. has_key, to0500. keys())

def badsl oway():
result =[]
for k in to500. keys():
if k in evens.keys():
resul t.append(k)
return result

for f in sinpleway, pyth22way, filterway, badsl oway:
print "%: % 2f"% i neo(f)

Y ou can save this code into a .py file and run it (a few times, on an otherwise quiescent machine,
of course) with pyt hon - Oto check how the timings of the various constructs compare on any
specific machine in which you're interested. (Note that this script requires Python 2.2 or later.)
Timing different code snippets to find out how their relative speeds compare is an important
Python technique, since intuition is a notoriously unreliable guide to such relative-speed
comparisons. For detailed and general instruction on how to time things, see the introduction to
Chapter 17.

When applicable without having to use a | anbda form or a specialy written function, fi | t er,
map, and r educe often offer the fastest solution to any given problem. Of course, a clever
Pythonista cares about speed only for those very, very few operations where speed really matters
more than clarity, simplicity, and elegance! But these built-ins are pretty elegant in their own way,
too.

We don't have a separate recipe for the union of the keys of two dictionaries, but that's because the
task is even easier, thanks to a dictionary's updat e method:

def wuni on_keys(sone_dict, another _dict):
tenp_dict = sone_dict.copy()
tenp_di ct. updat e(anot her _di ct)
return tenp_dict. keys()

1.9.4 See Also

The Library Reference section on mapping types.

1.10 Assigning and Testing with One Statement
Credit: Alex Martelli
1.10.1 Problem

You are trandliterating C or Perl code to Python, and, to keep close to the original's structure, you
need an expression’s result to be both assigned and tested (asini f ((x=f oo()) or

whi | e((x=foo()) insuch other languages).
1.10.2 Solution

In Python, you can't code:

if x=foo():

Assignment is a statement, so it cannot fit into an expression, which is necessary for conditions of
i f andwhi | e statements. Normally thisisn't a problem, as you can just structure your code
around it. For example, thisis quite Pythonic:

while 1:
line = file.readline()
if not line: break
process(!line)

In modern Python, thisis far better, but it's even farther from C-like idioms:

for line in file.xreadlines():
process(!line)

In Python 2.2, you can be even simpler and more elegant:

for line in file:
process(line)

But sometimes you're tranditerating C, Perl, or some other language, and you'd like your
tranditeration to be structurally close to the original.

One simple utility class makes this easy:

cl ass Dat aHol der:
def _ _init_ (self, value=None):
sel f.value = val ue
def set(self, value):
sel f.value = val ue
return val ue
def get(self):
return self.val ue
optional and strongly discouraged, but handy at tines:
inmport _ _builtin_ _
_ _builtin_ _.DataHol der = Dat aHol der
_ _builtin_ _.data = DataHol der()

With the help of the Dat aHol der classand its dat a instance, you can keep your C-like code
structure intact in tranditeration:

while data.set(file.readline()):
process(data.get())

1.10.3 Discussion

In Python, assignment is not an expression. Thus, you cannot assign the result that you are testing
in, for example, ani f, el i f, or whi | e statement. Thisis usually okay: you just structure your
code to avoid the need to assign while testing (in fact, your code will often become clearer as a
result). However, sometimes you may be writing Python code that is the trandliteration of code
originaly written in C, Perl, or another language that supports assignment-as-expression. For
example, such tranditeration often occurs in the first Python version of an agorithm for which a
reference implementation is supplied, an agorithm taken from a book, and so on. In such cases,
having the structure of your initial trandliteration be close to that of the code you're transcribing is
often preferable. Fortunately, Python offers enough power to make it pretty trivial to satisfy this
requirement.

We can't redefine assignment, but we can have a method (or function) that saves its argument
somewhere and returns that argument so it can be tested. That "somewhere" is most naturally an
attribute of an object, so a method is a more natural choice than a function. Of course, we could
just retrieve the attribute directly (i.e., the get method is redundant), but it looks nicer to have

symmetry between dat a. set and dat a. get .

Special-purpose solutions, such asthe xr eadl i nes method of file objects, the similar
decorator function in the xr eadl i nes module, and (not so special-purpose) Python 2.2
iterators, are obviously preferable for the purposes for which they've been designed. However,
such constructs can imply even wider deviation from the structure of the algorithm being

trangliterated. Thus, while they're great in themselves, they don't really address the problem
presented here.

dat a. set (what ever) can be seen as little more than syntactic sugar for
dat a. val ue=what ever, with the added value of being acceptable as an expression.

Therefore, it's the one obviously right way to satisfy the requirement for a reasonably faithful
trandliteration. The only difference is the syntactic sugar variation needed, and that's a minor issue.

Importing _bui Il tin_ _ andassigning to its attributes is a trick that basically definesa

new built-in object at runtime. All other modules will automatically be able to access these new
built-ins without having to do an import. It's not good practice, though, since readers of those
modules should not need to know about the strange side effects of other modules in the application.
Nevertheless, it's a trick worth knowing about in case you encounter it.

Not recommended, in any case, is the following abuse of list format as comprehension syntax:

while [line for line in (file.readline(),) if line]:
process(line)

It works, but it is unreadable and error-prone.

1.10.4 See Also

The Tutorial section on classes; the documentation for the bui | t i n module in the Library
Reference.

1.11 Using List Comprehensions Instead of map and filter
Credit: Luther Blissett
1.11.1 Problem

Y ou want to perform an operation on all the elements of alist, but you'd like to avoid using ma.p
andfi |t er becausethey can be hard to read and understand, particularly when they need
| anbda.

1.11.2 Solution

Say you want to create a new list by adding 23 to each item of some other list. In Python 1.5.2, the
solution is.

t henewl i st = map(lanbda x: x + 23, theoldlist)

Thisis hardly the clearest code. Fortunately, since Python 2.0, we can use a list comprehension
instead:

thenewlist =[x + 23 for x in theoldlist]
This is much clearer and more elegant.

Similarly, say you want the new list to comprise al items in the other list that are larger than 5. In
Python 1.5.2, the solution is:

thenewlist = filter(lanmbda x: x > 5, theoldlist)

But in modern Python, we can use the following list comprehension:

thenewlist = [x for x in theoldlist if x > 5]

Now say you want to combine both list operations. In Python 1.5.2, the solution is quite complex:

thenewl i st = map(l anbda x: x+23, filter(lanbda x: x>5,
theol dlist))

A list comprehension affords far greater clarity, as we can both perform selection with the i f
clause and use some expression, such as adding 23, on the selected items:

thenewlist = [x + 23 for x in theoldlist if x > 5]

1.11.3 Discussion

Elegance and clarity, within a generally pragmatic attitude, are Python's core values. List
comprehensions, added in Python 2.0, delightfully display how pragmatism can enhance both
clarity and elegance. The built-inmap and f i | t er functions till have their uses, since they're
arguably of equal elegance and clarity as list comprehensions when the | anbda construct is not
necessary. In fact, when their first argument is another built-in function (i.e., when | anbda is
not involved and thereis no need to write a function just for the purpose of using it within a map
orfilter),they can beeven faster than list comprehensions.

All in all, Python programs optimally written for 2.0 or later use far fewer nap andfi | t er
calls than similar programs written for 1.5.2. Most of the map andf i | t er calls (and quite a
few explicit loops) are replaced with list comprehensions (which Python borrowed, after some
prettying of the syntax, from Haskell, described at http://www.haskell.org). It's not an issue of
wanting to play with a shiny new toy (although that desire, too, has its place in a programmer's
heart)—the point is that the toy, when used well, is a wonderfully useful instrument, further
enhancing your Python programs' clarity, simplicity, and elegance.

1.11.4 See Also

The Reference Manual section on list displays (the other name for list comprehensions).

1.12 Unzipping Simple List-Like Objects
Credit: gyro funch

1.12.1 Problem

Y ou have a sequence and need to pull it apart into a number of pieces.

1.12.2 Solution

There's no built-inunzi p counterpart to zi p, but it's not hard to code our own:

def unzip(p, n):
""" Split a sequence p into a list of n tuples,
repeatedly taking the
next unused el ement of p and adding it to the next tuple.
Each of the
resulting tuples is of the sanme length; if p% != 0, the
shorter tuples
are padded with None (closer to the behavior of map than
to that of zip).
Exanpl e:
>>> unzip(['a',"'b",'c,"'d,"e], 3)
[((ta", "d), ("b", "e), ("c', None)]

First, find the Iength for the | ongest sublist

men, Ift = divmod(len(p), n)
if Ift '=0: mMen +=1
Then, initialize a list of lists with suitable |engths
st = [[None]*mlen for i in range(n)]
Loop over all itens of the input sequence (index-w se),
and
Copy a reference to each into the appropriate place
for i in range(len(p)):
j, k = divmod(i, n) # Find sublist-index and
i ndex-wi t hi n-subl i st
Ist[K][j] = p[i] # Copy a reference

appropriately

Finally, turn each sublist into a tuple, since the
unzi p function

is specified to return a list of tuples, not a list of
lists

return map(tuple, |st)

1.12.3 Discussion

The function in this recipe takes alist and pulls it apart into a user-defined number of pieces. It
acts like a sort of reverse zi p function (although it deals with only the very simplest cases). This

recipe was useful to me recently when | had to take a Python list and break it down into a number
of different pieces, putting each consecutive item of the list into a separate sublist.

Preallocating the result as a list of lists of None is generally more efficient than building up each
sublist by repeated callsto append. Also, in this case, it aready ensures the padding with None
that we would need anyway (unless | engt h(p) just happens to be a multiple of n).

The agorithm that unzi p usesis quite smple: a reference to each item of the input sequence is
placed into the appropriate item of the appropriate sublist. The built-in function di vimod

computes the quotient and remainder of a division, which just happen to be the indexes we need
for the appropriate sublist and item in it.

Although we specified that unzi p must return alist of tuples, we actually build alist of sublists,
and we turn each sublist into a tuple as late in the process as possible by applying the built-in
function t upl e over each sublist with asingle call to map. It ismuch simpler to build sublists
first. Lists are mutable, so we can bind specific items separately; tuples are immutable, so we
would have a harder time working with them in our unzi p function's main loop.

1.12.4 See Also

Documentation for the zi p and di vimod built-insin the Library Reference.

1.13 Flattening a Nested Sequence

Credit: Luther Blissett
1.13.1 Problem

Y ou have a sequence, such as alist, some of whose items may in turn be lists, and so on. You
need to flatten it out into a sequence of its scalar items (the leaves, if you think of the nested
sequence as atree).

1.13.2 Solution

Of course, we need to be able to tell which of the elements we're handling are to be deemed scalar.
For generality, say we're passed as an argument a predicate that defines what is scalar—a function
that we can call on any element and that returns 1 if the element is scalar or O otherwise. Given
this, one approach is:

def flatten(sequence, scal arp, result=None):
if result is None: result =[]
for itemin sequence:
if scalarp(item: result.append(item
else: flatten(item scalarp, result)
return result

In Python 2.2, a simple generator is an interesting alternative, and, if al the caller needsto do is
loop over the flattened sequence, may save the memory needed for the r esul t list:

from _ future_ _ inport generators
def flatten22(sequence, scal arp):
for itemin sequence:
if scalarp(item:
yield item
el se:
for subitemin flatten22(item scal arp):
yield subitem

1.13.3 Discussion

The only problem with this recipe is that determining what is a scalar is not as obvious as it might
seem, which iswhy | delegated that decision to a callable predicate argument that the caller is
supposed to passto f | at t en. Of course, we must be able to loop over the items of any non-
scalar withaf or statement, or f | at t en will raise an exception (since it does, via a recursive
call, attempt af or statement over any non-scalar item). In Python 2.2, that's easy to check:

def canLoopOver (maybelterabl e):
try: iter(maybelterable)
except: return O
el se: return 1

The built-in function i t er , new in Python 2.2, returns an iterator, if possible. f or xin s
implicitly callsthe i t er function, sothe canLoopOver function can easily check if f or is
applicable by calling i t er explicitly and seeing if that raises an exception.

In Python 2.1 and earlier, thereisno i t er function, so we have to try more directly:

def canLoopOver (nmaybelterable):
try:
for x in maybelterable:
return 1
el se:
return 1
except :
return O

Here we have to rely on the f or statement itself raising an exception if maybel t er abl e is
not iterable after all. Note that this approach is not fully suitable for Python 2.2: if
maybel t er abl e isaniterator object, the f or in this approach consumes its first item.

Neither of these implementations of canLoopOver isentirely satisfactory, by itsdlf, as our
scalar-testing predicate. The problem is with strings, Unicode strings, and other string-like objects.
These objects are perfectly good sequences, and we could loop on them witha f or statement, but
we typically want to treat them as scalars. And even if we didn't, we would at least have to treat
any string-like objects with a length of 1 as scalars. Otherwise, since such strings are iterable and
yield themselves as their only items, our f | at t en function would not cease recursion until it
exhausted the call stack and raised a Runt i meEr r or due to "maximum recursion depth
exceeded.”

Fortunately, we can easily distinguish string-like objects by attempting a typical string operation
on them:

def isStringLike(obj):
try: obj+""
except TypeError: return O
el se: return 1
Now, we finaly have a good implementation for the scalar-checking predicate:

def isScal ar(obj):
return i sStringLi ke(obj) or not canLoopOver (obj)

By simply placing thisi sScal ar function and the appropriate implementation of
canLoopOver inour module, before the recipe's functions, we can change the signatures of
these functions to make them easier to call in most cases. For example:

def flatten22(sequence, scal arp=i sScal ar):

Now the caller needsto passthe scal ar p argument only in those (hopefully rare) cases where
our definition of what is scalar does not quite meet the caller's application-specific needs.

1.13.4 See Also

The Library Reference section on segquence types.

1.14 Looping in Parallel over Index and Sequence ltems
Credit: Alex Martelli
1.14.1 Problem

You need to loop on a sequence, but at each step you also need to know what index into the
sequence you have reached.

1.14.2 Solution

Together, the built-in functions xr ange and zi p make this easy. Y ou need only this one
instance of Xr ange, asitisfully reusable:

i ndi ces = xrange(sys. maxi nt)
Here's how you usethe i ndi ces instance:

for item index in zip(sequence, indices):
sonet hing(item index)

This gives the same semantics as.

for index in range(len(sequence)):
sonet hi ng(sequence[i ndex], index)

but the change of emphasis alows greater clarity in many usage contexts.
Another alternative is to use class wrappers:
cl ass I ndexed:
def _ _init_ (self, seq):
sel f.seq = seq
def _ _getitem_ _(self, i):
return self.seq[i], I

For example:

for item index in |Indexed(sequence):
sonet hing(item index)

InPython 2.2, withfrom _ _future_ _ inport generators,youcanaso use

def | ndexed(sequence):

iterator = iter(sequence)
for index in indices:
yield iterator.next(), index

Note that we exit by propagating Stoplteration
when . next raises it!

However, the simplest roughly equivalent way remains the good old:

def | ndexed(sequence):
return zip(sequence, indices)

1.14.3 Discussion

We often want to loop on a sequence but also need the current index in the loop body. The
canonical Pydiom for thisis:

for i in range(len(sequence)):

using sequence| i | astheitem reference in the loop's body. However, in many contexts, it is
clearer to emphasize the loop on the sequence items rather than on the indexes. zi p provides an

easy dternative, looping on indexes and items in parallel, since it truncates at the shortest of its
arguments. Thus, it's okay for some arguments to be unbounded sequences, as long as not all the
arguments are unbounded. An unbounded sequence of indexes is trivia to write (Xr ange is

handy for this), and a reusable instance of that sequence can be passed to zi p, in parallel to the
sequence being indexed.

The same zi p usage also affords a client code-transparent alternative to the use of a wrapper
class | ndexed, as demonstrated by the | ndexed class, generator, and function shown in the
solution. Of these, when applicable, zi p is simplest.

The performance of each of these solutions is roughly equivaent. They're all O(N) (i.e., they
execute in time proportiona to the number of elements in the sequence), they all take O(1) extra
memory, and none is anything close to twice as fast or as slow as ancther.

Note that zi p isnot lazy (i.e., it cannot accept all argument sequences being unbounded).
Therefore, in certain casesin which zi p cannot be used (albeit not the typical one in which

range(| en(sequence)) isthe aternative), other kinds of loop might be usable. See
Recipe 17.13 for lazy, iterator-based alternatives, including an xzi p function (Python 2.2 only).

1.14.4 See Also

Recipe 17.13; the Library Reference section on sequence types.

1.15 Looping Through Multiple Lists
Credit: Andy McKay

1.15.1 Problem

Y ou need to loop through every item of multiple lists.
1.15.2 Solution

There are basically three approaches. Say you have:

a ['al", '"a2', "a3']
b =1["bl, 'b2']

Using the built-in function map, with afirst argument of None, you can iterate on both listsin
parald:

print "Map:"
for x, y in map(None, a, b):
print x, y

The loop runs three times. On the last iteration, y will be None.

Using the built-in function zi p aso letsyou iterate in paraldl:

print "Zip:"
for x, y in zip(a, b):
print x, y

The loop runs two times; the third iteration ssimply is not done.

A list comprehension affords a very different iteration:

print "List conprehension:”
for x, yin[(x,y) for x ina for y in b]:
print x, y

The loop runs six times, over each item of b for each item of a.
1.15.3 Discussion

Using ma.p with None as the first argument is a subtle variation of the standard nap call, which

typically takes a function as the first argument. As the documentation indicates, if the first
argument is None, the identity function is used as the function through which the arguments are

mapped. If there are multiple list arguments, map returns alist consisting of tuples that contain

the corresponding items from all lists (in other words, it's akind of transpose operation). The list
arguments may be any kind of sequence, and the result is always allist.

Note that the first technique returns None for sequences in which there are no more dements.
Therefore, the output of the first loop is:

Map:

al bl
a2 b2
a3 None

Zi p letsyou iterate over the lists in asimilar way, but only up to the number of elements of the
smallest list. Therefore, the output of the second techniqueiis:

Zi p:
al bl
a2 b2

Python 2.0 introduced list comprehensions, with a syntax that some found a bit strange:
[(x,y) for x in a for y in Db]

This iterates over list b for every element in a. These elements are put into atuple (X, y) . We
then iterate through the resulting list of tuples in the outermost f or loop. The output of the third
technique, therefore, is quite different:

Li st conprehensi on:
al bl
al b2
a2 bl
a2 bz
a3 bl
a3 b2

1.15.4 See Also

The Library Reference section on sequence types; documentation for the zi p and map built-ins
inthe Library Reference.

1.16 Spanning a Range Defined by Floats
Credit: Dinu C. Gherman, Paul M. Winkler
1.16.1 Problem

You need an arithmetic progression, just like the built-in function r ange, but with float values
(r ange works only on integers).

1.16.2 Solution

Although this functionality is not available as a built-in, it's not hard to code it with aloop:
def frange(start, end=None, inc=1.0):

"A range-like function that does accept fl oat
increments..."

if end == None:

end = start + 0.0 # Ensure a float value for
"end'
start = 0.0
assert inc # sanity check
L =[]
while 1:
next = start + len(L) * inc
if inc > 0 and next >= end:
br eak
elif inc < 0 and next <= end:
br eak
L. append(next)
return L

1.16.3 Discussion

Sadly missing in the Python standard library, the function in this recipe lets you use ranges, just as
with the built-in function r ange, but with float arguments.

Many theoretical restrictions apply, but this function is more useful in practice than in theory.
People who work with floating-point numbers all the time have many war stories about billion-
dollar projects that failed because someone did not take into consideration the strange things that
modern hardware does when comparing floating-point numbers. But for pedestrian cases, smple
approaches like this recipe generally work.

Y ou can get a substantial speed boost by preallocating the list instead of calling append
repeatedly. This also alows you to get rid of the conditionals in the inner loop. For one element,
this version is barely faster, but with more than 10 elements it's consistently about 5 times faster—

the kind of performance ratio that is worth caring about. | get identical output for every test case
can think of:

def frange2(start, end=None, inc=1.0):

"A faster range-like function that does accept fl oat
i ncrenents..."
if end == None:
end = start + 0.0
start = 0.0
else: start += 0.0 # force it to be a float

count = int((end - start) / inc)
if start + count * inc != end:
Need to adjust the count. AFAICT, it always cones
up one short.
count +=1

L = [start] * count
for i in xrange(1l, count):
L[i] = start + i * inc

return L

Both versions rely on a single multiplication and one addition to compute each item, to avoid
accumulating error by repeated additions. Thisiswhy, for example, the body of the f or loop in
frange2 isnot:

L[i] = L[i-1] + inc

In Python 2.2, if dl you need to do is loop on the result of f r ange, you can save some memory
by turning this function into a simple generator, yielding an iterator when you cal it:

from _ _future_ _ inport generators
def frangei (start, end=None, inc=1.0):
"An xrange-like sinple generator that does accept fl oat

increnents..."

if end == None:
end = start + 0.0

start = 0.0
assert inc # sanity check
i =0
while 1:

next = start + i * inc

if inc > 0 and next >= end:
br eak

elif inc < 0 and next <= end:
br eak

yi el d next

i +=1

If you use this recipe alot, you should probably take alook at Numeric Python and other third-

party packages that take computing with floating-point numbers seriously. This recipe, for
example, will not scale well to very large ranges, while those defined in Numeric Python will.

1.16.4 See Also

Documentation for the r ange built-in function in the Library Reference; Numeric Python
(http://www.pfdubois.com/numpy/).

1.17 Transposing Two-Dimensional Arrays
Credit: Steve Holden

1.17.1 Problem

Y ou need to transpose a list of lists, turning rows into columns and vice versa.
1.17.2 Solution

You must start with alist whose items are lists all of the same length:

arr = [[1,2,3], [4,5,6], [7,8,9], [10,11,12]]

A list comprehension offers a simple, handy way to transpose it:

print [[r[col] for r in arr] for col in range(len(arr[0]))]
[[1, 4, 7, 10], [2, 5, 8, 11], [3, 6, 9, 12]]
1.17.3 Discussion

This recipe shows a concise way (athough not necessarily the fastest way) to turn rows into
columns. List comprehensions are known for being concise.

Sometimes data just comes at you the wrong way. For instance, if you use Microsoft's ADO
database interface, due to array element ordering differences between Python and Microsoft's
preferred implementation language (Visua Basic), the Get Rows method actually appears to

return database columns in Python, despite its name. This recipe's solution to this common
problem was chosen to demonstrate nested list comprehensions.

Notice that the inner comprehension varies what is selected from (the row), while the outer
comprehension varies the selector (the column). This process achieves the required transposition.

If you're transposing large arrays of numbers, consider Numeric Python and other third-party
packages. Numeric Python defines transposition and other axis-swinging routines that will make
your head spin.

1.17.4 See Also

The Reference Manual section on list displays (the other name for list comprehensions); Numeric
Python (http://www.pfdubois.com/numpy/).

1.18 Creating Lists of Lists Without Sharing References
Credit: David Ascher
1.18.1 Problem

Y ou want to create a multidimensional list, but the apparently simplest solution is fraught with
surprises.

1.18.2 Solution
Use list comprehensions (also known as list displays) to avoid implicit reference sharing:

multilist = [[O0 for col in range(5)] for row in range(10)]

1.18.3 Discussion

When a newcomer to Python is shown the power of the multiplication operation on lists, he often
gets quite excited about it, since it is such an elegant notation. For example:

>>> [0] * 5
[0, O, O, O, O]

The problem is that one-dimensional problems often grow a second dimension, so thereisa
natural progression to:

>>> multi = [[0] * 5] * 3
>>> print nul ti
[fo, o, o, o, 0], [0, O, O, O, O], [O, O, O, O, O]]

This appears to have worked, but the same newcomer is then dften puzzled by bugs, which
typically can be boiled down to the following test:

>>> multi[0][0] = ' Changed!'

>>> print mul ti

[[' Changed!', 0O, O, 0O, 0], ['Changed!', O, O, 0, 0],
[' Changed!', 0, 0, 0, 0]]

This problem definitely confuses most programmers a least once, if not afew times (see the FAQ

entry at http://www.python.org/doc/FAQ.html#4.50). To understand it, it helps to decompose the
creation of the multidimensional list into two steps:

>>> row = [0] * 5 # alist with five references to
0
>>> multi = [row] * 3 # a list with three references to

the row obj ect

The problem still existsin this version (Python is not that magical). The comments are key to
understanding the source of the confusion. The process of multiplying a sequence by a number
creates a new sequence with the specified number of new references to the original contents. In
the case of the creation of I ow, it doesn't matter whether references are being duplicated or not,

since the referent (the object being referred to) is immutable. In other words, there is no difference

between an object and a reference to an object if that object isimmutable. In the second line,
however, what is created is a new list containing three references to the contents of the [r ow]

list, which isasingle reference to alist. Thus, mul t i contains three references to a single object.
So when the first element of the first element of mul t i is changed, you are actually modifying
the first element of the shared list. Hence the surprise.

List comprehensions, added in Python 2.2, provide a nice syntax that avoids the problem, as
illustrated in the solution. With list comprehensions, there is no sharing of references—it's atruly
nested computation. Note that the performance characteristics of the solution are O(M x N),
meaning that it will scale with each dimension. The list-multiplication idiom, however, is an O(M)
computation, as it doesn't really do duplications.

1.18.4 See Also

Documentation for the r ange built-in function in the Library Reference.

Chapter 2. Searching and Sorting

Section 2.1. Introduction

Section 2.2. Sorting aDictionary

Section 2.3. Processing Selected Pairs of Structured Data Efficiently

Section 2.4. Sorting While Guaranteeing Sort Stability

Section 2.5. Sorting by One Field, Then by Another

Section 2.6. Looking for Itemsin a Sorted Sequence Using Binary Search

Section 2.7. Sorting a List of Objects by an Attribute of the Objects

Section 2.8. Sorting by Item or by Attribute

Section 2.9. Selecting Random Elements from a List Without Repetition

Section 2.10. Performing Frequent Membership Tests on a Sequence

Section 2.11. Finding the Deep Index of an Item in an Embedded Sequence

Section 2.12. Showing Off Quicksort in Three Lines

Section 2.13. Sorting Objects Using SOL's ORDER BY Syntax

2.1 Introduction

Credit: Tim Peters, PythonLabs

Computer manufacturers of the 1960s estimated that more than 25 percent of the running time on
their computers was spent on sorting, when all their customers were taken into account. In fact,
there were many installations in which the task of sorting was responsible for more than half of
the computing time. From these statistics we may conclude that either (i) there are many
important applications of sorting, or (ii) many people sort when they shouldn't, or (iii) inefficient
sorting algorithms have been in common use.

—Donad Knuth, "The Art of Computer Programming", Volume 3, Sorting and Searching, page 3

Professor Knuth's masterful work on the topics of sorting and searching spans nearly 800 pages of

sophisticated technical text. In Python practice, we reduce it to two imperatives (we read Knuth so
you don't have to):

When you need to sort, find away to use the built-in sor t method of Python lists.
When you need to search, find a way to use built-in dictionaries.

Many recipes in this chapter illustrate these principles. The most common theme is using the
decorate-sort-undecorate (DSU) pattern, a general approach to transforming a sorting problem by
creating an auxiliary that we can then sort with the default, speedy sor t method. Thisisthe
single most useful technique to take from this chapter. It relies on an unusual feature of Python's
built-in comparisons. sequences are compared lexicographically. Lexicographical order isa
generalization to tuples and lists of the everyday rules used to compare strings (i.e., alphabetical
order). The built-incnp(sl, s2),whensl ands2 are sequences, is equivalent to this
Python code:

def lexcnp(sl, s2):

Find | eftnost nonequal pair
i =0
while i < len(sl) and i < len(s2):

outcome = cnmp(sl[i], s2[i])

i f outcone:

return outcomne

i +=1
Al equal, until at |east one sequence was exhausted
return cnp(len(sl), len(s2))

This code looks for the first nonequal corresponding elements. If such a nonegqual pair is found,
that pair determines the outcome. Otherwise, if one sequence is a proper prefix of the other, the
prefix is considered to be the smaller sequence. Finadly, if these cases don't apply, the sequences
are identical and are considered equal. Here are some examples:

>>> cmp((1, 2, 3), (1, 2, 3)) # identical
0

>>> cnp((1, 2, 3), (1, 2)) # first |arger because second
is a prefix

1

>>> cnmp((1, 100), (2, 1)) # first smaller because 1<2
-1

>>> cnp((1, 2), (1, 3)) # first smaller because 1==1,

t hen 2<3

-1

An immediate consequence of lexicographical comparisons is that if you want to sort alist of
objects by a primary key, breaking ties by comparing a secondary key, you can smply build alist
of tuples, in which each tuple contains the primary key, secondary key, and original object, in that
order. Because tuples are compared lexicographically, this automatically does the right thing.
When comparing tuples, the primary keys are compared first, and if (and only if) the primary keys
are equal, the secondary keys are compared.

The examples of the DSU pattern in this chapter show many applications of thisidea; perhaps the
cutest is Recipe 2.4, which ensures a stable sort by using each object's list index as a secondary
key. Of course, the DSU technique applies to any humber of keys. You can add as many keysto
the tuples as you like, in the order in which you want the keys compared.

A definitive generalization is provided by Recipe 2.8, which provides a general routine to sort lists
of objects by user-specified index position or attribute name. Thisis fine code, and you are free to
use it for your own purposes. It suffers from a problem common to many frameworks in Python,
though: once you get the hang of it, using the DSU pattern is so easy that you'll find it's quicker to
do it from scratch than to remember how to use the framework. | haven't yet decided whether this
is a strength or weakness of Python, but it's definitely areal phenomenon.

2.1.1 Searching and Sorting FAQ

To help you further understand searching and sorting in Python, | thought I'd answer some
frequently asked questions about the topic:

What algorithm does Python's list.sort use?

In early releases of Python, | 1 st . sort usedthe gsort routine from the underlying
platform's C library. This didn't work out for several reasons, but primarily because the
quality of gqsor t varied widely across machines. Some versions were extremely slow
when given alist with many equal values or in reverse-sorted order. Some even dumped
core because they weren't reentrant. A user-defined _ _cnp_ _ function can also
invokel i st. sort,sothatonel i st. sort caninvoke others as a side effect of
comparing. Some platform gsor t routines couldn't handle that. A user-defined
cnp _ function can dso (if it's insane or malicious) mutate the list while it's being
sorted, and many platform gsor t routines dumped core when that happened.

Python then grew its own implementation of the quicksort agorithm. This was rewritten

with every release, as red-life cases of unacceptable slowness were discovered. Quicksort
is a delicate agorithm!

In Python 1.5.2 the quicksort algorithm was replaced by a hybrid of samplesort and
binary insertion sort, and that hasn't changed again to date. Samplesort can be viewed as a
variant of quicksort that uses a very large sample size to pick the partitioning element,
also known as the pivot (it recursively samplesorts a large random subset of the elements
and picks the median of those). This variant makes quadratic-time behavior almost
impossible and brings the number of comparisons in the average case much closer to the
theoretical minimum.

However, because samplesort is a complicated algorithm, it has too much administrative
overhead for small lists. Therefore, small lists (and small dlices resulting from samplesort
partitioning) are handled by a separate binary insertion sort. Thisis an ordinary insertion
sort, except that it uses binary search to determine where each new element belongs. Most
sorting texts say this isn't worth the bother, but that's because most texts assume that

comparing two elements is as cheap as or cheaper than swapping them in memory. This
isn't true for Python's sort! Moving an object is very cheap, since what is copied isjust a
reference to the object. Comparing two objects is expensive, though, because all of the
object-oriented machinery for finding the appropriate code to compare two objects and
for coercion gets reinvoked each time. This makes binary search a mgjor win for Python's
sort.

On top of this hybrid approach, afew common specia cases are exploited for speed. First,
already-sorted or reverse-sorted lists are detected and handled in linear time. For some
applications, these kinds of lists are very common. Second, if an array is mostly sorted,
with just a few out-of-place elements at the end, the binary insertion sort handles the
whole job. Thisis much faster than letting samplesort have at it and is common in
applications that repeatedly sort alist, append a few new elements, then sort it again.
Finaly, specia code in the samplesort looks for stretches of equal elements, so that the
slice they occupy can be marked as done early.

In the end, al of thisyields an in-place sort with excellent performance in al known red
cases and supernaturally good performance in common special cases. It spans about 500
lines of complicated C code, which gives specia poignancy to Recipe 2.12.

Is Python's sort stable?

No, samplesort is not stable, and it cannot be made stable efficiently. See Recipe 2.4 if
you need stability.

But I've tried many examples, and they're all stable!

You tried small examples. The binary insertion sort is stable, and, as | explained earlier,
samplesort doesn't kick in until the list gets larger.

How large?

It's an implementation detail you can't rely on across releases. Today, the answer is 100
items.

But Recipe 2.12 shows a stable sort. Why not use that?

It's a cute example, but it does twice as many comparisons as areal quicksort. As |
explained earlier, the cost of comparisons dominates sorting time, so it would take at |east
twice as long as Python's sort even if it was coded in C. Even if it didn't take twice as long,
samplesort is quicker than quicksort.

Mergesort does few comparisons and can be made stable easily. Why doesn't Python use that?

Mergesort requires extra memory, and it does much more data movement than Python's
current sort. Despite the fact that comparison time dominates, samplesort does few
enough comparisons that the extra data movement done by mergesort is significant. |
implemented three mergesorts while investigating quicksort alternatives for Python 1.5.2,
and they were al significantly slower than the approach Python uses.

Why is passing a comparison function so much slower than using the DSU pattern?

In search performance, comparison time dominates, and an explicit comparison function
written in Python adds the substantial overhead of a Python-level function call to each

comparison. The built-in comparisons are al coded in C, so they don't incur the overhead
of Python-leve function calls.

So | should never pass an explicit comparison function, right?

Speed isn't always everything. If you can afford the speed hit, and you find it more
convenient and clearer in a given case to pass a comparison function, go ahead. | do.

Why does Python use the three-outcome cnp for sorting? Why doesn't it use a simple less-than
comparison instead?

Thisisahistorical consequence of Python initialy using the C gsor t function, since
gsort requires athree-outcome comparison function. Like many people, | wish it used
a simple less-than comparison, but it's too late now. When rich comparisons were
introduced, Python's | i st . sort wasreworked alittle, so that although it uses a three-
outcome comparison function at the user level, internally it also works fine with objects
that implementonly |t comparison.

What's the best way to sort a list in reverse order?

Reversing the sense of the comparison works fine:
list.sort(lanbda a, b: cnp(b, a))

Here's another technique that is faster and more obvious but that is often avoided by those

who mistakenly believe that writing two lines of code where one might do is somehow
sinful:

list.sort()
list.reverse()
What kind of hash table does Python's dictionary type use?

The dictionary type uses contiguous tables with power-of-two sizes. Collisions are
handled within the table, and the table is kept at most two-thirds full, so that collision
handling is very unlikely to degenerate. When a table gets too full, the table sizeis
doubled and all the elements are reinserted. For more detail, read the source code in
dictobject.c and dictobject.h. As of Python 2.2, the source code is extensively commented.

I've heard that Python's dictionary implementation is very fast. |s that true?

Y es. Because Python uses dictionaries to implement module and object hamespaces,
dictionary performance is crucial. For the past decade, smart people in the Python
community have helped optimize it—the result is open source at its best.

2.2 Sorting a Dictionary
Credit: Alex Martelli, Raymond Hettinger
2.2.1 Problem

Y ou want to sort a dictionary. Because sorting is a concept that only makes sense for sequences,
this presumably means that you want a sequence of the values of the dictionary in the order
obtained by sorting the keys.

2.2.2 Solution

The simplest approach is to sort the items (i.e., key/value pairs), then pick just the values:

def sortedDi ctVal uesl(adict):
items = adict.itenms()
items.sort()
return [value for key, value in itens]

However, an aternative implementation that sorts just the keys, then uses them to index into the

dictionary to build the result, happens to run more than twice as fast (for a dictionary of afew
thousand entries) on my system:

def sortedDi ctVal ues2(adict):
keys = adict.keys()
keys.sort()
return [adict[key] for key in keys]

A further small speed-up (15% on my system) is to perform the last step by mapping a bound
method. map is often marginally faster than alist comprehension when no | anbda isinvolved:

def sortedDi ctVal ues3(adict):
keys = adict. keys()
keys.sort()
return map(adict.get, keys)

A redlly tiny extra speed-up (about 3% on my system) is available in Python 2.2 by using
adict. getitem_ _ ratherthanadi ct. get in thislatest, bound-method version.

2.2.3 Discussion

The concept of sorting applies only to a collection that has order—in other words, a sequence. A
mapping, such as adictionary, has no order, so it cannot be sorted. And yet, "How do | sort a
dictionary?' is afrequent question on the Python lists. More often than not, the question is about
sorting some sequence of keys and/or values from the dictionary.

A dictionary's keys can be extracted as a list, which can then be sorted. The functionsin this recipe
return the values in order of sorted keys, which corresponds to the most frequent actual need when
it comes to sorting a dictionary. Another frequent need is sorting by the values in the dictionary,
for which you should see Recipe 17.7.

The implementation choices are interesting. Because we are sorting key/value pairs by the key
field and returning only the list of value fields, it seems conceptually simplest to use the first

solution, which gets alist of the key/value pairs, sorts them, and then uses a list comprehension to
pick the values. However, thisis not the fastest solution. Instead, with Python 2.2, on dictionaries
of afew thousand items, extracting just the keys, sorting them, and then accessing the dictionary
for each key in the resulting list comprehension—the second solution—appears to be over twice as
fast.

This faster approach can be further optimized by extracting the bound method adi ct . get ,
which turns each key into its corresponding value, and then using the built-in function map to
build the list by applying this callable to each item in the sorted list of keys. In Python 2.2, using
adict. getitem_ _ ratherthanadi ct. get isevenalittle bit better (probably not
enough to justify making your program version-dependent, but if you're already dependent on
Python 2.2 for other reasons, you may as well use this approach).

Simplicity is one the greatest virtues for any program, but the second and third solutions aren't
really more complicated than the first; they are just, perhaps, alittle bit more subtle. Those
solutions are probably worth using to sort any dictionary, even though their performance
advantages are really measurable only for very large ones.

2.2.4 See Also

Recipe 17.7 for another application of sorting on dictionaries.

2.3 Processing Selected Pairs of Structured Data
Efficiently

Credit: Alex Martdlli, David Ascher
2.3.1 Problem

Y ou need to efficiently process pairs of data from two large and related data sets.

2.3.2 Solution

Use an auxiliary dictionary to do preprocessing of the data, thereby reducing the need for iteration
over mostly irrelevant data. For instance, if Xxs and ys are the two data sets, with matching keys
asthefirstitemin each entry, sothat x[0] == y[O] definesan "interesting" pair:

auxdict = {}
for y in ys: auxdict.setdefault(y[0], []).append(y)
result = [process(x, y) for x in xs for y in auxdict[x[O0]]]

2.3.3 Discussion

To make the problem more concrete, let's look at an example. Say you need to analyze data about
visitors to a web site who have purchased something online. This means you need to perform
some computation based on data from two log files—one from the web server and one from the
credit-card processing framework. Each log file is huge, but only a small humber of the web
server log entries correspond to credit-card log entries. Let's assume that ccl 0g is a sequence of
records, one for each credit-card transaction, and that webl og is a sequence of records
describing each web site hit. Let's further assume that each record uses the attribute i paddr ess

to refer to the |P address involved in each event. In this case, a reasonable first approach would be
to do something like:

results = [process(webhit, ccinfo) for webhit in weblog for
ccinfo in cclog \
i f ccinfo.ipaddress==webhit.i paddress]

The problem with this approach is that the nested list comprehension will iterate over each entry in
the web server log, and, for each entry in the web server log, it will also iterate over each entry in
the credit-card log. This means that the algorithm has O(M x N) performance characteristics—in
other words, the time it takes to compute will be proportiona to the product of the size of both
logs. As the web site becomes more popular and as data accumulates, the performance of the
algorithm will rapidly deteriorate.

The key to optimizing this algorithm is to recognize that the computation (pr ocess) needsto

happen for only a small subset of all of the possible combinations of the two variables (in this case,
webhi t and cci nf o). If we could search for only the right pairs, we might be able to speed up

the process. As Tim Peters says in the introduction to this chapter, if you need to search, use an
auxiliary dictionary. The solution described earlier, rewritten to use our variables, yields:

i pdict = {}
for webhit in weblog: ipdict.setdefault(webhit.ipaddress,
[1).append(webhit)

results = [process(webhit, ccinfo) for ccinfo in cclog \

for webhit in
i pdi ct[ccinfo.ipaddress]]

The highlighted line creates a dictionary mapping I P addresses to lists containing the data for each
web hit. Because we're indexing the dictionary by IP address, we are optimizing the data
structures for a particular query: "give me al of the web records for a particular |P address.” The
list comprehension now iterates over only the data we require—for each credit-card transaction,
we iterate over all of the web hits corresponding to the IP address used in that transaction. Not
only did the agorithm go from O(M x N) to O(M+N) from a theoretical point of view, but,
because we chose to hold in the auxiliary dictionary data that is sparser from the point of view of
the task at hand, we've made the solution faster than the alternative (which would aso be
O(M+N)).

Note that the test used to determine whether two records correspond to a pair of interest can be
arbitrary. The generic description of the solution uses indexing, while the web example uses
attribute-getting. The test you use will depend on your application and your data structures.

2.3.4 See Also

Recipe 1.6 for more details on the set def aul t method of dictionaries; the introduction to
Chapter 2

2.4 Sorting While Guaranteeing Sort Stability
Credit: Alex Martdlli, David Goodger
2.4.1 Problem

You need to sort a Python list in a guaranteed-stable way (i.e., with no alteration in the relative
ordering of items that compare equal).

2.4.2 Solution

In addition to speed, decorate-sort-undecorate (DSU) offers flexibility that sor t with a

comparison function argument just can't match. For example, you can ensure the sort's stability, as
follows:

def stable sorted copy(alist, _indices=xrange(sys.nmaxint)):
Decorate: prepare a suitable auxiliary I|ist
decorated = zip(alist, _indices)

Sort: do a plain built-in sort on the auxiliary |ist
decorated.sort()

Undecorate: extract the list fromthe sorted auxiliary
[ist
return [itemfor item index in decorated]

def stable _sort _inplace(alist):

To sort in place: assign sorted result to all-1list
slice of original I|ist

alist[:] = stable_sorted_copy(alist)

2.4.3 Discussion

The notion of a stable sort is typically not relevant if the sequences you are sorting contain objects
that are uniform in type and are simple, such as alist of integers. In such cases, objects that
compare equal are equa in all measurable ways. However, in cases where equality for the sake of
ordering doesn't correspond to "deep" equality—such as tuples containing floating-point and
integer numbers, or, more commonly, rich objects with arbitrary internal structure—it may matter
that the elements that start off earlier in the list than their "equal” counterparts remain earlier after
the sort.

Python lists' sor t method is not guaranteed to be stable: items that compare equal may or may
not be in unchanged order (they often are, but you cannot be sure). Ensuring stability is easy, as
one of the many applications of the common DSU idiom. For another specific example of DSU
usage, see Recipe 2.7.

First, you build an auxiliary list (the decorate step), where each item is a tuple made up of al sort
keys, in descending order of significance, of the corresponding item of the input sequence. Y ou
must include in each tuple of the auxiliary list al of the information in the corresponding item,
and/or an index to it, so that you can fetch the item back, or reconstruct it, in the third step.

In the second step, you sort the auxiliary list by its built-in sor t method, without arguments (this
is crucial for performance).

Finally, you reconstruct the desired sorted list by undecorating the now-sorted auxiliary list. Steps
1 and 3 can be performed in several ways: with map, zi p, list comprehensions, or explicit loops.
List comprehensions and zi p are generally simpler, athough they require Python 2.0 or later. If
you need to be compatible with Python 1.5.2, you will have to use map, which unfortunately is
often less clear and readable.

Thisidiom is also known as the " Schwartzian transform," by analogy with a related Perl idiom.
However, that term implies using Perl's map and gr ep functions and performing the whole
idiom inside of a single statement.

DSU inherently supplies a sorted copy, but if the input sequence is alist, we can just assign to its
include-everything dlice to get an in-place effect instead.

This recipe specifically demonstrates using DSU to achieve a stable sort (i.e., a sort where items
that compare equal keep the same relative order in the result list as they had in the input sequence).
For this specific task, passing an argument to the built-in sor t method is of no use. More
generaly, the DSU idiom can sometimes be replaced by passing a comparison function argument
tosort, but DSU tends to be much faster, and speed often matters when you are sorting
sequences that aren't tiny.

The speed comes from maximally accelerating (by not using a Python-coded function as an
argument to sor t) the O(N log N) part, which dominates sorting time for sequences of
substantial length N. The decoration and undecoration steps are both O(N), and thus they

contribute negligible time if N is large enough and reasonably little time even for many practical
values of N.

Note the named argument _i ndi ces. This ensures that a single copy of the necessary xr ange
object is generated at function-definition time. It can then be reused to decorate any argument
seguence with indexes, by exploiting zi p's truncation behavior on unequal-length arguments (see
Recipe 1.14).

2.4.4 See Also

Recipe 1.14 and Recipe 2.7.

2.5 Sorting by One Field, Then by Another
Credit: José Sebrosa

2.5.1 Problem

You need to sort alist by more than one field of each item.

2.5.2 Solution

Passing a comparison function to alist'ssor t method is slow for lists of substantial size, but it

can still be quite handy when you need to sort lists that are reasonably small. In particular, it offers
arather natural idiom to sort by more than one field:

i nport string

star _list = ['Elizabeth Taylor', 'Bette Davis', 'Hugh Gant',
"C. Grant']

star _list.sort(lambda x,y: (
cnp(string.split(x)[-1], string.split(y)[-1]) or # Sort
by | ast nane...

cmp(x, y)))
...then by first nane

print "Sorted list of stars:"
for name in star list:
print name

2.5.3 Discussion

This recipe uses the properties of the cnp built-in function and the or operator to produce a
compact idiom for sorting alist over more than one field of each item.

cnp(X, Y) returnsfalse (0) when Xand Y compare equal, so only in these cases does or let
the next call to cnp happen. To reverse the sorting order, simply swap X and Y as arguments to

cnp.

The fundamental idea of this recipe can also be used if another sorting criterion is associated with
the lements of the list. We simply build an auxiliary list of tuples to pack the sorting criterion
together with the main elements, then sort and unpack the result. This is more akin to the DSU
idiom:

def sorting_criterion_1(data):
return string.split(data)[-1] # This is again the | ast
name

def sorting_criterion_2(data):
return | en(data) # This is sonme fancy
sorting criterion

Pack an auxiliary list:

aux_list = map(l anbda x: (X,
sorting criterion_1(x),
sorting_criterion_2(x)),
star _|ist)

Sort:
aux_list.sort(lambda x,y: (

cnp(x[1], y[1]) or # Sort by criteria 1 (Iast
name). ..

cmp(y[2], x[2]) or # ...then by criteria 2 (in
reverse order). ..

cnmp(x, Vy))) # ...then by the value in the
mai n |ist

Unpack the resulting |ist:
star_list = map(lanmbda x: x[0], aux_list)

print "Another sorted list of stars:”
for name in star list:
print name

Of course, once we're doing decorating, sorting, and undecorating, it may be worth taking alittle
extratrouble to be able to call the sort step without a comparison function (the DSU idiom), which
will speed up the whole thing quite a bit for lists of substantial size. After all, packing the fields to
be compared in the right order in each decorated tuple and plucking out the right field again in the
undecorate step is pretty simple:

Pack a better-ordered auxiliary list:
aux_list = map(lanbda x: (sorting_criterion_1(x),
sorting_criterion_2(x),
X),
star _list)

Sort in a much sinpler and faster way:
aux_list.sort()

Unpack the resulting |ist:
star _list = map(l anbda x: x[-1], aux_list)

However, this doesn't deal with the reverse order, which you can easily obtain when passing a
comparison function to sor t by just switching argumentsto cnp. To use DSU instead, you
need to pack a suitably altered value of the criterion field. For a numeric field, changing the sign is
fine. In thisexample, the sort i ng_cri t eri on_2 that needs reverse sorting isindeed a
number, so our task is easy:

Pack a better-ordered auxiliary list yielding the desired
order:
aux_list = map(lanmbda x: (sorting_criterion_1(x),
-sorting_criterion_2(x),
X)
star _list)

For reverse sorting on a string field with DSU, you need a string-trandation operation that maps
each chr (X) intochr (255- x) —or an even wider translation table for Unicode strings. It is
a bit of abother, but you only have to write it once. For example, for plain old strings:

i mport string

all _characters = string. maketrans('',"'")

all _characters list = list(all_characters)

all _characters list.reverse()
rev_characters = "''.join(all _characters_list)

rev_trans = string. meketrans(all _characters, rev_characters)
Now, if we want to reverse the first sorting criterion:

Pack a better-ordered and corrected auxiliary list:
aux_list = map(l ambda x:
(string.translate(sorting criterion_1(x), rev_trans),
sorting_criterion_2(x),
X)
star _list)

Sort in a nmuch sinpler and faster way AND get just the
desired result:
aux_list.sort()

Unpack the resulting list:
star_list = map(lanmbda x: x[-1], aux_list)

2.5.4 See Also

The Reference Manual section on sequences, and the subsection on mutable sequences (such as
lists).

2.6 Looking for Items in a Sorted Sequence Using Binary
Search

Credit: Noah Sourrier, Alex Martelli
2.6.1 Problem

Y ou need to look for alot of items in a sequence.
2.6.2 Solution

Binary search is a basic algorithm provided by bi sect in Python. How to perform a binary
search to check if avaueis present in alist can be summarized in three lines of code:

thelist.sort()

iteminsert _point = bisect.bisect(thelist, theitem
is_present = thelist[iteminsert_point-1:item.insert_point]
== [theitem

2.6.3 Discussion

A friend of mine was searching alarge file for missing lines. A linear search was taking forever,
so abinary search was needed. The name of the bi sect module misled him into believing that
Python did not have a binary search algorithm. | created an example to show how bi sect is
used to perform a binary search.

The third line in the recipe may not be immediately obvious. If we know that t hel i st isnot
empty, thisis much ssimpler and more obvious:

is present = thelist[iteminsert _point-1] == theitem

However, this simpler approach raises an exception for an empty t hel i st , since indexing must
check for avalid index (the only way to return an indicator of "no such index" is by raising

| ndexEr r or). Slicing is more relaxed than indexing, since it resultsin an empty slice for
invalid slice-boundary indexes. Therefore, in general:

somel i st x: x+1]

yields the same one-item list as:

[sonelist[x]]

when x isavdidindex insonel i st . However, it resultsin an empty list ([]) when the
indexing would raise an | ndexEr r or . The third line in the recipe uses this idea to avoid
having to deal with exceptions, thereby handling empty and nonempty casesfor t hel i st ina

perfectly uniform way. Another approach is:

is present = thelist and thelist[item.insert _point-1] ==
theitem

This exploits and's short-circuiting behavior to guard the indexing, instead of using slicing. Both

approaches are worth keeping in mind, since their areas of applicability overlap but do not
coincide.

In my friend's case, of course, an auxiliary dictionary was also a possibility, because strings are
hashable. However, the approach based on a sorted list may be the only way out in afew other
cases, with items that are not hashable (but only if they are comparable, of course, since otherwise
the list cannot be sorted). Also, if the list is aready sorted, and the number of items you need to
look up in it is not extremely large, it may be faster to use bi sect rather than to build an

auxiliary dictionary, since the investment of time in the latter operation might not be fully
amortized.

2.6.4 See Also

Documentation for the bi sect module in the Library Reference.

2.7 Sorting a List of Objects by an Attribute of the Objects
Credit: Yakov Markovitch, Nick Perkins
2.7.1 Problem

You have alist of objects that you need to sort according to one attribute of each object, as rapidly
and portably as possible.

2.7.2 Solution
In this case, the obvious approach is concise, but quite slow:

def sort by attr_slow(seq, attr):
def cnp_by attr(x, y, attr=attr):
return cnp(getattr(x, attr), getattr(y, attr))
seq.sort(cnp_by_attr)

Thereis afaster way, with DSU:

def sort_by attr(seq, attr):
i mport operator

intermed = map(None, map(getattr, seq, (attr,)*len(seq)),
xrange(l en(seq)), seq)
i nternmed.sort()
return map(operator.getitem interned, (-
1,)*len(interned))

def sort_by attr _inplace(lst, attr):
I st[:] = sort_by attr(lst, attr)

2.7.3 Discussion

Sorting a list of objects by an attribute of each object is best done using the DSU idiom. Since this
recipe uses only built-ins and doesn't use explict looping, it is quite fast. Moreover, the recipe
doesn't use any Python 2.0-specific features (such as zi p or list comprehensions), so it can be
used for Python 1.5.2 as well.

List comprehensions are neater, but this recipe demonstrates that you can do without them, if and
when you desperately need portability to stone-age Python installations. Of course, the correct use
of map can betricky. Here, for example, when we build the auxiliary list i nt er med, we need
to call the built-in function get at t r on each item of sequence seq using the same string,

at t r, asthe second argument in each case. To do this, in the inner call to map, we need atuple
inwhich at t r isrepeated as many times as there are items in seq. We build that tuple by the
not immediately obvious expression:

(attr,)*l en(seq)

whichis| en(seq) repetitions of the one-itemtuple (at t r,) , whose only item is exactly
attr.

If you do want to use list comprehensions, that's easy, too. Just substitutethe sort by attr
of the recipe with the following aternative version:

def sort_by_ attr2(seq, attr):

internmed = [(getattr(seq[i], attr), 1, seq[i]) for i in
xrange(l en(seq))]

i nternmed.sort()

return [tup[-1] for tup in internmed]

However, if this piece of code is run in a speed-critical bottleneck of your program, you should
carefully measure performance. map is often surprisingly fast when compared to list
comprehensions, at least when no | anbda isinvolved in the map. The differencein
performance is not huge either way, so it's worth exploring only if this code is run in a speed-
critical bottleneck.

Whether you use map or list comprehensions, the point of the DSU idiom is to gain both speed
and flexibility (for example, making the sort a stable one, as we did here) when compared to
passing a comparison function to the sor t method. For a simpler application and a somewhat
wider discussion of DSU, see Recipe 2.4

Note that in addition to making the sort stable, putting the index i as the second item of each tuple
in the auxiliary list i nt er med (through the insertion of xr ange in the cal to map or, more
simply, that of i in the list-comprehension version sort by at t r 2) also serves a potentialy
crucia role here. It ensures that two objects (two items of seq) will never be compared, even if
their values are the same for the attribute named at t r , because even in that case their indexes
will surely differ, and thus the lexicographic comparison of the tuples will never get all the way to
comparing the tuples' last items (the objects). Avoiding object comparison may save us from
extremely slow operations or even from attempting forbidden ones. For example, when we sort a
list of complex numbers by their r eal attributes, in Python 2.0 or later, we will get an exception

if we try to compare two complex numbers directly, as no ordering is defined on complex
numbers.

2.7.4 See Also

Recipe 2.4.

2.8 Sorting by Item or by Attribute
Credit: Matthew Wood
2.8.1 Problem

You need to sort alist of (X, Yy) coordinates by itemy, or, more generally, sort alist of objects
by any attribute or item.

2.8.2 Solution

You might first think of something like the following class, based on the simple but slow approach
of passing a comparison function to the sor t method:

class Sorter:
Notice how _ conpare is dependent on self._
_whi chi ndex
def _ _conpare(self, x, y):
return crmp(x[self. __whichindex], y[self. _
_whi chi ndex])

Pass the sort function the _ _conpare function defined
above
def _ call_ (self, data, whichindex = None):

i f whichindex is None :
data.sort()

el se :
self. _whichi ndex = whi chi ndex
data.sort(self.__conpare)

return data # handy for inlining, and

| ow cost

The trick isto use a bound method that accesses instance state as the comparison function to

determine which item (or attribute, but this version deals only with items) to fetch. Unfortunately,
this makes the approach nonreentrant and not thread-safe.

Thanks to the faster, more robust, and more flexible DSU idiom, it's not hard to make a more

genera version that allows attributes as well as items, guarantees a stable sort, is both reentrant
and thread-safe, and is speedier to boot:

class Sorter:
def _hel per(self, data, aux, inplace):
aux.sort()
result = [data[i] for junk, i in aux]
if inplace: data[:] = result
return result

def bylten(self, data, item ndex=None, inplace=1):
if item ndex is None:
i f inplace:
data.sort()
result = data

el se:
result = dataf:]
result.sort()
return result
el se:
aux = [(d[i][item ndex], i) for i in
range(l en(data))]
return self. _hel per(data, aux, inplace)

a coupl e of handy synonyns
sort = byltem
call _ = byltem

def byAttribute(self, data, attributenane, inplace=1):
aux = [(getattr(d[i],attributenane),i) for i in
range(l en(data))]
return self. hel per(data, aux, inplace)

Of course, since the second version doesn't use its "classhood” in any way, making it aclassis

somewhat peculiar. It would be far more Pythonic, and clearer, to use a module with free-standing
functions, rather than an artificial class with instances that have no state.

2.8.3 Discussion

How do you efficiently sort alist of (X, Yy) coordinates by y? More generally, how do you sort
alist of dictionaries, lists, or class instances by a particular item or attribute? | hate not being able
to sort by any item or attribute, so | wrote an auxiliary class to do it for me.

The DSU idiom is much faster than passing sor t acomparison function, as discussed in other
recipes. The second version of Sor t er in this recipe uses DSU because of this, as well as
auxiliary flexibility advantages. This second version gets no benefit from being a class rather than
just a couple of functions, but casting it as a class makes it drop-in compatible with the first,
inferior version, which did use some state as a trick (losing reentrancy and thread-safety in the
process).

Here is some example code (note that it instantiates the Sor t er class only once, another hint
that it isnot at al an optimal architecture to wrap this functionality as a class):

sort = Sorter()
if _ name_ _=="'_ min_ ' :
list = [(1, 2), (4, 8), (0, 3)]
dict =[{'a: 3, '"b': 4}, {"a: 5 'b': 2}, {"a: O,
"b': 0},

{*a': 9, '"b': 9}]
dunmb = [1, 4, 6, 7, 2, 5 9, 2, 4, 6]

print '"list normal:", |ist
sort(list, 0)
print "sort by [O0]:", list

sort(list, 1)
print 'sort by [1]:"', list

print

print "dict normal:", dict
sort(dict, "a')

print "sort by "a':", dict
sort(dict, 'b")

print "sort by '"b':", dict
pri nt

print 'dumb normal:', dunb
sort (dunb)

print 'normal sort:', dunb

Returning the sorted list is cheap (it's just an extra reference, since Python, fortunately, never does
any copying of data unless you specifically request it) and offers uniform behavior between in-
place and non-in-place cases. Often, we only want to do:

for x in sort(sonething, inplace=0):
Returning a reference to the sorted data gives us just the right amount of flexibility for this.
2.8.4 See Also

Recipe 2.4 and Recipe 4.10.

2.9 Selecting Random Elements from a List Without
Repetition

Credit: luri Wickert, Duncan Grisby, Steve Holden, Alex Martelli
2.9.1 Problem

You need to consume, in random order, the items of arather long list, and the most direct
approach is painfully slow.

2.9.2 Solution

While it's a common mistake to be overly concerned with speed, you should not ignore the
different performances of various algorithms. Suppose we must process al of theitemsin along
list in random order, without repetition. For example:

i mport random

an exanple of a processing function
def process(datum): print datum

an exanple of a set of data to process
data = range(10000)

The simplest version is very slow:

def sinple():
whi | e dat a:
returns elenent, not index (doesn't help)
el em = random choi ce(dat a)
needs to search for the el enent throughout the
list!
dat a. renove(el em
process(el em

Here is a faster version:

def faster():
whi | e dat a:
i ndex = random randrange(l en(data))
el em = dat a[i ndex]
direct deletion, no search needed
del data[i ndex]
process(el em

the sanme, but preserving the data |ist
def faster _preserve():
aux = range(l en(data))

whi | e aux:
posit = random randrange(l en(aux))
i ndex = aux[posit]

el em = dat a[i ndex]
alters the auxiliary list only

del aux[posit]
process(el em

However, the key improvement is to switch to an O(N) agorithm:

def inproved():

size = |l en(data)

whi l e si ze:
i ndex = random randr ange(si ze)
el em = dat a[i ndex]
dat a[i ndex] = data[size-1]
size = size - 1
process(el em

Of course, you can also implement a version of this that preserves the data list.
But the winner is the version that appears to be the simplest:

def best():
random shuf f | e(dat a)
for elemin data: process(elem

or, if you need to preserve the data list's original
ordering:
def best_preserve():

aux = |ist(data)

random shuf f | e(aux)

for elemin aux: process(elem

2.9.3 Discussion

The ssimplest, most direct way of consuming alist in arandom fashion is painfully slow for lists
with afew hundred elements. While it is tempting to use the ssimple, clear choi ce/r enpve
combination, asin the si npl e function, thisis abad choice, because r enove must linearly

search through the list to find the element to delete. In other words, the overall performance is
O(N%), with alarge multiplicative constant.

Fortunately, there are equally simple (or simpler), but much faster, waysto do this. The f ast er
function, using r andr ange/del to generate the random indexes for the list, can skip the costly
search for the deletion. If it's important to preserve the input list, you can use a disposable
auxiliary list to generate the data list indexes, asinthe f ast er _pr eser ve function.

However, del anyl i st[x] for arandom x is still O(N), so overall performance is still O(N),
albeit with a much smaller multiplicative constant. Incidentally, the pseudorandom order in which
items are processed is not the same with the various approaches, even if r andomis seeded in the
same way. All of the orderings are equally pseudorandom, though.

Pursuing O(N) performance, one possibility is not to delete an item from alist & all, but rather to
overwrite it with the last item and decrease at each step the number of items from which we're
choosing. The i npr oved function takes this tack and benefits greatly from it, in terms of
performance.

The fastest approach, however, istoshuf f | e the data (or an auxiliary copy of it) once, at the

start, then just process the items sequentialy in the resulting pseudorandom order. The nice thing
about this approach, shown inthe best and best _pr eser ve functions, is that it's actually
the simplest of all.

On lists of 10,000 items, as shown in this recipe, the overhead (meaning pure overhead, using a
do-nothing processing function) of si npl e isabout 13 or 14 times more than that of f ast er

andf ast er _preser ve. Those functions, in turn, have over twice as much overhead as

i mpr oved, best, and best _preserve. Onlists of 100,000 items, f ast er and
faster _preserve become about 15 times slower thani npr oved, best , and

best preser ve. The latter two have, for every list size, about 20%-30% less overhead than

i npr oved—avery minor issue, although their utter simplicity clearly does make them deserve
their names.

While an improvement of 25%, or even a factor of 2, may be neglected without substantial cost
for the performance of your program as a whole, the same does not apply to an algorithm that is
10 or more times as dlow as it could be. Such terrible performance is likely to make that program
fragment a bottleneck, all by itself, particularly when we're talking about O(N?) versus O(N)
behavior.

2.9.4 See Also

The documentation for the r andommodule in the Library Reference.

2.10 Performing Frequent Membership Tests on a
Sequence

Credit: Alex Martelli
2.10.1 Problem

Y ou need to perform frequent tests for membership in a sequence. The O(N) behavior of repeated
i n operators hurts performance, but you can't switch to using just a dictionary, as you aso need
the sequence's order.

2.10.2 Solution

Say you heed to append itemsto alist only if they're not aready in the list. The smple, naive
solution is excellent but may be slow:

def addUni quel(baselLi st, otherlList):
for itemin otherlList:
if itemnot in baselist:
baselLi st. append(itemn)

If ot her Li st islarge, it may be faster to build an auxiliary dictionary:

def addUni que2(baselLi st, otherlList):
auxDict = {}
for itemin baselist:
auxDict[itenl = None
for itemin otherlList:
i f not auxDict.has_key(item:
baselLi st. append(itemn)
auxDict[iten] = None

For alist on which you must often perform membership tests, it may be best to wrap the list,
together with its auxiliary dictionary, into a class. You can then define a special
contains _ method to speed the i n operator. The dictionary must be carefully maintained

to stay in sync with the sequence. Here's a version that does the syncing just in time, when a
membership test is required and the dictionary is out of sync, and works with Python 2.1 or later:

from _ future_ _ inport nested _scopes
i mport User Li st

try: list._ _getitem _

except: Base = UserlList. UserList

el se: Base = |i st

cl ass FunkylLi st (Base):

def _ _init_ (self, initlist=None):
Base. _ _init_ _(self, initlist)
self. _dict_ok =0

def _contains_ _(self, item:

if not self. dict ok:
self. dict = {}
for itemin self:

self. dict[iten] =1
self. dict_ ok =1
return self._dict.has_key(item

def _wrapMet hod(net hnane) :
_method = getattr(Base, nethnane)
def wrapper(self, *args):
Reset 'dictionary OK flag, then del egate
self. dict ok =0
return _nethod(self, *args)
setattr(FunkyLi st, nethnanme, w apper)
for meth in 'setitemdelitem setslice delslice
iadd' .split():
wrapMethod(' _%_ _' %reth)
for meth in 'append insert pop renove extend .split():
_wr apMet hod(et h)
del _wrapMet hod

2.10.3 Discussion

Python's i n operator is extremely handy, but it's O(N) when applied to an N-item sequence. If a
sequence is subject to frequent i n tests, and the items are hashable, an auxiliary dictionary at the
sequence's side can provide a signficant performance boost. A membership check (using the i n
operator) on a sequence of N itemsis O(N); if M such tests are performed, the overdl timeis O(M
x N). Preparing an auxiliary dictionary whose keys are the sequence's items is also roughly O(N),
but the M tests are roughly O(M), so overall we have roughly O(N+M). Thisis rather less than
O(N x M) and can thus offer avery substantial performance boost when M and N are large.

Even better overall performance can often be obtained by permanently placing the auxiliary
dictionary alongside the sequence, encapsulating both into one object. However, in this case, the
dictionary must be maintained as the sequence is modified, so that it staysin sync with the actual
membership of the sequence.

The FunkyLi st classinthisrecipe, for example, extends | i st (User Li st in Python 2.1)
and delegates every method to it. However, each method that can modify list membership is
wrapped in aclosure that resets a flag asserting that the auxiliary dictionary isin sync. The i n
operator callsthe _ _cont ai ns_ _ method when it is applied to an instance that has such a

method. The ~ _cont ai ns_ _ method rebuilds the auxiliary dictionary, unless the flag is set,
proving that the rebuilding is unnecessary.

If our program needs to run only on Python 2.2 and later versions, we can rewrite the _
contai ns _ method in a much better way:

def _ _contains_ (self, item:
if not self.dict_ok:
self. dict = dict(zip(self,self))
self.dict_ ok =1
return itemin self. dict

The built-intype di ct , new in Python 2.2, lets us build the auxiliary dictionary faster and more
concisely. Furthermore, the ability to test for membership in adictionary directly withthe i n
operator, also new in Python 2.2, has similar advantages in speed, clarity, and conciseness.

Instead of building and installing the wrapping closures for al the mutating methods of the list
into the FunkyLi st classwith the auxiliary function _wr apMet hod, we could simply write
all the needed def sfor the wrapper methods in the body of FunkyLi st , with the advantage of
extending backward portability to Python versions even older than 2.1. Indeed, thisis how |
tackled the problem in the first version of this recipe that | posted to the online Python cookbook.
However, the current version of the recipe has the important advantage of minimizing boilerplate
(repetitious plumbing code that is boring and voluminous and thus a likely home for bugs).
Python's advanced abilities for introspection and dynamic modification give you a choice: you can
build method wrappers, as this recipe does, in a smart and concise way, or you can choose to use
the boilerplate approach anyway, if you don't mind repetitious code and prefer to avoid what some
would call the "black magic" of advanced introspection and dynamic modification of class objects.

Performance characteristics depend on the actua pattern of membership tests versus membership
maodifications, and some careful profiling may be required to find the right approach for a given
use. This recipe, however, caters well to a rather common pattern of use, where sequence-
modifying operations tend to happen in bunches, followed by a period in which no sequence
modification is performed, but several membership tests may be performed.

Rebuilding the dictionary when needed is far smpler than incrementally maintaining it at each
sequence-modifying step. Incremental maintenance requires careful analysis of what is being
removed and of what is inserted, particularly upon such operations as dice assignment. If that
strategy is desired, the values in the dictionary should probably be a count of the number of
occurrences of each key's value in the sequence. A list of the indexes in which the value is present
is another possihility, but that takes even more work to maintain. Depending on usage patterns, the
strategy of incremental maintenance can be substantially faster or slower.

Of course, al of thisis necessary only if the sequence itself is needed (i.e., if the order of itemsin
the sequence is significant). Otherwise, keeping just the dictionary is obviously simpler and more
effective. Again, the dictionary can map valuesto count s, if you the need the data structure to
be, in mathematical terms, a bag rather than a set.

An important requisite for any of these membership-test optimizations is that the valuesin the
sequence must be hashable (otherwise, of course, they cannot be keys in a dictionary). For
example, alist of tuples might be subjected to this recipe's treatment, but for alist of lists the
recipe asit stands is not applicable. Y ou can sometimes use cPi ckl e. dunps to create
dictionary keys—or, for somewhat different application needs, the object'si d—but neither
workaround is always fully applicable. Inthe case of cPi ckl e. dunps, even wheniit is
applicable, the overhead may negate some or most of the optimization.

2.10.4 See Also

The Library Reference sections on sequences types and mapping types.

2.11 Finding the Deep Index of an Item in an Embedded
Sequence

Credit: Brett Cannon
2.11.1 Problem

Y ou need to find the deep index of an item in an embedded sequence (i.e., the sequence of indexes
that will reach the item when applied one after the other to peel off successive layers of nesting).
For example, the 6 in [[1,2],[3,[4,[5,6]]],7.[8,9]] has the deep index of [1,1,1,1].

2.11.2 Solution

Lists can be nested (i.e., items of lists can, in turn, be lists), but it takes some care to unnest them
when we need to reach for an item:

i nport sys, types
cl ass Found(Exception): pass
_indices = xrange(sys. maxi nt)

def _is_sequence(obj):
return isinstance(obj, types.ListType) or isinstance(obj,
types. Tupl eType)

def deepi ndex(sequence, goal, is_subsequence=_is_sequence):
""" deepi ndex(sequence, goal) -> index list """
def hel per(sequence, index_ |ist, goal =goal):
for item index in zip(sequence, _indices):
if items=goal
rai se Found, index_list+[index]
elif is_subsequence(iten):
hel per(item index_list+[index])

try: hel per(sequence, [])
except Found, index_list: return index_|list
el se: return -1
if _ name_ _=="_ main_ _':
print deepindex([[1,2],[3,[4,[5,6]]],7,[8,9]], 6)
print deepindex([[1,2],[3,[4,[5,6]]].,7,[8,9]], 66)

2.11.3 Discussion

This recipe is handy when you have deeply nested sequences and thus need something better than
somel i st.index(item togettheindex with which an item can be retrieved from the list.
It also works as away to determine if an item isin a deep sequence, regardless of the item's
location within the nested sequence. The recipe is coded to work with Python 2.0 or later.

The nested hel per functionisrecursive. hel per iterates on its argument sequence,

examining each item. When the current item equals goal , the search isfinished, and hel per
breaks out of whatever number of levels of recursion it'sin, using the following statement:

rai se Found, index_list+[index]

When the current item is a nested sequence, hel per calsitself recursively on the subsequence,
with an updated | ndex_| i st . If the recursive cal returns normally, that branch of the search
has proved fruitless (successful searches don't return normally, but rather raise a Found
exception), so hel per keepslooking. Note that hel per checks for nested sequences viatype
tests for tuples and lists specificaly; see Recipe 1.13 for alternative ways to perform this check.

This recipe is an interesting, athough controversial, show-off for the concept of raising an
exception as a way to return a value from deeply nested recursive calls. If using exceptions as
building blocks for alternative control structures is ever appropriate, this case for their application
surely would be. We avoid having to arrange some artificial means of signaling "found" versus
"not found," and, even better, we avoid having to arrange for the complexity of returning from a
deep stack of calls when the item has been found. In any case, this usage surely underscores how,
in Python, exceptions can be used for conditions that are not errors, and indeed not even truly
exceptional.

2.11.4 See Also

Recipe 1.13; documentation for the r ange built-in function in the Library Reference.

2.12 Showing Off Quicksort in Three Lines
Credit: Nathaniel Gray

2.12.1 Problem

Y ou need to show that Python's support for the functional programming paradigm is quite a bit
better than it might seem at first sight.

2.12.2 Solution

Functional programming languages, of which Haskell is a great example, are splendid animals, but
Python can hold its own in such company:

def qgsort(L):
if len(L) <= 1. return L
return gsort([It for It in L[1:] if It < L[O]]) + L[O:1]
+\
gsort([ge for ge in L[1:] if ge >= L[0]])

In my humble opinion, thisis aimost as pretty as the Haskell version from http://www.haskell.org:

gsort [] =[]
gsort (x:xs) = qgsort elts It _x ++ [X] ++ gsort elts_ge x

wher e
elts_ It x =[y | v < xs, y < X]
elts_ ge x =[y | y <- xs, y >= x|

Here's a test function for the Python version:

def gs_test(length):
i nport random
j oe = range(l engt h)
random shuffl e(j oe)
gsJoe = gsort(joe)
for i in range(len(gsJdoe)):
assert qgsJoe[i] ==1i, 'qgsort is broken at %d!' %

2.12.3 Discussion

Thisis arather naive implementation of quicksort that illustrates the expressive power of list
comprehensions. Do not use thisin real code! Python's own built-insor t is of course much
faster and should always be preferred. The only proper use of this recipe is for impressing friends,
particularly ones who (quite understandably) are enthusiastic about functional programming, and
particularly about the Haskell language.

I cooked up this function after finding the wonderful Haskell quicksort (which I've reproduced
above) at http://www.haskell.org/aboutHaskell.html. After marveling at the elegance of this code
for awhile, | realized that list comprehensions made the same thing possible in Python. Not for
nothing did we steal list comprehensions right out of Haskell, just Pythonizing them a bit by using
keywords rather than punctuation!

Both implementations pivot on the first element of the list and thus have worst-case O(N?)
performance for the very common case of sorting an aready-sorted list, so you would never want
to do thisin production code. Because thisis just a propaganda thing, though, it doesn't really
matter.

List comprehensions were introduced in Python 2.0, so this recipe's code will not work on any
earlier version. But then, you wouldn't be trying to impress a friend with a many-years-old version
of Python, right?

A less compact version with the same architecture can easily be written to use named local
variables and functions for enhanced clarity:

def qgsort(L):

if not L: return L

pi vot = L[O0]

def It(x, pivot=pivot): return x<pivot

def ge(x, pivot=pivot): return x>=pivot

return gsort(filter(lt, L[1:]))+[pivot]+qgsort(filter(ge,
L[1:]))

This one works on old and crusty Python versions, but in Python 2.1 (withafrom _

future _ inport nested scopes) and later, you can do without the
pi vot =pi vot trick in the formal argument listsof | t and ge.

2.12.4 See Also

The Haskell web site (http://www.haskell.org).

2.13 Sorting Objects Using SQL's ORDER BY Syntax

Credit: Andrew M. Henshaw
2.13.1 Problem

You need to sort by multiple keys, with each key independently ascending or descending,
mimicking the functionality of the SQL ORDER BY clause.

2.13.2 Solution

Sometimes you get data from a database and need the data ordered in several ways in succession.
Rather than doing multiple SELECT queries on the database with different ORDER BY clauses,

you can emulate the sorting flexibility of ORDER BY in your Python code and get the data just
once:

cl ass sql Sort abl e:
def _ init_ (self, **args):
self. _dict_ _.update(args)

def setSort(self, sortOrder):
self.sortFields = []
for text in sortOrder:

sortBy, direction = (text+" ').split(" ', 1)
sel f.sortFields.append((sort By,
direction[0:4].lower() == 'desc'))

def _ _repr_ _(self):
return repr([getattr(self, x) for x, reverse in
self.sortFields])

def _ cnp_ (self, other):
myFi el ds =[]
otherFields = []
for sortBy, reverse in self.sortFields:
nyField, otherField = getattr(self, sortBy),
getattr(other, sortBy)
i f reverse:
nyField, otherField = otherField, nyField
nyFi el ds. append(nyFi el d)
ot her Fi el ds. append(ot her Fi el d)
return cnp(nyFi el ds, otherFields)

2.13.3 Discussion

Occasionally, | need to do database processing that is more complex than the SQL framework can
handle. With this class, | can extract the database rows and instantiate the class object for each
row. After massaging the objects, | apply alist of sort conditions and sort. For example, this
search description, when supplied as the argument to the recipe's set Sor t method:

['nanme', 'val ue DESC]

is equivalent to the SQL clause:
ORDER BY nane, val ue DESC

The class handles multiple-key, multiple-direction sortsinthe ~ _cnp_ _ method. A list of
attributes is built for each key, and individual items are swapped between the two objects if that
particular key has a reversed sort order. Performance may not be great, but the ideais both smple
and useful.

Here is the self-test code that would normally be placed at the end of the module, both to test
functionality and to provide an example of use:

def testSql Sortable():

data = [('Premier', '"Stealth U-11'), (' Premer’',
"Stealth U-10'),
("Premer', "Stealth U-12"),
(' Co-ed', ' Cycl ones'), (' Co-ed',
"Li ghtning'),
(' Co-ed', ' Dol phins'),
("Grls', ' Dynanos'), ("aGrls',
"Tigers'),
("Grls', " Dol phins')]
testList = [sql Sortabl e(program=program name=nane)

for program nane in data]
tests = [[' program DESC , 'nane'],
[name desc', 'program asc']]

for sortBy in tests:
print '#### Test basic sorting ###' , sortBy
for sortable in testList:
sortabl e. set Sort (sort By)
testList.sort()
for itemin testList:
print item

print '#### Test nodification of attributes ###' , sortBy
assert testList[4].name == 'Lightning
testList[4].nanme = 'ZZ 1st nane’
testList.sort()
for itemin testList:
print item

if _ name_ _ =="'"_ min_ _

test Sql Sortable()

2.13.4 See Also

The O'Reilly Network, for an article about SQL ORDER BY
(http://linux.oreillynet.com/pub/allinux/2001/02/13/aboutSQL .html); your database's reference for
SQL.

Section 3.1.

Chapter 3. Text

Introduction

Section 3.2.

Processing a String One Character at aTime

Section 3.3.

Testing if an Object |s String-Like

Section 3.4.

Aligning Strings

Section 3.5.

Trimming Space from the Ends of a String

Section 3.6.

Combining Strings

Section 3.7.

Checking Whether a String Contains a Set of Characters

Section 3.8.

Filtering a String for a Set of Characters

Section 3.9.

Controlling Case

Section 3.10.

Reversing a String by Words or Characters

Section 3.11.

Accessing Substrings

Section 3.12.

Changing the Indentation of a Multiline String

Section 3.13.

Testing Whether a String Represents an Integer

Section 3.14.

Expanding and Compressing Tabs

Section 3.15.

Replacing Multiple Patterns in a Single Pass

Section 3.16.

Converting Between Different Naming Conventions

Section 3.17.

Converting Between Characters and Vaues

Section 3.18.

Converting Between Unicode and Plain Strings

Section 3.19.

Printing Unicode Characters to Standard Output

Section 3.20.

Dispatching Based on Pattern Matches

Section 3.21.

Evaluating Code Inside Strings

Section 3.22. Replacing Python Code with the Results of Executing That Code

Section 3.23. Module: Yet Another Python Templating Utility (YAPTU)

Section 3.24. Module: Roman Numerals

3.1 Introduction

Credit: Fred L. Drake, Jr., PythonLabs

Text-processing applications form a substantial part of the application space for any scripting
language, if only because everyone can agree that text processing is useful. Everyone has bits of
text that need to be reformatted or transformed in various ways. The catch, of course, isthat every
application isjust alittle bit different from every other application, so it can be difficult to find
just the right reusable code to work with different file formats, no matter how similar they are.

3.1.1 What Is Text?

Sounds like an easy question, doesn't it? After all, we know it when we see it, don't we? Textisa
sequence of characters, and it is distinguished from binary data by that very fact. Binary data, after
al, is a sequence of bytes.

Unfortunately, all data enters our applications as a sequence of bytes. There's no library function
we can call that will tell us whether a particular sequence of bytes represents text, although we can
create some useful heuristics that tell us whether data can safely (not necessarily correctly) be
handled as text.

Python strings are immutable sequences of bytes or characters. Most of the ways we create and
process strings treat them as sequences of characters, but many are just as applicable to sequences
of bytes. Unicode strings are immutable sequences of Unicode characters: transformations of
Unicode strings into and from plain strings use codecs (coder-decoder) objects that embody
knowledge about the many standard ways in which sequences of characters can be represented by
sequences of bytes (also known as encodings and character sets). Note that Unicode strings do not
serve double duty as sequences of bytes.

Okay, let's assume that our application knows from the context that it's looking at text. That's
usually the best approach, because that's where external input comes into play. We're either

looking at afile because it has a well-known name and defined format (common in the Unix world)
or because it has a well-known filename extension that indicates the format of the contents
(common on Windows). But now we have a problem: we had to use the word "format" to make

the previous paragraph meaningful. Wasn't text supposed to be simple?

Let's face it: there's no such thing as "pure” text, and if there were, we probably wouldn't care
about it (with the possible exception of applications in the field of computational linguistics,
where pure text may indeed be studied for its own sake). What we want to deal with in our
applications is information content contained in text. The text we care about may contain
configuration data, commands to control or define processes, documents for human consumption,
or even tabular data. Text that contains configuration data or a series of commands usually can be
expected to conform to afairly strict syntax that can be checked before relying on the information
in the text. Informing the user of an error in the input text is typically sufficient to deal with things
that aren't what we were expecting.

Documents intended for humans tend to be simple, but they vary widely in detail. Since they are
usually written in a natural language, their syntax and grammar can be difficult to check, at best.
Different texts may use different character sets or encodings, and it can be difficult or even
impossible to tell what character set or encoding was used to create atext if that information is not
available in addition to the text itself. It is, however, necessary to support proper representation of
natural-language documents. Natural-language text has structure as well, but the structures are
often less explicit in the text and require at least some understanding of the language in which the
text was written. Characters make up words, which make up sentences, which make up paragraphs,
and till larger structures may be present as well. Paragraphs aone can be particularly difficult to

locate unless you know what typographical conventions were used for a document: is each line a
paragraph, or can multiple lines make up a paragraph? If the latter, how do we tell which lines are
grouped together to make a paragraph? Paragraphs may be separated by blank lines, indentation,
or some other special mark. See Recipe 4.9 and Recipe 12.8 for examples of processing and
inputting paragraphs separated by blank lines.

Tabular data has many issues that are similar to the problems associated with natural-language text,
but it adds a second dimension to the input format: the text is no longer linear—it is no longer a
sequence of characters, but rather a matrix of characters from which individual blocks of text must
be identified and organized.

3.1.2 Basic Textual Operations

As with any other data format, we need to do different things with text at different times. However,
there are still three basic operations:

Parsing the data into a structure internal to our application

Transforming the input into something similar in some way, but with changes of some
kind

Generating completely new data

Parsing can be performed in a variety of ways, and many formats can be suitably handled by ad
hoc parsers that deal effectively with avery constrained format. Examples of this approach
include parsers for RFC 2822-style email headers (see the r f 822 module in Python's standard
library) and the configuration files handled by the Conf i gPar ser module. The netr c
module offers another example of a parser for an application-specific file format, this one based
onthe shl ex module. shl ex offers afairly typical tokenizer for basic languages, useful in
creating readable configuration files or allowing users to enter commands to an interactive prompt.
These sorts of ad hoc parsers are abundant in Python's standard library, and recipes using them can
be found in Chapter 4 and Chapter 10. More formal parsing tools are dso available for Python;
they depend on larger add-on packages and are surveyed in the introduction to Chapter 15.

Transforming text from one format to another is more interesting when viewed as text processing,
which iswhat we usually think of first when we talk about text. In this chapter, welll take alook at
some waly's to approach transformations that can be applied for different purposes, including three
different recipes that deal with replacing embedded Python expressions with their evaluations.
Sometimes we'll work with text stored in external files, and other times we'll ssimply work with it
as strings in memory.

The generation of textual data from application-specific data structures is most easily performed
using Python's pr i nt statement or the wr i t € method of afile or file-like object. Thisis often

done using a method of the application object or a function, which takes the output file asa
parameter. The function can then use statements such as these:

print >>file, sometext
file.wite(sometext)

which generate output to the appropriate file. However, thisisn't generally thought of as text
processing, as here there is no input text to be processed. Examples of using both pri nt and
wr i t e can be found throughout this book.

3.1.3 Sources of Text

Working with text stored as a string in memory can be easy when the text is not too large.
Operations that search the text can operate over multiple lines very easily and quickly, and there's
no need to worry about searching for something that might cross a buffer boundary. Being able to
keep the text in memory as a simple string makes it very easy to take advantage of the built-in
string operations available as methods of the string object.

File-based transformations deserve special treatment, because there can be substantial overhead
related to 1/0 performance and the amount of data that must actually be stored in memory. When
working with data stored on disk, we often want to avoid loading entire files into memory, due to
the size of the data: loading an 80-MB file into memory should not be done too casually! When
our application needs only part of the data at a time, working on smaller segments of the data can
yield substantial performance improvements, ssmply because we've allowed enough space for our
program to run. If we are careful about buffer management, we can still maintain the performance
advantage of using a small number of relatively large dsk read and write operations by working
on large chunks of data at atime. File-related recipes are found in Chapter 4.

Another interesting source for textual data comes to light when we consider the network. Text is
often retrieved from the network using a socket. While we can always view a socket as afile
(using the makef i | e method of the socket object), the data that is retrieved over a socket may
come in chunks, or we may have to wait for more data to arrive. The textual data may also not
consist of al data until the end of the data stream, so afile object created with makef i | e may
not be entirely appropriate to pass to text-processing code. When waking with text from a
network connection, we often need to read the data from the connection before passing it along for
further processing. If the datais large, it can be handled by saving it to afile asit arrives and then
using that file when performing text-processing operations. More elaborate solutions can be built
when the text processing needs to be started before all the data is available. Examples of the
parsers that are useful in such situations may be found inthe ht mi | i b and HTMLPar ser
modules in the standard library.

3.1.4 String Basics

The main tool Python gives us to process text is strings—immutable sequences of characters.
There are actually two kinds of strings: plain strings, which contain eight-bit (ASCII) characters,
and Unicode strings, which contain Unicode characters. We won't deal much with Unicode strings
here: their functionality is similar to that of plain strings, except that each character takes up 2 (or
4) bytes, so that the number of different charactersisin the tens of thousands (or even billions), as
opposed to the 256 different characters that comprise plain strings. Unicode strings are important
if you must deal with text in many different alphabets, particularly Asian ideographs. Plain strings
are sufficient to deal with English or any of alimited set of non-Asian languages. For example, all
Western European alphabets can be encoded in plain strings, typically using the international
standard encoding known as | SO-8859-1 (or 1SO-8859-15, if you need the Euro currency symbol
aswell).

In Python, you express aliteral string as.

"this is aliteral string
"this is another string"

String values can be enclosed in either single or double quotes. The two different kinds of quotes
work the same way, but having both allows you to include one kind of quotes inside of a string

specified with the other kind of quotes, without needing to escape them with the backslash
character:

isn\'t that grand'
"isn't that grand"

To have a string span multiple lines, you can use a backslash as the last character on the line,
which indicates that the next line is a continuation:

big = "This is a long string\
t hat spans two lines."

Y ou must embed newlines in the string if you want the string to output on two lines:

big = "This is a long string\n\
that prints on two lines."

Another approach is to enclose the string in a pair of matching triple quotes (either single or
double):

bi gger = """

This is an even

bi gger string that
spans three lines.

In this case, you don't need to use the continuation character, and line breaks in the string literal
are preserved as newline characters in the resulting Python string object. Y ou can aso make a
string a"raw" string by preceding it withanr or R:

big =r"This is a long string\
with a backslash and a newline in it"

With araw string, backslash escape sequences are left alone, rather than being interpreted. Finally,
you can precede a string with a u or Uto make it a Unicode string:

hello = u' Hel | o\ uO020Wor | d'

Strings are immutable, which means that no matter what operation you do on a string, you will
always produce a new string object, rather than mutating the existing string. A string is a sequence
of characters, which means that you can access a single character:

mystr = "nmy string"
nystr[0] #'m
nmystr[- 2] #'n'

Y ou can also access a portion of the string with a dice:

nystr[1: 4] # 'y s'
mystr[3:] # 'string'
mystr[-3:] # 'ing'

You can loop on a string's characters:
for ¢ in nystr:

Thiswill bind ¢ to each of the charactersin my st r . You can form another sequence:

list(nystr) # returns ['m,"y","
t trttit,'nt gt

AN A
Y ou can concatenate strings by addition:

mystr+' oid' # 'my stringoid
You can aso repeat strings by multiplication:
'x0'*3 # ' xoxoxo'

In general, you can do anything to a string that you can do to a sequence, aslong as it doesn't
require changing the sequence, since strings are immutable.

String objects have many useful methods. For example, you can test a string's contents with

s. i sdi git,whichreturnstrueif s isnot empty and al of the charactersin s are digits
(otherwise, it returns false). Y ou can produce a new modified string with a method such as

s. t oupper , which returns a new string that islike s, but with every letter changed into its
uppercase equivalent. You can search for a string inside another with

hayst ack. count (" needl "), which returns the number of times the substring "needl€"
appearsin the string hay st ack. When you have a large string that spans multiple lines, you can
splititinto alist of single-line stringswithspl i tli nes:

list of lines = one_large string.splitlines()
And you can produce the single large string again with j oi n:
one_large_string = '\n".join(list_of_lines)

The recipes in this chapter show off many methods of the string object. Y ou can find complete
documentation in Python's Library Reference.

Strings in Python can aso be manipulated with regular expressions, viathe r e module. Regular
expressions are a powerful (but complicated) set of tools that you may aready be familiar with
from another language (such as Perl), or from the use of tools such as the vi editor and text-mode
commands such as grep. You'll find a number of uses of regular expressions in recipesin the
second half of this chapter. For complete documentation, see the Library Reference. Mastering
Regular Expressions, by J. E. F. Friedl (O'Relilly), is also recommended if you do need to master
this subject—Python's regular expressions are basically the same as Perl's, which Friedl covers
thoroughly.

Python's standard module st r i ng offers much of the same functionality that is available from
string methods, packaged up as functions instead of methods. The st r i ng module also offers
additional functions, such asthe usdful st ri ng. naket r ans function that is demonstrated in
afew recipesin this chapter, and helpful string constants (st ri ng. di gi t s, for example, is
'0123456789"). The string-formatting operator, % provides a handy way to put strings
together and to obtain precisely formatted strings from such objects as floating-point numbers.
Again, you'l find recipesin this chapter that show how to use %for your purposes. Python also

has lots of standard and extension modules that perform special processing on strings of many
kinds, although this chapter doesn't cover such specialized resources.

3.2 Processing a String One Character at a Time
Credit: Luther Blissett

3.2.1 Problem

Y ou want to process a string one character at atime.

3.2.2 Solution

Youcanuse | i st with the string as its argument to build alist of characters (i.e., strings each of
length one):

thelist = list(thestring)
You can loop over thestringinaf or statement:

for ¢ in thestring:
do_somet hi ng_wi t h(c)

Y ou can apply afunction to each character with map:
map(do_sonet hing_wi th, thestring)

Thisissimilar tothe f or loop, but it produces alist of results of the function
do_somet hi ng_wi t h called with each character in the string as its argument.

3.2.3 Discussion

In Python, characters are just strings of length one. Y ou can loop over a string to access each of its
characters, one by one. You can use map for much the same purpose, as long as what you need to
do with each character is call afunction onit. Finally, you can call the built-intypel i st to
obtain alist of the length-one substrings of the string (i.e., the string's characters).

3.2.4 See Also

The Library Reference section on sequences; Perl Cookbook Recipe 1.5.

3.3 Testing if an Object Is String-Like
Credit: Luther Blissett
3.3.1Problem

You need to test if an object, typically an argument to a function or method you're writing, isa
string (or more precisely, whether the object is string-like).

3.3.2 Solution
The first thing that comes to mind is type-testing:
def isAString(anobj): return type(anobj) is type('"')

However, this approach is not appropriate, as it wilfully destroys one of Python's greatest
strengths—smooth, signature-based polymorphism. Using the i si nst ance built-in function,

which can accept at ype argument in Python 2.0 or later, is only marginally better:
def isAString(anobj): return isinstance(anobj, type(''))

This does accept instances of subclasses of type st r (in Python 2.2 or better), but it till
miserably fails to accept such clearly string-like objects as instances of

User String. User St ri ng and Unicode strings. What you really want is away to check if
some object is string-like (i.e., whether it behaves like a string):

def isStringLi ke(anobj):
try: anobj + "'
except: return O
el se: return 1

3.3.3 Discussion

If it walks like a duck, and quacks like a duck, it's duck-like enough for our purposes. The

i sStringLi ke function in this recipe goes only as far as the "quacks like" part, but that's still
far better than the disastrous attempts at rigorous duckhood-checking in the two unacceptable
functionsnamed | SASt r i ng in the solution. It's easy to test a few more properties by using a
richer expressioninthe t r y clause, if and when you need to check for more string-like features
of the object anobj . For example:

try: anobj.lower() + anobj + '’
But in my experience, the simple test shown in the solution usualy does exactly what | need.

The most Pythonic approach to type validation (or any validation task, realy) isto try to perform
whatever task you need to do, detecting and handling any errors or exceptions that might result if
the situation is somehow invalid. t r y/except works very well for this. Sometimes, asin this
recipe, you may choose some simple task, such as concatenating to the empty string, as a stand-in
for amuch richer set of properties (such as all the various operations and methods available on
string objects).

3.3.4 See Also

Documentation for the built-in functionsi si nst ance, t ype, andi ssubcl ass inthe
Library Reference.

3.4 Aligning Strings

Credit: Luther Blissett

3.4.1 Problem

Y ou want to align strings left, right, or center.
3.4.2 Solution

That'swhatthe | j ust, rj ust, and cent er methods of string objects are for. Each takes a

single argument, the width of the string you want as a result, and returns the starting string with
spaces on either or both sides:

>>> print "|', "hej'.ljust(20), '|', "hej'.rjust(20), '|",
"hej ' .center(20), '|'
| hej | hej | hej | .

3.4.3 Discussion

Centering, left-justifying, or right-justifying text comes up surprisingly often—for example, when
you want to print a simple report with centered page numbers. Because of this, Python string
objects supply this functionality through their methods.

3.4.4 See Also

The Library Reference section on string methods; Java Cookbook Recipe 3.5.

3.5 Trimming Space from the Ends of a String
Credit: Luther Blissett
3.5.1 Problem

Y ou need to work on a string without regard for any extra leading or trailing spaces a user may
have typed.

3.5.2 Solution

That'swhatthe | strip,rstrip,andstri p methods of string objects are for. Each takes no
argument and returns the starting string, shorn of whitespace on either or both sides:

>>> x = hej '

>>> print "', x.Istrip(), "|', x.rstrip(), '"|', x.strip(),
e | |

| hej I hej | hej |

3.5.3 Discussion

Just as you may need to add space to either end of a string to align that string left, right, or center
in afield of fixed width, so may you need to remove al whitespace (blanks, tabs, newlines, etc.)
from either or both ends. Because this is a frequent need, Python string objects supply this
functionality through their methods.

3.5.4 See Also

The Library Reference section on string methods; Java Cookbook Recipe 3.12.

3.6 Combining Strings
Credit: Luther Blissett
3.6.1 Problem

You have several small strings that you need to combine into one larger string.

3.6.2 Solution

The + operator concatenates strings and therefore offers seemingly obvious solutions for putting

small strings together into a larger one. For example, when you have all the pieces a once, in a
few variables:

largeString = smalll + smal 12 +
yet nore'

sonething ' + small 3 + '

Or when you have a sequence of small string pieces:

| argeString =
for piece in pieces:

| argeString += piece
Or, equivalently, but a bit more compactly:

i mport operator
| argeString = reduce(operator.add, pieces, ''")

However, none of these solutions is generally optimal. To put together pieces stored in afew
variables, the string-formatting operator %is often best:

largeString = ' %% sonmething % yet nmore' % (small 1, small 2,
smal | 3)

To join a sequence of small strings into one large string, the string operator | 0i n isinvariably
best:

"'.join(pieces)

| argeString

3.6.3 Discussion

In Python, string objects are immutable. Therefore, any operation on a string, including string
concatenation, produces a new string object, rather than modifying an existing one. Concatenating
N strings thus involves building and then immediately throwing away each of N-1 intermediate
results. Performance is therefore quite a bit better for operations that build no intermediate results,
but rather produce the desired end result at once. The string-formatting operator %is one such
operation, particularly suitable when you have afew pieces (for example, each bound to a
different variable) that you want to put together, perhaps with some constant text in addition. In
addition to performance, which is never amajor issue for this kind of task, the %operaor has
severa potential advantages when compared to an expression that uses multiple + operations on
strings, including readability, once you get used to it. Also, you don't haveto cal st r on pieces
that aren't already strings (e.g., numbers) because the format specifier & does so implicitly.

Another advantage is that you can use format specifiers other than %8, so that, for example, you
can control how many significant digits the string form of a floating-point number should display.

When you have many small string pieces in a sequence, performance can become a truly
important issue. The time needed for aloop using + or += (or a fancier but equivaent approach
using the built-in function r educe) tends to grow with the square of the number of characters
you are accumulating, since the time to alocate and fill alarge string is roughly proportional to
the length of that string. Fortunately, Python offers an excellent alternative. The j 0i h method of
astring object s takes as its only argument a sequence of strings and produces a string result
obtained by joining all items in the sequence, with a copy of S separating each item from its
neighbors. For example, ' ' . | 0i n(pi eces) concatenates all the items of pi eces ina

single gulp, without interposing anything between them. It's the fastest, neatest, and most elegant
and readable way to put a large string together.

Even when your pieces come in sequentially from input or computation, and are not aready
available as a sequence, you should use alist to hold the pieces. Y ou can prepare that list with a
list comprehension or by calling the append or ext end methods. At the end, when the list of
pieces is complete, you can build the string you want, typicaly with' * . j oi n(pi eces) . Of
al the handy tips and tricks | could give you about Python strings, | would call this one the most
significant.

3.6.4 See Also

The Library Reference sections on string methods, string-formatting operations, and the
oper at or module.

3.7 Checking Whether a String Contains a Set of
Characters

Credit: Jirgen Hermann, Horst Hansen

3.7.1 Problem

Y ou need to check for the occurrence of any of a set of charactersin a string.
3.7.2 Solution

The solution generalizes to any sequence (not just a string), and any set (any object in which
membership can be tested with the i n operator, not just one of characters):

def contai nsAny(str, set):

""" Check whether sequence str contains ANY of the itens
in set. """

return 1 in [c in str for c in set]

def containsAll(str, set):
""" Check whether sequence str contains ALL of the itens

inSet. mon
return O not in [c in str for c in set]

3.7.3 Discussion

Whilethe f i nd and count string methods can check for substring occurrences, there is no
ready-made function to check for the occurrencein a string of a set of characters.

While working on a condition to check whether a string contained the special characters used in
the gl ob. gl ob standard library function, | came up with the above code (with help from the
OpenProjects IRC channel #pyt hon). Written this way, it really is compatible with human

thinking, even though you might not come up with such code intuitively. That is often the case
with list comprehensions.

The following code creates alist of 1/0 vaues, one for each item in the set;
[c in str for ¢ in set]

Then this code checks whether there is at least one true value in that list:
lin[cin str for c in set]

Similarly, this checks that no false values are in the list:

O not in[c instr for ¢ in set]

Usage examples are best cast in the form of unit tests to be appended to the .py source file of this
module, with the usual idiom to ensure that the tests execute if the module runs as a main script:

if name =" min_ _

unit tests, nmust print "OKI" when run
assert contai nsAny('*.py', "*?[]")

assert not containsAny('file.txt', "*?[]")
assert containsAll ('43221", '123")

assert not containsAll ('134', '123")

print "OKI'"

Of course, while the previous idioms are neat, there are alternatives (aren't there dways?). Here
are the most elementary—and thus, in a sense, the most Pythonic—alternatives.

def contai nsAny(str, set):
for ¢ in set:
if cin str: return 1
return O
def containsAll (str, set):
for ¢ in set:
if c not instr: return O
return 1

Here are some alternatives that ensure minimal looping (earliest possible return). These are the
most concise and thus, in a sense, the most powerful:

fromoperator inport and_, or_, contains
def contai nsAny(str, set):

return reduce(or_, map(contains, len(set)*[str], set))
def containsAll (str, set):

return reduce(and_, map(contains, |len(set)*[str], set))

Here are some even dimmer variants of the latter that rely on a special method that string objects
supply only in Python 2.2 and later:

fromoperator inport and_, or_

def contai nsAny(str, set):

return reduce(or_, map(str._ _contains_ _, set))
def containsAll (str, set):

return reduce(and_, map(str.__contains_ _, set))

And here is atricky variant that relies on functionality aso available in 2.0:

def containsAll (str,

try: map(str.index,

set):
set)

except ValueError: return O

else: return 1

Fortunately, this rather tricky approach lacks an immediately obvious variant applicable to
implement cont ai nsAny. However, one last tricky scheme, based on
string.transl at e'sability to delete all charactersin a set, does apply to both functions:

i nport string
notrans = string.maketrans('', '') # identity "translation"

def contai nsAny(str, set):
return len(set)!=len(set.translate(notrans, str))

def containsAll(str, set):
return O==len(set.translate(notrans, str))

Thistrick at least has some depth—it rdliesonset . t r ansl at e(notrans, str) being
the subsequence of set that is made of charactersnot in st r . If that subsequence has the same
length as set , no characters have been removed by set . t r ansl at e, so no characters of
set areinstr. Conversely, if that subsequence has length O, al characters have been removed,
so all charactersof set areinstr.Thetransl at e method of string objects kegps coming

up naturally when one wants to treat strings as sets of characters, partly because it's so speedy and
partly because it's so handy and flexible. See Recipe 3.8 for another similar application.

One last observation is that these different ways to approach the task have very different levels of
generality. At one extreme, the earliest approaches, relying only oni n (for looping on st r and
for membership in set) are the most general; they are not at all limited to string processing, and
they make truly minimal demands on the representations of st r and set . At the other extreme,
the last approach, relying onthe t r ans| at e method, works only when both st r and set are
strings or closely mimic string objects functionality.

3.7.4 See Also

Recipe 3.8, documentation for the t r ans| at e and maket r ans functionsinthe st ri ng
module in the Library Reference.

3.8 Filtering a String for a Set of Characters
Credit: Jurgen Hermann, Nick Perkins
3.8.1 Problem

Given a set of characters to keep, you need to build afiltering functor (afunction-like, callable
object). The specific functor you need to build is one that, applied to any string s, returns a copy
of s that contains only charactersin the set.

3.8.2 Solution

Thestring. maket r ans functionandt r ansl at e method of string objects are fast and
handy for all tasks of thisilk:

i mport string

Make a reusable string of all characters
_allchars = string. maketrans('', '")

def makefilter(keep):
""" Return a functor that takes a string and returns a
partial copy of that
string consisting of only the characters in 'keep'.
Make a string of all characters that are not in 'keep
delchars = _allchars.transl ate(_allchars, keep)

Return the functor, binding the two strings as default
ar gs

return lanbda s, a= allchars, d=delchars: s.transl ate(a,
d)

def canoni cformkeep):
""" @Gven a string, considered as a set of characters,
return the
string's characters as a canonic-form string:
al phabeti zed
and w thout duplicates.

return makefilter(keep)(_allchars)

if _ _name_ _ =="'"_ _main_ _
identifier = makefilter(string.letters + string.digits +
l_l)

print identifier(_allchars)

3.8.3 Discussion

The key to understanding this recipe lies in the definitions of the t r ansl| at e and
maket r ans functionsinthe st ri ng module. t r ansl| at e takes a string and replaces each
character in it with the corresponding character in the trandation table passed in as the second

argument, deleting the characters specified in the third argument. naket r ans is a utility routine
that helps create the trandation tables.

Efficiency is vastly improved by splitting the filtering task into preparation and execution phases.
The string of al charactersis clearly reusable, so we build it once and for al when this module is
imported. That way, we ensure that each filtering functor has a reference to the same string of all
characters, not wasting any memory. The string of characters to delete depends on the set of
characters to keep, so we build it inthe makef i | t er factory function. Thisis done quite
rapidly using the t r ans| at e method to delete the characters to keep from the string of all
characters. Thet r ansl at e method is very fast, as are the construction and execution of these
useful little functors. The solution also supplies an extremely simple function to put any set of
characters, originally an arbitrary string, into canonic-string form (a phabetically sorted, without
duplicates). The same trick encapsulated in the canoni c¢f or mfunction is also explicitly used
in the test code that is executed when this runs as a script.

Of course, you don't haveto use | anbda (here or anywhere else). A named function local to the

factory function will do just as well. In other words, this recipe works fine if you change
makef il ter'sreturn statement into the following two statements:

def filter(s, a=_allchars, d=delchars): return s.translate(a,
d)
return filter

Many Pythonistas would consider this clearer and more readable.

Thisisn't a big issue, but remember that | anbda is never necessary. In any case in which you
find yourself straining to fit code into a | armbda's limitations (i.e., just an expression, with no

statements allowed), you can and should always use alocal named function instead, to avoid al
the limitations and problems.

With Python 2.2, or Python2.1andafrom _ future_ _ inport

nest ed_scopes, you get lexicaly nested scopes, so that if you want to, you can avoid
binding _al | char s and del char s as default values for arguments in the returned functor.
However, it is (marginally) faster to use this binding anyway: local variables are the fastest kind to
access, and arguments are nothing but prebound local variables. Globals and names from nested
scopes require alittle more effort from the interpreter (and sometimes, perhaps more significantly,
from a human being who is reading the code). Thisiswhy we bind _al | char s as argument a

here despite the fact that, in any release of Python, we could have just accessed it as a global
variable.

3.8.4 See Also

Documentation for the maket r ans functioninthe st r i ng modulein the Library Reference.

3.9 Controlling Case
Credit: Luther Blissett
3.9.1 Problem

Y ou need to convert a string from uppercase to lowercase, or vice versa.

3.9.2 Solution

That'swhat the upper and | ower methods of string objects are for. Each takes no arguments

and returns a copy of the string in which each letter has been changed to upper- or lowercase,
respectively.

big =1little.upper()
little = big.lower()

s.capitalizeissmilartos[: 1].upper()+s[1:].1ower().Thefirst character
is changed to uppercase, and all others are changed to lowercase. s. t i t | e issimilar, but it
uppercases the first letter of each word:

>>> print 'one two three'.capitalize()
One two three

>>> print 'one two three' .title()

One Two Three

3.9.3 Discussion

Case manipulation of strings is a very frequent need. Because of this, several string methods let
you produce case-altered copies of strings. Moreover, you can also check if astring object is
aready in a given case form with the methods i supper,i sl ower,andi stitl e, whichall
return 1 if the string is nonempty and already meets the uppercase, lowercase, or titlecase
constraints. Thereisno i scapi t al i zed method, but we can code it as afunction:

def iscapitalized(s):
return s[:1].isupper() and s[1:].islower()

This may not be exactly what you want, because each of the i s methods returns O for an empty
string, and the three case-checking ones also return O for strings that, while not empty, contain no
lettersat al. Thisi scapi t al i zed function does not quite match these semantics; rather, it
acceptsa string s only if s starts with an uppercase letter, followed by at least one more character,

including at least one more letter somewhere, and all letters except the first one are lowercase.
Here's an alternative whose semantics may be easier to understand:

def iscapitalized(s):
return s == s.capitalize()

However, this version deviates from the boundary-case semantics of the methods by accepting

strings that are empty or contain no letters. Depending on your exact needs for boundary cases,
you may of course implement precisely those checks you want to perform.

3.9.4 See Also

The Library Reference section on string methods; Perl Cookbook Recipe 1.9.

3.10 Reversing a String by Words or Characters
Credit: Alex Martelli

3.10.1 Problem

Y ou want to reverse the characters or words in a string.

3.10.2 Solution

Strings are immutable, so we need to make a copy. A list is the right intermediate data structure,
sinceithasar ever se method that does just what we want and worksin place:

revchars = list(astring) # string -> list of chars
revchars.reverse() # reverse the list in place
revchars = ''.join(revchars) # list of strings -> string

To flip words, we just work with alist of words instead of a list of characters:

revwords = astring.split() # string -> list of words
revwords. reverse() # reverse the list in

pl ace

revwords ="' '.join(revwords) # list of strings ->
string

Notethat weusea' ' (space) joiner for thelist of words, buta' ' (empty string) joiner for the

list of characters.

If you need to reverse by words while preserving untouched the intermediate whitespace, regular-
expression splitting can be useful:

i mport re

revwords = re.split(r'(\s+)', astring) # separators too
since '"(...)'

revwords. reverse() # reverse the
list in place

revwords = "'.join(revwords) # list of strings
-> string

Note that the joiner becomes the empty string again in this case, because the whitespace separators
arekeptinther evwor ds listby usingr e. spl i t with aregular expression that includes a
parenthesized group.

3.10.3 Discussion

The snippets in this recipe are fast, readable, and Pythonic. However, some people have an
inexplicable fetish for one-liners. If you are one of those people, you need an auxiliary function
(you can stick it in your built-ins from sitecustomize.py) like this:

def reverse(alist):
tenp = alist[:]

tenp.reverse()
return tenp

or maybe this, which is messier and slower:

def reverse_ alternative(alist):
return [alist[i-1] for i in range(len(alist), 0, -1)]

Thisis, indeed, in-lineable, but not worth it in my opinion.
Anyway, armed with such an almost-built-in, you can now do brave new oneliners, such as.

revchars

="'".join(reverse(list(astring)))
revwords =

" '.join(reverse(astring.split()))

In the end, Python does not twist your arm to make you choose the obviously right approach:
Python gives you the right tools, but it's up to you to use them.

3.10.4 See Also

The Library Reference section on sequence types; Perl Cookbook Recipe 1.6.

3.11 Accessing Substrings
Credit: Alex Martelli
3.11.1 Problem

Y ou want to access portions of a string. For example, you've read a fixed-width record and want to
extract the record's fields.

3.11.2 Solution

Slicing is great, of course, but it only does one field at atime:

afield = theline[3:8]

If you need to think in terms of field length, st r uct . unpack may be appropriate. Here's an
example of getting a five-byte string, skipping three bytes, getting two eight-byte strings, and then
getting the rest:

i nport struct

Get a 5-byte string, skip 3, get two 8-byte strings, then
all the rest:

baseformat = "5s 3x 8s 8s"
nunremain = |l en(theline)-struct.cal csi ze(basef ormat)
format = "% %ds" % (basefornmat, nunremain)

| eadi ng, sl1, s2, trailing = struct.unpack(format, theline)
If you need to split at five-byte boundaries, here's how you could do it:

nunfives, therest = divrmod(len(theline), 5)
formb = "% %x" % ("5s "*nunfives, therest)
fivers = struct.unpack(fornb, theline)

Chopping a string into individual charactersis of course easier:
chars = list(theline)

If you prefer to think of your data as being cut up at specific columns, dicing within list
comprehensions may be handier:

cuts = [8, 14, 20, 26, 30]
pieces = [theline[i:j] for i, j in zip([0]+cuts,
cut s+[sys. maxint])]

3.11.3 Discussion

This recipe was inspired by Recipe 1.1 in the Perl Cookbook. Python's dicing takes the place of
Perl'ssubst r . Perl's built-in unpack and Python's st r uct . unpack are similar. Perl'sis
dightly handier, as it accepts a field length of * for the last field to mean al the rest. In Python,
we have to compute and insert the exact length for either extraction or skipping. Thisisn't a major
issue, because such extraction tasks will usually be encapsulated into small, probably local

functions. Memoizing, or automatic caching, may help with performance if the function is called
repeatedly, since it allows you to avoid redoing the preparation of the format for the struct
unpacking. See also Recipe 17.8.

In apurely Python context, the point of this recipe isto remind you that st r uct . unpack is
often viable, and sometimes preferable, as an alternative to string dlicing (not quite as often as
unpack versus subst r in Perl, given the lack of a * -valued field length, but often enough to
be worth keeping in mind).

Each of these snippetsis, of course, best encapsulated in a function. Among other advantages,
encapsulation ensures we don't have to work out the computation of the last field's length on each
and every use. This function is the equivaent of the first snippet in the solution:

def fields(baseformat, theline, l[astfield=None):

nunremain = len(theline)-struct. cal csize(basef ormat)
format = "% %%" % (basefornmat, nunremain, lastfield
and |ISII Or llXII)

return struct.unpack(format, theline)

If this function is called in aloop, caching with akey of (basef ormat, | en(t hel i ne),
| astfiel d) may beuseful here because it can offer an easy speed-up.

The function equivalent of the second snippet in the solution is:

def split_by(theline, n, |astfiel d=None):

nunmbl ocks, therest = divnmod(len(theline), n)

basebl ock = "%l%" % n, lastfield and "s" or "x")

format = "% %x" % basebl ock* nunbl ocks, therest)
And for the third snippet:

def split_at(theline, cuts, lastfield=None):
pieces = [theline[i:j] for i, j in zip([0]+cuts, cuts)]
if lastfield:
pi eces. append(theline(cuts[-1:]))
return pieces

In each of these functions, a decision worth noticing (and, perhaps, worth criticizing) is that of
havingal ast fi el d=None optional parameter. This reflects the observation that while we
often want to skip the last, unknownlength subfield, sometimes we want to retain it instead. The
useof | astfieldintheexpressonl astfield and"s" or "x" (equivdenttoC's
lastfield? s':'c')savesani f/ el se, butit'sunclear whether the saving is worth it.
"sx"[not |astfield] andother similar alternatives are roughly equivaent in this respect;
see Recipe 17.6. When | ast fi el d isfase, applyingst r uct . unpack to just a prefix of

t hel i ne (specificaly, t hel i ne[: struct. cal csi ze(format)])isan aternative,
but it's not easy to merge with the case of | ast fi el d being true, when the format does need a
supplementary field for | en(t hel i ne) -struct. cal csi ze(format).

3.11.4 See Also

Recipe 17.6 and Recipe 17.8; Perl Cookbook Recipe 1.1.

3.12 Changing the Indentation of a Multiline String
Credit: Tom Good
3.12.1 Problem

Y ou have a string made up of multiple lines, and you need to build another string from it, adding
or removing leading spaces on each line so that the indentation of each line is some absolute
number of spaces.

3.12.2 Solution

We don't need r e for this. The st r i ng module (or string methods, in Python 2.0 and later) is
quite sufficient:

i nport string
def reindent(s, nunSpaces):
S string.split(s, "\n")
S [(nunSpaces * ' ') + string.lstrip(line) for line in

s]
s = string.join(s, '"\n")
return s

3.12.3 Discussion

When working with text, it may be necessary to change the indentation level of ablock. This
recipe's code takes a multiline string and adds or removes leading spaces on each line so that the
indentation level of each line of the block matches some absolute number of spaces. For example:

>>> x = """|ine one
[ine two
and line three
>>> print x
| i ne one
line two
and line three

>>> print reindent(x, 8)
|i ne one
line two
and line three

Even if thelinesin s areinitially indented differently, this recipe makes their indentation
homogeneous. This is sometimes what we want, and sometimes not. A frequent need is to adjust
the amount of leading spaces in each line, so that the relative indentation of each line in the block
is preserved. Thisis not hard either, for either positive or negative values of the adjustment.
However, negative values need a check to ensure that no nonspaces are snipped from the start of
the lines. Thus, we may as well split the functionality into two functions to perform the
transformations, plus one to measure the number of leading spaces of each line and return the
result asalist:

def addSpaces(s, numAdd):

white = " "*numAdd
return white + white.join(s.splitlines(l))

def del Spaces(s, nunDel):
def aux(line, numDel =nunDel, white=" "*nunDel):
if line[:numDel] !'= white:
rai se Val uekrror, "renoving nore spaces than
there are!™
return |ine[nunDel :]
return ''.join(map(aux, s.splitlines(1)))

def nunSpaces(s):
return [len(line)-len(line.lstrip()) for line in
s.splitlines()]

This aternative approach relies on the string method spl i t | i nes (and so requires Python 2.0
or later, like any other recipe using string methods and/or list comprehensions), which is similar to
aspliton' \' n' , with the extra ability to leave the trailing newline on each line when called with
atrue argument. Thisis not often crucia (the last statement in del Spaces, for example, might
justaseasily return' \ n' . j oi n(map(aux, s.split('\n")))), but sometimesit
turns out to be (addSpaces could not be quite as short and sweet without this ability of the
splitlines string method).

For example, here's how we can combine these functions to build another function that deletes
enough leading spaces from each line to ensure that the least-indented line of the block becomes
flushtleft, while preserving the relative indentations of all the other lines:

def unl ndent Bl ock(s):
return del Spaces(s, m n(nunSpaces(s)))

3.12.4 See Also

The Library Reference section on segquence types.

3.13 Testing Whether a String Represents an Integer
Credit: Robin Parmar
3.13.1 Problem

Y ou want to know whether the contents of a string represent an integer (which is not quite the
same thing as checking whether the string contains only digits).

3.13.2 Solution
tryl/except isamost invariably the best approach to such validation problems:

def islnt(astring):
""" |Is the given string an integer? """
try: int(astring)
except Val ueError: return O
el se: return 1

Testing if a string contains only digits is a different problem:

def isAlIDi gits(astring):

""" |ls the given string conposed entirely of digits? """

In Python 2.0 and later, "astring.isdigit() or not
astring" is faster

i mport string

acceptabl e_characters = string.digits

for acharacter in astring:

if acharacter not in acceptabl e characters:
return O
return 1

3.13.3 Discussion

It's always a good idea to make a Python source file runnable as a script, as well as usable via
i mpor t . When run as a script, some kind of unit test or demo code executes. In this case, for
example, we can finish up the little module containing this recipe's functions with:
if name_ _=="'_ min_ _
print islnt('23")
print islnt('sd)
print islnt('233835859285")
print isAllDigits('233835859285")

Running the module as a script will now confirm that 23 represents an integer, sd does not, and
neither does 233835859285 (because it's too large—it would need an integer greater than
sys. maxi nt, which isimpossible by definition). However, as the fourth and last pr i nt
statement shows, even the latter string is indeed made up entirely of digits.

Exceptions provide a handy way of performing simple tests. For example, if you want to know
whether the contents of a string represent an integer, why not just try to convert it? That's what
i sl nt does. Thet ry/except mechanism catches the exception raised when the string cannot

be converted to an integer and, in the exception handler thus established, turns the exception into a
harmlessr et urn 0. The el se clause runs only when no exception israisedinthet ry

clause, and in this case, we use it to performar et ur n 1 when the string is okay.

Y ou can write similar tests for types other than integer. Indeed, testsinthe t r y/except style
are even more useful for types with string representation that can be more complicated, such as
floats. More generally, exceptions can provide a simple, direct way of performing many tests that
could otherwise be quite laborious. Don't be misled by the word "exception™ or by what is
considered good style in other programming languages. In Python, exceptions are useful for many
nonexceptional cases, too. Relying on exceptionsand t r y/except for vaidation tasksis a
highly Pythonic, pragmatic, and useful idiom. It even has its own name, "It's Easier to Ask
Forgiveness Than Permission”, and acronym, EAFTP.

This type-like test is quite different from the pure-syntax testing of whether a string contains only
digits. i sAl' | Di gi t s will help you there, in the relatively rare cases in which you care only
about such purely syntactical aspects and not about the actual semantics at all. This style of
validation is also known as "Look Before You Leap” (LBYL), and, while it has many pitfalls, in
some rare cases it isindeed exactly what you need. In Python 2.0 and later, the i sdi gi t

method of string objects performs substantially the sametest asthe i SAlI | Di gi t s function
shown in this recipe, but faster. One peculiarity isthat ' ' . 1 sdi gi t () is0,while

I sAII Digits('") isl.Itisof courseeasy to compensate for this, either way, by inserting a
suitable check for not ast ri ng in the code (strings, like other sequences, are false if and only
if they're empty).

3.13.4 See Also

Documentation for the built-in function i nt inthe Library Reference.

3.14 Expanding and Compressing Tabs

Credit: Alex Martelli

3.14.1 Problem

Y ou want to convert tabs in a string to the appropriate number of spaces, or vice versa.
3.14.2 Solution

Changing tabs to the appropriate number of spaces is areasonably frequent task, easily
accomplished with Python strings' built-in expandt abs method. Because strings are

immutable, the method returns a new string object (a modified copy of the origina one). However,
it's easy to rebind a string variable name from the original to the modified-copy value:

mystring = nystring. expandtabs()

This doesn't change the string object to which ny st r i ng originally referred, but it does rebind

thename ny st r i ng to anewly created string object in which tabs are expanded into runs of
spaces.

Changing spaces into tabs is a rare and peculiar need. Compression, if that's what you're after, is
far better performed in other ways, so Python doesn't offer a built-in way to unexpand spaces into
tabs. We can, of course, write one. String processing tends to be fastest in a split/process/rejoin
approach, rather than with repeated overall string transformations:

def unexpand(astring, tablen=8):

i nport re

pieces = re.split(r'(+)', astring.expandtabs(tablen))

| ensofar = 0

for i in range(len(pieces)):
thislen = |l en(pieces[i])
| ensofar += thislen
if pieces[i][0]==

numbl anks = | ensofar % tabl en
numt abs = (thi sl en-nunbl anks+t abl en-1)/tabl en
pieces[i] = '"\t'*nuntabs + ' ' *nunbl anks

return .join(pieces)

3.14.3 Discussion

If expandt abs didn't exist, we could write it up as afunction. Here is a regular expression-
based approach, similar to the one used in the recipe's unexpand function:

def expand with_ re(astring, tablen=8):
i nport re
pi eces = re.split(r'(\t)', astring)
| ensofar = 0

for i in range(len(pieces)):
if pieces[i]=="\t":
pi eces[i] ="' '*(tabl en-1ensofar% abl en)

| ensofar += | en(pi eces[i])

return ''.join(pieces)

When the regular expression contains a (parenthesized) gr oup, r e. spl i t givesusthe
splitters too. Thisis useful here for massaging the pi eces list into the form we want for the
find ' ' . j oi n. However, astringspl it by ' \t"', followed by interleaving the spaces
joiners of suitable lengths, looks a bit better in this case:

def expand(astring, tablen=8):
result =[]
for piece in astring.split('\t"):
resul t. append(pi ece)
result.append(' '*(tablen-Ilen(piece)% abl en))
return ''.join(result[:-1])

3.14.4 See Also

Documentation for the expandt abs functionin the st r i ng module in the Library Reference;
Perl Cookbook Recipe 1.7.

3.15 Replacing Multiple Patterns in a Single Pass
Credit: Xavier Defrang

3.15.1 Problem

Y ou need to perform severa string substitutions on a string.

3.15.2 Solution

Sometimes regular expressions afford the fastest solution even in cases where their applicability is
anything but obvious. In particular, the sub method of r e objects makes regular expressions a
good way to perform string substitutions. Here is how you can produce a result string from an

input string where each occurrence of any key in a given dictionary is replaced by the
corresponding value in the dictionary:

requires Python 2.1 or later
from_ _future_ _ inport nested_scopes

i mport re

the sinplest, |anbda-based inplenmentation
def multiple replace(adict, text):
Create a regular expression fromall of the dictionary
keys
regex = re.conpile("|".join(map(re. escape,
adict. keys())))

For each match, | ook up the corresponding value in the
di ctionary
return regex.sub(lambda match: adict[match. group(0)], text)

A more powerful and flexible approach is to wrap the dictionary into a callable object that directly
supports the lookup and replacement idea, which you can use directly as the callback in the sub
method. This object-oriented approach is more flexible because the callable object can keep its
own state and therefore is easily extensible to other tasks. In Python 2.2 and later, you can create a
classfor this object by extending the di ct built-in type, while in older Python versions you must
fall back on User Di ct . User Di ct (built-in types were not subclassable in older versions). A
trylexcept letsus easily write code that works optimally on both old and new versions of

Python:

try: dict
except: from UserDict inport UserDict as dict

class Xl ator(dict):
""" All-in-one nultiple-string-substitution class
def _nmke_ regex(self):
""" Build re object based on the keys of the current

di ctionary
return re.conpile("|".join(map(re.escape,
self.keys())))

def _ call_ (self, match):
""" Handl er invoked for each regex match """
return sel f[match. group(0)]

def xlat(self, text):
""" Translate text, returns the nodified text. """
return self. make regex().sub(self, text)

3.15.3 Discussion

This recipe shows how to use the Python standard r € module to perform single-pass multiple-
string substitution using a dictionary. Let's say you have a dictionary-based, one-to-one mapping
between strings. The keys are the set of strings (or regular-expression patterns) you want to
replace, and the corresponding values are the strings with which to replace them. Y ou can perform
the substitution by calling r e. sub for each key/vaue pair in the dictionary, thus processing and
creating a new copy of the whole text several times, but it is clearly better to do al the changesin
asingle pass, processing and creating a copy of the text only once. Fortunately, r . sub's
callback facility makes this better approach quite easy.

First, we have to build aregular expression from the set of keys we want to match. Such aregular
expression is a pattern of the form "alla2|...Jan" and can easily be generated using a one-liner, as
shown in the recipe. Then, instead of giving r €. sub areplacement string, we call it with a
calback argument. r e. sub callsthis object for each match, withar e. Mat chCbj ect asits

only argument, and expects the replacement string as the call's result. In our case, the callback just
has to look up the matched text in the dictionary and return the corresponding value.

The recipe has two implementations; one is| anmbda-based, and the other uses a callable,
dictionary-like object. The second option is better if you want to perform additional processing on
each match (e.g., build a histogram of the number of times each possible substitution is actually
performed) or if you just didike | armbda. Another potential advantage of the class-based
approach is performance. If you know that the trandation dictionary is static, and you must apply
the same trandation to several input strings, you can movethe _make_r egex cal from the

x| at method, whereit'scurrently done,toan i nit _ _ method, to avoid repeatedly
preparing and compiling the regular expression.

Here's a usage example for each half of this recipe. We would normally have it as a part of the
same .py source file as the function and class shown in the recipe, so it is guarded by the
traditional Python idiom that runs it if and only if the moduleis caled as a main script:

if _ name_ _=="_ main_ _":
text = "Larry Wall is the creator of Perl™
adict = {
“Larry Wall" : "Guido van Rossuni,
"creator" : "Benevolent Dictator for Life",
"Perl" : "Python",
}

print rmultiple_replace(adict, text)

xlat = Xl ator(adict)
print xlat.xlat(text)

Substitutions such as those performed by this recipe are often intended to operate on entire words,
rather than on arbitrary substrings. Regular expressions are good at picking up the beginnings and

endings of words, thanks to the special sequencer ' \ b' . Thus, we can easily make a version of
the Xl at or classthat is constrained to substitute only entire words:

class WordXl ator (Xl ator):
""" An Xl ator version to substitute only entire words

def _make_regex(self):
return re.conpil e(
r'\b"+r'\'bj\b'.join(map(re. escape,
self.keys()))+r'\b")

Note how much easier it isto customize X| at or than it would be to customize the

mul ti pl e_repl ace function. Ease of customization by subclassing and overriding helps
you avoid copy-and-paste coding, and this is another excellent reason to prefer objectoriented
structures over simpler procedural ones. Of course, just because some functionality is packaged up
as a class doesn't magically make it customizable in just the way you want. Customizability also
takes some foresight in dividing the functionality into separately overridable methods that
correspond to the right pieces of overall functionality. Fortunately, you don't have to get it right
the first time; when code does not have the optimal interna structure for the task at hand (e.g.,
reuse by subclassing and selective overriding), you can and should refactor the code so that its
internal structure serves your needs. Just make sure you have a suitable battery of tests ready to
run to ensure that your refactoring hasn't broken anything, and then you can refactor to your
heart's content. See http://www.refactoring.com for more information on the important art and
practice of refactoring.

3.15.4 See Also

Documentation for the r e module in the Library Reference; the Refactoring home page
(http://www.refactoring.com).

3.16 Converting Between Different Naming Conventions
Credit: Sami Hangaslammi
3.16.1 Problem

Y ou have a body of code whose identifiers use one of the common naming conventions to
represent multiple words in a single identifier (CapitalizedWords, mixedCase, or under_scores),
and you need to convert the code to another naming convention in order to merge it smoothly with
other code.

3.16.2 Solution

r e. sub coversthe two hard cases, converting underscore to and from the others:
i nport re
def cw2us(x): # capwords to underscore notation
return re.sub(r' (?<=s[a-z])[AZ]| (?<!M[A-Z](?=[a-2])",

r* \g<0>", x).lower()

def us2nc(x): # underscore to m xed-case notation
return re.sub(r' _([a-z])', lanbda m

(mgroup(1l).upper()), X)

Mixed-case to underscore is just like capwords to underscore (the case lowering of the first
character becomes redundant, but it does no harm):

def nt2us(x): # m xed-case to underscore notation
return cw2us(x)

Underscore to capwords can similarly exploit the underscore to mixed-case conversion, but it
needs an extra twist to uppercase the start:

def us2cw(x): # underscore to capwords notation
s = us2nt(Xx)
return s[O].upper()+s[1l:]

Conversion between mixed-case and capwords is, of course, just an issue of lowercasing or
uppercasing the first character, as appropriate:;

def nc2cw(x): # m xed-case to capwords
return s[O].lower()+s[1:]

def cw2nc(x): # capwords to m xed-case
return s[O].upper()+s[1:]

3.16.3 Discussion
Here are some usage examples:

>>> cw2us(" Print HTM.")

"print_htm'

>>> cw2us("1 Cerror")
"io_error'

>>> cw2us(" Set XYPosi tion")
'set _Xxy_position'

>>> cw2us(" Get X")

'get _x'

The set of functions in this recipe is useful, and very practical, if you need to homogenize naming
styles in a bunch of code, but the approach may be a bit obscure. In the interest of clarity, you
might want to adopt a conceptual stance that is general and fruitful. In other words, to convert a
bunch of formats into each other, find a neutral format and write conversions from each of the N
formats into the neutral one and back again. This means having 2N conversion functions rather
than N x (N-1)—ahbig win for large N—but the point here (in which N is only three) isreally one
of clarity.

Clearly, the underlying neutral format that each identifier styleis encoding is alist of words. Let's
say, for definiteness and without loss of generdlity, that they are lowercase words:

import string, re
def anytolw(x): # any format of identifier to list of
| ower cased words

First, see if there are underscores:
Iw = string.split(x," ")
if len(lw)>1: return map(string.|ower, |w)

No. Then uppercase letters are the splitters:
pieces =re.split('([A-Z])"', X)

Ensure first word follows the sanme rules as the others:
if pieces[0]: pieces = ["''] + pieces
el se: pieces = pieces[1:]

Join two by two, |owercasing the splitters as you go
return [pieces[i].lower()+pieces[i+1] for i in
range(0, | en(pi eces), 2)]

There's no need to specify the format, since it's self-describing. Conversely, when transating from
our internal form to an output format, we do need to specify the format we want, but on the other
hand, the functions are very simple:

def Iwtous(x): return ' _".join(x)

def Iwocw(x): return ''.join(mp(string.capitalize,x))
def Iwtonc(x): return

X[0]+ " .join(map(string.capitalize,x[1:]))

Any other combination is a simple issue of functional composition:

def anytous(x): return |wous(anytol wx))
cWw ous = nttous = anytous
def anytocw(x): return |wocw anytol w(x))
ustocw = nctocw = anytocw

def anytonct(x): return |wtonc(anytol wx))
cwtont = ustont = anytont

The specialized approach is slimmer and faster, but this generalized stance may ease
understanding as well as offering wider application.

3.16.4 See Also

The Library Reference sectionson the r e and st r i ng modules.

3.17 Converting Between Characters and Values

Credit: Luther Blissett

3.17.1 Problem

You need to turn a character into its numeric ASCII (1SO) or Unicode code, and vice versa.

3.17.2 Solution
That's what the built-in functions or d and chr arefor:

>>> print ord('a')
97
>>> print chr(97)
a

The built-in function or d also accepts as an argument a Unicode string of length one, in which

case it returns a Unicode code, up to 65536. To make a Unicode string of length one from a
numeric Unicode code, use the built-in function uni chr :

>>> print ord(u' u2020")
8224

>>> print unichr(8224)
u')

3.17.3 Discussion

It's a mundane task, to be sure, but it is sometimes useful to turn a character (which in Python just
means a string of length one) into its ASCII (1SO) or Unicode code, and vice versa. The built-in
functions or d, chr, and uni chr cover dl the related needs. Of course, they're quite suitable

with the built-in function map:

>>> print map(ord, 'ciao")
[99, 105, 97, 111]

To build astring from alist of character codes, you must use both map and* ' . j oi n:

>>> print
abc

".join(map(chr, range(97, 100)))

3.17.4 See Also

Documentation for the built-in functions chr , or d, and uni chr inthe Library Reference.

3.18 Converting Between Unicode and Plain Strings
Credit: David Ascher, Paul Prescod
3.18.1 Problem

You need to deal with data that doesn't fit in the ASCII character set.

3.18.2 Solution

Unicode strings can be encoded in plain strings in a variety of ways, according to whichever
encoding you choose:

Convert Unicode to plain Python string: "encode"
uni codestring = u"Hello world"

utf8string = unicodestring. encode("utf-8")
asciistring = unicodestring.encode("ascii")

i sostring = unicodestring.encode("l SO 8859-1")
utf16string = uni codestring. encode("utf-16")

Convert plain Python string to Unicode: "decode"
pl ai nstringl uni code(utf8string, "utf-8")

pl ai nstring2 uni code(asciistring, "ascii")

pl ai nstring3 uni code(i sostring, "ISO 8859-1")

pl ai nstring4 uni code(utfl6string, "utf-16")

assert
pl ai nstringl==plainstring2==pl ai nstring3==pl ai nstring4

3.18.3 Discussion

If you find yourself dealing with text that contains non-ASCII characters, you have to learn about
Unicode—what it is, how it works, and how Python uses it.

Unicode is a big topic. Luckily, you don't need to know everything about Unicode to be able to
solve real-world problems with it: a few basic bits of knowledge are enough. First, you must
understand the difference between bytes and characters. In older, ASCII-centric languages and
environments, bytes and characters are treated as the same thing. Since a byte can hold up to 256
values, these environments are limited to 256 characters. Unicode, on the other hand, has tens of
thousands of characters. That means that each Unicode character takes more than one byte, so you
need to make the distinction between characters and bytes.

Standard Python strings are really byte strings, and a Python character is really a byte. Other terms
for the standard Python type are "8-bit string" and "plain string." In this recipe we will call them
byte strings, to remind you of their byte-orientedness.

Conversdy, a Python Unicode character is an abstract object big enough to hold the character,
analogous to Python's long integers. Y ou don't have to worry about the internal representation; the
representation of Unicode characters becomes an issue only when you are trying to send them to
some byte-oriented function, such asthe wr i t e method for files or the send method for
network sockets. At that point, you must choose how to represent the characters as bytes.
Converting from Unicode to a byte string is called encoding the string. Similarly, when you load

Unicode strings from afile, socket, or other byte-oriented object, you need to decode the strings
from bytes to characters.

There are many ways of converting Unicode objects to byte strings, each of which is cdled an
encoding. For avariety of historical, political, and technical reasons, there is no one "right"
encoding. Every encoding has a case-insensitive name, and that name is passed to the decode
method as a parameter. Here are a few you should know about:

The UTF-8 encoding can handle any Unicode character. It is also backward compatible
with ASCII, so a pure ASCII file can aso be considered a UTF-8 file, and a UTF-8file
that happens to use only ASCII charactersisidentical to an ASCII file with the same
characters. This property makes UTF-8 very backward-compatible, especialy with older
Unix tools. UTF-8 is far and away the dominant encoding on Unix. It's primary weakness
isthat it isfairly inefficient for Eastern texts.

The UTF-16 encoding is favored by Microsoft operating systems and the Java
environment. It is less efficient for Western languages but more efficient for Eastern ones.
A variant of UTF-16 is sometimes known as UCS-2.

The 1S0-8859 series of encodings are 256-character ASCII supersets. They cannot
support al of the Unicode characters; they can support only some particular language or
family of languages. 1SO-8859-1, also known as Latin-1, covers most Western European
and African languages, but not Arabic. 1SO-8859-2, aso known asLatin-2, covers many
Eastern European languages such as Hungarian and Polish.

If you want to be able to encode all Unicode characters, you probably want to use UTF-8. You
will probably need to deal with the other encodings only when you are handed data in those
encodings created by some other application.

3.18.4 See Also

Unicode is a huge topic, but a recommended book is Unicode: A Primer, by Tony Graham
(Hungry Minds, Inc.)—details are available at http://www.menteith.com/unicode/primer/.

3.19 Printing Unicode Characters to Standard Output
Credit: David Ascher
3.19.1 Problem

Y ou want to print Unicode strings to standard output (e.g., for debugging), but they don't fit in the
default encoding.

3.19.2 Solution
Wrap the st dout stream with a converter, using the codecs module:

i nport codecs, sys
sys.stdout = codecs. | ookup('iso8859-1")[-1](sys.stdout)

3.19.3 Discussion

Unicode strings live in a large space, big enough for all of the charactersin every language
worldwide, but thankfully the internal representation of Unicode strings is irrelevant for users of
Unicode. Alas, afile stream, such assys. st dout , deals with bytes and has an encoding
associated with it. You can change the default encoding that is used for new files by modifying the
si t e module. That, however, requires changing your entire Python installation, which is likely
to confuse other applications that may expect the encoding you originally configured Python to
use (typically ASCII). Thisreciperebindssys. st dout to be a stream that expects Unicode
input and outputs it in 1SO8859-1 (also known as Latin-1). This doesn't change the encoding of
any previous referencesto sys. st dout , asillustrated here. First, we keep a reference to the
original, ASClI-encoded st dout :

>>> ol d = sys. stdout

Then we create a Unicode string that wouldn't go through st dout normally:

>>> char = u"\N{GREEK CAPI TAL LETTER GAMVA}" # a character
that doesn't fit in ASClI
>>> print char
Traceback (nmost recent call last):
File "<stdin>", line 1, in ?
Uni codeError: ASCI|I encoding error: ordinal not in range(128)

Now wewrap st dout inthe codecs stream writer for UTF-8, a much richer encoding, rebind
sys. st dout toit, and try again:

>>> sys. stdout = codecs. | ookup('utf-8")[-1](sys.stdout)
>>> print char

3.19.4 See Also

Documentation for the codecs and si t e modulesand set def aul t encodi ng insys in
the Library Reference.

3.20 Dispatching Based on Pattern Matches
Credit: Michael Robin

3.20.1 Problem

Y ou need to use regular expressions to match strings and then automatically call functions with
arguments based on the matched strings.

3.20.2 Solution

Once again, a class offers a good way to package together some state and some behavior:
i nport re

cl ass Dispatcher:

def _dispatch(self, cndList, str):
Find a match for str in the cmdList and call the
associ at ed
met hod with argunments that are the matching
gr ouped subexpressions
fromthe regex.

for cooment, pattern, command in cndList:
found = pattern. match(str) # or,
use .search()
if found: return conmmand(self,
*found. groups())

def runCommand(sel f, cnd):
sel f. _di spat ch(Commands, cnd)

exanpl e met hods

def cndl(self, num nane):
print "The nunber for % is %" % (nanme, int(num)
return 42

def cnd2(self, partnun:
print "Wdget serial # %" %int(partnum

Commands = |
[' Nunber-to-nane correspondence',
r' X (?P<nunm\d), (?P<nane>.*)$',
Di spat cher. cndl],
["Extract Wdget part-nunber',
r' Wdget (?P<partnuns.*)$',
Di spat cher.cnd?2],

Prepare the Conmands |ist for execution by conpiling each
re for cnmd in Commands:

try:
cnd[1] = re.conpile(cnd[1])
except:
print "Bad pattern for %: %" % (cnd[O0], cnd[1])

3.20.3 Discussion

In Python, it's generally best to compile regular expressionsinto r € objects. The r @ module does
some caching of string-form regular expressions that you use directly, but it's still better to make
sure that regular expressions are not needlessly recompiled. The string form is still available as

r. pattern forany compiledr e object r , anyway, should you need it (e.g., for
debugging/logging purposes).

Y ou can use regular expressions to match strings (or search into strings) and automatically call
appropriate functions, passing as arguments substrings of the matched string that correspond to the
groups of the regular expression.

This recipe exemplifies one approach to this solution. The ideais that:

r = self.runCommand(" X 36, M ke")

automatically calls:

cndl(sel f, "36", "M ke")

and binds the variable r to 42, the result of cnd 1.

This specific example might be best approached with direct string manipulation (testing st r [0] ,
thenusing the spl i t method of strings), but regular expressions et you handle much more

complicated cases with nearly equal ease.

An idiomatic Pythonic approach is to put each pattern to be compiled directly in the structure to be
created at load-time. For example:

Crds = ((re.conpile(r"?pa(t)t1s$"), fn), ...)

Thisissimple, if you don't require any specia processing, but | think it's alittle prettier to avoid
including code in data-structure initializers.

3.20.4 See Also

Documentation for the r e module and regular-expression objects in the Library Reference.

3.21 Evaluating Code Inside Strings
Credit: Joonas Paalasmaa
3.21.1 Problem

You have a string that contains embedded Python expressions, and you need to copy the string
while evaluating those expressions.

3.21.2 Solution

Thisrecipe'strick is to use the %string-formatting operator's named-values variant. That variant

normally takes a dictionary as the righthand operand, but in fact it can take any mapping, so we
just prepare arather special mapping for the recipe's purpose:

class Eval:
""" mappi ng that does expression eval uation when asked
to fetch an item"""
def _ _getitem_ _(self, key):
return eval (key)

Now we can perform feats such as:

>>> nunmber = 20

>>> text = "python"

>>> print "% text.capitalize())s % nunber/9.0).1f rules!" %
Eval ()

Pyt hon 2.2 rul es!

3.21.3 Discussion

This recipe can be seen as a templating task, akin to Recipe 3.22 and Recipe 3.23, but it is
substantially simpler, because it needs to handle only embedded expressions, not statements.

However, because the solution is so much simpler and faster than the general templating ones, it's
better to think of this as a totally separate task.

In Python, the %operator of stringsis typically used for normal formatting. The valuesto be
interpolated in the string are the items of the righthand side, which is either a tuple, for unnamed-
value formatting, or a mapping, for named-value formatting (where format items have forms such
as %¢ nane) s). The mapping is often obtained by functions such as the built-invar s, which
returns a dictionary that represents the current status of local variables.

Named-value formatting is actually much more flexible. For each name string in the format, which
is enclosed in parentheses after the %character that denotes the start of a format item in the format
string, Python calls the get-item method of the righthand-side mapping (e.g., the special method
getitem _,whentherighthand sideis an instance object). That method can perform the
necessary computation. The recipe shows off this possibility by smply delegating item-fetching to
the built-in function eval , which evaluates the name as an expression. This can be very useful in
practice, but as presented in the solution, it's limited to accessing global variables of the modulein
whichthe Eval classisitself defined. That makes it unwieldy for most practical purposes.

This problem is easily fixed, of course, because the sys. _get f r ame function (in Python 2.1

and later) makes it easy to learn about your caller's local and global variables. So, you can tailor
the evaluation environment:

i mport sys
cl ass Eval x:
def _ init_ (self, | ocal s=None, gl obal s=None):
if locals is None: self.locals =
sys. _getfrane(l).f _locals
el se: self.locals = locals
if globals is None: self.globals =
sys. _getfranme(l).f_gl obals
el se: self.globals = globals
def _ getitem (self, nane):
return eval (name, self.globals, self.locals)

See Recipe 14.9for away to get the same functionality in other, older versions of Python.
Any instance of the Eval X class can now be used for expression evaluation, either with

explicitly specified namespaces or, by default, with the local and global namespaces of the
function that instantiated it.

3.21.4 See Also

Recipe 3.22, Recipe 3.23, and Recipe 14.9.

3.22 Replacing Python Code with the Results of Executing
That Code

Credit: Joel Gould

3.22.1 Problem

Y ou have atemplate string that may include embedded Python code, and you need a copy of the
template in which any embedded Python code is replaced by the results of executing that code.

3.22.2 Solution

This recipe exploits the ability of the standard functionr e. sub to call a user-supplied

replacement function for each match and to substitute the matched substring with the replacement
function's resullt:

i nport re
i nport sys
i nport string

def runPyt honCode(data, global dict={}, |ocal _dict=None,
errorLogger =None) :

""" Main entry point to the replcode nodule """

Encapsul ate eval uation state and error |logging into an
i nst ance:

eval _state = Eval State(gl obal dict, local _dict,
error Logger)

Execute statenents enclosed in [!! .. !l]; statenments
may be nested by

enclosing themin [1I'Y .. I't1], [2It .. I12], and so
on:

data =

re.sub(r' (?s)\[(?P<nunp\d?)!!(?P<code>. +?)!! (?P=num\]",
eval state.exec_python, data)

Eval uate expressions enclosed in [?? .. ?7]:
data = re.sub(r' (?s)\[\?2\?(?P<code>. +?2)\ 2\ ?2\] ",
eval state.eval python, data)

return data

cl ass Eval St at e:
""" Encapsul ate eval uation state, expose nethods to
execut e/ eval uate """

def _ _init_ _(self, global _dict, l|ocal_dict,
errorLogger):
sel f. gl obal _dict = gl obal _dict
self.local _dict = local _dict
i f errorlLogger:

sel f.errorLogger = errorlLogger
el se:
Default error "logging" wites error nessages
to sys. stdout
sel f.errorLogger = sys.stdout.wite

Prime the global dictionary with a few needed
entries:

sel f.global _dict[' OQUTPUT'] = OUTPUT

sel f.global _dict['sys'] = sys

self.global _dict['string'] = string

self.global _dict['"__builtins_ '] = _ _builtins_ _

def exec_python(self, result):
Called fromthe 1st re.sub in runPythonCode for
each bl ock of
enbedded statenments. Method's result is OUTPUT_TEXT
(see al so the OUTPUT
function later in the recipe).

Repl ace tabs with four spaces; renove first line's
indent fromall I|ines

code = result.group(' code")

code = string.replace(code, "\t', ' ")

result2 = re.search(r' (?P<prefix>\n[]*)][#a-zA- Z0-
9''"]', code)

if not result?2:

rai se ParsingError, 'Invalid tenplate code

expression: ' + code

code = string.replace(code, result2. group(' prefix"),
"\n')

code = code + '\n'

try:
self.global _dict["OQUTPUT _TEXT'] ="'
if self.local _dict:
exec code in self.global _dict,
sel f.l ocal _dict
el se:
exec code in self.global _dict
return self.global _dict["OQUTPUT_TEXT']

except:
sel f.errorLogger('\n---- Error parsing
statements: ----\n")
sel f. errorLogger (code)
self.errorLogger('\nN------------------------ \n")
raise

def eval _python(self, result):
Called fromthe 2nd re.sub in runPythonCode for
each enbedded
expression. The nmethod's result is the expr's val ue
as a string. """

code
code

result.group(' code')
string.replace(code, "\t', ' ")

try:
if self.local _dict:
result = eval (code, self.global dict,
sel f.local _dict)
el se:
result = eval (code, self.global _dict)
return str(result)

except :
self.errorLogger('\n---- Error parsing
expression: ----\n")
sel f. errorLogger (code)
self.errorLogger("\n------------------------ \n")
rai se

def OUTPUT(dat a):

""" May be called from enbedded statenments: eval uates
argunent 'data' as

a tenplate string, appends the result to the gl obal
vari abl e OQUTPUT_TEXT """

a trick that's equivalent to sys. getfrane in Python
2.0 and | ater but

al so works on ol der versions of Python...:

try: raise ZeroDivisionError

except ZerobDi visionError:

| ocal _dict =
sys.exc_info()[2].tb frane.f _back.f | ocals
gl obal dict =

sys.exc_info()[2].tb_frame.f_back.f_globals

gl obal _dict[' OQUTPUT_TEXT'] = gl obal _dict[' OUTPUT_TEXT"]
+ runPyt honCode(
data, global dict, |ocal _dict)

3.22.3 Discussion

This recipe was originally designed for dynamically creating HTML. It takes atemplate, which is
a string that may include embedded Python statements and expressions, and returns another string,
in which any embedded Python is replaced with the results of executing that code. | originally
designed this code to build my home page. Since then, | have used the same code for a CGI-based
web site and for a documentation-generation program.

Templating, which iswhat this recipe does, is a very popular task in Python, for which you can
find any number of existing Pythonic solutions. Many templating approaches aim specifically at
the task of generating HTML (or, occasionally, other forms of structured text). Others, such as this
recipe, are less specialized, and thus can be simultaneously wider in applicability and ssimpler in
structure. However, they do not offer HTML-specific conveniences. See Recipe 3.23 for another
small-scale approach to templating with general goals that are close to this one's but are executed
in arather different style.

Usually, the input template string is taken directly from afile, and the output expanded string is
written to another file. When using CGl, the output string can be written directly to

sys. st dout , which becomes the HTML displayed in the user's browser when it visits the
script.

By passing in adictionary, you control the globa namespace in which the embedded Python code
isrun. If you want to share variables with the embedded Python code, insert the names and values
of those variables into the global dictionary before calling r unPyt honCode. When an
uncaught exception is raised in the embedded code, a dump of the code being evaluated is first
written to st dout (or throughthe er r or Logger function argument, if specified) before the
exception is propagated to the routine that called r unPyt honCode.

This recipe handles two different types of embedded code blocks in template strings. Code inside

[?? ?7] isevaluated. Such code should be an expression and should return a string, which will
be used to replace the embedded Python code. Codeinside [!'! !!] isexecuted. That codeis a
suite of statements, and it is not expected to return anything. However, you can call OCUTPUT

from inside embedded code, to specify text that should replace the executed Python code. This
makes it possible, for example, to use loops to generate multiple blocks of output text.

Here is an interactive-interpreter example of using this replcode.py module:

>>> jnport replcode
>>> jnput _text = """
Normal |ine.
Expression [?? 1+2 ?7].
G obal variable [?? variable ?7?].
[!]
def foo(x):
return x+x !1].
Function [?? foo('abc') ?7].
[!]
OUTPUT(' Nested call [?? variable ??]') !I].
[!]
OQUTPUT(' ' ' Doubl e nested [1!!
- nmyVari able = '456" 111][??
myVariable ?2?]'"") I!].
>>> global _dict = { 'variable : '123" }
>>> out put _text = replcode. runPyt honCode(i nput _text,
gl obal _dict)
>>> print output text

Nor mal |i ne.
Expressi on 3.

G obal variable 123.
Functi on abcabc.

Nested call 123.
Doubl e nested 456.

3.22.4 See Also

Recipe 3.23.

3.23 Module: Yet Another Python Templating Utility
(YAPTU)

Credit: Alex Martelli

Templating is the process of defining a block of text that contains embedded variables, code, and
other markup. This text block is then automatically processed to yield another text block, in which
the variables and code have been evaluated and the results have been substituted into the text.
Most dynamic web sites are generated with the help of templating mechanisms.

Example 3-1 contains Y et Another Python Templating Utility (YAPTU), asmall but complete
Python module for this purpose. YAPTU uses the sub method of regular expressions to evaluate
embedded Python expressions but handles nested statements via recursion and line-oriented
statement markers. YAPTU is suitable for processing almost any kind of structured-text input,
sinceiit lets client code specify which regular expressions denote embedded Python expressions
and/or statements. Such regular expressions can then be selected to avoid conflict with whatever
syntax is needed by the specific kind of structured text that is being processed (HTML, a
programming language, RTF, TeX, etc.) See Recipe 3.22 for another approach, in a very different
Python style, with very similar design goals.

YAPTU uses acompiled r e object, if specified, to identify expressions, calling sub on each line
of the input. For each mat ch that results, YAPTU evaluates mat ch. gr oup(1) asaPython
expression and substitutes in place the result, transformed into a string. Y ou can also pass a
dictionary to YAPTU to use as the global namespace for the evaluation. Many such
nonoverlapping matches per line are possible, but YAPTU does not rescan the resulting text for
further embedded expressions or statements.

YAPTU aso supports embedded Python statements. This line-based feature is primarily intended
to beused withi f /el i f /el se, for, and whi | e statements. YAPTU recognizes statement-
related lines through three more r e objects that you pass it: one each for statement, continuation,
and finish lines. Each of these arguments can be None if no such statements are to be embedded.
Note that YAPTU relies on explicit block-end marks rather than indentation (leading whitespace)
to determine statement nesting. This is because some structured-text languages that you might
want to process with Y APTU have their own interpretations of the meaning of leading whitespace.
The statement and continuation markers are followed by the corresponding statement lines (i.e.,
beginning statement and continuation clause, respectively, where the latter normally makes sense
only if itsanel se or el i f). Statements can nest without limits, and normal Pythonic
indentation requirements do not apply.

If you embed a statement that does not end with a colon (e.g., an assignment statement), a Python
comment must terminate its line. Conversely, such comments are not alowed on the kind of
statements that you may want to embed most often (e.g., i f, el se,f or,and whi |). The
lines of such statements must terminate with their :, optionally followed by whitespace. This line-
termination peculiarity is due to a dlightly tricky technique used in YAPTU's implementation,
whereby embedded statements (with their continuations) are processed by exec, with recursive
calsto YAPTU'scopybl ock function substituted in place of the blocks of template text they
contain. This approach takes advantage of the fact that a single, controlled, simple statement can
be placed on the same line as the controlling statement, right after the colon, avoiding any
whitespace issues. As aready explained, YAPTU does not rely on whitespace to discern
embedded-statement structure; rather, it relies on explicit markers for statement start, statement
continuation, and statement end.

Example 3-1. Yet Another Python Templating Utility

"Yet Another Python Tenplating Utility, Version 1.3"

i mport sys

utility stuff to avoid tests in the mainline code
class _nevermatch:
"Pol ynmorphic with a regex that never matches"

def match(self, line): return None

def sub(self, repl, line): return line
_never = _nevermatch() # one reusable instance of it
suffices

def identity(string, why):

"A do-not hi ng-speci al -to-the-input, just-return-it
function”

return string

def nohandl e(string, kind):
"A do-nothing handler that just reraises the exception"
sys.stderr.wite("*** Exception raised in %
{%}\n"% ki nd, string))
rai se

and now, the real thing:
cl ass copier:
"Smart-copier (YAPTU) cl ass”

def copybl ock(self, i=0, |ast=None):
"Mai n copy nethod: process lines [i,last) of block"

def repl (match, self=self):

"return the eval of a found expression, for
repl acenent "

uncoment for debug: print '!!!l replacing',
mat ch. group(1)

expr = self.preproc(match.group(1l), 'eval')

try: return str(eval (expr, self.globals,
sel f.local s))

except: return str(self.handl e(expr, "eval'))

bl ock = self.locals[' _bl"]
if last is None: last = |en(bl ock)
while i<last:

line = block[i]

match = self.restat. match(line)

i f match: # a statenent starts "here" (at |ine
bl ock[i])
i is the last line NOT to process
stat = match.string[match.end(0):].strip()
j =i+l # Look for '"finish" from here

onwar ds

nest = 1 # Count nesting |l evels of
statenents
whil e j<last:
line = bl ock[j]
First look for nested statenments or
"finish' lines
if self.restend. match(line): # found
a statenent-end
nest = nest - 1 # Update
(decrease) nesting
i f nest==0: break #] is first
line NOT to process

elif self.restat. mtch(line): # found
a nested statenent
nest = nest + 1 # Updat e
(i ncrease) nesting
elif nest==1: # Look for continuation

at this nesting
match = self.recont. mtch(line)
if match: # found a
conti nued st at enment
nestat =
mat ch. string[match. end(0):].strip()
key "trick": cunul ative
recursive copybl ock call
stat = '% _ch(%, %)\ n%' %
(stat,i+1,,nestat)
i = # 1 is the last line NOT
to process
j =1
stat = self.preproc(stat, 'exec')
second half of key "trick": do the
recursive copybl ock cal
stat = "% _ch(%,%)' % (stat, i+1, j)
uncomrent for debug: print "-> Executing:
{"+stat+"}"
try: exec stat in self.globals, self.locals
except: return str(self.handl e(expr, 'exec'))

i =j +1
el se: # normal line, just copy with
substitutions
sel f.oufun(sel f.regex.sub(repl, line))
=i +1
def _ _init_ _(self, regex=_never, globals={},

restat=_never, restend=_never, recont=_never,
preproc=identity, handl e=nohandl e,
ouf un=sys. stdout.wite):
“Initialize self's attributes”
def self_set(**kwds): self.__dict_ _.update(kwds)
sel f_set(local s={' _cb': self.copyblock}, **vars())

def copy(self, block=None, inf=sys.stdin):

"Entry point: copy-with-processing a file, or a
bl ock of Iines”

if block is None: block = inf.readlines()

self.locals['_bl'] = block

sel f. copybl ock()

if _ _name_ _=="_ _main_ _':

"Test: copy a block of lines to stdout, with full
processi ng"”

i mport re

rex=re.conpile(' @["@+) @)
rbe=re.conpile('\+")
ren=re.conpile('-")
rco=re.conpile('=")
x=23 # just a variable to try substitution
cop = copier(rex, globals(), rbe, ren, rco) #
Instantiate smart copier
lines_block = """
Afirst, plainline -- it just gets copied.
A second line, with @@ substitutions.
+ x+=1 # Nonbl ock statenents (nonblock ones ONLY!) nust
end with conments
Now t he substitutions are @@
+ if x>23:
After all, @@is rather |arge!
= el se:
After all, @@is rather small!
+ for i in range(3):

Also, @@tines @GX@is @*x@

One last, plain line at the end.""".splitlines(1)

print "*** jnput:"
print "".join(lines_block)

print "*** output:"
cop. copy(lines_bl ock)

Not counting comments, whitespace, and docstrings, YAPTU isjust 50 lines of source code, but
rather alot happens within that code. An instance of the auxiliary class_never mat ch is used

for al default placeholder values for optional regular-expression arguments. This instance is
polymorphic with compiled r e objects for the two methods of the latter that YAPTU uses (sub

and mat ch), which simplifies the main body of code and saves quite a few tests. Thisis agood

general idiom to keep in mind for generality and concise code (and often speed as well). See
Recipe 5.24 for a more systematic and complete development of this idiom into the full-fledged
Null Object design pattern.

An instance of the copi er class has a certain amount of state, in addition to the relevant
compiled r e objects (or _never mat ch instance) and the output function to use (normally a
wr i t e bound method for some file or file-like object). This state is held in two dictionary
attributes: sel f . gl obal s, the dictionary that was originally passed in for expression
substitution; and sel f . | ocal s, another dictionary that is used as the local namespace for all

of YAPTU'sexec and eval calls. Notethat while sel f. gl obal s isavailableto YAPTU,
Y APTU does not change anything in it, as that dictionary is owned by YAPTU's cdller.

There are two interna-use-only itemsinsel f . | ocal s. Thevalueatkey ' bl ' indicatesthe
block of template text being copied (a sequence of lines, each ending with \ n), while the value at
key' cb',sel f.copybl ock, isthe bound method that performs the copying. Holding
these two pieces of state asitemsinsel f . | ocal s iskey to YAPTU'sworkings, since

sel f. | ocal s iswhat is guaranteed to be available to the code that YAPTU processes with
exec. copybl ock must be recursive, as this is the simplest way to ensure there are no nesting
limitations. Thus, it isimportant to ensure that nested recursive calls are dways able to further
recurse, if needed, through their exec statements. Accessto bl issimilarly necessary, since
copybl ock takes as arguments only the line indexesinside bl that a given recursive cdl is

processing (in the usual Python form, with the lower bound included and the upper bound
excluded).

copybl ock isthe heart of YAPTU. The r epl nested function is the one that is passed to the
sub method of compiled r e objects to get the text to be used for each expression substitution.
repl useseval on the expression string and st r on the result, to ensure that the returned
value is dso a string.

Most of copybl ock isawhi | e loop that examines each line of text. When aline doesn't
match a statement-start marker, the loop performs substitutions and then calls the output function.
When aline does match a statement-start marker, the loop enters a smaller nested loop, looking
for statement-continuation and statement-end markers (with proper accounting for nesting levels,
of course). The nested loop builds up, in the local variable st at , a string containing the original
statement and its continuations at the same nesting level (if any) followed by arecursive cal to
_cb(i,]) after each clause-delimiting colon, with newlines as separators between any
continuations. Finaly, st at is passed to the exec statement, the nested loop terminates, and the
main loop resumes from a position immediately following the embedded statement just processed.
Thanks to perfectly normal recursive-invocation mechanisms, although the exec statement
inevitably invokes copybl ock recursively, this does not disturb the loop's state (which is based
on local variables unoriginally named i and | because they are loop counters and indexes on the
_ Dbl list).

YAPTU supports optional preprocessing for al expressions and statements by passing an optiona
callable pr epr oc when creating the copier. The default, however, is no preprocessing.

Exceptions may be handled by passing an optional callable handl e. The default behavior is for
YAPTU to reraise the exception, which terminates Y APTU's processing and propagates the
exception outward to YAPTU's caller. You should also notethatthe = i nit_ _ method
avoids the usual block of boilerplate sel f . spam = spamstatements that you typicaly seein
__init_ . Ingtead, it uses a"self-set" idiom to achieve exactly the same result without
repetitious, verbose, and error-prone boilerplate code.

3.23.1 See Also

Recipe 3.22, Recipe 5.24, and Recipe 17.8.

3.24 Module: Roman Numerals
Credit; Paul M. Winkler

There are many agorithms for creating Roman numerals. Example 3-2 presents the easiest-to-read
algorithm that I've been able to find for this purpose: it establishes amapping between integer
values and Roman numerals, then counts how many of each value can fit into the input integer.
The code uses two tuples for the mapping, instead of a dictionary, because it needs to go through
them sequentially and doesn't care about random access. Thus, a dictionary would be more
hindrance than help.

Example 3-2. Roman numerals

def int_to_roman(input):
""" Convert an integer to a Roman nuneral. """
if not isinstance(input, type(l)):
rai se TypeError, "expected integer, got %" %
type(i nput)
if not O < input < 4000:
rai se Val uekrror, "Argunent mnmust be between 1 and
3999"
ints = (1000, 900, 500, 400, 100, 90, 50, 40, 10, 9,
5 4, 1)

nums = ("M, 'CM, 'D, 'CD,'C,
"XC UL, UXL X TIX VLTIV)
result =[]
for i in range(len(ints)):
count = int(input / ints[i])
result.append(nuns[i] * count)
input -=ints[i] * count
return "' .join(result)

def roman_to_int(input):
""" Convert a Roman nuneral to an integer.

if not isinstance(input, type("")):
rai se TypeError, "expected string, got %" %
type(i nput)
i nput = input.upper()

nuns = {'M:1000, 'D :500, 'C :100, 'L':50, "X :10,
V5, 11}
sum = 0
for i in range(len(input)):
try:

value = nuns[input[i]]
|f the next place holds a |arger nunmber, this
val ue i s negative
if i+l < len(input) and nuns[input[i+1]] > val ue:
sum - = val ue
el se: sum += val ue
except KeyError:

rai se Val ueError,
nuneral : %' % i nput
easiest test for validity...

input is not a valid Ronman

if int_to_roman(sum == input:
return sum
el se:
rai se ValueError, '"input is not a valid Roman

numeral : %' % i nput
Here are some usage examples of converting integers to Roman numerals and vice versa:

>>> print int_to_roman(2002)

MM |

>>> print int_to_roman(1999)
MCMXCI X

>>> roman_to_int (' XLIT")

42

>>> roman_to_int (' VWIV')
Traceback (nost recent call last):

Val ueError: input is not a valid Roman nuneral : VWIV

The rules for Roman numerals are as follows:

1. 1=1,V=5X=10,L =50, C =100, D =500, M =1000.

2. Zeroisnot represented.

3. Numbers greater than 3,999 are not represented.

4. Roman numerals are repeated to add value: |1l isequivalentto 1 +1 +1 =3,

5. Only powers of 10 may be repeated in thisway. Thus, VV isinvalid; 5 + 5 would instead
be expressed as X.

6. No more than three repetitions of a numeral can be used. Five repetitions can be

represented with a single, larger numeral; to represent four, use the next larger numeral,
but precede it with a numeral to subtract from it. Thus, Il11 isinvalid and would instead be
written as IV (one less than five). Likewise, XC represents 90 (10 less than 100), and XL
represents 40 (10 less than 50).

7. A numeral used for subtraction in this way must be the largest power of 10 that is less
than the numeral it precedes. Thus, XC isvalid but IC isinvalid.

Inmy first attempt at i nt _t o_r onan, my approach was simply to follow, as closely as | could,
the plain English description of these rules. | rejected that version, because it ended up being

longer and more complicated than the version given here. It's actually easier to forcibly assign
valuesto IV and its friends than it is to implement the rule that determines the values.

A different approach to a Roman-numeral-to-integer converter can be found in Mark Pilgrim's
Dive Into Python (http://diveintopython.org/roman_divein.html), an online book containing lots of
useful information, all free for use under the Python license. Mark relies on aregular expression to
validate the input. Thisis a fine idea that makes his function nice and short, but it puts alot of the
logic in the regular expression, which may be easier to misunderstand than the dlightly longer
function in this recipe.

Here is another approach, based on Mark's, but with an additional field in each tuple to enforce the
maximum number of repetitions alowed for a numerd. It relies on the ordering of the tuple to
enforce the correct ordering of numerals, so it doesn't need a regular expression (or any double-
checking inthe end through i nt _t 0o_r orman, asin Example 3-2):

def roman_to_int(input):
try: input = input.upper()
except AttributeError:
rai se TypeError, 'expected string, got %' %
type(i nput)
map of (nuneral, value, maxcount) tuples
roman_nuneral _map = (('M, 1000, 3), ('C™M, 900, 1),
('D, 500, 1), ('CD, 400, 1),
('Cc, 100, 3), ('XC, 90, 1),
('L, 50, 1), ('"XL', 40, 1),
("X, 10, 3), ('IX, 9, 1),

(v, 5 1), ("'Iv, 4, 1, (1", 1, 3))

result, index =0, O

for nunmeral, value, maxcount in roman_nuneral _map:
count = 0
whil e input[index: index+l en(nunmeral)] == nuneral:

count += 1 # how many of this nunmeral we have
if count > maxcount:
rai se Val ueError, \
"input is not a valid roman nuneral : %'
% i nput
result += val ue
i ndex += |l en(nuneral)
if index < len(input): # There are characters
unaccounted for
rai se ValueError, "input is not a valid roman
nuneral : %' % nput
return result

However, this version is not quite rigid enough in diagnosing maformed Roman numerals. For
example, this version accepts XCXL, trandating it into 130, while the version in Example 3-2
properly rejectsit. The canonical way to represent 130 as a Roman numeral is CXXX, but it's not
easy to capture the fact that XCXL isinvalid (indeed, although it should be forbidden, none of the
rules appears to forbid it). The version in Example 3-2, by checking that the string it has just
parsed is indeed the canonical (and thus, the only allowed) representation for the resulting integer,
gains a substantial measure of solidity in rejecting plausible but noncanonical strings.

This leads to a general idea that you should keep in mind whenever you are coding bidirectional
transformation functions between two formats, where the functions are inverses of each other.
When one of the directions has a more clearly specified transformation algorithm, you can verify
the function that implements the more loosely specified transformation by checking that the ather
function does indeed result in the original input value when applied to the candidate result. If only
the canonical form is to be accepted, this pattern lets you easily reject plausible but noncanonical
inputs that it might otherwise be difficult to detect.

3.24.1 See Also

Mark Pilgrim's Dive Into Python (http://diveintopython.org).

Section 4.1.

Chapter 4. Files

I ntroduction

Section 4.2.

Reading from a File

Section 4.3.

Writing to a File

Section 4.4.

Searching and Replacing Text in aFile

Section 4.5.

Reading a Particular Line from a File

Section 4.6.

Retrieving a Line at Random from a File of Unknown Size

Section 4.7.

Counting Linesin aFile

Section 4.8.

Processing Every Word in aFile

Section 4.9.

Reading a Text File by Paragraphs

Section 4.10.

Reading Lines with Continuation Characters

Section 4.11.

Reading Data from ZIP Files

Section 4.12.

Reading INI Configuration Files

Section 4.13.

Sending Binary Data to Standard Output Under Windows

Section 4.14.

Using Random-A ccess | nput/Output

Section 4.15.

Updating a Random-Access File

Section 4.16.

Splitting a Path into All of Its Parts

Section 4.17.

Treating Pathnames as Objects

Section 4.18.

Creating Directories Including Necessary Parent Directories

Section 4.19.

Walking Directory Trees

Section 4.20.

Swapping One File Extension for Another Throughout a Directory Tree

Section 4.21.

Finding a File Given an Arbitrary Search Path

Section 4.22.

Finding a File on the Python Search Path

Section 4.23.

Dynamically Changing the Python Search Path

Section 4.24.

Computing Directory Sizesin a Cross-Platform Way

Section 4.25. File Locking Using a Cross-Platform AP

Section 4.26. Versioning Filenames

Section 4.27. Module: Versioned Backups

4.1 Introduction

Credit: Mark Lutz, author of Programming Python, co-author of Learning Python

Behold the file—one of the first things that any reasonably pragmatic programmer reaches for in a
programming language's toolbox. Because processing external filesis a very real, tangible task,
the quality of file-processing interfaces is a good way to assess the practicality of a programming
tool.

As the examples in this chapter attest, Python shines here too. In fact, filesin Python are supported
in avariety of layers: from the built-in open function's standard file object, to speciaized toolsin
standard library modules such as 0s, to third-party utilities available on the Web. All told,
Python's arsena of file tools provides severa powerful ways to accessfilesin your scripts.

4.1.1 File Basics

In Python, afile object is an instance of a built-in type. The built-in function open creates and
returns a file object. The first argument, a string, specifies the file's path (i.e., the filename
preceded by an optional directory path). The second argument to open, aso a string, specifies the
mode in which to open the file. For example:

i nput = open('data', 'r")
out put = open('/tnp/spam, 'wW)

open accepts afile path in which directories and files are separated by sash characters (/),
regardless of the proclivities of the underlying operating system. On systems that don't use sashes,
you can use a backslash character (\) instead, but there's no real reason to do so. Backdashes are
harder to fit nicely in string literals, since you have to double them up or use "raw" strings. If the
file path argument does not include the file's directory name, the file is assumed to reside in the
current working directory (which is a digjoint concept from the Python module search path).

For the mode argument, use ' r' to read the file in text mode; thisis the default value and is
commonly omitted, so that open is called with just one argument. Other common modes are
"rb' toreadthefilein binary mode, ' W to create and write to the file in text mode, and ' whb'
to create and write to the file in binary mode.

The distinction between text mode and binary mode is important on non-Unix-like platforms,
because of the line-termination characters used on these systems. When you open afile in binary
mode, Python knows that it doesn't need to worry about line-termination characters; it just moves
bytes between the file and in-memory strings without any kind of translation. When you open a
file in text mode on a non-Unix-like system, however, Python knows it must trand ate between the
"\'n' line-termination characters used in strings and whatever the current platform uses in the file
itself. All of your Python code can alwaysrely on' \ n' asthe line-termination character, as long
as you properly indicate text or binary mode when you open the file.

Once you have afile object, you perform all file I/O by calling methods of this object, as welll
discuss in a moment. When you're done with the file, you should finish by calling the cl ose
method on the object, to close the connection to the file:

i nput.close()

In short scripts, people often omit this step, as Python automatically closes the file when afile
object is reclaimed during garbage collection. However, it is good programming practice to close

your files, and it is especialy agood ideain larger programs. Notethat t ry/fi nal | y is
particularly well suited to ensuring that a file gets closed, even when the program terminates by
raising an uncaught exception.

To write to afile, usethe wr i t € method:
out put.wite(s)

where s isastring. Think of S asastring of charactersif out put is open for text-maode writing
and as a string of bytesif out put isopen for binary-mode writing. There are other writing-
related methods, such as f | ush, which sends any data that is being buffered, and
writelines,whichwritesalist of stringsin asingle call. However, none of these other

methods appear in the recipesin this chapter, as wr i t e is by far the most commonly used
method.

Reading from afile is more common than writing to a file, and there are more issues involved, so
file objects have more reading methods than writing ones. The r eadl i ne method reads and
returns the next line from a text file:

whil e 1:
line = input.readline()
if not line: break
process(line)

This was idiomatic Python, but it is no longer the best way to read lines from afile. Another
alternative isto use the r ead! i nes method, which reads the whole file and returns a list of
lines:

for line in input.readlines():
process(!line)

However, thisis useful only for files that fit comfortably in physical memory. If thefileis truly
huge, r eadl i nes canfail or at least dow things down quite drastically as virtual memory fills
up and the operating system has to start copying parts of physical memory to disk. Python 2.1
introduced the xr ead| i nes method, which worksjust like r eadl i nes inaf or loop but
consumes a bounded amount of memory regardless of the size of thefile:

for line in input.xreadlines():
process(|line)

Python 2.2 introduced the ideal solution, whereby you can loop on the file object itself, implicitly
getting aline at a time with the same memory and performance characteristics of xr eadl i nes:

for line in input:
process(!line)

Of course, you don't aways want to read afile line by line. Y ou may instead want to read some or
all of the bytes in the file, particularly if you've opened the file for binary-mode reading, where
lines are unlikely to be an applicable concept. In this case, you can usethe r ead method. When
called without arguments, r ead reads and returns al the remaining bytes from the file. When

r ead iscalled with an integer argument N, it reads and returns the next N bytes (or all the
remaining bytes, if less than N bytes remain). Other methods worth mentioning are seek and

t el |, which support random access to files. These are normally used with binary files made up
of fixed-length records.

4.1.2 Portability and Flexibility

On the surface, Python's file support is straightforward. However, there are two aspects of
Python's file support that | want to underscore up-front, before you peruse the code in this chapter:
script portability and interface flexibility.

Keep in mind that most file interfaces in Python are fully portable across platform boundaries. It
would be difficult to overstate the importance of this feature. A Python script that searches al files
in adirectory tree for a bit of text, for example, can be freely moved from platform to platform
without source-code changes: just copy the script's source file to the new target machine. | do it all
the time—so much so that | can happily stay out of operating-system wars. With Python's
portability, the underlying platform is largely irrelevant.

Also, it has always struck me that Python's file-processing interfaces are not restricted to real,

physical files. In fact, most file tools work with any kind of object that exposes the same interface
as ared file object. Thus, afile reader cares only about read methods, and afile writer cares only
about write methods. As long as the target object implements the expected protocol, al goes well.

For example, suppose you have written a general file-processing function such as the following,
intending to apply a passed-in function to each line in an input file:

def scanner(fil eobject, |inehandler):
for line in fileobject.readlines():
I i nehandl er (1i ne)

If you cade this function in a module file and drop that file in a directory listed on your Python

search path, you can use it anytime you need to scan atext file, now or in the future. To illustrate,
hereisaclient script that smply prints the first word of each line:

frommutils inmport scanner

def firstword(line): print line.split()[O]
file = open('data')

scanner (file, firstword)

So far, so good; we've just coded a reusable software component. But notice that there are no type
declarationsinthe scanner function, only an interface constraint—any object with a

readl i nes method will do. For instance, suppose you later want to provide canned test input
from a string object, instead of from areal, physical file. The standard St r i ngl O module, and
the equivalent but faster cSt r i ngl O, provide the appropriate wrapping and interface forgery:

fromcStringl O inport StringlO
frommyutils inport scanner

def firstword(line): print line.split()[O]
string = Stringl Q' one\ntwo xxx\nthree\n')
scanner (string, firstword)

Here, St r i ngl O objects are plug-and-play compatible with file objects, so scanner takesits
three lines of text from an in-memory string object, rather than a true external file. Y ou don't need

to change the scanner to make this work—just send it the right kind of object. For more generdlity,
use a class to implement the expected interface instead:

class MyStream
def readlines(self):
Grab and return text froma source here
return ["a\n', "b c d\n']

fromnmyutils inport scanner

def firstword(line): print line.split()[O0]
object = MyStreanm()

scanner (obj ect, firstword)

Thistime, as scanner attempts to read the filg, it really calls out to the r eadl i nes method
you've coded in your class. In practice, such a method might use other Python standard tools to
grab text from a variety of sources: an interactive user, a pop-up GUI input box, a shel ve
object, an SQL database, an XML or HTML page, a network socket, and so on. The point is that
scanner doesn't know or care what kind of object isimplementing the interface it expects, or
what that interface actually does.

Object-oriented programmers know this deliberate naiveté as polymorphism. The type of the
object being processed determines what an operation, such asthe r eadl i nes method cal in
scanner, actualy does. Everywhere in Python, object interfaces, rather than specific data types,
are the unit of coupling. The practica effect is that functions are often applicable to a much
broader range of problems than you might expect. This is especialy true if you have a background
in strongly typed languages such as C or C++. It isamost as if we get C++ templates for freein
Python. Code has an innate flexibility that is a byproduct of Python's dynamic typing.

Of course, code portability and flexibility run rampant in Python development and are not really
confined to file interfaces. Both are features of the language that are simply inherited by file-
processing scripts. Other Python benefits, such as its easy scriptability and code readability, are
also key assets when it comes time to change file-processing programs. But, rather than extolling
all of Python's virtues here, I'll smply defer to the wonderful example programs in this chapter
and this text at large for more details. Enjoy!

4.2 Reading from a File
Credit: Luther Blissett

4.2.1 Problem

Y ou want to read text or data from afile.

4.2.2 Solution

Here's the most convenient way to read all of the file's contents at once into one big string:

all _the text = open('thefile.txt').read() # all text
froma text file
all _the_data = open('abinfile', "rb').read() # all data

froma binary file

However, it is better to bind the file object to a variable so that you can call ¢l ose onit as soon
as you're done. For example, for atext file:

file_object = open('thefile.txt")
all _the text = file_object.read()
file_object.close()

There are four ways to read atext file's contents at once as alist of strings, one per line:

list_of _all_the_lines
list of _all _the lines
list of all _the |ines
list of all _the |ines

file_object.readlines()

file object.read().splitlines(l)
file object.read().splitlines()
file object.read().split('\n")

Thefirst two waysleavea' \ n' at the end of each line (i.e., in each string item in the result list),
while the other two ways remove al trailing' \ n' characters. The first of these four waysis the

fastest and most Pythonic. In Python 2.2 and later, there is afifth way that is equivalent to the first
one:

list_of all _the lines = 1list(file_object)
4.2.3 Discussion

Unless the file you're reading is truly huge, slurping it al into memory in one gulp is fastest and
generally most convenient for any further processing. The built-in function open creates a
Python file object. With that object, you call the r ead method to get all of the contents (whether
text or binary) as asingle large string. If the contents are text, you may choose to immediately
split that string into alist of lines, with the spl i t method or with the specialized
splitlines method. Since such splitting is a frequent need, you may also cal r eadl i nes
directly on thefile object, for dlightly faster and more convenient operation. In Python 2.2, you
can also pass the file object directly as the only argument to the built-intype | i st .

On Unix and Unix-like systems, such as Linux and BSD variants, there is no rea distinction
between text files and binary data files. On Windows and Macintosh systems, however, line
terminators in text files are encoded not with the standard ' \ n' separator, but with' \ r\ n' and

"\r', respectively. Python trand ates the line-termination charactersinto ' \ n' on your behalf,
but this means that you need to tell Python when you open a binary file, so that it won't perform
the trandation. Todo that, use ' r b' as the second argument to open. Thisisinnocuous even on
Unix-like platforms, and it's a good habit to distinguish binary files from text files even there,

although it's not mandatory in that case. Such a good habit will make your programs more directly
understandable, as well as letting you move them between platforms more easily.

Y ou can call methods such asr ead directly on the file object produced by the open function, as
shown in the first snippet of the solution. When you do this, as soon as the reading operation
finishes, you no longer have a reference to the file object. In practice, Python notices the lack of a
reference at once and immediately closes the file. However, it is better to bind a name to the result
of open, sothat you can call cl ose yoursdf explicitly when you are done with the file. This
ensures that the file stays open for as short atime as possible, even on platforms such as Jython
and hypothetical future versions of Python on which more advanced garbage-collection
mechanisms might delay the automatic closing that Python performs.

If you choose to read the file alittle at a time, rather than all at once, the idioms are different.
Here's how to read a binary file 100 bytes at atime, until you reach the end of thefile:

file object = open('abinfile', '"rb")
whil e 1:

chunk = file_object.read(100)

i f not chunk: break

do_sonet hi ng_wi t h(chunk)
file_object.close()

Passing an argument Nto the r ead method ensures that r ead will read only the next N bytes
(or fewer, if the file is closer to the end). r ead returns the empty string when it reaches the end of
thefile.

Reading atext file one line at atime is a frequent task. In Python 2.2 and later, thisis the easiest,
clearest, and fastest approach:

for line in open('thefile.txt"):
do_sonet hing_wi th(line)

Severd idioms were common in older versions of Python. The one idiom you can be sure will

work even on extremely old versions of Python, such as 1.5.2, is quite similar to the idiom for
reading a binary file a chunk at atime;

file_object = open('thefile.txt")
while 1:
line = file_object.readline()
iIf not line: break
do_sonething_w th(line)
file_object.close()

readl i ne, liker ead, returns the empty string when it reaches the end of the file. Note that

the end of the fileis easily distinguished from an empty line because the latter is returned by
readlineas'\n',whichisnotan empty string but rather a string with alength of 1.

4.2.4 See Also

Recipe 4.3; documentation for the open built-in function and file objects in the Library
Reference.

4.3 Writing to a File
Credit: Luther Blissett

4.3.1 Problem

Y ou want to write text or datato afile.

4.3.2 Solution

Here is the most convenient way to write one big string to afile:

open('thefile.txt', "W). wite(all _the text) # text to a
text file

open('abinfile', "wh').wite(all _the_data) # data to a
binary file

However, it is better to bind the file object to a variable so that you can call ¢l ose onit as soon
as you're done. For example, for atext file:

file_object = open('thefile.txt', "w)
file_object.wite(all _the_text)
file_object.close()

More often, the data you want to write is not in one big string but in alist (or other sequence) of
strings. In this case, you should usethe wr i t el i nes method (which, despite its name, is not
limited to lines and works just as well with binary data as with text files):

file object.witelines(list_of text_strings)
open('abinfile', "wb').witelines(list_of data_strings)

Cdlingwr i t el i nes ismuch faster than either joining the strings into one big string (e.g., with
"'.join)andthencalingwrite,orcalingwite repeatedly in aloop.

4.3.3 Discussion

To create afile object for writing, you must always pass a second argument to open—either
"W towritetextual data, or ' Wb' to write binary data. The same considerationsillustrated in
Recipe 4.2 aso apply here, except that calling cl ose explicitly is even more advisable when

you're writing to afile rather than reading from it. Only by closing the file can you be reasonably
sure that the data is actually on the disk and not in some temporary buffer in memory.

Writing a file alittle a atime is more common and less of a problem than reading a file alittle at
atime. Youcanjustcal wri t e andlor wri t el i nes repeatedly, as each string or sequence of

strings to write becomes ready. Each write operation appends data at the end of the file, after all
the previously written data. When you're done, call the ¢l ose method on the file object. If you
have all the data available at once, asinglewr i t el i nes cal isfaster and simpler. However, if
the data becomes available a little at atime, it's at least aseasy and fast to call wr i t e as it comes
as it would be to build up atemporary list of pieces (e.g., with append) to be able to write it all

at onceintheend withwr i t el i nes. Reading and writing are quite different from each other,
with respect to the performance implications of operating in bulk versus operating alittle at atime.

4.3.4 See Also

Recipe 4.2; documentation for the open built-in function and file objects in the Library
Reference.

4.4 Searching and Replacing Text in a File
Credit: Jeff Bauer

4.4.1 Problem

Y ou need to change one string into another throughout a file.

4.4.2 Solution

String substitution is most simply performed by the r epl ace method of string objects. The

work hereis to support reading from the specified file (or standard input) and writing to the
specified file (or standard output):

#!/usr/ bin/env python
i mport o0s, sSys

nargs = | en(sys. argv)

if not 3 <= nargs <= 5:
print "usage: % search_text replace_text [infile
[outfile]]"” %\
0s. pat h. basenane(sys. argv[0])
el se:
st ext

sys. argv][1]
rtext sys. argv| 2]
i nput sys.stdin
out put = sys. st dout
if nargs > 3:
i nput = open(sys.argv[3])
if nargs > 4:
out put = open(sys.argv[4], 'wW)
for s in input.xreadlines():
output.wite(s.replace(stext, rtext))
out put.close()
i nput.close()

4.4.3 Discussion

Thisrecipeisrealy simple, but that's what beautiful about it—why do complicated stuff when
simple stuff suffices? The recipe is a simple main script, as indicated by the leading "shebang"” line.
The script looks at its arguments to determine the search text, the replacement text, the input file
(defaulting to standard input), and the output file (defaulting to standard output). Then, it loops
over each line of the input file, writing to the output file a copy of the line with the substitution
performed on it. That's all! For accuracy, it closes both files at the end.

Aslong as it fits comfortably in memory in two copies (one before and one after the replacement,
since strings are immutable), we could, with some speed gain, operate on the whole input file's
contents at once instead of looping. With today's PCs typically coming with 256 MB of memory,
handling files of up to about 100 MB should not be a problem. It suffices to replace the f or loop
with one single statement:

output.wite(input.read().replace(stext, rtext))
Asyou can see, that's even simpler than the loop used in the recipe.

If you're stuck with an older version of Python, such as 1.5.2, you may still be able to use this
recipe. Change the i nport statement to:

i mport o0s, sys, string
and change the last two lines of the recipe into:

for s in input.readlines():
output.wite(string.replace(s, stext, rtext))

The xr eadl i nes method used in the recipe was introduced with Python 2.1. It takes
precautions not to read al of the file into memory at once, while r eadl i nes must do so, and
thus may have problems with truly huge files.

In Python 2.2, the f or loop can aso be written more directly as:

for s in input:
output.wite(s.replace(stext, rtext))

This offers the fastest and simplest approach.

4.4.4 See Also

Documentation for the open built-in function and file objects in the Library Reference.

4.5 Reading a Particular Line from a File
Credit: Luther Blissett

4.5.1 Problem

Y ou want to extract asingle line from afile.

4.5.2 Solution

The standard | i necache module makes this a snap:

i mport |inecache
theline = linecache.getline(thefilepath, desired_|line_nunber)

4.5.3 Discussion

The standard | i necache module is usualy the optimal Python solution for this task,
particularly if you have to do this repeatedly for several of afile'slines, asit caches the
information it needs to avoid uselessly repeating work. Just remember to use the modul€'s

cl ear cache function to free up the memory used for the cache, if you won't be getting any
more lines from the cache for awhile but your program keeps running. Y ou can also use
checkcache if the file may have changed on disk and you require the updated version.

| i necache reads and caches all of the text file whose name you passto it, so if it'savery large
file and you need only one of itslines, | i necache may be doing more work than is strictly

necessary. Should this happen to be a bottleneck for your program, you may get some speed-up by
coding an explicit loop, encapsulated within a function. Here's how to do thisin Python 2.2:

def getline(thefilepath, desired_line_nunber):
if desired line _nunber < 1. return "'
current _line_nunber = 0
for line in open(thefilepath):
current _|ine_nunmber += 1
if current line number == desired |ine_nunber
return line
return

It's not much worse in Python 2.1—you just need to change the f or statement into this dlightly
slower and less concise form:

for line in open(thefilepath).xreadlines():

Python 2.0 and earlier had no such facilities for speedy reading of huge text files, line by line,
consuming bounded amounts of memory. Should you be stuck with one of these older versions of
Python, | i necache will probably be the preferable solution under most circumstances.

4.5.4 See Also

Documentation for the | i necache modulein the Library Reference; Perl Cookbook Recipe
8.8.

4.6 Retrieving a Line at Random from a File of Unknown
Size

Credit: Richard Papworth
4.6.1 Problem

Y ou have afile of unknown (but potentially very large) size, and you need to select one line at
random from it, with a single pass on the file.

4.6.2 Solution
We do need to read the whole file, but we don't have to read it all at once:
i nport random

def randonii ne(fil e_object):
"Retrieve a randomline froma file, reading through the
file once"
[ineNum = 0
selected line ="'
while 1:
aLine = file_object.readline()
I f not alLine: break
l'ineNum = |ineNum + 1
How likely is it that this is the last line of the
file?
i f random uni form(0O, ineNum <1
selected |ine = aLine
file object.close()
return selected |line

4.6.3 Discussion
Of course, a more obvious approach would be:
random choi ce(file_object.readlines())

But that requires reading the whole file into memory at once, which can be a problem for truly
enormousfiles.

This recipe works thanks to an unobvious but not terribly deep theorem: when we have seen the
first N lines in the file, there is a probability of exactly /N that each of them is the one selected so
far (i.e., theoneto whichthe sel ect ed_| i ne variable refers at this point). Thisis easy to see
for the last line (the one just read into the aLi ne variable), because we explicitly choose it with a
probability of 1. O/ | i neNum The general validity of the theorem follows by induction. If it
was true after the first N-1 lines were read, it's clearly still true after the Nth oneisread. Aswe

select the very first line with probability 1, the limit case of the theorem clearly does hold when
N=1.

Of course, the same technique holds for a uniform-probability selection from any finite sequence
that, for whatever reason, is made available only one item at atime. But, apart from, for example,
selecting arandom word from /usr/dict/words, there aren't all that many practical applications of
this pretty theorem.

4.6.4 See Also

Documentation for the r andommodule in the Library Reference.

4.7 Counting Lines in a File
Credit: Luther Blissett

4.7.1 Problem

Y ou need to compute the number of linesin afile.
4.7.2 Solution

The simplest approach, for reasonably sized files, isto read the file as alist of lines so that the
count of linesisthe length of the list. If the file's path isin astring bound to the t hef i | epat h
variable, that's just:

count = len(open(thefilepath).readlines())

For atruly huge file, this may be very slow or even fail to work. If you have to worry about
humongous files, aloop using the xr ead! i nes method always works:

count = 0
for line in open(thefilepath).xreadlines(): count +=1

Here's adightly tricky alternative, if the line terminator is' \ n' (or has' \ n' asasubstring, as
happens on Windows):

count =
thefile
while 1:
buffer = thefile.read(8192*1024)
if not buffer: break
count += buffer.count('\n")
thefile.close()

0
= open(thefilepath, '"rb")

Without the ' r b' argument to open, thiswill work anywhere, but performance may suffer
greatly on Windows or Macintosh platforms.

4.7.3 Discussion

If you have an external program that counts afile'slines, suichaswc - | on Unix-like platforms,
you can of course choose to use that (e.g., via0s. popen()). However, it's generally smpler,
faster, and more portable to do the line-counting in your program. Y ou can rely on amost all text
files having a reasonable size, so that reading the whole file into memory at once is feasible. For
all such normal files, the | en of theresult of r eadl i nes gives you the count of linesin the
simplest way.

If the fileis larger than available memory (say, a few hundred of megabytes on atypical PC

today), the simplest solution can become slow, & the operating system struggles to fit the file's
contents into virtual memory. It may even fail, when swap space is exhausted and virtual memory
can't help any more. On atypical PC, with 256 MB of RAM and virtually unlimited disk space,
you should still expect serious problems when you try to read into memory files of, say, 1 or 2 GB,
depending on your operating system (some operating systems are much more fragile than othersin
handling virtua-memory issues under such overstressed load conditions). In this case, the

xreadl i nes method of file objects, introduced in Python 2.1, is generally a good way to

process text files line by line. In Python 2.2, you can do even better, in terms of both clarity and
speed, by looping directly on the file object:

for line in open(thefilepath): count += 1

However, xr eadl i nes does not return a sequence, and neither does aloop directly on the file
object, so you can't just use | en in these cases to get the number of lines. Rather, you have to
loop and count line by line, as shown in the solution.

Counting line-terminator characters while reading the file by bytes, in reasonably sized chunks, is
the key idea in the third approach. It's probably the least immediately intuitive, and it's not
perfectly cross-platform, but you might hope that it's fastest (for example, by analogy with Recipe
8.2 in the Perl Cookbook).

However, remember that, in most cases, performance doesn't realy matter all that much. When it
does matter, the time sink might not be what your intuition tells you it is, so you should never trust
your intuition in this matter—instead, aways benchmark and measure. For example, | took a
typical Unix sydog file of middling size, a bit over 18 MB of text in 230,000 lines:

[situ@ioni nuc]$ wc nuc
231581 2312730 18508908 nuc

and | set up the following benchmark framework script, bench.py:
i mport time

def tinmeo(fun, n=10):
start = tinme.clock()
for i in range(n): fun()
stend = tinme.clock()
thetine = stend-start

return fun. _ name_ _, thetine
i nport os
def linecount_wc():

return int(os.popen('wc -1 nuc').read().split()[O0])
def linecount 1():

return Il en(open('nuc').readlines())

def linecount_2():
count = 0
for line in open('nuc').xreadlines(): count += 1
return count

def linecount_3():
count = 0
thefile = open(' nuc')
while 1:

buffer = thefile.read(65536)
if not buffer: break

count += buffer.count('\n")
return count

for f in linecount_wc, linecount_1, linecount_2, |inecount_3:
print f._ _name_ _, f()
for f in linecount 1, linecount_ 2, |inecount_3:

print "%: % 2f"% i neo(f)

First, | print the line counts obtained by all methods, thus ensuring that there is no anomaly or
error (counting tasks are notorioudy prone to off-by-one errors). Then, | run each aternative 10
times, under the control of the timing function t i Meo, and look at the results. Here they are:

[situ@ioni nuc]$ python - O bench. py

|l i necount _wc 231581

| i necount 1 231581

i necount 2 231581

i necount 3 231581

i necount _1: 4.84

i necount _2: 4.54

| i necount 3: 5.02

Asyou can see, the performance differences hardly matter: a difference of 10% or so in one
auxiliary task is something that your users will never even notice. However, the fastest approach
(for my particular circumstances, a cheap but very recent PC running a popular Linux distribution,
as well as this specific benchmark) is the humble loop-on-every-line technique, while the slowest
one is the ambitious technique that counts line terminators by chunks. In practice, unless | had to

worry about files of many hundreds of megabytes, I'd always use the simplest approach (i.e., the
first one presented in this recipe).

4.7.4 See Also

The Library Reference section on file objects and the t i e module; Perl Cookbook Recipe 8.2.

4.8 Processing Every Word in a File

Credit: Luther Blissett

4.8.1 Problem

Y ou need to do something to every word in afile, similar to the f or each function of csh.
4.8.2 Solution

This is best handled by two nested loops, one on lines and one on the words in each line:

for line in open(thefilepath).xreadlines():
for word in line.split():
dosonet hi ngwi t h(wor d)

This implicitly defines words as sequences of nonspaces separated by sequences of spaces (just &
the Unix program wc does). For other definitions of words, you can use regular expressions. For
example:

import re
re_word = re.compile(r'[\w-]+")

for line in open(thefilepath).xreadlines():
for word in re_word.findall (line):
dosonet hi ngwi t h(wor d)

In this case, aword is defined as a maximal sequence of alphanumerics and hyphens.
4.8.3 Discussion

For other definitions of words you will obviously need different regular expressions. The outer
loop, on dl lines in the file, can of course bedone in many ways. The Xr eadl i nes method is

good, but you can aso use the list obtained by the r ead| i nes method, the standard library
modulef i | ei nput , or, in Python 2.2, even just:

for line in open(thefilepath):
which is simplest and fastest.

In Python 2.2, it's often a good idea to wrap iterations as iterator objects, most commonly by
simple generators:

from_ _future_ _ inport generators

def words_of file(thefilepath):
for Iine in open(thefilepath):
for word in line.split():
yield word

for word in words_of _file(thefilepath):
dosonet hi ngwi t h(wor d)

This approach lets you separate, cleanly and effectively, two different concerns. how to iterate
over dl items (in this case, words in afile) and what to do with each item in the iteration. Once
you have cleanly encapsulated iteration concerns in an iterator object (often, as here, a generator),
most of your uses of iteration become simple f or statements. Y ou can often reuse the iterator in
many spots in your program, and if maintenance is ever needed, you can then perform it in just
one place—the definition of the iterator—rather than having to hunt for all uses. The advantages
are thus very similar to those you obtain, in any programming language, by appropriately defining
and using functions rather than copying and pasting pieces of code all over the place. With Python
2.2'siterators, you can get these advantages for looping control structures, too.

4.8.4 See Also

Documentation for the f i | el nput module in the Library Reference; PEP 255 on simple
generators (http://www.python.org/peps/pep-0255.html); Perl Cookbook Recipe 8.3.

4.9 Reading a Text File by Paragraphs
Credit: Alex Martdlli, Magnus Lie Hetland
4.9.1 Problem

You need to read afile paragraph by paragraph, in which a paragraph is defined as a sequence of
nonempty lines (in other words, paragraphs are separated by empty lines).

4.9.2 Solution
A wrapper classis, as usua, the right Pythonic architecture for this (in Python 2.1 and earlier):
cl ass Paragraphs:

def _ _init_ (self, fileobj, separator="\n"):

Ensure that we get a |ine-reading sequence in the
best way possi bl e:
i mport xreadlines
try:
Check if the file-like object has an
xreadl i nes net hod
self.seq = fileobj.xreadlines()
except AttributeError:
No, so fall back to the xreadlines nodul e's
i mpl ement ati on
sel f.seq = xreadlines. xreadlines(fileobj)

self.line_num= 0 # current index into self.seq
(I'i ne number)

sel f. para_num
(par agr aph nunber)

0 # current index into self

Ensure that separator string includes a line-end
character at the end

if separator[-1:] !="\n': separator +='\n'

sel f.separator = separator

def _ getitem (self, index):
if index != self.para_num
rai se TypeError, "Only sequential access
support ed”
sel f.para_num += 1
Start where we left off and skip O+ separator
l'ines
while 1:
Propagate |IndexError, if any, since we're finished
if it occurs
line = self.seq[self.line_nuni

self.line_num+= 1

if line !'= self.separator: break
Accunul ate 1+ nonenpty lines into result
result = [1ine]
while 1:

Intercept |IndexError, since we have one | ast
paragraph to return
try:
Let's check if there's at | east one nore
line in self.seq
line = self.seq[self.line_num
except | ndexError:
self.seq is finished, so we exit the | oop
br eak
Increment index into self.seq for next tinme
self.line_num+= 1
if line == self.separator: break
resul t.append(line)
return ''.join(result)

Here's an exanple function, showi ng how to use cl ass
Par agr aphs:
def show paragraphs(fil enane, nunpars=5):
pp = Paragraphs(open(fil enane))
for pin pp:
print "Par#%l, |ine# %: %" % (
pp. para_num pp.line_num repr(p))
i f pp.para_nunpnunpars: break

4.9.3 Discussion

Python doesn't directly support paragraph-oriented file reading, but, as usual, it's not hard to add
such functionality. We define a paragraph as a string formed by joining a nonempty sequence of
nonseparator lines, separated from any adjoining paragraphs by nonempty sequences of separator
lines. By default, a separator line is one that equals' \ n' (empty line), although this concept is
easy to generalize. We let the client code determine what a separator is when instantiating this
class. Any string is acceptable, but we appenda’ \ n' toit, if it doesn't dready end with ' \ n'
(since we read the underlying file line by line, a separator not ending with ' \ n* would never
match).

We can get even more generality by having the client code pass us a callable that looks at any line
and tells us whether that line is a separator or not. In fact, thisis how | originally architected this
recipe, but then | decided that such an architecture represented a typical, avoidable case of
overgeneralization (also known as overengineering and "Big Design Up Front"; see
http://xp.c2.com/BigDesignUpFront.html), so | backtracked to the current, more reasonable
amount of generality. Indeed, another reasonable design choice for this recipe's class would be to
completely forego the customizability of what lines are to be considered separators and just test
for separator lineswith | i ne. i sspace(), sothat stray blanks on an empty-looking line
wouldn't misleadingly transform it into a nonseparator line.

This recipe's adapter class is a specia case of sequence adaptation by bunching. An underlying
sequence (here, a sequence of lines, provided by xr eadl i nes on afile or file-like object) is
bunched up into another sequence of larger units (here, a sequence of paragraph strings). The
pattern is easy to generalize to other sequence-bunching needs. Of course, it's even easier with

iterators and generators in Python 2.2, but even Python 2.1 is pretty good at this already. Sequence
adaptation is an important general issue that arises particularly often when you are sequentialy
reading and/or writing files; see Recipe 4.10 for another example.

For Python 2.1, we need an index of the underlying sequence of lines and a way to check that our
__getitem_ _ method isbeing caled with properly sequential indexes (asthe f or
statement does), so we exposethe | i ne_numand par a_numindexes as useful attributes of
our object. Thus, client code can determine our position during a sequential scan, in regard to the
indexing on the underlying line sequence, the paragraph sequence, or both, without needing to
track it itself.

The code uses two separate |oops, each in atypical pattern:
while 1:
i f xxx: break

The first loop skips over zero or more separators that may occur between arbitrary paragraphs.
Then, a separate loop accumulates nonseparators into a result list, until the underlying file finishes
or a separator is encountered.

It's an elementary issue, but quite important to performance, to build up the result as alist of
strings and combine themwith' ' . j oi n at the end. Building up a large string as a string, by

repeated application of += in aloop, is never the right approach—it's dow and clumsy. Good
Pythonic style demands using a list as the intermediate accumulator when building up a string.

Theshow_par agr aphs function demonstrates all the simple features of the Par agr aphs
class and can be used to unit-test the latter by feeding it a known text file.

Python 2.2 makes it very easy to build iterators and generators. This, in turn, makes it very
tempting to build a more lightweight version of the by-paragraph buncher as a generator function,
with no classes involved:

from _ future_ _ inport generators

def paragraphs(fileobj, separator="\n"):

if separator[-1:] !'="\n': separator += '\n'
paragraph = []
for line in fileobj:
if line == separator:
i f paragraph:
yield ''.join(paragraph)

par agraph = []
el se:
par agr aph. append(!i ne)
i f paragraph: yield ''.join(paragraph)

We don't get the line and paragraph numbers, but the approach is much more lightweight, and it
works polymorphically onany f i | eobj that can be iterated on to yield a sequence of lines, not
just afile or file-like object. Such useful polymorphism is dways a nice plus, particularly
considering that it's basically free. Here, we have merged the loops into one, and we use the
intermediate list par agr aph itself asthe state indicator. If the list is empty, we're skipping
separators, otherwise, we're accumulating nonseparators.

4.9.4 See Also

Recipe 4.10; documentation on the Xr eadl i nes module in the Library Reference; the Big
Design Up Front Wiki page (http://xp.c2.com/BigDesignUpFront.html).

4.10 Reading Lines with Continuation Characters
Credit: Alex Martelli
4.10.1 Problem

You have afile that includes long logical lines split over two or more physical lines, with
backslashes to indicate that a continuation line follows. Y ou want to process a sequence of logical
lines, rejoining those split lines.

4.10.2 Solution
Asusud, aclassisthe right way to wrap this functiondity in Python 2.1:
cl ass Logi cal Li nes:

def _ _init_ (self, fileobj):

Ensure that we get a |ine-reading sequence in the
best way possi bl e:
i nport xreadlines
try:
Check if the file-like object has an
xr eadl i nes met hod
self.seq = fileobj.xreadlines()
except AttributeError:
No, so fall back to the xreadlines nodul e's
i npl enent ati on
sel f.seq = xreadlines. xreadlines(fileobj)

sel f.phys_num= 0 # current index into self.seq
(physical |ine nunber)

self.logi_num= 0 # current index into self
(l ogi cal line nunber)

def _ _getitem _(self, index):
if index !'= self.logi_num
rai se TypeError, "Only sequential access
support ed"”
self.logi _num+=1
result =[]
while 1:

Intercept |IndexError, since we may have a | ast
l[ine to return
try:
Let's see if there's at | east one nore
line in self.seq
line = self.seq[self.phys_nuni
except | ndexError:
self.seq is finished, so break the loop if
we have any

nore data to return; else, reraise the
exception, because
if we have no further data to return,
we're finished too
if result: break
el se: raise
sel f.phys num += 1
if line.endswith('\\\n"):
resul t.append(line[:-2])

el se:
resul t.append(line)
br eak
return "' .join(result)

Here's an exanple function, show ng off usage:
def show | ogi cal s(fil eob, nunmines=5):
Il = Logical Li nes(fil eob)

for | inll:
print "Log#%d, phys# %: %" % (
[1.1ogi _num I1l.phys_num repr(l))
if I'l.l1ogi_nunmpnun i nes: break
i f nane_ _=="_ _main_ _":

fromcStringl O inport StringlO
ff = Stringl

r*""prim \

seconda \

terza

quarta \

qui nt a

sesta

settima \

ottava

")

show | ogical s(ff)
4.10.3 Discussion

Thisis another sequence-bunching problem, like Recipe 4.9. In Python 2.1, a class wrapper is the
most natural approach to getting reusable code for sequence-bunching tasks. We need to support
the sequence protocol ourselves and handle the sequence protocol in the sequence we wrap. In
Python 2.1 and earlier, the sequence protocol is as follows. a sequence must be indexable by
successively larger integers (0, 1, 2, ...), and it must raise an | ndeXEr r or as soon as an integer
that istoo large is used asitsindex. So, if we need to work with Python 2.1 and earlier, we must
behave this way ourselves and be prepared for just such behavior from the sequence we are
wrapping.

In Python 2.2, thanks to iterators, the sequence protocol is much simpler. A call to the next
method of an iterator yields its next item, and the iterator raisesa St opl t er at i on wheniit's

done. Combined with a simple generator function that returns an iterator, this makes sequence
bunching and similar tasks far easier:

from _ future_ _ inport generators

def logical _lines(fileobj):
| ogical _line =[]
for physical _line in fileobj:
if physical _line.ends_with('\\\n"):
| ogi cal |ine.append(physical _line[:-2])
el se:
yield "' .join(logical _|ine)+physical _I|ine
logical _Iine =[]
if logical _line: yield "' .join(logical_line)

4.10.4 See Also

Recipe 4.9; Perl Cookbook Recipe 8.1.

4.11 Reading Data from ZIP Files

Credit: Paul Prescod
4.11.1 Problem

You have an archive in ZIP format, and you want to examine some or al of the files it contains
directly, without expanding them on disk.

4.11.2 Solution

ZIP files are a popular, cross-platform way of archiving files. Python's standard library comes with
azi pfi| e moduleto access them easily:

i nport zipfile
z = zipfile. ZipFile("zipfile.zip", "r")

for filenanme in z.nanelist():
print "File:", filenane,
bytes = z.read(fil enane)
print 'has',len(bytes), ' bytes’

4.11.3 Discussion

Python can work directly with datain ZIP files. You can look at the list of items in the directory
and work with the data files themselves. This recipe is a snippet that lists al of the names and
content lengths of the files included in the ZIP archive zpfile.zip.

The zi pfi | e module does not currently handle multidisk ZIP files or ZIP files that have
appended comments. Takecaretouse ' r' astheflag argument, not ' r b' , which might seem
more natura (e.g., on Windows). With Zi pFi | e, theflag is not used the same way as for
opening afile,and ' r b' isnot recognized. The ' r* flag takes care of the inherently binary
nature of the ZIP file on all platforms.

4.11.4 See Also

Documentation for the zi pfi | e module in the Library Reference.

4.12 Reading INI Configuration Files
Credit: Dirk Holtwick

4.12.1 Problem

Y ou want to load a configuration file for your program, but you don't want to use a Python module
for this purpose, as that might expose you to security risks or troublesome syntax and other errors
in the module.

4.12.2 Solution

The standard Conf i gPar ser library module gives us amost all we need to use INI files for
configuration:

i nport Confi gParser
i mport string

_ConfigbDefault = {

"dat abase. dbns": "mysql ",
"dat abase. nane": "

"dat abase. user": "root",
"dat abase. password": "

"dat abase. host ": "127.0.0.1"

}
def LoadConfig(file, config={}):

returns a dictionary with keys of the form
<section>. <option> and the correspondi ng val ues
config = config.copy()
cp = ConfigParser. ConfigParser()
cp.read(file)
for sec in cp.sections():
name = string. | ower(sec)
for opt in cp.options(sec):
config[name + "." + string.lower(opt)] =
string.strip(
cp.get(sec, opt))
return config
if _ name_ _=="_ main_ _
print LoadConfig("sonme.ini", _ConfigDefault)

4.12.3 Discussion

Many people use Python modules as configuration files, but this may allow your program to be
manipulated or let a syntax error come into that file. To use INI-style configuration files, which
are known from Windows (but can aso be used under Unix-like systems, since they're just text
files with some structure), try the small script here.

The code in the recipe is just for reading configuration files, but writing them is also easy to
implement. An INI file looks like this:

[dat abase]

user = dunmmy

password = toscal23

You can set the defaults in advance. Note that the keys of the dictionary are always lowercase.

4.12.4 See Also

Documentation for the Conf i gPar ser module in the Library Reference.

4.13 Sending Binary Data to Standard Output Under
Windows

Credit: Hamish Lawson

4.13.1 Problem

Y ou want to send binary data (e.g., an image) to st dout , under Windows.
4.13.2 Solution

That'swhat the set node function, in the platform-dependent nsvcrt module in Python's
standard library, isfor:

i nport sys

if sys.platform == "w n32":
i mport os, nsvcrt
msvcrt. set node(sys. stdout.fileno(), os.O_BI NARY)

4.13.3 Discussion

If you are reading or writing binary data, such as an image, under Windows, the file must be
opened in binary mode (Unix doesn't make a distinction between text and binary modes).
However, thisis a problem for programs that write binary data to standard output (as a CGl
program could be expected to do), because Python opensthe sys. st dout file object on your
behalf, normally in text mode.

You can have st dout opened in binary mode instead by supplying the - u command-line option

to the Python interpreter. However, if you want to control this mode from within a program, you
can use the set node function provided by the Windows-specific msvcrt module to change

the mode of st dout 's underlying file descriptor, as shown in the recipe.
4.13.4 See Also

Documentation for the msvcrt modulein the Library Reference.

.14 Using Random-Access Input/Output
Credit: Luther Blissett
4.14.1 Problem

Y ou want to read a binary record from somewhere inside a large file of fixed-length records,
without reading arecord at atime to get there.

4.14.2 Solution

The byte offset of the start of arecord in the file is the record size multiplied by the record number
(counting from 0). So just seek, then read:

thefile = open(' sonebinfile', 'rb")
thefile.seek(record_size * record_nunber)
buffer = thefile.read(record_size)

4.14.3 Discussion

This approach works only on files (generally binary ones) defined in terms of records that are all
the same, fixed size; it doesn't on normal text files. For clarity, the recipe shows the file being
opened for reading as a binary file, by passing ' r b' as the second argument to open. Of course,
you don't need to open the file just before performing the first seek on it. Aslong as the file
object is open for reading as a binary file, you can perform as many seek and r ead operations
as you want before eventualy closing the file again.

4.14.4 See Also

The section of the Library Reference on file objects; Perl Cookbook Recipe 8.12.

4.15 Updating a Random-Access File
Credit: Luther Blissett
4.15.1 Problem

Y ou want to read a binary record from somewhere inside a large file of fixed-length records,
change the values, and write the record back.

4.15.2 Solution

Read the record, unpack it, perform whatever computations you need for the update, pack the
fields back into the record, seek to the start of the record again, and write it back. Phew. Faster to
code than to say:

i nport struct

thefile = open(' sonebinfile' , 'r+b")
record_size = struct.cal csize(format_string)

thefile.seek(record_size * record_nunber)
buffer = thefile.read(record_size)
fields = list(struct.unpack(format_string, buffer))

Perform conputations, suitably nodifying fields, then:

buffer = struct. pack(format_string, *fields)
thefile.seek(record_size * record_numnber)
thefile.wite(buffer)

thefile.close()
4.15.3 Discussion

This approach works only on files (generaly binary ones) defined in terms of records that are all
the same, fixed size; it doesn't work on normal text files. Furthermore, the size of each record must
be that defined by a st r uct 'sformat string, as shown in the recipe's code. A typical format
string, for example, might be " 81 ", to specify that each record is made up of eight four-byte
integers, each to be interpreted as a signed value and unpacked into a Python i nt . In this case,
thef i el ds variable in the recipe would be bound to alist of eight i nt s. Note that

struct . unpack returns atuple. Because tuples are immutable, the computation would have
to rebind theentire f i el ds variable. A list is not immutable, so each field can be rebound as
needed. Thus, for convenience, we explicitly ask for alist whenwebind f i el ds. Make sure,
however, not to alter the length of thelist. In this case, it needs to remain composed of exactly
eight integers, or the st ruct . pack call will raise an exception when we call it with a
format _stringthaisdill "8l ". Also note that this recipe is not suitable for working with
records that are not all of the same, unchanging length.

To seek back to the start of the record, instead of using the
record_size*record _nunber offset again, you may choose to do arelative seek:

thefile.seek(-record_size, 1)

The second argument to the seek method (1) tells the file object to seek relative to the current
position (here, so many bytes back, because we used a negative number as the first argument).
seek'sdefault is to seek to an absolute offset within thefile (i.e., from the start of the file). You
can also explicitly request this default behavior by calling seek with a second argument of 0.

Of course, you don't need to open the file just before you do the first seek or close it right after
thewr i t e. Once you have afile object that is correctly opened (i.e., for update, and as a binary
rather than atext file), you can perform as many updates on the file as you want before closing the

file again. These calls are shown here to emphasize the proper technique for opening afile for
random-access updates and the importance of closing a file when you are done with it.

The file needs to be opened for updating (i.e., to alow both reading and writing). That's what the
"r+b' argument to open means: open for reading and writing, but do not implicitly perform
any transformations on the file's contents, because the file is abinary one (the ' b' part is
unnecessary but still recommended for clarity on Unix and Unix-like systems—however, it's
absolutely crucia on other platforms, such as Macintosh and Windows). If you're creating the
binary file from scratch but you still want to be able to reread and update some records without
closing and reopening the file, you can use a second argument of * w+b' instead. However, |
have never witnessed this strange combination of requirements; binary files are normally first
created (by opening them with ' wh' , writing data, and closing the file) and later opened for
update with ' r +b" .

4.15.4 See Also

The sections of the Library Reference on file objects and the st r uct module; Perl Cookbook
Recipe 8.13.

4.16 Splitting a Path into All of Its Parts
Credit: Trent Mick

4.16.1 Problem

Y ou want to process subparts of afile or directory path.

4.16.2 Solution

We can define afunction that uses 0s. pat h. spl it to break out al of the parts of afile or
directory path:

i nport o0s, Sys
def splitall (path):
all parts =[]

while 1:

parts = os.path.split(path)

if parts[0] == path: # sentinel for absolute paths
all parts.insert(0, parts[O0])
br eak

elif parts[1l] == path: # sentinel for relative paths
all parts.insert(0, parts[1])
br eak

el se:

path = parts[0]
allparts.insert(0, parts[1])
return allparts

4.16.3 Discussion

The os. pat h. spl i t function splits a path into two parts: everything before the final slash
and everything after it. For example:

>>> os.path.split('c:\\foo\\bar\\baz.txt")
("c:\\foo\\bar', '"baz.txt")

Often, it's useful to process parts of a path more generically; for example, if you want to walk up a

directory. This recipe splits a path into each piece that corresponds to a mount point, directory
name, or file. A few test cases make it clear:

>>> gsplitall("a/b/c")
[a", "b'", "c']
>>> splitall('/alblcl")

[*/*, *a*, "b', 'c¢',]
>>> gplitall ('/")
['/]

>>> splitall ("C ")
['C

>>> splitall (" C\\")
["C\\']

>>> gplitall ('C\\a')

["C\\V, At]

>>> gplitall ("C\\a\\")
["CA\\V Y, tat,]

>>> gplitall ("C\\a\\b")
["C\\, tat, "b']

>>> gplitall ("a\\b')
[a, 'b']

4.16.4 See Also

Recipe 4.17; documentation on the 0s. pat h module in the Library Reference.

4.17 Treating Pathnames as Objects

Credit: David Ascher

4.17.1 Problem

Y ou want to manipulate path objects as if they were sequences of path parts.
4.17.2 Solution

Although it is only available this elegantly in Python 2.2 and later, you can create asubclass of the
string type that knows about pathnames:

_translate = { '..":
class path(str):
def _ _str_ _(self):
return os. path. nornpat h(sel f)
def _div_ (self, other):

os.pardir }

other = transl ate.get(other, other)

return path(os.path.join(str(self), str(other)))
def _ len_ (self):

return len(splitall (str(self)))
def _getslice_ (self, start, stop):

parts = splitall(str(self))[start: stop]
return path(os.path.join(*parts))

def _ getitem (self, i):
return path(splitall (str(self))[i])

Note that this solution relies on Recipe 4.16.
4.17.3 Discussion

| designed this class after | had to do alot of path manipulations. These are typically done with a
function such as 0s. pat h. j oi n, which doesthe job well enough, but is somewhat
cumbersome to use:

root = sys.prefix
sitepkgs = os.path.join(root, "lib", 'python', 'site-
packages')

To use this recipe, the first path must be created with the pat h function. After that, divisions are
all that we need to append to the path:

root = path(sys. prefix)
sitepkgs = root / 'lib" / 'python' / 'site-packages'

As an additional bonus, you can treat the path as a sequence of path parts:

>>> print sitepkgs

C.\ Apps\ Pyt hon22\ | i b\ pyt hon\ si t e- packages
>>> print |en(sitepkgs)

6

>>> sitepkgs[0], sitepkgs[1l], sitepkgs[-1]
("C\\'", "Apps', 'site-packages')

This class could be made richer by, for example, adding method wrappers for many of the
functions that are defined in the 0s. pat h module (i sdi r, exi st s, etc.).

The code is fairly straightforward, thanks to the ease with which one can subclass stringsin
Python 2.2 and later. The call to 0s. pat h. nor npat h isimportant, since it ensures that
casual use of . and .. do not wreak havoc:

>>>root / '.." [/ '"foo' ["."
"C.\\ Apps\\foo\\."

The overriding of the division operator uses a little trick that is overkill for this recipe but can
come in handy in other contexts. The following line:

other = _transl ate. get(other, other)

does asimple lookup for ot her inthe _t ransl at e dictionary and leaves it dlone if that key
isn't found in the dictionary.

4.17.4 See Also

Recipe 4.16; documentation for the 0s. pat h module in the Library Reference.

4.18 Creating Directories Including Necessary Parent
Directories

Credit: Trent Mick, Alex Martelli

4.18.1 Problem

Y ou want away to make a directory that is more convenient than Python's standard os. nkdi r .
4.18.2 Solution

A good make-directory function should, first of al, make the necessary parent directories, which
os. makedi r s does quite nicely. We also want our function to complete silently if the

directory aready exists but to fail if the needed directory exists as a plain file. To get that behavior,
we need to write some code;

i mport os, errno
def nkdirs(newdir, node=0777):
try: os.nmakedirs(newdir, node)
except OSError, err:
Reraise the error unless it's about an already
existing directory

if err.errno !'= errno. EEXI ST or not
os.path.isdir(newdir):
rai se

4.18.3 Discussion

Python's standard 0s. mkdi r works much like the underlying mkdir system call (i.e., in a pretty
gpare and rigorous way). For example, it raises an exception when the directory you're trying to
make aready exists. You amost always have to handle that exception, because it's not generaly
an error if the directory already exists as a directory, while it isindeed an error if afile of that
name is in the way. Further, all the parent directories of the one you're trying to make must already
exist, as0s. nkdi r itself only makes the leaf directory out of the whole path.

There used to be a time when mkdir, as used in Unix shell scripts, worked the same way, but we're
spoiled now. For example, the - - par ent s switch in the GNU version of mkdir implicitly
creates al intermediate directories, and gives no error if the target directory already exists as a
directory. Well, why not have the same convenience in Python? This recipe shows it takes very
little to achieve this—the little function nkdi r s can easily become part of your standard bag of
tricks. Of course, Python's standard 0s. makedi r s isdoing most of the job. However,

nmkdi r s adds the important convenience of not propagating an exception when the requested
directory already exists and is indeed a directory. However, if the requested directory exists as a
file or if the operating system diagnoses any other kind of trouble, function nkdi r s does
explicitly re-raise the exception, to ensure it propagates further.

4.18.4 See Also

Documentation for the 0s modulein the Library Reference.

4.19 Walking Directory Trees
Credit: Robin Parmar, Alex Martdlli
4.19.1 Problem

Y ou need to examine a directory, or an entire directory tree rooted in a certain directory, and
obtain alist of all the files (and optionally folders) that match a certain pattern.

4.19.2 Solution
0s. pat h. wal k issufficient for this purpose, but we can pretty it up quite at bit:

i nport os.path, fnnmatch

def listFiles(root, patterns="*', recurse=1,
return_fol ders=0):

Expand patterns from sem col on-separated string to
Iist
pattern_list = patterns.split(';")
Col l ect input and output argunents into one bunch
cl ass Bunch:
def _ init_ (self, **kwds): self. _dict_
_. updat e(kwds)
arg = Bunch(recurse=recurse, pattern_list=pattern_list,
return_fol ders=return_folders, results=[])

def visit(arg, dirname, files):
Append to arg.results all relevant files (and
per haps f ol ders)
for name in files:
full name = os. pat h. nor npat h(os. pat h. j oi n(di r nane,
nane))
If arg.return_fol ders or
os.path.isfile(full nane):
for pattern in arg.pattern_list:
if fnmatch. f nmat ch(nanme, pattern):
arg.resul ts. append(full name)
br eak
Block recursion if recursion was disallowed
if not arg.recurse: files[:]=[]

os. pat h. wal k(root, visit, arg)

return arg.results

4.19.3 Discussion

The standard directory-tree function 0s. pat h. wal k is powerful and flexible, but it can be
confusing to beginners. Thisrecipe dressesitupinal i st Fi | es function that lets you choose

the root folder, whether to recurse down through subfolders, the file patterns to match, and
whether to include folder names in the result list.

The file patterns are case-insensitive but otherwise Unix-style, as supplied by the standard
f nmat ch module, which this recipe uses. To specify multiple patterns, join them with a
semicolon. Note that this means that semicolons themselves can't be part of a pattern.

For example, you can easily get alist of all Python and HTML files in directory /tmp or any
subdirectory thereof:

thefiles = listFiles('/tnmp', "*.py;*.htm*.htm")
4.19.4 See Also

Documentation for the 0s. pat h module in the Library Reference.

4.20 Swapping One File Extension for Another
Throughout a Directory Tree

Credit: Julius Welby
4.20.1 Problem

Y ou need to rename files throughout a subtree of directories, specifically changing the names of
all files with a given extension so that they end in another extension.

4.20.2 Solution

Operating throughout a subtree of directoriesis easy enough, with the os. pat h. wal k
function from Python's standard library:

i nport os, string

def swapextensions(dir, before, after):

if before[:1]!'=".": before = "'.'+before

if after[:1]!=".": after = "."+after

os. pat h. wal k(dir, callback, (before, -len(before),
after))

def call back((before, thelen, after), dir, files):
for oldnanme in files:
i f oldnanme[thel en:] ==before:
oldfile = os.path.join(dir, oldnane)
newfile = oldfile[:thelen] + after
os.renanme(ol dfile, newfile)
if _ _name_ =='"_ main
i nport sys
if len(sys.argv) != 4:
print "Usage: swapext rootdir before after”
sys. exit(100)
swapext ensi ons(sys.argv[1], sys.argv[2], sys.argv[3])

4.20.3 Discussion

This recipe shows how to change the file extensions of (i.e., rename) al filesin a specified
directory, all of its subdirectories, all of their subdirectories, and so on. This technique is useful for
changing the extensions of a whole batch of filesin afolder structure, such as aweb site. You can
also use it to correct errors made when saving a batch of files programmatically.

The recipe is usable either as a module, to be imported from any other, or as a script to run from
the command line, and it is carefully coded to be platform-independent and compatible with old
versions of Python as well as newer ones. Y ou can pass in the extensions either with or without
the leading dot (.), since the code in this recipe will insert that dot if necessary.

4.20.4 See Also

The author's web page at http://www.outwardlynormal .com/python/swapextensions.htm.

4.21 Finding a File Given an Arbitrary Search Path
Credit: Chui Tey
4.21.1 Problem

Given a search path (a string of directories with a separator in between), you need to find the first
file along the path whose name is as requested.

4.21.2 Solution
Basically, you need to loop over the directories in the given search path:
i nmport os, string

def search_file(filenane, search_path, pathsep=0s. pathsep):
""" Gven a search path, find file with requested nane
for path in string.split(search_path, pathsep):
candi date = os.path.join(path, filenane)
i f os.path.exists(candidate): return
os. pat h. abspat h(candi dat e)
return None

if _ pname_ _=='"_ _ main_ _":
search_path = '"/bin" + os.pathsep + '/fusr/bin" # ; on
W ndows, : on Unix
find file = search_file('ls', search_path)
if find_file:
print "File found at %" %find file
el se:

print "File not found"
4.21.3 Discussion

Thisis areasonably frequent task, and Python makes it extremely easy. The search loop can be
coded in many ways, but returning the normalized path as soon as a hit is found is smplest as well
asfast. Theexplicitr et ur n None after the loop is not strictly needed, since None iswhat
Python returns when a function falls off the end, but having the return explicit in this case makes
the functiondlity of sear ch_f i | e much clearer at first sight.

To find files specifically on Python's own search path, see Recipe 4.22.

4.21.4 See Also

Recipe 4.22; documentation for the module 0s in the Library Reference.

4.22 Finding a File on the Python Search Path
Credit: Mitch Chapman

4.22.1 Problem

A large Python application includes resource files (e.g., Glade project files, SQL templates, and
images) as well as Python packages. Y ou want to store these associated files together with the
Python packages that use them.

4.22.2 Solution
Y ou need to be able to look for either files or directories along Python'ssys. pat h:
i nport sys, o0s
cl ass Error(Exception): pass
def _find(pathname, matchFunc=os.path.isfile):
for dirname in sys. path:
candi date = os. path.join(dirnanme, pathnane)
i f mat chFunc(candi date):
return candi date

raise Error("Can't find file %" % pat hnane)

def findFil e(pathname):
return _find(pathnanme)

def findDir(path):
return _find(path, matchFunc=o0s.path.isdir)

4.22.3 Discussion

Larger Python applications consist of sets of Python packages and associated sets of resource files.
It's convenient to store these associated files together with the Python packages that use them, and
it's easy to do so if you use this variation on Recipe 4.21 to find files or directories with pathnames
relative to the Python search path.

4.22.4 See Also

Recipe 4.21; documentation for the 0s module in the Library Reference.

4.23 Dynamically Changing the Python Search Path
Credit: Robin Parmar
4.23.1 Problem

Modules must be on the Python search path before they can be imported, but you don't want a
huge permanent path, because that slows things down—you want to change the path dynamically.

4.23.2 Solution

We just conditionally add a directory to Python's sys. pat h, carefully checking to avoid
duplication:

def AddSysPat h(new pat h):
AddSysPat h(new_path): adds a directory to Python's
sys. path

Does not add the directory if it does not exist or if
it's already on

sys.path. Returns 1 if OK -1 if new path does not exist,
Oif it was

al ready on sys. path.

i nport sys, o0s

Avoi d addi ng nonexi stent paths
if not os.path.exists(new path): return -1

Standardi ze the path. Wndows is case-insensitive, so
| ower case
for definiteness.
new_pat h = os. pat h. abspat h(new_pat h)
if sys.platform=="w n32":
new_path = new path.lower()

Check against all currently avail abl e paths
for x in sys. path:
X = 0s. pat h. abspat h(x)
if sys.platform=="w n32":
X = X.lower()
if new path in (x, X + 0S.sep):
return O
sys. pat h. append(new_pat h)
return 1

if _ name_ _ =="_ min_ _
Test and show usage
i nport sys

print 'Before:'
for x in sys.path: print x

if sys.platform=="w n32":
print AddSysPath('c:\\Tenp')
print AddSysPath('c:\\tenp')
el se:
print AddSysPat h('usr/|lib/nmy_nodul es')

print 'After:’
for x in sys.path: print Xx

4.23.3 Discussion

Modules must be on the Python search path before they can be imported, but we don't want to
have a huge permanent path, because that would dow down every import performed by every
Python script and application. This simple recipe dynamically adds a directory to the path, but
only if that directory exists and was not aready on sys. pat h.

sys. pat hisalig, soit's easy to add directoriesto itsend, using sys. pat h. append.
Every | nport performed after such an append will automaticaly look in the newly added
directory, if it cannot be satisfied from earlier ones.

It's no big problem if sys. pat h ends up with some duplicates or if some nonexistent directory
is accidentally appended to it; Python'si nmpor t statement is clever enough to shield itself
against such issues. However, each time such a problem occurs at import time (from duplicate
unsuccessful searches, errors from the operating system that need to be handled gracefully, etc.),
thereisapriceto pay in terms of performance. To avoid the risk of these performance issues, this
recipe does a conditional additionto sys. pat h, never appending any dictionary that doesn't
exist or isaready insys. pat h.

4.23.4 See Also

Documentation for the sys modulein the Library Reference.

4.24 Computing Directory Sizes in a Cross-Platform Way
Credit: Frank Fejes

4.24.1 Problem

Y ou need to compute the total size of a directory (or set of directories) in away that works under
both Windows and Unix-like platforms.

4.24.2 Solution

There are easier platform-dependent solutions, such as Unix's du, but Python also makes it quite
feasible to have a cross-platform solution:

i nport os
fromos.path inport *

class DirSizeError(Exception): pass

def dir_size(start, follow |links=0, start_depth=0,
max_dept h=0, skip_errs=0):

Get a list of all nanes of files and subdirectories in
directory start
try: dir_list = os.listdir(start)
except:
If start is a directory, we probably have
per m ssi on probl ens
if os.path.isdir(start):
raise DirSizeError(' Cannot |ist directory
%' Ystart)
el se: # otherwise, just re-raise the error so that
it propagates
rai se

total = OL
for itemin dir_list:
Get statistics on each item-file and
subdirectory--of start
path = join(start, item
try: stats = os.stat(path)
except:
if not skip_errs:
raise DirSizeError(' Cannot stat %' %ath)
The size in bytes is in the seventh item of the
stats tuple, so:
total += stats][6]
recursive descent if warranted
if isdir(path) and (follow_|links or not
i slink(path)):
bytes = dir_size(path, follow.links,
start _dept h+1, max_depth)

total += bytes
if max_depth and (start_depth < max_depth):
print_pat h(path, bytes)
return total

def print_path(path, bytes, units="Db'):

if units == "k':

print '% 8l d¥%' % (bytes / 1024, path)
elif units =="m:

print '%5ld¥%' % (bytes / 1024 / 1024, path)
el se:

print '9% 111 d%s' % (bytes, path)

def usage (nane):

print "usage: % [-bkLm] [-d depth] directory
[directory...]" % nane

print "\t-b\t\tDisplay in Bytes (default)"’

print "\t-k\t\tDi splay in Kilobytes'

print '\t-mt\tDi splay in Megabytes'

print "\t-L\t\tFollow synbolic Iinks (nmeaningful on Unix
only)'

print "\t-d, --depth\t# of directories down to print
(default = 0)'

if _ name_ _=='"_ main_ _
When used as a script:
i mport string, sys, getopt

units = 'b’'
followlinks =0
depth =0
try:
opts, args = getopt.getopt(sys.argv[1l:], "bkLnd:",
["dept h="])

except getopt.GetoptError:
usage(sys.argv[0])

sys.exit(1)
for o, ain opts:
if o=="-b'": units ="'D
elif o =="-kK': units = "k’
elif o=="-L": followlinks =1
elif o=="-m: units = "'ni
elif oin ('-d, '"--depth'):
try: depth = int(a)
except:

print "Not a valid integer: (%)" % a
usage(sys.argv[0])
sys.exit(1)

if len(args) < 1:
print "No directories specified"

usage(sys.argv[0])
sys.exit (1)

el se:
pat hs = args

for path in paths:
try: bytes = dir_size(path, follow.links, 0, depth)
except DirSizeError, x: print "Error:", x
el se: print_path(path, bytes)

4.24.3 Discussion

Unix- like platforms have the du command, but that doesn't help when you need to get information
about disk-space usage in a cross-platform way. This recipe has been tested under both Windows
and Unix, although it is most useful under Windows, where the normal way of getting this
information requires using a GUI. In any case, the recipe's code can be used both as a module (in
which case you'll normally call only the di r _si ze function) or as a command-line script.
Typica use asascript is.

C.\> python dir_size.py "c:\Program Fil es"

This will give you some idea of where al your disk space has gone. To help you narrow the search,
you can, for example, display each subdirectory:

C.\> python dir_size.py --depth=1 "c:\Program Fil es"

The recipe's operation is based on recursive descent. 0s. | i st di r providesalist of names of
all the files and subdirectories of agiven directory. If di r _si ze finds a subdirectory, it calls
itself recursively. An alternative architecture might be based on 0s. pat h. wal k, which
handles the recursion on our behalf and just does callbacks to a function we specify, for each
subdirectory it visits. However, here we need to be able to control the depth of descent (e.g., to
alow the useful - - dept h command-line option, which turns into the max_dept h argument
of the di r _si ze function). This control is easier to attain when we administer the recursion
directly, rather than letting 0s. pat h. wal k handle it on our behalf.

4.24.4 See Also

Documentation for the 0s. pat h and get opt modulesin the Library Reference.

4.25 File Locking Using a Cross-Platform API
Credit: Jonathan Feinberg, John Nielsen
4.25.1 Problem

You need to lock filesin a cross-platform way between NT and Posix, but the Python standard
library offers only platform-specific ways to lock files.

4.25.2 Solution

When the Python standard library itself doesn't offer a cross-platform solution, it's often possible
to implement one ourselves:

i nport os
needs win32all to work on W ndows

if os.nane == "nt':
i mport wi n32con, wi n32file, pyw ntypes

LOCK_EX = wi n32con. LOCKFI LE_EXCLUSI VE_LOCK
LOCK SH = 0 # the default
LOCK_NB = wi n32con. LOCKFI LE_FAI L_I MVEDI ATELY

_ _overl apped = pyw ntypes. OVERLAPPED()

def lock(file, flags):
hfile = win32file. _get _osfhandle(file.fileno())
w n32file. LockFil eEx(hfile, flags, 0, Oxffff000O,
_overl apped)

def unlock(file):
hfile = win32file. _get_osfhandle(file.fileno())
wi n32file. Unl ockFil eEx(hfile, 0, Oxffff0000,
_over | apped)
elif os.na == ' posi Xx':
fromfcntl inmport LOCK EX, LOCK SH, LOCK NB

def lock(file, flags):
fentl . flock(file.fileno(), flags)

def unl ock(file):
fentl.flock(file.fileno(), fcntl.LOCK _UN)
el se:
rai se RuntinmeError("PortalLocker only defined for nt and
posi x platfornms")

4.25.3 Discussion

If you have multiple programs or threads that may want to access a shared file, it's wise to ensure
that accesses are synchronized, so that two processes don't try to modify the file contents at the
same time. Failure to do so could corrupt the entire file in some cases.

This recipe supplies two functions, | ock and unl ock, that request and release locks on afile,

respectively. Using the portalocker.py module is a simple matter of calling the | ock function and
passing in the file and an argument specifying the kind of lock that is desired:

LOCK_SH

A shared lock (the default value). This denies all processes write access to thefile,
including the process that first locks the file. All processes can read the locked file.

LOCK_EX
An exclusive lock. This denies all other processes both read and write access to the file.
LOCK_NB

A nonblocking lock. If this value is specified, the function returns immediately if it is
unable to acquire the requested lock. Otherwise, it waits. LOCK NB can be ORed with
either LOCK_SHor LOCK_EX.

For example:

i mport portal ocker
file = open("sonefile", "r+")
portal ocker.l ock(file, portal ocker.LOCK EX)

The implementation of the | ock and unl ock functionsis entirely different on Unix-like
systems (where they can rely on functionality made available by the standard f cnt | module)
and on Windows systems (where they must use the wi Nn32f i | e module, part of the very
popular Wi n32al | package of Windows specific extensions to Python, authored by Mark
Hammond). But the important thing is that, despite the differences in implementation, the
functions (and the flags you can passto the | ock function) behave in the same way across
platforms. Such cross-platform packaging of differently implemented but equivalent functionality
iswhat lets you write cross-platform applications, which is one of Python's strengths.

When you write a cross-platform program, it's nice if the functionality that your program uses is,
in turn, encapsulated in a cross-platform way. For file locking in particular, thisis helpful to Perl
users, who are used to an essentially transparent | ock system call across platforms. More
generally, i f 0s. name== just does not belong in application-level code. It should ideally
always be in the standard library or an application-independent module, asit is here.

4.25.4 See Also

Documentation on the f cnt | module in the Library Reference; documentation on the
wi n32f i | e module at

http://ASPN.ActiveState.com/A SPN/Python/Reference/Products/ A ctivePython/PythonWin32Exte
nsions/win32file.html; Jonathan Feinberg's web site (http://MrFeinberg.com).

4.26 Versioning Filenames
Credit: Robin Parmar
4.26.1 Problem

Y ou want make a backup copy of afile, before you overwrite it, with the standard protocol of
appending a three-digit version number to the name of the old file.

4.26.2 Solution

This simple approach to file versioning uses a function, rather than wrapping file objects into a
class:

def VersionFile(file_spec, vtype= copy'):
i nport os, shutil

if os.path.isfile(file_spec):
or, do other error checking:
if vtype not in 'copy', 'renane':
vtype = 'copy'

Determ ne root filenane so the extensi on doesn't
get | onger
n, e = os.path.splitext(file_spec)

1s e an integer?
try:
num = int(e)
root = n
except Val ueError:
root = file_spec

Find next available file version
for i in xrange(1000):
new file = '%s.9%3d" % (root, i)
if not os.path.isfile(newfile):

if vtype == 'copy':
shutil.copy(file_spec, new file)

el se:
os.renane(file_spec, new file)

return 1

return O
if name_ _=="'_ min_ _':
test code (you will need a file named test.txt)

print VersionFile('test.txt")
print VersionFile('test.txt")
print VersionFile('test.txt")

4.26.3 Discussion

The purpose of the Ver si onFi | e function is to ensure that an existing file is copied (or
renamed, as indicated by the optional second parameter) before you open it for writing or updating
and therefore modify it. It is polite to make such backups of files before you mangle them. The
actua copy or renaming is performed by shut i | . copy and 0s. r enane, respectively, so
the only issue is what name to use as the target.

A popular way to determine backups names is versioning (i.e., appending to the filename a
gradually incrementing number). This recipe determines the new_nane by first extracting the
filename's root (just in case you call it with an already-versioned filename) and then successively
appending to that root the further extensions.000, .001, and so on, until a name built in this
manner does not correspond to any existing file. Then, and only then, is the name used as the
target of acopy or renaming. Note that Ver si onFi | e islimited to 1,000 versions, so you
should have an archive plan after that. Y ou aso need the file to exist before it is first versioned—
you cannot back up what does not yet exist.

Thisis a lightweight implementation of file versioning. For aricher, heavier, and more complete
one, see Recipe 4.27.

4.26.4 See Also

Recipe 4.27; documentation for the 0s and shut i | modulesin the Library Reference.

4.27 Module: Versioned Backups

Credit: Mitch Chapman

Before overwriting an existing file, it is often desirable to make a backup. Example 4-1 emulates
the behavior of Emacs by saving versioned backups. It's also compatible with the mar shal
module, so you can use versioned output files for output in marshal format. If you find other file-
writing modules that, like mar shal , type-test rather than using file-like objects polymorphically,
the class supplied here will stand you in good stead.

When Emacs saves afile foo.txt, it first checks to see if foo.txt aready exists. If it does, the current
file contents are backed up. Emacs can be configured to use versioned backup files, so, for
example, foo.txt might be backed up to foo.txt.~1~. If other versioned backups of the file already
exist, Emacs saves to the next available version. For example, if the largest existing version
number is 19, Emacs will save the new version to foo.txt.~20~. Emacs can also prompt you to
delete old versions of your files. For example, if you save afile that has six backups, Emacs can
be configured to delete al but the three newest backups.

Example 4-1 emulates the versioning backup behavior of Emacs. It saves backups with version
numbers (e.g., backing up foo.txt to foo.txt.~n~ when the largest existing backup number is n-1. It
also lets you specify how many old versions of afile to save. A value that is less than zero means
not to delete any old versions.

The mar shal module lets you marshal an object to afile by way of the dunp function, but
dunp insists that the file object you provide actually be a Python file object, rather than any
arbitrary object that conforms to the file-object interface. The versioned output file shown in this
recipe provides an asFi | e method for compatibility with mar shal . dunp. In many (but,
alas, far from al) cases, you can use this approach to use wrapped objects when a modul e type-
tests and thus needs the unwrapped object, solving (or at least ameliorating) the type-testing issue
mentioned in Recipe 5.9. Note that Example 4-1 can be seen as one of many uses of the
automatic-delegation idiom mentioned there.

The only true solution to the problem of modules using type tests rather than Python's smooth,
seamless polymorphism is to change those errant modules, but this can be hard in the case of
errant modules that you did not write (particularly ones in Python's standard library).

Example 4-1. Saving backups when writing files
""" This nmodul e provides versioned output files. \Wen you
wite to such
afile, it saves a versioned backup of any existing file
contents. """

i nmport sys, os, glob, string, narshal

cl ass VersionedCQut put Fi |l e:
""" Like a file object opened for output, but with
ver si oned backups
of anything it m ght otherw se overwite """
def _ init_ (self, pathname, nunSavedVersi ons=3):
""" Create a new output file. pathnanme is the nane
of the file to

[over]write. nunSavedVersions tells how many of the
nost recent

versions of pathnanme to save

sel f. _pat hname = pat hnane

sel f. _tnpPat hname = "%s. ~new~" % sel f. _pat hnane

sel f. nunSavedVer si ons = nunBSavedVer si ons

self. outf = open(self._ tnpPat hname, "wh")

def _ _del_ _(self):
self.close()

def cl ose(self):
if self. outf:
self. _outf.close()
self. _replaceCurrentFile()
self. _outf = None

def asFile(self):
Return self's shadowed file object, since
mar shal is
pretty insistent on working with real file objects.

return self. outf

def _ getattr_ (self, attr):
Del egat e nost operations to self's open file
obj ect .
return getattr(self. _outf, attr)

def _replaceCurrentFile(self):
Repl ace the current contents of self's naned
file.
sel f. _backupCurrentFile()
os. renane(sel f. _tnpPat hnanme, self. _ pathnanme)

def _backupCurrentFile(self):
Save a nunbered backup of self's named file.
If the file doesn't already exist, there's nothing
to do
if os.path.isfile(self._pathnane):
newName =
sel f. versi onedNane(self. currentRevision() + 1)
os. renane(sel f._pat hnanme, newNane)

Maybe get rid of old versions

if ((self._nunSavedVersions is not None) and
(sel f. _nuntSavedVersions > 0)):
sel f. del eted dRevi sions()

def _versionedNanme(self, revision):
Get self's pathnane with a revision nunber
appended.
return "%. ~%~" % (sel f. _pat hnane, revision)

def _currentRevision(self):
""" Cet the revision nunber of self's |argest
exi sting backup. """
revisions = [0] + self._revisions()
return max(revisions)

def _revisions(self):
""" Get the revision nunbers of all of self's
backups. """
revisions = []
backupNanmes = gl ob. gl ob("%s. ~[0-9] *~" %
(sel f. _pat hnane))
for name in backupNanes:
try:
revision = int(string.split(name, "~")[-2])
revi si ons. append(revi si on)
except Val ueError:
Sonme ~[0-9]*~ extensions may not be wholly
numeric
pass
revisions.sort()
return revisions

def _del eted dRevi si ons(sel f):
""" Delete old versions of self's file, so that at
nost
sel f. _nunBavedVersions versions are retained. """
revisions = self. revisions()
revi sionsToDel ete = revisions[:-
sel f. _nunBSavedVer si ons]
for revision in revisionsToDel ete:
pat hnane = sel f._versi onedNane(revi si on)
if os.path.isfile(pathnane):
0s. renove(pat hname)

def main():

""" mainline nodule (for isolation testing)

basenanme = "TestFile.txt"

i f os.path. exists(basenane):
os.renmove(basenane)

for i in range(10):
outf = Versi onedQut put Fi | e(basenane)
outf.wite("This is version %.\n" %i)
outf.close()

Now there should be just four versions of TestFile.txt:
expect edSuf fixes = ["", ".~7~", ".~8~" 6 ", ~90~"
expect edVersions = []
for suffix in expectedSuffixes:

expect edVer si ons. append(" % %" % (basenane, suffix))
expect edVersions.sort()
mat chi ngFi l es = gl ob. gl ob("%s*" % basenane)

mat chi ngFil es.sort()
for filename in matchingFil es:
if filename not in expectedVersions:
sys.stderr.wite("Found unexpected file %.\n" %
fil enane)
el se:
Unit tests should clean up after thensel ves:
os.renmove(fil enane)
expect edVer si ons. renove(fil enane)
i f expectedVersions:
sys.stderr.wite("Not found expected file")
for ev in expectedVersions:
sys.sdterr.wite(' '+ev)
sys.stderr.wite('\n")

Finally, here's an exanple of how to use versioned
output files in concert with marshal
i nport mar shal

outf = VersionedQutputFile("marshal.dat")
Marshal out a sequence
mar shal . dunp([1, 2, 3], outf.asFile())

outf.close()
os.renmove(" marshal . dat")

For a more lightweight, ssimpler approach to file versioning, see Recipe 4.26.
4.27.1 See Also

Recipe 4.26 and Recipe 5.9; documentation for the mar shal modulein the Library Reference.

Chapter 5. Object-Oriented Programming

Section 5.1. Introduction

Section 5.2.

Overriding a Built-In Method

Section 5.3.

Getting All Members of a Class Hierarchy

Section 5.4.

Cdling aSuperclass init Method if It EXists

Section 5.5.

Calling a Superclass Implementation of a Method

Section 5.6.

Implementing Properties

Section 5.7.

Implementing Static M ethods

Section 5.8.

Implementing Class M ethods

Section 5.9.

Delegating Automatically as an Alternative to Inheritance

Section 5.10.

Decorating an Object with Print-Like Methods

Section 5.11.

Checking if an Object Has Necessary Attributes

Section 5.12.

Making a Fast Copy of an Object

Section 5.13.

Adding Methods to a Class at Runtime

Section 5.14.

Modifying the Class Hierarchy of an Instance

Section 5.15.

Keeping References to Bound Methods Without Inhibiting Garbage

Collection

Section 5.16.

Defining Constants

Section 5.17.

Managing Options

Section 5.18.

Implementing a Set Class

Section 5.19.

Implementing a Ring Buffer

Section 5.20.

Implementing a Collection

Section 5.21.

Delegating Messages to Multiple Objects

Section 5.22.

Implementing the Singleton Design Pattern

Section 5.23.

Avoiding the Singleton Design Pattern with the Borg Idiom

Section 5.24.

Implementing the Null Object Design Pattern

5.1 Introduction

Credit: Alex Martelli, AB Strakt, author of forthcoming Python in a Nutshell

Object-oriented programming (OOP) is among Python's greatest strengths. Python's OOP features
keep improving steadily and gradually, just like Python in general. Y ou could write object-
oriented programs better in Python 1.5.2 (the ancient, long-stable version that was new when |
first began to work with Python) than in any other popular language (excluding, of course, Lisp
and its variants—I doubt there's anything you can't do well in Lisp-like languages, as long as you
can stomach the parentheses-heavy concrete syntax). Now, with Python 2.2, OOP is substantially
better than with 1.5.2. | am constantly amazed at the systematic progress Python achieves without
sacrificing solidity, stability, and backward compatibility.

To get the most out of Python's OOP features, you should use them "the Python way," rather than
trying to mimic C++, Java, Smalltalk, or other languages you may be familiar with. Y ou can do a
lot of mimicry, but you'll get better mileage if you invest in understanding the Python way. Most
of the investment is in increasing your understanding of OOP itself: what does OOP buy you, and
which underlying mechanisms can your object-oriented programs use? The rest of the investment
isin understanding the specific mechanisms that Python itself offers.

One cavest isin order. For such ahigh-level language, Python is quite explicit about the OOP
mechanisms it uses behind the curtains: they're exposed and available for your exploration and
tinkering. Exploration and understanding are good, but beware the temptation to tinker. In other
words, don't use unnecessary black magic just because you can. Specifically, don't useit in
production code (code that you and others must maintain). If you can meet your goals with
simplicity (and most often, in Python, you can), then keep your code ssimple.

So what is OOP all about? First of al, it's about keeping some state (data) and some behavior
(code) together in handy packets. "Handy packets' is the key here. Every program has state and
behavior—programming paradigms differ only in how you view, organize, and package them. If
the packaging is in terms of objects that typically comprise state and behavior, you're using OOP.
Some object-oriented languages force you to use OOP for everything, so you end up with many
objects that lack either state or behavior. Python, however, supports multiple paradigms. While
everything in Python is an object, you package things up as OOP objects only when you want to.
Other languages try to force your programming style into a predefined mold for your own good,
while Python empowers you to make and express your own design choices.

With OOP, once you have specified how an object is composed, you can instantiate as many
objects of that kind as you need. When you don't want to create multiple objects, consider using
other Python constructs, such as modules. In this chapter, you'll find recipes for Singleton, an
object-oriented design pattern that takes away the multiplicity of instantiation. But if you want
only one instance, in Python it's often best to use a module, not an OOP object.

To describe how an object is made up, use the cl ass statement:
cl ass SoneNane:
""" You usually define data and code here (in the class

body). """

SonmeNane isaclass object. It's afirst-class object like every Python object, so you can
reference it in lists and dictionaries, pass it as an argument to a function, and so on.

When you want a new instance of a class, call the class object asif it was a function. Each call
returns a new instance object:

anl nstance = SonmeName()
anot her = SoneNane()

anl nst ance and anot her aretwo distinct instance objects both belonging to the
SonmeNane class. (See Recipe 1.8for a class that does little more than this but is quite useful.)
Y ou can bind and access attributes (state) of an instance object:

anl nst ance. soneNunber = 23 * 45
print anlnstance. someNunber # 1035

Instances of an "empty" class like this have no behavior, but they may have state. Most often,

however, you want instances to have behavior. Specify this behavior by defining methods in the
class body:

cl ass Behave:
def _ _init_ _(self, nane):
sel f.nane = nane
def once(self):
print "Hello, ", self.name
def renanme(sel f, newNane)
sel f. nane = newNane
def repeat(self, N):
for i in range(N): self.once()

Define methods with the same def statement Python uses to define functions, since methods are
basically functions. However, a method is an attribute of a class object, anditsfirst formal
argument is (by universal convention) named sel f . sel f dways refers to the instance on
which you call the method.

The method with the special name i nit _ _ isknown asthe constructor for the class.
Python callsit to initialize each newly created instance, with the arguments that you passed when
calling the class (except for sel f, which you do not pass explicitly, as Python supplies it
automatically). Thebody of i nit_ _ typicaly binds attributes on the newly created sel f
instance to initialize the instance's state appropriately.

Other methods implement the behavior of instances of the class. Typicaly, they do so by
accessing instance attributes. Also, methods often rebind instance attributes, and they may call
other methods. Within a class definition, these actions are always done with the

sel f. somet hi ng syntax. Once you instantiate the class, however, you call methods on the
instance, access the instance's attributes, and even rebind them using the

t heobj ect . sonet hi ng syntax:

beehi ve = Behave(" Queen Bee")

beehi ve. repeat (3)

beehi ve. rename(" Sti nger™)

beehi ve. once()

print beehive. nane

beehi ve. nanme = ' See, you can rebind it "fromthe outside"
too, if you want'

beehi ve. repeat (2)

If you're new to OOP in Python, try implementing these things in an interactive Python

environment, such as the GUI shell supplied by the free IDLE development environment that
comes with Python.

In addition to the constructor (i nit), your class may have other special methods,
which are methods with names that start and end with two underscores. Python calls the specia
methods of a class when instances of the class are used in various operations and built-in functions.
For example, | en(x) returnsx. ~ _len_ (),atbretunsa. _add_ (b),and
a[b] reurnsa. _ _getitem_ _(b).Therefore by defining specia methodsin aclass,

you can make instances of that class interchangeable with objects of built-in types, such as
numbers, lists, dictionaries, and so on.

The ability to handle different objects in similar ways, caled polymorphism, is a major advantage
of OOP. With polymorphism, you can call the same method on each object and let each object
implement the method appropriately. For example, in addition to the Behave class, you might
have another classthat implementsa r epeat method, with arather different behavior:

cl ass Repeater:
def repeat(self, N: print N<"*-*"

Y ou can mix instances of Behave and Repeat er at will, aslong as the only method you call
onthemisr epeat :

aM x = beehi ve, Behave('John'), Repeater(), Behave('world")
for whatever in aM x: whatever.repeat (3)

Other languages require inheritance or the formal definition and implementation of interfaces for

polymorphism to work. In Python, all you need is methods with the same signature (i.e., methods
that are callable with the same arguments).

Python a so has inheritance, which is a handy way to reuse code. Y ou can define a class by
inheriting from another and then adding or redefining (known as overriding) some of its methods:

cl ass Subcl ass(Behave):

def once(self): print '(%)' % self.nane
subl nstance = Subcl ass(" Queen Bee")
subl nst ance. r epeat (3)

The Subcl ass class overrides only the once method, but you can also cdl the r epeat
method on subl nst ance, asit inherits that method from the Behav e superclass. The body
of ther epeat method callsonce N times on the specific instance, using whatever version of
the once method the instance has. In this case, it uses the method from the Subcl ass class,
which prints the name in parentheses, not the version from the Behav e class, which prints it
after a greeting. The idea of a method calling other methods on the same instance and getting the

appropriately overridden version of each isimportant in every object-oriented language, including
Python. Thisis known as the Template-Method design pattern.

Often, the method of a subclass overrides a method from the superclass, but needsto call the
method of the superclass as a part of its own operation. Y ou do this in Python by explicitly getting
the method as a class attribute and passing the instance as the first argument:

cl ass OneMor e(Behave):
def repeat(self, N): Behave.repeat(self, N+1)

zeal ant = OneMore("Wor ker Bee")
zeal ant . repeat (3)

The OneMbr e classimplementsitsown r epeat method in terms of the method with the same
name in its superclass, Behave, with a dight change. This approach, known as delegation, is
pervasive in al programming. Delegation involves implementing some functionality by letting
another existing piece of code do most of the work, often with some dlight variation. Often, an
overriding method is best implemented by delegating some of the work to the same method in the
superclass. In Python, the syntax Cl assnane. nmet hod(sel f, ...) delegatesto

Cl assnane's version of the method.

Python actually supports multiple inheritance: one class can inherit from severa others. In terms
of coding, thisis aminor issue that lets you use the mix-in class idiom, a convenient way to
supply some functionality across a broad range of classes. (See Recipe 5.14 for an unusual variant
of this.) However, multiple inheritance is important because of its implications for object-oriented
analysis—how you conceptualize your problem and your solution in the first place. Single
inheritance pushes you to frame your problem space via taxonomy (i.e., mutually exclusive
classification). The real world doesn't work like that. Rather, it resembles Jorge Luis Borges's
explanation in "The Anaytical Language of John Wilkins', from a purported Chinese
Encyclopedia, The Celestial Emporium of Benevolent Knowledge. Borges explains that al animals
are divided into:

Those that belong to the Emperor

Embalmed ones

Those that are trained

Suckling pigs

Mermaids

Fabulous ones

Stray dogs

Those included in the present classification
Those that tremble as if they were mad
Innumerable ones

Those drawn with a very fine camelhair brush
Others

Those that have just broken a flower vase
Those that from along way off look like flies

You get the point: taxonomy forces you to pigeonhole, fitting everything into categories that aren't
truly mutually exclusive. Modeling aspects of the real world in your programsis hard enough
without buying into artificial constraints such as taxonomy. Multiple inheritance frees you from
these constraints.

Python 2.2 has introduced an important innovation in Python's object model. Classic classes, such
as those mentioned in this introduction, still work as they aways did. In addition, you can use
new-style classes, which are classes that subclass abuilt-in type, suchas | i st, di ct,orfile.
If you want a new -style class and do not need to inherit from any specific built-in type, you can
subclass the new type obj ect , which is the root of the whole inheritance hierarchy.

New-style classes work like existing ones, with some specific changes and severa additional
options. The recipesin this book were written and collected before the release of Python 2.2, and
therefore use mostly classic classes. However this chapter specifiesif arecipe might be
inapplicable to a new-style class (arare issue) or if new -style classes might offer aternative (and
often preferable) ways to accomplish the same tasks (which is most often the case). The
information you find in this chapter is therefore just as useful whether you use Python 2.1, 2.2, or

even the dtill-experimental 2.3 (being designed as we write), which won't change any of Python's
OOP features.

5.2 Overriding a Built-In Method
Credit: Dave Haynes
5.2.1 Problem

You need to wrap (or, in Python 2.2, inherit from) alist or tuple, delegating several operations to it,
and want to provide proper dicing (i.e., through the special method = _getitem).

5.2.2 Solution

In most cases, overriding special methods of built-in objects when you inherit from those objects
(or wrap them with automatic delegation, which is not technically an override) poses no special
challenge. When inheriting in Python 2.2, you can call the special method of the superclass with
the usual unbound-method syntax. When wrapping, use the syntax that is specific to the operation,
suchassel f. dat a[sonei ndex] for indexing.

Slicing is harder, because while slicing should go through the same special method
getitem _ asindexing (since Python 2.0), lists and tuples till implement an older
approach: the more limited special method = _getslice_ _ (and similarly for _
_setitem _versus _setslice _ad__delitem _ versus
del slice _).So, youmust provide aremedy, normally withat r y/except :

class SliceTester:
def _ init_ (self):
self.data = ['zero',

one', 'two', "three', 'four']

def _ getitem _(self, indexOrSlice):
try:
return self.data[indexOrSlice]
except TypeError:
return
self.data[i ndexOrSlice.start:indexOrSlice. stop]

5.2.3 Discussion

When a user-defined class wraps (or, in Python 2.2, inherits from) alist or tuple, it often needsto
definethe ~ set* and_ _get* gpecial methods and delegate part or all of their
operation to the wrapped (or inherited) built-in object to provide the correct access to the data.

The documentation for Python 2.0 and later deprecatestheuseof = getslice and
setslice _.lInstead, it suggests providing suitably extended versionsof ~ _getitem_
_and__ _setitem_ . Thisisatruly excellent idea because it enables the use of the
extended-form dlicing approaches (including step, ellipsis, and so on) that Numeric Python has
made so deservedly popular among its regular users. Unfortunately, if you try to pass a slice object
to the item-oriented special methods of alist or tuple object, you get a TypeEr r or ; the

underlying C API till insists on receiving integer parameters, not slice objectsin all their glory,
whatever the documentation may say.

Fortunately, working around this problem isn't as dramatic as all that. Y ou just need to trap the
TypeError you get from trying to index an old-fashioned sequence with a dice, and remedy it

suitably. Here's the typical self-test code that you can append to the recipe's module and execute
when it isrun as amain script:

if name_ _=="_ min_ _
theSlice = SliceTester()
a = theSlice[2]
b = theSlice[: 3]
print a

print b

Intherecipe's Sl | ceTest er example class, the remedy is pretty minimal; it's just an attempt
to use start and stop attributes of the noninteger index (presumably an instance of the sl i ce
built-in type). Y ou may want to do alot more (implement step, ellipsis, and so on).

Note that this recipe doesn't cover all of the cases in which dlices can be used. Thereisathird
argument to the slice operator that defines the step, or stride, of the dlicing. For example, if dat a
is a Numeric Python array (the only widely used software that supports slicing in al its glory),
dat a[0: 101: 10] returnsthe sequence dat a[0] , dat a[10] , dat a[20] —upto

dat a[100] . Similarly, dat a[: : - 1] returns a sequence containing the contents of dat a
reversed. The third argument to the dlice operator is stored in the St ep attribute of dlice objects
and isset to None if astep isn't specified (asinl i st [st art : end]). Given this, it shouldn't
be a surprise that the recipe shown earlier will not magically add support for steps to objects that
don't support new-style dlices.

The point of this recipeis that you must be aware of these limitations and take precautionary
measures. Also, don't type-test for ani ndex of type sl i ce. If normal indexing refuses the

index, you are better off catching the TypeEr r or inanexcept clause and entering another

try/except inwhichyoutry tousethe i ndex asthe sl i ce you now expect it to be. This
lets client code pass you objects that are polymorphic to slice objects.

5.2.4 See Also

The section of the Language Reference on slicing; the description of the sl i ce built-in function
inthe Library Reference.

5.3 Getting All Members of a Class Hierarchy
Credit: Jirgen Hermann, Alex Martelli
5.3.1 Problem

Y ou need to map all members of aclass, including inherited members, into a dictionary of class
attribute names.

5.3.2 Solution

Here is a solution that works portably and transparently on both new -style (Python 2.2) and classic
classes with any Python version:

def all_menbers(adC ass):
try:
Try getting all relevant classes in nethod-
resol uti on order

nto = list(aClass. _ nro_)
except AttributeError:
If a class has no _ nro_ , then it's a classic

cl ass
def getnmro(aC ass, recurse):
nro = [ad ass]
for base in aClass.__bases_ _
nr o. extend(recurse(base, recurse))
return nro
nro = getnro(aC ass, getnro)
nro.reverse()
menbers = {}
for someClass in nro: nmenbers. updat e(vars(soneC ass))
return nmenbers

5.3.3 Discussion

Theal | _memnber s function in this recipe creates a dictionary that includes each member (such

as methods and data attributes) of a class with the name as the key and the class attribute value as
the corresponding value. Here's a usage example:

cl ass Eggs:
eggs = 'eggs’
spam = None

cl ass Spam
spam = ' spam

cl ass Breakfast(Spam Eggs):
eggs = 'scranbl ed'

print all_rmenbers(Eggs)
print all_menmbers(Spam
print all_menbers(Breakfast)

And here's the output of this example (note that the order in which each dictionary's items are
printed is arbitrary and may vary between Python interpreters):

{"spam: None, '_ _doc_ _': None, 'eggs': 'eggs', '_
module ': ' main_ '}

{"spam: "spam, '_ _doc_ _': None, '_ _nodule_ _": ' _
min '}

{"_ _doc_ _': None, 'eggs': 'scranbled', 'spam: 'spam, '
nmodule ': ' main_ _'}

After constructing the dictionary d withd=al | _nenber s(c), you can use d for repeated
introspection about classc. d. has_key(x) isthesameas hasattr (c, x), and

d. get (x) isthesameasget attr (c, x, None), but it doesn't repeat the dynamic search
procedure each time. Apart from the order of itsitems, d. keys islikedi r (¢) if c isanew-
style class (for which di r also returns the names of inherited attributes) but is richer and
potentially more useful thandi r (¢) if c isaclassic class (for which di r does not list inherited
attributes, only attributes defined or overridden directly in class C itself).

Theal | _nmenber s function starts by getting alist of all relevant classes (the classitself and all
of its bases, direct and indirect), in the order in which attributes are looked up, in the nT 0 variable
(MRO stands for method-resolution order). This happens immediately for a new -style class, since

it exposes thisinformation withits _ _nro_ _ attribute—we just need to build alist from it,
sinceitisatuple If accessing _nro_ _ fails, were dealing with a classic class and must

build nT 0 up in arecursive way. We do that in the nested function get nr o inthe except
clause. Note that we give get nt o itself as an argument to facilitate recursion in older Python
versions that did not support lexically nested scopes.

Oncewehave nT 0, weneed to r ever se it, because we build up our dictionary with the
updat e method. Whenwe call adi ct . updat e(anot her di ct), theentriesin the two
dictionariesadi ct and anot her di ct are merged as the new contents of adi ct . In case of
conflict (i.e., akey K is present in both dictionaries), the value used is anot her di ct [K],
which overrides the previous value of adi ct [k] . Therefore, we must build our dictionary
starting with the classes that are looked up last when Python is looking for an attribute. We move
towards the classes that are looked up earlier to reproduce how overriding works with inheritance.
The dictionaries we merge in this way are those given sequentially by the built-in function var s
on each class. var s takes any object as its argument and returns a dictionary of the object's
attributes. Note that even for new -style classes in Python 2.2, var s does not consider inherited
attributes, just the attributes defined or overridden directly in the object itself, as di r does only
for classic classes.

5.3.4 See Also

Understanding method resolution order is a new challenge even for old Python hands. The best
description isin Guido's essay describing the unification of types and classes
(http://www.python.org/2.2/descrintro.html#mro), which was refined somewhat in PEP 253
(http://www.python.org/peps/pep-0253.html).

5.4 Calling a Superclass _ _init_ _ Method if It Exists
Credit: Alex Martelli
5.4.1 Problem

Youwanttoensurethat ~ _init_ iscaled for al superclasses that define it, and Python
does not do this automatically.

5.4.2 Solution

There are several ways to perform this task. In a Python 2.2 new -style class, the built-in super
function makes it easy (aslong asall superclass . _init__ methodsalso use super
similarly):

cl ass NewStyl eOnly(A, B, O):
def _ _init_ (self):
super (NewStyl eOnly, self). _init_ ()
Subcl ass-specific initialization foll ows

For classic classes, we need an explicit loop over the superclasses, but we can still choose
different ways to handle the possibility that each superclass may or may not havean i nit _

__method. The most intuitive approach isto "Look Before You Leap” (LBYL), i.e., check for

existence before calling. While in many other cases LBYL has problems, in this specific case it
doesn't, so we use it because it is the simplest approach:

cl ass LookBeforeYouLeap(X, Y, Z2):

def _ _init_ _(self):
for base in self__class_ . _ _bases_ _
if hasattr(base, ' _init_ "):
base. _init_ _(self)

Subcl ass-specific initialization foll ows

5.4.3 Discussion

Often, we want to call amethod on an instance (or class) if and only if that method exists.
Otherwise, we do nothing or default to another action. For example, this often appliesto the

init _ method of superclasses, since Python does not automatically call this method if it

exigts. Adirectcallof X. ~ _init__ _(sel f) (including approaches such as those in
Recipe 5.5) works only if baseclass X definesan ~ _init_ method. We may, however,

want to make our subclass independent from such a superclass implementation detail. Typically,
the coupling of a subclass to its base classes is pretty tight; loosening it is not a bad ides, if it is
feasible and inexpensive.

In Python 2.2's new -style object model, the built-in super function provides the smplest, fastest,
and most direct solution, as long as al superclasses are also new -styleand use super similarly.
Note that al new-styleclasseshavean i nit _ _ method because they all subclass

obj ect,and obj ect defines_ _init_ _ asado-nothing function that accepts and
ignores its arguments. Therefore, al new-style classeshavean i nit _ _ method, either by
inheritance or by override.

More generally, however, we may want to hand-craft another solution, which will help us for
classic classes, mixtures of new-style and classic classes, and other methods that may or may not
be present in each given superclass. Even though thisrecipeisabout i nit | itsideas
can clearly apply to other cases in which we want to call all the superclass implementations of any
other given method. We then have a choice of three general categories of approaches:

1. Check for attribute existence with hasat t r before the otherwise normal call.
2. Try thecdl (or the attribute fetching with get at t r) and catch the error, if any.
3. Useget at t r toreturn the desired attribute, or else a do-nothing function (more

generaly, a callable object with suitable default functionality) if the attribute does not
exist, then proceed by calling whatever callable is returned.

The solution shows the first approach, which is the simplest and most appropriate for the common
caseof _ _init_ _ inamultiple classic-classinheritance. (The recipe's code works just as
well with single inheritance, of course. Indeed, as a specia case, it works fine even when used in a
class without any bases.) Using the LBY L approach here has the great advantage of being obvious.
Note that the built-in hasat t r function implements proper lookup in the bases of our bases, so
we need not worry about that. As a general idiom, LBY L often has serious issues, but they don't
apply in this specific case. For example, LBYL can interrupt an otherwise linear control flow with
readability-damaging checks for rare circumstances. With LBYL, we aso run the risk that the
condition we're checking might change between the moment when we look and the moment when
we leap (e.g., in a multithreaded scenario). If you ever have to put locks and safeguards bracketing
the look and the leap, it's best to choose another approach. But this recipe's specific case is one of
the few in which LBYL is okay.

The second approach is known as "Easier to Ask Forgiveness than Permission” (EAFP). The
following naive variant of it is somewhat fragile:

cl ass Easi er ToAskFor gi veness_Nai ve(X, Y, 2):

def _ init_ (self):
for base in self__class_ . bases
try: base._ _init_ _(self)

except AttributeError: pass
Subcl ass-specific initialization foll ows

While EAFP is a good genera approach and very Pythonic, we still need to be careful to catch
only the specific exception we're expecting from exactly where we're expecting it. The previous
code is not accurate and careful enough. If base. _init_ existsbut fails, and an

At tri but eError israised because of an internal logic problem, typo, etc., ~ _init
will mask it. It's not hard to fashion a much more robust version of EAFP:

cl ass Easi er ToAskFor gi veness_Robust (X, Y, 2):

def _ init_ (self):
for base in self__class . _bases
try: fun = base._ _init_ _

except AttributeError: pass
el se: fun(self)
Subcl ass-specific initialization foll ows

The Robust variant is vastly superior, since it separates the subtask of accessing the base.
init _ calableobject (unbound method object) from the task of calling it. Only the access
to the callable object is protected inthe t r y/except . The call happens only when no exception
was seen (which iswhat the el se clauseisforinthet ry/except statement), and if executing
the call raises any exceptions, they are correctly propagated.

Separating the acquisition of the callable from calling it leads us to the third approach, known as
"Homogenize Different Cases' (HDC). It's best implemented with a small do-nothing local
function:

cl ass Honpgeni zeDi f ferent Casesl1(X, Y, 2):

def _ _init_ _(self):
def doNot hi ng(obj): pass
for base in self__class_ . _bases_
fun = getattr(base, init ', doNot hi ng)
fun(sel f)

Subcl ass-specific initialization foll ows
For | anbda fanatics, here is an alternative implementation:

cl ass Honogeni zeDi fferent Cases2(X, Y, Z):
def _ _init_ _(self):
for base in self_ _class
fun = getattr(base,
fun(sel f)
Subcl ass-specific initialization foll ows

_ . _bases
"o init '

—_

Ténbda X: None)

Again, thisis a good genera approach (in Python and more generally in programming) that often
leads to ssimpler, more linear code (and sometimes to better speed). Instead of checking for
possible special cases, we do some preprocessing that ensures we are in regular cases, then we
proceed under full assumption of regularity. The sentinel idiom in searches is a good example of
HDC in a completely different context, asis the Null Object design pattern (see Recipe 5.24). The
only difference between the two HDC examples described here is how the do-nothing callable is
built: the first uses a simple nested function with names that make its role (or, perhaps, nonrole)
totally obvious, while the other usesa | anmbda form. The choice between them is strictly a style
issue.

5.4.4 See Also

Recipe 5.5 and Recipe 5.24.

5.5 Calling a Superclass Implementation of a Method
Credit: Alex Martelli
5.5.1 Problem

Y ou need functionality equivalent to Javas super keyword to delegate part of a method to a
superclass.

5.5.2 Solution

When you override the method of a superclass, you often want to call the superclasss version of a
method as part of your override. In a Python 2.2 new -style class, the new built-in super function
helpsalot:

class A(B, O):
def anet hod(self):
First, call the superclass's version
super (A, self).anmethod()
Continue with A-specific inplenmentation

With super, you transparently call anet hod inthe B or C superclass, or in both, if both
classes define it, and B also uses super in the same way.

This doesn't work for classic classes (or in Python 2.1 and earlier), but we can arrange for a
dlightly wesker version:

def super(class_, inst):
First, try the real thing, if avail able and applicable
try: return _ _builtins_ _.super(class_, inst)

except (TypeError, AttributeError): pass
Otherwi se, arrange for a weaker substitute
cl ass Super:

def _ init_ (self, class_, inst):
Just renenber the bases and instance
self.bases = class_.__bases_
self.inst = inst

def _ getattr_ (self, name):

Seek the bases for an unbound nethod; break
when found
for base in self.bases:
nmet hod = getattr(name, nethod, None)
if nmethod is not None: break
el se: raise AttributeError, nane # No base has
it, so raise
Found, so create and return the bound-net hod
Ver sion
i mport new
return new. i nstancenet hod(nmet hod, self.inst,
nmet hod. i m cl ass)

Used inaclassic class, thissuper calls amethod only in the base where it first findsit. In
classic-class settings, to call amethod in all superclasses that have it, use the approaches shown in
Recipe 5.4.

5.5.3 Discussion

When you override a method, it is quite common to want to delegate part of its execution to a
superclass. In other words, even though you are overriding the method to provide extra features,
you still need to use the superclass's implementation as part of your own. If thereisjust asingle
superclass, or if you know which superclass implementation you need to call, it is easy to do this
with the normal Python idiom Super cl ass. t henet hod(sel f, ...).However, with
multiple inheritance, you may not know which superclass you want. If you refactor your code, you
may move methods between superclasses, so you shouldn't depend on a method's exact location in
the subclass you're writing. Often, you may want to call all implementations of a method in dl
superclasses, particularly for special methods, suchas ~ _init_ _or _ _del

Python 2.2's new-style object model offers adirect solution for this task: the new super built-in
function. You call super with two arguments:. the class in which you're overriding the method
and sel f . Looking up any method on super 's return value returns the appropriate superclass
implementation to call as a bound method (i.e., you don't explicitly passit sel f again). If you
use this technique systematically in all the classes that override this method, you end up calling

every superclass implementation (in the new-style model's canonical method resolution order, so
you don't have to worry about diamond-shaped inheritance graphs).

In the classic object model, super doesn't work (and in Python 2.1 and earlier, it doesn't even
exist). In this recipe, we simulate it in a slightly weaker but till useful way. The recipe defines a
factory function (i.e., a function that builds and returns a suitable object) also caled super, so
that it shadows the built-in super from normal use. You use it as you use the built-in super ,
except that you can use it in classic or new -style classes interchangeably. The recipe's function
first tries to use the built-in super . If that's not found or not applicable, the function falls back to
the dightly weaker but useful equivalent, the Super class.

The Super class does not let you transparently call a method in several superclasses, nor does it
apply the new-style method resolution order. However, it does work for smple cases.

init _ simply stashes away the instance and the list of bases. ~ _getattr__ _ loopson
all bases; if the loop does not find the method, and thus never br eaks, the el se clauseis
entered, whichraises At t r i but eErr or. If themethod isfound, _getattr_ wraps

it into a bound method (the better to smulate the built-in super ‘sworkings) and returnsit. The
wrapping is performed viathe i nst ancemnet hod function in the new module using the
i m cl ass attribute of the unbound method, which records the class that supplied the method.

5.5.4 See Also

Recipe 5.4, Recipe 14.8 and Recipe 14.9.

5.6 Implementing Properties
Credit: Luther Blissett
5.6.1 Problem

Y ou want client code to use normal attribute-access syntax for using, binding, or deleting instance
attributes, but you want the semantics of these actions to be determined by method calls (e.g., to
compute an attribute's value on the fly).

5.6.2 Solution
With Python 2.2 new-style classes, the new built-in pr oper t y function lets you do this directly:

cl ass Rect angl e(obj ect):
def _ _init_ (self, width, height):
self.width = width
sel f. hei ght = hei ght
def getArea(self): return self.width * self. height
def setArea(self, value): raise AttributeError, "Can't
set 'area' attribute”
area = property(getArea, setArea)

With classic classes, you must implement properties yourself with the special methods
getattr _and_ _setattr_ _

cl ass Rectangl e:
def _ _init_ (self, wdth, height):
self.width = width
sel f. hei ght = hei ght
def getArea(self): return self.width * self. height
def setArea(self, value): raise AttributeError, "Can't
set "area' attribute”
def _ getattr_ (self, nane):
if nane=="area': return self.getArea()
raise Attri buteEBrror, nane
def _ _setattr_ _(self, nane, value):
if name=="area': return self.setArea(val ue)
self._ _dict_ _[name] = value

5.6.3 Discussion

Properties are an important objectoriented concept. Instances of a class often need to expose two
different kinds of attributes: those that hold data and those that are computed on the fly with a
suitable method, whenever their values are required. If you expose the real attributes directly and
the computed attributes via methods, such as get Ar ea, current implementation issues will
appear in the interface for your class and throughout the client code, which should really be
independent from such issues. And if you ever change the implementation, you are in serious
trouble.

The alternative of exposing everything via so-called accessor methods is also far from satisfactory.
In this case, the code for your class fills up with highly repetitive boilerplate code such as:

def getWdth(self): return self.w dth

Even worse, your client code is cluttered with more verbose and less-readable statements such as:
r.setHeight(r.getHeight()+1)

rather than more concise and readabl e statements such as:

r.height +=1

Moreover, the unnecessary calls to the accessor methods slow your code's operation.

Properties let you have your cake and eat it too. Client code accesses al attributes uniformly (e.g.,
r.w dt h, r. ar ea) without caring or needing to know which are real and which are computed
on the fly. Your class just needs a way to ensure that when client code accesses a computed
attribute, the right method is called, and its return value is taken as the attribute's value. For
example:

>>> r = Rectangl e(10, 20)
>>> print r.area
200

When client code accesses a real attribute, nothing specia is needed.

With Python 2.2's new -style classes, you can use the built-in pr oper t y function to define
properties. You pass it the accessor functions for get and set operations, optionally followed by
one to use for deletions (an optional fourth argument is the attribute's documentation string). You

bind the return value to the name, in class scope, that you want the client code to use when
accessing the property on class instances.

In classic classes, you can till have properties, but you need to implement them yourself. When
any code accesses an attribute that doesn't exist for an object, Python callsthe ~ _getattr
__method for the class (if it exists) with the attribute's name as the argument. Y ou just need to test
for the names of the properties that you are implementing and delegate to the appropriate method,
as shown in the second solution. Whenever an attribute is set on your object (whether the attribute
exists or not), Python callsthe _ _setattr__ _ method for the class (if it exists) with the
attribute's name and the new value assigned to it as arguments. Since . _setattr_ _is
called for al attribute settings, it must also deal with setting real attributes in the normal ways (as
itemsinsel f. _dict_). Also, other methodsin classes that implement
_setattr__ oftensetitemsinsel f. _dict__ directly to avoid triggering _
setattr _ needlessly.

5.6.4 See Also

Properties are currently underdocumented. There is aminimal description in Guido's essay
describing the unification of types and classes
(http://www.python.org/2.2/descrintro.html#property); additional minimal information is available
from the online help system (hel p(pr operty)). However, by the time you read this, the
Language Reference will likely have been updated.

5.7 Implementing Static Methods
Credit: Alex Martelli, Carel Fdlinger

5.7.1 Problem

Y ou want to call methods directly on a class without supplying an instance of the class as the first
argument, or on any instance without having the instance implicitly become the first argument.

5.7.2 Solution

In Python 2.2 (on either classic or new -style classes), the new built-inst at i cnet hod
function wraps any callable into a static method, and we just bind the same name to the
st ati cret hod object in class scope:

class Greeter:
def greet(nane): print "Hello", nane
greet = staticnethod(greet)

In Python 2.1 and earlier, we can easily simulate the same construct:
cl ass staticnethod:

def _ init_ (self, anycallable): self._ _call_ _
anycal | abl e

Now, with any release of Python, we can say:

>>> greeting = Geeter()
>>> greeting.greet("Peter")
Hel |l o Peter

>>> (reeter.greet("Paul™)
Hel | o Paul

Y ou can get a static method as a class attribute or as the attribute of any instance of the class. It
does not matter which, because when you call the static method, it calls the underlying callable

anyway.
5.7.3 Discussion

In Python, when you want to make a function available for calling, you normally expose it as an
attribute of a module, not of a class. An attribute of a class object that starts out as a Python
function implicitly mutates into an unbound method (see Recipe 5.13 for away to exploit this).
Thus, if you want to make the function available as a class attribute, without mutation, you need to
wrap the function into a callable of another type and bind that wrapper callable as the class
attribute. Python 2.2 offers anew built-inst at i cret hod type that performs just such a
wrapping. This recipe shows how to use it and how to emulate it easily in earlier Python versions
with atiny auxiliary class of the same name.

As the recipe shows, you normally define the function that will become a static method with a
def statement in the class body, and then immediately rebind the same name to the

st ati crret hod object. You don't have to do it this way, though. Y ou could simply write the
following code outside of the class body:

def anotherfunction(): print "Yes, you CAN do that"
Greeter. pecul i armet hodnanme = staticnet hod(anot herfuncti on)

Unless you have a good reason to proceed in this way, such a noncustomary way of doing things
will just confuse future readers of your code.

In some languages (such as C++ or Java), static methods are also sometimes called class methods.
However, the term class methods should be reserved for methods that belong to the class, in the
same way that normal methods belong to the instance (i.e., for methods that receive the class
object as their first implicit argument). Static methods in Python, asin C++, are little more than
bland syntactical sugar for free-standing functions. See Recipe 5.8for how to make real class
methods (a la Smalltalk) in Python.

5.7.4 See Also

Recipe 5.8 and Recipe 5.13.

5.8 Implementing Class Methods
Credit: Thomas Heller
5.8.1 Problem

Y ou want to call methods directly on a class without having to supply an instance, and with the
classitself as the implied first argument.

5.8.2 Solution

In Python 2.2 (on either classic or new -style classes), the new built-incl assmnet hod function
wraps any callable into a class method, and we just bind the same name to the cl assnet hod
object in class scope:

class Greeter:

def greet(cls, nane): print "Hello from%"%ls._ _nane
_, hane

greet = classnethod(greet)

In Python 2.1 or earlier, we need awrapper that is dightly richer than the one used for static
methods in Recipe 5.7:

cl ass cl assnet hod:
def _ _init_ (self, func, klass=None):
self.func = func
sel f. klass = kl ass
def _ _call_ _(self, *args, **kw):
return self.func(self.klass, *args, **kw)

Furthermore, with this solution, the following rebinding is not sufficient:
greet = cl assnet hod(greet)

Thisleavesgr eet . kl ass set to None, and if the class inherited any class methods from its
bases, their k| ass attributes would also be set incorrectly. It's possible to fix this by defining a
function to finish preparing a class object and always explicitly calling it right after every cl ass
statement. For example:

def arrangecl assnet hods(cl s):
for attribute name in dir(cls):
attribute_value = getattr(cls, attribute_nane)
if not isinstance(attribute_value, classnethod):
conti nue
setattr(cls, classnethod(attribute_value.func, cls))

However, thisisn't completely sufficient in Python versions before 2.2, since, in those versions,

di r ignored inherited attributes. We need a recursive walk up the bases for the class, asin Recipe
5.3. But aworse problem is that we might forget to call the ar r angecl| assnet hods
function on a class object right after itscl ass statement.

For older Python versions, a better solution is possible if you have Jim Fulton's

Ext ensi onCl ass class. Thisclassisthe heart of Zope, so you have it if Zopeisinstalled
with Python 2.1 or earlier. If you inherit from Ext ensi onCl ass. Base and define a method
cdled class_init_ _,themethod is caled with the class object as its argument after
the class object is built. Therefore:

i nport ExtensionCl ass

cl ass Cl assWthC assMet hods(Ext ensi onCl ass. Base) :
def _ class_init_ (cls): arrangecl assnethods(cls)

Inherit from Cl assW t hCl assMet hods directly or indirectly, and

arrangecl assnet hods iscalled automatically on your class when it's built. You still have
to write arecursive version of ar r angecl| assmnet hods for generality, but at least the
problem of forgetting to call it is solved.

Now, with any of these solutions, we can say:

>>> greeting = Geeter()
>>> greeting.greet("Peter")
Hello from Greeter Peter
>>> (reeter.greet("Paul")
Hello from G eeter Paul

5.8.3 Discussion

Real class methods, like those in Smalltalk, implicitly receive the actua class as the first
parameter and are inherited by subclasses, which can override them. While they can return
anything, they are particularly useful as factory methods (i.e., methods that create and return
instances of their classes). Python 2.2 supports class methods directly. In earlier releases, you need
awrapper, such asthe cl assnet hod class shown in this recipe, and, more problematicaly,
you need to arrange the wrapper objects right after you create a class, so that the objects refer to
the actual class when you call them later.

Zope's Ext ensi onCl ass helps with the latter part. Metaclasses should also help you achieve
the same effect, but, since they were hard to use before Python 2.2, and the likeliest reason to till
use Python 2.1 is that you use a version of Zope that requires Python 2.1, this should be avoided.
The point is that statements in the class body execute before the class object is created, while our
arranging needs to take place after that. Classes that inherit from Ext ensi onCl ass. Base
solve this problem for us, sincetheir _ _cl ass_init_ _ method automatically executes
just after the class object is created, with the class object itself as the only argument. Thisisan
ideal situation for usto delegate to our ar r angecl assmet hods function.

In Python 2.2, the wrapping inside the class body suffices because the new built-in type

cl assnet hod does not need to access the class object at the point of creation, so it's not an
issueif the class object does not yet exist when the class methods are wrapped. However, notice
that you have to perform the wrapping again if a subclass overrides particular class methods (not,
however, if they inherit them).

5.8.4 See Also

Recipe 5.7, Ext ensi onCl ass isnot available as a standalone class, but is part of Zope
(http://www.zope.org).

5.9 Delegating Automatically as an Alternative to
Inheritance

Credit: Alex Martelli

5.9.1 Problem

You'd like to inherit from a built-in type, but you are using Python 2.1 (or earlier), or need a
semantic detail of classic classes that would be lost by inheriting from a built-in type in Python 2.2.

5.9.2 Solution

With Python 2.2, we can inherit directly from a built-in type. For example, we can subclassf i | e
with our own new-style class and override some methods:

cl ass UppercaseFile(file):
def wite(self, astring):
return file.wite(self, astring.upper())
def writelines(self, strings):
return file.witelines(self,
map(string. upper, strings))
upper Open = UppercaseFile

To open such afile, wecan call upper Open just like afunction, with the same arguments as
the built-in open function. Because we don't override ~ _init_ ,weinheitfil e's
arguments, which are the same asopen'’s.

If we are using Python 2.1 or earlier, or if we need aclassic class for whatever purpose, we can
use automatic delegation:

cl ass UppercaseFil e:
Initialization needs to be explicit
def _ init_ (self, file):
NOT self.file=file, to avoid triggering _
setattr

self._ _dict_ ['file'] =file

Overrides aren't very different fromthe inheritance
case:
def wite(self, astring):
return self.file.wite(astring.upper())
def witelines(self, strings):
return
self.file.witelines(map(string.upper,strings))

Automatic delegation is a sinple and short boil erpl ate:

def _ _getattr_ (self, attr):
return getattr(self.file, attr)
def _ setattr_ (self, attr, value):

return setattr(self.file, attr, val ue)

def upper Qpen(*args, **kwds):

return UppercaseFil e(open(*args, **kwds))

In this variant, upper Open iscalled just as before but it separates the generation of the file
object internally (done viathe built-in open function) and its wrapping into the automatically
delegating class (Upper caseFi | e).

5.9.3 Discussion

Automatic delegation, which the special methods ~ _getattr and _ _setattr_ _ letus
perform so smoothly, is a powerful and general technique. In this recipe, we show how to use it to
get an effect that is amost indistinguishable from subclassing a built-in type, but in away that also
works with Python 2.1 and earlier. This technique also produces a classic class, just in case we
want the classic object model's semantics even in newer versions of Python. Performance isn't
quite as good as with real inheritance, but we get better flexibility and finer-grained control as
compensation.

The fundamental idea is that each instance of our class holds an instance of the typewe are
wrapping (i.e., extending and/or tweaking). Whenever client code tries to get an attribute from an
instance of our class, unless the attribute is specifically defined there (e.g., thewr i t € and
writelines methodsinthisrecipe), _getattr _ transparently shunts the request to
the wrapped instance. In Python, methods are a so attributes, accessed in just the same way, so we
don't need to do anything more to access methods—the approach used to access data attributes
worksfor methodsjust aswell. ~ _setattr playsasmilar role when client code sets an
attribute. Remember that to avoid triggering . _set attr _ _ from inside the methods you
code, you must set valuesinsel f. dict _ _ explicitly. While Python calls
_getattr__ _ only for attributes it does not find in the usual way, itcalls _ _setattr _
_ for every attribute that is set (except for afew special onessuchas = dict and
class _, heldin the object itself and not in its dictionary).

Note that wrapping by automatic delegation does not work well with client or framework code
that, one way or another, does type-testing. In such cases, it is the client or framework code that is
breaking polymorphism and should be rewritten. Remember not to use type-tests in your own
client code, as you probably do not need them anyway. See Recipe 5.11 for better aternatives.

In Python 2.2, you'll use automatic delegation less often, since you don't need it for the specific
purpose of subclassing built-ins. However, delegation still has its place—it is just a bit farther
from the spotlight than in 2.1 and earlier. Although the new-style object model (which you get by
subclassing built-ins) is amost always preferable, there are a few cases in which you should use
classic classes because they are even more dynamic than new -style classes. For example, if your
program needs to change an instance's ¢l ass__ _ onthefly, thisis always allowed for
instances of classic classes, but subject to constraints for instances of new -style classes. More
importantly, delegation is generally more flexible than inheritance, and sometimes such flexibility
isinvaluable. For example, an object can delegate to different subobjects over time or even all at
once (see Recipe 5.21), and inheritance doesn't offer anything comparable.

5.9.4 See Also

Recipe 5.11 and Recipe 5.21; PEP 253 (http://www.python.org/peps/pep-0253.html) describesin
detail what there is to know about subtyping built-in types.

5.10 Decorating an Object with Print-Like Methods
Credit: Jirgen Hermann
5.10.1 Problem

Y ou want functionality similar to that of the pr i nt statement on afile object that is not
necessarily standard output, and you want to access this functionality in an object-oriented manner.

5.10.2 Solution

Statement pr i nt isquite handy, but we can emulate (and optionally tweak) its semantics with
nicer, object-oriented syntax by writing a suitable class:

cl ass PrintDecorator:
""" Add print-like methods to any witable file-like

obj ect.

def _ init_ (self, stream do_softspace=1):
""" Store away the streamfor |ater use.
sel f.stream = stream
sel f.do_softspace = do_softspace
sel f.softspace = 0

nnn

def Print(self, *args, **kw):
""" Print all argunents as strings, separated by
spaces.

Take an optional "delim keyword paraneter to
change the

delimting character and an optional "linend"
keywor d
paraneter to insert a line-term nation string.
I gnores
unknown keyword paraneters for sinplicity.
delim= kw.get('delim, " ")

linend = kw.get('linend , '")

if self.do_softspace and sel f.softspace and args:
start = delim

el se: start ="'

self.streamwite(start + delimjoin(mp(str, args))
+ | i nend)

sel f.softspace = not |inend

def PrintLn(self, *args, **kw):
"t Just like self.Print(), but linend defaults to
i ne-feed.
kw. setdefault('linend ,"'\n")
self.Print(*args, **kw)

if name_ _=="'_ min_ _
Here's how you use this:
i mport sys
out = PrintDecorator(sys.stdout)
out.PrintLn(1, "+", 1, "is", 1+1)
out.Print("Wrds", "Smashed", "Together", delin"")
out.PrintLn()

5.10.3 Discussion

This recipe shows how to decorate objects with new functions, specifically by decorating an
arbitrary writable stream (file- like object opened for writing) with two methods that work like the
built-inpri nt statement.

The Pri nt method takes any number of positional arguments, converts them to strings (viathe
map and st r built-ins), joins these strings with the given del i m then finally writes the
resulting string to the stream. An optional | i nend, the empty string by default, allows line
termination.

The Pr i nt Ln method delegatesto Pr i nt , changing the default for the | i nend argument to
"\ n' . Other ways of sharing common code between Pri nt and Pri nt Ln runinto
difficulties—for example, when del I mis nonwhitespace or on multitasking environments where
printing operations need to be atomic (a single cal to the stream's method wr i t e per call to the
decorator's Pr i nt or Pri nt Ln methods).

Softspace functionality is also provided to emulate the pr i nt statement's ability to avoid
inserting a useless trailing space if anewline should immediately follow. This seems simple, and
it's definitely useful, but it can be tricky to implement. Furthermore, this wrapper supports
softspace functionality independently of the decorated stream'’s support for setting and getting the
sof t space attribute. Softspace behavior can, however, appear somewhat strange if successive

Pri nt callsuse different del i mstrings. The softspace functionality can be turned off at
instantiation time.

The code uses Python 2.x syntax (string methods, new -style argument passing), but it can be

easily ported to Python 1.5.2 (if necessary) by using appl y for function calling and the
st ri ng module instead of string methods.

5.10.4 See Also

The documentation for the st r i ng built-in module and built-inf i | e objectsin the Library
Reference.

5.11 Checking if an Object Has Necessary Attributes
Credit: Alex Martelli
5.11.1 Problem

You need to check if an object has certain necessary attributes, before performing state-altering
operations, but you want to avoid type-testing because you know it reduces polymorphism.

5.11.2 Solution

In Python, you normally try whatever operations you need to perform. For example, here's the
simplest, no-checks code for manipulations of alist:

def mungel(alist):
al i st.append(23)
al i st.extend(range(5))
al i st. append(42)
alist[4] = alist][3]
al i st.extend(range(2))

While thisis usually adequate, there may be occasional problems. For example, if the al i st
object has an append method but not an ext end method, the nunge1 function will partialy
ater al i st before an exception is raised. Such partial alterations are generally not cleanly
undoable, and, depending on your application, they can be quite a bother.

To avoid partia alteration, you might want to check the type. A naive Look Before You Leap
(LBYL) approach looks safer, but it has a serious defect: it loses polymorphism. The worst
approach of al is checking for equality of types:

def munge2(alist):
if type(alist)==type([]):
mungel(ali st)
el se: raise TypeError, "expected list, got
%" % ype(alist)

A better, but still unfavorable, approach (which at least works for list subclassesin 2.2) is using
i si nstance:

def nunge3(alist):
if isinstance(alist, type[]):
mungel(ali st)
el se: raise TypeError, "expected |ist, got
%" % ype(alist)

The proper solution is accurate LBYL, which is safer and fully polymorphic:

def munge4(alist):

Extract all bound nethods you need (i mredi ate
exception

if any needed nethod is m ssing)

append = alist. append

extend = alist.extend

Check operations, such as indexing, to raise
exceptions ASAP if signature conmpatibility is m ssing
try: a[0]=a[0]

except I ndexError: pass # An enpty alist is okay
Operate -- no exceptions expected at this point
append(23)

ext end(range(5))

append(42)

alist[4] = alist][3]
ext end(range(2))

5.11.3 Discussion

Python functions are naturally polymorphic on their arguments, and checking argument types
loses polymorphism. However, we may still get early checks and some extra safety without any
substantial cost.

The Easier to Ask Forgiveness than Permission (EAFP) approach, in which we try operations and
handle any resulting exceptions, is the normal Pythonic way of life and usually works great.
Explicit checking of types severely restricts Python's normal signature-based polymorphism and
should be avoided in most cases. However, if we need to perform severa operations on an object,
trying to do them al could result in some of them succeeding and partially altering the object
before an exception is raised.

For example, suppose that mungel, in the recipe's code, is called with an actual argument value
for al i st that hasan append method but lacks ext end. Inthiscase, al i st will be altered
by the first call to append, and the attempt to call ext end will raise an exception, leaving

al 1 st 'sdtate partialy altered in away that may be hard to recover from. Sometimes, a sequence
of operations should be atomic: either all of the aterations happen or none of them do.

We can get closer to that by switching to LBYL, but in an accurate, careful way. Typicaly, we
extract al bound methods we'll need, then noninvasively test the necessary operations (such as
indexing on both sides of the asignment operator). We move on to actually changing the object
state only if al of this succeeds. From there, it's far less likely (though not impossible) that
exceptions will occur in midstream, with state partially altered.

This extra complication is pretty modest, and the lowdown due to the checks is typically more or
less compensated by the extra speed of using bound methods versus explicit attribute access (at
least if the operations include loops, which is often the case). It's important to avoid overdoing the
checks, and assert can help with that. For example, you can add asser t

cal | abl e(append) tonunge4(). Inthiscase the compiler will remove the assert
entirely when the program is run with optimization (i.e., with flags - Oor - O0), while performing
the checks when the program is run for testing and debugging (i.e., without the optimization flags).

5.11.4 See Also

assert and the meaning of the - Oand - OO command-line arguments are defined in al Python
reference texts; the Library Reference section on sequence types.

5.12 Making a Fast Copy of an Object
Credit: Alex Martelli
5.12.1 Problem

You need to implement the special method ~ _copy__ _ soyour class can cooperate with the
copy. copy function. Ifthe _ i nit_ _ method of your classis Slow, you need to bypass
it and get an empty object of the class.

5.12.2 Solution

Here's a solution that works for both new -style and classic classes:

def enpty_copy(obj):

cl ass Enmpty(obj.__class_):

def _ _init_ (self): pass
newcopy = Empty()
newcopy. _class__ = obj._ _class_ _

return newcopy
Your classes can use thisfunctiontoimplement = copy_ _ asfollows:

cl ass Yourd ass:
def _ _init_ (self):
print "assume there's a |ot of work here"”
def _ _copy_ _(self):
newcopy = enpty_copy(self)
print "now copy sone relevant subset of self's
attributes to newcopy"
return newcopy

Here's a usage example:
if name_ _=="'_ min_ _
i mport copy
y = YourClass() # This, of course, does run _
init
print vy
z = copy.copy(y) # ...but this doesn't
print z

5.12.3 Discussion

Python doesn't implicitly copy your objects when you assign them. Thisis a great thing, because it
gives fadt, flexible, and uniform semantics. When you need a copy, you explicitly ask for it,
ideally with the copy. copy function, which knows how to copy built-in types, has reasonable
defaults for your own objects, and lets you customize the copying process by defining a specid
method _copy_ _ inyour own classes. If you want instances of a class to be noncopyable,
youcandefine _copy__ andraiseaTypeError there. In most cases, you can let
copy. copy'sdefault mechanism work, and you get free clonability for most of your classes.

Thisis quite a bit nicer than languages that force you to implement a specific cl one method for
every class whose instances you want to be clonable.

__copy_ _ often needsto start with an empty instance of the classin question (e.g., sel f),
bypassing i nit_ _ whenthat isacostly operation. The simplest way to do thisisto use
the ability that Python gives you to change an instance's class on the fly by creating a new object
in aloca empty class, then settingits ¢l ass_ _ attribute, as the recipe's code show s. Note
that inheriting cl ass Enpty fromobj . _class_ _ isredundant (but quite innocuous)
for old Python versions (up to Python 2.1), but in Python 2.2 it becomes necessary to make the
enpt y_copy function compatible with all kinds of objects of classic a new-style classes
(including built-in and extension types). Once you choose to inherit from obj 's class, you must
overide . _init_ _ inclass Enpty, or elsethe whole purpose of the recipeis lost.

Once you have an empty object of the required class, you typically need to copy a subset of

sel f 'sattributes. If you need all of the attributes, you're better off not defining _copy
explicitly, since copying all instance attributesis copy. copy's default. Unless, of course, you
should need to do a little bit more than copying instance attributes. If you do need to copy al of
sel f 'sattributes into newcopy, here are two techniques:

newcopy. _dict_ _.update(self._ _dict_)
newcopy. _dict_ _ = self.__dict_ _.copy()
An ingtance of a new -style class doesn't necessarily keep all of itsstatein _ _di ct _ _,soyou

may need to do some class-specific state copying.

Alternatives based on the new standard module can't be made transparent across classic and new -
style classes in Python 2.2 (at least, I've been unable to do this). Besides, the new module is often
thought of as dangerous black magic (rather exaggerating its dangers). Anyway, this recipe lets
you avoid using the new module for this specific purpose.

Note that so far we have been talking about shallow copies, which is what you want most of the
time. With a shallow copy, your object is copied, but objects it refers to (attributes or items) are
not, so the new copied object and the original object refer to the same items or attributes objects.
A deep copy is a heavyweight operation, potentially duplicating a large graph of objects that refer
to each other. Y ou get a deep copy by calling copy. deepcopy on an object. If you need to
customize how instances of your class are deep-copied, you can define the specia method
deepcopy _ and follow its somewhat complicated memoization protocol. The technique
shown in this recipe—getting empty copies of objects by bypassing their _ _init
methods—can sometimes still come in handy, but there is a lot of other work you need to do.

5.12.4 See Also

The Library Reference section on the copy module.

5.13 Adding Methods to a Class at Runtime

Credit: Brett Cannon
5.13.1 Problem

Y ou want to add a method to a class at an arbitrary point in your code for highly dynamic
customization.

5.13.2 Solution
The best way to perform this task works for both classic and new -style classes:

def funcToMet hod(func, clas, nethod _nanme=None):
setattr(clas, nmethod nane or func. _nane_ _, func)

If amethod of the specified name dready existsin the class, f unc TolMet hod replaces it with
the new implementation.

5.13.3 Discussion

Ruby can add a method to a class at an arbitrary point in your code. | figured Python must have a
way for alowing this to happen, and it turned out it did. There are several minor possible
variations, but this recipe is very direct and compact, and works for both classic and new -style
classes. The method just added is available instantly to all existing instances and to those not yet
created. If you specify net hod_nane, that name is used as the method name; otherwise, the
method name is the same as the name of the function.

Y ou can use this recipe for highly dynamic customization of arunning program. On command,
you can load a function from a module and install it as a method of a class (even in place of
another previous implementation), thus instantly changing the behavior of all existing and new
instances of the class.

One thing to make sure of is that the function has a first argument for the instance that will be
passed to it (which is, conventionally, always named sel f). Also, this approach works only if

f unc is a Python function, not a built-in or callable. For example, abuilt-in such asnat h. si n
can be installed with this recipe's f unc ToMet hod function. However, it doesn't turn into a

method; it remains exactly the same, regardless of whether you access it as an attribute of a class
or of an instance. Only true Python functions implicitly mutate into methods (bound or unbound as
appropriate) when installed and accessed this way.

For classic classes, you can use a different approach for installing a callable as a method of aclass:

def call abl eToMet hod(func, clas, nmethod_name=None):

i mport new
nmet hod = new. i nst ancenet hod(func, None, cl as)
setattr(clas, nmethod nanme or func. __nanme_ , nethod)

Now f unc can be any callable, such as an instance of any classthat suppliesa_ _cal | _
specia method, a built-in, or a bound method.

The name of the i nst ancenet hod function of the new module may be slightly misleading.
The function generates both bound and unbound methods, depending on whether the second

argument is None (unbound) or an instance of the class that is the third argument. This function,
however, works only with classic classes, not with new-style classes. See
http://www.python.org/doc/current/lib/modul e-new.html for al the details (there's not much more
to it than this, though).

5.13.4 See Also

The Library Reference section on the new module.

5.14 Modifying the Class Hierarchy of an Instance

Credit: Ken Seehof

5.14.1 Problem

Y ou need to modify the class hierarchy of an instance object that has aready been instantiated.
5.14.2 Solution

A rather unusual application of the mix-in concept lets us perform this task in Python 2.0 or later
(with some limitations in Python 2.2):

def adopt _cl ass(klass, obj, *args, **kwds):

'"re-class obj to inherit klass; call _ init__ wth
*args, **kwds'
In Python 2.2, klass and obj._ _class_ _ nust be
conpati bl e,
e.g., It's okay if they're both classic, as in the
"denp' function
classname = "% %' % (klass. __nane_ _, obj._ _class_
_ _hame_)
obj.__class_ _ = new.cl assobj (cl assnane, (klass, obj.
class), {})
klass. _init_ (obj, *args, **kwds)
def demo():
cl ass Sandwi ch:
def _ _init_ (self, ingredients):
self.ingredients = ingredients
def _ repr_ (self):
return ' and '.join(self.ingredients)

cl ass Wt hSpam
def _ _init_ (self, spam.count):
sel f.spam count = spam count
def _ repr_ (self):

return Sandwi ch. _repr_ (self) +
sel f.spam count * ' and spam
pbs = Sandwi ch([' peanut butter', "jelly'])
adopt _cl ass(WthSpam pbs, 2)

print pbs
5.14.3 Discussion

Sometimes class adoption, as illustrated by this recipe, is the cleanest way out of class hierarchy
problems that arise when you wish to avoid module interdependencies (e.g., within alayered
architecture). It's more often useful if you want to add functionality to objects created by third-
party modules, since modifying those modules' source code is undesirable.

In the following example, the programmer has these constraints:

There are severa classesin objects.py, and more will be added in the future.
objects.py must not import or know about graphics.py, since the latter is not available in
all configurations. Therefore, class G cannot be a base class for the objects.py classes.

graphics.py should not require modification to support additional classes that may be
added to objects.py.
RUBHE RS HHA RSB HB R HHEH

obj ects. py
cl ass A(Base):

cl ass B(Base):

def factory(...):
returns an instance of A or B or

HEHBHHHHBH R H R R R

graphics. py

from oop_recipes inport adopt_cl ass
i mport objects

class G
provi des graphical capabilities

def gfactory(...):

obj = objects.factory(...)
adopt _class(G, obj, ...)
return obj

Given the constraints, the adopt _cl ass function provides a viable solution.

In Python 2.2, there are compatibility limitations on which classes can be used to multiply inherit
from (otherwise, you get a "metatype conflict among bases’ Ty peEr r or exception). These
limitations affect multiple inheritance performed dynamically by means of the new. ¢l assobj

function (as in this recipe) in the same way as they affect multiple inheritance expressed in the
more usual way.

Classic classes (classes with no built-in type among their ancestors, not even the new built-in type
obj ect) can till be multiply inherited from quite peaceably, so the example in this recipe keeps

working. The example given in the discussion will aso keep working the same way, since class G
is classic. Only two new-style classes with dif ferent built-in type ancestors would conflict.

5.14.4 See Also

The Library Reference section on built-in types, especially the subsections on specia attributes
and functions.

5.15 Keeping References to Bound Methods Without
Inhibiting Garbage Collection

Credit: Joseph A. Knapka

5.15.1 Problem

Y ou want to hold bound methods, while still allowing the associated object to be garbage-
collected.

5.15.2 Solution

Weak references were an important addition to Python 2.1, but they're not directly usable for
bound methods, unless you take some precautions. To allow an object to be garbage-collected

despite outstanding references to its bound methods, you need some wrappers. Put the following
in the weakmethod.py file:

i nport weakr ef

class _weak call abl e:
def _ init_ (self, obj, func):
self.imself = obj
self.imfunc = func

def _ call_ (self, *args, **kws):
if self.imself is None:
return self.imfunc(*args, **kws)
el se:
return self.imfunc(self.imself, *args, **kws)

cl ass WeakMet hod:
Waps a function or, nore inportantly, a bound
nmet hod in
a way that allows a bound nethod' s object to be GCed,
whi | e
providing the sanme interface as a nornmal weak reference.

def _ _init_ (self, fn):
try:
self._obj = weakref.ref(fn.imself)
self. nmeth = fn.imfunc
except AttributeError:
1t's not a bound net hod
sel f. _obj = None
self. meth = fn

def _ call_ (self):
if self. dead(): return None
return _weak_callable(self. _getobj(), self._meth)

def _dead(self):

return self. _obj is not None and self. _obj() is
None

def _getobj (self):
if self._obj is None: return None
return self. _obj()

5.15.3 Discussion

A normal bound method holds a strong reference to the bound method's object. That means that
the object can't be garbage-collected until the bound method is disposed of:

>>> class C
def f(self):
print "Hello"
def _ del (self):
print "C dying"
>>> ¢ = C()
>>> cf = c¢.f
>>> del ¢ # c continues to wander about with gl azed eyes. ..
>>> del cf # ...until we stake its bound nmethod, only then
it goes away:
C dying

Sometimes that isn't what you want. For example, if you're implementing an event-dispatch
system, it might not be desirable for the mere presence of an event handler (a bound method) to
prevent the associated object from being reclaimed. A norma weakr ef . r ef to abound
method doesn't quite work the way one might expect, because bound methods are first-class
objects. Weak references to bound methods are dead-on-arrivd, i.e., they always return None
when dereferenced, unless another strong reference to the same bound method exists. The
following code, for example, doesn't print "Hello" but instead rai ses an exception:

>>> from weakref inport *

>>> ¢ = C()

>>> cf = ref(c.f)

>>> cf # QOops, better try the lightning again, lgor...
<weakref at 80ce394; dead>

>>> cf ()()
Traceback (nost recent call |ast):
File "", line 1, in ?

TypeError: object of type 'None' is not callable
WeakMet hod alows you to have weak references to bound methods in a useful way:

>>> from weaknet hod i nport *

>>> cf = WeakMet hod(c.f)

>>> cf()() # It LIVES! Bwahahahaha!
Hel | o

>>> del ¢ # ...and it dies

C dying

>>> print cf()

None

A known problemisthat _weak cal | abl e and WeakMet hod don't provide exactly the
same interface as normal callables and weak references. To return a normal bound method, we can
use new. i nst ancemet hod (from the standard module new), but for that purpose,

Weak Met hod should also find out and memorize the class in which the weakly held bound
method is defined.

5.15.4 See Also

The Library Reference section onthe weakr ef module.

5.16 Defining Constants
Credit: Alex Martdlli
5.16.1 Problem

Y ou need to define module-level variables that client code cannot accidentally rebind (i.e., named
constants).

5.16.2 Solution

In Python 2.1 and later, you can install any instance as if it was a module. Just put the following in
const.py:

class _const:
cl ass ConstError(TypeError): pass
def _ _setattr_ (self, nanme, value):
If self._ _dict_ _.has_key(nane):

rai se self.ConstError, "Can't rebind
const (%) " Ymane

self._ _dict_ _[nanme] = value
def _ _delattr_ (self, nane):
If self._ _dict_ _.has_key(nane):

rai se self.ConstError, "Can't unbind
const (%) " Y%mane
rai se NaneError, nane

i mport sys

sys.modules[_ _nane_ | = _const()

Now any client code can import const , then bind an attribute on the const module just once,
asfollows:

const.mgic = 23
Once the attribute is bound, the program cannot accidentally rebind or unbind it:

const.mgic = 88 # woul d rai se const. ConstError
del const. nmagic # woul d rai se const. Const Error

5.16.3 Discussion

In Python, variables can be rebound at will, and modules don't Iet you define specia methods such
asaninstance's _setattr_ tostoprebinding. An easy solution (in Python 2.1 and later)
isto set up an instance as if it was a module.

In Python 2.1 and later, no check is made to force entriesin sys. nodul es to be actual module
objects. You can install an instance object there and take advantage of attribute-access specid
methods (e.g., to prevent rebinding, to synthesize attributeson theflyin _ _getattr__ _, and

so on), while still alowing client code to access it withi mport sonenamne. You may even
see this as a more Pythonic Singleton-style idiom (but see Recipe 5.23).

Note that this recipe ensures a constant binding for a given name, not an object's immutability,
which is quite a different issue. Numbers, strings, and tuples are immutable: if you bind a name in
const to such an object, not only will the name always be bound to that object, but the object's
contents will also always be the same, since the object isimmutable. However, other objects, such
as lists and dictionaries, are mutable: if you bind anamein const to, for example, alist object,
the name will always remain bound to that list object, but the contents of the list may change
(itemsin it may be rebound or unbound, more items can be added with the object'sappend
method, and so on).

5.16.4 See Also

Recipe 5.23 and Recipe 15.6; the description of the nodul es attribute of the sys built-in
module in the Library Reference.

5.17 Managing Options
Credit: Sébastien Keim
5.17.1 Problem

Y ou have classes that need vast numbers of options to be passed to their constructors for
configuration purposes. This often happens with GUI toolkits in particular.

5.17.2 Solution
We can model the options with a suitable class:

class Options:

def _ _init_ (self, **kw):
self._ _dict_ _.update(kw)
def _ Ishift_(self, other):

nuon

""" overl oadi ng operator <<
s =self._ _copy_ ()
s.__dict_ _.update(other.__dict_)
return s

def _ copy_ _(self):
return self. class_ (**self._ _dict_)

and then have all classes using options inherit from the following class:

class OptionsUser:
""" Base class for classes that need to use options

class OptionError(AttributeError): pass

def initOptions(self, option, kw):
""" To be called fromthe derived class constructor.
Puts the options into object scope. """

for k, v.in option._ _dict_ _.itenms() + kw.items():
if not hasattr(self._ _class_ _, k):
rai se self.OptionError, "invalid option " +

setattr(self, k, v)

def reconfigure(self, option=0ptions(), **kw):
""" used to change options during object life
self.initOptions(option, kw)
sel f.onReconfi gure(sel f)

[LTINT]

def onReconfigure(self):
""" To be overl oaded by derived classes. Called by

the reconfigure

met hod or from outside after direct changes to
option attributes. """
pass

5.17.3 Discussion
To explain why you need this recipe, let's start with an example:

cl ass Text Bl ock:
def _ _init_ _ (self, font="Tines', size=14,
col or=(0,0,0), height=0,
wi dt h=0, align="LEFT', | margin=1, rmargi n=1)

If you have to instantiate several objects with the same parameter values, your first action might
be to repeat these values each time:

bl ockl = TextBl ock(font="Arial', size=10, color=(1,0,0),
hei ght =20, wi dt h=200)

bl ock2 = TextBl ock(font="Arial', size=10, color=(1,0,0),
hei ght =80, wi dt h=100)

bl ock3 = Text Bl ock(font="Courier', size=12, hei ght=80,
wi dt h=100)

Thisisn't a particularly good solution, though, as you are duplicating code with all the usua
problems. For example, when any change is necessary, you must hunt down all the places where
it's needed, and it's easy to go wrong. The frequent mistake of duplicating code is aso known as
the antipattern named " copy-and-paste coding.”

A much better solution is to reuse code by inheritance rather than by copy and paste. With this
Opt i ons recipe, you can easily avoid copy-and-paste:

st dBl ockOptions = Options(font="Arial', size=10,
color=(1,0,0),
hei ght =80, wi dt h=100)

bl ockl = Text Bl ock(stdBl ockOpti ons, hei ght=20, w dt h=200)
bl ock2 = Text Bl ock(st dBl ockOpti ons)
bl ock3 = Text Bl ock(stdBl ockOptions, font="Courier', size=12)

Thisfeesalot like using a stylesheet in atext processor. Y ou can change one characteristic for al
of your objects without having to copy this change in al of your declarations. The recipe aso lets
you specialize options. For example, if you have many Text Bl ocksto instantiate in Courier
size 12, you can create:

courierBl ockOptions = stdBl ockOptions <<
Options(font="Courier', size=12)

Then any changes you make to the definition of st dBl ockOpt i ons change
couri er Bl ockOpti ons, except for si ze and f ont , which are specialized in the
couri er Bl ockOpti ons instance.

To create a class that accepts Opt | ons objects, your class should inherit from the
Opt i onsUser class. You should define default values of options as static members, that is,

attributes of the class object itself. And finaly, the constructor of your class should call the
i ni t Opti ons method. For example:

cl ass MyCl ass(Opti onsUser):
options specification (default val ues)

l ength = 10

wi dth = 20

color = (0,0,0)

xmargin = 1

ymargin = 1

def _ init_ _ (self, opt=0Options(), **kw):

i nst ance- constructor
sel f.initOptions(opt, kw)

The constructor idiom is intended to provide backward compatibility and ease of use for your
class, as the specification of an Opt i ons object is optional, and the user can specify optionsin
the constructor even if an Opt i ons object is specified. In other words, explicitly specified
options override the content of the Opt i ons object.

You can, of course, adapt this recipe if your constructor needs parameters that can't be sent as
options. For example, for a class related to the Tki nt er GUI, you would probably have a
constructor signature such as:

def _ _init_ (self, parentFrame, opt=0ptions(), **kw):

If you have many classes with the same default options, you should still use derivation
(inheritance) for optimal reuse:

class MyDefaul t Options(Opti onsUser):
options specification (default val ues)
| engt h=10
wi dt h=20
col or=(0, 0, 0)

class MyCl ass(MyDef aul t Opti ons):

options specification (specific options or additional
defaul t val ues)

color=(1,0,0)

Xxmargin = 1
ymargin = 1
def _ _init_ (self, opt=Options(), **kw):

i nstance- constructor
sel f.initOptions(opt, kw)

To change an instance object's options at runtime, you can use either direct access to the options
(obj ect. option = val ue)orthereconfi gur e method

(obj ect.reconfigure(option=val ue)).Ther econfi gur e method is defined
inthe Opt i onsUser class and accepts both an Opt i ons object and/or named parameters. To
detect the change of an option at runtime, the r econf i gur e method callsthe

onReconf i gur e method. You should override it in your classes to do whatever is appropriate
for your application's specific needs. Direct access, however, cannot be handled automatically in a

totally general and safe way, so you should ask your user to call the onReconf i gur e method
to signal option changes.

There are several design choices in this recipe that deserve specific discussion. | used the <<
operator for overloading options because | wanted to avoid the problems caused by collision
between amethod name and an option in the Opt | ons class. So normal identifiers were not
appropriate as method names. This left two possible solutions. using an operator or using an
external function. | decided to use an operator. My first idea was to use the + operator, but when |
started to deal withit, | discovered that it was a mistake, because overloading optionsisn't a
commutative operation. So | decided to use the << operator; because it is mostly unused in Python,
its standard meaning isn't commutative, and | found that its picture fit quite well with the
overloading-option notion.

| put options in the class scope because this practice has the great benefit of improving default-
options specification. | haven't found a nonugly implementation for this, except for putting options
in class scope, which allows direct access to options.

lusedsetattr inthei ni t Opt i ons method, eventhough adirectcopy of ~ dict
would substantially improve performance. But a class can emulate an option with the classs

getattr _and_ _setattr_ _ methods. And in Python 2.2, we now have getter and
setter methods for specific data attributes. These all work with the set at t r approach, but they
would not work right if lused ~_di ct . updat e() instead. So my approach is more

general and also fully compatible with Python 2.2's new -style classes.

Finally, | chose to raise an exception when an option has no default value. When | first started to
test the Opt | ons module, | once used si ze instead of | engt h as the name of an option. Of

course, everything worked well, except that my | engt h option wasn't initialized. It took me

quite along time to find the mistake, and | wonder what could happen if the same mistake
happened in alarge hierarchy of options with much overloading. So | do think that it is important
to check for this.

5.17.4 See Also

The section on emulating numeric types in the Reference Manual.

5.18 Implementing a Set Class

Credit: Thomas Heller

5.18.1 Problem

You need to model a set (i.e., acollection of items, with no particular ordering and no duplicates).
5.18.2 Solution

A Python dictionary is a good representation for a set abstract data type, but by wrapping it into a
class, we can use it more naturaly:

cl ass Set:
def _ init_ (self, *args):
self. _dict = {}
for arg in args:
sel f. add(arQ)

def _ repr_ (self):
i nport string
elenms = map(repr, self. _dict.keys())
el ems.sort()
return "%(%)" % (self._ _class_ _._ _nane ,
string.join(elens, ', "))

def extend(self, args):
Add several itens at once.
for arg in args:
sel f. add(arQ)

def add(self, item:
""" Add one itemto the set.
self. dict[item = item

def renove(self, item:
Remove an itemfromthe set.
del self. dict[iten]

def contains(self, item:
Check whether the set contains a certain item

return self. dict.has_key(item

Hi gh-performance nmenbership test for Python 2.0 and
| at er

__contains_ _ = contains
def _ getitem (self, index):
Support the '"for itemin set:' protocol.

return self. _dict.keys()[index]

def _ iter_ (self):
""" Better support of 'for itemin set:' via Python
2.2 iterators """
return iter(self._dict.copy())

def _ len_ (self):
""" Return the nunber of itens in the set
return len(self. _dict)

def itens(self):

""" Return a list containing all itens in sorted
f possible """

result = self. _dict.keys()

try: result.sort()

except: pass

return result

order,

5.18.3 Discussion

Sets are such fundamental constructs that you often find yourself needing one. Python dictionaries
mode them well, and the Set classin thisrecipe is basically athin veneer of nice-looking
syntactic sugar over a dictionary.

Of course, an important limitation (both of bare dictionaries and of this Set class) isthat the
items must be hashable (which typicaly means immutable). As with other recipes involving
dictionaries, to work around this one can sometimesuse cPi ckl e. dunps(it em asthe
dictionary key corresponding to i t em but this may be inapplicable or too heavyweight in some
cases.

It's not hard to make this Set into a Bag, if that'swhat you need. A Bag differsfrom a Set in
that each itemisin a Bag acertain number of times (i.e., duplications are counted rather than
ignored or disallowed).

For Bag-modeling purposes, rather than keeping the item as both key and value, use the item's
membership count as the value. Adding an item becomes:

self. dict[iten]=1+self.get(item0)

and so on. Y ou probably need both a . r enbve method (decrements the count by one) and

a. W peout method (removes the entry totally, no matter what). Similar duplications (and hard
choices about which version to use as the basic specia-method) loom for other functionality (e.g.,
what's | en_ _, the number of different items or the total ?). Python gives you al the bricks,
but it's still up to you to put them together to form the right shape.

Another extension worth considering is the possibility of adding set operations. Rather than
overloading operators, which might lead to confusion, it's probably best to define union,
intersection, and so on as either methods or standalone functions. Both choices are quite
defensible. Functions have the advantage of being able to coerce both arguments more naturally.
Of course, apart from performance issues, set operations can beimplemented in terms of the
abstract primitives supplied by the Set class, another consideration that argues for using free-
standing functions rather than methods. For example:

def union(sl, s2):

i nport copy
result = copy.copy(sl)

for itemin s2:
result.add(item
return result

This alows highly polymorphic use of such operations and amounts to a decisive advantage for
free-standing functions over methods in most cases. It is for similar reasons that many of Python's
most fundamenta built-ins, such as | en, are free-standing functions (which may call a special
method if present but still afford polymorphic use on many objects that lack the specia method).

5.18.4 See Also

The Library Reference section on sequence types.

5.19 Implementing a Ring Buffer
Credit: Séhastien Keim
5.19.1 Problem

Y ou want to define a buffer with afixed size, so that when it fills up, adding another element must
overwrite the first (oldest) one. This kind of data structure is particularly useful for storing log and
history information.

5.19.2 Solution

This recipe changes the buffer object's class on the fly, from a non-full buffer classto a full-buffer
class, when it fills up:

class Ri ngBuffer:
""" class that inplenments a not-yet-full buffer
def _ _init_ (self,size_max):
sel f.max = size_max
self.data = []

nonn

class _ _Full:
""" class that implenments a full buffer
def append(sel f, x):
""" Append an el enent overwiting the ol dest one.

non

non

self.data[self.cur] = x
self.cur = (self.cur+l) % sel f. nax
def get(self):
""" return list of elenments in correct order
return self.data[self.cur:]+self.data[:self.cur]

(L TIT

def append(self, x):
"""append an el enent at the end of the buffer
sel f. dat a. append(x)
if len(self.data) == self. max:
self.cur =0
Permanently change self's class from non-full

to full
self. _class_. _ = Full

def get(self):
""" Return a list of elements fromthe oldest to the

newest .
return sel f.data

sanpl e usage

if _ name_ _=="_ main_ _
x=Ri ngBuf f er (5)
x.append(1); x.append(2); x.append(3); x.append(4)
print x. _class_ _, x.get()

X. append(5)

print x. _class_ _, x.get()

X. append(6)

print x.data, x.get()

X.append(7); x.append(8); x.append(9); x.append(10)
print x.data, x.get()

5.19.3 Discussion

A ring buffer is a buffer with a fixed size. When it fills up, adding another element overwrites the
oldest one that was still being kept. It's particularly useful for the storage of log information and
history. There is no direct support in Python for this kind of structure, but it's easy to construct one.
The implementation in this recipe is optimized for element insertion.

The notable design choice in the implementation is that, since these objects undergo a
nonreversible state transition at some point in their lifetimes—from non-full buffer to full-buffer

(and behavior changes at that point)—I modeled that by changingsel . cl ass_ . This
works even in Python 2.2, as long as both classes have the same dots (for example, it works fine
for two classic classes, suchas Ri ngBuf f er and __Ful | in this recipe).

Changing the class of an instance may be strange in many languages, but it is a Pythonic
alternative to other ways of representing occasional, massive, irreversible, and discrete changes of

state that vastly affect behavior, as in this recipe. Good thing that Python supports it for all kinds
of classes.

5.19.4 See Also

The Reference Manual section on the standard type hierarchy.

5.20 Implementing a Collection
Credit: Skip Montanaro
5.20.1 Problem

Y ou have a bunch of objects and want to make method calls and implement attribute lookups that
operate on each object in the bunch.

5.20.2 Solution

I'm used to thinking of a proxy that forwards attribute lookups to a bunch of objects as a collection.
Here's how to make one in Python 2.2:

class Collection(list):
def get(self, attr):
""" Return a collection of sane-named attri butes
fromour items. """
return Col lection([getattr(x, attr) for x in self if
hasattr(x, attr)])
def call (self, attr, *args, **kwds):
""" Return the result of calling "attr' for each of
our el enents. """
attrs = self.get(attr)
return Collection([x(*args, **kwds) for x in attrs
if callable(x)])

If you need to be portable to Python 2.0 or 2.1, you can get a similar effect by subclassing
User Li st. User Li st instead of | i st (this means you have to import User Li st first).

Using thisrecipeis fairly smple:
>>> jmport sys

>>> streans = Collection([sys.stdout, sys.stderr, sys.stdin])
>>> streans.call ('fileno')

[1, 2, 0]
>>> streans. get (' nane')
['<stdout>', '<stderr>', '<stdin>"]

5.20.3 Discussion

In some object-oriented environments, such Col | ect i on classes are heavily used. This recipe
implements a Python class that defines methods named get (for retrieving attribute values) and
cal | (for calling attributes).

In this recipe's class, it's not an error to try to fetch attributes or call methods that not al itemsin
the collection implement. The resulting collection just skips any unsuitable item, so the length of
results (which are different from those of the map built-in function) may be different from the
length of the collection. Y ou can easily change this behavior in a couple of different ways. For
example, you can remove the hasat t r check to make it an error to try to fetch an attribute
unless all items have it. Or you could add a third argument to get at t r, such as None or anull
object (see Recipe 5.24), to stand in for missing results.

One of the interesting aspects of this recipe is that it highlights how Python makes it possible but
not necessary to make classes for encapsulating fairly sophisticated behavior such as method and
attribute proxying. Doing this is valuable in two respects. First, centralizing the code reduces the
risk of errors creeping in duplicate copies throughout a code base. Second, naming the behavior
(in this case based on prior art from another language) enriches the programmer's lexicon, thereby
making it more likely that the concept will be reused in the future.

5.20.4 See Also

Recipe 5.21 and Recipe 5.24.

5.21 Delegating Messages to Multiple Objects
Credit: Eduard Hiti

5.21.1 Problem

Y ou need to multiplex messages (attribute requests) to several objects that share the same
interface.

5.21.2 Solution
As usual, thistask is best wrapped in aclass:
i nport operator

faster in Python 2.2, but we also handle any rel ease from
2.0 and later

try: dict

except: from UserDict inport UserDict as dict

class Multiplex(dict):
""" Multiplex nessages to registered objects """
def _ _init_ (self, objs=[]):
dict._ _init_ _(self)
for alias, obj in objs: self[alias] = obj

def _ _call_ _(self, *args, **kwargs):
Call registered objects and return results
t hrough anot her
Mul ti pl ex.
return self._ _class_ ([(alias, obj(*args,
**kwar gs))
for alias, obj in self.items()])

def _ _nonzero_ _(self):
A Miltiplex is true if all registered objects
are true. """
return reduce(operator.and , self.values(), 1)

def _ _getattr_ (self, nane):
""" Wap requested attributes for further processing.

try: return dict.__getattr_ _(self, nanme)
except:
Return another Miltiplex of the requested
attributes
return self.__class_ ([(alias, getattr(obj,
nane))
for alias, obj in self.itens()])

Asusud, this module is aso invokable as a script, and, when run that way, supplies a self-test (or,
here, a demo/example):

if _ name_ _=="_ min_ _
i nport StringlO

filel
file2

Stringl O Stringl Q()
Stringl O Stringl Q()

del egate = Multiplex()
del egate[id(filel)] filel
del egate[id(file2)] file2

assert not del egate. cl osed

del egate. wite("Testing")
assert filel.getvalue() == file2.getvalue() ==
"Testing"

del egate. cl ose()
assert del egate. cl osed

print "Test conplete"
5.21.3 Discussion

A Ml ti pl ex object exposes the same interface as the multiplexed registered object targets.
Multiplexing doesn't work for the dictionary interface, since that is used by the Mul t i pl ex
classitself. We take care to ensure that all attributes of a dictionary object are indeed accessed in
the way one deals with dictionaries. Note that this interferes with delegating such attribute names
as'itens',' keys','values',and' get'.Ifthisisaproblem for your application,
you can avoid inheriting Mul t i pl ex fromdi ct, have Mul ti pl ex useadi ct by

containment instead, and give it another interface. However, whatever names you do decide to put
on the public interface will still not be subject to multiplexed delegation.

Attributes of individual registered objects can be accessed by the alias used to register them for
multiplexed delegation:

del egate["test"] = aClass()
print del egate.aCl assAttribute["test"]

Message chains are also possible:

print del egate.aCl assAttribute.aMethod()
ThiscalsaMet hod onaCl assAttri but e from al multiplex targets.

Behind the scenes, asaresult of how Mul ti pl ex. _getattr_ _ iscoded,

del egat e. aCl assAttri but e returnsanother Mul t i pl ex object, as does

the . alVet hod (which collects bound methods into the other anonymous Mul t i pl ex).
Finally, the special method Mul ti pl ex. ~ _call _ _ entersthescene, and Mul ti pl ex

delegates the call operation to each of the bound methods, collecting their results into yet another
Mul tipl ex.

Thedesign choicefor Mul ti pl ex. ~ _nonzero_ s, of course, quite debatable. As
coded in the recipe, it makesa Mul t i pl ex trueif al the registered objects are true, including

when there are no registered objects at all, which may be a bit counterintuitive. Depending on your

application, you might therefore want to code this quite differently. Be sure to look at Recipe 5.9
for a different approach to a similar problem.

5.21.4 See Also

Recipe 5.8 and Recipe 5.9; documentation for the oper at or built-in module in the Library
Reference.

5.22 Implementing the Singleton Design Pattern
Credit: Jirgen Hermann
5.22.1 Problem

Y ou want to make sure that only one instance of a classis ever created.
5.22.2 Solution

One way to make a Singleton is to use a private inner class and delegate all operationsto asingle
instance of that class:

cl ass Singl eton:
""" A Pythonic Singleton

class _ _inpl:
""" Inplenmentation of the Singleton class
def span(self):
"t Just an exanple nmethod that returns
Singl eton instance's ID """
return id(self)

The private class attribute holding the "one and only
i nstance”

_ _instance = _ _impl()
def _ _getattr_ (self, attr):
return getattr(self._ _instance, attr)
def _ setattr_ (self, attr, value):
return setattr(self._ _instance, attr, val ue)

5.22.3 Discussion

This recipe shows one way to implement the Singleton design pattern in Python (see Design
Patterns. Elements of Reusable Object-Oriented Software, Addison-Wesley). A Singletonisa
class that makes sure only one instance of it is ever created. Typically, such aclassis used to
manage resources that by their nature can exist only once. This recipe proposes an aternate
approach to accessing such a single instance, which is arguably more Pythonic and more useful
than the traditional implementation by a factory function.

Thisrecipeusesthe Si ngl et on. _ i npl inner class as the class that is created only once.
Note that inner classes are nothing specia nor magical in Python, which is quite different from

Java, and similar, instead, to C++. They are just classes that happen to have their class statement
in the body of another class.

The outer class, Si ngl et on, ensures that exactly one instance of the inner class,

Si ngl eton. i npl,iscreated on demand (i.e., the first time an instance of Si ngl et on
is created). Each instance of Si ngl et on isaproxy to the one instance of Si ngl et on. _

_i npl , using automatic delegation (see Recipe 5.9) to delegate to it all state and behavior. (Note
that this idiom has also been called Letter/Envelope by other authors, such as Coplien; in that

naming, Si ngl et on would be the Envelope, and Si ngl et on. i npl the Letter.)

Whilethe i d of each handle object is different, the i d of the instance of the inner class that
implements the Singleton behavior is constant.

We can complete the module with the usual self-test idiom and show this i d behavior:

if name = ' _ min_ _

sl = Singleton()
print id(sl), sl.spam()

s2 = Singleton()
print id(s2), s2.spam)

When we run this module as a script, we get the following output; note that the second (inner) i d
is constant:

8172684 8176268
8168588 8176268

Of course, the inner class isn't really hidden, as with ailmost everything else in Python. If you need
to protect against malicious attempts to access it, you need to use the r exec and Bast i on
standard modules and rely on a restricted execution sandbox (but thisis really necessary only
when you must run code that you do not trust, such as code you received from an unknown
source).

In addition to the secondary issue of using i d for Si ngl et on'sinstances, there is a concrete
issue in terms of subclassability. It's not really feasible for client code to subclass the real class
(Si ngl et on. _ i npl) in the recipe as presented. Subclassing the wrapper class

(Si ngl et on) is not the same thing, since other clients will still get a non-subclassed version.
As the ability to subclassis high on the list of problems that the Singleton design pattern is

supposed to resolve, thisis a significant weakness. See Recipe 5.23 for a Pythonic solution to this
problem.

5.22.4 See Also

Recipe 5.9 and Recipe 5.23; Design Patterns. Elements of Reusable Object-Oriented Software, by
E. Gamma, R. Helm, R. Johnson, and J. Vlissides (Addison-Wesley, 1995).

5.23 Avoiding the Singleton Design Pattern with the Borg
Idiom

Credit: Alex Martelli
5.23.1 Problem

Y ou want to make sure that only one instance of a classis ever created, but you don't care about
thei d of the resulting instances, just about their state and behavior.

5.23.2 Solution

Just about every application need related to Singleton is met by ensuring that all instances share
state and behavior, which is easier and more flexible than fiddling with instance creation. Just
subclass the following Bor g class:

cl ass Borg:
_shared_state = {}

def _ _init_ _(self):
self. dict_ _ = self. _shared state
Ensurethat Borg. _ _init_ _ iscaled, just asyou always do for every base class's

constructor, and you're home free.
5.23.3 Discussion

Here's atypical example of Bor g use:

if nanme_ _=="'_ min_ _':
cl ass Exanpl e(Borg):
def _ _init_ (self, name=None):
Borg. _ _init_ _(self)
if name is not None: self.nanme = nane
def _ str_ (self): return 'Exanple(%)' %
sel f. nane

a = Exanpl e(' Lara')
b = Exanple()
print a, b

c = Exanple('Boris')
print a, b, c

b. name = ' Marcel'
print a, b, c

When running this module as a main script, the output is:
Exanpl e(Lara) Exanpl e(Lara)

Exanpl e(Bori s) Exanpl e(Boris) Exanpl e(Boris)
Exanpl e(Marcel) Exanpl e(Marcel) Exanpl e(Marcel)

All instances of Exanpl e share state, so any setting of the narme attribute of any instance,
gtherin _ _init_ ordirectly, affects al instances equally. However, note that their i d

differs, sosincewehavenotdefined . _eq_ _and _ _hash_ _, they aredistinct keysina
dictionary. Thus, if we continued our sample code as follows:

adict = {}

j =0

for i ina, b, c:
adict[i] =]
=] +1

for i ina, b, c:
print i, adict[i]

the output would be:

Exanmpl e(Marcel) O
Exanpl e(Marcel) 1
Exampl e(Marcel) 2

If that's not what youwant,youcanadd ~ _eq_ _and _ _hash_ _ tothe Exanpl e class
or the Bor g class. For example, here are these special methods added to Bor g:

cl ass Borg:
_shared_state = {}

def _ _init_ (self): self.__dict_ _ =
self. _shared_state
def = hash_ (self): return 1
def = _eq_ (self, other):
try: return self._ _dict_ _ is other._ _dict_ _

except: return O

Now the example's output concludes with:

Exanmpl e(Marcel) 2
Exanpl e(Marcel) 2
Exanmpl e(Marcel) 2

Y ou might want to do this to simulate the existence of only one instance.

The Singleton design pattern has a catchy name, but the wrong focus for most purposes. on object
identity, rather than on state. The Borg design nonpattern makes all instances share state instead,
and Python makes this a snap.

In most cases in which you might think of using Singleton or Borg, you don't really need either of
them. Simply define a Python module, with functions and module-global variables, instead of
defining a class, with methods and per-instance attributes. Y ou need to use a class only if you
must be able to inherit from it or if you need to take advantage of the class's ability to define
specia methods (for thisissue, see Recipe 5.16)

The Singleton design pattern is all about ensuring that just one instance of a certain classis ever
created. In my experience, it is usually not a good solution to the problemsit tries to solve,
displaying different kinds of problems in different object models. Typically, what we really want
isto let as many instances be created as necessary, but all with shared state. Who cares about
identity? It's state (and behavior) we care about. This aternate pattern to solve roughly the same

problems has also been called Monostate. Incidentally, | like to call Singleton "Highlander”, since
there can be only one.

In Python, you can implement Monostate in many ways, but the Borg design nonpattern is often
best. Simplicity isits greatest strength. Sincethe _ _di ct _ _ of any instance can be rebound,
Bor g rebindsitinits_ _init_ _ toaclass-attribute dictionary. Now, any reference or
binding of an instance attribute will actually affect all instances equally. | thank David Ascher for
suggesting the appropriate name "Borg" for this nonpattern. It's a nonpattern because it had no

known uses at the time of publication: two or more known uses are part of the prerequisites for
being a design pattern. See the detailed discussion at http://www.al eax.it/Python/5ep.html.

The getattr__and_ _setattr__ specid methods are not involved. You can
define them independently for whatever other purposes you want, or leave them undefined. There
is no problem either way, since Python doesnotcdl _~ _setattr __ _ for therebinding of _
_dict_itsdlf.

Also, if you want instances of your class to share state among themselves but not with instances of
other subclasses of Bor g, make sure that your class has the statement:

_shared_state = {}

in class scope so that it doesn't inherit the _shar ed_st at e attribute from Bor g but rather
overridesit. It'sto enable thisusage that Bor g's_ i ni t _ _ method refers to
sel f. _shared_st at e instead of Bor g. _shared_st at e.

Borg aso works for the new -style classes of Python 2.2, as long as they don't choose to keep state
somewhere other than intheinstance's ~ _di ct . For example, Borg cannot support the
slots _ optimization. However, Borg saves as least as much memory per instance as _
_slots__ (thefew tens of bytes normally taken up by the instance's nonshared = di ct _
_), sothisisn't really an issue. To Borg-ize a new-style class that inheritsfrom | 1 st or di ct
and keeps state in the items of its built-in base class, you can use automatic delegation, as shown

in Recipe 5.9. This technique involves wrapping a classic class around the new-style one and
Borg-izing the classic class; | cal thisidea DeleBorg on http://www.al eax.it/Python/5ep.html.

Calling this recipe a Singleton would be as silly as calling an arcade an umbrella. Both may serve
similar purposes (letting you walk in the rain without getting wet)—or solve similar forces, in
design patterns parlance—but since they do so in utterly different ways, they're not instances of
the same pattern. If anything (as already mentioned), Borg has similarities to the Monostate
aternative design pattern to Singleton. (But Monostate is a design pattern, while Borg is not. And
a Python Monostate can exist perfectly well without being a Borg.)

For reasons mysterious to me, people often conflate issues germane to Borg and Highlander with
others that are really independent, such as access control and, particularly, access from multiple
threads. If you need to control access to an object, that need is exactly the same whether thereis 1
instance of that object’s class or 23, and whether those multiple instances share state or not. A
fruitful approach to problem-solving is known as "divide and conguer,” or making problems easier
by splitting their different aspects apart. Making problems harder by joining several aspects
together must be an example of an approach known as "unite and suffer!”

5.23.4 See Also

Recipe 5.9 and Recipe 5.22; the article "Five Easy Pieces. Simple Python Non-Patterns' by Alex
Martelli (http://www.aleax.it/5ep.html).

5.24 Implementing the Null Object Design Pattern
Credit: Dinu C. Gherman
5.24.1 Problem

Y ou want to reduce the need for conditional statements in your code, particularly the need to keep
checking for specia cases.

5.24.2 Solution
The usual marker for "there's nothing here" is None, but we may be able to do better than that:

class Null:
""" Null objects always and reliably "do nothing.

n non

def _ _init_ (self, *args, **kwargs): pass

def _ call_ (self, *args, **kwargs): return self
def _ repr_ (self): return "Null()"

def _ nonzero_ (self): return O

def _ _getattr_ (self, nanme): return self

def _ setattr_ (self, nane, value): return self
def _ delattr_ (self, nane): return self

5.24.3 Discussion

An instance of the Nul | class can replace the primitive value None. Using this class, you can
avoid many conditiona statementsin your code and can often express algorithms with little or no
checking for special values. This recipe is a sample implementation of the Null Object design
pattern (see "The Null Object Pattern”, B. Woolf, Pattern Languages of Programming, PLoP 96,
September 1996).

Thisrecipe's Nul | classignores all parameters passed when constructing or calling instances and
any attempt to set or delete attributes. Any call or attempt to access an attribute (or a method, since
Python does not distinguish betweenthetwoand calls ~ _getattr _ _ either way) returns
thesame Nul | instance (i.e., sel f, since ther€'s no reason to create a new one). For example, if
you have a computation such as:

def conpute(x, y):

try: "lots of conputation here to return sone
appropriate object"

except SomeError: return None

and you use it like this:

for x in xs:
for y in ys:
obj = conpute(x, Yy)
if obj is not None:
obj . sonenet hod(y, x)

you can usefully change the computation to:

def conpute(x, y):

try: "lots of conputation here to return some
appropriate object"

except SomeError: return Null()

and thus simplify it as:

for x in xs:
for y inys:
conmput e(x, y).sonmemethod(y, x)

Thus, you don't need to check whether conput e has returned areal result or an instance of
Nul | . Evenin the latter case, you can safely and innocuously call on it whatever method you
want.

Pythoncalls _ _getattr_ _ for special methods as well. This means that you may have to
take some care and customize Nul | to your application's needs, either directly in the class's
sources or by subclassing it appropriately. For example, with this recipe's Nul | , any comparison
between Nul | instances, even a==a, returnsa Nul | instance and evaluates as false. (Note that
weve had to explicitly define . _nonzero_ _ forthispurpose, since _nonzero_
must returnan i nt .) If thisis aproblem for your purposes, you must define _ _eq_ _ (in
Nul | itself or in an appropriate subclass) and implement it appropriately. Similar delicate
considerations apply to severa other special methods.

The goal of Nul | objectsisto provide an intelligent replacement for the often-used primitive
vaue None in Python (Nul | or null pointersin other languages). These "nobody lives here"
markers are used for many purposes, including the important case in which one member of a
group of otherwise similar elements is special. Usually, this usage results in conditional statements
to distinguish between ordinary elements and the primitive null (e.g., None) vaue, but Nul |
objects help you avoid that.

Among the advantages of using Nul | objects are the following:

Superfluous conditional statements can be avoided by providing afirst-class object
alternative for the primitive value None, thereby improving code readability.
They can act as a placeholder for objects whose behavior is not yet implemented.
They can be used polymorphically with instances of any other class.

They are very predictable.

To cope with the disadvantage of creating large numbers of passive objects that do nothing but
occupy memory space, the Null Object pattern is often combined with the Singleton pattern (see
Recipe 5.22), but this recipe does not explore that combination.

5.24.4 See Also

"The Null Object Pattern”, B. Woolf, Pattern Languages of Programming, PLoP 96, September
1996, http://www.cs.wustl.edu/~schmidt/PL oP-96/woolfl.ps.gz.

Chapter 6. Threads, Processes, and Synchronization

Section 6.1. Introduction

Section 6.2. Storing Per-Thread |nformation

Section 6.3. Terminating a Thread

Section 6.4. Allowing Multithreaded Read Access While Maintaining a Write Lock

Section 6.5. Running Functions in the Future

Section 6.6. Synchronizing All Methods in an Object

Section 6.7. Capturing the Output and Error Streams from a Unix Shell Command

Section 6.8. Forking a Daemon Process on Unix

Section 6.9. Determining if Another Instance of a Script |Is Already Running in Windows

Section 6.10. Processing Windows Messages Using MsgWaitForM ultipleObjects

6.1 Introduction

Credit: Greg Wilson, Baltimore Technologies

Thirty years ago, in his classic The Mythical Man-Month: Essays on Software Engineering
(Addison-Wedley), Fred Brooks drew a distinction between accidental and intrinsic complexity.
Languages such as English and C++, with their inconsistent rules, exceptions, and special cases,
are examples of the former: they make communication and programming harder than they need to
be. Concurrency, on the other hand, is a prime example of the latter. Most people have to struggle
to keep one chain of events straight in their minds. Keeping track of two, three, or a dozen, plus al
of their possible interactions, is just plain hard.

Computer scientists began studying ways of running multiple processes safely and efficiently in a
single physical address space in the mid-1960s. Since then, arich theory has been developed in
which assertions about the behavior of interacting processes can be formalized and proved, and
entire languages devoted to concurrent and parallel programming have been created. Foundations
of Multithreaded, Parallel, and Distributed Programming, by Gregory R. Andrews (Addison-
Wedley), is not only an excellent introduction to this theory, but also contains a great deal of
historical information tracing the development of major ideas.

Over the past 20 years, opportunity and necessity have conspired to make concurrency a part of
programmers everyday lives. The opportunity is for greater speed, which comes from the growing
availability of multiprocessor machines. In the early 1980s, these were expensive curiosities;
today, many programmers have dual-processor workstations on their desks and four-way or eight-
way serversin the back room. If a calculation can be broken down into independent (or nearly
independent) pieces, such machines can potentially solve them two, four, or eight times faster than
their uniprocessor equivalents. While there are limits to the potential gains from this approach, it
works well for problems as diverse as image processing, serving HTTP requests, and recompiling
multiple source files.

In today's terminology, processesrun in separate logical address spaces that are protected from
each other. Using concurrent processing for performance purposes, particularly in multiprocessor
machines, is more attractive with threads, which execute simultaneously within the same program,
in the same address space, without being protected from each other. The lack of mutual protection
allows lower overhead and easier and faster communication, particularly because of the shared
address space. Since al threads run code from the same program, there are no specia security
risks caused by alack of mutual protection, any more than there are in a single-threaded program.
Thus, concurrency used for performance purposes is most often focused on adding threads to a
single program.

However, adding threads to a Python program to speed it up is often not a successful strategy. The
reason for thisis the Globa Interpreter Lock (GIL), which protects Python's internal data
structures. Thislock must be held by athread before it can safely access Python objects. Without
the lock, even simple operations (such as incrementing an integer) could fail.

Therefore, only the thread with the GIL can manipulate Python objects or call Python/C API
functions. To make life easier for programmers, the interpreter rel eases and reacquires the lock
every 10 bytecode instructions (a value that can be changed using

sys. set checki nt erval). Thelock is also released and reacquired around I/O operations,
such as reading or writing afile, so that other threads can run while the thread that requests the I/0
iswaiting for the 1/O operation to complete. However, effective performanceboosting
exploitation of multiple processors from multiple pure-Python threads of the same processisjust
not in the cards. Unless the CPU performance bottlenecks in your Python application are in G-
coded extensions that release the GIL, you will not observe substantial performance increases by
moving your multithreaded application to a multiprocessor machine.

The necessity for concurrent programming is largely because of the ever-growing importance of
GUIs and network applications. Graphical interfaces often need to gopear to be doing severa
things at once, such as displaying images while scrolling ads across the bottom of the screen.
While it is possible to do the necessary interleaving manually, it is much simpler to code each
operation on its own and let the underlying operating system decide on a concrete order of
operations. Similarly, network applications often have to listen on severa sockets at once or send
data on one channel while receiving data on another.

Uniting these two types of applications is the fact that a GUI can't know when the user will pressa
key or move the mouse, and an HTTP server can't know which datagram will arrive next.
Handling each stream of events with a separate control thread is often the simplest way to cope
with this unpredictabil ity, even on single-processor machines, and when high throughput is not an
overriding concern. Event-driven programming can often be used in these kinds of applications as
well, and Python frameworks such as Medusa and asyncor e are proof that this approachoften

delivers excellent performance with complexity that, while different from that inherent in
multithreading, is not necessarily larger.

The standard Python library allows programmers to approach multithreaded programming at two
different levels. The core module, t hr ead, is a thin wrapper around the basic primitives that any
threading library must provide. Three of these primitives are used to create, identify, and end
threads; others are used to create, test, acquire, and rel ease simple mutual-exclusion locks (or
binary semaphores). In general, programmers should avoid using these primitives directly, and
should instead use the tools included in the higher-level t hr eadi ng module, which is
substantially more programmer-friendly and has similar performance characteristics.

The most important elements of the t hr eadi ng module are classes that represent threads and
various high-level synchronization constructs. The Thr ead class represents a separate control
thread; it can be told what to do by passing a callable object to its constructor or by overriding its
r un method. One thread can start another by calling its st ar t method or wait for it to complete
by caling] oi n. Python also supports daemon threads, which do background processing until all
of the nondaemon threads in the program exit and shut themselves down automatically.

The synchronization constructsin the t hr eadi ng module include locks, reentrant locks (which
asingle thread can safely relock many times without deadlocking), counting semaphores,
conditions, and events. Events can be used by one thread to signal others that something
interesting has happened (e.g., that a new item has been added to a queue, or that it is now safe for
the next thread to modify a shared data structure). The documentation that comes with Python
describes each of these classes.

Therelatively low number of recipes in this chapter, compared to othersin this cookbook, reflects
both Python's focus on programmer productivity (rather than absolute performance) and the
degree to which other packages (such as ht t pl i b and wxWindows) hide the unpleasant details
of concurrency in important application areas. This also reflects many Python programmers
tendencies to look for the simplest way to solve any particular problem, which complex threading
rarely is.

However, this chapter's brevity may also reflect the Python community's underappreciation of the
potential that simple threading has, when used appropriately, to smplify a programmer's life. The
Queue module in particular supplies a delightfully self-contained synchronization and
cooperation structure that can provide al the interthread supervision services you need. Consider a
typical program, which accepts requests from a GUI (or from the network) and, as aresult of such
requests, will often find itself faced with a substantial chunk of work that might take so long to
perform all at once that the program may appear unresponsive to the GUI (or network).

In a purely event-driven architecture, it may take considerable effort on the programmer's part to
dice up the chunk into slices of work thin enough so each can be performed in idle time, without
ever giving the appearance of unresponsiveness. Then, just a dash of multithreading can help
considerably. The main thread pushes the substantial chunk of background work onto a dedicated
Queue, then goes back to its task of making the program's interface appear responsive at all
times.

At the other end of the Queue, a pool of daemonic worker threads await, each ready to ped a
work request off the Queue and run it straight through. This kind of overall architecture
combines event-driven and multithreaded approaches in the overarching ideal of simplicity, and is
thus maximally Pythonic, even though you may need just alittle bit morework if the result of a
worker thread's efforts must be presented again to the main thread (via another Queue, of course),
which is normally the case with GUIs. If you're willing to cheat just alittle and use polling for the
mostly event-driven main thread to access the result Queue back from the daemonic worker
threads, see Recipe 9.7to get an idea of how simple that little bit of work can be.

6.2 Storing Per-Thread Information

Credit: John E. Barham

6.2.1 Problem

Y ou need to allocate storage to each thread for objects that only that thread can use.
6.2.2 Solution

Thread-specific storage is a useful pattern, and Python does not support it directly. A smple
dictionary, protected by alock, makes it pretty easy to program. For once, it's slightly more
general, and not significantly harder, to program to the lower-level t hr ead module, rather than
to the more common, higher-level t hr eadi ng module that Python also offers on top of it:

try:
i mport thread
except:
""" We're running on a single-threaded OS (or the Python
interpreter has
not been conpiled to support threads), so return a
standard dictionary. """
_tss = {}
def get _thread storage():
return _tss
el se:
""" We do have threads; so, to work:
_tss = {}
_tss_lock = thread. all ocate_l ock()
def get thread storage():
""" Return a thread-specific storage dictionary.
thread id = thread.get _ident() # ldentify the
calling thread
tss = _tss.get(thread_id)
if tss is None: # First time being called by this

t hr ead
try: # Entering critical section
_tss lock.acquire()
_tss[thread_id] =tss = {} # Create thread-
specific dictionary
finally:
_tss _lock.release()
return tss

6.2.3 Discussion

Theget _t hread_st or age function in this recipe returns a thread-specific storage
dictionary. It is ageneralization of the get _t ransact i on function from ZODB, the object

database underlying Zope. The returned dictionary can be used to store data that is private to the
thread.

One benefit of multithreaded programs is that all of the threads can share global objects. Often,
however, each thread needs some storage of its own—for example, to store a network or database
connection unique to itself. Indeed, such externally oriented objects are best kept under the control
of asingle thread to avoid multiple possibilities of highly peculiar behavior, race conditions, and
S0 on.

Theget _t hread_st or age function returns a dictionary object that is unique to each thread.

For an exhaustive treatment of thread-specific storage (albeit aimed at C++ programmers), see
http://www.cs.wustl.edu/~schmidt/PDF/T SS-pattern.pdf.

A useful extension would beto add adel et e_t hr ead_st or age function, particularly if a
way could be found to automate its being called upon thread termination. Python's threading
architecture does not make this task particularly easy. Y ou could spawn a watcher thread to do the
deletion after ajoin with the calling thread, but that might be rather heavyweight. The recipe as
presented, without deletion, is quite appropriate for the common architecture in which you have a
pool of (typically daemonic) worker threads that are spawned at the start and do not go away until
the end of the whole process.

6.2.4 See Also

"Thread-specific Storage: an Object Behavioral Pattern for Efficiently Accessing per-Thread
State", by Douglas Schmidt, Timothy Harrisson, and Nat Pryce
(http://www.cs.wustl .edu/~schmidt/PDF/T SS-pattern.pdf).

6.3 Terminating a Thread
Credit: Doug Fort
6.3.1 Problem

Y ou must terminate a thread from the outside, but Python doesn't let one thread brutally kill
another, so you need a controlled-termination idiom.

6.3.2 Solution

A frequently asked question is: How do | kill athread? The answer is: You don't. Instead, you
kindly ask it to go away. The thread must periodically check if it's been asked to go away and then
comply (typicaly after some kind of clean-up):

i nport threading
cl ass Test Thread(threadi ng. Thread):
def _ init_ (self, name='Test Thread'):
""" constructor, setting initial variables

sel f. stopevent = threading. Event()
self. sleepperiod = 1.0

threading. Thread. _ _init_ _(self, name=nane)

def run(self):
""" main control |oop
print "% starts" % (self.getName(),)

count = 0
whil e not self. stopevent.isSet():
count +=1
print "loop %" % (count,)
self. stopevent.wait(self. sl eepperiod)

print "% ends" % (self.getName(),)

def join(self, timeout=None):
""" Stop the thread. """
sel f._stopevent.set()
t hreadi ng. Thread. joi n(sel f, timeout)
if _ name_ _ =="_ min_ _
testthread = Test Thread()
testthread.start()

i mport tine
time. sl eep(10.0)

testthread.join()

6.3.3 Discussion

Often, you will want to control a thread from the outside, but the ability to kill it is, well, overkill.
Python doesn't give you this ability, and thus forces you to design your thread systems more
carefully. This recipe is based on the idea of a thread whose main function uses aloop.
Periodicaly, the loop checksif at hr eadi ng. Event object has been set. If o, the thread
terminates; otherwise, it waits for the object.

The Test Thr ead classin this recipe aso overridest hr eadi ng. Thr ead's| oi n method.
Normally, | oi n waits only for a certain thread to terminate (for a specified amount of time, if
any) without doing anything to cause that termination. In this recipe, however, | 0i n setsthe stop
event object before delegating the rest of its operation to the normal (base class) j oi n method.
Therefore, in thisrecipe, the | 0i n call is guaranteed to terminate the target thread in a short
amount of time.

Y ou can use the recipe's central idea (aloop periodicaly checkingat hr eadi ng. Event to
seeif it must terminate) in several other, dightly different ways. The Event 'swai t method can
let you pause the target thread. Y ou can dso expose the Event , letting controller code set it
and then go on its merry way without bothering to j oi n the thread, knowing the thread will
terminate in a short amount of time. | have found that the smplicity of this recipe gives me the
modest amount of control | need, with no headaches—so | haven't pursued the more sophisticated
(and complicated) ideas.

6.3.4 See Also

Documentation of the standard library module t hr eadi ng inthe Library Reference.

6.4 Allowing Multithreaded Read Access While
Maintaining a Write Lock

Credit: Sami Hangaslammi
6.4.1 Problem

Y ou need to alow unlimited read access to a resource when it is not being modified while keeping
write access exclusive.

6.4.2 Solution

"One-writer, many-readers' locks are a frequent necessity, and Python does not supply them
directly. As usual, they're not hard to program yourself, in terms of other synchronization
primitives that Python does supply:

i nport threading

cl ass ReadWitelLock:
A |l ock object that allows many sinultaneous "read
 ocks™, but
only one "wite | ock."

def _ init_ (self):
self. read ready =
t hr eadi ng. Condi ti on(threadi ng. Lock())
self. readers =0

def acquire_read(self):
Acquire a read | ock. Blocks only if a thread has
acquired the wite | ock.
self. _read_ready.acquire()
try:
self. readers +=1
finally:
self. read ready.release()

def rel ease_read(self):
Rel ease a read | ock.
self. read ready.acquire()

try:
self. readers -=1
if not self. readers:
self. _read_ready.notifyAll()
finally:

self. read ready.rel ease()

def acquire wite(self):
Acquire a wite lock. Blocks until there are no
acquired read or wite |ocks.
self. _read_ready.acquire()
while self. readers > 0:

self. read ready.wait()

def release wite(self):
""" Release a wite | ock.
self. _read_ready.rel ease()

6.4.3 Discussion

It is often convenient to allow unlimited read access to a resource when it is not being modified
and till keep write access exclusive. While the t hr eadi ng module does not contain a specific

class for the job, the idiom is easy to implement using a Condi t i on object, and this recipe
shows how you can do that.

Aninstance of the ReadW i t eLock classisinitidized without arguments, asin:
rw = ReadWiteLock()

Internally, r w. _r eader s counts the number of readers who are currently in the read-write
lock (initially zero). The actual synchronization is performed by at hr eadi ng. Condi ti on
object (createdat i nit_ _ aroundanew Lock objectandheldinrw. _read_r eady).

Theacquire_read andr el ease_r ead methods increment and decrement the number of
active readers. Of course, this happens between acqui r e and r el ease callsto

_read_r eady—such bracketing is obviously necessary even to avoid race conditions between
different threads wanting to acquire or release a read lock. But we also exploit _r ead_r eady
for another purpose, whichiswhy r el ease _read alsodoesanot i f yAl | onit, if and
when it notices it has removed the last read lock.

Thenoti fyAl | method of a Condi t i on object wakes up al threads (if any) that areon a
wai t condition on the object. In this recipe, the only way athread can get into such await isvia
theacqui re_wr it e method, when it finds there are readers active after acquiring
_read_ready.Thewai t cal onthe Condi t i on object releases the underlying lock, so
r el ease_r ead methods can execute, but reacquires it again before waking up, so

acqui re_wr it e can safely keep checking whenever it wakes up, if it's finaly in a no-
readers-active situation. When that happens, acqui re_wr i t e returnsto its caller, but keeps
the lock, so no other writer or reader can enter again, until the writer callsr el ease_wri t e,
which lets the lock go again.

Note that this recipe offers no guarantee against what is technically known as a starvation situation.
In other words, there is no guarantee that a writer won't be kept waiting indefinitely by a steady
stream of readers arriving, even if no reader keeps its read lock for very long. If thisis a problem

in your specific application, you can avoid starvation by adding complications to ensure that new
readers don't enter their lock if they notice that a writer is waiting. However, in many cases, you
can count on situations in which no readers are holding read locks, without special precautions to
ensure that such situations occur. In such cases, this recipe is directly applicable, and besides
eschewing complications, it avoids potentially penalizing reader performance by making several
readers wait for one pending writer.

6.4.4 See Also

Documentation of the standard library module t hr eadi ng in the Library Reference.

6.5 Running Functions in the Future
Credit: David Perry

6.5.1 Problem

Y ou want to run atime-consuming function in a separate thread while allowing the main thread to
continue uninterrupted.

6.5.2 Solution

The Fut ur e class sometimes alows you to hide the fact that you're using threading while still
taking advantage of threading's potential performance advantages:

fromthreading i nport *
i mport copy

cl ass Future:

def _ init_ (self, func, *paran):
constructor
self. _done =0
self._ _result
self.__status

None
"wor ki ng'

self. C = Condition() # Notify on this Condition
when result is ready

Run the actual function in a separate thread

self. T = Thread(target=sel f. Wapper, args=(func,
par an)

self. _T.setNane("FutureThread")

self.__T.start()

def _ _repr_ _(self):
return '<Future at '+hex(id(self))+":"+self. _
_status+' >'

def _ _call_ _(self):
self._ _C.acquire()
while self._ _done==0:
self._ _Cwait()
self. Corelease()
Deepcopy _ _result to prevent accidental tanpering
with it
result = copy.deepcopy(self.__result)

return result

def isDone(self):
return self. done

def Wapper(self, func, param:

Run the actual function and housekeep around it

self. _C acquire()

self._ _result = func(*param
self._ _done=1
self.__status="self._ _result"
self. _Conotify()

self. Corelease()

6.5.3 Discussion

Although Python's thread syntax is nicer than the syntax in many languages, it can still be apain if
all you want to do is run atime-consuming function in a separate thread while allowing the main
thread to continue uninterrupted. A Fut ur e object provides alegible and intuitive way to
achieve such an end.

To run afunction in a separate thread, smply put it in a Fut ur e object:
>>> A=Fut ure(l ongRunni ngFunction, argl, arg2 ...)

Both the calling thread and the execution of the function will continue on their merry ways until
the caller needs the function's result. When it does, the caller can read the result by calling
Fut ur e like afunction. For example:

>>> print A()

If the Fut ur e object has completed executing, the call returns immediately. If it is still running,
the call (and the calling thread in it) blocks until the function completes. The result of the function
is stored in an attribute of the Fut ur e instance, so subsequent calls to it return immediately.

Since you wouldn't expect to be able to change the result of afunction, Fut ur e objects are not
meant to be mutable. This is enforced by requiring Fut ur e to be called, rather than directly
reading _resul t.If desired, stronger enforcement of this rule can be achieved by playing
with getattr_ _and__setattr_ _ or,inPython 2.2, by usng pr operty.

Fut ur e runsits function only once, no matter how many times you read it. Thus, you will have

to recreate Fut ur e if you want to rerun your function (e.g., if the function is sensitive to the
time of day).

For example, suppose you have a function named nuchConput at i on that can take arather
long time (tens of seconds or more) to compute its results, because it churns along in your CPU or
it must read data from the network or from a slow database. Y ou are writing a GUI, and a button
on that GUI needsto start acal to muchConput at i on with suitable arguments, displaying
the results somewhere on the GUI when done. Y ou can't afford to run the function itself asthe
command associated with the button, since if you did, the whole GUI would appear to freeze
until the computation is finished, and that is unacceptable. Fut ur e offers one easy approach to
handling this situation. First, you need to add alist of pending Fut ur e instances that are initially
empty to your application object called, for example, app. f ut ur es. When the button is
clicked, execute something like this:

app. futures. append(Fut ure(rmuchConmput ati on, with, its, args,
here))

and then return, so the GUI keeps being serviced (Fut ur e isnow running the function, but in

another thread). Finally, in some periodically executed poll in your main thread, do something like
this:

for future in app.futures[:]: # Copy list and alter it in
| oop
if future.isDone():
appropriately display result(future())
app. futures. renmove(future)

6.5.4 See Also

Documentation of the standard library modulest hr eadi ng and copy inthe Library
Reference; Practical Parallel Programming, by Gregory V. Wilson (MIT Press, 1995).

6.6 Synchronizing All Methods in an Object
Credit: André Bjarby
6.6.1 Problem

Y ou want to share an object among multiple threads, but to avoid conflicts you need to ensure that
only one thread at atime isinside the object, possibly excepting some methods for which you
want to hand-tune locking behavior.

6.6.2 Solution

Java offers such synchronization as a built-in feature, while in Python you have to program it
explicitly using reentrant locks, but thisis not all that hard:

i nport types

def _get _net hod_nanes(obj):
Get all nethods of a class or instance, inherited or
ot herw se.

if type(obj) == types.InstanceType:

return _get method nanmes(obj.__class_)
elif type(obj) == types. Cl assType:

result =[]

for name, func in obj.__dict_ _.itens():

if type(func) == types. FunctionType:
resul t.append((nane, func))
for base in obj._ bases_

resul t. extend(_get method _names(base))
return result

class _Synchroni zedMet hod:
Wap | ock and rel ease operations around a net hod

call.
def _ _init_ (self, method, obj, |ock):
self. _method = nethod
self.__obj = obj
self._ _lock = lock
def _ _call_ _(self, *args, **kwargs):
self._ _lock.acquire()
try:
return self.__method(self.__obj, *args,
**kwar gs)
finally:
self._ _lock.release()

cl ass Synchroni zedObj ect :

""" Wap all nmethods of an object into
_Synchroni zedMet hod i nst ances.

def _ _init_ (self, obj, ignore=[], |ock=None):
i mport threading

You nust access _ _dict__ directly to avoid
tickling _ _setattr_ _
self.__dict_ ['_SynchronizedObject_ _nethods'] = {}

self.__dict_ ['_SynchronizedObject_ _obj'] = obj
if not lock: |lock = threading. RLock()
for nanme, nmethod in _get method _names(obj):
if not nane in ignore and not self.
_nmet hods. has_key(nane):
sel f._ _methods[nane] =
_Synchroni zedMet hod(et hod, obj, 1 ock)

def _ getattr_ (self, name):
try:
return self._ _methods[nane]
except KeyError:
return getattr(self._ _obj, nane)
def _ setattr_ (self, nane, value):
setattr(self._ _obj, nane, value)

6.6.3 Discussion

Asusua, we complete this module with a small self test, executed only when the module is run as
main script. This aso serves to show how the module's functionality can be used:

if _ name_ _=="'_ nmain
i nport threading
i mport tine

cl ass Dunmmy:

def foo (self):
print "hello fromfoo
tinme.sleep(l)

def bar (self):
print "hello from bar’

def baaz (self):
print 'hello from baaz'

tw = Synchroni zedObj ect (Dumrmy(), ignore=['baaz'])
t hreadi ng. Thread(target=tw. foo).start()
time.sleep(.1)

t hreadi ng. Thread(target=tw. bar).start()
tinme.sleep(.1)

t hreadi ng. Thread(t arget =t w. baaz).start()

Thanks to the synchronization, the call to bar runs only when the call to f 00 has completed.

However, because of the i gnor e= keyword argument, the call to baaz bypasses
synchronization and thus completes earlier. So the output is:

hello from foo
hell o from baaz
hell o from bar

When you find yourself using the same single-lock locking code in admost every method of an

object, use this recipe to refactor the locking away from the object's application-specific logic. The
key codeidiomis:

self.lock.acquire()
try:
The "real" application code for the method
finally:
sel f.lock.rel ease()

To some extent, this recipe can aso be handy when you want to postpone worrying about a class's
locking behavior. Note, however, that if you intend to use this code for production purposes, you
should understand al of it. In particular, this recipe is not wrapping direct accesses, be they get or
set, to the object's attributes. If you also want them to respect the object's lock, you'll need the
object you're wrapping to define, inturn, itsown _ _getattr_ _and_ _setattr_ _
special methods.

Thisrecipeis carefully coded to work with every version of Python, including old ones such as
1.5.2, as long as you're wrapping classic classes (i.e., classes that don't subclass built-in types).
Issues, as usual, are subtly different for Python 2.2 new -style classes (which subclass built-in
types or the new built-intype obj ect that is now the root class). Metaprogramming (e.g., the

tasks performed in this recipe) sometimes requires a subtly different approach when you're dealing
with the new -style classes of Python 2.2 and later.

6.6.4 See Also

Documentation of the standard library modulest hr eadi ng andt ypes inthe Library
Reference.

6.7 Capturing the Output and Error Streams from a Unix
Shell Command

Credit: Brent Burley
6.7.1 Problem

You need to run an external process in a Unix-like environment and capture both the output and
error streams from the external process.

6.7.2 Solution

The popen2 module lets you capture both streams, but you also need help from f cnt | to
make the streams nonblocking and thus avoid deadlocks:

i nport os, popen2, fcntl, FCNTL, select

def makeNonBl ocki ng(fd):
fl = fcntl.fentl (fd, FCNTL. F_GETFL)
try:
fentl.fentl (fd, FCNTL. F_SETFL, fl | FCNTL. O _NDELAY)
except AttributeError:
fentl.fentl (fd, FCNTL. F_SETFL, fl | FCNTL. FNDELAY)

def get CommandQut put (comand) :
child = popen2. Popen3(command, 1) # Capture stdout and
stderr from conmand
child.tochild.close() # don't need to
wite to child's stdin
outfile = child.fronchild
outfd = outfile.fileno()
errfile = child.childerr
errfd = errfile.fileno()
makeNonBIl ocki ng(out f d) # Don't deadl ock! Make
fd's nonbl ocki ng.
makeNonBl ocki ng(errfd)
outdata = errdata = "'
outeof = erreof =0
while 1:
ready = select.select([outfd,errfd],[],[]) # Wait
for input
if outfd in ready[O]:
outchunk = outfile.read()
if outchunk == ""': outeof =1
outdata = outdata + outchunk
if errfd in ready[O]:
errchunk = errfile.read()
if errchunk == "': erreof =1
errdata = errdata + errchunk
if outeof and erreof: break
select.select([],[].][],.-21) # Allowa little time for
buffers to fil

err = child.wait()
if err 1= 0:
raise RuntimeError, '% failed with exit code
%\ n%" % (
command, err, errdata)
return outdata

def get CommandCQut put 2(conmand) :

child = os. popen(conmand)

data = child.read()

err = child.close()

if err:

raise RuntimeError, '% failed with exit code %' %

(conmand, err)

return data

6.7.3 Discussion

This recipe shows how to execute a Unix shell command and capture the output and error streams
in Python. By contrast, 0S. sy st emsends both streams directly to the terminal. The presented
get CommandQut put (command) function executes acommand and returns the command's
output. If the command fails, an exception is raised, using the text captured from the command's
st der r aspart of the exception's arguments.

Most of complexity of this code is due to the difficulty of capturing both the output and error
streams of the child process at the same time. Normal (blocking) read calls may deadlock if the
child is trying to write to one stream, and the parent is waiting for data on the other stream, so the
streams must be set to nonblocking, and sel ect must be used to wait for data on the streams.

Note that the second sel ect call adds a 0.1-second sleep after each read. Counterintuitively,

this allows the code to run much faster, since it gives the child time to put more data in the buffer.
Without this, the parent may try to read only a few bytes at a time, which can be very expensive.

If you want to capture only the output, and don't mind the error stream going to the terminal, you
can use the much simpler code presented in get CommandQut put 2. If you want to suppress

the error stream altogether, that's easy, too. Y ou can append 2>/ dev/ nul | to the command.
For example:

|s -1 2>/dev/ null

Since Version 2.0, Python includes the 0s. popen4 function, which combines the output and

error streams of the child process. However, the streams are combined in a potentially messy way,
depending on how they are buffered in the child process, so this recipe can still help.

6.7.4 See Also

Documentation of the standard library modules 0s, popen2, fcnt |, and sel ect inthe
Library Reference.

6.8 Forking a Daemon Process on Unix
Credit: Jirgen Hermann
6.8.1 Problem

Y ou need to fork a daemon process on a Unix or Unix-like system, and this, in turn, requires a
certain precise sequence of system calls.

6.8.2 Solution

Daemon processes must detach from their controlling terminal and process group. Thisis not hard,
but it does take some care:

i nport sys, os

def main():

An exanpl e daenon main routine; wites a datestanp
to file

/ t np/ daenon-| og every 10 seconds.

i nport tine

f = open("/tnp/daenon-I1og", "wW')

while 1:
f.wite('%\n' %tine.ctinme(tinme.time()))
f.flush()

time.sleep(10)

if _ name_ _ =="_ min_ _
Do the Unix double-fork magic; see Stevens's book
" Advanced
Programming in the UNI X Environnment" (Addi son-Wesl ey)
for details
try:
pid = os.fork()
if pid > 0:
Exit first parent
sys. exit(0)
except OSError, e:
print >>sys.stderr, "fork #1 failed: % (%)" % (
e.errno, e.strerror)

sys.exit(1)

Decoupl e from parent environnent
os.chdir("/")

os.setsid()

os. umask(0)

Do second fork

try:
pid = os.fork()

if pid > O:

Exit from second parent; print eventual PID
before exiting
print "Daermon PID %" % pid
sys. exit(0)
except OSError, e:

print >>sys.stderr, "fork #2 failed: % (%)" % (
e.errno, e.strerror)

sys.exit(1)

Start the daenmon main | oop
mai n()

6.8.3 Discussion

Forking a daemon on Unix requires a certain specific sequence of system calls, which is explained
in W. Richard Steven's semina book, Advanced Programming in the Unix Environment (Addison-
Wesley). We need to f or k twice, terminating each parent process and letting only the grandchild
of the original process run the daemon's code. This allows us to decouple the daemon process
from the calling terminal, so that the daemon process can keep running (typically as a server
process without further user interaction, like a web server, for example) even after the calling
terminal is closed. The only visible effect of thisis that when you run this script as a main script,
you get your shell prompt back immediately.

For al of the details about how and why this works in Unix and Unix-like systems, see Stevens's
book. Stevens gives his examples in the C programming language, but since Python's standard
library exposes afull POSIX interface, this can aso be done in Python. Typical C code for a
daemon fork trandates almost literally to Python; the only difference you have to care about—a
minor detail—is that Python's 0s. f or k does not return -1 on errors but throws an OSEr r or
exception. Therefore, rather than testing for a less-than-zero return code from f or k, aswe would
inC,werunthe f ork inthet ry clauseof at r y/except statement, so that we can catch the
exception, should it happen, and print appropriate diagnostics to standard error.

6.8.4 See Also

Documentation of the standard library module 0s in the Library Reference; Unix manpages for
thef or k, umask, and set si d system calls; Advanced Programming in the Unix
Environment, by W. Richard Stevens (Addison-Wesley, 1992).

6.9 Determining if Another Instance of a Script Is Already
Running in Windows

Credit: Bill Bell

6.9.1 Problem

In aWin32 environment, you want to ensure that only one instance of a script is running at any
given time.

6.9.2 Solution

Many tricks can be used to avoid starting multiple copies of an application, but they're dl quite
fragile—except those based on a mutual-exclusion (mutex) kernel object, such as this one. Mark
Hammond's preciouswi n32al | package supplies all the needed hooks into the Windows APIs
to let us exploit a mutex for this purpose:

from w n32event inport CreateMitex

fromw n32api inport GetlLastError

fromw nerror inport ERROR _ALREADY_EXI STS
fromsys inmport exit

handl e = Creat eMut ex(None, 1, 'A unique nutex nane')

if GetLastError() == ERROR_ALREADY_EXI STS:
Take appropriate action, as this is the second
instance of this script; for exanple:
print 'Ch! dear, | exist already.'
exit(1)
el se:
This is the only instance of the script; |et
it do its normal work. For exanple:
fromtine inport sleep

for i in range(10):
print "I'mrunning",i
sl eep(1)

print "I'm done"

6.9.3 Discussion

Thestring' A uni que mnut ex nane' must be chosen to be unique to this script, but it
should not be dynamically generated, as it must be the same for al potential simultaneous
instances of the same script. A fresh, globally unique ID generated at script-authoring time would
be a good choice. According to the Windows documentation, the string can contain any characters
except backslashes (\). On Windows platforms that implement Termina Services, you can have a
prefix of @ obal \ or Local \, but such prefixes would make the string invalid for Windows
NT, 95, 98, and ME.

TheWin32 APl call Cr eat eMut ex creates a Windows kernel object of the mutual-exclusion

(mutex) kind and returns a handle to it. Note that we do not close this handle; it needs to exist
throughout the time this process is running. The Windows kernel takes care of removing the

handle (and the object it indicates, if the handle being removed is the only handle to that kernel
object) when our process terminates.

The only thing we really care about is the return code from the API call, which we obtain by
cdlingthe Get Last Er r or API right after it. That codeis ERROR_ALREADY_EXI STS if
and only if the mutual-exclusion object we tried to create already exists (i.e., if another instance of
this script is dready running).

Note that this approach is perfectly safe and not subject to race conditions and similar anomalies if
two instances of the script are trying to start at the same time (a reasonably frequent occurrence,
for example, if the user erroneously double-clicks in an Active Desktop setting where asingle
click aready starts the application). The Windows specifications guarantee that only one of the
instances will create the mutex, while the other will be informed that the mutex already exists.
Mutual exclusion is therefore guaranteed by the Windows kernel itself, and the recipe is entirely
solid.

6.9.4 See Also

Documentation for the Win32 APl inwi n32al |
(http://starship.python.net/crew/mhammond/win32/Downl oads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows APl documentation available from

Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly, 2000).

6.10 Processing Windows Messages Using
MsgWaitForMultipleObjects

Credit: Michael Robin
6.10.1 Problem

In a Win32 application, you need to process messages, but you also want to wait for kernel-level
waitable objects and coordinate several activities.

6.10.2 Solution

A Windows application message loop, aso known as its message pump, is at the heart of
Windows. It's worth some effort to ensure that the heart beats properly and regularly:

i mport w n32event
i nport pythoncom

TIMEQUT = 200 # ns

St opEvent = w n32event. Creat eEvent (None, 0, 0, None)
Ot her Event = wi n32event. Creat eEvent (None, 0, 0, None)

cl ass nyCool App:
def OnQuit(self):
if areYouSure():
wi n32event . Set Event (St opEvent) # Exit nsg punp

def _MessagePunmp():
wai t abl es = St opEvent, O her Event

while 1:
rc = wi n32event. MsgWai t For Mul ti pl eObj ect s(
wai t abl es,
O, # Wit for all = false, so it waits for
anyone

TI MEQUT, # (or wi n32event. | NFI Nl TE)
wi n32event . QS_ALLEVENTS) # Accepts all input

You can call a function here, if it doesn't take
too long. It wll

be executed at |east every 200nms -- possibly a
| ot nore often,

dependi ng on the nunber of W ndows nessages
recei ved.

if rc == wi n32event. WAI T_OBJECT_O:
Qur first event listed, the StopEvent, was
triggered, so we nust exit
br eak
elif rc == win32event. WAI T_OBJECT_0+1:
Qur second event listed, "O herEvent", was
set. Do what ever needs

to be done -- you can wait on as nany kernel -
wai t abl e obj ects as
needed (events, |ocks, processes, threads,
notifications, and so on).
pass
elif rc == win32event. WAI T_OBJECT_O+l en(wai t abl es):
A wi ndows nessage is waiting - take care of
it. (Don't ask ne
why a WAIT_OBJECT_MSG isn't defined <
WAl T_OBJECT_0...!).
Thi s nessage-serving MJST be done for COM
DDE, and ot her
W ndowsy things to work properly!
i f pythoncom PunmpWai ti ngMessages():
break # we received a wn quit nessage
elif rc == wi n32event. WAl T_TI MEOUT:
Qur tinmeout has el apsed.
Do sonme work here (e.g, poll sonething you
can't thread)
or just feel good to be alive.
pass
el se:
rai se RuntinmeError("unexpected wi n32wait return
val ue")

6.10.3 Discussion

Most Win32 applications must process messages, but often you want to wait on kernel waitables
and coordinate alot of things going on at the same time. A good message pump structure is the
key to this, and this recipe exemplifies a reasonably simple but effective one.

Messages and other events will be dispatched as soon as they are posted, and a timeout allows you
to poll other components. Y ou may need to poll if the proper calls or event objects are not exposed
in your Win32 event loop, as many components insist on running on the application's main thread

and cannot run on spawned threads.

Y ou can add many other refinements, just as you can to any other Win32 message- pump approach.
Python lets you do this with as much precision as C does. But the relatively simple message pump
in the recipe is aready a big step up from the typical naive application that can either serve its
message loop or wait on kernel waitables, but not both.

The key to thisrecipe is the Windows APl cal MsgWai t For Mul ti pl eObj ect s, which
takes several parameters. The first is atuple of kernel objects you want to wait for. The second
parameter is aflag that is normally O; 1 indicates that you should wait until all the kernel objects
in the first parameter are signaled, although you amost invariably want to stop waiting when any
one of these objects is signaled. The third is aflag that specifies which Windows messages you
want to interrupt the wait; aways passwi n32event . QS_ALLEVENTS here to make sure
any Windows message interrupts the wait. The fourth parameter is a timeout period (in
milliseconds), or wi n32event . | NFI NI TEif you are sure you do not need to do any
periodic polling.

This function is a polling loop and, sure enough, it loops (withawhi | e 1:, which is terminated
only by abr eak within it). At each leg of the loop, it calls the API that waits for multiple objects.
When that API stops waiting, it returns a code that explains why it stopped waiting. A value of

wi n32event . WAI T_OBJECT_0 towi n32event . WAI T_OBJECT_O+N- 1 (in which
N is the number of waitable kernel objects in the tuple you passed as the first parameter) means
that the wait finished because one of those objects was signaled (which means different things for
each kind of waitable kernel object). The return's code difference from

wi n32event . WAl T_OBJECT _0 istheindex of the relevant object in the tuple.

wi n32event . WAI T_OBJECT_0+N means that the wait finished because a message was
pending, and in this case our recipe processes al pending Windows messages viaacall to

pyt honcom PunpWai t i ngMessages. Thisfunction returnstrue if a\VW QUI T
message was received, so in this case we br eak out of the whole whi | e loop. A code of

wi n32event . WAI T_TI MEOUT means the wait finished because of atimeout, so we can do

our polling there. In this case, no message is waiting, and none of our kernel objects of interest
were signaled.

Basically, the way to tune this recipe for yourself is by using the right kernel objects as

wai t abl es (with an appropriate response to each) and by doing whatever you need to do
periodicaly in the polling case. While this means you must have some detailed understanding of
Win32, of course, it's still quite a bit easier than designing your own specia-purpose, message-
loop function from scratch.

6.10.4 See Also

Documentation for the Win32 APl inwi n32al |
(http://starship.python.net/crew/mhammond/win32/Downl oads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows APl documentation available from

Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly, 2000).

Chapter 7. System Administration

Section 7.1. Introduction

Section 7.2.

Running a Command Repeatedly

Section 7.3.

Generating Random Passwords

Section 7.4.

Generating Non-Totally Random Passwords

Section 7.5.

Checking the Status of a Unix Network Interface

Section 7.6.

Calculating Apache Hits per |IP Address

Section 7.7.

Calculating the Rate of Client Cache Hits on Apache

Section 7.8.

M anipul ating the Environment on Windows NT/2000/XP

Section 7.9.

Checking and Modifying the Set of Tasks Windows Automatically Runs at

Logon

Section 7.10.

Examining the Microsoft Windows Registry for aList of Name Server

Addresses

Section 7.11.

Getting Information About the Current User on Windows NT/2000

Section 7.12.

Getting the Windows Service Name from Its Long Name

Section 7.13.

M anipul ating Windows Services

Section 7.14.

I mpersonating Principals on Windows

Section 7.15.

Changing a Windows NT Password Using ADS|

Section 7.16.

Working with Windows Scripting Host (WSH) from Python

Section 7.17.

Displaying Decoded Hotkeys for Shortcuts in Windows

7.1 Introduction

Credit: Donn Cave, University of Washington

In this chapter, we consider a class of programmer—the humble system administrator—in contrast
to every other chapter's focus on afunctional domain. As a programmer, the system administrator
faces most of the same problems that other programmers face, and should find the rest of this book
of at least equal interest.

Python's advantages in this domain are also quite familiar to any other Python programmer, but its
competition is different. On Unix platforms, at any rate, the landscape is dominated by a handful
of lightweight languages such as the Bourne shell and awk that aren't exactly made obsolete by
Python. These little languages can often support a simpler, clearer, and more efficient solution
than Python. But Python can do things these languages can't, and it's often more robust in the face
of things such as unusually large data inputs. Of course, another notable competitor, especially on
Unix systems, is Perl (which isn't really alittle language).

One thing that stands out in this chapter's solutions is the wrapper: the aternative, programmed
interface to a software system. On Unix, thisis usually afairly prosaic matter of diversion and
analysis of text 1/O. Python has recently improved its support in this area with the addition of C-
level pseudotty functions, and it would be interesting to see more programmers experiment with
them (seethe pt y module). The pseudotty device is like a bidirectional pipe with tty driver
support, so it's essential for things such as password prompts that insist on atty. And because it
appears to be a tty, applications writing to a pseudotty normally use line buffering instead of the
block buffering that can be a problem with pipes. Pipes are more portable and less trouble to work
with, but they don't work for every application.

On Windows, the situation is often not as prosaic as on Unix-like platforms, as information may
be somewhere in the registry, available via APIs, or available via COM. The standard Python

_ Wi nr eg module and Mark Hammond'swi n32al | package give the Windows administrator
access to al of these sources, and you'll see more Windows administration recipes here than you
will for Unix. The competition for Python as a system administration language on Windows is
feeble compared to that on Unix, so this is another reason for the platform's prominence here. The
wi n32al | extensions are available for download from Mark Hammond's web page at
http://starship.python.net/crew/mhammond/win32/Downloads.html. wi n32al | also comes with
ActiveState's ActivePython (http://www.activestate.com/ActivePython/). To use this extremely
useful package most effectively, you also need Python Programming on Win32, by Mark
Hammond and Andy Robinson (O'Reilly, 2000).

While it may be hard to see what brought al the recipes together in this chapter, it isn't hard to see
why system administrators deserve their own chapter: Python would be nowhere without them!
Who else can bring an obscure, fledgling language into an organization and almost covertly
infiltrate it into the working environment? If it weren't for the offices of these benevolent
anarchists, Python would surely have languished in obscurity despite its merits.

7.2 Running a Command Repeatedly
Credit: Philip Nunez
7.2.1 Problem
Y ou need to run a command repeatedly, with arbitrary periodicity.
7.2.2 Solution
Thet i me. sl eep function offers a simple approach to this task:
inport time, os, sys, string
def main(cnd, inc=60):

while 1:

0s. system(cnd)
time.sleep(inc)

if name_ _=="'_ min_ ' :
if len(sys.argv) < 2 or len(sys.argv) > 3:
print "usage: " + sys.argv[0] + " conmmand
[seconds_del ay]"
sys.exit(1)

cmd = sys.argv[1]

if len(sys.argv) < 3:
mai n(cnd)

el se:
inc = string.atoi(sys.argv[2])
mai n(cnd, inc)

7.2.3 Discussion

You can use this recipe with a command that periodically checks for something (e.g., polling) or
performs an endlessly-repeating action, such astelling a browser to reload a URL whose contents
change often, so you always have a recent version of that URL up for viewing. Therecipeis
structured into a function called mai n and a body that is preceded by theusual i f ~ nane_
~=="_ main_ _': idiom, which ensures that the body executes only if the script runs as a
main script. The body examines the command-line arguments you used with the script and calls
mai n appropriately (or gives a usage message if there are too many or too few arguments). This
is always the best way to structure a script, so its key functionality is also available to other scripts
that may import it as a module.

The mai n function accepts a cnd string, which is a command you should pass periodically to the
operating system's shell, and, optionally, a period of time in seconds, with a default value of 60
(one minute). mai n loops forever, alternating between executing the command with

0s. syst emand waiting (without consuming resources) witht i ne. sl eep.

The script's body looks at the command-line arguments you used with the script, which are found
insys. ar gv. Thefirst, sys. ar gv[0] , isthe name of the script, often useful when the
script identifies itself as it prints out messages. The body checks that there are one or two other

arguments in addition to this name. The first (mandatory) is the command to be run. The second
(optional) is the delay in seconds between two runs of the command. If the second argument is
missing, the body calls mai n just with the command argument, accepting the default delay (of 60

seconds). Note that if there is a second argument, the body must transform it from a string (all
itemsinsys. ar gv are always strings) into an integer. In modern Python, youwould do this
withthe i nt built-in function:

inc = int(sys.argv[2])

But the recipe is coded in such away as to work even with old versions of Python that did not
alow youtousei nt inthisway.

7.2.4 See Also

Documentation of the standard library modules 0s and t i ne inthe Library Reference.

7.3 Generating Random Passwords
Credit: Devin Leung
7.3.1 Problem

Y ou need to create new passwords randomly—for example, to assign them automatically to new
user accounts.

7.3.2 Solution

One of the chores of system administration is installing a lot of new user accounts. Assigning each
new user a different, totally random password is a good idea in such cases. Save the following as
makepass.py:

fromrandom i nport choice
i nport string

Python 1.5.2 style
def GenPasswd(| ength=8, chars=string.letters+string.digits):
newpasswd = []
for i in range(length):
newpasswd. append(choi ce(chars))
return string.join(newasswd, " ")

Python 2.0 and | ater style

def GenPasswd2(| ength=8, chars=string.letters+string.digits):
return "' .join([choice(chars) for i in range(length)])

7.3.3 Discussion

This recipe is useful when creating new user accounts and assigning each of them a different,
totally random password. The GenPasswd2 version shows how to use some features that are
new in Python 2.0 (e.g., list comprehensions and string methods).

Here's how to print out 6 passwords (letters only, of length 12):

>>> jnport makepass, string
>>> for i in range(6):
print makepass. GenPasswd2(12, string.letters)

ui ZWGSJLW O
FVrychdGsAaT
CGCXZAFG sVI
TPpQwpW CQEl i
HVBW vRMbl vh
ot BPt nl YWKGq

Of course, such totally random passwords, while providing an excellent theoretical basis for
security, are impossibly hard to remember for most users. If you require users to stick with them,
many users will probably write down their passwords somewhere. The best you can hope for is
that new users will set their own passwords at their first login, assuming, of course, that the system

you're administering lets each user change their own password (most operating systems do, but
you might be assigning passwords for other kinds of services without such facilities).

A password that is written down anywhere is a serious security risk, since pieces of paper get lost,
misplaced, and peeked at. Therefore, from a pragmatic point of view, you might be better off
assigning passwords that are not totally random; the users are more likely to remember these and

less likely to write them down (see Recipe 7.4). This may violate the theory of password security,
but, as al practicing system administrators know, pragmatism trumps theory.

7.3.4 See Also

Recipe 7.4; documentation of the standard library module r andomin the Library Reference.

7.4 Generating Non-Totally Random Passwords
Credit: Luther Blissett
7.4.1 Problem

Y ou need to create new passwords randomly—for example, to assign them automatically to new
user accounts—and want the passwords to be somewhat feasible to remember for typical users, so
they won't be written down.

7.4.2 Solution

We can use a pastiche approach for this, mimicking letter n-gramsin actual English words. A
grander way to look at the same approach isto call it a Markov Chain simulation of English:

i nport random string

cl ass password:
Any substantial file of English words will do just as
wel |
data = open("/usr/share/dict/words").read().lower()
def renew(self, n, maxnmem=3):
self.chars = []
for i in range(n):
Randomy "rotate" self.data
randspot = random randrange(l en(sel f.data))
self.data = self.data[randspot:] +
sel f. data[: randspot]

where = -1
Get the n-gram
| ocate = "' .join(self.chars[-nmxmem])

whi | e where<0 and | ocat e:
Locate the n-gramin the data
where = self.data.find(l ocate)
Back off to a shorter n-gramif necessary
| ocate = locate[1:]

c = self.data]where+l en(l ocate) +1]

if not c.islower(): c =

random choi ce(string. | owercase)
sel f.chars. append(c)

def _ _str_ _(self):
return ''.join(self.chars)
if _ name_ _ =="_ min_ _
"Usage: pastiche [passwords [length [nenory]]]"
i nport sys

if len(sys.argv)>1: dopass
el se: dopass = 8
if len(sys.argv)>2: length
el se: length = 10
if len(sys.argv)>3: nenory
el se: nemory = 3

int(sys.argv[1])

int(sys.argv[2])

int(sys.argv[3])

onepass = password()

for i in range(dopass):
onepass. renew(| engt h, nenory)
print onepass

7.4.3 Discussion

This recipe is useful when creating new user accounts and assigning each user a different, random
password, using passwords that a typical user will find feasible to remember, so that the
passwords will not be written down. See Recipe 7.3 if you prefer totally-random passwords.

The recipe'sideais based on the good old pastiche concept. Each letter (always lowercase) in the
password is chosen pseudo-randomly from data that is a collection of words in a natural language
familiar to the users. This recipe uses /usr/share/dict/words as supplied with Linux systems (on

my machine, afile of over 45,000 words), but any large document in plain text will do just as well.
The trick that makes the passwords sort of memorable, and not fully random, is that each letter is
chosen based on the last few letters aready picked for the password as it stands so far, so that

letter transitions will tend to be repetitive. There is a break when the normal choice procedure
would have chosen a nonalphabetic character, in which case arandom letter is chosen instead.

Here are a couple of typical sample runs of this pastiche.py password-generation script:

[situ@ioni cooker]$ python pastiche. py
yj ackj aceh

ackj avagef

al dsst ordb

di ngt onous

stictlyoke

cvai wandga

[i dmanneck

ol exnari nl

[situ@ioni cooker]$ python pastiche. py
ptiontingt

punchanki n

cypr esneyf

sennenedwa

i ni ngrat ed

fancej acev

sroof cased

nryj ackman

[situ@ioni cooker]$

Asyou can see, some of these are definitely wordlike, others less so, but for atypical human being,
none are more problematic to remember than a sequence of even fewer totally random,
uncorrelated letters. No doubt some theoretician will complain (justifiably, in away) that these
aren't asrandom as al that. Well, tough. My point is that they had better not be if some poor
fellow is going to have to remember them! Y ou can compensate for this by making them a bit
longer. If said theoretician shows us how to compute the entropy per character of this method of
password generation (versus the obvious 4.7 bits/character of passwords made up of totally
random lowercase letters, for example), now that would be a useful contribution indeed.
Meanwhile, I'll keep generating passwords this way, rather than in a totally random way,
whenever I'm asked to do so. If nothing else, it's the closest thing to a useful application for the
pastiche concept that 1've found.

7.4.4 See Also

Recipe 7.3; documentation of the standard library module r andomin the Library Reference.

7.5 Checking the Status of a Unix Network Interface
Credit: Jirgen Hermann
7.5.1 Problem

Y ou need to check the status of a network interface on a Linux or other Unix-compatible platform.

7.5.2 Solution

One approach to system-administration scripts is to dig down into system internals, and Python
supports this approach:

#!' [usr/bin/env python
i nport fcntl, struct, sys
from socket inport *

Set sonme synbolic constants
SI OCGE FFLAGS = 0x8913
nul | 256 = "\ 0' *256

Get the interface nane fromthe command |ine
i fname = sys.argv|[1]

Create a socket so we have a handle to query
s = socket (AF_I NET, SOCK DGRAM

Call ioctl() to get the flags for the given interface
result = fcntl.ioctl(s.fileno(), SIOCA FFLAGS, ifname +
nul | 256)

Extract the interface's flags fromthe return val ue
flags, = struct.unpack('H , result[16:18])

Check "UP" bit and print a nessage
up = flags & 1
print ("DONN , 'UP)[up]

Return a value suitable for shell's "if"
sys. exit(not up)

7.5.3 Discussion

This recipe shows how to call some of the low-level modules of Python's standard library,
handling their results with the st r uct module. To really understand how this recipe works, you
need to take alook at the system includes. On Linux, the necessary definitions are located in
{usr/include/linux/if.h

Though this code is certainly more complex than the traditional scripting approach (i.e., running
/shin/ifconfig and parsing its output), you get two positive effects in return. Directly using the
system calls avoids the overhead (albeit modest) of spawning a new process for suchasimple
guery, and you are not dependent on the output format of ifconfig, which might change over time

(or from system to system) and break your code. On the other hand, of course, you are dependent
on the format of the structure returned by i oct | , which may be a bit more stable than ifconfig's

text output but no more widespread. Win some, lose some. It is nice (and crucial) that Python
gives you a choice!

7.5.4 See Also

Documentation of the standard library modulesf cnt | and socket inthe Library Reference;
Unix manpages for the details of the network interfaces, suchasi oct | andfcnt | .

7.6 Calculating Apache Hits per IP Address
Credit: Mark Nenadov
7.6.1 Problem

You need to examine alog file from Apache to know the number of hits recorded from each
individual 1P address that accessed it.

7.6.2 Solution

Many of the chores of administering aweb server have to do with analyzing Apache logs, which
Python makes easy:

def Cal cul at eApachel pHits(!l ogfil e_pat hnanme):
Make a dictionary to store | P addresses and their hit
counts
and read the contents of the log file line by line
I[pHi tListing = {}
Contents = open(logfile_pathname, "r").xreadlines()
You can use .readlines in old Python, but if the |og
i s huge...

Go through each line of the logfile

for line in Contents:
Split the string to isolate the |IP address
Ip =line.split(" ")[0]

Ensure length of the IP address is proper (see
di scussi on)
if 6 <len(lp) <= 15:
Increase by 1 if IP exists; else set hit count

IpHitListing[lp] = IpHtListing.get(lp, 0) + 1
return | pHitListing
7.6.3 Discussion

This recipe shows a function that returns a dictionary containing the hit counts for each individual
I P address that has accessed your Apache web server, as recorded in an Apache log file. For
example, atypical use would be:

HitsDictionary =

Cal cul at eApachel pHi t s("/usr/ 1 ocal / nuspher e/ apache/l ogs/ acces
s_log")

print HitsDi ctionary["127.0.0.1"]

This function is quite useful for many things. For example, | often use it in my code to determine
the number of hits that are actually originating from locations other than my local host. This
function is also used to chart which |P addresses are most actively viewing pages that are served
by a particular installation of Apache.

This function performs a modest validation of each |P address, which isreally just alength check:

An IP address will never be longer than 15 characters (4 sets of triplets and 3 periods).
An IP address will never be shorter than 7 characters (4 sets of single digits and 3 periods).

The purpose of this check is not to enforce any stringent validation (for that, we could use a
regular expression), but rather to reduce, at extremely low runtime cost, the probability of data that
is obviously garbage getting into the dictionary. As a general technique, performing low-cost,

highly approximate sanity checks for data that is expected to be okay (but one never knows for
sure) isworth considering.

7.6.4 See Also

The Apache web server is available and documented at http://httpd.apache.org.

7.7 Calculating the Rate of Client Cache Hits on Apache
Credit: Mark Nenadov
7.7.1 Problem

Y ou need to monitor how often client requests are refused by your Apache web server because the
client's cache of the page is up to date.

7.7.2 Solution

When a browser queries a server for a page that the browser has in its cache, the browser lets the
server know about the cached data, and the server returns an error code (rather than serving the
page again) if the client's cache is up to date. Here's how to find the statistics for such occurrences
in your server'slogs:

def Client CachePercentage(l ogfil e_pathnanme):
Contents = open(logfile_pathname, "r").xreadlines()
Tot al Requests = 0
CachedRequests = 0

for line in Contents:
Tot al Requests += 1
if line.split(" ")[8] == "304": # if server
returned "not nodified"
CachedRequests += 1

return (100*CachedRequests)/ Tot al Request s
7.7.3 Discussion

The percentage of requests to your Apache server that are met by the client's own cacheis an
important factor in the perceived performance of your server. The code in this recipe helps you get
this information from the server'slog. Typica use would be:

| og_path = "/usr/local/nusphere/apache/l ogs/ access_| og"
print "Percentage of requests that are client-cached: " +
str(

Cli ent CachePercent age(l og_path)) + "%

The recipe reads the log file via the special method xr eadl i nes, introduced in Python 2.1,
rather than viathe more normal r eadl i nes. r eadl i nes must read the whole file into
memory, since it returns alist of al lines, making it unsuitable for very large files, which server
log files can ceartainly be. Therefore, trying to read the whole log file into memory at once might
not work (or work too slowly due to virtual-memory thrashing effects). xr eadl i nes returnsa
special object, meant to be used only ina f or statement (somewhat likeani t er at or in
Python 2.2; Python 2.1 did not have aformal concept of iterators), which can save alot of
memory. In Python 2.2, it would be simplest to iterate on the file object directly, with a f or
statement such as:

for line in open(logfile_pathnane):

Thisis the simplest and fastest approach, but it does require Python 2.2 or later to work.

The body of the f or loop callsthe spl i t method on each line string, with a string of asingle
space as the argument, to split the line into a tuple of its spaceseparated fields. Then it uses
indexing ([8]) to get the ninth such field. Apache puts the error code into the ninth field of each
lineinthelog. Code " 304" means "not modified" (i.e., the client's cache was aready correctly
updated). We count those casesin the CachedRequest s variable and al linesin the log in
the Tot al Request s variable, so that, in the end, we can return the percentage of cache hits.
Note that in the expression used with the r et ur n statement, it's important to multiply by 100
before we divide, since up to Python 2.1 (and even in 2.2, by default), division between integers

truncates (i.e., ignores the remainder). If we divided first, that would truncate to 0; so multiplying
by 100 would still give 0, which is not a very useful result!

7.7.4 See Also

The Apache web server is available and documented at http://httpd.apache.org.

7.8 Manipulating the Environment on Windows
NT/2000/XP

Credit: Wolfgang Strobl
7.8.1 Problem

Y ou need to check and/or set system-environment variables on Windows NT (or 2000 or XP) via
the registry, not in the transient way supported by 0s. envi r on.

7.8.2 Solution

Many Windows system-administration tasks boil down to working with the Windows registry, so
the Wi nr eg module, part of the Python core, often plays a crucial role in such scripts. This

recipe reads all the system-environment variables, then modifies one of them, accessing the
registry for both tasks:

i mport _w nreg

X
y

_ Wi nreg. Connect Regi stry(None, _w nreg. HKEY_LOCAL_MACHI NE)
_Wwi nreg. OpenKey(x,

r" SYSTEM Current Contr ol Set\ Control \ Sessi on

Manager \ Envi ronnment ")

print "System Environnent variables are:"

print "#", "name", "value", "type"
for i in range(1000):
try:
n, v, t = wnreg. Enunval ue(y, 1)
print i, n, v, t
except Environment Error:
print "You have", i, "System Environnent vari abl es”
br eak

path = w nreg. QueryVal uekx(y, "path")[O0]
print "Your PATH was:", path
_wi nreg. Cl oseKey(y)

Reopen Environnment key for witing
y = _w nreg. OpenKey(x,

r" SYSTEM Current Cont rol Set\ Control \ Sessi on
Manager \ Envi ronnent ",

0, _winreg. KEY_ALL_ACCESS)
Now append C:\ to the path as an exanple of environment
change
_W nreg. Set Val ueex(y, "path", 0, _w nreg. REG EXPAND SZ,
pat h+"; C:\\")
Wi nreg. Cl oseKey(y)
_ Wi nreg. Cl oseKey(x)

7.8.3 Discussion

Python's normal access to the environment, via 0S. envi r on, istransient: it deals with only the

environment of this process, and any change affects only processes spawned by the origina
process after the change. Thisistrue on al platforms.

In system administration, program installation, and other such uses, you may prefer to check and
change the system-level environment variables, which are automatically set for each process
started normally at process startup time. On Unix-like platforms, and on Windows 95/98/ME, such
system-level environment variables are set by startup scripts, so your task is to parse and/or
change those scripts in appropriate ways.

On Windows NT/2000/X P, however, system-level environment variables are stored in the system
registry, which makes this task substantially easier. The Python standard library, in the Python
distribution for Windows, comeswitha W nr eg module that lets scripts read and write the
registry on any kind of Windows machine. This recipe shows how to use _Wi nr eg to read the
system-environment variables and, as a further example, how to modify the PATH environment
variable.

The Connect Regi st ry function of the Wi nr eg module returns a registry object. The
modul€'s other functions take that object, or another registry key object, as their first argument.
When you are done with a key or awhole registry, you passit to the Cl oseKey function.

The OpenKey function returns aregistry key object: its first argument is a registry object, and
the second is a path in it. The path needs backslashes, so we use the Python raw-string syntax
(r'...")toavoid having to double up each backslash. The Enunmval ue function takes a key
and an index and returns a triple of name, value, and type for that entry in the key, or raises

Envi ronnent Er r or if there aren't that many entries in the key. In this recipe, we cal it with
progressively larger indices, from 0 and up, and catch the exception to learn the exact number of
entries in the environment key.

Quer yVal ueEx takes the key and an entry name and returns the value for that entry.
Set Val ueEx aso takes flags (normally 0), a type code (many constants for which are found in
_ Wi nr eq), and finaly avalue, and sets the given value and type for the entry of that name.

The script in this recipe can be run only by a user with suitable administrative privileges, of course,
as it changes a protected part of the registry. This doesn't matter under versions of Windows that
don't enforce protection, such as Windows 95, but it does for versions that do enforce protection,
such as Windows 2000.

7.8.4 See Also

Documentation for the standard module _ Wi nr eg in the Library Reference; Windows API
documentation available from Microsoft (http://msdn.microsoft.com).

7.9 Checking and Modifying the Set of Tasks Windows
Automatically Runs at Logon

Credit: Daniel Kinnaer
7.9.1 Problem

Y ou need to check which tasks Windows is set to automatically run at logon and possibly change
these tasks.

7.9.2 Solution

When administering Windows machines, it's crucial to keep track of the tasks each machine runs
at logon. Like so many Windows tasks, this requires working with the registry, and standard
Python module Wi nr eg enables this:

from _w nreg inport *

aReg = Connect Regi stry(None, HKEY_LOCAL_MACHI NE)

try:
targ = r' SOFTWARE\ M cr osof t \ W ndows\ Cur r ent Ver si on\ Run'
print "*** Reading fronl, targ, "***"
aKey = OpenKey(aReg, targ)
try:
for i in range(1024):
try:
n, v, t = EnunVal ue(aKey, i)
print i, n, v, t
except Environnment Error:
print "You have", i, "tasks starting at
| ogon”
br eak
finally:

Cl oseKey(aKey)

print "*** Witing to", targ, "***"
aKey = OpenKey(aReg, targ, 0, KEY_WRI TE)
try:
try:
Set Val ueEx(akKey, "M/NewKey", 0, REG SZ,
r'c:\wi nnt\expl orer. exe"
except EnvironnmentError:
print "Encountered problens witing into the

Regi stry..."
rai se
finally:
Cl oseKey(aKey)
finally:

Cl oseKey(aReq)

7.9.3 Discussion

The Windows registry holds awealth of crucial system-administration data, and the Python
standard module _ Wi nr eg makesit feasible to read and ater data held in the registry. One of

the items held in the Windows registry is alist of tasks to be run at logon. This recipe shows how
to examine this list and how to add atask to the list so it is run at logon.

If you want to remove the specific key added by this recipe, you can use the following smple
script:

from _w nreg inport *

aReg Connect Regi stry(None, HKEY_LOCAL MACHI NE)

targ r' SOFTWARE\ M cr osof t\ W ndows\ Cur r ent Ver si on\ Run’
aKey = OpenKey(aReg, targ, 0, KEY_WRI TE)

Del et eVal ue(akKey, "M/NewKey")

Cl oseKey(aKey)

Cl oseKey(aReqQ)

Thet ry/final | y constructs used in the recipe are far more robust than this simple sequence
of function calls, since they ensure everything is closed correctly regardless of whether the
intervening calls succeed or fail. Thisis strongly advisable for scripts that will be run in
production, particularly for system-administration scripts that will generally run with
administrator privileges and therefore might potentially harm a system's setup if they don't clean
up after themselves properly. However, you can omit the t r y/f i nal | y when you know the

calls will succeed or don't care what happens if they fail. In this case, if you have successfully
added a task with the recipe's script, the calls in this simple cleanup script should work.

7.9.4 See Also

Documentation for the standard module _ Wi nr eg in the Library Reference; Windows API
documentation available from Microsoft (http://msdn.microsoft.com); information on what is
where in the registry tends to be spread among many sources, but for some collections of such
information, see http://www.winguides.com/reqgistry and
http://www.activewin.com/tips/reg/index.shtml.

7.10 Examining the Microsoft Windows Registry for a List
of Name Server Addresses

Credit: Wolfgang Strobl

7.10.1 Problem

Y ou need to find out which DNS name servers are being used, but you're on Microsoft Windows,
S0 you can't just parse the resolv.conf file, as you might do on Unix and Unix-like platforms.

7.10.2 Solution

On Windows, DNS servers (like much other information) can be found in the registry, which can
be accessed with the standard module _ Wi nr eg:

i nport string
i nport W nreg

def bi ni pdi splay(s):
"convert a binary array of ip addresses to a python

[ist"
if len(s)%l! = 0:
rai se EnvironmentError # well
ol =[]
for i in range(len(s)/4):
sl=s[: 4]
s=s[4:]
i p=[1]
for j in si:
i p. append(str(ord(j)))
ol . append(string.join(ip,"'."))
return ol

def stringdisplay(s):
‘convert "d.d.d.d,d.d.d.d" to ["d.d.d.d","d.d.d.d"]"’
return string.split(s,",")

def Regi stryResolve():

" Return the list of dotted-quads addresses of nane
servers found in

the registry -- tested on NT4 Server SP6a, Wn/2000 Pro
SP2, XP, ME

(each of which has a different registry |ayout for
nanmeservers!)

nanmeserver s=[]
x=_w nreg. Connect Regi stry(None, _w nreg. HKEY_LOCAL_MACHI NE)
try:
y= _Ww nreg. OpenKey(x,

r" SYSTEM Cur r ent Cont rol Set \ Servi ces\ Tcpi p\ Paranet ers")

except EnvironmentError: # so it isn't NT/ 2000/ XP
W ndows ME, perhaps?
try: # for Wndows ME
y = _wi nreg. OpenKey(X,
r" SYSTEM Cur r ent Cont rol Set\ Servi ces\ VxD\ MSTCP")
nameserver, dummytype =
Wi nreg. QueryVal ueex(y, ' NameServer')
i f nameserver and not (nanmeserver in
nameservers):
nameservers. ext end(stringdi spl ay(naneserver))
except EnvironmentError:
pass # Must be anot her W ndows dial ect, so who
knows?
return nanmeservers

nameserver = _w nreg. QueryVal ueex(y, "NameServer") [0]
i f nameserver:
nameservers = [naneserver]
_Wi nreg. Cl oseKey(y)
try: # for win2000
y = _wi nreg. OpenKey(x,
r" SYSTEM Current Contr ol Set \ Servi ces\ Tcpi p"

r"\ Par anmet er s\ DNSRegi st er edAdapt ers")
for i in range(1000):
try:
n = _w nreg. EnunKey(y, i)
zZ = _winreg. OpenKey(y, n)
dnscount, dnscounttype =
Wi nreg. QueryVal uekx(z,
' DNSSer ver Addr essCount ')
dnsval ues, dnsval uestype =
_Wi nreg. QueryVal uekx(z,
' DNSSer ver Addr esses')
nameservers. ext end(bi ni pdi spl ay(dnsval ues))
_Wi nreg. Cl oseKey(z)
except EnvironnentError:
br eak
_Wi nreg. Cl oseKey(y)
except Environnment Error:
pass

try: # for XP
y = _wi nreg. OpenKey(X,

r" SYSTEM Current Control Set \ Servi ces\ Tcpi p\ Paraneters\Interfa
ces")
for i in range(1000):
try:
n = _w nreg. EnunKey(y, i)
z = _wi nreg. OpenKey(y, n)
try:

naneserver, dumytype =
Wi nreg. QueryVal ueex(z, ' NanmeSer ver')

i f nameserver and not (nanmeserver in
nameservers):

naneservers. extend(stringdi spl ay(nanmeserver))
except Environnent Error:
pass
_Wi nreg. C oseKey(2z)
except Environnent Error:
br eak
_wi nreg. Cl oseKey(y)
except EnvironnentError:
Print "Key Interfaces not found, just do nothing"
pass

Wi nreg. Cl oseKey(x)

return naneservers
if name_ =="_ main_ _

print "Nanme servers:", Regi stryResolve()

7.10.3 Discussion

Regi stryResol ve returnsalist of IP addresses (dotted quads) by scanning the registry for
interfaces with name server entries. This is useful when porting utilities that scan resolv.conf from
Unix-based systems to Microsoft Windows. As shown, the code handles differences between NT,
2000, XP, and ME (I haven't tried it on Windows 95/98, but it should work), and is thus a good
example of the many huge differences under the cover that the system administrator must handle
for systems that may appear to end users to be reasonably close to each other.

Checking which name servers each given machine is using is quite useful when administering that
machine, or awhole network. Basically, al user access to the network is mediated by DNS. Since
no user wants to work with dotted quads, aimost all URL s use hostnames and not | P addresses.
From the user's viewpoint, if a DNS server is down, or if name service is misconfigured for a
given machine, it's ailmost as bad as if there is no network access at al. This recipe makes it
feasible for you to keep an eye on this crucial aspect of networking service, available from Python
scripts, for client machines running Windows (client machines running Unix or Unix-like systems
are easy to use from this point of view, since/etc/resolv.conf is atext file, and a pretty easy one to
parse).

7.10.4 See Also

Documentation for the standard module Wi nr eq in the Library Reference; Windows AP
documentation available from Microsoft (http://msdn.microsoft.com).

7.11 Getting Information About the Current User on
Windows NT/2000

Credit: Wolfgang Strobl

7.11.1 Problem

Y ou need information about the user who is currently logged into a Windows NT/2000 system,
and the user may have domain validation rather than being a local-machine user.

7.11.2 Solution

If the user is validated on the domain rather than locally, it's not al that hard to get information
from the domain controller:

i mport w n32api, w n32net, w n32netcon
def User Getl nfo(user=None):
if user is None: user=wi n32api. Get User Name()
dc=wi n32net . Net Ser ver Enun(None, 100,
wi n32net con. SV_TYPE_DOMAI N_CTRL)
if dc[0]: # We have a domain controller; query it
dcnanme=dc[0] [O] [" nanme']
return wi n32net. Net User Get I nfo("\\\\"+dcnanme, user,

1)
el se: # No domain controller; try getting info
| ocal l'y
return wi n32net. Net User Get | nf o(None, user, 1)
if name =" main_ ":

_pr_i nt User Get I nf o()

7.11.3 Discussion
The following call:
w n32net . Net User Get | nf o(None, w n32api . CGetUser Name(), 1)

works only for users logged into the local machine but fails for domain users. This recipe shows
how to find the domain controller (if it exists) and query it about the user.

Obviously, this recipe works only on Windows NT/2000. In addition, it needs Mark Hammond's
Win32 extensions, which goes almost without saying, since you can hardly do effective system-
administration work with Python on Windows without those extensions (or a distribution that
aready includes them).

7.11.4 See Also

Documentation for wi n32api , wi n32net , andw n32net con inwi n32al |
(http://starship.python.net/crew/mhammond/win32/Downl oads.html) or ActivePython
(http://www.acti vestate.com/ActivePython/); Windows APl documentation available from
Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly).

7.12 Getting the Windows Service Name from Its Long
Name

Credit: Andy McKay
7.12.1 Problem

Y ou need to find the actual name of a Windows service from the longer display name, whichisal
that many programs show you.

7.12.2 Solution

Unfortunately, a Windows service has two names: area one (to be used in many operations) and a
display name (meant for human display). Fortunately, Python helps you translate between them:

i mport w n32api
i nport wi n32con

def Get Short Name(| ongNane) :
Looks up a service's real name fromits display nane
hkey = w n32api . RegOpenKey(w n32con. HKEY_LOCAL_MACHI NE,
"SYSTEM \ Current Control Set\\ Servi ces", O,
wi n32con. KEY_ALL_ACCESS)
num = wi n32api . RegQuer yl nf oKey(hkey) [0]

Loop through the given nunber of subkeys
for x in range(0, num:
Find service nane; open subkey
svc = wi n32api . RegEnunKey(hkey, Xx)
skey =
wi n32api . RegOpenKey(w n32con. HKEY_LOCAL_MACHI NE
"SYSTEM \ Current Control Set\\ Servi ces\\ %" % svc,
0, wi n32con. KEY_ALL_ACCESS)
try:
Find short nane
short Nane = str(w n32api . RegQueryVal ueEx(skey,
"Di spl ayNanme")[0])
i f shortNane == | ongNane:
return svc
except wi n32api.error:
in case there is no key call ed Di spl ayNane
pass
return None

if _ name_ =='"_ main_ _':
assert (Get Short Name(' Wndows Tine') == "WB2Tine')
assert (Get Short Name(' Foobar Servi ce') == None)

7.12.3 Discussion

Many programs show only the long description (display name) of a Windows Service, such as
Windows Time, but you need the actual service name to operate on the service itself (to restart it,

for example). This recipe's function loops through the services on a Windows system (2000/NT)
as recorded in the registry. For each service, the code opens the registry key and looks inside the
key for the Di spl ayName value. The service's real name is the key name for which the given
long-name argument matchesthe Di spl ayNane value, if any.

This recipe a so shows how to access the Windows registry from Python as an aternative to the

_ Wi nr eg module in Python's standard library. Mark Hammond'swi n32al | extensions
include registry access APIsinthe wi n32api module, and the functionality they exposeis
richer and more completethan _wi nr eg's. If you have wi n32al | installed (and you should if
you use Python for system-administration tasks on Windows machines), you should use it instead
of the standard _ Wi nr eg module to access and modify the Windows registry.

7.12.4 See Also

Documentation for wi n32api andw n32con inw n32al |
(http://starship.python.net/crew/mhammond/win32/Downl oads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows APl documentation available from

Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly).

7.13 Manipulating Windows Services
Credit: Andy McKay
7.13.1 Problem
Y ou need to control Windows services on any local machine.
7.13.2 Solution

Thew n32al | packageincludesawi n32ser vi ceut i | module that is specifically
designed to handle Windows services:

needs win32all, or ActiveState's ActivePython distribution
i mport w n32serviceutil

def service_running(service, machine):
return wi n32serviceutil.QueryServiceStatus(service,
machi ne)[1] ==

def service_info(action, machine, service):
runni ng = service_runni ng(service, machine)

servnam = 'service (%) on machine(%)"' % service,
machi ne)

action = action.lower()

if action == 'stop':

i f not running:
print "Can't stop, % not running"%servnam
return O
W n32serviceutil.StopService(service, nmachine)
runni ng = service_running(service, machine)
i f running:
print "Can't stop % (??7?)"%ervnam
return O
print '% stopped successfully' 9% servnam
elif action == "start':
i f running:
print "Can't start, % already running"%ervnam
return O
W n32serviceutil. Start Service(service, machine)
running = service_running(service, machine)
if not running:
print "Can't start % (??7?)"%servnam
return O
print '% started successfully' % servnam
elif action == "restart':
i f not running:
print "Can't restart, % not running"%servnam
return O
W n32serviceutil.RestartService(service, nmachine)
running = service_running(service, machine)
i f not running:

print "Can't restart % (?7??)"%ervnam

return O
print "% restarted successfully' % servnam
elif action == 'status':
i f running:
print "% is running" % servnam
el se:

print "% is not running"” % servnam
el se:

print "Unknown action (%) requested on %" % action,
servnam)
if _ name_ _ =="'"_ main_ _":
Just sone test code; change at wil|!
machi ne = 'cr582427-a'
service = 'Zope23'
action = 'start'
servi ce_info(action, nmachine, service)

7.13.3 Discussion

Mark Hammond'swi n32al | package makes it child's play to code Python scripts for a huge
variety of Windows system-administration tasks. For example, controlling Windows services
becomes a snap. |n addition to the few features exemplified in this recipe, which are similar to
those provided by Windows own net command, wi n32al | aso gives you options such as
installing and removing services.

The functions this recipe uses from the wi n32ser vi ceut i | moduleare St art Ser vi ce,
St opServi ce, Restart Servi ce,and Quer ySer vi ceSt at us. Each takes two
arguments: the name of the service and the name of the machine. The first three perform the start,
stop, and restart as requested. The fourth returns a structured code describing whether and how the
given service is running on the given machine, but in this recipe we exploit only the fact,
encapsulated in the recipe'sser vi ce_r unni ng function, that the second item of the return
value isthe integer 4 if and only if the service is running successfully.

7.13.4 See Also

Documentation for wi n32ser vi ceuti | inwi n32al |
(http://starship.python.net/crew/mhammond/win32/Downloads.html) or ActivePython
(http://www.acti vestate.com/ActivePython/); Windows APl documentation available from
Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly).

7.14 Impersonating Principals on Windows
Credit: John Nielsen
7.14.1 Problem

Y ou need to authenticate a thread temporarily as another principal on a Windows machine—for
example, to make something run with the appropriate administrative rights.

7.14.2 Solution

On Unix, you can call set ui d. On Windows, the impersonation task is slightly more involved,
but not terribly so:

i nport wi n32security, w n32con

cl ass | npersonate:

def _ _init_ (self, login, password):
sel f.domain = 'bedrock'
self.login = login

sel f. password = password

def | ogon(self):
sel f. handl e = wi n32security. LogonUser (sel f. | ogin,
sel f. domai n,
sel f. password,
W n32con. LOGON32_ LOGON | NTERACTI VE,
wi n32con. LOGON32_PROVI DER_DEFAULT)
w n32security. | mpersonat eLoggedOnUser (sel f. handl e)

def | ogoff(self):
Wi n32security. RevertToSelf() # termni nates
i nper sonati on
sel f. handl e. Cl ose() # guarantees cleanup

if __name__=="_ main__
a = | npersonate(' barney', 'banmbam)

try:
a.logon() # becone the user
try:
Do whatever you need to do, e.g.,
print w n32api.CGetUserNane() # show you're
sonmeone el se
finally:
a.logoff() # Ensure return-to-normal no matter
what
except:
print 'Exception:', sys.exc_type, sys.exc_val ue

7.14.3 Discussion

Sometimes it is convenient to authenticate a thread as another principal. For example, perhaps
something should run temporarily with administrative rights. Thisis especially useful if you do
not want the hassle of making a COM object or a service (which are other ways to solve the
problem or, rather, work around it). On Windows, processes run with a specific security token. By
default, all threads use that token. Y ou can, however, easily attach another token to the thread,
thanks to Mark Hammond'swi n32al | package.

The way to do thisiswith the Win32 callsLogonUser and

| nper sonat eLoggedOnUser . LogonUser givesyou ahandle that

| nper sonat eLoggedOnUser can then use to become the user. To do this, the thread
cdling LogonUser needsthe SE_TCB_NANME, SE_CHANGE_NOTI FY_NAME, and
SE_ASSI GNPRI MARYTOKEN _NANE privileges.

7.14.4 See Also

Documentation for the wi n32security andwi n32con inwi n32al |
(http://starship.python.net/crew/mhammond/win32/Downl oads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows APl documentation available from

Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly).

7.15 Changing a Windows NT Password Using ADSI
Credit: Devin Leung

7.15.1 Problem

Y ou need to change a user's password on Windows NT.

7.15.2 Solution

The simplest approach is to access the Active Directory Services Interface (ADSI) via COM
automation:

i nport pythoncom
i mport wi n32com cl i ent

cl ass NTUser:
Uses ADSI to change password under user privileges
def _ _init_ (self, userid):
sel f.adsi NS =
wi n32com cl i ent. Di spat ch(' ADsNaneSpaces')
Userpath = "WnNT://DOVAIN" + userid + ",user"
sel f.adsNTUser = self.adsi NS. Get Cbj ect("", Userpath)

def reset(self, O dPasswd, NewPasswd):
sel f. adsNTUser . ChangePasswor d(O dPasswd, NewPasswd)

1f you' re running under admn privileges, you m ght
use:
sel f.adsNTUser . Set Passwor d(NewPasswd)

def changepass(account, O dPassword, NewPassword):

try:
nt = NTUser (account)
nt.reset (A dPassword, NewPasswor d)
print "NT Password change was successful .”
return 1

except pythoncomcomerror, (hr, nmsg, exc, arg)
G ve clearer error nmessages; avoid stack traces
scode = exc[5]
print "NT Password change has failed."

i f scode == 0x8007005:
print "Your NT Account (%) is |ocked
out . " %account
elif scode == 0x80070056:
print "lInvalid Od NI Password."
elif scode == 0x800708ad:
print "The specified NT Account (%) does not
exi st. " %account
elif scode == 0x800708c5:

print "Your new password cannot be the sane as
any of your"
print "previous passwords, and nust satisfy the
domai n' s"
print "password-uni queness policies."
el se:
print "ADSI Error - %: %, %\n" % (hr, nsg,
scode)
return O

7.15.3 Discussion

This recipe gives an example of how to use Python COM to instantiate an ADSI object and
change an NT user's password. ADSI, Microsoft's Active Directory Services Interface, is
documented at

http://www.microsoft.com/windows2000/techi nfo/howitworks/activedirectory/adsilinks.asp.

Python's COM access is perhaps the most important single feature of Mark Hammond's

wi n32al | extensions. Youcal wi n32com cl i ent . Di spat ch with the COM
automation Pr ogl D string as its single argument and get as a result a Python object on which
you can call methods and get and set properties to access all of the functionality of the COM
server named by Pr ogl d. The set of methods and properties available is different for every
COM server, and you need to find and study the documentation for the specific object model of

each server to use it most fruitfully. For example, the methods we call here on COM objects that
mode! active-directory namespaces and NT users are documented in the ADSI documentation.

This recipe can be used to roll your own password-change program. | am currently using it as part
of a multiplatform password-changing utility, which helps users keep their passwords in sync on
many machines that run different operating systems, both Windows and non-Windows.

7.15.4 See Also

Documentation for pyt honcomand wi n32com cl i ent inwi n32al |
(http://starship.python.net/crew/mhammond/win32/Downl oads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows APl documentation available from
Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly).

7.16 Working with Windows Scripting Host (WSH) from
Python

Credit: Kevin Altis
7.16.1 Problem

Y ou need to use the Windows Scripting Host (WSH) to perform the same tasks as in the classic
WSH examples, but you must do so by driving the WSH from within a normal Python script.

7.16.2 Solution

Python's abilities on Windows are greatly enhanced by wi n32al | 's ability to access COM

automation servers, such as the WSH. First, we connect to the Windows shell's COM automation
interface:

i nport sys, w n32com client
shell = wi n32comclient. Di spatch("Wscript. Shell")

Then, we launch Notepad to edit this script in the simplest way (basically, with the same
functionality as 0s. sy st em). This script's nameis, of course, sys. ar gv[0] , sincewe're
driving from Python:

shel | . Run(" not epad + sys.argv[0])
For a.pys script driven from WSH, it would be W5cr i pt . Scri pt Ful | Nane instead.
shel I . Run has greater functionality than the more portable 0s. syst em To show it off, we

can set the window type, wait until Notepad is shut down by the user, and get the code returned
from Notepad when it is shut down before proceeding:

ret = shell.Run("notepad + sys.argv[O0], 1, 1)
print "Notepad return code:", ret

Now, we open a command window, change the path to C:\, and execute a di r :

shell .Run("cnmd /K CD C\ & Dir")

Note that ¢ md works only on Windows NT/2000/X P; on Windows 98/ME, you need to run
Command instead, and this does not support the & joiner to execute two consecutive commands.
Theshel | object has many more methods besides the Run method used throughout this recipe.

For example, we can get any environment string (similar to accessing 0S. envi r on):

print shell.ExpandEnvironment Strings("%w ndir%)

7.16.3 Discussion

This recipe shows three Windows Scripting Host (WSH) examples converted to Python. WSH
documentation can be found at http://msdn.microsoft.com/library/en-
us/script56/html/wsori WindowsScriptHost.asp.

Note that this recipe shows a Python program driving WSH, so save the code to afile with
extension .py rather than .pys. Extension .pys would be used if WSH was driving (i.e., via

cscript.exe)—and, thus, if Python was being used via the ActiveScripting protocol. But the point
of the recipe is that you don't need to rely on ActiveScripting: you can use WSH system-specific
functionality, such as SendKeys and ExpandEnvi r onnent St ri ngs, from within a

regular Python program, further enhancing the use of Python for system administration and
automating tasks in a Windows environment.

Note that you do not need to worry about closing the COM objects you create. Python's garbage

collection takes care of them quite transparently. For example, if and when you want to explicitly
close (release) a COM object, you can usea del statement (in this case, you need to ensure that
you remove or rebind all references to the COM object that you want to release).

7.16.4 See Also

Documentation for pyt honcomandwi n32com cl i ent inwi n32al |
(http://starship.python.net/crew/mhammond/win32/Downl oads.html) or ActivePython
(http://www.activestate.com/ActivePython/); Windows APl documentation available from

Microsoft (http://msdn.microsoft.com); Python Programming on Win32, by Mark Hammond and
Andy Robinson (O'Reilly).

7.17 Displaying Decoded Hotkeys for Shortcuts in
Windows

Credit: Bill Bell
7.17.1 Problem

Y ou need to display the hotkeys associated with Windows shortcuts as readable key-combination
names, such as Alt-Ctrl-Z or Shift-Ctrl-B.

7.17.2 Solution

Key combinations are returned as binary-coded numbers, but it's not hard to decode them into
human-readable combinations:

i nport sys
Append to sys.path the conplete path to the fol der that
cont ai ns

'"link.py" (the denp use of pythoncom CoCreatelnstance with
shell.CLSI D _ShellLink in the ActiveState distribution of
Pyt hon)

so that link can be inported as a nodul e
sys. pat h. append(' C./ Pyt hon21/ wi n32conmext/shell/test")
i nport link
i mport comctrl
class PyShortcut _Il(link.PyShortcut):
def decode_hot key(sel f):
hk = sel f. Get Hot key()
result ="'
i f hk:
nod = hk >> 8
if nmod & commetrl. HOTKEYF _SHI FT: result +=
"Shift-'
if mod & comretrl . HOTKEYF_CONTROL: result +=
"Control-'
if mod & comretrl . HOTKEYF _ALT: result += "Alt-'
result += chr (hk % 256)
return result

Here's atypical usage pattern:

>>> shortcut = PyShortcut _II1()

>>> shortcut. | oad(r' C\ W NDOAS\ DESKTOP\ Pygri s. | nk')
>>> shortcut. decode_hot key()

"Control-Alt-T

7.17.3 Discussion

The ActiveState Python distribution includes an example that shows how to get and set Win32
shortcuts. This recipe shows how to extend the example to decode the hotkeys (such as Alt-Ctrl-Z
and Shift-Ctrl-B) that can be associated with shortcuts.

On Win32, each shortcut can have an associated hotkey. In the link.py that is distributed as a demo
with ActiveState's ActivePython, the hotkey is returned as a 16-bit code: the lower 8 bits encode
the hotkey's characters, and the upper 8 bits encode modifiers, such as Shi ft, Cont r ol , and
Al t . This recipe shows how to decode such a 16-bit code in terms of a printable key name for a
shortcut's hotkey. Of course, this idea can also be useful for other similar needs, whenever key
modifiers encoded as a bitmask using the bits named in the conmct r | module need to be
displayed readably.

7.17.4 See Also

Windows APl documentation available from Microsoft (http://msdn.microsoft.com); the
commct r | moduleis derived from the commcetrl.h standard Windows include file.

Chapter 8. Databases and Persistence

Section 8.1. Introduction

Section 8.2. Serializing Data Using the marshal Module

Section 8.3. Serializing Data Using the pickle and cPickle Modules

Section 8.4. Using the cPickle Module on Classes and I nstances

Section 8.5. Mutating Objects with shelve

Section 8.6. Accesssing a MySQL Database

Section 8.7. Storing aBLOB in a MySQL Database

Section 8.8. Storing a BLOB in a PostgreSOL Database

Section 8.9. Generating a Dictionary Mapping from Field Names to Column Numbers

Section 8.10. Using dtuple for Flexible Access to Query Results

Section 8.11. Pretty-Printing the Contents of Database Cursors

Section 8.12. Establishing Database Connections Lazily

Section 8.13. Accessing a JDBC Database from a Jython Servlet

Section 8.14. Module: jet2sg—Creating a SQL DDL from an Access Database

8.1 Introduction

Credit: Aaron Watters, CTO, ReportLab

There are three kinds of people in this world: those who can count and those who can't.

However, there are only two kinds of computer programs: toy programs and programs that interact
with persistent databases of some kind. That isto say, most real computer programs must retrieve
stored information and record information for future use. These days, thisis true of almost every
computer game, which can typically save and restore the state of the game at any time. So when |
refer to toy programs, | mean programs written as exercises, or for the fun of programming.
Nearly all real programs (such as programs that people get paid to write) have some persistent
database storage/retrieval component.

When | was a Fortran programmer in the 1980s | noticed that although almost every program had
to retrieve and store information, they almost always did it using home-grown methods.
Furthermore, since the storage and retrieval part of the program was the least interesting
component from the programmer's point of view, these parts of the program wer e frequently
implemented very sloppily and were hideous sources of intractable bugs. This repeated
observation convinced me that the study and implementation of database systems sat at the core of
programming pragmatics, and that the state of the art as | saw it then required much improvement.

Later, in graduate school, | was delighted to find that there was an impressive and sophisticated
body of work relating to the implementation of database systems. The literature of database
systems covered issues of concurrency, fault tolerance, distribution, query optimization, database
design, and transaction semantics, among others. In typical academic fashion, many of the
concepts had been elaborated to the point of absurdity (such as the silly notion of conditional
multivalued dependencies), but much of the work was directly related to the practical
implementation of reliable and efficient storage and retrieval systems. The starting point for much
of thiswork was E. F. Codd's seminal work "A Relationa Model of Data for Large Shared Data
Banks" from Communications of the ACM, Val. 13, No. 6, June 1970, pp. 377-387,
http://www.acm.org/classi cs/nov95/toc.html.

| also found that among my fellow graduate students, and even among most of the faculty, the
same body of knowledge was either disregarded or regarded with some scorn. Everyone
recognized that knowledge of conventional relational technology could be lucrative, but they
generally considered such knowledge to be on the same level as knowing how to write (or more
importantly, maintain) COBOL programs. This was not helped by the fact that the emerging
database interface standard, SQL (which is now very well established), looked like an extension of
COBOL and bore little obvious relationship to any modern programming language.

Those who were interested in database systems were generally drawn to alternatives to the
relational model, such as functional or object-oriented database system implementations. There
was also asmall group of people interested in logic databases. Logic databases were largely an
interesting footnote to the study of logic programming and prolog-like programming languages,
but the underlying concepts also resonated strongly with Codd's original vision for relational
databases. The general feeling was that relational-database technology, at least at the level of SQL,
was a mistake and that something better would soon overtake it.

Now it is more than a decade later, and there is little sign that anything will soon overtake SQL -
based relational technology for the majority of data-based applications. In fact, relational-database
technology seems more pervasive than ever. The largest software vendors—IBM, Microsoft, and
Oracle—all provide various relational-database implementations as crucial components of their
core offerings. Other large software firms, such as SAP and PeopleSoft, essentially provide layers
of software built on top of a relational-database core.

Generally, relationa databases have been augmented rather than replaced. Enterprise software-
engineering dogma frequently espouses three-tier systems, in which the bottom tier is a carefully
designed relational database, the middle tier defines a view of the database as business objects,
and the top tier consists of applications or transactions that manipulate the business objects, with
effects that ultimately trandate to changes in the underlying relational tables.

Microsoft's Open Database Connectivity (ODBC) standard provides a common programming API
for SQL-based relational databases that permits programs to interact with many different database
engines with no, or few, changes. For example, a Python program can be implemented using
Microsoft Access as a backend database for testing and debugging purposes. Once the program is
stable, it can be put into production use, remotely accessing a backend DB2 database on an IBM
mainframe residing on another continent, by changing (at most) one line of code.

Thisis not to say that relational databases are appropriate for al applications. In particular, a
computer game or engineering design tool that must save and restore sessions should probably use
amore direct method of persisting the logical objects of the program than theflat tabular
representation encouraged in relational-database design. However, even in domains such as
engineering or scientific information, | must caution that a hybrid approach that uses some
relational methods is often advisable. For example, | have seen a complex relational-database
schema for archiving genetic-sequencing information—in which the sequences show up as binary
large objects (BLOBs)—but a tremendous amount of important ancillary information can fit
nicely into relationa tables. But as the reader has probably surmised, | fear, | speak as arelationa
bigot.

Within the Python world there are many ways of providing persistence and database functionality.
My favorite is Gadfly, a smple and minima SQL implementation that works primarily with in-
memory databases. It is my favorite for no other reason than because it is mine, and it's biggest
advantage is that if it becomes unworkable for you, it is easy to switch over to another, industrial-
strength SQL engine. Many Gadfly users have started an application with Gadfly (because it was
easy to use) and switched later (because they needed more).

However, many people may prefer to start by using other SQL implementations such as mySQL,
MS-Access, Oracle, Sybase, MS SQL server, or others that provide the advantages of an ODBC
interface (which Gadfly does not do).

Python provides a standard interface for accessing relational databases: the Python DB

Application Programming Interface (Py-DBAPI), originally designed by Greg Stein. Each
underlying database API requires a wrapper implementation of the Py-DBAPI, and
implementations are available for many underlying database interfaces, notably Oracle and ODBC.

When the relationa approach is overkill, Python provides built-in facilities for storing and
retrieving data. At the most basic level, the programmer can manipulate files directly, as covered
in Chapter 4. A step up from files, the mar shal module allows programs to serialize data
structures constructed from simple Python types (not including, for example, classes or class
instances). mar shal has the advantage in that it can retrieve large data structures with blinding
speed. The pi ckl e and cPi ckl e modules allow general storage of objects, including classes,
class instances, and circular structures. cPi ckl e is so named because it is implemented in C and
is consequently quite fast, but it remains noticeably dower than mar shal .

While mar shal and pi ckl e provide basic serialization and deserialization of structures, the
application programmer will frequently desire more functionality, such as transaction support and
concurrency control. In this case, if the relational model doesn't fit the application, a direct object
database implementation such as the Z-Object Database (ZODB) might be appropriate
(http://www.amk.ca/zodb/).

I must conclude with a plea to those who are dismissive of relational-database technology. Please
remember that it is successful for some good reasons, and it might be worth considering. To
paraphrase Churchill:

text = """ Indeed, it has been said that denocracy is the
wor st form of

governnment, except for all those others that have been
tried

fromtinme to tine.
i mport string
for a, b in [("denmocracy", "SQ."), ("governnment",
"dat abase")]:

text = string.replace(text, a, b)
print text

nuan

8.2 Serializing Data Using the marshal Module
Credit: Luther Blissett
8.2.1 Problem

You have a Python data structure composed of only fundamental Python objects (e.g., lists, tuples,
numbers, and strings, but no classes, instances, etc.), and you want to serialize it and reconstruct it
later as fast as possible.

8.2.2 Solution

If you know that your datais composed entirely of fundamental Python objects, the lowest-level,
fastest approach to serializing it (i.e., turning it into a string of bytes and later reconstructing it
from such astring) isviathe mar shal module. Suppose that dat a is composed of only
elementary Python data types. For example:

data = {12:"'twelve', 'feep' :list('ciao"), 1.23:4+5j,
(1,2,3):u" wer'}

You can seridize dat a to abyte string at top speed as follows:

i nport marshal
bytes = marshal . dunps(dat a)

You can now ding byt es around as you wish (e.g., send it across a network, put it asaBLOB in

a database, etc.), aslong as you keep its arbitrary binary bytes intact. Then you can reconstruct the
data any time you'd like:

redata = marshal .| oads(byt es)

This reconstructs a data structure that compares equal (==) to dat a. In other words, the order of
keysin dictionariesis arbitrary in both the original and reconstructed data structures, but order in
any kind of sequence is meaningful, and thusiit is preserved. Note that | oads works
independently of machine architecture, but you must guarantee that it is used by the same release
of Python under which byt es was originally generated via dunps.

When you specifically want to write the data to a disk file, aslong as the latter is open for binary
(not the default text mode) input/output, you can also use the dunp function of the mar shal
module, which lets you dump several data structures one after the other:

ouf = open('datafile.dat', 'wbh')
mar shal . dunp(dat a, ouf)

mar shal . dunp(' sone string', ouf)
mar shal . dunp(range(19), ouf)
ouf.close()

When you have done this, you can recover from datafile.dat the same data structures you dumped
into it, in the same sequence:

inf = open('datafile.dat', "rb")

a = marshal .| oad(i nf)
b = marshal .| oad(i nf)
¢ = marshal .| oad(i nf)
inf.close()

8.2.3 Discussion

Python offers several ways to seriaize data (i.e., make the data into a string of bytes that you can
save on disk, in a database, send across the network, and so on) and corresponding ways to
reconstruct the data from such serialized forms. The lowest-level approach is to use the

mar shal module, which Python uses to write its bytecode files. mar shal supports only
elementary data types (e.g., dictionaries, lists, tuples, numbers, and strings) and combinations
thereof. mar shal does not guarantee compatibility from one Python release to another, so data
serialized with mar shal may not be readable if you upgrade your Python release. However, it
does guarantee independence from a specific machine's architecture, so it is guaranteed to work if
you're sending serialized data between different machines, as long as they are al running the same
version of Python—similar to how you can share compiled Python bytecode filesin such a
distributed setting.

mar shal 's dunps function accepts any Python data structure and returns a byte string
representing it. Y ou can pass that byte string to the | oads function, which will return another
Python data structure that compares equal (==) to the one you originally dumped. In between the
dunps and | oads calls, you can subject the byte string to any procedure you wish, such as

sending it over the network, storing it into a database and retrieving it, or encrypting it and
decrypting it. Aslong as the string's binary dructure is correctly restored, | oads will work fine

on it (again, aslong as it is under the same Python release with which you originaly executed
dunps).

When you specifically need to save the data to afile, you can also use mar shal 's dunp
function, which takes two arguments:. the data structure you're dumping and the open file object.
Note that the file must be opened for binary 1/0 (not the default, which is text 1/0) and can't be a
file-like object, as mar shal is quite picky about it being a true file. The advantage of dunp is
that you can perform several callsto dunp with various data structures and the same open file
object: each data structure is then dumped together with information about how long the dumped
byte string is. As a consequence, when you later open the file for binary reading and then call

mar shal . | oad, passing the file as the argument, each previously dumped data structure is
reloaded sequentialy. The return value of | oad, likethat of | oads, is anew data structure that
compares equal to the one you originally dumped.

8.2.4 See Also

Recipe 4.27; Recipe 8.3for cPi ckl e, the big brother of mar shal ; documentation on the
mar shal standard library module in the Library Reference.

8.3 Serializing Data Using the pickle and cPickle Modules
Credit: Luther Blissett
8.3.1 Problem

Y ou have a Python data structure, which may include fundamental Python objects, and possibly
classes and instances, and you want to serialize it and reconstruct it at a reasonable speed.

8.3.2 Solution

If you don't want to assume that your datais composed of only fundamental Python objects, or
you need portability across versions of Python, or you need to transmit the serialized form as text,
the best way of serializing your dataiswith the cPi ckl e module (the pi ckl e moduleisa
pure-Python equivalent, but it's far lower and not worth using except if you're missing

cPi ckl e). For example:

data = {12:'"twelve', 'feep' :list('ciao'), 1.23:4+5j,
(1,2,3):u" wer'}

You can seridlize dat a to atext string:

i mport cPickle
text = cPickl e. dunps(dat a)

or to a binary string, which is faster and takes up less space:
bytes = cPickl e. dunps(data, 1)

You can now dingt ext or byt es around as you wish (e.g., send it across a network, put it as a
BLOB in adatabase, etc.), aslong as you keep it intact. In the case of byt es, this means keeping
its arbitrary binary bytesintact. In the case of t ext , this means keeping its textua structure intact,

including newline characters. Then you can reconstruct the data at any time, regardless of machine
architecture or Python release:

redatal = cPickle.l oads(text)
redata2 = cPickl e. | oads(bytes)

Either call reconstructs a data structure that compares equa to dat a. In other words, the order of

keysin dictionaries is arbitrary in both the original and reconstructed data structures, but order in
any kind of sequence is meaningful, and thusit is preserved. Y ou don't need to tell
cPi ckl e. | oads whether the original dunps used text mode (the default) or binary (faster

and more compact)—| oads figuresit out by examining its argument's contents.

When you specifically want to write the data to afile, you can also use the dunp function of the
cPi ckl e module, which lets you dump several data structures one after the other:

ouf = open('datafile.txt', "w)
cPi ckl e. dunp(data, ouf)

cPi ckl e. dunp(' sone string', ouf)
cPi ckl e. dunp(range(19), ouf)
ouf.close()

Once you have done this, you can recover from datafile.txt the same data structures you dumped
into it, in the same sequence:

inf = open('datafile.txt")
a = cPickle.load(inf)

b cPi ckl e. l oad(i nf)

C cPi ckl e. | oad(i nf)
inf.close()

You canaso pass cPi ckl e. dunp athird argument of 1 to tell it to serialize the datain binary

form (faster and more compact), but the datafile must be opened for binary 1/O, not in the default
text mode, when you originally dump to it and when you later load from it.

8.3.3 Discussion

Python offers several ways to seriaize data (i.e., make the data into a string of bytes that you can
save on disk, in a database, send across the network, and so on) and corresponding ways to
reconstruct the data from such serialized forms. Typically, the best approach is to use the

cPi ckl e module. Thereis aso a pure-Python equivalent, caled pi ckl e (the cPi ckl e
module is coded in C as a Python extension), but pi ckl e is substantially slower, and the only
reason to useit isif you don't have cPi ckl e (e.g., a Python port onto a handheld computer with
tiny storage space, where you saved every byte you possibly could by installing only an
indispensable subset of Python's large standard library).

cPi ckl e supports most elementary data types (e.g., dictionaries, lists, tuples, numbers, strings)
and combinations thereof, as well as classes and instances. Pickling classes and instances saves
only the data involved, not the code. (Code objects are not even among the types that cPi ckl e
knows how to serialize, basically because there would be no way to guarantee their portability
across disparate versions of Python). See Recipe 8.4for more about pickling classes and instances.

cPi ckl e guarantees compatibility from one Python release to another and independence from a
specific machine's architecture. Data serialized with cPi ckl e will still be readable if you

upgrade your Python release, and pickling is guaranteed to work if you're sending serialized data
between different machines.

The dunps function of cPi ckl e accepts any Python data structure and returns atext string
representing it. Or, if you call dunps with a second argument of 1, it returns an arbitrary byte
string instead, which is faster and takes up less space. Y ou can pass either the text or the byte
string to the | oads function, which will return another Python data structure that compares equal
(==) to the one you originally dumped. In between the dunps and | oads calls, you can subject
the byte string to any procedure you wish, such as sending it over the network, storingitina
database and retrieving it, or encrypting it and decrypting it. Aslong as the string's textual or
binary structure is correctly restored, | oads will work fine on it (even across platforms and
releases).

When you specifically need to save the datainto afile, you can also use cPi ckl e'sdunp
function, which takes two arguments:. the data structure you're dumping and the open file object. If
thefile is opened for binary 1/0, rather than the default (text 1/O), by giving dunp athird
argument of 1, you can ask for binary format, which is faster and takes up less space. The
advantage of dunp over dunps isthat, with dunp, you can perform several calls, one after the
other, with various data structures and the same open file object. Each data structure is then
dumped with information about how long the dumped string is. Consequently, when you later
open the file for reading (binary reading, if you asked for binary format), and then repeatedly call
cPi ckl e. | oad, passing the file as the argument, each data structure previously dumped is

reloaded sequentially, one after the other. The return value of | oad, asthat of | oads, isanew
data structure that compares equal to the one you originally dumped.

8.3.4 See Also

Recipe 8.2 and Recipe 8.4; documentation for the standard library module cPi ckl e inthe
Library Reference.

8.4 Using the cPickle Module on Classes and Instances
Credit: Luther Blissett

8.4.1 Problem

Y ou want to save and restore class and instance objects using the c Pi ckl e module.
8.4.2 Solution

Often, you need no special precautionsto use CPi ckl e on your classes and their instances. For
example, the following works fine;

i mport cPickle

cl ass For Exanpl e:
def _ init_ (self, *stuff): self.stuff = stuff
anl nstance = For Exanpl e(' one', 2, 3)
saved = cPi ckl e. dunps(anl nst ance)
rel oaded = cPickl e. | oads(save)
assert saved.stuff == rel oaded. stuff

However, sometimes there are problems:

anot her I nstance = For Exanple(1, 2, open('three', 'wW))
wont Wor k = cPi ckl e. dunps(anot her | nst ance)

Thiscausesa TypeEr r or : "can't pickle file objects exception”, because the state of
anot her | nst ance includes afile object, and file objects cannot be pickled. Y ou would get

exactly the same exception if you tried to pickle any other container that includes a file object
among itsitems.

However, in some cases, you may be able to do something about it:

i nport types

class PrettyC ever:
def _ _init_ (self, *stuff): self.stuff = stuff
def _ getstate_ (self):

def normalize(x):
if type(x) == types. FileType:
return 1, (x.name, X.node, x.tell())
return 0, Xx
return [normalize(x) for x in self.stuff]

def _ setstate_(self, stuff):
def reconstruct(x):
if x[0] ==

return x[1]
name, node, offs = x[1]
openfile = open(nanme, node)
openfil e.seek(offs)
return openfile
self.stuff = tuple([reconstruct(x) for x in stuff])

By definingthe . _getstate_and__setstate__ specia methodsin your class,
you gain fine-grained control about what, exactly, your class's instances consider to be their state.
Aslong as you can define such "state" in picklable terms, and reconstruct your instances from the
unpickled state sufficiently for your application, you can make your instances themselves
picklable and unpicklable in this way.

8.4.3 Discussion

cPi ckl e dumps class and function objects by name (i.e., through their module's name and their
name within the module). Thus, you can dump only classes defined at module level (not inside
other classes and functions). Reloading such objects requires the respective modules to be
available for i npor t . Instances can be saved and reloaded only if they belong to such classes. In
addition, the instance's state must also be picklable.

By default, an instance's state is the contents of its ~_di ¢t plus, in Python 2.2, whatever
state it may get from the built-in type it inherits from. (For example, an instance of a new-style
classthat subclasses | i st includes the list items as part of the instance's state. Also, in Python
2.2,cPi ckl esupports sl ots__if an object and/or its bases define them, instead of
using_ _dict_ _, thedefault way, to hold per-instance state). This default approach is often
quite sufficient and satisfactory.

Sometimes, however, you may have nonpicklable attributes or items as part of your instance's
state (as cPi ckl e definesit by default). In this recipe, for example, | show a class whose
instances hold arbitrary stuff, which may include open file objects. To handle this case, your class
can define the special method = _get state_ . cPi ckl e callsthat method on your object,

if your object's class defines it or inheritsit, instead of going directly for the object's _ di ct _
_ (orpossibly sl ots_ _ and/or built-in type bases in Python 2.2).

Normally, when you definethe ~ _get st at e_ _ method, you definethe . _setstate_

__method aswell, asshown inthe solution. ~ _get state_ _ can return any picklable object,
and that same object would then bepassedas =~ set state_ _'sargument. In the solution,
_ _getstate_ _ returnsalist that's similar to the instance's default state sel f. st uf f,

except that each item is turned into a tuple of two items. The first item in the pair can be set to O
to indicate that the second one will be taken verbatim, or 1 to indicate that the second item will be
used to reconstruct an open file. (Of course, the reconstruction may fail or be unsatisfactory in
several ways. Thereis no general way to save an open file's state, which iswhy cPi ckl e itself
doesn't even try. But suppose that in the context of our application we know the given approach
will work.) When reloading the instance from pickled form, cPi ckl e will cal _
setstate withthelist of pairs,and ~ _setstate__ can reconstruct

sel f. stuff by processing each pair appropriately inits nested r econst r uct function.
This scheme clearly generalizes to getting and restoring state that may contain various kinds of

normally unpicklable objects—just be sure to use different numbers to tag various kinds of
nonverbatim pairs.

Inaparticular case, you candefine . _getstate_ without defining _setstate_
. _getstate_ _ mustreturnadictionary, and reloading the instance from pickled form
uses that dictionary just astheinstance's ~ _di ¢t would normally be used. Not running
your own code at reloading time is a serious hindrance, but it may come in handy when you want
touse _getstate_ , notto save otherwise unpicklable state, but rather as an
optimization. Typically, this happens when your instance caches results that it may recompute if
they're absent, and you decide it's best not to store the cache as a part of the instance's state. In this
case, you should define . _get stat e toreturn adictionary that's the indispensable
subset of theinstance's _dict

With either the default pickling/unpickling approach or your own _ _getstate_ and _
_setstate__,theinstance'sspecial method i nit_ isnot caled. If the most
convenient way for you to reconstruct aninstanceistocal the i nit_ _ method with
appropriate parameters, theninstead of ~ _get state_ _, you may want to define the special
method getinitargs_ _.Inthiscase cPi ckl e calsthis method without arguments:
the method must returnat upl e,and cPi ckl ecdls _ _init_ _ at reloading time with
the arguments that are that tuple's items.

The Library Reference for the pi ckl e and copy_r eg modules details even subtler things you
can do when pickling and unpickling, as well as security issues that come from unpickling data
from untrusted sources. However, the techniques I've discussed here should suffice in almost all
practical cases, as long as the security aspects of unpickling are not a problem. As a further
practical advantage, if youdefine _getstate__ (andthen, typically, _setstate_
_Jor _ _getinitargs_ _,inadditionto being used for pickling and unpickling your
classs instances, they'll be used by the functions in the copy module that perform shallow and
deep copies of your objects (the copy and deepcopy functions, respectively). The issues of
extracting and restoring instance state are amost the same when copying the instance directly, as

when serializing (saving) it to a string (or file, e.g.) and then restoring it, which can be seen as just
one way to copy it at alater time and/or in another machine.

8.4.4 See Also

Recipe 8.3; documentation for the standard library module cPi ckl e inthe Library Reference.

8.5 Mutating Objects with shelve
Credit: Luther Blissett
8.5.1 Problem

You are using the standard module shel ve, some of the values you have shelved are mutable
objects, and you need to mutate these objects.

8.5.2 Solution

The shel ve module, which offers akind of persistent dictionary, occupies an important niche
between the power of relationa-database engines and the simplicity of mar shal , pi ckl e,
dbm and similar file formats. However, there's atypicd trap that you need to avoid when using
shel ve. Consider the following:

>>> | nport shel ve

>>> # Build a sinple sanple shelf
>>> she=shel ve.open('try.she', 'c')
>>> for c in 'spam: she[c]={c: 23}

>>> for ¢ in she.keys(): print ¢, she[c]

p{ p: 23}
s {'s': 23}
a{'a: 23}
m{' m: 23}
>>> she. cl ose()

We've created the shel ve object, added some datato it, and closed it. Now we can reopen it and
work with it:

>>> she=shel ve. open('try.she',"'c")
>>> she[' p']

{'"p': 23}

>>> she["'p']['p'] = 42

>>> she[' p']

{'p': 23}

What's going on here? We just set the value to 42, but it didn't take in the shel ve object. The
problem is that we were working with atemporary object that shel ve gave us, but shel ve
doesn't track changes to the temporary object. The solution is to bind a name to this temporary
object, do our mutation, and then assign the mutated object back to the appropriate item of
shel ve:

>>> a = she['p']
>>> a['p'] = 42
>>> she['p'] = a
>>> she[' p']

{'"p': 42}

>>> she. cl ose()

We can even verify the change:

>>> she=shel ve. open('try.she','c")
>>> for c in she.keys(): print c,she[c]

p{'p: 42}
s {'s': 23}
a{'a: 23}
m{' m: 23}

8.5.3 Discussion

The standard Python module shel ve can be quite convenient in many cases, but it hides a
potentially nasty trap, which | could not find documented anywhere. Suppose you're shelving
mutable objects, such as dictionaries or lists. Naturally, you will want to mutate some of those
objects—for example, by calling mutating methods (append on alist, updat e on adictionary,

and so on), or by assigning a new value to an item or attribute of the object. However, when you
do this, the change doesn't occur in the shel ve object. Thisis because we are actually mutating

atemporary object that the shel ve object hasgiven usastheresult of its ~ _getitem

method, but the shel ve object does not keep track of that temporary object, nor does it care
about it once it returns it.

As shown in the recipe, the solution is to bind a name to the temporary object obtained by keying
into the shelf, do whatever mutations are needed to the object via the name, then assign the newly
mutated object back to the appropriate item of the shel ve object. When you assign to a

shel veitem,the _ _setitem_ _ methodisinvoked, and it appropriately updates the
shel ve object itself, so that the change does occur.

8.5.4 See Also

Recipe 8.2 and Recipe 8.3 for aternative serialization approaches, documentation for the
shel ve standard library module in the Library Reference.

8.6 Accesssing a MySQL Database
Credit: Mark Nenadov
8.6.1 Problem

You need to access a MySQL database.

8.6.2 Solution

The My SQLdb module makes this task extremely easy:

i nport MySQLdb

Create a connection object, then use it to create a cursor
Con = MySQLdb. connect (host="127.0.0.1", port=3306,

user="j oe", passwd="egf42", db="tst")
Cursor = Con.cursor()

Execute an SQL string
sql = "SELECT * FROM Users"
Cursor. execut e(sql)

Fetch all results fromthe cursor into a sequence and
cl ose the connection

Results = Cursor.fetchall ()

Con. cl ose()

8.6.3 Discussion

Y ou can get the My SQLdb module from http://sourceforge.net/projects/mysgl-python. Itisa

plain and simple implementation of the Python DB API 2.0 that is suitable for al Python versions
from 1.5.2t0 2.2.1 and MySQL Versions 3.22 to 4.0.

Aswith al other Python DB API implementations, you start by importing the module and calling
the connect function with suitable parameters. The keyword parameters you can pass when
cdlingconnect depend on the databaseinvolved: host (defaulting to the local host), user,
passwd (password), and db (name of the database) are typical. In the recipe, | explicitly pass
the default local host's I P address and the default MySQL port (3306) to show that you can specify

parameters explicitly even when you're passing their default values (e.g., to make your source
code clearer and more readable and maintainable).

Theconnect function returns a connection object, and you can proceed to call methods on this
object until, when you are done, you cal the ¢l ose method. The method you most often call on
a connection object iscur sor , which returns a cursor object, which is what you use to send
SQL commands to the database and fetch the commands' results. The underlying MySQL database
engine does not in fact support SQL cursors, but that's no problem—the My SQLdb module
emulates them on your behalf quite transparently. Once you have a cur sor object in hand, you
can call methods on it. The recipe usesthe execut e method to execute an SQL statement and
thef et chal | method to obtain all results as a sequence of tuples—one tuple per row in the

result. There are many refinements you can use, but these basic elements of the Python DB API's
functionality aready suffice for many tasks.

8.6.4 See Also

The Python/MySQL interface module (http://sourceforge.net/projects/mysgl-python); the Python
DB API (http://www.python.org/topi cs/database/DatabaseAPI-2.0.html).

8.7 Storing a BLOB in a MySQL Database
Credit: Luther Blissett

8.7.1 Problem

You need to store a binary large object (BLOB) in a MySQL database.
8.7.2 Solution

The My SQLdb module does not support full-fledged placeholders, but you can make do with its
escape_stri ng function:

i mport MySQLdb, cPickle

Connect to a DB, e.g., the test DB on your | ocal host, and
get a cursor

connection = MySQLdb. connect (db="test")

cursor = connection.cursor()

Make a new table for experinentation
cursor. execut e(" CREATE TABLE j ustatest (nane TEXT, abl ob
BLOB) ")

try:
Prepare sonme BLOBs to insert in the table
nanes = '‘aram s', 'athos', 'porthos’
data = {}
for nanme in nanes:
datum = |i st (name)

datum sort()
dat a[nane] = cPi ckl e. dunps(datum 1)

Performthe insertions
sql = "I NSERT I NTO justatest VALUES(%s, %)"
for name in nanes:
cursor.execute(sqgl, (nane,
MySQLdb. escape_string(data[nanme])))

Recover the data so you can check back
sgql = "SELECT nane, abl ob FROM j ustat est ORDER BY nane"
cursor. execute(sql)
for name, blob in cursor.fetchall():
print name, cPickle.loads(blob),
cPi ckl e. | oads(dat a[nane])
finally:
Done. Renove the table and close the connecti on.
cursor.execut e("DROP TABLE justatest")
connection.close()

8.7.3 Discussion

MySQL supports binary data (BLOBs and variations thereof), but you need to be careful when
communicating such data via SQL. Specifically, when you use anormal | NSERT SQL statement
and need to have binary strings among the VAL UES you're inserting, you need to escape some
characters in the binary string according to MySQL's own rules. Fortunately, you don't have to
figure out those rules for yourself: MySQL supplies a function that does all the needed escaping,
and My SQLdb exposes it to your Python programs asthe escape_st ri ng function. This
recipe shows a typical case: the BLOBs you're inserting come from cPi ckl e. dunps, and so
they may represent almost arbitrary Python objects (although, in this case, we're just using them
for afew lists of characters). The recipe is purely demonstrative and works by creating a table and
dropping it attheend (usingat ry/ fi nal | y statement to ensure that finalization is performed
even if the program terminates because of an uncaught exception). With recent versions of
MySQL and MySQLdb, you don't need to call the escape_st r i ng function anymore, so you
can change the relevant statement to the simpler:

cursor.execute(sqgl, (name, data [nane]))

An dternative is to save your binary data to a temporary file and use MySQL's own server-side
LOAD_FI LE SQL function. However, this works only when your program is running on the
same machine as the MySQL database server, or the two machines at least share a filesystem on
which you can write and from which the server can read. The user that runs the SQL including the
LOAD_FI LE function must also have the FI LE privilege in MySQL's grant tables. If dll
conditions are met, here's how we can instead perform the insertions in the database:

i nport tenpfile

tenmpnane = tenpfile.nktenmp('.blob")

sgl = "INSERT I NTO j ust at est VALUES(%s,

LOAD_FI LE(' %')) " % enpnamne

for name in nanes:
fileobject = open(tenpnane, ' wh')
fileobject.wite(data]nane])
fileobject.close()
cursor.execute(sql, (nane,))

i mport os

0s. renpve(tenpnane)

This s clearly too much of a hassle (particularly considering the many conditions you must mest,
as well as the code bloat) for BLOBs of small to medium sizes, but it may be worthwhile if your
BLOBs are quite large. Most often, however, LOAD FI LE comesin handy only if you already
have the BLOB datain afile, or if you want to put the data into afile anyway for another reason.

8.7.4 See Also

Recipe 8.8 for a PostgreSQL -oriented solution to the same problem; the MySQL home page
(http://mwvww.mysgl.org); the Python/MySQL interface module
(http://sourceforge.net/projects/mysal-python).

8.8 Storing a BLOB in a PostgreSQL Database
Credit: Luther Blissett

8.8.1 Problem

Y ou need to store a binary large object (BLOB) in a PostgreSQL database.
8.8.2 Solution

PostgreSQL 7.2 supports large objects, and the psycopg module suppliesa Bi nar y escaping
function:

i nport psycopg, cPickle

Connect to a DB, e.g., the test DB on your |ocal host, and
get a cursor

connection = psycopg. connect ("dbnanme=test")

cursor = connection.cursor()

Make a new table for experinentation
cursor. execut e(" CREATE TABLE j ustatest (nane TEXT, ablob
BYTEA) ")

try:
Prepare sone BLOBs to insert in the table
nanes = '‘aram s', 'athos', 'porthos’
data = {}
for nanme in nanes:
datum = |i st (name)

datum sort()
dat a[nanme] = cPickl e. dunps(datum 1)

Performthe insertions
sql = "I NSERT I NTO j ustatest VALUES(%s, %s)"
for nanme in nanes:
cursor. execute(sql, (nane,
psycopg. Bi nary(dat a[nane])))

Recover the data so you can check back
sgl = "SELECT nane, abl ob FROM just atest ORDER BY nane"
cursor. execute(sql)
for nanme, blob in cursor.fetchall():
print name, cPickle.loads(blob),
cPi ckl e. | oads(dat a[nane])
finally:
Done. Renpve the table and cl ose the connection.
cursor. execut e("DROP TABLE justatest")
connection.close()

8.8.3 Discussion

PostgreSQL supports binary data (BY TEA and variations thereof), but you need to be careful
when communicating such data via SQL. Specifically, when you use anormal | NSERT SQL
statement and need to have binary strings among the VALUES you're inserting, you need to
escape some characters in the binary string according to PostgreSQL's own rules. Fortunately, you
don't have to figure out those rules for yourself: PostgreSQL supplies functions that do all the
needed escaping, and psycopg exposes such a function to your Python programs as the

Bi nar y function. This recipe shows atypical case: the BY TEAs you're inserting come from

cPi ckl e. dunps, so they may represent almost arbitrary Python objects (although, in this
case, we're just using them for afew lists of characters). The recipe is purely demonstrative and
works by creating atable and dropping it at theend (usingat ry/ fi nal | y statement to ensure
finalization is performed even if the program terminates because of an uncaught exception).

Earlier PostgreSQL releases put limits of afew KB on the amount of data you could storein a
normal field of the database. To store really large objects, you needed to use roundabout
techniques to load the data into the database (such as PostgreSQL's nonstandard SQL function
LO | MPORT to load a datafile as an object, which requires superuser privileges and datefiles
that reside on the machine running the PostgreSQL server) and store afield of type O Dinthe
table to be used later for indirect recovery of the data. Fortunately, none of these techniques are
necessary anymore: since Release 7.1 (the current release at the time of writing is 7.2.1),
PostgreSQL embodies the results of project TOAST, which removes the limitations on field-
storage size and therefore the need for peculiar indirection. psy copg supplies the handy

Bi nar y function to let you escape any binary string of bytes into a form acceptable for
placeholder substitution in | NSERT and UPDATE SQL statements.

8.8.4 See Also

Recipe 8.7 for a MySQL-oriented solution to the same problem; PostgresSQL ‘s home page
(http://www.postgresql.org/); the Python/PostgreSQL module (http://initd.org/software/psycopg).

8.9 Generating a Dictionary Mapping from Field Names to
Column Numbers

Credit: Tom Jenkins
8.9.1 Problem

Y ou want to access data fetched from a DB API cursor object, but you want to access the columns
by field name, not by number.

8.9.2 Solution

Accessing columns within a set of database fetched rows by column index is neither readable nor
robust if columns are ever reordered. This recipe exploitsthe descr i pt i on attribute of
Python DB API'scur sor objectsto build a dictionary that maps column names to index values,
soyoucanuse cursor_row field dict[fieldnane]] togetthevalueof anamed
column:

def fields(cursor):
""" Gven a DB APl 2.0 cursor object that has been
executed, returns
a dictionary that maps each field nane to a col um i ndex;
0 and up. """
results = {}
colum =0
for d in cursor.description:
results[d[0]] = colum
colum = colum + 1

return results

8.9.3 Discussion
When you get a set of rows from acall to:
cursor.fetch{one, nmany, all}

it is often helpful to be able to access a specific column in arow by the field name and not by the

column number. This recipe shows a function that takesa DB API 2.0 cursor object and returns a
dictionary with column numbers keyed to field names.

Here's a usage example (assuming you put this recipe's code in a module that you call dbutils.py
somewhere on your Sys. pat h):

>>> ¢ = conn.cursor()

>>> c.execute('''select * fromcountry_region_goal where
crg region_code is null"'"")

>>> jnport pprint

>>> pp = pprint.pprint

>>> pp(c. description)

(("CRG_.ID, 4, None, None, 10, 0, 0),

(' CRG_PROGRAM I D', 4, None, None, 10, 0, 1),

(' CRG_FI SCAL_YEAR , 12, None, None, 4, 0, 1),

(' CRG_REG ON_CODE', 12, None, None, 3, 0, 1),

(' CRG_COUNTRY_CODE', 12, None, None, 2, 0, 1),

(' CRG_GOAL_CODE', 12, None, None, 2, 0, 1),

(' CRG_FUNDI NG_AMOUNT' , 8, None, None, 15, 0, 1))
>>> jnport dbutils

>>> field_dict = dbutils.fields(c)

>>> pp(field_dict)

{' CRG_COUNTRY_CCDE' : 4,

' CRG_FI SCAL_YEAR : 2,

" CRG_FUNDI NG_AMOUNT' : 6,

' CRG_GOAL_CODE' : 5,

"CRG_ID : 0,

' CRG_PROGRAM I D' : 1,

' CRG_REG ON_CCDE' : 3}

>>> row = c.fetchone()

>>> pp(row)

(45, 3, '2000', None, '"HR, '26', 48509.0)

>>> ctry_code = rowfield_dict[' CRG_COUNTRY_CODE']]
>>> print ctry_code

HR

>>> fund = row field_dict[' CRG_FUNDI NG AMOUNT']]
>>> print fund

48509. 0

8.9.4 See Also

Recipe 8.10 for a dicker and more elaborate approach to the same task.

8.10 Using dtuple for Flexible Access to Query Results
Credit: Seve Holden
8.10.1 Problem

Y ou want flexible access to sequences, such as the rows in a database query, by either name or
column number.

8.10.2 Solution

Rather than coding your own solution, it's often more clever to reuse a good existing one. For this
recipe's task, a good existing solution is packaged in Greg Stein's dt upl e module:

i nport dtuple
i mport mnx. ODBC. W ndows as odbc

flist = ["Name", "Nunf, "LinkText"]
descr = dtuple. Tupl eDescriptor([[n] for nin flist])
conn = odbc. connect (" Hol denWebSQL") # Connect to a database
curs = conn.cursor() # Create a cursor
sql = """SELECT % FROM St dPage

WHERE PageSet =" Std' AND Nunk25

ORDER BY PageSet, Num'"" %", ".join(flist)
print sql

curs. execute(sql)
rows = curs.fetchall()

for rowin rows:

row = dt upl e. Dat abaseTupl e(descr, row)

print "Attribute: Name: % Nunber: %" % (row. Nane,
row. Num or 0)

print "Subscript: Nanme: % Nunber: %" % (row 0], row 1]
or 0)

print "Mpping: Name: % Nunmber: %" % (row| "Name"],
row "Num'] or 0)

conn.close()

8.10.3 Discussion

Novice Python programmers are often deterred from using databases because query results are
presented by DB API-compliant modules as a list of tuples. Since these can only be numerically
subscripted, code that uses the query results becomes opague and difficult to maintain. Greg
Stein'sdt upl e module, available from http://www.lyra.org/greg/python/dtuple.py, helps by

defining two useful classes: Tupl eDescri pt or and Dat abaseTupl e.

The Tupl eDescri pt or class creates a description of tuples from alist of sequences, the first
element of which is a column name. It is often convenient to describe data with such sequences.

For example, in an interactive, or forms-based application, each column name might be followed
by validation parameters such as data type and alowable length. Tupl eDescri pt or's
purpose is to allow the creation of Dat abaseTupl e objects. In this particular application, no
other information about the columns is needed beyond the names, so the required list of sequences
is constructed from alist of field names using a list comprehension.

Created from Tupl eDescr i pt or and atuple such as a database row, Dat abaseTupl e is

an object whose elements can be accessed by numeric subscript (like a tuple) or column-name
subscript (like a dictionary). If column names are legal Python names, you can a so access the
columnsin your Dat abaseTupl e asattributes. A purist might object to this crossover

between items and attributes, but it's a highly pragmatic choice in this case, and Python is nothing
if not ahighly pragmatic language, so | see nothing wrong with this convenience.

To demonstrate the utility of Dat abaseTupl e, the smple test program in this recipe creates a
Tupl eDescri pt or and usesit to convert each row retrieved from a SQL query into
Dat abaseTupl e. Because the sample uses the same field list to build both

Tupl eDescri pt or andthe SQL SELECT statement, it demonstrates how database code can
be parameterized relatively easily.

8.10.4 See Also

See Recipe 8.9 for asimple way to convert field names to column numbers; the dt upl e module
(http://www.lyra.org/greg/python/dtupl e.py).

8.11 Pretty-Printing the Contents of Database Cursors
Credit: Seve Holden

8.11.1 Problem

Y ou want to present a query's result with appropriate column headers and widths (optional), but
you do not want to hardcode this information, which you may not even know when you're writing
the code, in your program.

8.11.2 Solution

Discovering the column headers and widths dynamically is the most flexible approach, and it
gives you code that's highly reusable over many such presentation tasks:

def pp(cursor, data=None, row ens=0):
d = cursor.description
if not d:
return "#### NO RESULTS ###"
nanmes = []
l engths = []
rules =[]
i f not data:
data = cursor.fetchall ()

for dd in d: # iterate over description
| = dd[1]
i f not I|:
| = 12 # or default arg ...
I = max(l, len(dd[0])) # Handle | ong names

names. append(dd[0])
| engt hs. append(1)
for col in range(len(lengths)):

if row ens:
rls = [len(rowcol]) for rowin data if rowcol]]
l engths[col] = max([l engths[col]]+rls)
rul es. append("-"*l engths[col])
format =" ".join(["%W6 %s" %I for | in |lengths])

result = [format % tupl e(nanes) |
result.append(format % tupl e(rul es))
for row in data:

resul t.append(format % row)
return "\n".join(result)

8.11.3 Discussion

Relational databases are often perceived as difficult to use. The Python DB API can make them
much easier, but if your programs work with several different DB engines, it's sometimes tedious
to reconcile the implementation differences between the various modules and the engines they
connect to. One of the problems of dealing with databases is presenting the result of a query when
you may not know much about the data. This recipe uses the cursor's description attribute to try
and provide appropriate headings and optionally examines each output row to ensure column
widths are adequate.

In some cases, a cursor can yield a solid description of the data it returns, but not all database
modules are kind enough to supply cursors that do so. The pretty printer takes as an argument a
cursor, on which you have just executed aretrieval operation (such asthe execut e of an SQL
SELECT statement). It also takes an optional argument for the returned data; to use the data for
other purposes, retrieve it from the cursor, typically with f et chal |, and passit in. The second
optional argument tells the pretty printer to determine the cdumn lengths from the data rather than

from the cursor's description, which is helpful with some RDBMS engines and DB APl module
combinations.

A simple test program shows the value of the second optional argument when a Microsoft Jet
database is used through the nx ODBC module;

i mport nx. ODBC. W ndows as odbc

i nport dbcp # contains pp function
conn = odbc. connect (" MyDSN")

curs = conn.cursor()

curs. execute("""SELECT Nane, LinkText, Pageset FROM St dPage
ORDER BY PageSet, Nane""")

rows = curs.fetchall ()

print "\ n\nWthout row ens:"

print dbcp. pp(curs, rows)

print "\n\nWth row ens:"

print dbcp.pp(curs, rows, row ens=1)
conn. close()

In this case, the description does not include column lengths. The first output shows that the
default column length of 12 is too short. The second output corrects this by examining the data:

W t hout row ens:

Nane Li nkText Pageset
ERROR ERROR: Cannot Locate Page None
home Home None

consul t Consulting Activity Std
cont act Cont act Us Std
expertise Areas of Expertise Std
ffx Fact Faxer Std

har dwar e Hardware Platforns Std
[tree Learning Tree Std

pyt hon Pyt hon Std

rates Rat es Std

t echnol Technol ogi es Std

weh WebCal | back Std

Wth row ens:

Nane Li nkText Pageset
ERROR ERROR: Cannot Locate Page None
hone Home None
consul t Consulting Activity Std

cont act Cont act Us Std

expertise Areas of Expertise Std

ffx Fact Faxer Std
har dwar e Har dwar e Pl at f or ns Std
[tree Learning Tree Std
pyt hon Pyt hon Std
rates Rat es St d
t echnol Technol ogi es Std
wch WebCal | back Std

This function is useful during testing, as it lets you easily verify that you are indeed retrieving
what you expect from the database. The output is pretty enough to display ad hoc query outputs to
users. The function currently makes no attempt to represent null values other than the None the

DB API returns, though it could easily be modified to show a null string or some other significant
value.

8.11.4 See Also

The mxODBC package, a DB API-compatible interface to ODBC
(http://www.egenix.com/files/python/mxODBC.html).

8.12 Establishing Database Connections Lazily
Credit: John B. Dell'Aquila
8.12.1 Problem

Y ou want to access a relational database via lazy connections (i.e., connections that are only
established just in time) and access query results by column name rather than number.

8.12.2 Solution

Lazy (just-in-time) operation is sometimes very handy. This recipe transparently wraps any DB
API-compliant interface (DCOr acl e, odbc, cx_or acl e, etc.) and provides lazy evaluation

and caching of database connections and a one-step query facility with data access by column
name. As usual, a class is the right way to package this wrapper:

cl ass Connecti on:
""" Lazy proxy for database connection """
def _ init_ (self, factory, *args, **keywords):
""" Initialize with factory nethod to generate DB
connecti on
(e.g., odbc.odbc, cx_Oracle.connect) plus any
positional and/or
keyword argunents required when factory is call ed.
self. _cxn = None
self._ _factory = factory
self._ _args = args
self._ _keywords = keywords

def _ getattr_ (self, name):
if self._ _cxn is None:
self._ _cxn = self._ _factory(*self._ _args,
**self._ _keywords)
return getattr(self._ _cxn, nane)

def cl ose(sel f):

if self. _cxn is not None:
self.__cxn.close()
self._ _cxn = None
def _ call_ (self, sql, **keywords):

nnn

Execute SQL query and return results. Optional
keywor d
args are '% substituted into query beforehand.
cursor = self.cursor()
cursor. execute(sql % keywords)
return Recor dSet (
[list(x) for x in cursor.fetchall()],
[x[O].lower() for x in cursor.description]

nonn

cl ass Recor dSet :

def

def

def

def

def

def

_ _init_ (self, tableData, columNames):

sel f.data = tabl eDat a

sel f.col ums = col unmNanes

sel f.columMap = {}

for name,n in zip(columNanes, xrange(10000)):
sel f.col umMap[hane] = n

_ _getitem_ _(self, n):
return Record(sel f.data[n], self.columMap)

_ _setitem_ _(self, n, value):
sel f.data[n] = val ue

_ _delitem_ _(self, n):
del self.data[n]

_ _len_ (self):
return |l en(sel f.data)

_ _str_ _(self):

return '%: %' % (self._ _class_ _, self.columms)

cl ass Record:

W apper for data row. Provides access by

colum nane as well as position.

def

def

def

def

def

_ _init_ (self, rowbata, colummMap):
self. dict_ [' _data '] = rowbData
self. dict_ [' _map_'] = columiMap

_ _getattr_ _(self, nane):
return self. _data [self._map_[nane]]

_ _setattr_ _(self, nane, value):
try:

n = self._map_[nane]
except KeyError:

self._ _dict_ _[nane] = value
el se:

self. data [n] = val ue

_ _getitem_ _(self, n):
return self._data_[n]

_ _setitem_ _(self, n, value):
self. data [n] = val ue

def _ getslice_ (self, i, j):
return self. data [i:]]

def _ setslice_ (self, i, j, slice):
self. data [i:]j] = slice

def _ len_ _(self):
return len(self. _data)

def _ _str_ _(self):
return '%: %' % (self.__class_ _,
repr(self. _data))

8.12.3 Discussion

The module implemented by this recipe, Lazy DB, extends the DB API to provide lazy
connections (established only when needed) and access to query results by column name. A

Lazy DB connection can transparently replace any normal DB APl connection but is significantly
more convenient, making SQL queries feel amost like a built-in Python feature.

Here is a simple usage example:

i mport LazyDB, cx_Oracle

nmyDB = LazyDB. Connection(cx_Oracl e. connect,

"user/ passwd@erver"')

pct SQL = ' SELECT * FROM al | _tabl es WHERE pct _used >=

% pct) s’

hogs = [(r.table_nanme, r.pct_used) for r in nyDB(pctSQ,
pct =90)]

You can wrap al your standard database connections with Lazy DB and place them in asingle

module that you can import whenever you need a database. This keeps al your passwordsin a
single place and costs amost nothing, since connections aren't opened until you actually use them.

The one-step query facility cannot be used for extremely large result sets because f et chal |

will fail. It also shouldn't be used to run the same query multiple times with different parameters.
For optimal performance, use the native DB API parameter substitution, so the SQL won't be
reparsed each time.

Capitalization conventions vary among databases. Lazy DB arbitrarily forces column namesto

lowercase to provide consistent Python attribute names and thus ease portability of your code
among severa databases.

8.12.4 See Also

The Python DB API (http://www.python.org/topi cs/database/DatabaseAPI-2.0.html).

8.13 Accessing a JDBC Database from a Jython Servlet
Credit: Brian Zhou

8.13.1 Problem

You're writing a servlet in Jython, and you need to connect to a database server (e.g., Oracle,
Sybase, MS SQL Server, MySQL) via JDBC.

8.13.2 Solution

The technique is basically the same for any kind of database, give or take a couple of statements.
Here's the code for when your database is Oracle:

i nport java, javax
class enp(javax.servlet.http. HtpServlet):
def doGet(self, request, response):
response. set Cont ent Type("t ext/pl ai n")
out = response. get Qut put Stream)
sel f. dbQuery(out)
out.close()
def dbQuery(self, out):

driver = "oracle.jdbc.driver.O acleDriver"

j ava. l ang. Cl ass. for Nanme(driver).newl nstance()

server, db = "server", "ORCL"

url = "jdbc:oracle:thini@ + server + ":" + db

usr, passwd = "scott", "tiger"

conn = java.sqgl.DriverManager. get Connecti on(url, usr,
passwd)

query = "SELECT EMPNO, ENAME, JOB FROM EMP"
stnt = conn.createStatenent()
if stm.execute(query):
rs = stm.getResultSet()
while rs and rs.next():
out.println(rs.getString("EWPNO"))
out.println(rs.getString("ENAMVE"))
out.println(rs.getString("JOB"))
out.println()
stnt.close()
conn.close()

When your database is Sybase or Microsoft SQL Server, use the following:

i nport java, javax
class titles(javax.servlet.http. HtpServlet):
def doGet(self, request, response):
response. set Content Type("text/plain")
out = response. get Qut put Stream()
sel f. dbQuery(out)
out.close()
def dbQuery(self, out):
driver = "sun.jdbc.odbc.JdbcOdbcDriver"

java. |l ang. Cl ass. for Nanme(driver).new nstance()
Use "pubs" DB for mesqgl and "pubs2" for Sybase

url = "jdbc: odbc: nyDat aSour ce"

usr, passwd = "sa", "password"

conn = java.sqgl.DriverManager. get Connection(url, usr,
passwd)

query = "select title, price, ytd sales, pubdate from
titles"

stm = conn.createStatenment()
if stnt.execute(query):
rs = stm.getResultSet()
while rs and rs.next():
out.println(rs.getString("title"))
if rs.getObject("price"):
out.println("%.2f" %rs.getFloat("price"))
el se:
out.println("null™)
if rs.getObject("ytd sales"):
out.println(rs.getlnt("ytd _sales"))
el se:
out.println("null")

out.println(rs.getTinestanp("pubdate").toString())
out.println()
stnt.close()
conn.close()

And here's the code for when your database is MySQL.:

i nport java, javax
cl ass goosebunps(j avax.servlet.http. HtpServlet):
def doGet(self, request, response):
response. set Content Type("text/plain")
out = response. getQutputStream)
sel f. dbQuery(out)
out.close()
def dbQuery(self, out):

driver = "org.gjt.mm nysql.Driver"

java.lang. Cl ass. forNane(driver).new nstance()

server, db = "server", "test"

usr, passwd = "root", "password"

url = "jdbc: nysqgl :// %/ %s?user =¥%s&passwor d=%" % (
server, db, usr, passwd)

conn = java.sql.DriverManager. get Connection(url)

guery = "select country, nonster from goosebunps”

stnm = conn.createStatenent()
if stnt.execute(query):
rs = stm.getResultSet()
while rs and rs.next():
out.println(rs.getString("country"))
out.println(rs.getString("nonster"))
out.println()
stnt.close()

8.13.3 Discussion

Y ou might want to use dfferent JDBC drivers and URLS, but you can see that the basic technique
is quite simple and straightforward. This recipe's code uses a content type of t ext / pl ai n

because the recipe is about accessing the database, not about formatting the data you get fromiit.
Obviousdly, you can change this to whatever content type is appropriate for your application.

In each case, the basic technique isfirst to instantiate the needed driver (whose package name, as a
string, we placein variable dr i ver) viathe Java dynamic loading facility. The f or Nane
method of the | ava. | ang. Cl ass class loads and gives us the relevant Java class, and that
classs newl nst ance method ensures that the driver we need is instantiated. Then, we can call
theget Connect i on method of j ava. sql . Dri ver Manager with the appropriate

URL (or username and password, where needed) and thus obtain a connection object to place in
the conn variable. From the connection object, we can create a statement object with the

creat eSt at enment method and use it to execute a query that we have in the quer y string
variable with the execut e method. If the query succeeds, we can obtain the results with the

get Resul t Set method. Finally, Oracle and MySQL dlow easy sequential navigation of the

result set to present all results, while Sybase and Microsoft SQL Server need a bit more care, but
overall, the procedure is similar in all cases.

8.13.4 See Also

The Jython site (http://www.jython.org); JDBC's home page (http://java.sun.com/products/jdbc).

8.14 Module: jet2sql—Creating a SQL DDL from an
Access Database

Credit: Matt Keranen

If you need to migrate a Jet (Microsoft Access .mdb) database to another DBMS system, or need

to understand the Jet database structure in detail, you must reverse engineer from the database a
standard ANSI SQL DDL description of its schema.

Example 81 reads the structure of a Jet database file using Microsoft's DAO services via Python
COM and creates the SQL DDL necessary to recreate the same structure (schema). Microsoft
DAO has long been stable (which in the programming world is almost a synonym for dead) and
will never be upgraded, but that's not really a problem for us here, given the specific context of
this recipe's use case. Additionally, the Jet database itself is almost stable, after all. You could, of
course, recode this recipe to use the more actively maintained ADO services instead of DAO (or
even the ADOX extensions), but my existing DAO-based solution seemsto do all | require, so |
was never motivated to do so, despite the fact that ADO and DAO are redly close in programming
terms.

This code was originally written to aid in migrating Jet databases to larger RDBMS systems
through E/R design tools when the supplied import routines of said tools missed objects such as
indexes and FKs. A first experiment in Python, it became a common tool.

Note that for most uses of COM from Python, for best results, you need to ensure that Python has
read and cached the type library. Otherwise, for example, constant names cannot be used, since
only type libraries hold those names. Y ou would have to use numeric literals instead, seriously
hampering readability and usability (not to mention the bother of finding out which numeric
literals you should use, when all available documentation is written in terms of symbolic
constants).

In recent releases of Wi n32al |, the simplest way to make sure that the type library has indeed
been cached is to substitute, in lieu of the statement in the recipe:

daoEngi ne = wi n32com cli ent. Di spat ch(' DAO. DBEngi ne. 36')
the equivalent statement:

daoEngi ne =
wi n32com cl i ent. gencache. Ensur eDi spat ch(' DAO. DBEngi ne. 36")

Ensur eDi spat ch ensuresthe relevant type library is cached, instantiates the requested COM
server, and returns areference just like Di spat ¢h would.

Alternatively, you can use makepy.py, either by hand or through the Tools menu of PythonWin (in
this case, from the COM Makepy Utility, select an entry such as Microsoft DAO 3.6 Library). Yet
another possibility iscalingwi n32com cl i ent. gencache. Ensur eModul e, but this
is inelegant and unwieldy, because you need to find out the UUID and version numbers for the
(registered) type library you want to ensure is cached. The newer Ensur eDi spat ch isfar
handier, since it takes a good old Pr ogl D string, which is easier to find out, more readable, and
more compact.

Microsoft's widespread Jet (a.k.a. Access) database engine isn't quite SQL-compliant, but it comes
close. Using this engine, all you need to migrate a database to a standard SQL relational database
isalittle help in reverse engineering the details of the structure, as shown in Example 8-1.

Example 8-1. Creating a SQL DDL from an Access database

jet2sqgl.py - Matthew C Keranen <nck@rpi net. net >
[07/12/2000]

Creates ANSI SQL DDL froma MsS Jet database file. Useful
to reverse

engi neer a database's design in various E/ R tools.

#

Requires DAO 3.6 library.

Usage: python jet2sql.py infile. VDB outfile.SQ
i mport sys, string, pythoncom w n32com client

const = win32comclient.constants
daoEngi ne = wi n32com cl i ent. Di spat ch(' DAO. DBEngi ne. 36')

guot = chr(34)
cl ass jetReverse:
def _ _init_ (self, infile):
self.jetfilenane=infile
sel f.dt bs = daoEngi ne. OpenDat abase(infile)

def term nate(self):
pass

def witeTabl e(self, currTabl):
self.witeLine('\ncreate table
+ quot + currTabl.Name + quot, "", 1)
self.writeLine(" (", "", 1)

Wite columms
cn=0
for col in currTabl.Fields:
cn =cn + 1
sel f.writeCol um(col.Nanme, col.Type, col.Size,
col . Required, col.Attributes,
col . Def aul t Val ue,
col . ValidationRul e, currTabl.Fields.Count-cn)

Validation rule
tabl Rul e = currTabl . Val i dati onRul e

if tablRule !'="":
tabl Rule = " check(" + tablRule + ") "
self.witeLine("", ",", 1) # add a comma and CR
self.witeLine(tablRule, "", 0)

Primary key
pk=sel f. get Pri maryKey(curr Tabl)
if pk <> "":

self.witeLine("", ",", 1) # add a comma and CR

self.witeLine(pk, "", 0)
End of table
self.witeLine("", "", 1) # termnate previous |line
self.witeLine(');", "", 1)

Wite table comment

try: sql = currTabl.Properties("Description").Val ue
except pythoncom comerror: sqgql =""
if sql = "":
sql = ("comment on table " + quot +
currTabl . Name + quot +
is " + quot + sgl + quot + ";")
self.witeLine(sql, "", 1)

Wite colum coments
for col in currTabl.Fields:
try: sqgl = col.Properties("Description").Value
except pythoncomcomerror: sql =""
if sql '="":
sql = ("coment on colum " + quot +
curr Tabl . Nane
+ quot + "." + quot + col.Name + quot +
is " + quot + sql + quot + ";")
self.witelLine(sql,"",1)

Wite indexes
sel f.witel ndexes(currTabl)

def writeColum(self, col Name, col Type, length, requird,
attributes, default, check, col Rix):
col Ri x: 0-based index of colum fromright side
0 indicates rightnost colum
if col Type == const. dbByte: dataType = "Byte"
elif col Type == const. dblnteger: dataType =
"l nteger”
elif col Type == const. dbSi ngl e: dataType " Singl e”
elif col Type == const. dbDoubl e: dataType " Doubl e"
elif col Type == const. dbDate: dataType = "DateTi nme"
elif col Type == const.dbLongBi nary: dataType = "CLE"
elif col Type == const. dbMenp: dataType = "Meno"
elif col Type == const.dbCurrency: dataType =
"Currency"
elif col Type == const. dbLong:
if attributes & const. dbAutolncrField:
dat aType = "Counter"”
el se:
dat aType = "Longl nteger"”
elif col Type == const. dbText:
if length == 0: dataType = "Text"
el se: dataType = "char("+str(length)+")"
elif col Type == const. dbBool ean

dat aType = "Bit"
if default == "Yes": default = "1"
el se: default = "0"
el se:
if length == 0: dataType = "Text"
el se: dataType = "Text("+str(length)+")"

if default t=""
defaultStr = "default " + default + "
el se: defaultStr = ""

if check '="":
checkStr = "check(" + check + ") "
el se:
checkStr =
if requird or (attributes & const.dbAutolncrField):
mandat ory = "not null "
el se:
mandatory = ""
sql = (" " + quot + col Nane + quot + " " +
dat aType
+ " " + defaultStr + checkStr + mandatory)
if colRix > 0:
self.witeLine(sql, ",", 1)
el se:
self.witeLine(sql, "", 0)

def getPrinmaryKey(self, currTabl):
Get primary key fields
sql =""
for idx in currTabl.I|ndexes:
if idx.Primary:

i dxName = idx. Name
sql =" primary key "
cn =0
for col in idx.Fields:
cn = cn+l
sgl = sql + quot + col.Nanme + quot

if idx.Fields.Count > c¢cn: sgql = sql + ","
return sql

def writelndexes(self, currTabl):

Wite index definition

nldx = -1

for idx in currTabl.|ndexes:
nldx = nldx + 1
i dxName = i dx. Nane
t abl Nane = curr Tabl . Nane
if idx.Primry:

i dxName = tabl Name + " _PK"

elif idxNanme[:9] == "REFERENCE":

i dxName = tabl Nane + " _FK" + idxNane[10:]

el se:
i dxName = tabl Name + " _I X" + str(nldx)
sqgl = "create "
i f idx.Unique: sgql = sqgl + "unique "
if idx.Clustered: sql = sqgl + "clustered "
sgl = sqgl + "index " + quot + idxName + quot
sgl =sqgl +" on " + quot + tablName + quot + "
("
Wite index colums
cn =0
for col in idx.Fields:
cn =cn + 1
sql = sql + quot + col.Nanme + quot
if col.Attributes & const. dbDescendi ng:
sgl = sql + " desc"
el se:
sgl = sqgl + " asc"
if idx.Fields.Count > cn: sql = sql + ","
sql =sqgl +");"
self.witeLine(sql,"",1)
def writeForeignKey(self, currRefr):
Export foreign key
sql = "\nalter table " + quot +
currRefr. Forei gnTabl e + quot
self.witeLine(sqgl, "", 1)
sgl =" add foreign key ("
cn =0
for col in currRefr.Fields:
cn =cn + 1
sql = sql + quot + col.ForeignName + quot
if currRefr.Fields.Count > cn: sql = sqgl + ","
sql =sql + ")"
self.witelLine(sqgl, "", 1)
sgl =" references " + quot + currRefr.Table +
guot + " ("
cn =0

for col in currRefr.Fields:
cn =cn + 1
sgl = sql + quot + col.Nane + quot
if currRefr.Fields. Count > cn: sqgql =sqgl + ","

sgql =sqgl +")"
if currRefr.Attributes &
const . dbRel ati onUpdat eCascade:

sgl = sgql + " on update cascade"
if currRefr.Attri butes &
const . dbRel ati onDel et eCascade:

sqgl = sqgql + " on delete cascade"
sql = sqgl +";"
self.witelLine(sqgl, "", 1)

def witeQuery(self, currQy):
sql = "\ncreate view " + quot + currQy.Nanme + quot
+ " as"
self.writeLine(sql, "", 1)

Wite query text

sql = string.replace(currQy.SQ, chr(13), "") #
Renmove extra \ns

self.writeLine(sql, "", 1)

Wite query conment
try: sgql = currQy.Properties("Description"). Val ue
except pythoncomcomerror: sql =""

if sql <> ""
sql = ("comrent on table " + quot + currQy. Nane
+
quot + " is " + quot + sqgl + quot)
self.witeLine(sql,"",1)
def writeLine(self, strLine, delimt, newine):
Used for controlling where lines termnate with a
comma
or other continuation mark
sqlfile.wite(strLine)
if delimt: sqglfile.wite(delimt)
if newine: sqglfile.wite('\n")
if _ name_ _=="'_ min_ _':
if len(sys.argv) != 3:
print "Usage: jet2sqgl.py infile.ndb outfile.sql"
el se:
jetEng = jetReverse(sys.argv[1])
outfile = sys.argv[2]
sglfile = open(outfile,'w)
print "\ nReverse engineering % to %" % (
jetEng.jetfil enanme, outfile)
Tabl es
sys.stdout.wite("\n Tabl es")
for tabl in jetEng.dtbs. Tabl eDefs:
if tabl.Nanme[:4] !'= "MSys" and tabl.Nanme[:4] !=
~TIVP":

sys.stdout.wite(".")

jetEng. witeTabl e(tabl)
el se:

sys.stdout.wite(",")

Rel ati ons/ FKs
sys.stdout.wite("\n Rel ati ons™)
for fk in jetEng.dtbs. Rel ations:
sys.stdout.wite(".")
jetEng. witeForei gnKey(fk)

Queries
sys.stdout.write("\n Queries")
for gry in jetEng.dtbs. QueryDefs:
sys.stdout.wite(".")
jetEng. witeQuery(qry)

print "\n Done\ n"

Done
sqglfile.close()
jetEng.term nate()

Chapter 9. User Interfaces

Section 9.1. Introduction

Section 9.2. Avoiding lambda in Writing Callback Functions

Section 9.3. Creating Menus with Tkinter

Section 9.4. Creating Dialog Boxes with TKinter

Section 9.5. Supporting Multiple Vaues per Row in a Tkinter Listbox

Section 9.6. Embedding Inline GIFs Using Tkinter

Section 9.7. Combining Tkinter and Asynchronous I/O with Threads

Section 9.8. Using a wxPython Notebook with Panels

Section 9.9. Giving the User Unobtrusive Feedback During Data Entry with Ot

Section 9.10. Building GUI Solutions Independent of the Specific GUI Toolkit

Section 9.11. Creating Color Scales

Section 9.12. Using Publish/Subscribe Broadcasting to L oosen the Coupling Between
GUI and Business Logic Systems

Section 9.13. Module: Building GTK GUIs Interactively

9.1 Introduction
Credit: Fredrik Lundh, SecretlLabs AB (PythonWare), author of Python Standard Library

Back in the early days of interactive computing, most computers offered terminals that looked and
behaved pretty much like clunky typewriters. The main difference from an ordinary typewriter
was that the computer was in the loop. It could read what the user typed and print hardcopy output
on aroll of paper.

So when you found yourself in front of a 1960s Teletype ASR-33, the only reasonable way to
communicate with the computer was to type a line of text, press the send key, hope that the
computer would manage to figure out what you meant, and wait for the response to appear on the
paper roll. This line-oriented way of communicating with your computer is known as a command-
line interface (CLI).

Some 40 years later, the paper roll has been replaced with high-resolution video displays, which
can display text in multiple typefaces, color photographs, and even animated 3D graphics. The
keyboard is still around, but we also have pointing devices such as the mouse, trackballs, game
controls, touchpads, and other input devices.

The combination of a graphics display and the mouse made it possible to create a new kind of user
interface: the graphical user interface (GUI). When done right, a GUI can give the user a better
overview of what a program can do (and what it is doing), and make it easier to carry out many
kinds of tasks.

However, most programming languages, including Python, make it easy to write programs using
teletype-style output and input. In Python, you use the pr i nt statement to print text to the
display and the i nput and r aw_i nput functions to read expressions and text strings from the
keyboard.

Creating graphical user interfaces takes more work. Y ou need access to functions to draw text and
graphics on the screen, select typefaces and styles, and read information from the keyboard and
other input devices. Y ou need to write code to interact with other applications (via a window
manager), keep your windows updated when the user moves them around, and respond to key
presses and mouse actions.

To make this a bit easier, programmers have developed graphical user interface toolkits which
provide standard solutions to these problems. A typical GUI toolkit provides a number of ready-
made GUI building blocks, usually cdled widgets Common standard widgets include text and
image labels, buttons, and text-entry fields. Many toolkits also provide more advanced widgets,
such as Tkinter's Text widget, which is a rather competent text editor/display component.

All major toolkits are event-based. This means that your program hands control over to the toolkit
(usually by calling amain loop function or method). The toolkit then calls back into your
application when certain events occur—for example, when the user clicks OK in a dialog, when a
window needs to be redrawn, and so on. Most toolkits also provide ways to position widgets on
the screen automatically (e.g., in tables, rows, or columns) and to modify widget behavior and
appearance.

Tkinter is the de-facto standard toolkit for Python and comes with most Python distributions.
Tkinter provides an object-oriented layer on top of the Tcl/Tk GUI library and runs on Windows,
Unix, and Macintosh systems. Tkinter is easy to use but provides a relatively small number of
standard widgets. Tkinter extension libraries, such as Pmw and Tix, supply many components
missing from plain Tkinter, and you can use Tkinter's advanced Text and Canvas widgetsto
create custom widgets. The Widget Construction Kit lets you write all sorts of new widgetsin

pure Python and is available as part of the uiToolkit product
(http://www.pythonware.com/products/uitoolkit/) and also as part of Tkinter 3000
(http://effbot.org/tkinter/), which is currently in the apha stage.

wxPython (http://www.wxPython.org) is another popular toolkit; it is based on the wxWindows
C++ library (http://www.wxWindows.org). wxPython is modeled somewhat after the Windows
MFC library but is available for multiple platforms. wxPython provides arich set of widgets, and
it'srelatively easy to create custom widgets.

PyGTK (http://www.daa.com.au/~james/pygtk) is an objectoriented Python interface to the GTK
toolkit, used in projects such as Gnome and the Gimp. Thisis a good choice for Linux
applications, especialy if you want them to run in the Gnome environment.

PyQt (http://www.riverbankcomputing.co.uk/pyqt/index.php) is a Python wrapper for Troll Tech's
Qt library (http://www.trolltech.com), which is the basis of the popular KDE environment, as well
as the Qtopia environment for handheld computers; it also runs on Windows and Mac OS/X. Qt
requires license fees for commercial (non-free software) use but is free for free software
development; PyQt itself is always free.

Y ou can aso use many other toolkits from Python. Mark Hammond's PythonWin gives access to
Windows MFC. There are also interfaces to Motif/X 11 and Maclntosh native toolboxes, and many
other toolkits. Cameron Laird maintains alist of toolkits at
http://starbase.neosoft.com/~claird/comp.lang.python/python GUI.html. It currently lists about 20
toolkits.

Finally, the anygui project (www.anygui.org) is working on a unified Python API for the above
toolkits (and others, including Javas Swing toolkit, which is used with the Jython version of
Python, and text screens driven with, or even without, the cur ses library). The new unified API
isimplemented by a shared front-end layer and small, specific backends sitting on top of the many
existing libraries.

9.2 Avoiding lambda in Writing Callback Functions
Credit: Danny Yoo
9.2.1 Problem

Y ou need to use many callbacks without arguments, typically while writing a Tkinter-based GUI,
and would rather avoid using | anbda.

9.2.2 Solution

Between the classic | anbda approach and a powerful general-purpose currying mechanism,
there's a third, extremely simple way that can come in handy in many practical cases:

cl ass Conmand:
def _ _init_ (self, callback, *args, **kwargs):
sel f.cal | back = call back
sel f.args = args
sel f. kwargs = kwargs

def _ _call_ _(self):
return apply(self.callback, self.args, self.kwargs)

9.2.3 Discussion

| remember seeing this utility class a while back, but don't remember who to attribute it to.
Perhaps | saw this in John E. Grayson's book, Python and Tkinter Programming (Manning).

Writing alot of callbacks that give customized arguments can look a little awkward with
| ambda, so this Conmand class gives an aternative syntax that looks nicer. For example:

i mport Tkinter
def hello(nanme): print "Hello", name
root = Tk()

the | anbda way of doing it:
Button(root, text="Guido", command=l anbda name="Gui do":
hel | o(nane)). pack()

using the Command cl ass:
Button(root, text="Cuido", command=Command(hell o,
"Quido")).pack()

Of course, you can aso use amore general currying approach, which lets you fix some of the
arguments when you bind the callback, while others may be given at call time (see Recipe 15.8).
However, "doing the simplest thing that can possibly work™ is a good programming principle. If
your application needs some callbacks that fix all arguments at currying time and others that leave
some arguments to be determined at callback time, it's probably simpler to use the more general
currying approach for all the callbacks. But if al the callbacks you need must fix all arguments at
currying time, it may be simpler to forego unneeded generdity and use the simpler, less-genera
approach in this recipe exclusively. Y ou can always refactor later if it turns out you need the
generality.

9.2.4 See Also

Recipe 15.8; information about Tkinter can be obtained from a variety of sources, such as
Pythonware's An Introduction to Tkinter, by Fredrik Lundh (http://www.pythonwarecom/library),
New Mexico Tech's Tkinter reference (http://www.nmt.edu/tcc/hel p/lang/python/docs.html), and
various books.

9.3 Creating Menus with Tkinter
Credit: Luther Blissett
9.3.1 Problem

Y ou want to create a window that has a menu bar at the top.

9.3.2 Solution

Use the Tkinter Menu widget:

i nport sys
from Tkinter inport *

root = Tk()

Insert a nmenu bar on the main w ndow
menubar = Menu(root)
root. config(menu=nmenubar)

Create a nenu button | abeled "File" that brings up a nmenu
filemenu = Menu(nmenubar)
menubar . add_cascade(l abel =" File', nenu=fil emenu)

Create entries in the "File" nenu

simul ated command functions that we want to invoke from
our nenus

def doPrint(): print 'doPrint’

def doSave(): print 'doSave'

filemenu. add _conmand(| abel =" Print', command=doPri nt)
filemenu. add_conmand(| abel =" Save', command=doSave)

fil emenu. add_separator()

filenmenu. add_conmmand(| abel =" Quit', command=sys. exit)

root. mai nl oop()

9.3.3 Discussion

Menus in Tkinter applications are handled entirely by the Menu widget. As shown in the recipe,
you use Menu both for the top-level menu bar (which you add to atop-level window asits menu
configuration setting) and for cascading menus (whichyou add to the menu bar, or to other menus,
withthe add_cascade method).

A menu can have several kinds of entries. A cascade entry pops up a submenu when the user
selectsit, and is added with add_cascade. A command entry calls a function when the user
selectsit, and is added with add_conmand. A separator visually separates other entries, and is
added with add_separ at or .

A checkbutton entry is added with add_checkbut t on and has an associated Tkinter
I nt Var , with an on value and an off value. If the associated variable has the on value, the entry

displays a check besides its value; if it has the off value, it doesn't. When the user selects the entry,
this toggles the state of the variable:

vdebug = IntVvar()
fil emenu. add_checkbutton(l abel = Debug', var=vdebug)

Y ou can access the value of vdebug by calling vdebug. get and set it to any integer value n
by calingvdebug. set (n) . A checkbutton entry can aso optionally have a conmand to
call afunction when the user selectsiit.

A group of radiobutton entries is associated with asingle | nt Var instance. Only one

radiobutton associated with that variable can be on at any time. Selecting a radiobutton gives the
variable the value associated with it:

vievel = IntVvar()
filemenu. add_r adi obutton(l abel =" Level 1', var=vlevel,
val ue=1)

fil emenu. add_r adi obutton(l abel =" Level 2', var=vlevel,
val ue=2)
filemenu. add_radi obutton(l abel =" Level 3', var=vlevel,
val ue=3)

A radiobutton entry can also optionally have a comrand to cal a function when the user selects
it.

9.3.4 See Also

Information about Tkinter can be obtained from a variety of sources, such as Pythonware's An
Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library), New Mexico
Tech's Tkinter reference (http://www.nmt.edu/tcc/hel p/lang/python/docs.html), and various books.

9.4 Creating Dialog Boxes with Tkinter
Credit: Luther Blissett
9.4.1 Problem

Y ou want to create a dialog box (i.e., a new top-level window with buttons to make the window
go away).

9.4.2 Solution
For the simplest jobs, you can use the Tkinter Di al og widget:
i nport Dial og

def ask(title, text, strings=('Yes', 'No'),
bi t map=' quest head', default=0):
d = Di al og. Di al og(
title=title, text=text, bitmp=bitnmp,
def aul t =def aul t, strings=strings)
return strings[d. nunj

This function shows a modal dialog with the given title and text and as many buttons as there are
itemsinst ri ngs. The function doesn't return until the user clicks a button, at which point it
returns the string that labels the button.

9.4.3 Discussion

Di al og issimplest when al you want is a dialog box with some text, atitle, a bitmap, and all
the buttons you want, each with a string label of your choice.

On the other hand, when you're happy with the standard OK and Cancel buttons, you may want to
importthe t kSi npl eDi al og module instead. It offers the aski nt eger, askf | oat,
and askst r i ng functions, each of which accepts title and prompt arguments, as well as,
optionally, i ni ti al val ue, m nval ue, and maxval ue:

i nport tkSinpl eDi al og
x = tkSi npl eDi al og. aski nteger ("Choose an integer", "Between
1 and 6 pl ease: ",
initialvalue=1, mnval ue=1, maxval ue=6)
print X

Each function pops up a suitable, simple modal dialog and returns either a value entered by the
user that meets the constraints you gave, or None if the user clicks Cancel.

9.4.4 See Also

Information about Tkinter can be obtained from a variety of sources, suchas Pythonware's An
Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library), New Mexico
Tech's Tkinter reference (http://www.nmt.edu/tcc/hel p/lang/python/docs.html), and various books.

9.5 Supporting Multiple Values per Row in a Tkinter
Listbox

Credit: Brent Burley
9.5.1 Problem

Y ou need a Tkinter widget that works just likeanormal Li st box but with multiple values per
row.

9.5.2 Solution

When you find a functional limitation in Tkinter, most often the best solution isto build your own
widget as a Python class, subclassing an appropriate existing Tkinter widget (often Fr ane, so
you can easily aggregate several native Tkinter widgets into your own compound widget) and
extending and tweaking its functionality when necessary. Rather than solving the problems of just
one application, this gives you a reusable component that you can reuse in many applications. For
example, here's away to make a multicolumn equivalent of a Tkinter Li st box:

from Tkinter inport *

class Ml tiListbox(Frane):
def _ init_ (self, master, lists):
Franme. _init_ (self, naster)
self.lists =[]
for I,win |lists:
frame = Franme(sel f); franme.pack(si de=LEFT,
expand=YES, fill =BOTH)
Label (franme, text=l, borderw dt h=1
relief=RAlISED). pack(fill=X)
| b = Listbox(frame, w dth=w, borderw dt h=0,
sel ect bor derw dt h=0,
relief=FLAT, exportsel ecti on=FALSE)
| b. pack(expand=YES, fill=BOTH)
self.lists.append(lb)
| b. bi nd(' <B1-Mdtion>", |anbda e, s=self:
s. _select(e.y))
[b. bind(' <Button-1>', |anbda e, s=self:
s. _select(e.y))
I b. bi nd(' <Leave>', |anbda e: 'break')
I b. bi nd(' <B2-Mdtion>", |anbda e, s=self:
s._b2motion(e.x, e.y))
[b. bind(' <Button-2>', |anbda e, s=self:
S. _button2(e.x, e.y))
frame = Frane(sel f); frane.pack(side=LEFT, fill=Y)
Label (frame, borderw dt h=1
relief=RAlISED). pack(fill=X)
sb = Scroll bar(franme, orient=VERTI CAL
command=sel f. _scroll)
sb. pack(expand=YES, fill =Y)
self.lists[O]["'yscrollcommand']=sbh. set

def

def

def

def

def

def

def

def

def

def

def

def

_select(self, y):

row = self.lists[0].nearest(y)
sel f.selection_clear (0, END)
sel f.sel ection_set (row)

return 'break’

_button2(self, x, y):
for | in self.lists: |I.scan_mark(x, vYy)
return ' break’

_b2notion(self, x, y):
for | in self.lists: |.scan_dragto(x, YY)
return 'break'

_scroll(self, *args):
for I in self.lists:
appl y(l.yview, args)

cursel ection(sel f):
return self.lists[0].curselection()

del ete(self, first, |ast=None):
for I in self.lists:
| .delete(first, last)

get(self, first, |ast=None):
result =]
for I in self.lists:
resul t.append(l.get(first,last))
if last: return apply(mp, [None] + result)
return result

i ndex(sel f, index):
self.lists[0].index(index)

insert(self, index, *elenments):

for e in elenments:

i =0
| in self.lists:
| .insert(index, e[i])
=i +1

size(self):
return self.lists[0].size()

see(sel f, index):
for I in self.lists:
| . see(index)

sel ecti on_anchor (sel f, index):
for I in self.lists:
| . sel ecti on_anchor (i ndex)

def selection_clear(self, first, |ast=None):
for I in self.lists:
| .selection_clear(first, |ast)

def selection_includes(self, index):
return self.lists[0].selection_includes(index)

def selection_set(self, first, |ast=None):
for I in self.lists:
| .selection_set(first, |ast)

if _ name_ _=="'_ min_ _

tk = Tk()

Label (tk, text="MuiltilListbox').pack()

mb = MiltiListbox(tk, ((' Subject', 40), ('Sender', 20),
('Date', 10)))

for i in range(1000):

m b.insert (END,
(" I'mportant Message: %' % i, 'John Doe',

'10/ 10/ 9%94d" % (1900+i)))

m b. pack(expand=YES, fi | | =BOTH)

t k. mai nl oop()

9.5.3 Discussion

This recipe shows a compound widget that gangs multiple Tk Li st box widgetsto asingle
scrollbar to achieve a simple multicolumn scrolled listbox. Most of the Li st box APl is
mirrored to make the widget act like the normal Li st box, but with multiple values per row. The
resulting widget is lightweight, fast, and easy to use. The main drawback is that only text is
supported, which is a fundamental limitation of the underlying Li st box widget.

In this implementation, only single-selection is allowed, but it could be extended to multiple
selection. User-resizable columns and auto-sorting by clicking on the column label should also be
possible. Auto-scrolling while dragging Button-1 was disabled because it broke the
synchronization between the lists. However, scrolling with Button-2 works fine.

One note about the implementation: inthe Mul ti Li st box. _init_ _ method, severa

| anmbda forms are used as the callable second arguments (callbacks) of the bi nd method calls
on the contained Li st box widgets. Thisis traditional, but if you share in the widespread didlike
for | anbda, notethat | anbda is never truly necessary. In this case, the easiest way to avoid
the | anbdasisto redefine al the relevant methods (_sel ect, butt on2, etc.) astaking
two formal arguments (sel f, e) and extract the data they need from argument e. Then in the

bi nd callsyou can simply passthebound sel f. _sel ect method, and so on.

9.5.4 See Also

Information about Tkinter can be obtained from a variety of sources, such as Pythonware's An
Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library), New Mexico
Tech's Tkinter reference (http://www.nmt.edu/tcc/hel p/lang/python/docshtml), and various books.

9.6 Embedding Inline GIFs Using Tkinter
Credit: Brent Burley
9.6.1 Problem

Y ou need to embed GIF images inside your source code—for use in Tkinter buttons, labels, etc.—
to make toolbars and the like without worrying about installing the right icon files.

9.6.2 Solution

A lively Tkinter GUI can include many small images. However, you probably shouldn't require
that a small GIF file be present for each of these; ensuring the presence of many small filesisa
bother, and if they're missing, your GUI may be unusable or look wrong. Fortunately, you can
construct Tkinter Phot ol mage objects with inline data. It's easy to convert a GIF to inline form
as Python source code:

i nport base64
print "icon="'""\\\n" +
base64. encodestri ng(open("icon.gif").read()) + "'"'"

Y ou can then split the result into lines of reasonable length:

i con=""" ROl GODdhFQAVAPMAAAQ2 PESapl SCBASCBMICxPxmNCQi JJya/ | SC
hGRmezPz+/ PxneDQyZ

DQy ZDQy ZDQy ZOWAAAAAFQAVAAAEI JDI Sau9Vh2WVDOggHHel JwnsXVI oqDd2
hr MBpYYi SHYf MVRm

53ULI QHGFFx1MZCei Ui VOs PmEKKNVp3UBhJ4Chy 1Uxer SgJ GZMvBbcBACQ V
hRi HvaUs XHgywTdyc

LdxyB

gnlvc Tyl ZWAMe U6 Ng QEBXEGRc Qcl | wQ AwEHoi o CAgWCZ0I g5+hA6W pqi s
| gCht hEAOW==

and use it in Tkinter:

i mport Tkinter

root = Tkinter.Tk()

i conl mage = Tki nt er. Phot ol nage(nast er =root, dat a=i con)
Tki nt er. Button(i mage=i conl mage) . pack()

9.6.3 Discussion

The basic technique is to encode the GIF with the standard Python module base64 and store the
results as a string literal in the Python code, which will be passed to Tkinter's Phot ol mage.
The current release of Phot ol nage supports GIF and PPM, but inline data is supported only

for GIF. Youcanusefi |l e=' fil enane' ,instead of dat a=st ri ng, for either GIF or
PPM.

Y ou must keep a reference to the Phot ol mage object yourself; it is not kept by the Tkinter

widget. If you passit to But t on and forget it, you will become very frustrated! Here's an easy
workaround for this minor annoyance:

def makel nrageW dget (i condata, *args, **kwds):
if args: klass = args. pop(0)
el se: klass = Tkinter.Button
cl ass W dget (kl ass):

def _ _init_ _(self, imge, *args, **kwds):
kwds[' i mage'] =i nage
klass. _init_ (self, args, kwds)
self._ _imge = imge

return W dget (Tki nt er. Phot ol mage(dat a=i condata), *args,
** kwds)

Using this, the equivaent of the example in the recipe becomes:
makel mageW dget (i con) . pack()

The mast er argument on Phot ol mage is optional; it defaults to the default application
window. If you create a new application window (by calling Tk again), you will need to create
your images in that context and supply the master argument, so the mekel mageW dget
function would need to be updated to let you optionally pass the master argument to the

Phot ol mage constructor. However, most applications do not require this.

9.6.4 See Also

Information about Tkinter can be obtained from a variety of sources, such as Pythonware's An
Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library), New Mexico
Tech's Tkinter reference (http://www.nmt.edu/tcc/hel p/lang/python/docs.html), and various books.

9.7 Combining Tkinter and Asynchronous I/O with
Threads

Credit: Jacob Hallén
9.7.1 Problem

Y ou need to access sockets, serial ports, and do other asynchronous (but blocking) 1/0 while
running a Tkinter-based GUI.

9.7.2 Solution

The solution is to handle a Tkinter interface on one thread and communicate to it (via Queue
objects) the events on 1/0O channels handled by other threads:

i nport Tkinter
inport tine

i mport threading
i mport random

i mport Queue

class CuiPart:
def _ _init_ (self, master, queue, endCommuand):
sel f. gueue = queue
Set up the GU
console = Tkinter.Button(nmaster, text='Done',
conmand=endConmand)
consol e. pack()
Add nore GUI stuff here depending on your specific
needs

def processlncom ng(self):
"""Handl e all nessages currently in the queue, if
any. """
whi |l e sel f.queue. gsize():
try:
nsg = sel f.queue. get (0)
Check contents of nessage and do whatever
is needed. As a
sinple test, print it (inreal life, you
woul d
suitably update the GUI's display in a
ri cher fashion).
print nsg
except Queue. Enpty:
just on general principles, although we
don't
expect this branch to be taken in this
case
pass

cl ass Threadedd i ent:

nnn

Launch the main part of the GUI and the worker thread.
periodicCall and

endApplication could reside in the GUI part, but putting
t hem here

nmeans that you have all the thread controls in a single
pl ace.

def _ _init_ (self, master):

Start the GUI and the asynchronous threads. W are
in the main

(original) thread of the application, which wll
| ater be used by

the GU as well. W spawn a new thread for the
wor ker (1/0).

sel f.master = master

Create the queue
sel f.queue = Queue. Queue()

Set up the GQUI part
self.gui = GuiPart(master, self.queue,
sel f. endApplication)

Set up the thread to do asynchronous /0
More threads can al so be created and used, if
necessary
self.running = 1
self.threadl =
t hr eadi ng. Thread(t arget =sel f. wor ker Thr ead1l)
self.threadl.start()

Start the periodic call in the GU to check if the
queue cont ai ns

anyt hi ng

self.periodicCall()

def periodicCall(self):
Check every 200 ns if there is something newin the
queue.

sel f. gui.processlnconm ng()
i f not self.running:
This is the brutal stop of the system You may
want to do
some cl eanup before actually shutting it down.
i mport sys
sys.exit(1)
sel f. master. after (200, self.periodicCall)

def worker Threadl(self):
This is where we handl e the asynchronous 1/0O. For
exanple, it may be
a 'select()'. One inportant thing to remenber is
that the thread has
to yield control pretty regularly, by select or
ot herw se.
whi |l e sel f.running:
To sinmul ate asynchronous I/O, we create a
random nunber at
randomintervals. Replace the follow ng two
l[ines with the real
thing.
time.sleep(rand.random) * 1.5)
nmsg = rand.random)
sel f. queue. put (nmsQ)

def endApplication(self):
self.running = 0

rand = random Randonm()
r oot Tkinter. Tk()

client = ThreadedC i ent(root)
root . mai nl oop()

9.7.3 Discussion

This recipe shows the easiest way of handling access to sockets, seria ports, and other
asynchronous 1/0O ports while running a Tkinter-based GUI. Note that the recipe's principles
generalize to other GUI toolkits, since most of them make it preferable to access the GUI itself
from a single thread, and al offer a toolkit-dependent way to set up periodic polling as this recipe
does.

Tkinter, like most other GUIs, is best used with al graphic commands in a single thread. On the
other hand, it's far more efficient to make 1/0 channels block, then wait for something to happen,
rather than using nonblocking I/0 and having to poll at regular intervals. The latter approach may
not even be available in some cases, since not all data sources support nonblocking 1/O. Therefore,
for generality as well as for efficiency, we should handle I/O with a separate thread, or more than
one. The I/O threads can communicate in a safe way with the main, GUI -handling thread through
one or more Queues. In thisrecipe, the GUI thread still has to do some palling (on the Queues),
to check if something in the Queue needs to be processed. Other architectures are possible, but
they are much more complex than the one in this recipe. My advice is to start with this recipe,
which will handle your needs over 90% of the time, and explore the much more complex
alternatives only if it turns out that this approach cannot meet your performance requirements.

This recipe lets aworker thread block ina sel ect (simulated by random sleeps in the recipe's
example worker thread). Whenever something arrives, it is received and inserted in a Queue.
The main (GUI) thread polls the Queue five times per second (often enough that the end user
will not notice any significant delay, but rarely enough that the computational 1oad on the
computer will be negligible—you may want to fine-tune this, depending on your exact needs) and
processes all messages that have arrived since it last checked.

This recipe seems to solve a common problem, since there is a question about how to do it a few
times a month in comp.lang.python. There are other solutions, involving synchronization between
threads, that let you solve such problems without polling (the r oot . af t er call in the recipe).
Unfortunately, such solutions are generally complicated and messy, since you tend to raise and
wait for semaphores throughout your code. In any case, a GUI aready has several polling
mechanisms built into it (the main event loop), so adding one more won't make much difference,

especialy since it seldom runs. The code has been tested only under Linux, but it should work on
any platform with working threads, including Windows.

9.7.4 See Also

Documentation of the standard library modulest hr eadi ng and Queue inthe Library
Reference; information about Tkinter can be obtained from avariety of sources, such as
Pythonware's An Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library),

New Mexico Tech's Tkinter reference (http://www.nmt.edu/tcc/hel p/lang/python/docs.html), and
various books.

9.8 Using a wxPython Notebook with Panels
Credit: Mark Nenadov
9.8.1 Problem

Y ou want to design a wxPython GUI comprised of multiple panels—each driven by a separate
Python script running in the background—that let the user switch back and forth (i.e., a wxPython
Not ebook).

9.8.2 Solution

Notebooks are a powerful GUI approach, as they let the user select the desired view from severa
options at any time with an instinctive button click. wxPython supports this by supplying a
wx Not ebook widget:

from wxPyt hon. wx inport *

cl ass Mai nFrame(wxFramne) :

#
sni pped: mainframe class attributes
#
def _ _init_ (self, parent, id, title):
#
sni pped: franme-specific initialization
#
Create the notebook
sel f.nb = wxNot ebook(sel f, -1,
wxPoi nt (0, 0), wxSize(0,0), wxNB_FI XEDW DTH)
Popul ate the notebook wi th pages (panels)
panel names = "First Panel", "Second Panel", "The
Third One"
panel _scripts = "panel 1", "panel 2", "panel 3"
for name, script in zip(panel _nanmes, panel _scripts):
Make panel nanmed 'nane' (driven by script
"script'.py)
self.nmodule = _ inport_ (script, globals())
sel f.wi ndow = sel f.nodul e. runPanel (sel f, self.nb)
if self.w ndow. self.nb. AddPage(self.w ndow,
nane)
#
snipped: rest of frame initialization
i@

9.8.3 Discussion

wxPython provides a powerful notebook user-interface object, with multiple panels, each of which
is built and driven by a separate Python script. Each panel's script runs in the background, even
when the panel is not selected, and maintains state as the user switches back and forth.

Of course, this recipe isn't afully functional wxPython application, but it demonstrates how to use
notebooks and panels (which it loads by importing files) adequately. Of course, this recipe
assumes that you have files named panel 1.py, panel2.py, and panel 3.py, each of which contains a
runPanel function that returns a wx Panel object. The specific notebook functionality is easy:
the notebook object is created by the wx Not ebook function, and an instance of this recipe's

Mai nFr ame class saves its notebook object asthe sel f . nb instance attribute. Then, each
page (awxPanel object) is added to the notebook by calling the notebook's AddPage method,
with the page object as the first argument and a name string as the second. Y our code only needs
to make the notebook and its panels usable; the wx W ndows framework, as wrapped by the
wxPython package, handles all the rest on your behalf.

9.8.4 See Also

wxPython, and the wxWindows toolKkit it depends on, are described in detail a&
http://www.wxPython.org and http://www.wxWindows.org.

9.9 Giving the User Unobtrusive Feedback During Data
Entry with Qt

Credit: Alex Martelli

9.9.1 Problem

Y ou want to vaidate the contents of a line-entry widget on the fly while the user is entering data
and give unobtrusive feedback about whether the current contents are valid, incomplete, or invalid.

9.9.2 Solution

Changing the widget's background color to different shadesis an excellent way to provide

unobtrusive feedback during data entry. As usual, it's best to package the solution as a reusable
widget:

fromqgt inport *
class ValidatingLi neEdit(QLi neEdit):
colors = Q.red, Q.yellow, Q.green

def _ init_ (self, validate, parent=None, name=None):
QLineEdit. _init_ (self, parent, nane)
self.validate = validate
sel f.connect (sel f, SIGNAL("text Changed(const QString
& "), self.changed)
sel f.color = None
sel f. changed('")

def changed(sel f, newText):
col orl ndex = sel f.validate(uni code(newlext))
if colorlindex is None: return
col or = self.colors[col orlndex].!light(196)
If color !'= self.color:
sel f. set Pal ett eBackgr oundCol or (col or)
sel f.color = color

The function passed asthe val i dat e argument must accept a Unicode string and return either
None, meaning no color change, or an index into the widget's col or s attribute. By default, O
indicates red (an incorrect entry), 1 indicates yellow (an incomplete entry), and 2 indicates green
(an entry that is already acceptable).

9.9.3 Discussion

When the user is entering datain aline-entry field, it can be helpful to validate the field's contents
on the fly, a every change, and give unobtrusive feedback about whether the current content is
valid, incomplete, or invalid. One way to do thisis by setting the field's background color
accordingly (using light pastel shades, not strong contrast colors, so the feedback is unobtrusive).

Qt has areputation for being cranky about color control, but Qt 3 now supplies the
set Pal et t eBackgr oundCol or method on all widgets, which is effective for our specific

purpose. This recipe packagesa Li neEdi t widget with the minimal amount of infrastructure to

ensure that the background color is changed appropriately, based on a validation function that you
pass when you instantiate the widget.

Here is a smple validation function, suitable for instantiating a Val i dat i ngLi neEdi t
widget. As an example criterion, this function assumes that a valid entry is one containing 4, 5, or
6 digits, and no character that is not a digit:

def validate(text):
if not text: return 1 # empty ->

"inconpl ete"
if not text.isdigit(): return O # nondigits ->
"invalid"

if len(text) < 4: return 1 # too short ->
"i nconpl ete"

if len(text) > 6: return O # too long ->
“invalid"

return 2 # ot herw se ->

"accept abl e"

Note that you can also customize the widget's col or s attribute by assigning to it a tuple of
QCol or instances of your choice at any time. The validation function must always return either
None, meaning no color change, or avalid index into the widget's current col or s attribute.

If content-validation takes along time, you should delay validating the field and wait until the user
is done with it. Often, a good time for relatively lengthy validation is when the entry widget loses
focus, although it may be ssimplest (but maybe not as effective, ergonomically) to validate all

fields only when the user clicks an OK button (the latter strategy is surely preferable when
complex validation criteria depend on the contents of several widgets).

This widget's architecture is simpler, and a bit less flexible, than the usual, recommended Qt
approach. To be Qt-canonical, you should emit signals and expose dots, leaving it up to containers
and applicationsto connect them appropriately. Thisis an excellent approach, and a flexible
one, but simplicity also hasits appeal. Y ou should be aware of the vast potential of the
signals/slots approach, but—unless you're writing widgets for mass distribution—you can wait to
architect this approach into a specific customized widget until you need it in your application.

9.9.4 See Also

Information about Qt is available at http://www.trolltech.com; PyQt is available and described at
http://www.riverbankcomputing.co.uk/pyat/index.php.

9.10 Building GUI Solutions Independent of the Specific
GUI Toolkit

Credit: Magnus Lie Hetland, Alex Martelli
9.10.1 Problem

Y ou want to write a simple GUI that can be deployed on just aout any toolkit the end user prefers,
including Tkinter, wxPython, Swing with Jython, curses-based text 1/0, and many others.

9.10.2 Solution

Theanygui package lets you do this. For example, heré'san anygui -based GUI
implementation of chmod:

i nport sys, o0s
fromanygui inport *

filename = sys.argv[1l] # file whose perm ssions we study
and nodify

main-| evel stuff
app Application()
W n W ndow(title="chmod ' +fil enanme, size=(280,175))

headers for CheckBoxes and Label s
types = 'Read Wite Execute' .split()
people = '"User Goup Ohers'.split()

Create and pl ace CheckBoxes and Label s
cbx = {}
X, y =10, O
for p in people:
| bl = Label (text=p)
| bl . geonetry = x, y+10, 80, 15
wi n. add(| bl)
cbx[p] = {}
for t in types:
y += 35
cbx[p][t] = CheckBox(text=t)
cbx[p][t].geometry = x, y, 80, 25
wi n.add(cbx[p][t])
X += 90; y = 0

Set the CheckBoxes' val ues
def refresh():
node, mask = os.stat(filename)[0], 256
for p in people:
for t in types:
cbx[p][t].on = nobde & mask
mask = mask >> 1

initial setting of checkbox val ues
refresh()

cal | backs for button clicks
def chnod():
node, mask = 0, 256
for p in people:
for t in types:
if cbx[p][t].on:
node = node | mask
mask = mask >> 1
os. chnmod(fil enane, node)
reset checkbox val ues
refresh()

def chnmod_and_exit():
chnod()
sys.exit()

Make and add the buttons

opt = Options(y=140, w dt h=80, hei ght=25)

apply = Button(opt, x=10, text="Apply', action=chnod)
cancel = Button(opt, x=100, text='Cancel', action=sys.exit)
ok = Button(opt, x=190, text="OK', action=chnmod_and_exit)
wi n. add(apply, cancel, ok)

and finally...let "er rip!
app.run()

9.10.3 Discussion

Don't you like how the any dbmstandard module lets you access any of several different DBM
implementations? Or how xni . sax lets you access any of several XML parsers? Welcome to
anygui , anew project designed to be a similar solution for simple GUIs, especialy GUI
applications that need to be deployable in awide variety of settings. anygui is absolutely not
meant to replace any of the many, wonderful GUI toolkits Python is blessed with, any more than
anydbmwas ever intended to replace dbm ndbm and so on. Rather, anygui isimplemented
as afrontend that sits on top of any of several backends (which in turn are coded in terms of
Tkinter, wxPython, Swing for Jython, and so on) and provides a uniform application-
programming interface to a reasonable subset of the toolkits power. There's even a curses-based,
text-oriented GUI simulation backend for emergency cases in which you cannot run areal GUI
but till want to deploy an any gui -based application.

At the time of writing, anygui isin early beta stage; you can download it and play with it (with
severa backends more or less in a running state), but it's not yet stable and solid enough for
production work. However, things often change quickly in open source projects with many
enthusiastic contributors. Y ou should visit http://www.anygui.org/, download the latest release of
anygui and your favorite backends, and see if it is already what you are looking for.

The example in this recipe uses functionality that is small and basic enough to keep running on
whatever level of anygui isavailable at the time you read this, although | tested it only with the

newest release at the time of this writing (fresh from the CSV repository) and severa backends.

Although | suspect a GUI-based chmod is hardly the killer application for any gui , it might
prove to be useful for you.

9.10.4 See Also

anygui isavailable and described at http://www.anygui.org/.

9.11 Creating Color Scales
Credit: Alexander Pletzer

9.11.1 Problem

Y ou need to represent numbers in a given range as colors on a pseudocolor scale, typically for
data-visualization purposes.

9.11.2 Solution

Given amagnitude mag between given limits cni n and cmax, the basic ideais to return a color

(R,G,B) tuple: light blue for cold (low magnitude) all the way to yellow for hot (high magnitude).
For generality, each of R, G, and B can be returned as a float between 0.0 and 1.0:

i nport math

def fl oatRgb(mag, cmn, cmax):

""" Return a tuple of floats between 0 and 1 for R G
and B. """

Normalize to O-1

try: x = float(nmag-cnin)/(cmax-cnin)

except ZeroDivisionError: x = 0.5 # cnmax == cmn

blue = mn((max((4*(0.75-x), 0.)), 1.))
red = mn((max((4*(x-0.25), 0.)), 1.))
green = mn((max((4*mat h. fabs(x-0.5)-1., 0.)), 1.))

return red, green, blue
9.11.3 Discussion

In practical applications, R, G, and B will usually need to be integers between 0 and 255, and the
color will be atuple of three integers or a hex string representing them:

def rgb(mag, cmin, cnex):

""" Return a tuple of integers, as used in AW/ Java
pl OtS. muon
red, green, blue = floatRgb(mag, cmin, cmax)

return int(red*255), int(green*255), int(blue*255)

def strRgb(mag, cmn, cnax):
""" Return a hex string, as used in Tk plots.
return "#%02x%2x%02x" % rgb(mg, cnmin, cmax)

When given a magnitude ma.g between cm n and c mex, these two functions return a color tuple
(red, green, bl ue) with each component on a0-255 scale. The tuple can be represented
asahex string (st r Rgh), asrequired in Tk calls, or asintegers (r gb), as required in Java (AWT)
applications.

| often use these utility functions in my programs to create simple pseudo-color graphics under
Python-Tkinter and Jython-AWT. The color maps are linear functions of the three colors (red,
green, blue) with saturation. Low magnitudes are associated with alight, cold blue, high
magnitudes with awarm yellow.

9.12 Using Publish/Subscribe Broadcasting to Loosen the
Coupling Between GUI and Business Logic Systems

Credit: Jimmy Retz aff

9.12.1 Problem

Y ou need to loosen the coupling between two subsystems, since each is often changed
independently. Typicaly, the two subsystems are the GUI and business-logic subsystems of an
application.

9.12.2 Solution

Tightly coupling application-logic and presentation subsystems is a bad idea. Publish/subscribe is
agood pattern to use for loosening the degree of coupling between such subsystems. The
following br oadcast er module (broadcaster.py) essentially implements a multiplexed
function call in which the caller does not need to know the interface of the called functions:

broadcaster. py

__all_ _ =]"Register', 'Broadcast', 'CurrentSource',
"CurrentTitle', "CurrentData']

listeners = {}
current Sources = |
currentTitles = []
currentData = []

]

def Register(listener, argunents=(), source=None,
titl e=None):
if not listeners.has_key((source, title)):
listeners[(source, title)] =[]
listeners[(source, title)].append((listener, argunents))

def Broadcast(source, title, data={}):
current Sour ces. append(source)
currentTitl es. append(title)
current Dat a. append(dat a)

listenerList = listeners.get((source, title), [])[:]
i f source != None:

listenerList += listeners.get((None, title), [])
if title !'= None:

listenerList += listeners.get((source, None), [])

for listener, argunments in |istenerlList:
apply(listener, argunments)

current Sour ces. pop()
currentTitles.pop()
current Dat a. pop()

def Current Source():
return current Sources| - 1]

def CurrentTitle():
return currentTitles[-1]

def CurrentData():
return currentDatal-1]

The br oker module (broker.py) enablesthe retrieval of named data even when the source of the
datais not known:

broker. py

all _ =]"Register', '"Request', '"CurrentTitle',
"CurrentData']

providers = {}
currentTitles = []
currentData = []

def Register(title, provider, arguments=()):
assert not providers. has_key(title)
providers[title] = (provider, argunents)

def Request(title, data={}):
currentTitl es. append(title)
current Dat a. append(dat a)

result = apply(apply, providers.get(title))

currentTitles.pop()
current Dat a. pop()

return result

def CurrentTitle():
return currentTitles[-1]

def CurrentData():
return currentDatal-1]

9.12.3 Discussion

In arunning application, the br oadcast er and br oker modules enable loose coupling

between objects in a publish/subscribe fashion. This recipe is particularly useful in GUI
applications, where it helps to shield application logic from user -interface changes, although the
field of application is more generd.

Essentialy, broadcasting is equivalent to a multiplexed function call in which the caller does not
need to know the interface of the called functions. br oadcast er can optionally supply data
for the subscribers to consume. For example, if an application is about to exit, it can broadcast a
message to that effect, and any interested objects can perform whatever finalization tasks they

need to do. Another example is a user-interface control that can broadcast a message whenever its
state changes so that other objects (both within the GUI, for immediate feedback, and outside of
the GUI, typically in a business-logic subsystem of the application) can respond appropriately.

br oker enablestheretrieval of named data even when the source of the datais not known. For
example, a user-interface control (such as an edit box) can register itself as a data provider with
br oker, and any code in the application can retrieve the control's value with no knowledge of
how or where the value is stored. This avoids two potentia pitfalls:

1. Storing data in multiple locations, thereby requiring extra logic to keep those locations in
sync
2. Proliferating the dependency upon the control's AP

br oker and br oadcast er work together nicely. For example, consider an edit box used for

entering a date. Whenever its value changes, it can broadcast a message indicating that the entered
date has changed. Anything depending on that date can respond to that message by asking
br oker for the current value. Later, the edit box can be replaced by a calendar control. Aslong

as the new control broadcasts the same messages and provides the same data through br oker ,
no other code should need to be changed. Such are the advantages of |oose coupling.

The following sample.py script shows an example of using br oadcast er and br oker :

sanpl e. py

from_ future_ _ inport nested_scopes

i nport broadcaster
i nport broker

cl ass User Settings:
def _ _init_ (self):

sel f. preferredLanguage = ' English’

The use of | anbda here provides a sinple wapper
ar ound

the val ue being provided. Every tine the value is
request ed,

the variable will be reevaluated by the | anbda
function.

Note the dependence on nested scopes, thus Python
2.1 or later is required.

br oker. Regi ster (' Preferred Language', | anbda:
sel f. preferredLanguage)

sel f.preferredSkin = ' Cool Blue Skin'
br oker. Regi ster (' Preferred Skin', |anmbda:
sel f. preferredSkin)

def ChangePreferredSki nTo(sel f, preferredSkin):
sel f.preferredSkin = preferredSkin
broadcast er. Broadcast (' Preferred Skin', 'Changed')

def ChangePreferredLanguageTo(sel f, preferredLanguage):
sel f. preferredLanguage = preferredLanguage

br oadcast er. Broadcast (' Pref erred Language',
' Changed')

def ChangeSkin():
print 'Changing to', broker.Request('Preferred Skin')

def ChangelLanguage():

print 'Changing to', broker.Request('Preferred Language')

br oadcast er. Regi st er (ChangeSki n, source='Preferred Skin',
title=" Changed')
br oadcast er. Regi st er (ChangeLanguage, source='Preferred
Language',

title="Changed')

user Settings = UserSettings()
user Setti ngs. ChangePref erredSki nTo(' Bri ght G een Skin')
user Setti ngs. ChangePref erredSki nTo(' French')

Note that the idiom in this recipe is thread-hostile: even if access to the module-level variables
was properly controlled, this style of programming is tailor-made for deadlocks and race
conditions. Consider the impact carefully before using this approach from multiple threads. In a
multithreaded setting, it is probably preferable to use Queue instances to store messages for
other threads to consume and architect a different kind of broadcast (multiplexing) by having
br oker post to appropriate registered Queues.

9.12.4 See Also

Recipe 9.7 for one approach to multithreading in a GUI setting; Recipe 13.8to see
publish/subscribe used in a distributed processing setting.

9.13 Module: Building GTK GUIs Interactively
Credit: Brian McErlean

One of Python's greatest strengths is that it allows you to try things interactively at the interpreter.
Tkinter shares this strength, since you can create buttons, windows, and other widgets, and see
them instantly on screen. Y ou can click on buttons to activate callbacks and still be able to edit
and add to the widgets from the Python command line.

While the Python GTK bindings are generally excellent, one of their flaws is that interactive
development is not possible. Before anything is actually displayed, the gt k. mai nl oop
function must be called, ending the possibility of interactive manipulation.

Example 9-1 simulates a Python interpreter while transparently letting the user use GTK widgets
without requiring acal to mai nl oop, which is similar to how Tk widgets work. This version
contains enhancements added by Christian Robottom Reis to add readline-compl etion support.

This program works by running the GTK main loop in a separate thread. The main thread is
responsible only for reading lines input by the user and for passing these to the GTK thread, which
deals with pending lines by activating a timeout. The resulting program is virtually identical to the
Python interpreter, except that there is now no need to call gt k. mai nl oop for GTK event
handling to occur.

Example 9-1. Building GTK GUIs interactively

inport _ builtin_ , _ min_ _
i nport codeop, keyword, gtk, os, re, readline, threading,
traceback, signal, sys

def wal k_cl ass(kl ass):
list =[]
for itemin dir(klass):
if itenfO] !'="_":
list.append(item

for base in klass. _bases_
for itemin wal k class(base):
if itemnot in list: list.append(item

return |ist

class Conpl eter:

def _ init_ (self, lokals):
self.locals = |okals
sel f.conpletions = keyword. ki st + \
_ _builtins_ . _dict_
_.keys() +\
_ _main_ _._ _dict_ _.keys()
def conplete(self, text, state):
if state ==
if "." in text:

sel f. matches = self.attr_matches(text)

def

def

def

class G

conmands

TI MEQUT = 100 # interval

ti meouts

def

el se:

sel f. mtches = self. gl obal _matches(text)

try:
return sel f. mat ches| st at e]
except | ndexError:

return None

updat e(sel f, locs):
self.locals = I ocs

for key in self.locals.keys():
if not key in self.conpletions:
sel f. conpl eti ons. append(key)

gl obal _mat ches(sel f, text):
mat ches = []
n = len(text)
for word in self.conpletions:
if word[:n] == text:
mat ches. append(wor d)
return matches

attr_matches(sel f, text):
m=re.match(r"(\w+(\.\wH)*)\ . (\w)", text)
i f not m

return
expr, attr = mgroup(l, 3)

obj = eval (expr, self.locals)
if str(obj)[1:4] == "gtk":

words = wal k_class(obj._ _class_)
el se:

words = dir(eval (expr, self.locals))

mat ches = []
n =len(attr)
for word in words:
if word[:n] == attr

mat ches. append(" %. %" % (expr, word))

return nmatches

kil nterpreter(threadi ng. Thread):

Run a GITK mainloop() in a separate thread.
can be passed to the

init _(self):

threading. Thread. _ _init_ _ (self)
self.ready = threading.Condition ()
self.globs = globals ()

self.locs = locals ()

sel f. _Kkill 0

in mlliseconds between

Pyt hon

self.cnd = "' # current code bl ock
self.new_cnd = None # waiting |ine of code, or None
i f none waiting

sel f.conpleter = Conpl eter(self.locs)
readl i ne.set _conpleter(self.conpleter.conplete)
readl i ne. parse_and_bind('tab: conplete')

def run(self):
gtk.ti meout _add(sel f. TI MEQOUT, self.code_exec)
gt k. mai nl oop()

def code_exec(self):
Execute waiting code. Called every tineout
peri od.

sel f.ready. acquire()

if self. kill: gtk.mainquit()

if self.new cnd != None:
self.ready.notify()
self.cnmd = self.cnd + self.new cnd
sel f.new cnd = None

try:
code = codeop. conpil e_conmand(sel f.cnmd[:-1])
i f code:
self.cmd = "
exec code, self.globs, self.locs
sel f.conpl eter. update(sel f.l ocs)
except:
traceback. print_exc()
self.cmd = "'

sel f.ready. rel ease()
return 1

def feed(self, code):
""" Feed a line of code to the thread. This function
will block until the code is
if code[-1:]!="\n": code = code +'\n" # raw_i nput
strips new ine
sel f.conpl eter. update(self.locs)
self.ready.acquire()
self.new cnmd = code
self.ready.wait() # Wait until processed in
ti meout interval
sel f.ready. rel ease()

return not self.cnd

def kill(self):
" Kill the thread, returning when it has been shut
down.
sel f.ready. acquire()
self. _kill=1

sel f.ready.release()
self.join()

Read user input in a |loop and send each line to the
interpreter thread

def signal handl er(*args):
print "SIGNAL:", args
sys.exit()

if _ name_ =="_ main_ _":
si gnal . signal (signal.SI A NT, signal_ handl er)
si gnal . si gnal (signal .Sl GSEGV, signal handl er)

pronpt = '>>>"
interpreter = Gklnterpreter()
interpreter.start()
interpreter.feed("fromgtk inport *")
interpreter.feed("sys.path.append('.")")
if len (sys.argv) > 1

for file in open(sys.argv[l]).readlines():

interpreter.feed(file)

print 'Interactive GIK Shell

try:
while 1:

command = raw_i nput (pronpt) + '\n' # raw_i nput

strips newines
pronpt = interpreter.feed(command) and '>>> "'

except (EOFError, Keyboardlnterrupt): pass

interpreter.kill()
print

9.13.1 See Also

PyGTK is described and available at http://www.daa.com.au/~james/pygtk.

Chapter 10. Network Programming

Section 10.1.

Introduction

Section 10.2.

Writing a TCP Client

Section 10.3.

Writing a TCP Server

Section 10.4.

Passing M essages with Socket Datagrams

Section 10.5.

Finding Your Own Name and Address

Section 10.6.

Converting |P Addresses

Section 10.7.

Grabbing a Document from the Web

Section 10.8.

Being an FTP Client

Section 10.9.

Sending HTML Mail

Section 10.10.

Sending Multipart MIME Email

Section 10.11.

Bundling Filesin aMIME Message

Section 10.12.

Unpacking a Multipart MIME Message

Section 10.13.

Module: PyHeartBeat—Detecting | nactive Computers

Section 10.14.

Module: Interactive POP3 Mailbox | nspector

Section 10.15.

Module: Watching for New IMAP Mail Using a GUI

10.1 Introduction

Credit: Guido van Rossum, creator of Python

Network programming is one of my favorite Python applications. | wrote or started most of the
network modules in the Python standard library, including the socket and sel ect extension
modules and most of the protocol client modules (such asf t pl i b), which set an example. | also
wrote a popular server framework module, Socket Ser ver, and two web browsers in Python,
the first predating Mosaic. Need | say more?

Python's roots lie in a distributed operating system, Amoeba, which | helped design and
implement in the late '80s. Python was originally intended to be the scripting language for
Amoeba, since it turned out that the Unix shell, while ported to Amoeba, wasn't very useful for
writing Amoeba system-administration scripts. Of course, | designed Python to be platform-
independent from the start. Once Python was ported from Amoeba to Unix, | taught myself BSD
socket programming by wrapping the socket primitives in a Python extension module and then
experimenting with them using Python; this was one of the first extension modules.

This approach proved to be a great early testimony of Python's strengths. Writing socket code in C
is tedious: the code necessary to do error checking on every call quickly overtakes the logic of the
program. Quick: in which order should a server call accept, bi nd, connect,and| i st en?
Thisis remarkably difficult to find out if al you have is a set of Unix manpages. In Python, you
don't have to write separate error-handling code for each call, making the logic of the code stand
out much clearer. You can also learn about sockets by experimenting in an interactive Python shell,
where misconceptions about the proper order of calls and the argument values that each call
requires are cleared up quickly through Python's immediate error messages.

Python has come a long way since those first days, and now few applications use the sock et
module directly; most use much higher-level modulessuchasur | | i b orsnt pli b. The
examples in this chapter are a varied bunch: there are some that construct and send complex email
messages, while others dig in the low-level bowels of the network implementation on a specific
platform. My favorite is Recipe 10.13, which discusses Py Hear t Beat : it's useful, it uses the
socket module, and it's simple enough to be a good educational example.

The socket moduleitsdlf is till the foundation of all network operations in Python. It's aplain
trandliteration of the socket APIs—first introduced in BSD Unix and now widespread on al
platforms—into the object-oriented paradigm. Y ou create socket objects by calling the

socket . socket factory function, then calling methods on these objects to perform typical
low-level network operations. Of course, you don't have to worry about allocating and freeing
memory for buffers and the like—Python handles that for you automatically. Y ou express |P
addressesas (host , port) pairs, inwhich host isastring in either dotted-quad

(1. 2.3.4")ordomain-name (" ww. pyt hon. or g') notation. As you can see, even low-
level modules in Python aren't as low-leved as all that.

But despite the various conveniences, the socket module still exposes the actua underlying
functionality of your operating system's network sockets. If you're at al familiar with them, you'll
quickly get the hang of Python'ssocket module, using Python's own Library Reference. Y ou'll
then be able to play with sockets interactively in Python to become a socket expert, if that is what
you need. The classic work on this subject is UNIX Network Programming, Volume 1: Networking
APIs - Sockets and XTI, Second Edition, by W. Richard Stevens (Prentice-Hall), and it is highly
recommended. For many practical uses, however, higher-level modules will serve you better.

The Internet uses a sometimes dazzling variety of protocols and formats, and Python's standard
library supports many of them. In Python's standard library, you will find dozens of modules

dedicated to supporting specific Internet protocols (such as st pl i b to support the SMTP
protocol to send mail, nnt pl i b to support the NNTP protocol to send and receive Network
News, and so on). In addition, you'll find about as many modules that support specific Internet
formats (suchas ht m | i b to parse HTML data, the enmai | package to parse and compose
various formats related to email—including attachments and encoding—and so on).

Clearly, | cannot even come close to doing justice to the powerful array of tools mentioned in this
introduction, nor will you find al of these modules and packages used in this chapter, nor in this
book, nor in most programming shops. Y ou may never need to write any program that deals with
Network News, for example, so you will not need to study nnt pl i b. But it is reassuring to
know it's there (part of the "batteries included" approach of the Python standard library).

Two higher-level modules that stand out from the crowd, however, are ur | | i b andur | | i b2.
Each can dedl with severa protocols through the magic of URLs—those now-familiar strings,
such as http://www.python.org/index.html, that identify a protocol (such as http), a host and port
(such as www.python.org, port 80 being the default here), and a specific resource at that address
(such as /index.html). ur | | i b israther smpleto use, but ur | | i b2 is more powerful and
extensible. HTTP is the most popular protocol for URLS, but these modules a so support several
others, such as FTP and Gopher. In many cases, you'll be able to use these modules to write
typical client-side scripts that interact with any of the supported protocols much quicker and with
less effort than it might take with the various protocol-specific modules.

To illustrate, I'd like to conclude with a cookbook example of my own. It's similar to Recipe 10.7,
but rather than a program fragment, it's a little script. | call it wget.py because it does everything
for which I've ever needed wget. (In fact, | wrote it on a system where wget wasn't installed but
Python was; writing wget.py was a more effective use of my time than downloading and installing
the real thing.)

import sys, urllib
def reporthook(*a): print a
for url in sys.argv[1l:]:
i =wurl.rfind('/")
file = url[i+1:]
print url, "->", file
urllib.urlretrieve(url, file, reporthook)

Pass it one or more URL s as command-line arguments; it retrieves those into local files whose
names match the last components of the URLSs. It aso prints progress information of the form:

(bl ock nunber, block size, total size)

Obvioudly, it's easy to improve on this; but it's only seven lines, it's readable, and it works—and
that's what's so cool about Python.

Another cool thing about Python is that you can incrementally improve a program like this, and
after it's grown by two or three orders of magnitude, it's still readable, and it still works! To see
what this particular example might evolve into, check out Tool s/webchecker/websucker.py in the
Python source distribution. Enjoy!

10.2 Writing a TCP Client

Credit: Luther Blissett
10.2.1 Problem

Y ou want to connect to a socket on a remote machine.

10.2.2 Solution
Assuming you're using the Internet to communicate:
i nport socket

Create a socket
sock = socket.socket (socket.AF_|I NET, socket.SOCK_STREAM

Connect to the renpte host and port
sock. connect ((renote_host, renpte_port))

Send a request to the host
sock. send("Why don't you call nme any nmore?\r\n")

CGet the host's response, no nore than, say, 1,024 bytes
response_data = sock.recv(1024)

Term nate
sock. close()

10.2.3 Discussion

Ther enot e_host string can be either adomain name, such as ' www. pyt hon. org' ,ora
dotted quad, suchas' 194. 109. 137. 226" . Ther enot e_port variableis an integer,
such as 80 (the default HTTP port). If an error occurs, the failing operation raises an exception of
thesocket . error class. The socket module does not give you the ability to control a
timeout for the operations you attempt; if you need such functionality, download the

ti meout socket module from http://www.timo-tasi.org/python/timeoutsocket.py, place it
anywhere on your Python sys. pat h, and follow the instructions in the module itself.

If you want file-like objects for your network 1/0, you can build one or more with the

makef i | e method of the socket object, rather than using the latter'ssend and r ecei ve
methods directly. Y ou can independently cl ose the socket object and each file obtained fromit,
without affecting any other (or you can let garbage collection close them for you). For example, if
sock isaconnected socket object, you could write:

sockQut = sock. makefile('wbh')

sockln = sock. makefile('r")

sock. close()

print >> sockQut, "Why don't you call ne any nore?\r"
sockQut.close()

for line in sockln: # Python 2.2 only; 'in
sockin.xreadlines()' in 2.1

print 'received:', line,

10.2.4 See Also

Recipe 10.3; documentation for the standard library module socket inthe Library Reference;
the timeout modifications at http://www.timo-tasi.org/python/timeoutsocket.py, although these
will likely be incorporated into Python 2.3; Perl Cookbook Recipe 17.1.

10.3 Writing a TCP Server

Credit: Luther Blissett
10.3.1 Problem

Y ou want to write a server that waits for clients to connect over the network to a particular port.

10.3.2 Solution
Assuming you're using the Internet to communicate:
i nport socket

Create a socket
sock = socket.socket (socket. AF_|I NET, socket.SOCK_STREAM

Ensure that you can restart your server quickly when it
term nates
sock. set sockopt (socket . SOL_SOCKET, socket. SO REUSEADDR, 1)

Set the client socket's TCP "well-known port" nunber
wel | _known_port = 8881
sock. bind(('""', well_known_port))

Set the nunber of clients waiting for connection that can
be queued
sock. listen(5)

loop waiting for connections (termnate with Crl-C
try:
while 1:
newSocket, address = sock.accept()
print "Connected fronf, address
|l oop serving the new client
while 1:
recei vedDat a = newSocket.recv(1024)
if not receivedData: break
Echo back the sane data you just received
newSocket . send(recei vedDat a)
newSocket . cl ose()
print "Disconnected froni', address
finally:
sock.close()

10.3.3 Discussion

Setting up a server takes a bit more work than setting up a client. We need to bi nd to awell-
known port that clients will use to connect to us. Optionally, as we do in this recipe, we can set
SO _REUSEADDR so we can restart the server when it terminates without waiting for afew
minutes, which is quite nice during development and testing. We can also optionally call

| i st en to control the number of clients waiting for connections that can be queued.

After this preparation, we just need to loop, waiting for the accept method to return; it returns a
new socket object already connected to the client and the client's address. We use the new socket

to hold a session with a client, then go back to our waiting loop. In this recipe, we just echo back
the same data we receive from the client.

The Socket Ser ver module lets us perform the same task in an object-oriented way. Using it,
the recipe becomes:

i nport Socket Server

cl ass MyHandl er (Socket Ser ver . BaseRequest Handl er) :
def handl e(sel f):
while 1:
dat aRecei ved = sel f.request.recv(1024)
i f not dataRecei ved: break
sel f.request. send(dat aRecei ved)

myServer = Socket Server. TCPServer(('', 8881), M/Handl er)
myServer.serve _forever()

One handler object is instantiated to serve each connection, and the new socket for that connection
isavailable toitshandl e method (which the server calls) assel f . r equest.

Using the Socket Ser ver module instead of the lower-level socket module is particularly

advisable when we want more functionality. For example, to spawn a new and separate thread for
each request we serve, we would need to change only one line of code in this higher-level solution:

myServer = Socket Server. Threadi ngTCPServer (('', 8881),
MyHandl er)

while the socket-level recipe would need substantially more recoding to be transformed into a
similarly multithreaded server.

10.3.4 See Also

Recipe 10.2; documentation for the standard library module socket inthe Library Reference;
Perl Cookbook Recipe 17.2.

10.4 Passing Messages with Socket Datagrams
Credit; Jeff Bauer
10.4.1 Problem

Y ou need to communicate small messages between machines on a TCP/IP network in a
lightweight fashion, without needing absolute assurance of reliability.

10.4.2 Solution

This is what the UDP protocol is for, and Python makes it easy for you to access it, via datagram
sockets. Y ou can write a server (server.py) asfollows:

i nport socket
port = 8081
s = socket.socket (socket.AF_I NET, socket. SOCK DGRAM
Accept UDP datagranms, on the given port, from any sender
s.bind(("", port))
print "waiting on port:", port
whil e 1:
Receive up to 1,024 bytes in a datagram
data, addr = s.recvfrom(1024)
print "Received:", data, "front, addr

And you can write a client (client.py) as follows:

i nport socket

port = 8081

host = "l ocal host™

s = socket.socket (socket. AF_I NET, socket. SOCK DGRAM
s.sendto("Holy Guido! It's working.", (host, port))

10.4.3 Discussion

Sending short text messages with socket datagrams is simple to implement and provides a
lightweight message-passing idiom. Socket datagrams should not be used, however, when reliable
delivery of data must be guaranteed. If the server isn't available, your message is lost. However,
there are many situations in which you won't care whether the message gets logt, or, at least, you
won't want to abort a program just because the message can't be delivered.

Note that the sender of a UDP datagram (the client in this example) does not need to bind the
socket before calling the sendt o method. On the other hand, to receive UDP datagrams, the

socket does need to be bound before calling the r ecvf r ommethod.

Don't use this recipe's smple code to send very large datagram messages, especially under
Windows, which may not respect the buffer limit. To send larger messages, you will probably
want to do something like this:

BUFSI ZE = 1024
whi l e nBQ:
bytes_sent = s.sendto(nsg[:BUFSI ZE], (host, port))

nsg = neg[bytes _sent:]

The sendt 0 method returns the number of bytes it has actually managed to send, so each time,

you retry from the point where you left off, while ensuring that no more than BUFSI ZE octets
are sent in each datagram.

Note that with datagrams (UDP) you have no guarantee that al or none of the pieces that you send
as separate datagrams arrive to the destination, nor that the pieces that do arrive are in the same
order that they were sent. If you need to worry about any of these reliability issues, you may be
better off with a TCP connection, which gives you al of these assurances and handles many
delicate behind-the-scenes aspects nicely on your behalf. Still, | often use socket datagrams for

debugging, especially (but not exclusively) where the application spans more than one machine on
the same, reliable local area network.

10.4.4 See Also

Recipe 10.13 for atypical, useful application of UDP datagrams in network operations;
documentation for the standard library module socket inthe Library Reference.

10.5 Finding Your Own Name and Address
Credit: Luther Blissett

10.5.1 Problem

Y ou want to find your own fully qualified hostname and IP address.
10.5.2 Solution

The socket module has functions that help with this task:

i nport socket

myname = socket. getfqgdn(socket.gethostname())
myaddr socket . get host bynane(nynamne)

This gives you your primary, fully qualified domain name and IP address. Y ou might have other
names and addresses, and if you want to find out about them, you can do the following:

t henane, aliases, addresses = socket. gethost byaddr (myaddr)
print "Primary nanme for % (%): %' % (nyname, nyaddr,

t henane)

for alias in aliases: print "AKA", alias

for address in addresses: print "address:", address

10.5.3 Discussion

get host namne is specifically useful only to find out your hostname, but the other functions
used in this recipe are for more general use. get f qdn takes a domain name that may or may not
be fully qualified and normalizes it into the corresponding fully qualified domain name (FQDN)
for ahostname. get host bynane can accept any valid hostname and look up the
corresponding IP address (if name resolution is working correctly, the network is up, and so on),
which it returns as a string in dotted-quad form (suchas ' 1. 2. 3. 4').

get host byaddr acceptsavalid IP address as a string in dotted-quad form (again, if reverse
DNS lookup is working correctly on your machine, the network is up, and so on) and returns a
tuple of three items. The first item is a string, the primary name by which the host at that 1P
address would like to be known. The second item is alist of other names (aliases) by which that
host is known—note that it can be an empty list. The third item isthe list of IP addresses for that
host (it will never be empty because it contains at least the address you passed when calling

get host byaddr).

If an error occurs during the execution of any of these functions, the failing operation raises an
exception of the socket . error class.

10.5.4 See Also

Documentation for the standard library module socket inthe Library Reference; Perl
Cookbook Recipe 17.8.

10.6 Converting IP Addresses
Credit: Alex Martelli, Greg Jorgensen
10.6.1 Problem

Y ou need to convert | P addresses from dotted quads to long integers and back, and extract
network and host portions of such addresses.

10.6.2 Solution

Thesocket and st ruct moduleslet you easily convert long integers to dotted quads and
back:

i mport socket, struct

def dottedQuadToNun(i p):
"convert deciml dotted quad string to long i

nt eger”
return struct.unpack('>L", socket.inet_aton(ip))][

0]

def nunifoDot t edQuad(n):
"convert long int to dotted quad string"
return socket.inet_ntoa(struct. pack('>L",n))

To split an |P address into network and host portions, we just need to apply a suitable binary mask
to the long integer form of the IP address:

def makeMask(n):
"return a mask of n bits as a long integer"
return (2L<<n-1)-1

def ipToNet AndHost (i p, maskbits):

"return tuple (network, host) dotted-quad addresses
given I P and nmask size"

by Greg Jorgensen

n
m

dott edQuadToNun(i p)
makeMask(maskbi t s)

host = n & m
net = n - host

return numloDottedQuad(net), numloDottedQuad(host)
10.6.3 Discussion

The format we usefor the st ruct . pack and st ruct . unpack calsmust start witha' >' ,
which specifies big-endian byte order. Thisis the network byte order used by the
socket.inet_atonandsocket.inet_ ntoa functions. If youomitthe"' >",

struct instead usesthe native byte order of the machine the code is running on, while the
socket module still uses big-endian byte order.

The network part of an |P address used to be expressed as an explicit bit mask (generally aso in
dotted-quad form) such as:

'192. 168. 23. 0/ 255. 255. 255. 0

However, the bit mask invariably had a certain number (N) bits that were 1 followed by 32-N bits

that were 0. The current form, which is much more compact and readable, is therefore structured
like:

'192. 168. 23. 0/ 24’

The part after the / is just N: the number of bits that must be 1 in the mask. If you know about a

network that is expressed in this form, you can use the functions in this recipe to check if ahost is
within that network:

def isHostlnNet(host_ip, net_ip_wth_slash):
net _ip, mask _length = net _ip with_slash.split('/")

mask_| ength = int (mask_I ength)

net _net, net _host = i pToNet AndHost (net i p, 32-
mask_| engt h)

assert net _host == "'0.0.0.0'

host _net, host_host = i pToNet AndHost (host _i p, 32-
mask_I| engt h)

return host_net == net_net

Note that the dash format of network addresses gives the number of bitsin the mask for the
network, although wewrotethe i pToNet AndHost function to take the number of bitsin the
mask for the host. Therefore, we pass 32- mask | engt h in the two calls that

i sHost | nNet makestothei pToNet AndHost function. The assert statement is not
strictly necessary, but it does assure us that the argument passed asnet _ip_ with_sl ashis
correct, and (as asser t statements usualy do) serves as a general sanity check for the
proceedings.

10.6.4 See Also

Documentation for the standard library modulessocket and st r uct inthe Library Reference.

10.7 Grabbing a Document from the Web
Credit: Gisle Aas
10.7.1 Problem

Y ou need to grab a document from a URL on the Web.

10.7.2 Solution
url i b.url open returnsafile-like object, and you can call r ead oniit:

fromurllib inmport urlopen

doc = urlopen("http://ww. python.org").read()
print doc

10.7.3 Discussion

Once you obtain afile-like object from ur | open, you can read it al at once into one big string
by cdling itsr ead method, as | do in this recipe. Alternatively, you can read it as alist of lines
by calingitsr eadl i nes method or, for special purposes, just get one line at atime by calling
itsr eadl i ne method in aloop. In addition to these file- like operations, the object that

ur | open returns offers a few other useful features. For example, the following snippet gives
you the headers of the document:

doc = urlopen("http://ww. python.org")
print doc.info()

such asthe Cont ent - Type: header (t ext / ht nl inthis case) that defines the MIME type
of the document. doc. i nf o returnsa m net ool s. Message instance, so you can access it
in various ways without printing it or otherwise transforming it into a string. For example,
doc.info().getheader (' Content-Type') returnsthe' text/htm ' string.
The mai nt ype attribute of the m net ool s. Message objectisthe ' t ext ' string,
subt ypeisthe' htm ' sring, andt ype isasothe' t ext/ ht m ' string. If you need to
perform sophisticated analysis and processing, all the tools you need are right there. At the same
time, if your needs are simpler, you can meet them in very simple ways, as this recipe shows.

10.7.4 See Also

Documentation for the standard library modulesur | | i b and ni et ool s inthe Library
Reference.

10.8 Being an FTP Client
Credit: Luther Blissett
10.8.1 Problem

Y ou want to connect to an FTP server and upload or retrieve files. Y ou might want to automate
the one-time transfer of many files or automatically mirror an entire section of an FTP server.

10.8.2 Solution
Thef t pl i b module makes this reasonably easy:
import ftplib

ftp = ftplib. FTP("ftp. host.cont)

ftp.logi n(username, password)

ftp.cwd(directory)

Retrieve a binary file to save on your disk
ftp.retrbinary(' RETR ' +fil enane, open(filenane,'wh').wite)
Upload a binary file fromyour disk
ftp.storbinary(' STOR ' +fil ename, open(filenane,'rb'))

10.8.3 Discussion

url I'i b may be sufficient for getting documents via FTP, but the f t pl i b module offers more

functionality (including the ability to use FTP to upload files, assuming, of course, that you have
the needed permission on the server in question) and finer-grained control for this specific task.

| ogi n defaults to an anonymous login attempt if you call it without arguments, but you normally
pass username and password arguments. cwd changes the current directory on the server.
retrbi nary retrieves binary data from the server and repeatedly calls its second argument
with the data. Thus, you will usually pass afile object's wr i t e bound method as the second
argument. st or bi nary stores binary data on the server, taking the data from its second
argument, which must be afile-like object (the method callsr ead(N) onit). There are also the
retrlinesandstorlines methods, which work similarly but on text data, line by line.

Functions and methodsinthe f t pl i b module may raise exceptions of many classes to diagnose
possible errors. To catch them all, youcanusef t pl i b. al | _error s, which isthe tuple of
all possible exception classes:

try: ftp = ftplib. FTP("ftp. host.con')
except ftp.all _errors, error:
print "Cannot connect:", error
el se:
try: ftp.login(usernane, password)
except ftp.all _errors, error:
print "Cannot login:", error
el se:

10.8.4 See Also

Documentation for the standard library module f t pl i b inthe Library Reference.

10.9 Sending HTML Mail
Credit: Art Gillespie
10.9.1 Problem

You need to send HTML mail and embed a message version in plain text, so that the message is
also readable by MUAS that are not HTML-capable.

10.9.2 Solution
The key functionality is supplied by the M meW i t er and m et ool s modules:

def createhtm mail (subjectl, htm, text=None):

"Create a m ne-nessage that will render as HTM. or text,
as appropriate”

i mport M meWiter

i mport mi nmetools

i nport cStringlO

if text is None:

Produce an approxi mate textual rendering of the
HTM. stri ng,

unl ess you have been given a better version as an
ar gunment

import htmlib, formatter

textout = cStringl O StringlQ)

fornmext =
formatter. Abstract Formatter (formatter. DunbWiter(textout))

parser = htm|ib. HTM.Par ser (f or nt ext)

parser.feed(htm)

parser.close()

text = textout.getvalue()

del textout, forntext, parser

out = cStringlO. StringlQ() # output buffer for our
nessage

htmin = cStringl O Stringl O htm)

txtin = cStringl O Stringl Q(text)

witer = MmeWiter. M meWiter(out)

Set up sone basic headers. Place subject here

because sntplib.sendmil expects it to be in the
message body, as relevant RFCs prescribe.
writer.addheader (" Subj ect"”, subject)
writer.addheader ("M Me- Version", "1.0")

Start the multipart section of the nessage.
Multipart/alternative seens to work better
on sone MJUAs than multipart/ m xed.
writer.startmultipartbody("alternative")

writer.flushheaders()

the plain-text section: just copied through, assum ng
i s0-8859-1

subpart = witer.nextpart()

pout = subpart.startbody("text/plain", [("charset",
'is0-8859-1')])

pout. wite(txtin.read())

txtin.close()

the HTM. subpart of the nessage: quoted-printable,
just in case
subpart = witer.nextpart()

subpart . addheader (" Cont ent - Transf er - Encodi ng", "quot ed-
printabl e")

pout = subpart.startbody("text/htm ", [("charset", 'us-
ascii')])

m net ool s. encode(htm in, pout, 'quoted-printable')
htmin.close()

You' re done; close your witer and return the nessage
body

witer.lastpart()

nsg = out.getvalue()

out.close()

return nmsg

10.9.3 Discussion

This module is completed in the usual style with afew lines to ensure that, when run as a script, it
runs a self-test by composing and sending a sample HTML mail:

if _ name_ =="_ min_ _":
inport sntplib
f = open("newsletter.html™, 'r")

htm = f.read()
f.close()
try:
f = open("newsletter.txt", 'r'")
text = f.read()
except | CError:
text = None
subject = "Today's Newsletter!"
nessage = createhtm mail (subject, htm, text)
server = sntplib. SMIP("I ocal host")
server.sendmail (' agi |l | esp@ - noSPAMSUCKS. coni
"agi | | esp@ - noSPAMSUCKS. com , nessage)
server.quit()

Sending HTML mail is a popular concept, and as long as you avoid sending it to newsgroups and
open mailing lists, there's no reason your Python scripts shouldn't do it. When they do, don't forget
to embed two alternative versions of your message: the HTML version and a text-only version.
Lots of folks till prefer character-mode mail readers (technically known as a mail user agent, or

MUA), and it makes no sense to alienate them by sending mail that they can't conveniently read.
This recipe shows how easy Python makes this.

Ideally, your input will be a properly formatted text version of the message, as well as the HTML

version. But if you don't have this input, you can till prepare a text version on the fly; one way to
do thisis shown in the recipe. Remember that ht il | i b has some limitations, so you may want
to use alternative approaches, such as saving the HTML string to disk and using:

t ext =os. popen('lynx -dunp %' %enpfile).read()

or whatever works best for you. Alternatively, if al you have asinput is plain text (following
some specific conventions, such as empty lines to mark paragraphs and underlines for emphasis),
you can parse the text and throw together some HTML markup on the fly. See Recipe 12.8for
some ideas on how to synthesize structured-text markup from plain text following these rather
common conventions.

The emails generated by this code have been successfully tested on Outlook 2000, Eudora 4.2,
Hotmail, and Netscape Mail. It's likely that they will work in other HTML-capable MUAS as well.
MUTT has been used to test the acceptance of messages generated by this recipe in text-only
MUAs. Again, others would be expected to work just as acceptably.

10.9.4 See Also

Recipe 10.11 shows how Python 2.2'senmi | package can be used to compose a MIME multipart
message; Recipe 12.8for other text synthesis options; documentation for the standard module
enmai | for aPython 2.2 alternative to classic Python modules such as i et ool s and

M meW i t er ; Henry Minsky's article on MIME (http://www.arsdigita.com/asj/mime/) for
information on the issues of how to send HTML mail.

10.10 Sending Multipart MIME Email
Credit: Richard Jones, Michael Strasser

10.10.1 Problem

Y ou need to put together a multipart MIME email message to be sent with st pl i b (or by other
means).

10.10.2 Solution
Multipart messages can be composed withthe M meW i t er module:
i mport sys, smplib, MmeWiter, base64, StringlO

nmessage = Stringl O Stringl O)

witer = MmeWiter. MnmeWiter(nessage)
writer.addheader (' Subject', 'The kitten picture')
writer.startnultipartbody(' m xed')

Start off with a text/plain part

part = witer.nextpart()

body = part.startbody('text/plain')

body.wite(' This is a picture of a kitten, enjoy :)")

Now add an i mage part

part = witer.nextpart()

part.addheader (' Cont ent - Transfer-Encodi ng', 'base64')
body = part.startbody('imge/|peg; nanme=kitten.jpg')
base64. encode(open(' kitten.jpg', 'rb'), body)

Finish it off
writer.lastpart()

Once you have composed a suitable message, you can send it with the snt pl i b module:

sntp = smplib. SMIP(' snt p. server. address')
snmp.sendmai |l (' from@rom address', 'to@o. address’',
nmessage. getval ue())

smp.quit()

10.10.3 Discussion

The order of the calls to the writer isimportant. Note that headers are always added before body
content. The top-level body is added with a subtype of ' m xed' , which is appropriate for mixed
content, such as that of this recipe. Other subtypes can be found in RFC 1521 (e.g.,' m xed' ,
"alternative',' digest',and' parallel'), RFC 1847 (eg., ' si gned' and
"encrypted'), and RFC 2387 (' r el at ed'). Each RFC is available at
http://www.ietf.org/rfc.

Of course, you could wrap this kind of functionality up in a class, which is what Dirk Holtwick
has done. (See his solution at http://sourceforge.net/snippet/detail.php?type=snippet& id=100444.)

In Python 2.2, the new enai | package in the standard library offers an excellent aternative for

handling email messages, such as documents compatible with RFC 2822 (which superseded the
earlier RFC 822) that include MIME functionality. Recipe 10.11 shows how the enai | package
can be used to compose a MIME multipart message.

10.10.4 See Also

Recipe 10.9 and Recipe 10.11; documentation for the standard library modules enai | ,
sntplib, MmeWiter, base64,and St ri ngl Ointhe Library Reference; the IETF

RFC archive (http://www.ietf.org/rfc.html); the MimeMail snippet
(http://sourceforge.net/snippet/detail .php 2ty pe=snippet& id=100444).

10.11 Bundling Files in a MIME Message

Credit: Matthew Dixon Cowles

10.11.1 Problem

You want to create a multipart MIME message that includes all files in the current directory.
10.11.2 Solution

If you often deal with composing or parsing mail messages, or mail- like messages such as Usenet
news posts, the new enai | module gives you sparkling new opportunities;

#!/usr/ bin/ env python

i nport base64, quopri
i nport m netypes, emil.CGenerator, emmil.Message
import cStringlO os

sanpl e addresses

t oAddr =" exanpl e@xanpl e. cont

f r omAddr =" exanpl e@xanpl e. cont
out put Fil e="dirContentsMil"

def main():
mai nMsg = enmi | . Message. Message()
mai nMsg[" To"] = t oAddr
mai nMsg[" From'] = fromAddr
mai nMsg[" Subj ect"] = "Directory contents"
mai nMsg["M ne-version"] = "1.0"
mai nMsg[" Content-type"] = "Multipart/ m xed"
mai nMsg. preanble = "M nme nessage\n"
mai nMsg. epi | ogue # to ensure that nessage ends with
new i ne
CGet nanes of plain files (not subdirectories or
special files)
fileNames = [f for f in os.listdir(os.curdir) if
os.path.isfile(f)]
for fileName in fil eNanes:
content Type, i gnored = m nmetypes. guess_type(fil eNane)
if content Type==None: # If no guess, use generic
opaque type

content Type = "application/octet-streant
content sencoded = cStringl O StringlQ()
f = open(fileName, "rb")
mai nType = content Type[: content Type.find("/")]
if mainType=="text":
cte = "quoted- printable"
qguopri.encode(f, contentsEncoded, 1) # 1 to
encode tabs
el se:

cte = "base64"
base64. encode(f, contentsEncoded)
f.close()
subMsg = enmi |l . Message. Message()
subMsg. add_header (" Content -type", content Type,
name=fi| eNamne)
subMsg. add_header (" Cont ent-transf er-encodi ng", cte)
subMsg. add_payl oad(cont ent seEncoded. getval ue())
cont ent sencoded. cl ose()
mai nMsg. add_payl oad(subMsg)

f open(out putFile,"wbh")

g emai | . Gener at or. Gener at or (f)
g(mai nMsg)

f.close()

return None

10.11.3 Discussion

Theemai | module, new in Python 2.2, makes manipulating MIME messages easier than it used
to be (with the standard Python library modules aready present in Python 2.1 and earlier). Thisis
not atrivial point, so this recipe's example may be useful. See the standard Library Reference for

detailed documentation about the enai | module.

MIME (Multipurpose Internet Mail Extensions) is the Internet standard for sending files and non-
ASCII data by email. The standard is specified in RFCs 2045-2049. There are afew points that are
especialy worth keeping in mind:

The original specification for the format of an email (RFC 822) didn't allow for non-
ASCII characters and had no provision for attaching or enclosing afile along with a text
message. Therefore, not surprisingly, MIME messages are very common these days.
Messages that follow the MIME standard are backward-compatible with ordinary RFC
822 (now RFC 2822) messages. A mail reader that doesn't understand the MIME
specification will probably not be able to display a MIME message in away that's useful
to the user, but the message will be legal and therefore shouldn't cause unexpected
behavior.

An RFC 2822 message consists of a set of headers, a blank line, and a body. MIME
handles attachments and other multipart documents by specifying a format for the
message's body. In multipart MIME messages, the body is divided into submessages,
each of which has a set of headers, a blank line, and a body. Generally, each submessage
isreferred to a MIME part, and parts may nest recursively.

MIME parts (whether in a multipart message or not) that contain characters outside of the
strict US-ASCII range are encoded as either base-64 or quoted-printable data, so that the
resulting mail message contains only ordinary ASCII characters. Data can be encoded
with either method, but generally, only data that has few nornt ASCII characters (basically
text, possibly with afew extra characters outside of the ASCII range, such as nationa
charactersin Latin-1 and similar codes) is worth encoding as quoted-printable, because
even without decoding it may be readable. If the data is essentially binary, with al bytes
being equally likely, base-64 encoding is more compact.

Not surprisingly, given all that, manipulating MI ME messages is often considered to be a nuisance.
Before Python 2.2, the standard library's modules for dealing with MIME messages were quite
useful but rather miscellaneous. In particular, putting MIME messages together and taking them
apart required two distinct approaches. The emai | module, new in Python 2.2, unifies and
simplifies these two related jobs.

10.11.4 See Also

Recipe 10.12 shows how the errai | module can be used to unpack a MIME message;
documentation for the standard library moduleserai | , snt pl i b, m et ypes, base64,
quopri,and cStri ngl Ointhe Library Reference. attachments.

10.12 Unpacking a Multipart MIME Message
Credit: Matthew Dixon Cowles

10.12.1 Problem

Y ou have a multipart MIME message and want to unpack it.

10.12.2 Solution

The wal k method of message objects generated by the enmai | module (new as of Python 2.2)
makes this task really easy:

i nport email . Parser
i mport o0s, sys

def main():
if len(sys.argv)==1:
print "Usage: % fil ename" %
0s. pat h. basenane(sys. argv[0])
sys.exit(1)

mai | File = open(sys.argv[1l], "rb")
p = email.Parser.Parser()

nsg = p.parse(mail File)

mai |l File.close()

part Counter =1
for part in nmsg.wal k():
if part.get_min_type()=="nultipart":
conti nue
name = part.get paran("nane")
i f name==None:

name = "part-%" % part Counter
part Count er +=1
In real life, nmake sure that nane is a reasonabl e
fil enane
for your OS; otherwise, mangle it until it is!

f = open(nane, "wbh")
f.wite(part.get_ payl oad(decode=1))
f.close()
print name
if nanme_ =="_ main_ _
mai n()

10.12.3 Discussion

The ermai | module, new in Python 2.2, makes parsing MIME messages reasonably easy. (See
the Library Reference for detailed documentation about the enai | module.) This recipe shows
how to recursively unbundle a MIME message with the enmai | module in the easiest way, using
the wal k method of message objects.

Y ou can create a message object in several ways. For example, you can instantiate the
emai | . Message. Message class and build the message object's contents with calls to its

add_payl oad method. In this recipe, | need to read and analyze an existing message, so |
worked the other way around, calling the par se method of an ermai | . Par ser . Par ser
instance. The par se method takes as its only argument a file-like object (in the recipe, | passit a
real file object that | just opened for binary reading with the built-in open function) and returns a
message object, on which you can call message object methods.

Thewal k method is a generator, i.e., it returns an iterator object on which you can loop with a
f or statement. Usually, you will use this method exactly as | useit in this recipe:

for part in msg.wal k():

The iterator sequentialy returns (depth-first, in case of nesting) the parts that comprise the
message. If the message is not a container of parts (has no attachments or alternates, i.e.,
nmessage.is_nultipart() isfase), noproblem: the wal k method will return an
iterator with a single element: the message itself. In any case, each element of the iterator isalso a
message object (an instance of emai | . Message. Message), so you can cal onit any of the
methods a message object supplies.

In amultipart message, partswith atypeof ' mul ti part/ somet hi ng" (i.e, amain type of
"mul ti part') may be present. In thisrecipe, | skip them explicitly since they're just glue
holding the true parts together. | usethe get _mai n_t ype method to obtain the main type and
check it for equality with' mul t i part ' ;if equality holds, | skip this part and move to the next
onewithacont i nue statement. When | know | have ared part in hand, | locate its name (or
synthesize one if it has no name), open that name as a file, and write the message's contents (also
known as the message's payload), which | get by calling the get _pay!| oad method, into the
file. 1 usethe decode=1 argument to ensure that the payload is decoded back to a binary

content (e.g., an image, a sound file, amovie, etc.) if needed, rather than remaining in text form. If
the payload is not encoded, decode=1 isinnocuous, so | don't have to check before | passit.

10.12.4 See Also

Recipe 10.11; documentation for the standard library moduleserai | , snt pl i b,
m net ypes, base64, quopri,andcSt ri ngl Ointhe Library Reference.

10.13 Module: PyHeartBeat—Detecting Inactive
Computers

Credit: Nicola Larosa

When we have a number of computers connected by a TCP/IP network, we are often interested in
monitoring their working state. The pair of programs presented in Example 10-1 and Example 10-
2 help you detect when a computer stops working, while having minimal impact on network
traffic and requiring very little setup. Note that this does not monitor the working state of single,
specific services running on a machine, just that of the TCP/IP stack and the underlying operating
system and hardware components.

PyHear t Beat ismade up of two files: PyHBClient.py sends UDP packets, while
PyHBServer.py listens for such packets and detects inactive clients. The client program, running
on any number of computers, periodically sends an UDP packet to the server program that runs on
one central computer. In the server program, one thread dynamically builds and updates a
dictionary that stores the IP numbers of the client computers and the timestamp of the last packet
received from each. At the same time, the main thread of the server program periodically checks
the dictionary, noting whether any of the timestamps is older than a defined timeout.

In this kind of application, there is no need to use reliable TCP connections, since the loss of a
packet now and then does not produce false alarms, given that the server -checking timeout is kept
suitably larger than the client-sending period. On the other hand, if we have hundreds of
computers to monitor, it is best to keep the bandwidth used and the load on the server at a
minimum. We do this by periodically sending a small UDP packet, instead of setting up a
relatively expensive TCP connection per client.

The packets are sent from each client every 10 seconds, while the server checks the dictionary
every 30 seconds, and its timeout defaults to the same interval. These parameters, along with the
server |P number and port used, can be adapted to ones needs.

Also note that the debug printouts can be turned off by using the - O option of the Python
interpreter, as that option setsthe ~ _debug_ _ variableto 0. However, some would consider
this usage overcute and prefer a more straightforward and obvious approach: have the scripts
accept either a - g flag (to keep the script quiet, with verbosity as the default) or a - v flag (to
make it verbose, with quiet as the default). The get opt standard module makes it easy for a
Python script to accept optional flags of this kind.

Example 10-1 shows the PyHBClient.py heartbeat client program, which should be run on every
computer on the network, while Example 10-2 shows the heartbeat server program,
PyHBServer .py, which should be run on the server computer only.

Example 10-1. PyHeartBeat client

""" PyHeartBeat client: sends an UDP packet to a given
server every 10 seconds.

Adj ust the constant paraneters as needed, or call as:
PyHBCl i ent. py serverip [udpport]

from socket inport socket, AF_INET, SOCK_ DGRAM
fromtime inport tinme, ctinme, sleep

i mport sys

SERVERI P = ' 127.0.0. 1 # |l ocal host, just for testing
HBPORT = 43278 # an arbitrary UDP port
BEATWAI T = 10 # nunber of seconds between
heart beat s

if len(sys.argv)>1:
SERVERI P=sys. ar gv[1]

if len(sys.argv)>2:
HBPORT=sys. ar gv|[2]

hbsocket = socket (AF_I NET, SOCK DGRAM
print "PyHeartBeat client sending to IP % , port
%" %¢ SERVERI P, HBPORT)
print "\n*** Press Ctrl-Cto term nate ***\n"
while 1:

hbsocket . sendt o(' Thunp!', (SERVERI P, HBPORT))

if _ _debug_ _:

print "Tinme: %" %ctinme(time())
sl eep(BEATWAI T)

Example 10-2. PyHeartBeat server
""" PyHeartBeat server: receives and tracks UDP packets from
all clients.

Wil e the BeatLog thread | ogs each UDP packet in a
dictionary, the main

thread periodically scans the dictionary and prints the IP
addresses of the

clients that sent at |east one packet during the run, but
have

not sent any packet since a tine |longer than the definition
of the tinmeout.

Adj ust the constant paraneters as needed, or call as:
PyHBServer. py [timeout [udpport]]

HBPORT = 43278
CHECKWAI T = 30

from socket inport socket, gethostbynane, AF_INET
SOCK_DGRAM

fromthreading i nport Lock, Thread, Event
fromtinme inport tinme, ctine, sleep

i nport sys

cl ass BeatDict:
"Manage heartbeat dictionary”

def _ init_ (self):
self.beatDict = {}

def

def

def

if _ _debug_ _:
self.beatDict['127.0.0.1"] = tinme()
sel f.dictLock = Lock()

_ _repr_ _(self):
list ="'
sel f.dictLock.acquire()
for key in self.beatDict.keys():
list = "% P address: % - Last time: %\n" % (
list, key, ctinme(self.beatDict[key]))
sel f.dictLock.rel ease()
return |ist

update(sel f, entry):

"Create or update a dictionary entry”
sel f.dictLock.acquire()
self.beatDict[entry] = tinme()

sel f.dictLock.release()

extractSilent(self, howPast):
"Returns a list of entries ol der than howPast"
silent =[]
when = time() - howPast
sel f.dictLock.acquire()
for key in self.beatDict.keys():
if self.beatDict[key] < when

sil ent. append(key)
sel f.dictLock.rel ease()
return silent

cl ass Beat Rec(Thread):
"Recei ve UDP packets, log themin heartbeat dictionary"

def

def

def

_ _init_ _(self, goOnEvent, updateDi ctFunc, port):
Thread. _ _init_ (self)

sel f. goOnEvent = goOnEvent

sel f. updat eDi ct Func = updat eDi ct Func

sel f.port = port

sel f.recSocket = socket (AF_I NET, SOCK_ DGRAM

sel f.recSocket. bind(('', port))

_ _repr_ (self):

return "Heartbeat Server on port: %\n" % self.port

run(sel f):
whil e self.goOnEvent.isSet():
if _ _debug_ _:
print "Waiting to receive..."
data, addr = self.recSocket.recvfrom6)
if _ _debug_ _:
print "Received packet from" + "addr’
sel f . updat eDi ct Func(addr[0])

def main():
"Listen to the heartbeats and detect inactive clients"”
gl obal HBPORT, CHECKWAI T
if len(sys.argv)>1:
HBPORT=sys. ar gv[1]
if len(sys.argv)>2:
CHECKWAI T=sys. ar gv|[2]

beat RecGoOnEvent = Event()
beat RecGoOnEvent . set ()
beat Di ct Object = BeatDict()
beat RecThread = Beat Rec(beat RecGoOnEvent,
beat Di ct Obj ect . updat e, HBPORT)
if _ _debug_ _:
print beat RecThread
beat RecThread. start()
print "PyHeartBeat server |istening on port %" % HBPORT
print "\ n*** Press Ctrl-Cto stop ***\n"
while 1:
try:
if _ _debug_ _:
print "Beat Dictionary”
print "~ beatDi ct Cbject"”
silent = beatDi ct Obj ect. extract Sil ent (CHECKWAI T)
if silent:
print "Silent clients"”
print “silent’
sl eep(CHECKWAI T)
except Keyboardl nterrupt:
print "Exiting."
beat RecGoOnEvent.clear()
beat RecThread.join()

10.13.1 See Also

Documentation for the standard library modules socket , t hr eadi ng, andt i e inthe
Library Reference; Jeff Bauer has a related program using UDP for logging information known as
Mr. Creosote (http://starship.python.net/crew/jbauer/creosote/); UDP is described in UNIX
Network Programming, Volume 1: Networking APIs - Sockets and XTI, Second Edition, by W.
Richard Stevens (Prentice-Hall, 1998); for the truly curious, the UDP protocol is described in the
two-page RFC 768 (http://www.ietf.org/rfc/rfc768.txt), which, when compared with current RFCs,
shows how much the Internet infrastructure has evolved in 20 years.

10.14 Module: Interactive POP3 Mailbox Inspector
Credit: Xavier Defrang

Suppose you have a POP3 mailbox somewhere, perhaps on a slow connection, and need to
examine messages, and perhaps mark them for deletion, in an interactive way. Perhaps you're
behind a dlow Internet link and don't want to wait for that funny 10-MB MPEG movie that you
already received twice yesterday to be fully downloaded before you can read your mail. Or maybe
there's a peculiar malformed message that is hanging your MUA. Thisissue is best tackled

interactively, but you need a helping script to let you examine some data about each message and
determine which messages should be removed.

Instead of telneting to your POP server and trying to remember the POP3 protocol commands (or
hoping that the server implements hel p), you can use the small script shown in Example 10-3 to
inspect your mailbox and do some cleaning. Basically, Python's standard POP3 module, popl i b,
remembers the protocol commands on your behalf, and this script helps you use them
appropriately.

Example 10-3 uses the popl i b module to connect to your mailbox. It then prompts you about
what to do with each undelivered message. Y ou can view the top of the message, leave it on the
server, or mark it for deletion. No particular tricks or hacks are used in this piece of code: it'sa
simple example of popl i b usage. In addition to being practically useful in emergencies, it can
show how popl i b works. The popl i b. POP3 call returns an object that is ready for
connection to a POP3 server specified as its argument. We complete the connection by calling the
user and pass_ methods to specify auser ID and password. Note the trailing underscore in
pass_ : this method could not be called pass because that is a Python keyword (the do-nothing
statement), and by convention, such issues are always solved by appending an underscore to the
identifier.

After connection, we keep working with methods of the pop object. The st at method returns
the number of messages and the total size of the mailbox in bytes. The t op method takes a
message-number argument and returns information about that message, as well as the message
itself asalist of lines (you can specify a second argument N to ensure that no more than N lines
are returned). The del e method also takes a message-number argument and del etes that message
from the mailbox (without renumbering all other messages). When we're done, we call the qui t

method. If you're familiar with the POP3 protocol, you'll notice the close correspondence between
these methods and the POP3 commands.

Example 10-3. Interactive POP3 mailbox inspector

Hel per interactive script to clean POP3 numil boxes from

mal formed mail s that

hangs MUA's, nessages that are too |arge, etc.

#

lterates over nonretrieved mails, prints selected el enments
fromthe headers,

and pronmpts interactively about whet her each nessage
shoul d be del eted

i mport sys, getpass, poplib, re

Change according to your needs

POPHOST
POPUSER
POPPASS
The nunber of nmessage body lines to retrieve
MAXLI NES = 10

HEADERS = "From To Subject".split()

"pop. domai n. cont
"] doe"

args = len(sys.argv)

if args>1: POPHOST = sys.argv]1]

if args>2: POPUSER = sys. argv] 2]

i f args>3: POPPASS = sys. argv| 3]

if args>4: MAXLINES= int(sys.argv|[4])
if args>5: HEADERS = sys.argv[5:]

Headers you're actually interested in
rx_headers = re.conpile('|"'.join(headers), re.| GNORECASE)

try:
Connect to the POPer and identify user
pop = poplib. POP3(POPHOST)
pop. user (POPUSER)

i f not POPPASS or POPPASS=='='":
If no password was supplied, ask for it
POPPASS = get pass. get pass("Password for %@s:" %
(POPUSER, POPHOST))

Aut henti cate user
pop. pass_(POPPASS)

Get sonme general information (nmsg_count, box_size)
stat = pop.stat()

Print sone useless infornmation

print "Logged in as %@6" % (POPUSER, POPHOST)
print "Status: % nessage(s), % bytes" % stat
bye = 0

count _del =0

for nin range(stat[0]):

nmsgnum = n+1

Retrieve headers
response, lines, bytes = pop.top(nmsgnum MAXLI NES)

Print nessage info and headers you're interested

in
print "Message % (% bytes)" % (nmsgnum bytes)
print "-" * 30
print "\n".join(filter(rx_headers.match, |ines))

print "-" * 30

|l nput | oop
while 1:
k = raw_i nput (" (d=del ete, s=skip, v=view, q=quit)
What ?")
k = Kk[:1].lower()
i f == 'd":
Mark nessage for deletion
k = raw_i nput ("Del ete nessage %d? (y/n)" %
nsgnum
if kKin"yY":
pop. del e(msgnum
print "Message %l marked for deletion" %
nmsgnum
count _del +=1
br eak
elif == 's":
print "Message % |left on server" % nsgnum
br eak
elif k =="v'":
print "-" * 30
print "\n".join(lines)
print "-" * 30
elif k =="q":
bye = 1
br eak
Time to say goodbye?
i f bye:
print "Bye"
br eak
Sunmmary
print "Deleting %d nessage(s) in nmail box %@s" % (
count _del, POPUSER, POPHQOST)

Commit operations and di sconnect from server

pri nt
pop.quit()

except

Fancy error
print

10.14.1 See Also

popl i b.error_proto,

"Cl osi ng POP3 session”

det ail :

handl i ng
"POP3 Protoco

Error:", detai

Documentation for the standard library modules popl i b and get pass inthe Library
Reference; the POP protocol is described in RFC 1939 (http://www.ietf.org/rfc/rfc1939.txt).

10.15 Module: Watching for New IMAP Mail Using a GUI

Credit: Brent Burley

Suppose you need to poll an IMAP inbox for unread messages and display the sender and subject
in a scrollable window using Tkinter. The key functionality you need is in the standard Python
module i mapl i b, with some help from the r f 822 module. Example 10-4 reads the server
name, user, and password from the ~/.imap file. They must be al on one line, separated by spaces.

The hard (and interesting) part of developing this program was figuring out how to get the IMAP
part working, which took afair bit of investigating. The most productive approach to
understanding the IMAP protocol proved to be talking to the IMAP server directly from a Python
interactive session to see what it returned:

>>> jnport imaplib

>>> M = imaplib. | MAP4(i map_server)

>>> M | ogi n(i map_user, imap_password)

("K', ['"LOG@ N conplete'])

>>> M sel ect (readonl y=1)

("o, ['8])

>>> M search(None, ' (UNSEEN UNDELETED) ")

(o, ['8])

>>> Mfetch(8, ' (BODY[HEADER. FI ELDS (SUBJECT FROM])')
("OK', [('8 (BODY[HEADER. FI ELDS (SUBJECT FROM] {71}', 'From
John Doe

<John. Doe@owher e. conp

Subj ect: test

nmessage

)) D

Interactive exploration is so smple with Python because of excellent interactive environments
such as the standard interactive session (with readline and completion) or IDEs such as IDLE. As
such, it is often the best way to clarify one's doubts or any ambiguities one may find in the
documentation.

Example 10-4. Watching for new IMAP mail with a GUI

import imaplib, string, sys, os, re, rfc822
from Tkinter inport *

PollInterval = 60 # seconds

def getimapaccount():
try:
f = open(os. path. expanduser (' ~/.imp'))
except |1 CError, e:

print 'Unable to open ~/.imp: ', e
sys.exit (1)
gl obal i map_server, imp_user, imp_password

try:
i map_server, imp_user, imap_password =
string.split(f.readline())

except Val ueError:
print '"Invalid data in ~/.imp'
sys.exit(1)

f.close()

class nsg: # a file-like object for passing a string to
rfc822. Message

def _ _init_ (self, text):
self.lines = string.split(text, "\015\012")
self.lines.reverse()

def readline(self):
try: return self.lines.pop() + '\n'
except: return '

cl ass Mui | wat cher (Frane):
def _ _init_ _(self, master=None):
Frame. _init_ (self, master)
sel f. pack(si de=TOP, expand=YES, fill =BOTH)
self.scroll = Scrollbar(self)
self.list = Listbox(self, font="7x13",
yscrol | command=sel f.scrol | . set,
setgrid=1, height=6, w dth=80)
sel f.scroll.configure(command=sel f.list.yview)
self.scroll.pack(side=LEFT, fill=BOTH)
self.list.pack(si de=LEFT, expand=YES, fill=BOTH)

def getmail (self):

sel f.after(1000*Pol |l I nterval, self.getmil)

sel f.list.del ete(0, END)

try:
M= imaplib. | MAP4(i map_server)
M | ogi n(i map_user, i nmap_password)

except Exception, e:
self.list.insert(END, 'IMAP login error: ', e)
return

try:
result, nessage = M sel ect(readonl y=1)
if result '="OK:
rai se Exception, nessage
typ, data = M search(None, '(UNSEEN UNDELETED) ")
for numin string.split(data[0]):
try:
f

M fetch(num ' (BODY[HEADER. FI ELDS
(SUBJECT FROM])")
m = rfc822. Message(nsg(f[1][0][1]), O)
subj ect = m'subject']
except KeyError:
f = Mfetch(num ' (BODY[HEADER. FI ELDS

(FROMT)")
m = rfc822. Message(nsg(f[1][0][1]), O)
subject = '(no subject)
fromaddr = mgetaddr (' from)

if fromaddr[0] == "": n = fronmaddr|[1]
el se: n = fromaddr[0]
text = '% 20.20s %' % (n, subject)
self.list.insert(END, text)

len = self.list.size()

if len > 0: self.list.see(len-1)

except Exception, e:
self.list.del ete(0, END)
print sys.exc_info()

self.list.insert(END, 'IMAP read error: ', e)
M | ogout ()
if _ name_ =='"_ min_ _':

geti mapaccount ()

root = Tk(cl assNanme=' nmail wat cher')
root.title(' mailwatcher')

mv = Mai | wat cher (root)

mv. getmai | ()

mw. mai nl oop()

10.15.1 See Also

Documentation for the standard library modulesi mapl i b andr f c822 inthe Library
Reference; information about Tkinter can be obtained from a variety of sources, such as
Pythonware's An Introduction to Tkinter, by Fredrik Lundh (http://www.pythonware.com/library),
New Mexico Tech's Tkinter reference (http://www.nmt.edu/tcc/hel p/l ang/python/docs.html), and
various books; the IMAP protocol is described in RFC 2060 (http://www.ietf.org/rfc/rfc1939.tx1).

Chapter 11. Web Programming

Section 11.1. Introduction

Section 11.2. Testing Whether CGI |s Working

Section 11.3. Writing a CGI Script

Section 11.4. Using a Simple Dictionary for CGl Parameters

Section 11.5. Handling URLs Within a CGI Script

Section 11.6. Resuming the HTTP Download of aFile

Section 11.7. Stripping Dangerous Tags and Javascript from HTML

Section 11.8. Running a Servlet with Jython

Section 11.9. Accessing Netscape Cookie Information

Section 11.10. Finding an Internet Explorer Cookie

Section 11.11. Module: Fetching Latitude/Longitude Data from the Web

11.1 Introduction

Credit: Andy McKay

The Web has been a key technology for many years now, and it has become unusual to develop an
application that doesn't involve some aspects of the Web. From showing a help file in a browser to
using web services, the Web has become an integral part of most applications.

| came to Python through a rather tortuous path of ASP, then Perl, some Zope, and then Python.
Looking back, it seems strange that | didn't find Python earlier, but the dominance of Perl and
ASP in this area makes it hard for new developers to see the advantages of Python shining through
all the other languages.

Unsurprisingly, Python is an excellent language for web development, and, as a "batteries
included" language, Python comes with most of the modules you will need. The inclusion of
xm rpcl i b inPython 2.2 has made the standard libraries even more useful. One of the
modules | oftenuseis ur | | i b, which demonstrates the power of a simple, well-designed
module—saving afile from the Web in two lines (usingur | r et ri eve) iseasy. The cgi

module is another example of a module that has enough to work with, but not too much to make
the script too slow and bloated.

Compared to other languages, Python seems to have an unusually large number of application
servers and templating languages. While it's easy to develop anything for the Web in Python, it
would be peculiar to do so without first looking at the application servers available. Rather than
continually recreating dynamic pages and scripts, the community has taken on the task of building
these application servers to allow other users to create the content in easy-to-use templating
systems.

Zope is the most well-known product in the space and provides an object-oriented interface to web
publishing. With features too numerous to mention, it allows a robust and powerful object-
publishing environment. Quixote and WebWare are two other application servers with similar,
highly modular designs. These can be areal help to the overworked web devel oper who needsto
reuse components and give other users the ability to create web sites.

There are times when an application server is just too much and asimple CGI script is all you
need. The first recipe in this chapter, Recipe 11.2 isal you need to make sure your web server
and Python CGI scripting setup are working correctly. Writing a CGI script doesn't get much
simpler than this, although, as the recipe's discussion points out, you could use the cgi . t est
function to make it even shorter.

Another common task is the parsing of HTML, either on your own site or on other web sites.
Parsing HTML tags correctly is not as simple as many developers first think, as they optimistically
assume a few regular expressions or string searches will see them through. While such approaches
will work for parsing data from other sites, they don't provide enough security to ensure that
incoming HTML contains no malicious tags. Recipe 11.7is a good example of usingsgm | i b
to parse incoming data and strip any offending JavaScript. Most web devel opers create more than
just dynamic web pages, and there are many relevant, useful recipesin other chapters that describe
parsing XML, reading network resources and systems administration, for example.

11.2 Testing Whether CGI Is Working
Credit: Jeff Bauer
11.2.1 Problem

You want asimple CGI program to use as a starting point for your own CGI programming or to
test if your setup is functioning properly.

11.2.2 Solution

The cgi module is normally used in Python CGI programming, but here we use only its
escape function to ensure that the value of an environment variable doesn't accidentally look to
the browser as HTML markup. We do al of the real work ourselves:

#!/usr/ | ocal / bi n/ pyt hon

print "Content-type: text/htm™
print

print "<htm ><head><title>Situation
snapshot </titl e></ head><body><pre>"

i mport sys
sys. stderr = sys. stdout

i mport os
fromcgi inport escape
print "Python ¥%s" % sys.version
keys = os.environ. keys()
keys.sort()
for k in keys:
print "%\t%" % (escape(k), escape(os.environ[k]))
print "</pre></body></htn >"

11.2.3 Discussion

The Common Gateway Interface (CGI) is a protocol that specifies how aweb server runs a
separate program (often known as a CGlI script) that generates a web page dynamicaly. The
protocol specifies how the server provides input and environment data to the script and how the
script generates output in return. You can use any language to write your CGI scripts, and Python
is well-suited for the task.

Thisrecipe isasimple CGI program that displays the current version of Python and the
environment values. CGI programmers should always have some simple code handy to drop into
their cgi-bin directories. Y ou should run this script before wasting time slogging through your
Apache configuration files (or whatever other web server you want to use for CGI work). Of
course, cgi . t est doesdl thisand more, but it may, in fact, do too much. It does so much, and
so much is hidden inside cgi 'sinnards, that it's hard to tweak it to reproduce whatever specific
problems you may be encountering in true scripts. Tweaking the program in this recipe, on the
other hand, is very easy, sinceit's such a simple program, and all the parts are exposed.

Besides, this little script is aready quite instructive in its own way. The starting line,
#!'/usr/ 1 ocal / bi n/ pyt hon, must give the asolute path to the Python interpreter with

which you want to run your CGI scripts, so you may need to edit it accordingly. A popular
solution for non-CGl scriptsisto have afirst line (the so-called "shebang line") that looks
something like this:

#! [/ usr/ bi n/ env python

However, this puts you at the mercy of the PATH environment setting, since it runs the first
program named pyt hon it finds on the PATH, and that probably is not what you want under
CGl, where you don't fully control the environment. Incidentally, many web servers implement
the shebang line even when you run them under non-Unix systems, so that, for CGI use
specifically, it's not unusual to see Python scripts on Windows start with afirst line such as:

#! c:/ pyt hon22/ pyt hon. exe

Another issue you may be contemplating iswhy the i npor t statements are not right at the start
of the script, asisthe usual Python style, but are preceded by afew pri nt statements. The
reasonisthat i nport could fail if the Python installation is terribly misconfigured. In case of
failure, Python will emit diagnostics to standard error (which is typically directed to your web
server logs, depending, of course, on how you set up and configured your web server), and
nothing will go to standard output. The CGI standard demands that all output be on standard
output, so, we first ensure that aminimal quantity of output will display aresult to avisiting
browser. Then, assuming that i nport sys succeeds (if it fails, the whole installation and
configuration is so badly broken that there's very little you can do about it!), you immediately
make the following assignment:

sys.stderr = sys. stdout

This ensures that error output will aso go to standard output, and you'll have a chance to seeiit in
the visiting browser. Y ou can perform other i npor t operations or do further work in the script

only when thisis done. In Python 2.2, getting useful tracebacks for errorsin CGI scripts is much
simpler. Simply add the following at the start of your script:

i mport cgitb; cgitb.enabl e()
and the new standard module cgi t b takes care of the rest

Just about al known browsers let you get away with skipping most of the HTML tags that this
script outputs, but why skimp on correctness, relying on the browser to patch your holes? It costs

little to emit correct HMTL, so you should get into the habit of doing things right, when the cost is
S0 modest.

11.2.4 See Also

Documentation of the standard library module cgi inthe Library Reference; a basic introduction
to the CGlI protocol is available a http://hoohoo.ncsa.uiuc.edu/cgi/overview.html.

11.3 Writing a CGI Script

Credit: Luther Blissett
11.3.1 Problem

Y ou want to write a CGI script to process the contents of an HTML form. In particular, you want
to access the form contents and produce valid output in return.

11.3.2 Solution

A CGI script is a server-side program that a web server launches to generate a web page
dynamically based on remote client requests (typicaly, the user filled in an HTML form on his
web browser and submitted it). The script receives its input information from the client through its
standard input stream and its environment and generates HTTP headers and body on its standard
output stream. Python's standard cgi module handles input tasks on the script's behalf, and your
script directly generates output as needed:

#!'/ usr/ bi n/ pyt hon

Get the cgi nmodule and the values of all fields in the
form

i nport cqi

fornStorage = cgi.FieldStorage()

Get a paraneter string fromthe form
t hevVal ue = fornttorage[' PARAM NAME' | . val ue

Qut put an HTM. docunent
out put Tenplate = """Content-Type: text/plain

<ht m ><head><title>%title)s