
Professional Perl Programming

Peter Wainwright

with

Aldo Calpini
Arthur Corliss
Simon Cozens

Juan Julián Merelo Guervós
Chris Nandor
Aalhad Saraf

Wrox Press Ltd. �

TE
AM
FL
Y

Team-Fly®

Professional Perl Programming

© 2001 Wrox Press

All rights reserved. No part of this book may be reproduced, stored in a retrieval system or
transmitted in any form or by any means, without the prior written permission of the publisher,

except in the case of brief quotations embodied in critical articles or reviews.

The author and publisher have made every effort in the preparation of this book to ensure the
accuracy of the information. However, the information contained in this book is sold without

warranty, either express or implied. Neither the authors, Wrox Press nor its dealers or
distributors will be held liable for any damages caused or alleged to be caused either directly or

indirectly by this book.

Published by Wrox Press Ltd,
Arden House, 1102 Warwick Road, Acocks Green,

Birmingham, B27 6BH, UK

Printed in the United States
ISBN 1-861004-49-4

Trademark Acknowledgements

Wrox has endeavored to provide trademark information about all the companies and products
mentioned in this book by the appropriate use of capitals. However, Wrox cannot guarantee the
accuracy of this information.

Credits
Author Technical Reviewers

Peter Wainwright Simon Cozens
Carl Culvett

Contributing Authors David Fannin
Aldo Calpini Iain Georgeson
Arthur Corliss Terry Gliedt
Simon Cozens Jim Harle
Juan Julián Merelo Guervós Chris Lightfoot
Chris Nandor Mark Mamone
Aalhad Saraf Neil Matthews

Bill Moss
Technical Architect Nathan Neulinger

Louay Fatoohi Gavin Smyth
Rick Stones

Technical Editors Paul Warren
Mankee Cheng Andrew Yourtchenko
David Mercer Philips Yuson
Andrew Polshaw
Dan Robotham Production Manager

Simon Hardware
Additional Editorial

Mohammed Rfaquat Production Project Coordinator
Mark Burdett

Author Agents
Julia Gilbert Illustrations
Velimir Ilic Shabnam Hussain

Project Administrator Cover
Nicola Phillips Shelley Frazier

Indexers Proof Readers
Alessandro Ansa Chris Smith
Adrian Axinte Keith Westmoreland
Bill Johncocks Diana Skeldon

Category Managers
Viv Emery
Paul Cooper

About the Authors

Peter Wainwright
Peter Wainwright is a freelance developer and software consultant. He got his first taste of
programming on a BBC Micro and gained most of his early programming experience writing
applications in C on Solaris. He then discovered Linux, shortly followed by Perl and Apache,
and has been happily programming there ever since.

Outside of the software industry, he is a partner of Space Future Consulting, an international
space tourism consultancy firm. He spends much of his free time maintaining the non-profit
Space Future website at www.spacefuture.com and writes the occasional article on space
tourism. He is also an advisor to the board of one or two companies engaged in space tourism
and vehicle development. If you have $50m to spare, he would like to have a word with you.

As well as being the primary author of Professional Perl Programming, he is the author of
Professional Apache (ISBN: 1861003021), also published by Wrox Press, as well as a contributing
author to Beginning Per l (ISBN: 1861003145). Formerly based in London, he recently moved
from England to the Upper West Side of New York to be with his new wife, a professional editor,
whom he met through a mutual interest in space tourism and low-rent apartments.

Aldo Calpini
Aldo Calpini is well known in the Perl community for his many important Win32 modules. His
active participation on several mailing lists has helped the Perl language grow in the Win32
community. He began programming twenty years ago and still enjoys hacking every kind of
computer he can put his hands on. He works today as lead programmer in an Italian Internet
startup company.

Arthur Corliss
Arthur Corliss has been programming since buying his first home computer a Timex Sinclair
1000 with a whopping 2K of RAM (which he still has). Having worked his way through several
languages, Perl has become his most frequent language of choice at his latest venture, Gallant
Technologies, Inc., a software development company. On his own time he continues the
madness by working on the Curses::Widgets and Curses::Forms modules, which he
authored and is available on CPAN.

Simon Cozens
Simon Cozens is an Open Source programmer and author; he writes for the Perl Journal,
www.perl.com, and other sites, and is the author of Wrox Press' Beginning Perl (ISBN:
1861003145). He is a member of the Perl development team, and his hobbies include reading,
typography and the Greek language and culture.

Juan Julián Merelo Guervós
Juan Julián Merelo Guervós was born in Ubeda, Jaén, Spain, the 10th of March of 1965. Juan
received a degree in Theoretical Physics by the University of Granada in 1989, and a PhD in
Physics in 1994. He has been hacking PERL since 1993 or 1994, and is the author of a widely
popular (and pioneer) web tutorial of PERL in Spanish (available from
http://www.granavenida.com/perl). Currently Juan is an associate professor at Granada
University, in Spain. He is married and has three wonderful daughters, two of whom are
fraternal twins, born in 1998 and 1999. He can be reached at jmerelo@geneura.ugr.es, and his
homepage (which is, so far, in Spanish) is at http://geneura.ugr.es/~jmerelo

Chris Nandor
Chris Nandor, pudge@pobox.com, is a programmer for OSDN, working on theSlashdot code.
He co-authored the book MacPerl: Power and Ease (ISBN: 1881957322) from Prime Time
Freeware, writes the Perl News column for the Perl Journal, and runs the web sites
http://use.perl.org/ and http://news.perl.org/. Chris lives in Massachusetts with his three dogs,
two cats, and one wonderful and supportive wife, Jennifer.

I'd like to dedicate this book to my wife, my parents, and my in-laws who've all given me encouragement &
put up with me during deadlines.

Aalhad Saraf
Aalhad Saraf is in the Systems Software Group in IBM Labs. He has been with Linux since 1995.
Perl, C, and C++ are his favorite tools. Has a Bachelors degree in Electronics Engineering from
the University of Pune, a Post Graduate Diploma awarded by the national resource center of the
'Center for Development of Advanced Computing' (a scientific society of the Ministry of IT,
Govt. of India). He worked on microcontrollers/embedded systems and hand-held computing
devices in Syslab Automation and on an interactive gaming server for DishnetDSL – one of
India's leading ISPs. He also teaches Perl, Software Engineering and Quality systems during his
spare time. He Takes his table tennis seriously, fiddles around with a guitar, juggles tennis balls
and is an omnivore when it comes to reading. He likes networks. He dreams of traveling through
space sitting in a packet; playing with the civilization of Data, providing the subjects – bytes, with
new worlds and increasingly better means of transport. Aalhad is 22 years old and aspires to get
a Ph.D. in Computer Science some day.

Table of Contents

Introduction 1

Chapter 1: Introduction 7

Introduction 7
Key Features 8
Supported Platforms 9
Perl History and Versions 10
Essential Information 10

Building and Installing Perl 12
Installing Pre-built Perl Distributions 12

Installing Perl on UNIX 13

Installing Perl on Windows 13
Installing Perl on Macintosh 14

Building Perl from Source 14
Building a Threaded Perl Interpreter 17
Differences for Windows and Macintosh 17

Other Platforms 17
Building and Installing Modules 18
Installing Modules with the 'CPAN' Module 18

Starting and Configuring CPAN 19

Installing Modules 20

Listing and Searching CPAN 21
Reading Module Documentation Without Installing 23

Reloading CPAN 23
Configuring CPAN Options 24

Installing Modules by Hand 24

Running Perl 27
Starting Perl Applications 27

Perl on UNIX 28

Perl on Windows 28
Perl on Macintosh 29

The Command Line 29
Command Line Syntax 30

Supplying Arguments to Perl Scripts 30
Using Perl as a Generic Command Line Utility 31

The Perl Environment 32
General Environment Variables Used by Perl 32
Perl Specific Environment Variables 32

Summary 33

Table of Contents

ii

Chapter 2: Basic Concepts 35

Values and Variables 35

Whitespace 36

Data Types 36

Special Variables 39

Interpolation 39

Context 40
Scalar and List Context 41
Void Context 42

Operators 42

Blocks 43

Control Constructs 43

Loop Modifiers 45

Subroutines 46

Functions 47

Scoping 47

Chapter 3: Scalars 51

Value Conversion and Caching 51

Numbers 52
Integers 53

Integer Range and Big Integers 53
Converting Integers into Floating-Point Numbers 54
Converting Integers into Strings 54
Handling Different Number Bases 55

Floating-Point Numbers 56
Converting Floats into Integers 58
Converting Floats into Strings 58

The 'use integer' Pragma 60
Mathematical Functions 61

Strings 62
Quotes and Quoting 62
'Here' Documents 65
Bareword Strings and Version Numbers 67
Converting Strings into Numbers 68
Converting Strings into Lists and Hashes 69
Functions For Manipulating Strings 71

Print 71
Line Terminator Termination 72
Characters and Character Codes 73
Length and Position 73
Substrings and Vectors 74
Upper and Lower Case 75
Interpolation 75
Pattern Matching and Transliteration 75
Password Encryption 76
Low Level String Conversions 76

String Formatting 80

Summary 84

Table of Contents

iii

Chapter 4: Operators 87

Operators Versus Functions 87

Operator Types and Categories 88
Assignment 89
Arithmetic 89
Shift 91
String and List 91
Logical 93
Bitwise 94
Combination Assignment 97
Increment and Decrement 98
Comparison 99
Regular Expression Binding 101
Comma and Relationship 101
Reference and Dereference 102
The Arrow 102
Range 103
Ternary 105

Precedence and Associativity 106
Precedence and Parentheses 107

Disabling Functions and Operators 110

Overriding Operators 113

Summary 114

Chapter 5: Beyond Scalars – More Data Types 117

Lists and Arrays 117
Manipulating Arrays 119

Modifying the Contents of an Array 119
Counting an Array 121
Adding Elements to an Array 122
Resizing and Truncating an Array 123
Removing Elements from an Array 123
Removing All Elements from an Array 125
Sorting and Reversing Lists and Arrays 125
Changing the Starting Index Value 127

Converting Lists and Arrays into Scalars 127
Taking References 127
Converting Lists into Formatted Strings 127

Hashes 129
Manipulating Hashes 131

Adding and Modifying Hash Values 131
Removing Hash Keys and Values 132

Converting Lists and Arrays into Hashes 132
Reversing Hashes 133
Accessing and Iterating Over Hashes 134

Converting Hashes into Scalars 137
Converting Hashes into Arrays 138
The Special Hash '%ENV' 138

Configuring Programs via '%ENV' 140
Handling Tainted Input from '%ENV' 140
'Env.pm' 141

Table of Contents

iv

References 142
Hard References 142

Creating References 143
Comparing References 144
Dereferencing 145
Working with References 146
Passing References to Subroutines 147
Finding the Type of a Reference 148

Complex Data Structures 151
The Problem with Nesting – My Lists Went Flat! 151
Lists of Lists and Multidimensional Arrays 151
Hashes of Hashes and Other Animals 153
Adding to and Modifying Complex Data Structures 154
Creating Complex Data Structures Programmatically 155
Traversing Complex Data Structures 158

Typeglobs 161
Defining Typeglobs 161
Manipulating Typeglobs 162
Accessing Typeglobs 163

The Undefined Value 164
Tests of Existence 166
Using the Undefined Value 167
Using 'undef' as a Function 168

Constants 169
Declaring Scalar Constants with the 'constant' Pragma 169
Declaring List and Hash Constants 171
Constant References 171
Listing and Checking for the Existence of Constants 172

Summary 172

Chapter 6: Structure, Flow, and Control 175

Expressions, Statements, and Blocks 175
Declarations 176
Expressions and Simple Statements 176
Blocks and Compound Statements 177

Blocks in Perl Statements 178

Naked Blocks 178
Defining the Main Program as a Block 179

Blocks as Loops 180
The 'do' Block 181

Special Blocks 182

Conditional Statements 183
What Is Truth? 184
'if', 'else', and 'elsif' 185
'unless' 187
Writing Conditions with Logical Operators 188
The Ternary Operator 189
Switches and Multi-Branched Conditions 192
Returning Values from Multi-Branched Conditions 194

Table of Contents

v

Loops and Looping 195
Writing C-style Loops with 'for' 195
Writing Better Loops with 'foreach' 197

Using 'foreach' with Multi-Branched Conditions 198
Variable Aliasing in 'foreach' Loops 199

Conditional Loops – 'while', 'until', and 'do' 200
Variable Aliasing with 'while' 201
Looping over Lists and Arrays with 'while' 201

Looping on Self-Modifying Arrays 202
Looping over Hashes with 'while' 203

'do...while' and 'do...until' 203
Controlling Loop Execution 204

The 'continue' Clause 206

Controlling Nested Loops 207

The Trouble with 'do' 208
The 'goto' Statement 209
'maps' and 'greps' 210

'map' 211

'grep' 211

Summary 213

Chapter 7: Subroutines 215

Declaring and Calling Subroutines 216
Anonymous Subroutines and Subroutine References 217
Strict Subroutines and the 'use strict subs' Pragma 219
Predeclaring Subroutines 219

Overriding Built-in Functions 220
The Subroutine Stack 221

Recursion 223
Checking for Subroutines and Defining Subroutines On the Fly 226

Passing Parameters 228
Passing Lists and Hashes 229
Converting Scalar Subroutines into List Processors 231
Passing '@_' Directly into Subroutines 232
Named Parameters 233

Prototypes 236
Defining the Number of Parameters and Their Scope 237
Prototyping Code References 239
Subroutines as Scalar Operators 239
Requiring Variables Rather than Values 240
Optional Parameters 241
Disabling Prototypes 242

Returning Values from Subroutines 243
Returning the Undefined Value 244
Determining and Responding to the Calling Context 246

Handling Void Context 247
Handling Context: an Example 247

Closures 248
Assignable Subroutines 250

TE
AM
FL
Y

Team-Fly®

Table of Contents

vi

Attribute Lists 251
Defining Attributes on Subroutines 251
Accessing Attributes 252
Special Attributes 252
Package Attributes 253

Summary 254

Chapter 8: Scope and Visibility 257

Package Variables 257
Defining Package Variables 258
Using 'strict' Variables 259
Declaring Global Package Variables 260
Declaring Global Package Variables with 'use vars' 260
Lexically Declaring Global Package Variables with 'our' 261
Automatic Localization in Perl 262
Localizing Package Variables with 'local' 262

Lexical Variables 264
Declaring Lexical Variables 265
Preserving Lexical Variables Outside Their Scope 266

The Symbol Table 267
The 'main' Package 267
Typeglobs and the 'main' Package 268
The Symbol Table Hierarchy 269
Manipulating the Symbol Table Directly 270
Accessing the Symbol Table 271

Summary 273

Chapter 9: Using Modules 275

Modules and Packages 276

Loading Code Using 'do', 'require', and 'use' 277
'import' Lists 278
Suppressing Default Imports 279
Disabling Features with 'no' 279
Testing for Module Versions and the Version of Perl 279

Pragmatic Modules 280
How Pragmatic Modules Work 280
Scope of Pragmatic Modules 281

The Special Hash '%INC' 282

The Special Array '@INC' 283
Modifying '@INC' directly 283
Modifying @INC with the 'lib' Pragma 284

Locating Libraries Relative to the Script 285

Checking for the Availability of a Module 286

Finding Out What Modules are Installed 286

Postponing Module Loading Until Use 290

Summary 292

Table of Contents

vii

Chapter 10: Inside Modules and Packages 295

'BEGIN' blocks, 'END' blocks and Other Animals 296
'BEGIN' Blocks 297
'END' Blocks 299
'CHECK' and 'INIT' 299

Manipulating Packages 300
Removing a Package 302
Forbidding Package Variables 303

Finding a Package Name Programmatically 303

Autoloading 304
Autoloading Subroutines 305

Using an 'AUTOLOAD' Subroutine as a Substitute 305
Defining Subroutines On the Fly 308

Self-Defining Instead of Autoloading Subroutines 309
Autoloading Modules 310

Using the 'AutoLoader' Module 311
Using the 'SelfLoader' Module 314

Importing and Exporting 316
The 'import' Mechanism 316
Exporting 319

Setting Flags with Exports 321
When to Export, When not to Export 321
The 'Exporter' Module 322

Creating Installable Modules 330
Well-Written Modules 330
Creating a Working Directory 331
Building an Installable Package 332
Adding a Test Script 334
Uploading Modules to CPAN 334

Summary 335

Chapter 11: Regular Expressions 337

String Interpolation 337
Perl's Interpolation Syntax 337
Interpolating Metacharacters and Character Codes 338

Common Special Characters 339
Special Effects 339

Interpolating Variables 340
Interpolating Code 341
Interpolative Context 342
Interpolation in Regular Expressions 342
Interpolating Text Inside String Variables 343
Protecting Strings Against Interpolation 344

Regular Expressions 345
Where Regular Expressions Occur 346

Matching and Substitution 346

The 'split' Function 347
Pre-compiled Regular Expressions 348

Table of Contents

viii

Regular Expression Delimiters 349
Elements of Regular Expressions 350
More Advanced Patterns 352

Matching Arbitrary Characters and Character Classes 352
Repetition and Grouping 354

Matching Sequential and Overlapping Terms 361
Pattern Match Modifiers 362
Regular Expressions versus Wildcards 363
Metacharacters 365

Character Class Metacharacters 365

Zero-Width Metacharacters 368
Extracting Matched Text 369

Special Variables 369

Parentheses and Numbered Variables 371

Backreferences 374
Extracting Lines with the Range Operator 376

Matching More than Once 378
Regular Expressions and Loops 378
Nested Regular Expression Loops 380

Position 382
Matching In and Across Multiple Lines 384

Counting the Total Number of Matches 386
Overlapping Matches and Zero-Width Patterns 386

Extended Patterns 389
Documenting Regular Expressions 389
Writing Efficient Regular Expressions 391

Making Regular Expressions More Specific 391
'study' 393

Avoiding Recompilation with the Empty Pattern 394

Avoiding Recompilation with the 'once-only' Modifier 394
Generating Regular Expressions with 'eval' 395

Predefining Search Patterns with 'qr' 397
Checking the Validity of Regular Expressions 399
Regular Expressions, Tainted Variables, and Debugging 401

Untainting Tainted Variables 401

Maintaining Taintedness in Regular Expressions 401
Understanding and Debugging the Regular Expression Engine 402

Substitution 407
Substituting Matched Text and Interpolation 407
Evaluating the Replacement String 408

Interpolating and Evaluating the Replacement String 409
Transliteration 409

Transliteration Modifiers 411

Summary 412

Chapter 12: Input and Output with Filehandles 415

IO and Filehandles 416

The Filehandle Data Type 416

Standard Filehandles 416

Table of Contents

ix

Creating Filehandles 417
Creating Filehandles with 'open' 417
Opening Files for Reading, Writing, and Updating 418
Opening Arbitrary Filenames 419
Opening Standard Input and Standard Output 419
Creating Filehandles with 'IO::File' 420
The Data Filehandle 422
Other Filehandles 423

Referring to Filehandles 424

Reading from Filehandles 426
The Readline Operator 426

Redefining the Line Separator 426
Aliasing Readline in 'while' Loops 427

Counting Line Numbers 427
Readline and the '@ARGV' Array 428

Finer Control Over Reading 428
Detecting the End-of-File 429
Reading a Single Character 430

Writing to Filehandles 430
Buffering and Autoflush Mode 432
Alternatives to 'print' 432

Handling Binary and Text Files 433
The 'binmode' Function 433
The 'open' Pragma 434

Random Access 434
'seek' to a Specific Place within a File 434
Clearing the End-of-File Condition with 'seek' 435
Writing at the End-of-File 436
Finding the Current Position 437
Object-Oriented Random Access 437

Truncating and Resizing Files 437

File Locking 439
Establishing File Locks 440
File Locking Issues and Caveats 442

Changing the Default Output Filehandle 442
Using Special Variables to Configure Other Filehandles 443
Automatically Restoring the Default Filehandle 443
Using Default Variables vs, 'IO::Handle' Methods 444

Duplicating and Aliasing Filehandles 444

Redirecting Filehandles 445

Caching Many Filehandles 446

'IO::Handle' Methods and Special Variables 448

Table of Contents

x

System Level IO 452
Opening Filehandles at the System Level 453

Open Mode Flags 453
Non-blocking IO 454
The Permissions Mask 455
Using 'sysopen' via 'IO::File' 456

Unbuffered Reading 456
Unbuffered Writing 457
System-Level File Positioning 458
'fcntl' and 'ioctl' 459

Setting Filehandle Attributes with 'fcntl' 459
Controlling Devices with 'ioctl' 462

POSIX IO 462
POSIX Filehandle Routines 463
POSIX File Descriptor Routines 463
Moving between POSIX and Standard IO 464

Summary 465

Chapter 13: Manipulating Files and Directories 467

Files and Filenames 467
Getting User and Group Information 468

User Information 468

Group Information 473
The Unary File Test Operators 475

Link Transparency and Testing for Links 477
Testing Binary and Text Files 477
Reusing the Results of a Prior 'stat' or 'lstat' 478
Using 'stat' Objects 479
Access Control Lists, the Superuser, and the 'filestat' Pragma 480
Automating Multiple File Tests 482

Interrogating Files 484
Changing File Attributes 485

File Ownership 485
File Permissions 487

The 'Fcntl' Module 488
Linking, Unlinking, and Renaming Files 490

Linking Files 491
Unlinking Files 491
Renaming Files 492
Symbolic Links 492

Copying and Moving Files 493
System Level Copies and Platform Portability 495

Comparing Files 496
Finding Files 497
Deciphering File Paths 501
Filename Globbing 503
'glob' Syntax 504

UNIX Style File Globbing 505
DOS-Style File Globbing 507

Temporary Files 508
Creating a Temporary Filehandle 508
Temporary Filenames via the POSIX module 509
Using 'File::Temp' 511

Table of Contents

xi

Manipulating Directories 513
Reading Directories 513

Directory Positions 514
Directory Handle Objects 515

Directories as Tied Hashes 515
Finding the Name of a Directory or File from its Handle 516

Creating and Destroying Directories 517
Creating Single Directories 517
Creating Multiple Directories 518

Destroying Single Directories 519

Destroying Multiple Directories 520
Moving Around Directories 520

Summary 523

Chapter 14: Command-Line and Shell Interaction 525

Parsing-Command Line Arguments 525
Command-Line Conventions 526
The '@ARGV' Array 527

Passing Arguments to Perl Itself 528
Setting Variables from '@ARGV' 528

Reading Files from '@ARGV' 529
'@ARGV' and Standard Input 531

Simple Command-Line Processing with 'Getopt::Std' 532
Basic Processing with 'getopt' 532

Slightly Smarter Processing with 'getopts' 534
More Complex Command-line Processing with 'Getopt::Long' 535

Simple Argument Processing 535

Option Prefixes 537
Defining Option Values 538

Abbreviations 541
Aliases 541

Handling Option Values 542
Documenting Options 544

Bundling Options 544

Case Sensitivity 546
Handling Unrecognized Option and Value Arguments 547

'POSIX' Mode 549
Summary of Configuration Options 549

Shells, Shell Commands, and Perl 551
Creating a Simple Perl Shell 551
Writing a More Useful Shell 552
Integrating the Shell into Perl 555
Emulating UNIX Commands on Windows 557

Summary 559

Table of Contents

xii

Chapter 15: Terminal Input and Output 561

Talking to Terminals 561
Determining if a Script is Interactive 562

Reading from the Keyboard 563
Simple Input 563
Controlling Terminal Input with 'Term::ReadKey' 564

Read Modes 564
Reading a Single Character 566

Reading Complete Lines 568
Passwords and Invisible Input 569
Finding and Setting the Screen Size 569
Serial Connections and Terminal Speed 571
Line Ending Translation 571
Getting and Setting Control Characters 572

Advanced Line Input with 'Term::ReadLine' 574
Creating a Terminal Object 575

Supported Features 577
Setting the Prompt Style and Supplying Default Input 578
Command-Line History 579

Word Completion 580

Writing to the Screen 581
Terminal Capabilities 581

Creating a Termcap Object 582
Clearing the Screen, Moving the Cursor, and Other Tricks 584

Writing in Colors 584

Higher-Level Terminal Modules 588
'Term::Screen' 588
The Curses Library 590

A Simple Curses Application 591
Curses Windows 593
Third-Party Extensions to Curses 594

Programming the Terminal Directly via 'POSIX' 594

Summary 597

Chapter 16: Warnings and Errors 599

Enabling Warnings 599

Enabling Diagnostics 600

Generating Warnings and Errors 602

Intercepting Warnings and Errors 603

Deciphering Error Results from System Calls 604
Error Numbers and Names 604
Setting the Error Number 605
Errors from Evaluated Code 605
Extended Error Messages 606
'Errno' and The 'POSIX' Module 607
Checking the Exit Status of Subprocesses and External Commands 607

Table of Contents

xiii

Making Non-Fatal Errors Fatal 608

Returning Warnings and Errors in Context with 'Carp' 609

Error Logs and System Logs 611

Advanced Warnings 612

Summary 615

Chapter 17: Debugging 617

Pragmatic Debugging Support 617

Applications that Debug Themselves 618
A Simple Debugging System 619
A Better Debugging System 619
Creating Debug Logs 621
Adding Calling Context to Debug Messages 621

The Perl Debugger 622
Starting the Debugger 622
Entering Commands 623

Simple Debugging Commands – Single Stepping 624
Running Arbitrary Code 625
Multiline Commands 625

Debugging Commands 626
Configuring the Debugger 636

Interactively 636
Through the Environment 636
The '.perldb' Script 637
Debugger Configuration Options 638

Tracing and Terminals 641
Entering the Debugger Programmatically 642
Using Debugger Hooks 643

Debugging and Informational Modules 645
The 'Dumpvalue' Module 645
The 'Safe' Module 649

Creating Compartments 649
Sharing Variables and Subroutines 649
Operator Masks 650
The 'Safe' Module in Use 651

Debugging the Perl Interpreter 652

Automated Testing 653
Writing a Test Script 653
Automating Tests 655

Profiling 656
Profiling Perl Applications 657
Generating Profile Reports 657
Collecting Timing Information Directly 661
Testing for Performance 663

'timeit' 665
'timethis' 666
'timethese' 667
'cmpthese' 667
'countit' 668

Summary 669

Table of Contents

xiv

Chapter 18: Text Processing and Document Generation 671

Text Processing 672
Expanding and Contracting Tabs with 'Text::Tabs' 672
Calculating Abbreviations with 'Text::Abbrev' 673
Parsing Words and Phrases with 'Text::ParseWords' 675

Parsing Space-Separated Text 676
Parsing Arbitrarily Delimited Text 677

Batch Parsing Multiple Lines 678
Parsing a Single Line Only 679

Formatting Paragraphs with 'Text::Wrap' 679
Formatting Single Paragraphs 679
Customized Wrapping 680

Formatting Whole Documents 681

Formatting on the Command Line 681
Matching Similar Sounding Words with 'Text::Soundex' 682

Tokenizing Single Words 682

Tokenizing Lists of Words and E-Mail Addresses 683
The 'Soundex' Algorithm 684

Handling Untokenizable Words 684
Other Text Processing Modules 684

Documenting Perl 684
Comments 685
plain old documentation 685

pod Paragraphs 685
Using pod with 'DATA' or 'END' tokens 690

Interior Sequences 691
Pod Tools and Utilities 691

Translator Tools 691

Retrieval Tools 692

pod Verification 692
Programming pod 694

Using Pod Parsers 695

Writing a pod Parser 695
Locating pods 698

Reports – The 'r' in Perl 699
Formats and the Format Datatype 699

Formats and Filehandles 701

Assigning Formats to Standard Output 702

Determining and Assigning Formats to Other Filehandles 703
Format Structure 704

Picture Lines and Placeholders 704

Data Lines 707
Suppressing Redundant Lines 708

Autorepeating Pattern Lines 709
Page Control 709

Creating Footers 711
Combining Reports and Regular Output 712

Mixing 'write' and 'print' 712
Generating Report Text with 'formline' 714

Summary 715

Table of Contents

xv

Chapter 19: Object-Oriented Perl 717

Introducing Objects 718
Object Concepts 718

Classes 718
Objects 718

Inheritance, Multiple Inheritance, and Abstraction 719

Public and Private Methods and Data 720
Polymorphism 720

Overloading 720
Adaptabilty (also called Casting or Conversion) 721

Programming with Objects 721
Creating Objects 721
Using Objects 722

Accessing Properties 722

Calling Class Methods 723
Calling Object Methods 724

Nesting Method Calls 724
Determining what an Object Is 724
Determining Inherited Characteristics 725

Determining an Object's Ancestry 725

Determining an Object's Capabilities 725

Determining an Object's Version 726

Writing Object Classes 727
Constructors 727

Choosing a Different Underlying Data Type 729
Methods 732

Object Data 736
Class Data 740

Debugging Object Classes 747

Inheritance and Subclassing 753
Inheriting from a Parent Class 754

Overriding and Calling Overridden Methods 754
Overriding and Calling Overridden Constructors 755

Writing Inheritable Classes 756
More on Class Data through Objects 756
Exports 759

Private Methods 760
Extending and Redefining Objects 761

Extending a Parent Class 761
Constructing Subclasses On the Fly 762

Multiple Inheritance 764
Writing Classes for Multiple Inheritance 765
Drawbacks with Multiple Inheritance 767

A 'UNIVERSAL' Constuctor 768
Is-a Versus Has-a 770

Autoloading Methods 773

Keeping Data Private 777
Private Class Data 778
Private Object Data 778

TE
AM
FL
Y

Team-Fly®

Table of Contents

xvi

Destroying Objects 782
Destructors and Inheritance 783
Destructors and Multiple Inheritance 784

Overloading Operators 785
Basic Overloading 785
Determining the Operand Order and Operator Name 786
Overloading Comparisons 787
Overloading Conversion Operations 788

Overloading String Conversion 788
Overloading Numeric Conversion 790

Falling Back to Unoverloaded Operations 791
Overloading and Inheritance 793
Autogenerated Operations 793
Overloadable Operations 795

Automating Object Class Development 795

Ties and Tied Objects 799
Using Tied Objects 800

Handling Errors from 'tie' 800
Accessing Nested References 801
Testing a Variable for 'tied'ness 801
'Untie'ing Objects 802

Writing Tied Objects 802
Standard Tie Object Classes 803
Tied Object Methods 803
An Example Tied Hash Class 807
An Example Class Using 'Tie::StdHash' 809

Summary 811

Chapter 20: Inside Perl 815

Analyzing the Perl Binary – 'Config.pm' 815
'perl -V' 816
How It Works 817

Platform 817
Compiler 817
Linker and Libraries 818
Dynamic Linking 818

Under the Hood 818
Around the Source Tree 818
Building Perl 821

'metaconfig' Rather than 'autoconf'? 821

How Perl Works 822
Parsing 822
Compiling 824
Interpreting 826

Internal Variable Types 827
PVs 828
IVs 828
NVs 829
Arrays and Hashes 830
Examining Raw Datatypes with 'Devel::Peek' 830

Table of Contents

xvii

The Perl Compiler 833
The 'O' Module 834
The 'B' Module 834
The 'B::' Family of Modules 836

'B::Terse' 836
'B::Debug' 837

'B::Deparse' 839
'B::C' 840

'B::CC' 841
'B::Bytecode' 842

'B::Disassembler' 843
'B::Lint' 843

'B::Showlex' 845

'B::Xref' 845
'B::Fathom' 848

'B::Graph' 848
'B::JVM::Jasmin' 849

Writing a Perl Compiler Backend 850

Summary 853

Chapter 21: Integrating Perl with Other Programming Languages 855

Using C from Perl 856
An Overview of XS 857
'h2xs', or Where to Start 857

Converting C Header Files 858
Starting from Scratch 860

The XS File 860
Declaring the 'MODULE' and 'PACKAGE' 861

XS Functions 862
Putting the 'CODE' in 862

Complex Output, 'PPCODE' and the Stack 863
Complex Input, Default Values and Variable Input Lists 865

The 'TYPEMAP' 867
The 'Makefile' 870

Dynamic Linking 871
Using the 'FFI' Module 872
Using the 'C::DynaLib' Module 874
Using the 'Win32::API' module 875

Using Perl from C 875
First Steps 875

Building a Program (The Hard Way) 876
Building a Program (The Easy Way) 877

Implementing the Perl Interpreter 877
Embedding Perl Code 880
Getting Perl Values 881
Using Perl Subroutines 882
Working with Perl Internals 884
Using Modules 886

The Java-Perl Lingo 888

Table of Contents

xviii

Perl and COM 889
PerlCOM 889
'PerlCtrl' 890

Miscellaneous Languages 891
The Filter Module 892

Summary 893

Chapter 22: Creating and Managing Processes 895

Signals 895
Signal Handling 898

The 'die' and 'warn' Handlers 900
Writing Signal Handlers 900
Avoid Complex Handlers 901
Flexibly Installing Signal Handlers 903

Sending Signals 905
Alarms 906

A Simple Use of Alarms 906
Using Alarms to Abort Hung Operations 907

Starting New Processes 908
Replacing the Current Process with Another 909
Process IDs 909
Process, Groups and Daemons 909

Handling Children and Returning Exit Codes 911
Waiting for an Only Child 912
Getting the Exit Status 912
Handling Multiple Child Processes 913
POSIX Flags and Functions 914

Communicating Between Processes 916
Very Simple Solutions 916
Pipes 917
Opening and Running External Processes 919
Bi-directional Pipes 920
Avoiding Shells with the Forked Open 922
Bi-directional Pipes to External Processes 923

Handling Bi-directional Communications 925

Sharing Data Between Processes 926
IPC::SysV 927
Messages Queues 928
Semaphores 931
Shared Memory Segments 935

Threads 937
Checking for Thread Support 938
Creating Threads 938
Identifying Threads 939
Thread-specific Data 940
Thread Management 940
Variable Locks 942
Condition Variables, Semaphores, and Queues 943

Condition Variables 943
Semaphores 947
Queues 950

Thread Safety and Locked Code 953

Summary 954

Table of Contents

xix

Chapter 23: Networking with Perl 957

An Introduction to Networks 957
Protocol Layers 957

Frames, Packets, and Encapsulation 959
The Internet Protocol 960
UDP & TCP 964
ICMP 965
Other Protocols 966
Presentation/Application Layers 966
Anonymous, Broadcast, and Loopback Addresses 966

Networking with Perl 967
Sockets 967

'Socket.pm' 967
'IO::Socket.pm' 976

TCP INET Examples 979
UDP INET Examples 986

UNIX Sockets 989

Multiplexed Servers 992
Polling Servers 993

The 'select' Function 993

The' IO::Select' Module 995
A Simple Polling Server 996

A Simple Forking Server 998
A Simple Threaded Server 999

Getting Network Information 1000
System Network Files 1001

Hosts 1003

Networks 1007

Network Services 1009
Network Protocols 1011

Determining the Local Hostname 1012

Summary 1013

Chapter 24: Writing Portable Perl 1015

Maybe We Shouldn't Bother? 1016

Newlines 1016

Files and File Systems 1018
Portable File Handling with 'File::Spec' 1020

Endianness and Number Width 1023

System Interaction 1024

Inter-Process Communication (IPC) 1025

External Subroutines (XS) 1025

Modules 1026

Table of Contents

xx

Time and Date 1026

Character Sets and Character Encoding 1027

Internationalization 1028

System Resources 1028

Security 1028

Style 1028

Platforms 1031
UNIX 1032
DOS and Derivatives 1033
Mac OS 1033
Other Perls 1035

Function Implementations 1035

Summary 1041

Chapter 25: Unicode 1043

Whom Does It Affect? 1044

What Are the Solutions? 1044

Characters and Unicode 101 1044

Data in Perl 1046

Unicode and Regular Expressions 1047
Writing Our Own Character Property 1049

Bi-directional Scripts 1050
Rendering bidi 1051
What the bidi Algorithm Does 1053
Perl and bidi 1053

Perl, I18n and Unicode 1055
Installing Unicode Fonts 1055
Installing a Unicode Editor 1055
Creating the HTML Template 1056
Processing the Resource Files 1057
Running the Script 1058
The Output Files 1058

Work in Progress 1059

Summary 1060

Table of Contents

xxi

Chapter 26: Locale and Internationalization 1063

Why Go Locale? 1064
Delving Deeper into Local Culture 1067

It's About Time: Time Zones 1077

Looks Like a Foreign Language 1080

Conjugating in Portuguese 1082

The 'Lingua::*' Modules 1084
Spelling and Stemming 1086

Writing Multilingual Web Pages 1089

Creating our own Local Perl module 1094

Summary 1096

Appendix A: Command Line Options 1099

Appendix B: Special Variables 1103

Default Variables and Parameters 1103

Regular Expression Variables (all read-only) 1104

Input/Output Variables 1106

Filehandle/format Variables 1107

Error Variables 1108

System Variables 1108

Others 1110

Appendix C: Function Reference 1113

Appendix D: Regular Expressions 1141

Appendix E: Standard Pragmatic Modules 1149

Appendix F: Standard Functional Modules 1153

Appendix G: Perl Resources 1163

Appendix H: Support, Errata, and p2p.wrox.com 1167

Index 1173

Table of Contents

xxii

Introduction

Flexible, portable, versatile, and freely available, Perl has grown from a simple replacement for shell
scripts to a powerful all purpose language with object oriented support and an enthusiastic following.
This very popular, feature rich language is gaining even more popularity as it acquires more features
with every new release. One particularly powerful feature of Perl is its implementation of libraries with
modules, which has made it a genuinely extensible language.

With its clarity, logical structure, and practical approach, Professional Perl Programming is the ideal
guide and companion into the world of Perl programming.

Who Is This Book For?
The breadth and depth of this book make it immensely useful for both the newcomer to Perl and the
experienced Perl programmer. The former will find in this book a comprehensive tutorial, which starts
its coverage from the basics of the language and requires no previous knowledge of Perl whatsoever. It
provides a thorough understanding of the language in its many aspects, from shell scripting to object
orientation. However, the tutorial contains enough details that even experienced Perl programmers will
find worth dipping into.

This book was written by experienced programmers, each of them drawing on their respective personal
experience with Perl to provide their own expertise and insight. The tone of the book is therefore of
professional developers sharing their hard earned knowledge. Following in the Wrox tradition, this
book goes beyond merely reprising the original (and free) documentation supplied with the language
and applies a pragmatic, example based approach to every subject that it covers.

Whether Perl is an old acquaintance or a new frontier, any Perl developer will find plenty to discover in
Professional Perl Programming.

Introduction

2

What's Covered in This Book?
Here is a quick introduction to the contents of this book.

We start off Chapter 1 with a general introduction to Perl. We look at installing Perl from both binary
and source distributions on UNIX, Windows, and Macintosh systems. We also cover installing Perl
modules and third party libraries, and finish with an overview of Perl's command line options and
environment variables.

Before delving into the details of Perl, Chapter 2 lays the groundwork with a brief introduction to some
of the basic concepts of the language: data types, special variables, operators, expressions, and others.
This allows newcomers to Perl to become familiar with these concepts before we investigate them in
more detail.

In Chapter 3, we examine the first and most basic of Perl's data types: scalars. We look at the three
main types of scalars – integers, floating-point numbers, and strings – and how to convert between
them. Next, we examine functions that can be used for manipulating strings. Finally, we talk about low-
level functions for string conversions.

To use scalars requires operators. Chapter 4 introduces and reviews the use of all Perl's operators and
looks at the related concepts of precedence and associativity, and how they apply in Perl. For the more
advanced reader, we also see how to disable and override operators.

Chapter 5 introduces more of Perl's data types, principally arrays, hashes, and typeglobs. It also
introduces two special classes of scalar: references and the undefined value. We see how to manipulate
these data types, and use them to create complex data structures such as multidimensional arrays and
hashes of hashes. Finally, the chapter covers constants, including how to declare scalar, list, and hash
constants.

Chapter 6 builds on the previous chapters to look at Perl's programming structures, starting with
expressions and statements, moving on to conditional statements, and finishing with a look at loops and
looping constructs.

Subroutines are reusable blocks of code that make scripts easier to maintain and adapt. Chapter 7
demonstrates how we declare and pass parameters to subroutines. It also looks at how we use prototypes
to specify what parameters a subroutine may take, and how subroutines return values. The chapter
rounds off with a more advanced discussion of subroutine attributes, and how they may be used to
modify subroutine behavior.

The twin concepts of scope and visibility are essential for understanding how variables and code
interact. Perl's scoping rules can seem complex because it supports both 'package scope' (also called
'dynamic scope') and 'lexical scope'. Both are explained and contrasted in detail in Chapter 8. This
chapter also introduces the symbol table and the related concept of namespaces.

Perl implements libraries with modules, a powerful feature of the language that allows it to be genuinely
extensible. Chapter 9 illustrates the different ways in which modules can be used, and explains
pragmatic modules that change the behavior of the Perl compiler. We also cover the special variables
@INC and %INC, and how they relate to module usage. In addition, we show how to check for the
presence and availability of modules, as well as some techniques to delay the loading and compilation of
modules unless and until they are actually used.

Introduction

3

Having looked at modules from the outside, Chapter 10 now looks at them from the inside – from the
perspective of implementing them. We first tackle basic module construction, and the special blocks
BEGIN, END, and friends. We then introduce autoloading, and discuss various autoloading techniques
and strategies, including on the fly subroutine definition. Next, the subject of importing and exporting
subroutines between different packages is examined in detail. In the last section, we cover how to create
installable module packages using the h2xs tool.

Perl's regular expression engine, one of the features most often cited as a reason for using the language,
is the subject of Chapter 11. We start with interpolation, which shares some of the same concepts and
can be used to great effect both on its own and in combination with regular expressions. After covering
interpolation, the chapter provides a complete tutorial on regular expressions, discussing the definition
and construction of regular expressions patterns as well as their evaluation, from basic concepts to
advanced techniques.

Chapter 12 introduces us to another distinct data type, filehandles. We learn several ways to create
filehandles and also learn how to read and write to them. Locking files, random access, and the default
output filehandle are discussed. Next, we learn about handling filehandles at the system level,
something that allows us a greater degree of control over them, at the cost of greater responsibility.

Following filehandles, Chapter 13 covers filenames, including file permissions and ownership. We cover
the unary file test operator, and learn how to change file attributes, and perform operations on files
through the filing system. Next, we have a look at Perl's glob operator, and the creation and
manipulation of temporary files. The last part of the chapter concentrates on directories and looks at
reading, creating, and destroying directories.

Chapter 14 is about the parsing and handling of command line arguments. We look in detail at the
special array @ARGV, which contains the arguments passed to a Perl program when it is started. Next,
the chapter examines the command line processing modules Getopt::Std and Getopt::Long. The
second part of the chapter demonstrates how to create simple Perl shells and how to integrate the
underlying shell into our Perl scripts.

The next chapter discusses programming terminal input and output. We show different ways of writing
to terminals, including using the Term::ReadKey and Term::ReadLine modules. The chapter then
addresses how to write to the screen and introduces high-level terminal modules. Finally, Chapter 15
shows us the low-level interface to the terminal provided by the POSIX::Termios module.

In Chapter 16, we introduce warnings and errors, including the generation of warnings, finding out
about errors, and dealing with them both. We learn how to interpret error results from system calls. At
times, we need to make nonfatal errors fatal, and the Fatal module shows us how to do that. This
chapter also covers the Carp module, and logging errors using both the underlying system and Perl
functions.

Debugging is discussed in Chapter 17. The chapter shows in detail how to use Perl's debugger and
covers a number of debugging modules that are part of the Perl standard library. The chapter then
shows how to automate testing, before moving on to explain profiling – the process of collecting timing
statistics for an application.

Chapter 18 is divided into three major sections, the first of which examines various modules that Perl
provides for processing text. Modules covered in this section include Text::ParseWords, for parsing
words and phrases, and Text::Wrap, for formatting paragraphs. The second section covers Perl's Plain
Old Documentation (POD). The last section shows how to generate formatted text using special layout
definitions called formats.

TE
AM
FL
Y

Team-Fly®

Introduction

4

Object oriented programming is the subject of Chapter 19. The chapter starts with a general
introduction to object concepts before delving into discussing programming with Perl objects. We are
shown how to write object classes and are given a detailed look at inheritance and subclassing. The
chapter covers keeping data private, destroying objects, and operator overloading. The last section
discusses a special feature of Perl: ties and tied objects.

Chapter 20 stops looking at Perl from the surface and takes us inside the Perl interpreter. We examine
how Perl is built, the Config.pm module, the internal data types used by Perl, and the Perl compiler.
In the latter section, we look into the workings of the O module and the B:: family of modules.

In Chapter 21, we look at integrating Perl with other languages. We first see how to use C from Perl,
looking in detail at the XS interface. Next, we learn how to access code in a dynamic library, be it a
UNIX shared object or a Windows DLL. We then look at using Perl from C. Finally, we look at the
Java-Perl Lingo (JPL), and using Perl in a COM environment.

Chapter 22 tackles the subject of creating and managing processes, starting with an introduction to
signals and signal handling. Next, we show how to manipulate and communicate between processes, as
well as how to share data. We finish with a look at a more recent feature of Perl: threads.

Chapter 23 treats us to an introduction of networking concepts before moving on to discuss sockets and
basic network programming. We read about TCP and UDP networking, as well as UNIX Domain
sockets. Socket configuration options are also covered, as well as multiplexed servers, polling, forking,
and implementing a threaded server. In the last section, we see how to get information about network
hosts, networks, protocols, and services.

Perl is a highly portable language. It runs on all major, and most minor, operating systems. But while
most Perl code is portable, we still need to be aware of the differences between platforms and the pitfalls
that can trap us. Chapter 24 highlights the issues that we need to keep in mind if we are to write truly
portable Perl code.

Chapter 25 looks at Perl's support for Unicode. The chapter starts with an introduction to basic Unicode
concepts before talking about Perl's Unicode support for regular expressions. Next, we see how
bidirectional text is rendered. The chapter finishes by demonstrating how to put Perl's support for
Unicode into action.

Having explored Unicode in the previous chapter, it is natural to follow up with a chapter on locale and
internationalization. Chapter 26 explains Perl's support for locales and how to use it. The chapter then
looks at a number of language related modules, and writing multilingual web pages.

The book finishes with a number of appendices of useful reference material, including Perl's command
line options, special variables, functions, and standard library modules.

What You Need to Use This Book
Perl is available for many platforms, but it is most widely supported on UNIX (notably Linux and BSD)
and Microsoft Windows 9x, 2000, and NT. Some sections of the book contain platform specific
examples and will not apply to both UNIX and Windows. All examples use Perl 5.6, and while any
version of Perl from 5.003 onwards can be used, a Perl 5.6 installation is preferable. At various points
throughout the book we will need to install Perl modules, all of which are available from CPAN.

Introduction

5

Although not required, some knowledge of UNIX/Linux may be helpful when dealing with certain
topics.

Source Code
We have tried to provide example programs and code snippets that best illustrate the concepts
discussed in the text. The complete source code from the book is available for download from:

http://www.wrox.com

This code is available under the terms of the GNU Public License. We suggest you get hold of a copy to
save yourself a lot of typing, although almost all the code you need is listed in the book.

Conventions
To help you get the most from the text, we have used a number of conventions throughout the book.
We have used several different fonts in the text of this book:

❑ Filenames, function names, and words that may be used in code or typed into a configuration
file are shown in a monospaced font: use warnings or Config.pm.

❑ URLs are written like this: http://www.cpan.org

Asides to the current discussion are indented and italicized:

This style is used for asides.

Commands typed at the command line are shown with a > prompt:

> perl myscript.pl
this is my output

Commands that must be executed with superuser privileges are shown with a # prompt:

make install

When we list the contents of complete scripts or want to highlight something important in a piece of
code, we use the following convention:

#!/usr/bin/perl
petunias.pl
use warnings;
use strict;
print "Oh no, not again\n";

Snippets of code that should be used as parts of other examples will be typed like this:

if (-f $file && -T $file) {
...

}

Introduction

6

Introduction

In this introductory chapter, we cover a little of the background of Perl and what makes it popular. We
also cover installing Perl and building it from source – a recommended step, if feasible, for those with
the confidence in their systems. For those who already have Perl installed, these sections can be
skipped, though if we want to use features such as threading it may be to our advantage to build Perl
from source even if we do have a binary installation already in place.

We also cover installing third-party modules and introduce the Comprehensive Perl Archive Network
(CPAN), the first, and frequently only, port of call for all Perl extensions and add-ons. It has mirrors all
over the world, and there is also a CPAN module that provides a simple but powerful way to use it. We
also cover some of the options for installing packages containing C code on non-UNIX ports of Perl,
notably ActivePerl's PPM package tool.

Finally, we look at the various ways of running Perl, and setting up the operating system to recognize
Perl scripts as Perl scripts. We also take a look at the Perl command line together with special
environment variables, and examine one way to create stand-alone Perl applications that can run
without the benefit of a Perl installation.

Introduction
Perl is a tremendously adaptable language that combines an extremely versatile syntax with a powerful
range of features. Originally inspired by UNIX text processing tools like sed and awk, and shell
scripting languages, Perl is a synthesis of features that provides a scripting environment which is vastly
more powerful than the original tools and traditional shell scripts, while also being easier to learn and
faster to develop in.

Chapter 1

8

Perl's versatility is one of its greatest strengths, but it can also be a liability if used incorrectly. Unlike
languages that have a strong sense of what is the right way or the wrong way to do things, Perl is
adaptable enough to adopt almost any approach – 'There's More than One Way to Do It', as the Perl
motto goes. This lets Perl adapt to the programming style of the programmer, and not the other way
around. In the eyes of Perl programmers, this is a good thing; in the eyes of advocates of some other
languages, it isn't. Perl's anti-motto really ought to be 'Just Because You Can Do It, Doesn't Mean You
Should.'; Perl does not impose good programming practices, so it is also easy to write badly constructed
and hard-to-read code through sloppy programming.

Perl is a very practically-minded language, and takes a no-frills approach to almost everything including
things like object-oriented programming, which are pivotal to the entire ethos of other programming
languages. This is again, both a boon and a potential pitfall. Perl is also the language of a thousand
handy shortcuts, many of which are intuitive, and others become indispensable once they are known.
We have tried to cover as many as we can during the course of this book.

Key Features
Perl has many features that contribute to its popularity. Some of them are obvious to anyone who is
familiar with Perl – its easy learning curve, powerful text manipulation features, and cross-platform
availability.

Ironically, experienced programmers sometimes have a harder time than newcomers; Perl makes some
things so easy it is necessary to do a double-take and start from scratch rather than attempting to use
familiar coding styles from other languages. This is especially true of the regular expression engine.

Others are hidden strengths – its open source credentials and licensing, independence from commercial
interferences, and active online communities. Here are a few items for those who are less familiar with
Perl to ponder upon:

❑ Perl has a relatively simple and intuitive syntax that makes it extremely quick to learn and
lends itself to very rapid prototyping, especially compared to languages that involve an
explicit compilation step. This is one reason it is popular as a scripting language – it can be
faster to code a Perl tool to do a job than to find and learn how to use an existing one.

❑ Perl is a cross-platform language, supported on almost every operating system of sufficient
complexity that has ever existed. This means that, with a few caveats, a Perl program written
on one platform, Linux say, will usually run on another, Windows say, with little or no
modification. Better still, Perl's standard library contains considerable support for handling
different platforms in such a way that Perl applications frequently need little or no additional
effort to handle multiple platforms.

❑ Perl's versatility allows programmers to learn the language and adapt it to their own particular
styles. Conversely, of course, if their styles aren't very good, Perl won't straighten them out.

❑ Perl contains a very powerful suite of features for the manipulation of text. A key feature is the
regular expression engine, which when properly used, is capable of almost any kind of textual
transformation we can conceive, and text manipulation is one reason for Perl's popularity both
as a command line tool and a web programming language.

❑ Perl's standard library comes with comprehensive support for database access and web
programming. In addition, CPAN and ActiveState distribute modules for Linux and Windows
respectively, which provide many powerful extensions to the standard library including very
comprehensive XML support, graphical user interfaces, and several flavors of embedded Perl
scripting. Perl can also be integrated into several different web servers.

Introduction

9

❑ Perl supports references (at least, from version 5) but doesn't directly support addressable
pointers. This is one of the biggest problems with C programming. References allow the easy
construction of complex data structures, but without the dangers inherent in pointer
arithmetic. As an adjunct to this, like most reference-based languages (Java is another) Perl has
a garbage collector that counts references and removes data when it is no longer required.

❑ Perl has a flexible object-oriented programming syntax, which is both powerful and at the
same time extremely simple. Its simplicity comes at the price of not implementing some of the
more advanced object-oriented concepts available in other languages, but it is capable of a lot
more than it is often given credit for.

❑ Perl is not commercially oriented. This is an important point and not one to overlook. Perl
has no commercial agenda, and does not have features added to boost anyone's market
position at the expense of the language itself. This gives it a major advantage over commercial
scripting languages like Visual Basic which, while popular, are not developed by the
communities that use them.

❑ Perl is an open source project, developed by the community of programmers who use it. Its
license allows it to be used and copied freely, under the terms of the Artistic or GNU Public
Licenses, whichever suits our needs better. This means that it cannot be commercially
coerced, and also allows it to benefit from the input of thousands of programmers around the
world. Despite that, commercial support is available from several companies both on UNIX
and Windows for those that require it.

❑ Finally, Perl is not just a programming language but also a thriving online community. One of
the most obvious signs of this is the CPAN (headquartered at http://www.cpan.org, but use a
mirror) and its comprehensive repository of Perl programming libraries and modules. Another
is the Perl Mongers, a network of regional Perl clubs and societies – see http://www.pm.org for
a list of locations.

Supported Platforms
Perl is supported on many platforms, and ports exist to more or less every operating system that still has
life in it (and a few that don't). The most commonly used of these are:

❑ UNIX: More or less every UNIX or UNIX-like operating system ever created, notably AIX,
IRIX, HP/UX, BSD, Linux, Solaris, and Tru64

❑ MS Windows: DOS, Windows 3.1, 95, 98, NT and 2000, and the Cygwin UNIX-to-Windows
compatibility environment

❑ Other Desktop OSs: Apple Macintosh (68k and PPC, both pre and post MacOS X), Acorn
Risc OS, Amiga, BeOS, OS/2, and many others

❑ Mainframes: AS/400, OS390, VMS and OpenVMS, Stratus (VOS), and Tandem

❑ PDAs: EPOC (Psion/Symbian), but not PalmOS or Windows CE at time of writing, although
porting efforts are being made for both platforms

Binary versions of Perl for all of these operating systems and many others are available from the Ports
page on CPAN at: http://www.cpan.org/ports/index.html.

Perl also builds from source on many of these platforms. This is generally preferable since binary
distributions tend to lag behind the source code in version number (the delay depends a lot on the
platform – UNIX is near instantaneous). For UNIX-like platforms, building from source should not be a
problem, and may even be educational. Other platforms that should be able to compile Perl directly
from source include DOS, OS/2, BeOS, EPOC, VMS, and Windows; see later in the chapter for details.

Chapter 1

10

In addition, when building from source, Perl is able to take advantage of additional facilities on the
platform if they are available, and to extend its support to new data types like 64 bit integers and
extended floating-point numbers where possible. It also allows the possibility of including support for
threads and other features that are frequently not enabled by default in binary distributions. Also, if we
are on a UNIX-like platform, we can, try out a development version of Perl.

Perl History and Versions
Perl, the Practical Extraction and Report Language, is an evolving language, continuously being
updated to support new features. Despite this, it is still an easy language to learn and has not lost its
basic simplicity, regardless of evolving from a simple scripting tool into a fully-fledged object-oriented
application development language.

Perl evolved hand-and-glove with the Internet, and gained rapid popularity in its early days as a
language for writing quick utility scripts. This was thanks in part to its powerful text handling features
and familiarity to programmers used to the sed and awk tools by which Perl was partly inspired. It also
gained popularity as a language for writing server-side CGI scripts for web servers, again because of its
text handling abilities and also because of its rapid prototyping. This culminated in version 4 of Perl.

Release 5 took Perl to a new level by introducing object-oriented programming features. Perl's object
orientation is a very back-to-basics approach. Like the language itself, it applies itself to actually getting
the job done rather than overly worrying about ideology, but nonetheless, turns out to be very capable.
The ability to support objects, derived principally from the introduction of hard references to the
language. Up until this point, Perl only had symbolic references, which are now deprecated (and indeed
disallowed with the strict module). It was in version 5 that Perl became more than just a language for
writing short utility scripts and became a language in which serious applications could be developed.

Version 5.005 introduced initial support for threaded programming, albeit only inside the interpreter
itself. This gave Windows, and other platforms that did not support child processes, an emulation of the
UNIX fork system call, thus greatly improving Perl's support on those platforms.

In version 5.6, the current stable version, Perl revised its version numbering system to be more in line
with version numbers elsewhere. In particular, it adopted the Linux system of numbering stable and
development releases with even and odd release numbers. The first stable version of Perl to use this is
version 5.6; the development version is version 5.7. Version 5.6 introduced a number of important
improvements, the main one being full support for Unicode character sets – not only can Perl 5.6
handle multi-byte characters, it can even handle code written using them. From version 5.6,
experimental support for threads in user-level programming is provided too, but only if built from
source and requested at that time. In this book we will be using Perl 5.6 in our examples, though we will
point out incompatibilities and alternatives for earlier versions as we go.

In the future is Perl 6, a complete and fully object-oriented re-implementation of Perl from the ground
up. The exact details have just been finalized at the time of writing, so the eventual release of Perl 6 is
some way off. In the meantime, updates to 5.6 will continue, and more experimental features will make
their way into 5.7.

Essential Information
Perl comes with a lot of documentation as standard, including a complete set of manual pages that can
be accessed with the perldoc program, if we already have Perl installed. For an index of available
pages, use the command line:

Introduction

11

> perldoc perl

This should return a list of the (many) standard Perl manual pages available as part of every Perl
installation. The perldoc command can also return information on specific Perl modules; for example,
to pick two popular Perl modules named CGI and DBI, which we shall meet later:

> perldoc CGI

> perldoc DBI

Type perldoc perldoc for information on using perldoc itself, and perldoc -h for a brief summary of
options. Key options and command variants are:

> perldoc -f funcname # look up a function in the perlfunc page
> perldoc -m module # display source code file
> perldoc -q pattern # search the perlfaq documentation
> perldoc -r pattern # search the entire Perl installation
> perldoc -i [options] # do a case insensitive lookup or search

For example:

> perldoc -f split
> perldoc -m CGI
> perldoc -q '(mail|address)'
> perldoc -i cgi

A complete set of manual pages for Perl in HTML, PDF, Postscript, and plain text formats are available
from CPAN's documentation page at: http://www.cpan.org/doc/index.html, or from
http://www.perldoc.com. Users of ActivePerl can also use ActivePerl¦Online Documentation (or
similarly named) from the Start Menu in order to obtain the Windows version.

These are direct conversions of the manual pages supplied with Perl, but may be the wrong version (in
either direction) for a local Perl installation. We can generate our own specific versions with the
conversion tools pod2html, pod2man, pod2latex, or pod2text, for example:

> pod2html --in=/usr/lib/perl5/5.6.0/CGI.pm --out=./CGI.pm.html

To generate an entire HTML tree from our own installation, which includes all the HTML documents
available from CPAN and additional documents for every module installed on our platform we can use
pod2html in a recursive mode.

Also available from http://www.cpan.org/doc/index.html is the current version of the Perl FAQ, and
some other useful essays that go beyond the basic Perl documentation.

There are many useful web sites for Perl programmers, of which http://www.cpan.org is probably the
most important. A list of useful URLs for Perl resources is given in Appendix G.

Chapter 1

12

Building and Installing Perl
Perl is released in two different versions, the stable version, also known as the maintenance version, and
a development version. Both versions update in small ways from time to time, and occasionally take a
big leap. The last such big leap was from Perl version 5.005 to Perl 5.6.0, which revised the version
numbering system at the same time; the new development release, as mentioned earlier, became Perl
5.7.0. This does not mean Perl 5.7 is better than Perl 5.6, it just means it is more experimental. Some
development releases are more stable than others, but only officially stable releases are recommended
for production environments. The new numbering scheme means that the latest stable version will
always have an even second digit – incremental updates will be in the 5.6.X series, the next major
release will be 5.8.

Getting the most current maintenance release is almost always a good idea; reasons not to do this are
because the platform on which we want to install Perl does not have an up-to-date binary release, and it
is not possible to directly build Perl from source. New maintenance versions of both stable and
development releases increment the last digit; depending on what is in them, we may or may not need
to care about upgrading Perl immediately.

Before fetching and installing a Perl distribution it is worth taking time to consider whether a binary
distribution is suitable or whether it would be worth building from source. Source distributions include
the following advantages:

❑ They can be built to take advantage of the underlying hardware; for example, Pentium+ class
processor instructions. Binary distributions are frequently 'dumbed down' in terms of
processor capabilities in order to be more widely installable.

❑ Enhanced and experimental features such as extended precision integers, floating point
numbers, and user-level threads can be included into the Perl interpreter.

❑ Support for additional packages like the GNU DBM (GDBM) and Berkley DB (DB) libraries
can be built if they are present on the system when Perl is built.

Disadvantages of source distributions are that they take longer to carry out and require a compiler and
supporting tools for the build process. They are also not immediately portable to all the platforms on
which Perl can run (which is an alarmingly large number), while binary distributions have already
solved the installation issues for their target platform. Having said this, the source is quite capable of
being built on the bulk of platforms that we are likely to be using.

Installing Pre-built Perl Distributions
Perl is available from many web sites and FTP servers. Two places to look for it are http://www.perl.org
and http://www.cpan.org, both of which carry the latest releases and links to all the distributions, free
and commercial, for all platforms on which Perl is known to work. Note that it is generally a very good
idea to pick a local mirror before downloading from CPAN, for reasons of both speed and good
neighborliness. FTP access to both sites and their mirrors is supported, of course. The main CPAN site
automatically tries to redirect browsers to a local site.

Binary distributions are available from a number of places, most notably CPAN's binary ports page at
http://www.cpan.org/ports/index.html, which contains links to a large number of binary ports and
incidental notes on availability. Some platforms lag behind the current source code release by a few
version points – if this is important, consider building from source instead.

Introduction

13

Many platforms can take advantage of pre-built packages that will install onto a system using the
standard installation tools. Linux, for example, has both .deb and RPM packages, both of which are
commonly available from the web sites of the respective distributions (Debian and distributions based
on Debian for .deb packages, and Red Hat with various other distributions, including SuSe using RPM
also). Additionally, RPMs can for be found at ftp.rpmfind.net and can be searched for using the
rpmfind utility. Solaris packages can be installed with the pkgadd facility, and so on.

In general, packages keep up to date with the current Perl release, but check first and make a note of
any changes that may mean getting a more up-to-date release.

Installing Perl on UNIX
Installing a binary distribution of Perl is trivial – we just need to unpack it into the place we want it to
live; to install it into a system-wide place like /usr/local or /usr/lib we will need to be superuser,
of course, which is usually denoted by the prompt # on the command line. The latest version of the
standard package in both RPM and Debian formats can be tracked down at http://www.activestate.com.
After retrieving the correct package, the following command lines for .rpm and .deb files will place
them in the relevant location and install Perl for us:

rpm -i ActivePerl-5.6.0.620-i686-linux-thread-multi.rpm

dpkg -i ActivePerl-5.6.0.620-i686-linux-thread-multi.deb

In addition, if we wish to run Perl and attendant scripts like perldoc from the command line, we need
to either place them in a standard place for executables that is on the system path or, if system
administration states that installing Perl off /usr is not possible, then it isn't necessary to install Perl
into an official place. We can install it in our own home directory perfectly well too.

Installing Perl on Windows
There are three main ports of Perl to Windows; the native port, the ActiveState port, and the Cygwin
port. The native port can be built straight from the source, which is the preferred alternative; a straight
binary port is available from the ports page for those who really can't build from source and can't (or
won't) use one of the available alternative binary ports.

The ActiveState port, ActivePerl, is available from http://www.activestate.com. If we are using
Windows 9x, we will need the Microsoft Windows Installer (Windows 2000 and ME have this as
standard). It is available from the Windows Download page at ActiveState's web site:
http://www.activestate.com/Products/ActivePerl/Download.html. Select the appropriate Installer and
install it first. We can then download the binary distribution from the Windows Download page or FTP
it from ftp://ftp.activestate.com/ActivePerl/Windows/5.6.

In addition, there is a Cygwin port for the Cygwin UNIX compatibility library available from
http://sourceware.cygnus.com/cygwin (actually a part of Red Hat now). The Cygwin Port has the
advantage of supporting (and indeed coming supplied with) many of the GNU utilities, including gcc,
gzip, make, and tar, which the CPAN module CPAN.pm prefers to use.

Note that Cygwin is a supported build option in the Perl source distribution (see the file
README.cygwin in the top directory of the unpacked source), but if required, a port of Perl 5.6 for
Cygwin V1.1 is available from http://cygutils.netpedia.net, which may be unpacked and installed with
tar (which comes with Cygwin), just as with UNIX binary ports.

TE
AM
FL
Y

Team-Fly®

Chapter 1

14

Installing Perl on Macintosh
The Macintosh port of Perl, also known as MacPerl comes in several different forms, divided into two
stand-alone versions and either a binary or source distribution based around the Macintosh
Programmers Workbench (MPW). At the time of writing, the current version of MacPerl is based on
Perl 5.004. Either version works on any version of MacOS from 7 through 9. All of the files needed, can
be found at a mirror of http://www.cpan.org/ports/mac. Additional information is available at the
MacPerl homepage at: http://www.macperl.org/.

All versions of MacPerl require the core binary Mac_Perl_520r4_appl.bin (for version 5.004). To
get the stand-alone application with all the trimmings (libraries and documentation), install
Mac_Perl_520r4_bigappl.bin.

To get the stand-alone application only, install Mac_Perl_520r4_appl_only.bin. 68k-based
Macintoshes with dynamic library loading may instead use Mac_Perl_520r4_appl_cfm68K.bin. For
the version based on the MPW, first make sure that the MPW is actually installed. Then add:
Mac_Perl_520r4_tool.bin and Mac_Perl_520r4_bigtool.bin.

To use the MPW to build MacPerl, use Mac_Perl_520r4_tool.bin and Mac_Perl_520r4_src.bin.

MacOS X ships with Perl preinstalled, so installing it is not a problem. In addition, since MacOS X is
UNIX-based underneath, most of the details for managing UNIX installations apply to it also, including
shebang lines for script identification (#!\usr\bin\perl).

Building Perl from Source
Building Perl from source is not actually necessary for most platforms, so this section can be skipped by
those who would prefer not to experiment with compilers or are simply impatient to get on to actually
writing Perl code. This is a brief introduction and rundown of building Perl for those who are curious
(or have no choice) about building Perl from source, or want to do more than the standard binary
installations allow, such as enabling support for threads. We highlight the main points for a UNIX
installation; the general technique is either identical or easily adapted for the other platforms supported
by the source code distribution.

Source distributions are available from a number of places, most notably CPAN's Perl Source code
page at http://www.cpan.org/src/index.html. The current production release is always available as the
files stable.tar.gz (for systems with gzip, typically UNIX) and stable.zip (for systems with zip
and unzip utilities, typically Windows, Macintosh, and many desktop operating systems). Development
releases are available as devel.tar.gz and devel.zip. In both cases, the actual version number is
not reflected in the filename; it is in the archive inside, which unpacks under the directory perl-
<version> (for example perl-5.6.0).

System administrators, who are concerned with the accounting of the files they install, can still use a
package installation and build from source. This gives us the advantage of having Perl installed as an
accountable package, while at the same time taking advantage of the benefits of compiling it from
source. Rather than installing a binary RPM for example, we can acquire the source RPM or SRPM (use
--sources as an argument to rpmfind to locate one) and use >rpm --rebuild perl.srpm to build a
new binary package we can then install.

Introduction

15

Building Perl is mostly just a matter of unpacking the source archive (stable or development version)
and choosing how to configure the build process. Before moving on to configuring the installation, we
need to extract the archive. For example, assuming we have the gzipped source on a UNIX system, we
use the following command lines:

> gunzip -c stable.tar.gz | tar -xvf -
> cd perl-5.6.0

If we have the GNU version of tar we can also do the unpacking in one step with:

> tar -xzvf stable.tar.gz

Perl builds easiest on UNIX platforms; the majority of these can use the supplied Configure script to
set up and compile Perl with the features and installation locations they want. Other platforms
supported by the source bundle are documented in one of the README files available in the top-level
directory of the source tree. For instance, instructions and additional details for building Perl on
Windows are contained in the README.win32 document. If the platform we want to build on has an
associated README file, we can build and install Perl on it, but there may be more involved than simply
running Configure.

The Configure script sets up the source distribution for compilation on the chosen platform. It has two
modes of operation. The first is an interactive step-by-step question and answer session that asks us how
we want to build the interpreter, where we want to install it and the libraries that come with it. At any
stage, where a reasonable default can be assumed, the script does so. We usually change just the options
we care about and accept the defaults for the rest. At its simplest we can use Configure this way by
entering:

> ./Configure

The second mode of operation skips the question and answer session and assumes the defaults for all
questions. Without qualification this will build a standard Perl that installs into the default place
(/usr/lib/perl5 on most systems) when we subsequently carry out the installation. To run
Configure in this way we use the -d option, for 'default':

> ./Configure -d

In either mode, if we want to have Configure automatically start the compilation process after
finishing the initial set-up, we can specify the -e option. To stop Configure being concerned about the
less important issues of how and why it is making its decisions, we can also specify -s, for 'silent'. These
are both good options to specify together, with -d to configure and build Perl with minimal fuss:

> ./Configure -des

Both modes also allow us to specify configuration options on the command line. In the interactive
mode, this changes the default option presented to us when Configure asks us the appropriate
question; we can then change our minds again if we want to. In the non-interactive mode this is the only
chance we get to determine how the resulting Perl is built.

There are potentially many options that can be specified; the question and answer session describes
most of the ones that it sets so it is worth running through it once just to see what is set by which
question. Possibly the most likely option to specify is the prefix option, which determines where Perl
is installed after it is built and presets the values of many other options. Configuration options are set
with the -D flag, so to tell Perl to install itself in /usr/local/perl5_6_0 rather than the default
location we would use:

Chapter 1

16

> ./Configure -des -Dprefix=/usr/local/perl5_6_0

This example uses the non-interactive mode of Configure to install Perl under the /usr/local
directory. We might do this, for example, if we already have a Perl installation and we do not want to
disturb it.

Another option to combine with prefix to ensure we don't upset an existing installation is the
installusrbinperl option. By default this is enabled, and causes the installation stage to copy perl
and a few supporting scripts into the default place for system executables. Unless we change it, this
default is /usr/bin. To disable an option we use -U, so to set up Perl to install elsewhere and leave the
existing installation untouched, we would use:

> ./Configure -des -Dprefix=/usr/local/perl5_6_0 -Uinstallusrbinperl

A complete list of Configure's options can also be viewed by using the -h or --help option on the
command line:

> ./Configure --help

If we have been through the configuration process at least once before, there will be a config.sh file
present. In the interactive mode, Configure will ask if we want to use it, and then preset itself with
defaults from the previous run. This file contains all the names of the options that we can supply on the
command line too, so it can be handy for finding out how to set options. Note that if we are rebuilding
Perl with different options, we should additionally execute a make distclean before we configure and
build Perl a second time:

> make distclean
> ./Configure

Once configuration is complete, we actually build and install Perl by typing:

> su
Password:
make install

This will build and install Perl according to the choices we made at the configuration stage. If we are
overwriting an existing installation and prudently want to test the new build before we wreck anything,
we can build Perl without installing it, test it, and then install it only if we are happy:

> make
> make test
> su
Password:
make install

At the end of the build process a file called myconfig is generated and this contains complete details of
the configuration used to build Perl. This is handy for checking what was actually used to build Perl; a
similar output can be generated from Perl itself with the -V option:

> perl -V

Introduction

17

Building a Threaded Perl Interpreter
One specific reason for building Perl from the source distribution rather than installing a precompiled
binary is to enable support for threads. Threads are a powerful way to write multi-tasking applications
without the overheads of multiple processes, and are fundamental to languages such as Java. In Perl,
threads are still experimental, so they are not built by default.

The interactive question and answer session that Configure provides asks two questions about threads;
firstly Build a threading Perl?, and secondly, Use interpreter-based threads? The answers to these
questions are y and n respectively. Unfortunately though, this will not result in a working threaded Perl
interpreter; we must also select thread support on the command line with the usethreads and
use5005threads options. Here is how we would do that before entering an interactive question and
answer session:

> ./Configure -des -Dusethreads -Duse5005threads

Or, to build a threaded version of Perl non-interactively, and in a different location as described above:

> ./Configure -des -Dusethreads -Duse5005threads -Dprefix=/usr/local/perl5_6_0
-Uinstallusrbinperl

Either way, we will now have a correctly working threaded Perl. If all has gone well we should have a
Thread module in the standard library. We can check that it is there by executing (in the above
example):

> /usr/local/perl5_6_0/bin/perldoc Thread

See the end of Chapter 20 for a description of threads and why we might want to use them, and also the
threaded network server example in Chapter 23.

Differences for Windows and Macintosh
Building Perl from source on Windows is broadly similar to building it on UNIX with the primary
difference being the choice of compiler and make utility used. Running >perldoc perlwin32
provides some reasonably detailed information on the options available. For those without a Perl to use
to run perldoc the pages are also available on the Web – see earlier in the chapter for some URLs to
gain more information.

To build Perl for Macintosh first requires installing the base packages and then compiling the source
code with the Macintosh Programmer's Workbench (MPW). Refer to the above section titled 'Installing
Perl on Macintosh' for details on which files to get and install.

Other Platforms
Other than generic UNIX Windows support and, several other platforms are supported by the source
distribution. Each of these has a README file located in the top of the tree that provides information to
get Perl built and installed on that platform. Here is a short summary of them:

README.amiga Amiga
README.beos BeOS
README.cygwin Windows port using Cygwin
README.dos DOS port using djgpp
README.epoc Symbian/Psion EPOC
README.hpux HP/UX
README.hurd GNU Hurd

Chapter 1

18

README.machten Power MachTen
README.mint Atari ST
README.mpeix HP 3000 MPE
README.os2 OS/2
README.os390 OS 390
README.plan9 Plan 9
README.posix-bc BS2000 OSD V3.1A Posix
README.qnx QNX4
README.vmesa VM/ESA 3.20
README.vms VMS
README.vos VOS (Stratus)
README.win32 Windows 9x/NT

Note that Windows has more than one option, depending on whether we want to use the native win32
port, the Cygwin support libraries, or the DOS version (which requires the djgpp compiler, a DOS port
of gcc is available from http://www.midpec.com/djgpp/). Other ports on this list are more or less
functional – don't necessarily expect them to work completely, especially very old, very new, or very
obscure platforms.

Building Perl from source on other platforms may or may not be possible, depending on the platform.
See the ports page on CPAN for availability and instructions if available.

Building and Installing Modules
Perl comes with a very feature-rich and comprehensive standard library. However, many more modules
are available from CPAN, so it would be nice to be able to install them too. The easiest way to
download and install modules on most platforms is the CPAN module. Many module packages also
include C code, however. In these cases the CPAN module requires a C compiler and make tool, which
can limit its ability to function on non-UNIX platforms. Users of the popular ActivePerl distribution are
well provided for here; ActivePerl supplies it own package management tool PPM, which is strongly
inspired by the CPAN module and allows us to download and install precompiled Windows versions of
CPAN modules, avoiding the need for a compiler.

We can also download and install module packages manually by, downloading a package file from
CPAN or (preferably) one of its mirrors using either HTTP or FTP. To get to the modules, either FTP to
the CPAN mirror of your choice or point a web browser to: http://www.cpan.org/modules/. This, or the
local mirrored equivalent, contains links that list the modules in the archive by author, category, name,
or archive time. We can also make use of http://search.cpan.org/ to search for modules in various
different ways.

Installing Modules with the 'CPAN' Module
The CPAN module provides a Perl-based interface to the CPAN archive for UNIX platforms, and
possibly others. We can use the module to scan CPAN for new packages, check for updates on existing
packages, and install new ones, including dependent modules and module bundles. With the optional
CPAN::WAIT module (available from CPAN, naturally) also installed, we can carry out full text searches
using the CPAN Wide Area Information Server (a.k.a. WAIS) database.

The CPAN module takes a little while to set up, because it needs to be told about the availability of
certain system resources and also the nearest CPAN mirrors to use. This is almost always effort well
spent, however, since it allows us to search, examine, build, and install modules all from the same
command line prompt.

Introduction

19

Starting and Configuring CPAN
To start the CPAN module from the command-line, use:

perl -MCPAN -e shell

This runs Perl, loads the CPAN module into memory and runs the shell subroutine, which provides an
interactive interface. Note that if we have Perl installed in a privileged place we will need to be
superuser to actually install anything, though we can still perform queries. If CPAN has never been
configured before it will run through a set of questions to get itself up and running. Like Perl's build
configuration a lot of these are self-evident, and others are computed by default. However, the module
needs to fetch several resources including a current list of CPAN mirrors during the installation process
so it is very helpful (though not absolutely necessary) to have an active Internet connection during the
configuration process.

UNIX systems will generally have no trouble here, but non-UNIX systems will need to make sure that
they have acceptable versions of at least some of the following command-line utilities:

❑ A copy of gzip

❑ A tar program

❑ A zip/unzip program (WinZip, infozip, etc)

❑ A make program (for example, dmake or nmake for Windows)

❑ A copy of the open source lynx browser (this is only necessary if Net::FTP is not installed
yet)

❑ A non-interactive FTP command line client (such as ncftpget, freely available and installed
on many Linux and other UNIX-like platforms)

The configuration process will also ask about FTP and HTTP proxies, and then fetch a list of mirrors
from which we should pick two or three in the local area. This is the only part of the configuration that
needs considered user input; select three or so numbers from the list for the appropriate area and all
should be well. Note that any option can be changed after the initial configuration with the o command
from within the interactive shell. (The process will also ask about a WAIT server. This is an optional
feature that looks for the CPAN searchable WAIS database and enables the search commands listed
under Other CPAN commands. The default server offered works fine.)

The CPAN module supports command line editing and history, if supplied by the Term::ReadLine
module. This, and the Term::ReadKey module, can of course be installed with the CPAN module once
it is in place.

Once we have the CPAN module configured, we should have a cpan> prompt at which we can enter a
variety of commands. Typing h or ? will generate a helpful list of available commands. If we have
Term::ReadLine and Term::ReadKey installed and the GNU readline library available (see Chapter
15 for more on all of these) the prompt should be highlighted and underlined, otherwise we can install
them ourselves:

cpan> install Term::ReadKey
...

cpan> install Term::ReadLine
...

Chapter 1

20

Installing these modules significantly improves the CPAN shell by adding better interactivity and
command line history. Alternatively, we can install the CPAN bundle, which contains all the modules
that CPAN can make use of, with:

cpan> install Bundle::CPAN
...

Either way, the CPAN module will go off and try to fetch the module or modules we requested. If we do
not have an up-to-date copy of the Net::FTP or LWP modules (for FTP or HTTP transfers respectively)
installed then it will try to use the lynx browser to fetch it. If we don't have any of these installed, we
will have to use an FTP client to fetch and install at least one of them manually. We should use reload
cpan after executing any of the above commands to update the running CPAN shell.

Installing Modules
The CPAN module provides four commands related to installation. The main one, and in practice the
one we tend to use the most often, is install. This takes a bundle, distribution, or module name (it is
not practical to install an author, although it would be an intriguing concept) and determines the
appropriate distribution file or files to fetch, build, and install. This means we can install modules
without needing to worry about which actual distribution file they belong in. For example, we can say:

cpan> install Apache::Registry

Installation is a multi-step process:

❑ The currently installed version (if any) is compared with that available from CPAN. If the
installation is up-to-date and we are not doing a force (see below) then the installation
terminates.

❑ The distribution file (named explicitly, by bundle, or inferred from the module requested) is
fetched from the first configured CPAN mirror and unpacked.

❑ Next, the module is built using perl Makefile.PL followed by make.

❑ Next, the module is tested using make test. For most distributions this executes a test suite
implemented using the Test and Test::Harness modules. If this stage fails, the module
installation aborts with an error, unless we used the force modifier, which is explained
shortly.

❑ Finally, if the distribution passed the test stage, it is installed into Perl's library.

We can, if we choose, also carry out these stages individually, but this is usually only done if there is a
problem with the automatic installation.

Installing Modules in Stages

Instead of using the install command to fetch, build, test, and install a module in one go, we can use
the get, make, and test commands to perform individual steps, and then finish with install. This
can be occasionally useful for examining the outcome of each stage before proceeding to the next;
generally useful if the automated install process fails for some reason.

In fact, each command implies the ones before, so if we use make for a module that has not been
fetched, get is used to fetch its distribution first. We don't actually need to issue get, make, or test
commands, since install implies all of them – or as many of them as still remain to be done.

Introduction

21

Forcing Installation
If an installation fails in the test phase, or CPAN thinks that a module or distribution is already
installed and up-to-date, it will decline to do so a second time. We can override this with force, for
example:

cpan> force install Term::ReadLine

It is perfectly fine to do this, but we should be aware that the distribution might not function entirely
correctly (or in more extreme cases, function at all). Some test failures may involve features that are not
applicable to a particular site or operating system. Read the output of the test phase carefully before
deciding whether to use force.

Examining the Contents of a Distribution
It is rare that we would actually want to examine the contents of an unpacked distribution directly, but
if we want to we can do so with the look command. This opens a system shell in the root directory of
the unpacked distribution where we can list files:

cpan> get CGI
...

cpan> look CGI
> ls
...

We can also execute make commands here directly if we need to (for example >make install
UNINST=1 to install a new module removing any older installed versions at the same time). However,
look does not perform any kind of remote access; if we look for something that we don't have installed
then it will need to be fetched and downloaded first.

Cleaning Up
Once a package has been installed we can clean up the files generated during the build process with
clean. This takes a bundle, module, or distribution as an argument and issues a make clean on the
unpacked sources cached by the CPAN module. Clearly this makes sense only if the package has actually
been installed recently. For example:

cpan> clean Net::FTP

Cleaning up is useful if we are very short of disk space, otherwise we can usually skip it as the CPAN
module automatically clears out the oldest build sources. This occurs whenever the total exceeds the
cache size specified when we configured it at the module start up.

Listing and Searching CPAN
CPAN categorizes its archive in four different ways: by author, by bundle, by distribution, and by
module:

❑ Author: These are the authors of the distributions available on CPAN, listed by code and full
name.

❑ Bundle: Groups of module distributions that are commonly installed together are collected
together into special distributions called bundles, which simply list a set of related
distributions. Installing a bundle saves time and effort by avoiding the need to install a
collection of modules one by one. Note that bundles do not contain any source code
themselves; they are just a list of other distributions to install. All bundles are given names
starting with Bundle:: to distinguish them from 'real' packages.

Chapter 1

22

❑ Distribution: The actual distribution files for Perl packages, including the directory prefixes
for the author whose distribution it is.

❑ Module: As well as a list of distributions, CPAN keeps track of all the modules provided by
those distributions. Since we can install distributions by naming a module inside them, we
rarely need to actually type in a distribution name.

To search CPAN and list records, the CPAN module provides the a, b, d, and m commands for specific
categories, or the i command, which returns information on all of these categories. On its own, the i
command will return a complete list of every record on CPAN:

cpan> i

This is of course takes time and produces a very long and unwieldy list, even though the information is
fetched from the mirror and stored locally. More usefully, we can narrow down the result by supplying
a literal string or a regular expression. The literal string must match exactly:

cpan> i CGI

A regular expression (covered in Chapter 11) can be more specific as well as more flexible. To search
for anything with 'CGI' in it (case insensitively, incidentally):

cpan> i /CGI/

To search for anything that begins with 'CGI', 'cgi', 'Cgi', and so on use:

cpan> i /^CGI/

To search for anything in the CGI module hierarchy:

cpan> i /^CGI::/

Alternatively, we can use the a, b, d, or m commands to search for specific authors, bundles,
distributions or modules. These work identically to the i command but only return information for the
specified category. For example, to list all modules containing XML but not distributions:

cpan> m /XML/

To find information for a particular author:

cpan> a DOUGM

To find all authors called Bob:

cpan> a /^Bob/

To find distributions with a version number of 1.x:

cpan> d /-1.\d/

Finally, to list all available bundles:

cpan> b

Introduction

23

Listing Out-of-date Modules

We can find out which modules and distributions have been updated on CPAN compared to our locally
installed copies with the r command:

cpan> r
Package namespace Installed Latest in CPAN file
Apache::Session 1.51 1.53 J/JB/JBAKER/Apache-Session-1.53.tar.gz
CGI 2.68 2.74 L/LD/LDS/CGI.pm-2.74.tar.gz
DBD::CSV 0.1023 0.1024 J/JW/JWIED/DBD-CSV-0.1024.tar.gz
DB_File 1.72 1.73 P/PM/PMQS/DB_File-1.73.tar.gz
Date::Manip 5.37 5 39 S/SB/SBECK/DateManip-5.39.tar.gz
Devel::Symdump 2.00 2.01 A/AN/ANDK/Devel-Symdump-2.01.tar.gz

Since this command requires that the entire contents of the locally installed Perl library are examined
for version numbers and compared to the current versions available on CPAN, it takes a short while to
execute. We can narrow down the list we want to check for by supplying a string or regular expression.
For example to check for all out-of-date XML modules, the following works:

cpan> r /XML/

This regular expression simply matches any module with 'XML' in the title. If we only want to know
about XML modules in the XML hierarchy, we can specify a more explicit expression by anchoring it
at the front:

cpan> r /^XML::/

Listing Uninstalled Modules

In a similar manner to the r command, we can also list all currently uninstalled modules with u. Not
surprisingly, this generates a rather large list of modules, so it is more useful with a regular expression.
For example, to find all uninstalled modules in the 'XML' family:

cpan> u /^XML::/

Reading Module Documentation Without Installing
If we want to find out more about a module before installing it, since there are often multiple modules
available for some tasks, we can use the readme command. This will look for the readme file within the
distribution and, if present, fetch and display it to us without installing the module:

cpan> readme Apache::Session

Reloading CPAN
We can reload both the index information and the CPAN module itself with the reload command,
should either be out of date (it is possible, though perhaps not likely, to have a permanent CPAN shell
active on a server; updating the index from time to time would then be useful). To reload the index, use:

cpan> reload index

TE
AM
FL
Y

Team-Fly®

Chapter 1

24

To reload the CPAN and associated modules, use reload cpan. For example, to upgrade CPAN itself
we can use:

cpan> install Bundle::CPAN
cpan> reload cpan

The module will even prompt us to do this if our version of the CPAN module has been superseded.

Configuring CPAN Options
The o command configures CPAN options, and allows us to change any choice that we made during the
original set-up. To list all current configurations use:

cpan> o conf

To view a specific option, name the option. For example, to find the size of the build cache for
unpacked distribution sources:

cpan> o conf build_cache
build_cache 10

To set an option, name the option and the new value. For example, to increase the build cache to 20
megabytes:

cpan> o conf build_cache 20

We can also set debugging options for various parts of the CPAN module. For general usage we would
not normally want to do this, but a list of debugging options can be generated with:

cpan> o debug

We have now mentioned in brief all of the most important CPAN commands.

Installing Modules by Hand
If we can't make use of the CPAN module then we can still install modules by hand. The process is
essentially the same for every platform; the principal difference being the tools required on each
platform to perform the unpacking, building and installation of the module.

Installing Modules on UNIX

UNIX systems can install module packages downloaded directly from a CPAN mirror. The package
filename generally resembles Some-Module-1.23.tar.gz, that is, a gzipped tarball. To install it we
first unpack it:

> gunzip -c (or gzip -dc) Some-Module-1.23.tar.gz | tar xvf -

If we have the GNU version of tar (any Linux or BSD based system should have this), we can perform
both steps in one go with:

> tar -zxvf Some-Module-1.23.tar.gz

Introduction

25

The advantage of either approach is, of course, that we avoid uncompressing the distribution, which can
be handy if we're short on disk space.

Having unpacked the module, we go into the source directory (which should have the same name,
minus the tar.gz suffix) and generate the Makefile from the supplied Makefile.PL file:

> cd Some-Module-1.23
> perl Makefile.PL

Finally we install and test the module, using make:

> make
> make test
> su
Password:
make install

If we want to keep the original source directory but clean out all the additional files created by the
building and installation process we can use the standard:

> make clean

If we change our minds and still have the source to hand we can also (sometimes) uninstall the package
again using:

make uninstall

Installing Modules on Windows

The ActiveState port of Perl comes with a utility called PPM, which can install pre-built CPAN modules
archived into ppd files. It works in a very similar way to the CPAN module that inspired it and by default
connects to the archive at http://www.activestate.com/PPMPackages/5.6/.

Say we wish to install a package named Math::Matrix, which is not installed by default. We simply
have to issue the command line at the prompt:

> ppm install Math::Matrix

As if by magic, and in a similar fashion to the CPAN module for UNIX, the package is retrieved and
installed automatically ready for your use and abuse.

The PPM facility is a very capable tool and one of the most attractive reasons to use ActivePerl; more
information and a list of alternative mirrors is available in the PPM FAQ document at:
http://velocity.activestate.com/docs/ActivePerl/faq/ActivePerl-faq2.html. An excellent resource for an
up-to-date list of modules available for use with PPM is http://www.activestate.com/ppmpackages/5.6/.
This is maintained by ActiveState so it will be reliable and of great use.

We continue with installing modules by hand, since that is the topic of the conversation. The native
port of Perl for Windows is essentially similar to the UNIX method, only with different decompression
software. The .zip package files can be decompressed using WinZip,infozip, or any other
ZIP-compatible decompression tool. WinZip can also handle UNIX-style gzipped and tarred files of the
kind supplied by CPAN.

Chapter 1

26

Once the package is uncompressed and extracted we can install it with a make tool (such as dmake) in
the usual way. For example, assuming dmake:

> dmake
> dmake test
> dmake install
> dmake clean

This of course relies on a functional C compiler being available if the module happens to contain C
code too. For pure Perl modules, this isn't a problem.

If we don't have a make equivalent and we don't have any C code to deal with, we can sometimes get
away with simply copying the files that were unpacked into an appropriate part of the standard library
tree, for instance the \site\lib branch. Some modules use a module called AutoSplit on installation
to carve up the module source. Another module, AutoLoad then loads and compiles pieces of the
module on demand. Since we are unable to make use of the standard installation process here we may
also need to perform a split ourselves before the module is completely installed. If a module file uses the
AutoLoad module, we will need to run the following from the top of Perl's installation to finish the
installation:

> perl -MAutoSplit -e "autosplit site\lib\ to \module.pm site\lib\auto"

(The AutoLoad and AutoSplit modules are covered in more detail in Chapter 10.)

Installing Modules on Macintosh

Precompiled binary versions of some packages for MacOS created by Chris Nandor are also available
from http://www.cpan.org/authors/id/CNANDOR/. As usual, we use a mirror of http://www.cpan.org if
possible. Also available from this page is cpan-mac, a package of utilities that makes it possible to use
the CPAN module with MacPerl. However, this will not build modules that contain C code.

Macintosh systems can unpack source package files with Stuffit or one of its many similarly inclined
cousins to get the unpacked source. If the package requires building C source then things get tricky – a
copy of the Macintosh Programmers Workbench (MPW) is required, plus a certain amount of dexterity.
The MacPerl homepage http://www.macperl.org/ offers some advice and links that may help with this,
as well as installing MacPerl itself.

If the package does not contain C code then we can install it by manually moving the package files to
the Perl library, generally under the site_perl folder, replicating the directory structure of the
package as we go. Note that the line endings of the source files need to be Apple format – LF/CR, rather
than CR/LF or just LF. The decompression should handle this automatically, but it might not.

As with Windows, we may also need to manually split the module to complete its installation. This will
be the case if the module file uses the AutoLoad module. Since there is no command line on a
Macintosh we will need to create and run the following to finish the installation:

#!perl use warnings;
use AutoSplit;
autosplit "${MACPERL}site_perl:Path:To:Module.pm",

"${MACPERL}site_perl:auto";

Introduction

27

Installing Modules on Other Platforms

The CPAN web site contains some instructions for installing modules on several platforms on the
Installing CPAN Modules page at http://www.cpan.org/modules/INSTALL.html. Some of this
information is also available from >perldoc perlmodinstall, both sources with varying degrees of
concurrency.

Running Perl
Having retrieved, compiled if necessary, and installed Perl, we now need to consider how to get the
actual programs and Perl scripts running. The core of Perl is the Perl interpreter; the engine that
actually interprets, compiles, and runs Perl scripts. Perl is not a traditional interpreted language like
shell scripts; instead the interpreter compiles it from the original human readable version into a
condensed internal format generically known as bytecode. This bytecode is then executed by the
interpreter. All Perl programs therefore go through two phases; a compile phase where the syntax is
checked and the source code, including any modules used, is converted into bytecode, and a run-time
phase, where the bytecode is processed into machine instructions and executed.

Perl tries hard to be platform independent, but every platform has its own way of doing things,
including its own way of running Perl. The first item on the agenda is usually to teach the operating
system how to recognize a Perl script as a Perl script. UNIX-like platforms have it easiest, possibly
because the whole system is geared towards scripts since much of the boot-up sequence is controlled
through scripting. Windows, Macintosh, and other platforms on the other hand can be set up to handle
Perl too, in their own particular ways.

The interpreter supports several command line options that affect its behavior in both the compile and
run-time phases. These include obvious and essential features like enabling warnings or extracting
configuration information, and less obvious but very useful features like implicit loops and automated
input parsing that allow us to use Perl as a generic Swiss-army knife command line tool. Since we don't
always want to specify command line options directly, Perl allows us to set them, as well as some of
Perl's other default values, through environment variables. In the case of Windows, we can instead or
additionally, set some values via the registry too.

Sometimes it isn't convenient to install Perl just to run a Perl script. Up until recently there wasn't a
choice; all scripts need the Perl interpreter to run them, therefore they need to have it, plus any library
modules that they need, installed. However, Perl 5.6 comes with an experimental compiler utility called
perlcc that attempts to generate a stand-alone Perl application. We take a look at this in Chapter 20.

Starting Perl Applications
In order for a Perl script to run it must be given to the Perl interpreter to execute. Depending on the
platform there are various different ways this can happen. The simplest way, which works on all
platforms that have a shell or equivalent command line mechanism, is to run Perl directly, and supply
the script name as an argument:

> perl myscript.pl

This presumes, of course, that the Perl interpreter perl, perl.exe, etc. is somewhere on the path
defined for the shell. We can also supply command line switches to Perl when we run it directly. For
example, to enable warnings:

Chapter 1

28

> perl -w myscript.pl

However, we usually want to run a Perl application directly, that is to type:

> myscript.pl

For this to work, the shell has to know that myscript.pl is a Perl script, find and execute the Perl
interpreter, and feed the program to it. Since Perl tries to be helpful, it will actually tell us the best way
to start up an application this way if we ask it using the -V option:

> perl -V:startperl

If the platform supports a form of implicit indication which allows a script to indicate that it is a Perl
script and not some other form of executable, this will produce the information required, adjusted for
the location that Perl is installed in. For example, on a UNIX system we get something like:

> startperl='#!/usr/bin/perl';

This indicates that #!/usr/bin/perl can be added to the start of any script to enable it to start up
using Perl automatically.

Perl on UNIX
UNIX systems have it easiest when it comes to setting up scripts to run with Perl automatically, largely
due to its close and long term relationship with shells.

When the operating system comes to execute a Perl script, it doesn't know it is actually a Perl script to
start with. However, when it sees that the first line starts with #! (shebang), it executes the remainder of
the line and passes the name of the script to it as an argument, for example:

#!/usr/bin/perl
... rest of script ...

In this case the command happens to run the Perl interpreter. So, to start a script up directly on UNIX
systems we need to add this line, (possibly embellished with additional command line options) to the
start of a Perl script and make the script file executable.

The shebang line technique is a standard on most UNIX platforms and should work unless we are using
a particularly obscure and/or old platform. Shells on other platforms don't understand the significance
of a first line beginning #! and so we have to adopt other approaches.

Perl on Windows
MS Windows 9x and Windows NT 4.0 and above can make use of file extension associations stored in
the registry to associate the .pl extension with the Perl interpreter. When you install the ActiveState
distribution of Perl, it does this automatically, as long as the script isn't run from a DOS window.
Otherwise, we need to follow these next instructions. Select Settings | Control Panel | Folder Options
from the Start menu and click on the File Types tab. From here click on the New Type button and a
new dialog will appear. Click on the New Icon button and type in the location. Now fill in the relevant
boxes appropriately, using the .pl extension. When we click the New button to create a new action, we
have the option to give the action a name and specify the path of the Perl interpreter, in this case.

Introduction

29

Alternatively, we can simply convert a Perl script into a batch file. We can do this by using the supplied
executable pl2bat. This makes the script stand-alone, but leaves the original file untouched also. It also
changes the script name, so $0 (the batch file variable that refers to the name of itself) will be different
inside scripts. Alternatively, if the script has no extension, we can copy the supplied batch file,
runperl.bat, to another batch file with the same name as the Perl script. This achieves exactly the
same result as it uses the $0 variable to call the Perl script via the Perl interpreter.

There is also a commercial package called perl2exe, which will convert the Perl script into a
stand-alone executable, which may be appropriate for your needs.

Perl on Macintosh
Running Perl programs on Macintoshes with MacOS versions 7 to 9 is simple – each script just needs to
have the appropriate creator and type attributes set and the operating system will automatically
recognize it as a Perl script and invoke the interpreter. Running Perl from the command line is also
simple, or rather, impossible since there is no command line. MacOS X is based on a BSD kernel, so we
can run any Perl script using UNIX methodologies like shebang lines. With MacPerl there is also the
ability to save scripts as applets which can be executed by the usual double-click or even just packaged
up into a fully self-contained executable file. This is all done in the Save of the MacPerl editor. Direct
integration with editors is also possible, for example using BBEdit. For more information on all issues
concerning MacPerl consult the web site www.macperl.com.

The Command Line
Whether we invoke Perl directly or implicitly, we can supply it with a number of command line options.
We do not always have to supply command line options explicitly. For systems that support shebang
lines, we can add them to the end of the command contained in the first line:

#!/usr/bin/perl -wT
...

Alternatively, for systems that don't support shebang lines, we can set an environment variable. Perl
examines several of these when it starts up and configures itself according to their contents. For
command line options the special environment variable is PERL5OPT. This variable may contain
command line options, exactly as if they were appearing on a real command line. Here is how we can
use it to cause Perl to enable warnings (-w), and taint mode (-T), and load the strict module for strict
syntax checks:

rem Windows
set PERL5OPT = wMstrict

Unix - csh-like
setenv PERL5OPT "-Mstrict -wT"

Unix - Bourne shell-like
export PERL5OPT="-Mstrict -wT"

We can set PERL5OPT in a shell startup script or batch file (.profile or similar for UNIX shells,
AUTOEXEC.BAT for Windows 9X, or alternatively the registry for Windows in general). With the
PERL5OPT environment variable under MS Windows, we cannot specify more than two command line
options. Hence in this example, the -T switch is omitted.

Chapter 1

30

Command Line Syntax
Perl's command line syntax is simple enough, but has a few wrinkles that are worth exploring. All of the
following examples are assuming a UNIX system, however most will run on MS Windows (as some of
the UNIX features were passed on to the DOS and Windows OS) and many will also be relevant to
MacOS, of which the later versions have a UNIX core. The simplest use is to run a script with no
arguments:

> perl myscript.pl

Perl expects to see a script name at some point on the command line, otherwise it executes whatever
input it receives. We can also therefore say:

> perl < myscript.pl

Command line options, if we choose to specify them, go before the script. This command switches on
warnings, taint mode (useful for CGI scripts and covered in Chapter 22), and includes the strict
module:

> perl -w -T -Mstrict myscript.pl

Some command line options take an argument. For example, -e takes a string of code to evaluate,
enclosed in quotes. Some options (-e included) allow a space after them. Others, like -m and -M do not
– if we try to do so Perl will return an error message:

No space is allowed after -M

Command line options that take no argument (or may optionally take no argument) may be grouped
together, so -w and -T can be grouped into either -wT or -Tw. We can also add one command with an
argument, such as -M, if it is the last in the group. For example:

> perl -TwMstrict myscript.pl

Supplying Arguments to Perl Scripts
If we run a script directly, we can pass arguments to it that can be read inside the program (by
examining the special array variable @ARGV):

> myscript.pl -testing -1 -2 -3

If we run a script via the Perl interpreter explicitly, however, we cannot just add options to the end of
the command line, because Perl will absorb them in its own command line processing. However, if we
add the special sequence -- to Perl's command line, it will stop processing at that point and any further
arguments will be passed to the script instead:

> perl -TwMstrict myscript.pl -- -testing -1 -2 -3

If the script's arguments do not look like options (that is, are not prefixed with a minus) this is not a
problem and we can say:

> perl -TwMstrict myscript.pl testing 1 2 3

Introduction

31

We will discuss and expand on the special variable @ARGV and sequence -- later on in Chapter 14.

Using Perl as a Generic Command Line Utility
Perl can be surprisingly powerful on its own even without involving an actual program. By using a little
imagination we can make Perl do a lot with just a few of its command line options.

In particular, the -e, -n, -p, and -l options allow us to perform fairly powerful functions with a single
command. The -e option allows us to execute code directly, rather than specifying a program file, so
we don't need to actually write a program, save it to a file, and then execute it. The -n and -p options
put an implicit while loop that reads from standard input around the code we specify. The -l option
(among other things) strips off the terminator from each line read, then configures print to put it back
afterwards.

By combining these options together creatively we can produce any manner of quick one-line text
processing commands using Perl. Say we wanted to add line numbers to the start of every line of a
program. We could write a program to do that, but we could also just type:

> perl -ne 'print "$.: $_"' < in.pl > out.txt

The same command in MS Windows would be:

> perl -ne "print ""$.: $_ """ <in.pl >out.txt

The special variable $. holds the line number, and $_ the contents of the line just read from the input
(both variables are described in more detail in Chapters 4, and 2 respectively, and in Appendix B). The
option -n puts the whole thing in a loop, and the rest is redirection. If for some reason we wanted the
line numbers on the end, we could enter this command for the Bourne shell in UNIX:

> perl -nle 'print "$_ [$.]"' < in.pl > out.txt

Here -l strips the original line ending, but redefines Perl's output formatting so that the print puts it
back. Of course these are just simple examples, but throw in a regular expression, or a module loaded
by the -m or -M flags and we can do some surprising things. For example, this command pulls a web
page from a remote server and prints it out using the LWP::Simple module:

> perl -MLWP::Simple -e 'getprint "http://www.myserver.com/img.gif"'

Other options we can use in these kinds of super-simple scripts are -a and -F, which enable and
configure autosplit mode. This, among other things, allows us to tell Perl to automatically break
down lines into individual words. -i edits a file in-place, so that transformations we perform on what
we read from it are actually enacted on the file itself.

Finally, we can use the Perl debugger as a generic Perl shell by passing -d and -e with a trivial but
valid piece of Perl code such as 1, and possibly -w to enable warnings:

> perl -dwe1

See Chapter 17 for more on the debugger and the features available from this 'shell'.

A full listing of Perl's command line options can be found in Appendix A.

Chapter 1

32

The Perl Environment
All environment variables present in the shell that executes Perl are made available inside Perl scripts in
the special hash variable %ENV. In addition, Perl pays special attention to several environment variables
and adjusts its configuration according to their contents.

Windows machines may (but are not required to) specify environment information in the registry, under
either of:

HKEY_CURRENT_USER\Software\Perl

Or:

HKEY_LOCAL_MACHINE\Software\Perl

In the case of duplicate entries, the local machine settings are overridden by the current user settings.
Entries are of type REG_SZ or REG_EXPAND_SZ and may include any of the standard Perl environment
variables (that is, any variable starting PERL) as described below. We can also specify additional path
information to the library include path @INC, in both generic and version specific forms (we use version
5.6.0 here for example purposes) by setting some or all of the entries below:

lib standard library path extension
sitelib site library path extension
vendorlib vendor library path extension
lib-5.6.0 version-specific standard library path extension
sitelib-5.6.0 version-specific site library path extension
vendorlib-5.6.0 version-specific vendor library path extension

General Environment Variables Used by Perl
There are three general environment variables that are used by Perl, which we consider here. The first
of these is PATH. This is actually the standard shell search path that Perl uses to locate external
commands when executed from Perl scripts. Sensible programs often set this variable internally and do
not rely on the supplied value. It is also used by the -S command line option that causes Perl to search
for the specified script using the path.

The other two variables are HOME and LOGDIR. If the chdir function is used in Perl without an
argument then Perl checks the value of HOME and changes to that directory if set. If HOME is not set, Perl
checks LOGDIR as a last resort. If neither is set, chdir does nothing.

Perl Specific Environment Variables
Here we take a brief look at Perl specific environment variables.

The variable PERL5LIB, previously known as PERLLIB, defines the library search path which consists
of a list of directories that Perl searches in when the do, require, or use statements are used. The
value of this variable becomes @INC inside the program. The old name for this variable, PERLLIB, is
only used if PERL5LIB is not set. We can also modify the default value of @INC, defined when Perl was
built, using the -I flag.

The environment variable PERL5OPT, as its name may suggest, may contain a list of the command line
options, in the same format as they would be if supplied directly.

Introduction

33

The variable PERL5DB specifies the command used to load the debugger when the -d option is used. By
default this is set to be the code fragment:

BEGIN {require 'perl5db.pl'}

If we have created our own modified debugger, we can set this variable to have Perl use it by default.

Finally, the last of the most commonly used Perl environment variables is Windows-specific and
basically invokes an alternative shell. We use this variable to specify the name of a different command
line interpreter, for example when executing external commands with backticks or the qx operator. The
default is:

command.com /c (Windows)
cmd.exe /x/c (Windows NT)

Note that in general it is desirable to avoid starting an external shell, and we devote some time in
Chapter 14 to the why and how of avoiding shells.

Less commonly used, and generally only of interest to those involved in developing or debugging Perl
itself, are the PERL_DESTRUCT_LEVEL and PERL_DEBUG_MSTATS variables, both of which are
advanced options. If the Perl interpreter supports the -D flag, PERL_DESTRUCT_LEVEL controls the
behavior of Perl's garbage collector for the destruction of references. If Perl was built to use the malloc
library that comes supplied with it (perl -V:d_malloc), PERL_DEBUG_MSTATS enables an additional
memory statistics debugging mode for the -D flag (which must also be available). If set to a False value,
statistics are dumped after the program completes. If set to a True value, statistics are also dumped after
the compilation stage and before the execution stage.

Plenty of Perl modules have their own special environment variables that they look out for. For
example, to pick a module that is close to the core of Perl, the Perl debugger examines the
PERL5DB_OPTS environment variable for configuration information.

Certain Perl features are also sensitive to certain locale environment variables if the use locale
directive is specified. See Chapter 26 : Locale and Internationalization towards the latter part of the
book for more extensive details.

Summary
In this introductory chapter we have covered the following:

A short background of Perl and reasons for its popularity

Obtaining and installing Perl on various platforms

Some of the many ways in which Perl can be configured and set up to run on various operating systems

TE
AM
FL
Y

Team-Fly®

Chapter 1

34

Basic Concepts

In this chapter we will give a brief introduction to a number of Perl concepts and definitions, which
we will look into in much more detail in the coming chapters. This brief introduction, however,
should allow us to use those concepts and definitions before we explore them in depth in their
respective chapters.

Values and Variables
All programming languages need a way to manage the data that they manipulate. Data is held as values,
which are referred to by variables. A value is simply any piece of data that can be used in operations or
passed to functions within a program. The following are all values:

6
3.1415926
"Hello World"

These examples, however, are anonymous values, which means they are not associated with any label
or identifier. As they are we cannot manipulate them; in order to do this we need variables.

Variables are labels (also known as identifiers) that take and store a value. Once stored, the value can be
accessed, manipulated, and processed by referring to the label. In order to identify what kind of value a
variable is holding, Perl requires the data type of the variable to be indicated by prefixing it with a
punctuation symbol. This is different from languages like C, which use variable declarations. For
instance, scalar variables, which we will talk about in a moment, are prefixed with a $, as shown in the
following examples (note that the semicolon is not part of the name but a special Perl symbol that
indicates the end of a statement):

$number;
$name;

Chapter 2

36

The label that follows the leading symbol can consist of any mixture of alphanumeric characters and the
underscore character, up to a total of 251 characters. However, a variable name cannot start with a
number. The following are legal variable names:

$A_Scalar_Variable;
$scalarNo8;
$_private_scalar;

These variable names are not legal:

$8bit_characters; # leading '8' not legal
$cash_in_£; # pound symbol not legal

$long-var; # - not legal

Note that the # tells Perl that everything that comes after it to the end of the line is just a comment.
Comments are pieces of text that have no effect on the program at either compile or run time. They are
provided to describe what the program is doing at that point and to allow the programmer to make
notes. Comments are discarded by the Perl run-time interpreter.

Perl has a number of keywords that have special meanings to the language, such as print, which is self-
explanatory. Using the names of keywords in variable names can be a source of confusion and should
be avoided. $print, for instance, is not a good choice for a scalar name.

Assigning values to variables is done with the equals sign. To assign values to our scalar variables we
can write:

$number = 6;
$name = "Dave Mercer";

Whitespace
In the above examples, we surrounded the assignment with space characters. We don't really need to do
that, but it is considered good practice. Perl is very forgiving when it comes to the use of whitespace,
that is tabs, spaces, and new lines. We can make the most of this to improve the readability of our code.

However, the use of whitespace in Perl is not without restrictions. Basically, whitespace cannot be used
in places where it can confuse Perl. For instance, we cannot use whitespace in file names, so the
following file name is not legal:

$sca lar; # ERROR: we may use $scalar or $sca_lar instead.

Note that comments are considered white space from the perspective of the code stream.

Data Types
Perl is commonly described as defining three basic data types: scalars, arrays, and hashes. Between
them, these three cover most of the kinds of data that a Perl program will manipulate. However, this is
not the whole story. Perl also understands the concept of filehandles, typeglobs (an amalgam of all the
other types) and the undefined value, all of which are fundamental to the language. In addition, while
references and objects are both technically types of scalar value, the manner in which Perl treats them
means that they can be considered separately.

Basic Concepts

37

Scalars are solitary values, such as a number, a string of text or a reference. Unlike more strongly typed
languages like C, Perl makes no distinction between numbers and strings and provides no mechanism to
define the 'type' of a scalar. Instead Perl freely and automatically converts between different scalar types
when they are used, as we shall, in Chapter 3. So, the following are legal declarations of scalar variables:

$scalar = 9;
$scalar = 9.5;
$scalar = "I am a scalar";

Note from the last example that strings in Perl start and end with some sort of quotation mark. We will
read more about scalars in Chapter 3.

The second data type is the array. An array is an ordered list of values. Names of arrays are prefixed
with the @ symbol. These are examples of arrays:

@first_array = (1, 2, 3, 4);
@second_array = ('one', '2', 'three', '4', '5');

Being ordered lists of values, the following arrays are not the same:

@array1 = (1, 2, 3, 4);
@array2 = (1, 2, 4, 3);

Hashes, on the other hand, are lists of pairs of values. Each pair consists of one key, associated with one
value. A hash variable is declared by prefixing it with %. This is an example of a hash:

%hash = (Mouse, 'Jerry', Cat, 'Tom', Dog, 'Spike');

So, Mouse is a key whose value is Jerry, Tom is the value for the key Cat and Dog is the key of the
value Spike. Since hash keys can only be strings, we can omit the quotes around them because Perl will
treat them as constant strings.

Perl provides us with the => operator to use with hashes as an alternative to the comma that separates a
key from its value, so we can write the above hash as follows:

%hash = (Mouse => 'Jerry', Cat => 'Tom', Dog => 'Spike');

It is also notable that, unlike elements in array lists, the key-value pairs in a hash are not ordered. So,
while we can say that the 'first' element in @array1 is 1, we cannot talk about the 'first' key-value pair
of a hash.

Scalars, arrays, and hashes are the main data types of Perl. But, as mentioned earlier, there are other
types of data, so let's start with references.

References are not strictly a separate data type. A reference is a value that points to another value,
which may be a scalar, array, hash, and so on. So a reference is a pointer that is used to refer indirectly
to a value stored somewhere else.

Chapter 2

38

We create a reference for an existing variable by putting a backslash in front of it, as in the following
examples:

$scalarref = \$scalar;
$arrayref = \@array;
$hashref = \%hash;

Note that whether referencing a scalar, an array, or a hash, we always end up with a scalar, which is
obvious from prefixing the names of the references with the dollar sign. Arrays, hashes, and references
are investigated in detail in Chapter 5.

The undefined value, which is also not strictly a data type, represents a lack of value or data type. It is
'undefined' because it is neither a scalar, list, hash, nor any other data type. We can assign the undefined
value to a variable explicitly using the undef function, or implicitly by simply declaring it but not
initializing it with a value.

$a = undef;
$a;

The undefined value is more useful than it at first might seem. One of its primary uses is to indicate
situations when no value can legally be returned from a function.

The typeglob is a strange beast unique to Perl. It is a kind of super-value, an amalgam of exactly one of
each of the other primary data types: scalar, array, hash, filehandle. In addition a typeglob can hold a
code reference that is a pointer to a piece of Perl code, for example a subroutine. It can also hold a
format, which is a template that can be used with the write function to generate formatted and
paginated output. The typeglob is not a single reference to something, rather it has six slots that can
contain six different references all at once, hence it is prefixed distinctly with a *. Thus, the typeglob
*name contains the values of $name, @name, and %name and other values as well.

Typeglobs are most often used for their ability to hold file and directory handles, since these are
sometimes difficult to manipulate otherwise.

The other Perl data type is filehandle. A filehandle represents a channel for input and/or output within
a Perl program, for instance an open file or a network connection. Unlike the previous data types,
filehandles are not prefixed with a special character. One way to create a filehandle is to use the open
function as follows:

open FILEHANDLE, $filename;

This example opens a filehandle called FILEHANDLE to the file called filename, so we can now
manipulate this file using its handle.

Finally, we come to objects. An object in Perl is a reference that has been marked to be in a particular
Perl package. So, it is a specialized type of reference, which is in turn a specialized form of scalar.
Objects, therefore, are really scalars. Perl also enables objects to be treated as scalars for the purposes of
operations like addition and concatenation. There are two mechanisms for doing this: using Perl's tie
function to tie the object underneath a normal-seeming scalar variable, and overloading Perl's operators
so the object can be treated like a scalar in some contexts.

We will read more about the undefined value, typeglobs and filehandles in Chapters 5 and 12
respectively.

Basic Concepts

39

Special Variables
Perl provides a number of 'special' variables, which are always available from inside any Perl script. For
instance, $_ is a variable that many functions read from and write to if no other variable is available,
and the hash %ENV contains key-value pairs of the environment variable. Special variables cover such
diverse areas as input and output, regular expressions, file handles, system configuration, and errors.

To see a special variable in action, simply issue the following command, which prints the paths to Perl
libraries (Windows users need to replace the single quotes with double quotes, and escape the double
quotes surrounding the \n):

> perl -e 'foreach (@INC){print $_, "\n"}'
/usr/local/lib/perl5/5.6.0/i686-linux-thread-multi
/usr/local/lib/perl5/5.6.0
/usr/local/lib/perl5/site_perl/5.6.0/i686-linux-thread-multi
/usr/local/lib/perl5/site_perl/5.6.0
/usr/local/lib/perl5/site_perl
.
>

The following example prints the value of the environment variable PATH using the special variable
%ENV (note the syntax for extracting the value of a key in a hash; hashes are explored in detail in
Chapter 5):

> perl -e 'print $ENV{PATH}'
/usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:/home/mankeec/bin>

Some special variables like %ENV and @ARGV, which stores the supplied command line arguments, are
reasonably self explanatory. However, the majority of Perl's special variable names are composed of
punctuation. In theory most of these are mnemonic so their nature can be determined, but since there
are over fifty of them and only so much meaningful punctuation to go around the mnemonic hints are a
little stretched. However, there is the English module, which provides a longer, descriptive name for
each special variable. For example, $_ is also $ARG, and $. becomes $INPUT_LINE_NUMBER.

For a list of all Perl's special variables and their English names see Appendix B.

Interpolation
When placing a variable inside a double-quoted string, Perl replaces that variable with its value. We call
this variable interpolation. For instance, the print statement in the following example prints the value
the variable $Friday, which is sunny, rather than the word that constitutes the variable name, which is
$Friday:

#!/usr/bin/perl
interpolate1.pl
use warnings;

$Friday = "sunny";
print "It is $Friday \n";

Chapter 2

40

> perl interpolate1.pl
It is sunny

However, if we wanted to get the characters $Friday, we can prevent interpolation by prefixing the
variable name with a backslash:

#!/usr/bin/perl
interpolate2.pl
use warnings;

$Friday = "sunny";
print "It is \$Friday \n";

Now if we run this we get It is \$Friday preceded by a warning that the scalar $Friday was used only
once. For the moment don't worry about this warning; we will discuss it in Chapter 16.

Alternatively, we could use non-interpolating quotes to prevent the variable from being interpolated. In
that case our print statement will look like this:

print 'It is $Friday \n';

The output we get from this is:

It is $Friday \n>

You'll notice that Perl has printed out the \n. The reason for this is that, in addition to variables, Perl
has a number of special combinations of characters that have special meanings, and as a result they are
interpolated to their meanings when placed inside double quotes. The \n in the above example is one
such case which means 'a new line'. If we wanted to print the \n then we have to escape it with a
backslash. Perl supports the standard conventions for special characters like tabs and newlines first
established by C. All of these are converted into the appropriate characters when they are seen by Perl
in a double quoted string. For example, for tabs and returns we use \t and \r.

Interpolating an array variable will cause each element to be converted into text and placed into the
resulting string.

There is a lot more to interpolation than this, however, and it is in fact a more complex and versatile
part of Perl than many people realise. Accordingly we devote a good chunk of Chapter 11 to covering
the subject of interpolation in depth, including inserting character codes, interpolating source code, and
interpolating text more than once.

Context
An important concept in Perl is the idea of context. This is the context in which a Perl variable or
section of Perl code is evaluated, and indicates the type of value that is wanted in a given situation.

Perl has three different contexts, scalar, list, and void. Which one applies depends on the way in which
the value is being used (as opposed to what it actually is). In scalar context, a single scalar value is
required. In list context, a list of values (zero or more) is required.

Finally, when no value of any kind is required, we call this void context.

Basic Concepts

41

Scalar and List Context
Most of the time we will be dealing with scalar and list context. The most obvious example of context is
when we assign to a variable. The data type of the variable, be it scalar, array, or hash defines the
context. The following shows a scalar value being used in a scalar context:

$variable = "One value";

Similarly, this example shows a list value (defined by the enclosing parentheses) in list context:

@variable = ('a', 'list', 'of', 'strings');

If we assign a list to a scalar, we cause it to be evaluated in scalar context. Since a scalar cannot store a
list, only the last value is recorded:

$variable = ('a', 'list', 'of', 'strings');
print $variable; # returns 'strings'

Arrays are slightly different; using one in scalar context counts and returns the number of elements
instead:

$count = @variable; # returns 4 for @variable above.

Just as we can assign a list in a scalar context, we can assign a scalar value in a list context:

@array = "One value";

In this case the scalar value One value is converted into a list with exactly one value in it, and
assigned to the variable @array. So the above is exactly equivalent, but not as clearly expressed, as
using parentheses to explicitly define the value as a list:

@array = ("One value");

Hash variables are assigned in list context too, with each pair of values being assigned as the key and
value of a hash element:

%permissions = (read => 4, write => 2, execute => 1);

Assigning a scalar value defines a hash with one key paired with an undefined value, as in the following
example:

#!/usr/bin/perl
novalue.pl
use warnings;

%hash = "One value";
print "$hash{'One value'}\n"

Since we have warnings switched on (something that we should always do), when we run this script, Perl
will complain of Odd number of elements in hash assignment at novalue.pl line 4.

Chapter 2

42

Void Context
More rarely encountered is the void context. Generally, we only come across this in statements that
perform an action of their own, such as a print statement:

print "Out of Context Problem";

Although it is almost always ignored, print actually returns a value to indicate success or failure. So
this is actually an example of a scalar value in a void context. It is even more common to encounter
the void context unintentionally. If we accidentally write a Perl program with a value in it, but forget
to assign it or use it, when we run it, we get a warning from Perl (but only if we have warnings
switched on):

#!/usr/bin/perl
void.pl
use warnings;

"Out of Context Problem"; #oops, forgot the 'print'

> perl void.pl
Useless use of a constant in void context ...

A print statement does not produce this error because it does something useful – printing. A warning
like this indicates a value or variable that is not being used in any way and is usually a sign that there is
a problem in the code.

Perl provides a special built-in function called wantarray for subroutines to determine what kind of
context the subroutine was called in – scalar, list, or void. Subroutines are introduced later in this
chapter and explored in detail in Chapter 7.

Operators
The most basic of the tools that Perl uses to manipulate values and variables are operators. There are
two main groups of operators to be used with the two main types of data (numbers and strings). The
assignment symbol that we have been using to assign values to variables is one such operator.

Numerical operators include those that enable us to perform operations like addition, subtraction,
multiplication, division, and raising powers as shown in the following examples:

$scalar = 4 + 5; # $scalar is equal to 9.
$scalar = 4 ** 5; # $scalar is equal to 1024.
$scalar = 4 * 5; # $scalar is equal to 20.

While operators such as + and * act on two operands, other numerical operators are unary, requiring
only one operand, such as the ++ and -- operators that are used to increment and decrement their
operands:

$scalar = 20 / 4; # $scalar is equal to 5.
$scalar ++; # $scalar is now 6.

Basic Concepts

43

Similarly, using string operators we can do things such as concatenating strings. The Perl operator for
concatenation is the dot character, as in the following example:

print "P" . "e" . "r" . "l"; # prints 'Perl'.

We will read more on operators in Chapter 4.

Blocks
A block in Perl is a unit that consists of several statements and/or smaller blocks. We define blocks by
enclosing their contents in curly braces, as in the following example:

#!/usr/bin/perl
block.pl
use warnings;

{
print "This is a first level block. \n";
{

print " This is a second level block. \n";
}

}

Note that we do not need to end blocks with a semicolon. We will look in detail at blocks in Chapter 6.

Control Constructs
Perl provides us with a number of constructs, which we can use to control how our program behaves
under a given condition. These control constructs make use of the concept of blocks. One such tool is
the if statement, which allows us to execute the statements inside a block if a particular condition is
met, as demonstrated in this example:

#!/usr/bin/perl
if1.pl
use warnings;

$input=<>;
if ($input >= 5) {

print "The input number is equal to or greater than 5 \n";
}

We use the operator >= to test whether our input was 5 or greater. If so, the block containing the print
statement is executed. Otherwise, the program doesn't execute the block.

Note that we have used what is known as the diamond operator <> in our example above. This operator
allows us to read a line at a time from the standard input (this is usually the keyboard, though it could
be a file). This is why the construction <> is also known as the readline operator.

TE
AM
FL
Y

Team-Fly®

Chapter 2

44

We can create a more flexible version of if by combining it with else, as shown in the new version of
our previous example:

#!/usr/bin/perl
ifelse.pl
use warnings;

$input=<>;
if ($input >= 5) {

print "The input number is equal to or greater than 5 \n";
} else {

print "The input number is less than 5 \n";
}

Another very useful looping tool is the foreach statement. This control statement loops through a list,
executing a block for each value of that list:

#!/usr/bin/perl
foreach1.pl
use warnings;

@array = ("one", "two", "three", "four");
foreach $iterator (@array) {

print "The value of the iterator is now $iterator \n";
}

> perl foreach.pl
The value of the iterator is now one
The value of the iterator is now two
The value of the iterator is now three
The value of the iterator is now four

Earlier we mentioned the special variable $_ and we said that many functions read from this variable and
write to it in the absence of any other variable. So, let's see how we can modify our above example to use $_:

#!/usr/bin/perl
foreach2.pl
use warnings;

@array = ("one", "two", "three", "four");
foreach (@array) {

print "The value of the iterator is now $_ \n";

}

Having not stated explicitly our iterator, Perl has used $_ as the iterator, something that we can test by
printing $_.

Control constructs and loops are explored in depth in Chapter 6.

Basic Concepts

45

Loop Modifiers
At times we need to change the course of execution of a loop from within the loop. There are three loop
modifiers that we can use to alter the flow of execution of a loop.

The first loop modifier is next, which corresponds to continue in the C language. next starts the next
iteration of the loop, stopping the processing of any code in the loop in the current iteration. Consider
for example this modification to the first of our two previous foreach examples:

#!/usr/bin/perl
next.pl
use warnings;

@array = ("one", "two", "three", "four");
foreach $iterator (@array) {

if ($iterator eq "three") {
next;
}
print "The value of the iterator is now $iterator \n";

}

The if statement tests if the value of $iterator is equal to three using the string comparison
operator eq which stands for 'equals to'. When the condition is met, next is executed, causing the
program to abandon the rest of the code inside the foreach loop, that is the print function, and
starting the next iteration with the fourth element of @array, four. Therefore, running this program
would produce this:

> perl next.pl
The value of the iterator is now one
The value of the iterator is now two
The value of the iterator is now four

Perl also provides us with an equivalent for the break statement in C. The effect of last is simply to
exit the loop. Let's modify the above example to use last:

#!/usr/bin/perl
last.pl
use warnings;

@array = ("one", "two", "three", "four");
foreach $iterator (@array) {

if ($iterator eq "three") {
last;
}
print "The value of the iterator is now $iterator \n";

}

> perl last.pl
The value of the iterator is now one
The value of the iterator is now two

Chapter 2

46

Finally, redo restarts the loop block without evaluating the conditional again. Without redo, the
following example would print Hello 1 and exit because of the presence of last:

$n = 1; { print "Hello $n \n";
last if (++$n > 3); redo; }

However, this is the output that we get as a result for the presence of redo:

Hello 1
Hello 2
Hello 3

Loop modifiers are explained in detail in Chapter 6.

Subroutines
A subroutine is a section of code, which we place inside our main script and can call upon to perform a
particular task. Subroutines are particularly good to use for repeated tasks, because we don't need to
repeat the same piece of code every now and then in our program. Because of their effectively
independent nature, they can be copied across to other programs, making them reusable. Subroutines
allow us to write well-structured, useable and maintainable scripts.

Intuitively, subroutines are declared with the keyword sub followed by the subroutine name, and then a
block. This is an example:

sub my_sub {

print "Hi \n";
}

The subroutine called my_sub does nothing other than printing the word Hi. However, its presence
inside our program won't automatically cause it to execute, unless we call upon it. We do that by simply
using its name:

my_sub;

Subroutines are usually passed parameters to perform some tasks with and then return a result. For
example, this subroutine calculates the factorial of the number passed to it and then returns the result to
the main program:

#!/usr/bin/perl
factorial.pl
use warnings;

read the value of the number $input from the standard input
$input=<>;

call the subroutine with $input as its argument
factorial($input);

Basic Concepts

47

The subroutine
sub factorial {
$step=1;
$result=1;

while ($step <= $input) {
$result=$result*$step;
$step++; # this is equivalent to '$step = $step + 1';
}

if $input is zero then $result is also zero
if ($input == 0) {
$result = 0;
}
return $result;
}

print "The result is $result \n";

Note that we have used the while loop to test the value of $step and see whether it is less than or
equal to the $input, and if it is then the product of the multiplication is updated using the current value
of $step. The value of $step is then incremented, and the loop is repeated. Once $step becomes
greater than $input, the program exits the while loop and executes the return function. The if test
is carried out to make sure that $result is equal to zero when $input is zero.

For more on subroutines see Chapter 7.

Functions
Functions are very similar to subroutines. However, this term is usually used in Perl to refer to built-in
tools that we can call on to perform certain tasks. We have already come across some functions, such as
the undef function, which assigns the undefined values to variables. The previous example used the
function return to return a value from the subroutine.

Perl has a large number of functions to handle various tasks. We will use many of those functions
throughout the book. For a comprehensive list of all functions see Appendix C.

Scoping
Any variable created in a Perl program is global by default. Global variables can be seen and
manipulated from anywhere in the program. For instance, the hash %hash in the novalue.pl program
(from earlier) is a global variable. However, there are situations where we would like to localize our
variables. Suppose we have a scalar called $input that we would like to use in several places in our
program to store input from the user. If we do this while $input is a global variable then we will lose
its previous value whenever we get new input from the user, unless of course we have saved the
previous input in another variable.

The need to localize the scope of a variable becomes more apparent when we deal with subroutines,
which are sections of code that we use from time to time for a particular task before returning to our
main program. Perl has a solution for this – lexical variables.

Chapter 2

48

Lexical variables exist only inside the block in which they are declared and all other blocks inside that
main block. A variable is declared as lexical with the keyword my. Let's have a look at an example:

#!/usr/bin/perl
scope1.pl
use warnings;

$scalar = "global";
$Second_Global = "Another Global";
print "Outside the block, \$scalar is a $scalar variable \n";
{

my $scalar = "lexical";
my $other_scalar = "I am also lexical";
print "Inside the block, \$scalar\ is a $scalar variable \n";

}
print "Outside the block, \$scalar is that same $scalar variable \n";
print "\$Second_Global is $Second_Global \n";

> perl scope1.pl
Outside the block, $scalar is a global variable
Inside the block, $scalar is a lexical variable
$Second_Global is Another Global
Outside the block, $scalar is that same global variable

In the above example, the lexical variable $scalar that occurs inside the block is completely different
from the global variable, which was declared in the main program, and carries the same name. If we
add a print statement to our above program, outside the block, that prints out the value of the lexical
variable $other_scalar, Perl will give us the complaint Name "main::other_scalar" used only once,
because that variable wasn't declared in the main program. On the other hand, because
$Second_Global is a global variable it can be seen inside the block.

Perl also provides the strict module that we can use to force ourselves to declare all our variables before
using them. If we use the strict model in our above program we will have to declare the global variable
$scalar with the keyword our, just like using my for lexical variables. So, with strict turned on, this
is how our example looks now:

#!/usr/bin/perl
scope1.pl
use warnings;
use strict;

our $scalar = "global";
print "Outside the block, \$scalar is a $scalar variable \n";
{

my $scalar = "lexical";
my $other_scalar = "I am also lexical";
print "Inside the block, \$scalar\ is a $scalar variable \n";

}
print "Outside the block, \$scalar is that same $scalar variable \n";

It is always good practice to enable strict and warnings in our programs, something that we will adhere
to in the examples of the book. It is also better to avoid using global variables, because it can lead to
conflicts and confusion if we inadvertently change the value of a global variable from within one of our
blocks.

For more on scoping, see Chapter 8.

Basic Concepts

49

Chapter 2

50

Scalars

In this chapter, we start our exploration of Perl data types with one of the main data types: scalars.

Scalar values may be subdivided into three primary groups: numbers, which in turn may be integer or
floating-point values, strings, and references, which are pointers to values stored elsewhere. Of these
three, the first two are what we might call 'normal' scalar values. References are sufficiently different in
the way they work as to be considered almost a different data type. Perl's objects are references in
disguise, so they can also be considered different. When we talk about scalars, therefore, we usually, but
not always, mean numbers or strings. We will talk about references in Chapter 5.

In this chapter we take a detailed look at numbers and strings, and see how Perl handles them. We will
also cover the various operators we use in order to manipulate numbers and strings.

Value Conversion and Caching
Perl does not make a strong distinction between numbers and strings. In fact, it allows a scalar variable
to store its value as an integer, a floating-point number, and a string simultaneously. When a scalar
variable is first assigned only one representation is known. When the scalar is used with an operator that
expects a different representation, Perl automatically performs the conversion behind the scenes, and
then caches the result inside the scalar. The original value is not altered, so the variable now has two
representations of the same value. If the same conversion is needed again, Perl can retrieve the
previously cached conversion instead of doing it all over again.

The same automatic conversion also happens to values that are not being accessed via a variable.
However, in this case, Perl cannot cache the result of a conversion because there is no variable in which
to store it.

Chapter 3

52

To illustrate how Perl handles conversions, consider the assignment of an integer value to a scalar
variable:

$number = 3141;

This stores an integer value inside the variable. The scalar is now combined into a string by
concatenating it with another string using the dot operator:

$text = $number.' is a thousand PIs';

This causes Perl to convert the scalar into a string, since concatenation only works between strings, not
numbers. The converted string representation is cached inside the scalar alongside the integer
representation. So, if the scalar is requested as a string a second time, Perl does not need to redo the
conversion, it just retrieves the string representation.

The same principle works for floating-point numbers too. Here we divide the same scalar by 1000,
which requires that it be converted to a floating-point number:

$new_number = $number/1000;

So, our scalar variable has three different representations of its value stored internally. If the variable is
reassigned, then one of the representations is updated and the other two are marked as no longer valid:

$number = "Number Six";

In this case, the previous integer and floating-point number values of $number are now invalid.

All this behind-the-scenes shuffling may seem convoluted, but it allows Perl to optimize the retrieval
and processing of scalar values in our programs, thereby allowing them to run faster. It also allows us to
write simpler and more legible programs, because we do not have to worry about converting the type of
a scalar in order to meet the expectations of the language.

Numbers
As we stated earlier, numbers fall into one of two categories, integer, or floating-point. In addition, both
types of number can be represented as a numerical string, which is converted to the appropriate format
when used.

As well as handling integers in base 10, or decimal, numbers may be expressed and displayed in binary,
octal, and hexadecimal formats, all of which Perl handles transparently. Conversely, displaying numbers
in a different base requires converting them into a string with the correct representation, so this is
actually a special case of an integer to string conversion.

In many cases, calculations will produce floating-point results, even if the numbers are integers; for
example division by another integer that does not divide evenly. Additionally, the range of floating-
point numbers exceeds that of integers, so Perl sometimes returns a floating-point number if the result of
a calculation exceeds the range in which Perl can store integers internally, as determined by the
underlying platform.

Scalars

53

Integers
Integers are one of the two types of numerical value that Perl deals with. When written explicitly,
integers are usually expressed as decimal (base 10) integers but can be specified in several different
formats:

Number Format

123 regular decimal integer

0b1101 binary integer

0127 octal integer

0xabcd hexadecimal integer

12_345 underscore annotated integer

0xca_fe_ba_be underscore annotated hexadecimal integer

It is also possible to specify an integer value as a string. When used in an integer context the string value
is translated into an integer before it is used:

"123" # regular decimal integer expressed as a string

The underscore notation is permitted in integers in order to allow them to be written more legibly.
Ordinarily we would use commas for this:

10,023

However, in Perl, the comma is used as a list separator, so this would represent the value 10 followed
by the value 23. In order to make up for this, Perl allows underscores to be used instead:

10_023

Underscores are not required to occur at regular intervals, nor are they restricted to decimal numbers.
As the hexadecimal example above illustrates, they can also be used to separate out the individual bytes
in a 32 bit hexadecimal integer. It is legal to put an underscore anywhere in an integer except at the
start:

1_2_3 # ok
123_ # trailing underscore also ok
_123 # leading underscore makes '_123' an identifier - not a number!

Integer Range and Big Integers
When Perl stores an integer value as an integer (as opposed to a numerical string), the maximum size of
the integer value is limited by the maximum size of integers on the underlying platform. On a 32-bit
architecture this means integers can range from:

0 to 4294967295 (unsigned)
-2147483648 to 2147483647 (signed)

TE
AM
FL
Y

Team-Fly®

Chapter 3

54

Perl can take advantage of 64-bit integers on platforms that support them, but only if it has been built to
support them.

If an integer calculation falls outside the range that integers can support then Perl automatically converts
the result to a floating-point format. An example of such a calculation is:

print "2 to the power of 100:1 against and falling: ", 2**100;

This results in a number larger than integers can handle, so Perl produces a floating-point result and
prints the message:

2 to the power of 100:1 against and falling: 1.26765060022823e+30

Because the accuracy of the floating-point number is limited by the number of significant digits it can
hold (which is determined by the capabilities of the underlying platform), this result is actually only an
approximation of the value 2**100. While it is perfectly possible to store a large integer in a floating-
point number or a string (which has no limitations on the number of digits and so can store an integer of
any length accurately), we cannot necessarily use that number in a numerical calculation without losing
some of the precision. Perl must convert the string into an integer or, if that is not possible due to range
limitations, a floating-point number in order to perform the calculation. Because floating-point numbers
cannot always represent integers perfectly, this results in calculations that can be imprecise.

Fortunately Perl provides a solution to this dilemma. To avoid conversion of large integers into floating-
point numbers we can make use of the Math::BigInt package, which comes as part of the standard
Perl library; basic use of packages will be described more fully in Chapter 9. Math::BigInt works by
storing integers in a string format and applying specialized computational codes to manipulate them. In
this way it can handle arbitrarily large numbers, albeit much more slowly than conventional integer
arithmetic.

Converting Integers into Floating-Point Numbers
To convert an integer into a floating-point number is straightforward. No special function or operation
is required; we can just multiply (or divide) it by 1:

$float = 1 * $integer;

Multiplication is a floating-point operation, so this gives both scalars a floating-point representation
internally. We can prove this by using Dump from the Devel::Peek (which is covered in Chapter 20)
module if we really want to, although if we print out $float we still get '1' and nothing appears to have
happened. The reason for this is that it is the most efficient way to display '1', even if it is a floating-
point value. However this conversion is almost always unnecessary. If we just want to use the number in
a floating-point calculation, Perl will do the conversion automatically.

Converting Integers into Strings
Just as with floating-point numbers we do not usually have to convert integers into strings since Perl will
do it for us as and when required. However, if we want to impose different formatting requirements, this
automatic conversion may not be enough.

For instance, one reason for converting a number into a string explicitly is to pad it with leading spaces
or zeros (to align columns in a table, or print out a uniform date format). This is a task for sprintf, a
generic string formatter inspired by (though not actually based on) the C function of the same name,
and which we cover in detail under 'String Formatting', in the strings section later in the chapter. It
works using special tokens or 'placeholders' to describe how various values, including numbers, should
be rendered textually.

Scalars

55

Formatting of integer values is carried out by the %..d and %0..d placeholders. Here .. is a numeric
value that describes the desired width of the resulting text, such as %4d for a width of 4 characters. The
0, if present, tells sprintf to pad the number with leading zeros rather than spaces:

printf '%d/%d/%d', 2000, 7, 4; # displays "2000/7/4"
printf '%d/%2d/%2d', 2000, 7, 4; # displays "2000/ 7/ 4"
printf '%d/%02d/%02d', 2000, 7, 4; # displays "2000/07/04"

Other characters can be added to the placeholder to handle other cases. For instance, if the number is
negative, a minus sign is automatically prefixed, which will cause a column of mixed signs to be
misaligned. However, if a space or + is added to the start of the placeholder definition, positive numbers
will be padded, with a space or + respectively:

printf '% 2d', $number; # pad with leading space if positive
printf '%+2d', $number; # prefix a '+' sign if positive

Handling Different Number Bases
As well as base 10 integers, Perl allows numbers to be expressed in octal (base 8), hexadecimal (base 16)
and binary. To express a number in octal, prefix it with a leading zero, for example:

0123 # 123 octal (83 decimal)

Similarly we can express numbers in hexadecimal using a prefix of 0x:

0x123 # 123 hexadecimal (291 decimal)

Finally, from Perl 5.6 onwards, we can express numbers in binary with a prefix of 0b:

0b1010011 # 1010011 binary (83 decimal)

Converting a number into a string that contains the binary, octal, or hexadecimal representation of that
number can be achieved with Perl's sprintf function. As mentioned above, sprintf takes a format
string containing a list of one or more placeholders, and a list of scalars to fill those placeholders. The
type of placeholder defines the conversion that each scalar must undergo to be converted into a string.

Numbers are converted into decimal strings when used in a string context, which is equivalent to using
the %d placeholder:

$number = 6;
$text = sprintf '%d', $number; # convert number to integer string

We would rarely (if ever) want to do this, however, because Perl automatic conversions will do the job
for us when we use the scalar in a string context. In this example the scalar variables $text and
$number are effectively set to the same value, but with different internal representations. From the
perspective of the programmer, however, they are identical.

To convert into a different base, we just use a different placeholder, %b, %o, %x, or %X:

$bintext = sprintf '%b', $number; # convert to binary string (5.6.0+ only)
$octtext = sprintf '%o', $number; # convert into octal string
$hextext = sprintf '%x', $number; # convert into lower case hexadecimal
$hextext = sprintf '%X', $number; # convert into upper case hexadecimal

Chapter 3

56

Note that sprintf (and its relative printf) do not prefix their conversions with the appropriate
number base prefix (0, 0x, or 0b) and so do not produce strings that convert back using the same base
as they were created with. In order to fix that problem we have to add the base prefix ourselves:

$bintext = sprintf '0b%b', 83; # produces '0b1010011'
$octtext = sprintf '0%o', 83; # produces '0123'
$hextext = sprintf '0x%bx', 83; # produces '0x53'

The %b placeholder is only available from Perl version 5.6.0 onwards. Versions of Perl prior to this do
not have a simple way to generate binary numbers and have to resort to somewhat unwieldy
expressions using the pack and unpack functions. This is covered in more detail in the section entitled
'Pack and Unpack' later.

$bintext = unpack("B32", pack("N", $number));

This handles 32-bit values. If we know that the number is smaller, that is, it will fit into a short integer,
we can get away with fewer bits:

$smallbintext = unpack("B16", pack("n", $number));

Unfortunately for small values this is still likely to leave a lot of leading zeros, since unpack has no idea
what the most significant bit actually is, and so it just ploughs through all 16 or 32 bits regardless. The
number '3' would be converted into:

'0000000000000011' # '3' as a 16-bit binary string

We can remove those leading zeros using the string functions substring and index:

#hunt for and return string from the first '1' onwards

$smallbintext = substring($smallbintext, index($smallbintext, '1'));

Though this works, it is certainly not as elegant (or as fast) as using sprintf; upgrading Perl may be a
better idea than using this work-around.

Floating-Point Numbers
Perl allows floating-point numbers to be written in one of two forms, either fixed point, where the
decimal point is fixed in the number to indicate where the fractional part starts, or scientific, consisting
of a mantissa with the actual number value, and an exponent representing the power of 10 that the
mantissa is multiplied by:

123.45 # fixed point
-1.2345e2 # scientific, lowercase, negative
+1.2345E2 # scientific, uppercase, explicitly positive

Likewise, fractions can be expressed either in fixed-point notation or as a negative exponent:

0.000034 # fixed point
-3.4e-4 # scientific, lowercase, negative
+3.4E-4 # scientific, uppercase, explicitly positive

Scalars

57

Floating-point numbers can be expressed over a very large range:

1e100 # a 'googol' or 1 x 10(100)
3.141 # 3.141 x 10(0)
1.6e-22 # 0.000000000000000000000016

A googol is actually the correct mathematical term for this number (1e100), believe it or not.
Likewise, a 'googolplex' is 10 to the power of a googol, or 10(10)(100), which is hard for both
humans and programming languages to handle.

Floating-point numbers are used to store what in mathematical terms are called real numbers, the set of
all possible values. The accuracy of floating-point numbers is limited, so they cannot represent all real
numbers. However, they are capable of a wider range of values than integers, both in terms of accuracy
and in terms of scale.

In general integers are represented internally as four-byte binary numbers, with the highest bit reserved
for the sign. Floating points by contrast are usually held in eight bytes, with 11 bits reserved for the
exponent, leaving 53 for the mantissa. This allows floating-point numbers to express a much larger
range of values, though not every possible value in that range.

The above example of 1e100 is mathematically an integer, but it is one that Perl's integer
representation is unable to handle, since one hundred consecutive zeros is considerably beyond the
maximum value of 4294967295 that integers can manage on most platforms. For a floating-point
number however it is trivial, since an exponent of 100 coupled to a mantissa of '1' represents the value
perfectly.

The standard C library of the underlying platform on which Perl is running determines the range of
floating-point numbers. On most platforms floating-point numbers are handled and stored as 'doubles',
double accuracy 8-byte (64-bit) values, though the actual calculations performed by the hardware may
use more bits. Of these 64 bits, eleven are reserved for the exponent, which can range from two to the
power of -1024 to +1024, which equates to a range of around ten to the power of -308 to +308. The
remaining 53 are assigned to the mantissa, so floating-point numbers can represent values up to fifty
three binary places long. That equates to fifteen or sixteen decimal places, depending on the exact
value.

However, just because a value is within the range of floating numbers does not mean that can represent
it accurately. Unforeseen complications can arise when using floating-point numbers to perform
calculations. This comes about because while Perl understands and displays floating-point numbers in
decimal (base 10), it stores them internally in binary (base 2). Fractional numbers expressed in one base
cannot always be accurately expressed in another, even if their representation seems very simple. This
can lead to slight differences between answer that Perl calculates and the one we might expect.

To give an example, consider the floating-point number 0.9. This is easy to express in decimal, but in
binary this works out to:

0.11100110110110110110110110110110110110110....

That is, a recurring number. This is because floating-point numbers may hold a finite number of 53
binary digits; we cannot accurately represent this number in the mantissa alone. As it happens, 0.9 can
be accurately represented as 9e-1: a mantissa of '9' with an exponent of '-1', but this is not always the
case. Consequently calculations involving floating-point values, and especially comparisons to integers
and other floating-point numbers, do not always behave as we expect.

Chapter 3

58

Converting Floats into Integers
The quickest and simplest way to convert floating-point numbers into integers is to use the int
function. This strips off the fractional part of the floating-point number and returns the integer part:

$int = int($float);

However, int is not very intelligent about how it calculates the integer part. First, it truncates the
fractional part of a floating-point number and so only rounds down, which may not be what we want.
Second, it does not take into account the problems of precision, which can affect the result of floating-
point calculations. For example, the following calculation produces different results if we return the
answer as an integer, even though the resulting calculation ought to result in a round number:

$number = 4.05/0.05;
print "$number \n"; # returns 81, correct
print int($number); # returns 80, incorrect!

Similarly, a comparison operator (see Chapter 4) will tell us that $number is not really equal to 81:

$number = 4.05/0.05;
if $number is not equal to 81 then execute the print statement
in the block
if ($number != 81) {

print "\$number is not equal to 81 \n";
}

The reason for this is that $number does not actually have the value 81 but a floating-point value that is
very slightly less than 81. When we display it, the conversion to string format handles the slight
discrepancy for us and we see the result we expect.

To round the above to the nearest integer rather than the next highest or next lowest, we can add 0.5 to
our value and then round it down:

print int($number+0.5); # returns 81, correct

We can also use the floor and ceil functions of the standard C library through the POSIX module.
floor works exactly like int (and with the same rounding problems) rounding to the next lowest
integer, whereas ceil rounds to the next highest integer. The difference is that the values returned from
these functions are floating-point values, not integers. That is, though they appear the same to us, the
internal representation is different.

Converting Floats into Strings
As mentioned earlier, Perl automatically converts floating-point numbers into strings when they are
used in a string context, for example:

print "The answer is $floatnum";

The number is converted into string format according to the values of the mantissa and exponent. If the
number can be represented as an integer, Perl converts it before printing:

$floatnum = 4.3e12; # The answer is 4300000000000

Scalars

59

Alternatively, if the number is a fraction that can be expressed as a fixed decimal (that is, purely in
terms of a mantissa without an exponent), Perl converts it into that format:

$floatnum = 4.3e-3; # The answer is 0.0043

Otherwise it is converted into the 'standard' mantissa+exponent form:

$floatnum = 4.3e99; # The answer is 4.3e99

Sometimes we might want to alter the format of the generated text, to force consistency across a range
of values or to present a floating-point value in a different format. The sprintf and printf functions
can do this for us, and provide several placeholder formats designed for floating-point output:

printf '%e', $floatnum; # force conversion to fixed decimal format
printf '%f', $floatnum; # force conversion to mantissa/exponent format
printf '%g', $floatnum; # use fixed if accurately possible, otherwise

Perl's default conversion of floating-point numbers is therefore equivalent to:

$floatstr = sprintf '%g', $floatnum;

A field width can be inserted into the format string to indicate the desired width of the resulting number
text. Additionally, a decimal point and second number can be used to indicate the width of the
fractional part. We can use this to force a consistent display of all our numbers:

printf '%6.3f', 3.14159; # display a minimum width of 6 with 3
decimal places; produces ' 3.142'

The width, 6, in the above example, includes the decimal point and the leading minus sign if the
number happens to be negative. This is fine if we only expect our numbers to range from 99.999 to
-9.999, but printf will exceed this width if the whole part of the number exceeds the width remaining
(two characters) after the decimal point and three fractional digits have taken their share. Allowing a
sufficient width for all possible values is therefore important if sprintf and printf are to work as we
want them to.

Just as with integers, we can prefix the format with a space or + to have positive numbers format to the
same width as negative ones:

printf '% 7.3f', 3,14159; # pad with leading space if positive,
produces ' 3.142'

printf '%+7.3f', 3.14159; # prefix a '+' sign if positive,
produces ' +3.142'

printf '%07.3f', 3.14159; # prefix with leading zeros,
produces '003.142'

printf '% 07.3f', 3.14159; # pad with a leading space, then leading zeros,
produces ' 03.142'

printf '%+07.3f', 3.14159; # pad with a leading +, then leading zeros,
produces '+03.142'

Chapter 3

60

The 'use integer' Pragma
We discussed earlier how Perl automatically converts between integers, strings, and floating-point
numbers as and when it needs to. However, we might specifically want an integer, either because we
want a result in round numbers or simply for speed. One way to restrict the result of a calculation to
integers is to use the int function, as shown in 'Converting Floats into Integers' earlier.

This still requires Perl to do the calculation with floating-point numbers, since it does not know any
different. If the underlying hardware does not support floating-point operations (rare, but still possible
in embedded systems) this can result in unnecessarily slow calculations when much faster integer
calculations could be used. To remedy this situation and allow Perl to intelligently use integers where
possible, we can encourage integer calculations with the use integer pragma:

use integer;
$integer_result = $nominator / $divisor;

While use integer is in effect, all calculations that would normally produce floating-point results but
are capable of working with integers will operate interpreting their operands as integers. This applies
even to simple assignments:

use integer;
$PI = 3.1415926; # sets $PI to '3'
print $PI; # prints '3.1415926'
print $PI + 5; # prints '8'

We can switch off integer-only arithmetic again by writing a no integer, which cancels out the effect
of a previous use integer. This allows us to write sections (or blocks) of code that are integer only, but
leave the rest of the program using floating-point numbers as usual, or vice versa. For example:

sub integersub {
use integer;
...integer only code...
{
no integer;
floating-point in this block
}
...more integer only code...

}

Using use integer can have some unexpected side-effects. While it is in effect Perl passes integer
calculations to the underlying system (which means the standard C library for the platform on which
Perl was built) rather than doing them itself. That might not always produce exactly the same result as
Perl would, for example:

print -13 % 7; # produces '1'

use integer;
print -13 % 7; # produces '-6'

The reason for this behavior is that Perl and the standard C library have slightly different perspectives
on how the modulus of a negative number is calculated. The fact that, by its nature, a modulus
calculation cannot produce a floating-point result does not alter the fact that use integer affects its
operation.

Scalars

61

Even with use integer enabled, Perl will still produce a floating-point number if an integer result
makes no sense or if the result would otherwise be out of range. For example:

use integer;
print sqrt(2); # produces 1.4142135623731
print 2 ** 100; # produces 1.26765060022823e+030

use integer has one final effect that is not immediately obvious: It disables Perl's automatic
interpretation of bitwise operations as unsigned, so results that set the highest bit (that is, the 32nd bit in
a 32 bit architecture) will be interpreted by Perl as signed rather than unsigned values:

print ~0, ' ',-1 << 0; # produces '4294967295 4294967295'

use integer;
print ~0, ' ',-1 << 0; # produces '-1 -1'

This can be useful behavior if we want it, but is a potential trap for the unwary.

Mathematical Functions
Perl provides a number of mathematical functions for managing numbers. We look in this section at
some of the most commonly used.

The abs function returns the absolute (unsigned) value of a number:

print abs(-6.3); # absolute value, produces 6.3

Perl provides three functions for computing powers and logarithms, in addition to the **
exponentiation operator. They are:

print sqrt(6.3); # square root, produces 2.50998007960223
print exp(6.3); # raise 'e' to the power of, produces 544.571910125929
print log(6.3); # natural (base 'e') logarithm, produces 1.84054963339749

Perl's support for logarithms only extends to base (e) natural logarithms. To work in other bases, we
divide the natural log of the number by the natural log of the base, that is:

$n=2;
$base = 10;
print log($n) / log($base); # calculate and print log(10)2

For the specific case of base 10 logarithms, the standard C library defines a base 10 logarithm function
that we can use via the POSIX module as log10:

use POSIX qw(log10);
print log10($n); # calculate and print log(10)2

Perl provides three built-in trigonometric functions: sin, cos, and atan2 for the sine, cosine and
arctangent of an angle, respectively. Perl does not provide built-in inverse functions for these three, nor
does it provide the standard tan function, because these can all be worked out easily (ignoring issues of
ranges, domains, and result quadrants):

Chapter 3

62

atan2($n, sqrt(1 - $n ** 2)) # asin (inverse sine)
atan2(sqrt(1 - $n ** 2), $n) # acos (inverse cosine)
sin($n) / cos($n) # tan

We can easily define subroutines to provide these calculations, but to save us the trouble of writing our
own trigonometric functions Perl provides a full set of basic trigonometric functions in the Math::Trig
module, as well as utility subroutines for converting between degrees and radians and between radial
and Cartesian coordinates.

Strings
Perl provides comprehensive support for strings, including interpolation, regular expression processing,
and even a selection of ways to specify them. Arguably, string processing is Perl's single biggest
strength, and accordingly much of this book is concerned with it in one way or another, notably
Chapter 18.

In version 5.6 Perl gained the ability to handle Unicode characters not only in scalar variables and
literally specified text, but also throughout, even including variable and subroutine names. We cover
this in Chapter 25, along with other internationalization issues in Chapter 26.

Quotes and Quoting
Literal strings can be written in a variety of different quoting styles, each of which treats the text of the
string in a different way. The result (with one exception) is always string data. They are:

Quote type Operator Result

single quotes q literal string

double quotes qq interpolated string

n/a qr regular expressions string

n/a qw list of words

backticks (``) qx execute external program

As the table shows, Perl provides two syntaxes for most kinds of strings. The ordinary punctuated kind
uses quotes, but we can also use a quoting operator to perform the same function:

'Literal Text' # is equivalent to q(Literal Text)
"$interpolated @text" # is equivalent to qq($interpolated @text)
`./external -command` # is equivalent to qx(./external -command)

One of the advantages of the quoting operators is that they allow us to place quote marks inside a string
that would otherwise cause syntax difficulties. Accordingly, the delimiters of the quoting operators can
be almost anything, so we have the greatest chance of being able to pick a pair of characters that do not
occur in the string:

$text = q/a string with 'quotes' is 'ok' inside q/;

Scalars

63

Perl accepts both paired and single delimiters. If a delimiter has a logical opposite, such as (and), <
and >, [and], or { and }, the opposing delimiter is used for the other end, otherwise the same
delimiter is expected again:

$text = qq{ "$interpolated" ($text) 'and quotes too' };

Other than their more flexible syntax, the quoting operators have the same results as their quote
counterparts. Two quote operators, qw and qr, do not have quote equivalents, but these operators are
more specialized.

The single quoted string treats all of its text as literal characters; no processing, interpolation, or escaping
is performed. The quoting operator for literal text is q, so the following are equivalent:

'This is literal text'

q/This is literal text/

Or with any other delimiter we choose, as noted above.

The quoting operator for interpolation is qq, so the above can also be written as:

qq/There are $count matches in a $thing./;

Note that only the outer quotes are significant when determining whether a string is interpolated or not,
quotes within the text are just punctuation.

The qr operator is a recent addition to Perl just prior to version 5.005 that prepares regular expressions
for use ahead of time. It takes a regular expression pattern, and produces a ready-to-go regular
expression that can be used anywhere a regular expression operator can:

directly
$text =~ /pattern/;

via 'qr':
$re = qr/pattern/;
$text =~ $re;

The qr operator also interpolates its argument in exactly the same way that double quoted strings and
the qq operator do. Do not despair if this seems rather abstract at the moment, we will learn more about
this in Chapter 11, where qr is covered in more detail.

Quoting a string with backticks, `, causes Perl to treat the enclosed text as a command to be run
externally. The output of the command (if any) is captured by Perl and returned to us. For example:

#!/usr/bin/perl
external.pl
use strict;
use warnings;

my $files = `ls /home`; # use something like `dir c:` for DOS/Windows
print $files;

TE
AM
FL
Y

Team-Fly®

Chapter 3

64

> perl external.pl
AndrewP
DanR
DaveM
MankeeC

Interpolation is carried out on the string before it is executed, and then passed to a temporary shell if
any shell-significant characters like spaces or quotes are present in the resulting string. The equivalent
quoting operator is qx:

my $files = qx(ls /home); # use something like qx(dir c:) for DOS/Windows

There are serious security issues regarding the use of backticks however. This is partly because they
rely on environment variables like $PATH, which is represented in Perl as $ENV{'PATH'}, that we may
not be able to trust, and partly because a temporary shell can interpret characters in a potentially
damaging way.

The qw operator takes a whitespace separated string and turns it into a list of values. In this respect it is
unlike the other quoting operators on which all return string values. Its purpose is to allow us to specify
long lists of words without the need for multiple quotes and commas that defining a list of strings
normally requires:

the quotey way
@array = ('a', 'lot', 'of', 'quotes', 'is', 'not', 'very', 'legible');

much more legible using 'qw'
@array = qw(a lot of quotes is not very legible);

Both these statements produce the same list of single word string values as their result, but the second is
by far the more legible. The drawback to qw is that it will not interpolate variables or handle quotes, so
we cannot include spaces within words. In its favor, though, qw also accepts tabs and newlines, so we
can also say:

@array = qw(
a lot
of quotes
is not
very legible
);

Note that with qw we need to avoid commas, which can be a hard habit to break. If we accidentally use
commas, Perl will warn against it, since commas are just another character to qw and so comma
separated words would result in a single string; words, commas, and all:

@oops = qw(a, comma, separated, list, of, words);

If we try to do this Perl will warn us (assuming we have warnings enabled) with:

Possible attempt to separate words with commas at ...

If we actually want to use commas, we can, but in order to silence Perl we will need to turn off warnings
temporarily with no warnings and turn them back on again afterward (the new warning system
brought in for Perl 5.6 also allows us to turn off specific warnings, so we could do that too. See Chapter
16 for more details).

Scalars

65

'Here' Documents
As we have just seen, the usual way to define literal text in source code is with quotes, or the equivalent
quoting operators q and qq. Here documents are an additional and alternative way that is particularly
well suited to multiple line blocks of text like document templates. Here documents are interpolated,
and so make a convenient alternative to both concatenating multiple lines together and Perl formats,
which also provide a document template processing feature, but in an entirely different way.

To create a here document we use a << followed immediately by an end token, a bareword or quoted
string that is used to mark the end of the block. The block itself starts from the next line and absorbs all
text, including the newlines, until Perl sees the end token. Normal Perl syntax parsing is disabled while
the document is defined, and continues only after the end token is seen:

$string = <<_END_OF_TEXT_;
Some text
Split onto multiple lines
Is clearly defined
_END_OF_TEXT_

This is exactly equivalent to, but easier on the eye than:

$string = "Some text \n".
"Split onto multiple lines \n".
"Is clearly defined \n";

The << and token define where the document is used, and tells Perl that it is about to start on the next
line. There must be no space between the << and the token, otherwise Perl will complain. The token
may be an unquoted bareword, like the above example, or a quoted string, in which case it can contain
spaces, as in the example below:

the end token may contain spaces if it is quoted
print <<"print to here";
This is
some text
print to here

If used, the type of quote determines whether or not the body of the document is interpolated or not. If
single quotes are used, no interpolation takes place:

this does not interpolate
print <<'_END_OF_TEXT_'
This %is @not %interpolated
_END_OF_TEXT_

Note that in all examples the here document is used within a statement, which is terminated by a
semicolon, as normal. It is not true to say that the <<TOKEN absorbs all text following it; it is a perfectly
ordinary string value from the point of view of the statement around it. Only from the next line does
Perl switch into document definition mode:

a foreach loop on one line
foreach (split "\n", <<LINES) { print "Got $_ \n"; }
Line 1
Line 2
Line 3
LINES

Chapter 3

66

Alternatively, we can define a here document within a statement if the statement spans more than one
line; the rest of the lines fall after the end token:

#!/usr/bin/perl
heredoc.pl
use warnings;
use strict;

a foreach loop split across the 'here' document
foreach (split "\n", <<LINES) {
Line 1
Line 2
Line 3
LINES

print "Got: $_ \n";
}

Since here documents are interpolated (unless we use single quotes to define the end token at the top,
as noted above) they make a very convenient way to create templates for documents. Here is an
example being used to generate an email message with a standard set of headers:

#!/usr/bin/perl
formate.pl
use warnings;
use strict;

print format_email('me@myself.net', 'you@yourself.org', "Wishing you were here",
"...instead of me!", "Regards, Me");

subroutines will be explained fully in Chapter 7
sub format_email {
my ($me, $to_addr, $subject, $body_of_message, $signature) = @_;

return <<_EMAIL_;
To: $to_addr
From: $me;
Subject: $subject

$body_of_message
--
$signature
EMAIL
}

The choice of end token is arbitrary; it can be anything, including a Perl keyword. For clarity's sake
however a clearly defined token, preferably in capitals and possibly with surrounding underscores, is a
good idea. The end token must also appear at the start of the line; if it is indented with anything, Perl
will not recognise it. Likewise, any indentation within the here document will remain in the document.
This can present a stylistic problem since it breaks formatting in things like subroutines:

sub return_a_here_document {

return <<DOCUMENT;
This document definition cannot be indented
if we want to avoid indenting
the resulting document too
DOCUMENT
}

Scalars

67

If we do not mind indenting the document then we can indent the end token by defining it with the
indent to start with:

sub return_a_here_document {

return <<' DOCUMENT';
This document is indented, but the
end token is also indented, so it parses OK

DOCUMENT
}

Although it uses the same symbol, the here document << has nothing whatsoever to do with the shift
right operator. Rather, it is a unary operator with a rather unusual operand. It can be seen as a distant
relative of the DATA filehandle, which reads data placed after the __END__ or __DATA__ tokens in source
files, and which we discuss in Chapter 12.

Bareword Strings and Version Numbers
The use strict pragma forces us to declare variables properly, forbids symbolic references, and does
not allow us to leave strings unquoted, because of the possible confusion with subroutines. Without
strict subs we can in fact quite legally say:

'use strict subs' won't allow us to do this
$word = unquoted;

instead of the more correct:

$word = "unquoted";

This is a fairly obvious example where we really ought to be using quotes, but it is easy to get into the
habit of omitting quotes in things like hash keys:

$value = $hash{animal}{small}{furry}{cat};

The problem with this, apart from the fact we cannot include spaces, is that if at a future point, we write
a subroutine called unquoted then our string assignment suddenly becomes a subroutine call. This is
one of the many reasons we should always use strict in Perl programs.

However, there are a few places where bareword strings are allowed. The first, and most obvious, is the
qw operator, which we covered earlier:

qw(startword bareword anotherbareword endword);

A second place where barewords are allowed is on the left-hand side of the relationship (or digraph)
operator. This is just a clever form of comma that knows it is being used to define hash keys and values.
Since a hash key can only be a string, the left-hand side of a => must be a string:

%hash = (bareword => "still need quotes on this side");

Chapter 3

68

Finally, Perl supports a very special kind of string called a version string, which in fact must be
unquoted to be treated as such. The format of a version string must resemble a version number, and can
only be made of digits, points, and an optional v prefix:

$VERSION = 1.2.34;

If the version number has only one, (or no) points in it then we must use the v prefix to ensure that Perl
does not interpret it as a regular integer or floating-point number:

$float = 5.6 # oops, that is a floating-point number
$version = v5.6 # now it is a version string

The special variable $^V ($PERL_VERSION) also returns a string of this kind, unlike the older $], which
returns a floating-point number for compatibility with older Perl versions (for example, 5.003). The
objective is to allow version numbers to be easily compared without straying into the dangerous world
of floating-point comparisons, as in this example that tests the version of Perl itself, and aborts with an
error message if it is too old:

'require 5.6.0' is another way to do this:
die "Your Perl is too old! Get a new one! \n" if $^V lt v5.6.0;

The characters in a version string are actually directly constructed from the digits, so a 1 becomes the
character Control-A, or ASCII 1. 5.6.0 is therefore equivalent to the interpolated string "\05\06\00"
or the expression chr(5).chr(6).chr(0). This is not a very printable string, but it is still a string, so
we must be sure to use the string comparison operators like lt (less than) and ge (greater or equal to)
rather than their numeric equivalents < and >=.

Converting Strings into Numbers
As we have seen, Perl automatically converts strings into an integer or floating-point form when the
context demands it, for instance if we perform a numeric operation. This provides us with a simple way
to convert a string into a number when we actually want a number, for example in a print statement,
which is happy with any kind of scalar. All we have to do is perform a numeric operation on the string
that doesn't change its value, multiplying or dividing by 1 for example. Of all the no-op numeric
operations, adding zero is probably the simplest:

define a numeric string
$scalar = '123.4e5';

evaluate it in original string context
print $scalar; # produces '123.4e5'

evaluate it in numeric context
print $scalar + 0; # produces '12340000'

Perl will evaluate the string as a floating-point number unless we constrain it by either using the int
function or the use integer pragma:

evaluate as an integer
print int($scalar);

Scalars

69

If the string does not look like a number then Perl will do the best job it can, while warning us that the
string is not completely convertible, and some information is being lost:

print "123.4e5abc" + 0 # produces '12340000' and a warning

Converting Strings into Lists and Hashes
To transform a string into a list basically consists of dividing it up into pieces. For this purpose Perl
provides the split function, which takes two arguments, a pattern to split on, and a string to perform
the splitting on. For example, this splits a comma separated sequence of values in a string into a list of
those values:

$csv = "one, two, three, four, five, six";
@list = split ',' , $csv;

Although it is commonly used to split up strings by simple delimiters like commas, the first argument
to split is in fact a regular expression, and is able to use the regular expression syntax of arbitrary
delimiters:

@list = split /, /, $csv;

This also means that we can be more creative about how we define the delimiter. For instance, to divide
up a string with commas and arbitrary quantities of whitespace we can replace the comma with a
pattern that absorbs whitespace on either side:

@list = split /\s*, \s*/, $csv;

This does not deal with any leading or trailing whitespace on the first and last items (and in particular
any trailing newline) but it is effective none the less. However, if we want to split on a character that is
significant in regular expressions, we have to escape it. The // style syntax helps remind us of this, but
it is easy to forget that a pipe symbol, (|), will not split up a pipe-separated string:

$pipesv = "one | two | three | four | five | six";
print split('|', $pipesv); # prints one | two | three | four | five | six

This will actually return the string as a list of single characters, including the pipes, because | defines
alternatives in Perl. There is nothing either side of the pipe, so we are actually asking to match on
nothing or nothing, both of which are zero-width patterns (they successfully match no characters). Perl
treats zero-width matches as a special case in multiple matches, incrementing the position one character
despite having matched no characters. As a result we get a stream of single characters. This is better
than an infinite loop, which is what would occur if Perl didn't treat zero-width matches specially, but it's
not what we intended either. Here is how we should have done it:

print split('\|', $pipesv); # prints one two three four five six

A use for alternation is this split statement, which parses hash definitions in a string into a real hash:

$hashdef = "Mouse=>Jerry, Cat=>Tom, Dog=>Spike";
%hash = split /, |=>/, $hashdef;

Because it uses a regular expression, split is capable of lots of other interesting tricks, including
returning the delimiter if we use parentheses. If we do not actually want to include the delimiters in the
returned list we need to suppress it with the extended (?:...) pattern:

Chapter 3

70

return (part of) delimiters
@list = split /\s*(, |=>)\s*/, $hashdef;
@list contains 'Mouse', '=>', 'Jerry', ',' , 'Cat', ...

suppress return of delimiters, handle whitespace, assign resulting
list to hash
%hash = split /\s*(?:, |=>)\s*/, $hashdef;

Both examples use more complex forms of regular expression such as \s to match whitespace, which
we have not fully covered yet; see Chapter 11 for more details on how they work. The last example
also illustrates how to define the contents of a hash variable from a list of values, which we will
cover in detail when we come to hashes later.

If split is passed a third numeric parameter, then it only splits that number of times, preserving any
remaining text as the last returned value:

my $configline = "equation=y = x ** 2 + c";
split on first = only
my ($key, $value) = split (/=/, $configline, 2);
print "$key is '$value'"; # produces "equation is 'y = x ** 2 + c'"

split also has a special one and no-argument mode. With only one argument, it splits the default
argument $_, which makes it useful in loops like the while loop that read lines from standard input (or
files supplied on the command line), like the short program below:

#!/usr/bin/perl
readconfig.pl
use warnings;
use strict;

my %config;

read lines from files specified on command line or (if none)
standard input
while (<>) {

my ($key, $value) = split /=/; # split on $_
$config{$key} = $value if $key and $value;

}

print "Configured: ", join(', ', keys %config), "\n";

We can invoke this program with a command like:

> readconfig.pl configfile

Supplied with a configfile containing:

first = one
second = two

This produces:

Configured: first, second

Scalars

71

If no arguments are supplied at all, split splits the default argument on whitespace characters, after
skipping any leading whitespace. The following short program counts words in the specified files or
what is passed on standard input using the '<>' readline operator covered in Chapter 6:

#!/usr/bin/perl
split.pl
use warnings;
use strict;

my @words;

read lines from files specified on command line or (if none)
standard input
while (<>) {

split lines into words and store
push @words, split;

}

print "Found ", scalar(@words), " words in input \n";

split and other aspects of regular expressions that can be applied to split are covered in more detail
in 'Regular Expressions' in Chapter 11.

Functions For Manipulating Strings
Perl provides us with a set of operators that we can use for manipulating strings. We will explore those
operators in Chapter 4. In this section, we will look into a number of functions for handling strings.

Print
The ubiquitous print statement is not technically a string function, since it takes a list of arbitrary
scalar values and sends them to the currently selected filehandle. We have already seen print in many
of the examples so far; the general form is one of the following:

print @list;
print FILEHANDLE @list;

The output of print is affected by several of Perl's special variables:

Variable Action

$, The output field separator determines what print places between values, by
default '' (nothing). Set to ',' to print comma separated values.

$\ The output record separator determines what print places at the end of its output
after the last value, by default '' (nothing). Set to '\n' to print out automatic
linefeeds.

$# The output format for all printed numbers (integer and floating-point), in terms of a
sprintf style placeholder. The default value is something similar to %.6g. To
print everything to two fixed decimal places (handy for currency, for example)
change to %.2f, but note that use of $# is now deprecated in Perl.

$| The autoflush flag determines if line or block buffering should be used. If 0, it is
block, if 1, it is line.

Chapter 3

72

Although not directly related to print, it is worth noting that interpolated arrays and hashes use $" as
a separator, rather than $, (a space by default). See Appendix B for more on these and other special
variables.

Beware of leaving off the parentheses of print if the first argument (after the filehandle, if present) is
enclosed in parentheses, since this will cause print to use the first argument as an argument list,
ignoring the rest of the statement.

Line Terminator Termination
The chop and chomp functions both remove the last character from a string. This apparently esoteric
feature is actually very handy for removing line terminators. chop is not selective, it will chop off the
last character irrespective of what it is or whether it looks like a line terminator or not, returning it to us
in case we want to use it for something:

chop $input_string;

The string passed to chop must be an assignable one, such as a scalar variable, or (more bizarrely) the
return value of substr used on a scalar variable, since chop does not return the truncated string but
the character that was removed. If no string is supplied, chop uses the default argument $_:

while (<>) {
chop;
print "$_ \n";

}

Note that if we want to get the string without the terminator, but also leave it intact we can use substr
instead of chop. This is less efficient because it makes a copy of the line, but it preserves the original:

while (<>) {
my $string = substr $_, 0, -1;

print $string;
}

chomp is the user-friendly version of chop; it only removes the last character if it is the line terminator,
as defined by the input record separator special variable '$/' (default "\n"), but is otherwise identical:

chomp $might_end_in_a_linefeed_but_might_not;

Both chop and chomp will work on lists of strings as well as single ones:

remove all trailing newlines from input, if present
@lines = <>;
chomp(@lines);

Giving either chop or chomp a non-string variable will convert it into a string. In the case of chomp this
will do nothing else; chop will return the last digit of a number and turn it into a string missing the last
digit.

Scalars

73

Characters and Character Codes
The ord function produces the integer character code for the specified letter. If passed a string of more
than one character it will return the code for the first one. ord will also handle multi-byte characters
and return a Unicode character code:

print ord('A'); # returns 65

The inverse of ord is chr, which converts a character code into a character:

print chr(65); # returns 'A'

chr will happily handle Unicode character codes as well as single-byte ASCII character for codes
(though the results of displaying it are dependent on the character set in effect: code 65 is usually, but
not necessarily, 'A'). See Chapter 25 for more information on Unicode.

Note that these examples will only produce this output if ASCII is the default character set – In
Japan the output would be different.

Length and Position
The length function simply returns the length of the supplied string:

$length = length($string);

If the argument to length is not a string it is converted into one, so we can find out how wide a
number will be if printed before actually doing so:

$pi = atan2(1, 0) * 2; # a numeric value
$length_as_string = length($pi); # length as string

The index and rindex functions look for a specified substring within the body of a string. They do not
have any of the power or flexibility of a regular expression, but by the same token, they are
considerably quicker. They return the position of the first character of the matched substring if found, or
-1 (technically one less than the index start $[) otherwise:

$string = "This is a string in which looked for text may be found";
print index $string, "looked for"; # produces '26'

We may also supply an additional position, in which case index and rindex will start from that
position:

print index $string, "look for", 30; # not found, produces -1

index looks forward and rindex looks backward, but otherwise they are identical. Note that unlike
arrays, we cannot specify a negative number to specify a starting point relative to the end of the string,
nice though that would be.

While we are on the subject of positions, the pos function actually has nothing whatsoever to do with
functions like index and rindex. It is a regular expression function for returning the position of
successful matches.

TE
AM
FL
Y

Team-Fly®

Chapter 3

74

Substrings and Vectors
The very versatile substr extracts a substring from a supplied string in very much the same way that
splice returns parts of arrays, and indeed the two functions are modeled to resemble each other. It
takes between two and four arguments – a string to work on, an offset to start from, a length, and an
optional replacement:

return characters from position 3 to 7 from $string
print substr "1234567890", 3, 4; # produces 4567

String positions start from 0, like arrays (and are also controlled by the special variable $[). If the length
is omitted, substr returns characters up to the end of the string:

print substr "1234567890", 3; # produces 4567890

Both the offset and the length can be negative, in which case they are both taken relative to the end of
the string:

print substr "1234567890", -7, 2; # produces 45
print substr "1234567890", -7; # produces 4567890
print substr "1234567890", -7, -2; # produces 45678

We can also supply a replacement string, either by specifying the new string as the fourth argument, or
more interestingly assigning to the substr. In both cases the new string may be longer or shorter
(including empty, if we just want to remove text) and the string will adjust to fit. However, for either to
work we must supply an assignable value like a variable or a subroutine or function that returns an
assignable value (like substr itself, in fact). Consider the following two examples:

$string = "1234567890";
print substr($string, 3, 4, "abc");
produces '4567'
$string becomes '123abc890'

$string = "1234567890";
print substr($string, 3, 4) = "abc";
produces 'abc8'
$string becomes '123abc890'

The difference between the two variants is in the value they return. The replacement string version
causes substr to return the original substring before it was modified. The assignment on the other
hand returns the substring after the substitution has taken place. This will only be the same as the
replacement text if it is the same length as the text it is replacing; in the above example the replacement
text is one character shorter, so the return value includes the next unreplaced character in the string,
which happens to be 8.

Attempting to return a substring that extends past the end of the string will result in substr returning
as many characters as it can. If the start is past the end of the string then substr returns an empty
string. Note also that we cannot extend a string by assigning to a substr beyond the string end (this
might be expected since we can do something similar to arrays, but it is not the case.)

Scalars

75

Upper and Lower Case
Perl provides no less than four different functions just for manipulating the case of strings. uc and lc
convert all character in a string into upper and lower case (all characters that have a case, that is) and
return the result:

print uc('upper'); # produces 'UPPER'
print lc('LOWER'); # produces 'lower'

ucfirst and lcfirst are the limited edition equivalents, they only operate on the first letter:

print ucfirst('daniel'); # produces 'Daniel';
print lcfirst('Polish'); # produces 'polish';

If we are interpolating a string we can also use the special sequences \U...\E and \L...\E within the
string to produce the same effect as uc and lc for the characters placed between them. See Chapter 11
for more details. And talking of interpolation...

Interpolation
The quotemeta function processes a string to make it safe in interpolative contexts. That is, it inserts
backslash characters before any non-alphanumeric characters, including $, @, %, existing backslashes,
commas, spaces, and all punctuation except the underscore (which is considered an honorary numeric
because it can be used as a separator in numbers). We also cover quotemeta in Chapter 11.

Pattern Matching and Transliteration
Perl's regular expression engine is one of its most powerful features, allowing almost any kind of text
matching and substitution on strings of any size. It supplies two main functions, the m// match and
s/// substitution functions, plus the pos function and a large handful of special variables. For example,
to determine if one string appears inside another ignoring case:

$matched = $matchtext =~ /some text/i;

Or to replace all instances of the word green with yellow:

$text = "red green blue";
$text =~ s/\bgreen\b/yellow/g;
print $text; # produces 'red yellow blue'

Closely associated but not actually related to the match and substitution functions is the transliteration
operator tr///, also known as y///. It transforms strings by replacing characters from a search list
with the character in the corresponding position in the replacement list. For example, to uppercase the
letters a to f (perhaps for hexadecimal strings) we could write:

$hexstring =~ tr/a-f/A-F/;

Entire books have been written on pattern matching and regular expressions, and accordingly we
devote Chapter 11 to it.

Chapter 3

76

Password Encryption
The crypt function performs a one-way transform of the string passed; it is identical to (and
implemented using) the C library crypt on UNIX systems. crypt is not always available, in which
case attempting to use it will provoke a fatal error from Perl. Otherwise, it takes two arguments: the text
to be encrypted and a salt, which is a two character string made of random characters in the range
0..9, a..z, A..Z, '/', or '.'. Here is how we can generate a suitable encrypted password in Perl:

@characters = (0..9, 'a'..'z' ,'A'..'Z', '.', '/');
$encrypted = crypt($password, @characters[rand 64, rand 64]);

Since we do not generally want to use the salt for anything other than creating the password we instead
supply the encrypted text itself as the salt for testing an entered password (which works because the first
two characters are in fact the salt):

check password
die "Wrong!" unless crypt($entered, $encrypted) eq $encrypted;

Note that for actually entering passwords it is generally a good idea to not echo to the screen, see
Chapter 15 for some ways to achieve this.

crypt is not suitable for encrypting large blocks of text, it is a one-way function that cannot be
reversed, and so is strictly only useful for generating passwords. Use one of the cryptography modules
from CPAN like Crypt::TripleDES or Crypt::IDEA for more heavyweight and reversible
cryptography.

Low Level String Conversions
Perl provides three functions that perform string conversions at a low level. The pack and unpack
functions convert between strings and arbitrary machine-level values, like a low-level version of
sprintf. The vec function allows us to treat strings as if they were long binary values, obviating the
need to convert to or from actual integer values.

'Pack' and 'Unpack'

The pack and unpack functions convert between strings and lists of values: The pack function takes a
format or template string and a list of values, returning a string that contains a compact form of those
values. unpack takes the same format string and undoes the pack, extracting the original values.

pack is reminiscent of sprintf. They both take a format string and a list of values, generating an
output string as a result. The difference is that sprintf is concerned with converting values into legible
strings, whereas pack is concerned with producing byte-by-byte translations of values. Whereas
sprintf would turn an integer into a textual version of that same integer, for example, pack will turn
it into a series of characters whose binary values go up to make up the integer:

$string = pack 'i', $integer;

Scalars

77

Or, using real numbers:

print pack 'i', 1819436368; # produces the string 'Perl'

To pack multiple integers we can put more 'i's, or use a repeat count:

$string = pack 'i4', @integers[0..3];

To pack as many as the list supplies, we use * for a repeat count:

$string = pack 'i*', @integers;

We can combine multiple template characters into one template. The following packs four integers, a
null character (given by x), and a string truncated to ten bytes with a null character as a terminator
(given by Z):

$string = pack 'i4xZ10', @integers[0..3], "abcdefghijklmonop";

We can also add spaces for clarity:

$string = pack 'i4 x Z10', @integers[0..3], "abcdefghijklmonop";

To unpack this list again we would use something like:

($int1, $int2, $int3, $int4, $str) = unpack 'i4xZ10', $string;

pack and unpack can simulate several of Perl's other functions. For example, the c template character
packs and unpacks a single character to and from a character code, in exactly the same way that ord
and chr do:

$chr = pack 'c', $ord;
$ord = unpack 'c', $chr;

The advantage is of course that with pack and unpack we can process a whole string at once:

@ords = unpack 'c*', $string;

Similarly, here is how we can use x (which skips over or ignores, for unpack) and a (read as-is) to
extract a substring somewhat in the manner of substr:

$substr = unpack "x$position a$length", $string;

pack supports a bewildering number of template characters, each with its own properties, and a
number of modifiers that alter the size or order in which they work. Here is a brief list; note that several
only make sense with an additional count supplied along with the template character:

Chapter 3

78

Character Properties

a Arbitrary (presumed string) data, null padded if too short

A Arbitrary (presumed string) data, space padded if too short

Z Null terminated string

b Bit string, ascending order (as used by vec)

B Bit string, descending order

h Hex string, byte order low-high

H Hex string, byte order high-low

c Signed character (8-bit) value

C Unsigned character (8-bit) value

s Signed short (16-bit) value

S Unsigned short (16-bit) value

I Signed integer value (length dependent on C)

I Unsigned integer value (length dependent on C)

l Signed long (32-bit) value

L Unsigned long (32 bit) value

q Signed quad/long long (64-bit) value

Q Unsigned quad/long long (64-bit) value

n Unsigned short, big-endian (network) order

N Unsigned long, big-endian (network) order

v Unsigned short, little-endian (VAX) order

V Unsigned long, little-endian (VAX) order

f Single precision floating-point number

d Double precision floating-point number

p Pointer to null terminated string

P Pointer to fixed length string

u Unencoded string

U Unicode character (works regardless of use utf8)

w BER (base 128) compressed integer

x Null/ignore byte

X Backup a byte

@ Fill to absolute position with null characters

Scalars

79

One of the most important uses of pack and unpack is for generating and expanding argument lists
and structures for C library routines, which expect to see values packed together in a format that the
compiled C code will understand. See Chapter 24 for more on this aspect.

Vector Strings
Perl also provides the vec function, which allows us to treat a string as if it were a long binary value
rather than a sequence of characters. vec treats the whole string as a sequence of bits, with each
character holding eight. It therefore allows us to handle arbitrarily long bit masks and binary values
without the constraints of integer size or assumption of byte order.

In operation, vec is somewhat like the substr function, only at the bit level. substr addresses a string
by character position and length and returns substrings, optionally allowing us to replace the substring
through assignment to a string. vec addresses a string by element position and length and returns bits as
an integer, optionally allowing us to replace the bits through assignment to an integer. It takes three
arguments: a string to work with, an offset, and a length, exactly as with substr, only now the length is
in terms of bits and the offset is in multiples of the length. For example, to extract the tenth to twelfth
bits of a bitstring with vec we would write:

$twobitflag = vec($bitstr, 5, 2); # 5th 2-bit element is bits 10 to 12

The use of the word string with vec is a little stretched; in reality we are working with a stream of
bytes in a consistent and platform-independent order (unlike an integer whose bytes may vary in order
according to the processor architecture). Each byte contains eight bits, with the first character being bits
0-7, the second being 8-15, and so on, so this extracts the 2nd to 4th bits of the second byte in the string.
Of course the point of vec is that we do not care about the characters, only the bits inside them.

vec provides a very efficient way to store values with constrained limits. For example, to store one
thousand values that may range between 0 and 9 using a conventional array of integers would take up 4
x 1000 bytes (assuming a four byte integer), and 1000 characters if printed out to a string for storage.
With vec we can fit the values 0 to 9 into 4 bits, fitting 2 to a character and taking up 500 bytes in
memory, and saved as a string. Unfortunately, the length must be a power of two, so we cannot pack
values into 3 bits if we only had to store values from 0 to 7.

a function to extract 4-bit values from a 'vec' string
sub get_value {

return flag at offset, 4 bits
return vec $_[0], $_[1], 4;

}

get flag 20 from the bitstring
$value = get_value ($bitstr, 20);

It does not matter if we access an undefined part of the string, vec will simply return 0, so we need not
worry if we access a value that the string does not extend to. Indeed, we can start with a completely
empty string and fill it up using vec. Perl will automatically extend the string as and when we need it.

Assigning to a vec sets the bits from the integer value, rather like a supercharged version of chr. For
example, here is how we can define the string Perl from a 32-bit integer value:

assign a string by character code
$str = chr(0x50). chr(0x65). chr(0x72). chr(0x6c); # $str = "Perl";

the same thing more efficiently with a 32-bit value and 'vec'
vec ($str, 0, 32) = 0x50_65_72_6c;

extract a character as 8 bits:
print vec ($str, 2, 8); # produces 114 which is the ASCII value of 'r'

Chapter 3

80

Using this, here is the counterpart to the get_value subroutine for setting flags:

a function to set 4-bit values into a 'vec' string
sub set_value {

set flag at offset, 4 bits
vec $_[0], $_[1], 4;

}

set flag 43 in the bitstring
$value = set_value ($bitstr, 43, $value);

String Formatting
We have already seen some examples of the printf and sprintf functions when we discussed
converting numbers into different string representations. However, these functions are far more versatile
than this, so here we will run through all the possibilities that these two functions afford us. The two
functions are identical except that sprintf returns a string while printf combines sprintf with
print and takes an optional first argument of a filehandle. It returns the result of the print, so for
generating strings we want sprintf.

sprintf takes a format string, which can contain any mixture of value placeholders and literal text.
Technically this means that they are not string functions per se, since they operate on lists, but
describing them as list functions does not really make sense either (well, no more than it would for
join, so we'll cover them here).

For each placeholder of the form %... in the format, one value is taken from the following list and
converted to conform to the textual requirement defined by the placeholder. For example:

use the 'localtime' function to read the year, month and day
($year, $month, $day) = (localtime)[5, 4, 3];
$year += 1900;
$date = sprintf '%4u/%02u/%02u', $year, $month, $day;

This defines a format string with three unsigned decimal integers (specified by the %u placeholder). All
other characters are literal characters, and may also be interpolated if the string is double-quoted. The
first is a minimum of four characters wide padded with spaces. The other two have a minimum width of
two characters, padded with leading zeros.

The %u format interprets the supplied value into an unsigned integer and converts it into a string format,
constrained by whatever additional requirements are imposed. In addition, the following groups of
placeholders are accepted:

Below are the character and string placeholders:

Placeholder Description

%c a character (from an integer character code value)

%s a string

%% a percent sign

Scalars

81

Next we look at integer and number base placeholders:

Placeholder Description

%d Signed decimal integer

%I (Archaic) alias for %d

%u Unsigned decimal integer

%o Unsigned octal integer

%x Unsigned hexadecimal integer, lowercase a..f

%X Unsigned hexadecimal integer, uppercase A..F

%b Unsigned binary integer

In addition, all these characters can be prefixed with 'l' to denote a long (32-bit) value, or h to denote a
short (16-bit) value, for example:

%ld long signed decimal
%hb short binary

If neither is specified, Perl uses whichever size is more natural for int according to how it was built and
the underlying C library (if 64-bit integers are supported, %d will denote 64 bit integers, for example).
The %D, %U, and %O are archaic aliases for %ld, %lu, and %lo. sprintf supports them but their use is
not encouraged.

Extra long (64-bit) integers may be handled by prefixing the placeholder letter with either ll (long
long), L (big long), or q (quad):

%lld 64-bit signed integer
%qo 64-bit octal number.

This is dependent on Perl supporting 64-bit integers, of course.

These are the placeholders for floating-point numbers:

Placeholder Description

%e Scientific notation floating-point number, lowercase e

%E Scientific notation floating-point number, uppercase E

%f Fixed decimal floating-point number

%F (Archaic) alias for %f

%g 'Best' choice between %e and %f

%G 'Best' choice between %E and %f

Chapter 3

82

By their nature, floating-point values are always double precision in Perl, so there is no l prefix.
However, quadruple to store precision (long double) floating-point values can be handled with the ll or
L prefixes:

%llE long double scientific notation, uppercase E
%Lf long double fixed decimal

As with 64-bit integers, this is dependent on Perl actually supporting long double values.

Other placeholders are as below:

Placeholder Description

%p pointer value (memory address of value)

%n writes length of current output string into next variable

The %p placeholder is not often used in Perl, since messing with memory addresses is not something
Perl encourages, though it can occasionally be useful for debugging references. The %n placeholder is
unusual in that it assigns the length of the string generated so far, to the next item in the list (which must
therefore be a variable).

As the above lists show, much of the functionality of sprintf is related to expressing integers and
floating-point numbers in string format. We covered many of its uses in this respect earlier in the
chapter. In brief, however, placeholders may have additional constraints to determine the
representation of a number or string placed by adding modifiers between the % and the type character:

Modifier Action

n A number, the minimum field width

* Take the width for this placeholder from the next value in the list

.m Precision. This has a different meaning depending on whether the value is
string, integer or floating-point:

string - the maximum width

integer - the minimum width

float - digits after the decimal place

.* Take the precision for this placeholder from the next value in the list

n.m Combined width and precision

. Take the width and precision for this placeholder from the next two values in
the list

Scalars

83

If a string or character placeholder has a width, then strings shorter than the width are padded to the left
with spaces (zeroes if 0 is used). Conversely, if a precision is specified and the string is longer, then it is
truncated on the right. Specifying both as the same number gives a string of a guaranteed width
irrespective of the value, for example %8.8s.

A floating-point number uses the width and precision in the normal numerical sense. The width defines
the width of the field as a whole, and the precision defines how much of it is used for decimal places.
Note that the width includes the decimal point, the exponent, and the e or E. For example, %+13.3e.

The precision and width are the same for integers except that a leading '.' will pad the number with
leading zeros in the same way in which 0 (below) does. If the integer is wider than the placeholder then
it not truncated. For example, %.4d.

If asterisks are used for either width or precision then the next value in the list is used to define it,
removing it from the list for consideration as a placeholder value:

$a = sprintf "%*.*f", $float, $width, $precision;

Note that negative numbers for either will cause an additional implicit -, see below.

The table below shows the effects of characters on the formatting of strings:

Character Action

space

0

-

Pad values to the left with spaces (right-justify)

Pad values to the left with zeros

Pad values to the right with spaces (left-justify)

Justification is used with a placeholder width to determine how unfilled places are handled when the
value is too short. A space, which is the default, pads to the left with spaces, while 0 pads to the left with
zeroes, shifting sign or base prefixes to the extreme left if specified. '-' pads with spaces to the right
(even if 0 is also specified). For example:

%04d pad to four digits with 0
% 8s pad to eight characters with spaces
%8s the same
%-8s pad to the right to eight characters with spaces

Using the prefixes below, we can format numbers in different ways:

Prefix Action

+ represent positive numbers with a leading +

prefix non-decimal based integers with 0, 0x, or 0b if they have a non-zero
value

TE
AM
FL
Y

Team-Fly®

Chapter 3

84

Either of these prefixes can be enabled (even on strings, though there is not much point in doing that)
by placing them after the % and before anything else. Note that + is for signed integers and that # is for
other number bases, all of which treat signed numbers as if they were very large unsigned values with
their top bit set. This means that they are exclusive, in theory at least. Note that both of them are
counted in the width of the field, so for a 16 bit binary number plus prefix, allow for 18 characters. For
example:

%+4d give number a sign even if positive
%+04d signed and padded with zeros
%#018hb 16-bit padded and prefixed short binary integer

Finally we look briefly at vectors and versions:

The v flag specifies that the supplied value is converted into a version number string of character codes
separated by points, in the format defined by the placeholder (d for decimal, b for binary, and so on). A
different separator may be used if a * is used before the v to import it. Note that specifying the
separator directly will not work, as v does not conform to the usual rules for placeholders. For example:

printf "v%vd", $^V; # print Perl's version

printf "%v08b", 'aeiou'; # print letters as 8 bit binary digits
separated by points

printf "%*v8o", '-', 'aeiou'; # print letters as octal numbers
separated by minus signs

Summary
In this chapter, we have talked about scalar numbers and strings, and their relationships to functions
and modifiers. We were introduced to integers and floating-point numbers, and took a brief look at the
use integer pragma. The different types of quotes and quoting operators were discussed, and we
learned how to use a here document. We also saw what mathematical functions Perl provides, and also
how extend these using the Math::Trig module. After seeing how to manipulate strings, we went on to
look at low-level string conversions like pack and unpack, all of which has given us the foundation, for
number and string manipulation, which we will need throughout the rest of the book.

Scalars

85

Chapter 3

86

Operators

Operators are the basic tools that allow us to manipulate variables and values to produces new ones.
Operators and values go together to make expressions, which in turn can be integrated into larger
expressions by using more operators. Subroutines and functions can also become involved; we will get
to that subject in a moment.

All operators are characterized by requiring one or two (and in one case, three) expressions to work on,
then returning a value as their result. With the exception of the eponymous ternary operator, operators
are either unary, taking a single value and producing a new value from it, or binary, combining two
expressions to produce a new value. An example of an unary operator is the logical not operator !,
which logically inverts the value supplied to it; an example of a binary operator is +, which (of course)
adds its two values together to produce a value that is the sum. +, along with -, can also be unary, and
indicate a positive or negative sign, so they are also examples of operators with more than one mode
of use.

The values that operators work on are operands. The value on the left of a binary operator is therefore
the left operand and the value on the right is the right operand. These values may, in turn, be simple
scalar or list values or expressions involving further operations. The order in which operators in the
same expression are evaluated is determined by the rules of precedence, which are built into Perl.

Operators Versus Functions
Perl has operators, like +, and it also has functions, like print. The distinction is apparently simple,
operators have an algebraic look and operate on operands. Functions take arguments, have names
rather than symbols, and use parentheses to group their arguments together. Besides, operators are
documented in the perlop manual page, and functions are in the perlfunc manual page. Simple.

Chapter 4

88

Unfortunately, it is not actually that simple. Things like ! and + are clearly operators because they are
simply fundamental to the language. Additionally, in its binary form, + takes an operand on each side,
something a function never does. So these cases are unambiguous. Conversely, functions like print are
clearly functions because their main purpose is to do something other than return a value (it comes as a
surprise to many that print returns a value at all, in fact). However, there are plenty of less clear
examples.

Many functions are called operators because they look like operators, the file test operators, also known
as the -X operators, are one example. The readline operator <> is another. The -X operators are
examples of a named unary operator, operators that have names rather than symbols and take single
operand on their right. They resemble unary operators like not, which also has a name and takes a
single operand on its right. So, the distinction between operators and functions is more vague than we
might at first think. They also appear in both the perlop and perlfunc manual pages, just to keep
things nicely ambiguous.

An alternative way to look at functions is to say that they are all either named unary operators (taking a
single argument) or named list operators (taking a list of arguments). How we describe them then
becomes a case of how we use them: if we use parentheses, they are functions, and if we do not, they are
(or at least, resemble) operators:

print -e($filename); # file test '-e', functional style
print -e $filename; # file test '-e', operator style

This is a useful idea because we can declare subroutines so that they also do not need parentheses, so
they can be used as named list operators. With prototypes we can even implement subroutines that
resemble named unary operators. It does not help that subroutines are also called functions at the same
time that functions are being called operators. In this book we generally try to call a subroutine a
subroutine, reserving 'function' for Perl's own built-in functions.

In this section we are only going to talk about operators in the conventional sense of the term – basic
operations that form the core essential abilities of the Perl language. + is essential, the readline
operator,< >, is merely very useful.

Operator Types and Categories
Perl supplies around seventy operators in total, ranging from basic arithmetic operators, to reference
creation and file testing. In order to cover them in a reasonable manner we have divided them up into
fourteen categories. Some are expansive; there are fifteen different assignment operators, while others
contain a single unique operator. These categories are arbitrary, however, and there are plenty of other
ways they might be subdivided.

We have already seen a number of operators in action. We introduced them very briefly in Chapter 2,
and then used some of them when we discussed working with integers, floating-point numbers, and
strings in Chapter 3. As a result, we are to some extent treading the same ground twice. However, here
we are looking at the subject from the point of view of the operators, rather than the values they
operate on.

Operators

89

Assignment
The assignment operator, which we introduced in Chapter 2, simply assigns the value of the expression
on its right side to the variable (technically, lvalue) on its left:

$variable = "value";

The value returned from this operation is the value of the right-hand side, which is why this is an
operation at all. As a result it can be used in other expressions, as in:

$c = $b = $a = 'This is the value of a, b and c';

The left-hand side of an assignment is usually a scalar variable, but it need not be. Any lvalue is
acceptable. Two obvious examples are assigning to an array element or a hash key:

@array[$index] = 42;
$hash{'key'} = "value";

A less obvious example is an array slice, which we can assign a list to (more on arrays in Chapter 5):

@array = (1, 2, 3, 4, 5);
@array[1..3] = (7, 8, 9);
print "@array"; # produces 1 7 8 9 5

Assigning a list longer than the slice will cause the remaining values to be ignored, while assigning a
shorter list will result in undefined values.

Some Perl functions also return lvalues, the most common of which is substr, which we saw in
Chapter 3.

Although subroutines cannot ordinarily provide assignable values, Perl 5.6 contains an experimental
feature that allows us to define subroutines, that can be assigned to, just like substr.

The precedence of assignment operators is low, as it should be so that all the expressions on its right
will be evaluated before the assignment. The comma and relationship operators, as well as the not,
and, or, and xor operators which we will see later in the chapter, have lower precedence, however, so
that statements like the following do what they appear to do:

@array = ($a = 1, $b = 2, $c = 3); # assigns (1, 2, 3) to @array

Related to the assignment operator are the combination assignment operators, which we will investigate
later in this chapter.

Arithmetic
Perl provides the standard set of mathematics operators for manipulating integers and floating-point
numbers:

6 + 2 # addition, produces 8
6.3 - 2.8 # subtraction, produces 3.5
6*2 # multiplication, produces 12
6.3 * 2.8 # multiplication, produces 17.64
6 % 2 # modulus, produces 0
6.3 ** 2.8 # exponentiation, produces 173.04280186355

Chapter 4

90

Multiplication and division have slightly higher precedence than addition and subtraction, so the
following produces 13, the sum of 4 and 9, rather than 21.

$result = 2*2 + 3*3; # produces 2*2 plus 3*3 = 4 + 9 = 13
$result = (2*2) + (3*3); # the same thing, explicitly

To force the precedence of the addition higher we need to use parentheses:

$result = 2 * (2 + 3) * 3; # produces 2 * 5 * 3 = 30

Other than this, all arithmetic operators have left associativity, which means they evaluate their left-
hand side before their right. Multiplication and division have the same precedence, so associativity is
used to work out which order to evaluate them in, from left to right. Therefore the following produces
7.5, not 0.3:

$result = 2 * 3 / 4 * 5; # produces 2 * 3, /4, *5 = 7.5
$result = ((2 * 3) / 4) * 5; # the same thing, explicitly

To force the precedence of the final multiplication so it happens before the division we again need to
use parentheses:

$result = (2 * 3) / (4 * 5); # produces 6 / 20 = 0.3

The modulus operator is a complement to the division operator. It divides the left operand by the right,
but returns only the remainder:

print 4 % 2; # produces 0, 2 divides evenly into 4
print 5 % 2; # produces 1, 5 divided by 2 leaves a remainder of 1

% also works on negative numbers, but varies slightly depending on whether the use integer pragma
is in effect or not. With it, modulus produces the same result that positive numbers would have:

print -13 % 7; # produces 1

use integer;
print -13 % 7; # produces -6, same as -(13 % 7)

Both results are correct, but from different perspectives, -13 divides by 7 with a remainder of 1 (it is
short of -14 by -1), or a remainder of -6 (it is -6 more than -7).

The exponentiation operator is also binary, with a higher precedence than all the other arithmetic
operators. It raises the numeric value given as its left operand by the power of the right. Both left and
right operands can be floating point, in which case the result is also floating point (possibly converted to
an integer for display purposes):

print 4 ** 0.5; # produces 2

Both + and - also have a unary form, where they have no left-hand side. Typically these appear in
assignments:

$negative = -3;

Operators

91

The unary minus has plenty of uses in this context. The unary plus, on the other hand, has no relevance
at all except to stop parentheses being interpreted as part of a function:

print ("Hello"), " World"; # prints "Hello", returns " World"
print +("Hello"), " World"; # prints "Hello World";

This particular example is rather obvious, but in cases where parentheses are actually necessary for the
first expression in a print statement this can be a useful trick, and is an alternative to enclosing the
whole argument list in parentheses.

Shift
The << and >> shift operators manipulate integer values as binary numbers, shifting their bits one to the
left and one to the right respectively. In integer terms this multiplies or divides the value by 2, losing the
remainder:

print 2 << 1; # produces 4
print 2 << 3; # produces 16
print 42 >> 2; # produces 10

The result of >> and << is treated as unsigned, even if the topmost bit of the resulting value is set, so the
following produce large positive values:

print -1 >> 1; # produces 2147483647 (on a 32 bit platform)
print -1 << 0; # produces 4294967295 (on a 32 bit platform)

If the use integer pragma has been used then Perl uses signed integer arithmetic and negative values
behave more reasonably, rather than being treated as bit-patterns:

use integer;
print -1 << 1; # produces -2
print -1 >> 1; # produces -1

The reason for the slightly odd looking second result is that -1 is actually all ones in binary, so shifting it
right 1 bit makes all bits except the topmost bit 1, and then the effect of use integer resets the top bit
to 1 again.

Note that the shift operators have nothing to do with here documents, which also use << to assign all
the text up to a specified token to the given string variable or operation.

String and List
Perl provides the concatenation operator, '.' ,and the repetition operator x for string variables. x is
usually used for strings, but can also replicate lists.

The concatenation operator takes two strings and joins them, returning the result:

$good_egg = "Humpty" . "Dumpty"; # produces "HumptyDumpty"

Chapter 4

92

This is how Perl performs string addition. Adding strings with + actually converts both operands to
integers (which in the above case would be 0 and 0) and then adds them, returning an integer result. If
the strings happen to contain numeric values then this may be what we want, otherwise we probably
meant to use '.'.

The repetition x operator works on both strings and lists. If the left operand is a string, it is multiplied
by the number given by the right operand:

print "abc" x 3; # produces 'abcabcabc'

A common application of x is for generating padding for formatted text, like this example, which
calculates $padding in terms of tabs (presumed 8 characters wide) and spaces:

$width = 43; # the padding width in characters
$padding = "\t" x ($width/8) . " " x ($width%8);
print $padding;

If the left operand is a list (enclosed in parentheses) then the values are replicated:

@array = (1, 2, 3) x 3; # @array contains (1, 2, 3, 1, 2, 3, 1, 2, 3)

This is also a good way to produce a large list of identical values:

@columns = (1) x 80; # produce an 80 element array of 1's

Note that if the left operand is an array then it is taken in scalar context and the number of elements is
repeated:

@array1 = (1, 2, 3);
@array2 = @array1 x 3; # @array2 contains (3, 3, 3)

However, if the array is enclosed in parentheses, we get the desired result:

@array2 = (@array1) x 3; # @array2 contains (1, 2, 3, 1, 2, 3, 1, 2, 3)

Correspondingly, if the right-hand side is a list or array then it multiplies the left operand by the
number of elements it contains:

print "string" x (1, 2, 3); # produces "stringstringstring"

Finally, giving x a numeric value as its left operand causes it to be converted into a string for the
replication:

print 3 x 3; # produces 333

In addition to the '.' and x operators, most other operators will work on strings, though many will
convert them into integer or floating-point values before operating on them.

Operators

93

Logical
The logical operators perform Boolean operations, returning 1 on success and 0 on failure. For instance,
this is a Boolean and operation:

$true = $a && $b;

This returns 1 (True) if both $a and $b are True. The meaning of true and false in this context is
quite flexible, and we discuss it in more detail in the next chapter. For now though, it is enough to say
that Perl generally does the 'right thing' with its operands, so strings like 0 and " " are False and others
are True, while arrays and hashes are True if they have one or more elements and False if they have
none. Numeric values are True if they have a value, positive or negative, and False if they are zero.

Perl has two sets of logical operators, one appearing as conventional logic symbols and the other
appearing as named operations. These two sets are identical in operation, but have different
precedence:

&& AND Return True if operands are both True
|| OR Return True if either operand is True
xor Return True if only one operand is True
! NOT (Unary) Return True of operand is False

The ! operator has a much higher precedence than even && and ||, so that expressions to the right of a
! almost always mean what they say:

!$value1 + !$value2; # adds result of !$value1 to !$value2
!($value1 + !$value2); # negates result of $value1 + !$value2

Conversely, the not, and, or, and xor operators have the lowest precedence of all Perl's operators,
with not being the highest of the four. This allows us to use them in expressions without adding extra
parentheses:

ERROR: evaluates 'Done && exit', which exits before the 'print'
is executed
print "Done && exit";

correct - prints "Done", then exits
print "Done" and exit;

All the logical operators (excepting the unary not/!) are efficient in that they always evaluate the left-
hand operand first. If they can determine their final result purely from the left operand then the right is
not even evaluated. For instance, if the left operand of an or is True then the result must be True.
Similarly, if the left operand of an and is False then the result must be False.

The efficiency of a Boolean expression can be dramatically different depending on how we express it:

the subroutine is always called
expensive_subroutine_call(@args) || $variable;

the subroutine is called only if '$variable' is false
$variable || expensive_subroutine_call(@args);

TE
AM
FL
Y

Team-Fly®

Chapter 4

94

The practical upshot of this is that it pays to write logic so that quickly evaluating expressions are on the
left, and slower ones on the right. The countering problem is that sometimes we want the right side to
be evaluated. For example, the following two statements operate quite differently:

$tests will only be decremented if '$variable' is false.
do_test() if $variable || $tests--;

$tests will always be (post-)decremented
do_test() if $tests-- || $variable;

Bitwise
The bitwise operators, or bitwise logical operators, bear a strong resemblance to their Boolean
counterparts, even down to a similarity in their appearance:

& Bitwise AND
| Bitwise OR
^ Bitwise Exclusive or (XOR)
~ Bitwise NOT

The distinction between the two is that Boolean logic operators deal with their operands as whole values
and return a 1 or 0. Bitwise operators on the other hand treat their operands as binary values and
perform a logical operation between the corresponding bits of each value. The result of the operation is
a new value composed of all the individual bit comparisons. To demonstrate the effect of these we can
run the following short program:

#!/usr/bin/perl
bitwise.pl
use warnings;
use strict;

my $a = 3;
my $b = 6;
my $r;

printf "$a = %03b \n", $a;
printf "$b = %03b \n", $b;

$r = $a & $b; printf "$a & $b = %03b = %d\n", $r, $r;
$r = $a | $b; printf "$a | $b = %03b = %d\n", $r, $r;
$r = $a ^ $b; printf "$a ^ $b = %03b = %d\n", $r, $r;
$r = ~$a; printf "~$a = %03b = %d\n", $r, $r;

> perl bitwise.pl
3 = 011
6 = 110
3 & 6 = 010 = 2
3 | 6 = 111 = 7
3 ^ 6 = 101 = 5
~3 = 11111111111111111111111111111100 = -4

The bitwise operators can be used on any numeric value, but they are most often used for bitmasks and
other values where individual bits have meanings. While we can certainly perform bitwise operations on
ordinary decimal values, it does not make much sense from a legibility point of view. For instance, the
following statement does the same as the one above, but it is less than clear how the result is achieved:

Operators

95

$bits = 11 & 6; # produces 2

As a more practical example, the mode flag of the sysopen function is composed of a series of flags
each of which sets a different bit. The Fcntl and POSIX modules give us symbolic names for these
values so we often write things like:

$mode = O_RDWR | O_CREAT | O_TRUNC;

What this actually does is combine three different values using a bitwise OR to create a mode value of
the three bits. We can also apply bitwise logic to permissions masks similar to that used by sysopen,
chmod, and umask:

set owner-write in umask
umask (umask |002);

This statement gets the current value of umask, bitwise ORs it with 002 (we could have just said 2 but
permissions are traditionally octal) and then sets it back again – in this case the intent is to ensure that
files are created without other-write permission. We don't know or care whether the bit was already set,
but this makes sure that it is now.

The unary NOT operator deserves a special mention. It returns a value with all the bits of the expression
supplied inverted (up to the word size of the underlying platform). That means that on a 32-bit system,
~0 produces a value with 32 on bits. On a 64-bit system, ~0 produces a value with 64 on bits. This can
cause problems if we are manipulating bitmasks, since a 32 bit mask can suddenly grow to 64 bits if we
invert it. For that reason, masking off any possible higher bits with & is a good idea:

constrain an inverted bitmask to 16 bits
$inverted = ~$mask & (2 ** 16 - 1);

Note that the space before the ~ prevents =~ from being seen by Perl as a regular expression binding
operator.

The result of all bitwise operations including the unary bitwise NOT is treated as unsigned by perl, so
printing ~0 will typically produce a large positive integer:

print ~ 0; # produces 4294967295 (or 2 ** 32 - 1) on a 32 bit OS.

This is usually an academic point since we are usually working with bitmasks and not actual integer
values when we use bitwise operators. However, if the use integer pragma is in effect, results are
treated as signed, which means that if the uppermost bit is set then numbers will come out as negative
two's-complement values:

use integer;
print ~3; # produces -4

See Chapter 3 for more on the use integer pragma.

A feature of the bitwise operators that is generally overlooked is the fact that they can also work on
strings. In this context they are known as 'bitwise string operators'. In this mode they perform a
character-by-character comparison, generating a new string as their output. Each character comparison
takes the numeric ASCII value for the character and performs an ordinary bitwise operation on it,
returning a new character as the result.

Chapter 4

96

This has some interesting applications. For example, to turn an uppercase letter into an lowercase letter
we can bitwise OR it with a space, because the ASCII value for a space happens to be the difference in
the ASCII value between capital and lower case letters:

print 'A' | ' '; # produces 'a'

Examining this in terms of binary numbers show why and how this works:

'A' = 10000001
' ' = 01000000
'a' = 11000001

The inverse of ' ', bitwise, is an underscore, which has the Boolean value '10111111', so ANDing
characters with underscores will uppercase them:

print 'upper' & '_____'; # produces 'UPPER'

Similarly, bitwise ORing number strings produces a completely different result from bitwise ORing them
as numbers:

print 123 | 456; # produces '507'
print '123' | '456'; # produces '577'

The digit 0 happens to have none of the bits that the other numbers use set, so ORing any digit with 0
produces that digit:

print '2000' | '0030'; # produces '2030'

Note that padding is important here:

print '2000' | '30'; # produces '3000'

If one string is shorter than the others, then implicit zero bits (or NULL characters, depending on our
point of view) are added to make the string equal length, unless the operation is &, in which case the
longer string is truncated to the shorter to avoid extra NULL characters appearing at the end of the
resulting string.

Of course in a lot of cases it is simpler to use uc, lc, or simply add the values numerically. However, as
an example that is hard to achieve quickly any other way, here is a neat trick for turning any text into
alternating upper and lower case characters:

translate every odd character to lower case
$text |= " \0" x (length ($text) / 2 + 1);

translate every even character to upper case
$text &= "\377_" x (length($text / 2 + 1);

And here's a way to invert the case of all characters (that have a case):

$text ^= ' ' x length $text;

Operators

97

Of course both these examples presume normal alphanumeric characters and punctuation and a
standard Latin-1 character set, so this kind of behavior is not advisable when dealing with other
character sets and Unicode. Even with Latin-1, control characters will get turned into something
completely different, such as \n, which becomes an asterisk.

Primarily, the bitwise string operators are designed to work on vec format strings (as manipulated by
the vec function), where the actual characters in the string are not important, only the bits that make
them up. See the 'Vector Strings' section from Chapter 3 for more on the vec function.

Combination Assignment
Perl also supports C-style combination assignment operators, where the variable on the right of the
assignment is also treated as the value on the right-hand side of the attached operator. The general
syntax for such operators is this:

$variable <operator>= $value;

For example:

$variable += 2;

Is a quicker way to write:

$variable = $variable + 2;

There are fifteen combination assignment operators in all, each of which is an assignment combined
with the relevant binary operation:

Arithmetic String Shift Logical Bitwise

+=

-=

*=

/=

**=

%=

x=

.=

N\A

N\A

N\A

N\A

<<=

>>=

N\A

N\A

N\A

N\A

||=

&&=

N\A

N\A

N\A

N\A

|=

&=

^=

N\A

N\A

N\A

For illustration, this is how each of the arithmetic combination assignment operators changes the value
of $variable from 10:

print $variable += 2; # prints '12'
print $variable -= 2; # prints '8'
print $variable *= 2; # prints '20'
print $variable /= 2; # prints '5'
print $variable **= 2; # prints '100'
print $variable %= 2; # prints '0'

Chapter 4

98

This is also an example on concatenating one string onto another using the .= operator:

#!/usr/bin/perl
concat.pl
use warnings;
use strict;

my $First = "One ";
my $First_Addition = "Two ";
my $Second_Addition = "Three";

my $string = $First;

print "The string is now: $string \n";
$string.= $First_Addition;
print "The string is now: $string \n";
$string.= $Second_Addition;
print "The string is now: $string \n";

> perl concat.pl
The string is now: One
The string is now: One Two
The string is now: One Two Three

Beware of using combination assignments in other expressions. Without parentheses, they have lower
precedence than the expression around them, causing unintended results:

$a = $b + $c += 2; # syntax error, cannot assign to '$b + $c'

Because + has higher precedence than += this is equivalent to:

$a = ($b + $c) += 2; # the reason for the error becomes clear

What we really meant to say was this:

$a = $b + ($c += 2); # correct, increments $c then adds it to $b

The regular expression binding operator looks a little like an assignment operator, BUT it isn't. =~ is a
binding operator, and ~= is a bitwise not assignment.

Increment and Decrement
The ++ and -- operators are unary operators, which increment and decrement their operands
respectively. Since the operand is modified, it must be a scalar variable. For instance, to increment the
variable $number by one we can write:

$number ++;

The unary operators can be placed on either the left or right side of their operand, with subtly differing
results. The effect on the variable is the same, but the value seen by expressions is different depending
on whether the variable is modified before it is used, or used before it is modified. To illustrate,
consider these examples in which we assume that $number starts with the value 6 each time we execute
a new line of code:

Operators

99

print ++$number; # preincrement variable, $number becomes 7, produces 7
print $number++; # postincrement variable, $number becomes 7, produces 6
print --$number; # predecrement variable, $number becomes 5, produces 5
print $number--; # postdecrement variable, $number becomes 5, produces 6

Because of these alternate behaviors, ++ and -- are called pre-increment and pre-decrement operators
when placed before the operand. Surprisingly enough, they are called post-increment and post-
decrement operators when placed after them. Since these operators modify the original value they only
work on variables, not values (and attempting to make them do so will provoke an error).

Somewhat surprisingly, Perl also allows the increment and decrement operators for floating point
variables, incrementing or decrementing the variable by 1 as appropriate. Whether or not the operation
has any effect depends on whether the number's exponent allows its significant digits to resolve a
difference of 1. Adding or subtracting 1 from a value like 2.8e33 will have no effect:

$number = 6.3;
print ++$number; # preincrement variable, $number becomes 7.3, produces 7.3
print $number++; # postincrement variable, $number becomes 8.3, produces 7.3

$number = 2.8e33;
print ++$number; # no effect, $number remains 2.8e33

Interestingly, Perl will also allow us to increment (but not decrement) strings too, by increasing the
string to the next 'logical' value. For example:

$antenna_unit = "AE35";
print ++ $antenna_unit; # produces 'AE36'

turn a benefit in a language into a hairstyle
$language = "Perk";
print ++ $language; # produces 'Perl'
print ++ $language; # produces 'Perm'

make a dated TV series (a bit) more current
$serial = "Space1999";
print ++ $serial; # produce 'Space2000'

Only strings that are exclusively made up of alphanumeric characters (a-z, A-Z, and 0-9) can be
incremented.

Comparison
The comparison operators are binary, returning a value based on a comparison of the expression on
their left and the expression on their right. For example, the equality operator, ==, returns True (1) if its
operands are numerically equal, and False ('') otherwise:

$a == $b;

Chapter 4

100

There are two complimentary sets of operators. The numeric comparison operators appear in
conventional algebraic format and treat both operands as numeric, forcing them into numeric values if
necessary:

print 1 < 2; # produces 1
print "a" < "b"; # produces 0, since "a" and "b" both evaluate

as 0 numerically, and 0 is not less than 0.

Note that if we have warnings enabled attempting to compare strings with a numeric comparison
operator will cause Perl to emit a warning:

Argument "a" isn't numeric in numeric lt (<) at ...
Argument "b" isn't numeric in numeric lt (<) at ...

The string comparison operators, appear as simple mnemonic names, and are distinct from the
numerical comparison operators in that they perform alphanumerical comparisons on a character-by-
character basis. So, 2 is less than 12 numerically, but it is greater in a string comparison because the
character 2 (as opposed to the number) is greater than the character 1. They are also dependent on
locale, so the meaning of 'greater than' and 'less than' is defined by the character set in use (see the
discussion on locale in Chapter 26).

print 2 > 12; # numeric, produces 0
print 2 gt 12; # string, produces 1 because the string "2" is

greater than "12"

Unlike the counter example above, comparing numbers with a string comparison operator does not
produce an error.

There are seven comparison operations in all, each with a numeric and string operator. Of these, the
first six are standard Boolean tests that return True if the comparison succeeds and an empty value (''
in string context, 0 numerically) otherwise. The seventh is the compare operator, which is slightly
different:

Numeric String Operation

!= ne Return True if operands are not equal

> gt Return True if left operand is greater than right

== eq Return True if operands are equal

>= ge Return True if left operand is greater or equal to right

< le Return True if left operand is less than right

<= lt Return True if left operand is less than or equal to right

<=> cmp Return -1 if left operand is less than right, 0 if they are equal, and +1
if left operand is greater than right

The cmp and <=> operators are different from the other comparison operators because they do not
return a Boolean result. Rather, they return one of three results depending on whether the left operand
is less than, equal to, or greater than the right. Using this operator we can write efficient code like:

Operators

101

SWITCH: foreach ($a <=> $b) {
$_ == -1 and do {print "Less"; last;};
$_ == +1 and do {print "More"; last;};

print "Equal";
}

To do the same thing with ordinary if...else statements would take at least two statements. The <=>
and cmp operators are frequently used in sort subroutines, and indeed the default sort operation uses
cmp internally.

The string comparison functions actually compare strings according to the value of the localization
variable LC_COLLATE, including the implicit cmp of the sort function. See Locale and
Internationalization in Chapter 26 for more details.

None of the comparison operators work in a list context, so attempting to do a comparison such as
@a1 == @a2 will compare the two arrays in scalar context; that is, the number of elements in @a1 will
be compared to the number of elements in @a2. This might actually be what we intend, but it looks
confusing. $#a1 == $#a2 would probably be a better way to express the same thing in this case.

Regular Expression Binding
The regular expression binding operators =~ and !~ apply the regular expression function on their right
to the scalar value on their left:

look for 'pattern' in $match text
print "Found" if $match_text =~ /pattern/;

perform substitution
print "Found and Replaced" if $match_text =~ s/pattern/logrus/;

The value returned from =~ is the return value of the regular expression function. Tis is – 1 if the match
succeeded but no parentheses are present inside the expression, and a list of the match subpatterns (the
values of $1, $2 …, see 'Regular Expressions' in Chapter 11) if parentheses are used. It returns undef if
the match failed. In scalar context this is converted to a count of the parentheses, which is a True value
for the purposes of conditional expressions.

The !~ operator performs a logical negation of the returned value for conditional expressions, that is 1
for failure and '' for success in both scalar and list contexts.

look for 'pattern' in $match text, print message if absent
print "Not found" if $match_text !~ /pattern/;

Comma and Relationship
We use the comma operator all the time, usually without noticing it. In a list context it simply returns its
left and right-hand side as parts of the list:

@array = (1, 2, 3, 4); # construct a list with commas
mysubroutine(1, 2, 3, 4); # send a list of values to 'mysubroutine'.

Chapter 4

102

In a scalar context, the list operator returns the value of the right-hand side, ignoring whatever result is
returned by the left:

return 1, 2, 3, 4; # returns the value '4';

The relationship or digraph operator is a 'smart' comma. It has the same meaning as the comma
operator but is intended for use in defining key-value pairs for hash variables. It also allows barewords
for the keys:

define a hash from a list, but more legibly
%hash = ('Tom'=>'Cat', 'Jerry'=>'Mouse', 'Spike'=>'Dog');

define a hash from a list with barewords
%hash = (Tom=>'Cat', Jerry=>'Mouse', Spike=>'Dog');

We will return to both of these operators when we come to lists, arrays and hashes in Chapter 5.

Reference and Dereference
The reference constructor \ is a unary operator that creates and returns a reference for the variable,
value, or subroutine that follows it. Alterations to the value pointed to by the reference change the
original value:

$number = 42;
$numberref = \$number;
$$numberref = 6;
print $number; # displays '6'

To dereference a reference (that is, access the underlying value) we can prefix the reference, a scalar, by
the variable type of whatever the reference points to. In the above example we have a reference to a
scalar, so we use $$ to access the underlying scalar. Since this sometimes has precedence problems
when used in conjunction with indices or hash keys, we can also explicitly dereference with curly braces
(See Chapter 5 for more details of this and other aspects of references):

$number = $$numberref;
$number = ${$numberref};

Alternatively, and often more legibly, we can use the arrow operator.

The Arrow
The dereference or arrow operator, ->, has two meanings, depending on the nature of its left-hand side.
The first occurs when the left-hand side is an array or hash reference, or something that produces one,
such as a subroutine.

look up a hash key
$value = $hashref -> {$key};

take a slice of an array
@slice = $arrayref -> [7..11];

get first element of subroutine returning array reference:
$result = sub_that_returns_an_arrayref() -> [0];

Operators

103

The arrow operator is also implicitly used whenever we stack indices or hash keys together when we use
multidimensional arrays (arrays of arrays) or hashes of hashes. That is:

$element = $pixel3d [$x] [$y] [$z];

Is actually shorthand for:

$element = $pixel3d [$x] -> [$y] -> [$z];

Which is, in turn, shorthand for:

$yz_array = $pixel3d [$x];
$z_array = $yz_array -> [$y];
$element = $z_array -> [$z];

This is because an array or hash can only contain scalars, so an array of arrays is really an array of array
references. Perl is smart enough to know what we mean when we access a variable with stacked indices
or hash keys though, so in this case we do not need the arrow operator, though it is still quite legal to
put it in if we want.

The other application of the arrow operator is an object-oriented one. It occurs when the left-hand side
is either a blessed object or a package name, in which case the right-hand side is a method name (a
subroutine in the package), a subroutine reference, or a scalar variable containing a method name:

call a class method
My::Package::Name -> class_method(@args);

call an object method
$my_object -> method(@args);

call an object method via a scalar variable (symbolic reference)
my $method_name = 'method';
$my_object -> $method_name(@args);

Interestingly, when a method is called via a scalar variable in this way, it is exempt from the usual
restrictions on symbolic references that use strict refs normally imposes. The logic behind this is
that by using the arrow operator we are being sufficiently precise about what we are trying to do for the
symbolic reference to be safe – it can only be an object method.

Note that the arrow operator -> has nothing to do with the relationship (a.k.a. digraph) operator =>,
which is just a slightly smarter comma for use in defining key-value pairs. Confusing the two can be a
plentiful source of syntax errors, so be sure to use the right one in the right place.

Range
The range operator is one of the most poorly understood of Perl's operators. It has two modes of
operation, depending on whether it is used in a scalar or list context. The list context is the most well
known and is often used to generate sequences of numbers, as in:

foreach (1..10) {
print "$_\n"; # print 1 to 10

}

TE
AM
FL
Y

Team-Fly®

Chapter 4

104

In a list context, the range operator returns a list, starting with its left operand and incrementing it until
it reaches the value on the right. So 1..10 returns the list (1, 2, 3, 4, 5, 6, 7, 8, 9, 10).
The increment is done in the same manner as the increment operator, so strings also increment:

print "A".."E" # returns ABCDE

If the left-hand side is equal to the right then a single element list containing that value is returned. If it
is greater, an empty list is returned. To generate a reverse list therefore we need to use the reverse
function on the result:

print reverse "A".."E" # returns EDCBA

The use of the range operator in scalar context is less well understood, and consequently is rarely used.
Its most common use is with numeric operands, which as a convenience, Perl compares to the input line
number (or 'sequence number') special variable $.. More generally, the range operator is a bistable flip-
flop, which alternates between returning 0 and 1 depending on the Boolean tests provided as its left and
right arguments.

To begin with, it returns 0 until the left-hand side becomes True. Once the left-hand side becomes True
it returns 1 until the right-hand side becomes True. When that happens, it starts returning 0 again until
the left-hand side becomes True, and so on until input runs out. If the left or right-hand sides are literal
numeric values then they are tested for equality against $., the sequence number. For example, this
loop prints out the first ten lines of input:

while (<>) {
1..10 and print;

}

If the left or right-hand operands are not literal numerics then they are simply used as Boolean tests,
and their value is used to switch the range operator to the other state. Consequently using scalar
variables or expressions will not work:

ERROR: this does not work
$start = 1;
$end = 10;
while (<>) {

$start .. $end and print;
}

What happens here is that both the left and right operands always return True, so the range operator
returns True for every line, flip-flopping to False and back to True each time. So this is just a hard way
to print every line of input.

What will work (usefully) are tests that involve either the sequence number $. or the current line,
contained in $_. To make the above example work we have to involve $. explicitly, as in this repaired
(and complete) example:

#!/usr/bin/perl
range.pl
use warnings;
use strict;

my $start = 2;
my $end = 4;

while (<>) {
($. == $start)..($. == $end) and print "$.: $_";

}

Operators

105

Unfortunately the logic gets a little complex, and in this case we'd be better off with an if statement.
Another class of solutions uses the range operator with regular expressions, which return Boolean results
if the associated string matches. Without an explicitly bound string, the default argument $_ is used, so
we can create very effective and impressively terse code like the next example. This code attempts to
collect the header and body of an email message or an HTTP response, both of which separate the
header from the body with an empty line, into different variables:

$header = "";
$body = "";
while (<>) {

1 .. /^$/ and $header. = $_;
/^$/ .. eof() and $body. = $_;
exit if eof; # ensure we only pass through one file

}

When used with expressions that test $_, we can also make use of a variant of the range operator
expressed as three dots rather than two:

(/^BEGIN/) ... (/END$/)

The three-dot form of the range operator is identical in all respects except that it will not flip state twice
on the same line. That is, the above range will alternate from False to True whenever BEGIN starts a
line, and from true to false whenever END finishes a line, but if a line both starts with BEGIN and finishes
with END then only one of the two transitions will occur. If the operator was False to start with then the
BEGIN sets it to True and the END is ignored. If the operator was already True then the END is seen and
the operator resets to False.

For a more advanced example of how the range operator can be used with regular expressions, see
'Extracting Lines with the Range Operator' in the discussion on regular expressions in Chapter 11.

Ternary
The ternary operator, ?:, is an if statement that returns an expression. It takes three expressions, and
returns the second or third as its result, depending on whether the first is True or False respectively. The
logic is essentially:

if <expr1> then return <expr2> else return <expr3>:

For example:

$a ? $b : $c; # return $b if $a is true, otherwise return $c

print 'word' or 'words' as appropriate ($#array is 0 for one element)
print scalar(@words), " word", ($#words?'s':''), "\n";

The precedence of the ternary operator is low, just above that of assignment operators and the comma,
so in general, expressions do not need parentheses. Conversely, however, the whole operator often does
need to be parenthesized to stop precedence swallowing up terms to the right if it is followed by
operators with higher precedence:

result is $c + $d if $a is false
$result = $a ? $b : $c + $d;

result is $b + $d or $c + $d
$result = ($a ? $b : $c) + $d;

Chapter 4

106

Precedence and Associativity
We have already briefly discussed precedence and associativity earlier in the chapter, but they certainly
warrant a closer look, so we will discuss them in more detail here. We also provide a table of all the
operators and their precedence at the end of this section.

Arithmetic operators have a relatively high precedence, with multiplication having higher precedence
than addition. The assignment operators like = have a very low precedence, so that they are only
evaluated when both their operands (in particular, the rest of the statement to the right) has returned a
result.

Associativity comes in to play when operators have the same precedence, as + and - do. It determines
which operand is evaluated first. All the arithmetic operations and so on have left associativity, so it's
given they will always evaluate their left before they evaluate their right. For example, multiplication *
and division / have the same precedence, so they are evaluated left to right:

1 / 2 * 3 = (1 / 2)*3 = 1.5

If the association was to the right, the result would be:

1/(2 * 3) = 1/6 = 0.1666...

When Perl sees a statement, it works through all the operators contained within, working out their order
of evaluation based on their precedence and associativity. As a more complete example, here is a
sample of the kind of logic that Perl uses to determine how to process it. The parentheses are not
actually added to the statement, but they show how Perl treats the statement internally. First, the actual
statement as written:

$result = 3 + $var * mysub(@args);

The = operator has the lowest precedence, since the expressions on either side must obviously be
evaluated before the = can be processed. In the compilation phase Perl parses the expression starting
from the lowest precedence operator, =, with the largest expressions and divides the surrounding
expressions into smaller, higher precedence expressions until all that is left is terms, which can be
evaluated directly:

($result) = ((3) + (($var) * (mysub(@args)))

In the run-time phase, Perl evaluates expressions in order of highest precedence, starting from the terms
and evaluating the result of each operation once the results of the higher precedence operations are
known. A 'term' is simply any indivisible quantity, like a variable name, literal value, or a subroutine
call with its arguments in parentheses. These have the highest precedence of all, since their evaluation is
unambiguous, indivisible, and independent of the rest of the expression.

We don't often think of = as being an operator, but it returns a value, just like any other operator. In the
case of =, the return value is the value of the assignment. Also like other binary operators, both sides
must be evaluated first. The left-hand side must be assignable, but need not be a variable. Functions like
substr can also appear on the left of =, and need to be evaluated before = overwrites (in the case of
substr) the substring that it returns.

Having established the concepts of precedence and associativity, here is a complete table of all of Perl's
basic operators in order of precedence (highest to lowest) and their associativity:

Operators

107

Associativity Operators

Left

Left

None

Right

Right

Left

Left

Left

Left

None

None

None

Left

Left

Left

Left

None

Right

Right

Left

None

Right

Left

Left

terms, list operators

->

++ --

**

! ~ \, unary +, unary -

=~ !~

* / % x

+ - .

<< >>

Named unary operators (for example, -X)

< > <= >= lt gt le ge

== != <=> eq ne cmp

&

| ^

&&

||

.. ...

?:

= += -= *= /= %= .= etc.

, =>

List operators (to the right)

not

and

or xor

Precedence and Parentheses
Parentheses alter the order of evaluation in an expression, overriding the order of precedence that
would ordinarily control which operation gets evaluated first, then in the following expression the + is
evaluated before the *:

4 * (9 + 16)

Chapter 4

108

It is sometimes helpful to think of parentheses as a 'precedence operator'. They automatically push their
contents to the top of the precedence rankings by making their contents appear as a term to the
surrounding expression. Within the parentheses, operators continue to have the same precedence as
usual, so the 9 and 16 have higher precedence than the + because they are terms.

We can nest parentheses to any depth we like, entirely overriding the rules of precedence and
associativity if we wish:

(3 - ((4 + 5)*6))

Parentheses are also used to construct list values. Whether as part of a subroutine or function argument
list, or as a simple list value, they still have the same effect of overriding precedence.

Functions and subroutines may be used with or without parentheses. With parentheses they are simply
terms from the point of view of the rest of the statement, since they are by nature, indivisible. The
parentheses explicitly define the arguments to the function or subroutine.

Without parentheses the behavior of functions and subroutines changes – they become operators. Some
functions take fixed numbers of arguments, or just one (in which case they are named unary operators).
Others, like push, and all subroutines that are declared without prototypes, are named list operators.

List operators have high precedence to their left but low precedence to their right. The upshot of this is
that anything to the right of a list operator is evaluated before the list operator is, but the list operator
itself is evaluated before anything to the left. Put another way, list operators tend to group as much as
possible to their right, and appear as terms to their left. In other words:

$result = $value + listop $value + $value, $value;

Is always evaluated as if it were:

$result = $value + (listop ($value + $value, $value));

This behavior makes sense when we recall that functions and subroutines only process arguments to
their right. In particular, the comma operator has a higher precedence than list operators. Note however
that even on their right side, list operators have a higher precedence than the named logical operators
not, and, or, and xor, so we can say things like the following without requiring parentheses:

open FILEHANDLE, $filename or die "Failed to open $filename: $!";

Beware using the algebraic form of logical operators with list operators, however. In the above example,
replacing or with || would cause the open to attempt to open the result of $filename || die ...,
which would return the value of $filename in accordance with the shortcut rules of the logical
operators, but which would swallow the die so that it was never called.

Functions that take only one argument also change their behavior with regard to precedence when used
as operators. With parentheses they are functions and therefore have term precedence. As operators,
they have a lower precedence than the arithmetic operators but higher than most others, so that the
following does what it looks like it does:

$name1 = "myfile";
$name2 = ".txt";
if (-f $name1. $name2) {

print "The concatenation occurred before –f acted.";
}

Operators

109

Assuming we have a file in our directory called myfile.txt then the concatenated variables make up
the filename, which –f then acts on returning 1 because our file is present. The if statement then
executes as per usual.

Using functions and subroutines without parentheses can sometimes make them more legible (and
sometimes not). However, we can get into trouble if they swallow more expression that we actually
intended:

print "Bye! \n", exit if $quitting;

The problem with this statement is that the exit has higher precedence than the print, because
print as a list operator gives higher precedence to its right-hand side. So the exit is evaluated first
and the Bye! is never seen. We can fix this in two different ways, both using parentheses:

turn 'print' into a function, making the arguments explicit
print("Bye! \n"), exit if $quitting;

make the 'print' statement a term in its own right
(print "Bye! \n"), exit if $quitting;

As we noted earlier, if the next thing after a function or subroutine name is an open parentheses then
the contents of the parentheses are used as the arguments and nothing more is absorbed into the
argument list. This is the function-like mode of operation, as opposed to the list-operator-like mode of
operation, and is why the first example above produces the result we want. However, this can also trip
us up:

displays sum, returns string
print ($value1 + $value2), " is the sum of $value1 and $value2 \n";

This statement tries to group an addition within parentheses to make it stand out from the rest of the
statement. However, it is the first thing after the print statement so the laws of parentheses dictate that
it is the only argument to print. So we get the sum printed out. The comma operator then discards the
result of the print and returns the string is the sum of... into void context, which discards it also.

To make this statement work correctly we have to disambiguate the parentheses so that they are used to
group only, rather than define an argument list. There are two ways to do this, either use more
parentheses around the whole argument list, or use operators:

add parentheses
print (($value1 + $value2), "is the sum of $value1 and $value2 \n");

disambiguate by adding zero
print 0 + ($value1 + $value2), "is the sum of $value1 and $value2\n";

disambiguate with unary plus
print + ($value1 + $value2), "is the sum of $value1 and $value2 \n";

The last two examples work by simply preventing a parenthesis from being the first thing Perl sees after
the print. The unary plus is a little friendlier to the eye (and this is in fact the only use for a unary
plus). Of course in this case we can simply drop the parentheses since + has higher precedence than the
comma anyway:

print $value1 + $value2, "is the sum of $value1 and $value2 \n";

Chapter 4

110

Or, if we want to keep the parentheses, we can just rewrite the print statement into an equivalent but
less problematic form:

print "The sum of $value1 and $value 2 is ",($value1 + $value2);

This final solution is probably the best of all, so the moral of this story is that it pays to think about how
we express list arguments to functions and subroutines, especially for functions like print where we
can rearrange arguments with a little imagination.

Disabling Functions and Operators
Occasionally we might want to prevent certain operators or functions from being used. One possible
reason for doing this is for scripts run by untrusted users such as CGI scripts on a web server.

We can achieve this with the use ops and no ops pragmas, which allow us to selectively enable or
disable Perl's operators (including all Perl's built-in functions). The typical use of the ops pragma is
from the command line. For example, to disable the system function we can use:

> perl -M-ops=system myprogram.pl

The ops pragma controls how Perl compiles code by altering the state of an internal bitmask of
opcodes. As a result, it is not generally useful inside a script, but if it is then it must be in a BEGIN block
in order to have any effect on code:

BEGIN {
no ops qw(system backtick exec fork);

}

An opcode is not the same thing as an operator, though there is a strong correlation. In this example
system, exec, and fork are directly comparable, but the backtick opcode relates to backticks and
the qx quoting operator. Opcodes are what Perl actually uses to perform operations, and the operators
and functions we use are mapped onto opcodes – sometimes directly and sometimes conditionally,
depending on how the operator or function is used.

The ops pragma is an interface to the Opcode module, which provides a direct interface to Perl's
opcodes, and thereby to its operators and functions. It defines several functions for manipulating sets of
opcodes, which the ops pragma uses to enable and disable opcodes, and it also defines a number of
import tags that collect opcodes into categories. These can be used to switch collections of opcodes on
or off. For example, to restrict Perl to a default set of safe opcodes we can use the :default tag:

> perl –M-ops=:default myprogram.pl

Similarly, to disable the open, sysopen, and close functions (as well as binmode and umask) we can
switch off the :filesys_open tag:

> perl -M-ops=:filesys_open myprogram.pl

We can also disable the system, backtick, exec, and fork keywords with the :subprocess tag:

> perl -M-ops=:subprocess myprogram.pl

Operators

111

Or, programmatically:

BEGIN { no ops qw(:subprocess); }

A reasonably complete list of tags defined by Opcode is below, but bear in mind that the Opcode
module is still under development and that the functions and operators controlled by these categories
are subject to change.

Tags Category

:base_core Core Perl operators and functions, including arithmetic and comparison
operators, increment and decrement, and basic string and array
manipulation.

:base_mem Core Perl operators and functions that allocate memory, including the
anonymous array and hash constructors, the range operator, and the
concatenation operator. In theory disabling these can prevent many kinds
of memory hogs.

:base_loop Looping functions such as while and for, grep and map, and the loop
control statements next, last, redo, and continue. In theory disabling
these prevents many kinds of CPU throttling.

:base_io Filehandle functions such as readline, getc, eof, seek, print, and
readdir. Disabling these functions is probably not a useful thing to do.
Disabling open and sysopen is a different matter, but they are not in
this category.

:base_orig Miscellaneous functions including tie and untie, bless, the archaic
dbmopen and dbmclose, localtime and gmtime, and various socket
and network related functions.

:base_math The floating-point mathematical functions sin, cos, atan2, exp, log,
and sqrt, plus the random functions rand and srand.

:base_thread The threaded programming functions lock and threadsv.

:default All of the above :base_ tags; a reasonably default set of Perl operators

:filesys_read Low-level file functions such as stat, lstat and fileno.

:sys_db Perl's functions for interrogating hosts, networks, protocols, services,
users, and groups, such as getpwent. Note that the actual names of the
opcodes differ from the functions that map to them.

:browse All of the above tags, a slightly extended version of :default that also
inludes :filesys_read and :sys_db.

:filesys_open open, sysopen, close, binmode, and umask.

:filesys_write File modification functions like link and unlike, rename, mkdir, and
rmdir, chmod, chown, and fcntl.

Table continued on following page

Chapter 4

112

Tags Category

:subprocess Functions that start subprocesses like fork, system, the backtick
operator (opcode backtick), and the glob operator. This is the
set of opcodes that trigger errors in 'taint' mode, and a particularly
useful set of opcodes to disable in security-conscious situations like
CGI scripts.

:ownprocess Functions that control the current process, such as exec, exit,
and kill.

:others Miscellaneous opcodes, mostly to do with IPC, such as msgctl
and shmget.

:dangerous Also miscellaneous, but more dangerous, opcodes. Currently this
contains syscall, dump, and chroot.

:still_to_be_decided Anything left over from the above categories. As we mentioned at
the start, the Opcode module is under development, so the precise
opcodes controlled by each tag are subject to change.

Many operators have more than one opcode, depending on the types of value that they can operate on.
The addition operator + maps to the add and I_add opcodes, which perform floating-point and integer
addition respectively. Fortunately we can use the dump function to generate a table of opcodes and
descriptions. For example, to generate a complete (and very long) list of all opcodes and descriptions:

> perl -MOpcode -e 'Opcode::opdump'

This generates a table starting with:

null null operation
stub stub

scalar scalar
pushmark pushmark
wantarray wantarray

const constant item
gvsv scalar variable
gv glob value

gelem glob elem
padsv private variable
padav private array
padhv private hash
padany private value
....

Alternatively, to search for opcodes by description we can pass in a string (actually, a regular
expression). Any opcode whose description contains that string will be output. For example, to find the
opcodes for all the logical operators:

> perl -MOpcode=opdump -e 'opdump("logical")'

Operators

113

This produces:

and logical and (&&)
or logical or (||)
xor logical xor

andassign logical and assignment (&&=)
orassign logical or assignment (||=)

Since the argument to opdump is a regular expression we can also get a list of all logical operators,
bitwise, and Boolean with:

> perl -MOpcode=opdump -e 'opdump("bit|logic")'

So, if we wanted to disable logical assignments, we now know that the andassign and orassign
opcodes are the ones we need to switch off. Note that the description always contains the operator, or
function names, for those opcodes that map directly to operators and functions.

The Opcode module also contains a number of other functions for manipulating opcode sets and masks.
Since these are unlikely to be of interest except to programmers working directly with the opcode
tables, we will ignore them here. For more information see >perldoc Opcode.

Overriding Operators
As well as disabling operators we can also override them with the overload pragma. This is an object-
oriented technique called overloading, where additional meanings are layered over an operator. The
overloaded meanings come into effect whenever an object that defines an overloaded operator is used
as an operand of that operator. For example, consider a module that implements an object class called
MyObject that starts with the following lines:

package MyObject;

use overload '+' => &myadd, '-' => &mysub;
...

Normally we cannot add or subtract objects because they are just references, and Perl does not allow us
to perform arithmetic on references. However, if we try to perform an addition or subtraction involving
objects of type MyObject then the myadd and mysub methods in the MyObject package are called
instead of Perl simply returning an error. This forms the basis of operator overloading for objects.

Since this involves concepts we have not yet introduced, in particular object-oriented programming, we
cover it only briefly here. For more information see Chapter 19.

TE
AM
FL
Y

Team-Fly®

Chapter 4

114

Summary
In this chapter, we compared and contrasted functions and operators. We then took an in-depth look
into the different types of operators, including:

� Assignment

� Arithmetic

� Shift

� String and List

� Logical

� Bitwise

� Increment and Decrement

� Comparison

� Comma and Relationship

� Reference

� Arrow

� Range

� Ternary

We then covered precedence and associativity, and looked at the effect of parentheses on precedence.
Finally, we took a brief look at overriding operators, and, as an example, saw how it could define
syntaxes for object-oriented programming.

Operators

115

Chapter 4

116

Beyond Scalars - More Data Types

Having introduced scalars in Chapter 3, we consider in this chapter the other data types except
filehandles, which we examine in Chapter 12. References, which we cover here, can be seen as scalars.
However, they are sufficiently different to warrant being considered more extensively.

This chapter will cover arrays, hashes, references, and typeglobs. We will also look at the more
complex data that can be created by mixing data types. Later in the chapter, we show how we can
define scalar, list, and hash constants, as well as checking for their existence, and finally we discuss the
undefined value.

Lists and Arrays
A list is a compound value that may hold any number of scalar values (including none at all). Each
value, or element, in the list is ordered and indexed; it is always in the same place, and we can refer to it
by its position in the list. In Perl, lists are written out using parentheses and the comma operator:

(1, 2, 3, 4, 5, 6)

A list is simply a sequence of scalar values; we can copy it about, store it in arrays, and index it, but we
can't alter its contents; it is immutable. To change it, we need to store the list in a variable. This variable
is called an array.

An array provides dynamic storage for a list, and so can be grown, shrunk, and manipulated by altering
its values. In Perl, we often use the terms array and list interchangeably, but the difference can be
important. The most obvious example of an array is a named array variable, which is prefixed with an
at-sign @ in the same way that scalar variables are prefixed with a $:

define a six element array from a six element list
@array = (1, 2, 3, 4, 5, 6);

Chapter 5

118

The array variable is a handle that we can use to access the values inside it, also known as array
elements. Each element has an index number that corresponds to its position in the list. The index starts
at zero, so the index number of an element is always one less than its place in the list. To access it, we
supply the index number after the array in square brackets:

@array = (1, 2, 3, 4, 5, 6);
print the value of the fifth element (index 4, counting from 0)
print "The fifth element is $array[4] \n";

We can also place an index on the end of a list, for example:

print "The fifth element is ", (1, 2, 3, 4, 5, 6)[4]; # produces 5

Of course, there isn't much point in writing down a list and then only using one value from it, but we
can use the same approach with lists returned by functions like localtime, where we only want some
of the values that the list contains:

$year = (localtime)[5];

For the curious, the parentheses around localtime prevent the [5] from being interpreted as an
anonymous array and passed to localtime as an argument.

The values of an array are scalars (though these may include references), so the correct way to refer to
an element is with a $ prefix, not an @ sign. It is the type of the returned value that is important to Perl,
not where it was found:

print "The first element is $array[0] \n";

If we specify a negative index, Perl rather smartly counts from the end of the array:

print "The last element is $array[-1] \n";

We can also extract a list from an array by specifying a range of indices or a list of index numbers, also
known as a slice:

print "The third to fifth elements: @array[2..4] \n";

Or, using negative numbers and a list:

print "The first two and last two elements: @array[0, 1, -2, -1] \n";

We can also retrieve the same index multiple times:

replace array with first three elements, in triplicate
@array = @array[0..2, 0..2, 0..2];

pick two elements at random:
@random = @array[rand scalar(@array), rand scalar(@array)];

Beyond Scalars - More Data Types

119

Arrays can only contain scalars, but scalars can be numbers, strings, or references to other values like
more arrays, which is exactly how Perl implements multidimensional arrays. They can also contain the
undefined value, which is and isn't a scalar, depending on how we look at it.

The standard way of defining lists is with the comma operator, which concatenates scalars together to
produce list values. We tend to take the comma for granted because it is so obvious, but it is in fact
performing an important function. However, defining arrays of strings can get a little awkward:

@strings = ('one', 'two', 'three', 'four', 'five');

That's a lot of quotes and commas; an open invitation for typographic errors. A better way to define a
list like this is with the list quoting operator qw, which we covered earlier in Chapter 3. Here's the same
list defined more legibly with qw:

@strings = qw(one two three four five);

Or, defined with tabs and newlines:

@strings = qw(
one
two
three
four
five

);

As well as assigning lists to array variables we can also assign them to scalars, by creating an assignable
list of them:

($one, $two, $three) = (1, 2, 3); # $one is now 1, $two 2 and $three 3

This is a very common sight inside subroutines, where we will often see things like:

($arg1, $arg2, @listarg) = @_;

Manipulating Arrays
Arrays are flexible creatures. We can modify them, extend them, truncate them and extract elements
from them in many different ways. We can add or remove elements from an array at both ends, and
even in the middle.

Modifying the Contents of an Array
Changing the value of an element is simple; we just assign a new value to the appropriate index of the
array:

$array[4] = "The Fifth Element";

We are not limited to changing a single element at a time, however. We can assign to more than one
element at once using a list or range in just the same way that we can read multiple elements. Since this
is a selection of several elements we use the @ prefix, since we are manipulating an array value:

@array[3..5, 7, -1] = ("4th", "5th", "6th", "8th", "Last");

Chapter 5

120

We can even copy parts of an array to itself, including overlapping slices:

@array = (1, 2, 3, 4, 5, 6);
@array[2..4] = @array[0..2];
print "@array \n"; @array = (1, 2, 1, 2, 3, 6);

We might expect that if we supply a different number of elements to the number we are replacing then
we could change the number of elements in the array, replacing one element with three, for example.
However, this is not the case. If we supply too many elements, then the later ones are simply ignored. If
we supply too few, then the elements left without values are filled with the undefined value. There is a
logic to this, however, as the following example shows:

assign first three elements to @array_a, and the rest to @array_b
@array_a[0..2], @array_b = @array;

There is, however, a function that does replace parts of arrays with variable length lists. Appropriately
enough it is called splice, and takes an array, a starting index, a number of elements and a
replacement list as its arguments:

splice @array, $from, $quantity, @replacement;

As a practical example, to replace element three of a six-element list with three new elements (creating
an eight element list), we would write something like:

#!/usr/bin/perl
splice1.pl
use warnings;
use strict;

my @array = ('a', 'b', 'c', 'd', 'e', 'f');
replace third element with three new elements
my $removed = splice @array, 2, 1, (1, 2, 3);

print "@array \n"; # produces 'a b 1 2 3 d e f'
print "$removed \n"; # produces 'c'

This starts splicing from element 3 (index 2), removes one element, and replaces it with the list of three
elements. The removed value is returned from splice and stored in $removed. If we were removing
more than one element we would supply a list instead:

#!/usr/bin/perl
splice2.pl
use warnings;
use strict;

my @array = ('a', 'b', 'c', 'd', 'e', 'f');
replace three elements with a different three
my @removed = splice @array, 2, 3, (1, 2, 3);

print "@array\n"; # produces 'a b 1 2 3 f'
print "@removed\n"; # produces 'c d e'

Beyond Scalars - More Data Types

121

If we only want to remove elements without adding new ones we just leave out the replacement list,
shrinking the array:

#!/usr/bin/perl
splice3.pl
use warnings;
use strict;

my @array = ('a', 'b', 'c', 'd', 'e', 'f');
remove elements 2, 3 and 4
my @removed = splice @array, 2, 3;

print "@array\n"; # produces 'a b f'
print "@removed\n"; # produces 'c d e'

Leaving out the length as well removes everything from the specified index to the end of the list. We
can also specify a negative number as an index, just as we can for accessing arrays, so combining these
two facts we can do operations like this:

#!/usr/bin/perl
splice4.pl
use warnings;
use strict;

my @array = ('a', 'b', 'c', 'd', 'e', 'f');
remove last three elements
my @last_3_elements = splice @array, -3;

print "@array\n"; # produces 'a b c'
print "@last_3_elements\n"; # produces 'd e f'

splice is a very versatile function and forms the basis for several other, simpler array functions like
pop and push. We'll be seeing it a few more times before we are done with arrays.

Counting an Array
If we take an array or list and treat it as a scalar, Perl will return the number of elements (including
undefined ones, if any) in the array. Treating an array as a scalar can happen in many contexts. For
example a scalar assignment like this:

$count = @array;

This is a common cause of errors in Perl, since it is easy to accidentally assign an array in scalar rather
than list context. While we're on the subject, remember that assigning a list in scalar context assigns the
last value in the list rather than counts it:

$last_element = (1, 2, 3); # last_element becomes 3

If we really mean to count an array we are better off using the scalar function, even when it isn't
necessary, just to make it clear what we are doing:

$count = scalar(@array);

Chapter 5

122

We can also find the index of the last element of the array using the special prefix $#. As indices start at
zero, the highest index is one less than the number of elements in the list:

$highest = $#array;

This is useful for looping over ranges and iterating over arrays by index rather than by element, as this
foreach loop demonstrates:

#!/usr/bin/perl
byindex.pl
use warnings;
use strict;

my @array = ("First", "Second");
foreach (0..$#array) {

print "Element number $_ contains $array[$_] \n";

}

> perl byindex.pl
Element number 0 contains First
Element number 1 contains Second

Loops will be discussed in Chapter 6.

Adding Elements to an Array
Extending an array is also simple – we just assign to an element that doesn't exist:

#!/usr/bin/perl
add.pl
use warnings;
use strict;

my @array = ('a', 'b', 'c', 'd', 'e', 'f');
print "@array \n"; # produces 'a b 1 2 3 d e f'
$array[6] = "g";
print "@array \n"; # produces 'a b 1 2 3 d e f g'

We aren't limited to just adding directly to the end of the array. Any missing elements in the array
between the current highest index and the new value are automatically added and assigned undefined
values. For instance, adding $array[10] = "k"; to the end of the above example would cause Perl to
create all of the elements with indices 7 to 9 (albeit without assigning storage to them) as well as assign
the value k to the element with index 10.

To assign to the next element we could find the number of elements and then assign to that number
(since the highest existing element is one less than the number of elements, due to the fact that indices
start at zero). We find the number of elements by finding the scalar value of the array:

$array[scalar(@array)] = "This extends the array by one element";

However, it is much simpler to use the push function, which does the same thing without the
arithmetic:

push @array, "This extends the array by one element more simply";

Beyond Scalars - More Data Types

123

We can feed as many values as we like to push, including more scalars, arrays, lists and hashes. All of
them will be added in turn to the end of the array passed as the first argument. Alternatively we can add
elements to the start of the array using unshift:

unshift @array, "This becomes the zeroth element";

With unshift the original indices of the existing elements are increased by the number of new
elements added, so the element at index fi5ve moves to index 6, and so on.

push and unshift are actually just special cases of the splice function. Here are their equivalents
using splice:

These are equivalent
push @array, @more;
splice @array, @array,0,@more;

These are equivalent
unshift @array, @more;
splice @array, 0, 0, @more;

Passing in @array twice to splice might seem a bizarre way to push values onto the end of it, but the
second argument is constrained to be scalar by splice, so it is actually another way of saying
scalar(@array), the number of elements in the array and one more than the current highest index,
as we saw earlier.

Resizing and Truncating an Array
Interestingly, assigning to $#array actually changes the size of the array in memory. This allows us
both to extend an array without assigning to a higher element and also to truncate an array that is larger
than it needs to be, allowing Perl to return memory to the operating system:

$#array = 999; # extend @array to 1000 elements

$#array = 3; # remove @elements 4+ from array

Truncating an array destroys all elements above the new index, so the last example above is a more
efficient way to do the following:

@array = @array[0..3];

This assignment also truncates the array, but by reading out values and then reassigning them. Altering
the value of $#array avoids the copy.

Removing Elements from an Array
The counterparts of push and unshift are pop and shift, which remove elements from the array at
the end and beginning, respectively:

#!/usr/bin/perl
remove.pl
use warnings;
use strict;

TE
AM
FL
Y

Team-Fly®

Chapter 5

124

my @array = (1, 2, 3, 4, 5, 6);
push @array, '7'; # add '7' to the end
print "@array\n"; # array is now (1, 2, 3, 4, 5, 6, 7)

my $last = pop @array; # retrieve '7' and return array to six elements
print "$last\n"; # print 7

unshift @array, -1, 0;
print "@array\n"; # array is now (-1, 0, 1, 2, 3, 4, 5, 6)
shift @array; # remove the first element of the array
shift @array; # remove the first element of the array
print "@array\n"; # array is now again (1, 2, 3, 4, 5, 6)

While the push and unshift functions will add any number of new elements to the array, their
counterparts are strictly scalar in operation, they only remove one element at a time. If we want to
remove several at once we can use the splice function. In fact, pop and shift are directly equivalent
to specific cases of splice:

These are equivalent
pop @array;
splice(@array, -1);

These are equivalent
shift @array;
splice(@array, 0, 1);

From this we can deduce that the pop function actually performs an operation very similar to this:

read last element and then truncate array by one - that's a 'pop'
$last_element = $array[$#array--]

Extending this principle, here is how we can do a multiple pop operation:

@last_20_elements = $array[-20..-1];

$#array-=20;

Both undef and delete will remove the value from an array element, replacing it with the undefined
value, but neither will actually remove the element itself, and higher elements will not slide down one
place. This would seem to be a shame, since delete removes a hash key just fine. Hashes, however, are
not ordered and indexed like arrays.

To truly remove elements from an array, we can use the splice function, omitting a replacement list:

@removed = splice(@array, $start, $quantity);

For example, to remove elements 2 to 5 (four elements in total) from an array we would use:

@removed = splice(@array, 2, 4);

Of course if we don't want to keep the removed elements we don't have to assign them to anything.

As a slightly more creative example, here is how we can move elements from the end of the list to the
beginning, using a splice and an unshift.

unshift @array, splice(@array, -3, 3);

Beyond Scalars - More Data Types

125

Or, in the reverse direction:

push @array, splice(@array, 0, 3);

The main problem with splice is not getting carried away with it.

Removing All Elements from an Array
To destroy an array completely we can undefine it using the undef function. This is a different
operation from undefining just part of an array as we saw above:

undef @array; # destroy @array

This is equivalent to assigning an empty list to the array, but more direct:

@array = ();

It follows that assigning a new list to the array also destroys the existing contents. We can use that to our
advantage if we want to remove lines from the start of an array without removing all of them:

@array = @array[-100..-1]; # truncate @array to its last one hundred lines

This is simply another way of saying:

splice(@array, 0, $#array-100);

Sorting and Reversing Lists and Arrays
Perl supplies two additional functions for generating differently ordered sequences of elements from an
array or list. The reverse function simply returns a list in reverse order:

reverse the elements of an array
@array = reverse @array;

reverse elements of a list
@ymd = reverse((localtime)[3..5]); # return in year/month/day order

This is handy for all kinds of things, especially for reversing the result of an array slice made using a
range. reverse allows us to make up for the fact that ranges can only be given in low to high order.

The sort function allows us to perform arbitrary sorts on a list of values. With only a list as its
argument it performs a standard alphabetical sort:

@words = ('here', 'are', 'some', 'words');
@alphabetical = sort @words;
print "@words"; # produces 'are here some words'

Sort is much more versatile than this, however. By supplying a code or subroutine reference we can
sort the list in any way we like. sort automatically defines the global variables $a and $b for bespoke
sorting algorithms, so we can specify our own sort:

@alphabetical = sort { $a cmp $b} @words;

Chapter 5

126

This is actually the default sort algorithm that Perl uses when we specify no sort algorithm of our own.
In order to be a correct and proper algorithm, the sort code must return -1 if $a is less than $b
(however we define that), 0 if they are equal, and 1 if $a is greater than $b. This is exactly what cmp
does for strings, and <=> does for numbers.

We should take care never to alter $a or $b either, since they are aliases for the real values being
sorted. At best this can produce an inconsistent result, at worst it may cause the sort to lose values or fail
to return. The best sorts are the simple ones, here are some more sort algorithms:

@ignoring_case = sort {lc($a) cmp lc($b)} @words;

@reversed = sort {$b cmp $a} @words;
@numerically = sort {$a <=> $b} @numbers;
@alphanumeric = sort {int($a) <=> int($b) or $a cmp $b} @mixed;

The last example above is worth a moment to explain. It first compares $a and $b as integers, forcing
them into numeric values with int. If the result of that comparison is non-zero then at least one of the
values has a numeric value. If however the result is zero, which will be the case if $a and $b are both
non-numeric strings, the second comparison is used to compare the values as strings. Consequently this
algorithm sorts numbers and strings that start numerically and all other strings alphabetically, even if
they are mixed into the same list. Parentheses are not required because or has a very low precedence.

We can also use a named subroutine to sort with. For example, we can create a subroutine named
reversed that allows us to invent a sort reversed syntax:

sub reversed {$b cmp $a};
@reversed = sort reversed @words;

Similarly, a subroutine called numerically that also handles floating point:

force interpretation of $a and $b as floating point numbers
sub numerically {$a*1.0 <=> $b*1.0 or $a cmp $b};

@number_order = sort numerically @words;

Note however that both functions must be defined in the same package as they are used in order to
work, since the variables $a and $b are actually package variables. Similarly, we should never declare
$a and $b with my since these will hide the global variables. Alternatively we can define a prototype,
which provokes sort into behaving differently:

sub backwards ($$) {$_[0] cmp $_[1]};

The prototype requires that two scalars are passed to the sort routine. Perl sees this and passes the
values to be compared though the special variable @_ instead of via $a and $b. This will allow the sort
subroutine to live in any package, for example a fictional 'Order' package containing a selection of sort
algorithms:

use Order;
@reversed = sort Order::reversed @words;

We'll see how to create such a package in Chapter 10.

Beyond Scalars - More Data Types

127

Changing the Starting Index Value
Perl allows us to change the starting index value from 0 to something else. For example, to have our
lists and arrays index from 1 (as Pascal would) instead of 0, we would write:

$[=1;
@array = (11, 12, 13, 14, 15, 16);
print $array[3]; # produces 13 (not 14)

The scope of $[is limited to the file that it is specified in, so subroutines and object methods called in
other files will not be affected by the altered value of $[more on scoping in Chapter 8. Even so,
messing with this special variable is dangerous and discouraged. As a rule of thumb, do not do it.

Converting Lists and Arrays into Scalars
Since lists and arrays contain compound values, they have no direct scalar representation – that's the
point of a compound value. Other than counting an array by assigning it in scalar context, there are two
ways that we can get a scalar representation of a list or array. First, we can create a reference to the
values in the list or, in the case of an array, generate a direct reference. Second, we can convert the
values into a string format. Depending on our requirements, this string may or may not be capable of
being transformed back into the original values again.

Taking References
An array is a defined area of storage for list values, so we can generate a reference to it with the
backslash operator:

$arrayref = \@array;

This produces a reference through which the original array can be accessed and manipulated.
Alternatively, we can make a copy of an array and assign that to a reference by using the array
reference constructor (also known as the anonymous array constructor) [...]:

$copyofarray = [@array];

Both methods give us a reference to an anonymous array that we can assign to, delete from, and modify.
The distinction between the two is important, because one will produce a reference that points to the
original array, and so can be used to pass it to subroutines for manipulations on the original data,
whereas the other will create a copy that can be modified separately.

Converting Lists into Formatted Strings
The final way to turn an array into a scalar is via the join and pack functions. join creates a string
from the contents of the array, optionally separated by a separator string:

join values into comma-separated-value string
$string = join ',', @array;

concatenate values together
$string = join '', @array;

Chapter 5

128

join is the counterpart to split, which we covered under 'Strings' earlier in Chapter 3. Unlike split
however, it takes a simple string as its separator argument, not a regular expression, since the separator
is a literal output value rather than an input pattern.

The sprintf function takes a format string and a list of values, and returns a string created from the
values in the list rendered according to the specified format. Like any function that accepts list
arguments, sprintf does not care if we supply them one by one or all together in an array:

get current date and time into array
@date = (localtime)[5, 4, 3, 2, 1, 0]; # Y, M, D, h, m, s
$date[0]+=1900; # fix year

generate time string using sprintf
$date = sprintf "%4d/%02d/%02d %2d:%02d:%02d", @date;

This example produces date and time strings from localtime. It uses indices to extract the values it
wants from localtime in the correct order for sprintf, so that each individual format within the
format string lines up and controls the corresponding value. sprintf then applies each format in turn
to each value in the date array to produce its string result.

The pack function also converts list values into strings using a format string, but in this case the format
string describes the types of the supplied arguments at a much lower level, and the resulting string is
really just a sequence of bytes in a known order, rather than a string in the conventional sense. For
example, the C format packs integers into a character representation, much the same way that chr does:

$char = pack 'C', $code; # $char = 'A' if $code = 65

This only uses a single value, however. For lists containing the same data type we can either repeat the
pattern, for example, CCCC for four characters, or add a repeat count – C4 for four characters, or C* for
as many elements as the list provides. Extending this example to a list or array, this is one way we might
convert a list of character codes into a string:

@codes = (80, 101, 114, 108);
$word = pack 'C*', @codes;
print $word; # produces 'Perl'

Similarly, to collect the first letters of a list of strings we can use the a format. Unlike the C format, a
extracts multiple characters from a list item. The repeat count therefore has a different meaning; a4
would extract four characters from the first item in the list, ignoring the other elements. To get the first
letter of each element we need to use aaaa instead. In the next example we use the x operator to
generate a string of a's the right length for the supplied list.

@words = ('Practical', 'extraction', 'reporting', 'language');
$first_letters = pack 'a'x@words, @words;
print $first_letters; # guess...

The examples above not withstanding, the string returned by pack is usually not suitable for printing.
The N format will pack 'long' integer values into a four-byte string, each 'character' of the string being 8
bits of the 32 bit integer. The string that results from these four characters is unlikely to produce
something that prints out well, but can be stored in a file and retrieved very conveniently:

$stored_integers = pack('N' x @integers), @integers;

Beyond Scalars - More Data Types

129

This string will contain four bytes for every integer in the list. If the integers are large and so is the list,
this is a lot more efficient than something like join, which would create textual versions of the integers
(so 100000 takes seven characters) and would need to add another character to separate each value
from its neighbors too.

Hashes
Hashes, also known as associative arrays, are Perl's other compound data type. While lists and arrays
are ordered and accessed by index, hashes are ordered and indexed by a descriptive key. There is no
'first' or 'last' element in a hash like there is in an array (the hash does have an internal order, but it
reflects how Perl stores the contents of the hash for efficient access, and cannot be controlled by us).

Hashes are defined in terms of keys and values, or key-value pairs to use an alternative expression.
They are stored differently from arrays internally, in order to allow for more rapid lookups by name, so
there is no 'value' version of a hash in the same way that a list is a 'value' version of an array. Instead,
lists can be used to define either arrays or hashes, depending on how we use them.

The following list of key-value pairs illustrates a potential hash, but at this point it is still just a list:

('Mouse', 'Jerry', 'Cat', 'Tom', 'Dog', 'Spike')

Since hashes consist of paired values, Perl provides the => operator as an alternative to the comma. This
helps differentiate the keys and values and makes it clear to anyone reading our source code that we are
actually talking about hash data and not just a list. Hash values can be any scalar, just like array
elements, but hash keys can only be strings, so the => operator also allows us to omit the quotes by
treating its left-hand side as a constant string. The above list would thus be better written as:

(Mouse => 'Jerry', Cat => 'Tom', Dog => 'Spike')

At the moment we only have a list, even if it is made out to show the key-value pairs. To turn it into a
hash we need to assign it to a hash variable. Hashes, like lists and scalars, have their own special prefix,
in this case the % symbol (it is not a hash character because hash is used for different symbols in
different countries, and in any case was already in common use by shells for comments). So, to create a
hash from the above we would write:

%hash = (Mouse => 'Jerry', Cat => 'Tom', Dog => 'Spike');

When this assignment is made, Perl takes the keys and values supplied in the list and stores them in an
internal format that is optimized for retrieving the values by key. To achieve this, Perl requires that the
keys of a hash be string values, which is why when we use => we can omit quotes, even with strict
vars in operation. This doesn't stop us using a variable to store the key name, as Perl will evaluate it in
string context, but it does mean that we must use quotes if we want to use spaces or other characters
meaningful to Perl such as literal $, @, or % characters:

using variables to supply hash keys
($mouse, $cat, $dog)=>('Souris', 'Chat', 'Chien');
%hash = ($mouse => 'Jerry', $cat => 'Tom', $dog => 'Spike');

using quotes to use non-trivial strings as keys (with and without
interpolation)
%hash =('Exg Rate' => 1.656, '%age commission' => 2, "The $mouse" => 'Jerry');

Chapter 5

130

This restriction on keys also means that if we try to use a non-string value as a key we will get
unexpected results. In particular, if we try to use a reference as a key it will be converted into a
string, which cannot be converted back into the original reference. Therefore, we cannot store pairs
of references as keys and values unless we use a symbolic reference as the key (see 'References' later in
the chapter for more on this subject).

Alternatively we can use the qw operator and separate the keys and values with whitespace. A sensible
layout for a hash might be:

%hash = qw(
Mouse Jerry
Cat Tom
Dog Spike

);

Note how this is very similar to creating an array. In fact the assignment is identical, but the type of the
variable means that the list data is stored differently from an array. We can now access elements of the
hash, which we do by providing a key after the hash in curly brackets:

print "The mouse is ", $hash{'Mouse'};

This is similar in concept to how we index an array, but note that if we are using strict variables
(courtesy of use strict) we ought to use quotes now; it is only the => operator that lets us get away
with omitting the quotes when strict vars are in effect. Note that just like an array, a hash can only
store scalars as its values, so the prefix for the returned result is $, not %, just as it is for array elements.

We can also specify multiple keys to extract multiple values:

@catandmouse = @hash{'Cat', 'Mouse'};

This will return the list (Tom, Jerry) into the array @catandmouse. Once again, note that the returned
value is a list so we use the @ prefix.

We can even specify a range, but this is only useful if the keys are incremental strings, which typically
does not happen too often; we would probably be better off using a list if our keys are that predictable.
For example, if we had keys with names AA, AB ... BY, BZ inclusive (and possibly others) then we could
use:

@aabz_values = @hash{'AA'..'BZ'};

We cannot access the first or last elements of a hash, since hashes have no concept of first or last.
We can however return a list of keys with the keys function, which returns a list of the keys in the hash:

@keys = keys %hash;

The order of the keys returned is random (or rather, it is determined by how Perl chooses to store the
hash internally), so we would normally sort the keys into a more helpful order if we wanted to display
them. To sort lexically we can just say sort keys %hash like this:

print "The keys are:";
print join(',', sort keys %hash);

Beyond Scalars - More Data Types

131

We can also use the keys as a list and feed it to a foreach loop:

dump out contents of a hash
foreach (sort keys %hash) {

print "$_ => $hash{$_} \n";

}

Manipulating Hashes
We can manipulate hashes in all the same ways that we can manipulate arrays, with the odd twist due to
their associative nature. Accessing hashes is a little more interesting than accessing arrays however.
Depending on what we want to do with them we can use the keys and values functions, sort them in
various different ways, or use the each iterator if we want to loop over them.

Adding and Modifying Hash Values
We can manipulate the values in a hash through their keys. For example, to change the value of the key
Cat, we could use:

$hash{'Cat'} = 'Sylvester';

If the key exists already in the hash then its value is overwritten. Otherwise it is added as a new key:

$hash{'Bird'} = 'Tweety';

Assigning an array (or another hash) produces a count of the elements, as we have seen in the past, but
we can assign multiple keys and values at once by specifying multiple keys and assigning a list, much in
the same way that we can extract a list from a hash:

@hash{'Cat', 'Mouse'} = ('Sylvester', 'Speedy Gonzales');

Or, a possibly clearer example using arrays throughout:

@hash{@keys} = @values;

We can even use ranges to generate multiple keys at once, for example this assignment which creates
key-value pairs from A=>1 to Z=>26.

@lettercodes{'A'..'Z'} = 1..26;

Keys and values are added to the hash one by one, in the order that they are supplied, so our previous
example of:

@hash{'Cat', 'Mouse'} = ('Sylvester', 'Speedy Gonzales');

Is equivalent to:

$hash{'Cat'} = 'Sylvester';
$hash{'Mouse'} = 'Speedy Gonzales';

Chapter 5

132

This can be an important point to keep in mind, since it allows us to overwrite the values associated
with hash keys, both deliberately and accidentally. For example, this code snippet defines a default set
of keys and values and then selectively overrides them with a second set of keys and values, held in a
second input hash. Any key in the second hash with the same name as one in the first overwrites the key
in the resulting hash. Any keys not defined in the second hash keep their default values:

#!/usr/bin/perl
hash.pl
use warnings;
use strict;

define a default set of hash keys and values
my %default_animals = (Cat => 'Tom', Mouse => 'Jerry');

get another set of keys and values
my %input_animals = (Cat => 'Ginger', Mouse => 'Jerry');

combining keys and values of supplied hash with those in default hash overrides
default
my %animals = (%default_animals, %input_animals);
print "$animals{Cat}\n"; # prints 'Ginger'

Removing Hash Keys and Values
Removing elements from a hash is easier, but less flexible, than removing them from a list. Lists are
ordered, so we can play a lot of games with them using the splice function among other things.
Hashes do not have an order (or at least, not one that is meaningful to us), so we are limited to using
undef and delete to remove individual elements.

The undef function removes the value of a hash key, but leaves the key intact in the hash:

undef $hash{'Bird'}; # 'Bird' still exists as a key

The delete function removes the key and value entirely from the hash:

delete $hash{'Bird'}; # 'Bird' removed

This distinction can be important, particularly because there is no way to tell the difference between a
hash key that doesn't exist and a hash key that happens to have an undefined value as its value simply
by looking at the result of accessing it:

print $hash{'Bird'}; # produces 'Use of uninitialized value in print ...'

It is for this reason that Perl provides two functions for testing hash keys, defined and exists.

Converting Lists and Arrays into Hashes
In contrast with scalars, converting a list or array into a hash is extremely simple; we just assign it:

%hash = @array;

Beyond Scalars - More Data Types

133

What actually happens here is that the values extracted from the array are assigned to the hash in pairs,
with even elements (starting at index 0) as the keys and odd elements (starting at index 1) as their
values. If the array contains an odd number of elements then the last key to be assigned to the hash will
end up with an undefined value as its value. If we have warnings enabled (as we should), Perl warn
against this with:

Odd number of elements in hash assignment ...

Reversing Hashes
One special trick that is worth mentioning while we are on the subject of hashes is how to reverse the
keys and values, so that the values become the keys and vice versa. This at first might seem to be a
hard, or at least a non-trivial task involving code like the following:

#!/usr/bin/perl
reverse.pl
use warnings;
use strict;

my %hash = ('Key1' => 'Value1', 'Key2' => 'Value2');

print "$hash{Key1}\n"; # print 'Value1'
foreach (keys %hash) {

invert key-value pair
$hash{$hash{$_}} = $_;

remove original key
delete $hash{$_};

}
print "$hash{Value1}\n"; # print 'Key1'

Reversing, or transposing as it is also known, offers plenty of problems. For a start, if the values are
references then turning them into keys will convert them into strings, which cannot be converted back
into references. Also, if two keys have the same value, we end up with only one of them making it into
the reversed hash, since we cannot have two identical keys. Worse, if a key and value are the same this
code wipes out the key-value pair from the hash entirely.

We can't fix the problem with duplicate keys, that is just in the nature of hashes, but we can reverse the
keys and values much more simply than the code above, and without endangering identical key-value
pairs, by converting the hash into a list, reversing the list, and then assigning it back to the hash again:

%hash = reverse %hash;

We have to look closely to see the list in this example. It is returned by the %hash because reverse is
a function that gives its argument(s) a list context. There is no such thing as hash context in Perl, for the
same reason that there is no such thing as a hash value, as we noted at the start of this discussion. The
reverse then reverses the list, which also happens to reverse the orientation of the keys and values,
and then the reversed list is assigned back to the hash.

If more than one key has the same value then this trick will preserve the first one to be found. Since this
is entirely random (because we cannot sort the list) we cannot determine which key will be preserved as
a value in the new hash. If we want to handle that we will have to either process the hash the slow way,
find a way to eliminate duplicates first, or use a different storage strategy. For simple hashes without
duplicates though, this is a very simple way to achieve the desired end.

TE
AM
FL
Y

Team-Fly®

Chapter 5

134

Accessing and Iterating Over Hashes
The simplest, or at least the most common, way of iterating across a hash is to use the keys function to
return a list of the keys. This list is actually a copy of the hash keys, so we cannot alter the key names
through this list. However, it provides a very simple way to iterate across a hash. We will use foreach
loops in this section, which are explained in detail in Chapter 6.

#!/usr/bin/perl
iterate.pl
use warnings;
use strict;

my %hash = ('Key1' => 'Value1', 'Key2' => 'Value2');
dump of hash
foreach (keys %hash) {

print "$_ => $hash{$_} \n";

}

If we want a list for output we probably want to sort it too:

sorted dump of hash
foreach (sort keys %hash) {

print "$_ => $hash{$_} \n";

}

We can also access the values directly through the value function:

@values = values %hash;

This provides a convenient way to process a hash when we do not care about the keys, with the caveat
that we cannot easily find the keys if we need them; since hashes are one way, there is no 'look up key
by value' syntax:

print list of sorted values
foreach (sort values %hash) {

print "Got: $_ \n";

}

This returns a copy of the values in the hash, so we cannot alter the values this way. If we want a list of
values that we can assign to, we can do so with a loop like this:

increment all hash values by one
foreach (@hash {keys %hash}) {

$_++;
}

This example makes use of aliasing, where the default argument variable $_ becomes a direct alias for,
rather than a copy of, the value that it refers to. Aliasing occurs only when the values being iterated over
come from a variable, as they do in the example above, but not in the one before it. See Chapter 6 for
more on aliasing in loops and subroutines.

Beyond Scalars - More Data Types

135

The catch with foreach is that it pulls all of the keys (or values) out of the hash at one time, and then
works through them. This is inefficient in terms of memory usage, especially if the hash is large. An
alternative approach is offered by the each function, which returns the next key-value pair each time it
is used, and is ideal for use in while loops:

while (($key, $value) = each %hash) {
print "$key => $value \n";
$hash{$key}++;

}

The order of the key-value pairs produces by each is the same as that produced by keys and values,
in other words it follows an internal logic that is all Perl's, and nothing of ours, so it isn't convenient for
producing sorted output. each actually works by moving an internal index pointer through the hash, so
that each subsequent call to each returns the next key-value pair. We cannot access this pointer
externally, however (and even if we could we cannot use it). The index is reset after we reach the last
key, and also if we use keys to return the whole list.

Sorting and Indexing

If we want to generate an ordered list of hash keys and values we can do so with the sort function. A
simple alphabetical list of keys can be produced with sort keys %hash as we saw earlier. However,
sort is a versatile function and we can play all kinds of tricks with it. One not so clever trick is simply
to sort the values directly, as we saw earlier:

print list of sorted values
foreach (sort values %hash) {

print "Got $_ \n";

}

The catch with this is that we can't easily get back to the keys if we want to. The solution to this
problem is to give sort a subroutine that accesses the values via the keys:

sort a hash by values
foreach (sort { $hash{$a} cmp $hash{$b} } keys %hash) {

print "$hash{$_} <= $_ \n";

}

This is important if we want to change the values in the hash, since values just returns a copy of the
hash values, which we cannot assign to.

Creative uses of sort gives us other possibilities too. For instance, we can create a hash with an index
by replacing the values with references to two-element arrays or hashes containing an index value and
the original value. This is an example of a complex data structure, which we cover in more detail in
Chapter 6, so we'll just give a simple example of defining and then sorting such a hash:

#!/usr/bin/perl
indexhash.pl
use warnings;
use strict;

Chapter 5

136

create a hash with integrated index
my %hash = (

Mouse => {Index => 0, Value => 'Jerry'},
Cat => {Index => 1, Value => 'Tom'},
Dog => {Index => 2, Value => 'Spike'}

);

sort a hash by integrated index
foreach (sort {$hash{$a} {'Index'} cmp $hash{$b}{'Index'}} keys %hash) {

print "$hash{$_} {'Value'} <= $_ \n";
}

The only catch with this is that we will need to keep track of the index numbers ourselves, since unlike
an array we don't get it done for us automatically.

Named Arguments

Perl does not have an official mechanism for passing named arguments to subroutines, but hashes allow
us to do exactly this if we write our subroutines to use them:

animate(Cat => 'Tom', Mouse => 'Jerry');

sub animate {
my %animals = @_;

rest of subroutine...
}

Some existing modules in the Perl library allow this and also adapt between ordinary or named
arguments by prefixing the key names with a minus sign. Here is a quick example of how we can do it
ourselves:

#!/usr/bin/perl
arguments.pl
use warnings;
use strict;

list form takes mouse, cat, dog as arguments, fixed order.
animate('Jerry', 'Tom', 'Spike');

hash form takes animals in any order using '-' prefix to identify type,
also allows other animal types
animate(-Cat => 'Sylvester', -Bird => 'Tweety', -Mouse => 'Speedy Gonzales');

and the subroutine...
sub animate {

my %animals;

check first element of @_ for leading minus...
if ($_[0]!~/^-/) {

it's a regular argument list, use fixed order
@animals{'-Mouse', '-Cat', '-Dog'} = @_;

} else {
it's named argument list, just assign it.
%animals = @_;

}

Beyond Scalars - More Data Types

137

rest of subroutine...
foreach (keys %animals) {

print "$_ => $animals{$_} \n";
}

}

See the section on subroutines in Chapter 7 for more on this theme, as well as some improved examples
that check arguments more closely.

Converting Hashes into Scalars
Evaluating a hash in scalar context returns 0 (False) if the hash is empty. If it contains data, we get a
string of the form N/M that describes in approximate terms how efficiently Perl has been able to store
the keys and values in the hash. Loosely speaking, the numbers are a ratio and can be read as a fraction,
the higher the first relative to the second, the more efficient the storage of the hash:

#!/usr/bin/perl
convert.pl
use warnings;
use strict;

my %hash = (one => 1, two => 2, three => 3, four => 4, five => 5);

check the hash has data
if (%hash) {

find out how well the hash is being stored
print scalar(%hash); # produces '4/8'

}

While this is interesting if we are concerned with how well Perl is storing our hash data, it is unlikely to
be of much use otherwise. We might have expected to get a count of the elements in the hash, or
possibly the keys, but we can't count a hash in the same way that we can an array, simply by referring to
it in scalar context. To count a hash we can use either keys or values and evaluate the result in scalar
context. For example:

count the keys of a hash
$elements = scalar(keys %hash);

If we really wanted to know the number of elements we would only need to multiply this result by 2.

Alternatively, we can create a reference to the hash with the backslash operator:

$hashref = \%hash;

Dereferencing a hash reference is very much like dereferencing an array reference, only with a key
instead of an index:

$dog = $hash -> {'Dog'};

Alternatively we can dereference the entire hash with a '%' prefix:

%hash == %$hashreference;

Chapter 5

138

We can also create a hash reference with the {...} constructor, which creates a brand new anonymous
hash with the same contents as the old one. This is different from, and produces a different result to, the
array reference constructor [...] because the reference points to an anonymous hash, which is
therefore organized and stored like one:

$hashref = {Mouse => 'Jerry', Cat => 'Tom', Dog => 'Spike'};

Since the contents of the constructor are just a list, we can also create a hash reference to an anonymous
hash with the contents of an array, and vice versa:

$hashref = {@array};
$arrayref = [%hash];

Both constructors take lists as their arguments, but organize them into different kinds of anonymous
compound value.

Converting Hashes into Arrays
Converting a hash into a list or array is very simple, we just assign it:

@array = %hash;

This retrieves all the keys and values from the hash in pairs, the order of which is determined by the
internal structure of the hash. Alternatively we can extract the hash as two lists, one of keys, and one of
values:

@keys = keys %hash;
@values = values %hash;

This gives us two arrays with corresponding indices, so we can look up the value by the index of the key
(and vice versa, something we cannot do with a hash).

A final option that is sometimes worth considering is turning the hash into an array of arrays or array of
hashes, in order to create an index but preserve the key-value pairs in a single variable. Here is one way
to do that:

my @array;
foreach (keys %hash) {

push @array, {$_ => $hash{$_}};
}

This creates an array of hashes, each hash with precisely one key-value pair in it. Of course there are
other, and arguably better, ways to create indexed hashes, one of which we covered earlier in this
section. Again, it's a matter of preference, depending on whether we want to be able to look up the
index and value by key, or the key and value by index.

The Special Hash '%ENV'
The special variable %ENV is one main source of information available to a Perl program when it starts.
This hash, defined by Perl automatically, contains key-value pairs of the script's environment. This is,
for example, the primary mechanism for transmitting details of a client request from a web server to a
CGI script run by that server. We can dump out the contents of the environment with a short script,
which we write here as a command line:

Beyond Scalars - More Data Types

139

> perl -we 'foreach (sort keys %ENV) { print "$_ => $ENV{$_}\n"}'

In an xterm window running on a Linux X-Window System desktop, this produces something like:

DISPLAY => :0.0
ENV => /home/gurgeh/.bashrc
HISTFILESIZE => 1000
HOME => /home/gurgeh
HOSTDISPLAY => localhost.localdomain:0.0
HOSTNAME => localhost.localdomain
HOSTTYPE => i386
LOGNAME => gurgeh
MAIL => /var/spool/mail/gurgeh
OSTYPE => Linux
PATH => /usr/local/bin:/bin:/usr/bin:/usr/X11R6/bin:.
SHELL => /bin/bash
SHLVL => 6
TERM => xterm
TZ => Ikroh/Chiark_Orbital
USER => gurgeh
WINDOWID => 62914563

In a Windows DOS or NT shell, we would instead type:

> perl -e "foreach (sort keys %ENV) { print qq($_ => $ENV{$_}\n); }"

Which would produce something like:

ALLUSERSPROFILE => C:\Documents and Settings\All Users
APPDATA => C:\Documents and Settings\Ken Wronkiewicz\Application Data
CLASSPATH => C:\WINNT\System32\QTJava.zip
COMMONPROGRAMFILES => C:\Program Files\Common Files
COMPUTERNAME => WIREMONSTER2
COMSPEC => C:\WINNT\system32\cmd.exe
DIRCMD => /a
HOMEDRIVE => C:
HOMEPATH => \
INCLUDE => C:\Program Files\Microsoft Visual Studio\VC98\atl\include;C:\Program
Files\Microsoft Visual Studio\VC98\mfc\include;C:\Program Files\
Microsoft Visual Studio\VC98\include
LIB => C:\Program Files\Microsoft Visual Studio\VC98\mfc\lib;C:\Program Files\
Microsoft Visual Studio\VC98\lib
LOGONSERVER => \\WIREMONSTER2
MSDEVDIR => C:\Program Files\Microsoft Visual Studio\Common\MSDev98
NUMBER_OF_PROCESSORS => 1
OS => Windows_NT
OS2LIBPATH => C:\WINNT\system32\os2\dll;
...

The exact contents of %ENV can vary wildly depending on the underlying platform, the operating
system, and the chosen shell and user preferences. However, we can usually expect $ENV{PATH} to be
defined, and (on a UNIX system at least), HOME, USER, TERM, SHELL, and OSTYPE (though this is often
better deduced by looking at the special variable $^O (or $OSNAME with use English)).

Chapter 5

140

Configuring Programs via '%ENV'
One major reason for examining %ENV is to allow users to create local definitions for our own
environment variables. This provides a simple and easy way to configure a script without having to go
to the trouble of looking for and reading a configuration file. This sort of configuration is common on
UNIX systems. For example, to provide a program with a default location for locating scripts but allow
that default to be overridden if the environment variable MY_SCRIPTDIR is set, we might write:

$default_scriptdir = "/usr/local/myapp/scripts";
$scriptdir = $ENV{MY_SCRIPTDIR}?$ENV{MY_SCRIPTDIR}:$default_scriptdir;

More creatively, we can scan for any environment variable with a specific prefix, say MY_, and create a
configuration hash based on it:

foreach (keys %ENV) {
regular expressions are covered in Chapter 11
/^MY_(.*)/ and $conf{$1} = $ENV{$_};

}

This is an ideal mechanism for establishing defaults, too, if we iterate over a list of keys in a default
hash:

%defaults = {
SCRIPTDIR => '/usr/local/myapp/scripts',
other defaults...

}

foreach (keys %defaults) {
$conf{$1} = (defined $ENV{"MY_$1"})?$ENV{"MY_$1"}:$defaults{$1};

}

We can modify, add to or remove (with undef) any of the entries in %ENV just as we can with any other
hash. %ENV is not a copy of the script's environment, it actually is the script's environment. This means
that any changes we make to %ENV change the environment for any child processes that are started after
the change, for example with fork (see Chapter 22 for more on processes). It is not possible to change
the environment of the parent, and therefore Perl scripts cannot return information back to the parent
via the environment (Windows platforms emulate fork since they don't have a real one, but the same
rules apply).

Handling Tainted Input from '%ENV'
Taint mode is a security feature that marks data retrieved from an external source as potentially
dangerous. If we attempt to use tainted data in an unsafe operation, which primarily means any attempt
to run or communicate with an external process, Perl will raise a fatal security error. The main use of
tainting is in CGI and other server-side applications that may be executed by unknown and
unauthenticated third parties. We mention it here because one of the primary sources of input for CGI
scripts is the environment, as we noted earlier.

Taint mode is enabled with the -T option, and is automatically switched on if the real and effective user
Ids are different, which is typical on UNIX-based web servers. The concept of real and effective user
Ids doesn't apply to non-UNIX platforms, so there the -T option needs to be supplied or specified in
Perl's startup configuration (via PERL5OPT, for example – see Chapter 14).

Beyond Scalars - More Data Types

141

All the values in the %ENV hash fall into the category of insecure input, so attempting to use them in a
potentially insecure operation will cause a fatal error. To prevent this we must either avoid using %ENV,
place operations into the safe block, or untaint the values explicitly. Regular expressions can be used to
untaint data, though this should be used with extreme caution. To untaint DOCUMENT_ROOT for instance,
a variable we might expect to trust since it is set by the web server and should not change, we could use:

$ENV{DOCUMENT_ROOT} =~ /(.*)/ and $docroot = $1;

Of course, sometimes we might want to avoid untainting data simply because we used a regular
expression on it. To avoid this we can use the re pragmatic module described in the discussion on
regular expressions in Chapter 11.

'Env.pm'
Perl provides one module, Env.pm that simplifies the handling of the %ENV hash by allowing us to
import environment variables into our program as scalar or array variables. In its simplest form of
usage, we can use it to pull in several environment variables as scalars:

import environment variables via Env.pm
use Env qw(PATH HOME TERM);

environment variables now available as scalars:
print $PATH, $HOME, $TERM;

Note that it does not matter if the environment variable exists yet. As soon as it is defined, either by the
imported name or the %ENV hash, the new value will be reflected in both places.

We can also read and write environment variables in arrays if we prefix the variable name with @:

use Env qw(@PATH); # access path via array
$first_dir = $PATH[0]; # find name of first directory in path
unshift @PATH, $scriptdir; # add a new directory to start of path

The separator used by the Env module for splitting environment variables is the value of
$Config::Config{'path_sep'}, which by default is set to a colon. This is the standard separator for
most multiple-value environment variables (and path information variables in particular) on UNIX. We
can change it to handle other kinds of variable, for example, comma separated values:

use Env qw(@PATH);
$Config::Config {'path_sep'} = ',';
use Env qw(@MY_CSV_VAR);

Note, however, that all variables are stored as scalar strings in the %ENV hash underneath whatever
labels we give them. That means that any alteration to an array variable causes the module to rebuild
and then re-split the variable to regenerate the array. That will cause problems if we changed the
separator in the meantime.

Chapter 5

142

Interestingly, we can access the same variable in both scalar and array form by importing both names:

#!/usr/bin/perl
config.pl
use warnings;
use strict;

use Env qw($PATH @PATH);

$sep = $Config::Config{'path_sep'};
add current directory if not already present
unless ($PATH =~ /(^|$sep)\.($sep|$)/) {

push @PATH, '.';
}

Since both variables access the same underlying environment variable, a change to one of these (or the
underlying $ENV{PATH}) will change the other too.

The Env module is a good example of a simple tied object class. Each imported variable is actually an
object in disguise that simply accesses the environment variable of the same name. We discuss ties and
tied objects in detail in Chapter 19.

References
Rather than referring to a variable directly, Perl lets us refer to it by a reference – a pointer to the real
value stored somewhere else. There are two kinds of reference in Perl: hard references, which are
immutable values, and symbolic references, which are strings that name the variable they point to.

Of the two, hard references are by far the most common, and are the basis for complex data structures
like arrays of arrays. Internally they are memory pointers, and we can access the value that they point to
by following or dereferencing the reference. Perl provides a flexible syntax for doing this, involving the
backslash and arrow operators.

Conversely, symbolic references are actually banned by use strict (more accurately, use strict
refs) because they are a common source of bugs due to their malleable nature and resistance to
compile-time error checking – by changing the contents of the string we change the thing that it points
to. It is also possible to accidentally create a symbolic reference when we didn't mean to, especially if
we fail to turn on warnings as well. Having made these points, symbolic references can be useful in the
right places, so long as we are careful.

Hard References
Hard references, usually just called references, are not really a data type, they are just a kind of scalar
value, but a different and specialized one compared to the other value types like integer, floating-point
or string. They differ from these because they are a pointer to another value, and are not malleable –
unlike C, we cannot perform operations to change the value of a reference to make it point to something
else. We can assign a new reference to a scalar variable, but that is all. Worldly programmers generally
consider this a good thing.

Beyond Scalars - More Data Types

143

Creating References
To create a reference for an existing value or variable we use the backslash operator. This will convert
any value or data type, be it scalar, array, hash, subroutine, and so forth, and create a scalar reference
that points to it:

references to values
$numberref = \42;
$messageref = \"Don't Drink The Wine!\n";
@listofrefs = \(1, 4, 9, 16, 25);

references to variables
$scalarref = \$number;
$arrayref = \@array;
$hashref = \%hash;
$globref = *typeglob; # typeglobs are introduced later in the chapter

reference to anonymous subroutine
$subref = \sub { return "This is an anonymous subroutine" };

reference to named subroutine
$namedsubref = \&mysubroutine;

If we pass a list to the backslash operator, it returns a second list of references, each one pointing to an
element of the original list:

@reflist = \(1, 2, 3);

This is identical to, but shorter than:

@reflist = (\1, \2, \3);

References have implicit knowledge of the type of thing that they are pointing to, so an array reference
is always an array reference, and we can demonstrate this by attempting to print a reference. For
example, this is what we might get if we attempted to print $scalarref:

SCALAR(0x8141f78)

A common mistake in Perl is to try to use the backslash operator to create a reference to an existing list,
but as we showed above, this is not what backslash does. In order to create an array reference from a
list, we must first place the list into an array. This causes Perl to allocate an array structure for the
values, which we can then create a reference for – the original list is not stored as an array, so it cannot
be referenced. This is essentially what the [...] construct does.

The [...] and {...} constructors also create a reference to an array or hash. These differ from the
backslash operator in that they create a copy of their contents and return a reference to it, not a
reference to the original.

$samearrayref = \@array;
$copyarrayref = [@array];
$samehashref = \%hash;
$copyhashref = {%hash};

TE
AM
FL
Y

Team-Fly®

Chapter 5

144

The [..] and'{..} constructors are not strictly operators and have the precedence of terms (like
variable names, subroutines and so on) which is the highest precedence of all. The contents of the
constructors are always evaluated before they are used in other expressions.

The hash reference constructor constructs a hash, which requires key-value pairs, and so spots things
like odd numbers of elements. We can't create hash references with the backslash operator either – we
have to pass it a hash variable. That is why we have the {...} constructor.

Confusing constructors with lists is a very common Perl error, especially as Perl is quite happy for us to
do the following:

this does not do what it might appear to
@array = [1, 2, 3, 4];

What this probably meant to do was assign @array a list of four elements. What it actually does is
assign @array one element containing a reference to an anonymous array of four elements, that is it is
actually the same as:

@inner_array = (1, 2, 3, 4);
@array = \@inner_array;

When arrays and hashes do not appear to contain the values that they should, this is one of the first
things to check. The error 'Reference found where even-sized list expected ...' is a clue that this may
be happening during a hash definition, but for arrays we are on our own.

Perl sometimes creates references automatically, in order to satisfy assignments to complex data
structures. This saves what would otherwise be a lot of monotonous construction work on our part. For
instance, the following statements create several hash references and automatically chain them together
to form a composite structure, a process known immemorially as autovivification:

my %hash;
$hash{'name'}{'address'}{'street'}{'number'} = 88;

Comparing References
References to the same underlying value are equal, but only if they point to the same actual value:

#!/usr/bin/perl
ref1.pl
use warnings;
use strict;

my $text = "This is a value";

my $ref1 = \$text;
my $ref2 = \$text;

print $ref1 == $ref2 # produces '1'

$$ref1 = 'New value';
print $$ref2; # produces 'New value'

Beyond Scalars - More Data Types

145

Pointing to two values that happen to be equal will not result in equal references:

#!/usr/bin/perl
ref2.pl
use warnings;
use strict;

my $text1 = "This is a value";
my $text2 = "This is a value";

my $ref1 = \$text1;
my $ref2 = \$text2;

print $ref1 == $ref2; # produces ''

$$ref1 = 'New value';
print $$ref2; # produces 'New value'

Dereferencing
A reference is only useful if we can access the underlying value, a process called dereferencing. We can
extract the value and assign it to a variable, or we can simply work through the reference, a little like
keyhole surgery.

Dereferencing is dependent on the type of the reference, we can only get a scalar from a scalar
reference, and we can only get an array from an array reference. However, since all references,
regardless of type, are scalars, Perl cannot perform compile-time syntax checks to ascertain whether a
reference is being dereferenced with the correct type. This compels us to take a little care when using
references, since incorrectly using a reference may only show up as a run-time error.

Dereferencing any reference can be done by prefixing the reference with the symbol appropriate for the
underlying data type; the previous comparison example includes four scalar dereferences using $$. As a
more complete example, here is how we can copy out the value pointed to by a scalar, array, hash, and
typeglob reference into a new variable:

$value = $$ref;
@array = @$arrayref;
%hash = %$hashref;
*glob = *$globref;

Similarly, we can call a code reference like this:

&$coderef(@args);

We cannot dereference with impunity – attempting to access an array or hash reference as a scalar
produces a syntax error:

Not a SCALAR reference ...

Similarly, while a statement like @a=21 will create an array with one element (the value 21), and might
conceivably be what we intended, Perl is skeptical that we would ever want to create such an array by
dereferencing, and so produces a run-time error if we say:

@a = @$scalarref;

Chapter 5

146

If we want to use the values held by a reference from a hash as an array, we have to recreate the
reference (or generate a new one), because hashes are not organized in the same way as arrays. So the
values must be extracted and stored in the other format:

$ref = {a=>1, b=>2, c=>3};
print %$ref; # produces a1b2c3 (dependent on internal ordering of hash)
print @$ref; # run-time error 'Not an ARRAY reference ...'

$ref = [%$ref]; # convert '$ref' from hash to array reference

print %$ref; # run-time error 'Can't coerce array into hash ...'
print @$ref; # produces a1b2c3 (dependent on order of hash)

Working with References
Instead of just pulling out the value from a reference and assigning it to something else, we can work
directly through the reference. For example, to access a scalar value in an array or hash value we would
use:

$element_2 = $$arrayref[1];
$hashvalue = $$hashref{'key_name'};

If we mentally replace the $arrayref and $hashref with array and hash we can see that these are
really just conventional array and hash accesses, just being done through a reference (the keyhole).
Similarly, we can get an array slice via a reference:

@slice = @$arrayref[6..9];

This works well when we are accessing a scalar containing an array reference, but it can cause problems
if we try to access an array containing array references. For example, consider the following nested
array:

@array = (1, [2, 3, 4], 5);

This array contains an array reference as its second element (note that if we had not used an array
reference constructor and just used parentheses we would have ended up with a plain old five element
array). We might try to access that array with:

@subarray = @$array[1];

Unfortunately this gives us an array with an array reference as its only element, not the three elements
2, 3, 4. This is because prefixes bind more closely than indices, and so the '@' is applied before the '[1]'.
The above is therefore actually equivalent to:

@subarray = ($$array[1]);

This explains why we get a single array reference as the only element of @subarray. In order to get the
index to happen first we need to use curly braces to apply the dereferencing operation to the array
element instead of to the array:

@subarray = @{$array[1]};

Beyond Scalars - More Data Types

147

This more explicit dereferencing syntax also has its scalar, hash, code, and typeglob counterparts, for
example:

%subhash = %{$hashofhashes{$hashkey}};

An alternative technique for dereferencing is the arrow or dereference operator. This is often more
legible than the double prefix syntax:

$element_2 = $arrayref->[1];
$hashvalue = $hashref -> {'key_name'};

Multidimensional arrays and hashes can omit the arrow, since Perl is smart enough to translate adjacent
indices or hash keys into an implicit dereference. The following are therefore equivalent, but the first is
easier to read:

$value = $threedeepreference[9]{'four'}[1];
$value = $threedeepreference[9] -> {'four'} -> [1];

This only applies to the second and subsequent indices or hash keys, however. If we are accessing a
reference we still need to use the first arrow so Perl knows that we are going via a reference and not
accessing an element or hash value directly.

Passing References to Subroutines
One of the major advantages of hard references is that they allow us to package up a compound value
like an array or hash into a scalar. This allows us to create complex data structures and to pass arrays
and hashes into subroutines keeping them intact.

As we observed earlier, if we combine lists directly then they merge together. This is handy if we want
to create a combined list, but problematic if we want to pass, say, a couple of arrays to a subroutine,
since inside the subroutine we will be unable to tell one from the other:

mysub (@array1, @array2);

sub mysub {
my @combinedarray = @_;

foreach (@combinedarray) {
...

}
}

References solve this problem by replacing the arrays with array references:

mysub (\@array1, \@array2);

sub mysub {
my ($arrayref1, $arrayref2) = @_;

foreach (@$arrayref1) {
...

}
foreach (@$arrayref2) {

...
}

}

Chapter 5

148

Not only does this solve the problem, but it is also more efficient if the arrays happen to be large ones,
we pass two scalars, and not an indefinite number of values.

However, see the section on 'typeglobs' for an alternative, and also subroutine 'Prototypes' in Chapter 7
for two alternative approaches to passing arrays and hashes without using references. Each has its merits
and drawbacks.

Finding the Type of a Reference
Perl cannot perform syntax checks to ensure that references are being dereferenced with the correct
prefix because the content of a scalar variable is defined at run time, and can change during the lifetime
of a program. Consequently it is occasionally useful to be able to check the type of a reference before
we access it. Fortunately we can find out the type of a reference with the ref function. This is analogous
to a 'type of' function, but only for references. Since non-references are implicitly typed by their syntax
of prefixes, this is all we actually need in Perl.

ref takes a single reference as an argument, or uses $_ if no argument is supplied. It returns a string
containing the reference type, or undef if the argument is not a reference:

$ref = \[1, 2, 3];
print "The reference type of $ref is '", ref($ref),"' \n";

When executed, these lines produce a message of the form:

The reference type of ARRAY(0x8250290) is 'ARRAY'

The string representation of a reference is the reference type followed by the memory address it points
to. While useful for debugging, we cannot convert this back into a reference again, so it is rarely useful
otherwise. Conversely, ref returns a string description of the reference type, which is more useful as
well as being easier to use.

The values returned for references are strings containing the name of the reference. These are the same
names produced when we print a reference, for example SCALAR, and include:

SCALAR A scalar reference

ARRAY An array reference

HASH A hash reference

CODE A reference to an anonymous subroutine

GLOB A reference to a typeglob

IO (or IO::Handle) A Filehandle reference

REF A reference to another reference

LVALUE A reference to an assignable value that isn't a SCALAR,

 ARRAY or HASH (such as, the return value from substr)

In general the first three reference types on this list are by far the most commonly encountered; see
'Complex Data Structures' for an example that uses ref to recursively explore an arbitrarily complex
structure of scalars, arrays, and hashes.

Beyond Scalars - More Data Types

149

Finding the Type of a Blessed Reference

Blessed references are a very specific and important subclass of hard references, being the primary
mechanism by which Perl implements objects and object-oriented programming. They are created by
using the bless function on a hard reference to assign a package name to it, converting it from an
ordinary reference into an object of the class defined by the package.

The ref function will return the name of the blessed class when called on an object, rather than the
type of the underlying reference. In general this is what we want, because the point of objects is that we
treat them as opaque values that hide the details of their implementation from us. In the rare cases that
we do want to know the underlying reference type (perhaps because we want to dump out the object's
state or save it to a file on disk) we can use the reftype function from the attributes module:

#!/usr/bin/perl
reftype.pl
use warnings;
use strict;

use attributes qw(reftype);

die "Usage: $0 <object module> ...\n" unless @ARGV;

foreach (@ARGV) {
my $filename = $_;
$filename =~ s|::|/|g;
require "$filename.pm";
my $obj = new $_;

print "Object class ", ref($obj), " uses underlying data type ", reftype($obj),
"\n";

}

We can use this script like this:

> perl reftype.pl CGI
Object class CGI uses underlying data type HASH

Note that the attributes module does a lot more than provide the reftype subroutine, much of
which is rather esoteric for the average Perl application. We cover it in a little more detail at the end of
Chapter 7.

Symbolic References

Symbolic references, as opposed to hard references, are simply descriptions of variables represented as
text. For instance, the symbolic reference for the variable @array is the string '@array'. Here is an
example of a symbolic reference in action:

#!/usr/bin/perl
symbolic_ref.pl
use warnings;
use strict;
no strict 'refs';

Chapter 5

150

our @array = (1, 2, 3); # only package variables allowed
my $symref = 'array';
my $total = $#$symref;
$total++;
print "$symref has $total elements \n";
foreach (@$symref) {

print "Got: $_ \n";

}

The notation for symbolic references is exactly the same as it is for hard references – in both cases we
say things like @$arrayref to dereference the reference. The distinction is that in the case of a hard
reference the scalar variable contains an immutable pointer, whereas in the case of a symbolic reference
it contains an all-too-mutable string.

Symbolic references can only refer to global variables, or to be more technical, variables that exist in
the symbol table, though they themselves can be lexical. We cannot therefore refer to variables that
have been declared lexically (with my), only those declared with our, use vars or defined explicitly
with @main::array and so on. This is a significant caveat and a common gotcha for programmers who
forget. If the symbolic reference is unqualified, it is presumed to be a reference to a variable in the
current package (most likely main, since we have not introduced packages yet), otherwise it refers to the
variable in the named package:

my $symbolrefinotherpackage = 'My::Other::Package::variable';

Unlike hard references, symbolic references do not have a type; they are just strings after all. We can
therefore dereference any variable whose name matches the reference by prefixing it with the relevant
symbol:

my $symref = "Package::variable";

my $scalar = $$symref;
my @array = @$symref;
my %hash = %$symref;
print "And call a subroutine, returning ", &$symref(@args);

Since symbolic references are mutable, they are banned by the strict module by default:

use strict; # strict 'vars', 'subs' and 'refs'

To enable symbolic references we therefore have to make special dispensation:

no strict 'refs';

Since this is not in general an advisable idea (we should generally use the strict pragma unless we are
writing 'throwaway' code) it is best to do this inside a subroutine or other lexically limited scope, where
the range of permissibility of symbolic references is clearly defined.

The reason for restricting the use of symbolic references is that it is very easy to accidentally create a
symbolic reference where we did not mean to, especially if we don't have warnings enabled (which we
should never do globally anyway, but might do temporarily inside a subroutine). However, a few places
do allow symbolic references as special cases, such as functions that take filehandles as arguments (like
print).

Beyond Scalars - More Data Types

151

Complex Data Structures
Combining lists and hashes with references allows us to create arbitrarily complex data structures such
as lists of lists, hashes of hashes, and lists of hashes of lists of lists and so on. However, Perl lacks the
ability to explicitly declare things like multidimensional arrays, because lists and hashes can only
contain scalar values.

The Problem with Nesting – My Lists Went Flat!
One consequence of not being able to declare multidimensional arrays explicitly is that nesting lists
does not work the way we might expect it to. A seemingly obvious way to store one list in another
would be to write:

@inner = (3, 4);
@outer = (1, 2, @inner, 5, 6);

We would then like to be able to access the inner list by writing $outer[2] and then access its
elements with something like $outer[2][1]. Unfortunately this does not work because the above
example does not produce a list containing another list. Instead the lists are 'flattened', the inner list
being converted into its elements and integrated into the outer list. The above example actually results
in this:

@outer = (1, 2, 3, 4, 5, 6);

While this is a perfectly acceptable way to merge lists together, it does not produce the nested data
structure that we actually intended. The heart of the problem is that Perl does not allow lists and hashes
to store other lists or hashes as values directly. Instead we must store a reference (which is a scalar
value) to the hash or list we want to nest.

We can fix the flattening problem above using either of the modified examples below, the first using
square brackets to construct a reference and the second using a backslash to get the reference to the
original array:

@outer = (1, 2, [@inner], 5, 6); # using square brackets
@outer = (1, 2, \@inner, 5, 6); # using a backslash

Note that the second example avoids duplicating the inner array by taking a direct reference but
assumes we only do this once. In a loop this would cause duplicated references, which we probably did
not intend. For more on this issue, see 'Creating Complex Data Structures Programmatically'.

Now we know how to construct complex data structures we can go on to create more complex animals
like lists of lists and hashes of hashes.

Lists of Lists and Multidimensional Arrays
The way to create a list of lists is to create a list of list references, either with the square bracket [...]
notation, or using the backslash operator. Defining a list of lists is actually quite simple. The following
example shows a list of lists defined using square brackets:

@array = (
["One", "Two", "Three"],
["Red", "Yellow", "Blue"],
["Left", "Middle", "Right"],

);

Chapter 5

152

The important point to note about this is that the outer array contains a list of references – one for each
inner list. The result is, in effect, a two-dimensional array which we can access using two sets of indices:

print $array[0][2]; # displays third element of first row - 'Three'
print $array[2][1]; # displays second element of third row - 'Middle'

This is actually a piece of Perl shorthand, in deference to languages like C where real multidimensional
arrays can be defined and accessed using multiple indices. In Perl an index is just a count into an array,
so the value of $array[0] is in fact a reference, which we should not be able to tack a '[2]' onto. In
other words we would expect to have to write:

print $array[0] -> [2];

This does indeed work, because this is exactly what happens internally. Perl is clever enough to
automatically spot multiple indices and do the additional dereferencing without having to be told
explicitly.

We can retrieve an individual array row by using one index, which will give us a scalar array reference,
as we just observed:

$second_row = $array[1];

We can dereference this reference to get an array:

@second_row = @{$array[1]};

There is an important difference between using $second_row and @second_row, however.
$second_row is a reference to the second row of the original multidimensional array, so if we modify
the array that $second_row points to we are actually affecting the original array:

print $array[1][1]; # prints 'Yellow'
$second_row [1] = "Green";

print $array[1][1]; # prints 'Green'

By contrast, @second_row contains a copy of the second row (because the assignment is actually a
straight array copy), so modifying it does not affect @array. This distinction can be very important
when working with complex data structures since we can affect values we did not mean to, or
conversely, not modify the contents of arrays that we meant to.

Instead of defining a straight list of lists we can also define a reference to a list of lists, in which case we
just have to modify the outer array definition by replacing the parentheses with square brackets and
changing the variable type to a scalar, like so:

$arrayref = [
["One", "Two", "Three"],
["Red", "Yellow", "Blue"],
["Left", "Middle", "Right"],

];

Beyond Scalars - More Data Types

153

Accessing the elements of this array can be done either by dereferencing the outer array reference
$arrayref, or by using the dereferencing operator '->' to access the underlying array, which is
somewhat clearer to read:

print $$arrayref[0][2];
print $arrayref->[0][2]; # using -> is clearer

Accessing a row is similar to before, but with an extra layer of dereferencing. Either of the following will
do the trick, though again the second is clearer:

$second_row = $$array[1];
$second_row = $array->[1];

Hashes of Hashes and Other Animals
Creating a hash of hashes is similar to creating a list of lists, differing only in our use of syntax. Here is
an example of a three-deep nested hash of hashes:

%identities = (
JohnSmith => {

Name => {First=>"John", Last=>"Smith"},
Phone => {Home=>"123 4567890", Work=>undef},
Address => {Street => "13 Acacia Avenue",
City => "Arcadia City",
Country => "El Dorado",

}
},

AlanSmithee => {
Name => {First=>"Alan", Last=>"Smithee"},
Phone => {Work=>"not applicable"},

}
);

Accessing this structure is similar too, and again Perl allows us to omit the dereferencing operator for
consecutive hash keys:

$alans_first_name = $identities{'AlanSmithee'}{'Name'}{'First'};

Since nesting data structures is just a case of storing references, we can also create lists of hashes, hashes
of lists, and anything in between:

#!/usr/bin/perl
lists.pl
use warnings;
use strict;

my (@list_of_hashes, %hash_of_lists, %mixed_bag, $my_object);
my @my_list = (1, 2, 3, 4, 5);

@list_of_hashes = (

{Monday=>1, Tuesday=>2, Wednesday=>3, Thrusday=>4, Friday=>5},
{Red=>0xff0000, Green=>0x00ff00, Blue=>0x0000ff},

);

TE
AM
FL
Y

Team-Fly®

Chapter 5

154

print "Tuesday is the $list_of_hashes[0]{Tuesday}nd day of the week.", "\n";

%hash_of_lists = (
List_1 => [1, 2, 3],
List_2 => ["Red", "Yellow", "Blue"],

);

print "The second element of List_1 is: $hash_of_lists{List_1}[1]", "\n";

%mixed_bag = (

Scalar1 => 3,
Scalar2 => "Hello World",
List1 => [1, 2, 3],
Hash1 => { A => 'Horses', C => 'Miles' },
List2 => ['Eenie','Meenie',
['Meenie1','Meenie2'],
'Mini', 'Mo'],
Scalar3 => $my_object,
Hash2 => { Time => [gmtime],
Date => scalar(gmtime),
},

List3 => @my_list[0..2],
);

print "Eenie Meenie Mini $mixed_bag{List2}[4]";

Adding to and Modifying Complex Data Structures
Manipulating nested data structures is essentially no different from manipulating simple ones, we just
have to be sure to modify the correct thing in the right way. For example, to add a new row to our two-
dimensional array we can either define the row explicitly, or use the push function to add it. In either
case we have to be sure to add a reference, not the list itself, or we will end up adding the list contents
to the outer array instead.

Right - adds a reference
$array[2] = \@third_row; # backslash operator creates reference to array

push @array, ["Up", "Level", "Down"]; # explicit reference
push @array, \("Large", "Medium", "Small"); # backslashed reference

ERROR: this is probably not what we want
$array[2] = (8, 9, 10); # $array[2] becomes 10, the 8 and 9 are discarded
push @array, @third_row; # contents of @third_row added to @array

In the first wrong example we will get a warning from Perl about the useless use of a constant in void
context. The second example, which is perfectly legal Perl, will not generate any warnings. This is
consequently one of the commonest sources of bugs when manipulating complex data structures. The
way to avoid it is to be extremely clear and consistent about the structure of the data, and to avoid
complicated mixtures of scalars, lists, and hashes unless their use is transparent and obvious.

Modifying the contents of nested lists and hashes is likewise simple. We have already seen how to
replace a row in a list of lists, but we can also replace individual elements and array slices:

Beyond Scalars - More Data Types

155

Right
$array[2][1] = 9; # replace an individual element
$array[2][12] = 42; # grow the list by adding an element

@{$array[2]} = (8, 9, 10); # replace all the elements
@{$array[2]}[1..2] = (9, 10); # replace elements 2 and 3, keeping 1

ERROR: Wrong
$array[2][1..2] = (9, 10); # cannot take a slice of a list reference

The essential point to remember is that this is no different from manipulating simple lists and hashes, so
long as we remember that we are really working through references. Perl allows a shorthand for indices
when accessing elements but this doesn't extend to array slices or more complex manipulations, so we
need to handle the reference ourselves in these cases.

Creating Complex Data Structures Programmatically
Explicitly writing the code to define a complex structure is one way to achieve our goal, but we might
also want to generate things like lists of lists programmatically. This is actually straightforward, but a
couple of nasty traps lurk for the unwary Perl programmer. Here is a loop that appears to create a list of
lists, but actually constructs a list of integers:

#!/usr/bin/perl
complex1.pl
use warnings;
use strict;

my (@outer, @inner);
foreach my $element (1..3) {

@inner = ("one", "two");
$outer[$element] = @inner;

}
print '@outer is ', "@outer \n";

> perl complex1.pl
Use of uninitialized value in join at test.pl line 11.
@outer is 2 2 2

Although this might appear correct, we are in fact assigning a list in a scalar context. All that actually
happens is that a count of the two elements in each of the three instances of the @inner array that the
foreach loop reads is assigned to an element of the @outer array. This is why @outer consists of
three 2 rather than three @inner arrays each of which has the two elements one and two.

The following variant is also defective – it suffers from list flattening, so the contents of all the inner
arrays will be merged into the outer array:

#ERROR: list flattening
#!/usr/bin/perl
complex2.pl
use warnings;
use strict;

Chapter 5

156

my (@outer, @inner);
foreach my $element (1..3) {

@inner = ("one", "two");
push @outer, @inner;

}
print '@outer is ', "@outer \n";

> perl complex2.pl
@outer is one two one two one two

The correct thing to do is to assign references, not lists. The following loop does the task we actually
wanted. Note the additional square brackets:

#!/usr/bin/perl
complex3.pl
use warnings;
use strict;

my (@outer, @inner);
foreach my $element (1..3) {

@inner = ("one", "two");
push @outer, [@inner]; # push reference to copy of @inner

}
print '@outer is ', "@outer \n";

> perl complex3.pl
@outer is ARRAY(0x176f0d0) ARRAY(0x176505c) ARRAY(0x17650bc)

Note that @outer consists of three different arrays despite the fact that @inner didn't change. The
reason for this is that each of the three instances of @inner has a different address which we used to
create @outer.

We have already referred to the important distinction between creating a reference with square brackets
and using the backslash operator to take a reference to the list. In the above code, the brackets make a
copy of the contents of @inner and return a reference to the copy, which is pushed onto the end of
@outer. By contrast, a backslash returns a reference to the original list, so the following apparently
equivalent code would not work:

#!/usr/bin/perl
complex4.pl
use warnings;
use strict;

my (@outer, @inner);
foreach my $element (1..3) {

@inner = ("one", "two");
push @outer, \@inner; # push reference to @inner

}
print '@outer is ', "@outer \n";

> perl complex4.pl
@outer is ARRAY(0x1765188) ARRAY(0x1765188) ARRAY(0x1765188)

Beyond Scalars - More Data Types

157

What actually happens is that the @outer array is filled with the same reference to the @inner array
three times. Each time the @inner array is filled with a new double of elements, but the elements of
@outer all point to the same list, the current contents of @inner. At the end of the loop all the
elements of @outer are identical and only two different elements are actually stored in total.

Another way to approach this task avoiding the pitfalls of accidentally creating duplicate references, or
counting lists we meant to assign as references, is to use references explicitly. This makes it much harder
to make a mistake, and also saves a list copy:

#!/usr/bin/perl
complex5.pl
use warnings;
use strict;

my (@outer, $inner_ref);
foreach my $element (1..3) {

$inner_ref = ["one", "two"];
push @outer, $inner_ref; # push scalar reference

}
print '@outer is ', "@outer \n";

> perl complex5.pl
@outer is ARRAY(0x176f0ac) ARRAY(0x1765044) ARRAY(0x17650a4)

Rather than redefining a list, this time we redefine a list reference, so we are guaranteed not to
accidentally assign the same reference more than once. Finally, another way to ensure that we don't
assign the same array is to create a new array each time by declaring @inner inside the loop:

#!/usr/bin/perl
complex6.pl
use warnings;
use strict;

my @outer;
foreach my $element (1..3) {

my @inner = ("one", "two");
push @outer, \@inner; # push reference to @inner

}
print '@outer is ', "@outer \n";

> perl complex6.pl
@outer is ARRAY(0x17651b8) ARRAY(0x176f0d0) ARRAY(0x1765074)

Here @inner is declared each time around the loop, and remains in scope for that iteration only. At the
start of each new iteration, the old definition of @inner is discarded and replaced by a new one (note
that while the elements of @inner don't change, their addresses change). As with the explicit reference
example this is also more efficient than using square brackets since no additional array copy takes place.
However, it is more prone to bugs if we omit warnings since there is nothing programmatically wrong
with assigning the same reference multiple times, even if it wasn't what we actually intended.

Although we have only discussed lists of lists in this section, exactly the same principles also apply to
any other kind of complex data structure such as hashes of hashes or hybrid structures; just substitute
braces {} for square brackets and percent signs for @ signs where appropriate.

Chapter 5

158

Traversing Complex Data Structures
Iterating over simple data structures is easy, as we saw when we covered arrays and hashes earlier.
Traversing more complex structures is also simple if they are homogenous (that is, each level of nesting
contains the same type of reference and we don't have other data types like scalars or undefined values
lurking). Here's a simple loop that iterates over a list of lists:

#!/usr/bin/perl
simple1.pl
use warnings;
use strict;

my @outer = (['a1', 'a2', 'a3'], ['b1', 'b2', 'b3'], ['c1', 'c2', 'c3']);

foreach my $outer_el (@outer) {
foreach (@{$outer_el}) {

print "$_\n";
}
print "\n";

}

And here's one that iterates over a hash of hashes:

#!/usr/bin/perl
simple2.pl
use warnings;
use strict;

my %outer = (A=> {a1=>1, a2=>2, a3=>3}, B=> {b1=>4, b2=>5, b3=>6},
C=> {c1=>7,c2=>8, c3=>9});

foreach my $outer_key (keys %outer) {
print "$outer_key => \n";
foreach (keys %{$outer{$outer_key}}) {

print"\t$_ => $outer{$outer_key} {$_} \n";
}
print "\n";

}

Finally, here is another list-of-lists loop that also prints out the indices and catches undefined rows:

#!/usr/bin/perl
simple3.pl
use warnings;
use strict;

my @outer;
@outer[1, 2, 5] = (['First', 'Row'], ['Second', 'Row'], ['Last', 'Row']);

for my $outer_elc (0..$#outer) {
if ($outer [$outer_elc]) {

my $inner_elcs = $#{ $outer[$outer_elc] };
print "$outer_elc : ", $inner_elcs+1," elements \n";
for my $inner_elc (0..$inner_elcs) {

print "\t$inner_elc : $outer[$outer_elc][$inner_elc] \n";
}

} else {
print "Row $outer_elc undefined\n";

}
}

Beyond Scalars - More Data Types

159

Traversing other structures is just a matter of extending these examples in the relevant direction. Things
become more complex however if our structures contain a mixture of different data types. In most cases
when we have structures like this it is because different parts of the structure have different purposes,
and we would therefore not normally want to traverse the whole structure. It can be useful for
debugging purposes though; so in order to handle structures that could contain any kind of data we can
resort to the ref function. The following recursive subroutine will print out nested scalars (which
includes objects), lists, and hashes to any level of depth, using ref to determine what to do at each
stage:

#!/usr/bin/perl
print_struct.pl
use warnings;
use strict;

my $mixed = ['scalar', ['a', 'list', ['of', 'many'], 'values'], {And=>{'A
Hash'=>'Of Hashes'}}, \'scalar ref'];

print_structure($mixed);

sub print_structure {
my ($data, $depth) = @_;

$depth=0 unless defined $depth; # for initial call

foreach (ref $data) {
/^$/ and print($data,"\n"), next;
/^SCALAR/ and print('-> ', $$data, "\n"), next;
/^HASH/ and do {
print "\n";
foreach my $key (keys %{$data}) {

print "\t" x$depth, "$key => ";
print_structure ($data->{$key}, $depth+1);

}
next;

};

/^ARRAY/ and do {
print "\n";
for my $elc (0..$#{$data}) {

print "\t" x$depth, "[$elc] : ";
print_structure ($data->[$elc], $depth+1);

}
next;

};
it is something else - an object, filehandle or typeglob
print "?$data?";
}

}

If all we are interested in is debugging data structures, then we can have the Perl debugger do it for us,
as this short example demonstrates (there is much more on the Perl debugger in Chapter 17):

> perl -d -e 1;
Default die handler restored.

Loading DB routines from perl5db.pl version 1.07
Editor support available.

Chapter 5

160

Enter h or 'h h' for help, or 'man perldebug' for more help.

main::(-e:1): 1
DB<1> $hashref={a=>1,b=>2,h=>{c=>3,d=>4},e=>[6,7,8]}

DB<2> x $hashref
0 HASH(0x82502dc)

'a' => 1
'b' => 2
'e' => ARRAY(0x8250330)

0 6
1 7
2 8

'h' => HASH(0x80f6a1c)
'c' => 3
'd' => 4

DB<3>

Here we have just used the debugger as a kind of shell, created a hash containing an array and another
hash, and used the 'x' command of the Perl debugger to print it out in a nice legible way for us.

Several Perl modules perform similar functions. Notably, the Data::Dumper module generates a string
containing a formatted Perl declaration that, when executed, constructs the passed data structure:

#!/usr/bin/perl
datadumper.pl
use warnings;
use strict;

use Data::Dumper;

my $hashref = {a=>1, b=>2, h=>{c=>3, d=>4}, e=>[6, 7, 8]};

print Dumper($hashref);

> perl datadumper.pl
$VAR1 = {

'e' => [
6,
7,
8,
],

h' => {
c' => 3,
d' => 4

},
'a' => 1,
'b' => 2

};

Note that the output of Data::Dumper is actually Perl code. We can also configure it in a variety of
ways, most notably by setting the value of $Data::Dumper::Indent (which ranges from 0 to 4, each
producing an increasing level of formatting, with 2 being the default) to control the style of output.

Beyond Scalars - More Data Types

161

Finally, if we want to store complex data structures in a file then we will also want to look at modules
like Data::Dumper, FreezeThaw, and Storable, and possibly also the MLDBM module.

Typeglobs
The typeglob is a composite data type that contains one instance of each other data types. It is an
amalgam (or in Perl-speak, glob) of all Perl's data types, from which it gets its name. It is a sort of
'super reference' whose value is not a single reference to something but six slots that can contain six
different references, all at once:

scalar - a reference to a scalar
array - a reference to an array
hash - a reference to a hash
code - a code reference to a subroutine
handle - a file or directory handle
format - a format definition

Typeglobs programming is a little obscure and rather lower level than many programmers are entirely
happy with. It is actually quite possible (and even recommended) to avoid typeglobs in everyday Perl
programming, and there are now few reasons to use typeglobs in Perl programs. In ancient days, before
references were invented, typeglobs were the only way to pass arguments into subroutines by reference
(so they could be assigned to) instead of by value.

The other common use of typeglobs was to pass filehandles around, since filehandles have no specific
syntax of their own and so cannot be passed directly. The IO::Handle, IO::File, and IO::Dir
modules have largely replaced typeglobs for dealing with filehandles, but since the IO:: family of
modules is comparatively bulky, typeglobs are still a popular choice for dealing with filehandles (see
Chapter 12 for more on filehandles).

Defining Typeglobs
Typeglobs are defined using an asterisk prefix, in exactly the same way as scalars are prefixed with a $,
or arrays with an @. To create a typeglob we need only assign a value to it. The most obvious example is
assigning a typeglob from another typeglob:

*glob = *anotherglob;

This copies all the six references (which need not all be defined) held in anotherglob to the typeglob
glob. For example:

$message = "some text";
*missive = *message;
print $missive; # produce 'some text';

Alternatively we can assign references individually:

*glob = \$scalar;

Chapter 5

162

This creates a new typeglob containing a defined scalar reference, and an undefined value for the other
five. We can access this new scalar value with:

print $glob; # access typeglob scalar reference

Assigning a scalar reference to a typeglob creates a new variable called $glob that contains the same
value as the original scalar.

Interestingly, we can then fill other slots of the typeglob without affecting the ones currently defined
(unless of course we overwrite one). Perl treats glob assignments intelligently, and only overwrites the
part of the glob that corresponds to the reference being assigned to it, a property unique among Perl's
data types. The following statement fills the array reference slot, but leaves the scalar reference slot
alone:

*glob = \@array;

By filling in the array slot we create a variable called @glob which points to the same values as the
original @array; changing either variable will cause the other to see the same changes. The same
applies to our earlier $glob variable. Changing the value of $glob also changes the value of $scalar,
and vice versa. This is called variable aliasing, and we can use it to great effect in several ways on
variables, subroutines, and filehandles.

The upshot of this is that we rarely need to access a typeglob's slots directly, since we can simply access
the relevant variable (the exception is of course filehandles, which do not have their own syntax for
direct access), but we can play some interesting tricks by assigning to typeglobs.

Manipulating Typeglobs
We have already seen how we can create aliases for scalars and arrays (the same applies to hashes too,
of course):

*glob = \$scalar; # create $glob as alias for $scalar
*glob = \@array; # create @glob as alias for @array
*glob = \%hash; # create %glob as alias for %hash

If we assign the typeglob to a new name, we copy all three references. For example, the following
statement invents the variables $glob2, @glob2, and %glob2, all of which point to the same
underlying values as the originals:

*glob2 = *glob;

So far we have considered only the three standard variable types, but typeglobs also contain a code
reference slot, which is how Perl defines subroutine names. A roundabout way to define a named
subroutine is to assign a code reference to a typeglob:

*subglob = sub {return "An anonymous subroutine?"};

Or:

*subglob = \&mysubroutine;

Beyond Scalars - More Data Types

163

Both of these assignments cause a subroutine called subglob to spring into existence. The first
demonstrates that the only difference between a named and an anonymous subroutine (see Chapter 7
for more on subroutines) is a typeglob entry. The second creates an alias for the subroutine
mysubroutine, so we can now call mysubroutine or subglob with equal effect:

these two statements are identical
print mysubroutine(@args);
print subglob(@args);

Both typeglobs contain the same code reference, so the two names are simply two different ways to refer
to the same thing.

Accessing Typeglobs
If we want to access the different parts of a typeglob we can do so by casting it into the appropriate
form. For example:

assign a new key to %glob
${*glob}{'key'} = $value;

The same approach works for ${*glob}, @{*glob}, and &{*glob}, which access the scalar, array,
and subroutine parts of the typeglob respectively. However, we cannot do the same for filehandles or
reports, since they do not have a prefix.

A recent addition to Perl is the ability to access the different parts of a typeglob directly. This uses a
notation similar to hashes, but with a typeglob rather than a scalar prefix. There are five slots in a
typeglob, which can be accessed (reports being the exception), each with its own specific key that
returns the appropriate reference, or undef if the slot is not defined:

$scalarref = *glob{SCALAR};
$arrayref = *glob{ARRAY};
$hashref = *glob{HASH};
$subref = *glob{CODE};
$fhref = *glob{IO};

We can also generate a reference to the typeglob itself with:

$globref = *glob{GLOB};

Much of the time we do not need to access the contents of a typeglob this way. Scalar, array, hash, and
code references are all more easily accessed directly. Perl's file handling functions are also smart, in that
they can spot a typeglob and extract the filehandle from it automatically:

print STDOUT "This goes to standard output";

print *STDOUT "The same thing, only indirectly";

This is actually another form of selective access, much the same as when we assign a reference to a
typeglob. When we say *STDOUT, print looks for the filehandle reference, ignoring the other
references that come with it. Indeed, we can also pass a reference to a filehandle to all Perl's file-
handling functions for exactly this reason.

TE
AM
FL
Y

Team-Fly®

Chapter 5

164

Assigning a typeglob to anything other than another typeglob causes it to be interpreted like a
reference. That is, the name of the typeglob, complete with package specifier and asterisk prefix is
written into the scalar:

$globname = *glob;
print $globname; # produces '*main::glob'

This is basically just a way to create a symbolic reference to a typeglob, which is getting dangerously
abstract and obscure, and is exactly the sort of thing that use strict was implemented to prevent:

*$globname = *anotherglob; # aliases '*anotherglob' to '*glob'

However it does have one use, which comes about from the fact that we can refer to filehandles via
typeglobs, coupled with the fact that Perl's file-handling functions accept the name of a filehandle (in a
string) as a substitute for the filehandle itself.

We can take a reference to a typeglob in the usual manner, and then access it via the reference:

$globref = *glob;

$scalarref = $globref->{SCALAR};

Since a glob reference is very much like any other reference, a scalar, we can store it in an array
element, a hash value or even another glob:

*parentglob = $globref;

The Undefined Value
The undefined value is a curious entity, being neither a scalar, list, hash, nor any other data type, which
is essentially the point. Although it isn't strictly speaking a datatype, it can be helpful to think of it as a
special datatype with only one possible value (NULL). It isn't any of the other data types, and so cannot
be confused for them. We can assign an undefined value to a scalar variable, or anywhere else a literal
value may live, so the undefined value can also be considered a special case of a scalar value.
Conveniently, it evaluates to an empty string (or zero, numerically), which is a False value, so we can
ignore its special properties in Boolean tests if we wish, or check for it and handle it specially if we need
to. This dual nature makes the undefined value particularly useful.

The concept of a 'value that is not a value' is common to many languages. In Perl, the undef function
returns an undefined value, performing the same role as NULL does in C – it also undefines variable
arguments passed to it, freeing the memory used to store their values. If we declare a variable without
initializing it, it automatically takes on the undefined value too. Perl also provides the defined function
that tests for the undefined value and allows us to distinguish it from an empty string or numeric zero:

$a = undef; # assign undefined value to $a
$b; # assign undefined value to $b implicitly
$a = 1; # define $a
print defined($a) # produces '1'
undef $a # undefine $a
print defined ($a) # produces '0'

Beyond Scalars - More Data Types

165

The undefined value is returned by many of Perl's built-in functions to indicate an error or an operation
that did not complete. Since many operations cannot legally return any other value for failure, undef
becomes a useful way to indicate failure because it is not a real value. We can distinguish between
undef and zero with the defined function, as the following example demonstrates. The main code
passes a filename to a subroutine called get_results and handles three different possible outcomes,
one 'success' and two different kinds of 'failure':

#!/usr/bin/perl
undef.pl
use warnings;
use strict;

get a filename
my $file = $ARGV[0] or die "Usage $0 <result file> \n";

process and return result
my $result = get_results($file);

test result
if ($result) {

print "Result of computation on '$file' is $result \n";
} elsif (defined $result) {

print "No results found in file \n";
} else {

print "Error - could not open file: $! \n";
}

and the subroutine...
sub get_results {

return 'undef' to indicate error
open RESULTS, $_[0] or return undef;

compute result (simple sum)
my $file_result = 0;

while (<RESULTS>) {
$file_result += $_;

}

return result, 0 if file empty
return $file_result;

}

The get_results subroutine uses undef to distinguish between two different but equally possible
kinds of non-result. It is designed to read results from a file and performs a calculation on them (for
simplicity, we've just used a simple sum), returning the result. It is possible that there are no results, so
the calculation returns zero, but this isn't actually an error, just a lack of result. If the results file is
missing, however, that is an error. By passing back undef rather than zero for an error we can
distinguish between these two possible results of calling the subroutine and act accordingly. If we did
not care about the reason for the non-result we could simplify our code to:

if ($result) {
print "Result of computation on '$file' is $result \n";

} else {
print "No results \n";

}

Chapter 5

166

Without an argument to undefine, undef is very much like a value that happens to be undefined. We
can treat it almost as a number with no value. However, it is always distinct from a scalar because it
returns false when given to the defined function. Having said that, the undefined value does have
some things in common with a scalar, it is a single value (in a manner of speaking) and we can even take
a reference to it, just like a scalar or list:

my $undefref = \undef;
print defined($$undefref); # produces '0'

Tests of Existence
The defined function tests a value to see if it is undefined, or has a real value. The number 0 and the
empty string are both empty values, and test False in many conditions, but they are defined values
unlike undef. The defined function allows us to tell the difference:

print "It is defined!" if defined $scalar;

defined comes up short when we use it on hashes, however, since it cannot tell the difference between
a non-existent key and a key with an undefined value, as noted above. All it does is convert undef to
an empty value ('' or 0, depending on the context) and everything else to one. In order to test for the
existence of a hash key we instead use the exists function:

%hash = ('A Key' => 'A Value', 'Another Key' => 'Another Value');
print "It exists!" if exists $hash{'A Key'};

Or, in a fuller example that tests for definition as well:

#!/usr/bin/perl
exists.pl
use strict;
use warnings;

my %hash = ('Key1' => 'Value1', 'Key2' => 'Value2');
my $key = 'Key1';

the first if tests for the presence of the key 'Key1'
the second if checks whether the key 'Key1' is defined
if (exists $hash{$key}) {

if (defined $hash{$key}) {
print "$key exists and is defined as $hash{$key} \n";

} else {
print "$key exists but is not defined \n";

}
} else {

print "$key does not exist\n";
}

In a sense, defined is the counterpart of undef and exists is the counterpart of delete (at least
for hashes). For arrays, delete and undef are actually the same thing, and exists tests for array
elements that have never been assigned to. exists is not applicable to scalar values; use defined
for them.

Beyond Scalars - More Data Types

167

Using the Undefined Value
If we do not define a variable before using it Perl will emit a warning, if warnings are enabled:

my $a;
print "The value is $a \n"; # produces 'Use of uninitialized value ...'

If warnings are not enabled, undef simply evaluates to an empty string. A loop like the following will
also work correctly, even if we do not predeclare the count variable beforehand, because on the first
iteration the undefined variable will be evaluated as 0:

#!/usr/bin/perl
no_warnings.pl;
warnings not enabled...

while ($a<100) {
print $a++, "\n";

}

Disabling warnings globally is not good programming, but if we know what we are doing we can disable
them locally to avoid warnings when we know we may be using undefined values. In this case we
should really declare the loop variable, but for illustrative purposes we could use a warnings pragma,
or a localized copy of $^W to disable warnings temporarily like this:

warnings enabled here ...
{

no warnings; # use 'local $^W = 0' for Perl < 5.6
while ($a < 100) {

print $a++, "\n";
}

}
... and here

Perl is smart enough to let some uses of the undefined value pass, if they seem to be sensible ones. For
example, if we try to increment the value of an undefined key in a hash variable, Perl will automatically
define the key and assign it a value without complaining about it. This allows us to write counting
hashes that contain keys only for items that were actually found, as this letter counting program
illustrates:

#!/usr/bin/perl
frequency.pl
use warnings;
use strict;

sub frequency {
my $text = join('', @_);
my %letters;
foreach (split //, $text) {

$letters{$_}++;
}
return %letters;

}

Chapter 5

168

my $text = "the quick brown fox jumps over the lazy dog";

my %count = frequency($text);

print "'$text' contains: \n";
foreach (sort keys %count) {

print "\t", $count{$_}, " '$_", ($count{$_} == 1)? "'": "'s", "\n";

}

This will create a hash of letter keys with the frequency of each letter's occurrence as their values. (The
split statement uses an empty pattern, which we cover in Chapter 11, which is an efficient way of
returning characters one at a time.)

The trick to this program lies in the line $letters{$_}++. To start with, there are no keys in the hash,
so the first occurrence of any letter causes a new key and value to be entered into the hash. Perl allows
this, even though the increment implies an existing value. If a letter does not appear at all, there won't
even be a key in the hash for it, eliminating redundant entries.

Using 'undef' as a Function
Although we often use undef as if it were a value by assigning it or returning it from subroutines, it is in
fact a function that returns the undefined value (for which there is no written equivalent). When used on
variables, undef undefines them, destroying the value. The variable remains intact, but now returns
undef when it is accessed. For example:

undef $scalar;

This is essentially the same as:

$scalar = undef;

If undef is used on an array or a hash variable, it destroys the entire contents of the variable, turning it
into an empty array or hash. The following two statements are therefore equivalent:

undef @array;
@array = ();

Undefining an array element, a slice of an array, or a hash key, undefines the value, but not the array
element or hash key, which continues to exist:

undef $hash{'key'}; # undefine value of key 'key'
my $value = $hash{'key'}; # $value is now 'undef'

Similarly:

my @array = (1, 2, 3, 4, 5); # define a five element array
@array[1..3] = undef; # @array contains (1, undef, undef, undef, 5)

To really remove the element or hash key, we use the delete function:

my @array = (1, 2, 3, 4, 5); # define a five element array
delete @array[1..3]; # no more second, third, and fourth elements

Beyond Scalars - More Data Types

169

Constants
A constant is a value that remains unchanged throughout the lifetime of a program. By defining named
constants and then using them rather than the values we can avoid retyping, and potentially mistyping,
the value, and additionally it makes our code more legible. A good example of a constant is the value of
pi, 3.14159265358979... . Clearly it would be preferable to just type PI in our programs than reel
out a string of digits each time. A second reason for using a constant is that we can, if we wish, change
it. By defining it in one place and then using the definition in every other place in our code we can
easily alter the value throughout the application from a single definition.

One simple but not very satisfactory way to define a constant is with a scalar variable. By convention,
constants use fully capitalized names, for example:

define constant '$PI'
$PI = 3.1415926;

use it
$deg = 36;
print "$deg degrees is ", $PI*($deg/180), " radians";

However, this constant is constant in typography only. It is still a regular scalar variable and can be
reassigned. A more reliable way to define a scalar constant is by assigning a value, by reference, to a
typeglob. Here is how we could define the constant $PI using this approach:

define constant
*PI = \3.1415926;

This causes Perl to create the variable $PI, since the assigned reference is to a scalar, but because the
reference is to a literal value rather than a variable it cannot be redefined and so the scalar 'variable'
$PI is read-only, a true constant. Attempting to assign a new value to it will provoke an error message
from Perl:

A more rational, if inaccurate, value of PI
$PI = 3; # produces 'Modification of a read-only value attempted ...'

However, this still does not reinforce the fact that PI is supposed to be constant, because it looks like a
regular scalar variable, even if we are prevented from altering it. What we would ideally like is constants
that look constant, without any variable prefix character, which is what the constant pragma provides
us with.

Declaring Scalar Constants with the 'constant' Pragma
The constant pragma allows us to define scalar constants that both look and behave like constants.
Like any module, we use it through a use statement, providing the name and value of the constant we
wish to define. To define a value for PI we could write:

use constant PI => 3.1415926;

This notation is an immediate improvement over using a scalar variable or a typeglob since it legibly
declares to the reader, as well as to Perl, that we are defining a constant. The use of => is optional, we
could equally have used a comma. In this context, however, it makes sense since we are defining an
association. It also allows us to omit the quotes we would otherwise need if use strict is in effect,
which is elegant since the result of this statement is to define a constant PI which we can use like this:

Chapter 5

170

print "$deg degrees is ", PI*($deg/180);

This is an immediate improvement over the first example, since PI is clearly a constant, not a variable
like $PI. It also cannot be assigned to, since it is no longer a scalar variable. (For the curious, it is
actually a subroutine, defined on the fly by the module that takes no arguments and returns the value
we supplied. This makes a surprisingly effective constant even though it is not actually a built-in feature
of the language.)

Constants are a good place to perform one-off calculations too. The definition of pi above is adequate
for most purposes, but it is not the best that we can do. We saw earlier that we can calculate pi easily
using the expression 4*atan2(1, 1). We can use this expression to define our constant PI:

use constant PI => 4 * atan2(1, 1);

Although this is more work than just defining the value explicitly, Perl only evaluates it once, and we
end up with the best possible value of pi that can be handled on any architecture that we run the
program on without needing to rewrite the code.

Calculating constants is also useful for clarity and avoiding errors, it is easier to get the expression above
correct because it is shorter to type and errors are more obvious. Detecting one wrong digit in a fifteen
digit floating-point number is not so simple. Similarly, computed values such as the number of seconds
in a year look better like this:

use constant SECONDS_IN_YEAR => 60 * 60 * 24 * 365;

than this:

use constant SECONDS_IN_YEAR => 31536000;

Conventionally constants are defined in entirely upper case, to enable them to be easily distinguished
from functions that happen to take no arguments. This is not an enforced rule, but it is often a good idea
to improve the legibility of our code.

Expressions used to define constants are evaluated in a list context. That means that if we want the
scalar result of a calculation we need to say so explicitly. For example, the gmtime function returns a
list of date values in list context, but a nicely formatted string containing the current date in a scalar
context. To get the nicely formatted string we need to use scalar to force gmtime into a scalar
context:

use constant START_TIME => scalar(gmtime);

As a final note on scalar constants, we can also define a constant to be undefined:

use constant TERMINATION_DATE => undef;
use constant OVERRIDE_LIST => ();

Both of these statements create constants that evaluate to undef in a scalar context and () in a list
context.

Beyond Scalars - More Data Types

171

Declaring List and Hash Constants
Unlike the typeglob definition of constants, which only works for literal values and hence only defines
scalar constants, the constant pragma also allows us to define constant arrays and constant hashes.
Both of these work in essentially the same way as a scalar constant, with the values to be made constant
passed to the module and a subroutine that is defined behind the scenes to implement the resulting
constant. Here is how we can define a constant list of weekdays that we can use to retrieve the day
names by index:

use constant WEEKDAYS=>('Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday');

Accessing the individual elements of a constant array can be tricky though, because the constant returns
a list of values to us, not an array. Due to this, we cannot simply use an index to retrieve an element:

print "The third day is", WEEKDAYS[2]; #ERROR: syntax error

To solve this problem we only need to add parentheses to make the returned list indexable:

print "The third day is, (WEEKDAYS)[2]; # works ok

A similar technique can be used to create hash constants, though the values are stored and returned as a
list, so they cannot be accessed through a key without first being transferred into a real hash:

use constant WEEKABBR => (Monday=>'Mon', Tuesday=>'Tue', Wednesday=>'Wed',
Thu=>'Thursday', Fri=>'Friday');

%abbr = WEEKABBR;
$day = 'Wednesday';
print "The abbreviation for $day is ", $abbr{$day};

This limitation means constant hashes are better defined via a reference, which can hold a real hash as
its value, rather than a simple list of keys and values that happen to resemble a hash.

Constant References
Since references are scalars, we can also define constant references. As a simple example, the array
above could also have been declared as:

use constant WEEKDAYS=>['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday'];

Since the constant is a reference to an array we must dereference it to access the elements, which is
marginally more attractive (and certainly more legible) than adding parentheses:

print "The third day is ", WEEKDAYS->[2];

However, all that is being defined here is a constant reference; we cannot assign a new value to
WEEKDAYS, but we can still alter the values in the array through the existing reference. The list is not
truly constant, though it still looks like a constant:

WEEKDAYS->[0]='Lundi'; #this is perfectly legal

Chapter 5

172

Depending on our programming goals this might actually be a good thing, allowing us to secretly
customize the value of a constant inside a package while presenting it as an unchanging and
unmodifiable value to the outside world. However, this kind of behavior should be exercised with
caution.

Listing and Checking for the Existence of Constants
To check for the existence of a constant we can make use of the declared hash in the constant
package to see if the constant exists or not:

unless (exists $constant::declared{'MY_CONSTANT'}) {
use constant MY_CONSTANT => "My value";

}

We can also dump out a list of all the currently declared constants by iterating over the keys of the hash:

foreach (keys %constant::declared) {
print "Constant $_ is defined as '$constant::declared{$_}'";

}

Summary
We began this chapter by looking at lists and arrays. Specifically, we saw how to:

� Manipulate arrays

� Modify the contents of an array

� Count an array

� Add elements to an array

� Resize arrays

� Remove elements from an array

� Sort lists and arrays

� Change the starting index of an array

We then took a similar look at hashes, and also saw how to convert them into scalars and arrays. From
there we discussed references, and learned how to:

� Create a reference

� Compare references

� Dereference

� Pass references to subroutines

� Find the type of a reference

Beyond Scalars - More Data Types

173

Next we went over complex data structures, and mentioned problems inherent with nesting. As well as
this, we learned how to construct hashes of hashes, arrays of hashes, and so on. From there we learned
how to create complex data structures programmatically, and saw how to 'navigate' them.

We covered typeglobs and saw how to define and manipulate them. We looked at the undefined value,
and, among other things, explored its use as a function.

Then we examined constants and put the constant pragma to use. Finally, we saw how to declare
constant lists, hashes, and references, and how to detect constants.

TE
AM
FL
Y

Team-Fly®

Chapter 5

174

Structure, Flow, and Control

In this chapter we look at Perl's control structures, starting with the basic syntax of the language,
expressions and statements. We will then build these into more complex structures such as compound
statements (also known as blocks) and conditional statements.

We will consider Perl's conditional statements, and then move on to read about loops in Perl. We will
look at the various statements that we can use to create loops and how to use them in particular with
lists, arrays, and hashes. We will also look into the modifiers provided by Perl to change the behavior of
loops.

Expressions, Statements, and Blocks
A Perl program consists of a mixture of statements, declarations, and comments. Statements are
executed by the Perl interpreter at run time. Declarations, on the other hand, are directives that affect
the way that the program is compiled. Therefore, a declaration's effect ends after compilation, whereas a
statement will affect the program each time that section of code is run. Subroutine and format
declarations are the two most obvious types of declaration; use and my statements are also, arguably,
declarations too.

Statements are made up of expressions, and can combined together into a block or compound
statement. An expression is any piece of Perl code that produces a value when it is evaluated. For
example, the number '3' is an expression because it produces 3 when evaluated. Operators combine
expressions to form larger expressions. For example, '3+6' is an expression that produces the number 9.

Expressions are intended to return a value that is used in a larger expression or a statement. Conversely,
a statement is executed because it has some useful effect such as printing text, assigning a value to a
variable, and so on. However, the distinction between statements and expressions is rather narrow –
most statements are really expressions whose values are not used.

Chapter 6

176

Blocks are combinations of statements, created and defined by curly braces. A block has its own scope,
so variables declared inside a block only last so long as the block is being executed. More technically,
blocks create a new stack frame, and variables allocated within it last only so long as that frame exists.

Declarations
Declarations are statements that take effect at compile time, rather than at run time. The most common
examples of declarations are modules that are included into our application source code with use.
Another example is declaring a subroutine before it is defined (subroutines are covered in Chapter 7).
For example, the following are all declarations:

sub mysubroutine ($); # declare a subroutine with one scalar argument

my $scalar; # declare a lexical variable (at compile-time)

define a format for STDOUT
format =
@<<<< = @>>>>

$key, $value

use warnings; # use pragmatic module

use strict; # use pragmatic module

use CGI qw (:standard); # use CGI module

BEGIN {
print "This is a compile-time statement";

}

However, the idea that declarations happen at compile-time and statements happen at run time is not
quite as clear-cut as this. A use declaration is really a require and import statement (see Chapter 9)
wrapped inside a BEGIN block so that they execute at compile time. So, arguably, use is not a
declaration, but a mechanism to execute code during the compile phase. Whether a BEGIN block is a
declaration or not is a moot point, but it happens at the compile phase, so it is certainly not a regular
block. The BEGIN block will be covered in more detail in Chapter 10.

Expressions and Simple Statements
An expression is anything in Perl that returns a value (be it scalar, list, or undefined), from a literal
number to a complex expression involving multiple operators, functions and subroutine calls. That
value can then be used in larger expressions or form part of a statement.

Statements differ from expressions in that they must be separated from each other by semicolons,
although at the end of a block (where there is no following statement) it is optional but recommended.
The chief distinction between a statement and an expression is that either a statement does not return a
value (for example, an if statement), or if it does, it is ignored (for example, a print statement).

Constructs such as if, foreach, and while aside, the majority of statements are expressions whose
return value is discarded – in Perl terminology, they exist in a void context. Having said that, blocks
and subroutines will return the value of the last expression evaluated in them, so it is not necessarily
true that an expression is in a void context just because it is not assigned to something explicitly.

Structure, Flow, and Control

177

For example, the statement $b = $a is also an expression, which returns the value of the assignment
($a). We can see this in action by considering the following two statements:

$b = $a; # $b = $a is a statement
$c = $b = $a; # $b = $a is now an expression

Another way of looking at this is that a statement is an expression that is executed because it performs
an action, rather than for its return value. For instance, consider the following print statement:

print "Hello World";

This is a statement by virtue of the fact that the return value from print is not used. However print
actually returns a True value if it succeeds and a False value if the filehandle to which it is printing is
invalid. We rarely bother to check for this, but if we wanted to we could turn this statement into an
expression by writing:

$success = print "Hello World";

Now we have a print expression whose value is used in an assignment statement. Of course a print
statement like this is unlikely to fail because it prints to STDOUT (the standard output), which is why the
return value from print is rarely checked. However it does illustrate that any statement is also an
expression even if we do not always think of it in those terms.

Blocks and Compound Statements
The block is a Perl construct that allows several statements (which in turn may be simple statements or
further blocks) to be logically grouped together into a compound statement and executed as a unit.
Blocks are defined by enclosing the statements within in curly braces; the general form of a block is
therefore:

{ STATEMENT; STATEMENT; ... ; STATEMENT }

This is the most common form of block. However, blocks can also be defined by the limits of the source
file. A simple Perl script is a block that starts at the top of the file and ends at the bottom (or a __DATA__
or __END__ token, if one is present in the file; see Chapter 12 for more on __END__). Likewise, an
included file that has been read in using require also defines a block.

The definition of a block is important because in addition to grouping statements together logically, a
block also defines a new scope in which variables can be declared and used. Here are two short
programs, one of which executes the other via require. Both files define their own scope, and in
addition the explicit block in the second program child.pl defines a third. Here is the parent process:

#!/usr/bin/perl
parent.pl
use warnings;
use strict;

my $text = "This is the parent";
require 'child.pl';
print "$text \n"; # produces "This is the parent"

Chapter 6

178

…and here is the child process:

#!/usr/bin/perl
child.pl
use warnings;
use strict;

my $text = "This is the child";
{

my $text = "This is block scoped";
print "$text \n"; # produces "This is block scoped";

}
print "$text \n"; # produces "This is the child";

Variables that are defined within a particular scope only exist so long as that block is being executed,
and are not seen or usable by the wider scope outside the block. This has a lot of significant
implications, as we will see.

Blocks in Perl Statements
Almost all of Perl's control structures (such as if statements, for and while loops, and subroutine
declarations) can accept a block in their definitions, and many require it. For example, the if statement
requires a block to define the Boolean test that follows its condition; a simple statement will not do and
will cause Perl to generate a syntax error:

if (EXPRESSION) { STATEMENT; STATEMENT; ... STATEMENT }

Or put more simply:

if (EXPRESSION) BLOCK

Note that a block is not the equivalent of a statement. As we just saw blocks are accepted in places
where simple statements are not. Also, blocks do not require a terminating semicolon, unlike the
statements inside them. Be aware that if the return value of a block is used, the statement requires a
trailing semicolon, as we shall see later.

Naked Blocks
Although it is their most common application, blocks do not have to belong to a larger statement. They
can exist entirely on their own, purely for the purposes of defining a scope. The following example
shows a block in which several scalar variables are defined using my. The variables exist for the lifetime
of the block's execution and then cease to exist.

#!/usr/bin/perl
time.pl
use warnings;

a bare block definition
{

define six scalars in new block scope:
my ($sec, $min, $hour, $day, $month, $year) = localtime();
variables exist and can be used inside block
print "The time is: $hour: $min. $sec \n";
$month++;
$year += 1900;
print "The date is: $year/ $month/ $day \n";
end of block - variable definitions cease to exist

}

produces 'uninitialized value' warning - $sec does not exist here
print "$sec seconds \n";

Structure, Flow, and Control

179

The ouput from this is:

Name "main::sec" used only once: possible typo at d.pl line 18.
The time is: 2: 30. 5
The date is: 2000/ 12/ 15
Use of uninitialized value in concatenation (.) at d.pl line 18.
seconds

Note that adding use strict would turn the above warning into a compile-time syntax error as
strictness requires declaring all variables.

If we take reference to bare blocks, they can also be used to define anonymous subroutines, a subject we
will cover in Chapter 7.

Defining the Main Program as a Block
An interesting use of blocks is to put the main program code into a block within the source file. This
helps to distinguish the actual program from any declarations or initialization code (in the shape of use
statements and so forth) that may occur previously. It also allows us to restrict variables needed by the
main program to the scope of the main program only, rather than turning them into global variables,
which should be avoided. Consider the following simple but illustrative program:

#!/usr/bin/perl
blockmain.pl

declarations first
use strict;
use warnings;

initialization code, global scope

my $global_variable = "All the World can see Me";
use constant MY_GLOBAL_CONSTANT => "Global Constant";

here is the main program code

MAIN: {
variable defined in the main program scope, but not global
my $main_variable = "Not visible outside main block";
print_variables ($main_variable);

}

no-one here but us subroutines...

sub print_variables {
print $global_variable, "\n", MY_GLOBAL_CONSTANT, "\n";
print $main_variable, "\n"; #error!
print $_[0], "\n"; # passed from main block, ok now

}

We have used a label MAIN: to prefix the start of the main program block to make it stand out. The use
of the label MAIN: is entirely arbitrary – we could as easily have said MY_PROGRAM_STARTS_NOW:.
However, MAIN: is friendlier to those coming from a C programming background where a main
function is required. Of course, we could also create a real main subroutine, and we need to make sure
that we call it.

Chapter 6

180

The issue of scoping variables so they are invisible from subroutines is not a minor one. If we had failed
to enable warnings and strict mode, and if we had uncommented the second line of
print_variables, Perl would have happily accepted the undefined variable $main_variable and
printed out a blank line. By placing otherwise global variables inside the scope of a main block we
prevent them from being accidentally referred to inside subroutines, which should not be able to see
them.

Blocks as Loops
Bare blocks can sometimes be treated as loops, which are discussed in detail later in the chapter. A
block that is not syntactically required (for example, by an if statement) or is part of a loop statement
can be treated as a loop that executes only once and then exits. This means that loop control statements
like next, last, and redo will work in a block. Since blocks are one-shot loops, next and last are
effectively the same. However, redo will re-execute the block.

In short, these three loops all do the same thing, one with a while, one with a foreach, and one with a
bare block and a redo:

#!/usr/bin/perl
while.pl
use warnings;
use strict;

my $n = 0;

print "With a while loop:\n";
while (++$n < 4) {print "Hello $n \n";}

print "With a foreach loop:\n";
foreach my $n (1..3) { print "Hello $n \n"; }

print "With a bare block and redo: \n";
$n = 1; { print "Hello $n \n";
last if (++$n > 3); redo; }

The block of an if statement is required syntactically and if is not a loop statement, so the redo
statement here will not work:

#!/usr/bin/perl
badblockloop.pl
use warnings;
use strict;

if (defined(my $line = <>)) {
last if $line =~/quit/;
print "You entered: $line";
$line = <>;
redo;

}
print "Bye! \n";

The fact that redo, next, and last do not work in if blocks is actually a blessing. Otherwise it would
be hard, albeit not impossible, to break out of a loop conditionally. Instead we get a syntax error:

Structure, Flow, and Control

181

Can't "redo" outside a loop block at ./badblockloop.pl line 10, <> line 2.

However we can nest blocks inside each other, so by adding an extra bare block we can fix the above
program so that it will work:

#!/usr/bin/perl
blockloop.pl
use warnings;
use strict;

if (defined(my $line = <>)) { { # <- note the extra block
last if $line =~/quit/;
print "You entered: $line";
$line = <>;
redo;

} }
print "Bye! \n";

Using blocks as loops is an interesting approach to solving problems, but they are not always the
simplest or easiest to understand. The above script could more easily be fixed simply by replacing the
if with a while. This makes more sense and does not require an extra block because while is a
looping statement:

#!/usr/bin/perl
blockwhile.pl
use warnings;
use strict;

while (my $line = <>) {
last if $line =~/quit/;
print "You entered: $line";

}
print "Bye! \n";

We cover loops in more detail later in the chapter.

The 'do' Block
Blocks do not normally return a value; they are compound statements, not expressions. They also
provide a void context, which applies to the last statement in the block. This causes its value to be
discarded just as those of all the statements before it are. However, the do keyword allows blocks to
return their values as if they were expressions, the value being derived from the last statement:

@words = do {
@text = ("is", "he", "last");
sort @text;

};

In this example, a list generated by the sort function.

We could make this more explicit by adding a return beforehand just as we do for subroutines, but it
is not actually necessary. Moreover, return is not necessary in subroutines either, and for the same
reason.

Chapter 6

182

Note that the result of prefixing do to a block is to turn it into an expression. That means that when it is
used in a statement, the statement still needs to be terminated by a semicolon, which in this case goes
after the block. This may look as if the block needs to be terminated, but this is not the case. In truth it
is the statement containing the block that needs terminating. Omitting the final semicolon from
statements like the above is a common mistake because in any other context a block does not require a
following semicolon.

There is another, syntactic, reason for needing a do to return the value of a block. Without the
requirement of a do Perl would have a hard time telling apart a bare block with one statement anda list
of statements from a hash definition:

$c = do { $a = 3, $b = 6 }; # a block, $c = 6

{ $a = 3; $b = 6 } # has a semicolon, therefore a block

a hash definition, $c = {3 => 6}, which we can test with 'print keys %{$c}'
$c = { $a = 3, $b = 6 };

Regarding the use of blocks as loops, do blocks are not considered loops by Perl, because the block is
syntactically required by the do. Loop control statements will therefore not work inside a do block.
However, a do block can be suffixed with a loop condition such as while or until, in which case it is
transformed into loop:

do { chomp($line = <>); $input. = $line } until $line =~/^stop/;

The block is executed before the condition is tested, so in this example the word stop will be added to
the end of $line before the loop terminates.

Special Blocks
Perl provides four kinds of special blocks which differ from each other in the stage of their execution
during the life of the application.

BEGIN blocks are executed during the compilation phase as they are encountered by the interpreter, so
their contents are compiled and run before the rest of the source code is even compiled. We can define
multiple BEGIN blocks, which are executed in the order the interpreter encounters them.

END blocks are the inverse of BEGIN blocks, they are executed by the interpreter after the application
exits and before the exit of the interpreter itself. They are useful for 'clean-up' duties such as closing
database connections, resetting terminal properties, or deleting temporary files. We can also define
multiple END blocks, in which case they are executed in reverse order of definition.

There is also the much less used CHECK and INIT blocks that are executed just after the compile phase
and just before the run phase respectively.

Structure, Flow, and Control

183

The following is a short script that shows both BEGIN and END blocks in action:

#!/usr/bin/perl
begend.pl
use warnings;
use strict;

END {
print "Exiting... \n";

}

print "Running... \n";

BEGIN {
print "Compiling... \n";
}

> perl begend.pl
Compiling...
Running…
Exiting...

As the output shows, the BEGIN block was executed first despite the fact that it is the last piece of the
program. The END block, on other hand, which in fact occurs first in the program, is executed last. The
print statement is executed after the BEGIN block but before the END block.

This brief introduction is to allow us to use the BEGIN and END blocks before we look at the four special
blocks in detail in Chapter 10.

Conditional Statements
Conditional statements execute the body of the statement (sometimes known as a branch or branch of
execution) only if a given Boolean condition is met. The condition is expressed in the form of an
expression whose value is used to determine the course of execution.

Perl's primary mechanism for conditional execution is the if statement and its related keywords,
unless, else, and elsif. However, Perl being as flexible as it is, there are other ways we can write
conditions. For instance, the use of Perl's logical operators && and ||, without using if or unless.

Multiple-branch conditions are implemented in other languages using special multiple-branch
conditional statements like switch or case. Perl has no such equivalent, because it does not need one.
As we will see, there are already plenty of ways to write a multiple-branch condition in Perl.

However, before embarking on a detailed look at these functions it is worth talking a brief diversion to
discuss the nature of truth in Perl.

TE
AM
FL
Y

Team-Fly®

Chapter 6

184

What Is Truth?
Perl has a very broad-minded view of the meaning of true and false – in general, anything that has a
'non-zero' value is True. Anything else is False. By 'non-zero' we mean that the value is in some sense
'set'. Even 0 is information of a sort, especially compared to undef.

There are a few special cases. The string 0 is considered False even though it has a value, as a
convenience to calculations that are performed in string context. The undefined value also evaluates to
false for the purposes of conditions. However, a string of spaces is True, as is the string 00. The
following examples illustrate various forms of truth and falsehood:

Value True/False

1 True

-1 True

"abc" True

0 False

"0" False

"" False

" " True

"00" True

"0E0" True (this is returned by some Perl libraries)

"0 but true" True (ditto)

() False (empty list)

undef False

To distinguish between the undefined value and other values that evaluate to False, we can use the
defined function; for instance:

if (defined $var) {
print "$var is defined";

}

The ability to handle undef as distinct from true and false is very useful. For example, it allows
functions and subroutines that return a Boolean result to indicate an 'error' by returning undef. If we
want to handle the error we can do so by checking for undef. If we do not care or need to know we can
just check for truth instead:

if (defined($var) && $var) {
print "true \n";

}

Structure, Flow, and Control

185

'if', 'else', and 'elsif'
As we have already seen, basic conditions can be written using an if statement. The basic form of an
if statement is (note that the trailing semi-colon is not required):

if (EXPRESSION) BLOCK

Here EXPRESSION is any Perl expression, and BLOCK is a compound statement, one or more Perl
statements enclosed by curly braces. BLOCK is executed only if EXPRESSION is True. For instance, in
the above example, the block that contains print "true \n" would be executed only if the
expression (defined($var) && $var) evaluates to True, that is, only if $var is defined and True.

We can invert the syntax of an if statement and put the BLOCK first. In this case we can both omit the
parentheses of the condition and also replace the block with a bare statement or list of statements. The
following forms of if statement are all legal in Perl:

BLOCK if EXPRESSION;
STATEMENT if EXPRESSION;
STATEMENT, STATEMENT ... if EXPRESSION;

For example:

print "Equal" if $a eq $b;

print (STDERR "Illegal Value"), return "Error" if $not_valid;

close FILE, print ("Done"), exit if $no_more_lines;

return if $a ne $b;

The use of the comma operator here deserves a little attention. In a list context (that is, when placed
between parentheses), the comma operator generates lists. However, that is not how it is being used
here. In this context it simply returns the right-hand side, discarding the left, so it becomes a handy way
to combine several statements into one, and relies on the fact that most statements are also expressions.

The inverted syntax is more suitable for some conditions than others. As Perl's motto has it, there is
more than one way to do it, so long as the program remains legible. In the above examples, only the last
return statement is really suited to this style; the others would probably be better off as normal if
statements.

Beware declaring a variable in an inverted conditional statement, since the variable will only exist if the
condition succeeds. This can lead to unexpected syntax errors if we have warnings enabled and
unexpected bugs otherwise:

use warnings;

$arg = $ARGV[1] if $#ARGV;
if ($arg eq "help") { # $arg may not be declared
print "Usage: \n";
...
}
...

Chapter 6

186

We would be unlikely to leave $arg undefined if we had written a conventional if statement because
the declaration would be inside the block, making it obvious that the scope of the variable is limited.
However, the inverted syntax can fool us into thinking that it is a declaration with wider scope.

If, then, and else conditions are implemented with the else keyword:

if (EXPRESSION) BLOCK else BLOCK

For example:

first 'if else' tests whether $var is defined
if (defined $var) {
if $var is defined, the second 'if else' tests whether $var is true

if ($var) {
print "true \n";

} else {
print "false \n";

}
} else {

print "undefined \n";
}

However, it is not legal (and not elegant even if it were) to invert an if statement and then add an else
clause:

ERROR!
return if $not_valid else { print "ok" };

If we have multiple mutually exclusive conditions then we can chain them together using the elsif
keyword, which may occur more than once and may or may not be followed by an else:

if (EXPRESSION) BLOCK elsif (EXPRESSION) BLOCK elsif...
if (EXPRESSION) BLOCK elsif (EXPRESSION) BLOCK else BLOCK

For example, to compare strings using just if and else we might write:

if ($a eq $b) {
print "Equal";

} else {
if ($a gt $b) {

print "Greater";
} else {

print "Less";
}

}

The equivalent code written using elsif is simpler to understand, is shorter, and avoids a second level
of nesting:

if ($a eq $b) {
print "Equal";

} elsif ($a gt $b) {
print "Greater";

} else {
print "Less";

}

Structure, Flow, and Control

187

Note that the else if construct, while legal in other languages such as C is not legal in Perl and will
cause a syntax error. In Perl, use elsif instead. Also note that if $a is less than $b most of the time
then we would be better off rewriting this statement to test $a lt $b first, then $a gt $b or $a eq
$b second. It pays to work out the most likely eventuality and then make that the fastest route through
our code.

If the conditions are all testing the same expression with different values then there are more efficient
ways to do this, however. See 'Switches and Multi-Branched Conditions' later in the chapter for some
examples.

The if, unless, and elsif keywords all permit a variable to be declared in their conditions. For
example:

if (my @lines = <HANDLE>) { # test if there is a filehandle called HANDLE
...do something to file contents...

} else {
"Nothing to process \n";

}

The scope of variables declared in this fashion is limited to that of the immediately following block, so
here @lines can be used in the if clause but not the else clause or after the end of the statement.

'unless'
If we replace the if in an if statement with unless, the condition is inverted. This is handy for testing
a condition, which we want to act on if it evaluates to False, such as trapping error conditions:

unless file filename is successfully opened then return a failure message
unless (open FILE, $filename) {

return "Failed to open $filename: $!";
}

We can also invert the syntax of an unless statement, just as we can with if:

return "Failed to open $filename: $!" unless (open FILE, $filename);

This is exactly the same as inverting the condition inside the parentheses but reads a little better than
using an if and not:

if (not open FILE, $filename) {
return "Failed to open $filename: $!";

}

It is perfectly legal, though possibly a little confusing, to combine unless with an else or elsif as in
the following:

unless (open FILE, $filename) {
return "Failed to open $filename: $!";

} else {
@lines = <FILE>;

foreach (0..$#lines) {
print "This is a line \n"
}
close FILE;

}

Chapter 6

188

In this case it is probably better to write an if���not expression or to invert the clauses, since
unless���else is not a natural English construct.

Writing Conditions with Logical Operators
Perl's logical operators automatically execute a short-cut to avoid doing unnecessary work whenever
possible (see Chapter 4). Take the following example:

$result = try_first() or try_second() or try_third ();

If try_first returns a True value then clearly Perl has no need to even call the try_second or
try_third functions, since their results will not be used; $result takes only one value and that would
be the value returned by try_first. So Perl takes a shortcut and does not call them at all.

We can use this feature to write conditional statements using logical operators instead of if and
unless. For example, a very common construct to exit a program on a fatal error uses the die function
which, upon failure, prints out an error message and finishes the program:

open (FILE, $filename) or die "Cannot open file: $!";

This is equivalent to, but more direct than, the more conventional:

unless (open FILE, $filename) {
die "Cannot open file: $!";

}

We can also provide a list of statements (separated by commas) or a do block for the condition to
execute on success. Here is an example that supplies a list:

open (FILE, $filename) or print (LOG "$filename failed: $!"), die "Cannot open
file:$!";

Not every programmer likes using commas to separate statements, so we can instead use a do block.
This also avoids the need to use parentheses to delineate the arguments to print:

open (FILE, $filename) or do {
print LOG "$filename failed: $!";
die "Cannot open file: $!";

};

When writing conditions with logical operators it is good practice to use the low precedence and, or,
and not operators instead of the higher priority &&, ||, and !. This prevents precedence from changing
the meaning of our condition. If we were to change the previous example to:

open (FILE, $filename) || print (LOG "$filename failed: $1"), die "Cannot open
file:$!";

Perl's precedence rules would cause it to interpret this as a list containing a condition and a die
statement:

(open (FILE, $filename) || print (LOG "$filename failed: $1")), die "Cannot open
file:$!";

Structure, Flow, and Control

189

As a result this statement will cause the program to die with a "Cannot open file" message regardless of
whether the open failed or succeeded.

Using a do block avoids all these problems and also makes the code easier to comprehend. Either a ||
or an or will work fine in this re-written example:

open (FILE, $filename) || do {
print LOG "$filename failed: $1";
die "Cannot open file:$!";

};

Whether this is better than the original if form is questionable, but it does serve to emphasize the
condition in cases where the condition is actually the point of the exercise. In this case the open is the
most significant thing happening in this statement, so writing the condition in this way helps to
emphasize and draw attention to it.

The drawback of these kinds of conditions is that they do not lend themselves easily to else type
clauses. The following is legal, but is tending towards illegibility:

open (FILE, $filename), $text = <FILE> or die "Cannot open file: $!";

It would also fail with a closed filehandle error if we used || instead of or since that has higher
precedence than the comma and would test the result of $text = <FILE> and not the open.

The Ternary Operator
The ternary ?: operator is a variant of the standard if style conditional statement that works as an
expression and returns a value that can be assigned or used in other expressions. It works identically to
the ternary operator in C, from which it is derived. The operator evaluates the first expression; if that
expression is True, it returns the value of the second expression, and if the first expression was False
then the operator returns the value of the third expression. This is what it looks like:

expression1 ? expression2 : expression3

The ternary operator is very convenient when the purpose of a test is to return one of two values rather
than follow one of two paths of execution. For example, the following code snippet adds a plural s
conditionally, using a conventional if���else condition:

#!/usr/bin/perl
plural_if.pl
use warnings;
use strict;

my @words = split ('\s+', <>); # read some text and split on whitespace

my $count = scalar (@words);

print "There ";
if ($count == 1) {

print "is";

Chapter 6

190

} else {
print "are";

}
print " $count word";

unless ($count == 1) {
print "s";

}

print " in the text \n";

Note that in this program we are making a numeric comparison, so we use ==. If we were doing a string
comparison we would use eq. A common mistakes in both C and Perl programming is to use =
(assigment) instead of == (numeric equality). Another common mistake is to use == where eq was
meant, or vice versa.

Running this program and entering some text produces messages like:

There are 0 words in the text
There is 1 word in the text
There are 4 words in the text

The same code rewritten using the ternary operator is considerably simpler:

#!/usr/bin/perl
plural_ternary.pl
use warnings;
use strict;

my @words = split ('\s+', <>); # read some text and split on whitespace
my $words = scalar (@words);

print "There ", ($words == 1)?"is":"are"," $words word", ($words == 1)?"":"s","
in the text \n";

We can also nest ternary operators, though doing this more than once can produce code that is hard to
read. The following example uses two ternary operators to compute a value based on a string
comparison using cmp, which can return -1, 0, or 1:

#!/usr/bin/perl
comparison.pl
use warnings;
use strict;

my @words = split ('\s+',<>);
die "Enter two words \n" unless scalar(@words) == 2;

my $result = $words[0] cmp $words[1];
print "The first word is ", $result ? $result > 0?"greater than":"less
than":"equal to "," the second \n";

This program checks that we have entered exactly two words, and if so prints out one of the following
thee messages:

Structure, Flow, and Control

191

The first word is less than the second
The first word is greater than the second
The first word is equal to the second

Note that the nested ternary operators know which ? and : belongs where, but it does not make for
legible code. To improve upon this, the last line is probably better written with parentheses:

print "The first word is ", $result ? ($result > 0 ? "greater than" : "less than")
: "equal to", " the second \n";

This makes it much simpler to see which expression belongs to which condition.

Be careful when combining the ternary operator into larger expressions. The precedence of operators
can sometimes cause Perl to group the parts of an expression in ways we did not intend, as in the
following example:

#!/usr/bin/perl
plural_message.pl
use warnings;
use strict;

my @words = split ('\s+', <>);
my $words = scalar (@words);
my $message = "There ". ($words == 1) ? "is" : "are". " $words word". ($words ==
1)?"" : "s". " in the text \n";

print $message;

This appears to do much the same as the previous example, except it stores the resulting message in an
intermediate variable before printing it. But (unlike the comma operator) the precedence of the
concatenation operator '.' is greater than that of the ternary '?' or ':', so the meaning of the statement is
entirely changed. Using explicit parentheses, the first expression is equivalent to:

"There ", (($words == 1)? "is" : "are"), " $words word", (($words == 1)?"" : "s"),
" in the text \n";

But with the concatenation operator what we actually get is:

("There ". ($words == 1))? "is" : ("are". " $words word", ($words == 1)?"" : "s".
" in the text \n");

The expression ("There ". ($words == 1)) always evaluates to a True value, so the result of
running this program will always be to print the word is regardless of the input we give it.

One final trick that we can perform with the ternary operator is to use it with expressions that return an
lvalue (that is, an assignable value). An example of such an expression is the substr function:

#!/usr/bin/perl
fix.pl
use warnings;
use strict;

Chapter 6

192

my $word = "mit";
my $fix = "re";
my $before = int(<>); # no warnings in case we enter no numeric text

($before ? substr($word, 0, 0): substr ($word, length($word), 0)) = $fix;
print $word, "\n";

In this program the contents of $fix are either prefixed or postfixed to the contents of the variable
$word. The ternary operator evaluates to either the beginning or the end of the value in $word as
returned from substr. This value is then assigned the value of $fix, modifying the contents of $word,
which is then printed out.

The result of this program is either the word remit, if we enter any kind of True value (such as 1), or
mitre if we enter either nothing or a string that evaluates to False (such as '0', or a non-numeric value).

Switches and Multi-Branched Conditions
A switch is a conditional statement that contains multiple branches of execution. It can be thought of as
rotary switch with several different positions. One simple but crude way to implement a switch is with
an if...elsif...else statement, as we saw earlier:

if ($value == 1) {
print "First Place";

} elsif ($value == 2) {
print "Second Place";

} elsif ($value == 3) {
print "Third Place";

} else {
print "Try Again";

}

The problem with this kind of structure is that after a few conditions it becomes hard to understand. Perl
does not have a multiple-branch conditional statement like C or Java, but we do not need one to
produce the same effect. Here are two ways of writing the same set of conditions in a block:

SWITCH: {
if ($value == 1) { print "First Place" };
if ($value == 2) { print "Second Place" };
if ($value == 3) { print "Third Place" };
if ($value > 3) { print "Try Again" };

}

SWITCH: {
$value == 1 and print "First Place";
$value == 2 and print "Second Place";
$value == 3 and print "Third Place";
$value > 3 and print "Try Again";

}

Here the block does not actually do anything useful except to allow us to group the conditions together
for clarity. The SWITCH: label that prefixes the block likewise has no function except to indicate that
the block contains a multiple-branch condition.

Structure, Flow, and Control

193

Unfortunately both of these examples are less efficient than the original example because all conditions
are tested even if an earlier one matches. As we saw earlier, bare blocks can be treated as loops, so we
can use last statements to break out of the condition when we have found the correct match. This also
allows us to drop the condition on the last condition:

SWITCH: {
$value == 1 and print ("First Place"), last;
$value == 2 and print ("Second Place"), last;
$value == 3 and print ("Third Place"), last;
print "Try Again"; # default case

}

We can also make use of the label to make our last statements more explicit:

SWITCH: {
$value == 1 and print ("First Place"), last SWITCH;
$value == 2 and print ("Second Place"), last SWITCH;
$value == 3 and print ("Third Place"), last SWITCH;
print "Try Again"; # default case

}

In this case the meaning of last is clear enough, but the label can be very useful in longer clauses,
particularly if we have loops or further blocks inside them.

If the cases we want to execute have only one or two statements, and are similar, it is fine just to write
them as a comma-separated list, as in this example. If the cases are more complex, however, this rapidly
becomes illegible. A better solution in this case might be to use do blocks:

SWITCH: {
$value == 1 and do {

print "First Place";
last;

};

$value == 2 and do {
print "Second Place";
last;

};

$value == 3 and do {
print "Third Place";
last;

};

print "Try Again";
}

Note that a do block does not count as a loop, so the last statements still apply to the switch block that
encloses them. This is fortunate otherwise we would have to say last SWITCH to ensure that the right
block is referred to. Of course, we can choose to use the label anyway for clarity, as noted above.

TE
AM
FL
Y

Team-Fly®

Chapter 6

194

If we are testing the value of a string rather than an integer we can reproduce the above techniques but
just replace the conditions with string equality tests:

SWITCH: {
$value eq "1" and print ("First Place"), last;
$value eq "2" and print ("Second Place"), last;
$value eq "3" and print ("Third Place"), last;
print "Try Again";

}

Having said this, if our strings are numeric we can do a numeric comparison if needs be. In this
example $value eq "1" and $value == 1 have precisely the same result, thanks to Perl's automatic
string number conversion. Of course, this only holds so long as we don't go past '9'.

We can also use regular expression matching:

SWITCH: {
$value =~/^1$/ and print("First Place"), last;
$value =~/^2$/ and print("Second Place"), last;
$value =~/^3$/ and print("Third Place"), last;
print "Try Again";

}

This might not seem much of an improvement, but regular expressions have the useful feature that if
they are not associated with a value then they use the contents of the special variable $_ that Perl
provides internally. As we mentioned earlier, it is the 'default variable' that functions read or write from
if no alternative variable is given. We will see in 'Using 'foreach' with Multi-Branched Conditions' how
to use this with foreach to rewrite our switch.

Returning Values from Multi-Branched Conditions
Simple if and unless statements do not return a value, but this is not a problem since we can write a
conditional expression using the ternary operator. For multiple-branch conditions we have to be more
inventive, but again Perl provides several ways for us to achieve this goal. One way to go about it is
with logical operators using a do block:

print do {
$value == 1 && "First Place" ||
$value == 2 && "Second Place" ||
$value == 3 && "Third Place" ||
"Try again"

}, "\n";

If this approach does not suit our purposes we can always resort to a subroutine and use return to
return the value to us:

sub placing {
$_[0] == 1 and return "First Place";
$_[0] == 2 and return "Second Place";
$_[0] == 3 and return "Third Place";

return "Try Again";}

print placing ($value), "\n";

Structure, Flow, and Control

195

Or, using the ternary operator:

sub placing {
return $_[0] == 1? "First place" :
$_[0] == 2? "Second place" :
$_[0] == 3? "Third place" :

"Try Again";
}

Finally, there is another solution involving using foreach, which we will also consider in 'Using
'foreach' With Multi-Branched Conditions'.

Loops and Looping
A loop is a block of code that is executed repeatedly, according to the criteria of the loop's controlling
conditions. Perl provides two kinds of loop:

❑ Iterating loops, provided by for and foreach

❑ Conditional loops, provided by while and until.

The distinction between the two types is in the way the controlling conditions are defined.

The for and foreach loops iterate over a list of values given either explicitly or generated by a
function or subroutine. The sense of the loop is 'for each of these values, do something'. Each value in
turn is fed to the body of the loop for consideration. When the list of values runs out, the loop ends.

The while and until loops, on the other hand, test a condition each time around the loop. The sense
of the loop is 'while this condition is satisfied, keep doing something'. If the condition succeeds, the loop
body is executed once more. If it fails, the loop ends. There is no list of values and no new value for
each iteration, unless it is generated in the loop body itself.

Both kinds of loop can be controlled using statements like next, last, and redo. These statements
allow the normal flow of execution in the body of a loop to be restarted or terminated, which is why
they are also known as loop modifiers. We have already talked about loop modifiers briefly in Chapter
2, but will learn more about them later in this chapter.

Since Perl is such a versatile language there are also ways to create loop-like effects without actually
writing a loop. Perl provides functions such as map and grep, while not technically loops, can often be
used to produce the same effect as a loop but more efficiently. In particular, if the object of a loop is to
process a list of values and convert them into another list of values, map may be a more effective
solution than an iterative foreach loop.

Writing C-style Loops with 'for'
The for and foreach keywords are actually synonyms, but in practice differ in how they are used. The
for loop imitates the structure of the for loop in C and is most frequently used by those migrating
from a C background. Here's how a for loop can be used to count from 9 to 0:

for ($n = 9; $n >= 0; $n--) {
print $n;

}

Chapter 6

196

Any C programmer will recognize this syntax as being identical to C, with the minor exception of the
dollar sign of Perl's scalar data type syntax. Similarly, to count from 0 to 9 we could write:

for ($n = 0; $n < 10; $n++) {
print $n, "\n";
sleep 1;

}
print "Liftoff! \n";

The parenthesized part of the for loop contains three statements, an initialization statement, a
condition, and a continuation statement. These are usually (but not always) used to set up and check a
loop variable, $n in the first example above. The initialization statement (here '$n=0') is executed
before the loop starts. Just before each iteration of the loop the condition $n<10 is tested, and if true the
loop is executed. If False, the loop finishes. After each completion of the loop body, the continuation
statement $n++ is executed. When $n reaches 10, the condition fails and the loop exits without
executing the loop body, making 9 the last value of $n to be printed and giving $n the value 10 after the
loop has finished.

In the above example we end up with the scalar variable $n still available, even though it is only used
inside the loop. It would be better to declare the variable so that it only exists where it is needed. Perl
allows the programmer to declare the loop variable inside the for statement. A variable declared this
way has its scope limited to the body of the for loop, so it exists only within the loop statement:

for (my $n = 0; $n < 10; $n ++) {
print $n,' is ', ($n % 2)? 'odd' : 'even';

}

In this example we declare $n lexically with my, so it exists only within the for statement itself. See
Chapter 8 for more on variable scope and the my statement.

As an aside, the for loop can happily exist with nothing supplied for the first or last statement in the
parentheses, though the semicolons are still required to distinguish from a Perl-style foreach loop,
since for and foreach are synonyms. The following is thus a funny looping while loop:

for (; eof (FILE) ;) {
print <FILE>;

}

While we are on the subject, the optional continue block is the same construct as the last statement of
the for loop, just with a different syntax. Here is the equivalent of the earlier for loop written using
while:

$n = 0;
while ($n < 10) {

print $n, ' is ', ($n % 2)? 'odd': 'even';
} continue {

$n ++;
}

We'll cover while loops in their own right in more detail a little later in the chapter.

Structure, Flow, and Control

197

Writing Better Loops with 'foreach'
The for loop is familiar to C programmers but for Perl programmers it is often unnecessarily
complicated. For instance, one of the most common uses of a for loop in C is to iterate over the
contents of an array using a loop variable to index the array (in this case, $n):

$n;
for ($n = 0; $n < $#array; $n ++) {

print $array [$n], "\n";
}

However, we do not need to use an index variable and index into the array each time, we can just
iterate directly over the contents of the array, using foreach:

$element;
foreach $element (@array) {

print $element, "\n";
}

Even better, foreach allows us to declare the loop variable in the loop. This saves a line because no
separate declaration is needed. More importantly, it restricts the scope of the variable to the loop, just as
with the for loop above. This means that if the variable did not exist beforehand, neither will it after:

foreach my $element (@array) {
print $element,"\n";

}
$element does not exist here

If the loop variable already happens to exist, Perl localizes the variable when it is used as a loop
variable, equivalent to using the local keyword. When the loop finishes the old value of the variable is
re-established:

#!/usr/bin/perl
befaft.pl
use warnings;
use strict

$var = 42;
print "Before: $var \n";
foreach $var (1..5) {

print "Inside: $var \n";
}
print "After: $var \n"; # prints '42', not '5'

This localization means that we cannot accidentally overwrite an existing variable, but it also means we
cannot return the last value used in a foreach loop as we would be able to in C. In order to do that we
would need to declare another variable outside the loop and assign the value of the loop variable to it
each time or (if we know when the loop will exit) on the last iteration. If we need to do so this we may
be better off using a while loop, or a map.

Although in practice, for is usually used for the C style and foreach for the Perl style, the two
keywords are actually synonyms, and both may be used in either of the C and Perl syntaxes. The
convention of using each in its allotted place is not enforced by Perl, but is generally considered good
practice anyway.

Chapter 6

198

If we really want to index an array by element number we can still do that with foreach. A foreach
loop needs a list of values, and we want to iterate from 0 to the highest element in the array, so we need
to generate a list from 0 to the highest element index and supply that to the foreach loop. We can
achieve that easily using the range operator and the $#array notation to retrieve the highest index:

foreach $element (0..$#array) {
print "Element $element is @array[$element] \n";

}

Using a range is easier to read but in versions of Perl prior to 5.005 is less efficient than using a loop
variable in a for (or while) loop, for the simple reason that the range operator creates a list of all the
values between the two ranges. For a range of 0 to one hundred million this involves the creation of a
list containing one hundred million integers, which requires at least four hundred million bytes of
storage. Of course it is unlikely that we are handling an array with one hundred million values in the
first place. However, the principle holds true, so be wary of creating large temporary arrays we should
can avoid them. From Perl 5.005 onwards the range operator has been optimized to return values
iteratively (rather like each) in foreach loops, so it is now much faster than a loop variable. This can
be considered a reason to upgrade as much as a programming point, of course.

If no loop variable is supplied, Perl uses the default variable $_ to hold the current loop value:

foreach (@array) {
print "$_ \n";

}

This is very convenient, especially with functions that default to using $_ if no argument is supplied, like
the regular expression operators:

foreach (@array) {
/match_text/ and print "$_ contains a match! \n";

}

A final, somewhat unusual form of the for/foreach loop inverts the loop to place the body before the
for. This is the same syntax as the inverted if, but applied to a loop instead. For example:

/match_text/ and print ("$_ contains a match! \n") foreach @array;

This syntax can be convenient for short loop bodies, but it is not really suitable if the foreach becomes
obscured. The above example is borderline legible, for example, and a map or the former version would
probably be better.

Using 'foreach' with Multi-Branched Conditions
We have already mentioned that, when used with switches and multi-branched conditions, regular
expressions have the particularly useful feature of using $_ when they are not associated with a value.
By combining this with a foreach loop, we can remove the test variable altogether. Without a defined
loop variable foreach assigns each value that it is given in turn to $_ inside the block that follows it, so
we can rewrite this SWITCH statement:

SWITCH: {
$value =~/^1$/ and print("First Place"), last;
$value =~/^2$/ and print("Second Place"), last;
$value =~/^3$/ and print("Third Place"), last;
print "Try Again";

}

Structure, Flow, and Control

199

like this:

foreach ($value) {
/^1$/ and print ("First Place"), last;
/^2$/ and print ("Second Place"), last;
/^3$/ and print ("Third Place"), last;
print "Try Again";

}

We have also seen how to return a value from multi-branched conditions using a do block, subroutine
or the ternary operator. However, foreach also comes in very handy here when used with logical
operators:

foreach ($value) {
$message =
/^1$/ && "First Place" ||
/^2$/ && "Second Place" ||
/^3$/ && "Third Place" ||
"Try Again";
print "$message \n";

}

Here we use a foreach to alias $value to $_, then test with regular expressions. Since $value is a
scalar, not a list, the loop only executes once, but the aliasing still takes place. The short-cut behavior of
logical operators will ensure that the first matching expression will return the string attached to the &&
operator. Note that if we were writing more complex cases, parentheses would be in order; for this
simple example we don't need them.

This approach works only so long as the resulting values are all True. In this case we are returning one
of the strings First Place...Try Again, which are all True, so there is no problem. For more
complex situations when zero, an undefined value, or an empty string, all of which evaluate to False, is
desired this will not work. Instead we can make use of the ternary operator to produce a similar effect:

foreach ($value) {
$message =
/^1$/? "First Place":
/^2$/? "Second Place":
/^3$/? "Third Place":
"Try Again";
print "$message \n";

}

The regular expressions in this example are testing against $_, which is aliased from $value by the
foreach.

Variable Aliasing in 'foreach' Loops
If we are iterating over a real array (as opposed to a list of values) then the loop variable is not a copy
but a direct alias for the corresponding array element. If we change the value of the loop variable then
we also change the corresponding array element. This can be a source of problems in Perl programs if
we don't take this into account, but it can also be very useful. This example uses aliasing to convert a list
of strings into a consistent capitalized form:

Chapter 6

200

#!/usr/bin/perl
capitalize.pl
use warnings;
use strict;

my @array = ("onE", "two", "THREE", "fOUR", "FiVe");
foreach (@array) {

lc turns the word into lowercase, ucfirst then capitalizes the first letter
$_ = ucfirst lc; # lc uses $_ by default with no argument

}
print join(',', @array);

Sometimes we might want to avoid the aliasing feature and instead modify a copy of the original array.
The simplest way to do that is to copy the original array before we start:

foreach (@tmparray = @array) {
$_ =~tr/a-z/A-Z/;

print;
}

The assignment to a local lexically scoped variable creates a temporary array, which can be modified
without affecting the original array. It is also disposed of at the end of the loop.

Conditional Loops – 'while', 'until', and 'do'
Unlike the foreach loop, which iterates over a list of values, the while and until loops do not use
a loop variable. Instead they test a condition and continue to execute the loop for so long as the
condition holds. Here is an example of counting from 1 to 10 using a while loop rather than a for or
foreach loop:

#!/usr/bin/perl
count10.pl
use warnings;
use strict;

count from 1 to 10 (note the post-increment in the condition)
my $n = 0;
while ($n++ < 10) {

print $n, "\n";
}

The while and until loops are well suited to tasks where we want to repeat an action continuously
until a condition that we can have no advance knowledge of occurs, such as reaching the end of a file.
The following example shows a while loop being used to read the contents of a file line by line. When
the end of the file is reached the readline operator returns False and the loop terminates:

$filename=<>;
open FILE, $filename;
while ($line = <FILE>) {

print $line;
}

close FILE;

Structure, Flow, and Control

201

If we replace while with until; the meaning of the condition is reversed, in the same way that
unless reverses the condition of an if statement. This make more sense when the nature of the
question asked by the Boolean test implies that we are looking for a 'no' answer. The eof function is a
good example, it returns True when there is no more data:

$filename=<>;
open FILEHANDLE, $filename;
until (eof(FILEHANDLE)) {

$line = <FILEHANDLE>;
print $line;

}

Variable Aliasing with 'while'
While loops do not alias their conditions the way that a foreach loop does its controlling list, because
there is no loop variable to alias with. However, a few Perl functions will alias their values to $_ if
placed in the condition of a while loop. One of them is the readline operator. This means we can write
a loop to read the lines of a file one by one without a loop variable:

$filename=<>;
open FH, $filename;
while (<FH>) {

print "$.: $_";
}

Or more tersely:

print "$.: $_" while <FH>;

Looping over Lists and Arrays with 'while'
We can loop over the contents of an array with while if we don't mind destroying the array as we do it:

while ($element = shift @array) {
print $element, "\n";

}
@array is empty here

On the face of it this construct does not appear to have any advantage over a more intuitive foreach
loop. In addition, it destroys the array in the process of iterating through it, since the removed elements
are discarded. However, it does have some advantages.

One simple advantage is if the elements of @array are very large memory-consuming values (like
image data), removing them from the array as soon as we have finished with them allows Perl to release
memory.

There are also computational advantages. Assume we have a list of unique strings and we want to
discard every entry before a particular 'start' entry. This is easy to achieve with a while loop because
we discard each non-matching string as we test it:

#!/usr/bin/perl
startexp.pl
use warnings;
use strict;

Chapter 6

202

define a selection of strings one of which is 'start'
my @lines = ("this", "that", "the other", "start", "the data", "we want");

discard lines until we see the 'start' marker
while (my $line = shift @lines) {

last if $line eq 'start';
}

print out the remaining elements using interpolation ($")
print "@lines";

Looping on Self-Modifying Arrays
We can use array functions like push, pop, shift, and unshift to modify the array even while we are
processing it. This lets us create some interesting variations on a standard loop that are otherwise hard
to achieve.

As an example, the following program oscillates indefinitely between two values. It works by shifting
elements off an array one by one and adding them to the other end after subtracting each value from
the highest value in the range, plus 1:

#!/usr/bin/perl
oscillator.pl
use warnings;
use strict;

my $max = 20;
my @array = (1..$max-1);

while (my $element = shift @array) {
push (@array, $max - $element);
sleep 1; # delay the print for one second to see the output
print '*' x $element, "\n"; # multiply single '*' to get a bar of '*'s

}

A slight variation of this program produces a loop that counts from one to a maximum value, then back
to one again, and terminates. The principal difference is that the array ranges from one to $max not one
to $max-1:

#!/usr/bin/perl
upanddown.pl
use warnings;
use strict;

my $max = 6;
my @array = (1..$max);

while (my $element = shift @array) {
push (@array,$max - $element);
print $element, " : ", join(",", @array), "\n";

}

Structure, Flow, and Control

203

Why should such a trivial difference cause the loop to terminate? This program produces the following
output, which shows us why it terminates after passing through the array only twice:

1 : 2,3,4,5,6,5
2 : 3,4,5,6,5,4
3 : 4,5,6,5,4,3
4 : 5,6,5,4,3,2
5 : 6,5,4,3,2,1
6 : 5,4,3,2,1,0
5 : 4,3,2,1,0,1
4 : 3,2,1,0,1,2
3 : 2,1,0,1,2,3
2 : 1,0,1,2,3,4
1 : 0,1,2,3,4,5

We can see from this what is actually going on. The values of the array are each replaced with a value
one lower. Since the first array element contained 1, this is reduced to zero. When it comes around for
the second time the result of the shift is a False value, because 0 is False, so the loop terminates.

These particular examples are chosen for simplicity, and could also be implemented using simpler
loops. For example, using an increment variable that oscillates between +1 and -1 at each end of the
number range. While we have only used an ordered list for clarity, the oscillator will work even if the
array does not contain ordered numbers.

Looping over Hashes with 'while'
We can iterate over a hash with while instead of foreach using the each function, which in a list
context returns the next key-value pair in the hash, in the same order that keys and values return the
keys and values, respectively. When there are no more key-value pairs, each returns undef, making it
suitable for use in the condition of a while loop:

while (($key, $value) = each(%hash)) {
print "$key => $value\n";

}

Using foreach and keys, or while and each for this kind of task is mostly a matter of personal
preference. However, foreach is generally more flexible as it allows sorting keys and aliasing with $_,
neither of which are possible in a while/each loop. However while avoids extracting the entire key
list at the start of the loop, and is preferable if we intend to quit the loop once a condition is met. This
is particularly true if the hash happens to be tied to something that is resource-heavy (in comparison to
in-memory hash) like a DBM database.

Note that a foreach loop is a much safer option if we want to alter the contents of the array or hash we
are iterating over. In particular, the internal iterator that each uses can get confused if the hash is
modified during the course of the loop.

'do...while' and 'do...until'
One problem with while and until loops is that they test the condition first and only execute the loop
body if the test succeeds. This means that if the test fails on the first pass, the loop body is never
executed. Sometimes, however, we want to ensure that the body is executed at least once. Fortunately
we can invert while and until loops by appending them to a do block to produce a do���while or
do���until loop:

TE
AM
FL
Y

Team-Fly®

Chapter 6

204

do {
$input = <>;
print "You typed: $input \n";

} while ($input !~ /^quit/);

Or, alternatively:

do {
$input = <>;
print "You typed: $input \n";

} until $input =~ /^quit/;

Note that parentheses around the condition are optional in an inverted while or until loop, just as
they are in an inverted if.

Interestingly, this inverted loop structure applies to all the looping statements, even foreach:

this works, but is confusing - don't do it.
do {

print;
} foreach (@array);

However there is little point in doing this for foreach, first because it will not work except using $_,
second because the loop body does not execute first as it needs the loop value to proceed, and third
because it's just plain confusing. We mention it only because Perl allows it, and it is conceivably
possible that we may encounter it in code.

Note that in the inverted form we cannot declare a variable in the conditional expression. We also
cannot use loop control statements to control the loop's execution as these are not permitted in a do
block – see 'The Trouble with do' later in the chapter.

Controlling Loop Execution
Ordinarily a loop will execute according to its controlling criteria. Frequently, however, we want to alter
the normal flow of execution from within the loop body itself, depending on conditions that arise as the
loop body is executed. Perl provides three statements for this, collectively known as loop modifiers:
next, which advances to the next iteration (retesting the loop condition), last, which immediately
exits the loop, and redo, which restarts the current iteration (without retesting the loop condition).

The next statement forces the loop immediately on to the next iteration, skipping any remaining code
in the loop body, but executing the continue block if it is present. It is most often used when all the
tasks necessary for a given iteration have been completed or the loop variable value for the current
iteration is not applicable.

The following code snippet reads configuration parameters from the user, consisting of lines of name =
value pairs. It uses next to skip past empty lines, comments (lines beginning with a #), and lines
without an equals sign:

#!/usr/bin/perl
config.pl
use warnings;
use strict;

Structure, Flow, and Control

205

my %config = ();
while (<>) {

chomp; #strip linefeed

next if /^\s*$/; #skip to the next iteration on empty lines
next if /^\s*\#/; #skip to the next iteration on comments
my ($param, $value) = split("=", $_, 2); #split on first '='

unless ($value) {
print ("No value for parameter '$_' \n");

next;
}

$config{$param} = $value;
}

foreach (sort keys %config) {
print "$_ => $config{$_} \n";

}

The last statement forces a loop to exit immediately, as if the loop had naturally reached its last
iteration. A last is most often used when the task for which the loop was written has been completed,
such as searching for a given value in an array, once found, no further processing is necessary:

#!/usr/bin/perl
last.pl
use warnings;
use strict;

my @array = ("One", "Two", "Three", undef, "Five", "Six");

copy array up to the first undefined element
my @newarray = ();
foreach my $element (@array) {

last unless defined ($element);
push @newarray, $element;

}

foreach (@newarray) {
print $_." \n"; # prints One, Two, Three

}

The redo statement forces the loop to execute the current iteration. At first sight this appears similar to
next. The distinction is that with redo the loop condition is not retested, and the continue block, if
present, is not executed. In the case of a foreach loop, this means that the loop variable retains the
value of the current loop rather than advances to the next. In the case of a while or until loop the
code in the conditional clause is not re-executed, and any functions in it are not called. A redo is most
often used when more than one iteration may be needed before the main body of a loop can be
executed, for example reading files with multiple-line statements:

#!/usr/bin/perl
backslash.pl
use warnings;
use strict;

Chapter 6

206

my @lines = ();
while (<>) {

chomp;
if (s/\\$//) { # check for and remove a trailing backslash character

my $line = <>;
$_.= $line, redo; # goes to the 'chomp' above

}
push @lines, $_;

}

foreach (0..$#lines) {
print "$_ : $lines[$_] \n";

}

In this example the while statement reads a line and aliases it to $_. The chomp removes the trailing
newline, and the remainder of the line is checked for a trailing backslash. If one is found, another line is
read and appended to $_.

Inside the if statement, the redo is called to pass execution back up to the chomp statement. Since
redo does not re-execute the while statement the value of $_ is not overridden and the chomp is
performed on the value of $_ that was assigned inside the if statement. This process continues so long
as we continue to enter lines ending with a backslash.

All of the loop control statements next, last, and redo can be used in any kind of loop (for,
foreach, while, until). Exceptions to this are the do...while and do...until loops. This is
because loops built around do blocks do not behave quite the way we expect, as we will see shortly.

The 'continue' Clause
All of Perl's loops can accept an additional continue clause. Code placed into the block of a
continue clause is executed after the main body of the loop. Ordinarily this has no different effect
from just adding the code to the end of the main loop, unless the loop body contains a next statement,
in which case the continue block is executed before returning to the top of the loop. This makes a
continue block a suitable place to increment a loop variable:

$n = 0;

while ($n < 10) {
next if ($n % 2);
print $n, "\n";

} continue {
'next' comes here
$n++;

}

'last' comes here

Note, however, that a last statement will not execute the continue block before exiting the loop.
Similarly, redo will not execute the continue block because it re-executes the loop body on the same
iteration, rather than continuing to the next.

There are few, if any, instances where a continue block is actually necessary, since most loops with a
continue clause can be easily rewritten to avoid one.

Structure, Flow, and Control

207

The continue clause is actually an explicit way to write the third part of a for loop, which deals with
next, last, and redo in the same way as the while...continue loop above:

for ($n = 0; $n < 10; $n++) {
next if ($n % 2);
print $n, "\n";

}

This example is exactly equivalent in both execution and semantics to the while loop above, with the
single exception that the scope of $n is limited to the body of the loop itself. If we placed enclosing
braces before the my $n = 0; and after the continue block, the two examples would be effectively
identical, except that the for loop is a lot shorter and simpler to read.

Controlling Nested Loops
So far we have just seen how to use loop control statements to affect the execution of the current loop.
However, the next, last, and redo statements all accept an optional loop label as an argument. This
allows us to jump to the start or end of an outer loop, so long as that loop has a name. To give a loop a
name we just prefix it with a label:

@lines = ();
LINE: foreach (<>) {

chomp;
next LINE if /^$/; # skip blank lines
push @lines, $_;

}

Even in a simple loop this allows us to write slightly more legible code in places. Since the label
indicates the purpose of the loop and of the control statements inside it, next LINE literally means 'do
the next line'. However, if we have two nested loops, labeling the outer loop allows us to jump to the
next iteration of the outer loop using next:

OUTER: foreach my $outer (@array) {
INNER: foreach my $inner (@{$outer}) {

next OUTER unless defined $inner;
}
'last' or 'last INNER' would come here

}

This is very similar to using a last statement, except that it will jump to the top of the outer loop rather
than the end of the inner loop. If the outer loop contains more code after the inner loop, next will
avoid it while last will execute it.

Similarly, we can use last to exit both loops simultaneously. This is a much more efficient way to exit
nested loops than exiting each loop individually:

LINE: foreach my $line (<>) {
chomp;
ITEM: foreach (split /, /, $line) {

last LINE if /^_END_/; # abort both loops on token
next LINE if /^_NEXT_/; # skip remaining items on token

next ITEM if /^\s*$/; # skip empty columns

Chapter 6

208

process item
print "Got: $_ \n";

}
}

Labeling the inner loop is optional. The outer loop does need to be labeled, allowing loop control
statements to apply themselves to the outer loop and not to the inner loop. However, if we use labels for
some loop control statements it is generally more legible to use them for all of the loop control
statements.

Perl allows labels to be defined multiple times. When a label is used, the label definition that is closest
in scope is taken to be the target. For loop control statements, the first matching loop label in the stack
of loops surrounding the statement is used. In general we do not expect to be giving two loops the same
name if one is inside the other, so it is always clear which label a loop control statement is referring to.
Reusing labels is also handy for switch style conditional statements, and any other constructs where
we want to make the purpose of the construct clear.

Intriguingly, we can jump to a loop label of an outer loop even if there is a subroutine call in the way.
This is not really a good idea, and Perl will warn us if we do it inadvertently:

Exiting subroutine via next at ...

Although we would not expect to do this normally, it is possible to mistype the name of a label,
especially if we copy and paste carelessly.

The Trouble with 'do'
The fact that loop modifiers do not work in do...while, or do...until loops may seem strange. The
reason for this is slightly obscure, but comes about because unlike a normal while or until loop, the
while and until conditions in a do...while or do...until loop are considered modifiers that
modify the behavior of the do block immediately before them. The do block is not considered to be a
loop, so loop control statements do not work in them.

It is possible, though not terribly elegant, to get a next statement to work in a do...while loop
through the addition of an extra bare block inside the do block, as in this example:

#!/usr/bin/perl
even1.pl
use warnings;
use strict;

print out even numbers with a do...while loop
my $n = 0;
do { {

next if ($n % 2);
print $n, "\n";

} } while ($n++ < 10);

Unfortunately while this works for next, it does not work for last, because both next and last
operate within the bounds of the inner block. All last does in this case is take us to the end of the
inner block, where the while condition is still in effect. In order to get last to work we have to
invert the blocks and put the do block inside the bare block. Unfortunately, this will now cause next to
do the same as last. It will take us to the next iteration of the outer bare block, which, as it only
executes once, exits the loop. The only way to have both working is to use a label for an outer block
and an inner block:

Structure, Flow, and Control

209

#!/usr/bin/perl
even2.pl
use warnings;
use strict;

print out even numbers with a do...while loop
my $n = 0;
DO_LOOP: { do { {

next if ($n % 2);
print $n, "\n";
...do other stuff
last DO_LOOP if $n == 10;

} } while (++$n) }

This is extremely ugly code. The better solution at this point is to find a way to rephrase this code as a
normal while, until, or foreach loop and avoid the whole problem:

$n = 0;
while (++$n <= 10) {

next if ($n % 2);
print $n, "\n";

do other stuff
}

The 'goto' Statement
The goto statement has two basic modes of operation. The simpler and more standard use allows
execution to jump to an arbitrary labeled point in the code, just as in C and many other languages.

($lines, $empty, $comment, $code) = (0, 0, 0, 0);

while (<>) {
/^$/ and $empty++, goto CONTINUE;
/^#/ and $comment++, goto CONTINUE;
$code++, goto CONTINUE;

CONTINUE:
$lines++;

}

There are few, if any, reasons to use a goto with a label. In this case, we would be better off replacing
goto with next statements and putting the continue code into a continue block:

while (<>) {
/^$/ and $empty++, next;
/^#/ and $comment++, next;
$code++;

} continue {
$lines++;

}

Chapter 6

210

A goto statement can also take an expression as its argument. The result of the expression should be a
label that execution can jump to. This gives us another, albeit rather ugly, way to write a compound
switch statement:

$selection = int (4*rand); # $selection is a random integer

@selections = ("ZERO", "ONE", "TWO", "THREE");
goto $selections[$selection];

{
ZERO:
print "None";
next;
ONE:
print "One";
next;
TWO:
print "Two";
next;
THREE:
print "Three";
next;

}

print "...done \n";

Again, there are better ways to write compound statements. We covered these earlier, so we should not
have to resort to goto here.

The second, and more interesting use of goto, is used to call subroutines. When used in this context the
new subroutine entirely replaces the current one, so that on return from the second subroutine
execution is returned to the caller of the first subroutine. The primary use of this form is in autoloaded
functions, which will be covered later in this chapter, and also in Chapter 10.

It can also be used for so called tau-recursion. This is where a recursive subroutine can call itself
repeatedly without causing Perl to create an ever-growing stack of subroutine calls. A subroutine that
calls itself ten thousand times can return directly to the original caller instead of returning a value
through ten thousand intermediate subroutine calls. We will cover this in Chapter 7.

'maps' and 'greps'
The map and grep functions are list-processing functions that convert one list into another. If the goal
of a foreach or while loop is to generate a new list, we might be able to do the job better using map
or grep. The syntax of map (and grep) takes one of two equivalent forms:

map EXPRESSION, LIST grep EXPRESSION, LIST
map BLOCK LIST grep BLOCK LIST

In each case the EXPRESSION or BLOCK is executed for each value of LIST, and the results returned as
a new list. This is not dissimilar to the way that foreach works, except that map returns a value that
can be immediately used in a larger expression or statement.

Structure, Flow, and Control

211

The purpose of map is to convert the elements of a list one by one, and produce a new list as a result.
The expression or block performs the conversion, so map is conceptually related to a foreach loop.
Similarly, the purpose of grep is to return a list containing a subset of the original list. The expression
or block is evaluated to a True or False value to see if the element is eligible for inclusion, so grep is
conceptually related to a while loop. Both functions perform aliasing to $_ in the same way that
foreach does.

'map'
To illustrate how map works in practice, let's take an example. Assume that we have a list of integers
representing ASCII values, and we want to turn it into a list of character strings. We can do that with a
foreach loop like this:

@numbers = (80, 101, 114, 108);
@characters;

foreach (@numbers) {
push @characters, chr $_;

}

print @characters;

With map we can do it like this:

@numbers = (80, 101, 114, 108);
@characters = map (chr $_, @numbers);

Or, equivalently:

@characters = map {chr $_} @numbers;

Even better, we can turn the result into a string and print it in one go, because map returns the resulting
list, unlike the foreach loop:

print join ('-', map {chr $_} @numbers); # displays 'P-e-r-l'

As we can see, map is closely related to foreach, and operates in a similar way, especially with regards
to aliasing. Unlike foreach however, map cannot choose its own loop variable and must use $_ within
the block or expression. It also cannot make use of loop control variables in the same way that a do
block cannot.

The choice between foreach and map mainly boils down to the purpose of the loop. If the purpose of
the loop is to generate a new list, and we intend to immediately use that list in a larger expression, we
should use map. If the loop has effects other than building the list, or needs to use loop control
statements, we are better off using foreach.

'grep'
The grep function gets its name from the UNIX grep command, which scans text files and returns
lines from them that match a given regular expression search pattern. The Perl grep function is similar
in concept in that it returns a list containing a subset of the original list, though it does not directly have
anything to do with regular expressions.

Chapter 6

212

The syntax of grep is identical to map, but while the expression or block in a map statement is used to
convert each value in a list, the corresponding expression or block in a grep statement is evaluated as a
condition to determine if the value should be included in the new list.

For example, the following while loop calculates the lines starting with numbers, and then builds up a
list of the lines input:

@numerics = ();
while (<>) {

push @numerics, $_ if /^\d+/;

}
print "@numerics\n";

The same thing is much shorter with map, but involves a conditional operation:

@numerics = map {/^\d + /?$_:()} <>;

This works because () returns nothing and so adds nothing to the list being built by map. This is
essentially what grep does automatically, so we can simplify the above to just:

@numerics = grep {/^\d + /} <>;

Here we have used a regular expression as the condition, in keeping with the spirit of the UNIX grep
command, which works on a similar basis. However, since grep accepts any expression or block to test
the condition, we can use any kind of condition we like.

Note that because grep tests each value that it is supplied with, rather than manipulating it like map,
does not mean that it has to leave the values untouched. Since grep aliases $_ to the values of the
original list, we can alter the resulting list by assigning to $_, so long as we are prepared to accept that
this also alters the original list. This is fine if we intend to discard the original list, but bad practice
otherwise, it leads to confusing and hard-to-understand code.

The following example uses grep and assigns to $_ to produce a modified version of the elements that
match. First it strips the leading numbers with a substitution, then assigns $_ to give the remaining string
a prefix:

@numerics = grep {

if (s/\d+//) {
$_ = "Got: $_";

}
}
<>;

Due to the fact that the result of the assignment is the value assigned, which in this case is a string that
starts with Got:, the whole block evaluates to a true value if the initial substitution succeeds, and an
undefined value otherwise.

As with map, there is a limit to how far this kind of approach should be pushed. Once the complexity
reaches a certain point it becomes more practical and certainly more legible to use a foreach or while
loop instead.

Structure, Flow, and Control

213

Summary
We started this chapter by exploring the basic structures of Perl. We covered statements, declarations,
expression, and blocks. We looked in particular at the facilities provided by blocks.

We covered Perl's conditional statements, if, else, elsif, and unless. We also looked in detail at
how to create loops with for and foreach, and how to create conditional loops with while, until,
do, do���while and do���until.

The chapter also covered how to control the execution of loops with the modifiers next, last, redo,
and continue. Finally, the chapter covered the goto statement as well as map and grep.

TE
AM
FL
Y

Team-Fly®

Chapter 6

214

Subroutines

Subroutines are autonomous blocks of code that function like miniature programs and can be executed
from anywhere within a program. Because they are autonomous, calling them more than once will also
reuse them.

There are two types of subroutine, named and anonymous. Most subroutines are of the 'named'
persuasion. Anonymous subroutines do not have a name by which they can be called, but are stored
and accessed through a code reference. Since a code reference is a scalar value, it can be passed as a
parameter to other subroutines.

The use of subroutines is syntactically the same as the use of Perl's own built-in functions. We can use
them in a traditional function-oriented syntax (with parentheses), or treat them as named list operators.
Indeed, we can override and replace the built-in functions with our own definitions provided as
subroutines through the use of the use subs pragma.

Subroutines differ from ordinary bare blocks in that they can be passed a list of parameters to process.
This list appears inside subroutines as the special variable @_, from which the list of passed parameters
(also known as arguments) can be extracted.

Because the passed parameters take the form of a list, any subroutine can automatically read in an
arbitrary number of values, but conversely the same flattening problem that affects lists that are placed
inside other lists also affects the parameters fed to subroutines.

The flexibility of the parameter passing mechanism can also cause problems if we want to actually
define the type and quantity of parameters that a subroutine will accept. Perl allows us to define this
with an optional prototype, which, if present, allows Perl to do compile-time syntax checking on how
our subroutines are called.

Chapter 7

216

Subroutines, like bare blocks, may return either a scalar or a list value to the calling context. This allows
them to be used in expressions just as any other Perl value is. The way this value is used depends on the
context in which the subroutine is called.

Declaring and Calling Subroutines
Subroutines are declared with the sub keyword. When Perl encounters sub in a program it stops
executing statements directly, and instead creates a subroutine definition that can then be used
elsewhere. The simplest form of subroutine definition is the explicit named subroutine:

sub mysubroutine {
print "Hello subroutine! \n";

}

We can call this subroutine from Perl with:

call a subroutine anywhere
mysubroutine ();

In this case we are calling the subroutine without passing any values to it, so the parentheses are empty.
To pass in values we supply a list to the subroutine. Note how the subroutine parentheses resemble a list
constructor:

call a subroutine with parameters
mysubroutine ("testing", 1, 2, 3);

Of course just because we are passing values into the subroutine does not mean that the subroutine will
use them. In this case the subroutine entirely ignores anything we pass to it. We'll cover passing values
in more detail shortly.

In Perl it does not matter if we define the subroutine before or after it is used. It is not necessary to
predeclare subroutines. When Perl encounters a subroutine call it does not recognize, it searches all the
source files that have been included in the program for a suitable definition, and then executes it.
However, defining or predeclaring the subroutine first allows us to omit the parentheses and use the
subroutine as if it were a list operator:

call a previously defined subroutine without parentheses
mysubroutine;
mysubroutine "testing", 1, 2, 3;

Note that calling subroutines without parentheses alters the precedence rules that control how their
arguments are evaluated, which can cause problems, especially if we try to use a parenthesized
expression as the first argument. If in doubt, use parentheses.

We can also use the old-style & code prefix to call a subroutine. In modern versions of Perl (that is,
anything from Perl 5 onwards) this is strictly optional, but older Perl programs may contain statements
like:

call a Perl subroutine using the old syntax
&mysubroutine;
&mysubroutine();

Subroutines

217

The ampersand has the property of causing Perl to ignore any previous definitions or declarations for
the purposes of syntax, so parentheses are mandatory if we wish to pass in parameters. It also has the
effect of ignoring the prototype of a subroutine, if one has been defined. Without parentheses, the
ampersand also has the unusual property of providing the subroutine with the same @_ array that the
calling subroutine received, rather than creating a new one. In general, the ampersand is optional and,
in these modern and enlightened times, it is usually omitted for simple subroutine calls.

Anonymous Subroutines and Subroutine References
Less common than named subroutines, but just as valid, are anonymous subroutines. As their name
suggests, anonymous subroutines do not have a name. Instead they are used as expressions, which
return a code reference to the subroutine definition. We can store the reference in a scalar variable (or
as an element of a list or a hash value) and then refer to it through the scalar:

my $subref = sub {print "Hello anonymous subroutine";};

In order to call this subroutine we use the ampersand prefix. This instructs Perl to call the subroutine
whose reference this is, and return the result of the call:

call an anonymous subroutine
&$subref;
&$subref ("a parameter");

This is one of the few places that an ampersand is still used. However, even here it is not required; we
can also say:

$subref->();
$subref->("a parameter");

These two variants are nearly, but not quite, identical. Firstly, &$subref; passes the current @_ array (if
any) directly into the called subroutine, as we briefly mentioned earlier. Secondly, the ampersand
disables any prototypes we might have defined for the subroutine. The second pair of calls retains the
prototype in place. (We cover both of these points later in the chapter.)

We can generate a subroutine reference from a named subroutine using the backslash operator:

my $subref = \&mysubroutine;

This is more useful than one might think, because we can pass a subroutine reference into another
subroutine as a parameter. The following simple example demonstrates a subroutine taking a subroutine
reference and a list of values, and returning a new list generated from calling the subroutine on each
value of the passed list in turn:

#!/usr/bin/perl
callsub.pl
use warnings;
use strict;

sub do_list {
my ($subref, @in) = @_;
my @out;
map {push @out, &$subref ($_)} @in;
return @out;

}

Chapter 7

218

sub add_one {
return $_[0] + 1;

}

$, = ",";
print do_list (\&add_one, 1, 2, 3); # prints 2, 3, 4

Some Perl functions (notably sort), also accept an anonymous subroutine reference as an argument.
We do not supply an ampersand in this case because sort wants the code reference, not the result of
calling it. Here is a sort program that demonstrates the different ways we can supply sort with a
subroutine. The anonymous subroutine appearing last will not work with Perl 5.005:

#!/usr/bin/perl
sortsub.pl
use warnings;
use strict;

a list to sort
my @list = (3, 4, 2, 5, 6, 9, 1);

directly with a block
print sort {$a cmp $b} @list;

with a named subroutine
sub sortsub {

return $a cmp $b;
}
print sort sortsub @list;

with an anonymous subroutine
my $sortsubref = sub {return $a cmp $b;};
print sort $sortsubref @list;

Of course, since we can get a code reference for an existing subroutine we could also have said:

$sortsubref = \&sortsub;

The advantage of using the anonymous subroutine is that we can change the subroutine that sort uses
elsewhere in the program, for example:

define anonymous subroutines for different sort types:
$numericsort = sub {$a <=> $b};
$stringsort = sub {$a cmp $b };
$reversenumericsort = sub {$b <=> $a};

now select a sort method
$sortsubref = $numericsort;

The disadvantage of this technique is that unless we take care to write and express our code clearly, it
can be very confusing to work out what is going on, since without running the code it may not always be
possible to tell which subroutine is being executed where. We can use print $subref to print out the
address of the anonymous subroutine, but this is not nearly as nice to read as a subroutine name.

Subroutines

219

It is also possible to turn an anonymous subroutine into a named one, by assigning it to a typeglob. This
works by manipulating the symbol table to invent a named code reference that Perl thereafter sees as a
subroutine definition. This leads to the possibility of determining the actual code supported by a
subroutine name at run time, which is handy for implementing things like state machines. This will be
covered more fully in 'Manipulating the Symbol Table Directly' in Chapter 8.

Strict Subroutines and the 'use strict subs' Pragma
The strict pragma has three components, refs, vars, and subs. The subs component affects how
Perl interprets unqualified (that is, not quoted or otherwise identified by the syntax) words or
'barewords' when it encounters them in the code.

Without strict subroutines in effect, Perl will allow a bareword and will interpret it as if it were in single
quotes:

$a = bareword;
print $a; # prints "bareword";

The problem with this code is that we might later add a subroutine called bareword, at which point the
above code suddenly turns into a function call. Indeed, if we have warnings enabled, we will get a
warning to that effect:

Unquoted string "bareword" may clash with future reserved word at ...

Strict subroutines is intended to prevent us from using barewords in a context where they are
ambiguous and could be confused with subroutines. To enable them, use one of the following:

use strict; # enables strict refs, vars, and subs
use strict subs; # enables strict subs only

Now any attempt to use a bareword will cause Perl to generate a fatal error:

Bareword "bareword" not allowed while "strict subs" in use at ...

Ironically, the second example contains the illegal bareword subs. It works because at the point Perl
parses the pragma it is not yet in effect. Immediately afterwards, barewords are not permitted, so to
switch off strict subs again we would have to use either quotes or a quoting operator like qw:

no strict 'subs';
no strict q(subs);
no strict qw(subs);

Predeclaring Subroutines
Perl allows subroutines to be called in two alternative syntaxes: functions with parentheses or list
operators. This allows subroutines to be used as if they were one of Perl's built-in list operator functions
such as print or read (neither of which require parentheses).

This syntax is only valid if Perl has already either seen the subroutine definition or a declaration of the
subroutine. The following subroutine call is not legal, because the subroutine has not yet been defined:

Chapter 7

220

debug "This is a debug message"; # ERROR: no parentheses
#...rest of program...

sub debug {
print STDERR @_, "\n";

}

The intention here is to create a special debug statement, which works just like the print statement,
but prints to standard error rather than standard out, and automatically adds a linefeed. Because we
want it to work like print in all other respects we would prefer to omit the brackets if we choose to,
since print allows us to do that.

predeclare subroutine 'debug'
sub debug;

debug "This is a debug message"; # no error
#...rest of program...

sub debug {
print STDERR @_, "\n";

}

Subroutines are also predeclared if we import them from another package (see Chapter 10 for more on
packages), as in:

use mypackage qw(mysubroutine);

It is worth noting here that even if a package automatically exports a subroutine when it is used, that
does not predeclare the subroutine itself. In order for the subroutine to be predeclared, we must name it
in the use statement. Keeping this in mind, we might prefer just to stick to parentheses.

Overriding Built-in Functions
Another way to predeclare subroutines is with the use subs pragma. This not only predeclares the
subroutine, but also allows us to override Perl's existing built-in functions and replace them with our
own. We can access the original built-in function with the CORE:: prefix. For example, here is a
replacement version of the srand function, which issues a warning if we use srand in a version of Perl
of 5.004 or greater without arguments (see Appendix C for more on the srand function):

#!/usr/bin/perl
srandcall.pl
use warnings;
use strict;
use subs qw(srand);

sub srand {
if ($] >= 5.004 and not @_) {

warn "Unqualified call to srand redundant in Perl $]";
} else {

call the real srand via the CORE package
CORE::srand @_;

}
}

Subroutines

221

Now if we use srand without an argument and the version of Perl is 5.004 or greater, we get a warning.
If we supply an argument we are assumed to know what we are doing and are supplying a suitably
random value.

Subroutines like this are generally useful in more than one program, so we might want to put this
definition into a separate module and use it whenever we want to override the default srand:

#!/usr/bin/perl
mysrand.pm

package mysrand;

use strict;

use vars qw(@ISA @EXPORT @EXPORT_OK);
use Exporter;

@ISA = qw(Exporter);
@EXPORT = qw(mysrand);
@EXPORT_OK = qw(srand);

sub mysrand {
if ($] >= 5.004 and not @_) {

warn "Unqualified call to srand redundant in Perl $]";

} else {
call the real srand via the CORE package
CORE::srand @_;
}

}

use subs qw(srand);
sub srand {&mysrand;}; # pass @_ directly to mysrand

This module, which we would keep in a file called mysrand.pm to match the package name, exports
the function mysrand automatically, and the overriding srand function only if we ask for it.

use mysrand; # import 'mysrand'
use mysrand qw(mysrand); # import and predeclare mysrand;
use mysrand qw(srand); # override 'srand'

We'll talk about packages, modules, and exporting subroutines in Chapter 10.

The Subroutine Stack
Whenever Perl calls a subroutine, it pushes the details of the subroutine call onto an internal stack. This
holds the context of each subroutine, including the parameters that were passed to it in the form of the
@_ array, ready to be restored when the call to the next subroutine returns. The number of subroutine
calls that the program is currently in is known as the 'depth' of the stack. Calling subroutines are higher
in the stack, and called subroutines are lower.

This might seem academic, and to a large extent it is, but Perl allows us to access the calling stack
ourselves with the caller function. At any given point we are at the 'bottom' of the stack, and can look
'up' to see the contexts stored on the stack by our caller, its caller, and so on, all the way back to the top
of the program. This can be handy for all kinds of reasons, but most especially for debugging.

Chapter 7

222

In a purely scalar context, caller returns the name of the package from which the subroutine was
called, and undef if there was no caller. Note that this does not require that the call came from inside
another subroutine – it could just as easily be from the main program. In a list context, caller returns
the package name, the source file, the line number from which we were called, and the name of the
subroutine that was called (that is, us). This allows us to write error traps in subroutines like:

sub mysub {
($pkg, $file, $line) = caller;
die "Called with no parameters at $file line $line" unless @_;

}

If we pass a numeric argument to caller, it looks back up the stack the requested number of levels,
and returns a longer list of information. This level can of course be '0', so to get everything that Perl
knows about the circumstances surrounding the call to our subroutine we can write:

@caller_info = caller 0; # or caller(0), if we prefer

This returns a whole slew of items into the list, which may or may not be defined depending on the
circumstances. They are, in order:

� package: the package of the caller

� filename: the source file of the caller

� line: the line number in the source file

� subroutine: the subroutine that was called (that is, us). If we execute code inside an eval
statement then this is set to eval

� hasargs: this is true if parameters were passed (@_ was defined)

� wantarray: the value of wantarray inside the caller, see 'Returning Values' later in
the chapter

� evaltext: the text inside the eval that caused the subroutine to be called, if the subroutine
was called by eval

� is_require: true if a require or use caused the eval

� hints: compilation details, internal use only

� bitmask: compilation details, internal use only

In practice, only the first four items: package, filename, line, and subroutine are of any use to us, which
is why they are the only ones returned when we use caller with no arguments. Unfortunately we do not
get the name of the calling subroutine this way, so we have to extract that from further up the stack:

get the name of the calling subroutine, if there was one
$callingsub = (caller 1)[3];

Or, more legibly:

($pkg, $file, $line, $callingsub) = caller 1;

Armed with this information, we can create more informative error messages that report errors with
respect to the caller. For example:

Subroutines

223

die with a better error message

sub mysub {
($pkg, $file, $line) = caller;
die "Called from ", (caller(1)) [3], " with no parameters at $file line $line

\n" unless @_;
...

}

If debugging is our primary interest, a better solution than all the above is to use the Carp module. The
Carp module and other debugging aids are covered in Chapter 17.

One final point about the calling stack: if we try to access the stack above the immediate caller we may
not always get the right information back. This is because Perl can optimize the stack under some
circumstances, removing intermediate levels. The result of this is that caller is not always as consistent
as we might expect, so a little caution should be applied to its use.

Recursion
Recursion happens when a subroutine calls itself, either directly, or indirectly, via another subroutine
(also known as mutual recursion). For example, consider this subroutine that calculates the Fibonacci
sequence up to a specified number of terms:

#!/usr/bin/perl
fib1.pl
use warnings;
use strict;

sub fibonacci1 {
my ($count, $aref) = @_;

unless ($aref) {
first call - initialize
$aref = [1, 1];
$count -= scalar(@{$aref});
}

$aref = [1,1] unless $aref;
if ($count--) {

my $next = $aref->[-1] + $aref->[-2];
push @{$aref}, $next;
return fibonacci1($count, $aref);

} else {
return wantarray?@{$aref}: $aref->[-1];

}
}

calculate 10th element of standard Fibonacci sequence
print scalar(fibonacci1(10)), "\n";

calculate 10th element beyond sequence starting 2, 4
print scalar(fibonacci1(10, [2, 4])), "\n";

return first ten elements of standard Fibonacci sequence
my @sequence = fibonacci1(10);
print "Sequence: @sequence \n";

TE
AM
FL
Y

Team-Fly®

Chapter 7

224

Each time the subroutine is entered, it calculates one term, decrements the counter by one and calls
itself to calculate the next term. The subroutine takes two arguments, the counter, and a reference to the
list of terms being calculated. (As a convenience, if we don't pass in a reference the subroutine initializes
itself with the start of the standard Fibonacci sequence, 1, 1.) We pass in a reference to avoid copying
the list repeatedly, which is wasteful. When the counter reaches zero, the subroutine exits without
calling itself again, and returns either the whole list or the last term, depending on how it was called.

This is an example of forward recursion, where we start at the beginning of the task and work our way
towards the end. Elements are calculated one by one as we continue with our recursion. An alternative
way of doing the same job is to use reverse recursion, which starts by trying to calculate the last term
first:

#!/usr/bin/perl
fib2.pl
use warnings;
use strict;

sub fibonacci2 {
my ($count, $internal) = @_;

if ($count <= 2) {
we know the answer already
return $internal?[1,1]: 1;

} else {
call ourselves to determine previous two elements
my $result = fibonacci2($count -1, 'internal');
now we can calculate our element
my $next = $result->[-1] + $result->[-2];

if ($internal) {
push @{$result}, $next;
return $result;

} else {
return $next;

}
}

}

foreach (1..20) {
print "Element $_ is ", fibonacci2($_), "\n";

}

This time the subroutine starts by trying to work out the last term, starting at the end, and reversing
back towards the beginning until we can determine the answer without a further call. If the requested
term is the first or second, it just returns the result, otherwise, it needs to work out the terms prior to the
one we have been asked for, which it does by calling itself for the previous terms. In this model, we
descend rapidly to the bottom of the recursion stack until we get the answer '[1,1]'. We then calculate
each new term as we return back up.

Reverse recursion is not as obvious as forward recursion, but can be a much more powerful tool,
especially in algorithms where we do not know in advance exactly how the initial known results will be
found. Problems like the Queen's Dilemma (placing eight queens on a chessboard such that no Queen
can take another) are more easily solved with reverse recursion, for example.

Subroutines

225

Both approaches suffer from the problem that Perl generates a potentially large call stack. If we try to
calculate a sufficiently large sequence then Perl will run out of room to store this stack and will fail with
an error message:

Deep recursion on subroutine "main::fibonacci2" at ...

Some languages support 'tail' recursion, an optimization of forward recursive subroutines where no code
exists after the recursive subroutine call. Because there is no more work to do at the intermediate levels
of the subroutine stack, they can be removed. This allows the final call to the recursed subroutine call to
directly return to the original caller. Since no stack is maintained, no room is needed to store it.

Perl's interpreter is not yet smart enough to figure out this optimization automatically, but we can code
it explicitly using a goto statement. The fibonacci1 subroutine we showed first is a recursive
subroutine that fits the criteria for 'tau' recursion, as it returns. Here is a modified version, fibonacci3
that uses goto to avoid creating a stack of recursed subroutine calls. Note that the goto statement and
the line immediately before it are the only difference between this subroutine and fibonacci1:

#!/usr/bin/perl
fib3.pl
use warnings;
use strict;

sub fibonacci3 {
my ($count, $aref) = @_;

unless ($aref) {
first call - initialize
$aref = [1,1];
$count -= scalar(@{$aref});
}

if ($count--) {
my $next = $aref->[-1] + $aref->[-2];
push @{$aref}, $next;
@_ = ($count, $aref);

goto &fibonacci3;
} else {

return wantarray?@{$aref}:$aref->[-1];
}

}
calculate 1000th element of standard Fibonacci sequence
print scalar(fibonacci3(1000)), "\n";

The goto statement jumps directly to another subroutine without actually calling it (which creates a
new stack frame). The automatic creation of a localized @_ does not therefore happen. Instead, the
context of the current subroutine call is used, including the current @_. In order to 'pass' arguments we
therefore have to predefine @_ before we call goto. Examining the code above, we can see that
although it would sacrifice legibility, we could also replace $count with $_[0] to set up @_ correctly
without redefining it.

Recursion is a nice programming trick, but it is easy to get carried away with it. Any calculation that
uses recursion can also be written using ordinary iteration too, so use recursion only when it presents
the most elegant solution to a programming problem.

Chapter 7

226

Checking for Subroutines and Defining Subroutines
On the Fly

We can check for the existence of a subroutine before we call it using Perl's defined function:

if (defined &capitalize) {
capitalize(@countries);

}

This is more useful than it might seem. For instance, when using a library that may or may not support a
particular subroutine (depending on the installed version) we can safeguard against a possible exit from
our program by checking that the library has the function before we try to call it.

If we are writing object-oriented Perl, we can use the special object method can (supplied by the
UNIVERSAL object – that's a subject for Chapter 19 though), in order to do the same thing in a more
object-oriented style:

$bean->jump('left') if $bean->can('jump');

We are not limited to just testing for the existence of subroutines. We can also substitute for them and
even define them on-the-fly by defining an AUTOLOAD subroutine. If an AUTOLOAD subroutine exists in
the same package as a non-existent subroutine, Perl will call it, rather than exiting with an error. The
name of the missing subroutine, complete with package name, is placed in the special package variable
$AUTOLOAD, and the arguments passed to the subroutine are instead passed to AUTOLOAD. As a trivial
example, the following AUTOLOAD subroutine just returns the missing subroutine name as a string:

sub AUTOLOAD {
our $AUTOLOAD; # or 'use vars' for Perl < 5.6
return $AUTOLOAD;

}

Because $AUTOLOAD is a package variable which we have not declared, we need to gain access to it with
the our directive if use strict is in effect (Perl versions before 5.6 need to have use vars instead).
The example above allows us to write strange looking statements like this:

$, = " ";
print "", Hello, Autoloading, World;

This is identical in effect to:

print "main::Hello", "main::Autoloading", "main::World";

In other words, this AUTOLOAD subroutine interprets unqualified barewords as strings. A slightly more
useful example of the same technique is shown by this HTML tag generator, which automatically
creates matching start and end tags, with any supplied parameters sandwiched in between. Note the
regular expression to strip off the package prefix:

sub AUTOLOAD {
our ($AUTOLOAD); # again, 'use vars' if Perl < 5.6
$AUTOLOAD =~ s/^.*:://; # strip the package name
return "<$AUTOLOAD> \n". join("\n",@_). "</$AUTOLOAD> \n";

}

Subroutines

227

We can now write an HTML page programmatically using functions that we haven't actually defined, in
a similar (and much shorter, albeit less sophisticated) way to the CGI module. Here is an example
HTML document created using the above autoloader subroutine in a single line of code:

print html(head(title("Autoloaded HTML")), body(h1("Hi There")));

While functional, this example has a few deficiencies. For a start, we can invent any tag we like,
including mis-spelled ones. Another problem is that it does not learn from the past; each time we call a
non-existent subroutine, Perl looks for it, fails to find it, then calls AUTOLOAD. It would be more elegant
to define the subroutine so that next time it is called, Perl finds it. The chances are that if we use it once,
we'll use it again. To do that, we just need to create a suitable anonymous subroutine and assign it to a
typeglob with the same name as the missing function, which inserts the new subroutine into the symbol
table for us. Here is a modified version that does this for us:

sub AUTOLOAD {
our ($AUTOLOAD);
no strict 'refs';
my $tag = $AUTOLOAD;
$tag =~s/.*:://;
*$AUTOLOAD = sub {

"<$tag> \n". join("\n", @_). "</$tag> \n";

};

&$AUTOLOAD; # we can use a 'goto' here too -- see below
}

Now, whenever a tag is asked for, a subroutine for that tag is defined. The next time the same tag is
asked for, the newly defined subroutine catches the call and handles it.

Aside from the anonymous subroutine definition, the other interesting point about this autoloading
subroutine is the call to the new subroutine at the end.

Since AUTOLOAD has to define the subroutine the first time it is called, it has to call it as well. We make
use of the &subname; syntax to pass the contents of @_ directly to the new subroutine. However,
$AUTOLOAD is a symbolic reference, so we use no strict refs at the top of the subroutine.

AUTOLOAD subroutines that define subroutines are one place where using goto does make sense. We
can replace the last line of this subroutine with:

goto &$AUTOLOAD;

Why is this useful? Because it removes the AUTOLOAD subroutine itself from the calling stack, so
caller will not see the AUTOLOAD subroutine, but rather the original caller. So goto is consequently a
common sight in AUTOLOAD subroutines that define subroutines on-the-fly.

Autoloading is quite handy in functional programming, but much more useful in modules and
packages. Accordingly we cover it in more depth in Chapter 10.

Chapter 7

228

Passing Parameters
Basic Perl subroutines do not have any formal way of defining their arguments. We say 'basic' because
we can optionally define a prototype that allows us to define the types of the arguments passed, if not
their names inside the subroutine. However, ignoring prototypes for the moment, we may pass any
number of parameters to a subroutine:

mysubroutine ("parameter1", "parameter2", 3, 4, @listparameter);

It is helpful to think of the parentheses as a conventional list definition being passed to mysubroutine
as a single list parameter – remove mysubroutine from the above statement and what we are left with
is a list. This is not far from the truth, if we recall that declaring a subroutine prior to using it allows us
to use it as if it were a built-in list operator. Consequently, arrays and hashes passed as arguments to
subroutines are flattened into one list internally, just as they are when combined into a larger list.

The parameters that are passed into a subroutine appear inside the subroutine as a list contained in the
special variable @_. This variable is made local to each subroutine, just as $_ is inside nested foreach
loops. The definition of @_ is thus unique to each subroutine, despite the fact that @_ is a package
variable.

One simple and common way to extract parameters passed to a subroutine is simply to assign @_ to a
list of scalar variables, like so:

sub volume {
($height, $width, $length) = @_;
return $height * $width * $length;

}

This gives us named scalar variables we can write code for more legibly, and also takes care of any
aliasing problems that might otherwise occur (as we will see in a moment). Alternatively, we can use
shift to pull values off the array one by one:

sub volume {
$height = shift;
$width = shift;
$length = shift;
return $height * $width * $length;

}

This differs from the previous example in that it actually modifies @_, removing passed parameters from
the front of the list. After all the shifts have been processed @_ may be empty or it may contain further
passed parameters. We can use that to our advantage to write subroutines that only use some
parameters and pass the rest on. For example, here is a speculative object method that is a wrapper for
the volume function:

sub volume {
my $self = shift; #remove the object passed as the first parameter
return Functions::volume(@_); #pass remaining parameters on

}

Subroutines

229

If it's brevity we are after, we can avoid assigning the contents of @_ to anything, and simply use the
values of @_ directly. This version of volume is not as clear as the first, but makes up for it by being
only one line long. As a result the workings of the subroutine are still fairly obvious:

sub volume {
return $_[0] * $_[1] * $_[2];

}

The @_ array is a local array defined when the subroutine is first entered. However, while the array is
local, the values of @_ are aliases for the original parameters that were passed in to the subroutine. This
means that, if the parameter was a variable, modifying the values in the @_ array modifies the original
variable as well. Used unwisely this can be an excellent way to create hard-to-understand and difficult-
to-maintain code, but if the purpose of a subroutine is to manipulate a list of values in a consistent and
generic way, it can be surprisingly useful. Here is an example of such a subroutine that emulates the
chomp function:

#strip the line separator '$/' from the end of each passed string:
sub mychomp {

foreach (@_) {

s|$/$||;
}

}

This also happens to be a good demonstration of aliasing. The subroutine actually aliases twice over;
once to alias the variables $string and @lines in the @_ array inside the subroutine, and again in the
foreach loop that aliases the loop variable $_ to the values in the @_ array one by one.

We can call this subroutine in the same way as the real chomp:

mychomp $string;
mychomp @lines;

Modifying the passed arguments implies that they are modifiable in the first place. Passing a literal
value rather than a variable will produce a syntax error. For example:

mychomp "you can't touch this \n";

This produces:

Modification of a read-only value attempted at ...

When we come to discuss prototypes we will see how we can define subroutines that can be checked for
correct usage at compile time. This means we can create a subroutine like mychomp that will produce a
syntax error if used on a literal variable at compile time, just like the real chomp.

Passing Lists and Hashes
We mentioned earlier, when we started on the subject of passed arguments, that passing lists and hashes
directly into a subroutine causes list flattening to occur, just as it does with ordinary list definitions.
Consequently, if we want to pass an array or hash to a subroutine, and keep it intact and separate from
the other arguments, we need to take additional steps. Consider the following snippet of code:

Chapter 7

230

$message = "Testing";
@count = (1, 2, 3);
testing ($message, @count); # calls 'testing' -- see below

The array @count is flattened with $message in the @_ array created as a result of this subroutine, so as
far as the subroutine is concerned the following call is actually identical:

testing ("Testing", 1, 2, 3);

In many cases this is exactly what we need. To read the subroutine parameters we can just extract the
first scalar variable as the message and put everything else into the count:

sub testing {
($message, @count) = @_;
...

}

Or, using shift:

sub testing {
$message = shift;
now we can use @_ directly in place of @count

...
}

The same principle works for hashes, which as far as the subroutine is concerned are just more values. It
is up to the subroutine to pick up the contents of @_ and convert them back into a hash:

sub testing {
($message, %count) = @_;
print "@_";

}

testing ("Magpies", 1 => "for sorrow", 2 => "for joy", 3 => "for health", 4 =>
"for wealth", 5 => "for sickness", 6 => "for death");

However, this only works because the last parameter we extract inside the subroutine absorbs all the
remaining passed parameters. If we were to write the subroutine to pass the list first and then the scalar
afterwards, all the parameters are absorbed into the list and the scalar is left undefined:

sub testing {
(@count, $message) = @_; # ERROR
print "@_";

}

testing(1, 2, 3, "Testing");
results in @count = (1, 2, 3, "Testing") and $message = undef

If we can define all our subroutines like this we won't have anything to worry about, but if we want to
pass more than one list we still have a problem.

Subroutines

231

If we attempt to pass both lists as-is, then extract them inside the subroutine, we end up with both lists
in the first and the second left undefined:

sub testing {
my (@messages, @count) = @_; # wrong!
print "@_";

}

@msgs = ("Testing", "Testing");
@count = (1, 2, 3);
testing(@msgs, @count);
results in @messages = ("Testing", "Testing", "Testing", 1, 2, 3) and
@count = ();

The correct way to pass lists and hashes, and keep them intact and separate, is to pass references. Since
a reference is a scalar, it is not flattened like the original value and so our data remains intact in the
form that we originally supplied it:

testing (["Testing", "Testing"], [1, 2, 3]); # with two lists
testing (\@messages, \@count); # with two array variables
testing ($aref1, $aref2); # with two list references

Inside the subroutine we then extract the two list references into scalar variables and dereference them
using either @{$aref} or $aref->[index] to access the list values:

sub testing {
($messages, $count) = @_;
print the testing messages

foreach (@ {$messages}) {
print "$_ ... ";

}
print "\n";
print the count;
foreach (@ {$count}) {

print "$_! \n";

}
}

Another benefit of this technique is efficiency; it is better to pass two scalar variables (the references)
than it is to pass the original lists. The lists may contain values that are large both in size and number.
Since Perl must store a local copy of the @_ array for every new subroutine call in the calling stack,
passing references instead of large lists can save Perl a lot of time and memory.

Converting Scalar Subroutines into List Processors
Consider this subroutine, which capitalizes the first letter of the string that it is passed:

sub capitalize {
$_[0] = ucfirst(lc $_[0]);
print "$_[0]";

}

$country = "england";
capitalize($country); # produces 'England'

Chapter 7

232

Simple enough, but it only works on one string at a time. However, just because we wrote this
subroutine to work as a scalar operator does not alter the fact that in reality it is working on a list. We
have just limited it to handle a list with one value. With only a little extra effort we can turn this
subroutine into something that works on scalars and lists alike:

sub capitalize {
foreach (@_) {

$_ = ucfirst lc; # lc uses $_ if argument is omitted
print "$_[0]";

}
}

Or more efficiently, with map:

sub capitalize {
map {$_ = ucfirst lc} @_;
print "$_[0]";

}

This version works identically for calls like the above that pass only one parameter, but also happily
works on arrays too:

sub capitalize {
map {$_ = ucfirst lc} @_;
print "@_[0, 1, 2]";

}

@countries = ("england", "scotland", "wales");
capitalize (@countries); # produces ("England", "Scotland", "Wales")

Passing '@_' Directly into Subroutines
We said earlier that the @_ array is distinct to each subroutine and masks any previous definition. That
is almost true – there is one exception provided, for reasons of efficiency, to the Perl programmers
dedicated to optimizing their code. Normally @_ is defined locally, on entry to each subroutine. So, if we
pass in no parameters at all we get an empty array. However, if we call a subroutine using the & prefix
and do not pass parameters or use braces then the subroutine inherits the @_ array of the calling
subroutine directly:

&mysubroutine; # inherit @_ from parent

The problem with this technique is that it is rather arcane, and not obvious to the reader of our code.
Therefore, if we use it, a comment to the effect that this is what we are doing (such as the one above) is
highly recommended.

As far as the subroutine is concerned this is no different to passing the @_ array as a parameter:

mysubroutine(@_);

Subroutines

233

Although, this may seem equivalent, in the second case the @_ array is copied each time the call is
made. If @_ contains a large number of values, or many calls are made (for instance in a recursive
subroutine) then this is potentially expensive. The &mysubroutine; notation passes the @_ array
directly, without making a copy, and so avoids the unnecessary work. Whether this is worth the trouble
or not is of course another matter. If @_ only contains a few elements, it is probably better to live with
the very minor inefficiency of copying the array and use the explicit version.

Note that the aliasing of the values in the @_ array to the original variables (if the parameter was a
variable) happens in either case, so it is not necessary to resort to this practice if all we want to do is
modify the variables that were passed to us.

Named Parameters
Unlike other languages such as C or Java, Perl does not have any way to define formal parameter names
for subroutines. The closest it gets is prototypes combined with retrieving parameters as lexical
variables, as in:

sub surname {
my ($scalar1, $scalar2, @listarg) = @_;
...

}

However, we can implement named parameters using a hash. This provides an elegant way to pass in
parameters without having to define them formally. The trick is to assign the @_ array to a hash variable.
This converts the passed list into key-value pairs:

sub volume {
my %param = @_;
return $param{'height'} * $param{'width'} * $param{'length'};

}

The disadvantage of this approach is that we have to name all the parameters that we pass. It is also
slower, since hashes are inherently slower than arrays in use. The advantage is that we can add more
parameters without forcing the caller to supply parameters that are not needed. Of course, it also falls
upon us to actually check the arguments passed and complain if the caller sends us arguments that we
do not use.

We can call this subroutine using the => operator to make it clear that we are passing named
parameters:

volume (height => 1, width => 4, length => 9);

We can also write the subroutine so that it accepts both named parameters and a simple list. One
common technique borrowed from UNIX command line switches is to prefix named arguments with a
minus, to distinguish them from unnamed arguments. To determine how the subroutine has been called,
we just check the first character of the first parameter to see if it is a minus:

sub volume {
my %param;

TE
AM
FL
Y

Team-Fly®

Chapter 7

234

if ($_[0]=~/^-/) { # if the first argument starts '-', assume named

arguments
while (@_) {

my ($key, $value)=(shift, shift);
check all names are legal ones
die "Invalid name '$key'"
if $key!~/^-(height|width|length|color|density)$/;

$key =~ s/^-//; #remove leading minus
$param{$key} = $value;
}

} else {
no '-' on first argument - assume list arguments
$param{'height'} = shift;
$param{'width'} = shift;
$param{'length'} = shift;

}

foreach ('height', 'width', 'length') {
unless (defined $param{$_}) {
warn "Undefined $_, assuming 1";
$param{$_} = 1;

}
}
return $param{'height'} * $param{'width'} * $param{'length'};

}

In this version of the volume subroutine we handle both simple and named parameters. For named
parameters we have also taken advantage of the fact that we know the names of the parameters to report
a handy informative warning if any of them are undefined.

Named parameters allow us to create a common set of parameters and then add or override parameters.
This makes use of the fact that if we define a hash key twice, the second definition overrides the first:

define some default parameters
%default = (-height => 1, -width => 4, -length => 9);

use default
print volume(%default);

override default
print volume(%default, -length => 16);
print volume(%default, -width => 6, -length => 10);
specify additional parameters
print volume(%default, -color => "red", -density => "13.4");

Before leaving the subject of named parameters, it is worth briefly mentioning the Alias module,
available from CPAN. Alias provides the subroutines alias and attr, which generates aliases from a
list of key-value pairs. Both subroutines use typeglobs to do the job.

The alias subroutine takes a list of key-value pairs as its argument, and is therefore suited to
subroutines. The type of variable defined by the alias is determined by the type of value it is aliased to;
a string creates a scalar, a list creates an array. Here is yet another volume subroutine that uses alias:

Subroutines

235

#!/usr/bin/perl
volalias.pl
use warnings;
use strict;

no strict 'vars';
use Alias;

subroutine using 'alias'
sub volume {

alias @_;
return $height * $width * $length;

}

a call to the subroutine
print volume(height => 1, length => 9, color => 'red', width => 4);

aliased variables visible here
print " = $height x $width x $length \n";

However, alias suffers from three serious deficiencies. The first is that it is not compatible with
strict vars; if we want strict variables we will have to declare all the aliased variables with use
vars or (preferably) our. Another is that alias creates global aliases that persist outside the
subroutine, which is not conducive to good programming. The third is that if we only use the variable
once we'll get a warning from Perl about it. The script above does not do that because of the last line.
Comment out that line, and all three variables will generate used only once warnings.

attr takes a reference to a hash and creates aliases based on the keys and values in it. attr $hashref
is similar to alias %{$hashref}, but localizes the aliases that it creates. It is ideal to use with object
methods for objects based around hashes since each object attribute becomes a variable (hence the
name):

#!/usr/bin/perl
attr.pl
use warnings;
use strict;

{
package Testing;
use Alias;
no strict 'vars'; # to avoid declaring vars

sub new {
return bless {

count => [3, 2, 1],
message => 'Liftoff!',

}, shift;
}

sub change {
define @count and $message locally
attr(shift);
this relies on 'shift' being a hash reference
@count = (1, 2, 3);
$message = 'Testing, Testing';

}
}

Chapter 7

236

my $object = new Testing;
print "Before: ", $object->{'message'}, "\n";
$object->change;
print "After : ", $object->{'message'}, "\n";
print $Testing::message, "\n"; # warning - 'attr' vars do not persist
close Testing::count;

We can also define 'constants' with the const subroutine. This is actually just an alias for alias (it's
even defined using alias inside the module, and must be imported explicitly:

const.pl
use Alias qw(const); # add 'alias' and/or 'attr' too, if needed

const MESSAGE => 'Testing';
print $MESSAGE, "\n";

Attempting to modify the value of a constant produces an error:

ERROR: produce 'Modification of a read-only value attempted at ...'
$MESSAGE = 'Liftoff!';

The Alias module also provides several customization features, mainly for the attr subroutine,
which allows us to control what gets aliased and how. Refer to 'perldoc Alias' for a rundown and
some more examples.

Prototypes
The subroutines we have considered so far exert no control over what arguments are passed to them;
they simply try to make sense of what is passed inside the subroutine. For many subroutines this is fine,
and in some cases allows us to create subroutines that can be called in a variety of different ways. For
example, we can test the first argument to see if it is a reference or not, and alter our behavior
accordingly. However, we are not enforcing a calling convention, so we will only discover our
subroutines are being called incorrectly when we actually execute the call, and then only if we have
written the subroutine to check its arguments thoroughly. Since some subroutine calls may not occur
except under very specific circumstances, this makes testing and eliminating bugs very difficult.

Fortunately there is a way to define compile-time restrictions on the use of subroutines through the use
of prototype definitions. Although entirely optional, by specifying the types of the expected parameters,
prototypes can eliminate a lot of the problems involved in ensuring that subroutines are called correctly.
This allows us to specify what parameters a subroutine takes (scalars, lists/hashes, or code references),
and whether a parameter can be either a simple literal value, or whether it must be an actual variable.
Good use of prototypes early in the development process can be invaluable.

A prototype definition is a parenthesized list of characters mirroring the Perl variable type syntax (that
is, $, @, %, and so on). It is placed after the sub keyword and subroutine name but before anything else,
be it a subroutine definition, declaration, or anonymous subroutine:

sub mysub (PROTOTYPE); # subroutine declaration
sub mysub (PROTOTYPE) {...} # subroutine definition
$subref = sub (PROTOTYPE) {...} # anonymous subroutine

Subroutines

237

Defining the Number of Parameters and Their Scope
Prototypes allow us to explicitly define how many arguments a subroutine expects to receive. This is
something that for efficiency reasons we would clearly prefer to check at compile time. We do not have
to wait until the subroutine call is used to find out that it is faulty, and passing the wrong number of
parameters is an obvious candidate for a bug.

To illustrate, consider the volume subroutine that we defined in various different forms earlier. With
the exception of the named argument example, the subroutine expects three scalar parameters. Using
prototypes we can enforce this by adding ($$$), meaning three mandatory scalar arguments, to the
subroutine definition:

sub volume ($$$) {
... as before ...

}

With this prototype in place, volume can only be called with three scalar arguments. They can be
literals or variables, but there must be three of them, and they must be scalar. Hence, this is legal:

print volume(1, 4, 9), "\n"; # displays 1 * 4 * 9 == 36

This, however, is not. Even though it provides the right number of values, it doesn't supply them in a
way that fits the prototype:

@size = (1, 4, 9);
print volume(@size), "\n";

Instead, we get the error:

Not enough arguments for main::volume at ... near @size

So far, so good. However, due to Perl's concept of context, prototypes do not enforce things quite as
strictly as this might imply. The prototype does not actually enforce a data type – it attempts to force it.
What the first $ in the prototype actually does is force @size to be interpreted in scalar context and not
as a list, in other words, it is exactly as if we had written:

print volume(scalar @size), "\n";

Having turned the three element array into a scalar '3', the prototype goes on to interpret the second
argument as a scalar also. It then finds there isn't one, and produces an error. The fact that we passed an
array is not relevant, since an array can be converted to a scalar. However, by passing just one array, we
omitted two mandatory arguments, which is important. To illustrate this, the following actually works
just fine, the array not withstanding:

print volume(@size, 4, 9); # displays 3 * 4 * 9 == 108

We have not supplied three scalars, but we have supplied three values that can be interpreted as scalars,
and that's what counts to Perl.

Chapter 7

238

We can also use @ and % in prototype definitions, and it is sometimes helpful to consider subroutines
without prototypes as having a default prototype of (@); that is:

sub mysubroutine (@) {...}

Just like unprototyped subroutines, the single @ prototype will absorb all values, flattening any lists or
hashes it finds. It follows from this that a prototype of (@,@) is just as invalid as it was before. However,
if we want to enforce an array variable, as opposed to a mere list, that's a different story, as we will see
shortly.

A @ or % prototype matches all parameters in the argument list from the point it is defined to the end of
the list. Indeed, % and @ are actually identical in meaning to Perl, since passing a hash turns it into a list.
Recall that there is no such thing as 'hash context'. It cannot check that passed parameters came from a
hash due to flattening, nor that the remaining parameters divide evenly into pairs because that is a run-
time issue. However, this does not mean they are of no use. It means that the only useful place for either
prototype character is at the end of the prototype. As an example, here is a subroutine, which joins
array elements incorporating a prefix and suffix. It takes a minimum of three parameters, but has no
maximum because of the @ prototype:

#!/usr/bin/perl
join.pl
use warnings;

sub wrapjoin ($$$@) {
my ($join, $left, $right, @strings) = @_;
foreach (@strings) {

$_ = $left. $_. $right;

}
return join $join, @strings;

}

print wrapjoin("\n", "[","]", "One", "Two", "Three");

Without the @ we could only pass three arguments. If we added more $ characters we could allow more,
but then we would be forced to supply that many arguments. The @ allows an arbitrary number, so long
as we also supply three scalars to satisfy the initial $$$.

Lists can validly be empty, so the prototype does not ensure that we actually get passed something to
join. We could attempt to fix that by requiring a fourth scalar, like this:

sub wrapjoin ($$$$@) {
($join, $left, $right, @strings) = @_;

}

However, a little thought reveals a flaw in this design. A literal list of strings works fine, but if the caller
supplies an actual array variable for the fourth argument it gets converted to a scalar. In effect, we have
introduced a new bug by adding the prototype.

The moral here is that prototypes can be tricky and can even introduce bugs. They are not a universal
band-aid for fixing subroutine calling problems. If we want to detect and flag an error for an empty list,
prototypes cannot help us – we will have to write the subroutine to handle it explicitly at run time.

Subroutines

239

Prototyping Code References
Other than $, @ (and the synonymous %), we can supply one other basic prototype character: &. This
tells Perl that the parameter to be supplied is a code reference to an anonymous subroutine. This is not
as far-fetched as it might seem; the sort function accepts such an argument, for example.

Here is how we could prototype the do_list subroutine we introduced when we covered anonymous
subroutines earlier:

sub do_list (&@) {
my ($subref, @in) = @_;
my @out;
foreach (@in) {

push @out, &$subref ($_);
}
return @out;

}

The prototype requires that the first argument be a code reference, since the subroutine cannot perform
any useful function on its own. Either a subroutine reference or an explicit block will satisfy the
prototype; for example:

@words = ("ehT", "terceS", "egasseM");
do_list {print reverse($_[0] =~/./g), "\n"} @words;

Note how this syntax is similar to the syntax of Perl's built-in sort, map, and grep functions.

Subroutines as Scalar Operators
We mentioned previously that subroutines can be thought of as user-defined list operators, and used
much in the same way as built-in functions (that also work as list operators) like print, chomp, and so
on. However, not all of Perl's functions are list operators. Some, such as abs, only work on scalars, and
interpret their argument in a scalar context (or simply refuse to execute) if we try to supply a list.

Defining subroutines with a prototype of ($) effectively converts them from being list operators to
scalar operators. Returning to our capitalize example, if we decided that, instead of allowing it to
work on lists, we want to force it to only work on scalars, we would write it like this:

sub capitalize ($) {
$_[0] = ucfirst (lc $_[0]);

}

However, there is a sting in the tail. Before the prototype was added this subroutine would accept a list
and capitalize the string in the first element, coincidentally returning it at the same time. Another
programmer might be using it in the following way, without our knowledge:

capitalize (@list);

While adding the prototype prevents multiple strings being passed in a list, an array variable still fits the
prototype, as we saw earlier. Suddenly, the previously functional capitalize turns the passed array
into a scalar number:

@countries = ("england", "scotland", "wales");
capitalize (@countries);

Chapter 7

240

The result of this is that the number '3' is passed into capitalize. Since this is not a variable, it causes
a syntax error when we try to assign to $_[0]. If we chose to return a result rather than modifying the
passed argument, then the code would all be perfectly valid, but badly bugged. However, a program
that is used to print 'England' might start printing '3' instead. This is more than a little confusing, and
not intuitively easy to track down.

The key problem here is not that we are passing an array instead of a scalar, but that we are checking
for a scalar value rather than a scalar variable, which is what we actually require. In the next section we
will see how to do that.

Requiring Variables Rather than Values
So far we have seen how to enforce a specific number of arguments and their scope, if not their data
type. We can also use prototypes to require that an actual variable be passed. This is invaluable when
we want to implement a subroutine that modifies its passed parameters, such as the capitalize
example just above.

To require a variable, we again use a $, @, and % character to specify the type, but now we prefix it with
a backslash. This does not, as it might suggest, mean that the subroutine requires a reference to a scalar,
array, or hash variable. Instead, it causes Perl to require a variable instead of merely a value. It also
causes Perl to automatically pass the variable as a reference:

#!/usr/bin/perl
varproto.pl
use warnings;
use strict;

sub capitalize (\$) {
${$_[0]} = ucfirst (lc ${$_[0]});

}

my $country = "england";
capitalize $country;
print $country, "\n";
capitalize "scotland"; # ERROR: compile-time syntax error!

If we tried to call capitalize with a literal string value, we would get the error:

Type of arg 1 to main::capitalize must be scalar (not constant item) at ..., near ""england";"

The fact that Perl automatically passes variables as references is very important, because it provides a
new way to avoid the problem of list flattening. In other words, prototypes allow us to pass arrays and
hashes to a subroutine as-is, without resorting to references in the subroutine call.

A push is an example of a built-in function that works by taking an array as its first argument. We do
not need to treat that variable specially to avoid flattening, and we can replicate that syntax in our own
code by defining a prototype of (\@@). The following subroutine uses the list-processing version of
capitalize to produce a capitalizing push subroutine. First it removes the array variable using
shift, then capitalizes the rest of the arguments and adds them to the variable with push. Perl, being
versatile, lets us do the whole thing in one line:

sub pushcapitalize (\@@) {
push @{shift}, capitalize(@_);

}

Subroutines

241

We can use this subroutine just like we use the push function

pushcapitalize @countries, "england";
pushcapitalize @countries, "scotland", "wales";
pushcapitalize @countries, @places; # no flattening here!

Note that we omitted the parentheses, which requires that the subroutine be either already defined or
predeclared.

Hash variables are requested using \%, which unlike % does have a different meaning to its array
counterpart \@. Here is an example that flips a hash variable around so that the keys become values and
the values become keys. If two keys have the same value one of them will be lost in the transition, but
for the sake of simplicity we'll ignore that here:

sub flip (\%) {
@hash = %{$_[0]};
%{$_[0]} = reverse @hash;

}

This subroutine makes use of the fact that a hash is essentially just a list with an even number of values,
and a little extra cleverness allows quick key access. So, to flip the hash we turn it into a list and reverse
it. This also reverses each key-value pair with respect to each other; we then turn it back into a hash
again.

Although Perl will automatically pass variables as references when a variable prototype is in effect, it
will allow an explicit reference if we dereference it first. The two following calls are both valid uses of
the above subroutines:

For the pushcapitalize subroutine:

pushcapitalize @{$countries_ref}, "england";

And for the flip subroutine:

flip %{$hash_ref};

Before we finish with variable prototypes it is worth mentioning, just for completeness, that \& also has
a meaning subtly different from &. It requires that the passed code reference be a reference to an actual
subroutine, that is, a code reference defined using $coderef = sub {...} or $coderef =
\&mysubroutine. A reference to an in line bare block (such as in mysub {...} @list) will not be
accepted. Another way to look at \ is that it requires that the argument actually starts with the character
it precedes: \& therefore means that the argument must start &, not {.

Optional Parameters
A prototype such as ($$$@) allows us to define a subroutine with three required parameters and any
number of optional ones, but it is something of an all-or-nothing solution. It does not allow us to define
a subroutine that is intended to take at least three, and no more than four, parameters. Instead we use a
semicolon, to separate the mandatory parameters from the optional ones.

Chapter 7

242

The following subroutine, which calculates mass, is a variation on the volume subroutine from earlier.
It takes the same three dimensions and a fourth optional parameter of the density. If the density is not
supplied it is assumed to be 1.

sub mass ($$$;$) {
return volume(@_) * (defined($_[3])? $_[3]: 1);

}

We might be tempted to use &volume to pass the local version of @_ to it directly. However, using &
suppresses the prototype, so instead we pass @_ explicitly. Since mass has its own prototype we could
arguably get away with it, but overriding the design of our subroutines for minor increases in efficiency
is rarely a good idea.

Using a semicolon does not preclude the use of @ to gobble up any extra parameters. We can for
instance define a prototype of ($$$;$@), which means three mandatory scalar parameters, followed by
an optional scalar followed by an optional list. That differs from ($$$;@) in that we don't have to pass
a fourth argument, but if we do it must be scalar.

We can also define optional variables. A prototype of ($$$;\$) requires three mandatory scalar
parameters and an optional fourth scalar variable. For instance, we can extend the volume subroutine
to place the result in a variable passed as the fourth argument, if one is supplied:

sub volume ($$$;\$) {
$volume = $_[0] * $_[1] * $_[2];
${$_[3]} = $volume if defined $_[3];

}

And here is how we could call it:

volume(1, 4, 9, $result); # $result ends up holding 36

Disabling Prototypes
All aspects of a subroutine's prototype are disabled if we call it using the old-style prefix &. This can
occasionally be useful, but is also a potential minefield of confusion. To illustrate, assume that we had
redefined our capitalize subroutine to only accept a single scalar variable:

sub capitalize (\$) {
$_[0] = ucfirst (lc $_[0]);

}

Another programmer who had been calling the unprototyped version with a list to capitalize the first
string now encounters a syntax error.

capitalize (@countries); # ERROR: not a scalar variable

One way they could fix this is to pass in just the first element. However, they can also override the
prototype and continue as before by prefixing their subroutine call with an ampersand:

capitalize ($countries[0]); # pass only the first element
&capitalize @countries; # disable the prototype

Subroutines

243

Naturally this kind of behavior is somewhat dangerous, so it is not encouraged; that's the whole point of
a prototype. However, the fact that an ampersand disregards a prototype means that we cannot generate
a code reference for a subroutine and still enforce the prototype:

$subref = \&mysubroutine; # prototype not active in $subref

This can be a real problem. For instance, the sort function behaves differently if it is given a
prototyped sort function (with a prototype of ($$)), passing the values to be compared rather than
setting the global variables $a and $b. However, defining a named subroutine with a prototype and
then passing a reference to it to sort doesn't work. The only way to retain a prototype on a subroutine
reference is to define it as an anonymous subroutine in the first place:

capitalize as a anonymous subroutine
$capitalize_sub = sub (\$) {

$_[0] = ucfirst (lc $_[0]);
};

And using reverse:

an anonymous 'sort' subroutine - use as 'sort $in_reverse @list'
$in_reverse = sub ($$) {

return $_[1] <=> $_[0];
}

Returning Values from Subroutines
Subroutines can return values in one of two ways, either implicitly, by reaching the end of their block,
or explicitly, through the use of the return statement.

If no explicit return statement is given, then the return value of a subroutine is the value of the last
statement executed (the same as for ordinary bare blocks). For example, the string 'implicit return
value' is returned by the following simple subroutine because it is the last (and in this case, only)
statement in the subroutine:

sub implicit_return {

my $string = "implicit return value";
}

Or even just:

sub implicit_return {

"implicit return value";
}

To explicitly define the return value we use the return statement; return takes an expression as its
argument, and returns its value to the caller:

sub explicit_return {

return "explicit return value";
}

TE
AM
FL
Y

Team-Fly®

Chapter 7

244

It follows from this that it is never actually necessary to use return when passing back a value from the
last statement in the subroutine. However, it is good practice, to indicate that we know what we are
doing and are aware of what the return value is. If a subroutine does not have an explicit return, the
implication is that it does not return a value of use.

There is nothing to stop us putting several return statements into the same subroutine. Whichever
return statement is encountered first will cause the subroutine to exit with the value of the supplied
expression, aborting the rest of the subroutine. The following simple subroutine illustrates this:

sub list_files {

$path = shift;
return "" unless defined $path; # return an empty string if no path
return join(', ', glob "$path/ * "); # return comma separated string

}

Here we have used two return statements. The first returns the undefined value if we fail to supply a
pathname for the subroutine to look at. The second is only reached if a defined (but not necessarily
valid or existent) path is supplied. We could call this subroutine with code that looks like this:

if (my $files = list_files ("/path/to/files")) {

print "Found $files \n";
}

Multiple return statements are a convenient way to return values from a subroutine as soon as the
correct value has been computed, but for large subroutines they should be used with caution. Many
programming problems stem from over-complex subroutines that have more than one return in them,
causing a crucial piece of code to be skipped in some cases and not others. This is often a sign that the
subroutine is too large to be easily maintained and should be split into smaller functional blocks.
Otherwise, it is better to funnel the execution of the subroutine to just one return statement at the end,
or otherwise make it very clear in the source where all the exits are.

The list_files subroutine above works, but it is a little clumsy. It does not allow us to distinguish
between an undefined path and a path on which no files were found. It also returns the files found as a
string rather than a list, which would have been more useful. The first of these we can fix by using the
undefined value to indicate an error. The second we can fix by returning a list, or more cunningly, by
detecting the calling context and returning a scalar or list value as appropriate. We will cover each of
these in turn.

Returning the Undefined Value
Although it might seem a strange idea, it is quite common for subroutines and many of Perl's built-in
functions to return the undefined value undef instead of a real (that is, defined) value.

The advantage of undef is that it evaluates to 'False' in conditions, but is distinct from a simple zero
because it returns False when given as an argument to defined. This makes it ideal for use in
subroutines that want to distinguish a failed call from one that just happens to return no results. This
modified version of list_files uses undef to flag the caller when no path is specified:

#!/usr/bin/perl
findfiles.pl
use warnings;
use strict;

Subroutines

245

my $files = list_files ($ARGV[0]);

if (defined $files) {
if ($files) {

print "Found: $files \n";
} else {

print "No files found \n";
}

} else {
print "No path specified\n";

}

sub list_files {

my $path = shift;

return undef unless defined $path; # return an empty list if no path
return join(',', glob "$path/*"); # return comma separated string

}

If no path is supplied, the subroutine returns undef, which evaluates to False in the if statement. If the
path was supplied but no files were found, the subroutine returns an empty string which would evaluate
to False on its own but is still defined and so tests True in the if statement. We then test the value of
$files with the ternary operator and print out an appropriate message if the string happens to be
empty. Note that in this particular application checking @ARGV first would be the correct way to handle
a lack of input, but we are concerned with the subroutine here, which cannot know how, where, or why
it is being called.

undef works well in a scalar context, but is not so good for lists. While it is perfectly possible to assign
undef to an array variable, it is confusing because what we end up with is an array of one value, which
is undefined. If we naively tried to convert our subroutine to return a list instead of a scalar string we
might write:

sub list_files {

my $path = shift;

return undef unless defined $path; # return undef if no path
return glob "$path/*"; # return a list of files

}

Unfortunately if we try to call this function in a list context, and do not specify a defined path, we end
up with anomalous behavior:

foreach (list_files $ARGV[0]) {
print "Found: $_\n"; # $_ == undef if path was not defined

}

If the path is undefined this will execute the loop once, print 'Found: ' and generate an uninitialized
value warning. The reason for this is that undef is not a list value, so when evaluated in the list context
of the foreach loop, it is converted into a list containing one value, which happens to be undefined. As
a result, when the subroutine is called with an undefined path the loop executes once, with the value of
the loop variable $_ being undefined.

Chapter 7

246

In order for the loop to behave the way we intended, and not execute even once when no results are
found, we need to return an empty list. Here's another version of list_files that does this:

sub list_files {

my $path = shift;
return () unless defined $path; # return empty list if no path
return glob "$path/*"; # return list of files.

}

This fixes the problem we had when returning undef, but at the cost of losing the ability to distinguish
between an undefined path and a path that happens to contain no files. What we would really like to do
is return either undef or the empty list depending on whether a scalar or list result is required. The
wantarray function provides exactly this information, and we cover it next.

Determining and Responding to the Calling Context
Sometimes it is useful to know what the calling context is, so we can return different values based on the
caller's requirements. The return statement already knows this implicitly, and makes use of the
context to save time, returning a count of a returned list if the subroutine is called in a scalar context.
This is more efficient than returning all the values in the list and then counting them – passing back one
scalar is simpler when that is all the calling context actually requires.

Perl allows subroutines to directly access this information with the wantarray function. Using
wantarray allows us to intelligently return different values based on what the caller wants. For
example, we can return a list either as a reference or a list of values, depending on the way in which we
were called:

return wantarray? @files: \@files;

We can also use wantarray to return undef or an empty list depending on context, avoiding the
problems of assigning undef to an array variable as we discussed above:

return wantarray? (): undef;

Modifying our original subroutine to incorporate both these changes gives us the following improved
version of list_files that handles both scalar and list context:

sub list_files {

my $path = shift;

return wantarray? ():undef unless defined $path;
my @files = glob "$path/ *";
return wantarray? @files: \@files;

}

This is an example of Perl's reference counting mechanism in action; @files may go out of scope,
but the reference returned in scalar context preserves the values it holds.

Subroutines

247

We can now call list_files with two different results. In list context we get either a list of files, or an
empty list if either no files were found, or the path is undefined. This allows the return value to be used
in a foreach loop. If we want to distinguish between a defined path with no files and an undefined
path we call list_files in scalar context. In return, we get a reference to a list of files, a reference to
an empty list if no files were found, or the undefined value if the path was undefined. By additionally
testing for the undefined value with defined, we can now distinguish all three cases:

list context
@files = list_files ($ARGV[0]);

die "No path defined or no files found" unless @files;
print "Found: @files \n";

scalar context
$files = list_files($ARGV[0]);
die "No path defined! \n" unless defined $files;
die "No files found! \n" unless $files;
print "Found: @{$files} \n";

One final note about wantarray: If we want to find the number of files rather than retrieve a list, then
we can no longer call the subroutine in scalar context to achieve it. Instead, we need to call the
subroutine in list context and then convert it into a scalar explicitly:

$count = $#{list_files $ARGV[0]}+1;

This is much clearer, because it states that we really do mean to use the result in a scalar context.
Otherwise, it could easily be a bug that we have overlooked. However, be very careful not to use
scalar here. We often use scalar to count arrays, but scalar forces its argument into a scalar
context. $# requires that its argument is a list, and then counts it.

Handling Void Context
So far we have considered list and scalar contexts. If the subroutine is called in a void context that is
undefined. We can use this fact to save time computing a return value, or even to produce an error:

sub list_files {

die "Function called in void context" unless defined wantarray;
...

}

Handling Context: an Example
Putting all the above together, here is a final version of list_files that handles both scalar, list, and
void contexts, along with a sample program to test it out in each of the three contexts:

#!/usr/bin/perl
listfile.pl
use warnings;
use strict;

sub list_files {

die "Function called in void context" unless defined wantarray;
my $path = shift;

return wantarray?():undef unless defined $path;
chomp $path; # remove trailing linefeed, if present

Chapter 7

248

$path.='/*' unless $path =~/*/; # add wildcard if missing
my @files = glob $path;
return wantarray?@files:\@files;

}

print "Enter Path: ";
my $path = <>;

call subroutine in list context
print "Get files as list:\n";
my @files = list_files($path);
foreach (sort @files) {

print "\t$_\n";
}

call subroutine in scalar context
print "Get files as scalar:\n";
my $files = list_files($path);
foreach (sort @{$files}) {

print "\t$_ \n";
}

to get a count we must now do so explicitly with $#...
note that 'scalar would not work, it forces scalar context.
my $count = $#{list_files($path)}+1;
print "Count: $count files\n";

call subroutine void context - generates an error
list_files($path);

The name wantarray is something of a misnomer, since there is no such thing as 'array context'.
A better name for it would have been wantlist.

Closures
Closures are subroutines that operate on variables created in the context in which they were defined,
rather than passed in or created locally. This means that they manipulate variables outside their own
definition, but within their scope. Here is a simple example of a closure at work:

$count = 0;
sub count {return ++ $count;}
print count, count, count; # print 123

Here the subroutine count uses the variable $count. But the variable is defined outside of the
subroutine, and so is defined for as long as the program runs. Nothing particularly remarkable so far, all
we are doing is defining a global variable. However, what makes closures useful is that they can be used
to implement a form of memory in subroutines where the variable is global inside the subroutine, but is
invisible outside. Consider the following example:

{
$count = 0;

sub count {return ++ $count;}
}
print count, count, count; # still print 123

Subroutines

249

What makes this interesting is that the variable $count is no longer directly accessible by the time we
get to the print statement. Ordinarily it would have ceased to exist at the end of the block in which it
is defined because it is lexical, and therefore bounded by the block's scope. However, it is referred to in
the subroutine count, which is by nature a global definition. Consequently, Perl still has a reference to
the variable and so it persists. The only place the reference exists is in the subroutine count, so we have
effectively created a persistent and private variable inside count.

Closures get more interesting when we create them in an anonymous subroutine. If we replace the block
with a subroutine definition and count with an anonymous subroutine, we end up with this:

sub make_counter ($) {

$count = shift;
return sub {return $count++;}

}

The outer subroutine make_counter accepts one scalar variable and uses it to initialize the counter
variable. We then create an anonymous subroutine that refers to the variable (thus preserving it) and
returns the code reference of the anonymous subroutine. We can now use make_counter to create and
use any number of persistent counters, each using its own secret counter variable:

$tick1 = make_counter(0); #counts from zero
$tick2 = make_counter(100); #counts from 100

$, = ",";
print &$tick1, &$tick2, &$tick1, &$tick2; # displays 0, 100, 1, 101

Just because the subroutine is anonymous does not mean that it cannot accept parameters – we just
access the @_ array as normal. Here is a variation of make_counter that allows us to reset the counter
variable by passing a number to the anonymous subroutine:

#!/usr/bin/perl
closure.pl
use warnings;
use strict;

sub make_counter ($) {
my $count = @_?shift:0;

return sub {
$count = $_[0] if @_;
return $count++;

}
}

my $counter = make_counter(0);
foreach (1..10) {

print &$counter, "\n";
}
print "\n"; # displays 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

$counter -> (1000); #reset the counter
foreach (1..3) {

print &$counter, "\n";
}
print "\n"; # displays 1000, 1001, 1002

Chapter 7

250

Closures also provide a way to define objects so that their properties cannot be accessed from anywhere
other than the object's own methods. The trick is to define the object's underlying data in terms of an
anonymous subroutine that has access to an otherwise inaccessible hash, in the same way that the
variable $count is hidden here. We will take a look at doing this in Chapter 19, along with tied objects,
which would allow us to disguise a counter like the one above as a read-only scalar variable that
increments each time we access it.

Assignable Subroutines
Some of Perl's built-in functions allow us to assign to them as well as use them in expressions. In
programming parlance, the result of the function is an lvalue, or a value that can appear on the left-
hand side of an assignment. The most common and obvious lvalues are variables, which we assign to
all the time:

$scalar_value = "value";

Some Perl functions can also be assigned to in this way, for example the substr function:

$mystring = "this is some text";
substr ($mystring, 0, 7) = "Replaced";
print $mystring; # produces "Replaced some text";

The substr function returns part of a string. If the string happens to be held in a variable then this
returned string segment is an lvalue, and can be assigned to. Perl does not even require that the new
text be the same length, as the above example illustrates. It would be wonderful to be able to do this
kind of thing in our own subroutines.

In fact, Perl does allow us to this, albeit only experimentally at the moment. Assignable subroutines
make use of subroutine attributes (an experimental feature of Perl in version 5.6). Since attributes are
likely to evolve, or possibly even disappear entirely, this technique is not guaranteed to work and
should be avoided for production code. However, for the moment, to make a subroutine assignable we
can use the special attribute lvalue, as this simple assignable subroutine script demonstrates:

#!/usr/bin/perl
assignable.pl
use warnings;
use strict;

my $scalar = "Original String";

sub assignablesub : lvalue {
$scalar;

}

print $scalar, "\n";
assignablesub = "Replacement String";
print $scalar, "\n";

In order for an assignable subroutine to function correctly, it must return a variable. In addition, it must
not use return, because with an assignable subroutine data can pass in as well as out. Currently (as of
Perl 5.6) only scalar values may be used as assignable return values. This includes an array element or
hash value, however. Future versions of Perl are expected to lift this restriction.

Subroutines

251

Attributes do not preclude prototypes. If we want to specify a prototype, we can do so after the
subroutine, before any attributes. The following example shows a prototyped assignable subroutine that
provides an example of assigning to an array via the returned lvalue.

my @array = (1, 2, 3);

sub set_element (\@$) : lvalue {
@{$_[0]} [$_[1]]; # return element of passed array
@{$_[0]} is the array
[$_[1]] is the $_[1]th element of that array

}

set_element (@array, 2) = 5;

In itself this is not a particularly useful example, of course, but it may lead to some interesting
possibilities.

Attribute Lists
Attributes are a largely experimental feature, still under development, and only present from Perl
version 5.6 onwards, so accordingly we have left them to the end of the chapter. The use of attributes in
production code is not recommended, but being aware of them is not a bad idea, since they will
ultimately mature into an official part of the language.

In brief, attributes are pieces of information associated with either variables or subroutines that can be
set to modify their behavior in specific ways. The primary users of attributes are subroutines. Perl
recognizes and understands three special attributes, lvalue, locked, and method, which alter the way
in which the Perl interpreter executes subroutines. It is more than likely other special attributes will
appear as Perl evolves. We have already seen lvalue in this chapter, and cover locked and method
in brief below.

Currently, we cannot define our own attributes on either variables or subroutines, only those defined
and understood by Perl. However, an experimental package attribute mechanism, which associates user-
defined attributes with packages, is under development. All variables and subroutines that reside in the
package automatically have the package attributes associated with them.

Attributes can be placed on both subroutines and lexical variables. The basic form of a variable
attribute list is one or more variables declared with my followed by a semicolon and the attribute list.
However, there are no variable attributes currently understood by Perl.

Defining Attributes on Subroutines
The basic form of a subroutine attribute list is a standard subroutine definition (or declaration), followed
by a colon and the attributes to be defined. Attributes are separated by whitespace, and optionally a
colon, these are then followed by the body of the subroutine or (in the case of a declaration) a
semicolon:

sub mysubroutine : attr1 : attr2 { # standard subroutine
... body of subroutine ...

}
sub mysubroutine : attr1 attr2; # subroutine declaration

Chapter 7

252

my $subref = sub : attr1 : attr2 { # anonymous subroutine
... body of subroutine ...

}
sub mysubroutine (\@$$;$) : attr; # declaration with prototype
sub mysubroutine attr (parameters); # attribute with parameters

At the time of writing, the attributes lvalue, locked, and method are the only attributes that can be
set. None of these use a parameter list as shown in the last example, but the syntax accepts the
possibility in anticipation of future applications.

Accessing Attributes
Attribute definitions are actually handled by the attributes pragmatic module, which implements the
modified syntax for variables and subroutines that allows them to be defined. The attributes module
also supplies subroutines to access these attributes, which we can use by importing them from the
attributes module:

use attributes qw(get reftype); # import 'get' and 'reftype' subroutines

The get subroutine takes a variable, or subroutine reference, and returns a list of attributes defined on
that reference. If there are none, then the list is empty. For example:

sub mysubroutine : locked method {
...

}

my @attrlist = get \&mysubroutine; # contains ('locked', 'method')

The reftype subroutine also takes a reference to a variable or subroutine. It returns the underlying
reference type; HASH for a hash variable, CODE for a subroutine reference, and so on. Blessed references
return the underlying data type, which makes reftype a potentially useful subroutine as a replacement
for ref, even if we are not using attributes.

Special Attributes
Perl currently defines three attributes with special meanings – locked, method, and lvalue. Of all the
aspects of attributes discussed so far, these are the most immediately useful.

The lvalue attribute allows subroutines to return assignable values, rather like the substr function
does when used on a variable, as we discussed earlier in the chapter.

The locked attribute is useful in threaded programming, when more than one thread of execution can
call the same subroutine simultaneously. In many cases, such subroutines need to complete one call
before the next can proceed, such as writing complex information to a file or the screen, or handing a
database transaction. In order to stop simultaneous calls from treading on each other's toes, we can lock
the subroutine so that only one thread can execute it at any time:

sub oneatatimeplease : locked {
only one thread can execute this subroutine at a time.

}

Subroutines

253

The method attribute is used in object classes to indicate that a locked subroutine should lock on a per-
object basis. It modifies the effect of the locked attribute to apply itself to the first argument of the
subroutine. In an object method this is the blessed reference representing the object. As a result, the
method block only calls if the object being passed is already busy in that method; other objects of the
same class proceed unhindered:

sub objectmethodlock : locked : method {
my $self = shift;
only one thread can execute this method on the same object
but different threads can execute it on different objects

}

Whether or not it is used with locked, method also prevents Perl from confusing it with a built-in
function of the same name. We can therefore create a method called print and be sure that it will only
be used when an object-oriented call to print is made. Only if the subroutine is called as an object
method will Perl call it instead of the built-in function.

We cover the locked and method attributes in a little more detail when we discuss threaded
programming in Perl in Chapter 22.

Package Attributes
Package attributes are an experimental feature implemented in the attributes module. We will do no
more than take a brief look at what they are supposed to do here, because the mechanism and syntax of
how they are defined and used is likely to change at some point.

The idea of package attributes is that we can implement our own attributes that work on a package-wide
basis. To implement them, we write specially named subroutines within the package that will be called
by the get subroutine mentioned above. Each different type may (or may not) have a distinct set of
attributes associated with it, so a scalar variable has different attributes from an array, but all scalar
variables in the package share the same set of attributes. This is very similar in concept to the way that
tied variables work.

Attributes are stored and returned according to the package implementation. A given attribute data type
is implemented by writing FETCH_X_ATTRIBUTES and MODIFY_X_ATTRIBUTES subroutines, where X is
the data type – either SCALAR, ARRAY, or HASH. The package may implement the details of storage and
retrieval any way it likes, just as with tied variables. To retrieve attributes on subroutines, we define
FETCH_CODE_ATTRIBUTES, and to allow them to be set as well, we define
MODIFY_CODE_ATTRIBUTES.

FETCH subroutines are called by get whenever we use it on a reference of the correct type in the same
package. They are passed a single argument, which is a reference to the entity being queried. They
return a list of the attributes defined for that entity.

MODIFY subroutines are called during the import stage of compilation. They take a package name and a
reference as their first two arguments, followed by a list of attributes to define. They return a list of
unrecognized attributes, which may be empty.

The current design also allows for packages that inherit attributes from a parent package by calling
SUPER::FETCH_X_ATTRIBUTES and SUPER::MODIFY_X_ATTRIBUTES. The intent is that a child
FETCH or MODIFY subroutine should first call its parent, and then deal with any attributes returned. In
the case of FETCH, it adds its own attributes to the list and returns it. In the case of MODIFY, it deals with
the list of unrecognized attributes passed back from the parent.

TE
AM
FL
Y

Team-Fly®

Chapter 7

254

Summary
In this chapter we saw how to declare and call subroutines. Specifically we looked at anonymous
subroutines, subroutine references, and the use strict subs pragma. Next we looked at
predeclaring subroutines, and learned how to override built-in functions. After this, we learned about
the internal stack, which Perl uses to hold details of subroutines, and saw an example of a recursive
subroutine.

Several issues concerning the passing of parameters were covered, including:

� Passing lists and hashes.

� Converting scalar subroutines into list processors

� Passing @_ directly into subroutines

� Named parameters

Prototypes were discussed in-depth, and the topics covered included the following:

� Defining the number of parameters

� Prototyping code references

� Subroutines as scalar operators

� Optional parameters

� Disabling prototypes

Following this, we looked at how to return values from subroutines, and saw how to return the
undefined value, and determine and respond to the calling context. Finally, we covered attribute lists,
and looked at defining attributes on subroutines, accessing attributes, special attributes, and package
attributes.

Subroutines

255

Chapter 7

256

Scope and Visibility

We touched on the concept of scope briefly in Chapter 2 and mentioned it in following chapters several
times without going into the full details. While it is true that a programmer can often just ensure that all
their scripts start with use strict and all their variables are declared with my without worrying about
scope too much, a better understanding of the subject can unlock many useful features.

The scope of a variable is simply the range of places in code from which the variable can be accessed.
However, there are two fundamentally different types of variable scope in Perl, package scope (also
called dynamic scope) and lexical scope. These work in fundamentally different ways, and are frequently
the source of much confusion among Perl programmers. One useful rule-of-thumb for understanding the
distinction between the two is that package variables have a scope that is determined at run time from
the current contents of the symbol table (for details on the symbol table, see the section entitled 'The
Symbol Table' later in the chapter), whereas lexical variables have a scope that is determined at compile
time from the structure of the source code itself. Another rule-of-thumb is to avoid using
package/dynamic scope unless we actually need it.

Package Variables
A package is simply a namespace in which declarations of variables and subroutines are placed,
confining their scope to that particular package. A great deal of the time we can avoid defining package
variables at all by simply declaring all our variables as lexical variables. This lets us define local
variables in the way they are normally understood in other languages. However, we often use package
variables without being aware of it, for example, the variables $_, @_, %ENV, and @ARGS are all package
variables in the main package.

Chapter 8

258

Defining Package Variables
Packages are defined by the package keyword. In and of itself, a package declaration does nothing,
but it states that all further declarations of subroutines or package variables will be placed into the
package named by the declaration, until further notice. The notice in this case is either the end of the
file, or less commonly, but perfectly legally, another package declaration. The package keyword takes
one argument; a list of namespaces separated by double colons. For example:

package My::Package;

Package variables have the scope of the package in which they were declared. A package variable can
be accessed from other packages by specifying the full package name, in the same way that we can refer
to any file on a hard disk from the current directory by starting at the root directory and writing out the
full path of the file. For example:

package My::Package;

$package_variable = "implicitly in 'My::Package'";
$My::Package::another_variable = "explicitly declared in 'My::Package'";

$Another::Package::variable = "explicitly declared in 'Another::Package'";

The effect of a package declaration is to cause all unqualified package variables and (more
significantly) subroutines that follow it to be located in the namespace that it defines. We don't have to
use a package declaration though; we can define all our variables and subroutines with an explicit
package name, as we showed in the above example. It just makes writing code a bit simpler if we do.

Package variables are defined simply by using them, as in the above example. No extra syntax or
qualifier is needed. Unfortunately this makes them very easy to define accidentally by misspelling the
name of another variable. Perl prevents us from making this mistake with the use strict vars
pragma, covered later.

A package is not the same as a module, however, and certainly not the same as a file. In simple terms, a
package defines a namespace in which variable names are defined. This namespace is contained by a
table known as the symbol table. Whenever a new variable or subroutine is defined, a new entry is
added to the table for that package. The same variable name in a different package is not confused with
it because the namespaces of the two variables are different and they are defined in different symbol
tables (albeit all contained in the same master symbol table).

Package scope is not the same as file scope. Even though a package is most often defined in a single file
(a module), Perl allows packages to be spread across many files. This is uncommon, but is one approach
we can take if we want to split up subroutines or methods in a package into separate functional files. We
define one main module with the same name as the package, translated into a pathname, and use or
require all the other supporting modules from it:

package My::Module;

require My::Module::Input;
require My::Module::Output;
require My::Module::Process;

Scope and Visibility

259

The modules Input.pm, Output.pm, and Process.pm in this scheme would all contain a first line of
package My::Module;, rather than a package that reflects the actual name of the file. This allows
them to add additional subroutine definitions to the My::Module namespace directly, without the need
to use the Exporter module to export all the names explicitly. There is no requirement for a module to
have the same package name as its filename suggests, it is just the usual case.

It follows from this that package variables must be global variables. In practice, what we usually think of
as global variables are package variables that are accessed from within their own package, where the
package prefix is not required. For instance, the variable $package_variable is global within the
package MyPackage. This does not alter the fact that we can access it from anywhere in our code so
long as the contents of MyPackage have been compiled and executed by the interpreter.

New package variables can be created by executing code, and existing variables given local temporary
values. Both of these events modify the contents of the symbol table as the program progresses. As a
result, package scope is ultimately determined at run time and is dependent on the structure of the data
in the symbol tables. This differs from lexical variables, whose scope is determined at compile time
when the source code is parsed.

All subroutines and package variables must have a package, in the same way that all files in a filing
system must have a directory, even if it is the root. In Perl, the 'root' namespace is main, so any
subroutine or package variable we define without an explicit package name or prior package declaration
is part of the main package. In effect, the top of every source file is prefixed by an implicit:

package main;

Perl's special variables, as well as the filehandles STDIN, STDOUT, and STDERR, are exempt from the
normal rules of package scope visibility. All of these variables are automatically used in the main
package, wherever they are used, irrespective of the package declaration that may be in effect. There is
therefore only one @_ array, only one default argument $_, and only one %ARGV or @INC. However,
these variables have a special status in Perl because they are provided directly by the language; for our
own variable declarations and subroutines, the normal rules of packages and namespaces apply.

Using 'strict' Variables
Since it is easy to accidentally define a new global variable without meaning to, Perl provides the
strict module. With either of use strict or use strict vars, a compile time syntax check is
enabled that requires variables to either be declared lexically or be declared explicitly as package
variables. This is generally a good idea, because without this check it is very easy to introduce hard-to-
spot bugs, either by forgetting to define a variable before using it, creating a new variable instead of
accessing an existing one, or accessing a global variable when we actually meant to create and use a
local copy.

With strict variables in effect, Perl will no longer allow us to define a variable simply by assigning to it.
For instance:

#!/usr/bin/perl
package.pl
use warnings;
use strict;

package MyPackage;

$package_variable = "This variable is in 'MyPackage'; # ERROR

Chapter 8

260

If we attempt to run this code fragment Perl will complain with an error:

Global symbol "$package_variable" requires explicit package name at ...

Usually the simplest fix for this problem is to prefix the variable with my, turning the variable into a file-
scoped lexical variable. However, if we actually want to define a global package variable, we now need
to say so explicitly.

Declaring Global Package Variables
The traditional meaning of 'global' variable is a variable that can be seen from anywhere – it has global
visibility. In Perl the distinction between package and lexical variables means that there are two
different kinds of global variable, 'package-global' and 'file-global'.

In essence, a package variable is a global variable within the package in which it is defined, as we
discussed above. Any code in the same package can access the variable directly without qualifying it
with a package prefix, except when the variable has been hidden by another variable with the same
name (defined in a lower scope). A lexical variable is a global variable if it is defined at the file level
(that is, not between braces), in which case it is a global variable within the file in which it is defined.
Only package variables are truly global, because they can always be accessed by referring to them via
their full package-prefixed name.

The simplest way to define a package variable is to write it out in full, including the package name, for
example:

$MyPackage::package_variable = "explicitly defined with package";

However this can be inconvenient to type each time we want to define a new package variable, and also
causes a lot of editing if we happen to change the name of the package. We can avoid having to write
the package name by using either use vars or our. These both define package variables in the current
package, but work in slightly different ways.

Declaring Global Package Variables with 'use vars'
To define a package variable with use vars we pass the list of variables we want to declare as a list, for
example with qw:

use vars qw($package_variable $another_var @package_array);

This defines the named variables in the symbol table for the current package, and therefore the
variables are directly visible anywhere the package is defined, and can be accessed from anywhere by
specifying the full variable name including the package.

Variables declared with use vars are plugged into the symbol table for the current package at compile
time, because use takes effect at compile time.

As they are simply added to the symbol table, package variables know nothing about lexical scope.
Consequently, the following script defines the variable $package_variable and makes it immediately
visible anywhere within the package, despite the fact the use is in a subroutine:

Scope and Visibility

261

#!/usr/bin/perl
globpack.pl
use warnings;
use strict;

sub define_global {
use vars qw($package_variable);
$package_variable = "defined in subroutine";

}

print $package_variable; # visible here but not yet defined
define_global;
print $package_variable; # visible here and now defined

What we probably intended to do here was create a local package variable with our, which was
introduced into Perl 5.6 for precisely this sort of occasion.

Lexically Declaring Global Package Variables with 'our'
The our keyword is a replacement for use vars. It allows us to defined lexically scoped package
variables in the same manner as my does. This can be a little tricky to understand, since the whole point
of lexical and package scope is that they work in different ways.

To explain, our works like use vars in that it adds a new entry to the symbol table for the current
package. However, unlike use vars it does this at compile time, not run time. This means that the
variable can be accessed without a package prefix from any package, but only so long as its lexical
scope exists. This means that a package variable, declared with our at the top of the file, is global
throughout the file even if it contains more than one package, just as we would normally expect a global
variable to be. It exists in the symbol table under the package in which it was defined, but other
packages may still access it without a prefix, so long as they are in its lexical scope. Or, to put it another
way, our makes package variables 'work right' from the point of view of what we normally expect of
global variables.

Another way to look at our is to think of it as causing Perl to rewrite accesses to the variable in other
packages (in the same file) to include the package prefix before it compiles the code. For instance, we
might create a Perl script containing the following four lines:

package MyPackage;
our $scalar = "value"; # defines $MyPackage::scalar

package AnotherPackage;
print $scalar;

When Perl parses this, it sees the lexically scoped variable $scalar and invisibly rewrites all other
references to it in the same file to include the package, that is, $MyPackage::scalar.

Using our also causes variables to disappear at the end of their lexical scope. Used inside a subroutine,
our hides the value of the global variable in the same way that local does (see below), but it does so at
compile time. The new value is therefore not visible from called subroutines; they see the original
global value. The variable is also not required to exist, unlike local, which under strict vars will
only localize a variable that exists already. our differs from use vars in that a variable declared with
use vars has package scope even when declared inside a subroutine. With our the variable is removed
when the subroutine exits.

Chapter 8

262

our behaves exactly like my in every respect except that it adds an entry to the symbol table and
removes it afterwards (more correctly, it tells Perl to define the symbol in advance, since it happens at
compile time). Like my, the added entry is not visible from subroutine calls since it is lexically scoped.
See the 'Declaring Lexical Variables' section for more details on how my works.

Automatic Localization in Perl
Perl automatically localizes some variables for us. The most obvious example is the @_ array in
subroutines. Each time a subroutine is called a fresh local copy of @_ is created, temporarily hiding the
existing one until the end of the subroutine. When the subroutine call returns, the old @_ reappears.
This allows chains of subroutines to call each other, each with its own local @_, without overwriting the
@_ of the caller.

Other instances of automatically localized variables include loop variables, including $_ if we do not
specify one explicitly. Although the loop variable might (and with strict variables in effect, must)
exist, when it is used for a loop, the existing variable is localized and hidden for the duration of the
loop:

#!/usr/bin/perl
autolocal.pl
use warnings;
use strict;

my $var = 42;
my $last;
print "Before: $var \n";
foreach $var (1..5) {

print "Inside: $var \n"; # print "Inside: 1", "Inside: 2" ...
$last = $var;

}

print "After: $var \n"; # prints '42'
print $last;

It follows from this that we cannot find the last value of a foreach loop variable if we exit the loop on
the last statement without first assigning it to something with a scope outside the loop, like we have
done for $last in the example above.

Localizing Package Variables with 'local'
Package variables can be temporarily localized inside subroutines and other blocks with the local
keyword. This hides an existing variable by masking it with a temporary value that exists for as long as
the local statement is in lexical scope. As a statement, local takes either a single variable name or a
list enclosed in parentheses, and optionally an assignment to one or more values:

local $hero;
local ($zip, @boing, %yatatata);
local @list = (1, 2, 3, 4);
local ($red, $blue, $green, $yellow) = ("red", "blue", "green");

Scope and Visibility

263

local does not, as its name suggests, create a local variable; that is the job of my. The local keyword
only operates on an existing variable, which can be either a global, or a variable defined in the calling
context. Most of the time we want to create a local variable we really should be using my instead.

Having said this, a lot of Perl code uses local to create variables by avoiding the strict
module. This works, but is not sound programming now that our exists.

Localized variables are visible inside subroutine calls, just as the variable they are masking would be if
they had not been defined. They are global from the perspective of the subroutines in the call-chain
below their scope, so they are not visible outside the subroutine call. This is because localization
happens at run time, and persists for the scope of the local statement. In this respect they differ from
lexical variables, which are also limited by the enclosing scope but which are not visible in called
subroutines.

The following demonstration script illustrates how local works, and also the differences and
similarities between my, our, and use vars:

#!/usr/bin/perl
scope-our.pl
use warnings;
use strict;

package MyPackage;

my $my_var = "my-var"; # file-global lexical variable
our $our_var = "our-var"; # global to be localized with 'our'
our $local_var = "global-var"; # global to be localized with 'local'
use vars qw($use_var); # define 'MyPackage::use_var' which exists

only in this package
$use_var = "use-var";

ERROR: the global variable is not declared
$package_variable = "eek";

package AnotherPackage;

print "Outside, my_var is '$my_var' \n"; # display 'my-var'
print "Outside, our_var is '$our_var' \n"; # display 'our-var'
print "Outside, local_var is '$local_var' \n"; # display 'global-var'

ERROR: $use_var doesn't exist in this package
print "Outside, use_var is '$use_var' \n";

sub mysub {
my $my_var = "my_in_mysub";
our $our_var = "our_in_mysub";
local $local_var = "local_in_mysub";

ERROR: global $use_var does not exist in this package
local $use_var = "local_use_in_mysub";

print "In mysub, my_var is '$my_var'\n"; # display 'my_in_mysub'
print "In mysub, our_var is '$our_var'\n"; # display 'our_in_mysub'
print "In mysub, local_var is '$local_var'\n"; # display 'local_in_mysub'
mysub2();

}

TE
AM
FL
Y

Team-Fly®

Chapter 8

264

sub mysub2 {
print "In mysub2, my_var is '$my_var' \n"; # display 'my-var'
print "In mysub2, our_var is '$our_var' \n"; # display 'our-var'
print "In mysub2, local_var is '$local_var' \n"; # display 'local_in_mysub'

}

mysub;

print "Again outside, my_var is '$my_var' \n"; # display 'my-var'
print "Again outside, our_var is '$our_var' \n"; # display 'our-var'
print "Again outside, local_var is '$local_var' \n"; # display 'global-var'

Although it is not common, there are a few places where only local will do what we want. One is
where we want to create a local version of one of Perl's built-in variables. For example, if we want to
temporarily alter the output separator in a subroutine, we would do it with local like this:

sub printwith {
($separator, @stuff) = @_;
local $, = $separator; # create temporary $,
print @stuff;

}

This is also the correct approach for variables such as @ARGV and %ENV. The special variables defined
automatically by Perl are all package variables, so creating a lexical version with my would certainly
work from the point of view of our own code, but would be totally ignored by built-in functions like
print. To get the desired effect we need to use local to create a temporary version of the global
variable that will be seen by the subroutines and built-in functions we call.

Another use for local is for creating local versions of filehandles. For example, this subroutine replaces
STDOUT with a different filehandle, MY_HANDLE, presumed to be opened and visible before the
subroutine will be called. Because we have used local, both the print statement below and any
print statements called from this subroutine will go to MY_HANDLE. In case MY_HANDLE is not a legal
filehandle, we check the result of print and die on a failure:

sub print_to_me {
local *STDOUT = *MY_HANDLE;
die unless print @_;
a_sub_that_calls_print ();

}

If we had used our, only the print in the same subroutine would use the new filehandle. At the end of
the subroutine the local definition of STDOUT vanishes. The use of local here is safe since STDOUT
always exists.

Lexical Variables
Lexical variables have the scope of the file, block, or eval statement in which they were defined. Their
scope is determined at compile time, determined by the structure of the source code, and their visibility
is limited by the syntax that surrounds them.

Scope and Visibility

265

Unlike package variables, a lexical variable is not added to the symbol table, and so cannot be accessed
through it. It cannot be accessed from anywhere outside its lexical scope, even by subroutines that are
called within the scope of the variable. When the end of the variable's scope is reached, it simply ceases
to exist.

Although Perl now allows us to declare package variables lexically with our, in this section we are
concerned with my. While our also declares variables lexically, it declares variables whose visibility is
greater than their lexical scope. They can be seen anywhere in the chain of subroutine calls beneath the
scope of the declaration, so while their scope is lexical, their visibility is not.

Declaring Lexical Variables
The following is a short summary of all the different ways in which we can declare lexical variables with
my, most of which should already be familiar:

my $scalar; # simple lexical scalar
my $assignedscalar = "value"; # assigned scalar
my @list = (1, 2, 3, 4); # assigned lexical array
my ($red, $blue, $green); # list of scalars
my ($left, $right, $center) = (1, 2, 0); # assigned list of scalars
my ($param1, $param2) = @_; # inside subroutines

All these statements create lexical variables that exist for the lifetime of their enclosing scope and are
only visible inside it. If placed at the top of a file, the scope of the variable is the file. If defined inside
an eval statement, the scope is that of the evaluated code. If placed in a block or subroutine (or indeed
inside curly braces of any kind), the scope of the variable is from the opening brace to the closing one:

#!/usr/bin/perl
scope-my.pl
use warnings;
use strict;

my $file_scope = "visible anywhere in the file";
print $file_scope, "\n";

sub topsub {
my $top_scope = "visible in 'topsub'";
if (rand > 0.5) {

my $if_scope = "visible inside 'if'";
$file_scope, $top_scope, $if_scope ok here
print "$file_scope, $top_scope, $if_scope \n";

}

bottomsub();
$file_scope, $top_scope ok here
print "$file_scope, $top_scope\n";

}

sub bottomsub {
my $bottom_scope = "visible in 'bottomsub'";
$file_scope, $bottom_scope ok here
print "$file_scope, $bottom_scope \n";

}

topsub();

only $file_scope ok here
print $file_scope, "\n";

Chapter 8

266

In the above script, we define three lexical variables, each of which is visible only within the enclosing
curly braces. Both subroutines can see $file_scope because it has the scope of the file in which the
subroutines are defined. Likewise, the body of the if statement can see both $file_scope and
$top_scope. However, $if_scope ceases to exist as soon as the if statement ends and so is not
visible elsewhere in topsub. Similarly, $top_scope only exists for the duration of topsub and
$bottom_scope only exists for the duration of bottomsub. Once the subroutines exit, the variables
and whatever content they contain cease to exist.

Preserving Lexical Variables Outside Their Scope
Normally a lexically defined variable (either my or our) ceases to exist when its scope ends. However,
that is not always the case. In the earlier example it happens to be true because there are no references
to the variables other than the one created by the scope itself. Once that ends, the variable is
unreferenced and so is consumed by Perl's garbage collector. The variable $file_scope appears to be
persistent only because it drops out of scope at the end of the script, where issues of scope and
persistence become academic.

However, if we take a reference to a lexically scoped variable and pass that reference back to a higher
scope, the reference keeps the variable alive for as long as the reference exists. In other words, so long
as something, somewhere, is pointing to the variable (or to be more precise, the memory which holds
the value of the variable), it will persist even if its scope ends. The following short script illustrates the
point:

#!/usr/bin/perl
persist.pl
use warnings;
use strict;

sub definelexical {
my $lexvar = "the original value";
return \$lexvar; # return reference to variable

}

sub printlexicalref {
my $lexvar = ${$_[0]}; # dereference the reference

print "The variable still contains $lexvar \n";
}

my $ref = definelexical();
printlexicalref($ref);

In the subroutine definelexical, the scope of the variable $lexvar ends once the subroutine ends.
Since we return a reference to the variable, and because that reference is assigned to the variable $ref,
the variable remains in existence, even though it can no longer be accessed as $lexvar. We pass this
reference to a second subroutine, printlexicalref, which defines a second, $lexvar, as the value to
which the passed reference points to. It is important to realize that the two $lexvar variables are
entirely different, each existing only in its own scope, but both pointing to the same underlying scalar.
When executed, this script will print out: The variable still contains the original value.

In this particular example there is little point in returning a reference. Passing the string as a value
is simpler and would work just as well. However, complex data structures can also be preserved by
returning a reference to them, rather than making a copy as would happen if we returned them as a
value.

Scope and Visibility

267

The fact that a lexical variable exists so long as a reference to it exists can be extended to include
'references to references' and 'references to references to references'. So long as the 'top' reference is
stored somewhere, the lexical variable can be hidden at the bottom of a long chain of references, each
one being kept alive by the one above. This is in essence how lexical array of arrays and hashes of
hashes work. The component arrays and hashes are kept alive by having their reference stored in the
parent array or hash.

The Symbol Table
We have seen that package variables are entered into the symbol table for the package in which they
are defined, but can be accessed from anywhere by their fully qualified name. This works because the
symbol tables of packages are jointly held in a master symbol table, with the main:: package at the top
and all other symbol tables arranged hierarchically below. Although for most practical purposes we can
ignore the symbol table most of the time and simply let it do its job, a little understanding of its
workings can be informative and even occasionally useful.

Perl, being Perl, implements its symbol table in a manner that we can easily comprehend with a basic
knowledge of data types; it is really a hash of typeglobs. In fact, the symbol table is the origin of
typeglobs and the reason for their existence. This close relationship between typeglobs and the symbol
table means that we can examine and manipulate the symbol table through the use of typeglobs.

Whenever we create a global (declared with our or use vars but not my) variable in Perl we cause a
typeglob to be entered into the symbol table and a reference for the data type we just defined to be
placed into the typeglob.

The Perl symbol table is an example of a hash containing globs. Each key is the name of the typeglob,
and therefore the name of the scalar, array, hash, subroutine, filehandle, and report associated with that
typeglob. The value is a typeglob containing the references, or a hash reference to another symbol table,
which is how Perl's hierarchical symbol table is implemented.

Let's take the following example:

our $variable = "This is a global variable";

What we are actually doing here is creating a typeglob called variable in the main package, and
filling its scalar reference slot with a reference to the string This is a global variable. The name of
the typeglob is stored as a key in the symbol table, which is essentially just a hash, with the typeglob
itself as the value, and the scalar reference in the typeglob defines the existence and value of
$variable. Whenever we refer to a global variable, Perl looks up the relevant typeglob in the symbol
table and then looks for the appropriate reference, depending on what kind of variable we asked for.

The only thing other than a typeglob that can exist in a symbol table is another symbol table. This is the
basis of Perl's package hierarchy, and the reason we can access a variable in one package from another.
Regardless of which package our code is in, we can always access a package variable by traversing the
symbol table tree from the top.

The 'main' Package
The default package is main, the root of the symbol table hierarchy, so any package variable declared
without an explicit package prefix or preceding package declaration automatically becomes part of the
'main package':

our $scalar; # defines $main::scalar

Chapter 8

268

Since main is the root table for all other symbol tables, the following statements are all equivalent:

package MyPackage;
our $scalar;

package main::MyPackage;
our $scalar;

our $MyPackage::scalar;
our $main::MyPackage::scalar

Strangely, since every package must have main as its root, the main package is defined as an entry in its
own symbol table. The following is also quite legal and equivalent to the above, if somewhat bizarre:

our $main::main::main::main::main::main::main::MyPackage::scalar;

This is more a point of detail than a useful fact, of course, but if we write a script to traverse the symbol
table then this is a special case we need to look out for.

In general we do not need to use the main package unless we want to define a package variable
explicitly without placing it into its own package. This is a rare thing to do, so most of the time we can
ignore the main package. It does however allow us to make sense of error messages like: Name
"main::a" used only once: possible typo at

Typeglobs and the 'main' Package
All global variables are really package variables in the main package, so the following two assignments
are the same:

*subglob = \&mysubroutine;
*main::subglob = \&main::mysubroutine;

We can of course alias to a different package too. This is actually how Perl's import mechanism works
underneath the surface when we say use module and get subroutines that we can call without
qualification in our own programs:

import 'subroutine' into our namespace
*main::subroutine = \&My::Module::subroutine;

Be wary of assigning things other than references or other typeglobs, however. For example, assigning a
string does have an interesting but not entirely expected effect. We might suppose the following
statement creates a variable called $hello with the value world:

*hello = "world";

However, if we try to print $hello we find that it does not exist. If we print out *hello we find that it
has become aliases instead:

print *hello; # produce '*main::world'

Scope and Visibility

269

In other words, the string has been taken as a symbolic reference to a typeglob name, and the statement
is actually equivalent to:

*hello = *world;

This can be very useful, especially since the string can be a scalar variable:

*hello = $name_to_alias_to;

However, it is also a potential source of confusion, especially as it is easily done by forgetting to include
a backslash to create a reference. Assigning other things to typeglobs has less useful effects. An array or
hash for example will be assigned in scalar context and alias the typeglob to a typeglob whose name is a
number:

@array = (1, 2, 3);
*hello = @array;
print *hello; # produces 'main::3' since @array has three elements

This is unlikely to be what we wanted, and we probably meant to say *hello = \@array in this case.
Assigning a subroutine aliases the typeglob to the value returned by the subroutine. If that's a string, it's
useful, otherwise it probably isn't:

*hello = subroutine_that_returns_name_to_alias_to(@args);

The bottom line is that typeglobs can be used for all kinds of interesting effects.

The Symbol Table Hierarchy
Whenever we define a new package variable in a new package, we cause Perl to create symbol tables to
hold the variable. In Perl syntax, package names are separate by double colons :: in much the same
way that directories are separated by / or \, and domain names by a dot. For the same reason the
colons define a location in a hierarchical naming system.

For example, if we declare a package with three package elements we create three symbol tables, each
containing an entry to the one below:

package World::Country::City;
our $variable = "value";

This creates a chain of symbol tables. The World symbol table created as an entry of main contains no
actual variables. However, it does contain an entry for the Country symbol table, which therefore has
the fully qualified name World::Country. In turn Country contains an entry for a symbol table
called City. City does not contain any symbol table entries, but it does contain an entry for a typeglob
called *variable which contains a scalar reference to the value value. When all put together as a
whole, this gives us the package variable:

$main::World::Country::City::variable;

Chapter 8

270

Since main is always the root of the symbol table tree we never need to specify it explicitly, so we can
also just say:

$World::Country::City::variable;

This is the fully qualified name of the package variable. The fact that we can omit the package names
when we are actually in the World::Country::City package is a convenience extended to us by Perl.
There is no actual variable called $variable, unless we declare it lexically. Even if we were in the
main package the true name of the variable would be $main::variable.

Manipulating the Symbol Table Directly
We can edit the symbol table directly by creating and manipulating typeglobs, since the symbol table
entries are actually typeglobs. This allows us to do some interesting things, particularly in conjunction
with local.

For example, we can alias a global variable with a local name, so that altering the local variable also
affects the global:

#!/usr/bin/perl
changeglobal.pl
use warnings;
use strict;

our $global = 'before';

sub changeglobal {
local *local = *global;
our $local = 'after';

}

print "$global \n";
changeglobal;
print "$global \n";

The assignment to $global creates a typeglob in the symbol table, *global, with its scalar reference
pointing to the string before. In the subroutine we make a local copy of this typeglob, which contains
all the same references to its different subtypes as the original typeglob. The only defined reference is
the scalar one, so the assignment to *local creates the local variable $local. Since we are using
strict we declare it with our, but the variable already exists so our just keeps the strict module
happy about us using it. Since *local contains the same references as *global, $local is an alias for
$global and altering it also alters the global variable.

Typeglob assignment works for any of the possible types that a typeglob can contain, including
filehandles and code references. So we can create an alias to a filehandle this way too:

local *OUT = *STDOUT;
print OUT "this goes to standard output";

We can create an alias for a previously defined subroutine with a similar approach. This lets us do
things like choose from a selection of subroutines in:

choose a subroutine to call and alias it to a local name
local *aliassub = $debug? *mydebugsub: *mysubroutine;

call the chosen subroutine via its alias
aliassub("Testing", 1, 2, 3);

Scope and Visibility

271

This even works if aliassub already exists as a function, because local creates a local version of the
name that temporarily replaces the original.

All this works because package typeglobs are actually entries in the symbol table itself. Everything else
is held in a typeglob of the same name. Once we know how it all works it is relatively easy to see how
Perl does the same thing itself. For example, when we define a named subroutine we are really causing
Perl to create a code reference, then assign it to a typeglob of that name in the symbol table. To prove
it, here is a roundabout way to define a subroutine:

#!/usr/bin/perl
anonsub.pl
use warnings;
use strict;

our $anonsub = sub {print "Hello World"};

*namedsub = \&{$anonsub};
namedsub();

Here we have done the same job as defining a named subroutine, but in explicit steps. First creating a
code reference, then assigning that code reference to a typeglob. The subroutine is defined in code
rather than as a declaration, but the net effect is the same.

Accessing the Symbol Table
Interestingly, the symbol table itself can be accessed in Perl by referring to the name of the package
with a trailing ::. Since symbol tables are hashes, and the hashes are stored in a typeglob with the same
name, the hash that defines the main symbol table can be accessed with %{*main::}, or simply
%{*::}, as this short script demonstrates:

#!/usr/bin/perl
dumpmain.pl
use warnings;
use strict;

foreach my $name (sort keys %{*::}) {
next if $name eq 'main';
print "Symbol '$name' => \n";

extract the glob reference
my $globref = ${*::} {$name};

define local package variables through alias
local *entry = *{$globref};
make sure we can access them in 'strict' mode
our ($entry, @entry, %entry);

extract scalar, array, and hash via alias
print "\tScalar: $entry \n" if defined $entry;
print "\tArray : [@entry] \n" if @entry;
print "\tHash : {", join(" ", {%entry}), "} \n" if %entry;

check for subroutine and handle via glob
print "\tSub '$name' defined \n" if *entry{CODE};

print "\tHandle '$name' (", fileno(*entry), ") defined \n"
if *entry{IO};

}

Chapter 8

272

The Dumpvalue module provides a more convenient interface to the symbol table and forms a core
part of the Perl debugger. It does essentially the same thing as the example above, but more thoroughly
and with a more elegant output. The following script builds a hierarchy of symbol tables and variables
and then uses the Dumpvalue module to print them out:

#!/usr/bin/perl
dumpval.pl
use warnings;
use strict;

use Dumpvalue;

first define some variables
{

no warnings to suppress 'usage' messages
no warnings;

package World::Climate;
our $weather = "Variable";

package World::Country::Climate;
our %weather = (

England => 'Cloudy'
);

package World::Country::Currency;
our %currency = (

England => 'Sterling',
France => 'Franc',
Germany => 'Mark',
USA => 'US Dollar',

);

package World::Country::City;
our @cities = ('London', 'Paris', 'Bremen', 'Phoenix');

package World::Country::City::Climate;
our %cities = (

London => 'Foggy and Cold',
Paris => 'Warm and Breezy',
Bremen => 'Intermittent Showers',
Phoenix => 'Horrifyingly Sunny',

);

package World::Country::City::Sights;
our %sights = (

London => ('Tower of London','British Museum'),
Paris => ('Eiffel Tower','The Louvre'),
Bremen => ('Town Hall','Becks Brewery'),
Phoenix => ('Arcosanti'),

);
}

my $dumper = new Dumpvalue (globPrint => 1);
$dumper->dumpValue(*World::);

Scope and Visibility

273

Summary
This chapter began with a discussion of package variables. The topics covered include:

� Defining package variables

� Using 'strict' variables

� Declaring global package variables

� Declaring global package variables with use vars

� Lexically declaring global package variables with our

� Automatic localization in Perl

� Localizing package variables with local

We then talked briefly about lexical variables before working through the following aspects of the
symbol table:

� The main package

� Typeglobs and the main package

� The symbol table hierarchy

� Manipulating the symbol table directly

� Accessing the symbol table

TE
AM
FL
Y

Team-Fly®

Chapter 8

274

Using Modules

Modules are the basic unit of reusable code in Perl, the equivalent of libraries in other languages. Perl's
standard library is almost entirely made up of modules. When we talk about Perl libraries we usually
mean modules and older library files that are included as part of the standard Perl library – the
collection of files that comes as standard with Perl. The words 'module' and 'library' are frequently used
interchangeably, but they are not equivalent because not all libraries are modules. The exception is the
term 'standard Perl library', which we use to refer to the entire assembly of supporting modules that ship
as standard with Perl.

A library is simply a file supplied either by the standard Perl library or another package that contains
routines that we can use in our own programs. Older Perl libraries were simple collections of routines
collected together into a file, generally with a .pl extension. The do and require functions can be
used to load this kind of library into our own programs, making the routines and variables they define
available in our own code.

Modern Perl libraries are defined as modules and included into our programs with the use directive,
which requires that the module name ends in .pm. The use keyword provides additional complexity
over do and require, the most notable difference being that the inclusion happens at compile time
rather than run time.

Modules come in two distinct flavors, functional and pragmatic. Functional modules are generally just
called modules or library modules. They provide functionality in the form of routines and variables that
can be used from within our own code. They are what we usually think of as libraries. Conversely,
pragmatic modules implement pragmas that modify the behavior of Perl at compile time, adding to or
constraining Perl's syntax to permit additional constructs or limit existing ones. The use directive is
always used to load them. The strict, vars, and warnings modules are all examples of pragmatic
modules that we frequently use in Perl scripts. Some pragmatic modules also provide routines and
variables that can be used at run time, but most do not.

Chapter 9

276

In this chapter we will examine the different ways of using modules in our scripts. In Chapter 10 we will
look inside modules, that is, examine them from the perspective of how they work as opposed to how to
use them.

Modules and Packages
A package declaration is the naming of a new namespace in which further declarations of variables and
subroutines are placed. A module is simply a library file that defines subroutines and variables in a
given namespace, courtesy of a package declaration. The link between package name and module file
would therefore appear to be a strong one, but this is not necessarily true. The module that is loaded
corresponds to the named package, but this does not imply that the module actually defines anything in
that package. As an example, many of Perl's pragmatic modules are purely concerned with compile
time semantics and do not contribute anything new to the symbol table.

In fact, a module doesn't have to include a package declaration, but it usually does. By including a
package definition we are able to use many different modules without worrying about clashes between
similarly named definitions – namespace collisions, as the technical jargon has it.

Since a module file usually only contains declarations of subroutines and variables, rather than code that
actually does something, executing it has no visible effect. However, subroutines and package variables
are added to the symbol table, under the namespace defined by the package declaration. Most of the
time that will be the same package that the use statement asked for, but it isn't actually required. In
some cases we might use a different package, or define symbols in more than one package at the same
time.

Whatever else it does, in order for a module to be loaded successfully by either require or use, it
must return a True value. Unless the module actually contains a return statement outside a subroutine
definition, this must be the last statement in the file. Since a typical module contains mainly subroutine
definitions (which don't return anything), we usually need to add an explicit return value to let Perl
know that the module is happy. We can also add code for initialization that does do something actively,
and have that return a conditional value. This means we can, for example, programmatically have a
module fail compilation if, say, an essential resource like a configuration file that it needs is missing.

Most modules do not have any initialization code to return a value, so in general we satisfy Perl by
simply appending a 1 to the end of the module file. As the last statement in the file, this is returned to
the use or require that triggered the loading of the module file. Taking all this together, the general
form of a module file is simply:

package My::Module;

... use other modules ...

... declare global variables ...

... define subroutines ...

1;

This module would be called Module.pm, placed in a directory called My, which in turn can be located
in a variety of places. The My Directory can be situated under any of the paths in @INC, in our own
personal location, or in Perl modules that we can use by adding it to @INC or using the lib module, as
we shall see shortly.

Using Modules

277

Loading Code Using 'do', 'require', and 'use'
Perl provides three mechanisms of increasing usefulness for incorporating code (including modules), in
other files into our own programs. These are the do, require, and use statements. Any code that is
loaded by any of these statements is recorded in the special hash %INC (more on this later on).

The simplest is do, which simply executes the contents of an external file by reading it and then
evaling the contents. If that file happens to contain subroutine declarations, then those declarations are
evaluated and become part of our program:

do '/home/perl/loadme.pl';

A more sophisticated version of do is the require statement. If the filename is defined within quotes it
looks for it as-is, otherwise it appends a .pm extension and translates instances of :: into a directory
separator:

include the old-style (and obsolete) getopts library
require 'getopts.pl';

include the modern and trendy Getopt::Std library
(i.e. PATH/Getopt/Std.pm)
require Getopt::Std;

This first checks that the file has not already been loaded by looking in the %INC hash. Next it searches
for those files in the paths contained in the special array @INC, which we will examine later in the
chapter.

More sophisticated still is the use statement. This does exactly the same as require, but evaluates the
included file at compile time, rather than at run time as require does. This allows modules to perform
any necessary initializations and to modify the symbol table with subroutine declarations before the
main body of the code is compiled. This in turn allows syntax checks to recognize valid symbols defined
by the module and flag errors on non-existent ones. For example, this is how we can include the
Getopt::Std module at compile time:

include Getopt::Std at compile time
use Getopt::Std;

Like require, use takes a bare unquoted module name as a parameter, appending a .pm to it and
translating instances of :: or the archaic ` into directory separators. Unlike require, use does not
permit any filename to be specified with quotes and will flag a syntax error if we attempt to do so. Only
true library modules may be included via use.

The traditional way to cause code to be executed at compile time is with a BEGIN block, so this is
(almost) equivalent to:

BEGIN {
require Getopt::Std;

}

Chapter 9

278

However, use also attempts to call the subroutine import in the module being included. This provides
the module with the opportunity to define symbols in our namespace, making it simpler to access its
features without prefixing them with the module's package name. use Module is therefore actually
equivalent to:

BEGIN {
require Module;
Module->import; # or 'import Module'

}

This one simple additional step is the foundation of Perl's entire import mechanism. There is no more
additional complexity or built-in support for handling modules or importing variables and subroutine
names. It is all based around a simple function call that happens at compile time.

'import' Lists
As we just discussed above, the major advantage that use has over require is the concept of
importing. While it is true that we can import directly by simply calling import ourselves, it is simpler
and more convenient with use.

If we execute a use statement with just a module name as an argument we cause the import subroutine
within the module to be called with no argument. This produces a default response from the module.
This may be to do nothing at all, or to import a default set of symbols (subroutines, definitions, and
variables) for our use. Object-oriented modules tend not to import anything, since they expect us to use
them by calling methods.

Function-oriented modules often do import symbols by default, and optionally may import further
symbols if we request them in an import list. An import list is a list of items specified after the module
name. It can be specified as a comma separated list within parentheses, or as a space-separated list
within a qw operator. If we only need to supply one item we can also supply it directly as a string:

importing a list of symbols with a comma separated list:
use Module ('sub1', 'sub2', '$scalar', '@list', ':tagname');

it is more legible to use 'qw':
use Module qw(sub1 sub2 $scalar @list :tagname);

a single symbol can be specified as a simple string:
use Module 'sub1';

Symbols can either be subroutine names, variables, or sometimes tags, prefixed by a :, if the module in
question supports them. These are a feature of the Exporter module, which is the source of many
modules' import mechanisms. We discuss it from the module developer's point of view in Chapter 10.

We cannot import any symbol or tag into our code – the module must define it to be able to export it. A
few modules like the CGI module have generic importing functions that handle anything we pass to
them. However, most do not, and we will generate a syntax error if we attempt to export symbols from
the module that it does not supply.

Using Modules

279

Suppressing Default Imports
Sometimes we want to be able to use a module without importing anything from it. To do that we can
specify an empty import list, which is subtly different from supplying no import list at all:

use Module; # import default symbols
use Module(); # suppress all imports

When used in this way, use is exactly equivalent to a require, except that it takes place at compilation
time; that is:

BEGIN {require Module;}

Note that we cannot suppress the default import list and then import a specific symbol – any import will
trigger the default (unless of course the module in question is written to allow special cases to do this).
Remember that the entire import mechanism revolves around a subroutine called import in the
module being loaded.

Disabling Features with 'no'
no, which is the opposite of the use directive, attempts to unimport features imported by use. This
concept is entirely module-dependent. In reality it is simply a call to the module's unimport
subroutine. Different modules support this in different ways, including not supporting it at all. For
modules that do support no, we can unimport a list of symbols with:

no Module qw(symbol1 symbol2 :tagname);

This is equivalent to:

BEGIN {
require Module;
unimport('symbol1', 'symbol2', ':tagname');

}

Unlike use, a no statement needs the subroutine unimport to exist. A fatal error is generated if this is
not present.

Whether or not no actually removes the relevant symbols from our namespace, or undoes whatever
initialization was performed by use depends entirely on the module. It also depends on what its
unimport subroutine actually does. Note that even though it supposedly turns off features, no still
requires the module. In general this happens after the module has been used, so the require has no
effect as the module will already be present in %INC.

Testing for Module Versions and the Version of Perl
Quite separately from their usual usage, both the require and use directives support an alternative
syntax taking a numeric value as the first or only argument. When specified on its own, this value is
compared to the version of Perl itself. It causes execution to halt if the comparison reveals that the
version of Perl being used is less than that stated by the program. For instance, to require that only
Perl version 5.6.0 or higher is used to run a script we can write any of the following:

require 5.6.0;
use 5.6.0;
require v5.6.0;

Chapter 9

280

Older versions of Perl used a version resembling a floating-point number. This is also supported, for
compatibility with older versions of Perl:

require 5.001; # require Perl 5.001 or higher
require 5.005_03; # require Perl 5.005 patch level 3 or higher

Note that for patch levels (the final part of the version number), the leading zero is important. The
underscore is just a way of separating the main version from the patch and is a standard part of Perl's
numeric syntax; 5.005_03 is the same as 5.00503, but more legible.

A version number may also be specified after a module name (and before the import list, if any is
present), in which case it is compared to the version defined for the module. For example, to require
CGI.pm version 2.36 or higher we can write:

use CGI 2.36 qw(:standard);

If the version of CGI.pm is less than 2.36 this will cause a compile time error and abort the program.
Note that there is no comma between the module name, the version, or the import list.

Like the import mechanism, this is not built-in functionality but simply calls a subroutine called
VERSION to extract a numeric value. Usually this subroutine is supplied by the UNIVERSAL module,
from which all packages inherit, which in turn returns the value of the variable $<package
name>::VERSION. This is how most modules define their version number.

Pragmatic Modules
Pragmatic modules alter the behavior of the Perl compiler to expand or constrict the syntax of the Perl
language itself. Unlike functional modules they take effect at compile time, rather than run time. One
pragma that should be familiar to us by now is the strict pragma.

It is conventional for pragmatic modules to be defined using all lower case letters, unlike functional
modules, which conventionally use a capitalized or uppercased name.

It sometimes comes as a surprise to programmers new to Perl that all pragmas are defined in terms of
modules, all of which can be found in the standard Perl library. The strict pragma is implemented by
strict.pm, for example. Although it is not necessary to understand exactly how this comes about, a
short diversion into the workings of pragmatic modules can be educational.

How Pragmatic Modules Work
Many of these modules work their magic by working closely with special variables such as $^H, which
provides a bitmask of compiler 'hints' to the Perl compiler, or $^W, which controls warnings. A quick
examination of the strict module (the documentation for which is much longer than the actual code),
illustrates how three different flags within $^H are tied to the use strict pragma:

package strict;
$strict::VERSION = "1.01";

my %bitmask = (
refs => 0x00000002,
subs => 0x00000200,
vars => 0x00000400
);

Using Modules

281

sub bits {
my $bits = 0;
foreach my $s (@_){ $bits |= $bitmask{$s} || 0; };
$bits;

}

sub import {
shift;
$^H |= bits(@_ ? @_ : qw(refs subs vars));

}

sub unimport {
shift;
$^H &=~ bits(@_ ? @_ : qw(refs subs vars));

}
1;

The strict module is particularly simple, which is why we have used it here. The entirety of the code
in strict.pm is shown above. Of course it is not necessary to understand how this module actually
works, but it does provide an insight into how pragmatic modules, in general, do what they do.

Scope of Pragmatic Modules
Most pragmatic modules have lexical scope, since they control the manner in which Perl compiles code
– this is by nature a lexical process. For example, this short program illustrates how strict references
can be disabled within a subroutine to allow symbolic references:

#!/usr/bin/perl
pragmascope.pl
use warnings;
use strict;

a subroutine to be called by name
sub my_sub {

print @_;
}

a subroutine to call other subroutines by name
sub call_a_sub {

allow symbolic references inside this subroutine only
no strict 'refs';

my $sub = shift;
call subroutine by name - a symbolic reference
&$sub(@_);

}

all strict rules in effect here
call_a_sub('my_sub', "Hello pragmatic world \n");

> perl pragmascope.pl
Hello pragmatic world

Chapter 9

282

The exceptions are those pragmas that predeclare symbols, variables, and subroutines in preparation for
the run time phase, or modify the values of special variables, which generally have a file-wide scope.

The Special Hash '%INC'
As mentioned earlier, any file or module that the do, require, and use statements load is recorded in
the special hash %INC, which we can then examine to see what is loaded in memory. The keys of %INC
are the names of the modules requested, converted to a pathname so that :: becomes something like /
or \ instead. The values are the names of the actual files that were loaded as a result, including the path
where they were found. Loading a new module updates the contents of this hash as shown in the
following example:

#!/usr/bin/perl
INC.pl
use strict;

print "\%INC contains: \n";
foreach (keys %INC) {
print " $INC{$_}\n";
}

require File::Copy;
do '/home/perl/include.pl';

print "\n\%INC now contains: \n";
foreach (keys %INC) {
print " $INC{$_}\n";
}

> perl INC.pl
%INC contains:

/usr/local/lib/perl5/5.6.0/strict.pm

%INC now contains:
/usr/local/lib/perl5/5.6.0/Exporter.pm
/usr/local/lib/perl5/5.6.0/Carp.pm
/home/perl/include.pl
/usr/local/lib/perl5/5.6.0/strict.pm
/usr/local/lib/perl5/5.6.0/File/Copy.pm

Note that %INC contains Exporter.pm and Carp.pm although we have not loaded them explicitly in
our example. The reason for this is that the former is required and the latter is used by Copy.pm,
itself required in the example. For instance, the IO module is a convenience module that loads all the
members of the IO:: family. Each of these loads further modules. The result is that no less than twenty
nine modules are loaded as a consequence of issuing the simple directive use IO.

It should also be noted that that we did not specify in our example the full path to the modules. use and
require, as well as modules like ExtUtils::Installed (more on this later in the chapter), look for
their modules in the paths specified by the special array @INC.

Using Modules

283

The Special Array '@INC'
This built-in array is calculated when Perl is built and is provided automatically to all programs. To find
the contents of @INC we can run a one-line Perl script like the following for a Linux terminal:

> perl –e 'foreach (@INC) { print "$_\n";}'

On a Linux Perl 5.6 installation, we get the following listing of the pathnames that are tried by default
for locating modules:

/usr/local/lib/perl5/5.6.0/i686-linux-thread
/usr/local/lib/perl5/5.6.0
/usr/local/lib/perl5/site_perl/5.6.0/i686-linux-thread
/usr/local/lib/perl5/site_perl/5.6.0
/usr/local/lib/perl5/site_perl
.

Equivalently for Windows the Perl script is:

> perl -e "foreach (@INC) { print \"$_\n\";}"
C:/perl/ActivePerl/lib
C:/perl/ActivePerl/site/lib
.

When we issue a require or use to load a module Perl searches this list of directories for a file with
the corresponding name, translating any instances of :: (or the archaic `) into directory separators. The
first file that matches is loaded, so the order of the directories in @INC is significant.

It is not uncommon to want to change the contents of @INC, to include additional directories into the
search path or (less commonly) to remove existing directories. We have two basic approaches to doing
this – we can either modify the value of @INC directly, or use the use lib pragma to handle it for us.

Modifying '@INC' directly
One way of modifying @INC is by using the command line option -I, which takes a directory as an
argument and adds it to the start of @INC:

> perl -I/home/httpd/perl/lib -e 'print join"\n",@INC'

/home/httpd/perl/lib
/usr/local/lib/perl5/5.6.0/i686-linux-thread
/usr/local/lib/perl5/5.6.0
/usr/local/lib/perl5/site_perl/5.6.0/i686-linux-thread
/usr/local/lib/perl5/site_perl/5.6.0
/usr/local/lib/perl5/site_perl

We can also modify @INC programmatically, which allows us to add directories to the end of @INC
rather than the beginning and also remove directories if we so desire.

TE
AM
FL
Y

Team-Fly®

Chapter 9

284

Since @INC is an array, all of the standard array manipulation functions will work on it:

add directory to end of @INC
push @INC, "/home/httpd/perl/lib";

add current directory to start of @INC using the 'getcwd'
function of the 'Cwd' module
use Cwd;
unshift @INC, getcwd();

However, since the use directive causes modules to be loaded at compile time rather than run time,
modifying @INC this way will not work for used modules, only required ones. To modify @INC so
that it takes effect at compile time we must enclose it in a BEGIN block:

add directory to start of @INC at compile time
BEGIN {

unshift @INC, '/home/httpd/perl/lib';
}

use MyModule; # a module in 'home/httpd/perl/lib'...
...

Modifying @INC with the 'lib' Pragma
Since BEGIN blocks are a little clunky, we can instead use the lib pragma to add entries to @INC in a
friendlier manner. As well as managing the contents of @INC more intelligently, this module provides
both a more legible syntax and a degree of error checking over what we try to add. The use lib
pragma takes one or more library paths and integrates them into @INC. This is how we could add the
directory /home/httpd/perl/lib using the lib pragma:

use lib '/home/httpd/perl/lib';

This is almost but not quite the same as using an unshift statement inside a BEGIN block, as in the
example above. The difference is that if an architecture-dependent directory exists under the named
path and it contains an auto directory, then this directory is assumed to contain architecture -pecific
modules and is also added, ahead of the path named in the pragma. In the case of the Linux system
used as an example earlier, this would attempt to add the directories:

/home/httpd/perl/lib/i386-linux/auto
/home/httpd/perl/lib

Note that the first directory is only added if it exists, but the actual path passed to lib is added
regardless of whether it exists or not. If it does exist, however, it must be a directory; attempting to add
a file to @INC will produce an error from the lib pragma.

We can also remove paths from @INC with the no directive:

no lib 'home/httpd/perl/lib';

This removes the named library path or paths, and also removes any corresponding auto directories.

Using Modules

285

The lib pragma has two other useful properties that make it a superior solution to a BEGIN block. First,
if we attempt to add the same path twice, the second instance is removed. Since paths are added to the
front of @INC this effectively allows us to bump a path to the front:

search for modules in site_perl directory first
use lib '/usr/lib/perl5/site_perl';

Second, we can restore the original value of @INC as built in to Perl with the statement:

@INC = @lib::ORIG_INC;

Locating Libraries Relative to the Script
A common application of adding a library to @INC is to add a directory whose path is related to that of
the script being run. For instance, the script might be in /home/httpd/perl/bin/myscript and the
library modules that support it in /home/httpd/perl/lib. It is undesirable to have to hard-code this
information into the script however, since then we cannot relocate or install it in a different directory.

One way to solve this problem is to use the getcwd function from Cwd.pm to determine the current
directory and calculate the location of the library directory from it. However, we do not need to,
because Perl provides the FindBin module for exactly this purpose.

FindBin calculates paths based on the current working directory and generates six variables containing
path information, each of which we can either import into our own code or access directly from the
module. They are:

Variable Path information

$Bin The path to the directory from which the script was run

$Dir An alias for $Bin

$Script The name of the script

$RealBin The real path to the directory from which the script was run, with all
symbolic links resolved

$RealDir An alias for $RealBin

$RealScript The real name of the script, with all symbolic links resolved.

Using FindBin we can add a relative library directory by retrieving the $Bin/$Dir or
$RealBin/$RealDir variables and feeding them, suitably modified, to a use lib pragma:

use FindBin qw($RealDir); # or $Bin, $Dir, or $RealBin ...
use lib "$RealDir/../lib";

Using the FindBin module has significant advantages over trying to do the same thing ourselves with
getcwd and its relatives. It handles various special cases for Windows and VMS systems, and it deals
with the possibility that the script name was passed to Perl on the command line rather than triggering
Perl via a #! header (of course it's shorter too). Be careful using FindBin with CGI scripts, however,
since we cannot always be sure what directory we start in when the script is executed. Basing the paths
we feed to use lib on the CGI environment is a much better idea; see Chapter 23 for a more detailed
explanation.

Chapter 9

286

Checking for the Availability of a Module
One way to check if a given module is available is to look in the %INC hash to see if the module is
present. We can avoid fatal errors by checking for each module and using it only if already loaded. In
the following example, if Module1 is available, then we use it, otherwise we use Module2 if loaded:

if ($INC{'Module1'}) {
use some functions from Module1
} elsif ($INC{'Module2'}) {
use some functions from Module2
}

However, the simplest way would be to try to load it using require. Since this ordinarily produces a
fatal error, we use an eval to protect the program from errors:

warn "GD module not available" unless eval {require GD; 1};

In the event that the GD module, which is a Perl interface to the libgd graphics library, is not available,
eval returns undef and the warning is emitted. If it does exist, the 1 at the end of the eval is returned,
suppressing the warning. This gives us a way of optionally loading modules if they are present but
continuing without them otherwise, so we can enable optional functionality if they are present. In this
case, we can generate graphical output if GD is present, or resort to text otherwise. The special variable
$@ holds the syntax error message that is generated by the last eval function.

Note that a serious problem arises with the above approach if we replace require with use. The
reason is that eval is a run time function whereas use is executed at compile time. So, use GD would
be executed before anything else, generating a fatal error if the GD module was not available. To solve
this problem we simply enclose the whole thing in a BEGIN block, making sure that the whole block is
executed at compile time:

BEGIN {
foreach ('GD', 'CGI', 'Apache::Session') {

warn "$_ not available" unless eval "use $_; 1";

}
}

Finding Out What Modules are Installed
We can find out which library module packages are installed using the ExtUtils::Installed
module. This works not by scanning @INC for files ending in .pm, but by analyzing the .packlist files
left by module distributions during the installation process. Not unsurprisingly, this may take the
module a few moments to complete, especially on a large and heavily extended system.

Scanning .packlist files allows the ExtUtils::Installed module to produce more detailed
information, for example, the list of files that should be present for a given module package.
Conversely, this means that it does not deal with modules that are not installed but are simply pointed
to by a modified @INC array. This is one good reason to create properly installable modules, which we
discuss later in the chapter.

Using Modules

287

The resulting list is of installed module packages, not modules, and the standard Perl library is collected
under the name Perl, so on a vanilla Perl installation we may expect to see only Perl returned from
this module.

To use the module we first create an ExtUtils::Installed object with the new method:

use ExtUtils::Installed;
$inst = ExtUtils::Installed->new();

On a UNIX-based system this creates an installation object that contains the details of all the
.packlist files on the system, as determined by the contents of @INC. If we have modules present in a
directory outside the normal directories contained in @INC, then we can include it by modifying @INC
before we create the installation object, as shown earlier.

Once the installation object is created, we can list all available modules in alphabetical order with the
modules method. For example, this very short script simply lists all installed modules:

list all installed modules;
print join "\n", $inst->modules();

On a vanilla Perl installation this will produce just Perl, or possibly Perl plus one or two other modules
in vendor-supplied installations. A more established Perl installation with many packages installed
might produce something like this:

Apache::DBI
Apache::Session
Archive::Tar
CGI
CPAN
CPAN::WAIT
Compress::Zlib
Curses
DBI::FAQ
Date::Manip
Devel::Leak
Devel::Symdump
Digest::MD5
...

Note that for reasons known only to ActiveState, ActivePerl 5.6 will not run this, even though it worked
on ActivePerl 5.005, an earlier version.

The ExtUtils::Installed module does far more than simply list installed module packages,
however. It provides the basics of library package management by providing us with the ability to list
the files and directories that each module distribution created when it was installed, and to verify that
list against what is currently present. In addition to new and modules, which we saw in action earlier,
ExtUtils::Installed provides the following six other methods:

Chapter 9

288

Method Description

directories Returns a list of installed directories for the module. For example:

@dirs = $inst->directories($module);

A second optional parameter of prog, doc, or all (the default) may be
given to restrict the returned list to directories containing code, manual
pages, or both:

directories(module, 'prog'|'doc'|'all');

Further parameters are taken to be a list of directories within which all
returned directories must lie:

directories(module, 'prog'|'doc'|'all', @dirs);

For instance, this lists installed directories contained by @locations:

@dirs = $inst->directories($module, 'prog', @locations);

directory_tree Returns a list of installed directories for the module, in the same way as
directories, but also including any intermediate directories between
the actual installed directories and the directories given as the third and
greater parameters:

directory_tree(module, 'prog'|'doc'|'all', @dirs);

For instance, the following example lists installed directories and parents
under /usr:

@dist = $inst->directories($module, 'all', '/usr');

files Returns a list of installed files for the module, for example:

@files = $inst->files($module);

A second optional parameter of prog, doc, or all may be given to
restrict the returned list to files containing code, documentation, or both:

files (module, 'prog'|'doc'|'all')

Further parameters are taken to be a list of directories within which all
returned files must lie:

files(module, 'prog'|'doc'|'all', @dirs)

This is how we list the installed files contained by @dirs:

@files = $inst->files($module, 'prog', @dirs);

packlist Returns an ExtUtils::Packlist object containing the raw details of
the .packlist file for the given module:

packlist(module);

See the ExtUtils::Packlist documentation for more information.

Using Modules

289

Method Description

validate Checks the list of files and directories installed against those currently
present, returning a list of all files and directories missing. If nothing is
missing, an empty list is returned:

validate(module);

For instance,

$valid = $inst->validate($module)?0:1;

version Returns the version number of the module, or undef if the module does
not supply one. The CPAN module uses this when the r command is used
to determine which modules need updating, for example.

version(module);

The ability to distinguish files types is a feature of the extended .packlist format in any recent
version of Perl. Note that not every installed module yet provides a packing list that supplies this extra
information, so many modules group all their installed files and directories under prog (the assumed
default), and nothing under doc. To get a more accurate and reliable split between program and
documentation files, we can use additional paths such as /usr/lib/perl5/man as the third and
greater parameters.

As a more complete example of how we can use the features of ExtUtils::Installed, here is a short
script to run on UNIX that lists every installed module distribution, the files that it contains, and the
version of the package, complete with a verification check:

#!/usr/bin/perl
installedfiles.pl
use warnings;
use strict;

use ExtUtils::Installed;

my $inst = new ExtUtils::Installed;

foreach my $package ($inst->modules) {
my $valid = $inst->validate($package)?"Failed":"OK";
my $version = $inst->version($package);
$version = 'UNDEFINED' unless defined $version;

print "\n\n--- $package v$version [$valid] ---\n\n";
if (my @source = $inst->files($package, 'prog')) {

print "\t", join "\n\t", @source;
}
if (my @docs = $inst->files($package, 'doc')) {

print "\n\n\t", join "\n\t", @docs;
}

}

Chapter 9

290

Postponing Module Loading Until Use
Modules can be very large, frequently because they themselves use other large modules. It can,
therefore, be convenient to postpone loading them until they are actually needed. This allows a program
to start faster, and it also allows us to avoid loading a module at all if none of its features are actually
used.

We can achieve this objective with the autouse pragmatic module, which we can use in place of a
conventional use statement to delay loading the module. To use it we need to specify the name of the
module, followed by a => (since that is more legible than a comma) and a list of functions:

use autouse 'Module' => qw(sub1 sub2 Module::sub3);

This will predeclare the named functions, in the current package if not qualified with a package name,
and trigger the loading of the module when any of the named functions are called:

sub1("This causes the module to be loaded");

We can also supply a prototype for the subroutine declaration, as in:

use autouse 'Module' => 'sub3($$@)';

However, there is no way for this prototype to be checked against the real subroutine since it has not
been loaded, so if it is wrong we will not find out until we attempt to run the program.

There are two important caveats to bear in mind when using the autouse pragma. First, the module
will only be loaded when one of the functions named on the autouse line is seen. Attempting to call
another function in the module, even if it is explicitly called with a package name, will cause a run time
error unless the module has already been loaded. For instance, this does not delay loading the
Getopt::Long module:

use autouse 'Getopt::Long';
ERROR: ''Getopt::Long' is not loaded, so 'GetOptions' is unavailable
GetOptions(option =>\$verbose);

But this does:

use autouse 'Getopt::Long' => 'GetOptions';
OK, 'GetOptions' triggers load of 'Getopt::Long'
GetOptions(option =>\$verbose);

For this reason autouse works particularly well with object-oriented modules. We need only list class
methods and constructors to ensure that the module is loaded at the right time.

Second, autouse only works for modules that use the default import method provided by the
Exporter module (see Chapter 10). Modules that provide their own import method such as the CGI
module cannot be used this way. Any module that defines an export tag like :tagname falls into this
category. Such modules frequently provide their own specialized loading techniques instead, CGI.pm
being one good example.

Using Modules

291

A significant problem when using autouse is that initialization of modules that have been autoused
does not take place until run time; BEGIN blocks are not executed, nor are symbols imported. This can
cause significant problems, as well as hiding syntax errors that would otherwise be found at compile
time. For this reason it is smart to include modules directly for development and testing purposes, and
to only use autouse in the production version (though we must still test that, we can eliminate
autouse as a cause of problems in the debugging phase). Alternatively, use a debug flag to switch
between the two:

if ($debug) {
use 'Getopt::Long';
...other modules...

} else {
use autouse 'Getopt::Long' => 'GetOptions';
...other modules...

}

If a module is already present when an autouse declaration is seen, it is translated directly into the
equivalent use statement. For example:

use Module;
use autouse 'Module' => qw(sub1 sub2);

Is the same as:

use Module qw(sub1 sub2);

This means that it does no harm to attempt to autouse a module that is already loaded (something that
might commonly happen inside a module, which has no idea what is already loaded), but conversely the
autouse provides no benefit.

The autouse module is an attempt to provide load-on-demand based on the requirements of the user.
The AUTOLOAD subroutine, and the AutoLoader and Selfloader modules also provide us with the
ability to load modules and parts of modules on demand, but as part of the module's design. See
Chapter 10 for more details.

Chapter 9

292

Summary
Over the course of this chapter we examined what Perl modules are. Throughout the chapter we have
covered the following:

❑ Loading code into our scripts, using the do, require and use statements, and the differences
between them

❑ Manipulating the importing of subroutines definitions and variables from modules

❑ Pragmatic modules, how they work and their scope

❑ The special variables %INC and @INC and how to manipulate them

❑ Checking for the availability of modules

❑ Finding out which modules are installed

❑ Postponing module loading until use

Using Modules

293

TE
AM
FL
Y

Team-Fly®

Chapter 9

294

Inside Modules and Packages

We have already seen how modules work from the user's perspective through the do, require, and
use statements. In this chapter we take a look at modules from the perspective of implementing them
ourselves.

Perl provides a number of special features that can be used in any Perl code but which are particularly
useful for packages. The BEGIN, END, INIT, and (from Perl 5.6) CHECK blocks allow a module to define
initialization and cleanup code to be automatically executed at key points during the lifetime of the
module. They allow us to utilize features such as write packages (class constructors and destructors in
object-oriented terms).

The Autoload subroutines permit a package to react to unknown subroutine calls and stand in for
them. This allows us to:

❑ Emulate the existence of a subroutine without actually defining it.

❑ Define it on the fly at the moment it is used.

❑ Delay the compilation of a subroutine until it is needed

None of these features are restricted to packages, but it is in packages that they come into their own.

In order for modules to be easily reusable, they need to be well behaved. That means not defining
variables and subroutines outside their own package unless explicitly asked to do so. It also means not
allowing external definitions to be made unless the design of the module permits it. Exporting
definitions from one package into another allows them to be used directly, without prefixing the name
of the original package, but it also runs the risk of a namespace collision, so both the module and the
application need to be able to cooperate, to control what happens. They can do this through the import
mechanism, which defines the interface between the module and the application that uses it.

Chapter 10

296

At the application end, we specify our requirements with the use or require statements, with which
we can pass a list of symbols (often, but not necessarily, subroutine names). Conversely, at the module
end, we define an import subroutine to control how we respond to import (or, from our point of view,
export) requests. The Exporter module provides one such import subroutine that handles most
common cases for us. Either way, the interface defined through the import mechanism abstracts the
actual module code, making it easier to reuse the module, and minimizing the chances of an application
breaking if we made changes to the module.

'BEGIN' blocks, 'END' blocks and Other Animals
Perl defines four different kinds of special block that are executed at different points during the compile
or run phases. The most useful of these is BEGIN, which allows us to compile and execute code placed
in a file before the main compilation phase is entered. At the other end of the application's life, the END
block is called just as the program exits. We can also define CHECK (from Perl 5.6 on) and INIT blocks,
though these are considerably less common.

All four blocks look and behave like subroutines, only without the leading sub. Like signal handlers,
they are never called directly by code (in the case of BEGIN it isn't even possible), but directly by Perl
whenever it passes from one state to another. The distinction between the block types is simply that
each is executed at a different transition. The precise order is:

BEGIN
(compile phase)
CHECK
INIT
(run phase)
END

Here is a short program that demonstrates all four blocks in use, and also shows how they relate to the
main code and a __DIE__ signal handler:

#!/usr/bin/perl
blocks.pl
use warnings;
use strict;

$SIG{__DIE__} = sub {
print "Et tu Brute?\n";

};

print "It's alive!\n";
die "Sudden death!\n";

BEGIN {
print "BEGIN\n";

}

END {
print "END\n";

}

INIT {
print "INIT\n"

}

CHECK {
print "CHECK\n"

}

Inside Modules and Packages

297

When run, this program prints out:

BEGIN
CHECK
INIT
It's alive!
Et tu Brute?
Sudden death!
END

Note that in Perl versions before 5.6, CHECK blocks are ignored entirely, so we would not see the CHECK
line. Apart from this, the program would run perfectly. Of course if the CHECK block needs to perform
vital functions we may have a problem, so CHECK blocks are best used for checks that are better made
after compilation but which can also be made, less efficiently perhaps, at run time too.

We can define multiple instances of each block; each one is executed in order, with BEGIN and INIT
blocks executing in the order in which they are defined (top to bottom) and CHECK and END blocks
executed in reverse order of definition (bottom to top). The logic for END and CHECK blocks executing
in reverse is clearer once their purpose is understood. BEGIN blocks allow modules to initialize
themselves, and may be potentially dependent upon the initialization of prior modules. Therefore, when
the program exits, END blocks are executed in the reverse order to allow dependent modules to free
their resources before earlier modules free the resources on which they rely. As an example, consider a
network connection to a remote application – we might open a connection and 'start' a new session in
the BEGIN blocks of different modules. When the application ends, we need to stop the session then
close the connection – the reverse order. This will be done by the END blocks automatically. The new
CHECK block has a similar symmetry with BEGIN, but around the compilation phase only, not the whole
lifetime of the application.

Additional blocks read in by do, use, or require are simply added to the respective list at the time
they are defined. Then, if we have a BEGIN and END block and we require a module that also has a
BEGIN and END block, our BEGIN block is executed first, followed by the module's BEGIN block. At the
end of the script, the module's END block is called first, then ours. If we include a module with use
rather than require, however, the order of BEGIN blocks is determined by the order of the use
relative to our BEGIN block and any other use statements. This is because use creates a BEGIN block of
it's own, as we have already seen.

'BEGIN' Blocks
If we need to perform initialization within a module before it is used, we can place code inside the
source file to perform whatever tasks we need to do, for example loading a configuration file:

package My::Module;

return initialize();

sub initialize {
...
}

... other sub and var declarations ...

Chapter 10

298

This module doesn't need a 1 at the end because its success or failure is returned explicitly. However,
the problem with this is that our initialization only takes place once the module starts to execute; we
can't set anything up to be present before we define critical subroutines. Fortunately there is a solution.
We can make use of a BEGIN block to force execution of a module's initialization code before the rest of
it compiles. This is essential, for example, if we want to be able to export subroutine names so that their
use can be recognized as valid subroutine calls during Perl's compile time syntax checking.

As an example of the kind of thing we can do with a BEGIN block, here is a module that computes a list
of variables to export at compile time, and exports them before the code that uses the module compiles.
For simplicity we have used a local hash to store the variable definitions, and kept it to scalars, but it is
easily extensible:

My/SymbolExporter.pm

package My::SymbolExporter;

use strict;

BEGIN {
use vars '@SYMBOLS';
temporary local configuration - we could read from a file too
my %conf = (

e => 'mc2',
time => 'money',
party => 'a good time',

);

sub initialize {
no strict 'refs';
foreach (keys %conf) {

define variable with typeglob
*{__PACKAGE__.'::'.$_} = \$conf{$_};

add variable (with leading '$') to export list
push @SYMBOLS, "\$$_";

}
return 1;

}

return undef unless initialize;
}

use Exporter;
our @ISA = qw(Exporter);
our @EXPORT = ('@SYMBOLS',@SYMBOLS);

Ordinarily we'd use the Exporter module, or an import method to deal with this sort of problem, but
these are really just extensions to the basic BEGIN block. Just to prove it works, here is a script that uses
this module and prints out the variables it defines:

#!/usr/bin/perl
symbolexportertest.pl
use warnings;
use strict;

use My::SymbolExporter;

print "Defined: @SYMBOLS\n\n";

Inside Modules and Packages

299

print "e = $e\n";
print "time = $time\n";
print "party = '$party'\n";

This example also shows how we can use the __PACKAGE__ token to represent the current package,
something we'll return to later when we come to writing import methods. Another use of BEGIN blocks
is to pre-configure a module before we use it. For example, the AnyDBM_File module allows us to
reconfigure its @ISA array by writing something like the following:

BEGIN {
@AnyDBM_File::ISA = qw(GDBM_File SDBM_File);

}

use AnyDBM_File;

Inside the module, the code simply checks to see if the variable is defined before supplying a default
definition:

our @ISA = qw(NDBM_File DB_File GDBM_File SDBM_File ODBM_File) unless @ISA;

It is vital that we put our definition in a BEGIN block so that it is executed and takes effect before the
use statement is processed. Without this, the implicit BEGIN block of the use statement would cause
the module to be loaded before our definition is established; the BEGIN block ensures that we prevail, as
long as we place it before the use statement.

'END' Blocks
The opposite of BEGIN blocks are END blocks. These are called just as Perl is about to exit (even after a
__DIE__ handler), and allow a module to perform closing duties like cleaning up temporary files or
shutting down network connections cleanly:

END {
unlink $tempfile;
shutdown $socket, 2;

}

The value that the program is going to exit with is already set in the special variable $? when the END
blocks are processed by Perl, so we can modify it at this point if we choose. To make sure it is passed
back to the caller, if required, we also need to preserve it if an external program is called during the
course of the block. END blocks are also not caught if we terminate on a signal, and (obviously) not if we
use exec to replace the application with a new one.

'CHECK' and 'INIT'
The CHECK and INIT blocks are considerably rarer than BEGIN and END, but are occasionally useful.
The CHECK blocks execute in reverse order just after the compilation phase ends and correspond to the
END blocks, which run at the end of the run phase. Their purpose is to perform any kind of checking of
the compiled source that might be required before proceeding with the run phase. Note, however, that
unlike INIT, CHECK is new to Perl 5.6.

Chapter 10

300

Perl > = 5.6.0 for CHECK blocks
use 5.6.0;

check that conditional compilation found at least one implementation
CHECK {

die "No platform recognized" unless
defined &unixsub or
defined &win32sub or
defined &macsub or
defined &os2sub;

}

This block will be called as soon as Perl has finished compiling all the main code (and after all BEGIN
blocks have been executed), so it is the ideal point to check for the existence of required entities before
progressing to the execution stage. By placing the code in a CHECK block rather than in the module's
main source we give it a chance to object before other modules, which may be used before it, get a
chance to run.

The INIT blocks execute just before the run phase and just after the compile phase – CHECK blocks are
also included if any are defined. They execute in order of definition and correspond to BEGIN blocks,
which run just before the compile phase. Their purpose is to initialize variables and data structures
before the main run phase starts:

establish a package variable for all modules
INIT {

$My::Module::start_time = time;
}

Both blocks types have little effect over simply placing code at the top of a file when only one of either
type exists. However, if several modules define their own CHECK and INIT blocks, Perl will queue them
up and run through them all before commencing execution of the main application code.

Manipulating Packages
The package directive changes the default namespace for variables and subroutine declarations, but we
are still free to define our own fully qualified definitions if we choose. For instance, rather than creating
a module file containing:

package My::Module;

sub mysub {
return "Eep!\n";

}

1;

We could, with equal effect (but losing some maintainability), declare the subroutine to be in the
package explicitly:

sub My::Module::mysub {
return "Eep!\n";

}

1;

Inside Modules and Packages

301

It isn't very likely that we would do this in reality – if we copied the subroutine to a different source file
we would need to rename it. It has possibilities if we are generating subroutines on the fly, a subject we
will cover in more detail later in the chapter, but otherwise, a package declaration is far more
convenient. The same goes for our and use vars declarations, which are simply shorthand that uses
the package declaration to omit the full variable name.

We sometimes want to handle package names programmatically. One simple way to get the name of the
current package is the __PACKAGE__ token, which we return to later. Otherwise, the Symbol module
provides subroutines for creating and manipulating variable names with respect to packages without
dealing with the package name directly, notably the gensym and qualify subroutines.

The gensym subroutine generates and returns a reference to a fully anonymous typeglob – that is, a
typeglob that does not have an entry anywhere in any symbol table. We can use the anonymous
typeglob as we like, for example as a filehandle (though IO::Handle does this better in these more
enlightened days, and, as a point of fact, uses gensym underneath). It takes no arguments and just
returns the reference:

use Symbol;

my $globref = gensym;
open ($globref, $filename);
...

More useful is the qualify subroutine, which provides a quick and convenient way to generate fully
qualified names (and therefore symbolic references) for variables from unqualified ones. It operates on
strings only, and with one argument generates a name in the current package. For example:

#!/usr/bin/perl
symbol1.pl
use warnings;

use Symbol;

my $fqname = qualify('scalar');
$$fqname = "Hello World\n";
print $scalar; # produces 'Hello World'

Since this is a simple script without a package declaration, the variable created here is actually called
$main::scalar. If we supply a package name as a second argument to qualify, it places the variable
into that package instead.

#!/usr/bin/perl
symbol2.pl
use warnings;

use Symbol;

my $fqname = qualify('scalar','My::Module');
$$fqname = "Hello World\n";
print $My::Module::scalar;

Chapter 10

302

In both cases, qualify will only modify the name of the variable passed to it if it is not already
qualified. It will correctly qualify special variables and the standard filehandles like STDIN into the main
package, since these variables always exist in main, wherever they are used. This makes it a safer and
simpler way than trying to make sure our symbolic references are correct and in order when we are
assembling them from strings.

Unfortunately qualify is not very useful if we have strict references enabled via use strict, since
these are symbolic references. Instead, we can use qualify_to_ref, which takes a symbolic name and
turns it into a reference for us, using the same rules as qualify to determine the package name:

#!/usr/bin/perl
symbol3.pl
use warnings;
use strict;

use Symbol;

my $fqref = qualify_to_ref('scalar','My::Module');
$$fqref =\"Hello World\n";
print $My::Module::scalar;

All three of these examples work but produce a warning from Perl that the variable main::scalar (or
My::Module::scalar) is only used once, which is true. Perl doesn't see that we defined the variable
name through a reference, so it (correctly) points out that we appear to have used a variable we haven't
defined. The correct thing to do would be to declare the variable so we can use it without complaint, as
this modified example, complete with embedded package, illustrates:

#!/usr/bin/perl
symbol4.pl
use warnings;
use strict;

use Symbol;

my $fqref = qualify_to_ref('scalar','My::Module');
$$fqref =\"Hello World\n";
print My::Module::get_scalar();

package My::Module;

our $scalar; # provide access to scalar defined above

sub get_scalar {
return $scalar;

}

Removing a Package
It is very rare that we would want to remove a package during the course of a program's execution, but
if we want to we can by removing all traces of the package's namespace from the symbol table
hierarchy. For example, to delete the My::Module package we could write:

my $table = *{'My::Module::'}{'HASH'};
undef %$table;
my $parent = *{'My::'}{'HASH'};
my $success = delete $parent->{'Module::'};

Inside Modules and Packages

303

This is more than a little hairy, but basically boils down to deleting the entries of the symbol table for
My::Module and removing the Module namespace entry from the My namespace. We delete the hash
explicitly because we store the result of the delete in a variable, and thus the symbol table too. This is
because Perl cannot reuse the memory allocated by it, or the references contained in it, while something
still holds a reference to it. Deleting the actual table means that delete returns an empty hash on
success, which is still good for a Boolean test but avoids trailing a complete and unrecycled symbol table
along with it.

Fortunately the Symbol module provides a delete_package function that does much the same thing
but hides the gory details. It also allows us more freedom as to how we specify the package name (we
don't need the trailing colons, for instance, and it works on any package). To use it we need to import it
specifically, since it is not imported by default:

use Symbol qw(delete_package);

...

print "Deleted!\n" if delete_package('My::Module');

The return value from delete_package is undefined if the delete failed, or a reference is made to the
(now empty) namespace.

If we wanted to create a package that we could remove programmatically, we could do so by combining
delete_package with an unimport subroutine; see 'Importing and Exporting' later in the chapter for
an example.

Forbidding Package Variables
It is often good programming practice to make variables lexical rather than package variables wherever
possible. This is because the more restrictive scope of variables makes them harder to misuse. The use
strict pragma enforces the use of my, our, or use vars for unqualified variable names so we must
be explicit about what kind of variable we are defining.

However, if we want to prevent the use of unqualified package symbols at all, we can do so by using a
package declaration with no namespace:

package; # no package here

The effect of this statement is to forbid the use of any package symbol that is not fully qualified, since
there is no local package name to prefix to unqualified names. This affects not only regular variables but
filehandles and subroutines as well, so we have to refer to STDIN as main::STDIN, for example.

Finding a Package Name Programmatically
It can be occasionally useful for a subroutine to know the name of the package in which it is defined.
Since this is a compile time issue (remembering that package declarations are lexical even though they
affect run time scope) we can simply copy the package name from the top of the module (or whichever
package declaration the subroutine falls under if we have more than one).

TE
AM
FL
Y

Team-Fly®

Chapter 10

304

However, this is prone to failure if we happen to change the name of the package at any point. This is a
more serious problem than it might at first appear because it will not necessarily lead to a syntax error.
For instance, if we are declaring a variable or subroutine in a lower package this operation will still
succeed, since we are simply declaring something in a different package, but the package name will no
longer reflect the name of the parent package.

To avoid this kind of problem we should avoid ever naming the package explicitly except in the
package declaration itself. Within the code, we can instead use the special bareword token
__PACKAGE__ thus:

sub self_aware_sub {
print "I am in the ",__PACKAGE__," package.\n";

}

As a more expressive but less functional example, the following series of package declarations shows
how the value produced by __PACKAGE__ changes if more than one package is present in a given file:

package My::Module;
print __PACKAGE__,"\n";
package My::Module::Heavy;
print __PACKAGE__,"\n";
package My::Module::Light;
print __PACKAGE__,"\n";
package A::Completely::Different::Package;
print __PACKAGE__,"\n";

When Perl loads and compiles a file containing this token the interpreter first scans and substitutes the
real package name for any instances of __PACKAGE__ it finds, before proceeding to the compilation
stage. This avoids any potential breakages if the package name should change.

Autoloading
Normally when we try to call a non-existent subroutine (or method, since in Perl they are the same
thing) Perl generates a syntax error, if possible at compile time. However, by defining an autoload
subroutine, we can intercept non-existent calls and deal with them in our own way at run time, if we
wish.

Autoloading is a very powerful aspect of Perl, and conversely one that is also prone to abuse. However,
when used wisely it provides us with some very handy techniques, such as the ability to write one
subroutine to handle many different cases and masquerade it as many subroutines that handle a specific
case. We can also, with deft usage of the eval and sub keywords, generate subroutines on the fly, as
they are needed. This is a great technique for allowing a module to be powerful and flexible but at the
same time minimizing the amount of memory that it takes up with code.

Perl provides several modules in the standard library that take advantage of autoloading to make library
modules more memory-efficient by delaying the compilation of subroutines until the moment they are
required. This allows modules to both take up less memory and also load much faster. The compromise
is that calling a subroutine not yet compiled will incur a speed penalty at that point, as well as
sidestepping the compile time syntax check, so errors will not be caught until it is called. The
AutoSplit module carves up a module file into separate subroutines, which the AutoLoader module
can read and compile at the moment each routine is required; it is typically used during the installation
of installable packages, but we can use it independently if we wish to. The SelfLoader module
provides a similar solution, but allows us to store code as text inside the module file, compiling it at the
time it is needed; this is simpler for code that we don't want to install before we can use it.

Inside Modules and Packages

305

Autoloading Subroutines
To use autoloading we only need to define a subroutine called AUTOLOAD. This will automatically
intercept all calls to non-existent subroutines in the package in which it is defined, receiving the same
arguments as the original (non-existent) subroutine would have. The name of the subroutine that was
not found is placed by Perl in the special variable Packagename::$AUTOLOAD. Here's a short example
that intercepts non-existent calls and prints out their names and arguments:

#!/usr/bin/perl
autoload.pl
use warnings;
use strict;

sub AUTOLOAD {
our $AUTOLOAD; # "use vars '$AUTOLOAD'" for Perl < 5.6
$" = ',';
print "You called '$AUTOLOAD(@_)'\n";

}

fee('fie','foe','fum');
testing(1,2,3);

When run, this script should produce:

You called 'main::fee(fie,foe,fum)'
You called 'main::testing(1,2,3)'

We use our to get a version of the $AUTOLOAD variable (Perl prior to version 5.6 needs to use use
vars instead) that doesn't involve a package prefix. Since only the AUTOLOAD subroutine needs to know
the value of $AUTOLOAD, we place the our declaration inside the subroutine to define a temporary alias.

Using an AUTOLOAD subroutine has one significant disadvantage – it thwarts Perl's ability to check for
legal subroutine calls at compile time. Since an AUTOLOAD subroutine accepts any otherwise invalid
subroutine call at run time, it is not possible for Perl to tell the difference between a call intended for the
autoloader, and a misnamed though perfectly ordinary subroutine call. Defining a prototype for the
autoloader can help if the calls it is intended to intercept have a similar calling convention, but this is
only a partial solution.

We can use AUTOLOAD subroutines in a variety of ways that break down into one of two general
approaches: use the AUTOLOAD subroutine as a substitute for a collection of subroutines, or use the
AUTOLOAD subroutine to define missing subroutines on the fly.

Using an 'AUTOLOAD' Subroutine as a Substitute
The first and simplest use of the autoloader is simply to stand in for another subroutine or collection of
similar subroutines. We can define the interface to a module in terms of these other calls, but actually
implement them in the AUTOLOAD subroutine. The disadvantage of this is that it takes Perl slightly
longer to carry out the redirection to the autoloader subroutine (although conversely the compile time is
also slower, possibly relevant if the code forms part of a command line tool or utility script). The
advantage is that we can replace potentially hundreds of subroutine definitions with just one. Here is a
simple example that performs just a few simple statistical calculations, but illustrates the technique:

Chapter 10

306

#!/usr/bin/perl
autostat.pl
use warnings;
use strict;

use Carp;

sub AUTOLOAD {
our $AUTOLOAD;

my $result;
SWITCH: foreach ($AUTOLOAD) {

/sum/ and do {
$result = 0;
map { $result+= $_ } @_;
last;

};
/average/ and do {

$result = 0;
map { $result+= $_ } @_;
$result/=scalar(@_);
last;

};
/biggest/ and do {

$result = shift;
map { $result = ($_ > $result)?$_:$result } @_;
last;

};
/smallest/ and do {

$result = shift;
map { $result = ($_ < $result)?$_:$result } @_;
last;

}
}
croak "Undefined subroutine $AUTOLOAD called" unless defined $result;
return $result;

}

my @values = (1,4,9,16,25,36);

print "Sum: ",sum(@values),"\n";
print "Average: ",average(@values),"\n";
print "Biggest: ",biggest(@values),"\n";
print "Smallest: ",smallest(@values),"\n";
print "Oddest: ",oddest(@values),"\n";

This AUTOLOAD subroutine supports four different statistical operations and masquerades under four
different names. If we call any of these names then the autoloader performs the requested calculation
and returns the result. If we call any other name, it croaks and exits. We use croak from the Carp
module because we want to return an error for the place from which the AUTOLOAD subroutine was
called (since that is where the error really is).

This script also illustrates the problem with autoloading – errors in subroutine names are not caught
until run time. With real subroutines, the call to oddest would be caught at compile time. With this
script, it isn't caught until the autoloader is actually called and sees that it isn't a name that it recognizes.

Inside Modules and Packages

307

The above example demonstrates the general principle of substituting for a collection of other
subroutines, but it doesn't really provide any benefit; it would be as easy to define the subroutines
individually, since each one requires its own special case anyway. However, we can be more creative
with how we name subroutines. For example, we can use an autoloader to recognize and support the
prefix print_ for each operation. Here is a modified version of the previous example that handles both
the original four operations and four new variants that print out the result as well:

#!/usr/bin/perl
printstat.pl
use warnings;
use strict;

use Carp;

sub AUTOLOAD {
our $AUTOLOAD;

my $subname;
$AUTOLOAD =~/([^:]+)$/ and $subname = $1;

my $print;
$subname =~s/^print_// and $print = 1;

my $result;
SWITCH: foreach ($subname) {

/^sum$/ and do {
$result = 0;
map { $result+= $_ } @_;
last;

};
/^average$/ and do {

$result = 0;
map { $result+= $_ } @_;
$result/= scalar(@_);
last;

};
/^biggest$/ and do {

$result = shift;
map { $result = ($_>$result)?$_:$result } @_;
last;

};
/^smallest$/ and do {

$result = shift;
map { $result = ($_<$result)?$_:$result } @_;
last;

}
}
croak "Undefined subroutine $subname called" unless defined $result;
print ucfirst($subname),": $result\n" if $print;
return $result;

}

my @values = (1,4,9,16,25,36);

print_sum(@values);
print_average(@values);
print_biggest(@values);
print_smallest(@values);

Chapter 10

308

The subroutine name actually passed in the $AUTOLOAD variable contains the package prefix, main::
as well. In the previous example we didn't check from the start of the name, so it did not matter. In this
case we strip it off so that we can in turn detect and remove the print_ prefix. We take advantage of
the fact that we are left with just the subroutine name to anchor them at the start and end for a little
extra efficiency – the first example worked only because we didn't use anchors and none of our
subroutine names contained another. If we wanted to be even more inventive we could remove the
trailing $ anchors and use the suffix of the subroutine name to further adapt each function if we chose.

Defining Subroutines On the Fly
Using an autoload subroutine as a substitute for defining real subroutines can have significant
advantages in terms of reducing code size – the example above replaces eight definitions with just one,
and the benefits increase the more permutations we add. However, implementing functionality via the
autoloader also incurs a performance loss. Perl must check for the original definition, find that it is not
there, check for the autoloader, find that it is there, preset the $AUTOLOAD variable and finally call the
autoloader. If the function being implemented is complex and time consuming this is not a problem, but
for simple operations we expect to call often we can sometimes do better by actually defining a new
subroutine so that future calls are passed to it and not the autoloader.

As an example of this approach, here is a simple autoloader that defines subroutines to return HTML
syntax, much in the way that the CGI module can if asked nicely enough. It isn't nearly as feature-rich
as that module, but it serves for demonstration purposes (and is a lot smaller too):

#!/usr/bin/perl
autofly.pl
use warnings;
use strict;

sub AUTOLOAD {
our $AUTOLOAD;

my $tag;
$AUTOLOAD =~ /([^:]+)$/ and $tag = $1;

SWITCH: foreach ($tag) {
/^start_(.*)/ and do {

eval "sub $tag { return \"<$1>\@_\" }";
last;

};
/^end_(.*)/ and do {

eval "sub $tag { return \"</$1>\" }";
last;

};
eval "sub $tag { return \"<$tag>\@_</$tag>\" }";

}
no strict 'refs';
&$tag;

}

generate a quick HTML document
print html(

head(title('Autoloading Demo')),
body(ul(

start_li('First'),
start_li('Second'),
start_li('Third'),

))
);

Inside Modules and Packages

309

This autoloader supports automatic tag completion, as well as generating the start and end of tags if
start_ or end_ is prefixed to the subroutine name. It works by defining a subroutine to generate the
new tag, then calling it. The first time start_li is called, the autoloader generates a new subroutine
called start_li, then calls it. The second time start_li is called the subroutine already exists, so
Perl calls it directly and the autoloader is not involved.

A little deftness with interpolation is required for the subroutines to be defined correctly. We want the
tag name itself interpolated, both as the subroutine name and inside the returned string, but we want
interpolation of the passed arguments delayed until the subroutine is actually called. To achieve that we
put double quotes around the returned string but escape both them and @_ so that they are not
interpreted when the subroutine is defined – instead they become active when it is actually called.

Self-Defining Instead of Autoloading Subroutines
A variation on the theme of delaying the definition of subroutines and methods when they are first
called, is to retrieve their definition from somewhere else and compile it when they are first called. For
instance, we may have a large and complex module with many features, of which we may only actually
use some. In order to avoid compiling all the subroutines redundantly, we can put aside compiling them
until they are called. If they are never called, we never need to define them.

The essence of this approach is to define a subroutine as a stub only. This doesn't contain much code, so
it is quick to compile and does not occupy much memory. When the stub is actually called, it defines
and replaces itself with the real subroutine. Here is a short program that shows one way to do this:

#!/usr/bin/perl
autodefine.pl
use warnings;
use strict;

sub my_subroutine {

print "Defining sub...\n";

uncomment next line and remove 'no warnings' for Perl < 5.6
local $^W = 0;
eval 'no warnings; sub my_subroutine { print "Autodefined!\n"; }';

&my_subroutine;
}

my_subroutine;
my_subroutine;

Running this program produces:

Defining sub...
Autodefined!
Autodefined!

A variant of this approach would be to store all the subroutine definitions in a different file, or after a
__DATA__ token, and read the subroutine code from there. Alternatively, we can create a typeglob alias
to an evaluated anonymous subroutine, with equal effect to the above:

Chapter 10

310

#!/usr/bin/perl
globdefine.pl
use warnings;
use strict;

sub my_subroutine {
print "Defining sub...\n";
no warnings;
remove above and add the following for Perl < 5.6
local $^W = 0;

*my_subroutine = eval {
sub {

print "Autodefined!\n";
}

};

&my_subroutine;
}

my_subroutine;
my_subroutine;

In both cases we suppress the redefinition warning by switching off warnings locally with no
warnings, or by locally clearing $^W. In this case we know we want to redefine the subroutine, so we
don't need Perl telling us about it.

The drawback of this approach compared to defining an AUTOLOAD subroutine is that we need to define
a stub for each subroutine we want to delay the compilation of. The advantage is that because a stub is
present we don't lose the ability to syntax-check subroutine names at compile time. This is particularly
useful if we are also providing prototypes for our subroutines since they clearly cannot be checked at
compile time if they are only created at run time. Note however that the contents of the subroutines are
only checked at run time; an unavoidable compromise if we wish to avoid parsing them until we use
them.

Autoloading Modules
The Perl standard library provides two modules that implement the strategy of delayed loading of
subroutines in two different ways. The more complex one is the AutoLoader module, which loads in
additional files containing subroutine definitions generated previously by the AutoSplit module using
an AUTOLOAD subroutine. This implies that the module is split into separate pieces prior to being used,
that is, at installation time.

The SelfLoader module operates along broadly similar lines, but keeps all the subroutines to be
loaded later inside the source file. The advantage of this is that we do not need to remember to use the
AutoSplit module, so it will always work and does not require that the module be reprocessed each
time it changes. Conversely, however, we must load all the source code into memory in an uncompiled
form so that it can be compiled on demand.

Before we discuss these two approaches in more detail it is worth mentioning another approach – the
autouse pragma. While not as powerful as either of the two approaches mentioned here it has the
advantage of being considerably simpler to use. Rather than being used within the module to be
handled, it modifies the use statement of the code that uses the module – see Chapter 9 for details on
this matter.

Inside Modules and Packages

311

Using the 'AutoLoader' Module
The AutoLoader module allows us to split out individual subroutines into separate files and then load
them on demand. It works in conjunction with the AutoSplit module, which parses a module source
file to generate the separate files, each containing one individual subroutine. It is not terribly convenient
during development because the process of splitting the module must be repeated each time the source
is changed, but when it comes to creating installable packages (which we cover later in the chapter) it is
highly effective. Indeed, the build files generated by the h2xs utility, which we will encounter later in
this chapter and in Chapter 21, automatically invokes the AutoSplit module for us, so that this step is
taken care of when we create our own installable packages.

In order to use the AutoLoader module, we place the subroutines we want to delay the loading of after
an __END__ token. To put it another way, we put an __END__ token somewhere in the module source
between the subroutines we always want compiled and the subroutines we want to load later,
conditionally. This may require a little reorganization of the source, of course.

We then add a use statement to include the AutoLoader module and import its AUTOLOAD subroutine,
which does the work of retrieving the subroutines that were split out. Note that importing the subroutine
is important – the AutoLoader will not work without it:

use AutoLoader qw(AUTOLOAD);

The __END__ token causes the Perl interpreter to stop reading the file at this point, so it never sees the
subroutines placed after it. To make them available again, we use the AutoSplit module to carve out
the subroutines after the __END__ token into separate files placed in an auto directory relative to the
module file. This often takes place in installation scripts and typically takes the form of a one line Perl
program. For example, to autosplit a module from the directory in which it is placed:

> perl -MAutoSplit -e 'autosplit "My/AutoModule.pm","./auto"'

Again there are slight modifications required for the Windows version of this one line program:

> perl -MAutoSplit -e "autosplit\"My/AutoModule.pm\",\"./auto\""

This takes a module called My::AutoModule contained in a file called AutoModule.pm in a directory
called My in the current directory and splits it into parts inside an auto directory (which is created at
the time if it doesn't exist). Inside are the directories My/AutoModule, inside which we find an index
file autosplit.ix and one file for each subroutine split out of the module, named for the subroutine
followed by .al (for autoload).

As an example of how the AutoLoader is used, take this simple module file that implements a package
called My::AutoModule:

My/AutoModule.pm

package My::AutoModule;

use strict;
use Exporter;
use AutoLoader qw(AUTOLOAD);

our @ISA = qw(Exporter);
our @EXPORT = qw(zero one two three);

Chapter 10

312

sub one {
print "This is always compiled\n";

}

__END__

sub two {
print "This is sub two\n";

}

sub three {
print "This is sub three\n";

}

1;

The file, which in this case is named AutoModule.pm, and contained in a directory called My, to match
the package name, has three subroutines. The first, one, is a regular subroutine – it is always compiled.
The other two, two and three, are actually just text at the end of the file – the __END__ ensures that
Perl never sees them, and never even reads them in. Note that the only changes from a normal module
are the use AutoLoader line and the __END__ token. The trailing 1 is not actually needed any longer,
but we retain it in case we ever convert the module back into an unsplit one.

However, when we run autosplit over the file, it creates three files autosplit.ix, two.al, and
three.al, all in the auto/My/AutoModule directory. Since we specified . as the installation
directory, this new directory is immediately adjacent to the original AutoModule.pm file. If we had
wanted to split a module that was installed into the Perl standard library tree we would have used a
different path here, according to the position of the file we wanted to split.

The autosplit.ix file contains the essential information about the subroutines that have been split
out:

Index created by AutoSplit for My/AutoModule.pm
(file acts as timestamp)
package My::AutoModule;
sub two ;
sub three ;
1;

Close inspection of this file reveals that it is in fact a snippet of Perl code that pre-declares two
subroutines, the two that were split out, in the package My::AutoModule. When the module is used in
an application, the line use AutoLoader causes the AutoLoader module to be read in and initialized
for that module. This has the effect of loading this index file, and thus declaring the subroutines.

The point of this file may seem obscure, since the AUTOLOAD subroutine will seek the split out files
regardless, but it carries out the important function of allowing us to declare prototypes for subroutines
and have them active within the application even before the subroutine is called – without this the
prototype would not be seen until the subroutine is called, which is clearly far too late. It also allows us
to call subroutines without parentheses, in the list operator style, as we discussed in Chapter 9. Here is a
short test script that calls the subroutines defined by this module:

#!/usr/bin/perl
automoduletest.pl
use warnings;
use strict;

Inside Modules and Packages

313

use lib '.';
use My::AutoModule;

one;
two;
three;

The .al files contain the subroutines that were split out – here is one of them, for illustrative purposes.
Note that due to varying locations, slightly different scripts used, and so on we may have small
variations in the actual contents of the .al files obtained. This provides a rough idea of what can be
expected:

NOTE: Derived from My/AutoModule.pm.
Changes made here will be lost when autosplit again.
See AutoSplit.pm.
package My::AutoModule;

#line 18 "My/AutoModule.pm (autosplit into ./auto/My/AutoModule/two.al)"
sub two {

print "This is sub two\n";
}

end of My::AutoModule::two
1;

The AutoSplit module is smart enough to check that the AutoLoader module is actually used by a
file before it attempts to split it. We can disable this check (if we insist) as well as determine whether old
subroutine .al files are removed if they no longer exist and check to see if the module has actually
changed before splitting it again (this is the reason for the (file acts as timestamp) comment in
the autosplit.ix file). This is achieved by adding one or more of three optional Boolean arguments
to the autosplit subroutine:

> perl -MAutoSplit -e 'autosplit "My/AutoModule.pm","./auto", $keep, $check, $changed'

Or for Windows it is:

> perl -MAutoSplit -e "autosplit\"My/AutoModule.pm\",\"./auto\", $keep, $check, $changed"

If any of these Boolean arguments is True then the following actions occur:

❑ keep – deletes any .al files for subroutines that no longer exist in the module (ones that do
still exist are overwritten anyway). The default is 0, so .al files are automatically preserved.

❑ check – causes the autosplit subroutine to verify that the file it is about to split actually
contains a use AutoLoader directive before proceeding. The default is 1.

❑ changed – suppresses the split if the timestamp of the original file is not newer than the
timestamp of the autosplit.ix file in the directory into which the split files are going to be
placed. The default is 1.

For example, the explicit version of the two-argument call above would be:

> perl -MAutoSplit -e 'autosplit "My/AutoModule.pm","./auto", 0, 1, 1'

Again the equivalent for Windows is:

> perl -MAutoSplit -e "autosplit\"My/AutoModule.pm\",\"./auto\", 0, 1, 1"

TE
AM
FL
Y

Team-Fly®

Chapter 10

314

Be aware that lexical variables declared globally (that is, declared with my in the file but outside a
subroutine) are not visible to autoloaded subroutines because they are stored in separate files and
therefore do not have the same lexical scope. However, variables declared with our (or use vars) are
fine.

We are not obliged to use the AutoLoader's AUTOLOAD subroutine directly, but we need to use it if we
want to load in split files. If we already have an AUTOLOAD subroutine and we want to use AutoLoader
too, we must not import the AUTOLOADER subroutine from AutoLoader but instead call it from our
own AUTOLOAD subroutine:

use AutoLoader;

sub AUTOLOAD {
... handle our own special cases ...

pass up to AutoLoader
$AutoLoader::AUTOLOAD = $AUTOLOAD;
goto &AutoLoader::AUTOLOAD;

}

Note the goto – this is needed so that the call stack reflects the correct package names in the right
place, or more specifically, doesn't include our own AUTOLOAD subroutine in the stack which will
otherwise confuse the AutoLoader's AUTOLOAD subroutine. Of course if we have our own AUTOLOAD
subroutine we might not need the AutoLoader at all – multiple autoloading strategies in the same
module or application is probably getting a little over-complex.

Using the 'SelfLoader' Module
The SelfLoader module is very similar in use to the AutoLoader module, but avoids the need to split
the module into files as a separate step. To use it, we use the SelfLoader module and place the
subroutines we want to delay the loading of after a __DATA__ token. Here is a module called
My::SelfModule that is modified from the My::AutoModule module given earlier to use
SelfLoader instead:

My/SelfModule.pm

package My::SelfModule;

use strict;
use Exporter;
use SelfLoader;

our @ISA = qw(Exporter);
our @EXPORT = qw(zero one two three);

sub one {
print "This is always compiled\n";

}

__DATA__

sub two {
print "This is sub two\n";

}
sub three {

print "This is sub three\n";
}

1;

Inside Modules and Packages

315

This module is identical to the AutoLoader version except for the two alterations. We replace use
AutoLoader qw(AUTOLOAD) with use SelfLoader and __END__ with __DATA__. If we also want to
place actual data in the module file we can do so as long as we make sure to read it before loading the
SelfLoader module, i.e. in a BEGIN block prior to the use SelfStubber statement.

The SelfLoader module exports its AUTOLOAD subroutine by default however, so if we want to define
our own and call SelfLoader from it, we need to specify an explicit empty list:

use SelfLoader ();

sub AUTOLOAD {
... handle cases to be processed here

pass up to SelfLoader
$SelfLoader::AUTOLOAD = $AUTOLOAD;
goto &SelfLoader::AUTOLOAD;

}

To test this module we can use a script similar to the one we used for My::AutoModule, except that we
need to use My::SelfModule instead. We also need to add parentheses to the subroutine calls because
SelfLoader does not provide declarations (as we discover if we try to run it). To solve this problem we
can make use of the Devel::SelfStubber module to generate the declaration stubs we need to add:

> perl -MDevel::SelfStubber -e 'Devel::SelfStubber->stub("My::SelfModule",".")'

As ever here is the Windows version for your use and abuse:

> perl -MDevel::SelfStubber -e "Devel::SelfStubber->stub (\"My::SelfModule\",\".\")"

This generates the following declarations for our example module, which we can add to the module to
solve the problem:

sub My::SelfModule::two ;
sub My::SelfModule::three ;

We can also regenerate the entire module, stubs included, if we first set the variable
$Devel::SelfStubber::JUST_STUBS = 0. This gets a little unwieldy for a command line, but is
possible:

> perl -MDevel::SelfStubber -e '$Devel::SelfStubber::JUST_STUBS = 0; Devel::SelfStubber-
>stub("My::SelfModule",".")' > My/SelfModule-stubbed.pm

For Windows it is:

> perl -MDevel::SelfStubber -e "$Devel::SelfStubber::JUST_STUBS = 0; Devel::SelfStubber-
>stub (\"My::SelfModule\",\".\")" > My/SelfModule-stubbed.pm

This generates a new module, SelfModule-stubbed.pm, which we have named differently just for
safety; it is still My::SelfModule inside. If all looks well, we can move or copy SelfModule-
stubbed.pm over Selfmodule.pm. Note that running this command more than once can generate
extra sets of stubs, which may cause problems, or at least confusion, and may even end up with an
empty file if we forget to put the __DATA__ token in. For this reason it is not advisable to attempt to
replace a file with a stubbed version in one step.

Chapter 10

316

Importing and Exporting
We have already looked at how to import symbols from one package into our own using the use and
require statements. In this section we look at importing and exporting from the other side of the fence
– from the perspective of the module.

The term 'importing' is used for the process of taking symbols from another package and adding them to
our own. From the perspective of the module being imported from, it is 'exporting', of course. Either
way, the process consists of taking a symbol visible in the namespace of one package and making it
visible, without qualification, in another. For instance, even if we can see it we would rather not refer to
a variable called:

$My::Package::With::A::Long::Name::scalar

It would be much better if we could refer to this variable simply as $scalar in our own code. From
Chapter 5, we know that we can do this explicitly using typeglobs to create aliases, since that is one of
the things we can do with them:

my *scalar =\$My::Package::With::A::Long::Name::scalar;

Likewise, to create an alias for a subroutine:

my *localsub =\&My::Package::With::A::Long::Name::packagesub;

This is a simple case of symbol table manipulation, and isn't all that tricky once we understand it.
However, it is clumsy, since we have to create an alias for every variable or subroutine we want to use
without the prefix. It is also prone to problems in later life, since we are defining the interface between
this package and our own code in our own code, and not in the package. This is very bad – if the
package is updated, there is a high chance our code will break.

Good programming practice suggests that all packages should have a well-defined interface and that all
code that uses it should use that interface. The package, not the user of the package, should dictate what
the interface is. Therefore, we need a way to ask the package to create appropriate aliases for us; this is
the import mechanism that the use and no statements (but not require) do automatically.

If our requirements for importing subroutines and variables from our module into other packages are
simple, we can for the most part ignore the technicalities of Perl's import mechanism, and use the
Exporter module to define our interface. For the majority of packages, the Exporter can handle all
the necessary details. If we just want to export a few subroutines, we can skip part of the next section of
this chapter and head straight to the section titled 'The Exporter Module'. However, the import
mechanism isn't actually all that hard to understand (because it isn't all that complex) and a basic
understanding of it can help with implementing more complex modules with more involved export
requirements. It is also applicable to simpler import mechanisms that, rather than actually exporting
symbols, allow us to configure a package using the import list as initialization data. This is a perfectly
legal use for the list supplied to use or require, as well as being a very useful one.

The 'import' Mechanism
Perl's mechanism for importing symbols is simple, elegant, and shockingly ad hoc, all at the same time.
In a nutshell, we call a subroutine called import in the package that we want to import symbols from.

Inside Modules and Packages

317

The import stage is a secondary stage beyond actually reading and compiling a module file, so it is not
handled by the require directive; instead, it is a separate explicit step:

require My::Module; # load in the module
My::Module->import; # call the 'import' subroutine

Perl allows us to invert the package and subroutine names (a syntax trick mostly aimed at object-
oriented programming), so we can also say:

import My::Module;

This fools many programmers into thinking that import is actually a Perl keyword, since it looks
exactly like require, but in fact it is only a subroutine. This becomes clearer when it becomes apparent
that we can pass import a list of arguments describing the symbols we want to import. For example, a
typical import statement looks like this:

import My::Module qw(subone subtwo $scalar);

This appears to be a core Perl feature for importing symbols, but in fact all it does is call the subroutine
import in the package My::Module and pass the arguments subone, subtwo, and $scalar to it.

The name of the import subroutine is not entirely a matter of convention. The use directive binds up a
require and a call to import inside a BEGIN block. Then use My::Module is therefore (almost)
equivalent to:

BEGIN {
require My::Module;
import My::Module;

}

Note that the import has no parentheses; any arguments passed to use therefore get automatically
passed through to the import subroutine as the @_ array, without being copied, as covered in Chapter 9.
If there is no import subroutine, however, use will not complain; a more correct import statement
would be:

import My::Module if My::Module->can('import');
'can' is a universal method (see Chapter 19)

Similarly, the no directive calls a function called unimport. The sense of no is to be the opposite of
use, but this is a matter purely of convention and implementation, since the unimport subroutine is
just another subroutine. In this case though, Perl will issue an error message if there is no unimport
method defined by the module. The no My::Module code is (roughly, with the same proviso as above)
equivalent to:

BEGIN {
require My::Module;
unimport My::Module;

}

Chapter 10

318

It may seem strange that no incorporates a require within it, but there is no actual requirement that
we use a module before we no parts of it. Having said that, the module may not work correctly if the
import subroutine is not called initially. If use has already pulled in the module, the require inside
no will see that the module is already in %INC, and so won't load it again. This means that in most cases
no is just a way of calling unimport in the module package at compile time.

In the same way that aliasing can be done with typeglobs, removing aliases can be done by editing an
entry out of the symbol table. Here is an example that does just that, using the delete_package
subroutine of the Symbol module that we introduced previously:

Uninstallable.pm

package Uninstallable;

use Symbol qw(delete_package);

$message = "I'm here\n";

sub unimport {
delete_package(__PACKAGE__);

}

1;

This module, which for the purposes of testing we shall call Uninstallable.pm, defines one variable
simply so we can prove whether or not it is present by testing it, as this short test script does:

#!/usr/bin/perl
uninstall.pl
use strict;

print "Now you see me: ";
use Uninstallable;
print $Uninstallable::message;

print "Now you don't!\n";
no Uninstallable;
print $Uninstallable::message;

As interesting as this is, it is rare (though not impossible) that we would actually want to delete a
package programmatically. Where they are implemented, most unimport subroutines simply clear
flags that an import sets. Many of Perl's pragmatic modules like strict and warnings work this way,
for example, and are actually very small modules in themselves.

The use and no directives incorporate one extra trick: If we pass them an explicit empty parameter list,
they don't call the import function at all. This means that we can suppress a module's default import if
we only want to use some of its features. Take the CGI module as an example:

use CGI; # parse environment, set up variables
use CGI qw(:standard); # import a specific set of features
use CGI (); # just load CGI, don't parse anything.

Inside Modules and Packages

319

Suppressing the default import by passing an empty list is more useful than it might seem. The CGI
module in the above examples does rather a lot more than simply importing a few symbols by default; it
examines the environment and generates a default CGI object for functional programming, as well as
automatically generating a number of methods. If we just want to use the CGI module's HTML
generation features, we don't need all that, so we can stop the module initializing itself by explicitly
passing nothing to it.

Exporting
Having examined the import mechanism from the side of the importer, we can take a look at how
modules handle import requests. From the module's perspective of course, this is exporting. As we
mentioned earlier, most modules make use of the Exporter module covered a little later in the chapter
to do the work for them, but we are not compelled to. Here is a simple exporting subroutine that
illustrates how a module can implement a simple import subroutine:

default import
sub import {

my $caller = caller(1); # get calling package
*{"$caller\:\:mysub"} =\&mysub;
*{"$caller\:\:scalar"} =\$scalar;
*{"$caller\:\:hash"} =\%hash;

}

The principal technique is that we find the caller's package by inspecting the subroutine stack with
caller. It so happens that when called in a scalar context, caller returns just the package name, so
caller(1) returns the package of the caller – in other words, the place from which the use was issued.
Once we know this, we simply use it to define typeglobs in the calling package filled with references to
the variables we want to export.

This import subroutine doesn't pay any attention to the arguments passed to it (the first one of which is
the package name). Here is a more versatile import subroutine that exports any subroutine requested, if
it exists:

export if defined
sub import {

my $caller = caller(1); # get calling package
my $package = shift; # remove package from arguments
no strict refs; # we need symbolic references for this

foreach (@_) {
if (defined &{"$package\:\:$_"}) {

*{"$caller\:\:$_"} =\&{"$package\:\:$_"}
} else {

die "Unable to export $_ from $package\n";
}

}
}

The use of the variable $package here is strictly optional, since in this example the package passed in
is the package we are in anyway – we could as easily have said \&{$_} to generate the reference.
However, it is good practice to use the package name if there is any possibility that we might be
inherited from by another package – by using the passed package name, our import will also serve for
any packages that inherit from it (via @ISA). This is exactly how the Exporter module works, and we'll
cover it in more detail shortly.

Chapter 10

320

The above example only works for subroutines, so it only constructs subroutine references. A more
versatile version would examine (and remove if appropriate) the first character of the symbol and
construct a scalar, array, hash, code, or typeglob reference accordingly. Here is an example that does
that, though we have removed the check for whether the symbol actually exists for brevity:

export arbitrary
sub import {

my $caller = caller(1); # get calling package
my $package = shift; # remove package from arguments
no strict refs; # we need symbolic references for this

foreach (@_) {
my $prefix;
s/^([&%$@*])// and $prefix = $1;

$prefix eq '$' and *{"$caller\:\:$_"} =\${"$package\:\:$_"}, last;
$prefix eq '%' and *{"$caller\:\:$_"} =\%{"$package\:\:$_"}, last;
$prefix eq '@' and *{"$caller\:\:$_"} =\@{"$package\:\:$_"}, last;
$prefix eq '*' and *{"$caller\:\:$_"} =*{"$package\:\:$_"}, last;
*{"$caller\:\:$_"} =\&{"$package\:\:$_"}, last;

}
}

It is up to the import subroutine whether or not to carry out additional default imports when an
explicit list is passed. In general the answer is no but it is usual to define a special symbol like
:DEFAULT that imports all the default symbols explicitly. This allows the module user maximum
flexibility in what to allow into their namespace:

sub import {
my $package = shift;

if an empty import list, use defaults
return _default_import() unless @_;

foreach (@_) {
/:DEFAULT/ and _default_import(), last;
_export_if_present($package,$_);

}
}

sub _default_import {
... as above ...

}

sub _export_if_present {
my ($package,$symbol) = @_;
my $prefix;
$symbol = s/^([&%$@*])// and $prefix = $1;

if ($prefix and $prefix ne '&') {
SWITCH: foreach ($prefix) {

m'$' and do {
if (defined ${"$package\:\:$_"}) {

*{"$caller\:\:$_"}=\${"$package\:\:$_"};
return;

}
};

Inside Modules and Packages

321

m'@' and do {
... ditto for arrays ...

};
m'%' and do {

... ditto for hashes ...
};
m'*' and do {

... ditto for typeglobs ...
};

}
} elsif (defined &{"$package\:\:$_"}) {

*{"$caller\:\:$_"}=\&{"$package\:\:$_"}
} else {

die "Unable to export $_ from $package\n";
}

}

As a final example, and an indication of what else we can do with import lists, here is an import
subroutine that invents generators for HTML tags by defining a subroutine for any symbol passed to it
that it doesn't recognize (The CGI module uses exactly this approach, though its HTML methods are a
good deal more advanced):

sub import {
my $package = shift;

foreach (@_) {

for each passed symbol, generate a tag subroutine in the
caller's package.
*{"$package\:\:$_"} = sub {

"<$tag>\n".join("\n",@_)."</$tag>\n";
};

}
}

This is frequently a better way to handle automatic generation of subroutines than autoloading is,
since it is more controlled and precise. Also we have to declare the subroutines we want to use at
compile time (as use executes the import subroutine during this phase) where they can be subjected to
syntax checking. With autoloading, we can only check at run time, and then only if we take extra steps
to do so.

Setting Flags with Exports
Just because the use directive calls import in our package to import symbols, it does not mean that we
actually have to import symbols of the same name, or even import symbols at all – we can use the
import list to trigger any kind of behavior we like, for instance to enable or disable debugging, or to
pass a list of initial keys and values to configure a package.

When to Export, When not to Export
Having shown how to export symbols, it is worth taking a moment to consider whether we should or
not. The point of packages is to restrain the scope of variables by placing them into different
namespaces; we can write application code in the main package free from worry about name clashes
because modules place their variables and subroutines into their own packages. Importing symbols goes
against this strategy, and uncontrolled importing of lots of symbols is always a bad idea, polluting the
application code with unnecessary variables and subroutine definitions that consume memory at best
and cause unexpected bugs at worst.

Chapter 10

322

In general we should take time to consider:

❑ What should and should not be exported by default from a module (as little as possible)

❑ What should be allowed to be exported

❑ What should be denied export

Object-oriented modules should usually not export anything at all; the entire point of object orientation
is to work through the objects themselves, not to bypass them by importing parts of the module class
into our own code. Additionally, exporting symbols directly bypasses the inheritance mechanism, which
makes code that uses the exported symbols hard to reuse and likely to break.

In summary, the export list of a module is far more than just a list of symbols that will/may be imported
into another package; it is the functional interface to the module's features, and as such should be
designed, not accreted. The Exporter module helps with this by allowing us to define lists of
conditionally exported symbols.

The 'Exporter' Module
The Exporter module provides a generic import subroutine for modules to configure to their own
particular tastes. It handles almost all the possible issues that a module needs to consider, and for many
modules it is all they need – they do not actually need to define their own import subroutine.

Using the 'Exporter'

To use the Exporter, a module needs to do three things; use the Exporter, inherit from it, and
define the symbols to export. Here is a very short module that demonstrates the basic technique, using
fully qualified names for the package variables @ISA and @EXPORT:

My/Module.pm

package My::Module;

use strict;

use Exporter
use Exporter;

inherit from it
@My::Module::ISA = qw(Exporter);

define export symbols
@My::Module::EXPORT = qw(greet_planet);

sub greet_planet {
return "Hello World\n";

}

The @ISA array is the basis of Perl's object inheritance mechanism – it tells the interpreter that we are a
subclass of the Exporter class, and to refer to it for any methods we don't support. The only ones of
importance here are the import and unimport methods, of course. We don't need to worry too much
about the object-oriented nature of inheriting from Exporter, unless we want to define our own import
subroutine and still use the Exporter, which we come on to later in the chapter. Otherwise, we can
ignore the object nature of the Exporter and leave the subject of object-oriented programming to
Chapter 19, where we cover it in full.

Inside Modules and Packages

323

The @EXPORT array defines the actual symbols we want to export; when import is called on our
module it passes that call up to the Exporter module, which provides its own generic import method.
It in turn examines the definition of @EXPORT in our module, @My::Module::EXPORT and satisfies or
denies the requested import list accordingly.

For completeness, here's a short script that uses the above module, assuming it is in a file named
Module.pm in a directory called My in the same directory as the script:

#!/usr/bin/perl
import.pl
use warnings;
use strict;

use lib '.';

use My::Module;

print greet_planet;

Importing from the 'Exporter'

One advantage of the Exporter module is that the import method it provides is well developed and
handles many different situations for us. Even if we decide to provide our own import subroutine we
may want to use Exporter too, just for the richness of the features it provides (and if we don't we
probably ought to document it). For example, it accepts regular expressions as well as literal symbol
names, which means that we can define a collection of symbols with similar prefixes and then allow
them to be imported together rather than individually. Here is how we can import a collection of
symbols all starting with prefix_ from a module that uses the Exporter module:

use My::Module qw(/^prefix_/);

The Exporter also understands negations, so we can import all symbols that do not match a given
name or regular expression:

import everything except the subroutine 'greet_planet'
use My::Module qw(!greet_planet);

import anything not beginning with 'prefix_'
use My::Module qw(!/^prefix_/);

We can also collect symbols together into groups and then import the groups by prefixing the group
name with a colon. Again, this isn't a core Perl feature, it is just something that the Exporter's import
method does. For example:

use My::Module qw(:mygroup);

We'll see how to actually define a group for Exporter in a moment.

Default and Conditional Exports

The @EXPORT variable defines a list of default exports that will be imported into our code if we use the
module with no arguments, that is:

use My::Module;

TE
AM
FL
Y

Team-Fly®

Chapter 10

324

But not:

use My::Module ();

Nor:

use My::Module qw(symbola symbolb symbolc);

If we give an explicit list of symbols to import, even if it is an empty list, Exporter will export only
those symbols. Otherwise, we get them all.

Since exporting symbols automatically is not actually all that desirable (the application didn't ask for
them, so we shouldn't spray it with symbols), Exporter also allows us to define conditional exports in
the @EXPORT_OK array. Any symbol in this array may be exported if named explicitly, but will not be
exported by default:

... in My::Module (Module.pm)...

change sub to be exported only on request
@EXPORT_OK = qw(greet_planet);

... in application (import.pl) ...

now we must import the sub explicitly
use My::Module qw(greet_planet);

The contents of the @EXPORT array are also checked when an explicit list is given, so any name or
regular expression passed to import will be imported if it matches a name in either the @EXPORT or
@EXPORT_OK list. However, any explicit list suppresses the exporting of the default list – which is the
point, of course.

We can regain the default symbols if we use the special export tag :DEFAULT. For example, this
statement imports all the default symbols, and additionally imports two more (presumably on the
@EXPORT_OK list; they could also be in the @EXPORT list, but then they would be redundant as
:DEFAULT would have imported them already).

use My::Module qw(:DEFAULT symbola symbolb);

Alternatively, we can import the default list but remove symbols from it:

use My::Module qw(:DEFAULT !symbola !symbolb);

Since this is a common case, we can also omit the :DEFAULT tag and simply put:

use My::Module qw(!symbola !symbolb);

If fact this is the same as the example of negation we gave earlier; in effect, an implicit :DEFAULT is
placed at the front of the list if the first item in the list is negated.

As a working example of the different ways that import lists can be defined, here is a short
demonstration module, called TestExport.pm, and a test script that we can use to import symbols
from it in different ways. First the module, which exports two subroutines by default and two if asked:

Inside Modules and Packages

325

TestExport.pm

package TestExport;

use strict;
use Exporter;

our @ISA = qw(Exporter);
our @EXPORT = qw(sym1 sym2);
our @EXPORT_OK = qw(sym3 sym4);

sub sym1 {print "sym1\n";}
sub sym2 {print "sym2\n";}
sub sym3 {print "sym3\n";}
sub sym4 {print "sym4\n";}

1;

The following script contains a number of different use statements that import different symbols from
the module, depending on their argument. To use it, uncomment one (and only one) use statement and
the script will print out the subroutines that were imported as a result. It also demonstrates a simple way
of scanning the symbol table and the use of %INC to check for a loaded module.

#!/usr/bin/perl
testexport.pl
use warnings;
use strict;

:DEFAULT import
#use TestExport;

no imports
#use TestExport();

just 'sym1'
#use TestExport qw(sym1);

everything but 'sym1'
#use TestExport qw(!sym1);

just 'sym3'
#use TestExport qw(sym3);

everything but 'sym3'
#use TestExport qw(!sym3);

implicit :DEFAULT
#use TestExport qw(!sym1 sym3);

no implicit :DEFAULT
#use TestExport qw(sym3 !sym1);

unless (exists $INC{'TestExport.pm'}) {
die "Uncomment a 'use' to see its effect\n";

}

foreach (keys %::) {
print "Imported: $_\n" if /^sym/;

}

Chapter 10

326

Note that in these examples we have concentrated on subroutines, since these are the symbols we most
commonly export, though we are equally free to export variables too.

Export Lists

In addition to adding symbol names to @EXPORT and @EXPORT_OK we can define collections of symbols
as values in the hash variable %EXPORT_TAGS. The key is a tag name that refers to the collection. For
example:

our (@EXPORT @EXPORT_OK %EXPORT_TAGS);

$EXPORT_TAGS{'subs'} = [qw(mysub myothersub subthree yellowsub)];
$EXPORT_TAGS{'vars'} = [qw($scalar @array %hash)];

Or, more succinctly:

our %EXPORT_TAGS = (

subs => ['mysub','myothersub,'subthree','yellowsub'],
vars => [qw($scalar @array %hash)],

);

Note that in accordance with the principles of nested data structures, we need to assign a reference to an
anonymous array to each tag name key – otherwise we just count the list.

However, defining a list and assigning it to a tag does not automatically add the names in the list to
either @EXPORT or @EXPORT_OK; in order for the tag to be imported successfully, the names have to be
in one or other of the arrays too. Fortunately, Exporter makes this simple for us by providing a pair of
subroutines to add the symbols associated with a tag to either list automatically. To add a tag to the
default export list:

Exporter::export_tags('subs');

To add a tag to the conditional export list:

Exporter::export_ok_tags('vars');

We can now import various permutations of tags and symbol names:

import two tags
use My::Module qw(:subs :vars);

import the default list excepting the items in ':subs'
use My::Module qw(:DEFAULT !:subs);

import ':subs' excepting the subroutine 'myothersub'
use My::Module qw(:subs !myothersub);

To show tags in action, here is a modified example of the TestExport module we gave above,
rewritten to use tags instead. We define the default and on-request export lists using the export_tags
and export_ok_tags subroutines:

Inside Modules and Packages

327

TestTagExport.pm

package TestTagExport;

use strict;
use Exporter;

our @ISA = qw(Exporter);
our %EXPORT_TAGS = (

onetwo => ['sym1','sym2'],
threefour => ['sym3','sym4'],
onetwothree => [qw(sym1 sym2 sym3)],
all => [qw(sym1 sym2 sym3 sym4)],

);

Exporter::export_tags('onetwo');
Exporter::export_ok_tags('threefour');

sub sym1 {print "sym1\n";}
sub sym2 {print "sym2\n";}
sub sym3 {print "sym3\n";}
sub sym4 {print "sym4\n";}

1;

Here is a script that tests out the export properties of the new module, concentrating on tags rather than
symbols, though all the tests that applied to the first module will work with the same effect with this
one:

#!/usr/bin/perl
testtagexport.pl
use warnings;
use strict;

import tag
#use TestTagExport;

import symbol plus tag
#use TestTagExport qw(:threefour sym2);

import tag minus symbol
#use TestTagExport qw(:onetwothree !sym2);

import one tag minus another
#use TestTagExport qw(:onetwothree !:DEFAULT);

unless (exists $INC{'TestTagExport.pm'}) {
die "Uncomment a 'use' to see its effect\n";

}

foreach (keys %::) {
print "Imported: $_\n" if /^sym/;

}

Chapter 10

328

Versions

The use and require directives support a version number syntax in addition to their regular use in
module loading. The Exporter module also allows us to handle this usage by defining a
require_version method that is passed the package name (because it is a method), and the version
number requested:

our $VERSION = "1.23";

sub require_version {
my ($pkg,$requested_version) = @_;
return $requested_version ge $VERSION;

}

If we do not supply a require_version method then a default definition provided by Exporter is
used instead; this also tests the requested version against the value of $VERSION defined in the local
package (if any is defined), but uses a numeric comparison. This works well for version number string
comparison (containing at least two points or prefixed with a v). The version above works better if
versions resemble ordinary floating-point numbers because it uses a numeric comparison – see version
strings in Chapter 3 for more on this issue.

Handling Failed Exports

The Exporter module automatically causes an application to die if it attempts to import a symbol that
is not legal. However, by defining another array, @EXPORT_FAIL, we can define a list of symbols to
handle specially in the event that Exporter does not recognize them. For example, to handle cross-
platform special cases we might define three different subroutines:

our (@EXPORT_FAIL);

@EXPORT_FAIL = qw(win32sub macsub unixsub);

In order to handle symbols named in the failure list, we need to define a subroutine, or rather a method,
called export_fail. The input to this method is a list of the symbols that the Exporter did not
recognize, and the return value should be any symbols that the module was unable to process:

sub export_fail {

my $pkg = shift;

my @fails;
foreach (@_) {

test each symbol to see if we want to define it
push @fails,$_ if supported($_);

}

return list of failed exports (none if success)
return @fails;

}

sub supported {
my $symbol = shift;
... test for special cases ...
return $ok_on_this_platform;

}

Inside Modules and Packages

329

If we do not define an export_fail method then Exporter supplies its own, which returns all the
symbols, causing them all to fail as if the @EXPORT_FAIL array was not defined at all. Note that we
cannot have Exporter call export_fail for any unrecognized symbol, only those listed in the
@EXPORT_FAIL array. However, if we wanted to handle situations like this ourselves we can always
define our own import method, which we discuss next.

Using 'Exporter' with a Local 'import' Method
If we don't want to do any special handling ourselves then we can simply provide definitions for the
@EXPORT or @EXPORT_OK arrays and have the Exporter module deal with everything for us. If,
however, a module needs to do its own initialization we need to define our own import method. Since
this will override the import method defined by Exporter, we will need to take the steps to call it
explicitly if we still want to take advantage of it as well. Fortunately the Exporter module has been
written with this in mind.

Assuming we're familiar with object-oriented programming, we might guess that calling
SUPER::import from our own import subroutine would do the trick, since SUPER:: is the named
method in the parent package or packages, as covered in Chapter 19. The parent package is the
Exporter module since it is in our @ISA array, so this calls Exporter's @ISA from our own.
Unfortunately, although this works, this imports symbols to the wrong package, because Exporter's
import method examines the package name of the caller to determine where to export symbols. Since
that is the module, and not the user of the module, the export doesn't place anything in the package that
issues the use statement. Instead, we use the export_to_level method, which traces back up the
calling stack and supplies the correct package name to Exporter's import method. Here's how we can
use it:

our @ISA = qw(Exporter);
our @EXPORT_OK = qw(mysub myothersub subthree yellowsub);

sub import {
my $package = $_[0];
do_our_own_thing(@_);
$package->export_to_level(1, @_);

}

The first argument to export_to_level is a call-stack index (identical to that passed to the caller
function). This is used to determine the package to export symbols to, thereby allowing
export_to_level to be completely package-independent. Note that because the package information
needs to be preserved intact, it is important that we do not remove the package name passed as the first
argument, which is why we used $_[0] and not shift in the above example.

Debugging Exports
The Exporter module also has a special verbose mode we can use when we are debugging particularly
complex import problems. To enable it, define the variable $Exporter::Verbose before using the
module, and note that for this to be successful it needs to be in a BEGIN block:

BEGIN {
$Exporter::Verbose = 1;

}

Note also that this will produce debug traces for all modules that use Exporter. Since a very large
number of modules use Exporter, this may produce a lot of output. However, since BEGIN blocks
(including the implicit ones in use statements) are executed in order, we can plant BEGIN blocks in
between the use statements to restrain the reporting to just those modules we are interested in:

Chapter 10

330

use Exporter;
use A::Module::Needed::First;

BEGIN {$Exporter::Verbose = 1;}
use My::Problematic::Exporting::Module;

BEGIN {$Exporter::Verbose = 0;}
use Another::Module;

Creating Installable Modules
An installable package is one that we can bundle up, take somewhere else, and then install by
unpacking it and executing an installation script (obviously, the term 'package' in this section doesn't
mean a Perl namespace which is created using the keyword package). A Perl module is best installed as
part of an installable package.

If we want to make our scripts and modules easily portable between systems, it is far better to automate
the process of installation than manually copy files into a library directory. In addition, if we want to
distribute the module more widely, or upload it to CPAN for the enjoyment of all, we need to make
sure that the module is well behaved and has all the right pieces in all the right places. Fortunately, the
h2xs utility supplied with Perl automates a great deal of this process for us, allowing us to concentrate
on the actual code.

Different platforms have different requirements for building installable packages. Most UNIX platforms
will build any package created with h2xs without difficulty, but Windows systems will need a make tool
like dmake installed, for instance. However, packages consisting purely of Perl (as opposed to a mixture
of Perl and C) should be easily installed on most platforms given some minimal supporting tools.
Chapter 24 covers installing packages on different systems and the tools required for different platforms.

Well-Written Modules
When we are writing modules for our own personal use, we can be fairly lax about how they are
structured; a package declaration at the top and a 1 at the bottom are all we really need. However, a
well-written and well-behaved module for general consumption should have some essential attributes.

Its own unique package name: In the case of modules designed for wider distribution this should not
only be chosen wisely but also checked against other modules already available from CPAN to see if it
fits well with existing nomenclature. For modules destined for CPAN, consult the module list document
and the advice therein at: http://www.cpan.org/modules/00modlist.long.html.

A version number: All module files (that is, files ending in .pm) destined for distribution should have a
version number defined inside them, either in the package variable $VERSION, or in a VERSION
subroutine that returns a version number.

Strict mode: No Perl code should really be without the strict pragma. It must be said that there are
several examples of modules in the Perl standard library that do not adhere to these standards. Mostly
these are tried and tested modules from early in the development of the standard library that are known
to work. For new modules, strict mode is a good idea.

Inside Modules and Packages

331

Documentation: All subroutine calls, exported and exportable symbols, and configuration details
should be written up and distributed along with the module, preferably in the form of Plain Old
Documentation (pod) within the main module file (see Chapter 18 for more on pod documents). It is not
necessary for every module to be documented if some modules are only support modules and not
intended to be used directly, but all salient features should be there. To be properly structured, the pod
document should contain at least the following sections:

❑ NAME: The package name and brief description

❑ SYNOPSIS: Code example of how the module is used

❑ DESCRIPTION: A description of what the module does

❑ EXPORT: What the module exports

❑ SEE ALSO: Any related modules or Perl documentation

❑ HISTORY: Optionally, a history of changes

Tools that are written to look for these sections, such as the podselect utility and the translators that
are based on it, can use properly constructed documentation to extract information selectively.
Additional optional sections include BUGS, CHANGES, AUTHOR, COPYRIGHT, and SUPPORTED
PLATFORMS, some of which h2xs will also generate in particular circumstances.

Conveniently, the h2xs tool creates a basic module file with all of the above already defined and in
place.

Creating a Working Directory
The first and main step to use h2xs to create an installable module is to create a working directory tree
where the module source code will reside. This resembles a local library directory (and indeed we can
use the module directly if we add it to @INC via Perl's -I option or the use lib pragma). In its most
basic usage, h2xs creates a directory tree based on the package name we give it, and creates an initial
module file with all the basic attributes in place. For example:

> h2xs -n Installable::Module

This creates a directory Installable inside which is a directory called Module within which is a file
called Module.pm. In addition, h2xs also creates the following files:

File Description

Makefile.PL This is a Perl script that generates a makefile script for the module. The
makefile is generated by simply running Perl on this file, for example:

> perl Makefile.PL

In turn, the makefile defines various targets, notably dist, which creates a
distribution file and install, which carries out the building, testing, and
installation of the module.

test.pl A test script to test the module's functionality which is compatible with the
Test::Harness module and which is executed (using Test::Harness) by
the test makefile target. We can create our own tests using the Test
module and add them to this script.

Table continued on following page

Chapter 10

332

File Description

Changes A Changes file that documents the module's history. This file is suppressed by
the -C option; see later.

MANIFEST A list of the files in the distribution. By adding files to this list we can add them
to the distribution that is created by the dist target.

The actual donkeywork of creating the makefile is done by a collection of modules in the ExtUtils
family, the principal one being ExtUtils::MakeMaker. A single call to this module actually takes up
the bulk of the Makefile.PL script:

use ExtUtils::MakeMaker;
See lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written.
WriteMakefile(

'NAME' => 'Installable::Module',
'VERSION_FROM' => 'Module.pm', # finds $VERSION
'PREREQ_PM' => {}, # e.g., Module::Name => 1.1

);

If we already have a module and we want to convert it into an installable one, the best option is
probably to create a new module source file and then copy the existing source code from the old
module file into it. This way we get the extra files correctly generated by h2xs for us.

Either way, once we have the directory set up and the appropriate files created within it we can create a
functional and (preferably) fully documented module.

Building an Installable Package
To create an installable package file from our module source we only need to create the makefile and
then use make dist (or nmake or dmake if that is what we have installed, for example, on a Windows
system) to create the distribution file:

> perl Makefile.PL
> make dist

If we have added other modules to our source code, or additional files we want to include with the
distribution, we add them to the MANIFEST file. At the start, this file contains just the files generated by
h2xs, that is Changes, MANIFEST, Makefile.PL, Module.pm, and test.pl.

Assuming the make dist executes successfully we should end up with an archived installation file
comprising the package name (with colons replaced by hyphens) and the version number. On a UNIX
system, our example module gets turned into Installable-Module-0.01.tar.gz.

We can now take this package to another system and install it with (again on a UNIX system):

> gunzip Installable-Module-0.01.tar.gz
> tar -xvf Installable-Module-0.01.tar

Inside Modules and Packages

333

Once the source is unpacked, we create the makefile and run the install target from it:

> cd Installable-Module-0.01
> perl Makefile.PL
> make
> su
Password:
make install

Or, for the more cautious who prefer to test first:

> make
> make test
> su
Password:
make install

This will install files into a directory called blib in the current directory. To use a module in this
directory we can make use of the blib module to seek out a corresponding directory somewhere
nearby and (if it finds one) add appropriate paths to @INC automatically. For example, if we have a
script called moduleuser.pl that makes use of our module, we can have the use statement in the
script find our locally installed version with:

> perl -Mblib moduleuser.pl

Or, if the blib directory is not local to the application:

> perl -Mblib=startdirectory moduleuser.pl

Alternatively, to install the package into the site_perl directory under Perl's main installation tree,
use the install_site target:

> su
Password:
make install_site

We can have install install the module into the site_perl directory automatically by adding the a
definition for INSTALLDIRS to the key-value pairs of WriteMakefile:

use ExtUtils::MakeMaker;

WriteMakefile(
'INSTALLDIRS' => 'site',
'NAME' => 'Installable::Module',
'VERSION_FROM' => 'Module.pm', # finds $VERSION
'PREREQ_PM' => {}, # e.g., Module::Name => 1.1

);

Note that on a platform with a decent privilege system we will need to have permission to actually
install the file anywhere under the standard Perl library root. Once the installation is complete we
should be able to see details of it by running perldoc perllocal.

TE
AM
FL
Y

Team-Fly®

Chapter 10

334

Alternatively, to install a module into our own separate location we can supply a LIB parameter when
we create the makefile. For example, to install modules into a master library directory lib/perl in
our home directory on a UNIX system we could type:

> cd Installable-Module-0.01
> perl Makefile.PL LIB=~/lib/perl
> su
Password:
make install

The LIB parameter causes the Makefile.PL script to create a makefile that installs into that
directory rather than the main or site installation locations. We could produce the same effect by setting
both INSTALLSITELIB and INSTALLPRIVLIB to this same value in Makefile.PL, though it is
unlikely that we would be creating an installable package that installed into a non-standard location.
Hence LIB is a command line feature only.

Adding a Test Script
The makefile generated by ExtUtils::MakeMaker contains an impressively larger number of
different make targets. Among them is the test target, which executes the test script test.pl
generated by h2xs. To add a test stage to our package we only have to edit this file to add the tests we
want to carry out.

Tests are carried out under the aegis of the Test::Harness module, which we will cover in Chapter
17, but which is particularly aimed at testing installable packages. The Test::Harness module expects
a particular kind of output, which the pre-generated test.pl satisfies with a redundant automatically
succeeding test. To create a useful test we need to replace this pre-generated script with one that
actually carries out tests and produces an output that complies with what the Test::Harness module
expects to see.

Once we have a real test script that carries out genuine tests in place, we can use it by invoking the
test target, as we saw in the installation examples above:

> make test

By default the install target does not include test as a dependent target, so we do need to run it
separately if we want to be sure the module works. The CPAN module automatically carries out the test
stage before the install stage, however, so when we install modules using it we don't have to remember
the test stage.

Uploading Modules to CPAN
Once a module has been successfully turned into a package (and preferably reinstalled, tested, and
generally proven) it is potentially a candidate for CPAN. Uploading a module to CPAN allows it to be
shared among other Perl programmers, commented on and improved, and made part of the library of
Perl modules available to all within the Perl community.

This is just the functional stage of creating a module for general distribution, however. Packages cannot
be uploaded to CPAN arbitrarily. First we need to get registered so we have an upload directory to
upload things into. It also helps to discuss modules with other programmers and see what else is already
available that might do a similar job. It definitely helps to choose a good package name and to discuss
the choice first. Remember that Perl is a community as well as a language; for contributions to be
accepted (and indeed, noticed at all) it helps to talk about them.

Inside Modules and Packages

335

Information on registration and other aspects of contribution to CPAN are detailed on the Perl Authors
Upload Server (PAUSE) page at http://www.cpan.org/modules/04pause.html (or our favorite local
mirror). The modules list, which contains details of all the modules currently held by CPAN and its
many mirrors, is at: http://www.cpan.org/modules/00modlist.long.html.

Summary
In this chapter, we explored the insides of modules and packages. We began by looking at blocks,
specifically the BEGIN, END, CHECK, and INIT blocks. Following this we saw how to manipulate
packages, and among other things we learned how to remove a package namespace from the symbol
table hierarchy and how to find a package name programmatically.

The next main topic discussed was autoloading of subroutines and modules. From here we looked at
importing and exporting, and covered the following areas:

� The import mechanism

� Setting flags with export

� When to export, and when not to export

� The Exporter module

Finally, we went through the process of creating installable module packages, and talked about the
following:

� Well-written modules

� Creating a working directory

� Building an installable package

� Adding a test script

� Uploading modules to CPAN

Chapter 10

336

Regular Expressions

Regular expressions are one of Perl's most powerful features, providing the abilities to match,
substitute, and generally mangle text in almost any way we choose. To the uninitiated, they can look
nonsensical, but we will talk you through them. In this chapter, we look in detail at how Perl handles
regular expressions.

However, in order to understand Perl's handling of regular expressions we need to learn about its
underlying mechanism of interpolation. This is the means by which Perl evaluates the contents of text
and replaces marked areas with specified characters or the contents of variables. While this is not in the
same league as regular expressions, there is more to interpolation than first meets the eye.

String Interpolation
The literary definition of interpolation is the process of inserting additional words or characters into a
block of text (the mathematical definition is quite different but not pertinent here). In Perl, interpolation
is just the process of substituting variables and special characters in strings. We have already seen quite
a lot of interpolated strings, for instance, the answer to this tricky calculation:

$result = 6 * 7;
print "The answer is $result \n";

In this section we are going to take a closer look at what interpolation is and where it happens (and how
to prevent it). We'll then look briefly at interpolation in combination with regular expressions before the
full exposition.

Perl's Interpolation Syntax
When Perl encounters a string that can be interpolated, it scans it for three significant characters, $, @
and \. If any of these are present and not escaped (prefixed with a backslash) they trigger interpolation
of the text immediately following. What actually happens depends on the character:

Chapter 11

338

Character Action

\ Interpolate a metacharacter or character code

$ Interpolate a scalar variable or evaluate an expression in scalar context

@ Interpolate an array variable or evaluate an expression in list context

If a string does not contain any of these then there is nothing to interpolate and Perl will use the string
as it is. Furthermore, Perl first checks for strings that can be interpolated at compile-time, weeding out
all those that are either already constant and do not require interpolation, or can be interpolated to a
constant value. Consequently it does not matter much if we use double quotes for our constant strings or
not; Perl will detect and optimize them before execution starts.

Interpolating Metacharacters and Character Codes
The backslash character \ allows us to insert characters into strings that would, otherwise, be
problematic to type, not to mention display. The most obvious of these is \n, which we have used a
great deal to produce a newline. Other common examples include \t for a tab character, \r for a
return, and \e for escape. Here is a brief list of them:

Character Description

\000..\377 An ASCII code in octal

\a Alarm (ASCII 7)

\b Backspace (ASCII 8)

\c<chr> A control character (e.g. \cg is ctrl-g, ASCII 7, same as \a)

\e Escape character (ASCII 27)

\E End effect of \L, \Q, or \U.

\f Form Feed (New Page) character (ASCII 12)

\l Lowercase next character

\L Lowercase all following characters to end of string or \E

\n Newline character (ASCII 10 on UNIX, 13+10 on Windows, etc.)

\N{name} A named character

\Q Escape (backslash) all non-alphanumeric characters to end of string or \E

\r Return character (usually ASCII 13)

\t Tab character (ASCII 8)

\u Uppercase next character

\U Uppercase all following characters to end of string or \E

\x<code> An ASCII code 00 to ff in hexadecimal

\x{<code>} A UTF8 Unicode character code in hexadecimal

\\, \$, \@, \" A literal backslash, dollar sign, at sign or double quote. The backslash
disables the usual metacharacter meaning. These are actually just the
specific cases of general escapes that are most likely to cause trouble as
unescaped characters.

Regular Expressions

339

Some metacharacters are specific and generate a simple and consistent character. Others, like \0..\7,
\c, \x, and \N, take values that produce characters based on the immediately following text. The \l
and \u metacharacters lower the case of, or capitalize, the immediately following character,
respectively. Finally, the \L, \Q, and \U metacharacters affect all characters after them until the string
ends or a \E is encountered.

Common Special Characters
Metacharacters that produce direct codes like \e, \n, and \r simply evaluate to the appropriate
character. We have used \n many times so far to produce a new line, for example.

However, it is not quite that simple. There is no standard definition of a 'new line'. Under UNIX, it is a
linefeed (character 10), under Windows it is a carriage return followed by a linefeed (character 13 +
character 10), on Macintosh systems it is reversed (a linefeed followed by a return). This can cause a lot
of confusion when sending data between different systems. In practice, the values of \n and \r are
defined by the underlying platform to 'do the right thing', but for networking applications we are
sometimes better off specifying new lines explicitly using either an octal notation or control characters:

Newlines on a Macintosh
print "This is a new line in octal \012\015";
print "This is a new line in control characters \cJ\cM";

Special Effects
Perl provides five metacharacters, \l, \u, \L, \Q, and \U, which affect the text following them. The
lowercase characters affect the next character in the string, whereas the upper case versions affect all
characters until they are switched off again with \E or reach the end of the string.

The \l and \u characters modify the case of the immediately following character, if it has a case to
change. Note that the definition of lower and upper case is locale dependent and varies between
character sets. If placed at the beginning of a string they are equivalent to the lcfirst and ucfirst
functions:

print "\lPolish"; # produce 'polish'
print "\uperl"; # produce 'Perl'

The \L and \U characters by contrast are equivalent to the lower and upper functions, changing the
case of all cased characters until an \E or the end of the string is encountered:

print "This is \Uupper\E case\n"; # produces UPPER
print "This is \LLOWER\E case\n"; # produces lower

We can also combine both types of metacharacter. Putting \l or \u inside a \L...\E or \U...\E
would produce no useful effect, but we can immediately precede such a section to reverse the effect on
the first character:

$surname = "rOBOTHAM";
print "\u\L$surname\E"; # produces 'Robotham'

This is equivalent to using print ucfirst(lower $surname) but avoids two function calls.

Chapter 11

340

The \Q metacharacter is similar to \L and \U, and like them affects all following characters until
stopped by \E or the end of the string. The \Q metacharacter escapes all non-alphanumeric characters
in the string following it, and is equivalent to the quotemeta function. We discuss it in more detail in
'Protecting Strings Against Interpolation' below. Note that there is no \q metacharacter, since a single
backslash performs this function on non-alphanumeric characters, and alphanumeric characters do not
need escaping.

Interpolating Variables
Other than embedding otherwise hard-to-type characters into strings, the most common use of
interpolation is to insert the values of variables, and in particular scalars. This is the familiar use of
interpolation that we have seen so far:

$var = 'Hello World';
print "Greetings, $var \n";

There is no reason why we cannot chain several interpolated strings together, as in:

$var = 'Hello';
$message = "$var World";
$full_message = "$message \n";
print "Greetings, $full_message"; # print 'Greetings, Hello World'

Arrays interpolate similarly, but not quite in the way that we might expect. One of Perl's many 'smart'
tweaks is that it notices arrays and automatically separates their values when interpolating them into a
string. This is different from simply printing an array outside of interpolation where the values usually
run together, as shown below:

@array = (1, 2, 3, 4);
$\ = "\n";

print @array; # display '1234'
print "@array"; # display '1 2 3 4'
$, =','; # change the output field separator
print @array; # display '1, 2, 3, 4'
print "@array"; # still display '1 2 3 4'
$"=':'; # change the interpolated list separator
print "@array"; # display '1:2:3:4'

Whereas printing an array explicitly uses the output field separator $,, just as an explicit list of scalars
does, arrays and lists evaluated in an interpolative context use the interpolated list separator $", which
is by default set to a space (hence the result of the first interpolation above).

If we try to interpolate a variable name and immediately follow it with text, we run into a problem. Perl
will think that the text is part of the variable name because it has no reason to assume otherwise. It will
end the variable name at the first character that is not legal in variable names. For instance, the
following does not work (or at least, does not do what we expect):

$var = "Hello ";
print "Greetings, $varWorld \n"; # try to interpolate $varWorld

Regular Expressions

341

We can fix this by splitting the string into two after $var, but this rather defeats the point of
interpolation. We can instead keep the string together by placing the variable name within curly braces.

print "Greetings, ${var}World \n"; # interpolate $var

Note that although this looks reminiscent of dereferencing a scalar reference, it actually has nothing to
do with it. However, a related trick allows us to embed code into interpolated strings; see the next
section.

Variable interpolation works on any valid variable name, including punctuation. This includes array
indices, hash keys, and even the maximum-array-index notation $#:

@ary = (1, 2, 3, 4);

print "$#ary"; # display 3 (number of elements)
print "$ary[2]"; # display 3 (the value of the third element)

Interpolating Code
Perl allows us to embed not just literal characters and variables but code too. How we embed code
depends on whether we want the result to be a scalar or a list, that is, we must define the execution
context for the code to run in. To embed and evaluate code in a scalar context we use the delimiters
${\ and }, that is, a dereference of a scalar reference. The additional reference constructors (backslash
and square brackets) are what distinguish embedded code from an explicitly defined variable name. For
example:

print out the data from first 10 characters of scalar 'gmtime'
print "Today is ${\ substr(scalar(gmtime), 0, 10)} \n";

To embed and evaluate in list context we use @{[and]}, that is, a dereference of an anonymous array
reference. For example:

print out the keys of a hash
print "Keys: @{[keys %hash]}";

print out the time, hms
print "The time is @{[reverse((gmtime)[0..2])]} exactly \n";

Note that the interpolated list separator $" also affects lists generated through code, though the origin of
the list is not important.

In order for code to embed properly it has to return a value. That means that we cannot use things like
foreach loops to build lists, or execute an if statement. However, we can use versions of these
constructs that do return an expression. In the case of a condition, the ternary
condition?doiftrue?doiffalse operator will do just fine. In the case of a loop, the map or grep
functions can do the same work as a foreach loop, but also return the value:

subtract each array element from its maximum index
print "Mapping \@ary:@{[map{$_ = $#ary-$_}@ary]}\n";

Chapter 11

342

Embedding code into strings is certainly possible, but before embarking, it is worth considering whether
it is practical; for a start it is not naturally inclined to legibility. It also bypasses Perl's compile-time
syntax checking, since the code is not evaluated until Perl tries to interpolate the string at run time. In
this sense it is (slightly) similar to an eval, except that it is evaluated in the current context rather than
defining its own.

Interpolative Context
Interpolation happens in a number of different places. The most obvious and common are double
quotes and the double quote operator qq:

print "@ary";
print qq(@ary);

Backtick quoted strings also interpolate their contents, as does the qx operator which is their equivalent:

$files = `ls $directory`; # Or 'dir' for a Windows system
$files = qx(ls $directory);

The qx operator can be prevented from interpolating if its delimiters are changed to a single quote. This
is a mnemonic special case:

$ttytype = qx'echo $TERM'; # getting it from %ENV is simpler!

Note that eval statements will interpolate quotes inside the strings that they evaluate. This is not the
same as simply giving eval a double-quoted string – that is just regular double-quoted interpolation,
which is then passed to eval. What we mean is that double quotes inside string variables cause eval to
interpolate the strings. We will see how useful that is in a moment.

While we are on the subject of quotes and quoting operators, the qw operator does not interpolate, and
neither of course does q, which wouldn't be expected to since it is the equivalent of a single quote.

Interpolation in Regular Expressions
The final place where interpolation occurs is in regular expressions, and these are the focusing points of
this chapter. In the following example, $pattern is given a single-quoted value, yet it is interpolated
when used as a regular expression:

$input = <>;
match any pair of alphanumeric characters separated by space
$pattern = '\w\s\w';
$pattern is interpolated when treated as a regular expression
print "Yes, got a match \n" if $input =~ /$pattern/;

Since the variable value may change, interpolation happens each time the regular expression is
evaluated, unless we use the /o flag. This can be an important time saver, since interpolation can be an
involved process, but has its own caveats, as we shall see later in the chapter.

Interpolation does not just include regular expressions in match and substitution operations. It also
includes functions like split, which (as many programmers forget and thereby end up being
considerably confused) takes a regular expression as its first argument, and the qr operator.

Regular Expressions

343

Unfortunately the syntax of regular expressions collides with ordinary variable names as seen in an
interpolated string. In particular, an array index looks like a regular expression character class (which is
denoted by a pair of square brackets):

$match = /$var[$index]/;

This could either mean the value of $var followed by one of the characters $, i, n, d, e, or x, or it
could mean the $index element of the array variable @var. To resolve this, Perl tries to 'do the right
thing' by looking for @var, and if it finds it will try to return an element if $index looks at all
reasonable (the number 3 would be reasonable, a string value would not). If there is no @var, or
$index does not look like an index value, then Perl will look for $var and treat the contents of the
square brackets as a character class instead. Clearly this is prone to breaking as the program evolves, so
we are better off rewriting the expression to avoid this guesswork if possible.

Substitutions also carry out interpolation in the replacement text, but only on a successful match, so
embedded code in the replacement text will only be executed if a match is found.

$text =~ s/($this|$that|$other)/$spare/;

Interpolating Text Inside String Variables
So far we have only looked at interpolation in literal strings. However, it is sometimes useful to cause
Perl to interpolate over text in a string variable. Unfortunately the trick to doing this is not immediately
obvious – if we interpolate the variable name we get the text that it contains as its value, but the text
itself remains uninterpolated:

@array = (1, 2, 3, 4);
$text = '@array'; # note the single quotes!
print "$text"; # produce '@array'

In fact the solution is simple once we see it; use eval and supply the variable to be interpolated directly
to it:

print eval $text; # produce 1234

This is not actually interpolation, but it points the way toward it. This particular example works because
the content of $text is a valid Perl expression, that is, we could replace $text with its contents, sans
quotes, and the resulting statement would still be legal. We can see that no quotes (and therefore no
interpolation) are involved because the output is 1234, not 1 2 3 4 as it would be if $" had taken effect.

To produce interpolation inside string variables we combine eval with double quotes inside the string,
that is, around the string value:

$text = 'The array contains: @array';
print eval '"'.$text.'"'; # produce 'The array contains: 1 2 3 4'
print eval "\"$text\""; # an alternative way to do the same thing
print eval qq("$text"); # and another

Adding literal double quotes to the string without causing a syntax error, disabling interpolation, or
otherwise going wrong takes a little thought. Simply enclosing the whole string in single quotes stops the
eval seeing double quotes as anything other than literal quote symbols. The correct way to interpolate
is either to concatenate double quotes, as in the first example above, or use literal double quotes inside
regular ones, as in the second and third examples.

TE
AM
FL
Y

Team-Fly®

Chapter 11

344

Protecting Strings Against Interpolation
Sometimes we may want to protect part or all of a body of text against interpolation. The most obvious
way to do that is to just use single quotes and combine variables into the string through concatenation:

$contents = '@array contains'. join(', ',@array). "\n";

It is easy to accidentally put characters that can be interpolated into a string. One common mistake is to
forget the @ in e-mail addresses, for instance:

$email = "my@myself.com";

This can be a little inconvenient if we have a lot of at signs, dollar signs, or real backslashes (that are
actually meant to be backslashes, not metacharacter prefixes). Instead we can use a backslash to escape
the punctuation we want to keep. (This is not in fact confusing because only alphanumeric characters go
together with backlashes to make metacharacters or ASCII codes):

print "\@array"; # produce '@array'

This is inconvenient, however, and prone to errors. It also does not take into account the fact that the
text might have been generated dynamically. A better solution is to get Perl to do the job for us. One
simple way of completely protecting a string is to pass it through a regular expression:

escape all backlashes, at signs and dollar characters
$text = 'A $scalar, an @array and a \backslash';
$text =~ s/([\$\@\\])/\\$1/mg;
print $text; # produce 'A \$scalar, an \@array, and a \\backslash'

Unfortunately this regular expression requires many backslashes to make sure the literal characters
remain literal, since this makes it hard to read. Even in the character class we need extra backslashes
because both $@ and @$ have meanings that can be interpolated. The \ in front of the @ symbol is the
only one that is not actually required, but we have added it for consistency anyway. A better way to do
the same thing is with Perl's built-in quotemeta function. This runs through a string using backslashes
to escape all non-alphanumeric characters, so it also escapes quotes, punctuation and spaces. While this
might not be important for interpolation, it makes strings safe for passing to shells with reasonable
quoting rules (which is to say most UNIX shells, but not the various standard Windows shells). It also
makes it safe to use user-inputted strings in a regular expression:

$text = '"$" denotes a scalar variable';
$text = quotemeta $text;
print $text; # display '\"\$\"\ denotes\ a\ scalar\ variable'
print eval qq("$text"); # display '"$" denotes a scalar variable'

The quotemeta function uses $_ if no explicit variable is passed, making it possible to write loops like
this:

foreach (@unescaped_lines) {
print "Interpolating \"", quotemeta, "\" produces '$_' \n";

}

Regular Expressions

345

The quotemeta function can also be triggered in every part of a string by inserting the metacharacters
\Q and \E around the text to be protected. This use of quotemeta is primarily intended for use in
regular expressions. Although it also works on literal strings as well, the effects can be counter-intuitive,
since the special interpolation characters, \, @, and $ will not be escaped – they are interpreted literally
and the contents escaped instead:

$variable = "contains an @ character";
produce 'This\ string\ contains\ an\ \@\ character'
print "\QThis string $variable\E";

In a regular expression this behavior becomes useful. It allows us to protect sensitive characters in
interpolated variables used in the search pattern from being interpreted as regexp syntax, as this
example illustrates:

$text = "That's double+ good";
$pattern = "double+";
print "Matched" if $text =~ /\Q$pattern/; # return 'Matched'
$text = "That's double plus good";
print "Matched" if $text =~ /$pattern/; # (incorrectly) return 'Matched'
print "Matched" if $text =~ /\Q$pattern/; # do not match, return nothing.
$pattern = quotemeta($pattern);
print "Matched" if $text =~ /$pattern/; # now pattern don't match,

returns nothing.

Without the \Q the pattern would match double (and doublee, and so on), which is not what we
intended. As the last example shows, it is as easy to use quotemeta as it is to use \Q when we want to
protect the entire string.

Regular Expressions
Regular expressions, now commonly abbreviated to regexps, are a very powerful tool for finding and
extracting patterns within text, and Perl just happens to be graced with a particularly powerful engine to
process them. Regexps have a long history, and Perl's implementation was inspired a great deal by the
regexp engine of the UNIX utility awk. A good understanding of how to use it is an invaluable skill for
the practicing Perl programmer. Here is a simple example that uses . to match any character, just for
illustration:

print "Matched!" if $matchtext =~ /b.ll/;
match 'ball', 'bell', 'bill', 'boll', 'bull', ...

A regexp is, in simple terms, a search pattern applied to text in the hope of finding a match. The phrase
'search pattern' is however, laden with hidden details. Regexps may consist of a simple sequence of
literal characters to be found in the text, or a much more complex set of criteria. These can possibly
involve repetitions, alternative characters or words, and re-matching sequences of previously found text.
The role of a regexp engine is to take a search pattern and apply it to the supplied text (or possibly
apply the supplied text to it, depending on our point of view), exhausting all possibilities in an attempt
to find a part of the text that satisfies the criteria of the search pattern.

Regexps may match more than once if we so choose, and we can write loops to handle each match or
extract them all as strings into a list. We can control case sensitivity and the position from which
subsequent match attempts start, and find multiple matches allowing or disallowing overlapping. We
also have the choice to use variables to define part or all of the pattern, because Perl interpolates the
search pattern before using it. This interpolation can be an expensive process, so we also have means to
optimize it.

Chapter 11

346

A key to writing regexps successfully is to understand how they are matched. Perl's regexp engine works
on three basic principles in this order:

❑ Eagerness: it will try to match as soon as possible

❑ Greediness: it will try to match as much as possible

❑ Relentlessness: it will try every possible combination before giving up

Programmers new to regexps are often surprised when their patterns do not produce the desired effects.
Regexps are not sensible and do not follow 'common sense' – they will always match the first set of
criteria that satisfies the pattern, irrespective of whether or not a 'better' match might occur later. This is
perfectly correct behavior, but to make use of regexps effectively we need to think carefully about what
we want to achieve.

During the course of this chapter we will cover all the various aspects of regexps, from simple literal
patterns to more complex ones. First we will take a brief look at how and where regexps are used.

Where Regular Expressions Occur
Regexps occur in a number of places within Perl. The most obvious are the match and substitution
operators, and indeed the bulk of regexps are used this way. However, a fact sometimes overlooked is
that the split function also uses a regexp.

Additionally, we can pre-compile regexps with the qr quoting operator. This operator does not actually
trigger the regexp engine, but carries out the interpolation and compilation of a regexp so that it need
not be repeated later. This allows us to prepare a potentially long and complex regxp ahead of time, and
then refer to it through a variable, which can provide an advantage in terms of both speed and legibility.

Finally, the transliteration operators tr and y closely resemble the match and substitution operators, but
in fact do not use regexps at all. However they do have some aspects in common other than syntax,
which are also covered here.

Matching and Substitution
The match operator m// and substitution operator s/// are the main interfaces to Perl's regexp engine.
Both operators attempt to match supplied text to a pattern. Note that the preceding m can be dropped
from m//. In the case below we are looking for the text 'proton':

true if $atom contains the text 'proton'
if ($atom =~ /proton/) {

...
}

replace first occurrence of 'proton' with 'neutron'
$atom =~ s/proton/neutron/;

The search text is bound to the regexp operator with the =~ and !~ operators and in the examples
above we have used the former. The difference between the two is that !~ logically negates the result,
so it returns True for a failed match. For example, to check that $atom does not in fact contain a
proton, we could write:

if ($atom !~ /proton/) {
print "No protons here!";

}

Regular Expressions

347

This is more useful than it might seem, since it is very hard to test for non-matches within a regexp. This
is due to the regexp engine's relentless checking of all possible matches before giving up. We will come
back to this later as we progress.

It is important to realize that =~ is not a relative of the assignment operator = even though it might look
a little like one. Novice Perl programmers in particular sometimes write ~= by mistake, thinking that it
follows the same pattern as combined operators, like +=. It is also important not to place a space
between the = and ~. This would mean an assignment and a bitwise NOT, legal Perl but not what we
intended.

If neither binding operator is used, both the match and substitution operators default to using $_ as their
input. This allows us to write very concise Perl scripts when used in combination with functions that set
$_. For instance, this while loop uses a regexp to skip past lines that look like comments, that is, the
first non-whitespace character is a #:

while (<>) {
next if /^\s*#/; # test $_ and reject comments
print $_;

}

Similarly, this foreach loop applies the regular expressions to $_ in the absence of an explicit iterator:

foreach (@particles) {
/proton/ and print ("A positive match \n"), last;
/electron/ and print ("Negative influence \n"), last;
/neutron/ and print ("Ambivalent \n"), last;

}

We can use regexps inside the blocks of map and grep in a similar way.

The m of the match operator is optional if forward slashes are used to encapsulate the pattern, so Perl
programs are frequently sprinkled with sights like this:

match $_ against pattern and execute block on success
/pattern/ and do { ... };

a Perl-style multiple–if statement
foreach ($command) {

/help/ and usage(), last;
/run/ and execute($command), last;
/exit/ and exit;
print "Sorry, command '$command' unknown \n";

}

As an aside, both the match and substitution operators, as well as the split function and qr operator
allow other delimiters to be used. We shall see this demonstrated under 'Regular Expression Delimiters'.
A more detailed explanation of the binding operators =~ and !~ can be found later in this chapter.

The 'split' Function
Aside from the match and substitution operators, the split function also takes a regexp as its first
argument. This isn't immediately obvious from many normal uses of split, as in:

split text into pieces around commas
@values = split (',',$text);

Chapter 11

348

The comma is used as a regexp, but as it only matches a single comma we do not notice this fact. We
can replace the comma with a regexp that removes whitespace as well. This is done using the special
whitespace metacharacter \s in combination with the * modifier, which matches on zero or more
occurrences:

split text into pieces around commas plus whitespace
@values = split('\s*,\s*',$text);

the same statement written in a more regexp style
@values = split /\s*,\s*/,$text;

There are a few things wrong with this example though. For one it does not handle leading whitespace
at the start of the string or trailing whitespace at the end. We could fix that with another regexp, but
more on that later. As the above examples show, the first argument to split can be expressed in regexp
syntax too.

The split function operates on $_ if it is given no value to work on:

@csv = split /,/; # split $_ on commas

Note this does not handle quoted comma so use 'Text::CSV' for this purpose.

If split is given no parameters at all, it splits on whitespace. To be strictly accurate, it splits on the
special pattern ' ' (which is special only to split). It is equivalent to \s+ except that it does not
return an initial empty value if the match text starts with whitespace:

split $_ on whitespace, explicitly (leading whitespace returns an empty

value)
@words = split /\s+/,$_;

split $_ on whitespace, implicitly (leading whitespace does not return an

empty value)
@words = split;

The same as 'split' on its own
@words = split ' ';

If we actually want to split on single spaces, we supply split with a literal regexp instead. This is the
one time when it makes a difference what the delimiters are:

split on individual spaces
@words = split / /;

The split function does not use =~ or !~, which is largely the point. Its functionality can be easily
replicated using a match regexp, but split reads a lot better and pairs up with the join keyword that
performs the opposite function.

Pre-compiled Regular Expressions
The qr operator is a member of Perl's family of quoting operators. It takes a string and compiles it into
a regexp, interpolating it as it goes unless a single quote is used as the delimiter. This is exactly the same
way the match operator deals with it. For example, here is a particularly hairy piece of regexp, complete
with some trailing modifiers, just for illustrative purposes:

Regular Expressions

349

an arbitrary complex regexp, precompiled into $re
my $re = qr/^a.*?\b ([l|L]ong)\s+(and|&)\s+(?:$complex\spattern)/igsm;

Once compiled, we can use the regexp in our code without ever having to define it again:

'if' statement is much more legible...
if ($text =~ $re) { ... }

The qr operator has many more other advantages: it is more legible, it is not recompiled each time the
regexp is used, and it is faster as a result. There are other things we can do with the qr operator in
combination with other regexp features, as we will see.

Regular Expression Delimiters
All forms of regexp can use delimiters other than the forward slash, though the match operator must
include them if any other delimiter is used:

$atom =~ /proton/; # traditional match, no 'm'
$atom =~ m|proton|; # match with pipes
$atom =~ m ?proton?; # match with a space and question marks
$atom =~ s/proton/neutron/; # traditional substitution
$atom =~ s|proton|neutron|; # substitution with pipes
$atom =~ s'proton'neutron'; # substitution with single quotes
my @items = split m|\s+|,$text; # split using pipes
my @items = split(',',$text); # traditional split using quotes

This last example explains why we can supply something like , to split and have it work. The single
quotes are really regexp delimiters and not a single quoted string. It just happens to look that way to the
untutored eye. Single quotes also have an additional meaning, which we will come to in a moment.

Another reason for changing the delimiter is to avoid what is known as 'leaning-toothpick-syndrome',
where real forward slashes are escaped with backslashes to avoid them being interpreted as the end of
the pattern:

match expression with forward slashes
if ($path =~ /\/usr\/local\/lib\/perl5/) { ... }

same expression using pipes
if ($path =~ m|/usr/local/lib/perl5/|) { ... }

We can even use # as a delimiter, so long as we do not leave a space between the operator and the
first delimiter:

$atom =~ s#proton#neutron#; # substitution with '#' signs
$atom =~ s #proton#neutron#; # ERROR: 's' followed by a comment

In fact, we can even use alphanumeric characters as delimiters, but since regexps such as msg$mmsg are
pathologically unfriendly, it is not encouraged. That regular expression would be better written
/sg$/msg.

Chapter 11

350

The delimiter is not limited to single characters, however. Perl also allows paired characters like
brackets and braces:

$atom =~ s{proton}{neutron};

All of the following character pairs can be used in this fashion:

() [] {} <>

Using a pair of characters provides another benefit when using the substitution operator; it allows the
pattern and its replacement to be placed on separate lines:

$atom =~ s{proton} # the pattern
{neutron}; # the replacement

The only drawback to this style is that the braces might be mistaken for blocks of code, especially when
the /e is involved. It is a good idea to make the delimiters stand out from the surrounding code as well.

It is not even necessary for the delimiters of the pattern to be the same as those of the replacement
(though how comprehensible this might be is another matter):

$atom =~ s[proton]<neutron>;

If the delimiter is a single quote, then interpolation is not carried out on the pattern. This allows us to
specify characters like dollar signs, at signs, and normal forward and back slashes without using
backslashes to escape them from special interpretation:

$atom =~ m/$proton/; # match contents of $proton
$atom =~ m'$proton'; # match '$proton'

If the delimiter is a question mark, a special one-shot optimization takes place inside the regexp engine:

?proton? # match proton once only

This pattern will never match again, even if we call it a second time from inside a loop. It is useful when
we only want to match something once, and will not match again unless reset is used without
arguments. This resets all one-shot patterns in the same package scope:

reset; # reset one-shot patterns in current package

The benefits of ? delimited regexps are dubious, however. Similar (though not as thorough) effects can
be obtained more traditionally with the /o pattern match modifier detailed later, although the benefits
aren't great, and it is even possible that this syntax may disappear completely one day.

Elements of Regular Expressions
Before getting into the details of regexp syntax, let's take a brief look at four of the most important
elements of regexp syntax:

❑ Metacharacters

❑ Pattern match modifiers

❑ Anchors

❑ Extended Patterns

Regular Expressions

351

Once we have a preliminary idea of these four aspects of regexps we will be able to use them in other
examples before we get to the nitty-gritty of exactly what they are and what features they provide.

The role of a regexp is to match within the text to which it is applied. The simplest regexps consist of
nothing more than literal characters that must be present in the string for the match to succeed. Most of
the regular expressions we have seen so far fall into this category. For example:

$match = $colors =~ /red/; # literal pattern 'red'

Here the variable $match is set to 1 if the variable $colors contains the text red at any point, and is
undefined otherwise. Although this pattern is perfectly functional, it has some major limitations. It
cannot discriminate between finding a word and part of another word, for instance shred or
irredeemable. One way to test for a specific word is to check for spaces around it. We could do that
with an explicit space, or:

$match = $colors =~ / red /; # match ' red '

A better way of doing this is using metacharacters. Perl provides several metacharacters for regexps that
handle common cases, including \s, which matches any whitespace character, which includes spaces,
tabs, and newlines. If we just want to pick out words, using \s is better than using a space as it matches
more cases.

$match = $colors =~ /\sred\s/; # match ' red ', '<tab>red\n' ...

However, neither is particularly effective, because they do not cater for cases such as the word occurring
at the beginning or end of the text, or even punctuation like quotes, colons, and full stops. A better
solution is to use another metacharacter, \b, which matches the boundary between words and the
surrounding text:

$match = $colors =~ /\bred\b/;

The boundary, defined by \b, is where a word character (defined as alphanumeric plus underscore) falls
adjacent to a non-word character or at either end of the string. As a result, it catches many more cases
than previously. (It still does not manage hyphenated words, apostrophes, or quoted phrases, though –
for that the Text::ParseWords module is a good choice, see Chapter 18 for more on processing text).

Finally, we might want to match the word red regardless of its case. To do that we can use one of the
pattern match modifiers, which may be placed after the pattern of a regular expression. Other pattern
match modifiers include /g for multiple matches and /x to allow documentation within a search
pattern. In this case we want the /i modifier to turn off case sensitivity:

$match = $colors =~ /\bred\b/i; # match 'red', 'RED', 'rEd' ...

We can also anchor a regular expression so that it matches only at the beginning or the end of the
match text. To anchor at the beginning, we prefix the pattern with a caret:

$match = $colors =~ /^red/; # match 'red' at the start of the string

Chapter 11

352

Likewise, to anchor at the end, we use a dollar sign:

$match = $colors =~ /red$/; # match 'red' at the end of the string

We can even use both together, which on a simple pattern like this is equivalent to using the eq
comparison operator:

$match = $colors =~ /^red$/; # match whole line to 'red'
$match = ($colors eq 'red'); # the same thing, with 'eq'

Perl also defines a whole range of so-called extended patterns that can be used to modify the nature of
sub-patterns (parts of a pattern) within the main pattern. Two that are particularly useful are the zero-
width lookahead assertion, which matches the text ahead without absorbing it, and the clustering
modifier, which allows grouping without the other side effects of parentheses:

(?=zerowidth) # match but do not touch!
(?:no|value|extracted|here) # group terms but do not extract match

We will see more of all of those elements of regular expressions later in the chapter.

More Advanced Patterns
Literal patterns are all very well, but they are only the simplest form of regexps that Perl supports. In
addition to matching literal characters, we have the ability to match any particular character, a range of
characters, or between alternative sub-strings. Additionally we can define optional expressions that may
or may not be present, or expressions that can match multiple times. Most crucially, we can extract the
matched text in special variables and refer to it elsewhere, even inside the regexp.

Matching Arbitrary Characters and Character Classes
Regexps may use the period . to match any single character. This immediately gives us more flexibility
than a simple literal pattern. For example, the following regular expression (which we saw at the start of
the chapter) will match several different words:

$matchtext =~ /b.ll/; # match 'ball', 'bell', 'bill', 'boll', 'bull'...

Unfortunately this is a little too flexible since it also matches bbll, and for that matter bsll bXll, b
ll, and b?ll. What we really want to do is restrict the characters that will match to the lower case
vowels only, which we can do with a character class.

A character class is a sequence of characters, enclosed within square brackets, that matches precisely
one character in the match text. For example, to improve the previous example to match on a lower
case vowel only, we could write:

$matchtext =~ /b[aeiou]ll/;
only match 'ball', 'bell', 'bill', 'boll', or 'bull'

Similarly, to match a decimal digit we could write:

$hasadigit =~ /[0123456789]/; # match 0 to 9

Regular Expressions

353

Since this is a very common thing to want to do, we can specify a range of characters by specifying the
ends separated by a hyphen:

$hasdigit =~ /[0-9]/; # also match 0 to 9 (as does the \d metacharacter)

As a brief aside, ranges are sensitive to the character set that is in use, as determined by the use
locale pragma, covered in Chapter 26. However, most of the time we are using ASCII (or an
ASCII-compatible character set like Latin-1), so it does not make too much difference.

If we want to match the minus sign itself we can, but only if we place it at the beginning or end of the
character class. This example matches any math character, and also illustrates that ranges can be
combined with literal characters inside a character class:

$hasmath =~ /[0-9.+/*-]/;

Note that the period '.' character loses its special regexp meanings when inside a character class, as
does * (meaning match zero or more times). Likewise, the ?, (,), {, and } characters all represent
themselves inside a character class, and have no special meanings.

Several ranges can be combined together. Here are two regexps that match any alphanumeric character
(according to Perl's definition this includes underscores) and a hexadecimal digit respectively:

$hasalphanum =~ /[a-zA-Z0-9_]/;
$hashexdigit =~ /[0-9a-fA-F]/;

Ranges are best used when they cover a simple and clearly obvious range of characters. Using unusual
characters for the start or end of the range can lead to unexpected results, especially if we handle text
that is expressed in a different character set.

Ranges like a-z, A-Z, and 0-9 are predictable because the range of characters they define is intuitively
obvious. Ranges like a-Z, ?-!, and é-ü are inadvisable since it is not immediately obvious what
characters are in the set, and it is entirely possible that a different locale setting can alter the meaning of
the range.

The sense of a character class can be inverted by prefixing it with a caret ^ symbol. This regexp
matches anything that is not a digit:

$hasnondigit =~ /[^0-9]/;

Similar to the minus sign, if we want to actually match a caret then we can do, so long as we place it
anywhere but at the start of the class:

$hasdigitorcaret =~ /[0-9^]/;

If we want to match a closing bracket we have to get a little more inventive. The backslash is allowed
inside character classes and still escapes the character following it. To match a closing square bracket we
need to escape it with backslash, as this example shows:

$hasbrackets =~ /[[\]]/;

TE
AM
FL
Y

Team-Fly®

Chapter 11

354

Interestingly, we do not need to escape an opening square bracket (though we can anyway, for clarity's
sake) since Perl already knows we are in a character class, and character classes do not nest. Anywhere
else in a regexp where we want a literal opening square bracket, we need to escape the special meaning
to avoid starting a character class we do not want.

Characters that are meaningful for interpolation also need to be escaped if the search pattern is
delimited with anything other than single quotes. This applies to any part of a regexp, not just within a
character class. However, since characters like . and * lose their special meaning inside character
classes, programmers often forget that $ and @ symbols do not:

$bad_regexp =~ /[@$]/; # ERROR: try to use '$]'
$empty_regexp =~ /[$@]/; # use value of $@

We can match these characters by escaping them with a backslash, including the backslash itself:

$good_regexp =~ /[\$\@\\]/; # matches $, @ or \

Strangely, the pattern [@] is actually valid, because Perl does not define @] as a variable and so
correctly guesses that the closing bracket is actually the end of the character class. Relying on this kind
of behavior is, however, dangerous as we are bound to get tripped up by it sooner or later.

Here is a summary of the standard character class syntax and how different characters behave within it:

Syntax Action

[Begin a character class, unless escaped

n Match character n

n-m Match characters from n to m

- At end of string, matches -, otherwise defines a range

. ? * () { } Match the literal characters ., ?, (,), { and }

^ At beginning of string, negates sense of class

$ @ \ Interpolate, unless escaped or pattern is single quoted

] End character class, unless escaped

In addition to the standard syntax, we can also use character class metacharacters like \w or \d as
shortcuts for common classes. These metacharacters can also be used inside character classes, as we will
see shortly when we come to metacharacters. From Perl 5.6 onwards, regexps may also use POSIX and
Unicode character class definitions; see Chapter 25 for full details.

Repetition and Grouping
Literal characters, and character classes, permit us to be as strict or relaxed as we like about what we
can match to them, but they still only match a single character. In order to allow repeating matches we
can use one of the three repetition modifiers:

Regular Expressions

355

? match zero or one occurrences

* match zero or more occurrences

+ match one or more occurrences

Each of these modifies the effect of the immediately preceding character or character class, in order to
match a variable number of characters in the match text. For example, to match bell! or bells! we
could use:

$ringing =~ /bells?!/; # match 'bell!' or 'bells!'

Alternatively, if we use the * modifier we can match zero or more occurrences of a character:

$ringings =~ /bells*!/; # match 'bell!', 'bells!', 'bellss!', etc.

Finally, if we use +, we require at least one match but will accept more:

$ringings =~ /bells+!/ # match 'bells!', 'bellss!', etc.

Repetition modifiers also work on character classes. For instance, here is one way to match any decimal
number using a character class:

$hasnumber =~ /[0-9]+/ # match '1', '007', '1701', '2001', '90210', etc.

Repeating Sequences of Characters

We can use parentheses to define a string of characters, which allows us to match repeating terms rather
than just single characters. For example, we can match either of the strings such or nonesuch by
defining none as an optional term:

$such =~ /(none)?such/; # match either 'such' or 'nonesuch'

We can even nest parentheses to allow optional strings within optional strings. This regular expression
matches such, nonesuch, and none-such:

$such =~ /(none(-)?)?such/; # match 'such', 'nonesuch' or 'none-such'

Note that in this case we could have omitted the nested parentheses since they are surrounding only one
character.

Grouping Alternatives

We can also use parentheses to group terms in a way analogous to character classes. The syntax is
simple and intuitive; we simply specify the different terms within parentheses separated by a pipe
symbol:

$such =~ /(none|all)such/; # match 'nonesuch' or 'allsuch'

Chapter 11

356

We can nest grouped terms to produce various interesting effects, for example:

$such =~ /(no(ne|t as)|a(ny|ll))such/;

This regexp uses two inner groups nested inside the outer one, and matches nonesuch, not as such,
anysuch, and allsuch. We could equally have written:

$such =~ /(none|not as |any|all)such/;

In theory, the first example is more efficient, since we have grouped similar terms by their common
characters and only specified the differences. Perl's regexp engine is very good at optimizing things like
this, and in reality both expressions will execute with more or less the same speed.

In fact, it is not always necessary to use parentheses around the alternatives. The following is a perfectly
legal way to match sharrow, miz, or dloan:

$who =~ /sharrow|miz|dloan/;

This works because there is no ambiguity about the start of the first term or the end of the last – they are
delimited by the pattern itself. Any regexp syntax like [], (), +, *, and so on will also define limits:

$who =~ /^(.*)sharrow|miz|dloan/;

If we want to specify literal text adjacent to a set of alternatives however, we need to use parentheses to
make the beginning and end explicit. Since getting regexps right can be tricky at the best of times, many
programmers include parentheses anyway, whether or not they are strictly necessary.

Specifying a Number of Repetitions

We can exercise a greater degree of control over the * and + modifiers by specifying a particular
number or range of repetitions that we will allow. A single specified number of matches take the form
of a number in curly braces:

$sheep =~ /ba{2}!/; # match 'baa!'

To define a range we specify two numbers separated by a comma:

$sheep =~ /ba{2,4}!/ # match 'baa!', 'baaa!', or 'baaaa!'

We have included a trailing exclamation mark in this example, since without it anything can follow the
search pattern, including more 'a's, so the above two examples would have been equivalent in their
ability to succeed. If we were extracting the matched text with parentheses, that would be another
matter of course.

As a special case, if we use a comma to define a range of repetitions but omit the second value,
the regexp engine interprets this as 'no upper limit'. We can match a sheep with unlimited lung
capacity with:

$sheep =~ /ba{2,}!/; # match 'baa!', 'baaaaaaaaaaa!', etc...

Regular Expressions

357

From this it follows that the standard repetition modifiers are just shorthand for the following expanded
versions:

? equivalent to {0,1}

* equivalent to {0,}

+ equivalent to {1,}

Note that using interpolation to specify a range with variables is perfectly acceptable as it is anywhere
else in a search pattern. For example, we can supply a variable range at the point of execution by
writing something like the following:

($min, $max) = (2, 4);
$sheep = "baaa!";
if ($sheep =~ /ba{$min,$max}!/) { # equivalent to '/ba{2,4}!/'

print "match \n";
}

Number repetitions are useful when we want to find a specific occurrence within the match text. Here's
an example that uses a repetition count to find the fourth (and only the fourth) word in a colon-
separated list:

$text = "one:two:three:four:five";
extract the 4th field of colon separated data
$text =~ /(([^:]*):?){4}/;
print "Got: $2\n"; # print 'Got: four'

This regexp looks for zero-or-more non-colon characters, followed (optionally) by a colon, four times.
The optional colon ensures that we will match the last field on the line, while the greediness of the
pattern as a whole ensures that if a colon is present it will get matched. Parentheses are used here to
group the non-colon characters and the colon into a single term for the repetition. They are also used to
extract the part of the text we are interested in (not the colon).

Note that the match of each set of parentheses in a regular expression is placed in a numbered
variable. In the above example, the numbered variable $1 represents the match of the first set of
parentheses, that is (([^:]*):?). Printing $1, therefore, would output four:. We are interested in
the text matched by the second (inner) set of parentheses [^:]*), so we print $2. We will be using
numbered variables a couple of times in the next sections before looking at them in detail in 'Extracting
Matched Text'.

Eagerness, Greediness, and Relentlessness

As we mentioned earlier, Perl's regexp engine has three main characteristics that define its behavior.
While these rules always hold, they become more important once we start adding repetitions and groups
to our regexps. Wherever a repetition or a group occurs in a search pattern, Perl will always try to
match as much as it can from the current position in the match text.

It does this by grabbing as much text as possible and then working backwards until it finds a successful
match. For instance, when given a regexp like baa+ and a match text of baaaaaaa, Perl will always
ultimately find and return all the as in the match text, though depending on the circumstances it might
take the engine more or less time to arrive at this final result.

Chapter 11

358

However, regexps always match as soon as possible. This means that the left-most match satisfying the
search pattern will always be found first, irrespective of the fact that a bigger match might occur later in
the string:

$sheep = "baa baaaaaaaaaa";
$sheep =~ /baa+/; # match first 'baa'

If we really want to find the longest match we will have to find all possible matches with the /g pattern
match modifier and then pick out the longest. The /g modifier causes the regular expression engine to
restart from where it left off last time, so by calling it repeatedly we extract each matching string in turn:

$sheep = "baa baaaaaaaaaa";
while ($sheep =~ /(baa+)/g) {

$match = $1 if length($1) > length($match);
}
print 'The loudest sheep said 'baaaaaaaaaa''
print "The loudest sheep said '$match' \n";

This can lead to unexpected results if we forget it. For example, the following regexp supposedly
matches single-quoted text:

$text =~ /'.*'/; # text contains a single quoted string

Unfortunately, although it does indeed do what it should, it does it rather too well. It takes no account
of the possibility that there might be more than one pair of quotes in the match text (we will disregard
the possibility of apostrophes just to keep things under control). For example, assume we set $text to a
value like:

$text = "'So,' he said. 'What will you do?'";

The regexp /'.*'/ will match the first quote, grab as much as possible, match the last quote and
everything in between – the entire string in other words. One way to fix this is to use a non-greedy
match, which we'll cover in a moment. Another is to be more precise about what we actually want. In
this case we do not want any intervening quotes, so our regexp would be better written as:

$text =~ /'[^']*'/; # a better match between quotes

This says 'match a quote, zero or more characters that can be anything but a quote, and then another
quote'. When fed the previous sample text, it will match 'So,' as we intended.

Writing regexps is full of traps like this. The regexp engine is not so much greedy as bloody-minded – it
will always find a match any way it can, regardless of how apparently absurd that match might seem to
us. In cases of disagreement, it is the engine that is right, and our search pattern that needs a rethink.

The zero-or-more quantifier, * is especially good at providing unexpected results. Although it causes
whatever it is quantifying to match as many times as possible, it is still controlled by the 'as soon as
possible' rule. It could be better expressed as 'once we have matched as soon as possible, match as
much as possible at that point'. In the case of *, nothing at all may be the only match at the current
position. To illustrate this, the following example attempts to replace spaces with dashes, again using the
/g pattern match modifier to match all occurrences within the string:

$text =~ s/\s*/-/g;

Regular Expressions

359

If $text is given a value of something like 'journey into space!', we might expect to get the result:

journey-into-space!

However, \s* matches zero or more spaces. That condition is satisfied not only between the words, but
between each letter too (no spaces there) and even at the start and end of the string. So what we actually
get is:

-j-o-u-r-n-e-y-i-n-t-o-s-p-a-c-e-!-

This might have been what we wanted, but it's probably not. The solution in this case is simple, replace
the * with a +. However, in bigger regexps problems like this can be a lot harder to spot.

Lean (Non-Greedy) Matches

Lean (or more conventionally, non-greedy) matches alter the operation of the regexp engine to match as
little as possible instead of as much as possible. This can be invaluable in controlling the behavior of
regexp, and also in improving its efficiency.

To make any repetition non-greedy, we suffix it with a question mark. For example, the following are all
non-greedy quantifiers:

(word)?? Match zero or one occurrence

(word)*? Match zero or more occurrences

(word)+? Match one or more occurrence

(word){1,3}? Match one to three occurrences

(word){0,}? Match zero or more occurrences (same as *?)

Note that these all apparently have the same meanings as their greedy counterparts. In fact they do, but
the difference comes in the way the regexp attempts to satisfy them. Following the rule of 'as soon as
possible', a regexp will normally grab as much text as possible and try to match 'as much as possible'.
The first successful match is returned. With a non-greedy quantifier, the regexp engine grabs one
character at a time and tries to match 'as little as possible'.

For example, another way we could have solved the single-quote finder we gave earlier would have
been to make the 'match any characters' pattern non-greedy:

$text =~ /'.*?'/ # non-greedy match between quotes.

Lean matches are not a universal remedy to cure all ills, however. For a start, they can be less efficient
than their greedy counterparts. If the above text happened to contain a very long speech, a greedy
match would find it far faster than a lean one, and the previous solution of /'[^']*'/ is actually far
superior.

Additionally, making a match non-greedy does not alter the fact that a regexp will match as soon as
possible. This means that a lean match is no more guaranteed to match the shortest possible string than
a greedy match is to match the largest possible. For example, take the following, fortunately fictional,
company and regexp:

$company = "Greely, Greely, and Spatsz";
$partners = $company =~ /Greely.*?Spatsz/;

Chapter 11

360

On executing these statements, $partners contains the entire string. The reason for this is simple:
While it is true that matching from the second Greely would produce a shorter match, the regexp
engine doesn't see the second Greely – it sees the first, matches, and then matches the second Greely
with .*?. To fix this problem we need to match repeatedly from each Greely and then take the
shortest result. To do that we need to use a zero-width assertion; we will see how to do that, and give an
example that solves the problem with the example above, at the end of 'Overlapping Matches and Zero-
Width Patterns' later in the chapter.

Repetition and Anchors

We have already mentioned anchors, but a few examples of their use in combination with repetition
bears discussion. For instance, a common task in Perl scripts is to strip off trailing whitespace from a
piece of text. We can do that in a regexp by anchoring a repetition of whitespace (as defined by the \s
metacharacter) to the end of the string using the $ anchor:

s/\s+$//; # replace trailing whitespace with nothing

Similarly, if we are parsing some input text and want to skip over any line that is blank or contains only
whitespace or whitespace plus a comment (which we will define as starting with a #), we can use a
regexp like the one in the following short program:

#!/usr/bin/perl
repanchor1.pl
use warnings;
use strict;

while (<>) {
chomp; # strip trailing linefeed from $_
next if /^(\s*(#.*)?)?$/; # skip blank lines and comments
print "Got: $_ \n";

}

The regexp here is anchored at both ends. The () and ? state that the body of the regexp is optional.
The regexp /^$/, which matches a completely blank line, will satisfy the regexp and trigger the next
iteration of the loop.

If the line is not blank, we have to look inside the body. Here we can match zero or more occurrences
of whitespace followed optionally by a # and any text at all, represented by .*. This will match a line
containing only spaces, a line starting with zero or more spaces and then a comment starting with # but
it will not match a line that starts with any other character.

This is not a very efficient regexp. The problem being that it is needlessly complex and slow since a
comment line requires the regexp engine to read and match every letter of the comment in order to
satisfy the .*. It only needs to do that because the regexp is anchored at the end, and the only reason
for that is so we can match the case of an empty line with /^$/.

We can actually make the anchors themselves optional. Since anchors do not match characters, this may
not be immediately obvious, but it works nonetheless. Here is a better version of the loop using an
improved regexp:

#!/usr/bin/perl
repanchor2.pl
use warnings;
use strict;

Regular Expressions

361

while (<>) {
chomp; # strip trailing linefeed from $_
next if /^\s*($|#)/; # skip blank lines and comments
print "Got: $_ \n";

}

This regexp is only anchored at the beginning. It matches zero or more spaces, followed by either the
end of the line or a hash. What comes after the hash, if there is one, we neither care nor check.

This loop behaves no differently from the earlier example, but because the regexp does not have to
analyze the whole line to find a match, it returns much faster so this loop executes quicker.

Matching Sequential and Overlapping Terms
One task frequently required of regexps is to check for the presence of several tokens within the match
text. This basically comes down to a case of logic; do we want all of the terms, or just one of them? If we
only want to know if one of them is present we can use alternatives:

$text =~ /proton|neutron/; # true if either proton or neutron present

This regexp is matched if $text contains either sort of particle, a classic or condition. If we want to test
that both are present we have more of a problem; there is no and variant. Instead, we have to divide the
problem into two halves:

1. Is there a proton, and if so is it followed by a neutron?

2. Is there a neutron, and if so is it followed by a proton?

Either of these conditions will satisfy our criteria, so all we need to do is express them as alternatives, as
before. The search pattern that implements this logic is therefore:

$text =~ /(proton.*neutron|neutron.*proton)/;

Sometimes a single regexp is not the best solution to a problem like this. Although fine for just two
terms, we'd have to extend this expression to six alternatives for three, containing things like
proton.*neutron.*electron. Four does not even bear thinking about. The same thing can be
achieved more easily with conventional Boolean logic:

$text =~ /proton/ && $text =~ /neutron/;

This is better, and certainly more scalable, but differs from the first example in that it will match
overlapping terms, whereas the previous example does not. This is because the regexp starts all over
again at the beginning of the match text in the second regexp. That is, it will match protoneutron.

If we want to allow matches to overlap inside a single regexp we have to get a little more clever and use
zero-width lookahead assertions as provided by the (?=...) extended pattern. When Perl encounters
one of these it checks the pattern inside the assertion as normal, but does not absorb any of the
characters into the match text. This gives us the same 'start all over again' mechanics as the Boolean
logic but within the same regexp.

Chapter 11

362

Pattern Match Modifiers
Pattern match modifiers are flags that modify the way the regexp engine processes matches in matches,
substitutions, and splits. We have already seen the /i and /g modifiers to match regardless of case and
match more than once, respectively. The full set of pattern match modifiers are as follows:

Modifier Description

/i Case-insensitive: match regardless of case

/g Global match: match as many times as possible

/m Treat text as multiple lines: allow anchors to match before and after newline

/o Compile once: interpolate and compile the search pattern only once

/s Treat text as single line: allow newlines to match

/x Expanded regular expression: allow documentation within search pattern

In fact the convention of describing modifiers as /x rather than x is just that, a convention, since the
delimiters of the search pattern can easily be changed as we have already seen. In addition, any
combination of modifiers can be applied at one time; they do not all need a forward slash (or whatever
delimiter we are using):

$matched =~ /fullmonty/igmosx; # the full monty!

In addition to this list, the substitution operator allows e and ee as modifiers, which cause Perl to treat
the replacement text in a substitution as executable code. These are however not pattern match
modifiers as they alter how the replacement text is handled. We will cover them in more detail when we
discuss the substitution operator in more depth later in the chapter.

All of the pattern match modifiers can be placed at the end of the regexp. In addition, with the
exception of /g, they can be placed within the search pattern to enable or disable one or more
modifiers partway through the pattern. To switch modifiers on we use (?<flags>) and to switch them
off we use (?-<flags>). By default no modifiers are active, and specifying them at the end of the
pattern is equivalent to specifying them in line at the start:

$matched =~ /pattern/igm; # with explicit modifiers
$matched =~ /(?igm)pattern/; # with in-lined modifiers

Without enclosing parentheses, the effect of the inline modifier controls the entire pattern coming after
them. For instance, the following matches the word pattern, regardless of the case of the letters
ttern:

matched =~ /pa(?i)ttern/; # 'ttern' is case insensitive

So, if we wanted to restrict the case insensitivity to the letters tt only, we can use this:

$matched =~ /pa(?i)tt(?-i)ern/; # 'tt' is case insensitive

Regular Expressions

363

However, using parentheses is a neater way of doing it:

$matched =~ /pa((?i)tt)ern/; # 'tt' is case insensitive

Since using parentheses to limit the effect of an inline modifier generates possibly unwanted
backreferences, we can use the (?:...) extended pattern instead of parentheses to suppress them.
Better still, we can combine it with the inline modifier into one extended pattern. Here is a better way of
phrasing the last example, avoiding the backreference:

$matched =~ /pa(?i:tt)ern/;

The most commonly used in line modifier is the case insensitive i modifier. Here are two different ways
of matching the same set of commands using in line modifiers. All the commands are case-insensitive
except EXIT, which must be in capital letters:

if ($input =~ /(?i:help|start|stop|reload)|EXIT/) {...}
if ($input =~ /help|start|stop|reload|(?-i:EXIT)/i) {...}

In the first example we switch on case insensitivity for the first four commands, and switch it off again
for the last (which side of the pipe symbol we place the parentheses is of course a matter of taste since
the pipe is not affected). In the second example we switch on case-insensitivity for the whole regexp
using a conventional /i flag, then switch it off for the last command.

Referring back to our earlier comment about the equivalence of a trailing modifier and an in line
modifier at the start of a search pattern, we can see that these two examples are not only equivalent, but
identical to the regexp engine. The difference is that the inline modifier can be interpolated into the
search pattern, whereas the trailing modifier cannot:

set flags to either 'i' or ''
$flags = ENV{'CASE_SENSITIVE}?'':'i';
interpolate into search pattern for match
if ($input =~ /(?$flags:help|start|stop|reload)|EXIT/) { ... }

If this approach seems particularly useful, consider using the qr quoting operator instead to precompile
regexps, especially if the intent is to control the modifiers over the whole of the search pattern. We
cover qr in detail later in the chapter.

Regular Expressions versus Wildcards
Regexps bear a passing resemblance to filename wildcards, which is often a source of confusion to those
new to regexps but familiar with wildcards. Both use special characters like ? and * to represent
variable elements of the text, but they do so in different ways. UNIX shell wildcards (which are more
capable than those supported by any of the standard Windows shells) equate to regexps as follows:

❑ The wildcard ? is equivalent to the regexp .

❑ The wildcard * is equivalent to the regexp .*

❑ Character classes [...] are equivalent.

TE
AM
FL
Y

Team-Fly®

Chapter 11

364

Converting from a regexp to a wildcard is not possible except in very simple cases. Conversely though,
we can convert wildcards to regexps reasonably simply, by handling the four characters ?, *, [, and] as
special cases and escaping all other punctuation. The following program does just that in the subroutine
wild2re:

#!/usr/bin/perl
wildre.pl
use warnings;
use strict;

$| = 1; # enable autoflush for prompt display of prompt (sic)

print "Wildcard: ";
while (<>) {

chomp;
print "Regular Expression: ", wild2re($_), "\n";

print "Wildcard: ";
}

sub wild2re {
my $re = shift;
$re =~ s/([^\w\s])/($1 eq '?')?'.'
:($1 eq '*')?'.*' :($1 eq '[' || $1 eq ']')?$1
:"\\$1"/eg;
return "^$re\$"; #anchor at both ends

}

And here is an example of it in use:

> perl wildre.pl
Wildcard: file[0-9]*.*
Regular expression: ^file[0\-9].*\..*$

It should come as no surprise that the solution to converting wildcards into regexps involves regexps. In
this case we have checked for any character that is neither a word character or a whitespace character,
handled it specially if it is one of the four that we need to pay particular attention to, and escaped it with
a backslash if it isn't. We have used parentheses to extract each matching character into the numbered
variable $1, the g pattern match modifier to match every occurrence within the string, and the e flag to
treat the substitution as Perl code, the result of which is used as the replacement text.

Before returning the regexp we also add anchors to both ends to prevent it from matching in the middle
of a filename, since wildcards do not do that. Although we could rewrite the regexp to do so, it is more
trouble than it is worth and would make the pattern needlessly complex. It is simpler to add them
afterwards.

To illustrate that there are many solutions to any given problem in Perl, and regexps in particular, here
is another version of the same regexp that also does the job we want:

$re =~ s/(.)/($1 eq '?')?'.'
:($1 eq '*')?'.*'
:($1 eq '[' || $1 eq ']')?$1
:"\Q$1"/eg;

Regular Expressions

365

This alternative regexp extracts every character in turn, checks for the four special characters and then
uses \Q to escape the character if it is not alphanumeric. This is not quite as efficient since it takes a little
more effort to work through every character, and it also escapes spaces (though for a filename that
would not usually be a problem).

Metacharacters
In addition to character class, repetition, and grouping, search patterns may also contain metacharacters
that have a special meaning within the search pattern. We have seen several metacharacters in use
already, in particular \s, which matches any whitespace character and \b, which matches a word
boundary.

In fact there are two distinct groups of metacharacters. Some metacharacters, like \s and \b have
special meaning in regexp. The rest have special meaning in interpolated strings. Since regexp search
patterns are interpolated, however, both sets apply to regexps.

We can loosely subdivide regexp metacharacters because regexps contain two fundamentally different
kinds of subpattern: patterns that have width and absorb characters when they match, and patterns that
have no width and must simply be satisfied for the match to succeed. We call the first character class
metacharacters. These provide shortcuts for character classes (for example, \s). The second category of
regexp metacharacters are called zero-width metacharacters. These match conditions or transitions
within the text (for example, \b).

Character Class Metacharacters
Several metacharacters are shortcuts for common character classes, matching a single character of the
relevant class just as if the character class had been written directly. Most of the metacharacters in this
category have an inverse metacharacter with the opposing case and meaning:

Metacharacter Match Property

\d Match any digit – equivalent to the character class [0..9].

\D Match any non-digit – equivalent to the character class [^0-9].

\s Match any whitespace character – equivalent to the character class [\t\r\n].

\S Match any non-whitespace character – equivalent to the character class [^
\t\r\n] or [^\s].

\w Match any 'word' or alphanumeric character, which is the set of all upper and
lower case letters, the numbers 0..9 and the underscore character _, usually
equivalent to the character class [a-zA-Z0-9_].

The definition of 'word' is also affected by the locale if use locale has been
used, so an é will also be considered a match for \w if we are working in
French, but not if we are working in English.

\W The inverse of \w, matches any 'non-word' character. Equivalent to the
character class [^a-zA-Z0-9_] or [^\w].

[:class:] POSIX character class, for example, [:alpha:] for alphanumeric characters.

Table continued on following page

Chapter 11

366

Metacharacter Match Property

\p Match a property, for example, \p{IsAlpha} for alphanumeric characters.

\P Match a non-property, for example, \P{IsUpper} for non-uppercase characters.

\X Match a multi-byte Unicode character ('combining character sequence').

\C Match a single octet, even if interpretation of multi-byte characters is enabled
(with use utf8).

Character class metacharacters can be mixed with character classes, but only so long as we do not try to
use them as the end of a range, since that doesn't make sense to Perl. The following is one way to match
a hexadecimal digit:

$hexchar = qr/[\da-fA-F]/; # matches a hexadecimal digit
$hexnum = qr/$hexchar+/; # matches a hexadecimal number

The negated character class metacharacters have the opposite meaning to their positive counterparts:

$hasnonwordchar =~ /\W+/; # match one or more non-word characters
$wordboundary =~ /\w\W/; # match word followed by non-word characters
$nonwordornums =~ /[\W\d]/; # match non-word or numeric characters
$letters =~ /[^\W\d_]/; # match any letter character

The last two examples above illustrate some interesting possibilities for using negated character class
metacharacters inside character classes. We get into trouble, however, if we try to use two negated
character class metacharacters in the same character class:

$match_any =~ /[\W\S]/; # match punctuation?

The intent of this regexp is to match anything that is not a word character or a whitespace character.
Unfortunately for us, the regexp takes this literally. A word character is not a whitespace character, so it
matches \S. Likewise, a space is not a word character so it matches \W. Since the character class allows
either to satisfy it, this will match any character and is just a bad way of saying 'any character at all', that
is, a dot.

What we really need to do to achieve the desired effect is to invert the class and use the positive
versions:

$match_punctuation =~ /[^\w\s]/; # ok now

This will now behave the way we originally intended.

The POSIX character classes (introduced in Perl 5.6) and 'property' metacharacters provide an
extended set of character classes for us to use. If the utf8 pragma has been used, the property
metacharacter \p follows the same definition as the POSIX equivalent. Otherwise it uses the underlying
C library functions isalpha, isgraph, and so on. The following classes and metacharacters are
available:

Regular Expressions

367

Description POSIX Character
Classes

Property Metacharacter

Alphabetical
character

[:alpha:] \p{IsAlpha}

Alphanumeric
character

[:alnum:] \p{IsAlnum}

ASCII character [:ascii:] \p{IsASCII} (equivalent to [\x00-\x7f])

Control character [:cntrl:] \p{IsCntrl} (equivalent to [\x00-\x20])

Numeric [:digit:] \p{IsDigit} (equivalent to \d)

Graphical character [:graph:] \p{IsGraph} (equivalent to
[[:alnum:][:punct:]])

Lower case character [:lower:] \p{IsLower}

Printable character [:print:] \p{IsPrint} (equivalent to
[[:alnum:][:punct:][:space:]])

Punctuation [:punct:] \p{IsPunct}

Whitespace [:space:] \p{IsSpace} (equivalent to \s)

Upper case character [:upper:] \p{IsUpper}

Word character [:word:] \p{IsWord} (equivalent to \w)

Hexadecimal digit [:xdigit:] \p{IsXDigit} (equivalent to [/0-9a-fA-F/])

POSIX character classes may only appear inside a character class, but the properties can be used
anywhere, just like any other metacharacter. For example, to check for a digit we can use any of:

/\d/
/\p{IsDigit}/
/[[:digit:]]/

The brackets of the POSIX class are part of the character class, so to use one we need two sets of
brackets, as the last example above shows. We can also use properties inside character classes, as these
three equivalent matches illustrate:

/[01\w\s89]/
/[0[:word:]18[:space:]9]/
/[\p{IsWord}0189\p{IsSpace}]/

We can negate both the class and the metacharacter to get the opposite sense. For the metacharacter we
just use \P instead of \p. For example, to match anything but a numeric character:

/\P{IsDigit}/

Chapter 11

368

For the class, we can add a caret after the first colon, but note this is a Perl extension and not part of the
POSIX standard:

/[[:^IsDigit:]]/

These sequences are useful for two reasons. First, they provide a standard way of referring to character
classes beyond the ones defined by Perl's own metacharacters. Second, they allow us to write regular
expressions that are portable to other regular expression engines (that also comply with the POSIX
specification). However, note that most of these classes are sensitive to the character set in use, the
locale, and the utf8 pragma. \p{IsUpper} is not the same as [A-Z], which is only one very narrow
definition of 'upper case', for example.

Zero-Width Metacharacters
Zero-width metacharacters match conditions within the match text, rather than actual characters. They
are called zero-width because they do not consume any characters when they match.

The zero-width metacharacters can be subdivided again into those that deal with transitions, which
consist of \b and \B, and those that are alter the behavior of anchors in the search pattern, which are
\G, \A, \z, and \Z.

\b matches on a word boundary. This occurs whenever a word character, as matched by \w falls
adjacent to a non-word character, as matched by \W, in either order. It is equivalent to (\w\W|\W\w)
except that unlike this pattern, \b does not consume any characters from the match text.

The metacharacter \B matches on a non-word boundary. This occurs whenever two word characters or
two non-word characters fall adjacent to each other. It is equivalent to (\w\w|\W\W) except that \B does
not consume any characters from the match text.

\A and \z (lowercase z) are only significant if the /m pattern match modifier has been used. /m alters
the meaning of the caret and dollar anchors so that they will match after and before (respectively) a
newline character \n, usually in conjunction with the /g global match modifier. \A and \z retain the
original meanings of the anchors and still match the start and end of the match text regardless of
whether /m has been used or not. In other words, if we are not using /m, then \A and ^ are identical
and the same is true of \Z and $.

The upper case \Z is a variation on \z. It matches at the end of the match text, before the newline if
any is present. Otherwise it is the same as \z.

\G applies when we use a regular expression to produce multiple matches using the g pattern modifier.
It re-anchors the regular expression at the end of the previous match, so that previously matched text
takes no part in further matches. It behaves rather like a forwardly mobile \A.

The \G, \A, \z, and \Z metacharacters are all covered in more detail in 'Matching More than Once'.

None of the zero-width metacharacters can exist inside a character class, since they do not match a
character. The metacharacter \b however can exist inside a character class. In this context it takes on its
interpolative meaning and is interpreted by Perl as a backspace:

$text =~ /\b/; # search for a word boundary in $text
$text =~ /[\b]/; # search for a backspace in $text
$text =~ /\x08/; # search for a backspace, expressed as a character code

Regular Expressions

369

It follows from this that if we want a literal backspace in a search pattern (however unlikely that might
be), we need to put it in a character class to prevent it from being interpreted as a zero-width word
boundary, or write it out as a character code.

Extracting Matched Text
Regexps become particularly useful when we use them to return the matched text. There are two
principal mechanisms for extracting text. The first is through special variables provided by Perl's regexp
engine, and the second by adding parentheses to the search pattern to extract selected areas. The special
variables have the advantage of being automatically available, but they are limited to extracting only
one value. Using them also incurs a performance cost on the regexp engine. Parentheses, by contrast,
allow us to extract multiple values at the same time, which means we don't incur the same performance
cost. The catch with parentheses is that they are also used to group terms within a pattern, as we have
already seen – this can be either a double bonus or an unlooked-for side effect.

Having extracted values using parentheses, we can reuse the matched text in the search pattern itself.
This allows us to perform matches on quotes, or locate repeating sequences of characters within the
match text.

Finally, the range operator .. is very effective at extracting text from between two regexps. Before we
leave the subject of extracting text, we will consider a few examples that show how effective this
operator can be in combination with regexps.

Special Variables
Perl defines several special variables that correspond to the final state of a successfully matched regexp.
The most obvious of these are the variables $&, $`, and $', which hold the matched text, all the text
immediately before the match and all the text immediately after the match, respectively. These are
always defined by default after any successful match and, with the use English pragma, can also be
called by the names $MATCH, $PREMATCH, and $POSTMATCH. Let's look at an example:

#!/usr/bin/perl
special.pl
use warnings;
use strict;

my $text = "One Two Three 456 Seven Eight 910 Eleven Twelve";
while ($text =~ /[0-9]+/g) {

print " \$& = $& \n \$` = $` \n \$' = $' \n";
}

> perl special.pl
$& = 456
$` = One Two Three
$' = Seven Eight 910 Eleven Twelve
$& = 910
$` = One Two Three 456 Seven Eight
$' = Eleven Twelve

The simple regular expression in this example searches for matches of any combination of digits. The
first match 456 gets assigned to $&. The value of $` is then all the text before the match, which is One
Two Three . The rest of the string after the match, Seven Eight 910 Eleven Twelve, is assigned
to $'. When the second match is found, the values of all three variables change. $& is now 910, $` is
One Two Three 456 Seven Eight , and $' is Eleven Twelve.

Chapter 11

370

One problem with these variables is that they are inefficient because the regexp engine has to do extra
work in order to keep track of them. When we said these variables are defined by default, it is not
entirely true. They are, in fact, not defined until we use one of them, after which all of them become
available for every regexp that we execute, and not just the ones that we use the variables for. For this
reason parentheses are better in terms of clarity, since we can be more selective about what we extract
(see next section). This is also true in terms of efficiency, since only regexps that use them will cause the
regexp engine to do the extra work. For short and simple Perl applications, however, these variables are
acceptable.

Having warned of the undesirability of using $&, $`, and $', the latter two variables are actually quite
useful. This is especially true for $', since this represents all the text we have so far not matched (note
that this does not mean it hasn't been looked at, just that the last successful match matched none of the
characters in it). However, we can perform repeated matches in the same regexp, which only match on
the text unmatched so far by using the /g metacharacter, as we did in the above example. See
'Matching More than Once' for details.

If we really want to use the values of $&, $` and $', without having Perl track them for every regexp,
we can do so with the special array variables @- and @+. The zeroth elements of these arrays are set to
the start and end positions of $& whenever a match occurs. They are not related directly to parentheses
at all. This modified version of our previous example uses substr and the zeroth elements of @- and
@+ to extract $&, $`, and $':

#!/usr/bin/perl
substr.pl
use warnings;
use strict;

my $text = "One Two Three 456 Seven Eight 910 Eleven Twelve";
$text =~ /[0-9]+/;
while ($text =~ /[0-9]+/g) {

my $prefix = substr($text,0,$-[0]); # equals $`
my $match = substr($text,$-[0],$+[0]-$-[0]); # equals $&
my $suffix = substr($text,$+[0]); # equals $'
print " \$match = $match \n \$prefix = $prefix \n \$suffix = $suffix \n";

}

> perl substr.pl
$match = 456
$prefix = One Two Three
$suffix = Seven Eight
$match = 910
$prefix = One Two Three 456 Seven Eight
$suffix = Eleven Twelve

This is certainly better than having Perl do the extractions for us, since we only extract the values we
want when we require them – although it doesn't do anything for the legibility of our programs. It is also
a lot of effort to go through to avoid using parentheses, which generally do the job more simply and as
efficiently. For a few cases, however, this can be a useful trick to know.

Regular Expressions

371

Parentheses and Numbered Variables
Sometimes we are not so much interested in what the whole search pattern matches, rather what
specific parts of the pattern match. For example, we might look for the general structure of a date or
address within the text and want to extract the individual values, like the day and month or street and
city when we make a successful match. Rather than extract the whole match with $&, we can extract
only the parts of interest by placing parentheses around the parts of the pattern to be extracted. Using
parentheses we can access the numbered variables $1, $2, $3 etc, which are defined on the
completion of the match. Numbered variables are both more flexible and more efficient than using
special variables.

Perl places the text that is matched by the regular expression in the first pair of parentheses into the
variable $1, and the text matched by the regular expression in the second pair of parentheses into $2,
and so on. Numbered variables are defined in order according to the position of the left-hand
parentheses. Note that these variables start from $1, not $0. The latter is used to hold the name of the
program, and has nothing to do with regexps. Let's consider this example:

#!/usr/bin/perl
parentheses.pl
use warnings;
use strict;

my $text= "Testing";
if ($text =~ /((T|N)est(ing|er))/) {

print " \$1 = $1 \n \$2 = $2 \n \$3 = $3 \n \$4 = $4 \n";
}

> perl parentheses.pl
Use of uninitialized value in concatenation (.) at test.pl line 6.
$1 = Testing
$2 = T
$3 = ing
$4 =

There are three pairs of parentheses in this example. The first one is that which surrounds the whole
regular expression, hence $1 evaluates to the whole matched text, which is Testing. The match caused
by the second pair of parentheses (T|N), which is T, is assigned to $2. The third pair of parentheses
(ing|er) causes $3 to be assigned the value ing. Since we don't have more parentheses, $4 is
undefined, hence the warning.

There is no limit to the number of parenthesized pairs that we can use (each of which will define
another numbered variable). As shown in our example, we can even nest parentheses inside each other.
The fact that $1 contains all the characters of $2 and $3, and more, does not make any difference; Perl
will fill out the variables accordingly.

Even if the pattern within the parentheses is optional (it will successfully match nothing at all), Perl
assigns a variable for the parentheses anyway:

$text =~ /^(non)?(.*)/;
$1 = 'non' or undefined, $2 = all or rest of text

Chapter 11

372

Sometimes we do not want to extract a match variable, we just want to use parentheses to define or
group terms together. In practice it doesn't hurt too much if we extract a value we don't want to use, but
it can be a problem if it alters the ordering of the extracted variables. The solution to this problem is to
prevent Perl from spitting out a value by using the (?:...) notation. This works like regular
parentheses for the purposes of defining and grouping terms, but does not give rise to a value:

#!/usr/bin/perl
extended.pl
use warnings;
use strict;

my $text = "Testing";
if ($text =~ /((?:T|N)est(ing|er))/) {

print " \$1 = $1 \n \$2 = $2 \n \$3 = $3 \n \$4 = $4 \n";
}

> perl extended.pl
Use of uninitialized value in concatenation (.) at extended.pl line 7.
Use of uninitialized value in concatenation (.) at extended.pl line 7.
$1 = Testing
$2 = ing
$3 =
$4 =

Note how the parenthesis containing the T|N are no longer associated with a numbered variable so $2
is shifted to (ing|er), hence its value is ing. Accordingly, the print statement is now trying to use
two undefined variables, $3 and $4, hence the two warnings.

The special (?:...) syntax is one of many extended patterns that Perl regexps support, and possibly
the most useful in day-to-day usage. We will cover the others later on in the chapter under 'Extended
Patterns'.

We know from earlier examples that if we place a quantifier inside parentheses then all matches are
returned concatenated. We have used this fact plenty of times in expressions like (.*). However,
quantifiers cannot multiply parentheses. That means that if we place a quantifier outside rather than
inside parentheses, the last match is placed in the corresponding numbered variable. We do not get
extra numbered variables for each repetition. To illustrate this, let's consider this modified version of an
example that we used earlier on:

#!/usr/bin/perl
overwrite1.pl
use warnings;
use strict;

my $text = "one:two:three:four:five";
match non-colon characters optionally followed by a colon, 3 times
if ($text =~ /(([^:]+):?){3}/) {

print " \$1 = $1 \n \$2 = $2 \n";
}

> perl overwrite1.pl
$1 = three:
$2 = three

Regular Expressions

373

In this example, only one pair of $1 and $2 will exist after the regexp finishes. Each repeated match
overwrites the values found by the previous match, so once the match is finished we only have three:
and $three (the latter containing the word we want without the preceding colon).

If we actually want to extract all the repetitions rather than the last we will have to write out each
repetition explicitly:

#!/usr/bin/perl
overwrite2.pl
use warnings;
use strict;

my $text = "one:two:three:four:five";
match non-colon characters optionally followed by a colon, 3 times
if ($text =~ /^(([^:]+):?)(([^:]+):?)(([^:]+):?)/) {

print " \$2 = $2 \n \$4 = $4 \n \$6 = $6 \n";
}

> perl overwrite2.pl
$2 = one
$4 = two
$6 = three

Although this works, it is neither elegant nor particularly legible. A better alternative is to use the /g
global pattern match modifier:

#!/usr/bin/perl
repeat3.pl
use warnings;
use strict;

my $text = "one:two:three:four:five";
while ($text =~ /(([^:]+):?)/g) {

print " \$1 = $1 \n \$2 = $2 \n";
}

> perl overwrite3.pl
$1 = one:
$2 = one
$1 = two:
$2 = two
$1 = three:
$2 = three
$1 = four:
$2 = four
$1 = five
$2 = five

An alternative, and sometimes simpler, approach to getting the value we want is to use the special
variable $+ or $LAST_PAREN_MATCH. This is defined by the regexp engine as holding the value of
whatever the last set of parentheses matched, or to put it another way, the same value as the highest
numbered variable. Thus, in the extended.pl example, the value of $+ is ing, which is the value of
$2 (the highest numbered variable). If we are only interested in what matched the last set of
parentheses, $+ will return it for us, irrespective of how many parentheses might have occurred
previously.

TE
AM
FL
Y

Team-Fly®

Chapter 11

374

As we have already mentioned, whenever we use parentheses to extract values, Perl sets the start and
end positions of each successful match in the special array variables @- and @+. Each pair of elements
in these arrays corresponds to the start and end position of the corresponding numbered variable. So,
$-[1] is the position at which $1 matched inside the text, and $+[1] is the position it finished.

One practical upshot of this is that we can find the number of parentheses that matched by counting the
size of either array. We don't count the zeroth element for this since it corresponds to $& (not the
parentheses), so the number of matches is equal to the index of the highest element:

$no_of_parens = $#-; # count number of matching parentheses

Since parentheses are always extracted if they are present (even if they are conditional), this doesn't
make a lot of difference for hard-coded patterns. However, for patterns that may vary and thus, may
contain differing numbers of parentheses, this is a convenient way of handling an arbitrary number of
returned numbered variables, without knowing in advance how many parentheses are present.

Purely for illustrative purposes, we could also extract the value of a numbered variable directly using
substr. This is effectively what the regexp does for us when we use parentheses. Similarly, we can find
the text that matched between one set of parentheses and the text. Here is how we can find the text
between $1 and $2:

$between1and2 = substr($1,$-[2]-$+[1]);

Backreferences
The numbered variables $1 and onwards are defined after a successful match, but are not available
within the regexp itself. That is, a regexp like this will not do what we expect unless the value of $1 just
happens to have been set to the right quote character in a previous match:

$text =~ /('|")(.*?)$1/; # do not match single or double quoted strings

The reason this does not work as expected is because interpolation attempts to supply the value of the
variable $1 before the match proceeds, which clearly cannot define $1 until after it has started. The
numbered variables are clearly not useful in this case.

In fact we can refer to an extracted value within the same regexp using a backreference, the number of
the extracted parameter preceded by a backslash:

$text =~ /('|")(.*?)\1/; # do match single or double quoted strings

Backreferences are so called because they refer back to an earlier part of the pattern. They give access
to the same values as the numbered variables $1 ... , so for each numbered variable defined there is
a corresponding backreference. Since they are prefixed by a backslash they are left alone by
interpolation, which attaches no special significance to escaped numerals (to be specific, single digit
escaped numerals). If we have more than nine backreferences, things can get sticky and they are
handled by the regexp engine instead.

The point of backreferences is, of course, that they can be used in the pattern. In fact the values of the
backreferences can change several times during the course of an attempted match as the regexp engine
searches through different possibilities. Consider the quote-finding regexp we gave a moment ago. It
will find one single quoted string or one double quoted string. Now assume we feed it the following text:

Today's quote is "This is the way to the future".

Regular Expressions

375

Following the 'as soon as possible' rule, the regexp finds the unmatched single quote in Today's and
goes looking for a mate. At this point \1 contains a single quote. Eventually the engine runs out of
places to look for another single quote, since there is only one (fortunately for us there is no apostrophe
in 'today's quote'). It backtracks, drops the first single quote and goes looking for another one. Shortly
afterwards it finds the double quote, defining the backreference \1 once again, this time as a double
quote. Since there are two double quotes, the match succeeds and the backreference is assigned to the
numbered variable $1.

It follows from this that backreferences are defined as and when the corresponding part of the pattern is
matched. This means that we cannot use a backreference earlier than the part of the search pattern that
gives it a value – it does not make logical sense:

$text =~ /\1(.*?)('|")/; # ERROR: backreference before backreference
definition!

Of course in this particular example the problem is obvious. In more complex regexps it is easier to
make this kind of mistake, especially with a lot of backreferences involved.

Interestingly, a backreference can be placed inside parentheses, so long as they are not the parentheses
that are meant to be defining it. Perl will happily use the value of an earlier backreference within a
pattern that defines a later backreference (and numbered variable, if the match succeeds):

$text =~ /('|")([^\1]*)\1/;
print "Found quote:$1$2$1\n";

This is an example of quote matching that avoids using the lean .*? pattern and uses a character class
to exclude precisely the character we don't want to find, as we covered earlier. In this case the character
is whatever was found by the first part of the pattern and is now held in the backreference \1. As this
example shows, there is nothing to stop us using a backreference more than once.

We mentioned, when we introduced the numbered variables, that Perl allows us to extract any number
of substrings from the match text, one for each pair of parentheses that we use. This is not a problem for
numbered variables, which Perl will happily define up to $100 if necessary.

Backreferences do have a problem, however, since the backreference \10 is ambiguous – it also
represents a 'Form Feed' character. Perl resolves this conflict of syntax by using one of its 'common
sense' rules: if a backreference is defined then its value is substituted at the position of the backreference
in the pattern. If the backreference is not defined, Perl assumes that the backreference is not really a
backreference but an ASCII octal character code, and so replaces it with the appropriate character.
Since most regexp, at least most sensible ones, do not contain more than nine backreferences, this is
fairly safe. Note that if we actually wanted to say 'backreference 1 followed by a zero' we could do it by
using a character class of one character: \1[0].

Why this confusion in syntax? It comes about because Perl draws upon several sources for its features,
and brought much of the syntax with them. The use of the backslash to define and escape
metacharacters comes from shell scripting languages like csh, which in turn get it from the C
programming language. The use of the backslash to define a backreference comes from the venerable
UNIX utilities sed and awk, both of which are (loosely speaking) regexp engines with a command line.
Perl combines the best features of all these tools, but as a result occasionally has to deal with the conflict
of syntax this sometimes causes.

Chapter 11

376

So what do we do if we have a lot of backreferences, and we actually do want to insert an ASCII code?
In fact this is not a problem so long as we don't mind using something other than octal for the character
code. The confusion with backreferences comes because both syntaxes use a backslash followed by
digits. If we specify a character code in hexadecimal instead we can use the \x metacharacter, which,
since x is not a number, is not mistaken for a backreference:

$text =~ /^(.)(.)(.)(.)(.)(.)(.)(.)(.)(.)\x08/; # match 10 chrs followed
by a backspace

Extracting Lines with the Range Operator
An interesting alternative to extracting text with a single regexp is to extract it using two simpler
regexps and the range operator '..'. If the intent of a regexp is to read a potentially large body of text
between two markers, using the range operator may provide a faster alternative.

The drawback is that the range operator works on lines, not within them, so we might have to do some
trimming afterwards.

Consider the following single regexp that extracts the text between the two literal markers START and
FINISH:

$text =~ /^START$(.*?)^FINISH$/msg;

The intent of this regexp is to extract the text between each START and FINISH in the body of the
match text. We use:

❑ The /g pattern match modifier to extract all the matches

❑ The /s pattern match modifier to allow newlines to match the dot

❑ The /m pattern match modifier so the ^ and $ anchors will match newlines within the text
(note that this can be combined with /s) and makes the extracted text pattern non-greedy

So, we match between each START and FINISH pair and not between the first START and the last
FINISH.

Unfortunately if the text between the two markers is large, then this regular expression will take a long
time to analyze and extract each pair. It would be considerably more convenient to match the very
simple text START with one search pattern, FINISH with a second, and then to extract the text between
the two matches. This is what the range operator allows us to do.

The following program is an example of the range operator in action. It attempts to retrieve records
between START and FINISH markers and store the results into an array of matches. Any line inside a
record gets added to the current match in progress. Any line outside gets silently dropped.

#!/usr/bin/perl
range.pl
use warnings;
use strict;

my @records; # list of found records
my $collect = ""; # collection variable for records
my $in = 0; # flag to check if we've just completed a record

Regular Expressions

377

while (<>) {
print "Considering:$_";
if (/^START/ ... /^FINISH/) {

range is true - we are inside a record
print "In \n";
collect lines for record
$collect .= $_;
$in = 1;

} else {
false - we are outside a record
if (not $in) {

we were already outside
print "Out \n";

} else {
we have just left, found a collect
print "In -> Out \n";
add collected lines to list
push @records, $collect;
clear the collection variable
$collect = "";
set flag to say we are out
$in = 0;

}
}

}

foreach (0..$#records) {
print "Record $_: \n$records[$_] \n";

}

The range operator works on a line-by-line basis. Each side can either be a line number, or a regexp
that must match the line to satisfy that side of the range. In operation, the range operator 'remembers'
its current state, which is 'off' before the left-hand side becomes True, it then returns False and turns 'on'
when the left-hand side is satisfied, in this case, when the line contains the text START. When the right
hand side is satisfied, the range operator turns 'off' again. It is in effect a Boolean toggle switch that is
first triggered on, and then triggered off.

This script works by keeping track of its own Boolean toggle $in so it knows whether the range
operator has just finished a record or not. If it has, we store the results in @matches otherwise we do
nothing. Although it works, it does have one flaw: if a START immediately follows a FINISH then the
range operator toggles from 'on' to 'off', and back to 'on', with the result that immediately adjacent
records get merged together. We have to ensure there is at least one line between records, though
whether the line is empty or not we do not care.

Although it is a lot more verbose, this code can run a lot faster than the single regexp approach, not just
because the regexp engine has a much simpler task, but also because we do not need to read all the text
we want to match against before we start. Having said that, it is verbose and not always suited to tasks
involving repeated matches. For simple tasks requiring only one match it shines, however.

One common task that web servers and web clients have to perform is separating the header from the
body of an e-mail message or an HTTP response. Both these protocols use a completely blank line to
indicate the end of the header and the start of the body. Here is a short program that uses the range
operator to read the header and body into separate array variables:

Chapter 11

378

#!/usr/bin/perl
header.pl
use warnings;
use strict;

my (@head, @body);

while (<>) {
if (1 .. /^$/) {

push @head, $_;
} else {

push @body, $_;
last; # found start of body, quit loop

}
}

push @body, <>;
print "Head: \n", join('', @head);
print "Body: \n", join('', @body);

Here we have used a 'while' loop to read the header, jumping out of it as soon as the header finishes.
The range starts at 1, which corresponds to the first line of the file and therefore is immediately true, so
we don't need any special toggle variable to check whether we are before or after the header. It ends at
/^$/, which matches a completely empty line.

The range operator actually comes in two guises, '..' and '...'. The difference between them is that
... will not complete a range from start to finish on a single line; that is, if the left-hand side has just
become True then the right-hand side is not tested even if it would also be True. In the examples we
have used here, there is no difference since all our regexps have been anchored at the start and so
cannot simultaneously match. However, in the event that we wanted to handle an e-mail body that had
no head (that is, it starts with an empty line as the first line), we would need to choose between .. and
... depending on whether we wanted to recognize the first line as the end of the header or ignore it
and look for a second empty line before ending the header and starting the body.

Matching More than Once
On many occasions we do not just want to find the first or best match available, but all of them.
Unmodified, a regexp will only match the requested text once (if it can, that is). Modified by the global
/g pattern match modifier, however, it will match as many times as it can.

The pattern match modifier /g turns a regexp into an iterative rather than a one-off function. In much
the same way that the each operator, when called in list context returns the next key and value from a
hash, a global regexp will match repeatedly. It will also set the numbered variables, backreferences from
parenthesized expressions, and the special variables $&, $`, and $' if we are using them. In the case of
regexps, next means the next best match according to the rules of the regexp engine.

Regular Expressions and Loops
When called in a scalar context, a global regexp will return True for each successful match, with the
numbered variables and the special variables $&, $`, $', and $+ containing the values for each
successful match. Likewise, numbered variables are set per match. When called in a straight scalar
context (that is, not a while or until loop), only the first match is made and sets the variables on exit:

Regular Expressions

379

$text = "one two three";
$matched = $text =~ /\b(\w+)\b/g; # match once...
print $1; # print first word found which is 'one'

However, when called in a list context, all matches are returned as a list:

@matches = $text =~ /\b\w+\b/g; # collect all words

This is a handy way to collect successful matches because it requires neither the use of $& nor
parentheses plus a numbered variable, but it is only effective when we are only interested in the text the
whole pattern matches. More conventionally, a global regexp is often combined with a foreach or
while loop.

Both foreach and while loops (and for that matter, map and grep statements) can be used to handle
the results of a global regexp. There are, however, important differences between them. The following
short program contains one of each, both producing the same result:

#!/usr/bin/perl
globalloop.pl
use warnings;
use strict;

my $text = "one, two, three, four";

iterate over matches with foreach and $_
foreach ($text =~ /\b\w+\b/g) {

print $_, "\n";

}

iterate over matches with while and $1
while ($text =~ /\b(\w+)\b/g) {

print $1, "\n";
}

Although identical in result, these two loops are different in the way that they execute. The foreach
loop extracts all the matching values from the regexp before the loop starts, so the special variables $&
and $1 have the values associated with the last successful match for every iteration of the loop. The
foreach loop above is, in effect, no different from this more explicit loop:

@matches = $text =~ /\b\w+\b/g;
foreach (@matches) {

print $_, "\n";

}

If we try to extract subpattern matches with parentheses in a foreach loop, then we will be in for a
nasty shock. By contrast, the while loop extracts one match from the regexp each time around the
loop. The values of the numbered variables are therefore correct for each match in turn, making it
suitable for extracting subpattern matches.

Chapter 11

380

Nested Regular Expression Loops
One pitfall that many programmers have fallen into with the /g flag is that there is only one set of the
special and numbered variables $&, $1, and so on. When a second regexp is executed, the results
overwrite those of the first, which can have disastrous consequences if we were relying on the initial
values of the special variables to remain. The following example program illustrates the perils of trying
to use variables like $& and $1 in a pair of nested foreach loops:

#!/usr/bin/perl
nest1.pl
use warnings;
use strict;

my $text = "one, two, three, four";

iterate over matches with foreach and $_
foreach ($text =~ /\b(\w+)\b/g) {

print "outer: got: $_, matched: $&, extracted: $1 \n";

foreach (/(\w)/g) {
print "\tinner: got: $_, matched $&, extracted $1 \n";

}
}

When run, this produces the following output:

> perl nest1.pl
outer: got: one, matched: four, extracted: four

inner: got: o, matched e, extracted e
inner: got: n, matched e, extracted e
inner: got: e, matched e, extracted e

outer: got: two, matched: e, extracted: e
inner: got: t, matched o, extracted o
inner: got: w, matched o, extracted o
inner: got: o, matched o, extracted o

outer: got: three, matched: o, extracted: o
inner: got: t, matched e, extracted e
inner: got: h, matched e, extracted e
inner: got: r, matched e, extracted e
inner: got: e, matched e, extracted e
inner: got: e, matched e, extracted e

outer: got: four, matched: e, extracted: e
inner: got: f, matched r, extracted r
inner: got: o, matched r, extracted r
inner: got: u, matched r, extracted r
inner: got: r, matched r, extracted r

The value of $_ is as expected, because foreach loops localize the value of the loop variable (which in
this case is $_) within the scope of the loop. Each time the inner loop is entered, the value of $_ in the
outer loop is hidden by a local $_, and pops back into view each time the inner loop exits again.
However, the values of $& and $1 slavishly hold the results of the last match (because these are
foreach loops, see above) of whichever regexp executed most recently.

Similar problems occur when we use while loops. This program appears to do much the same as the
example above, but aborts matching of the individual characters after the first character of each word:

Regular Expressions

381

#!/usr/bin/perl
nest2.pl
use warnings;
use strict;

my $text = "one, two, three, four";

iterate over matches with foreach and $_
while ($text =~ /\b(\w+)\b/g) {

print "outer: matched: $&, extracted: $1 \n";
while ($1 =~ /(\w)/g) {

print "\tinner: matched $&, extracted $1 \n";
}

}

When we run this program we do not get quite what we expected:

outer: matched: one, extracted: one
inner: matched o, extracted o

outer: matched: two, extracted: two
inner: matched t, extracted t

outer: matched: three, extracted: three
inner: matched t, extracted t

outer: matched: four, extracted: four
inner: matched f, extracted f

The problem here is that we are matching the inner regexp against $1, though it would not have made
any difference if we had used $&. After the first match of the inner loop, $1 contains the character that
matched. Unaware that its foundations have been shifted, the regexp advances past the first character,
finds there are no more and promptly finishes. In order to make this program work we need to make a
copy of the matched text and use that for the inner loop:

#!/usr/bin/perl
nest3.pl
use warnings;
use strict;

my $text = "one, two, three, four";
iterate over matches with foreach and $_
while ($text =~ /\b(\w+)\b/g) {

print "outer: matched: $&, extracted: $1 \n";
my $inner = $1;
while ($inner =~ /(\w)/g) {

print "\tinner: matched $&, extracted $1 \n";
}

}

When we run this modified program we now get the result we were looking for:

outer: matched: one, extracted: one
inner: matched o, extracted o
inner: matched n, extracted n
inner: matched e, extracted e

outer: matched: two, extracted: two
inner: matched t, extracted t
inner: matched w, extracted w

Chapter 11

382

inner: matched o, extracted o
outer: matched: three, extracted: three

inner: matched t, extracted t
inner: matched h, extracted h
inner: matched r, extracted r
inner: matched e, extracted e
inner: matched e, extracted e

outer: matched: four, extracted: four
inner: matched f, extracted f
inner: matched o, extracted o
inner: matched u, extracted u
inner: matched r, extracted r

The moral of the story is, think carefully about what kind of loop we want to use and make sure we
make copies of any part of the regexp state that we might want to make use of later. It also pays to test
code thoroughly, consider empty strings, and expect failures as well as successful matches. It is
important to remember that a library subroutine may contain a regexp we are unaware of, so controlling
the use of regexps in our own code is not always adequate protection.

Position
Each time a match is made, the regexp engine updates its position within the match text. This is so that
previously matched text is not taken into consideration for the next match, otherwise the next match
would just be the first one again. This position can be extracted and, more dangerously, set with the pos
function if the match text is held in a scalar variable:

#!/usr/bin/perl
position.pl
use warnings;
use strict;

my $text = "one, two, three, four";

display matches with their positions
while ($text =~ /\b(\w+)\b/g) {

print "matched $1 at position ", pos($text), "\n";
pos($text) = 0 if pos($text) > 15;

}

This program uses pos to both display and set back to zero the regexp engine's position. It loops
indefinitely matching each word in turn:

> perl position.pl
matched one at position 3
matched two at position 8
matched three at position 15
matched four at position 21
matched one at position 3
matched two at position 8
...

The position returned by pos is the index of the character in the match text immediately beyond the
text that matched, that is, the first character of the next match attempt. That is why the position of the
first match is 3, not 0. To get the start position we can subtract the length of $& from the value returned
by pos, or $1 if we have extracted the pattern in parentheses, as we have in this case.

Regular Expressions

383

Note that pos (and not reset) is the correct way to reset the position of a multi-line match. The reset
on its own, with no arguments, resets one-shot regexps that are defined with ? as the delimiter.
Although this does for one-shot regexps what pos($text) = 0 does for global regexps, there is no
direct link or correlation between the two.

For the curious, the value returned by pos is the same as the value of the first element of the special
array @+, which we covered earlier than the chapter.

Moving the Start Anchor to the Current Position

We have already mentioned the \A, \z, and \Z metacharacters and explained their significance as
anchors in conjunction with the /m modifier. The \G metacharacter is another kind of anchor that
moves to the current position at the end of each match in a global regexp. It only has significance in
conjunction with /g since position is not kept at all in regexps that only match once.

At first sight, \G would appear to not be terribly useful. After all, a global regexp already advances
through the match text without needing to be re-anchored each time. However, the advantage of the \G
anchor is that it allows us to process the match text in much smaller bites than we would otherwise be
able to do – this can simplify regexp in some cases.

As an example, consider the following substitution. It replaces leading spaces with an equivalent
number of dashes (minus signs) over one or more lines:

$text =~ s/^(\s+)/'-' x length($1)/mge;

While this is perfectly fine, it is not as elegant as it could be. To get the right number of dashes, we have
to extract the matched spaces and count them to generate a string of dashes of the same length, which
means using the /e modifier to execute the replacement text as code.

With \G, we can rewrite this search pattern to match only one space at a time and re-anchor the search
at the start of the remaining text:

$text =~ s/\G\s/-/mg;

Not only is this a great deal simpler to understand, it avoids that nasty executable code too.

Retaining Position between Regular Expressions

When matching text with a global regexp, the regexp engine automatically keeps track of where it is.
However, when the regexp runs out of valid matches and fails, the position is reset and deleted. Trying
to use pos to find the end of the last match after the regexp has ended will only produce an undefined
result.

Sometimes, however, we might want to know where the regexp stopped so that we can feed the
remaining match text to a different regexp. Fortunately, by using a variant of the /g modifier, /gc, we
can tell the regexp engine to remember the position of the last match. In combination with \G this
allows us to have one regexp pick up where a previous one left off.

To illustrate how this works, consider this sample text, and assume we know only the smallest details
about it:

$text = 3 2 1 liftoff;

TE
AM
FL
Y

Team-Fly®

Chapter 11

384

All we know is that we have a sequence of numbers followed by a message of some kind. We don't
know how many numbers, and we do not want to try and match the whole text at one go because it
might be large. We therefore write one regexp to find the numbers, using /gc to retain the position at
the end of the last match, then a second using \G to pick up where we left off. Here is a sample program
that does just that:

#!/usr/bin/perl
liftoff.pl
use warnings;
use strict;

my $text = "3 2 1 liftoff";

use /gc to remember position
while ($text =~ /(\d)/gc) {

print "$1...\n";
}

use \G to match rest of text
if ($text =~ /\G\s*(.+)$/) {

print ucfirst($1), "!\n";
}

As with many solutions in Perl, there are other ways to do this. For instance we could also have copied
the value of $' to $text between the two regexps to produce much the same effect without the use of
/gc or the \G anchor. However, as we noted earlier, it is generally a good thing to avoid using variables
like $' because of the performance loss this causes in all future pattern matches.

Matching In and Across Multiple Lines
The /s and /m modifiers both alter the way in which the regexp engine handles search patterns. The /s
modifier causes the newline character, \n to match a dot, which it would not do otherwise. The /m
modifier alters the meaning of the ^ and $ anchors so that they match either side of a newline, as well as
at the start and end of the text overall.

Although neither modifier is tied to global regexps, they both have a lot of uses in combination with the
/g modifier. In particular, the combination of /m and /g makes an effective way to re-anchor a search
pattern at the start of each new line. This code snippet extracts configuration values from a string
containing one key-value pair per line:

#!/usr/bin/perl
mflag.pl
use warnings;
use strict;

put <> into slurp mode
undef $/;
read configuration file supplied on command line into string
my $configuration = <>;

my %config;
read all configuration options from config string
while ($configuration =~ /^\s*(\w+)\s* = \s*(.+?)\s*$/mg) {

$config{$1} = $2;
}

print "Got: $_ => '$config{$_}'\n" foreach (sort keys %config);

Regular Expressions

385

If we run this program on a file of lines like the following:

one = sorrow
two = joy
three = one too many

It produces:

> perl mflag.pl mytextfile
Got: one => 'sorrow'
Got: three => 'one too many'
Got: two => 'joy'

The regular expression says 'start, find me a word (optionally surrounded by whitespace) followed by an
equals sign and some more text (also optionally surrounded by whitespace), end'.

With the /m modifier present, ^ and $ match at the start and end of each line in the string
$configuration, so each line read from the file is checked in turn.

As a point of fact, the ^, $ and /m modifier in this code are redundant since a newline character cannot
match any part of the regexp in this particular example. However, the /m modifier causes the
expression to execute a lot faster, since the regexp engine first extracts a line and anchors it at each end
before commencing the rest of the search. That means that a small part of the whole string is actually
involved in each attempted match.

The \s modifier allows a newline to match a dot. This is mainly useful for matching multiple-line
records in a document and extracting them in one go:

#!/usr/bin/perl
sflag.pl
use warnings;
use strict;

undef $/;
my $database = <>;
my @records;

while ($database =~ /item:(.*?)(?=item:|$)/sg) {
my $record = $1;
$record =~ s/\n/ /g;
push @records, $record;

}

print "Got: $_\n" foreach @records;

If we give this program a file of lines like the following:

item: this is item one
item: this is
the second item
item: and
a third item

Chapter 11

386

It produces the following output:

> perl sflag.pl mytextfile
Got: this is item one
Got: this is the second item
Got: and a third item

The /s modifier allows the .*? to match multiple lines between each instance of item:. We have also
used a zero-width lookahead extended pattern (the (?=...) syntax) to match the next occurrence of
item:, so we can find the full extent of each record, without absorbing it into the match. This is
important because we will need to start from it on the next iteration.

The /s and /m modifiers are not mutually exclusive. Although /s allows a newline to match a dot, it
does not change the fact that it is a newline. The ^ and $ anchors will still match on either side of it.
The database example above has a flaw in that it will match item: in the middle of a line, when we
probably only wanted item: to be a record separator if it starts a line. We can fix that by using /m, /s,
and /g together, as this replacement while loop does:

while ($database =~ /^item: (.*?)(?=(^item:|\z))/msg) {
$record = $1;
$record =~ s/\n/ /g;
push @records, $record;

}

However, be aware that unlike a ^, a $ cannot be used as an anchor in the middle of a pattern, only at
the end. In addition, to handle the last record we have had to provide \z as an alternative match as
well, to match the end of the string. We cannot use $ in this case because /m has altered its meaning.

Counting the Total Number of Matches
Sometimes we do not actually want to return matches from a regexp but just determine how many there
are. One obvious way to do this is to count matches using a while loop:

$count = 0;
while ($atom =~ /\bproton\b/g) {

$count++;
}

Alternatively, if the cumulative size of all the matched text is not excessively large, we can take the
scalar result of the regular expression in list context:

$count = scalar($atom =~ /\bproton\b/g);

Overlapping Matches and Zero-Width Patterns
The regexp engine ordinarily moves over matched text each time it succeeds, enabling us to find all
matches in the match text without matching the same text twice. Unfortunately this makes it extremely
difficult to find overlapping matches because as soon as the text has matched once, it will not be
considered for any further matches. The following example illustrates an instance of when this can be a
problem:

Regular Expressions

387

#!/usr/bin/perl
vowels1.pl
use warnings;
use strict;

my $text = "beautiful creature";

find adjacent vowels
while ($text =~ /([aeiou]{2})/g) {

print "Found adjacent '$1' at position ", pos($text), "\n";
}

When run this finds the ea in beautiful and ea of creature, but not the au in beautiful. This is
because by the time the regexp engine gets to the u, the a has already been matched and passed over:

> perl vowels1.pl
Found adjacent 'ea' at position 3
Found adjacent 'ea' at position 14

Fixing this problem would appear to be nearly impossible, but fortunately Perl allows us to cheat using
a zero-width assertion. Zero-width assertions require the text to match, but do not cause the regexp
engine to absorb the match by moving its position beyond it. The text matched by the assertion can be
matched again on the next pass. The trick here is to turn the entire pattern into a zero-width assertion
using the extended pattern (?=...).

In order to explain why zero-width assertions are useful, it's helpful to look at a simple example. The
following program has been deliberately 'broken' by placing a zero-width assertion around the entire
pattern (.):

#!/usr/bin/perl
zerowidthloop.pl
use warnings;
use strict;

my $text = "proton";
while ($text =~ /(?=(.))/g) {

print "[$1]";
}

We would expect this code to go into an infinite loop. The regexp contains no subpatterns that absorb
characters, so the position should never move past the first character. Since the position never moves,
each successive match ought start at the beginning of the string and match the same text again, and so
on indefinitely. So this program ought to produce:

> perl zerowidthloop.pl
[p][p][p][p][p][p][p]...

However, Perl has a special optimization that deals with this case:

If the whole of a global regexp is zero-width, then a successful match will move the position one
character forward from the start of the match.

Chapter 11

388

As a result, the program actually produces:

> perl zerowidthloop.pl
[p][r][o][t][o][n]

The optimization is useful for avoiding infinite loops, but it has its own extra uses too. By rewriting our
vowel program to use a zero-width assertion we can deal with overlapping matches correctly:

#!/usr/bin/perl
vowels2.pl
use warnings;
use strict;

my $text = "beautiful creature";
find adjacent vowels
while ($text =~ /(?=([aeiou]{2}))/g) {

print "Found adjacent '$1' at position ", pos($text), "\n";
}

Now when we run the program we get the correct result:

> perl vowels2.pl
Found adjacent 'ea' at position 1
Found adjacent 'au' at position 2
Found adjacent 'ea' at position 12

It takes a little effort to understand this completely, but examining what has happened to the position is
illuminating. In the first example, the position after the end of the first match was 3, indicating that the
next match would start at the t of beautiful (remembering we are counting from zero). In the second
example the position after the first match is 1, which points to the e of beautiful, because the zero-
width assertion has matched but not absorbed the characters ea. This is the same position that Perl
found the last match (because the b did not match the pattern at all). Perl notices that it is starting from
the same place a second time and automatically moves the position by one.

It is important to realize that this 'special case' rule only applies to successful matches. The b of
beautiful does not match the pattern at all, so it is moved over by the regexp engine following its 'as-
soon-as-possible' rule. The zero-width assertion only comes into play when a match succeeds, or in
other words, only after the first ea has been matched. This is why we do not get the first ea twice.

We can see that the rule comes into effect just before the beginning of each match because the position
we get is correct for the start of the match just made. The position is not, as we might possibly expect,
'ready' for the next match.

As another example, here is a short program that follows on from our discussion of lean matches, and
searches for the shortest match in the string Greely Greely & Spatsz:

#!/usr/bin/perl
Greely.pl
use warnings;
use strict;

my $company = 'Greely Greely & Spatz';
my $match = $company; #set to longest possible match

while ($company =~ /(Greely)(?=(.*?Spatz))/g) {
my $got = $1.$2; #assemble match from both parts
$match = $got if length($got) < length($match);

}

print "Shortest possible match is '$match' \n";

Regular Expressions

389

Extended Patterns
Extended patterns are an extension to the syntax of regexps covered so far. They enable us to adjust the
operation of the regexp engine within the search pattern. Each extended pattern causes the engine to
behave in a different way, but only for the region over which it has control.

Extended patterns all have a syntax following the rule (?<character>pattern). The <character>
determines the effect that the extended pattern has, and pattern is the pattern affected by it. We have
already seen two extended patterns, the backreference suppressing cluster and the zero-width
lookahead:

(?:these|terms|do|not|create|a|backreference) # cluster pattern
(?=zerowidthpattern) # zero width pattern

In addition to these two, Perl defines several other extended patterns to perform various tasks. Some of
them are currently still classified as experimental as of Perl 5.6 (the current list and status of extended
patterns can be found in the perlre manual page which you can see using the command >perldoc
perlre), and all of them should be used with some care and a lot of forethought.

Documenting Regular Expressions
If regexps have a down side, other than their tendency to do avoid doing what we want given the
slightest loophole, it is their confusing syntax. Most regexps of any size are hard to read. Take the
following expression as an example, borrowed from earlier in the chapter:

read a 'key = value' configuration from a configuration string
while ($configuration =~ /^\s*(\w+)\s*=\s*(.+?)\s*$/mg) {

%config{$1} = $2;
}

Although we can work out what this regexp says, 'find me a word, optionally surrounded by whitespace,
followed by an equals sign and some more text, also optionally surrounded by whitespace', it takes a
certain amount of squinting to do so. Fortunately we can improve the legibility of this expression by
using /x.

The /x pattern match modifier allows us to embellish our regexps with extra whitespace (which,
significantly, includes newlines) and comments to improve its legibility and describe what it does. The x
stands for extended and so regexps that have been written this way are often referred to as 'extended
regexps'. This term is a little misleading, however, since /x does not add any new features to the regexp
engine; it merely extends the syntax.

When /x is in effect, any whitespace character is assumed not to be part of the pattern:

print "hello" =~ /h e l l o/; # no '/x', no match
print "hello" =~ /h e l l o/x; # '/x' ignores spaces, produces '1'
print "h e l l o" =~ /h e l l o/x; # '/x' ignores spaces, no match

We can also rewrite groups to place alternatives on different lines, just as we can with if statements:

$atom =~ {(
proton
| electron
| neutron

)}x and print "Found a particle";

Chapter 11

390

Similarly, a # is assumed to start a comment, unless it forms part of a character class:

while ($text =~ {
(

[aeiou] # find a vowel
{2} # match it twice
[#] # then a hash/pound

)
}/xg) {

print "Found adjacent '$1' at position ", pos($text), "\n";
}

If we want to use literal whitespace or hashes inside an /x modified pattern we can either escape them
to make them literal, or place them inside a character class as in the above example. We can escape
spaces to make them literal, and of course tabs and newlines already have metacharacter
representations:

$text =~ /
(\ |\t)? # start with optional space or tab
space # literal word
\ +separated # one or more spaces then a word
\ +text # one or more spaces then a word
\n? # optionally match newline

/x;

Unfortunately we cannot escape a hash directly, so we have to express it in octal (\43) or hexadecimal
(\x23), or from Perl 5.6, a named Unicode character (\N{NUMBER SIGN}).

Using both whitespace and comments, we can rewrite our regexps to be much more legible. Admittedly
the following may be overdoing it a little, but it serves to illustrate what /x allows us to do:

read configuration from config string
while ($configuration =~ /

^ # anchor at start of line. Note '/m' is in effect

match config name
\s* # absorb leading whitespace, if any
(\w+) # return name, alphanumeric only
\s* # absorb any whitespace between name and =

must have an equals sign
= # match '='

match config value, avoiding surrounding whitespace
\s* # absorb any whitespace between = and value
(.+?) # return value
- note, non-greedy, \s* takes precedence
\s* # absorb whitespace between value and end of line
$ # anchor at end of line

/mg) {
%config{$1} = $2;

}

Regular Expressions

391

Although not directly related to the /x modifier, it is worth noting that if we are using the /e modifier,
then we can use whitespace and comments in the replacement part of a substitution. This is because the
replacement is then evaluated as code, and follows Perl's normal syntax rules. We cover substitution
and the /e modifier shortly.

Writing Efficient Regular Expressions
Writing a regexp that works is one thing. Writing one that works quickly is something else. For every
fast regexp there is another that does the same job but runs like a snail. The regexp engine is already
very good at determining the most efficient way to carry out a pattern match, but it can only optimize
what we give it.

Writing a regexp so it can match faster is always a good idea. Writing it so it can fail faster is an even
better idea – many regexps are good at matching quickly but can take a very long time to run through
all the possibilities. In general, there are three ways we can make our regexps more efficient:

❑ Make the regexp more specific

❑ Avoid recompiling search patterns

❑ Use many simple expressions instead of one complex one

The last of these is actually one way to solve the second. Recompilation happens when a search pattern
contains interpolated variables, and is a major cause of performance loss in regexps. Often this
interpolation is not necessary. On other occasions it is necessary, but not every time. Eliminating
vagueness and avoiding unnecessary interpolation are the two biggest areas of improvement that we can
apply to any regular expression.

Making Regular Expressions More Specific
The more specific a regexp is, the fewer possibilities the engine will have to run though to find a match.
There are two main ways to make regexps more specific. One is to eliminate subpatterns that are too
vague, and the other is to anchor the expression, if possible, to limit the possible start and end points of
any prospective match.

Eliminating Vague Subpatterns

Patterns such as .* are very flexible, but terrible in terms of speed, since they can match anything.
Many regexp programmers reach for expressions like .* because they are quick and simple to use, and
can be 'fixed' by making the rest of the search pattern more specific. Unfortunately this can cause Perl a
lot of extra work. Consider the following two almost-equivalent regexps:

$text =~ /('|")(.*)\1/ and print $2; # extract single or double
string quoted

$text =~ /('|")([^\1]*?)\1/ and print $2; # ditto...

The second of these examples is superior to the first in several ways, it matches the first pair of quotes,
not the first and last quotes in the entire text. Since the text might be long, we make the match non-
greedy by adding a ? so the engine will look for the second quote forward from the first and not
backtrack from the end. The first example by contrast will be greedy and match the whole text with .*,
then backtrack to try to find a match for the backreference \1. As a result, the second example will
usually find a single quoted section within a large body of text much faster than the first. The only time
the first will win is if the match text contains a pair of quotes near the beginning and end of the overall
text.

Chapter 11

392

If we are only matching word characters, \w* is far better, since it can terminate part of a search earlier
than would otherwise be the case. \w+ is even better if we actually require a match, since unlike \w*, it
has to match something for the rest of the pattern to be considered at all. The trick is to have a very
good understanding of the nature of the text we will be matching; the more information we can give the
regexp engine, the better it will perform:

$text =~ /(.*) = (.*)/; # bad
$text =~ /(\w*) = (\S*)/; # better
$text =~ /^(\w+) = (\S+)/; # even better

It is a common misconception that non-greedy matches are intrinsically more efficient than greedy ones.
This is often the case, but only because of the nature of the text we wish to match. Take the following
two examples:

$text =~ /^(.*)\\?/; # greedy match
$text =~ /^(.*?)\\?/; # non-greedy match

Both examples look for any text (.*) followed by an optional literal backslash (\\?), but they go about
it in different ways. Consider the most likely scenario for this application – a series of lines that are
optionally suffixed with a backslash to indicate continuation. The first grabs the whole match text and
then looks for an optional backslash, starting from the end. The second grabs one character at a time
and then looks to see if the next character is a backslash. If it isn't, the engine backtracks, matches
another character to .*?, then checks again, and so on all the way to the end of the match text. In this
case the first, greedy, match is clearly more efficient.

Using a $ anchor possibly prefixed by optional whitespace would be even more efficient, though
we're trying to keep to examples simple here for clarity. The same problem is less easily fixed in
more complex examples, but they're not as easy to analyze. We'll come to anchors in a moment.

Another reason for using caution with the dot (.) match is that it is not matched by a newline \n, unless
we use the /s modifier. It is easy to forget this when writing regexps, which leads us to trip up when the
match text unexpectedly contains a newline. Writing a more specific pattern can often force us to
consider possibilities such as this before they happen.

Anchors

Some regexps can be made faster by relatively simple modifications – adding anchors is one such
example. If we want to look for the word omega in a string we could write:

$text =~ /omega/;

However, if we know that omega is only going to occur at the end of the string we can anchor it:

$text =~ /omega$/;

This is a vastly more efficient regexp. Not only will it run faster if omega is indeed present, it will run a
lot faster if it is not. In the first case, the regexp engine must check for omega anywhere in the string. In
the second case, the engine can check that the last letter in the string is an a. If it is not, it can fail
immediately.

Regular Expressions

393

Anchors are a very effective way of speeding up matches. Even if we cannot anchor a search pattern
directly, we can sometimes anchor it to something else with a little more thought. For instance, omega
might not occur at the end of the line, but we happen to know that if it does not, it can only be followed
by whitespace. That means we can anchor it using:

$text =~ /omega\s*$/;

This is not as fast as the previous example, but it is still faster than not anchoring it at all. If we can
anchor at both ends then so much the better. Similarly, to check for alpha at or near the beginning of
the line we can say:

$text =~ /^\s*alpha/;

'study'
Perl provides a built-in function called study, which attempts to make regexps more efficient by
analyzing the match text (note, not the pattern) in advance. For some regexps this can provide a useful
speed improvement. For others it is almost entirely useless.

The function works by examining the text and building lists of positions within the text for each
character present (so, for example, the a list contains a list of positions for every a present in the text).
When the text is matched, the regexp engine checks for literal characters in the search pattern and scans
for them in the match text in order of rarity. If the pattern contains a literal q, and this is the rarest
character in the match text that is also present in the pattern, the engine will start by looking for
instances of q and then go on from there.

This studying is most effective when we expect to make a lot of different matches on the same piece of
text, since it will benefit all of them. It is also most effective when matching a series of short literal
strings in large bodies of text like large documents and whole books. For example:

undef $/; # undefined record separator
$book = <>; # slurp in large buckets of text
study $book; # perform pre-match analysis of $book

search for short literal strings
@matches = $book =~ /\b(sharrow|miz|dloan)\b/sig;

In this case, the least common characters are probably w and z, so they would be used as the starting
point for determining likely matches by the engine.

In practice study is hard to use effectively. First, it is severely limited by the fact that only one string
can be studied at once – if we study a second string then the first becomes 'unstudied' again. Second, it
takes time for study to build its lists, which may take longer than the actual search. Lastly, its benefits
in terms of speed are only effective when there are a reasonable number of literal characters in the
pattern. The function has no beneficial effect for regexps like:

$text =~ /^\s*\w+[0-9]*/; # no literal characters to look for!

Remember that when considering whether to use study or not, a good source of literal characters can
often be found in interpolated variables, especially if they hold user input. It is the pattern after
interpolation that determines whether studying the text is beneficial or not.

TE
AM
FL
Y

Team-Fly®

Chapter 11

394

Avoiding Recompilation with the Empty Pattern
Normally, each time the regexp engine reconsiders a search pattern containing variables, it must re-
interpolate and recompile it in case the variables have changed. This can slow down the engine
considerably. However, if an empty pattern is supplied to the regexp engine, the engine will resort to a
default of the last successfully matched pattern that was passed to it. This is one way to rematch a
regexp without recompiling it:

if ($text =~ /$complex\b($interpolated)\b$pattern/) {
do {

print "Found '$1';
} while ($text =~ //); # reuse pattern without recompiling it

}

It is important to remember that the reused pattern is the last successful one. If the previous match
failed, the empty pattern will instead cause the engine to reuse the pattern before it instead (presuming
that that one was successful). If no successful patterns have been seen, the pattern defaults to being truly
empty, which is unlikely to be what we want.

The moral of the story, with regards to using //, is therefore to make sure that the previously successful
pattern is the one we want to use. The example above makes sure of this because the empty pattern is
only reached inside the if statement that tests the success of the pattern we want to reuse.

It is entirely possible to generate an empty pattern either deliberately or accidentally through
interpolation. For instance, if we have a pattern that is completely interpolated from variables, and none
of them happen to be set, we can get some very strange results when the regexp engine appears to use
the 'wrong' pattern.

As a final point about the empty pattern, note that it only applies to matches and substitutions – it has
no special properties in split. Rather, splitting on an empty pattern falls under the rules of zero-width
patterns (see earlier in the chapter under 'Overlapping Matches and Zero-Width Patterns' for details).

Avoiding Recompilation with the 'once-only' Modifier
The /o or 'once-only' pattern match modifier is an invaluable tool for speeding up regexps that
interpolate variables to create the search pattern. By using this modifier, we can tell the engine that the
variables cannot and will not change (or more accurately, that it can ignore them even if they have). If
we do not expect the variables to change over the lifetime of the program, /o is an effective way to
speed up a match:

while (/($search_pattern)/g) { ... } # reinterpolates each time
while (/($search_pattern)/go) { ... } # quicker - interpolates once

The /o modifier allows the regexp engine to cache the results of compiled regexps for reuse, so it is not
just effective for global pattern matches like the above. It also has a beneficial effect on non-global
regexps if they are used repeatedly:

get something to search for
$search_string = shift @ARGV;

once-only optimized pattern inside body of while loop
while (<>) {

if (/$search_string/o) {
print "Found '$1' at line $. \n";

}
}

Regular Expressions

395

The problem with /o is that it prevents us changing the pattern of interpolation when we do want to.
Another solution to the same problem uses the qr operator, which (in a sense) provides the same
functionality as /o, but in a more flexible way. We will discuss it in more detail at the end of this
section.

The /o modifier is also particularly effective when combined with eval to generate a regexp on the fly,
but it is not the only way to avoid recompiling search patterns.

Generating Regular Expressions with 'eval'
The eval function is another excellent way of generating regexps on the fly without having to deal with
interpolation. Rather than search for several terms at once we can generate regexps and then evaluate
them.

Here is a simple program that accepts an arbitrary number of search terms (each specified with -t). It
then scans whatever files we pass it (anything not prefixed with -t) for each of them:

#!/usr/bin/perl
multisearch.pl
use warnings;
use strict;

use Getopt::Long;

my @terms;
GetOptions('term:s' => \@terms);

die "Usage $0 [-t term [-t term]] file ...\n" unless @terms;

build regular expressions
my $regexp = "";
foreach (@terms) {

$regexp .= 'print("$ARGV:$.('.$_.')$_\n") if /\b'.$_.'\b/o;'. "\n";

}

dump out the loop body for interest
print "Searching with:\n$regexp";

build loop
my $loop = 'while (<>) {chomp; '.$regexp.'}';

evaluate loop
eval $loop;

The trick in this program comes in the assembling of the regexps. Each term supplied is built into its
own regexp which is, in turn, built into the condition of an if statement. Although the terms are
elements of the @terms array variable, the code constructed by the foreach loop uses their values as
literal search patterns, so we can add the /o modifier to further improve the speed of the program.

Another aspect of this program that displays some cunning is the while loop that retrieves lines from
the input. Since eval is an expensive call to make, we avoid calling it repeatedly for each line of the
input by placing the while loop inside the eval, rather than the other way around. The <> readline
operator does not care either way, and the result is a much faster search.

Chapter 11

396

We can use this program to search for several different terms at the same time:

> perl multisearch.pl -t one -t two search.txt

In this case we are looking for instances of one and two. The code generated by the program and
placed in $regexp in response to this command line is (as reported by the program):

print("$ARGV:$.(one)$_\n") if /\bone\b/o;
print("$ARGV:$.(two)$_\n") if /\btwo\b/o;

Note that the final \n on the end of the '$regexp.=...' line in the program is purely cosmetic so the
above prints out nicely on separate lines. If we removed that code, we could remove the trailing \n as
well. Now let us assume that search.txt contains the lines:

one two three
four
five
six
one seven eight
two nine
four three
six
nine five
zero one one

When run, we get the following:

search.txt:1(one)one two three
search.txt:1(two)one two three
search.txt:5(one)one seven eight
search.txt:6(two)two nine
search.txt:10(one)zero one one

Both one and two were found on the first line, so it appears for both of them. The one also appears on
lines five and ten, while two additionally appears on line six. Whatever was on the other lines did not
contain either term.

Another approach to assembling a regexp using eval, but avoiding the embedded loop, is to generate
an anonymous subroutine instead (see Chapter 7 for more on anonymous subroutines). Here is a variant
of the multisearch.pl program above that works this way:

#!/usr/bin/perl
multifind.pl
use warnings;
use strict;

use Getopt::Long;

my @terms;
my $all = 0; # find any term by default

GetOptions('term:s' => \@terms, 'all' => \$all);

die "Must specify search term" unless @terms;

Regular Expressions

397

build regular expressions and logic
my @regexps = map {"/\\b$_\\b/o"} @terms;
my $logic = join $all?' && ':' || ',@regexps;

dump out the logic for interest
print "Searching with: $logic \n";

interpolate an anonymous sub to test logic
my $match = eval "sub {$logic;}";

scan input
while (<>) {

print "$ARGV:$.:$_" if &$match;
}

We can use this program to search for several different terms at the same time, printing out the lines if
any. Here is an example of an any search:

> perl multifind.pl -t one -t two search.txt

In this case we are looking for instances of one or two, and printing out any line on which either is
present. The anonymous subroutine generated by the program in response to this command line
contains this logic (as reported by the program):

Searching with: /\bone\b/o || /\btwo\b/o

Using the same sample text as before, we get an output of:

search.txt:1:one two three
search.txt:5:one seven eight
search.txt:6:two nine
search.txt:10:zero one one

Alternatively, if we can use the --all option (here abbreviated to -a):

> perl multifind.pl -t one -t two -a search.txt

Now the logic is changed to:

Searching with: /\bone\b/o && /\btwo\b/o

And the resulting output is:

search.txt:1:one two three

This approach is basically similar to the first, but by placing the code we want to match in an
anonymous subroutine, and then calling eval to create it, we avoid having to call eval repeatedly or
embed a while loop inside the eval.

Predefining Search Patterns with 'qr'
The qr operator allows us to precompile regexps and then use them at a later date. This is handy for
verifying the legality of a regexp as we saw earlier in the chapter, and it allows us to be selective about
when we recompile a regexp as we saw above when we tackled the /o modifier.

Chapter 11

398

The real value of qr is that it allows us to remove the uglier aspects of regexp syntax to another place
where they don't interfere with the legibility of the program. While the /x modifier can help to make a
regexp more comprehensible, it still gets in the way of understanding the surrounding code. With qr we
can transplant the regexp entirely. We do not even need to use delimiters, although they are necessary if
we want to use a modifier:

$re = qr/^a.*?pattern/; # define a regexp

if ($re){ ... } # use regexp without delimiters
if (/$re/o) { ... } # use regexp with delimiters and modifier

Like the match, substitute, and split functions, qr has the same rules regarding delimiters –
anything within reason is allowed, and single quotes prevent the contents from being interpolated. See
'Regular Expression Delimiters' earlier in the chapter for more information.

Using Pattern Match Modifiers with 'qr'

One of the conveniences of qr is that it allows us to attach pattern match modifiers to a regexp, so we
don't need to specify them later. That is, we can specify the modifier to qr and then use the regexp
without modifiers:

$re = qr/^a.*?pattern/ism;
if ($re) { ... } # use regexp with precompiled modifiers

If we print out the regexp, we can see what is actually happening. The pattern is embedded into an
inline modifier that surrounds and entirely controls it:

print qr/^a.*?pattern/; # produces '(?-xism:^a.*?pattern)'
print qr/^a.*?pattern/ism; # produces '(?msi-x:^a.*?pattern)'

Notice that the inline modifier is thorough (excluding the /o and /g modifiers) – it switches on
everything we ask for, and switches off anything we did not. This expression will work as we intended
even when combined with other expressions and additional modifiers:

$re1 = /^a.*?pattern/ism;
$re2 = /form \s+ and \s+ void/x;

if (/^$re1$re2$/gm) { ... } # combine two regular expressions

The /o modifier is not included in the 'thorough' inline modifier for a good reason. While it is legal, it
does not do anything in qr. In a sense, qr does the same job as /o since interpolation of the pattern
only happens once – at the time the regexp is defined. In fact we can use qr to solve interpolation
problems in a similar but more flexible way to the /o modifier.

The /g modifier is not legal in a qr pattern at all, since it is not legal as an inline modifier – we cannot
have some of a pattern global and some not. If we try to use /g with qr we get a Bareword found
where operator expected syntax error, which can be a little confusing. If this error ever occurs when
trying to use qr, check that the /g modifier is not present.

Using 'qr' as a Replacement for the 'once-only' Modifier

As we mentioned earlier when we covered the /o modifier, we can use the qr quoting operator to
selectively recompile our regexp when we want to, without losing the benefits of once-only compilation
the rest of the time:

Regular Expressions

399

#!/usr/bin/perl
regb.pl
use strict;

undef $/;
my $text = <>;
my ($this,$that,$other) = ('red','green','blue');

my $pattern = qr/($this|$that)/;
while ($text =~ /$pattern/g) {

if ($1 eq $this) {
print "Found '$this' - rotating\n";
($this, $that, $other) = ($that,$other,$this);
$pattern = qr/($this|$that)/;

} else {
print "Found '$that' - staying put\n";

}
}

This code starts off by looking for red or green. The moment it sees red, it starts looking for green or
blue. If it sees green, it starts looking for blue or red and so on in a cycle. By using qr to compile
and recompile the pattern, we get the benefits of /o without the drawbacks.

Checking the Validity of Regular Expressions
If we are taking input from the user and using it as part or all of a regexp, it can be very hard to
determine if the resulting search pattern is valid or not. Regexps being indeterminately complex means
there is no way to easily check a pattern unless we limit the input to permit only a few elements of
regexp syntax.

The simple way to test the validity of a pattern is to try to compile it and see if we get an error. In order
to do that without causing the program to grind to a halt, we use an eval:

#!/usr/bin/perl
checkre1.pl
use warnings;
use strict;

while (<>) {
chomp;
eval {qr/$_/;};
print $@?"Error in '$_': $@\n": "'$_' is legal \n";

}

We can save the result of successful compilations if we adapt the above technique slightly. Here is a
short program implementing a subroutine that tries to compile a pattern, returning the pattern for use
on success, or an undefined value on failure:

#!/usr/bin/perl
checkre2.pl
use warnings;
use strict;

Chapter 11

400

while (<>) {
chomp;
if (my $re = compile_re($_)) {

print "Pattern ok: $re \n";
} else {

print "Illegal pattern: $@ \n";
}

}

sub compile_re {

my $pattern = shift;

my $re; # local package variable
eval {$re = qr/$pattern/;};

return $re; #undef on error
}

We can run this script and feed it a selection of good and bad patterns as follows:

> perl checkre2.pl
plaintext
Pattern ok: (?-xism:plaintext)
^good[pat]e(r|n)
Pattern ok: (?-xism:^good[pat]e(r|n))
bad[pattern
Illegal pattern: /bad[pattern/: unmatched [] in regexp at ...

The catch with this compilation is that we do not provide for pattern match modifier flags after the
pattern. However, it is still a useful technique. For the curious, the (?-xism....) construct place
around our pattern by qr is an in line modifier; it's explained in 'Using Pattern Match Modifiers
with qr' above.

If we want to allow user input into regexps without allowing users to enter regexp syntax, then we can
use quotemeta to escape any potentially dangerous characters (or place \Q...\E around their input
within the regexp):

#!/usr/bin/perl
quote.pl
use warnings;
use strict;

$| = 1;

print "Enter a pattern: ";
my $pattern = <>;
chomp $pattern;

print "Enter some search text: ";
my $input = <>;

if ($input =~ /\Q$pattern\E/) {
print "'$&' found! \n";

}

Regular Expressions

401

We can run this program and pass it any kind of pattern to search for, even one with regular expression
characters:

> perl quote.pl
Enter a pattern: *ship
Enter some search text: *ship troopers
'*ship' found!

It is important to remember that \Q and \E take effect after variables have been interpolated, so the
above does actually do what it suggests, and doesn't escape the dollar of $input. See the section on
'Protecting Strings Against Interpolation' above, for more on the quotemeta function and the
metacharacters \Q and \E.

Regular Expressions, Tainted Variables, and Debugging
Perl supports the concept of tainted data, where information gleaned from an external source is
considered insecure. This is primarily a feature designed for CGI scripts and other code that is run on a
server due to the actions of a third party. There is no reason why it cannot be used to improve the
security of any and all Perl scripts.

Each time a piece of tainted data is used in an expression, the result of that expression is also marked as
tainted. If we try to do something potentially dangerous, like execute an external program, Perl will
raise a security error and exit. The Taint mode is enabled with the -T command line option, and is
automatically enabled if we run a Perl script under a different effective user ID.

Untainting Tainted Variables
Perl has the concept of security built into the language at a basic level. We can enable this security
through the taint mode by using -T, for example:

#!/usr/bin/perl –T
use warnings;
#enable warnings and Taint mode

Taint mode tracks the input of data into our applications from any external source, be it standard
input, the environment variables in %ENV, or command line arguments passed via @ARGV, and marks it
as 'tainted'. We can untaint a tainted variable by extracting a substring from it. Although Perl is aware
that the match text is tainted, it assumes that by running a regexp across it, we are taking adequate steps
to ensure that any security issues are being dealt with, and so does not mark the extract text as tainted.

We can use this fact to untaint variables that we know to be secure. For example, to untaint the
DOCUMENT_ROOT environment variable we could use:

$ENV{DOCUMENT_ROOT} =~ /^.*/ &&
$ENV{DOCUMENT_ROOT} = $1;

We can usually justify doing this, because if DOCUMENT_ROOT has been compromised then the web
server is probably already in more trouble than our CGI script.

Maintaining Taintedness in Regular Expressions
The pragmatic re module allows us to control various aspects of the regexp engine. One mode, taint,
disables the detaining feature of regexps:

use re 'taint';
$ENV{DOCUMENT_ROOT} =~ /^.*/ &&
$ENV{DOCUMENT_ROOT} = $1;
document root is still tainted!

Chapter 11

402

Like most pragmatic modules, we can switch off this feature with no:

no re 'taint';

This allows us to control which regexps can untaint data, and which cannot.

A related feature of the re module is the eval mode:

use re 'eval';

This permits the presence of the extended patterns (?{ code }) and (??{ code }) in regexps that
also contain interpolated variables. This is otherwise a forbidden combination for security reasons (with
or without taint mode).

Why is it so dangerous? Because interpolation happens before compilation, and the interpolated
variables might therefore contain embedded code that is integrated into the pattern before it is
executed. This means that any kind of user input that is used in the regexp could cause our program to
execute arbitrary code. This is not a good thing for system security. If we really want to allow user input
to regexps see the quotemeta function in 'Protecting Strings Against Interpolation' for ways to protect
against problems like this.

Interpolated variables that contain patterns compiled with qr are not subject to this prohibition, even if
the compiled regexp contains embedded code, so the eval mode is often unnecessary and should
probably be avoided. If we really want to embed code, this is how we could do it (a little) more safely:

allow embedded code patterns
use re 'eval';

compile a pattern with embedded code
$re1 = qr/a pattern (?{print "that doesn't contain user input";})/;

disable embedded code, enable taint mode
no re 'eval';
use re 'taint';

allow user to enter regexp! We would probably want much stricter
limits on what they can enter, in reality.
$re2 = qr/<>/;

process combination of both regexps.
while ($text =~ /$re1$re2/g) {

...
}

Note that eval mode is not compatible with taint mode, since taint enforces a stricter level of
security.

Understanding and Debugging the Regular Expression Engine
The re module also provides a debugging mode. We can enable it with:

use re 'debug' # or use re qw(debug taint) etc...

Regular Expressions

403

When enabled, the regexp engine within Perl will produce a stream of diagnostic information about
what it is doing, both at the compilation stage and the matching stage. For instance, here is a short
program that uses debug mode to print out the processing of a moderately complex regular expression:

#!/usr/bin/perl
debugre.pl
use warnings;
use strict;

use re 'debug';

my $matchtext = "helium contains two protons, two neutrons and two electrons";

my $re = qr/(\w+\s(?:proton|neutron)s?)/;

while ($matchtext =~ /$re/g) {
print "Found $1 \n";

}

The regexp in this program attempts to find a word (\w+) followed by a space (\s) and either proton
or neutron, optionally followed by an s (s?). The whole thing is extracted into $1 by parentheses.
When run, this program outputs first a compilation dialog and then a match dialog. The compilation
dialog looks something like this:

Compiling REx '(\w+\s+(?:proton|neutron)s?)'
size 22 first at 4

1: OPEN1(3)
3: PLUS(5)
4: ALNUM(0)
5: PLUS(7)
6: SPACE(0)
7: BRANCH(11)
8: EXACT <proton>(16)

11: BRANCH(15)
12: EXACT <neutron>(16)
15: TAIL(16)
16: CURLY {0,1}(20)
18: EXACT <s>(0)
20: CLOSE1(22)
22: END(0)

stclass 'ALNUM' plus minlen 8

This is the execution plan of a state machine, which is what the regexp engine creates from the patterns
that we supply it. The state numbers, which are also the position of the relevant parts of the pattern in
the pattern text, are the column on the left. The numbers in parentheses on the right are transitions to
other states (or jumping points to other parts of the pattern text, which is the same thing) that take place
in the right circumstances. For example, state 7 is a BRANCH with two possible successors, 8 and 11.
The engine will first move to state 8, and if it succeeds, move on to 16. If state 8 fails, the engine returns
to state 7 and takes the other branch to state 11.

Of course we do not need to understand this state machine in detail, but it can be useful for working out
what a regexp actually says, as opposed to what we thought it said. Failing that, we can look at the
match dialog to see how the pattern is processed against our match text.

TE
AM
FL
Y

Team-Fly®

Chapter 11

404

The match dialog is a lot longer, so we won't reproduce it in full. However, from the start of the match
text to the first match (two protons) it looks like this, with some additional explanatory comments:

Matching REx '(\w+\s+(?:proton|neutron)s?)' against 'helium contains two protons, two neutrons and
two electrons'

Setting an EVAL scope, savestack=10
0 <> <helium conta> | 1: OPEN1
0 <> <helium conta> | 3: PLUS

ALNUM can match 6 times out of 32767...

Aha, the engine has found helium at position 0 in the match text, matching the \w+ that ends at position
3 in the pattern. Note that all of helium matches at once because \w+ is greedy.

Setting an EVAL scope, savestack=10
6 <elium> < contai> | 5: PLUS

SPACE can match 1 times out of 32767...

It is followed by a space at position 6, so that satisfies the \s that ends at position 5. So far, so good...

Setting an EVAL scope, savestack=10
7 <lium > <contain> | 7: BRANCH

Setting an EVAL scope, savestack=10
7 <lium > <contain> | 8: EXACT <proton>

failed...

Oops, the next character does not match the start of proton...

7 <lium > <contain> | 12: EXACT <neutron>
failed...

And it does not match the start of neutron either...

failed...

So it does not match proton OR neutron...

 failed...

As there are no other alternatives, the match for \s must be wrong, so backtrack...

5 <heliu> <m conta> | 5: PLUS
SPACE can match 0 times out of 32767...

Now the greediness of \w+ counts against it. The engine tries to match \w+ against one less character,
and then sees if that allows \s to match. Of course, it does not.

Setting an EVAL scope, savestack=10
failed...

4 <heli> <um conta> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

Regular Expressions

405

3 <hel> <ium conta> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

2 <he> <lium conta> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

1 <h> <elium conta> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

The engine backtracks all the way back down helium, matching \w+ against one less character each
time and trying to match \s with the following character...

 failed...

Oops, run out of characters to backtrack. So the match to \w+ must also be incorrect. Look for
somewhere else to match \w+

Setting an EVAL scope, savestack=10
7 <lium > <contain> | 1: OPEN1
7 <lium > <contain> | 3: PLUS

ALNUM can match 8 times out of 32767...

The next place that fits \w+ is the word contains. The story for the next few messages is a repeat of the
earlier failed match that started with helium, since contains is followed by a space but the space is not
followed by proton or neutron...

Setting an EVAL scope, savestack=10
15 <tains> < two pr> | 5: PLUS

SPACE can match 1 times out of 32767...
Setting an EVAL scope, savestack=10
16 <ains > <two pro> | 7: BRANCH
Setting an EVAL scope, savestack=10
16 <ains > <two pro> | 8: EXACT <proton>

failed...
16 <ains > <two pro> | 12: EXACT <neutron>

failed...
failed...

failed...

Again, we find that neutron does not match, so (proton|neutron) does not match, so the \s cannot
match. Time to backtrack...

14 <ntain> <s two p> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

13 <ontai> <ns two > | 5: PLUS
SPACE can match 0 times out of 32767...

Chapter 11

406

Setting an EVAL scope, savestack=10
failed...

12 <conta> <ins two> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

11 < cont> <ains tw> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

10 <m con> <tains t> | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

9 <um co> <ntains > | 5: PLUS
SPACE can match 0 times out of 32767...

Setting an EVAL scope, savestack=10
failed...

8 <ium c> <ontains> | 5: PLUS
SPACE can match 0 times out of 32767... Setting an EVAL scope, savestack=10

failed...

We backtrack all the way to the start of contains trying to match \s and failing. Exactly as we did
before with helium...

 failed...

But there is no match. Ergo \w+ cannot match any part of contains either. The engine gives up and
moves forward again looking for the next match for \w+...

Setting an EVAL scope, savestack=10
16 <ains > <two pro> | 1: OPEN1
16 <ains > <two pro> | 3: PLUS

ALNUM can match 3 times out of 32767...

The next word is two, matching the \w+...

Setting an EVAL scope, savestack=10
19 <s two> < proton> | 5: PLUS

SPACE can match 1 times out of 32767...

Which is followed by a space, matching the \s...

Setting an EVAL scope, savestack=10
20 < two > <protons> | 7: BRANCH
Setting an EVAL scope, savestack=10
20 < two > <protons> | 8: EXACT <proton>

Aha, this time the test for proton succeeds. We never test for neutron because proton is given first in the
regexp.

26 <roton> <s, two > | 16: CURLY {0,1}
EXACT <s> can match 1 times out of 1...

Regular Expressions

407

The optional s also matches, so we grab it too. Note how the ? is internally expanded to {0,1}.

Setting an EVAL scope, savestack=10
27 <otons> <, two n> | 20: CLOSE1
27 <otons> <, two n> | 22: END

Match successful!

And now we have reached the end of the regexp (CLOSE1). Since there is no more pattern left, we
must have matched. Hurrah! We leave the regexp and execute the body of the while loop:

Found two protons

Substitution
Just to prepare for the following section on the substitution operator, let us recap on what we looked at
during the regexp introduction. Substitution is performed by the s (or s///) operator; its syntax is
nearly identical to that of the match operator that we have used in most of the examples so far. The key
difference is that substitution replaces matched text with a replacement string. For example, to replace
all neutrons with protons we might use:

$atom =~ s/neutron/proton/g;

Substitutions permit all the same pattern match modifiers that matches do – like the /g global modifier
in this example. Also, like matches, substitutions return the same values and set the same variables if we
use parentheses. All these are aspects of the pattern match rather than the substitution, so they apply to
matches, substitutions, and splits alike.

Substituting Matched Text and Interpolation
We are not limited to literal text in the replacement string. To begin with, we can substitute the matched
text with part of itself. For instance, this (admittedly over-simplistic) regexp attempts to turn Perl-style
comments into C-style ones:

$program =~ s|#(.*)$|/*$1*/|mg;

Notice that characters like * do not need to be escaped on the right-hand side of the substitution – it is
not a pattern. Given a line like:

print "Hello World \n"; #standard greeting

It should produce:

print "Hello World \n"; /*standard greeting*/

Of course this does not take into account that # can occur in Perl programs in other ways, (for example,
as a character class).

This example also illustrates another important aspect of the replacement string – it is interpolated. This
means that all the interpolation metacharacters (but not, of course, the regexp metacharacters) can be
used in it, and that variables can be interpolated into it. Interpolation of the replacement text happens
each and every time a match occurs. This is fortunate because variables like $1, which can change
between matches, would not work correctly.

Chapter 11

408

The following pattern looks for literal periods that are followed by one or more spaces and replaces
them with a full stop plus a linefeed:

$text =~ s/\.[]+/.\n/; # put each sentence on a new line

As a brief note on this expression, we have looked for spaces rather than whitespace to avoid matching
and replacing newlines with themselves, which is unnecessary. We have also used a character class to
make the space stand out. While the square brackets are unnecessary, a space on its own in a regexp can
be hard to spot.

A little-known fact about backreferences is that they also work on the right-hand side of a substitution.
That is, instead of using $1 in the replacement string, we can use \1:

$program =~ s|#(.*)$|/*\1*/|mg;

The reason for this is that it is compatible with sed, one of the UNIX tools from which Perl evolved,
and is present for backward compatibility to help people migrating from tools like sed and awk.
However, it is not a good idea because \1 really ought to mean Cntrl-A outside of a pattern, and is not
compatible with the /e flag for exactly that reason. In other words, don't use it, but be aware that it
might pop up in old Perl scripts.

If we want to replace the matched text with part of itself followed by some numeric digits, then we have
a slight problem. How do we distinguish the numbered variable from the following characters? For
example, this regexp would like to replace Kilo suffixes with the appropriate number of zeros:

/\b(\d+)K\b/$1000/g; # $1000 does not exist

In order to fix this problem we can make the numbered variable explicit by surrounding the numeral(s)
that are part of it with curly braces:

/\b(\d+)K\b/${1}000/g; # correct

Evaluating the Replacement String
In addition to substituting replacement text, interpolated or otherwise, we can actually determine the
replacement text by evaluating Perl code at the time of the match. This is enabled through the use of the
/e evaluation modifier. Note that we do not say 'pattern match modifier' because /e has no bearing on
the pattern at all, only the replacement text.

To illustrate how /e works, here is an example of a program that uses a substitution and /e (in
combination with /g) to replace numbers with qualitative descriptions:

#!/usr/bin/perl
quality.pl
use warnings;
use strict;

my $text = "3 Stumps, 2 Bails, and 0 Vogons";

$text =~ s/\b(\d+)\b/$1 > 0?$1 > 1?$1 > 2? "Several":"A pair of":"One":"No"/ge;

print $text, "\n";

Regular Expressions

409

> perl quality.pl
Several Stumps, A pair of Bails, and No Vogons

The right-hand side of this substitution contains a perfectly normal (if slightly confusing) Perl
expression. Admittedly, this regexp could stand being a little more legible. Since this is executable code
we can format it how we like; we do not need the /x modifier to add whitespace and comments:

$text =~ s{\b(\d+)\b}
{

$1 > 0?(
$1 > 1?($1 > 2?"Several":"A pair of"
):"One" # $1 == 1
):"No" # $1 == 0

}ge; # global, execute

The /e modifier is very similar in operation to eval and a single-quoted, that is, uninterpolated, string
(do not confuse evaluating an expression with interpolating a string!). One advantage /e has over eval,
however, is that Perl does perform a compile-time syntax check on the replacement string. Perl can do
this because in this case it knows interpolation cannot alter the syntax of the right-hand side – so if it is
legal at compile-time it will be legal at run time.

Interpolating and Evaluating the Replacement String
Having just said that /e evaluates but does not interpolate the right-hand side, we can add another e
and have Perl interpolate the right-hand side too. The /ee modifier first interpolates the right-hand side,
and then evaluates the result of the interpolation, much in the same way as eval deals with a double-
quoted string.

As an example, the following substitution expands any scalar or array variable in the supplied match
text (in the same way that interpolation does on literal text), but without processing any metacharacters
that might also be present:

$text =~ s/ ([\$\@]\w+) /$1/gee;

The search pattern will match any standard Perl variable name like $scalar or @array. For each
successful match, $1 is first interpolated, and replaced with text containing the name of the variable
(say, $scalar). This is then evaluated to get the value of the variable, which is then used as the
replacement string.

The drawback of /ee is that it is an expensive, and hence slow operation involving both an
interpolation and an eval each time a match occurs. It also suffers from not being syntax checked at
compile-time, since Perl does not know what the replacement text is going to be when it executes the
substitution. It is therefore not an advisable solution for regexps that match often.

Transliteration
Transliteration is the process of replacing one letter with another. The synonymous transliteration
operators tr and y are usually grouped with the regexp operators because of the similarity of their
syntax to the substitution operator. Like the substitution operator, they can be used with any suitable
delimiters, are associated with match text with =~, have search and replace criteria, and even accept
modifiers.

Chapter 11

410

However, syntax apart, transliteration really has nothing to do with regexps at all. The left-hand side of
a transliteration is not a regexp but a list of characters to be transformed (that is, transliterated), and the
right hand side is another list of characters that they are to be transformed into. Each character on the
left-hand side is converted into the matching character on the right, determined by their respective
positions in the left and right lists.

As a simple example, this transliteration converts the letter a into the letter z, the letter b into the letter
y, and the letter c into the letter x:

$text =~ tr/abc/zyx/;

If the replacement list is longer than the search list then the trailing characters are ignored. If, however,
it is shorter, Perl replicates the final character until the replacement list is long enough:

$text =~ tr/abcd/zy/;

This example replaces a with z and all of b, c, and d with y.

The return value from a transliteration is a count of the number of successful matches. Since
transliteration is faster than a regexp for finding single characters, one way we could (for instance) count
the number of vowels in a piece of text would be with a transliteration:

$vowel_count = $text =~ tr/aeiou/aeiou/;

Although the search list of a transliteration is not a regexp, it has a lot in common with character classes,
and accepts both ranges and interpolation (but not, ironically, character class) metacharacters. Here is a
transliteration that uses ranges to uppercase the letters a to f and z:

$text =~ tr/a-fz/A-FZ/;

In a similar vein, here is a transliteration that replaces tabs and newlines with spaces:

$text =~ tr/\t\n/ /;

Here is a transliteration that matches the entire range of characters except ASCII 255 and adds one to
the ASCII value of each character:

$text = "HAL";
$text =~ tr/\x00-\xfe/\x01-\xff/;
\x00 is a long way of saying \0 but it looks better here
print $text; # produces 'IBM'

Finally, here is an implementation of ROT-13, which swaps the first half of the alphabet with the
second:

$text =~ tr/a-nA-Nm-zM-Z/m-zM-Za-nA-N/;

Note that we cannot use a transliteration to say things like 'replace a tab with four spaces' – for that we
need a substitution (or the Text::Tabs module). Transliteration can only replace a character with
another character, never more.

Regular Expressions

411

Transliteration lists are compiled by Perl at compile-time, so neither the search or replace lists are
interpolated. If we want to use lists determined at run-time, then we must use an eval:

eval "tr/$search/$replace/";

As with its regexp siblings, the transliteration operator will use $_ by default if no explicit match text is
supplied:

tr/a-z/A-Z/; # capitalize all lower case characters in $_

If the replacement list is empty, characters are transliterated into themselves without change. On its own
this is not especially useful, but this behavior is altered by both the /d and /s modifiers.

Transliteration Modifiers
Standard transliterations support three modifiers (c, d, and s) that alter the nature of the transliteration.

The /c or complement modifier inverts the sense of the search list to include all characters except those
listed (somewhat similar to the opening caret of a negated character class). For example, to replace all
non-alphabetic characters or whitespace characters with question marks we could use:

$text =~ tr/a-zA-Z\t\n/?/c;

The /d or delete modifier removes any character in the search list (possibly inverted by /c) that is not
transliterated. That is, if the search list is longer than the replacement list then the replacement list is not
extended, and characters on the search list, for which there is no replacement, are deleted.

$text =~ tr/a-zA-Z/A-Z/d; # uppercase a-z and delete existing A-Z

The /s or squash modifier removes duplicate characters in the resulting text if both characters were the
product of transliteration. Existing duplicates, or duplicates that occur because only one character has
been transliterated are left alone. Here is an example that flattens whitespace:

$text =~ tr/\t\n//s;
translate any whitespace to literal space and remove resulting duplicates

Note that for this example to work we had to transliterate spaces to themselves in order for them to be
considered for duplicate removal.

To remove existing duplicates we can transliterate them into themselves by specifying the /s modifier
and an empty replacement list. This causes every character to be transliterated into itself, after which
duplicates are removed:

$text =~ tr/a-zA-Z0-9/s/; # remove duplicate alphanumeric characters

All three modifiers may be used in combination with each other. As an example, here is an improved
duplicate character eliminator that works for any character at all:

$text =~ tr///cs;

Chapter 11

412

This works by taking the complement of no characters at all (which is all characters), and translating
them into themselves, removing duplicates. Beware however, of using a complemented nothing as a
search list to mean 'all characters'. Although it does mean this, the width of the search list is still zero, so
we only get the expected result if the replacement list is also empty.

Summary
In this chapter we have seen and explored one of Perl's richest features – regular expressions. Perl has
the capacity to handle them in such a fashion that it is one of the strongest cases for using the
programming language to manipulate text in a very amicable way. In short we have looked at:

❑ The ways in which Perl performs the task of string interpolation, which are open to use and
abuse whenever they are implemented.

❑ Where regular expressions occur, leading to the kinds of patterns, both simple and complex,
that can be created and used in scripts.

❑ How to write efficient regular expressions making sure that they are valid and free from bugs
that would otherwise lead to Perl misinterpreting our intended matches.

Regular Expressions

413

TE
AM
FL
Y

Team-Fly®

Chapter 11

414

Input and Output with Filehandles

Input and Output, or IO for short, is one of the most fundamental concepts in programming, and
indeed in computing as a whole. In a very real sense, any application that does more than print out
'Hello World' is a mechanism for taking input, doing something with it, and producing output.
Consequently, it is an important topic.

Basic IO is the foundation of many other topics – network programming, one of the most important (or
at least, popular) subtopics, is covered in Chapter 23, as is inter-process communication (IPC) in
Chapter 22. Text-based interactive input and output is also covered in Chapter 18. All of these topics, to
some extent, extend the basic IO concepts covered in this chapter.

In order to read or write to any kind of data source, we need a way of communicating with it.
Filehandles provide that facility, acting as one end of a channel along which data can pass in one or
both directions. The other end of the channel is largely abstract, so aside from the details of how we
create the filehandle, one filehandle is very much like another. This abstraction allows a lot of different
IO programming tasks to be condensed down into one set of concepts.

Once we have a filehandle we can read from it and write to it. If the filehandle points to an actual file or
another device that supports the concept of a position, we can also use random access to read or write to
different parts of the file.

We can do more with filehandles than read or write, however. One important feature is file locking,
restricting access to a file by other processes or programs while we are busy. This is often an important
issue for CGI scripts, for example. Additionally, we can redirect data streams by replacing file handles,
duplicate filehandles, and even redefine the default filehandle used by functions such as print. All of
these issues will be covered in this chapter. In Chapter 13, we look more into manipulating files and
directories.

Chapter 12

416

IO and Filehandles
Filehandles are a connection between our program and an external data source. This source may be an
actual file, or it may be something different, such as a serial device, network connection, or the
keyboard. Since filehandles are abstract concepts, any of these wildly different forms of communication
can be treated in very similar ways for the purposes of programming. The name 'filehandle' is
something of a misnomer, only a small subclass of filehandles actually point to a file. However, the
name is used generically, so standard output is a filehandle even though it normally writes to the screen.

A lot of documentation, particularly in the C world, makes reference to 'file descriptors', which are
apparently numeric equivalents to filehandles. In fact, a file descriptor is at the heart of every filehandle,
and represents the numeric value of a data stream within the operating system itself. Here we primarily
talk about filehandles, since Perl allows us to ignore file descriptors most of the time. However, we will
return to the subject of file descriptors where appropriate in the chapter.

The Filehandle Data Type
Filehandles in Perl are a distinct data type. They are unrelated to scalars, and have their own slot in the
symbol table typeglobs, as we covered in Chapter 5. The reason for this differentiation is that
underneath the opaque and impenetrable skin of a filehandle is a structured collection of information
that describes the actual connection. By keeping this information private, the filehandle is able to
conceal the physical aspects of the device that it is associated with. This allows it to make use of
buffering to improve the efficiency of IO operations, storing up writes until there is enough to send, and
reading larger chunks of data than we ask for. Further attempts to read can then be supplied from
memory rather than by accessing the data source again. In the case of files this minimizes the number of
disk accesses required, and for other filehandles it minimizes the number of interruptions that the
system must undergo.

The fact that filehandles are a different data type from anything else in Perl can cause a lot of confusion,
because filehandles are not scalar values despite the fact that they clearly represent a single value. This
means that assigning a filehandle to a scalar does not work. By the same token, passing a filehandle into
or out of a subroutine also doesn't work. Since there is no special prefix for filehandle variables, only a
data type, the only way to pass filehandles around is to refer to them via their typeglob entry.

Standard Filehandles
Perl provides three standard filehandles to all Perl programs automatically, STDIN, STDOUT, and
STDERR.

Standard input, or STDIN, represents the default input filehandle, and is usually connected to the
keyboard. This is the filehandle that functions like getc and the readline operator use by default.

Standard output, or STDOUT, represents the default output filehandle, and is usually connected to the
screen (technically, the console device). This is the filehandle that the print function uses by default.
Both STDIN and STOUT are 'smart' and buffer their connections automatically (buffering whole blocks of
data unless they are connected to an interactive device, in which case they only perform line buffering).

Input and Output with Filehandles

417

Standard error, or STDERR, is the default error output filehandle. Like STDOUT it is normally connected
to the screen. Unlike STDOUT it is usually not buffered at all, which ensures that error messages are
always written in a timely manner.

For many applications the standard filehandles are actually all we need, and indeed many of the
examples in the book so far make implicit use of them without touching on the subject of IO at all.
However, if we want to read or write to anything else we will need to create a filehandle to access it.

Creating Filehandles
There are two primary ways to create a filehandle in Perl. The first and most obvious is the open
function, which attempts to open a file and create a filehandle to talk to it. The second is to use the
IO:: modules (the IO::File module in particular), to create filehandles that can be more easily
manipulated and passed to subroutines without messing around with typeglobs. The IO:: modules also
provide an object-oriented interface, which is more suitable to an object-oriented programming style.

Creating Filehandles with 'open'
The open function takes a filename and creates a filehandle for it. Traditionally it takes two arguments,
the filehandle to create and the filename, optionally prefixed by an open mode. Without any prefix,
files are opened for reading only, as in these two examples:

open (MYHANDLE, "myfile"); # explicit filename
open MYHANDLE $filename; # filename in variable

The filehandle MYHANDLE is a package variable that is defined by the call to open. Once open, we can
read from the file. For example, reading with the readline operator:

while (<MYHANDLE>) {
print "Got: $_";

}

For ordinary files, the return value from open is 1 on success and the undefined value on failure. The
filehandle will be created in either case, but if the call to open fails, the filehandle will be unopened and
unassigned. In the event that the open fails, the reason is stored in the special variable $! (or $ERRNO
with use English) which produces a message in string context. Since failing to open a file is often a
fatal problem for Perl scripts, open and die are often combined together:

open (MYHANDLE, $filename) or die "Can't open $filename: $!\n";

Even if we do not want to die, it is a good idea to check the return value of open; failing to check the
return value from open can lead to all sorts of problems when we try to use the filehandle.

An open also has a one-argument form where only the filehandle is specified. In this case open
will attempt to use the contents of the scalar variable with the same name for the filehandle and the
filename. However, this only works for package variables, not lexical ones, so its usefulness is
somewhat limited:

our $FILE = "myfile";
open $FILE or die "Failed to open: $! \n";

Chapter 12

418

What actually happens, in the case of only one argument, open looks up the name of the typeglob
containing the scalar variable, and places the new filehandle into its handle slot. It is a minor piece
of symbol table manipulation, which is why the argument must be a package variable.

Opening Files for Reading, Writing, and Updating
Without a prefix of any kind open opens a file for reading only. In order to write to or change the
contents of a file, we have to prefix the filename with an open mode – optionally separated from the
filename by spaces. The 'read' mode prefix < is usually omitted because it is the default. To write or
append to a file we use the > or >> modes respectively:

open MYHANDLE, ">$file"; # open file for writing
open MYHANDLE, "> $file"; # the same, with optional spacing added
open MYHANDLE, ">>$file"; # open file for appending

Both these modes open the file for writing only, but they differ in significant ways. > will create the file
if it does not exist, but destroy its existing contents if it does. >> also creates the file if it does not exist,
but it will append to the end of the file if it does.

open understands six modes in total; the three standard modes and three 'update' variations. The full
list with explanations is given in the table below:

Mode Symbol Description

Read < Open the file for read access only, for example:

open FH, "<$file";

This is the default mode and so the < prefix is usually optional.
The exception is if the first character of the filename is significant
to open, see 'Opening Arbitrary Filenames' below. If the file does
not exist then the open fails.

Write > Open the file for write access only, for example:

open FH, ">$file";

If the file does not exist then it is created and opened. If the file
does exist then it is truncated and its existing contents are lost.

Append >> Open the file for write access only, for example:

open FH, ">>$file";

If the file does not exist then it is created. If the file does exist then
it is opened and the existing contents are preserved. Any writes to
the file will be appended to the end of the existing contents.

Read-Update +< Open the file for read and write access, for example:

open FH, "+<$file";

This is the standard way to open a file for both read and write
access. If the file does not exist then the open fails. If the file does
exist then its existing contents are preserved and both read and
write will start from the beginning of the file. Note that this is the
correct mode to use if we want to open a file and write over the
existing contents. The +>> mode appears to do this job, but will
generally append to the end of the file instead, irrespective of the
file position.

Input and Output with Filehandles

419

Mode Symbol Description

Write-
Update

+> Open the file for read and write access, for example:

open FH, "+>$file";

As with +<, the file is opened for read and write access. If the file does
not exist then it is created. If the file does exist then it is truncated and
its existing contents are lost. Because of this, this mode is usually only
used to create new files that will first be written to and later read from.

Append-
Update

+>> Open the file for read and write access, for example:

open FH, "+>>$file";

If the file does not exist then it is created. If the file does exist then
both read and write commence from the end of the file. On most (but
frustratingly not all) platforms reads may take place from anywhere in
the file, presuming the file position is first moved with seek. Writes
always append to the end of the file, moving the file position with
them. For this reason this mode is not usually used for read-write
access; +< is preferred.

Opening Arbitrary Filenames
Some files may legally have filenames that open has trouble with. For instance, a file could start with a
mode sign such as >, which ordinarily opens a file for writing. Any of the punctuation symbols +, <, >, |
and & have special significance to the open function. This causes problems with the traditional use of
open to open a file for reading where the optional < prefix is omitted:

$file = ">file"; # tricky filename (starts with a prefix)
open MYHANDLE, $file; # opens 'file' for writing, prefix in file is used
open MYHANDLE, "<$file"; # opens '>file' for reading

To resolve these cases, Perl also provides a three-argument version of open where the mode is supplied
separately from the file name. This also allows us to protect leading or trailing spaces, should we be
using a filename containing them:

$file = " file "; # leading space
open MYHANDLE, "<$file"; # incorrect, opens 'file' (leading space stripped

after interpolation)
open MYHANDLE, '<', $file; # correct, opens ' file ' (no interpolation,

space is preserved)

Another way to handle awkwardly named files is to use the system-level open function sysopen instead
of open. This will be covered later in the chapter.

Opening Standard Input and Standard Output
An open treats certain filenames as special. If the filename passed to open is a single minus - or a
minus prefixed with a < symbol then open will instead open standard input:

open MYSTDIN, '-';

Chapter 12

420

At first glance this may not seem particularly useful, but it is in fact very handy. For a start, we can tell a
program to either read from an explicit filename, or its standard input, by passing in either the filename
or a minus:

$filename = get_filename(); # may return undef...

open FILE, $filename?$filename: '-'; # open standard input if no filename

Perl also makes use of this feature when processing the @ARGV array using the readline <> operator. It
does this by placing a single minus into @ARGV if it is otherwise empty so that <> will read from
standard input. See Chapter 14 for more details of using @ARGV in this way.

If the filename passed to open is >- then standard output is opened instead:

open MYSTDOUT, '>-';

Again, although not apparently useful this allows programs to pass in standard output as a filename to
functions and subroutines that accept an arbitrary filename.

There is no equivalent way to open standard error in this fashion, at least portably, as it does not have a
shorthand filename alias. If we want to explicitly open standard error we can do so, but only by opening
platform-specific files (for example, /dev/stderr on some UNIX implementations) or duplicating or
aliasing the existing filehandle, which we will cover later in 'Duplication and Aliasing Filehandles'. Note
that if we really want to read and write to a file called -, which is rather dubious, we can use the three-
argument version of open to do so:

open FILE, '+<', '-'; # open a file called '-'.

Creating Filehandles with 'IO::File'
To simplify the creation and use of filehandles, Perl comes with a set of library modules in the IO::
family that abstract much of the awkward aspects of filehandles. At the same time they also provide an
object-oriented interface. The IO::Handle module provides basic filehandle support. Support for
filehandles representing real files comes from the IO::File module.

If we plan to use several of the IO:: modules we can save some typing and use the generic IO module
instead. This is simply a convenient umbrella module that pulls several of the IO:: modules all at once.
So, we can say this:

use IO::Dir;
use IO::File;
use IO::Handle;
use IO::Pipe;
use IO::Seekable;
use IO::Socket;

Or, more tersely:

use IO;

Input and Output with Filehandles

421

Opening a file with IO::File is not dissimilar to opening it with open, but with a much more
convenient interface. For example to open a file in write-only mode we can supply a single parameter:

use IO::File; # or 'use IO';

$fh = new IO::File; # create a filehandle object
$fh->open("> myfile") or die "Unable to open: $!"; # open a file

Or, more tersely:

create and open new filehandle
use IO::File;
$fh = new IO::File("> myfile") or die "Unable to open: $!";

The filehandle returned from the IO::File new is a filehandle object that we can use anywhere a
regular filehandle goes. In addition we can manipulate the filehandle with methods from the IO::File,
IO::Handle, or IO::Seekable modules:

$fh->autoflush(1);
$fh->seek(0, SEEK_END);
$fh->print("Message...\n");
$fh->close();
$fh->open("> $anotherfile");

The new method also handles a two-argument form, in which case the second argument is the mode to
open the file in:

$fh->open($anotherfile, ">");

The mode may be any of the modes acceptable to open. In addition, it will accept one of the equivalent
C-style fopen modes, for which Perl's modes are synonyms. In both cases IO::File maps the call into
an open and returns the filehandle created. Finally, the mode may be a combination of numeric flags,
which together make up the mode. In this case IO::File translates the call into a sysopen, and as
with sysopen, we may also supply a permissions mask. The standard open modes are all shorthand
codes for their equivalent sysopen mode flags, as the following table illustrates:

'open' Mode 'fopen' mode 'sysopen' flags

< r O_RDONLY

> w O_WRONLY | O_CREAT | O_TRUNC

>> a O_WRONLY | O_APPEND | O_CREAT

+< r+ O_RDWR

+> w+ O_RDWR |O_CREAT | O_TRUNC

+>> a+ O_RDWR |O_APPEND | O_CREAT

Examination of the sysopen flags is revealing. A base mode is always required, and must be one of
O_RDONLY, O_WRONLY, or O_RDWR, which open a file for reading only, writing only (not supported on
Windows) or both reading and writing, respectively.

Chapter 12

422

To append to a file we add the O_APPEND flag. Clearly this needs a writable file so it only combines
with O_WRONLY or O_RDWR. Similarly, O_CREAT will create the file if it does not exist, and O_TRUNC will
truncate it if it does. By examining this table we can see why the standard open modes do what they do.

One of the benefits of IO::File is that it allows us to choose whichever method suits us at the time.
However, if we want to specify file permissions too, then we must use the sysopen style and supply a
numeric mode. We'll cover this and the other flags that can be supplied in a sysopen mode in 'System
Level IO' later in the chapter.

The Data Filehandle
Perl defines a special pseudo-filehandle, DATA, which will read input data from within the source file. To
create data within a source file we insert the special token __DATA__ on a line of its own. Everything
below this token will not be parsed or compiled by Perl but will instead be made available as input to
the DATA pseudo-filehandle, up to the end of the file or an __END__ token, if present.

We may sometimes see Perl programs use __END__ for this purpose. This may seem confusing since
__END__ is supposed to stop Perl parsing, period. The reason for this is for backwards compatibility
with the era before Perl 5, where __END__ officially had the role that __DATA__ now does.
Consequently __END__ works like __DATA__ in the main source file, but not in other packages or
in files included by do or require.

Defining data within a source file can be very convenient. For example, we can define a default
configuration file without actually creating or installing a separate file to hold it. It is also convenient for
defining large data structures with complex syntax, or where the data is very unlikely to change. Here is
an example of a program that stores planetary data in a table and reads it with the DATA filehandle:

#!/usr/bin/perl
planets.pl
use warnings;
use strict;

my $columns = <DATA>;
chomp $columns;
my @columns = split /\s*, \s*/, $columns;
shift @columns; # lose first name

my %table;

while (<DATA>) {
next if /^#/; # skip comments
my @data = split /\s*, \s*/;
my $name = shift @data;

foreach (0..$#data) {
print "$_ : $columns[$_] : $data[$_] \n";
$table{$name}{$columns[$_]} = $data[$_];

}
}

foreach (sort keys %table) {
print "$_\n";
foreach my $stat (sort keys %{$table{$_}}) {

print "\t$stat = $table{$_}{$stat}\n";
}

}

Input and Output with Filehandles

423

__DATA__
Body , Radius , Mass , Distance, Moons, Day , Year
The Sun
Sun , 6.960e8, 1.989e30, 0 , n/a , 25.36 days , n/a
The Planets
Mercury , 2.420e6, 3.301e23, 5.791e10, 0 , 58.7 days , 87.97 days
Venus , 6.085e6, 4.869e24, 1.082e11, 0 , 243 days , 224.7 days
Earth , 6.378e6, 5.978e24, 1.496e11, 1 , 23.93 hours, 365.3 days
Mars , 3.375e6, 6.420e23, 2.279e11, 2 , 24.6 hours , 687 days
Jupiter , 7.140e7, 1.899e27, 7.783e11, 13 , 9.9 hours , 11.86 years
Saturn , 6.040e7, 5.685e26, 1.427e12, 10 , 10.2 hours , 28.46 years
Uranus , 2.360e7, 8.686e25, 2.869e12, 5 , 10.7 hours , 84.02 years
Neptune , 2.230e7, 1.025e26, 4.498e12, 2 , 15.8 hours , 164.8 years
Pluto , 3.000e6, 5.000e23, 5.900e12, 1 , 6.3 days , 248 years
And the Moon, just for luck
Moon , 1.738e6, 7.353e22, 1.496e11, n/a , 27.32 days , 27.32 days

__END__
A comment - this is neither part of the program nor the data (but see below...)

If an __END__ token appears after the __DATA__ token then the data ends as soon as it encounters the
__END__, otherwise it finishes at the end of the file. __DATA__ tokens are actually package scoped, so
multiple __DATA__ tokens in different files but within the same package concatenate together in the
order in which the package files are used or required. To access the data in a different package we
can prefix the filehandle with the package name:

access data in MyPackage
while (<MyPackage::DATA>) {

...
}

As mentioned earlier, the main source file treats __END__ differently, for compatibility reasons.
Consequently if we use __END__ in the main package it works like a second __DATA__ and is ignored
(since we have already seen one __DATA__). The planets program above is actually written to avoid us
noticing that it does in fact read both the __END__ and the comment following it as data; the errant lines
are eliminated because they do not contain any commas. If __END__ does not appear to be working
correctly, this may be the reason.

Other Filehandles
Before moving on to reading and writing filehandles, it is worth mentioning the other kinds of filehandle
that we can create in Perl. Three other functions in Perl return filehandles: pipe, socket, and
socketpair. In the case of pipe and socketpair, they actually return two filehandles, which are
used in different circumstances.

Pipes are simply a pair of filehandles wired back to back, one read-only and one write-only. We write
into one end, and read from the other. Pipes are mainly used for communicating between different
processes and external programs, and are consequently covered in detail in Chapter 22. The open
function supports the creation of implicit pipes and the execution of external programs, and can also be
made to carry out a fork and exec at the same time. These extended uses of the open function are also
covered in Chapter 22.

TE
AM
FL
Y

Team-Fly®

Chapter 12

424

The socket function is the equivalent of open for sockets. Sockets are the backbone of Perl's network
programming support and accordingly take up the bulk of Chapter 23. Sockets have more than one
mode of operation, but they can operate very much like regular filehandles for the purposes of reading
and writing. The socketpair function creates the equivalent of a pipe using sockets, returning two
sockets connected back to back. Unlike ordinary pipes, a pair of sockets created this way permits two-
way communications.

The term 'filehandle' is thus rather more general than it might at first seem, since a handle need not
refer to a file, or even a known hardware or network device. The elegance of filehandles is that once
created we can for most intents and purposes ignore what they actually represent. This does not mean
we do not have to deal with the special circumstances of a filehandle – a network socket has to deal with
networking issues that do not apply to a text file. It does mean, however, that for simple reading and
writing we can treat all filehandles as basically similar.

Referring to Filehandles
Referring to filehandles correctly is a large source of confusion in Perl. This confusion arises from two
sources. First, there is no explicit syntax for filehandles. Second, what we think of as filehandles in Perl
source code are actually symbolic references to typeglobs containing filehandles. Perl's syntax and the
use strict module conspire to make this invisible to us, but the conspiracy is not perfect and so
sometimes things do not work as we expect. Once we understand this, a lot of the mystery surrounding
Perl's filehandles can be dispelled.

All Perl's built-in functions that take filehandles as arguments allow filehandles to be specified directly
or indirectly. Directly just means writing the name of the filehandle, as in:

print MYHANDLE "Hello Filehandle \n";

The print statement knows that MYHANDLE is a filehandle because:

� It is the first parameter
� It is followed by a space
� It isn't a quoted string

Unfortunately if we try to copy this filehandle to a scalar variable we get an illegal bareword syntax
error under use strict:

use strict;

$fh = MYHANDLE; # ERROR: syntax error

This is perfectly understandable. We are not allowed barewords with use strict, and MYHANDLE is
just a string without quotes in this statement. It may also be the name of a filehandle, but that does not
mean it looks like a filehandle. Contrary to what the print statement above might imply, a bareword is
not the syntax for a filehandle. It is actually a special case of a symbolic reference that is permitted by
the strict module, precisely for the use of functions that take filehandles.

The point to bear in mind is that a filehandle's data type is different from that of a scalar, so we cannot
simply store one inside the other, even though a filehandle is intuitively a 'single' value. We cannot
actually refer to a filehandle at all, only to the typeglob within which it resides. However, since all
Perl's file-handling functions accept typeglobs and references to typeglobs (both hard and symbolic) as
filehandle arguments, we do not notice. In reality, a bareword filehandle is just a symbolic reference
that we can omit the quotes from. Once we realize this, the confusion starts to lessen somewhat.

Input and Output with Filehandles

425

To store and pass filehandles, therefore, we need to take a reference to the typeglob of the same name.
The reference can be a hard reference or a symbolic reference; either is acceptable to Perl's filehandle
functions. Fortunately, treating typeglobs in scalar context generates a symbolic reference for the
typeglob, so we can do this:

$fh = *MYHANDLE; # $fh becomes '*main::MYHANDLE'
symbolic reference OK as filehandle
print $fh "Hello Symbolic Reference to Filehandle \n";

Alternatively, we can create a hard reference to the typeglob and use that:

$fh = *MYHANDLE; # reference to typeglob
print $fh "Hello Reference to Typeglob \n";

The print statement is a little more fastidious than the other filehandle-based functions because its
syntax is so flexible in other respects. It will accept a typeglob, filehandle reference, or string stored in a
scalar variable. It will not accept the filehandle name as a literal string since that looks to print like a
value to actually print out, not a filehandle. However, it will accept an expression, including a literal
string, but only if it is inside a block:

print "STRING"; # a regular text string
print {'HANDLE'.$hno} "Text...\n" # print 'Text...' to HANDLE1, etc
print {$err?STDERR:STDOUT} "Text...\n"; # STDOUT or STDERR

This requirement for a block to differentiate between a filehandle and a string is purely an artifact of the
accepted syntax of the print statement. Other filehandle-based functions do not have to worry about
this distinction between filehandles and text arguments, so they allow the use of strings and string
expressions directly. To demonstrate, here are open and close (which we will cover in more detail
shortly) taking a string expression and interpreting it as a filehandle:

open 'A'.'B'.'C', '>test.file';
print ABC "Yes, this actually works \n";
close "ABC"; # or even close uc('abc')

The relationship between typeglobs, filehandles, and symbolic references is an ancient and mysterious
one. Since filehandles cannot be stored directly in scalars, typeglobs used to be the only way to pass
filehandles into or out of subroutines:

example of passing a filehandle to a subroutine
sub print_to_filehandle {

$fh = shift;
print $fh @_;

}

pass filehandle as typeglob
print_to_filehandle(*STDOUT, "Hello Passed Filehandle \n");

pass filehandle as scalar reference to typeglob
$fh = *STDOUT;
print_to_filehandle($fh, "Hello Again");

Closer observation of this code reveals that this is just another case of symbolic references. Whether or
not we pass a filehandle directly to the subroutine or copy it into a scalar first, it is cast into a scalar by
being passed as an argument. This is so that the typeglob is turned into a symbolic reference to itself,
from which print extracts the filehandle. In other words we are passing a string, and not a typeglob.

Chapter 12

426

It is largely on account of this kind of thing that the IO::Handle and IO::File modules were created.
In these more enlightened times we can use the IO::File module to create filehandles that can be
automatically passed around and manipulated without worrying about any of the issues discussed
above:

use IO::File;

$fh = new IO::File(">$filename");
print $fh "Typeglobs and references begone! \n";

The drawback with the IO::File and IO::Handle modules is that they add a level of abstraction to
file handling. This causes Perl to load in a collection of modules it does not otherwise need, and incurs a
corresponding performance loss. For most applications, however, the advantages of the IO:: family in
simplifying filehandles more than make up for their disadvantages.

Reading from Filehandles
Once we have a filehandle, we can use it to read or write to a file, presuming that the filehandle is
opened in the right direction and that (in the case of reading) there is something to read. We can also
read a specific numbers of bytes, or retrieve them one by one if necessary.

The Readline Operator
The simplest way to read from a filehandle is to use the readline operator <>:

open MYHANDLE, "myfile" or die "Unable to open: $! \n";
$line = <MYHANDLE>; # read a line

In a scalar context the readline operator reads one line at a time, returning its value. In a list context,
however, it reads all the lines at once:

@lines = <MYHANDLE>; # read entire file at one go

A line is defined by the input record separator (held in the special variable $/). By default this is set to
the newline character \n, which takes account of any special translations for the specific platform. This
makes it very convenient for reading text files with lines delimited by newlines, and is even platform-
independent.

Redefining the Line Separator
However, we do not have to read lines. By redefining the input record separator $/
($INPUT_RECORD_SEPARATOR or $RS with use English), we can read on any delimiter we choose, for
example colons:

$/ = ':';
@lines = <MYHANDLE>; # read file delimited by ':'

We can even undefine $/, or equivalently set it to an empty string. In this case, the readline operator
works in slurp mode and reads an entire file into a single scalar string:

undef $/;
$file = <MYHANDLE>; # read entire file as one scalar

Input and Output with Filehandles

427

This is particularly handy if we want to run a regular expression across the whole file. However, if we
redefine $/ it is usually a good idea to restore it afterward to avoid unexpected problems elsewhere. A
simple solution to that problem is to localize the value of $/ and redefine the local definition:

sub readfile {
$file = shift;
if (open FILE, $file) {

undefine $/ if called in a scalar context
local $/ = undef unless wantarray;
return file contents as array or single scalar
return <FILE>;

}
return undef; # failed to open, check $! for the reason

}

If the input record separator is defined as a scalar reference to an integer value (which may include a
reference to a scalar variable), the readline operator goes into a fixed record mode, reading exactly that
many characters each time:

$record_size = 32;
$/ = \$record_size; # or, equivalently, $/ = \32

while (<MYHANDLE>) {
print "Got $_\n";
$_ contains 32 characters unless end of file intervenes

}

In this mode the readline operator is similar in nature to the read function, which we will discuss in a
moment.

Aliasing Readline in 'while' Loops
When used in the conditional part of a while loop, the readline operator has the useful property of
setting the default scalar variable $_. This is a special case for the while loop, which does not
ordinarily set $_. We can use this fact to read a file line by line like this:

open MYHANDLE, "myfile" or die "Unable to open: $! \n";
while (<MYHANDLE>) {

print "Read: $_\n";
}

Unlike a foreach loop, we cannot provide our own variable to be the loop variable; in this case it has
to be $_. See the section on 'Conditional Loops' in Chapter 6 for more details.

Counting Line Numbers
The special variable $. contains the number of lines read from the most recently read filehandle. For
example, to print out matches in a file in a grep-like manner we could use $. like this:

while (<MYHANDLE>) {
/$searchpattern/ and print "$.: $_ \n";

}

Chapter 12

428

Since $. is a package variable it persists even after the file has run out of lines, so we can consult it after
we have finished reading:

@lines = <MYHANDLE>;
print "$. lines read \n";

Technically, $. is not the line count but the input record number, as its value is dependent on the input
record separator $/, so it does not necessarily reflect the number of lines in the file as we might
understand it. So, if $/ is undefined, $. will most likely be 1. The value of $. is reset when the
filehandle is closed.

Readline and the '@ARGV' Array
If no filehandle is given to <>, it interprets the elements of the @ARGV array as filenames and attempts to
open and read from them, (as discussed at the start of Chapter 14). In brief, this is how it is done:

read one or more files and print them out, prefixed by filename and line
number
print "$ARGV:$.:$_" while <>;

The name of the file currently being read is held in $ARGV, while the filehandle is stored as ARGV. If
@ARGV is empty, <> defaults to standard input by supplying a - behind the scenes, which can also be
seen in $ARGV. Conversely, if more than one file is present, each is read in turn, although $. is not reset
between files. To fix this we can use eof and close, resetting $.:

while (<>) {
print "$ARGV: $.: $_";
close (ARGV) if eof;

}

See Chapter 14 for more details and examples of using the readline operator with command line
arguments.

Finer Control Over Reading
The readline operator is best suited to reading files with known delimiters or fixed record lengths. For
other applications we may be better off using the read function. This function takes a filehandle, a
scalar variable, and a length as arguments, and attempts to read the number of bytes given by the length
into the scalar variable.

read MYHANDLE, $text, 60; # attempt to read 60 bytes into $text

The return value of read is either the number of bytes read (which may be less than length if the end
of the file was reached), 0 if we are already at the end of the file, and undef if there was an error:

$text = <>;
open MYHANDLE, "$text";
$result = read MYHANDLE, $text, 60; # attempt to read 60 bytes into $text
die "Failed to read: $!" unless defined $result; # handle an error
print "read $result bytes: $text \n"; # print out the result

Input and Output with Filehandles

429

The current value of $text, if any, is overwritten and the scalar is shrunk to fit the result. If we want to
partially or completely retain the existing contents of $text we can add an extra offset argument to the
read statement. If present, this causes read to write text into the variable from the offset character
(offset into the variable, that is, not the file). For example, to concatenate reads without having to use a
temporary variable, we can supply the length of the current text as the offset, in order to have read
place new text at the end of the string:

$text = <>;
open MYHANDLE, "$text";
$result;
while ($result = read MYHANDLE, $text, 60, length $text) {

print "appended $result bytes \n"
}

if (not defined $result) {
print "Error: $! \n";

} else {
print "Done \n";

}

read and <> both deal with buffered input. The unbuffered system-level equivalent of read is
sysread, which behaves in a very similar manner on unbuffered input. It is safe to mix read and <>,
but not sysread as well. See 'System Level IO' later in the chapter for more information.

Detecting the End-of-File
If we attempt to read beyond the end of a file, we encounter the end-of-file condition. This is a flag set
on the filehandle that indicates that no more data is available. Further attempts to read from the file will
return with failure.

We can detect the end-of-file condition with the eof function that takes a filehandle as an argument,
and returns True or False depending on whether the filehandle has encountered the end-of-file
condition or not. For example:

$text = <>;
open MYHANDLE, "$text";
if (eof MYHANDLE) {

print "No more to read \n";
} else {

...read some more...
}

Operators like the readline operator automatically detect the end-of-file condition and return False
when they encounter it. So eof is not necessary for loops like this:

while (<>) {
print "Got: $_\n";

}

The distinction between the end-of-file condition and the actual end of the file is often negligible, but it
can be occasionally important. For instance, the file can grow if more data is written into it from another
process, but this does not clear the end-of-file condition because our filehandle does not know about it.
To clear the condition we can use seek to move the current position to itself, as documented in the next
section:

seek MYHANDLE, 0, 1;

Chapter 12

430

The end-of-file condition does not just apply to files, but to any filehandle that is open for input. In
cases where the filehandle does not refer to an actual file, an end-of-file condition indicates simply that
there is no more data to read at the moment. Because this condition may be temporary, the end-of-file
condition is transient, and we can only detect it once. If we attempt to read from one of these
filehandles after eof has returned True, or attempt to use eof twice on the same filehandle, then the
end-of-file condition will be cleared and eof will return False. Similarly, an attempt to read will block
until more data becomes available.

Reading a Single Character
Single characters can be read with the getc function. Like readline, it takes a filehandle as an argument
but returns a single character:

$char = getc MYHANDLE; # get a character from MYHANDLE
$char = getc; # get a character from STDIN

Filehandles created by IO::File can use the object-oriented equivalent:

$fh->getc;

IO::File also supports an ungetc method, though this is only guaranteed to work for one character.
It takes the ordinal (ASCII code) value of the character as its argument:

$fh->ungetc ord($char); # push $char back onto $fh

If getc is not given a filehandle to read from it defaults to STDIN. However, since terminal buffering
means that a typed character will not be sent until the return key is pressed, this alone is not enough to
react to a single key press. In order to do this we need to control the behavior of the terminal, which
we can do in a number of ways, such as using the Term::ReadKey module discussed in detail in
Chapter 15.

Writing to Filehandles
Writing to filehandles is usually done via the print statement, which by default writes to standard
output. In its simplest usage we usually call print with one or more things we wish to display.
However, this is actually shorthand for printing to standard output, and the following two statements are
(almost) identical:

print "Calling Major Tom"; # implicit print to STDOUT
print STDOUT "Calling Major Tom"; # explicit print to STDOUT

They are not quite identical since, in the first case, select can be used (and could have been used in
advance) to change where print actually prints. In the second case, select will have no effect as the
filehandle is given explicitly.

The print statement will also accept an expression for the filehandle, but due to the flexible nature of
its syntax, it requires that a block be used to delimit the expression (other functions, such as eof, do not
have this restriction):

print {$error?STDERR:STDOUT} "This -might- be an error \n";

Input and Output with Filehandles

431

Like other filehandle functions, print will accept a string if it is held in a scalar variable (or array
element, hash value, etc.), but as this is considered a symbolic reference it will only be allowed if
strict refs are not in effect. This is the rationale behind the one-argument open, which creates a
filehandle with the same name as the file that it is associated with:

use strict;
no strict 'refs';

open ">$filename"; # one argument 'open', filename = handle
print $filename, "Ashes to Ashes";
close $filename;

Because the filehandle has the same name as the opened file, using the filename as an alias for the
filehandle causes print to do a symbolic dereference and look up the filehandle through the typeglob
with the same name. For this reason the filename must be stored in a package and not a lexical variable.
To achieve the same effect with a lexical variable we must specify the filename for both handle and
filename:

open $filename, ">$filename"; # two argument 'open', filename = handle
print $filename, "Dust to Dust";
close $filename;

The IO::File module also generates storable filehandles. It works by creating an object based on the
fileglob containing the filehandle that it creates, and so avoids all the problems to do with symbolic
references and other shenanigans encountered in the examples above:

$fh = new IO::File(">myfile");
print $fh "This is the content of the file";
close $fh;

The only catch with IO::File is that it exacts a performance penalty when we use it. In most cases this
is acceptable, but for efficient file handling we might want to stick with basic filehandles instead. As a
lightweight alternative, we can create our own filehandles using the gensym subroutine of the Symbol
module. This creates a reference to an anonymous typeglob that can be freely passed between
subroutines and methods in different packages:

#!/usr/bin/perl
#gensym.pl
use warnings;
use strict;

use Symbol;

my $fh = gensym;
open $fh, "> newfile.txt";
print $fh "some text";
close $fh;

gensym is the basis of the objects returned by IO::Handle and its inheritors like IO::File; see the
gensym source code and the new method in IO::Handle for a perspective on how they actually co-
operate to create object-oriented filehandles. (We can use > perldoc -l System and > perldoc -l
IO/Handle.pm to locate the files, if perldoc is available).

Chapter 12

432

Buffering and Autoflush Mode
Ordinarily, output to filehandles is buffered, either block-buffered if the output is to a non-interactive
device like a flat file, or line-buffered if it is to an interactive device. The distinction between these is
that in block buffering, output is saved until a maximum threshold, usually several kilobytes, is reached
and then written out all at once. In line buffering, the filehandle buffers output until a newline character
is written, at which point the whole line is sent to the output. Interactive devices like screens default to
line buffering since that is more logical when communicating with a user.

Note that we are talking only about application-level buffering here, as provided by the filehandle.
Operating systems also buffer IO at a lower level, which we have no direct control over, but can
manipulate if we want to get our hands dirty. For the sake of simplicity we will overlook this for
the purposes of this discussion.

Block buffering is useful, but it can be confusing to other programs that are expecting to see the output
in a timely manner, such as clients waiting to see the output of a CGI script. Fortunately the output can
be switched from block buffering to line buffering even on filehandles that would normally block buffer
by setting the autoflush flag. For the default output the special autoflush variable $|
($OUTPUT_AUTOFLUSH with use English) performs this duty:

$| = 1; # set line buffering, 'autoflush' mode
print "Hello World \n"; # write a line
$| = 0; # restore block buffering

Filehandles created with IO::File or IO::Handle can have their autoflush state altered with the
autoflush method:

$fh->autoflush(1); # set line buffering. 'autoflush' mode
print $fh "Hello World \n"; # write a line
$fh->autoflush(0); # restore block buffering

If we have used IO::Handle then we can also use the autoflush method on any filehandle:

use IO::File; # inherits from IO::Handle

'$$' returns the process ID:
open TMP, "> /tmp/tmp_pid$$" or die "Open failed: $!";

TMP->autoflush(1);

It is important to remember that the autoflush flag does not disable buffering. To write to a file or
device unbuffered we can use the system-level IO function syswrite. $| does not disable buffering, it
merely allows block-buffered filehandles to be turned into line-buffered ones. For filehandles that are
already connected to an interactive device such as a screen, the autoflush flag has no effect.

Alternatives to 'print'
As an alternative to print, we can also use the printf function, covered in Chapter 3, or the
unbuffered system-level syswrite function, covered in Chapter 22. The enticingly named write
function is not in fact a synonym for print, or the opposite of read, but rather it is connected to report
generation, an entirely different concept.

Input and Output with Filehandles

433

Handling Binary and Text Files
Most modern and intelligently written operating systems do not make any distinction between 'binary'
and 'text' files. Unfortunately, some operating systems do, Windows (in all its various versions and
suffixes) and MacOS being two of them. In these cases we have to ensure that the underlying operating
system knows what kind of file we are working with before we attempt to read or write it.

The problem lies in the definition of a 'line'. Under UNIX and many other operating systems, the end of
a line is a single linefeed (newline or LF) character. On Windows, lines are terminated by a carriage
return (return or CR) followed by a linefeed. On a Macintosh it is the other way around. See Chapter 15
for more.

Whenever we use \n to generate a new line, or read a file using the readline operator (which uses $/,
by default set to \n), Perl, the underlying C libraries, and the operating system all band together to
guess how to deal with line terminators. Between them, they convert between what Perl expects and
what the underlying file format requires. By default, files are assumed to be textual, so a new line in Perl
becomes a single linefeed, a linefeed plus return, or a return plus linefeed depending on the underlying
platform. Similarly, when a file is read, combinations of linefeed plus return are invisibly compressed
into a single linefeed so that the readline operator will work as expected. The chomp function, which
strips line endings, also uses $/, so it will always work irrespective of what the line ending is (as long as
it is set to \n, which it is by default).

The 'binmode' Function
The practical upshot of all this is that if we are working with text files we can let Perl deal with the
complications of line endings for us. If we are working with a binary file (which has no lines and thus no
line endings), on a platform that makes a distinction, then we need to tell Perl to prevent this automatic
translation from taking place. The simplest way to do this is to use the binmode function with a
filehandle:

binmode HANDLE; # make HANDLE a binary filehandle

This sets both the input and output disciplines of HANDLE to be binary (or technically, raw, which is a
related, but not identical, concept to raw terminal IO covered in Chapter 15). We can also do this
explicitly by setting the discipline directly:

binmode HANDLE ':raw'; # make HANDLE a binary filehandle

Similarly, we can switch on line ending translation using the :crlf discipline, assuming the underlying
platform cares:

binmode HANDLE ':crlf'; # make HANDLE a DOS text filehandle

In general, specifying the input and output disciplines is never necessary, but they provide a potential
interface to setting other kinds of line discipline and in future will likely do so. The curious reader may
turn to the section on terminal capabilities in Chapter 15, which contains more on the subject of line
disciplines.

TE
AM
FL
Y

Team-Fly®

Chapter 12

434

The 'open' Pragma
Perl also supplies a pragmatic module called open.pm, not to be confused with the open function. open
performs a similar job to binmode but allows the disciplines for input and output to be set
independently. However, whereas binmode is set on a per-filehandle basis, the open pragma sets a
default for all file handles opened in its lexical scope.

For example, to set the input discipline to text and the output to binary we could use:

use open IN => ':crlf', OUT => ':raw';

This sets a default input discipline of :crlf and a default output discipline of :raw for all filehandles
that are opened in the same lexical scope as the declaration.

Currently only :crlf and :raw are defined by the open module, but it is likely this will be extended to
cover other kinds of line discipline along with binmode. See, once again Chapter 15 for more
information on disciplines and terminal capabilities.

Random Access
If a filehandle refers to an actual file then we can use random access methods to move about within the
file, thereby reading or writing to different parts of it selectively. To achieve this we make use of the file
pointer, which is a position within the file that is associated with the filehandle. Using the built-in
functions, seek and tell, we can set and retrieve the current position of the file pointer to allow reads
or writes to take place at a specific point within the file.

'seek' to a Specific Place within a File
The seek function allows us to change the position of the file pointer associated with our filehandle, so
that it points to a different part of the file. It takes three parameters: the filehandle to modify, the new
position, and a relationship flag (also known as the whence flag). It will work with either a filehandle or
an expression that evaluates to the name of the filehandle as a string.

The actual effect of seek depends on the value of the whence flag, which can be 0, 1, or 2:

Flag Effect

seek FH, $pos, 0 Seek to the absolute position given by $pos. For example, seek FH,
0, 0 moves the pointer to the beginning of the file

seek FH, $pos, 1 Seek forward ($pos > 0) or backward ($pos < 0) by the number of
bytes given by $pos from the current position. For example, seek FH,
60, 1 moves the file pointer forward 60 bytes. Note that seeking
beyond the end of the file and then writing to the file extends it, but
does not guarantee that the new extent is 'zeroed' out.

seek FH, $pos, 2 Seek relative to the end of the file. If $pos is negative, seek backwards
$pos bytes from the end of the file. If it is zero, seek to the end of the
file. If it is positive, attempt to seek forwards past the end of the file. For
example, seek FH, -60, 2 moves the file pointer to a position sixty
characters before the end of the file.

Input and Output with Filehandles

435

seek returns a true value if it succeeds, and 0 otherwise, for example, if we try to seek to before the
beginning of the file. This will cause the file pointer to land at the end of the file, if the file is not open
for writing. Alternatively, if it is open for writing, the file will be extended to satisfy the pointer, so an
easy way to create a large file is to open it for writing and then move the pointer to a large value:

open (BIGFILE, "> bigfile");
seek BIGFILE, 100 * 1024 * 1024, 0; # move the pointer to the 100MB point

syswrite BIGFILE, 'end'; # write to the file, thereby setting its size to
100MB (plus three characters)

close BIGFILE;

On some filing systems, particularly on UNIX platforms, this does not actually assign 100MB of
disk space; it actually creates a sparse file that contains only the beginning and the end, a file with
a hole in it, so to speak.

Since the meanings of the values 0, 1, and 2 are not particularly memorable we can use labels for them
instead if we use the Fcntl module. This defines three constants, SEEK_SET, SEEK_CUR, and SEEK_END
for 0, 1, and 2 respectively:

use Fcntl qw(:seek); # get SEEK_ constants
seek MYHANDLE, $position, SEEK_SET;
seek MYHANDLE, $moveby, SEEK_CUR;

Note that seek is not the same as the sysseek function. The seek function works with buffered
filehandles; sysseek works at the system level. Using both interchangeably is not a good idea. For
more information on sysseek, see 'System Level IO' later in the chapter.

Clearing the End-of-File Condition with 'seek'
Using seek has the occasionally useful side effect of resetting the end-of-file condition on a filehandle
(as read by eof), since by moving the file pointer we are explicitly overriding its position. This can be
handy for monitoring the end of growing logfiles, among other applications. The end-of-file condition
on non-position based filehandles is transient, so this is not an issue here, but for filehandles associated
with files it is permanent since files are assumed not to grow. To clear it, we can use seek.

The simplest way to remove the end-of-file condition without actually moving the file pointer is to seek
to the current position:

seek MYHANDLE, 0, 1; # (possibly) reset eof.

This works because although we have moved the position to the end of the file we have not tried to read
data there. It is the attempt to read rather than the position of the file pointer that causes the end-of-file
condition to be raised.

After calling seek we can attempt to read the file again from the current position, and see if any new
data has been written. If it has not, we will just raise the end-of-file condition once more. Here is a short
loop that uses this technique and a sleep to periodically check for output, essentially similar in intent
to the UNIX command tail -f:

Chapter 12

436

for(;;) {
read lines while there are lines to read
while (<LOGFILE>) {

print "$.: $_";
}

got an 'eof' - sleep, reset 'eof', then loop back and try again
sleep(1);
seek LOGFILE, 0, 1;

}

Writing at the End-of-File
When multiple programs or processes are all writing to the same file we cannot always guarantee that
our file pointer is actually pointing at the end of the file. In order to make sure that anything we write
goes at the end of the file we can seek to the end explicitly using SEEK_END and a distance of 0:

seek MYHANDLE, 0, SEEK_END;

If several processes have the same file open in an append mode, lines will not overlap each other, but
the order in which they appear cannot be determined. If the file is not open in an append mode, even
this cannot be guaranteed. In order to ensure that different processes do not overwrite each other we
also need to use some form of file locking, for instance with flock. Here is a short logging program
that uses this technique in combination with file locking to make absolutely sure that it is writing to the
current end of the file:

#!/usr/bin/perl
#logging.pl
use warnings;
use strict;

use Fcntl qw(:seek :flock);

open file for update, position is at current end of file
open LOGFILE, ">>/tmp/mylog" or die "Unable to open: $! \n";

lock file for exclusive access
flock LOGFILE, LOCK_EX;

now seek to end of file explicitly, in case it changed since the open
seek LOGFILE, 0, SEEK_END;

write our log message
print LOGFILE "Log message...\n";

remove lock and close file
flock LOGFILE, LOCK_UN;
close LOGFILE;

This program takes advantage of file locking to prevent any other program or process extending the file
while it is still busy writing to it. So long as all processes that access the file cooperate with flock, all
will be well. It also takes advantage of the fact that flock causes all buffered output on the filehandle to
be flushed on both locking and unlocking operations. In this sample program the close would have
done that for us anyway, but the principle still applies.

Input and Output with Filehandles

437

Finding the Current Position
The tell function is the counterpart to seek. It returns the current value of the file pointer. It takes
one parameter (a filehandle), and returns the current position, in bytes, within the file:

$position = tell MYHANDLE;

Like seek, tell will work on either a filehandle or an expression that evaluates to the name of the
filehandle as a string. If no filehandle is given, tell defaults to the last file opened:

open (MYHANDLE, "myfile") or die "could not open myfile: $!";
$line = <MYHANDLE>;
print "The first line was ", tell," characters long \n";

If the filehandle has no file pointer associated with it, which is the case with serial connections and
sockets, the returned pointer value is -1 (rather than undef which we might have expected):

$position = tell MYHANDLE;
print "The file position is", $position >- 1?$position:" not applicable";

Object-Oriented Random Access
Programmers who are using filehandles generated by the IO::File module can make use of the object-
oriented methods supplied by the IO::Seekable module for filehandles that can have their file
positions modified. These methods are direct object-oriented replacements for the standard Perl
functions:

$fh->seek($position, 0); # seek to absolute position
$fh->seek($distance, SEEK_CUR); # seek forward 'distance' bytes
$pos = $fh -> tell(); # find current position

Truncating and Resizing Files
To make a file longer we can use the seek function to move beyond the current end of the file, or
simply append more data to it, so long as we have the file opened in a writable state. However, we
cannot make a file shorter this way.

One simple, albeit destructive, way to make a file shorter is to simply write a new file over it, using an
open mode that destroys the original contents of the file. If we want to retain part of the original file we
can read it first, then close and reopen the file for writing. For example, this code snippet replaces a file
of more than ten lines with the last ten lines in the file:

#!/usr/bin/perl
lastten.pl
use warnings;
use strict;

print "Reading...";

Chapter 12

438

open READ, "myfile" or die "Cannot open: $! \n";
my @lines = <READ>;
print "$. lines read \n";
close READ;

if ($#lines < 9) {
exit;

}

print "Writing...";
open WRITE, "> myfile" or die "Cannot write: $! \n";
foreach (@lines[-10..-1]) {

print WRITE $_;
}
print "done \n";
close WRITE;

This works fine, and could well be simpler if we want to modify the contents of the file while at the
same time shortening it. However, if we just want to make a file shorter without otherwise altering its
contents we can use truncate.

truncate is a very simple function. It takes a filehandle, or an expression giving the name or reference
of a filehandle, which must be open for writing, and a length:

truncate FILE, 100; # truncate file to first 100 bytes

Since opening a file for writing truncates it automatically to nothing, use the +< or read-update mode to
truncate an existing file:

open FILE, '+< myfile';
truncate FILE, 100;
close FILE;

truncate works on bytes, not lines, so it is good for setting an exact length, but not so good for
truncating to the first n lines of a file. Unfortunately, simply counting the lengths of the lines is not
enough, since the newline character in Perl may in reality be two or more characters in the file; as we
observed before, both Windows (all of them) and MacOS use two characters for the line ending. So the
only reliable and simple way to truncate the file accurately is to read it up to the desired number of lines
and then use seek to find out where the last line ended:

#!/usr/bin/perl
truncate.pl
use warnings;
use strict;

die "Specify a file \n" unless @ARGV;
die "Specify a length \n" unless defined($ARGV[1]) and ($ARGV[1] >= 1);
my $file = $ARGV[0];
my $truncate_to = int($ARGV[1]);

print "Reading...";
open READ, "$file" or die "Cannot open: $! \n";
while (<READ>) {

last if $. == $truncate_to;
}

Input and Output with Filehandles

439

my $size = tell READ;
print "$. lines read ($size bytes) \n";
exit if $. < $truncate_to; # already shorter
close READ;

print "Truncating to $size bytes...";
open WRITE, "+< $file" or die "Cannot write: $! \n";
truncate WRITE, $size;
print "done \n";
close WRITE;

This program truncates the given file to the given number of lines. It only reads lines to move the file
pointer, so it doesn't do anything with the returned lines. Once it has finished, it checks $. to determine
if the file is actually long enough to need truncating. If it is, it finds the current position, which will be
the character immediately after the end of the line terminator of the last line, reopens the file for
modification, and truncates it.

Interestingly, truncate will extend a file if the new length is longer than the old, so a better name for
truncate would have been setlength. The extended bytes, if any, are filled with zeros or null
characters, which makes it a better solution to extending a file than seek if a complete and empty file is
desirable. Note that truncate can fail with undef if the disk runs out of capacity or we reach a quota limit
imposed by the operating system. That is not an issue for the example above since it is making the file
shorter, so in that case we did not check (though to be really thorough we ought to anyway).

File Locking
In situations where more than one program or process may wish to write to the same file at the same
time, we need to take care that different processes do not tread on each other's toes. For example,
several clients may attempt execute a script simultaneously. CGI scripts are a common class of Perl
program that fall into this category.

As an example of a Perl application that fails as a result of not using file locking, take this hit counter
CGI script, designed to be used in a server-side include:

#!/usr/bin/perl -T
badcounter.cgi
use warnings;
use strict;

script assumes file exists, but may be empty
my $counter = "/home/httpd/data/counter/counter.dat";

open(FILE, "+< $counter") or die "Cannot access counter: $! \n";
my $visitors = <FILE>;
chomp $visitors;
seek FILE, 0, 0;
print FILE $visitors ?++ $visitors:1;
close(FILE);

print "Content-type: text/html\n\n";
print $visitors, "\n";

Chapter 12

440

Without protection, the counter will only register one hit if the script is executed twice at the same time.
Instance 1 adds one to the count, writes, and closes file. However, when instance 2 adds one to the
count, it overwrites the value left by instance 1, and closes the file having updated it once. One way to
test this is by writing a short script that calls this program over and over, and running a copy of the
script from a different shell at the same time.

To avoid this problem we need to use file locks, so other processes will not attempt to work with a file
while we are busy with it. With a lock in place, other processes that attempt to place their own locks on
the file must wait (or block) until our process finishes its business and unlocks the file. By adhering to
the file lock mechanism processes can avoid overwriting each other, preventing the kind of problems
inherent in the above example.

Establishing File Locks
Perl provides file locking through the flock function. flock is modeled on but not necessarily
implemented by the C flock system call; Perl uses whatever locking facilities are available and
presents them to us through its own flock. flock takes a filehandle and an operation as arguments.
The filehandle is the filehandle of the file we want to lock, and the operation is a numerical flag
representing the type of lock that we want to establish. There are two basic lock operations, shared and
exclusive, an unlock operation, and a 'non-blocking' flag that can be combined with the other three to
allow a process to continue executing rather than wait for the lock to become available. Numerically,
these are represented by the numbers 1, 2, 8, and 4 respectively, but for convenience sake we can
import descriptive symbols from the Fcntl module:

use Fcntl ':flock'; # import LOCK_ symbols

The four flags are:

Flag Number Function

LOCK_SH 1 Establish a shared lock, also known as a read lock:

flock FH, 1;

flock FH, LOCK_SH;

When LOCK_SH is in effect, other processes may also establish a
shared lock, but may not establish an exclusive or write lock. This is
the lock to use when we want to read a file while ensuring that its
contents do not change.

LOCK_EX 2 Establish an exclusive lock, also known as a write lock:

flock FH, 2;

flock FH, LOCK_EX;

When LOCK_EX is in effect no other process can establish a lock. This
is the lock to use when we want to change the contents of a file and
prevent other processes reading it while we do.

Input and Output with Filehandles

441

Flag Number Function

LOCK_UN 8 Unlock a previously established lock:

flock FH, 8;

flock FH, LOCK_UN;

This unlocks a lock that has been previously established. Since the
process owns the lock that it is unlocking, this use never blocks.

LOCK_NB 4 Do not block when attempting to acquire a lock:

flock FH, 5;

flock FH, LOCK_SH|LOCK_NB;
flock FH, 6;

flock FH, LOCK_EX|LOCK_NB;

Normally an attempt to establish a shared or exclusive lock will block
on the flock statement until whichever process is currently holding
the lock releases it. By combining LOCK_NB with the lock operation
we can have our program do something else while waiting:

until (flock FH, LOCK_EX|LOCK_NB) {

print "Waiting for lock...\n";

sleep 5;

die "Handle no longer valid"

unless defined(fileno *FH);

}

Note that to be safe we also check that the filehandle is still valid
before trying to lock it again.

Using flock we can rewrite our counter script so that it functions correctly. All that we need to do is to
add an exclusive lock (LOCK_EX) immediately after we open the file, and unlock it again (LOCK_UN)
immediately before we close it:

#!/usr/bin/perl -T
counter.cgi
use warnings;
use strict;

use Fcntl ':flock';

script assumes file exists but may be empty
my $counter = "/home/httpd/data/counter/counter.dat";

open(FILE,"+< $counter") or die "Cannot access counter: $!\n";
flock(FILE, LOCK_EX);
my $visitors = <FILE>;
chomp $visitors;
seek FILE, 0, 0;
print FILE $visitors ?++ $visitors:1;
flock(FILE, LOCK_UN);
close(FILE);

print "Content-type: text/html\n\n";
print $visitors, "\n";

Chapter 12

442

From Perl 5.004 flock flushes the output of any filehandle that it successfully locks or unlocks, to
ensure that file writes are properly synchronized. In this case the close would have flushed remaining
output anyway, however for larger applications this additional feature of flock is extremely
convenient.

File Locking Issues and Caveats
One thing that is often overlooked is that locks established by flock are advisory only, another
program is totally free to ignore the lock if it so chooses (by not checking for it). File locks are therefore
a co-operative system, all participants have to observe locks for them to be effective. Many operating
systems also support mandatory locking schemes, but these are largely platform-specific.

A potential problem with flock is that its exact behavior may vary depending on what file locking
mechanisms are available on the underlying platform. Most platforms support a flock system call, so
Perl's flock can map directly onto it. However, in the event that a true flock is not available Perl
must resort to an emulation based on the less versatile lockf or, if that is not available, basic calls to
fcntl. From Perl 5.005, Perl prefers fcntl due to the fact lockf requires files to be writable to lock
them. fcntl also has an advantage over the flock system call in that it will work on network-mounted
(for example, NFS) filesystems, which some implementations of flock do not. We may want to
support this, in which case we should use fcntl rather than flock in Perl.

In addition, locks established with a flock emulation will not survive across duplicated filehandles, nor
across a call to fork. However, on any serious modern platform this should not be a problem. Consult
the flock, fcntl, or other file locking documentation of the operating system for details of how the
platform supports file locking.

Changing the Default Output Filehandle
The default output filehandle is normally STDOUT, but we can change this by using the select
function. This takes a single filehandle (which may not be derived from an expression) as an argument,
and switches it for the current default:

select MYHANDLE;
print "Message to MYHANDLE \n"; # write to MYHANDLE;

With no arguments, select returns the current default output filehandle, which makes it useful for
storing the existing output filehandle should we wish to restore it at a later date:

save existing default output
$original_out = select;

select a new default output and use it
select NEWOUT;
$| = 1; # set autoflush on filehandle NEWOUT
print "write data to new default output";

restore original default output
select $original_out;

Input and Output with Filehandles

443

Or, more tersely:

$original_out = select(NEWOUT);
$| = 1;
select $original_out;

Or, even more tersely, avoiding a temporary variable but edging into illegibility:

select((select(NEWOUT), $| = 1)[0]);

This relies on the fact that the two statements select(NEWOUT) and $|=1 generate a two element list.
The outer select uses the first element (the original filehandle), to restore the default filehandle after
both statements have executed. The IO::Handle module and its descendants package this into an
object method, so if we have IO::Handle loaded we can also say:

NEWOUT->autoflush(1);

Note that the select function also has an entirely different four-argument form that is used to select
between multiple inputs, and which has nothing whatsoever to do with its usage here.

Using Special Variables to Configure Other Filehandles
The special variables that are related to output all operate on a per-filehandle basis, each filehandle
having its own set of output properties associated with it. The special variables bring out and make
available the properties of whatever filehandle is currently selected; changing the value of a special
variable affects that filehandle only. For instance, to switch on autoflush mode on a filehandle other
than STDOUT we can use:

enable autoflush on MYHANDLE
select MYHANDLE;
$| = 1;
STDOUT is not affected
select STDOUT;

Similarly, we can set or read the values of the special variables $. (line number), $/ (input record
separator), $\ (output record separator), $, (output field separator), and $" (interpolated output field
separator) on a per-filehandle basis. The special format variables such as $~ (format name) are also
associated with individual filenames. See the section on reports (Chapter 18) for more information on
these.

Automatically Restoring the Default Filehandle
As an alternative to using the select function directly, we can make use of the SelectSaver module.
This provides an object-oriented interface to select that has the advantage of automatically resetting
the default output filehandle to its original state when the SelectSaver object is destroyed. In other
words, statements like select STDOUT become unnecessary after we have finished with another
filehandle:

use SelectSaver;

...

TE
AM
FL
Y

Team-Fly®

Chapter 12

444

scope of SelectSaver defined by 'if' statement
if ($redirect) {

my $saver = new SelectSaver(NEWOUT);
$| = 1;
print "Message to NEWOUT handle"

}
$saver goes out of scope here, object destroyed
print "Message to original default output handle";

SelectSaver works by remembering what filehandle was currently selected when the object was
created. When the variable $saver falls out of scope at the end of the block the object is destroyed, and
as part of its clean up, restores the filehandle that was originally selected.

Using Default Variables vs, 'IO::Handle' Methods
If the intention is to modify the output properties of a filehandle rather than to make it the default
output, a preferred approach is to use the IO::Handle methods inherited by filehandles generated by
IO::File. These also allow the properties of filehandles to be modified, without the need to select
them first:

set autoflush on an IO::Handle based filehandle
$fh->autoflush(1);

The advantage of the IO::Handle approach is that it is simpler to read and less 'clunky', since selecting
a filehandle just to modify its output properties is not very elegant. Conversely, IO::Handle is a
potentially expensive module that defines a lot of methods and properties.

All the standard variables that relate to output can also be set on a filehandle directly this way. See the
section on 'IO::Handle Methods and Special Variables' for a rundown.

Duplicating and Aliasing Filehandles
If we supply open with a mode containing an ampersand it will duplicate an existing filehandle. For
example, to duplicate STDIN we could write:

open(NEWIN, "&STDIN") or die "Open failed: $! \n";

The mode of the new filehandle should be the same as that of the old, in this case read-only. Once
duplicated, the new filehandle can be used in place of the old, and either handle may be used to read or
write to the associated data stream. To duplicate a filehandle that is open in read-update mode we can
use:

open(DUPLICATE, "+< &ORIGINAL");

This actually maps to the dup system call (or its nearest equivalent). Both filehandles, DUPLICATE and
ORIGINAL, refer to the same file. However, each is independent of the other, with its own buffering and
its own file position. This allows us to work at two different points within the same file simultaneously.
To avoid potential conflicts we can use file locking via flock to prevent the filehandles from treading
on each others toes; as well as preventing overwrite, flock also flushes all buffered output whenever a
file is locked or unlocked. See 'Writing at the End-of-File' for an example.

Input and Output with Filehandles

445

Duplication works on file numbers as well as filehandles. If we happen to have the file number instead
we can use that in place of the filehandle name. For instance, STDOUT and STDERR usually have the file
numbers 1 and 2 (STDIN is 0), so the following is equivalent to the above presuming that no redirection
has happened yet:

open(OLDOUT, "> &1"); # duplicate fileno 1 (STDOUT)
open(OLDERR, "> &2"); # duplicate fileno 2 (STDERR)

We can create an alias for a filehandle by using &= in place of & with the file number. We can find the
file number of a filehandle using fileno, so to create a filehandle alias we would write something like:

open(ALIAS, "> &=".fileno (MYHANDLE));

If we happen to have only a file descriptor and we want to create a filehandle to manage it, we can also
create one using this technique. Alternatively, if we are using IO::Handle or IO::File we can use the
new_from_fd of IO::Handle:

$fh = IO::Handle->new_from_fd(fileno MYHANDLE);

We might want to do this is when we are inheriting filehandles from a previous process via exec; we
cannot retrieve the filehandle, but we can access the file descriptor and create a new filehandle around
it. Other instances include C library functions that generate and return file descriptors, such as the
fdaccept call for sending file descriptors between processes (supported on some UNIX
implementations).

Note that these special modes only work with the two argument form of open; they do not work with
the mode separated from the filename, which is why we have concatenated the mode and file number in
the open example above.

If we happen to have entirely lost the original standard input or standard output that we started out with
we can attempt to reacquire them by opening the special file - (or >- for STDOUT). See 'Opening
Standard Input and Standard Output' earlier in the chapter for details.

Redirecting Filehandles
To redefine the default output filehandle we can use select, but this only allows us to change the
output filehandle from STDOUT to something else. It does not allow us to change the input filehandle
from STDIN, or the error filehandle STDERR. Even if we select a different output filehandle, output will
still go to the original STDOUT if it is explicitly given:

select NEWOUT;
print STDOUT "This still goes to standard output";

The solution to these problems is to replace the filehandles themselves. For instance, to temporarily
redirect standard output and standard error to a log file, we first need to make copies of the current
filehandles, which we can do with the & notation. Since both filehandles are write-only, the correct
mode to use is > &:

open(OLDOUT, "> &STDOUT");
open(OLDERR, "> &STDERR");

Chapter 12

446

Having duplicated the original filehandles we can now redirect them to the new file:

open(STDOUT, "> $logfile");
open(STDERR, "> $logfile");

Both filehandles will likely be block-buffered. At this point we can enable autoflush for both of them,
to get line-buffering, using select:

select STDOUT;
$| = 1;
select STDERR;
$| = 1;

Finally, after we have finished printing to the log file we can restore the original STDOUT and STDERR
by redirecting them back again:

close(STDOUT); open(STDOUT, "> &OLDOUT");
close(STDERR); open(STDERR, "> &OLDERR");

Note that it is important to close the filehandles before we redirect them. If we do not do this, data
buffered on those filehandles may not get flushed unless (and until) the program terminates. If we are
going to redirect back to the underlying file descriptors of the original STDOUT and STDERR later we do
not need to worry.

In this example we have redirected the standard output and error filehandles, but any filehandle can be
duplicated and/or redirected in this fashion. Here is an example of duplicating a filehandle that is open
in read-update mode:

open(MYDUPLICATE, "+< &MYHANDLE");

It is important not to duplicate a filehandle with modes it does not have. Although Perl will let us
duplicate a read-only filehandle into a write-only one, the results are unpredictable and unlikely to be
what we want; buffering may give the impression that something is working when in fact it is not.

Redirecting the standard file handles is subtly different, in one way, from redirecting other filehandles.
System file handles are only closed if the open succeeds, so in the event that the open fails, the original
filehandle remains open and intact. This threshold that defines what a system filehandle is, is governed
by the special variable $^F (or $SYSTEM_FD_MAX with use English). It contains the value of the
highest system file number, usually 2 corresponding to STDERR. Attempts to open an existing file
handle on a new file whose file number is higher than $^F will cause the file to be closed before the
new one is opened. In the even the open fails, the original file remains closed.

Caching Many Filehandles
If we try to open very many filehandles all at the same time, we may run into an operating system limit.
The FileCache module provides a solution to this problem by allowing filehandles to be cached. If we
attempt to access a file, for which a filehandle already exists, the cached handle is used. If we attempt to
access a file for which no filehandle exists, and we have reached our limit, a filehandle is closed to make
room for the new filehandle.

Input and Output with Filehandles

447

FileCache works by supplying one method, cacheout, which takes the name of a file as a parameter.
We never use a filehandle directly, but supply the name of the file instead. This short example illustrates
the technique, caching two filehandles:

#!/usr/bin/perl
cache.pl
use warnings;
use strict;
no strict 'refs';

use FileCache;

my $myfile = "/tmp/myfile.txt";
my $anotherfile = "/tmp/anotherfile.txt";

cacheout $myfile;
print $myfile "Message to my file \n";
cacheout $anotherfile;
print $anotherfile "Message to another file \n";
print $myfile "Second message to my file \n";

close $myfile;
close $anotherfile;

The module works by creating each filehandle with exactly the same name as the path of the file with
which it is associated. This allows the scalar holding the filename to be used as a filehandle, and also
allows FileCache to look up the filehandle in an internal hash, to see if it exists or not, when we
request that the file be opened.

Files are opened in write mode (>) if they do not currently exist, or update mode (>>) if they do.
Consequently this module is no use for handling multiple files in a read-write mode. However, it is a
short and relatively simple module, so adapting it for caching other kinds of filehandle modes should be
a reasonable proposition.

The maximum number of files that can be opened by the FileCache module is determined from the
operating system (the /usr/include/sys/param.h header file on UNIX systems). In the event that
the value in this file is wrong (which does happen) or that this file does not exist (as on a Windows or
MacOS based system) we can override it by setting the value of $FileCache::cacheout_maxopen:

if ($FileCache::cacheout_maxopen <= 16) {
$FileCache::cacheout_maxopen = 64;

}

If the FileCache module cannot determine a value for the maximum allowed open files at all, it
defaults to 16. So, a value of 16 in $FileCache::cacheout_maxopen is usually a sign that the
maximum number of open files needs to be established in some other way, and then be supplied to the
FileCache module.

Note that just because we can set this value to allow the maximum number of open files possible, does
not mean that we necessarily ought to, since filehandles consume valuable system resources. If we use
this module we might want to take advantage of the caching mechanism to actually restrict the number
of active filehandles:

$FileCache::cacheout_maxopen = 32 if $FileCache::cacheout_maxopen > 32;

Chapter 12

448

'IO::Handle' Methods and Special Variables
IO::Handle is a generic filehandle module that provides an easier interface to filehandles than the
standard Perl interface. It is the basis of the IO::File module, among others, and provides methods
for using and configuring filehandles, which are loosely categorized into creation methods, built-in
methods, configuration methods and utility methods.

The following creation methods create new IO::Handle objects:

Method Action

new Create a new IO::Handle object, for example:

$fh = new IO::Handle;

To create a filehandle and associate it with an open file, use IO::File's new
instead.

new_from_fd Create a new IO::Handle object and associate it with the given file
descriptor. For example:

$fh = IO::Handle->new_from_fd(1);

$fh = IO::Handle->new_from_fd(fileno MYHANDLE);

The file descriptor is the underlying file number that represents the raw
connection to the file or device. It can be specified explicitly, for example,
0, 1 or 2 for STDIN, STDOUT, or STDERR, or derived from an existing
filehandle via fileno. Note that this is the underlying functionality behind
the open functions &= mode.

Each of these built-in function methods is a wrapper for the equivalent built-in function:

Method Action

close Close the file

eof Test for end of file condition

fileno Return file descriptor (file number) of filehandle

format_write Write a format string (equivalent to write)

getc Get a single character

read Read a specific number of bytes

print Print to the file

printf Format a string and print to the file

stat Return information about the file

sysread System-level read

syswrite System-level write

truncate Truncate or extend the file

Input and Output with Filehandles

449

The configuration methods configure an aspect of the filehandle, and have a one-to-one correlation to
one of Perl's special variables, which performs the equivalent function on the currently selected default
output filehandle, as chosen by select. In each case the original value is returned. The methods and
their related special variables fall into two groups: those that work on a per-filehandle basis, and those
that are global in effect and apply to all filehandles.

The following special variables and IO::Handle methods are specified on a per-filehandle basis.

Method Variable Action

autoflush $| Sets the autoflush flag. Takes a Boolean
parameter, for example:

$fh->autoflush(1); # enable autoflush

$fh->autoflush(0); # disable autoflush

Or:

select $fh; $| = 1;

format_page_number $% The current page number of the currently selected
output channel.

format_lines_per_page $= The current page length (printable lines) of the
currently selected output channel.

format_lines_left $- The number of lines left on the page of the
currently selected output channel.

format_name $~ The name of the current report format for the
currently selected output channel.

format_top_name $^ The name of the current top-of-page format for the
currently selected output channel.

input_line_number $. The current line number. For example:

$lineno = $fh->input_line_number();

Or:

select $fh; $lineno = $.;

Note that although it is possible to set this value it
should usually be treated as read-only.

The following special variables and IO::Handle methods are global, but can be set via the appropriate
method:

Method Variable Action

format_line_break_
characters

$: The current set of characters after which a string
may be broken to fill continuation fields (starting
with ^) in a format.

format_formfeed $^L Which formats output as a form feed.

Chapter 12

450

Method Variable Action

format_field_
separator

$, The string output between items in a print statement. By
default, nothing. To print out comma-separated values, set
to ,:

$old = $fh->output_field_separator(',');

Or:

$, = ',';

output_record_
seperator

$\ The string placed output after the end of a print
statement. By default, nothing. To print out lines
automatically terminated by newlines, set to "\n":

$old = $fh->output_record_separator("\n");

Or:

$\ = "\n";

input_record_
seperator

$/ The string used to separate lines for the readline operator.
By default, it is \n. To read in a whole file at one go, set to
nothing or undefine:

$old = $fh->input_record_separator('');

Or:

$/ = '';

undef $/;

Finally, these are the utility methods:

Method Action

fdopen FILENO Associate the filehandle with the given filehandle name, IO::Handle
object or file descriptor, for example:

$fh->fdopen(1);

$fh->fdopen(fileno STDOUT);

$fh->fdopen($other_fh);

This is the underlying function behind the new_from_fd method.

opened Returns True if the filehandle is currently open, False otherwise. For
example:

if ($fh->opened) {

$line = $fh->getline;

} else {

cannot read...

}

Input and Output with Filehandles

451

Method Action

getline Return the next line from a file, for example:

$line = $fh->getline();

while ($fh->getline) {

print "$_ \n";

}

This is equivalent to the readline operator when called in a scalar context,
even when called in a list context.

getlines Return all available lines from a file, for example:

@lines = $fh->getlines();

This is equivalent to the readline operator when called in a list context. If
called in a scalar or void context this method will croak with an error.

ungetc CHAR Push a character back into the input buffer, for example:

$fh->ungetc(ord $char);

The character must be specified as an ASCII code, rather than a string. Only
one character is guaranteed to be pushed back; attempting to push back more
than one without an intermediate read may fail.

write BUF,
LEN, OFFSET

Equivalent to the syswrite function, this writes a given number of
characters to the filehandle, for example:

write all of string to filehandle

$fh->write $string;

write first 20 chars of string to filehandle

$fh->write $string, 20;

write chars 20 to 40 of string to filehandle

$fh->write $string, 20, 20;

See syswrite in 'System Level IO' for more information. Note that the
built-in Perl write function is mapped to the format_write method, since
this makes more logical sense.

error Returns True if the filehandle has experienced any errors since it was
opened, or the last called to clearerr.

clearerr Clear the filehandle's error condition (including end-of-file), for example:

$fh->clearerr;

sync Synchronize in-memory state of all opened files with their states on disc and
update all other filesystem changes. For example:

$fh->sync;

Note that this is a kernel-level function, which is not supported on all
platforms. It does not work on a per-filesystem basis and does not flush
buffered output at the filehandle level – use flush for that.

Table continued on following page

Chapter 12

452

Method Action

flush Flush buffered output at the application level, for example:

$fh->flush;

This method will flush any data that has been buffered by either block or line
buffering down to the operating system. It does not guarantee that the data is
actually written, however; sync above does that.

printflush
ARGS

Enable autoflush mode, print arguments to filehandle and then restore the
original autoflush state, for example:

$fh->printflush("This works", "just", "like print");

blocking 0|1 Set blocking or non-blocking mode on the filehandle, for example:

$fh->blocking(0); # enable non-blocking mode

$blocking = $fh->blocking(); # retrieve mode

Returns the value of the previous setting, or the current setting if no flag is
specified.

untaint 0|1 Set or unset untainting mode. For example:

$fh->untaint(1); # trust data read from $fh

This method only has an effect when taint mode has been enabled (-T).
Ordinarily when taint mode is enabled any data read from a filehandle is
considered tainted and a potential security risk. Setting the untaint flag
marks the filehandle as being a source of trusted data, so any data read from
it is considered untainted. Note that this is a very trusting thing to do and
should not be undertaken lightly. In particular, do not use this method just
get a program to work.

System Level IO
Conventional input and output uses buffered filehandles that optimize file accesses by reducing the
number of reads or writes that actually take place. The advantage of this is that file handling is a much
more efficient process from the operating system's point of view, and for the most part is transparent to
us. The disadvantage is that sometimes we want to read and write data with immediate effect, in which
case buffering can get in the way.

Buffering is a feature of the standard input/output library, more conventionally known as the stdio
library. To avoid buffering we need a way to bypass the stdio library and access filehandles directly.
Fortunately, Perl allows us to do just this with the sys family of built-in functions sysread, syswrite,
and sysseek.

Handling filehandles at the system level also allows us a greater degree of control over them; for
instance, we can carry out things like non-blocking IO much more easily. Much of this control comes
from the sysopen function.

The standard IO functions use buffered IO, and the system-level functions bypass these buffers.
Mixing buffered and non-buffered functions in the same code is extremely dangerous and highly
inadvisable, as inconsistent file positions and corrupted data can very easily be the result. As a
general rule, use one set of functions or the other, never both, on the same filehandle.

Input and Output with Filehandles

453

Opening Filehandles at the System Level
Opening files at the system level is handled by sysopen. This, like open, takes a filehandle name and a
filename as an argument. Unlike open, sysopen does not take a mode string like > or +<, but a
numeric mode made up of several mode flags whose values specify the desired attributes of the
filehandle. The Fcntl module defines labels for these numeric flags, such as O_WRONLY for write-only
access or O_CREAT to create the file if it does not exist. The mode cannot be combined with the
filename as it is with open, instead it comes after the filename as an additional third parameter:

use Fcntl; # import standard symbols
sysopen SYSHANDLE, $filename, O_WRONLY | O_CREAT;

The standard open modes can all be expressed in terms of a sysopen mode value; < is equivalent to
O_RDONLY, and > is equivalent to O_WRONLY| O_CREAT| O_TRUNC. The following two statements are
actually identical, but phrased differently:

open a file write-only with 'open'
open HANDLE, "> $filename";

open a file write-only with 'sysopen'
sysopen HANDLE, $filename, O_WRONLY|O_CREAT|O_TRUNC;

Note that sysopen does not create a different sort of filehandle from open. In particular, it does not
create an unbuffered handle. Whether or not the filehandle is buffered or unbuffered depends on how
we read and write with it. Functions like read, getc, and the readline operator work via the standard
IO buffers, while functions like sysread and syswrite bypass them. sysopen itself has no opinion
on the use of buffers or not – it merely provides a lower-level way to create filehandles.

For the curious coming from a C background: while it is true that sysopen uses the open system
call to generate an unbuffered file descriptor, it then uses fdopen to create a filehandle from that
file descriptor and returns this to Perl. So sysopen does create a filehandle, even though it does
not use the fopen system call.

For many applications we only need to supply three parameters to sysopen. (In fact, in many cases we
can get away with two, because an open mode flag of 0 is usually equivalent to O_RDONLY. However it
is dangerous to assume this, always use the Fcntl symbols.) We can also supply a fourth optional
parameter describing the permissions of the file in cases where the file is created. We will come to that
in a moment.

Open Mode Flags
sysopen allows us to specify all manner of flags in the open mode, some generically useful, others very
specific, and a few more than a little obscure. The main point of using sysopen rather than open is to
gain access to these flags directly, allowing us to create open modes other than the six standard
combinations supported by open. Some are relevant only to particular kinds of file, such as terminal
devices. The following tables show the flags that are combined to make up the various modes used by
open.

TE
AM
FL
Y

Team-Fly®

Chapter 12

454

Always specify one (and only one) of the primary modes:

O_RDONLY Open file for reading only.

O_RDWR Open file for reading and writing.

O_WRONLY Open file for writing only (not supported on Windows).

These are additional modes:

O_APPEND Open file for appending.

O_CREAT Create file if it does not exist.

O_TRUNC Truncate file on opening it (writing).

See the table in the 'Creating Filehandles with IO::File' section earlier in the chapter for a comparison
of open and sysopen modes to see how these mode flags are combined to create the six modes of
open. Some other useful flags we can only access with sysopen include the following:

O_BINARY Use binary mode (no newline translation).Text and Binary
files

O_TEXT Use text mode (do newline translation).

O_NONBLOCK Enable non-blocking mode.Non-blocking IO

O_NDELAY Alias (usually) for O_NONBLOCK. Semantics may vary on
platforms for filehandles that are associated with
networking.

Additional
Modes

O_EXCL Create file only if it does not already exist (meaningful
only with O_CREAT). If it does exist, fail rather than
open it.

Non-blocking IO
One of the main reasons for using sysopen over open is for non-blocking IO. Normally when a read
or write (including a system read or write performed by sysread or syswrite) is performed, the
system will wait for the operation to complete. In the case of reading, Perl will wait for input to arrive
and only return control to our application when it has something for us. Frequently, however, we do not
want to wait because we want to do other things in the meantime, so we use sysopen and the
O_NONBLOCK flag, (although it should be noted that the O_NONBLOCK flag is not recognized by Windows
at present):

use Fcntl;

open serial port read only, non-blocking
sysopen SERIAL, '/dev/ttyS0', O_RDONLY|O_NONBLOCK;

attempt to read characters
my $key;
while (sysread SERIAL, $key, 1) {

if (defined $key) {
print "Got '$key' \n";

} else {
warn "No input available \n";

Input and Output with Filehandles

455

wait before trying again
sleep(1);

}
}

close the port
close SERIAL;

When non-blocking mode is enabled, it attempts to read from a filehandle. When no data is available it
will raise the EAGAIN error in $!. We can get the symbol for EAGAIN from the POSIX module, so a
better way to write the above example would have been:

use POSIX qw(EAGAIN);
use Fcntl;

open serial port read only, non-blocking
sysopen SERIAL, '/dev/ttyS0', O_RDONLY|O_NONBLOCK;

attempt to read characters
my $key;

while (sysread SERIAL, $key, 1) {
if (defined ($key)) {

print "Got '$key' \n"
} else {

if ($!==EAGAIN) {
warn "No input available \n";

wait before trying again
sleep(1);

} else {
warn "Error attempting to read: $! \n";
last;

}
}

}

close the port
close SERIAL;

In this case we have used sysread to read an individual character directly from the serial port. We
could also have used read or even getc to do the same thing via the filehandle's buffers. This probably
would have been better as the filehandle will read in several kilobytes of characters if it can, and then
return them to us one by one. From our perspective there is no difference, but from the point of view of
the serial port it makes a lot of difference.

The Permissions Mask
Since it works at a lower level than open, sysopen also allows us to specify a numeric permissions
mask as a fourth argument to sysopen, either in the conventional octal format, or as a combination of
flags defined by the :mode import label:

permissions mode, as octal integer
open HANDLE, $filename, O_WRONLY|O_CREAT, 0644;

Chapter 12

456

permissions mode, as set of Fcntl flags:
open HANDLE, $filename, O_WRONLY|O_CREAT, S_IRUSR
|S_IWUSR
|S_IRGRP
|S_IROTH;

If the open creates the file (generally because O_CREAT is present in the open mode), its permissions are
set according to the permissions mask, as modified by the umask value as discussed earlier in the
chapter. Otherwise the permissions mask has no effect.

Using 'sysopen' via 'IO::File'
It is not actually necessary to use sysopen to make use of its features; the new method of IO::File
automatically uses sysopen if we give it a numeric mode instead of a string:

'IO::File' open for read/write using 'open'
$fh = new IO::File ($filename, '+<');

'IO::File' open for read/write using 'sysopen'
$fh = new IO::File ($filename, O_RDWR);

Since new can automatically detect a numeric mode flag and pass it to sysopen instead of open, we
can also pass in the permissions mask too:

'IO::File' open for read/write using 'sysopen' with permissions mask
$fh = new IO::File ($filename, O_RDWR, 0644);

The advantage of IO::File is, of course, that it makes filehandles much easier to manipulate and to
pass in and out of subroutines. This makes it a good choice for programming regardless of whether we
choose to use open or sysopen underneath.

Unbuffered Reading
Reading at the standard IO level is handled by Perl functions such as read and print. The unbuffered
system-level equivalents are sysread and syswrite.

sysread looks suspiciously similar to read at first glance. Like read, it takes a filehandle to read from,
a scalar variable to store the result in, a length giving the amount of data to read (or attempt to read),
and an optional offset:

#!/usr/bin/perl
sysread.pl
use warnings;
use strict;

use POSIX;

my $result;

die "Usage: $0 file \n" unless @ARGV;
sysopen HANDLE, $ARGV[0], O_RDONLY|O_NONBLOCK;

Input and Output with Filehandles

457

read 20 chrs into $result
my $chrs = sysread HANDLE, $result, 20;
if ($chrs == 20) {

got all 20, try to read another 30 chrs into $result after the first 20
$chrs += sysread HANDLE, $result, 30, 20;
print "Got '$result' \n";
if ($chrs < 50) {

print "Data source exhausted after $chrs characters \n";
} else {

print "Read $chrs characters \n";
}

} elsif ($chrs > 0) {
print "Got '$result' \n";
print "Data source exhausted after $chrs characters \n";

} else {
print "No data! \n";

}

The return value from sysread is the number of characters successfully read. This may be less than the
number requested if the data source runs out, and 0 if there is no data to read. However, note that if
O_NONBLOCK is not set, then sysread will wait for more data to arrive rather than returning 0. If there
is some data but not enough to satisfy the request then sysread will return when it exhausts the data
source. As stated before, Windows does not recognize O_NONBLOCK, so this example will not work
properly on that platform.

In fact, the above example is more of an example of how to use sysopen (to get a non-blocking
filehandle) than it is of how to use sysread, as we could just as easily have used read in this example,
and with the same effect. The difference between the two is that read would read as much data as
possible in the first call, and the second call would only cause a read of the file if the first failed to
retrieve 50 characters. The fact that it only returns 20 to us is irrelevant; buffering stores up the rest until
we need them. Of course we might not want to buffer the data; we may want to share the filehandle
between different processes instead. In cases like that, we would use sysread.

There is no system-level definition of the end-of-file condition, but we can do the equivalent by
checking for a zero return from sysread instead.

Unbuffered Writing
The counterpart to sysread is syswrite, which writes data directly to the filehandle rather than into
the filehandle's buffer. This is very useful in all kinds of applications, especially those that involve
sending short bursts of information between different processes.

syswrite takes a filehandle, some data, a length, and an optional offset as parameters. It then writes
data from the string to the filehandle up to the end of the text contained in the scalar, or the value
supplied as the length, whichever is shorter. If an offset is supplied, syswrite starts writing data from
that character position. For example, this code snippet writes out the contents of the scalar $data to
HANDLE (presumably a serial or network connection) at a rate of five hundred characters per second:

$pos = 0; $span = 500; $length = length($data);
while ($pos <= $length) {

syswrite HANDLE, $data, $span, $pos;
$pos += $span;
sleep 1;

}

Chapter 12

458

Unlike sysread, the length is also an optional parameter. If omitted, the length of the supplied data is
used instead, making syswrite a close analogue for an unbuffered print, only without the ability to
accept a list of arguments. We can invent a sysprint that will work like print using syswrite though:

an unbuffered print-a-like

sub sysprint {
check for a leading filehandle and remove it if present
$fh = (defined fileno($_[0]))?shift:*STDOUT;
use $, to join arguments, just like print
$joiner = $, ?$, :'';
syswrite $fh, join($joiner, @_);

}

sysprint(*STDOUT, "This ", "works ", "like ", "print ", "(sort of) ", "\n");

See the section on pipes in Chapter 22 for another example where sysread and syswrite are useful
to avoid deadlocks between communicating processes.

System-Level File Positioning
The system-level equivalent of the seek and tell functions is sysseek, which carries out both roles.
Like seek, it takes a filehandle, a position, and a whence flag that is set to either 0, 1, or 2, or the
Fcntl equivalent symbols SEEK_SET, SEEK_CUR, and SEEK_END:

seek using whence numbers
sysseek HANDLE, 0, 0; # rewind to start
sysseek HANDLE, 0, 2; # seek to end of file
sysseek HANDLE, 20, 1; # seek forward 20 characters

seek using Fcntl symbols
use Fcntl qw(:seek);

sysseek HANDLE, 0, SEEK_SET; # rewind to start
sysseek HANDLE, 0, SEEK_END; # seek to end of file
sysseek HANDLE, 20, SEEK_CUR; # seek forward 20 characters

The old file position is returned by sysseek. To find the current position using sysseek we can
simply seek to it using a whence flag of SEEK_CUR and a position of zero:

use Fcntl qw(:seek);
$pos = sysseek HANDLE, 0, SEEK_CUR;

Apart from the difference caused by buffering, sysseek is identical in operation to seek. However,
tell and sysseek can (and often do) return radically different values for the file position. This is
because the position returned by tell is determined by the amount of data read by our application,
whereas the position returned by sysseek is determined by the amount of data read by Perl, which
includes the data buffered by the filehandle. We can calculate the amount of data currently buffered by
taking the difference between the two values:

print "There are ", tell(HANDLE) - sysseek(HANDLE, 0, 1), " bytes in the buffer
\n";

Input and Output with Filehandles

459

Needless to say, mixing up system-level file positioning with standard IO file positioning is rarely a
good idea, for precisely this reason. If we are using print and readline, we should be using seek and
tell. If we are using sysread and syswrite, we should be using sysseek instead.

'fcntl' and 'ioctl'
No discussion of system-level IO would be entirely complete without a brief look at the fcntl and
ioctl functions. These provide very low-level access to filehandles, retrieving and setting parameters
that are often otherwise inaccessible to us. fcntl is more generic, and works across most kinds of
filehandle. ioctl is targeted at special files, such as character and block devices, and is much more
UNIX-specific.

Returned values, if any, are placed into a passed scalar variable; the return value is used to indicate
success or failure only. Both functions return undef on failure and set the error in $!. Otherwise they
either return a positive value (if the underlying system call returns one), or the special return value '0
but true', which returns 0 in a numeric context but tests true otherwise. To get the original underlying
return value (which is -1 for failure, 0 or a positive value for success), we can write:

calculate original numeric return value from system 'fcntl'
$result = int (fcntl(HANDLE, $action, $value) || -1);

Both functions will return a fatal error if used on a platform that does not support the underlying system
calls. On Windows, they return 0, but do not actually do anything, although they are not fatal.

Setting Filehandle Attributes with 'fcntl'
The fcntl function (not to be confused with the Fcntl module) performs miscellaneous actions on a
filehandle. It takes three parameters, a filehandle, an action to perform, and a value. For actions that
retrieve information this value must be a scalar variable, into which fcntl places the results of the call.
The names of the actions are defined, appropriately enough, in the Fcntl module. For example, we can
use fcntl to set a filehandle into non-blocking mode after we have opened it:

use POSIX;
use Fcntl qw(:mode);

get the current open mode flags
my $mode;
fcntl HANDLE, F_GETFL, $mode;

add O_NONBLOCK and set
fcntl HANDLE, F_SETFL, $mode | O_NONBLOCK;

A reasonably complete list of actions (some platform-specific) supported by fcntl follows. Consult the
system documentation for details of which actions fcntl supports on a particular platform; it may vary
from the list below.

This action duplicates the underlying file descriptor:

F_DUPFD Duplicate the file descriptor, returning the new descriptor. A low-level version of
open's & mode.

Chapter 12

460

The following actions get or set the close-on-exec flag. This flag determines whether the filehandle
survives across an exec call. Normally STDIN, STDOUT, and STDERR survive and other filehandles are
closed. The threshold for new filehandles can be set with the special variable $^F. The F_SETFD action
allows the flag of an individual, and already extant, filehandle to be modified.

F_GETFD Read the close-on-exec flag. File descriptors with this flag set are closed across a
call to exec.

F_SETFD Set the close-on-exec flag. For example, to preserve a filehandle across exec we
would use:

fcntl HANDLE, F_SETFD, 0;

The following actions get and set the mode flags of the filehandle, as specified by open modes like > or
sysopen mode flags like O_RDONLY:

F_GETFL Get the open mode flags, as set by open or sysopen. A combination of flags such
as O_RDONLY, O_CREAT, O_APPEND, and so on.

F_SETFL Set the open mode flags. Usually only the flags O_APPEND, O_ASYNC (Linux/BSD),
and O_NONBLOCK can be set, others are unaffected. See above for an example.

The following actions, which handle discretionary file locking, are similar to but not the same as the
flock system call (unless flock is implemented in terms of fcntl, which is sometimes the case). For
most purposes, flock is a lot simpler and more portable, but may not work on network-mounted
filesystems (for example, Via NFS). See the flock discussion earlier in the chapter for a more detailed
comparison of the two approaches (and how Perl's own flock relates to them).

F_GETLK Determine if a file is locked or not. The parameter needs to be a scalar variable,
into which details of the lock are written. The l_type field is set to F_UNLCK if no
lock is present.

F_SETLK Set a lock, returning immediately with undef on failure. The parameter needs to
be a packed flock structure containing the lock details. $! is set to the reason for
the failure if the lock attempt fails.

F_SETLKW Set a lock, waiting for the file to become available if necessary. Returns undef if
interrupted.

The lock type can be one of F_RDLCK, F_WRLCK, or F_UNLCK, which have the obvious meanings. There
is no nonblock flag as there is for flock because that function is handled by F_SETLK and F_SETLKW.
However, the values passed and returned to these actions are packed lock structures (not simple values),
so we need to use pack and unpack to create arguments that are suitable for fcntl when using these
actions. Here is a short script that implements a generic locking subroutine, three specific lock
subroutines that use it, and a quick demonstration of using them:

#!/usr/bin/perl
fcntl.pl
use warnings;
use strict;

use Fcntl;

Input and Output with Filehandles

461

generic lock subroutine
sub _do_lock {

my ($locktype, $fh, $block) = @_;
$block |= 0; # don't block unless asked to

is this a blocking or non-blocking attempt
my $op = $block?F_SETLKW:F_SETLK;

pack a structure suitable for this operation
my $lock = pack('s s l l s', $locktype, 0, 0, 0, 0);

establish the chosen lock in the chosen way
my $res = fcntl($fh, $op, $lock);
seek($fh, 0, 0);
return $res;

}

specific lock types
sub read_lock {return _do_lock(F_RDLCK, @_);}
sub write_lock {return _do_lock(F_WRLCK, @_);}
sub undo_lock {return _do_lock(F_UNLCK, @_);}

called like this:
open MYHANDLE, "+> myfile" or die "Failed to open: $! \n";

block write lock
write_lock(*MYHANDLE, 1) or die "Failed to lock: $! \n";

print MYHANDLE "Only I can write here \n";
undo (can't block anyway)
undo_lock(*MYHANDLE) or die "Failed to unlick: $! \n";

close MYHANDLE;

If (assuming the platform supports it) the O_ASYNC mode flag is specified in sysopen (or enabled using
fcntl and F_SETLF), then signals are generated by open file descriptors whenever reading or writing
becomes possible, which allows us to write synchronous IO routines that respond to events. These
actions allow the target and type of signal generated to be configured:

F_GETOWN Get the process id (or process group) that is receiving signals (SIGIO or SIGURG)
on this file descriptor, if the O_ASYNC mode flag is enabled. By default the
process id is that of the process that opened the filehandle, that is, us.

F_SETOWN Set the process id (or process group) that will receive signals on this file
descriptor, if O_ASYNC is enabled.

F_GETSIG (Linux only) Get the signal type generated by filehandles with O_ASYNC enabled.
The default of zero generates a SIGIO signal, as does a setting of SIGIO.

F_SETSIG (Linux only) Set the signal type generated by filehandles with O_ASYNC enabled.

The POSIX module also defines symbols for the various signal names.

Chapter 12

462

Controlling Devices with 'ioctl'
The ioctl function closely resembles fcntl, both in syntax and in operation. Like fcntl, it takes a
filehandle, an action, and a value (which in the case of retrieval actions, must be a scalar variable). It
also returns '0 but true' on success and undef on failure, setting $! to the reason if so. Also like fcntl,
attempting to use ioctl on a platform that does not support it will cause a fatal error.

ioctl is an interface for controlling filehandles that are associated with devices, such as serial ports,
terminals, CR-ROM drives, and so on. ioctl is a very low-level tool for analyzing and programming
the device underlying a filehandle, and it is relatively rarely that we need to use it. Most of the useful
ioctl actions are already encapsulated into more convenient modules or are, at the least, handled
more elegantly by the POSIX module. However in a few cases it can be useful, so long as we realize that
it is not very portable (many platforms do not support it) and that higher-level and more portable
solutions are generally preferable.

The different actions supported by ioctl can be considerable (as well as highly platform-dependent)
since different device categories may support their own particular family of ioctl actions – serial ports
have one set, terminals have another, and so on. When Perl is built, it analyzes the underlying system
and attempts to compile a list of constant-defining functions, each one corresponding to the equivalent
C header file. The most common symbols are placed in sys/ioctl.ph. Other ioctl symbols may be
defined in different header files – on a Linux system, CR-ROM ioctls are defined in the header file
linux/cdrom.ph. Here's how we can eject a CD on a Linux box:

#!/usr/bin/perl
ioctl.pl
use warnings;
use strict;

require 'linux/cdrom.ph';

open CDROM, '/dev/cdrom';
ioctl CDROM, 0x5309, 1; # the ioctl number for CDROMEJECT
ioctl CDROM, &CDROMEJECT, 1;
close CDROM;

For a complete list of ioctl actions consult the system documentation for the device type in question –
Linux defines ioctls in the manual page ioctl_list. Serial port definitions can also be found in the
header files compiled by Perl, /usr/lib/perl5/5.6.0/<platform-type>/bits/ioctls.ph
for the actions, ioctl_types.ph for flags such as TCIOM_RTS, and TCIOM_CD in a standard UNIX
Perl 5.6 installation. Terminal definitions are covered by the POSIX routines POSIX::Termios and
documented in the POSIX module manual page.

Note that many of the more common actions performed by ioctl are better handled elsewhere (by
several of the standard Perl library modules covered in this chapter). In Chapter 15, the POSIX
getattr and setattr routines and the POSIX::Termios module are covered.

POSIX IO
The POSIX module provides a direct interface to the standard C library upon which Perl is built,
including all of the file-handling routines. Most of the time we never need to bother with these since
Perl already supports most of them in its own file functions. However, on occasion, the POSIX calls can
come in useful, so we will quickly detail what is available.

Input and Output with Filehandles

463

The POSIX module provides three main categories of routines that relate to file handling and IO. The
first works on filehandles, and the majority of these are identical in every respect to the standard Perl
file functions. The second works on file descriptors, and is the basis of the system-level IO functions.
The third is specifically aimed at talking to terminals, and we discuss it further in Chapter 15.

Intuitively we might expect Perl's sys file functions to return and operate on file descriptors (not
filehandles), since they are after all supposed to be 'system' level. In fact they do, by using fileno to
determine the underlying file descriptor and then using the appropriate system-level POSIX call. So,
even though we have a filehandle complete with buffers, we may never actually use them. The
advantage of this approach is that we can use filehandles and still carry out unbuffered IO without ever
having to worry about file descriptors unless we really want to.

POSIX Filehandle Routines
The POSIX module provides interfaces to the standard filehandle routines as a convenience to
programmers migrating from backgrounds such as C, who are used to routines called fopen, flush,
fstat, fgetpos, and so on. In actual fact all of these routines either map directly onto Perl's built-in
functions (POSIX::getc simply calls CORE::getc for example), or methods in the IO::File (open
goes to IO::File::open), IO::Handle (ungetc goes to IO::Handle::getc), or IO::Seekable
modules (ftell goes to IO::Seekable::tell) modules.

In short, there is really no reason to use these functions, and we are almost certainly better off using
Perl's built-in functions and the IO:: family of modules. However, for those who have a lot of
experience with the POSIX library calls and are interested in a quick port with minimal fuss, the POSIX
module does provide their equivalents in Perl.

POSIX File Descriptor Routines
The POSIX routines that operate on file descriptors are summarized below. Note that we can use
fdopen to create a filehandle from a file descriptor that was created using open or creat. We can use
fileno to get a file descriptor from a filehandle for use in these routines:

close fd Close a file descriptor created by open or create.

creat fd, perm Create a file with an open mode of O_WRONLY|O_CREAT|O_TRUNC.
Takes a permissions mask as a second parameter. Shorthand for open.

fdopen fd Create a filehandle from a file descriptor – equivalent to the open
mode &=<fd>.

stat fd Return 'stat' information for the file descriptor. The returned list of
values is identical to that returned by Perl's stat.

dup fd Duplicate an existing file descriptor, returning the number of the new
file descriptor. Equivalent to the open mode &<fd>, except it returns
a file descriptor.

dup2 oldfd, newfd Make newfd a duplicate of oldfd, closing newfd first if it is currently
open. No direct Perl equivalent.

open file, mode,
perm

Open a file descriptor. Identical to sysopen except that it returns a
file descriptor not a filehandle. sysopen can be simulated by
following open with fdopen on the generated file descriptor.

Table continued on following page

TE
AM
FL
Y

Team-Fly®

Chapter 12

464

Pipe Create a pair of file descriptors connected to either end of a
unidirectional pipe. Returns a list of two descriptors; the first is read-
only, the second is write-only. Identical to Perl's pipe except that it
returns file descriptors, not filehandles.

read fd, $buf,
length

Read from a file descriptor. Identical to Perl's sysread except that it
uses a file descriptor and not a filehandle.

write fd, $buf,
length

Write to a file descriptor. Identical to Perl's syswrite except that it
uses a file descriptor and not a filehandle.

Note that importing these functions into our own applications can cause problems, since many of them
have the same name as a Perl counterpart that uses filehandles rather than file descriptors. For that
reason, these routines are better called through their namespace prefix:

$fd = POSIX::open($path, O_RDWR|O_APPEND|O_EXCL, 0644);

@stat = POSIX::fstat $fd;
$fd2 = POSIX::dup $fd;
POSIX::close $fd;

Technically, the directory-handling functions such as opendir also deal in file descriptors rather than
filehandles, since it makes no sense to buffer the data read from a directory. However Perl also handles
this for us automatically, so we should never have to worry about it.

Moving between POSIX and Standard IO
Occasionally we might want to work with both a POSIX file descriptor and a filehandle for the same file.
For example, we may want to make use of functions in the POSIX library or third party C libraries that
expect file descriptors as arguments. This takes a lot of care and attention to pull off, because as we
remarked when we started, mixing buffered and unbuffered operations can corrupt data and confuse the
file position. However, if we really want to do this we can convert between filehandles and file
descriptors.

Generating a filehandle from a file descriptor involves wrapping it in a stdio file structure containing a
pair of buffers. In C this is done by the fdopen system call. In Perl we can do the same thing with the
special &= open mode, which takes a file descriptor as an argument:

wrap a file descriptor in a new filehandle
open HANDLE, "&= $descriptor";

Much the same thing happens implicitly when we duplicate a filehandle with open. The & mode is a
shorthand for extracting the file descriptor of a filehandle and then creating a new filehandle structure
around it:

duplicate a filehandle the quick way
open NEWOUT, "& STDOUT";

duplicate a filehandle the explicit way
$stout = fileno STDOUT;
open NEWOUT, "& $stout";

Input and Output with Filehandles

465

Note that there is a difference between & and &=. &= associates a new filehandle with an existing file
descriptor. Closing any filehandle associated with that descriptor closes all of them. & creates a new file
descriptor that is associated with the same file, but is nonetheless a different descriptor. The file
descriptors and their associated filehandles share file positions, but can be closed independently of each
other. See the section on open at the start of the chapter for more on these special modes.

Extracting the file descriptor from a file handle is trivial; we just use the fileno function:

$descriptor = fileno HANDLE;

We can also use fileno to find out if filehandles are duplicated, since they will have the same file
descriptor:

if (fileno(HANDLE1) == fileno(HANDLE2)) {
print "Handles are duplicated \n";

}

Summary
In this chapter we looked at using filehandles as a means of communication between our Perl programs
and external data sources. We saw that Perl provides us with a rich suite of functions for manipulating
filehandles. We examined various ways of creating, referring to, reading, and writing to filehandles. As
well as this, we also investigated changing the default output filehandle, duplicating and aliasing
filehandles, redirecting filehandles, and caching many filehandles.

We looked into the extra control that we gain when manipulating filehandles at the system level,
including performing unbuffered reading and writing.

Finally, we examined the fcntl and ioctl functions, and the POSIX module, and discussed when we
might need to use them and how to do that.

Chapter 12

466

Manipulating Files and Directories

Files and Filenames
There are plenty of applications involving files that do not necessarily involve opening a filehandle.
Obvious examples include copying, moving or renaming files, and interrogating files for their size,
permissions or ownership. In this chapter we cover testing files for different properties such as their type
(file, directory, and so on) and accessibility (can we read and/or write it?). We also delve deeper into file
attributes with the stat and lstat functions, and take a look at file globbing, which is an interface to
the wildcard file-naming features usually supplied by shells.

In addition to file globbing and interrogation, the Perl standard library supplies a toolkit of modules for
copying, comparing, and processing files that are written to work portably and produce the correct
results regardless of the underlying platform. Modules that fall into this group include File::Copy,
File::Compare, and File::CheckTree.

We also take a look at creating and using temporary files, both privately and as a mechanism for sharing
transient data between different programs. Having covered files, we then move to manipulating
directories.

Let's start first by examining how Perl allows us to extract user and group information, which is useful
for managing files.

Chapter 13

468

Getting User and Group Information
Perl provides built-in support for handling user and group information on UNIX platforms through the
getpwent and getgrent families of functions. This support is principally derived from the underlying
C library functions of the same names, which are in turn dependent on the details of the
implementation provided by the operating system. All UNIX platforms provide broadly the same
features for user and group management in terms of user and group names and ids, but they vary
slightly in what additional information they store. Perl makes a reasonable attempt to unify and handle
all the variations, but the system documentation is the best source of information on what values these
functions return.

UNIX platforms define user and group information in the /etc/passwd and /etc/group files, but
this oversimplifies the actual process of looking up user and group information for two reasons. First, if
a shadow password file is in use then the user information in /etc/passwd will not contain an
encrypted password in the password field. Second, if alternative sources of user and group information
are configured (such as NIS or NIS+), then requesting user or group information may additionally (or
alternatively) initiate a network lookup to retrieve information from a remote server. On most UNIX
platforms the order in which local and remote information sources are consulted is typically defined by
the file /etc/nsswitch.conf.

Support for other security models and platforms is not provided through built-in functions, but is
available through extension modules. Windows NT programmers, for example, can make use of the
Win32::AdminMisc module to gain access to the Win32 Security API. Windows and other non-UNIX
platforms do not support getpwent or getgrent, though the Cygwin port does provide a veneer of
UNIX security that allows these functions to work on Windows platforms with limited functionality.
Access Control Lists (ACLs) and other advanced security features are beyond the reach of the built-in
functions even on UNIX platforms, but they can be handled via various modules available from CPAN
– modules exist for most common security solutions.

User Information
UNIX platforms store local user information in the /etc/passwd file (though as noted above they may
also retrieve information remotely). The format varies slightly, but typically has a structure like this:

fred:RGdmsaynFgP56:301:200:Fred A:/home/fred:/bin/bash
jim:Edkl1y7NMtO/M:302:200:Jim B:/home/jim:/bin/ksh
mysql:!!:120:120:MySQL server:/var/lib/mysql:/bin/csh

Each line follows the same format, and contains the following fields: name, password, user id, primary
group id, comment/GECOS, home directory, and login shell. In this case we are not using a shadow
password file, so the password field contains an encrypted password. The first two lines are for regular
users, while the third defines an identity for a MySQL database server to run as. It doesn't want or need a
password since it is not intended as a login user, so the password is disabled with !! (* is often also used
for this purpose).

getpwent (pwent is short for 'password entry') retrieves one entry from the user information file at a
time, starting from the first. In list context it returns no less than ten fields:

($name, $passwd, $uid, $gid, $quota, $comment, $gcos, $dir, $shell, $expire) =
getpwent;

Since the format and source of user information varies, not all these fields are always defined, and some
of them have alternative meanings. A summary of each field and its possible meanings is given in the
table opposite; consult the manual page for the passwd file (typically via man 5 passwd) for exact
details of what fields are provided on a given platform.

Manipulating Files and Directories

469

Field Name Number Meaning

name 0 The login name of the user.

passwd 1 The encrypted password. Depending on the platform, the password
may be encrypted using the standard UNIX crypt function, or the
more secure MD5 hashing algorithm. If a shadow password file is in
use, this field returns an asterisk. Additionally, disabled accounts often
prefix passwords with ! to disable them.

uid 2 The user id of this user.

gid 3 The primary group of this user. Other groups can be found using the
group functions detailed later.

quota 4 The disk space quota allotted to this user. Frequently unsupported. On
some systems this may be a change or age field instead.

comment 5 A comment, usually the user's full name. On some systems this may be
a class field instead. The comment field is often called the gcos field,
but this is not technically accurate; this or the next item may therefore
actually contain the comment.

gcos 6 Also known as GECOS, standing for 'General Electric Computer
Operating System'. An extended comment containing a comma
separated series of values – for example the user's name, location and
work/home phone numbers. Frequently unimplemented, but see note
on comment above.

dir 7 The home directory of the user, for example, /home/name.

shell 8 The preferred login shell of the user, for example, /usr/bin/bash.

expire 9 The expiry date of the user account. Frequently unsupported, often
undefined.

In scalar context, getpwent returns just the name of the user, that is, the first field. To illustrate, we can
generate a list of user names with a program like the following:

#!/usr/bin/perl
listusers.pl
use warnings;
use strict;

my @users;
while (my $name = getpwent) {

push @users, $name;
}
print "Users: @users \n";

Supporting getpwent are the setpwent and endpwent functions. The setpwent function resets the
pointer for the next record returned by getpwent to the start of the password file. It is analogous to the
rewinddir function in the same way that getpwent is analogous to both opendir and readdir
combined. Since there only is one password file, it takes no arguments:

setpwent;

Chapter 13

470

The endpwent function is analogous to closedir: It closes the internal file pointer created whenever
we use getpwent (or getpwnam /getpwuid, detailed below). We cannot get access to this internal
filehandle, but we can still free it if we are resource-conscious programmers. Additionally, if a network
query was made then this will close the connection:

endpwent;

The getpwnam and getpwuid functions look up user names and user ids from each other. getpwnam
takes a user name as an argument and returns the user id in scalar context or the full list of ten fields in
a list context:

$uid = getpwnam($username);
@fields = getpwname($username);

Similarly, getpwuid takes a numeric user id and returns either the name or a list of fields, depending
on context:

$username = getpwuid($uid);
@fields = getpwuid($uid);

Both functions also have the same effect as setpwent in that they reset the position of the pointer used
by getpwent, so they cannot be combined with it in loops.

Since ten fields is rather a lot to manage, Perl provides the User::pwent module to provide an object-
oriented interface to the pw functions. It is one of several modules that all behave similarly; others are
User::grent (for group information), Net::hostent, Net::servent, Net::netent,
Net::protoent (for network information) and Stat (for the stat and lstat functions).

User::pwent works by overloading the built-in getpwent, getpwnam, and getpwuid functions with
object-oriented methods returning a pw object, complete with methods to extract the relevant fields. It
also has the advantage of knowing what methods actually apply, which we can determine using the
pw_has class method. Here is an object-oriented user information listing program, which uses
getpwent to illustrate how the User::pwent module is used:

#!/usr/bin/perl
listobjpw.pl
use warnings;
use strict;

use User::pwent qw(:DEFAULT pw_has);

print "Supported fields: ", scalar(pw_has), "\n";

while (my $user = getpwent) {
print 'Name : ', $user->name, "\n";
print 'Password: ', $user->passwd, "\n";
print 'User ID : ', $user->uid, "\n";
print 'Group ID: ', $user->gid, "\n";

one of quota, change or age
print 'Quota : ', $user->quota, "\n" if pw_has('quota');
print 'Change : ', $user->change, "\n" if pw_has('change');
print 'Age : ', $user->age, "\n" if pw_has('age');

Manipulating Files and Directories

471

one of comment or class (also possibly gcos is comment)
print 'Comment : ', $user->comment, "\n" if pw_has('comment');
print 'Class : ', $user->class, "\n" if pw_has('class');

print 'Home Dir: ', $user->dir, "\n";
print 'Shell : ', $user->shell, "\n";

maybe gcos, maybe not
print 'GECOS : ',$user->gecos,"\n" if pw_has('gecos');

maybe expires, maybe not
print 'Expire : ', $user->expire, "\n" if pw_has('expire');

seperate records
print "\n";

}

If called with no arguments, the pw_has class method returns a list of supported fields in list context,
and a space-separated string suitable for printing in scalar context. Because we generally want to use it
without prefixing User::pwent:: we specify it in the import list. However, to retain the default
imports that override getpwent etc., we also need to specify the special :DEFAULT tag.

We can also import scalar variables for each field and avoid the method calls by adding the :FIELDS
tag (which also implies :DEFAULT) to the import list. This generates a set of scalar variables with the
same names as their method equivalents but prefixed with pw_. The equivalent of the above object-
oriented script written using field variables is:

#!/usr/bin/perl
listfldpw.pl
use warnings;
use strict;

use User::pwent qw(:FIELDS pw_has);

print "Supported fields: ", scalar(pw_has), "\n";

while (my $user = getpwent) {
print 'Name : ', $pw_name, "\n";
print 'Password: ', $pw_passwd, "\n";
print 'User ID : ', $pw_uid, "\n";
print 'Group ID: ', $pw_gid, "\n";

one of quota, change or age
print 'Quota : ', $pw_quota, "\n" if pw_has('quota');
print 'Change : ', $pw_change, "\n" if pw_has('change');
print 'Age : ', $pw_age, "\n" if pw_has('age');

one of comment or class (also possibly gcos is comment)
print 'Comment : ', $pw_comment, "\n" if pw_has('comment');
print 'Class : ', $pw_class, "\n" if pw_has('class');

print 'Home Dir: ', $pw_dir, "\n";
print 'Shell : ', $pw_shell, "\n";

maybe gcos, maybe not
print 'GCOS : ', $pw_gecos, "\n" if pw_has('gecos');

Chapter 13

472

maybe expires, maybe not
print 'Expire : ', $pw_expire, "\n" if pw_has('expire');

seperate records
print "\n";

}

We may selectively import variables if we want to use a subset, but since this overrides the default
import we must also explicitly import the functions we want to override:

use User::grent qw($pw_name $pw_uid $pw_gid getpwnam);

To call the original getpwent, getpwnam, and getpwuid functions we can use the CORE:: prefix.
Alternatively, we could suppress the overrides by passing an empty import list or an list containing
neither :DEFAULT nor :FIELDS. As an example, here is another version of the above script that invents
a new object method has for the Net::pwent package and then uses that and class method calls only,
avoiding all imports:

#!/usr/bin/perl
listcorpw.pl
use warnings;
use strict;

use User::pwent();

sub User::pwent::has {
my $self = shift;

return User::pwent::pw_has(@_);
}

print "Supported fields: ", scalar(User::pwent::has), "\n";

while (my $user = User::pwent::getpwent) {
print 'Name : ', $user->name, "\n";
print 'Password: ', $user->passwd, "\n";
print 'User ID : ', $user->uid, "\n";
print 'Group ID: ', $user->gid, "\n";
one of quota, change or age
print 'Quota : ', $user->quota, "\n" if $user->has('quota');
print 'Change : ', $user->change, "\n" if $user->has('change');
print 'Age : ', $user->age, "\n" if $user->has('age');

one of comment or class (also possibly gcos is comment)
print 'Comment : ', $user->comment, "\n" if $user->has('comment');
print 'Class : ', $user->class, "\n" if $user->has('class');

print 'Home Dir: ', $user->dir, "\n";
print 'Shell : ', $user->shell, "\n";

maybe gcos, maybe not
print 'GECOS : ', $user->gecos, "\n" if $user->has('gecos');

maybe expires, maybe not
print 'Expire : ', $user->expire, "\n" if $user->has('expire');

Manipulating Files and Directories

473

separate records
print "\n";

}

As a convenience, the Net::pwent module also provides the getpw subroutine, which takes either a
user name or a user id, returning a user object either way:

$user = getpw($user_name_or_id);

If the passed argument looks numeric, then getpwuid is called underneath to do the work; otherwise
getpwnam is called.

Group Information
UNIX groups are a second tier of privileges between the user's own privileges and those of all users on
the system. Files, for example, carry three sets of permissions for reading, writing, and execution – one
for the file's owner, one for the file's owning group, and one for everyone else (see later in the chapter
for more on this). All users belong to one primary group, and files they create are assigned to this group.
This information is locally recorded in the /etc/passwd file and can be found locally or remotely with
the getpwent, getpwnam, and getpwuid functions as described above. In addition, users may belong
to any number of secondary groups. This information, along with the group ids (or 'gid's) and group
names, is locally stored in the /etc/group file and can be extracted locally or remotely with the
getgrent, getgrnam, and getgrgid functions.

The getgrent function reads one entry from the groups file each time it is called, starting with the first
and returning the next entry in turn on each subsequent call. It returns four fields, the group name, a
password (which is usually not defined), the group id, and the users who belong to that group:

#!/usr/bin/perl
listgr.pl
use warnings;
use strict;

while (my ($name, $passwd, $gid, $members) = getgrent) {
print "$gid: $name [$passwd] $members \n";

}

Alternatively, if we call getgrent in a scalar context, it returns just the group name:

#!/usr/bin/perl
listgroups.pl
use warnings;
use strict;

my @groups;
while (my $name = getgrent) {

push @groups, $name;
}
print "Groups: @groups \n";

TE
AM
FL
Y

Team-Fly®

Chapter 13

474

As with getpwent, using getgrent causes Perl (or more accurately, the underlying C library) to open
a filehandle (or open a connection to an NIS or NIS+ server) internally. Mirroring the supporting
functions of getpwent, setgrent resets the pointer of the group filehandle to the start, and endgrent
closes the file (and/or network connection) and frees the associated resources.

Perl provides the User::grent module as an object-oriented interface to the getgrent, getgrnam,
and getgrid functions. It works very similarly to User::pwent, but provides fewer methods as it has
fewer fields to manage. It also does not have to contend with the variations of field meanings that
User::pwent does, and is consequently simpler to use. Here is an object-oriented group lister using
User::getgrent:

#!/usr/bin/perl
listbigr
use warnings;
use strict;

use User::grent;

while (my $group = getgrent) {
print 'Name : ', $group->name, "\n";
print 'Password: ', $group->passwd, "\n";
print 'Group ID: ', $group->gid, "\n";
print 'Members : ', join(', ', @{$group->members}), "\n\n";

}

Like User::pwent (and indeed all similar modules like Net::hostent, etc.) we can import the
:FIELDS tag to variables that automatically update whenever any of getgrent, getgrnam, or
getgrgid are called. Here is the previous example reworked to use variables:

#!/usr/bin/perl
listfldgr.pl
use warnings;
use strict;

use User::grent qw(:FIELDS);

while (my $group = getgrent) {
print 'Name : ', $gr_name, "\n";
print 'Password: ', $gr_passwd, "\n";
print 'Group ID: ', $gr_gid, "\n";

print 'Members : ', join(', ', @{$group->members}), "\n\n";
}

We can also selectively import variables if we only want to use some of them:

use User::grent qw($gr_name $gr_gid);

In this case the overriding of getgrent etc. will not take place, so we would need to call
User::grent::getgrent rather than just getgrent, or pass getgrent as a term in the import list.
To avoid importing anything at all, just pass an empty import list.

Manipulating Files and Directories

475

The Unary File Test Operators
Perl provides a full complement of file test operators. They test filenames for various properties, for
example, determining whether they are a file, directory, link, or other kind of file, determining who
owns the them, and their access privileges. All of these file tests consist of a single minus followed by a
letter, which determines the nature of the test, and either a filehandle or a string containing the file
name. Here are a few examples:

-r $filename # return true if file is readable by us

-w $filename # return true if file is writable by us

-d DIRECTORY # return true if DIRECTORY is opened to a directory

-t STDIN # return true if STDIN is interactive

Collectively these functions are known as the -X or file test operators.

The slightly odd-looking syntax comes from the UNIX file test utility test and the built-in equivalents
in most UNIX shells. Despite their strange appearance, the file test operators are really functions that
behave just like any other built-in unary (single argument) Perl operator, and will happily accept
parentheses:

print "It's a file!" if -f($filename);

If no filename or handle is supplied then the value of $_ is used as a default, which makes for some very
terse if somewhat algebraic expressions:

foreach (@files) {
print "$_ is readable textile\n" if -r && -T; # -T for 'text' file

}

Only single letters following a minus sign are interpreted as file tests, so there is never any confusion
between file test operators and negated expressions:

-o($name) # test if $name is owned by us
-oct($name) # return negated value of $name interpreted as octal

The full list of file tests is given below, loosely categorized into functional groups. Note that not all of
these tests may work, depending on the underlying platform. For instance, operating systems that do not
understand ownership in the UNIX model will not make a distinction between -r and -R, since this
requires the concept of real and effective user IDs (the Win32 API does support 'impersonation' but this
is not the same thing and is not used here). They will also not return anything useful for -o. Similarly,
the -b and -c tests are specific to UNIX device files and have no relevance on other platforms.

This tests for the existence of a file:

-e Return true if file exists. Equivalent to the return value of the stat function.

Chapter 13

476

These test for read, write, and execute for effective and real users. On non-UNIX platforms, which don't
have the concepts of real and effective users, the capital and lowercase versions are equivalent:

-r Return true if file is readable by effective user id.

-R Return true if file is readable by real user id.

-w Return true if file is writable by effective user id.

-W Return true if file is writable by real user id.

-x Return true if file is executable by effective user id.

-X Return true if file is executable by real user id.

The following test for ownership and permissions (-o returns 1, others ' ' on non-UNIX platforms). Note
that these are UNIX based commands. On Windows, files are owned by 'groups' as opposed to 'users':

-o Return true if file is owned by our real user id.

-u Return true if file is setuid (chmod u+S, executables only).

-g Return true if file is setgid (chmod g+S. executables only), this does not exist on
Windows.

-k Return true if file is sticky (chmod +T, executables only), this does not exist on
Windows.

These tests for size work on Windows as on UNIX:

-z Return true if file has zero length (that is, it is empty).

-s Return true if file has non-zero length (opposite of -z).

The following are file type tests. While -f, -d, -t are generic, the others are platform dependent:

-f Return true if file is a plain file (that is, not a directory, link, pipe, etc.).

-d Return true if file is a directory.

-l Return true if file is a symbolic link.

-p Return true if file is a named pipe or filehandle is a pipe filehandle.

-S Return true if file is a UNIX domain socket or filehandle is a socket filehandle.

-b Return true if file is a block device.

-c Return true if file is a character device.

-t Return true if file is interactive (opened to a terminal).

We can use -T and -B to test whether a file is text or binary:

-T Return true if file is a text file. See below for details.

-B Return true if file is not a text file. See below details.

Manipulating Files and Directories

477

The following test for times, and also work on Windows:

-M Returns the age of the file as a fractional number of days, counting from the time at
which the application started (which avoids a system call to find the current time). To test
which of two files is more recent we can write:

$file = (-M $file1 > -M $file2)? $file1: $file2;

-A Returns last access time.

-C On UNIX, returns last inode change time (not creation time, as is commonly
misconceived; this does return the creation time, but only so long as the inode has not
changed since the file was created). On other platforms, it returns the creation time.

Link Transparency and Testing for Links
This section is only relevant if our chosen platform supports the concept of symbolic links, which is to
say all UNIX variants, but not most other platforms (in particular, Windows 'shortcuts' are an artifact of
the desktop, and nothing to do with the actual filing system).

The stat function, which is the basis of all the file test operators (except -l) automatically follows
symbolic links and returns information based on the real file, directory, pipe, etc., that it finds at the end
of the link. Consequently, file tests like -f and -d return true if the file at the end of the link is a plain
file or directory. We do not therefore have to worry about links when we just want to know if a file is
readable:

@lines;
if (-e $filename) {

if (-r $filename) {
open FILE, $filename; # open file for reading
@lines = <FILE>;

} else {
die "Cannot open $filename for reading \n";

}
} else {

die "Cannot open $filename - file does not exist \n";
}

If we want to find out if a file actually is a link, we have to use the -l test. This gathers information
about the link itself and not the file it points to, returning true of the file is in fact a link. A practical
upshot of this is that we can test for broken links by testing -l and -e:

if (-l $file and !-e $file) {
print "'$file' is a broken link! \n";

}

This is also useful for testing that a file is not a link when we do not expect it to be. A utility designed to
be run under 'root' should check that files it writes to have not been replaced with links to
/etc/passwd for example.

Testing Binary and Text Files
-T and -B test files to see if they are text or binary. They do this by examining the start of the file and
counting the number of non-text characters present. If this exceeds a third, the file is determined to be
binary, otherwise it is determined to be text. If a null (ASCII 0) character is seen anywhere in the
examined data then the file is binary.

Chapter 13

478

Since -T and -B only make sense in the context of a plain file, they are commonly combined with -f:

if (-f $file && -T $file) {
...

}

-T and -B differ from the other file test operators in that they perform a read of the file in question.
When used on a filehandle, both tests read from the current position of the file pointer. An empty file,
or a filehandle positioned at the end of the file will return true for both -T and -B since in these cases
there is no data to determine which is the correct interpretation.

Reusing the Results of a Prior 'stat' or 'lstat'
The underlying mechanism behind the file test operators is a call to either stat or (in the case of -l,
lstat). In order to test the file, each operator will make a call to stat to interrogate the file for
information. If we want to make several tests this is inefficient, because a disk access needs to be made
in each case.

However, if we have already called stat or lstat for the file we want to test then we can avoid these
extra calls by using the special filename _, which will substitute the results of the last call to stat (or
lstat) in place of accessing the file. Here is a short example that tests a filename in six different ways
based on one call to lstat:

#!/usr/bin/perl
statonce.pl
use warnings;
use strict;

print "Enter filename to test: ";
my $filename = <>;
chomp $filename;

if (lstat $filename) {
print "$filename is a file \n" if -f _;
print "$filename is a directory \n" if -d _;
print "$filename is a link \n" if -l _;

print "$filename is readable \n" if -r _;
print "$filename is writable \n" if -w _;
print "$filename is executable \n" if -x _;

} else {
print "$filename does not exist \n";

}

Note that in this example we have used lstat so the link test -l _ will work correctly. -l requires an
lstat and not a stat, and will generate an error if we try to use it with the results of a previous stat:

The stat preceding -l _ wasn't an lstat...

Caching of the results of stat and lstat works for prior file tests too, so we could also write
something like this:

if (-e $filename) {
print "$filename exists \n";
print "$filename is a file \n" if -f _;

}

Manipulating Files and Directories

479

Or:

if (-f $filename && -T _) {

print "$filename exists and is a text file \n";
}

The only drawback to this is that only -l calls lstat, so we cannot test for a link this way unless the
first test is -l.

Using 'stat' Objects
Accessing the values returned by stat can be a little inconvenient, not to mention inelegant. For
example, this is how we find the size of a file:

$size = (stat $filename)[7];

Or, printing it out:

print ((stat $filename)[7]); # need to use extra parentheses with print

Unless we happen to know that the eighth element is the size or we are taking care to write particularly
legible code, this leads to unfriendly code. Fortunately we can use the File::stat module instead.

The File::stat module simplifies the use of stat and lstat by overriding them with subroutines
that return stat objects instead of a list. These objects can then be queried using one of File::stat's
methods, which have the same names as the values that they return.

As an example, this short program uses the size, blksize, and blocks methods to return the size of
the file supplied on the command line:

#!/usr/bin/perl
filesize.pl
use warnings;
use strict;

use File::stat;

print "Enter filename: ";
my $filename = <>;
chomp $filename;
if (my $stat = stat $filename) {

print "'$filename' is ", $stat->size,
" bytes and occupies ", $stat->blksize * $stat->blocks,
" bytes of disc space \n";

} else {
print "Cannot stat $filename: $| \n";

}

As an alternative to using object methods, we can import thirteen scalar variables containing the results
of the last stat or lstat into our program by adding an import list of :FIELDS. Each variable takes
the same name as the corresponding method prefixed with the string st_. For example:

Chapter 13

480

#!/usr/bin/perl
filesizefld.pl
use warnings;
use strict;

use File::stat qw(:FIELDS);

print "Enter filename: ";
my $filename = <>;
chomp($filename);
if (stat $filename) {

print "'$filename' is ", $st_size,
" bytes and occupies ", $st_blksize * $st_blocks,
" bytes of disc space \n";

} else {
print "Cannot stat $filename: $| \n";

}

If we want to use the original versions of stat and lstat we can do so by prefixing them with the
CORE:: package name:

use File::stat;

...

@new_stat = stat $filename; # use new 'stat'
@old_stat = CORE::stat $filename; # use original 'stat'

Alternatively we can prevent the override from happening by supplying an empty import list:

use File::stat qw(); # or '', etc.

We can now use the File::stat stat and lstat methods by qualifying them with the full
package name:

$stat = File::stat::stat $filename;
print "File is ", $stat->size(), " bytes \n";

The full list of File::stat object methods and field names is presented in the section 'Interrogating
Files' later in the chapter.

Access Control Lists, the Superuser, and the 'filestat' Pragma
The file tests -r, -w, and -x, and their uppercase counterparts determine their return value from the
results of the stat function. Unfortunately this does not always produce an accurate result. Some of the
reasons that these file tests may produce incorrect or misleading results include:

� An Access Control List (ACL) is in operation

� The filesystem is read-only

� We have superuser privileges

Manipulating Files and Directories

481

All these cases tend to produce 'false positive' results, implying that the file is accessible when in fact it
is not. For example, the file may be writable, but the filesystem is not.

In the case of the superuser, -r, -R, -w, and -W will always return true, even if the file is set as
unreadable and unwritable, because the superuser can just disregard the actual file permissions.
Similarly, -x and -X will return true if any of the execute permissions (user, group, other) are set. To
check if the file is really writable, we must use stat and check the file permissions directly:

$mode = ((stat $filename)[2]);
$writable = $mode & 0200; # test for owner write permission

Again, this is a UNIX-specific example. Most other platforms do not support permissions; Windows
NT does, but does it a different way.

For the other cases we can try to use the filetest pragma, which alters the operation of the file tests
for access by overriding them with more rigorous tests that interrogate the operating system instead.
Currently there is only one mode of operation, access, which causes the file test operators to use the
underlying access system call, if available:

use filetest 'access';

This modifies the behavior of the file test operators to use the operating system's access call to check
the true permission of a file, as modified by access control lists, or filesystems that are mounted read-
only. It also makes an access subroutine, which allows us to make our own direct tests of filenames
(note that it does not work on filehandles), available to us. It takes a filename and a numeric flag
containing the permissions we want to check for. These are defined as constants in the POSIX module:

R_OK Test file has read permission.

W_OK Test file has write permission.

X_OK Test file has execute permission.

F_OK Test that file exists. Implied by R_OK, W_OK, or X_OK.

Note that F_OK is implied by the other three, so it need never be specified directly (to test for existence
we can as easily use the -e test, or -f if we require a plain file).

While access provides no extra functionality over the standard file tests, it does allow us to make more
than one test simultaneously. As an example, to test that a file is both readable and writable we would
use:

use filetest 'access';
use POSIX;
...
$can_readwrite = access($filename, R_OK|W_OK);

The return value from access is undef on failure and '0 but true' (a string that evaluates to zero in a
numeric context and true in any other) on success, for instance an if or while condition. On failure $!
is set to indicate the reason.

Chapter 13

482

Automating Multiple File Tests
We often want to perform a series of different file tests across a range of different files. Installation
scripts, for example, often do this to verify that all the installed files are in the correct place and with the
correct permissions.

While it is possible to manually work though a list of files, we can make life a little simpler by using the
File::CheckTree module instead. This module provides a single subroutine, validate, that takes a
series of filenames and -X style file tests and applies each of them in turn, generating warnings as it does
so.

Unusually for a library subroutine, validate accepts its input in lines, in order to allow the list of files
and tests to be written in the style of a manifest list. As an example, here is validate being used to
check for the existence of three directories and an executable file installed by a fictional application:

$warnings = validate(q{
/home/install/myapp/scripts -d
/home/install/myapp/docs -d
/home/install/myapp/bin -d
/home/install/myapp/bin/myapp -fx
});

Using the q or qq quoting operators is traditional for this kind of input. In addition, as we can supply
our own possibly interpolated error messages, avoiding enclosing quotes is a good idea.

validate returns the number of warnings generated during the test, so we can use it as part of a larger
installation script. If we want to disable or redirect the warnings we can do so by defining a signal
handler:

$SIG{__WARN__} = { }; # do nothing
$SIG{__WARN__} = {print LOGFILE @_}; # redirect to install log

In fact this may be necessary in any case, since validate (as of Perl 5.6, at least) fails to properly
initialize some of its internal variables leading to Use of uninitialized value warnings. We can eliminate
these with selective use of no warnings or with a signal handler like the ones above.

The same file may be listed any number of times, with different tests applied each time. Alternatively,
multiple tests may be bunched together into one file test, so that instead of specifying two tests one after
the other they can be done together. Hence, instead of writing two lines:

/home/install/myapp/bin/myapp -f
/home/install/myapp/bin/myapp -x

We can write both tests as one line:

/home/install/myapp/bin/myapp -fx

The second test is dependent on the first, so only one warning can be generated from a bunched test. If
we want to test for both conditions independently (we want to know if it is not a plain file and we want
to know if it is not executable) we need to put the tests on separate lines.

Manipulating Files and Directories

483

Tests may also be negated by prefixing them with a !, in which case all the individual tests must fail for
the line to succeed. For example to test whether a file is neither setuid or setgid:

validate(q{
/home/install/myapp/scripts/myscript.pl !-ug

})

Normal and negated tests cannot be bunched, so if we want to test that a filename corresponds to a
plain file that is not executable, we must use separate tests:

validate(q{
/home/install/myapp/scripts/myscript.pl -f
/home/install/myapp/scripts/myscript.pl !-xug

})

Rather than a file test operator, the test may also be the command cd. This causes the directory named
at the start of the line to be made the current working directory. Any relative paths given after this are
taken relative to that directory until the next cd, which may also be relative:

validate(q{
/home/install/myapp cd || die

scripts -rd
cgi cd
guestbook.cgi -xg
guestbook.cgi !-u
.. cd
about_us.html -rf
text.bin -f || warn "Not a plain file"

});

validate is entirely insensitive to extra whitespace, so we can use additional spacing to clarify
what file is being tested where. In the above example we have indented the files to make it clear
which directory they are being tested in.

We can supply our own warnings, and make tests fatal by suffixing the file test with || and either warn
or die. These work in exactly the same way as their Perl function counterparts. However, while warn
may take an optional descriptive error message die ignores it. In the above example we have
terminated immediately if the installation directory does not exist, since the other tests would be
pointless. If we do specify our own error messages we can use the variable $file, supplied by the
module, to insert the name of the file whose test failed:

validate(q{
/etc -d || warn "What, no $file directory? \n"
/var/spool -d || die

})

This trick relies on the error messages being interpolated at run time, so using single quotes or the q
quoting operator is essential in this case.

Relative pathnames specified to validate before a cd are taken relative to the current directory.
Unfortunately validate currently does not take proper account of this when reporting errors and adds
a leading / to the pathname, giving the impression that the filename being tested is absolute (this may
be fixed in a later release). To work around this, an explicit cd to the current directory suffices:

TE
AM
FL
Y

Team-Fly®

Chapter 13

484

validate(q{
. cd
localfile -f

})

One of the advantages of File::CheckTree is that the file list can be built dynamically, possibly
generated from an existing file tree created by File::Find (see later). For example, using
File::Find we can determine the type and permissions of each file and directory in a tree, then
generate a test list suitable for File::CheckTree to validate new installations of that tree. See 'Finding
Files' and the other modules in this section for pointers.

Interrogating Files
While the file test operators are satisfactory for the majority of cases, if we want to interrogate a file in
detail then it is sometimes more convenient to use stat or lstat directly and examine the results.

Both functions return details of the filename or filehandle supplied as their argument. lstat is identical
to stat except in the case of a symbolic link, where stat will return details of the file pointed to by the
link and lstat will return details of the link itself. In either case, a thirteen element list is returned:

stat filehandle into a list
@stat_info = stat FILEHANDLE;

lstat filename into separate scalars
($dev, $inode, $mode, $nlink, $uid, $gid, $rdev, $size,

$time, $mtime, $ctime, $blksize, $blocks) = lstat $filename;

The thirteen values are always returned, but may not be defined or have meaning in every case, either
because they do not apply to the file or filehandle being tested or because they have no meaning on the
underlying platform. A full list of File::Stat methods and object names is shown below, including
the meanings and index number in the @stat_info array:

Method Number Description

dev 0 The device number of the filesystem on which the file resides.

ino 1 The inode of the file.

mode 2 The file mode, combining the file type and the file permissions.

nlink 3 The number of hard (not symbolic) references to the inode
underneath the filename.

uid 4 The user id of user that owns the file.

gid 5 The group id of group that owns the file.

rdev 6 The device identifier (block and character special files only).

size 7 The size of the file, in bytes.

atime 8 The last access time, in seconds.

mtime 9 The last modification time, in seconds.

ctime 10 The last inode change time, in seconds.

Manipulating Files and Directories

485

Method Number Description

blksize 11 The preferred block size of the filesystem.

blocks 12 The number of blocks allocated to the file. The product of
$stat_info[11]*$stat_info[12] is the size of the file as
allocated in the filesystem. However, the actual size of the file in
terms of its contents will most likely be less than this as it will only
partially fill the last block; use size for that.

Several of the values returned by stat relate to the 'inode' of the file. Under UNIX, the inode of a file
is a numeric id, which it is allocated by the filesystem, and which is its 'true' identity, with the filename
being just an alias. Since more than one filename may point to the same file, the nlink value may be
more than one, though it cannot be less (since then the inode would have no filename and we would not
be able to refer to it). The ctime value indicates the last time the node of the file changed. It may often
mean the creation time. Conversely, the access and modification times refer to actual file access.

On other platforms, some of these values are either undefined or meaningless. Under Windows, the
device number is related to the drive letter, there is no 'inode' and the value of nlink is always '1'. The
uid and gid values are always zero, and no value is returned for either blocksize or blocks, either.
There is a mode, though only the file type is useful; the permissions are always 777. While Windows
NT does have a fairly complex permissions system it is not accessible this way; see below.

Changing File Attributes
UNIX and other platforms that support the concept of file permissions and ownership can make use of
the chmod and chgrp functions to modify the permissions of a file from Perl. chmod modifies the file
permissions of a file for the three categories user, group, and other. The chown function modifies
which user corresponds to the user permissions, and which group corresponds to the group
permissions. Every other user and group falls under the other category. Ownership and permissions
are therefore inextricably linked.

On UNIX, the file type and the file permissions are combined into the mode value returned by stat.
On Windows, the file type is still useful, though the permissions are always set to 777.

File Ownership
File ownership is a highly platform-dependent concept. Perl grew up on UNIX systems, and so attempts
to handle ownership in a UNIX-like way. Under UNIX and other platforms that borrowed their
semantics from UNIX, files have an owner, represented by the file's user id, and a group owner,
represented by the file's group id. Each relates to a different set of file permissions, so the user may have
the ability to read and write a file whereas other users in the same group may only get to read it. Others
may not have even that, depending on the setting of the file permissions.

File ownership is handled by the chown function, which maps to both the chown and chgrp system
calls. It takes at least three parameters; a user id, a group id, and one or more files to change:

@successes = chown $uid, $gid, @files;

Chapter 13

486

The number of files successfully changed is returned. If only one file is given to chown, this allows a
simple Boolean test to be used to determine success:

unless (chown $uid, $gid, $filename) {
die "chown failed: $! \n";

}

To change only the user or group, supply -1 as the value for the other parameter. For instance, a chgrp
function can be simulated with:

sub chgrp {
return chown(shift, -1, @_);

}

Note that on most systems (that is, most systems that comprehend file ownership in the first place)
usually only the superuser can change the user who owns the file, though the group can be changed to
another group that the same user belongs to. It is possible to determine if a change of ownership is
permitted by calling the sysconf function:

$chown_restricted = sysconf(_PC_CHOWN_RESTRICTED);

If this returns a true value then a chown will not be permitted.

chown needs a user or group id to function, it will not accept a user or group name. To deduce a user id
from the name, at least on a UNIX-like system, we can use the getpwnam function. Likewise, to deduce
a group id from the name we can use the getgrnam function. We can use getpwent and getgrent
instead to retrieve one user or group respectively (see earlier in the chapter for more). As a quick
example, the following script builds tables of user and group ids, which can be subsequently used in
chown:

#!/usr/bin/perl
ids.pl
use warnings;
use strict;

get user names and primary groups
my (%users, %usergroup);
while (my ($name, $passwd, $uid, $gid) = getpwent) {

$users{$name} = $uid;
$usergroup{$name} = $gid;

}

get group names and gids
my (%groups, @groups);
while (my ($name, $passwd, $gid) = getgrent) {

$groups{$name} = $gid;
$groups[$gid] = $name;

}

print out basic user and group information
foreach my $user (sort {$users{$a} <=> $users{$b}} keys %users) {

print "$users{$user}: $user, group $usergroup{$user}
($groups[$usergroup{$user}])\n";
}

Manipulating Files and Directories

487

File Permissions
The implementation of file permissions varies widely between different operating systems. Perl supports
the UNIX model natively, partly because it grew up on UNIX, but mostly because UNIX file
permissions are closely related to the file system. This is academic for many platforms; Windows 9x and
MacOS prior to version X do not comprehend permissions at all, and Windows NT has its own security
model, which we access with the Win32::FileSecurity and Win32::FilePermissions modules
instead.

Perl provides two functions that are specifically related to file permissions, chmod and umask.

The chmod function allows us to set the permissions of a file. Permissions are grouped into three
categories: user, which applies to the file's owner, group which applies to the file's group owner, and
other, which applies to anyone who is not the file's owner or a member of the file's group owner.
Within each category each file may be given read, write, and execute permission.

chmod represents each of the nine values (3 categories x 3 permissions) by a different numeric flag,
which are traditionally put together to form a three digit octal number, each digit corresponding to the
respective category. The flag values within each digit are 4 for read permission, 2 for write permission,
and 1 for execute permission, as demonstrated by the following examples (prefixed by a leading 0 to
remind us that these are octal values):

0200 Owner write permission

0040 Group read permission

0001 Other execute permission

The total of the read, write, and execute permissions for a category is 7, which is why octal is so
convenient to represent the combined permissions flag. Read, write and execute permission for the
owner only would be represented as 0700. Similarly, read, write and execute permission for the owner,
read and execute permission for the group and execute only permission for everyone else would be:
0751, which is 0400+0200+0100 + 0040+0010 + 0001.

Having explained the permissions flag, the chmod function itself is comparatively simple, taking a
permissions flag, as calculated above, as its first argument and applying it to one or more files given as
the second and subsequent arguments. For example:

chmod 0751, @files;

As with chown, the number of successfully chmodded files is returned, or zero if no files were changed
successfully. If only one file is supplied, the return value of chmod can be tested as a Boolean result in
an if or unless statement :

unless (chmod 0751, $file) {
die "Unable to chmod: $! \n";

}

The umask function, which is the opposite of chmod, allows us to change the default permissions mask
used whenever Perl creates a new file. The bits in the umask unset the corresponding bits in the
permissions from the permissions used by open or sysopen when the file is created, and the resulting
permissions set. Thus the permission bits of the umask mask the permissions that open and sysopen
try to set. The following table shows the permission bits that can be used with umask and their
meanings:

Chapter 13

488

umask number File Permission

0 Read and write

1 Read and write

2 Read only

3 Read only

4 Write only

5 Write only

6 No read and no write

7 No read and no write

umask only defines the access permissions. Called without an argument, it returns the current value of
the umask, which is inherited from the shell, and is typically set to a value of 002 (mask other write
permission) or 022 (mask group and other write permissions):

$umask = umask;

Alternatively, umask may be called with a single numeric parameter, traditionally expressed in octal, or
alternatively as a combination of mode flags as described above. For example:

umask 022;

Overriding the umask explicitly is not usually a good idea, since the user might have it set to a more
restrictive value. A better idea is to combine the permissions we want to restrict with the existing
umask, using a bitwise OR. For example:

umask (022 | umask);

The open function always uses permissions of 0666 (read and write for all categories), whereas
sysopen allows the permissions to be specified in the call. Since umask controls the permissions of new
files by removing unwanted permissions, we do not need to (and generally should not) specify more
restrictive permissions to sysopen.

The 'Fcntl' Module
The Fcntl module provides symbolic constants for all of the flags contained in both the permissions
and the filetype parts of the mode value. It also provides two functions for extracting each part, as an
alternative to computing the values by hand:

use Fcntl qw(:mode); # import file mode constants

$type = IFMT($mode); # extract file type
$perm = IFMODE($mode); # extract file permissions

printf "File permissions are: %o \n", $perm;

Manipulating Files and Directories

489

The filetype part of the mode defines the type of the file, and is the basis of the file test operators like
-d, -f, and -l that test for the type of a file. The Fcntl module defines symbolic constants for these:

Name Description Operator

S_IFREG Regular file -f

S_IFDIR Directory -d

S_IFLNK Link -l

S_IFBLK Block special file -b

S_IFCHR Character special file -c

S_IFIFO Pipe or named fifo -p

S_IFSOCK Socket -S

S_IFWHT Interactive terminal -t

Note that Fcntl also defines a number of subroutines that test the mode for the desired property. These
have very similar names, for example S_IFDIR and S_ISFIFO, and it is easy to get the subroutines and
flags confused. Since we have the file test operators, we do not usually need to use these subroutines, so
we mention them only to eliminate possibly confusion.

These flags can also be used with sysopen, IO::File's new method and the stat function described
previously, where they can be compared against the mode value. As an example of how these flags can
be used, here is the equivalent of the -d file test operator written using stat and the Fcntl module:

$mode = ((stat $filename)[2]);
$is_directory = $mode & S_IFDIR;

Or, to test that a file is neither a socket nor a pipe:

$is_not_special = $mode & ^(S_IFBLK | S_IF_CHR);

The Fcntl module also defines functions that do this for us. Each function takes the same name as the
flag but with S_IF replaced with S_IS. For instance, to test for a directory we can instead use:

$is_directory = S_ISDIR($mode);

Of course the -d file test operator is somewhat simpler in this case.

The permissions part of the mode defines the read, write, and execute privileges that the file grants to
the file's owner, the file's group, and others. It is the basis of the file test operators like -r, -w, -u, and
-g that test for the accessibility of a file. The Fcntl module also defines symbolic constants for these:

Chapter 13

490

Name Description Number

S_IRUSR User can read 00400

S_IWUSR User can write 00200

S_IXUSR User can execute 00100

S_IRGRP Group can read 00040

S_IWGRP Group can write 00020

S_IXGRP Group can execute 00010

S_IROTH Others can read 00004

S_IWOTH Others can write 00002

S_IXOTH Others can execute 00001

S_IRWXU User can read, write, execute 00700

S_IRWXG Group can read, write, execute 00070

S_IRWXO Others can read, write, execute 00007

S_ISUID setuid 04000

S_ISGID setgid 02000

S_ISVTX sticky (S) bit 01000

S_ISTXT swap (t) bit 10000

For example, to test a file for user read and write permission, plus execute permission, we could use:

$perms_ok = $mode & S_IRUSR | S_IWUSR | S_IRGRP;

To test that a file has exactly these permissions and no others we would instead write:

$exact_perms = $mode == S_IRUSR | S_IWUSR | S_IRGRP;

The file permission flags are useful not only for making sense of the mode value returned by stat but
also in the chmod function. Consult the manual page for the chmod system call (on UNIX platforms) for
details of the more esoteric bits such as sticky and swap.

Linking, Unlinking, and Renaming Files
The presence of filenames can be manipulated directly with the link and unlink built-in functions.
These provide the ability to edit the entries for files in the filesystem, creating new ones or removing
existing ones. They are not the same as creating and deleting files, however. On platforms that support
the concept, link creates a new link (entry in the filing system) to an existing file, it does not create a
copy (except on Windows, where it does exactly this). Likewise, unlink removes a filename from the
filing system, but if the file has more than one link, and therefore more than one filename, the file will
persist. This is an important point to grasp, because it often leads to confusion.

Manipulating Files and Directories

491

Linking Files
The link function creates a new link (sometimes called a 'hard' link, to differentiate it from a 'soft' or
symbolic link) for the named file:

if (link $currentname, $newname) {
print "Linked $currentname to $newname ok \n";

} else {
warn "Failed to link: $! \n";

}

link will not create links for directories, though it will create links for all other types of file. For
directories we can create symbolic links only. Additionally, we cannot create hard links between
different file systems, nor between directories on some file systems (for example, AFS). On UNIX, link
works by giving two names in the file system the same underlying inode. On Windows and other file
systems that do not have this concept, an attempt to link will create a copy of the original file.

On success, link returns true and a new filename will exist for the file. The old one continues to exist
and can either be used to read, or alter the contents of the file. Both links are therefore exactly
equivalent.

Having said that, the file permissions of each link can differ. Immediately after creation, the new link
will carry the same permissions and ownership as the original, but this can subsequently be changed
with the chmod and chown built-in functions, to, for example, create a read-only and a read-write entry
point to the same data.

Unlinking Files
The opposite of linking is unlinking. Files can be unlinked with the built-in unlink function, which
takes one or more filenames as a parameter. Alternatively it operates on $_ if no filename is supplied:

unlink $currentname; # single file

foreach (@files) {
unlink if /\.bak/; # unlink $_ if it ends '.bak'

}

unlink <*.bak>; # the same, via a file glob

unlink is not necessarily the same as deleting a file, for two reasons. First, if the file has more than one
link then it will still be available by other names in the file system. Although we cannot (easily) find out
the names of the other links, we can find out how many links a file has through stat. We can therefore
establish in advance if unlink will remove the file from the file system completely, or just one of the
links for it by calling stat:

$links = (stat $filename)[3];

Or more legibly with the File::stat module:

$stat = new File::stat($filename);
$links = $stat->nlink;

Chapter 13

492

Second, on platforms that support it (generally UNIX-like ones), if any process has an open filehandle
for the file then it will persist for as long as the filehandle persists. This means that even after an unlink
has completely removed all links to a file it will still exist and can be read, written, and have its contents
copied to a new file. Indeed, the new_tmpfile method of IO::File does exactly this, of which more
will be said later in the chapter. Other platforms (such as Windows) will generally reject the attempt to
unlink the file so long as a process holds an open filehandle on it.

Note that unlink will not unlink directories unless we are on UNIX, Perl was given the -U flag, and we
have superuser privilege. Even so, it is an inadvisable thing to do, since it will also remove the directory
contents including any subdirectories and their contents from the filing system hierarchy, but not
recycle the space that they occupy on the disk. Instead they will appear in the lost+found directory
the next time an fsck filing system check is performed, which is unlikely to be what we intended. The
rmdir built-in command covered later in the chapter is the preferred approach, or the rmtree function
from File::Path for more advanced applications involving multiple directories.

Renaming Files
Given the above, renaming a file is just a case of linking it to a new name, then unlinking it from the
old. The following subroutine demonstrates a generic way of doing this:

sub rename {
($current, $new) = @_;
unlink $current if link($current, $new);

}

The built-in rename function is essentially equivalent to the above subroutine:

using the built-in function:
rename($current, $new);

This is effective for simple cases but it will fail in a number of situations, most notably if the new
filename is on a different filesystem from the old (a floppy disk to a hard drive, or instance). rename
uses the rename system call, if available. However, on many systems it is equivalent to the
link/unlink subroutine above. For a properly portable solution that works across all platforms,
consider using the move routine from the File::Copy module, which has been specifically written to
handle most special cases.

Symbolic Links
On platforms that support it, we can also create a soft or symbolic link with the built-in symlink
function. This is syntactically identical to link but creates a pointer to the file rather than a direct hard
link:

if (symlink $currentname, $newname) {
die "Failed to link: $! \n";

}

The return value from symlink is 1 on success or 0 on failure. On platforms that do not support
symbolic links (a shortcut is an invention of the Windows desktop, not the file system), symlink
produces a fatal error. If we are writing code to be portable then we can protect against this by
using eval:

Manipulating Files and Directories

493

$linked = eval {symlink($currentname, $newname);};
if (not defined $linked) {

warn "Symlink not supported \n";
} else {

warn "Link failed: $! \n";
}

To test whether symlink is available without actually creating a symbolic link, supply an empty
filename for both arguments:

$symlinking = eval {symlink('',''); 1};

If the symlink fails, eval will return undef when it tries to execute the symlink. If it succeeds, the 1
will be returned. This is a generically useful trick for all kinds of situations of course.

Symbolic links are the links that the -l and lstat functions check for; hard links are indistinguishable
from ordinary filenames because they are ordinary filenames. Most operations performed on symbolic
links (with the notable exceptions of -l and lstat of course) are transferred to the linked file, if it
exists. In particular, symbolic links have the generic file permissions 777, meaning everyone is
permitted to do everything. However, this only means that the permissions of the file that the link points
towards take priority. An attempt to open the link for writing will be translated into an attempt to open
the linked file, and the permissions of the file checked, rather than those of the symbolic link. Even
chmod will affect the permissions of the real file, not the link.

Symbolic links may legally point to other symbolic links, in which case the end of the link is the file that
the last symbolic link points to. If the file has subsequently been moved or deleted, the symbolic link is
said to be 'broken'. We can check for broken links with:

if (-l $linkname and !-e $linkname) {
print "$linkname is a broken link! \n";

}

See earlier in the chapter for more on this (and in particular why the special filename _ cannot be used
after -e in this particular case) and some variations on the same theme.

Copying and Moving Files
One way to copy a file to a new name is to open a filehandle for both the old and the new names, and
copy data between them, as this rather simplistic utility attempts to do:

#!/usr/bin/perl
dumbcopy.pl
use warnings;
use strict;

print "Filename: ";
my $infile = <>;
chomp $infile;
print "New name: ";
my $outfile = <>;
chomp $outfile;

TE
AM
FL
Y

Team-Fly®

Chapter 13

494

open IN, $infile;
open OUT, "> $outfile";
print OUT <IN>;
close IN;
close OUT;

The problem with this approach is that it does not take into account the existing file permissions and
ownerships. If we run this on a system with a decent file permissions system (such as UNIX) and the file
we are copying happens to executable, the copy will lose the executable permissions. If we run this on a
system that cares about the difference between binary and text files we can also corrupt the file unless
we also add a call to binmode. In fact this is unnecessary work because Perl provides the File::Copy
module to handle these issues for us.

The File::Copy module provides subroutines for moving and copying files without having to directly
manipulate them via filehandles. It also correctly preserves the file permissions. To make use of it we
just need to use it:

use File::Copy;

File::Copy contains two primary subroutines, copy and move. copy takes the names of two files or
filehandles as its arguments and copies the contents of the first to the second, creating it if necessary. If
the first argument is a filehandle it is read from, and if the second is a filehandle it is written to; for
example:

copy "myfile", "myfile2"; # copy one file to another
copy "myfile", *STDOUT; # copy file to standard output
copy LOG, "logfile"; # copy input to filehandle

If neither argument is a filehandle, copy does a system copy, in order to preserve file attributes and
permissions. This copy is directly available as the syscopy subroutine and is portable across platforms;
see later.

copy also takes a third, optional argument, which if specified determines the buffer size to use. For
instance, to copy the file in chunks of 16K, we might use:

copy "myfile", "myfile2", 16 * 1024;

Without a buffer size, copy will default to the size of the file, or 2MB, whichever is smaller. Setting a
smaller buffer will cause the copy to take longer, but to use less memory while doing it.

move takes the names of two files (not filehandles) as its arguments, and attempts to move the file
named by the first argument to have the name given as the second; for example:

move "myfile", "myfile2"; # move file to another name

If possible, move will rename the file using the link and unlink functions. If not, it will copy the file
using copy and then delete the original. Note however that in this case we cannot set a buffer size as an
optional third parameter.

Manipulating Files and Directories

495

If an error occurs with either copy or move, the filesystem may run out of space. Then the destination
file may be incomplete. In the case of a move that tried to copy the file this will lose information. In this
case attempting to copy the file and then unlinking the original is safer.

Note also that copy and move (if it has to copy the file) adhere to the setting of binmode for files
copied on platforms that care about such things (for example, Windows). To make a copy explicitly
binary, use binmode on the filehandles or (if not copying via filehandles) make use of the open
pragmatic module described previously in this chapter.

Here is a rewritten version of the file copy utility we started with. Note that it is not only better; it is
considerably smaller too:

#!/usr/bin/perl
smartcopy.pl
use warnings;
use strict;

use File::Copy;

print "Filename: ";
my $infile = <>;
chomp $infile;
print "New name: ";
my $outfile = <>;
chomp $outfile;

unless (copy $infile, $outfile) {
print "Failed to copy '$infile' to '$outfile': $! \n";

}

As a special case, if the first argument to copy or move is a filename and the second is a directory then
the destination file is placed inside the directory with the same name as the source file.

UNIX aficionados will be happy to know that the aliases cp and mv are available for copy and move
and can be imported by specifying one or both of them in the import list:

use File::Copy qw(cp mv);

cp and mv are direct aliases for copy and move and work identically to them.

System Level Copies and Platform Portability
As well as the standard copy, which works with either filenames or filehandles, File::Copy defines
the syscopy subroutine, which provides direct access to the copy function of the underlying operating
system. The copy subroutine calls syscopy if both arguments are filenames and the second is not a
directory (see above), otherwise it opens whichever argument is not a filehandle and performs a read-
write copy through the filehandles.

The syscopy calls the underlying copy system call supplied by the operating system, and is thus
portable across different platforms. Under UNIX, it calls the copy subroutine, as there is no system
copy call. Under Windows, it calls the Win32::CopyFile module. Under OS/2 and VMS it calls
syscopy and rmscopy respectively. This makes the File::Copy module an effective way to copy files
without worrying about platform dependencies.

Chapter 13

496

Comparing Files
The File::Compare module is a standard component of the Perl standard library that provides file
comparison features for our applications. It provides two main subroutines, compare and
compare_text, both of which are available to us when we use the module:

use File::Compare;

The compare subroutine simply compares two files or filehandles, returning 0 if they are equal, 1 if
they are not, and -1 if an error was encountered:

SWITCH: foreach (compare $file1, $file2) {
/^0/ and print("Files are equal"), last;
/^1/ and print("Files are not equal"), last;
print "Error comparing files: $! \n";

}

compare takes a third optional argument, which if specified defines the size of the buffer used to read
from the two files or filehandles. This works in an identical manner to the buffer size of File::Copy's
copy subroutine, defaulting to the size of the file or 2MB, whichever is smaller, if no buffer size is
specified. Note that compare automatically puts both files into a binary mode for comparison.

The compare_text function operates identically to compare but takes at its third argument an
optional code reference to an anonymous comparison subroutine. Unlike compare, compare_text
compares files in text mode (assuming that the operating system draws a distinction) so without the third
parameter compare_text simply compares the two files in text mode.

The comparison subroutine, if supplied, should return a Boolean result that returns 0 if the lines should
be considered equal and 1 otherwise. The default that operates when no explicit comparison is provided
is equivalent to:

sub {$_[0] ne $_[1]}

We can supply our own comparison subroutines to produce different results. For example, this
comparison checks files for case-insensitive equivalence:

$result = compare_text ($file1, $file2, sub {lc($_[0]) ne lc($_[1])});

Similarly, this comparison uses a named subroutine that strips extra whitespace from the start and end
of lines before comparing them:

sub stripcmp {
($a, $b) = @_;
$a =~s/^\s*(.*?)\s*$/$1/;
$b =~s/^\s*(.*?)\s*$/$1/;
return $a ne $b;

}
$result = compare_text ($file1, $file2, \&stripcmp);

Manipulating Files and Directories

497

For those who prefer more UNIX-like nomenclature, cmp may be used as an alias for compare by
importing it specifically:

use File::Compare qw(cmp);

As a final point, note that compare and compare_text are effectively the same subroutine; supplying
a code reference as the third parameter to compare turns it into compare_text, and likewise for cmp if
it has been imported.

Finding Files
The File::Find module provides a multipurpose file finding subroutine that we can configure to
operate in a number of different ways. It supplies one subroutine find, which takes a first parameter of
either a code or hash reference that configures the details of the search, and one or more subsequent
parameters defining the starting directory or directories to begin from.

A second, finddepth, finds the same files as find but traverses them in order of depth. This can be
handy in cases when we want to modify the filesystem as we go, as we will see later.

If the first parameter to either find or finddepth is a code reference then it is treated as a wanted
subroutine that tests for particular properties in the files found. Otherwise it is a reference to a hash
containing at least a wanted key and code reference value and optionally more of the following key-
value pairs:

Key Value Description

wanted <code
reference>

A reference to a subroutine that returns true or false
depending on the characteristics of the file.

Note that passing in a code reference as the first
parameter is equivalent to passing:

{wanted => $coderef}

Since find does not return any result, a wanted
subroutine is required for find to do anything useful.

bydepth 0|1 A Boolean flag that when set causes files to be returned in
order of depth. The convenience subroutine finddepth
is a shorthand for this flag.

follow 0|1 A Boolean flag that when set causes find to follow
symbolic links. When in effect, find records all files
scanned in order to prevent files being found more than
once (directly and via a link, for example) and to prevent
loops (a link linking to it's parent directory). For large
directory trees this can be very time consuming. For a
faster but less rigorous alternative use follow_fast. This
option is disabled by default.

follow_fast 0|1 A Boolean flag that when set causes find to follow
symbolic links. Like follow, follow_fast causes find
to follow symbolic links. Unlike follow it does not check
for duplicate files, and so is faster. It still checks for loops
however, by tracking all symbolic links. This option is
disabled by default.

Table continued on following page

Chapter 13

498

Key Value Description

follow_skip 0|1|2 A three-state flag that determines how find treats
symbolic links if either follow or follow_fast is
enabled:

A setting of 0 causes find to die if it encounters a
duplicate file, link or directory.

The default of 1 causes any file that is not a directory or
symbolic link to be ignored if it is encountered again. A
directory encountered a second time causes find to die.

A setting of 2 causes find to ignore both duplicate files
and directories.

This flag has no effect if neither of follow or
follow_fast is enabled.

no_chdir 0|1 A Boolean flag that when set causes find not to change
down into each directory as it scans it. This primarily
makes a difference to the wanted subroutine, if any is
defined.

untaint 0|1 A Boolean flag that when set causes find to untaint
directory names when running in taint (-T) mode. This
uses a regular expression to untaint the directory names,
which can be overridden with untaint_pattern.

untaint_
pattern

<pattern> The pattern used to untaint directory names if untaint is
enabled. The default pattern, which attempts to define all
standard legal filename characters is:

qr/^([-+@\w.\/]+)$/

If overridden, the replacement regular expression search
pattern, compiled with qr. In addition it must contain one
set of parentheses to return the untainted name, and
should probably be anchored at both ends.

Note that files with spaces inside the filename will fail this
pattern unless the pattern is overridden. If multiple
parentheses are used then only the text matched by the
first is used as the untainted name.

untaint_skip 0|1 A Boolean flag that when set causes find to skip over
directories that fail the test against untaint_pattern.
The default is unset, which causes find to die if it
encounters an invalid directory name.

For example, this call to find searches for and prints out all files under /home, following symbolic
links, untainting as it goes, and skipping over any directory that fails the taint check:

@files = find({wanted => sub {print $File::Find::fullname},
follow => 1, untaint => 1, untaint_skip => 1

}, '/home');

Manipulating Files and Directories

499

The power of find lies in the wanted subroutine. find does not actually return any value, so without
this subroutine the search will be performed but will not actually produce any useful result.

To specify a wanted subroutine we can specify a code reference to an anonymous subroutine (possibly
derived from a named subroutine) either directly, or as the value of the wanted key in the configuration
hash. Each file that is located is passed to this subroutine, which may perform any actions it likes,
including removing or renaming the file. For example, here is a simple utility script that renames all
files in the target directory or directories into lower case:

#!/usr/bin/perl
lcall.pl
use warnings;
use strict;

use File::Find;
use File::Copy;

die "Usage: $0 <dir> [<dir>...] \n" unless @ARGV;
foreach (@ARGV) {

die "'$_' does not exist \n" unless -e $_;
}

sub lcfile {
print "$File::Find::dir - $_ \n";
move ($_, lc $_);

}

finddepth (\&lcfile, @ARGV);

In order to handle subdirectories correctly we use finddepth so that files are renamed first, and the
directories that contain them second. We also use the move subroutine from File::Copy since this
deals with both files and directories without any special effort on our part.

Within the subroutine the variable $_ contains the current filename and the variable
$File::Find::dir contains the directory in which the file was found. If follow or follow_fast is
in effect then $File::Find::fullname contains the complete absolute path to the file with all
symbolic links resolved to their true paths. If no_chdir has been specified then $_ is the absolute
pathname of the file, the same as $File::Find::fullname, otherwise it is just the leafname of the
file.

Here is an example that searches for files with setuid or setgid bits on UNIX filesystems. Note that
it tests -x against $_ first, then reuses the result of that stat in all further tests with the special _
filename:

#!/usr/bin/perl
findsuid.pl
use warnings;
use strict;

use File::Find;

my $count = 0;

sub is_suid {
if (-x && (-u _ || -g _)) {

$count++;
print "\t'$File::Find::dir/$_' is ";

Chapter 13

500

if (-u _ && -g _) {

print "setuid and setgid \n";
} elsif (-u _) {

print "setuid \n"
} else {

print "setgid \n"
}

}
}

print "Scanning for files in ", join(', ',@ARGV), ":\n";
find(\&is_suid, @ARGV);

print "$count setuid or setgid executables found \n";

When tested against the /bin directory on any reasonably normal UNIX system this should produce
output similar to the following:

Scanning for files in /bin:
'/bin/su' is setuid
'/bin/mount' is setuid
'/bin/umount' is setuid
'/bin/ping' is setuid
'/bin/login' is setuid

5 setuid or setgid executables found

If follow or follow_fast is set then the wanted subroutine can make use of the results of the lstat
that both these modes use. File tests can then use the special filename _ without any initial file test or
explicit lstat. Otherwise no stat or lstat has been done and we need to use an explicit file test on
$_. As a final example, here is a utility script that searches for broken links:

#!/usr/bin/perl
checklink.pl
use warnings;
use strict;

use File::Find;

my $count = 0;

sub check_link {
if (-l && !-e) {

$count++;
print "\t$File::Find::name is broken \n";

}
}

print "Scanning for broken links in ", join(', ', @ARGV), ":\n";
find(\&check_link, @ARGV);
print "$count broken links found \n";

Note that it has to do both an explicit -l and -e to work, since one requires an lstat and the other a
stat, and we do not get a free lstat because in this case as we do not want to follow symbolic links
(in follow mode, broken links are discarded before the wanted subroutine is called, which would
rather defeat the point).

Manipulating Files and Directories

501

Another way to create utilities like this is through the find2perl script which comes as standard with
Perl. This emulates the syntax of the traditional UNIX find command, but instead of performing a
search, generates a Perl script using File::Find that emulates the action of the original command in
Perl. Typically, this is faster than using find, and it is also an excellent way to create the starting point
for utilities like the examples in this section. For example, here is find2perl being used to generate a
script, called myfind.pl, that searches for and prints all files ending in .bak that are a week or more
old, starting from the current directory:

> find2perl . -name '*.bak' -type f -mtime +7 -print > myfind.pl

This is the myfind.pl script that it produces:

#! /usr/bin/perl -w
eval 'exec /usr/bin/perl -S $0 ${1+"$@"}'

if 0; #$running_under_some_shell

use strict;
use File::Find ();

Set the variable $File::Find::dont_use_nlink if you're using AFS,
since AFS cheats.

for the convenience of &wanted calls, including -eval statements:
use vars qw/*name *dir *prune/;
*name = *File::Find::name;
*dir = *File::Find::dir;
*prune = *File::Find::prune;

Traverse desired filesystems
File::Find::find({wanted => \&wanted}, '.');
exit;

sub wanted {
my ($dev, $ino, $mode, $nlink, $uid, $gid);

/^.*\.bak\z/s &&
(($dev, $ino, $mode, $nlink, $uid, $gid) = lstat($_)) &&
-f _ &&
(int(-M _) > 7) &&
print("$name\n");

}

Deciphering File Paths
The File::Basename module provides subroutines to analyze and dissect filenames on a variety of
different platforms. It contains one principal subroutine, fileparse, which attempts to divide a
filename into a leading directory path, a basename, and a suffix:

use File::Basename;

'glob' all files with a three character suffix and parse pathname
foreach (</home/*/*.???>) {

($path, $leaf, $suffix) = fileparse($_, '\.\w{3}');

}

Chapter 13

502

The path and basename are determined according to the file naming conventions of the underlying
filesystem, as determined by the operating system or configured with fileparse_set_fstype. The
suffix list, if supplied, provides one or more regular expressions, which are anchored at the end of the
filename and tested. The first one that matches is used to separate the suffix from the basename. For
example, to find any dot + three letter suffix we can use \.\w\w\w, or, as in the example above
\.\w{3}.

To search for a selection of specific suffixes we can either supply a list, or combine all combinations into
a single expression. Which we choose depends only on which is more likely to execute faster:

fileparse ($filename, '\.txt', '\.doc'); # list of suffixes
fileparse ($filename, '\.(txt|doc)); # combined regular expression

fileparse ($filename, '\.htm', '\.html', \.shtml); # list of suffixes
fileparse ($filename, '\.s?html?)); # combined regular expression

Remember when supplying suffixes that they are regular expressions. Dots in particular must be
escaped if they are intended to mean a real dot (however, see the basename subroutine detailed next
for an alternative approach).

In addition to fileparse, File::Basename supplies two specialized subroutines, basename and
dirname, which return the leading path and the basename only:

$path = dirname($filename);
$leaf = basename($filename, @suffixes);

basename returns the same result as the first item returned by fileparse except that metacharacters
in the supplied suffixes (if any) are escaped with \Q...\E before being passed to fileparse. As a result,
suffixes are detected and removed from the basename only if they literally match:

scan for .txt and .doc with 'fileparse'
($path, $leaf, $suffix) = fileparse($filename, '\.(txt|doc)');

scan for .txt and .doc with 'basename'
$leaf = basename($filename, '.txt', '.doc');

dirname returns the same result as the second item returned by fileparse (the leading directory) on
most platforms. For UNIX and MSDOS, however, it will return '.' if there is no leading directory or a
directory is supplied as the argument. This differs from the behavior produced by fileparse:

scan for leading directory with 'fileparse'
print (fileparse('directory/file'); # produce 'file'
print (fileparse('file')[1]); # produce 'file'
print (fileparse('directory/')[1]; # produce 'directory/'

scan for leading directory with 'dirname'
print dirname('directory/file'); # produce 'file'
print dirname('file'); # produce '.'
print dirname('directory/'); # produce '.'

The filesystem convention for the pathname can be set to one of several different operating systems with
the fileparse_set_fstype configuration subroutine. This can take one of the following case-
insensitive values, corresponding to the appropriate platform:

Manipulating Files and Directories

503

Value Platform

AmigaOS Amiga syntax

MacOS Macintosh syntax

MSWin32 Microsoft Windows long filenames syntax

MSDOS Microsoft DOS short filenames (8.3) syntax

OS2 OS/2 syntax

RISCOS Acorn RiscOS syntax

VMS VMS syntax

If the syntax is not explicitly set with fileparse_set_fstype then a default value is deduced from
the special variable $^O (see Appendix B for more on $^O). If $^O is none of the above, filesytem types
UNIX style syntax is assumed. Note that if the pathname contains / characters then the format is
presumed to be UNIX style whatever the filesystem type specified.

For a more comprehensive approach to portable filename handling, take a look at the File::Spec
module, covered in Chapter 24.

Filename Globbing
The majority of shells possess a 'wildcard' syntax for specifying multiple files. For instance, *.doc
means all files ending with .doc. Perl provides this same functionality through the file glob operator
glob, which returns a list of all files that match the glob file pattern that we specify:

@files = glob '*.pod'; # return all POD documents

The glob pattern (not to be confused with a regular expression search pattern) accepts any pattern that
would normally be accepted by a shell, including directories, wildcard metacharacters such as asterisks
(zero-or-more), question marks (zero-or-one), and character classes. Here are some more examples
demonstrating the different kinds of glob operation that we can perform:

match html files in document roots of all virtual hosts
@html_files = glob '/home/sites/site*/web/*.html';

match all files in current directory with a three letter extension
@three_letter_extensions = '*.???';

match all files beginning with a to z
@lcfirst = '[a-z]*';

match 'file00 to file 49'
@files = glob 'file[0-4][0-9]';

match any file with a name of three or more characters
@files = glob '???*';

TE
AM
FL
Y

Team-Fly®

Chapter 13

504

Other extended syntaxes can also be used if we use one of the glob operator's optional flags, covered
later in the section. See GLOB_BRACE in particular for a useful alternative to character classes.

'glob' Syntax
The glob operator has two different forms. We can call it directly using glob, as we have already seen.
More usually, however, we use angle brackets in the style of the readline operator:

@files = glob '*.pl' # explicit glob
@files = <*.pl> # angle-bracket glob

How does Perl tell the difference between a readline and a glob? When Perl encounters an angle
bracket construction it examines the contents to determine whether it is a filehandle or not. If so, it is a
readline operation. Otherwise, it is a file glob. Which syntax we use is entirely arbitrary; The angle
bracket version looks better in loops, but resembles the readline <> operator:

foreach (<*.txt>) {
print "$_ is not a textfile!" if !-T;

}

One instance where we might want to use glob is when we want to perform a file glob on a variable.
Because a variable between angle brackets looks like a filehandle (or at least, the name of a filehandle),
we have to insert braces to force Perl to interpret the expression as a file glob and not a readline
operation. In these cases it is usually syntactically simpler to use glob instead:

@files = <$filespec>; # ERROR: attempts to read lines
@files = <${filespec}>; # ok, but algebraic
@files = glob $filespec; # better

The return value from the globbing operation is a list containing the names of the files that matched.
Files are matched according to the current working directory if a relative pattern is supplied, otherwise
they are matched relative to the root of the filesystem. The returned filenames reflect this too,
incorporating the leading directory path if one was supplied:

@files = glob '*.html'; # relative path
@files = glob '/home/httpd/web/*.html'; # absolute path

glob combines well with file test operators and array-processing functions like map and grep. For
example, to locate all text files in the current directory we can write:

@textfiles = grep {-f && -T _} glob('*');

The glob function does not recurse, however. To do the same thing over a directory hierarchy we can
use the File::Find module with a wanted subroutine containing something similar:

sub wanted {
push @textfiles, $File::Find::name if -f && -T _;

}

Manipulating Files and Directories

505

The glob operator was originally a built-in Perl function, but since version 5.6 it is implemented in
terms of the File::Glob module, which implements UNIX-style file globbing and overrides the built-
in core glob. An alternative module, File::DosGlob, implements Windows/DOS style globbing, with
some extensions.

UNIX Style File Globbing
The standard glob does file globbing in the style of UNIX. Having said this, it will still work on other
platforms. The forward slash is used as a directory separator in patterns, and will match matching files
on the filesystem irrespective of the directory separator used naively. In addition, on DOS systems, the
backslash is also accepted as a directory separator.

Although we use File::Glob by default whenever we make use of the glob operator in either of its
guises, we can modify and configure the operator more finely by using the module directly.
File::Glob defines four labels that can be imported to provide different features:

Label Function

:glob Imports symbols for the flags of glob's optional flag argument. See the flags
table later for a list and description of each flag.

:case Treats the file glob pattern as case-sensitive. For example *.doc will match
file.doc but not file.DOC.

:nocase Treats the file glob pattern as case-insensitive. For example, *.doc will match
both file.doc and file.DOC.

:globally Overrides the core glob function. From Perl 5.6 this happens automatically.
This will also override a previous override, for example by File::DosGlob.

For example, to import the optional flag symbols and switch the file globbing
operator to a case-insensitive mode, we would write:

use File::Glob qw(:glob :nocase);

If not explicitly defined, the case sensitivity of glob is determined by the underlying platform (as
expressed by the special variable $^O). If the value of $^O is MSWin32, VMS, os2, dos, riscos, or
MacOS then case sensitivity is disabled, otherwise it is enabled. The :case and :nocase labels
override this default if either is present. Temporary case sensitivity can be controlled by passing a flag
to the glob operator instead, see the section below.

Extended File Globbing
The glob operator accepts a number of optional flags that modify its behavior. These flags are given as a
second parameter to glob and may be bitwise ORed together to produce multiple effects. To import a
set of constants to name the flags use File::Glob explicitly specifying the :glob label:

use File::Glob qw(:glob);

The core glob function takes only one argument, a prototype, which is still enforced even though it is
now based on a two argument subroutine. To supply flags we call the glob subroutine in the
File::Glob package, where the prototype does not apply. For example, to enable brace expansions
and match case insensitively we would use:

@files = File::Glob::glob $filespec, GLOB_BRACE|GLOB_NOCASE;

Chapter 13

506

The full list of flags is:

Flag Function

GLOB_ERR Causes glob to return an error if it encounters an error such as a directory
that it cannot open. Ordinarily glob will pass over errors. See 'Handling
Globbing Errors' below for details.

GLOB_MARK Return matching directories with a trailing directory separator /.

GLOB_NOCASE Perform case-insensitive matching. The default is to assume matches are
case-sensitive, unless glob detects the underlying platform does not handle
case-sensitive filenames, as discussed above. Note that the :case and
:nocase import labels override the platform-specific default, and
GLOB_NOCASE then applies on a per-glob basis.

GLOB_NOCHECK Return the glob pattern if no file matches it. If GLOB_QUOTE is also set, the
returned pattern is processed according to the rules of that flag. See also
GLOB_NOMAGIC.

GLOB_NOSORT Return files in the order in which they were found. By default files are
returned in alphabetical order. In many cases the files will be returned in
alphabetical order in any case; specifying this flag speeds up glob.

GLOB_BRACE Expand curly braces. A list of alternatives separated by commas is placed
between curly braces. Each alternative is then expanded and combined
with the rest of the pattern. For example, to match any file with an
extension of .exe, .bat or .dll we could use:

@files = *.{exe, bat, dll}

Likewise, to match Perl-like files:

@perl_files = *.{pm, pl, ph, pod}

See also File::DosGlob below for an alternative approach.

GLOB_NOMAGIC As GLOB_NOCHECK, but the pattern is returned only if it does not contain
any of the wildcard characters *, ?, or [.

GLOB_QUOTE Treat backslashes \ as escape characters and interpret the following
character literally, ignoring any special meaning it might normally have.
On DOS/Windows systems, backslash only escapes metacharacters and is
treated as a directory separator otherwise. See also File::DosGlob below
for an alternative approach.

GLOB_TILDE Expand the leading tilde ~ of a pattern to the user home directory. For
example, ~/.myapp/config might be expanded to
/home/gurgeh/.myapp/config.

GLOB_CSH File globbing in the style of the UNIX C Shell csh. This is a combination
of all four of the FreeBSD glob extensions for convenience:

GLOB_BRACE|GLOB_NOMAGIC|GLOB_QUOTE|GLOB_TILDE

Manipulating Files and Directories

507

Handling Globbing Errors
If glob encounters an error it puts an error message in $! and sets the package variable
File::Glob::GLOB_ERROR to a non-zero value:

GLOB_NOSPACE Perl ran out of memory

GLOB_ABEND Perl aborted due to an error

If the error occurs midway through the scan, and some files have already been found, then the
incomplete glob is returned as the result. This means that getting a result from glob does not
necessarily mean that the file glob completed successfully. In cases where this matters, check
$File::Glob::GLOB_ERROR:

@files = glob $filespec;
if ($File::Glob::GLOB_ERROR) {

die "Error globbing '$filespec': $! \n";
}

DOS-Style File Globbing
DOS-Style File Globbing is provided by the File::DosGlob module, an alternative to File::Glob
that implements file globs in the style of Windows/DOS, with extensions. In order to get DOS-style
globbing we must use this module explicitly, to override the UNIX-style globbing that Perl performs
automatically (for instance, if we are running on a Windows system we may receive wildcard input from
the user that conforms to a DOS rather than UNIX style):

use File::DosGlob; # provide File::DosGlob::glob
use File::DosGlob qw(glob); # override core/File::Glob's 'glob'

Unlike File::Glob, File::DosGlob does not allow us to configure aspects of its operation by
specifying labels to the import list, and it does not even override the core glob unless explicitly asked,
as in the second example above. If we do not override glob, we can call the File::DosGlob function
by naming it in full:

@dosfiles = File::DosGlob::glob ($dosfilespec);

Even with glob specified in the import list, File::DosGlob will only override glob in the current
package. To override it everywhere we can use GLOBAL_glob:

use File::DosGlob qw(GLOBAL_glob);

This should be used with extreme caution, however, since it might upset code in other modules that
expects glob to work in the UNIX style.

Unlike the DOS shell, File::DosGlob works with wildcarded directory names, so a file spec of
C:/*/dir*/file* will work correctly (although it might take some time to complete). It also
understands DOS-style backslashes as directory separators, although these may need to be protected:

@dosfiles = glob ('my\dos\filepath*.txt'); # single quoted
@dosfiles = <my\\dos\\filepath*.txt>; # escaped

Chapter 13

508

Any mixture of forward and backslashes is acceptable to File::DosGlob's glob; translation into the
correct pattern is done transparently and automatically:

@dosfiles = <my/dos/filepath*.txt>; # a mixture

To search in filenames or directories that include spaces we can either escape them using a backslash
(which means that we must interpolate the string and therefore protect literal backslashes):

@programfiles = <C:\\Program\ Files*.*>;

Or, if we use the glob literally we can also use double quotes, if the string is enclosed in single quotes
(or the q quoting operator):

@programfiles = glob 'C:/"Program Files"/*.*';

This functionality is actually implemented via the Text::ParseWords module, covered in Chapter 18.

Finally, multiple glob patterns may be specified in the same pattern if they are separated by spaces. For
example, to search for all .exe and .bat files we could use:

@executables = glob('*.exe *.bat');

Temporary Files
Temporary files are transient, created by applications for their own internal use, or as temporary status
or informational holders. There used to be two basic approaches for creating temporary files in Perl,
depending on whether we just want a scratchpad that we can read and write, or want to create a
temporary file we can pass around. To do the first, we can create a filehandle with IO::File that
points to a temporary file that exists only so long as the filehandle is open. To do the second we can
deduce the name of a unique temporary filename and then open and close it like an ordinary file, using
the POSIX tmpnam function (see later in the chapter). However, Perl 5.6.1 now provides us with a third
and better approach that involves using File::Temp, which returns both a filename and a filehandle.

Creating a Temporary Filehandle
Temporary filehandles can be created with the new_tmpfile method of the IO::File module.
new_tmpfile takes no arguments and opens a new temporary file in read-update (and binary, for
systems that care) mode, returning the generated filehandle. In the event of an error undef is returned
and $! is set to indicate the reason. For example:

$tmphandle = IO::File->new_tmpfile();
unless ($tmphandle) {

print "Could not create temporary filehandle: $! \n";
}

The new_tmpfile method is a Perl interface to the underlying POSIX tmpfile library call on systems
that provide tmpfile. On these (generally UNIX-like) systems, a file exists as long as something is
using it, even if it no longer has a filename entered in the filesystem. new_tmpfile makes use of this
fact to remove the filesystem entry for the file as soon as the filehandle is created, making the temporary
file anonymous. This has the additional advantage that when the filehandle is closed the file ceases to
exist, since there will no longer be any references to it. This behavior is not supported on platforms that
do not support anonymous temporary files.

Manipulating Files and Directories

509

Temporary Filenames via the POSIX module
While IO::File's new_tmpfile is very convenient for a wide range of temporary file applications, it
does not return us a filename that we can use or pass to other programs. To do that, we need to use the
POSIX module and the tmpnam routine. Since POSIX is a large module, we can import just tmpnam
with:

use POSIX qw(tmpnam);

The tmpname routine takes no arguments and returns a temporary filename guaranteed to be unique.
For example;

$tmpname = tmpnam();
print $tmpname; # produces something like '/tmp/fileV9vJXperl'

Filenames are created with a fixed and unchangeable default path, defined by the P_tmpdir value
given in the C standard library's stdio.h header file. This path can be changed subsequently, but this
does not guarantee that the file does not exist in the new directory. To do that we might resort to a loop
like this:

do {
$tmpname = tmpnam();
$tmpname =~ m|/ ([^/]+) $| && $tmpname = $1; # strip '/tmp'
$tmpname = $newpath.$tmpname; # add new path

} while (-e $tmpname);

This rather defeats the point of tmpnam however, which is to create a temporary filename quickly and
easily in a place that is suitable for temporary files (/tmp on any vaguely UNIX-like system). It also
does not handle the possibility that other processes might be trying to create temporary files in the same
place. This is a significant possibility, and a potential source of race conditions. Two processes may call
tmpnam at the same time, get the same filename in return, then both open it. To avoid this, we open the
temporary file using sysopen and specify the O_EXCL flag, which requires that the file does not yet
exist. Here is a short loop that demonstrates a safe way to open the file:

get an open (and unique) temporary file
do {

$tmpname = tmpnam();
sysopen TMPFILE, $tmpname, O_RDWR|O_CREAT|O_EXCL;

} until (defined fileno(TMPFILE));

If another process creates the same file in between our call to tmpnam and the sysopen, the O_EXCL
will cause it to fail and TMPFILE will not be open, and so the loop repeats (see the next section for a
better approach). Note that if we only intend to write to the file, O_WRONLY would do just as well, but
remember to import the symbols from the POSIX or Fcntl module. Once we have the file open we can
use it:

place data into the file
print TMPFILE "This is only temporary \n";
close TMPFILE;

use the file - read it, write it some more, pass the filename to another
process, etc.
...

remember to tidy up afterwards!
unlink $tmpname;

Chapter 13

510

Since we have an actual tangible filename we can pass it to other processes. This is a common approach
when reading the output of another command created with a piped open. For example, here is an
anonymous FTP command line client, which we can use to execute commands on a remote FTP server:

#!/usr/bin/perl
client.pl
use warnings;
use strict;

use POSIX qw(O_RDWR O_CREAT O_EXCL tmpnam);
use Sys::Hostname; # for 'hostname'

die "Simple anonymous FTP command line client\n".
"Usage: $0 <server> <command>\n" unless scalar(@ARGV)>=2;

my ($ftp_server,@ftp_command)=@ARGV;

get an open and unique temporary file
my $ftp_resultfile;
do {

generate a new temporary filename
$ftp_resultfile = tmpnam();
O_EXCL ensures no other process successfully opens the same file
sysopen FTP_RESULT, $ftp_resultfile, O_RDWR|O_CREAT|O_EXCL;
failure means something else opened this filename first, try again

} until (defined fileno(FTP_RESULT));

run ftp client with autologin disabled (using -n)
if (open (FTP, "|ftp -n > $ftp_resultfile 2>&1")) {

print "Client running, sending command\n";

command: open connection to server
print FTP "open $ftp_server\n";
command: specify anonymous user and email as password
my $email=getlogin.'@'.hostname;
print FTP "user anonymous $email\n";
command: send command (interpolate list to space arguments)
print FTP "@ftp_command\n";

close FTP;
} else {

die "Failed to run client: $!\n";
}

print "Command sent, waiting for response\n";
my @ftp_results = <FTP_RESULT>;
check_result(@ftp_results);
close FTP_RESULT;
unlink $ftp_resultfile;
print "Done\n";

sub check_result {
return unless @_;

print "Response:\n";
just print out the response for this example
print "\t$_" foreach @_;

}

Manipulating Files and Directories

511

Using 'File::Temp'
As of Perl 5.6.1 we have a better approach to creating temporary files, using the File::Temp module.
This module returns the name and filehandle of a temporary file together, eliminating the possibility of
a race condition where the same temporary file is created by another process after we check for its
existence but before we open it. Instead of using sysopen with the O_EXCL flag, as we showed in the
previous section, File::Temp provides us with the following much simpler syntax using its tempfile
function:

($FILEHANDLE, $filename) = tempfile();

However, tempfile can take arguments that we can use to gain more control over the created
temporary file as shown in the following:

($FILEHANDLE, $filename) = tempfile($template, DIR => $dir, SUFFIX = $suffix);

The template should contain at least four trailing Xs, which will then be replaced with random letters, so
$template could be something like filenameXXXXX. We can specify explicitly with DIR the directory
where we would like the temporary file to be created. Otherwise, the file will be created in the directory
specified for temporary files by the function tmpdir in File::Spec (see Chapter 24 for more on
File::Spec). Finally, at times we might need our temporary file to have a particular suffix, possibly
for subsequent processing by other applications. The option SUFFIX is there to provide this facility.
Note that the chosen suffix would be added after the translation of Xs in the template. So, the following
will create a temporary file called fileXXXX.tmp (where the four Xs are replaced with four random
letters) in the directory /test/files:

($FILEHANDLE, $filename) = tempfile("fileXXXX", DIR => "/test/files", SUFFIX =
".tmp");

However, the recommended interface is to call tempfile in scalar instead of list context, returning
only the filehandle:

$FILEHANDLE = tempfile("fileXXXX", DIR => "/test/files", SUFFIX = ".tmp");

The file itself will be automatically deleted when closed. No way to tamper with the filename means no
possibility of creating a race condition.

To create temporary directories, File::Temp provides us with the tempdir function. Using the
function without argument creates a temporary directory in the directory set by tmpdir in
File::Spec:

$tempdir = tempdir();

As with tempfile, we can specify a template and explicit directory as arguments to tempdir. Here
also the template should have at least four trailing Xs that will be translated into four random letters.
The DIR option overrides the value of File::Spec's tmpdir:

$tempdir = tempdir("dirXXXX", DIR => "/test/directory");

Chapter 13

512

This will create a temporary directory called something like /test/directory/dirdnar, where dnar
are four random letters that replaced the four Xs. If the template included parent directory specifications
then they are removed before the directory is prepended to the template. In the absence of a template,
the directory name is generated from an internal template.

Removing the temporary directory and all its files, whether created by File::Temp or not, can be
achieved using the option CLEANUP => 1.

In addition to the functions tempfile and tempdir, File::Temp provides Perl implementations of
the mktemp family of temp file generation system calls. These are shown in the following table:

mkstemp Using the provided template, this function returns the name of the temporary file
and a filehandle to it:

($HANDLE, $name) = mkstemp($template);

If we are interested only in the filehandle, then we can use mkstemp in scalar
context.

mkstemps This is similar to mkstemp but accepts the additional option of a suffix that is
appended to the template:

($HANDLE, $name) = mkstemps($template, $suffix);

mktemp This function returns a temporary filename but does not ensure that the file will
not be opened by a different process:

$unopened = mktemp($template);

Mkdtemp This function uses the given the template to create a temporary directory. The
name of the directory is returned upon success and undefined otherwise:

$dir = mktemp($template);

Finally, the File::Temp module provides implementations of the POSIX's tmpname and tmpfile
functions. As mentioned earlier, POSIX uses the value of P_tmpdir in the C standard library's
stdio.h header file as the directory for the temporary file. File::Temp, on the other hand, uses the
setting of tmpdir. With a call to mkstemp using an appropriate template, tmpname returns a filehandle
to the open file and a filename:

($HANDLE, $name) = tmpname();

In scalar context, tmpname uses mktemp and returns the full name of the temporary file:

$name = tmpname();

While this ensures that the file does not already exist, it does not guarantee that this will remain the
case. In order to avoid a possible race condition, we should use tmpname in list context.

The File::Temp implementation of the POSIX's tmpfile returns the filehandle of a temporary file.
There is no access to the filename, and the file is removed when the filehandle is closed or when the
program exits:

$HANDLE = tmpfile();

For further information on File::Temp consult the documentation.

Manipulating Files and Directories

513

Manipulating Directories
Directories are similar to files in many ways, they have filenames, permissions and (on platforms that
support it) owners, but they are significantly different in others.

At their rawest, files can generally be considered to be character based, with no other internal structure
except possibly lines in the case of text files, a fact the readline operator makes use of. Directories on
the other hand are record based, each record being the details of a particular entry (be it file, directory,
link or special file) in the directory. Accordingly, Perl supports a selection of functions specifically
oriented to handling directories in a record-oriented context. These provide an alternative way to scan
through and examine files (discussed earlier in the chapter) – which we use depends entirely on our
intent, and to a large extent our preferences. Prior to version 5.6, the glob function was implemented
by calling a shell, a significant overhead versus the built-in directory functions. From 5.6, glob is based
on a module. Though faster than using a shell, and more powerful than the directory functions, using
glob is still the heavyweight solution.

As well as reading directories we can also create and destroy them. Perl supports these operations
through the functions mkdir and rmdir, which should be synonymously familiar to those with either a
MS-Dos or a UNIX background. For more advanced tasks, the File::Path module provides enhanced
analogues for these two functions.

Finally, a discussion of directories is not complete without the concept of the current working directory.
All of Perl's built-in functions that take a filename as an argument, from open to the unary file test
operators, base their arguments relative to the current working directory whenever the given filename is
not absolute (that is, does not start with a leading /). We can both find out and change the current
working directory, either using Perl's built-in functions or with the more flexible Cwd module.

Reading Directories
Although we cannot open and read directories like ordinary files, we can do the equivalent, using
directory handles. For each of the file-based functions open, close, read, seek, tell, and rewind
there is an analogue that performs the same function for directories. For example, opendir opens a
directory and returns a directory handle:

opendir DIRHANDLE, $dirname;

Although similar to filehandles in many respects, directory handles are an entirely separate subspecies;
they only work with their own set of built-in functions and even occupy their own namespace, so we can
quite legally have a filehandle and a directory handle with the same name:

open HANDLE, $filename; # open a filehandle
opendir HANDLE, $dirname; # open a directory handle

$line = <HANDLE>; # read a line from $filename
$item = readdir HANDLE; # read an entry from $dirname

close HANDLE; # close file $filename
closedir HANDLE; # close directory $dirname

TE
AM
FL
Y

Team-Fly®

Chapter 13

514

Having said that, just because we can do something does not mean that we should. Giving a filehandle
and a directory handle the same name is more than a little confusing.

If opendir fails for any reason (the obvious ones being that the directory does not exist or is in fact a
file) it returns undef and sets $! to indicate the reason. Otherwise we can read the items in the directory
using readdir:

if (opendir DIRHANDLE, $dirname) {
foreach (readdir DIRHANDLE) {

print "$dirname contains: $_ \n";

}
}

readdir is similar in spirit to the readline operator, although we cannot use the <...> syntax to read
from a directory filehandle. If we do, Perl thinks we are trying to read from a filehandle with the same
name. However, like the readline operator, readdir can be called in either a scalar context, where it
returns the next item in the directory, or in a list context, where it returns all remaining entries:

$diritem = readdir DIRHANDLE; # read next item
@diritems = readdir DIRHANDLE; # read all (remaining) items

Another example of list context is a foreach loop, as in the example above, of course.

Rather than return a line from a file, readdir returns a filename from the directory. We can then go on
to test the filename with file test operators, or stat/lstat to find out more about it. However, if we do
this we should take care to append the directory name first or use chdir, otherwise the file test will not
take place where we found the file but in the current working directory:

opendir DIRHANDLE, '..'; # open parent directory
foreach (readdir DIRHANDLE) {

print "$_ is a directory \n" if -d "../$_";
}
closedir DIRHANDLE;

Or, using chdir:

opendir DIRHANDLE, '..'; # open parent directory
chdir '..'; # change to parent directory
foreach (readdir DIRHANDLE) {

print "$_ is a directory \n" if -d; # use $_
}
closedir DIRHANDLE;

Note that when we are finished with a directory handle we close it, again using a specialized version of
close, closedir. In the event closedir fails, it also returns undef and sets $! to indicate the error.
Otherwise it returns true.

Directory Positions
Directory filehandles also have positions, which can be manipulated with the functions seekdir,
telldir, and rewinddir, direct directory analogues for the file position functions seek, tell, and
rewind. Unlike their plain file counterparts, however, these functions only work on directories (the
plain file counterparts also work on directories, but not very usefully), and a directory position set with
seekdir must be deduced from telldir; any old arbitrary value is not OK:

Manipulating Files and Directories

515

find current position of directory handle
$dpos = telldir DIRHANDLE;
read an item, moving the position forward
$item = readdir DIRHANDLE;

reset position back to position read earlier
seekdir DIRHANDLE, $dpos;

reset position back to start of directory

rewinddir DIRHANDLE;

Although they are analogous, these functions are not as similar to their file-based counterparts as their
names might imply. In particular, seekdir is not nearly as smart as seek; because it does not accept
an arbitrary position we cannot seek from the current position, or from the end like we can with seek.
seekdir is only good for setting a position previously found with telldir.

Directory Handle Objects
As an alternative to the standard directory handling functions we can instead use the IO::Dir module.
This conveniently encapsulates directory filehandles in objects on which we can call methods in exactly
the same way that IO::File does for ordinary filehandles:

$dirh = new IO::Dir($directory);

The main point of IO::Dir is to encapsulate directory handles behind an object-oriented interface, to
simplify passing them around and avoid the problems that afflict all handles, file or directory, when we
try to manipulate them directly. Each of the standard directory, handling functions is supported by a
similarly named method in IO::Dir, minus the trailing dir, so instead of using opendir we can create
a new, unassociated IO::Dir object and then use open:

$dirh = new IO::Dir;
$dirh->open ($directory);

Likewise, we can use read to read from a directory filehandle, seek, tell, and rewind to move
around inside the directory and close to close it again:

$entry = $dirh->read; # read an entry
$dpos = $dirh->tell; # find current position
$dirh->seek($dpos); # set position
$dirh->rewind; # rewind to start
@entries = $dirh->read; # read all entries

Directories as Tied Hashes
As an alternative to the object-oriented interface, IO::Dir also supports a tied hash interface, where
the directory is represented by a hash and the items in it as the keys of the hash. The values of the hash
are lstat objects created via the File::stat package, called on the key in question. These are
created at the moment that we ask for it so as not to burden the system with unnecessary lstat calls. If
the main purpose of interrogating the directory is to perform stat type operations (including file tests),
we can save time by using this interface:

Chapter 13

516

list permissions of all files in current directory
my %directory;
tie %directory, IO::Dir, '.';

foreach (sort keys %directory) {
printf ("$_ has permissions %o \n", $directory{$_}->mode & 0777);

}
untie %directory;

IO::Dir makes use of the tied hash interface to extend its functionality in other ways too. Assigning an
integer as the value of an existing key in the hash will cause the access and modification time to be
changed to that value. Assigning an array of two integers will cause the access and modification times to
be altered to the first and second respectively. If, on the other hand, the entry does not exist then an
empty file of the same name is created in the directory, again with the appropriate timestamps:

set all timestamps to the current time:
$now = time;

foreach (keys %directory) {
$directory{$_} = $now;

}

create a new file, modified one day ago, accessed now:
$directory{'newfile'} = [$now, $now-24 * 60 * 60];

Deleting a key-value pair will also delete a file, but only if the option DIR_UNLINK is passed to the tie as
a fourth parameter:

delete backup files ending in .bak or ~
tie %directory, IO::Dir, $dirname, DIR_UNLINK;

foreach (keys %directory) {
delete $directory{$_} if /(\.bak|~)$/;

}
untie %directory;

With DIR_UNLINK specified, deleting an entry from the hash will either call unlink or rmdir on the
item in question, depending on whether it is a file or a directory. In the event of failure, the return value
is undef and $! is set to indicate the error, as usual.

Finding the Name of a Directory or File from its Handle
As a practical example of using the directory functions, here is a solution to the problem of finding
out the name of a directory or file starting from a handle, assuming we know the name of the parent
directory (if we do not we just have to search for longer, see File::Find for one simple way to
do that):

sub find_name {
($handle, $parentdir) = @_;

find device and inode of directory
($dev, $ino) = lstat $handle;
open PARENT, $parentdir or return undef;

Manipulating Files and Directories

517

foreach (readline PARENT) {
find device and node of parent directory entry
($pdev, $pino) = lstat '../$_';
if it is a match, we have our man
close PARENT, return $_ if ($pdev == $dev && $pino == $ino);

}
close PARENT;
return undef; # didn't find it...strange!
}

$name = find_name (*HANDLE, "/parent/directory");
close HANDLE;

First, we use lstat to determine the device and inode of the directory (or, possibly, the symbolic link
leading to the directory, which is why we use lstat and not stat. Then we open the parent and scan
each entry in turn using lstat to retrieve its device and inode. If we find a match, we must be talking
about the same entry, so the name of this entry must be the name of the file or directory. (Well, OK,
that is not strictly true. On systems that support multiple filenames for the same file we can only say we
have found a filename.)

We can adapt this general technique to cover whole filesystems using the File::Find module. See
earlier in the chapter for more on this highly useful module that makes extensive use of directory
functions to carry out its work.

Creating and Destroying Directories
The simplest way to create and destroy directories is to use the mkdir and rmdir functions. These both
create or destroy a single directory, starting at the current working directory if the supplied name is
relative. For more advanced applications we can use the File::Path module, which allows us to
create and destroy nested chains of directories.

Creating Single Directories
To create a new directory we use the mkdir built-in function. This takes a directory name as an
argument and attempts to create a directory with that name. The pathname given to mkdir may contain
parent directories, in which case they must exist for the directory named as the last part of the pathname
to be created. If the name is absolute, it is created relative to the root of the filing system. If it is relative,
it is created relative to the current working directory:

relative - create directory 'scripts' in current working directory
mkdir 'scripts';

absolute - create 'web' in /home/httpd/sites/$site, which must already exist
mkdir "/home/httpd/sites/$site/web";

relative - create directory 'scripts' in subdirectory 'lib' in current
working directory. 'lib' must already exist to succeed.
mkdir 'lib/scripts';

mkdir may be given an optional second parameter consisting of a numeric permissions mask, as
described earlier in the chapter. This is generally given as an octal number specifying the read, write,
and execute permissions for each of the user, group, and other categories. For example, to create a
directory with 755 permissions we would use:

mkdir $dirname, 0755;

Chapter 13

518

We can also use the mode symbols from the Fcntl module if we import them first. Here is an example
of creating a directory with 0775 permissions, using the appropriate Fcntl symbols:

use Fcntl qw(:mode);
$dirname with 0775 permissions
mkdir $dirname, S_RWXU | S_RWXG | S_ROTH | S_XOTH;

The second parameter to mkdir is a permissions mask, not a generic file mode. It is called a mask
because we can remove bits from it to remove those permissions from the created directory. It also
applies to permissions only, not the other specialized mode bits such as the sticky or setuid and
setgid bits; to set these we must use chmod after creating the directory.

The umask setting may also remove bits, so the value supplied to mkdir does not define the
permissions of the directory, only those we are willing to permit. The default mask is 0777, which
permits all access types unless modified by the umask setting. A umask setting of octal 022 would
modify the stated permissions of a created directory from 0777 to 0755, for example. This is
generally better than specifying a more restricted permissions mask directly as it leaves permissions
policy to the user.

Creating Multiple Directories
mkdir will only create one directory at a time. If we want to create multiple nested directories with
mkdir we must create each one in turn:

create 'a/b/c':
mkdir 'a';
mkdir 'a/b';
mkdir 'a/b/c';

Or alternatively:

foreach ('a', 'b', 'c') {
mkdir $_;
chdir $_;

}

Neither of these solutions is terribly elegant however, and neither takes account of problems like the
directory already existing (which will cause mkdir to fail but will still produce the right result), the
permissions of the parent directory not permitting creating, or a file existing with the same name.
Fortunately we can avoid hard-coding a routine that solves all these problems by using the File::Path
module instead.

File::Path provides two routines, mkpath and rmtree. mkpath takes a path specification,
containing one or more directory names separated by a forward slash, a Boolean flag to enable or
disable a report of created directories, and a permissions mask in the style of mkdir. It is essentially an
improved mkdir, with none of the drawbacks of the simpler function. For example, to create a given
directory path:

use File::Path;

create path, reporting all created directories
$verbose = 1;
$mask = 0755;
mkpath ('/home/httpd/sites/mysite/web/data/', $verbose, $mask);

Manipulating Files and Directories

519

One major advantage mkpath has over mkdir is that it takes pre-existing directories in its stride, using
them if present and creating new directories otherwise. It also handles directory naming conventions of
VMS and OS/2 automatically. In other respects it is like mkdir, using the same permission mask and
creating directories from the current working directory if given a relative pathname:

silently create scripts in lib, creating lib first if it does not exist.
mkpath lib/scripts;

If mkpath is only given one parameter, as in the above example, the verbose flag defaults to 0, resulting
in a silent mkpath, and like mkdir, the permissions mask defaults to 0777.

mkpath can also create multiple chains of directories if its first argument is a list reference rather than a
simple scalar. For instance, to create a whole installation tree for a fictional application we could use
something like this:

mkpath ([
'/usr/local/apps/myapp/manual',
'/usr/local/apps/myapp/scripts',
'/usr/local/apps/myapp/bin',
'/usr/local/apps/myapp/lib/scripts',
'/var/log/myapp',

], 1, 0755);

In the event of an error, mkpath will croak and return with $! set to the reason of the failed mkdir. To
trap a possible croak put the mkpath into an eval:

unless (defined eval {mkpath(@paths, 0, 0755)}) {
print "Error from mkpath: $@ ($!) \n";

}

Otherwise, mkpath returns the list of all directories created. Note that if a directory already existed then
it is not added to this list. As any return from mkpath indicates that the call was successful overall; an
empty list means simply that all the directories requested already existed. Since we often do not care if
directories were created or not, just so long as they exist, we usually do not actually check the return
value, only trap the error as in the above example.

Destroying Single Directories
To delete a directory we use the rmdir function, which returns 1 on success and 0 otherwise, setting $!
to indicate the reason for the error. rmdir takes a single directory name as an argument, or uses the
value of $_ if no filename is given:

rmdir $dirname; # remove dirname

rmdir; # delete directory named by $_

rmdir typically fails if the given name is not a valid pathname or does not point to a directory (it might
be a file, or a symbolic link to a directory). It will also fail if the directory is not empty.

Deleting nested directories and directories with contents is more problematic. If we happen to be on a
UNIX system, logged in as superuser, and if we specified the -U option to Perl when we started our
application then we can use unlink to remove the directory regardless of its contents. In general,
however, the only recourse we have is to traverse the directory using opendir, removing files and
traversing into subdirectories as we go. Fortunately we do not have to code this ourselves, as there are a
couple of modules that will greatly simplify the process.

Chapter 13

520

Destroying Multiple Directories
As well as mkpath, the File::Path module provides a second routine rmtree, that performs (loosely
speaking) the opposite function. Whereas mkpath creates a series of nested directories, rmtree
removes directories, and, by extension, any files in them. rmtree takes three parameters: the first, like
mkpath, is a single scalar directory path. It comprises one or more directories separated by forward
slashes, or alternatively a reference to an anonymous array of scalar directory paths. If a path starts with
a / it is taken to be absolute, otherwise it is assumed to be relative to the current working directory.

The second is, just like mkpath, a Boolean verbosity flag, set to false by default. If enabled, rmtree
reports on each file or directory it encounters, indicating whether it used unlink or rmdir to remove
it, or whether it skipped over it. Symbolic links are deleted, but not followed.

The third parameter is a safety flag, also Boolean and false by default. If true, rmtree will skip over
any file for which the program does not have write permission (or more technically, the program's
effective user id does not have write permission), except for VMS, which has the concept of 'delete
permission'. Otherwise it will attempt to delete it anyway, which depends not on the file's permissions
or owner but on the permissions of the parent directory, like rmdir.

For example:

use File::Path;

$verbose = 1;
$safe = 1;
rmtree $path, $verbose, $safe;

remove three directory trees silently and safely.
rmtree([$path1, $path2, $path3], 0, 1);

On success, rmtree returns the number of files deleted. On a fatal error it will croak like mkpath and
can be trapped in the same way. Other, non-fatal, errors are carped (via the Carp module) and must be
trapped by a warning signal handler:

$SIG{__WARN__} = handle_warnings();

If the safety flag is not set, rmtree attempts to force the permissions of files directories to make them
deletable. In the event of it failing to delete them afterwards it may also be unable to restore the original
permissions, leading to potentially insecure permissions. In all such cases the problem will be reported
via carp and trapped by the warning signal handler if present.

Moving Around Directories
All of Perl's directory handling functions from opendir to rmdir interpret relative pathnames (that is,
pathnames that do not start with a /) as relative to the current working directory. This is generally the
directory that the shell was in when it started our applications, otherwise it is simply inherited from the
parent process (which technically includes shells too, of course; they are just a special case).

Like a shell, we can change the current working directory too, using the chdir function. chdir takes a
directory path as its argument and attempts to change the current working directory accordingly. If the
path is absolute it is taken relative to the root directory, otherwise it is taken relative to the current
working directory. It returns true on success and false on failure; for example:

Manipulating Files and Directories

521

unless (chdir $newdir) {
"Failed to change to $newdir: $! \n";

}

Note that although Windows preserves a current directory for each drive, the 'current directory' as
understood by Perl is a combination of the current drive and the current directory on that drive. If we
pass a directory to chdir without a drive letter, we remain on the current drive.

There is no direct way in Perl to determine what the current working directory is, though some shells
maintain the current working directory in an environment variable like $ENV{'PWD'}. However, we
can use either the POSIX module or the more specialized Cwd module to find out.

Using the POSIX module, we can find the current working directory by calling the getcwd routine,
which maps onto the underlying getcwd or getwd (regional variations may apply) routine of the
standard C library. This takes no parameters and returns the current working directory as a string:

use POSIX qw(getcwd);

$cwd = getcwd;

Alternatively, we can use the Cwd module. This is a specialized module dedicated to all issues
surrounding the current working directory in a portable and more platform-independent way than the
POSIX module allows for (since it will work even if getcwd is not available).

It supplies three different ways to determine the current directory. getcwd and fastcwd are pure Perl
implementations that are therefore maximally portable. cwd attempts to use the most natural and safe
method to retrieve the current working directory supported by the underlying platform, whether it be
UNIX, Windows, VMS, OS/2, etc.

getcwd is an implementation of the real getcwd as provided by POSIX written purely in Perl. It works
by opening the parent directory with opendir, then scanning each file in turn using readdir and
lstat looking for a match with the current directory using the first two values returned (the dev and
lno fields). From this it deduces the name of the current directory, and so on all the way to the top of
the filing system.

getcwd avoids using chdir however, because having chdired out of the current directory,
permissions may not allow it to chdir back in again. Instead it assembles an increasingly long string of
/../../../ to access each directory in turn. This makes it safe, but slow.

fastcwd is also a pure Perl implementation. Instead of accessing each parent directory through an
extending string of /.., it uses chdir to jump up to the parent directory and analyze it directly. This
makes it a lot faster than getcwd, but may mean that the current working directory changes as a result
if fastgetcwd cannot restore the current working directory back to what it was to start with due to the
permissions of the directory. fastgetcwd is an alias for fastcwd.

cwd attempts to use the best safe and 'natural' underlying mechanism available for determining the
current working directory, for instance calling pwd on a UNIX system. It does not use the POSIX
module. If all else fails it uses its own Perl-only getcwd. This makes it the best solution for most
applications, since it takes advantage of the underlying support if any is available, but can survive
happily (albeit slowly) without.

Chapter 13

522

All three methods will return the true path to the file, resolving and removing any symbolic links
(should we be on a platform that supports them) in the pathname. All four functions (including the alias
getfastcwd) are automatically imported when we use the module, and are called in the same way,
taking no parameters and returning the current working directory:

use File::Path; # import 'getcwd', 'fastcwd', 'fastgetcwd', and 'cwd'

$cwd = getcwd; # slow, safe Perl
$cwd = fastcwd; # faster but potentially unsafe Perl
$cwd = getfastcwd; # alias for 'fastcwd'
$cwd = cwd; # use native platform support

Sometimes we want to find the path to a directory other than the one we are currently in. One way to
do that is to chdir to the directory in question; determine the current working directory, and then
chdir back. However, we do not need to do this as File::Path allows us to do the same thing with
the abs_path (or its alias realpath) and fast_abs_path functions, each of which can be imported
into our application by explicitly naming them. Both take a path to a file or directory and return the
true absolute path to it, resolving any symbolic links and instances of . or .. as they go:

use Cwd qw(abs_path realpath fast_abs_path);

find the real path of 'filename'
$absdir = abs_path('symboliclink/filename');

'realpath' is an alias for 'abs_path'
$absdir = realpath('symboliclink/filename');

find the real path of our great grand parent directory
$absdir = fast_abs_path('../../..');

The equivalent of getcwd is abs_path with an argument of ., and in fact this is exactly what getcwd
is, a wrapper to abs_path. Similarly, the fastcwd is a wrapper for fast_abs_path, which has the
same potential limitations regarding restoring the original current working directory noted above.

In addition to the various cwd functions and the abs_path routines, File::Path supplies one more
routine, chdir, which improves the standard build-in chdir by automatically tracking changes in the
environment variable $ENV{'PWD'} in the same manner as some shells do. We can have this chdir
override the standard chdir by importing it specifically:

override system 'chdir' with 'chdir' from File::Path
use File::Path qw(chdir);

After this, chdir will automatically update $ENV{'PWD'} each time we use it. The original chdir is
still available as CORE::chdir, of course.

Manipulating Files and Directories

523

Summary
In this chapter we covered:

❑ Getting user and group information

❑ Testing files attributes using the unary file test operators and the stat and lstat functions

❑ Linking, unlinking, renaming, copying, moving, comparing, and finding files

❑ File globbing

❑ Creating temporary files and directories

❑ Reading, creating, destroying, and copying directories

TE
AM
FL
Y

Team-Fly®

Chapter 13

524

Command-line and Shell
Interaction

Mention the word interaction and often windows, icons, mice, pointers and so on spring immediately to
mind. The truth is that interaction does not have to be that complex a subject to work with. This
chapter, and the next in fact, will explore the more simple forms of interacting with Perl through non-
graphical means, as a user. This is a broader subject than it might first appear since it covers everything
from the command-line processing, through to shells and commands and on to terminal programming.

In this chapter we will examine how to interact with Perl using command-line arguments and shells, and
terminal programming will be dealt with in the next chapter. We begin by looking into the special array
@ARGV. We then see how Perl processes command-line arguments using the Getopt::Std and
Getopt::Long modules. In the section on shells, we see first how to create Perl shells and then how to
integrate a shell into Perl.

Parsing-Command Line Arguments
When any Perl program is started, Perl passes any parameters (or arguments) to the program in the
special @ARGV array, which is automatically defined by Perl before the script starts. Perl does not
perform any special processing on passed arguments, nor does it look for special arguments – how we
deal with passed arguments is entirely up to us. Of course, Perl scripts can still be started with
arguments even when they are being run from other programs, so all this still applies even if our script
is not being started interactively.

Chapter 14

526

Command-Line Conventions
There are several conventions for how command-line arguments are defined, but they all work on the
idea of options (sometimes called switches) and values. In the UNIX world, an option is an argument
that is, traditionally, one character long, prefixed with a minus, and optionally followed by a value:

> program -a 1 -b -2 -c -d

Options and values can be told apart because options have a minus prefix whereas values do not. If an
option is followed by another option, it doesn't have a value. This form of command-line has limitations
though. As it happens, the POSIX standard defines a fairly flexible convention for single letter, single
minus options that allows bundling of valueless options and also permits values to follow options
directly (with no space) or after an equals sign:

> program -a1 -b=-2 -cd

The advantage of eliminating a space as the option/value separator is that we can specify otherwise
tricky values like negative numbers without ambiguity. The option -cd is a bundle of the options -c
and -d. Because options are always single letters, and neither of these example options takes a value,
the application can determine that the option is really a bundle of two.

A more recent convention for processing command-line arguments is provided by so-called GNU Long
options. Here, a double minus is used as the prefix for long option names that may be descriptive words
rather than just single letters.

> program --option1=1 --option2=-2 --option3 --option4

Long names break the single letter rule for option names, and so prevent both bundling and appending
a value directly to an option. The advantage is that they are easier to remember, and considerably easier
to understand. A long option like --verbose is much more comprehensible than -v.

In these examples we used - and --, but strictly speaking these are a UNIX convention. In the
Windows world, the original prefix was the forward slash, so we would be typing commands like this:

> program /a1 /b=-2 /c /d

More modern Windows command-line applications, particularly those inspired by or ported from
UNIX, understand both - and /. However, prefixes aside, the principle is just the same. It is important
to realize that unlike wildcards, - and / are not characters interpreted by the shell (be it a DOS or
UNIX shell). They are just a convention for the application itself to take note of and handle itself, and as
such we are free to handle any kind of prefix or prefixes we like. Adhering to a consistent and
recognizable convention is just friendlier for anyone else who wants to use our programs.

Simple option processing is easy to arrange in Perl without additional support, just by inspecting the
contents of the @ARGV array. However, once we start adding concepts like options that may take
optional values, options that may be defined many times, or options that only accept numeric values,
things become more complex and it becomes increasingly hard to define unambiguous command-lines.
Fortunately, a lot of the hard work in defining consistent command-line arguments can be done for us
by the Getopt::Std and Getopt::Long modules. Both these modules provide extensive support for
command-line argument processing, as well as syntax checking.

Command-line and Shell Interaction

527

The '@ARGV' Array
The @ARGV array contains all the arguments that were passed to our program when it was started. The
definition of what defines an 'argument' depends not on Perl but on the shell that was used to start our
program. However, in most cases spaces separate arguments from one another (UNIX shell
programmers may care to look up the IFS environment variable in the shell documentation). For
example, if we were to run a Perl program called myscript like this:

> perl myscript -u sventek -p cuckoo

This results in an @ARGV array containing the four values -u, sventek, -p, and cuckoo. Unlike the C
language, the first argument is not the program name. Instead, Perl places that information in the special
variable $0 (or $PROGRAM_NAME with the English module), in the style of UNIX shells. Unlike shells
though, Perl uses $1 and onwards for quite a different purpose, as we saw in Chapter 11 on regular
expressions. Perl's reason for assigning the program name to $0 and removing it from the argument list
is twofold. In part, it is in deference to shell programming but more significantly it allows us to do
clever things with @ARGV that the presence of the program name would make inconvenient. Most
notable amongst these is reading input from files passed in @ARGV automatically using the readline
operator.

To check the number of arguments we can either use scalar or find the highest element in the array
(remember that Perl indexes from zero):

scalar(@ARGV); # number of arguments passed
$#ARGV; # highest element = no. of arguments -1

In this example we are obviously passing arguments that are key-value pairs, so we would probably
want to turn them into a hash. This won't work if an odd number of elements were passed, so we need
to check for that before blindly turning @ARGV into a hash. We probably ought to check that all the keys
start with a minus, since that is the convention we are following. The following code handles all these
issues:

#!/usr/bin/perl
turntohash.pl
use warnings;
use strict;

my %args;

if (scalar(@ARGV)%2) {
die "Odd number of arguments passed to $0";

} else {
%args = @ARGV; # convert to hash
foreach (keys %args) {

check each of the keys
die "Bad argument '$_' does not start with -" unless /^-/;

}
}

This example has its limitations, however. It doesn't handle multiple instances of the same argument.
For example, it overrides earlier definitions with later ones. Additionally, we don't make any attempt to
check that the arguments have valid names, though we could easily do that within the loop. However,
for simple argument parsing, it does the job.

Chapter 14

528

Passing Arguments to Perl Itself
Since Perl passes everything supplied on the command-line to our own programs, we cannot pass
arguments to Perl itself when we run a Perl script directly, although the shebang line
(#!/usr/bin/perl) handles this problem for us elegantly, if we are able to use it. Otherwise, there are
two possible solutions to this problem. One is to simply start our script via Perl while supplying any
arguments we like to Perl:

> perl -Mstrict -MMyModule -w myperlscript -u sventek -p cuckoo

Note that Perl determines the name of the program because it is the first bare argument (that is, not
prefixed with a -) to appear on the command-line without an option taking an argument immediately
before it. Therefore it must be the program name. All arguments after it are arguments to the program,
not to Perl, so this command does not do what we want:

> perl -w myperlscript -Mstrict -MMyModule

This actually passes -w to Perl, and -Mstrict and -MMyModule to our script, which is unlikely to be
what we intended.

If the name of the program (in this case myperlscript) happens to resemble a command-line option
or an optional value for the preceding option, we can make it explicit by using the special -- argument:

> perl -Mstrict -MMyModule -w -- myperlscript -name sventek -pass cuckoo

The -- argument is a convention, at least in the UNIX world, which means 'do not process anything
past this point'. Perl uses -- to separate its own arguments from the script name and the script's own
arguments. If we are using the -s option (see below) to set variables from the command-line, we also
need to use -- to stop feeding arguments to -s and to leave them in @ARGV. The program itself is
placed after, not before, the --.

Although this works, it can be rather ugly, not to mention tedious to retype. As an alternative we can
also specify arguments to pass to Perl by setting the environment variable PERL5OPT:

setenv PERL5OPT "-Mstrict -MPOSIX –w" # UNIX (csh)
export PERL5OPT="-Mstrict -MPOSIX –w" # UNIX (ksh/bash)
PERL5OPT="-Mstrict -MPOSIX –w"; export PERL5OPT # UNIX (older ksh)
set PERL5OPT = -Mstrict -MPOSIX –w # DOS/Windows

Perl sees the value of PERL5OPT when it starts and this is used with every Perl script, removing the need
to type it in on a program-by-program basis. See Chapter 1 for more on Perl's environment variables.
Having said all this, if we have the ability to set options in the shebang line of a script, this is by far and
away the easiest route.

Setting Variables from '@ARGV'
The -s option causes Perl to cease scanning the command-line for options and to treat all options after
it as variables set to the value following the option, or 1 if there is no following value. For example:

> perl -s -debug -- myscript.pl

Command-line and Shell Interaction

529

This sets the variable $debug inside the script myscript.pl to the value 1. Alternatively, to set a
different debug level, we could use:

> perl -s -debug = 2 -- myscript.pl

The $debug variable in this example is a global package variable; we can access it from within the
script as $main::debug, or declare it with use vars or our (the preferred way from Perl 5.6
onwards). There is no limit to how many variables we may specify in this way.

An interesting, if slightly odd use of -s in the shebang line of a script is shown below. Remember that
the use of –w is deprecated in Perl 5.6 and we should use use warnings instead:

#!/usr/bin/perl -ws
...

This causes Perl to interpret any command-line passed to the script as a series of variables to define.
This is possibly useful for debugging applications that otherwise do not take arguments, though
probably not a good idea for production code.

Reading Files from '@ARGV'
One of the most common classes of command-line utilities consists of scripts that process one or more
files given as arguments. The UNIX commands cat, more, and strings all fall under this banner, as
do the DOS utilities type, dir, and del.

Since this is such a common use of command-line arguments, Perl caters for it with a special shortcut
when we use the <> operator to read from standard input. Specifically, if we use <>, Perl tries to open
each element in @ARGV as a file in turn and returns the lines read. If @ARGV is empty, <> reads from
standard input. This allows us to write incredibly terse and to the point scripts because we can eliminate
the need to open filehandles or check that the arguments are really files; Perl will handle it for us. For
example, here is a simple version of the UNIX cat or DOS type command implemented in Perl:

print while <>;

Short, isn't it? We can try out this one line program on any text file and it will dutifully print out its
contents. It works because <> attempts to read input from the contents of the @ARGV array, taking each
entry to be a filename. If nothing is contained in @ARGV then standard input is used instead. Either way,
the while loop aliases each line read to $_, which the print prints out:

> perl -e 'print while <>' file1.txt file2.txt

Indeed, this is such a common thing to do that Perl lets us place an implicit while (<>) {...} loop
around code with the -n or -p options (other options that work in conjunction with -n and -p are -a,
-l and -o; see Appendix A for more information on these options). So we could just have said:

> perl -ne 'print' file1.txt file2.txt

Be wary however, when using these kinds of example with Windows. The above scripts need to be
modified in order for them to work properly. Single quotes do not allow the script within them to be
interpolated on Windows so we need to use double quotes to fix the problem. Bear this in mind when
executing such scripts and modify them like this:

> perl -e "print while <>" file1.txt file2.txt

> perl -ne "print" file1.txt file2.txt

Chapter 14

530

Just as with normal file reads, the line count variable $. also works here, so we can print out a file with
line numbers by modifying our 'program' to read:

#!/usr/bin/perl
cat.pl
use warnings;
use strict;

print "$. : $_" while <>;

Or, as a command-line script:

> perl -ne 'print "$.:$_"' file1.txt file2.txt

This time in the Windows case we also need to escape some double quotes as well as replace single
quotes with doubles. The command-line is then implemented as follows:

> perl -ne "print \"$.:$_\"" file1.txt file2.txt

Of course, if we feed this program a binary file it will still work, though the results we see may be less
than pretty. The current file being processed is stored in the scalar variable $ARGV, so we can improve
our one line program still further by including the filename too:

print "$ARGV:$.:$_" while <>;

Note that if we pass more than one file, the script will happily read each of them in turn under the same
filehandle (defined automatically by Perl and made available to us as ARGV). However, Perl does all the
opening and closing of files read in this way behind the scenes, so all the files are treated as being part
of the same file access. This means that variables like $. will not reset from one file to the next.
Depending on what we want to do this can be an advantage or a problem, but if we want to fix this issue
we can do so with the eof function:

#!/usr/bin/perl
bettercat.pl
use warnings;
use strict;

while (<>) {
print "$ARGV:$.:$_";
close (ARGV) if eof;

}

This works by closing the current file (via the automatically defined ARGV) if there is no more data to
read in it. The eof without a parameter uses the last file read, which happens to be the same file
pointed to by ARGV, so we could also have said eof(ARGV) to produce the same effect. Note that eof
with empty parentheses will only detect the end of all input (in other words, the end of the last file).

We can manipulate the @ARGV array before using <> to read the filenames in it any way we like, for
example to remove non-filename parameters. Here is a simple string-matching program in the style of
the UNIX grep command that does just that. The first argument is the pattern to search for. Anything
after that is a file to search in, so we just remove the first argument with shift and let <> see the rest:

Command-line and Shell Interaction

531

#!/usr/bin/perl
simplegrep1.pl
use warnings;
use strict;

die "Usage: $0 <pattern> <file> [<file> ...]\n" unless scalar(@ARGV)>1;
my $pattern = shift @ARGV; # get pattern from first argument
while (<>) {

print "$ARGV:$. $_" if /$pattern/;
close (ARGV) if eof;

}

Note that when we come to use this program, * will work fine for UNIX shells, since they automatically
expand the wildcard and pass an actual list of files to our program. On Windows systems, the standard
shell is not so smart and just passes the * as-is. If we want to trap these instances we can check for
occurrences of *, ?, and so on and use the glob function in conjunction with the File::DosGlob
module to make up for the shell's shortcomings. See Chapter 24 for more information.

'@ARGV' and Standard Input
For good measure we have also checked in the above example that we have been given enough
arguments to actually continue. This particular script needs two arguments, so we die with an error, if
we get fewer. This forces the user to enter both a pattern and a filename. However, we can force Perl
to open standard input by placing the special filename - into @ARGV before we use <>. Here's a
modification to the above script that handles this possibility:

$pattern = shift @ARGV;
die "Usage: $0 <pattern> [<file> ...]\n" unless @ARGV>1;
@ARGV=('-') unless @ARGV; # not actually necessary – see below

When Perl sees the filename - in @ARGV, it interprets it as a request to read from standard input. We
can supply it in the command-line, or as above, place it into @ARGV within the program if circumstances
require it. This allows us to use the script in these (admittedly UNIX-like) ways:

> cat filename | simplegrep pattern -
> simplegrep pattern - < filename

In fact, the line to add - to @ARGV in the example above is not needed. If nothing is present in @ARGV at
all, Perl reads from standard input anyway as we already mentioned. When we use <> for the first time,
Perl sees that @ARGV is empty and automatically inserts - to cause the read from standard input to take
place. If we print $ARGV, we can see that this is the case. This happens when <> is first used, so as long
as @ARGV is empty before we use the readline operator, standard input is taken care of for us and all we
have to do is change the usage line to allow only one argument:

#!/usr/bin/perl
simplegrep2.pl
use warnings;
use strict;

die "Usage: $0 <pattern> [<file> ...]\n" unless scalar(@ARGV);
my $pattern = shift @ARGV; #get pattern from first argument
while (<>) {

print "$ARGV:$.$_" if /$pattern/;
close (ARGV) if eof;

}

Chapter 14

532

Simple Command-Line Processing with 'Getopt::Std'
Hand-coded command-line processing is fine when we only have relatively simple command-line
arguments to process, but it becomes tricky to handle a larger number of arguments or a more complex
syntax. In these cases it is a far better idea to make use of one of the Getopt modules to simplify the
task. Fortunately, the standard Perl library comes with two modules specifically designed to simplify the
task of reading and parsing command-line arguments: Getopt::Std and Getopt::Long.

The Getopt::Long module is a much more comprehensive and considerably larger module that
provides support for long argument names, stricter argument value checking, abbreviations, aliases, and
other various features. It supports both POSIX-style arguments and (as its name suggests) GNU Long
arguments. We will look first at the simpler Getopt::Std module before we examine in detail
Getopt::Long.

The Getopt::Std module is a simple and lightweight module that provides support for single
character arguments, with or without values, in compliance with the POSIX standard. That is, any
program using it (properly) can be certain that its command-line conforms to the POSIX standard. The
module Getopt::Std permits arguments to be clustered together if no values are required and follows
the -- convention for ceasing processing of arguments. Parsed arguments are defined as global scalar
variables based on the argument name or, if supplied, stored in a hash as key-value pairs.

The use of either module does not preclude the possibility of reading files through <> as described
above. After one of the two modules has been used to process command-line options, anything left (or
inserted into) @ARGV can then be used with <> as before.

The Getopt::Std module provides command-line processing for traditional minus-prefixed single
character options, followed optionally by a value. It provides two functions to define the list of
arguments. The first is getopt, which allows us to specify a set of options that take parameters. Any
other options (as defined by the fact that they start with -) are considered to be Boolean options that
enable something and take no argument. The second is the more versatile getopts, which allows us to
explicitly define both Boolean and value options and so can emit a warning about anything that does
not appear to be either.

Basic Processing with 'getopt'
The function getopt lets us define a set of arguments that all take an optional value. To use getopt we
supply it with a list of letters that correspond to the options that we wish to process. Any option that is
not in the list is assumed to be a Boolean flag. For example:

use Getopt::Std;
getopt("atef");

This defines the options -a, -t, -e, and -f as arguments that take parameters. Then getopt will
accept a value immediately after the argument, or separated by either a space or an equals sign. That is,
all the following are acceptable:

-abc
-a = bc
-a bc

Command-line and Shell Interaction

533

When a program containing this code is called, the command-line is parsed and a global scalar variable
of the form $opt_X is set, where X is the name of the argument. If we create a script containing the
above code and feed it some arguments we can see this in action:

> perl myscript -a bc –e fg -k 99

This creates three global scalar variables, assuming that Perl will allow it. If we have use strict or
use strict vars in effect then we need to pre-declare these variables with our (or use vars, prior
to Perl 5.6) in order to avoid a run-time error. The equivalent direct assignments would have been:

$opt_a = "bc"; # option a given value bc
$opt_e = "fg"; # option e given value fg
$opt_k = 1; # 'k' not in list of arguments, therefore Boolean

The moment getopt sees something that is not an option or an option value it terminates and leaves
the remainder of @ARGV untouched. In this example @ARGV is left holding 99, because it is neither an
option nor a value (since k was not specified in the list of options to getopts and so does not take a
value, even if it looks like it from the command-line).

Creating global scalar variables is a little inelegant. As an alternative, we can supply getopt with a
reference to a hash as its second argument, say %opt. This causes getopt to populate the hash with the
parsed values instead. The processed arguments appear as keys and values in %opts. Again, given the
same example arguments as before, $opts{'k'} is defined to be 1 and @ARGV ends up containing 99
as the only unprocessed argument. The following script shows this in action, and also prints out the
parsed arguments and whatever is left in @ARGV afterwards, if anything:

#!/usr/bin/perl
getopt.pl
use strict;
use warnings;

use Getopt::Std;

my %opts;
getopt("atef", \%opts);

print "Arguments:\n";
foreach (keys %opts) {

print "\t$_ => $opts{$_}\n";
}

print "ARGV:\n";
foreach (@ARGV) {

print "\t$_\n";
}

> perl getopt.pl -a bc –e fg -k 99
Arguments:

e => fg
a => bc
k => 1

ARGV:
99

TE
AM
FL
Y

Team-Fly®

Chapter 14

534

It is worth noting that if we had put -k 99 as the first argument in the list, the 99 and everything
following it, including the -a and -e options and their arguments, would have remained unprocessed in
@ARGV.

If we don't specify a value for an argument that takes one, it defaults to 1, so -a and -a1 are effectively
equivalent.

Slightly Smarter Processing with 'getopts'
The more advanced getopts allow us to define both Boolean and value options in its specification.
Due to this fact, it can also check for invalid options, which immediately makes it more useful than
getopt. Another result of this is that getopts permits us to bundle options together, which we will see
in a moment, and thus provides POSIX-compliant command-line processing.

The options are again defined as a list but this time value options are suffixed with a colon, with any
letter not suffixed taken to be Boolean. To define three Boolean flags a, e, and t, and a value option f
we would use:

getopts ("aetf:"); # 'aet' Boolean, 'f' value, defines $opt_X scalars

if ($opt_a) {

...
}

Like getopt, getopts takes an optional second parameter of a hash to hold the parsed values;
otherwise it defines global scalar variables of the form $opt_X.

getopts("aetf:", \%opts); # ditto, puts values in %opts

The order of letters is not important, so the following are all equivalent:

getopts("f:ate");
getopts("af:et");
getopts("taf:e");

Any option that is not specified in the list will cause getopts to emit the warning Unknown option :X,
where X is the option in question. Since this is a warning we can trap it using one of the techniques
discussed in Chapter 16, for example by defining and assigning a subroutine to $SIG{__WARN__} if we
want to process the unrecognized option ourselves or make the warning fatal by turning it into a die.

We mentioned bundles a moment ago. Bundling is the combination of several single letter arguments
into one, and is applicable only if all but the last of the concatenated arguments do not take a value.
Unlike getopt, getopts permits bundling (but at the cost of not permitting the value to follow
immediately after the option). That is, instead of entering:

> perl myscript -a -t -e

We can enter:

> perl myscript -ate

Command-line and Shell Interaction

535

A value option can be bundled, but only if it is the last option in the bundle. It follows from this that we
can only permit one value option in any given bundle. With the specification taef: we can legally enter:

> perl myscript -aetf value # ok
> perl myscript -taef value # also ok, different order

But not:

> perl myscript -fate value # value does not follow f argument

The -- argument is recognized and processed by Getopt::Std, causing it to cease processing and to
leave all remaining arguments in @ARGV. The -- itself is removed. We can pass on the remaining
arguments to another program using system, exec, or open, or read them as files using <> if we wish:

> perl myscript -aetf value -- these arguments are not processed

This leaves @ARGV containing these, arguments, are, not, and processed.

More Complex Command-line Processing with
'Getopt::Long'

The Getopt::Long module performs the same role as Getopt::Std but with better parsing, error
checking, and richer functionality. It handles single letter options – including bundling – but in addition
supports GNU Long options.

The key distinguishing feature between the two modules is that Getopt::Long accepts the double
minus prefixed long option naming style. To illustrate what we mean, here are two versions of a
putative length argument. Only the first can be handled by Getopt::Std, but both can be parsed by
Getopt::Long:

-l # traditional short option
--length = value # more descriptive long option

The Getopt::Long module is very flexible and implements a number of optional features such as
abbreviation, case sensitivity, and strict or loose option matching. In order to control the behavior of the
module we can make use of the Getopt::Long::Configure subroutine, which allows us to alter the
way that command-line arguments are processed. Also Getopt::Long actually provides more features
than we may actually want to allow. Accordingly, we can disable these features with
Getopt::Long::Configure, or more simply by defining the environment variable
POSIXLY_CORRECT. We'll see how to do both of these nearer the end of the section.

Simple Argument Processing
The module Getopt::Long defines one function, GetOptions, to parse the contents of @ARGV. In its
simplest form it takes a list of options and scalar references, placing the value of each option into the
corresponding reference. Without additional qualification each option is handled as a Boolean flag and
the associated scalar is set to 1 if seen. The following code snippet defines two Boolean options;
verbose and background:

Chapter 14

536

#!/usr/bin/perl
definebool.pl
use warnings;
use strict;

use Getopt::Long;

my ($verbose, $background); # parse 'verbose' and 'background' flags
GetOptions (verbose => \$verbose, background => \$background);

print "Verbose messages on \n" if $verbose;

After this code is executed the variables $verbose and $background are either undefined, or set to
the value 1. We can easily use them in conditions, as illustrated above.

If the command-line was processed successfully, GetOptions returns with a True value, otherwise it
returns undef. We can therefore use it in conditions and terminate the program if all is not well, for
example:

print some help and exit if options are not valid
usage(), exit unless GetOptions (verbose => \$verbose, background => \$bg);

A warning will be raised by GetOptions for anything that it does not understand, so we are saved from
the task of having to describe the problem ourselves.

If we do not supply a reference GetOptions will define a global scalar with the name $opt_<option
name> instead, in a similar manner to Getopt::Std. This mode of use is generally deprecated on the
basis that defining global variables is not good programming practice, but for completeness, this is how
it is done:

#!/usr/bin/perl
globvar.pl
use warnings;
use strict;

use Getopt::Long;

our $opt_verbose; # or 'use vars', before Perl 5.6
GetOptions ('verbose');

Note that if we are using strict variables (as we really should) then the our declaration is necessary to
prevent Perl producing a run-time error when it tries to set the variable. Note that we need to use our
or use vars because the module sets a package variable, and could not see a lexical my variable even
if it wanted to.

As an alternative to defining scalar variables using either of the above approaches, GetOptions also
accepts a hash reference as its first parameter and will store parsed arguments in it, if present. This is
similar to Getopt::Std, but the arguments are inverted compared to getopt or getopts:

#!/usr/bin/perl
hashref.pl
use warnings;
use strict;

use Getopt::Long;

my %opts;
GetOptions(\%opts, 'verbose', 'background');

Command-line and Shell Interaction

537

One special case bears mentioning here. We might want to handle the case of a single minus
(conventionally used to mean 'take input from standard input, not a file'), as used by several UNIX
commands and demonstrated earlier with Getopt::Std. We can do that using an option name of an
empty string:

GetOptions('' => \$read_from_stdio);

For the time being we have limited our discussion to scalars, but GetOptions is also capable of
handling multiple values in both list and hash forms. We'll see how to do that a little later, after we have
dealt with option prefixes and defining option values.

Option Prefixes
With the exception of the single bare minus, options can be specified with either a single or a double
minus, or if we define it first, any prefix we like. The double minus prefix is treated as a special case
compared to all other prefixes, however. Firstly, options that have been prefixed with a double minus
are treated as case-insensitive by default, whereas all other prefixes are case-sensitive, though we can
alter case sensitivity using Getopts::Long::Config. This means that --o and --O both define the
option o, whereas -o and -O define the options o and O. The double minus prefix is also treated
differently in option bundling.

The archaic prefix + is also accepted by default, but is now deprecated. We can explicitly disallow it, as
well as redefining the prefixes we do allow (for instance the backslash) by specifying our own prefix.
There are two ways to do this, the first of which is to specify the new prefix as the first argument to
GetOptions. However, this is deprecated in modern usage. A better way is to use the
Getopt::Long::Configure subroutine. To redefine the prefix this way we put something like:

configure a prefix of '/'
Getopt::Long::Configure ("prefix=/");

We can also specify a range of prefixes by configuring the prefix_pattern option of Getopt::Long.
This takes a regular expression as an argument, so we just need to express the options we want to allow
in terms of a regular expression. To allow single, double, and backslash prefixes, we can use (-|--
|\/), as in this example:

configure prefixes of --, - or / (but not +
Getopt::Long::Configure ("prefix_pattern=(--|-|\/)");

Note that because prefix_pattern is used in a regular expression we must use parentheses to
encapsulate the options, and escape any characters that have special significance for regular expressions.

An alternative to simply disabling a prefix is to handle it ourselves before calling GetOptions. For
example, a few utilities use + to explicitly negate an option. We can handle that by replacing + by --no
and defining the option to be Boolean:

#!/usr/bin/perl
negate.pl
use warnings;
use strict;

use Getopt::Long;

Chapter 14

538

translate + negation to Getopt::Long compatible --no negation
foreach (@ARGV) {

s/^\+/--no/; # substitute elements of @ARGV directly
}

my %opts;
GetOptions (\%opts, 'verbose', 'background');

This requires defining the options we want to be able to negate as negatable Boolean values. We see
how to do that, as well as handle other types of option, next.

Defining Option Values
All the options we have seen so far have been Boolean options. By adding extra information to the
option name in the form of attributes we can define (and enforce) different kinds of option, including
negatable options, incremental options, and integer value options.

Negatable Boolean Options

A negatable Boolean option is one that can be switched off as well as being switched on. The Boolean
options we have seen so far are one-way – once we have specified what they are we cannot 'undo' this.
That might seem like a strange thing to want to do, but if we are editing a previous command-line or
calling an external program from within another, it is often more convenient to disable an option
explicitly than check through the arguments to see if it has been set to start with. Some features just
make more sense enabled by default too, so we might want to define options for them simply to turn
them off.

Negatable Boolean options are defined by suffixing the option name with an exclamation mark. We can
use this to create an option that is normally on, but which we can turn off by prefixing the option name
with no:

$quiet = 1;
GetOptions ("quiet!" => \$quiet);

This now allows us to specify -noquiet to switch off quiet mode:

> perl myscript -noquiet

And -quiet to turn it on again:

> perl myscript -noquiet -otheroption -quiet

Sometimes it is useful to know whether an option variable is not set because that is its default value or
because it was explicitly cleared by the option. Actually, this is very easy – disabling a negatable option
sets the corresponding value to zero, so by setting the original value to the undefined value we can
check to see if the value was specified on the command-line or not:

#!/usr/bin/perl
check.pl
use warnings;
use strict;

Command-line and Shell Interaction

539

use Getopt::Long;

my $option = undef; # make it undef explicitly, just to make it clear
GetOptions ("option!" => \$option);

if (defined $option) {
the option was seen on the command-line

} else {
the option was not specified

}

Since undef evaluates as zero in a conditional context, we can still carry out simple 'is the option set?'
tests in places where we don't care whether the option was specified or not, and still retain that
information for use in places where we do. If we are using a hash to define all our options then we don't
even need to go this far; we can just test the option name with exists to see if it has been set or not:

#!/usr/bin/perl
exists.pl
use warnings;
use strict;

use Getopt::Long;
my %opts;
GetOptions (\%opts, 'option!');
if (exists $opts{'option'}) { # the option was seen on the command-line
}

Incremental Options

Incremental options increase by one each time they are seen on the command-line, starting from the
original value. A classic case of such an option is a verbose flag, where the level of information a
program returns increases according to the level of verbosity we set, which is equal to the number of
verbose options we use.

In order to prevent Perl returning an undefined value error, the starting value of an incremental option
variable should be initialized to a defined value, most probably zero. Here is an example of
implementing a verbose option as an incremental option:

#!/usr/bin/perl
increment.pl
use warnings;
use strict;

use Getopt::Long;

my $verbose = 0; # default verbosity = off
GetOptions ("verbose+" => \$verbose);

Now, to set different levels of verbosity we just specify the option the required number of times:

> perl increment.pl -verbose # $verbose == 1
> perl increment.pl --verbose -verbose # $verbose == 2
> perl increment.pl --verbose --verbose -verbose # $verbose == 3

In fact we can save a lot of typing and just specify -v several times because GetOptions automatically
handles abbreviations for us, as we will see shortly.

Chapter 14

540

Integer, Floating-Point, and String Options

To define an option that takes a value, we modify the option name by suffixing it with either an equals
sign for a mandatory value or a colon if the value is optional. Following the equals sign or colon we then
specify s, i, or f to acquire a string (that is, anything other than a space), an integer or a floating-point
value:

GetOptions("mandatorystring=s" => \$option1);
GetOptions("optionalstring:s" => \$option2);
GetOptions("mandatoryinteger=i" => \$option3);
GetOptions("optionalinteger:i" => \$option4);
GetOptions("mandatoryfloat=f" => \$option5);
GetOptions("optionalfloat:f" => \$option6);

The Getopt::Long module allows options and values to be separated by either a space or an equals
sign. In most cases it does not matter which we use, with the single exception of negative numbers
(more about these in a moment):

--mandatorystring = text -nextoption ...
--mandatorystring text –nextoption ...

The distinction between a mandatory and optional value is, of course, that we can omit the value if it is
optional. If we specify an option (say, -mandatorystring) but leave out a mandatory value,
GetOptions emits a warning:

Option option requires an argument

The integer and floating-point variations are similar, but also check that the supplied value is an integer
or floating-point value. Note that we cannot supply a hexadecimal (or octal or binary) integer. This will
cause GetOptions to emit a warning, for example:

Value "0xff" invalid for option integer (number expected)

Options with optional values will parse the following argument only if it does not look like an option
itself. This can be important if we want to accept a negative integer as a value. For example, consider
the following option and value, as typed on a command-line:

> perl myscript -absolutezero -273

If we define absolutezero as a mandatory value (say, an integer), with a name of absolutezero=i
then -273 is interpreted as the value of absolutezero by GetOptions. However, if we make the
value optional with absolutezero:i then GetOptions will interpret the - of -273 as an option
prefix and assume that absolutezero has no value.

We can solve this problem in three ways. The first, as we have just seen, is to make the value mandatory
by specifying the name with an equals sign. The second is to use = as a separator between the option
name and the value. For example:

> perl myscript -absolutezero=-273

The last is to disallow - as an option prefix by redefining the prefix, or prefixes, that GetOptions will
recognize, as we discussed earlier.

Command-line and Shell Interaction

541

Abbreviations
GetOptions automatically performs abbreviation matching on its options. That is, if an option can be
abbreviated and still be uniquely identified, we can abbreviate it all the way down to a single character,
so long as it is still unique. For example, the option verbose, if defined on its own, can be specified as:
-verbose, -verbos, -verbo, -verb, -ver, -ve or –v.

If we want to prevent this behavior, we use the Configure subroutine to disable it:

Getopt::Long::Configure("no_auto_abbrev");

Abbreviation down to single characters is great, but it doesn't work if we have two options that start
with the same letter such as:

GetOptions(verbose => \$verbose, visible => \$visible);

To specify either option we now have to specify at least -ve or -vi respectively. The best way to avoid
this problem is simply to give our options more distinct names, but if we can't avoid it we can optionally
define an alias.

Aliases
Aliases take the form of a pipe-separated list of names (|). For example, to provide an internationally
friendly color option we could use:

GetOptions("color|colour" => \$color);

The first name in the list is the true name – this is the name used to define the $opt_N variable or the
key of an options hash if supplied as the first argument, if we use GetOptions in those ways. Aside
from this, however, the names are equivalent.

Similarly, we can use an alias to allow one of two options to be recognized by a single letter if neither
can be abbreviated:

GetOptions("verbose|v" => \$verbose, "visible" => \$visible);

Now we can say -v for verbose and -vi for visible. Note that if we want to combine an alias list with an
option value specifier, we just put the specifier on the end of the list – we don't need to apply it to every
alias. The following short program implements an incremental verbose option that can be incremented
and a negatable visible option:

#!/usr/bin/perl
visible.pl
use warnings;
use strict;

use Getopt::Long;

my ($verbose, $visible) = (0, -1);

GetOptions(
"verbose|v+" => \$verbose,
"visible!" => \$visible,

);

print "Verbose is $verbose\n";
print "Visible is $visible\n";

Chapter 14

542

Interestingly, since visible is negatable as novisible and it is the only such option, we can
abbreviate it to just -nov or even just –n as there are no other options that begin with n.

Handling Option Values
We have already seen how to read option values into scalar variables and mentioned at the time that
GetOptions can also handle multiple values as lists and hashes. It does this in a rather cunning way by
checking the type of reference that we supply for each option, and handling it as appropriate.

To recap, this is the preferred way to read in an option that takes a mandatory scalar value (in this case,
a string):

$filename;
GetOptions("file=s", \$filename);

The problem here is that we can only supply one filename. If we supply two by reusing the file
option, the second filename simply overwrites the first, since the one scalar variable isn't big enough for
both of them. Now, assume we want to allow more than one filename. Since that is equivalent to a list of
filenames, we simply supply GetOptions with an array reference instead of a scalar one, as shown in
the following short program:

#!/usr/bin/perl
filenames.pl
use strict;
use warnings;

use Getopt::Long;

my @filenames;

GetOptions("file=s" => \@filenames);

print scalar(@filenames)," files entered\n";

foreach (@filenames) {
print "\t$_\n";

}

Now we can reuse the file option as many times as we like, the result of which is a list of filenames
held in the array @filenames. We don't even have to be consistent about the prefix:

> perl filename.pl -f foo.txt --f bar.doc -file baz.pl --file clunk.txt

This doesn't allow us to pass several values to a single option however. If we wanted to do that we could
do so by using a comma as a separator and then using split ourselves after GetOptions has done its
work. If that seems inconvenient, wait a moment until we come to handling values via code references.

In a similar manner to handling a list of values by supplying an array reference, we can also handle a
list of key-value pairs by supplying a hash reference. When GetOptions sees a hash reference it
automatically looks for an equals sign in the value and tries to split it into a key and value:

Command-line and Shell Interaction

543

#!/usr/bin/perl
config.pl
use warnings;
use strict;

use Getopt::Long;

my %config;

GetOptions("config=s" => \%config);

print scalar(keys %config)," definitions\n";
foreach (sort keys %config) {

print "\t$_ => $config{$_}\n";
}

Now we can use the config option several times to build a hash of configuration variables:

> perl config.pl --config verbose = 3 --config visible = on

GetOptions also allows a code reference in place of a reference to a scalar, array, or hash. This lets us
do in-line processing of values as GetOptions processes them. For example, to allow comma separated
values to define a list we can define a subroutine to split the supplied value and plug it into the target
array:

#!/usr/bin/perl
splitval1.pl
use warnings;
use strict;

use Getopt::Long;

our @file; # same name as option, 'use vars @file' if Perl < 5.6

sub parsevalue {
allow symbolic references within this sub only
no strict 'refs';

my ($option, $value) = @_;
push @$option, split(',', $value);

}

GetOptions("file=s" => \&parsevalue);

print scalar(@file)," files entered\n";
foreach (@file) {

print "\t$_\n";
}

In this example we have defined a subroutine parsevalue and given its reference to GetOptions.
When it encounters a file option it passes the name of the option (file), and the value to
parsevalue as parameters. In turn, parsevalue splits the value using a comma as the separator and
pushes the result onto a variable with the same name as the option. To achieve that we have used a
symbolic reference for which we have to (within the subroutine only) disable strict references.

TE
AM
FL
Y

Team-Fly®

Chapter 14

544

The parsevalue subroutine is an example of a generic argument processor. It will work with any
option because it uses the name of the option to deduce the array to update. The only catch to this is
that we have to define the options as global variables using our rather than with my, since symbolic
references do not resolve to lexically scoped variables. To avoid symbolic references entirely we can put
most of the processing work in parsevalue but use a temporary anonymous subroutine to assign the
result to our variable of choice:

#!/usr/bin/perl
splitval2.pl
use warnings;
use strict;

use Getopt::Long;

my @file; # lexical, no longer needs to be the same name

sub parsevalue {
my ($option, $value) = @_;
return split(',', $value);

}

GetOptions("file=s" => sub {push @file, parsevalue(@_)});

Using either version of this program we can now enter filenames either one by one with separate file
options, or in one big comma separated list:

> perl splitval2.pl --file first --file second,third,fourth,fifth -f sixth,seventh,eighth

Documenting Options
In the event of an error occurring when parsing the command-line, it is traditional (and polite) to supply
the user with some help about what the problem is, and a brief description of the command-line syntax
– the 'usage'. For example, for a script that takes two optional flags and a list of filenames we might
write:

unless (GetOptions(\%opts, 'verbose', 'visible')) {
print "Usage $0 [-v|–verbose] [-vi|–visible] filename\n";

}

Neither Getopt::Std nor Getopt::Long support displaying usage information beyond warning of
specific problems. Instead we can use the Pod::Usage module to place the usage information into the
source file itself. See Chapter 18 for more information on pod and the various Pod modules, including
Pod::Usage.

Bundling Options
Bundling, as explained earlier, is the combination of several options into one, a part of the POSIX
standard that both Getopt::Std and Getopt::Long support. For example, we can specify -a, -b, -c,
and -f options with:

> perl myscript -abcf filename

Command-line and Shell Interaction

545

The module Getopt::Long supports two kinds of bundling, neither of which is enabled by default. To
enable the simplest we call the Configure subroutine:

#!/usr/bin/perl
bundle1.pl
use warnings;
use strict;

use Getopt::Long;

Getopt::Long::Configure("bundling");

my ($a, $b, $c, $file);
GetOptions(a => \$a, b => \$b, c => \$c, "file=s" => \$file);

This enables traditional single-letter bundling with the single minus prefix (in fact, any prefix except the
double minus). Any sequence of letters prefixed with a single minus is treated as a collection of single
letter options, not a complete option name or abbreviation:

-abc # equivalent to -a -b -c, not –abc

We can even combine values into the bundle so long as they look like values and not options (this
presumes that we defined a, b, and c as value parameters):

-a1b32c80 # equivalent to -a 1 -b 32 -c 80

However, a double minus will never be treated as a bundle, so --abc will always set the option abc.

The second kind of bundling causes GetOptions to try to match single minus prefixed options to long
names first, and only treat them as a bundle if no long option name matches. In this case -abc would
match the abc option just as --abc does. Here is a short example program that uses this form of
bundling:

#!/usr/bin/perl
bundle2.pl
use warnings;
use strict;

use Getopt::Long;

Getopt::Long::Configure("bundling_override");

my ($a, $b, $c, $abc) = (-1, -1, -1, -1);

GetOptions(a => \$a, b => \$b, c => \$c, "abc:s" => \$abc);

print "a: $a\n";
print "b: $b\n";
print "c: $c\n";
print "abc: $abc\n";

Chapter 14

546

If we try out this program with various different arguments we can see how and when the override
takes effect:

-a -b –c # sets 'a' 'b' and 'c'
-ab –c # sets 'a' 'b' and 'c'
-abc # matches 'abc', sets 'abc'
-acb # doesn't match 'abc' – sets 'a' 'b' and 'c'
--a # matches 'a' – sets 'a'
--ab # abbreviation – sets 'abc'
-A # doesn't match anything, warns of unknown 'A'
--A # case insensitive – sets 'a'
--abcd # doesn't match anything, warns of unknown 'abcd'
-abcd # sets 'a' 'b' and 'c', warns of unknown option 'd'

As this last example illustrates, the long name abc is only matched with a single minus prefix if we
specify it completely and exactly, so the letters a to d are interpreted as bundled options instead.
Bundles also disable abbreviations, since with bundling in effect abbreviations are no longer uniquely
identifiable. For example -ab sets a and b rather than being interpreted as an abbreviation for -abc.
However we can still abbreviate --abc as --ab if we use a double minus prefix, since this disables any
attempt at bundling.

Case Sensitivity
By default Getopt::Long automatically treats double minus prefixed options as case-insensitive.
This is not the case for any other prefix, most notably the single minus prefix, which is considered
case-sensitive. However, we can set the sensitivity of double minus prefixed options by configuring
ignore_case in our program before we call GetOptions. For example:

Getopt::Long::Configure("ignore_case"); # default behavior
Getopt::Long::Configure("no_ignore_case"); # '--Option' case sensitive

We can set the sensitivity of all options, including double minus prefixed ones, with
ignore_case_always:

Getopt::Long::Configure("ignore_case_always");
Getopt::Long::Configure("no_ignore_case_always");

Clearing either configuration value with no_ also clears the other, so no_ignore_case and
no_ignore_case_always are actually the same. However, no_ignore_case_always sounds better if
we then specify ignore_case too. For instance, the default configuration is equivalent to:

Getopt::Long::Configure("no_ignore_case_always", "ignore_case");

If we wanted to reverse the normal state of affairs and make long options case-sensitive and short
options case-insensitive we could do that with the following two configuration changes:

#!/usr/bin/perl
casesens.pl
use warnings;
use strict;

use Getopt::Long;

my %opts;

Getopt::Long::Configure("ignore_case_always", "no_ignore_case");
GetOptions(\%opts, 'verbose', 'visible', 'background');

Of course the point of long options is that their name is descriptive and unique, so the case should not
matter. Therefore it is doubtful that this configuration is actually all that desirable, even if it is possible.

Command-line and Shell Interaction

547

Handling Unrecognized Option and Value Arguments
When GetOptions encounters an option that it does not recognize, it (usually) issues a warning.
However, how it reacts to a value that it does not recognize is another matter. If a value is expected as
an optional or mandatory suffix to an option, it is easy to verify that it follows whatever format the
option was defined with. But a value that is encountered when no value was expected does not fall
under these rules.

In fact, GetOptions has three modes of operation for dealing with unexpected situations such as these.

'permute' Mode
In permute mode (the default unless POSIXLY_CORRECT has been defined in the environment)
unexpected value arguments are simply ignored and left in the @ARGV array. Processing continues past
the unknown argument while further options and values are parsed as normal. At the exit of the
subroutine, @ARGV contains all the arguments that were not used as either options or values. permute
mode is set explicitly by calling:

Getopt::Long::Configure('permute');

The permute mode gets its name because its effect is equivalent to permuting the command-line by
moving all the unrecognized value arguments to the end. That is, the following two command-lines are
equivalent, assuming that none of the options take a value:

> perl myscript -a one -b two -c three
> perl myscript -a -b -c one two three

Having GetOptions return unrecognized values (if not options) in @ARGV can be useful, for example in
combination with the <> operator as we discussed earlier in the chapter.

However, in permute mode we can handle these unrecognized arguments ourselves by defining a
special subroutine and passing a reference to it to GetOptions. This works in a very similar way to the
handling of normal options with code references that we looked at earlier. In deference to the fact that
this is in the spirit of the <> operator, the name for the option used to trigger this subroutine is <>. The
following script simply builds an array called @oob_values containing the unrecognized values;
without the subroutine the @ARGV array would contain these values instead:

#!/usr/bin/perl
unrecog.pl
use warnings;
use strict;

use Getopt::Long;

my ($verbose, $size, @oob_values);

sub handle_unknown {
push extra values onto out-of-band value list
push @oob_values, @_;

}

GetOptions(
"verbose+" => \$verbose, # verbose option
"size=i" => \$size, # size option
"<>" => \&handle_unknown, # unknown values

);

Chapter 14

548

print "Verbose ", $verbose?'on':'off',"\n";
print "Size is ", (defined $size)?$size:'undefined',"\n";
print "Extras: ", join(',', @oob_values),"\n" if @oob_values;

Interestingly, handle_unknown is called as each unknown value is encountered, which means that the
values of the other option variables may change from one call to the next. It is the current value of these
options that we make use of in the processing. For example, the value of $verbose is 0, 1, and then 2
each time handle_unknown is called in the following command-line:

> perl unrecog.pl this -v that -v other

Setting permute mode automatically disables require_order mode. Setting the environment variable
POSIXLY_CORRECT to a true value disables permute and enables require_order (see POSIX mode
shortly).

'require_Order' Mode

In require_order mode, the first encounter with an unknown value argument causes GetOptions to
cease processing the rest of @ARGV and return immediately – as if a naked double minus, --, had been
encountered. This mode is set explicitly by calling:

Getopt::Long::Configure("require_order");

Unlike permute mode, it is not possible to define an unknown argument handler in this mode. Setting
require_order mode automatically disables permute mode, and is the default if the environment
variable POSIXLY_CORRECT is defined.

'pass_through' Mode

In pass_through mode, unrecognized option arguments are passed though untouched in the same way
that unrecognized value arguments are passed. This allows unrecognized options and their values to be
passed on as arguments to other programs executed from inside Perl. The pass_through mode is not
enabled by default, but can be set explicitly by calling:

Getopt::Long::Configure("pass_through");

The pass_through mode can be combined with either of the require_order and permute modes.
In the case of require_order mode, enabling pass_through mode will cause GetOptions to stop
processing immediately, but will not cause GetOptions to emit a warning, and will leave the
unrecognized option in @ARGV. In the case of permute mode, all unrecognized options and values are
collected and left at the end of @ARGV after GetOptions returns. If a <> subroutine has been defined,
both unrecognized option and value arguments are passed to it.

Irrespective of which mode is in use, the bare double minus -- always terminates the processing of
@ARGV immediately. The -- itself is removed from @ARGV, but the following arguments are left as-is.
This applies even if we are using permute mode and have defined a <> subroutine to handle unknown
value arguments.

Command-line and Shell Interaction

549

'POSIX' Mode
The Getopt::Long module was written with the POSIX standard for command-line arguments in
mind, which is the origin of the double minus prefix for long option names, among other things. This
module is more flexible than the POSIX standard strictly allows, however, which can be very
convenient or a nuisance, depending on our aims. In order to satisfy both camps, the module can be put
into a POSIX-compliant mode, which disables all the non-standard features by defining the
environment variable POSIXLY_CORRECT:

setenv POSIXLY_CORRECT 1 # UNIX (csh)
export POSIXLY_CORRECT = 1 # UNIX (newer ksh/bash)
POSIXLY_CORRECT = 1; export POSIXLY_CORRECT # UNIX (older ksh)
set POSIXLY_CORRECT = 1 # Windows

We can also set POSIX mode from within Perl by adding POSIXLY_CORRECT to the %ENV hash. In
order for this to work properly we have to define the variable in a BEGIN block before the use
statement, so that the variable is defined before the module is used:

BEGIN {
$ENV{'POSIXLY_CORRECT'} = 1;

}

use Getopt::Long;

Enabling POSIX mode has the following effects:

❑ The archaic + prefix is suppressed. Only - and -- are recognized by default (the configuration
option prefix_pattern is set to (--|-)).

❑ Abbreviation matching is disabled (the configuration option auto_abbrev is unset).

❑ Non-option arguments, that is, arguments that do not start with an option prefix and are not
values of a preceding option, may not be freely mixed with options and their values.
Processing terminates on encountering the first non-option argument. (The configuration
option require_order is set.)

As the above shows, the primary effect of POSIXLY_CORRECT is to alter the default values of several of
the module's configuration options. We could of course configure them ourselves directly but defining
the environment variable is more convenient and will also keep up-to-date should the module change in
the future. We can always alter the configuration afterwards, say to re-enable abbreviations, if we
choose.

Summary of Configuration Options
We have already mentioned the Configure subroutine in Getopt::Long and described most of its
options. Most options are Boolean and can be set by specifying their name to
Getopt::Long::Configure, or cleared by prefixing their name with no_. The prefix and
prefix_pattern options both take values that are specified with an equals sign. The Configure
subroutine will accept any number of options at one time. For example, to enable bundling and to
change the allowed prefixes to a single minus or a forward slash we can use:

Getopt::Long::Configure("bundling", "prefix_pattern = (-|\/)");

Chapter 14

550

Note that it is also perfectly acceptable to call Configure more than once if need be.

The following table shows a short summary of each option. Options that have a default value and a
POSIX default value alter their default behavior if the environment variable POSIXLY_CORRECT is set:

Option Name Default Values Action

auto_abbrev set

POSIX: unset

Allows long option names to be abbreviated so
long as the abbreviation is unique. Not compatible
with single minus options when bundling is in
effect.

bundling unset Interprets single minus option names as bundles of
single character options. Clearing bundling also
clears bundling_override.

bundling_override unset Interprets single minus options as long names if
possible, or bundles otherwise. Setting or clearing
this option also sets or clears bundling.

default n/a Resets all options to their default value, as
modified by POSIXLY_CORRECT.

getopt_compat set

POSIX: unset

Allows the archaic + as well as - and -- to start
options. A shortcut for prefix_pattern.

ignore_case set Ignores case of long (double minus prefixed)
options. Clearing this also clears
ignore_case_always.

ignore_case_always unset Ignores case of all options, however prefixed.
Clearing this also clears ignore_case, however
ignore_case may subsequently be set.

pass_through unset Allows unknown options to pass through as well as
values, rather than raising a warning. Used with
permute or require_order.

permute set

POSIX: unset

Allows unknown values to pass through. Exclusive
with require_order.

prefix n/a Sets the prefix string for options, for example -, or
/. Only one prefix can be specified. To set
alternative prefixes use prefix_pattern.

prefix_pattern (-|--|\+)

POSIX: (-|--)

Sets the list of prefix strings for options. This is a
regular expression pattern therefore special
characters like + must be escaped and the whole
list enclosed in parentheses.

require_order unset

POSIX: set

Terminates processing on first unrecognized value
(or option if pass_through set). Exclusive with
permute.

Command-line and Shell Interaction

551

Shells, Shell Commands, and Perl
Shells are a particular subclass of interactive program that are worth a little special attention. To most
people, a shell is what they type commands into. More accurately, a shell is a command interpreter that
provides an interface between the user, the operating system, and its services. On a UNIX machine
there are many shells to choose from, including the Bourne shell sh, C Shell csh, Korn Shell ksh and
the Bourne Again shell bash. Windows has several shells available, the standard one being
COMMAND.COM. Windows NT has its own shell, cmd.exe.

Perl was partly created as a better solution to the various different shells and scripts that existed on
UNIX systems beforehand. Its major advantage is that, unlike all the shells mentioned above, scripts
written in Perl do not depend on any given UNIX or Windows shell being available (though of course
Perl itself needs to be available), and have at least a decent chance of working across platforms. Given
that, it might be a nice touch if we could actually implement a shell based on Perl itself. Perl does not
have a shell mode, as such, but it is very easy to create one, either by running Perl with the right
arguments and supplying some code with the -e argument, or more flexibly with a short Perl script.

Perl comes with a couple of modules that close the gap between Perl and the shell it is running in. The
module Shell.pm allows unrecognized functions in Perl code to be evaluated by the underlying shell,
effectively integrating the shell's own abilities into Perl. This is interesting, although potentially
dangerous too, and manifestly non-portable. Conversely, ExtUtils::Command goes the other way,
providing emulations of several important UNIX commands that will function on Windows platforms,
allowing us to use commands like rm, mv, cp, and chmod on non-UNIX platforms.

If we simply want a shell to try out Perl commands then we can use the Perl debugger as a passable
shell by typing:

> perl -d 1

This debugs the program 1, but in the process it provides a prompt at which we can define subroutines
and evaluate expressions. There is no official Perl shell, but there are several available from CPAN and
elsewhere, two of the most popular being perlsh, available from http://www.bgw.org/projects/perlsh/
and psh, available from http://www.focusresearch.com/gregor/psh/ and also from CPAN in the Psh
package.

Creating a Simple Perl Shell
Creating a Perl shell is actually remarkably easy. If we don't require any particular degree of
sophistication we can generally create a shell script that runs Perl as a shell in one line. Here is an
example that uses the -n switch to put an implicit while (<>) {...} around the code we specify
with -e:

> perl -nwe 'eval $_; print "perl>" '

Or for Windows, which has different quoting rules:

> perl -nwe "eval $_; print 'perl>' "

Chapter 14

552

To explain this in more detail, the e switch specifies a line of code for Perl to execute, in this case an
eval followed by a prompt. The w enables warnings, which is always a good idea, and the n puts the
code specified by e into a permanent loop. When run, this takes Perl code typed in by the user, and
evaluates it – a very simple shell. The only catch to this is that it doesn't display the prompt the first
time around. Here's a slightly improved shell that fixes that problem, and also adds strict syntax
checking for good measure:

> perl -Mstrict -we "while(1) {print "perl>"; eval <> }"

This is very similar to the previous example, except that we have used an explicit loop, moving the
implicit <> inside the loop as an explicit eval after the prompt. Alternatively, we can use a BEGIN
block, as this example shows:

> perl -nwe 'BEGIN {print "perl> "} eval $_; print "perl> " ';

Or, for Windows:

> perl -nwe "BEGIN {print 'perl>'} eval \$_; print 'perl>' ";

The implementations for UNIX and Windows are slightly different as UNIX systems exchange the
single and double quotes and remove the backslash from $_, which is protected only because the outer
quotes are doubled.

Writing a More Useful Shell
Executing Perl directly with a short snippet of code to evaluate can give us a usable but primitive shell.
We can type this out directly as a command if we haven't previously stored it in a shell script. If we
want to spend any time using a Perl shell though, we would be better off writing a short but functional
script instead.

Here is a simple Perl script that implements a shell using the ReadLine module (for more on this
module see the next chapter). This enables us to take advantage the readline library on our system to
provide features such as a history list or in-line editing to make the user's life easier. If the library isn't
present, the script will still work, it just won't be as powerful.

#!/usr/bin/perl
shell1.pl
use warnings;
use strict;

create readline object
use Term::ReadLine;
my $term = new Term::ReadLine "Perl Shell";

switch off any highlighting
$term->ornaments(0);

enable autoflush (output appears instantly)
$|=1;

evaluate entered expressions until 'quit'
do {

my $input = $term->readline("perl> ");
print("\n"),last if $input eq "quit";
eval $input;

} while (1);

Command-line and Shell Interaction

553

As this script shows, it is possible to create a reasonably able Perl shell with only a few lines of Perl
code. The biggest drawback with this shell application is that it evaluates each line as we enter it, so it's
no good for multi-line statements like foreach loops (or indeed the do...while loop above) unless
we put them all on one line.

We can fix this in two ways, first by teaching the shell to understand the backslash \ character for line
continuation, so it is possible for us to type something like this and get the expected output:

> perl shell1.pl
perl> print "Hello\
perl> World\n"

Second, we can look for curly braces on the start and end of lines and keep a count of the number of
open braces that haven't been close yet, so we can legitimately type:

> perl shell1.pl
perl> for (1..10) {
perl> print "$_";
perl> }

Here is an improved version of our first shell that handles both these cases, and makes a few other
improvements on the way:

#!/usr/bin/perl
shell2.pl
use warnings;
use strict;

create readline object
use Term::ReadLine;

my $term = new Term::ReadLine "Perl Shell";

switch off any highlighting
$term->ornaments(0);

Enable autoflush (output appears instantly)
$|=1;

Declare some variables
my $this; # current line
my $input; # accumulated input
my $bracing = 0; # number of unclosed open braces

Evaluate entered expressions until 'quit'
while (($this = $term->readline("perl> ")) ne "quit") {

if ($this =~ s/\\$//) {
if the line ends with '\', collect more lines
$input = $this;
keep track of the braces even so
$bracing += ($this =~ /{\s*$/);
$bracing -= ($this =~ /^\s*}/);
get the next line and redo
$this = $term->readline(" > ");
redo;

} else {
doesn't end with '\'
$input.= $this;

TE
AM
FL
Y

Team-Fly®

Chapter 14

554

keep track of the braces
$bracing += ($this =~ /{\s*$/);
$bracing -= ($this =~ /^\s*}/);
if braces outstanding, collect more lines
if ($bracing) {

$this = $term->readline("{$bracing} > ");
redo;

}
}

if ($input =~ s/^!\s*//) {
input beginning with '!' is a system command
system $input;

} elsif ($input =~ s/^\?\s*//) {
input beginning with `?` is a 'perldoc' query
if ($input =~ /^([A-Z]|perl)/) {

straight perldoc if it's capitalized or starts 'perl'
system "perldoc",$input;

} else {
otherwise assume it's a function
system "perldoc","-f",$input;

}
} else {

Evaluate it as Perl code
eval $input;
warn($@),undef $@ if $@;

}

$input="";
}

This script contains a few points of interest. First, it uses the redo command to restart the loop without
executing the condition in the while loop. This is how the input line is grown without being overridden
at the start of the loop. The backslash continuation (the first clause in the upper if statement) is
basically similar to the example we saw back when we discussed loops in Chapter 6. The other clause
handles lines that don't end with a backslash, and gets another line if there are still braces outstanding.
For the sake of simplicity, we don't check for multiple opening or closing braces on the same line, since
it is actually quite tricky to handle all possible cases.

Whenever the code cannot immediately be executed, be it because a backslash was used or braces are
still outstanding, the shell needs to read another line. It does this by calling readline again, this time
with a modified prompt to indicate that the next line is extending previously entered input. In the case
of a backslash we change the prompt from perl> to just >. In the case of braces we indicate the level of
nesting by putting the value of $bracing into the prompt. In both cases we read another line and
concatenate it to the input previously read. We then restart the loop with redo, skipping the readline
in the while condition.

If there are no outstanding braces or backlashes we go to the evaluation part of the loop. Here we have
embellished things slightly, just to illustrate how features can be added. The second if statement checks
the input for a leading ! or ?. Since the conditions are substitution statements that substitute the ! or ?
for nothing they are stripped in the process of matching. In the case of !, the shell passes the rest of the
input to the real shell to execute – this allows us to 'break out' of our Perl shell if we want to execute a
shell command. In the case of ? the shell passes the rest of the input to perldoc and provides us with a
basic help system. To keep the command flexible but simple we check the start of the input following
the ? and make a guess as to whether it is a manual page (beginning with perl), a module (which almost
always begin with a capital letter, with the exception of pragma modules like strict and vars), or a
function name (none of the above). This isn't perfect, partly for the reasons just given, but it's not bad
for a start.

Command-line and Shell Interaction

555

With this shell we can enter loops, if statements, even define subroutines line by line and still have the
shell understand them:

perl> sub hello {
{1} > print "Hello World\n"
{1} > }
perl>
perl> hello()
Hello World
perl>

We can also read in modules with use and then make use of them, for example:

perl> use Term::ReadKey
perl> ReadMode 4
perl> use CGI qw(:standard)
perl> use vars '$cgi';
perl> $cgi = new CGI
perl> ...

The one thing we have to watch out for is that my and our variables will not last past the current
statement, because they are lexically scoped and exist only inside the scope of the eval. To create
variables that last from one command to the next we need to declare them with use vars. This is
probably a candidate for a special command if we decided to extend the shell.

Integrating the Shell into Perl
The standard Perl library comes with a module called Shell.pm, which provides the ability for
unrecognized function names to be passed to the underlying shell for execution rather than simply
raising an error. Whether or not this is a good idea or not is arguable (with most of the argument being
on the side of 'not'), but Perl never tries to takes sides, so if we want to do it, we can.

Here is an example script for a shell that integrates the UNIX ls, mv, and rm commands into Perl. It
scans the directory supplied as its argument (or the current directory otherwise) and lowercases the
filenames of all files and directories it finds, deleting any files that end with a tilde. To find the files it
uses ls (the argument -1 makes sure that ls return a simple list of files, one per line – usually it will do
this anyway when talking to a program but it never hurts to be explicit); to rename them it uses mv and
to delete them it uses rm:

#!/usr/bin/perl
xshell1.pl
use warnings;
use strict;

use Shell;

my $dir = (@ARGV)?$ARGV[0]:".";
my @files = split "\n",ls(-1);

foreach (@files) {
print "File $_ ";

Chapter 14

556

if (/~$/) {
delete files ending in ~
rm($_);
print "deleted";

} else {
rename to lowercase
my $newname = lc $_;
if ($newname ne $_) {

mv($_,lc $_);
print "renamed $newname";

} else {
print "ok";

}
}
print "\n";

}

When pointed at a directory containing the files File1, FILE2, File3~, fIlE4, and FIle5~, this
script generates the following output:

> perl xshell1.pl
File FIle5~ deleted
File File1 mv: 'File1' and 'file1' are the same file
renamed file1
File File3~ deleted
File fIlE4 mv: 'fIlE4' and 'file4' are the same file
renamed file4
File file2 ok
File test.pl ok

The Shell module works regardless of what the underlying shell actually is, though of course the
underlying shell may support entirely different commands. Consequently this is a not very portable
solution.

Unrestrained access to the underlying shell is also potentially dangerous – we could end up executing all
kinds of dangerous commands without meaning to as a result of even a minor bug in our code. A better
solution is to restrict the shell commands to those we actually want to allow. We can do that by passing
the Shell module a list of the commands we want to access:

use Shell qw(ls mv rm);

Now we can make use of the ls, mv, and rm commands, but nothing else will be interpreted as a shell
command. As a bonus we can omit the parentheses and use the commands as functions rather than
subroutines, because importing their names predeclares them:

#!/usr/bin/perl
xshell2.pl
use warnings;
use strict;

use Shell qw(ls mv rm);

my $dir = (@ARGV)?$ARGV[0]:".";
my @files = split "\n",ls -1;

Command-line and Shell Interaction

557

foreach (@files) {
print "File $_ ";

if (/~$/) {
delete files ending in ~
rm $_;
print "deleted";

} else {
rename to lowercase
my $newname = lc $_;
if ($newname ne $_) {

mv $_,lc($_);
print "renamed $newname";

} else {
print "ok";

}
}
print "\n";

}

If we set the variable $Shell::capture_stderr, we can also capture the standard error of the shell
command and retrieve it along with the normal output of the command (if any). This isn't entirely
portable however, though it should work in most shells. For example, to list a directory that may not
exist:

use Shell qw(ls);
$Shell::capture_stderr = 1;

ls $ARGV[0];

The catch with this is that should the command generate error output as well as normal output, both
will be mixed together. Consequently this approach is better left to situations where the command
either generates normal output or an error message, and where the two can be easily distinguished. Of
course many people would (correctly) argue that it is better still is to write the thing to use pure Perl to
start with.

For the curious who may wonder how this all actually works, the Shell module takes the unusual step
of exporting an AUTOLOAD function into our own program, so that unrecognized subroutine calls are
passed to it. This is not very usual behavior for a module, but it does demonstrate the flexibility of Perl
(as well as how it can get us into trouble if we don't look where we're going).

Emulating UNIX Commands on Windows
Another module related to shell commands that comes as standard with Perl is the
ExtUtils::Command module. This provides something of the opposite role to Shell, implementing
UNIX commands in Perl such that they can be executed on Windows systems. Here is a list of the
implemented commands (the ellipsis(...) indicates that more than one parameter can be passed):

Name Parameters Action

cat file... Type out the contents of the file(s)

mv file...
newfile|directory

Rename file(s) to newfile or directory

Table continued on following page

Chapter 14

558

Name Parameters Action

cp file... newfile|directory Copy file(s) to newfile or directory

touch file... Update modification time of the file(s)

rm_f file... Delete the file(s)

rm_rf (file|directory)... Recursively delete files/directories

mkpath directorypath... Create each chain of directories passed

eqtime srcfile dstfile Give dstfile the same times as srcfile

chmod mode file... Change the permissions on the file(s)

test_f file Test that file is a file (not a link/directory)

Here's one example of how these commands can be used:

> perl -MExtUtils::Command -e mv filename newfilename

Just because the commands implemented by ExtUtils::Command are designed to work directly from
the command-line does not mean that we cannot use them as portable file manipulation tools within our
own programs too. However, ExtUtils::Command was not written with programmatic use in mind, so
all the subroutines in it use @ARGV as the source for their arguments, requiring us to wrap them with
local subroutines that convert arguments passed in @_ to a local copy of the @ARGV array.

As an example, here is the script we introduced earlier using the Shell module, rewritten to be
portable by using ExtUtils::Command instead.

#!/usr/bin/perl
xshell3.pl
use warnings;
use strict;

use ExtUtils::Command (); # empty list - no import

programmatic wrappers for ExtUtils::Command subroutines
sub mv @ARGV = @_;ExtUtils::Command::mv();}
sub cp {@ARGV = @_;ExtUtils::Command::cp();}
sub rm_f {@ARGV = @_;ExtUtils::Command::rm_f();}

my $dir = (@ARGV)?$ARGV[0]:".";
my @files = <$dir/*>;

foreach (@files) {
print "File $_ ";

if (/~$/) {
delete files ending in ~
rm_f $_;
print "deleted";

Command-line and Shell Interaction

559

} else {
rename to lowercase
my $newname = lc $_;
if ($newname ne $_) {

mv $_,lc($_);
print "renamed $newname";

} else {
print "ok";

}
}

print "\n";
}

A key reason for the existence of this module is to allow Perl modules to compile and build themselves
without having to cater for different platforms in their Makefiles. The ExtUtils::Command module
makes heavy use of modules in the File:: hierarchy to attempt cross-platform portability.

Summary
In this chapter we have looked at two ways of running Perl interactively: processing command-line
arguments and shell programming.

We first looked at the special array @ARGV, how to use it to pass arguments to Perl, how to set variables
from it, and how it handles files. We then examined two modules that we can use for processing
command-line options. We looked first at the simpler Getopt::Std and its two functions getopt and
getopts, before examining in more detail the Getopt::Long module. We saw, among other things,
how to define option values, use abbreviations and aliases, document and bundle options, and handle
unrecognized options and values.

In the last part of the chapter we examined many aspects of using shells with Perl. We saw how to write
Perl shells and integrate the Shell into Perl using the Shell.pm module. Finally, we covered the
ExtUtils::Command module, which allows us to implement UNIX commands such that they can be
executed on Windows.

Chapter 14

560

Terminal Input and Output

We have already seen in Chapter 14 how to use the command-line to interact with Perl. So, amongst
other things in this chapter, we will look at how we can communicate with terminals. We then look at a
few of the Term:: family of modules which we can use to manipulate terminal input, and the second
part of the chapter concentrates on the other aspect of interacting with terminals: terminal output.

Talking to Terminals
Once upon a time, a terminal was a beige colored box with a monochrome screen and a keyboard. In
those days computer rooms were populated with mainframes capable of supporting many simultaneous
user sessions, and so, in order to allow many simultaneous users, many terminals could be wired up to
the computer, each with its own screen and keyboard. In order to save the computer from having to
worry about every little detail of user input, such as scrolling the screen or dealing with the effect of a
delete, terminals became progressively smarter, handling most of the minutiae of user input themselves
and only sending the user's input to the computer when they hit return. This meant the mainframe itself
only had to take note of a user when they actually finished typing a command, rather than for each and
every key press.

Terminals quickly became smarter, gaining abilities like being able to reposition the cursor, clear
selected parts of the screen, scroll down as well as up, and support colors – modern graphics cards do
much the same thing, only in terms of triangles and texture mapping. The object of all this was to
relieve the computer of the work of dealing with the screen – instead of moving lines on the display, the
computer could just tell the terminal to 'insert a line here' and the terminal would deal with the details
of moving text to accommodate the request. Terminal commands took the form of escape sequences
(terse sequences of characters precede by an escape (ASCII 27). The first widespread standards were de
facto, based around terminals like the VT100, which was subsequently replaced by the ANSI standard
that most terminals (real or emulated) comply with to a greater or lesser extent.

Chapter 15

562

In these more enlightened times of windowed desktops and graphical user interfaces, this might all seem
entirely historical, but not so. Terminals are inherently bound up with the concept of interactive
character input and output. Anywhere that we use a character based interface, from a UNIX X-term to a
DOS shell, to the initial dialogue on a serial connection to establish a PPP network connection, we are
actually working through a virtual terminal that emulates the features of a real hardware terminal. This
is why we can enter text and delete it at a command-line prompt without having to actually program
code to handle the delete key – the terminal underlying our shell or application deals with it
automatically.

Terminal IO programming is a particular subset of general IO programming that is specifically directed
towards the needs and issues of communicating through a terminal – that is, reading input from a
keyboard and writing output to a screen, whatever that keyboard and screen actually turn out to be. The
fact that we are almost certainly not using a real terminal does not alter anything – the terminal is just a
smart layer of software inserted by the operating system between our program and the user at the
keyboard.

Working with terminals can be divided into two main tasks – reading the input, and writing the output.
However, before we can look at these two general areas we first need to find out if our program is
connected to a terminal in the first place.

A word of warning: one problem with programming terminals is that we can easily put them into a
state where they cannot be used afterwards, since terminal settings survive the death of the application
that changed them. If the terminal we run a program in is also the terminal that we are using to develop
it, this can be more than inconvenient. On UNIX systems the command stty sane is invaluable
for getting out of this kind of hole – even if we cannot see what we are typing this should reset the
terminal back to something usable. Some platforms may also supply a reset command that does much
the same thing.

Determining if a Script is Interactive
Perl programs (and in fact programs in general) fall into two broad categories – those that interact with
an actual user, possibly through a terminal, and those that merely carry on relations with other
programs and don't require a terminal. Since we often use programs in both capacities (directly, or via
another program) it is useful to be able to tell, from within the program, how it is being used.

Fortunately, Perl has a function designed precisely for this purpose, -t. This is one of the -X unary
operators that test filenames and filehandles for various different kinds of properties such as being a
directory, executable, or writable by us, and so on. It tests file handles to see if they are connected to a
terminal or not. So by testing STDIN with -t we can check whether we are getting input from a
terminal, and therefore (presumably) a user, or whether our input is coming from a non-terminal device,
which most likely means from another program:

$interactive = -t STDIN;

Of course, just because standard input is coming from a terminal does not necessarily mean that
standard output is going to one. So, if we want to prompt the user when our program is being used
interactively we ought to check both STDIN and STDOUT. Here is a short code snippet that prompts the
user, if in an interactive session, and reads lines (presumably commands of some kind) from standard
input:

while (1) {
print "Cmd> " if -t STDIN && -t STDOUT;
process_command (<>);

}

Terminal Input and Output

563

Reading from the Keyboard
Simple line-based input can be achieved with the <FILEHANDLE> operator, which in the case of
standard input is <STDIN> or often simply <> (but only if @ARGV is empty). However, this limits us to
complete lines and forces us to wait for the user to type something, since the default behavior of
terminals is to wait until return has been pressed before bothering us with whatever was typed. A better
solution in this case is to use the Term::ReadKey module, part of the standard Perl library, which
handles non-blocking reads and timeouts, allows character to be typed without echoing them back to
the screen, and has several other useful features besides.

For simple low-level terminal IO, the third-party Term::ReadKey (available from CPAN) is very
useful, and allows us to do quite a few things without having to get our hands dirty with real low-level
terminal programming. However, the standard Perl library also provides support for reading complete
lines with Term::ReadLine, which attempts to use a built-in readline library if one is present, and
which supports the idea of command history. We also have Term::Complete at our disposal, a module
that implements word completion. We'll be taking a look at both of these in due course.

Before we embark on a discussion of Term::ReadKey, it is worth mentioning some of the alternatives.
On a UNIX system the ever-versatile stty command provides another way to access and program
terminals, and if we only wish to deal with UNIX platforms we can often simply call stty. For
example, to disable echoing, we can use:

system "stty –echo";

and to re-enable it:

system "stty echo";

The advantage of stty is that it deals with local platform issues for us, since it is provided by the
operating system. The disadvantage is that it doesn't stand a chance of working on a non-UNIX
platform. Another utility that is potentially useful if we happen to know we are running inside an X
terminal is xwininfo.

However, for portable applications, using a Perl module with portability in mind is a better idea. Since
Term::ReadKey works with most, but not all, platforms, we can compromise and use stty if it is
available or a Term::ReadKey subroutine if it isn't available.

Simple Input
The simplest way to read input from the keyboard is the <> readline operator, which reads a single line
of text from the current input filehandle. That is usually STDIN, so the following, assuming there is
nothing in @ARGV, are equivalent:

print <>;
print <STDIN>;

Note that if we do have something in @ARGV, the first attempts to open the elements of @ARGV as files,
whereas the second reads from standard input, so the distinction can be important. Also note that if
STDIN isn't a terminal then either version may block waiting for input if insufficient input has arrived as
yet. We cover this in more detail shortly.

TE
AM
FL
Y

Team-Fly®

Chapter 15

564

Controlling Terminal Input with 'Term::ReadKey'
For situations where simple input techniques like <> will not do on their own, we can use the
Term::ReadKey module, available from CPAN. This provides a much greater degree of control over
the characteristics of the terminal, and attempts to provide a degree of cross-platform support, so a
script written under UNIX still has a chance of working under Windows. As well as providing
functionality to read terminal input into our programs, it also provides limited control over the
properties of the terminal itself, such as whether or not it should echo typed characters to the screen and
what key performs a delete operation.

The Term::ReadKey module tries to implement as many of its features as possible for the platform it
finds itself running on. However, not all terminals are created equal, so a DOS shell may not support
the same features as a UNIX shell. Since UNIX has always had a fairly detailed idea of what a terminal
ought to be, on account of growing up with them (so to speak), most of these features tend to work on
UNIX-like systems, but may not work as well, or at all, on other platforms.

Two particular subroutines in the Term::ReadKey package are available for reading input into our
program. The ReadKey subroutine reads and returns a single character from the input available, waiting
if necessary for it to be typed. In contrast, ReadLine reads entire lines and returns the input as a string.
However, the biggest determinant of the behavior of both subroutines is the read mode of the terminal,
which Term::ReadKey also allows us to control. Before we can talk about actual input, therefore, we
need to look at read modes and find out what they do.

Read Modes
Central to the operation of Term::ReadKey is the concept of read modes. The read mode is an aspect
of the terminal itself as opposed to the way that we use it, and controls how the terminal receives and
processes input characters. There are six modes in total, numbered 0 to 5, with the following meanings:

Mode Name Meaning

0 restore Restore the original Read Mode setting.

1 normal Set normal cooked mode. Typed characters are echoed to the screen
and control characters are interpreted.

2 noecho Set no-echo cooked mode. Typed characters are not echoed to the
screen. Control characters are interpreted.

3 cbreak Character-break mode. Typed characters are returned immediately to
the program, and are not echoed to the screen.

4 raw Set raw mode. Control characters are read like normal characters, not
interpreted.

5 ultra-
raw

As with raw, but LF to CR/LF translation is disabled.

Some of these modes are more obvious than others. The normal mode is just what we expect from a
normal command-line – characters are echoed as we type them and an action is initiated only when we
press return. In addition, control characters are intercepted and handled by the terminal, rather than
simply being added to the input.

Terminal Input and Output

565

The noecho mode is the same as normal mode, with the exception that characters are not echoed. This
makes it suitable for things like password input. By contrast, cbreak mode causes the terminal to
immediately return characters as they are entered, and without echoing them to the screen. This makes
it suitable for single key-press applications like menu selections.

The raw and ultra-raw modes both disable the handling of control characters by the terminal.
Instead, they are sent back like any other typed character for our program to handle. The ultra-raw
mode is identical to raw except that it disables the automatic translation of linefeeds into carriage-
return/linefeed pairs on UNIX systems. On Windows systems it has no effect. If the filehandle supplied
to ReadKey or ReadLine happens to be a serial connection, parity is also disabled.

The default setting is 0, which is to say, whatever mode the terminal was in when the program was
started. To change the read mode we use the ReadMode function from Term::ReadKey. This is
automatically imported when we use the module, and takes a single parameter of either a number, or
the corresponding named synonyms:

use Term::ReadKey;

ReadMode 1; # set normal cooked mode
ReadMode 2; # set no-echo mode
ReadMode 'noecho'; # same as above, but more legible
ReadMode 'restore'; # restore the mode to whatever it started as

The read mode when we start can be any of these values, though it is most likely to be 1. However, if
we have been called from another program then that program may have changed the read mode before
calling us. For example, we might be the program another_program being called from this Perl script:

use Term::ReadKey;

ReadMode 'noecho'; # suppress output
system("another_program");
ReadMode 'restore'; # restore terminal to original settings

If we do change the terminal read mode then it is a good idea to restore it again before we finish, since
it is not restored automatically just because we exit. Recall that it is a property of the terminal, not our
program or the Term::ReadKey module. If we do not restore the mode we can cause problems for the
program that called us, or even the user if we are run directly. For example, if we were to run the above
script from a shell and omitted the ReadMode 'restore'; then we would return to the user with
echoing disabled, so that any further commands typed would be invisible to them. Obviously this is not
a good thing, so to be sure that no unexpected incidents occur we should restore the read mode as a
matter of course.

Restoring settings is one good use for an END block. With the following additional definition, we can
ensure that our program will restore the terminal before it exits wherever in the program it does so, so
long as it exits normally:

END {
ReadMode 'restore';

}

To handle abnormal exits we can do the same thing in __DIE__ and signal handlers.

Chapter 15

566

The restore mode has one additional property; when used, it causes the next mode to be set to
become the default. In the above case our program exits before this can become relevant, but the
following sequence of calls shows it in action:

ReadMode 0; # 'restore' - restores to the default mode
ReadMode 1; # sets mode 1, changes default mode to 1 as it came after a

restore
ReadMode 4; # sets mode 4 ('raw' mode)
ReadMode 0; # restores the mode to mode 1

It is important to realize that since the read mode is a property of the terminal, it affects all kinds of
input, including the <> readline operator, not just the ReadKey and ReadLine subroutines covered
below.

Reading a Single Character
Frequently we want to read not a line but a single character from the keyboard, to make a menu
selection for example. To do this we can use the ReadKey subroutine in Term::ReadKey:

$character = ReadKey 0;

The subroutine ReadKey takes two parameters; a mode and an optional file handle. If no filehandle is
specified ReadKey defaults to standard input – the above is equivalent to:

$character = ReadKey 0, STDIN;

The mode of ReadKey can be one of 0, as shown here, -1, or a positive value:

� Mode 0 is the blocking mode – ReadKey will wait indefinitely until we enter at least a return,
or interrupt the program. Any platform that Perl can run on supports this mode.

� A mode of -1 causes ReadKey to enter non-blocking mode. In this case ReadKey does not
wait for input but grabs whatever is in the input buffer and returns the first character
immediately. If nothing is available, presumably because we have not typed anything,
ReadKey returns undef.

� A mode with a positive value represents a wait of the given number of seconds, which can be
fractional. For example, to wait for half a second we could use:
$character = Readkey 0.5;

Note, using small delay values in a loop is generally poor programming practice, since it keeps the
processor busy unnecessarily.

On exit from ReadKey, $character will contain the first character that we typed, or more correctly,
the first character that was available in the keyboard buffer, which may already have characters waiting
(and which can be filled by things other than the keyboard, to boot).

Contrary to what we might expect however, ReadKey does not necessarily return immediately after a
character is typed, but may not appear to do anything until we also enter return. This is not a property of
our program but of the terminal itself. In order to persuade the terminal to react instantly we actually
need to use the cbreak read mode, which is an entirely different thing. The following short script
demonstrates how cbreak mode can be combined with ReadKey to react instantly to a typed character:

Terminal Input and Output

567

#!/usr/bin/perl
hitakey.pl
use warnings;
use strict;

use Term::ReadKey;

ReadMode 'cbreak';

print "Hit a key: ";
my $selection = ReadKey 0;

print "You typed $selection\n";
ReadMode 'restore';

Since the cbreak mode does not echo the characters we enter, we can use it to create a prompt that
checks the entered value before it echoes it or proceeds. For example we could implement a screen-
based menu system with selections from 1 to 9 and check the user's input with a script like this (we have
omitted the actual menu options for brevity, since they're not the point here):

#!/usr/bin/perl
menu.pl
use warnings;
use strict;

use Term::ReadKey;

ReadMode 'cbreak';

print "Enter an option 1 to 9: ";
my $selection = 0;
do {

$selection = int (ReadKey 0);
} until ($selection > 0 and $selection < 10);

print "You typed $selection\n";
ReadMode 'restore';

The cbreak mode can be used with any of the modes of ReadKey to produce interesting effects. For
example, this script echoes each character as we type it, but also prints a dot for every half second that
we don't type anything:

#!/usr/bin/perl
dot.pl
use warnings;
use strict;

use Term::ReadKey;
ReadMode 'cbreak';

enable autoflush
$| = 1;

my $char;
do {

$char = ReadKey 0.5;
print $char?$char:'.';

} until (lc($char) eq 'q');

ReadMode 'restore';

Chapter 15

568

Note that to actually get our characters to appear on the screen when we print them we also have to put
Perl into autoflush mode by setting the autoflush variable $| to 1. Without this we would see
nothing until we entered a return (which does not incidentally quit the program), a q or Q to stop the
program running or the amount of output becomes large enough to trigger an automatic write to the
screen.

It so happens that the raw and ultra-raw modes will also work instantly when used with ReadKey,
but this is not their intended use and they may cause unexpected side effects when used this way. The
real point of the raw and ultra-raw modes is to disable the processing of control characters by the
terminal, which will be covered in 'Getting and Setting Control Characters' shortly.

We can also get single characters using the getch method from the Term::Screen module. This is a
third-party module that provides a lot of terminal screen handling features that are otherwise
inconvenient to write. We cover it in more detail under 'Writing to the Screen' later in the chapter.

Reading Complete Lines
Whereas ReadKey returns single characters to us, complete lines are read by ReadLine. However, this
subroutine only works completely on UNIX platforms (on others it works in blocking mode but not with
non-blocking, instead returning an error warning that non-blocking mode is not supported). For other
platforms we can use the Term::ReadLine module instead, which we discuss later. Not to be confused
with Term::ReadLine, Term::ReadKey's ReadLine subroutine is very similar to using the <>
operator, but with the additional flexibility of being able to avoid waiting for input.

Like ReadKey, ReadLine takes a reading mode as an argument, followed by an optional file handle. To
use it in its simplest guise, to read from standard input, we just write:

$input = ReadLine 0; # implicitly read from STDIN
$input = ReadLine 0, *STDIN; # with an explicit filehandle

This is (more or less) identical to writing:

$input = <STDIN>;

However, like ReadKey, ReadLine also accepts a mode of -1 for non-blocking input, and a positive
value for a timeout in seconds. Using non-blocking causes ReadLine to read whatever is in the input
buffer, up to the first return, and to return that. If nothing is in the input buffer or there is an input but
not a complete line then ReadLine will return the undefined value. Note that this is still true even if we
have cbreak set as the terminal read mode, since that only causes the terminal to return characters to
ReadLine immediately – ReadLine still wants to see an end-of-line character before it returns anything
to us.

A positive value causes ReadLine to wait for a set length of time for input and return undef if nothing
was entered in the prescribed time limit. For example:

print "Give your name - you have 10 seconds to comply: ";
$name = ReadLine 10;
die "Too Slow! Access Denied" unless defined $name;

Terminal Input and Output

569

If a non-blocking mode is used, it applies to the first character only – once a character is typed, the call
will block until a return is entered. This applies even if we hit delete.

For more advanced ways to read lines of input from the user, including history lists and editable
command-lines, skip ahead to 'Advanced Line Input with Term::ReadLine'.

Passwords and Invisible Input
If we set the read mode to either cbreak or noecho we can write a script that takes input from the user
but does not echo the characters typed back to the terminal. The cbreak mode is more suitable for
single character input like the hitakey.pl example we saw earlier. The mode noecho is more suitable
for entering complete lines, where we do not want to know what the user is typing until they press
return. A good example of this kind of application is a password entry prompt, as in:

#!/usr/bin/perl
password.pl
use warnings;
use strict;

use Term::ReadKey;

ReadMode 'noecho';
print "Enter your password: ";
my $password = ReadLine 0;
print "Thanks!\n";
ReadMode 'restore';

This makes use of the ReadLine subroutine that comes with Term::ReadKey to read a complete line
from the user. Note that we could equally have used cbreak mode here, the only difference being that
with cbreak characters would have been sent back to our program as soon as they were typed. Since
ReadLine waits for a return to be typed before it returns a value (as we would want for a password
prompt), this gains us nothing and just causes extra work for the computer.

Finding and Setting the Screen Size
Sometimes it is useful to know how big the screen actually is, for example when paging output. We can
find the screen size with GetTerminalSize, which returns four values for the filehandle passed to it, or
standard output otherwise:

($cwidth, $cheight, $pwidth, $pheight) = GetTerminalSize;

Astute readers will have noticed this doesn't have much to do with reading key presses, or any kind of
input. Rather, it is supported by Term::ReadKey since it is a useful thing to be able to find out, and it
is, without doubt, the kind of thing that programmers of character level IO are often interested in. Since
it is an output issue rather than an input one (screens are not generally much use for input), the supplied
filehandle ought to be open for output. Under Windows this is actually a requirement:

must specify file handle under Windows
($cwidth, $cheight, $pwidth, $pheight) = GetTerminalSize STDOUT;

The width and height of the screen in characters is returned in the first two values, with the width and
height of the screen in pixels returned in the second two (though this may be zero in many cases).
Since we are primarily concerned with character IO here, we can discard the second two values and
just write:

($width, $height) = GetTerminalSize;

Chapter 15

570

We can use our knowledge of the screen height to page through output, writing exactly a screenful of
output before pausing. The following script does exactly this, and uses ReadKey in cbreak mode to
allow the user to scroll another screenful by pressing any key. As a small improvement on this basic
design we have prefixed each output line with its line number, and also check the pressed key and exit
immediately if it is either q or Q:

#!/usr/bin/perl
page.pl
use warnings;
use strict;

use Term::ReadKey;

my ($width, $height) = GetTerminalSize;

my $count = 0;

ReadMode 'cbreak';

while (<>) {
print "$.: $_"; # $. added to make example more interesting
if (++$count == $height) {

last if lc(ReadKey 0) eq 'q';
$count = 0;

}
}

ReadMode 'restore';

Having demonstrated how to page text in Perl, it is worth pointing out that all operating systems have a
pager program somewhere (more or less on UNIX, for instance), so if all we want to do is page output
we can call that program and feed it the output we want to page using a piped open.

On UNIX systems we can also set the screen size using SetTerminalSize, supplying the same four
arguments. We may not care about the pixel size (and it frequently doesn't do anything in any case,
particularly under Windows), but SetTerminalSize requires we set it anyway, so to preserve the old
values we can use:

get screen size
($x, $y, $w, $h) = GetTerminalSize;

set screen size to 80x24
SetTerminalSize (80, 24, $w, $h);

This does not, fairly obviously, actually change the size of the screen, but indicates to the terminal what
size we would prefer it to be. In some cases, like a UNIX shell window running under the X-Windows
system, this might cause the shell window to actually resize itself, but we cannot depend on that
behavior. Otherwise the only effect of SetTerminalSize is to cause the operating system to notify any
other programs that is reading that terminal through a SIGWINCH signal.

It may happen that another application may try to change the terminal size in a similar manner to the
way that SetTerminalSize does. This might happen for example if the user resizes a terminal window
on the desktop. In this case we may receive a SIGWINCH signal (assuming that our platform supports it –
Windows does not). Ordinarily this would be ignored, but we can respond to it and handle the new
screen size with a signal handler:

Terminal Input and Output

571

establish global width/height
($width, $height) = GetTerminalSize;

set up a signal handler to catch screen size changes
$oldwinch = $SIG{'WINCH'};

sub window_changed {
($width, $height) = GetTerminalSize;

handle the new size - Text::Wrap might be useful here...
redraw($width, $height);

call the old handler by its code reference, if there was one
&$oldwinch if $oldwinch;

in case the OS clears the handler
$SIG{'WINCH'} = \&window_changed;

}

$SIG{'WINCH'} = \&window_changed;

As an alternative to Term::ReadKey, the Term::Size and Term::Screen packages available from
CPAN also provide functionality for getting or setting the terminal size – see later.

Serial Connections and Terminal Speed
It might happen to be that the terminal we are talking to is actually a serial connection connected to a
program or user elsewhere. If we expect to be handling potentially slow connections we could then
modify the amount of data we actually send, giving slow connections more condensed information. In
these cases we can find out the speed of the terminal with GetSpeeds, which takes a filehandle as an
argument (or defaults to standard input otherwise) and returns two values, the input speed and the
output speed:

($baud_in, $baud_out) = GetSpeeds SERIAL_CONNECTION;

If the file handle is not a serial connection then this call returns an empty list, which in the above case
results in two undefined scalars.

Serial connections are also affected by the raw and ultra-raw read modes, as mentioned earlier.
Specifically, the terminal will attempt to override any parity settings if present. This can be slightly
surprising if we are reading a serial connection in raw mode, but since setting parity is something of a
rarity these days it is unlikely to be that much of a problem in practice.

Line Ending Translation
As we are aware, different operating systems do not use the same line terminator. As a little recap, this
is due to historical reasons with Windows systems not using the same line terminator as UNIX. Under
UNIX, it is simply a linefeed, or LF for short. Under Windows, it is a return (to be technically accurate
carriage return) and linefeed, or CR LF for short. The Macintosh and VMS are different again, using
LF CR. Needless to say, this can be confusing.

In order to deal with the possibility of seeing CR LF (or LF CR) rather than LF on the end of lines,
terminals usually convert CR LF into LF when they see it, returning only the LF to the application (on
some systems this is done in cooperation with the underlying C library too).

Chapter 15

572

Most of the time this is just what we need, because it eliminates another source of compatibility issues
for us without us having to worry about it. However, if we actually want to turn this feature off we can
do so by putting the terminal into ultra-raw mode:

ReadMode 'raw'; # regular 'raw' mode
ReadMode 'ultra-raw'; # disables CR/LF->LF translation

The catch is that ultra-raw mode is in all other respects like raw mode, which is not necessarily what
we wanted to use. On a Windows system this is exactly the same as the regular raw mode, since
Windows applications expect to see CR LF and so do not remove the CRs. On a UNIX system this
disables the translation so that a CR LF sent to the terminal is passed unchecked as CR LF to the
application.

Getting and Setting Control Characters
One of the principle differences between a terminal (whether it be a real screen-and-keyboard terminal
or a window on a desktop) and regular IO devices is that terminals can handle a lot of things by
themselves without needing the program connected to them to tell them. An obvious example of this is
echoing typed characters to the screen; the terminal deals with that automatically without our
intervention or involvement.

Less obvious but more interesting are terminal operations like pausing and resuming scrolling,
interrupting the running program and deleting characters, words, or lines. Each of these is a different
terminal operation, which may (or may not) be associated with a control character, such as Ctrl-C to
interrupt a program or Ctrl-S to pause scrolling. When a terminal is in a cooked mode, which is to say
any read mode other than raw or ultra-raw, each time a character is typed the terminal looks it up in
the list of operations to see if it triggers a particular event. (On UNIX, these definitions are kept in the
/etc/termcap, /etc/terminfo, and etc/gettydefs files.)

Using the Term::ReadKey subroutine GetControlChars we can, on platforms that support it, access
the list of terminal operations and which keys are associated with which functions. Like most of the
subroutines in Term::ReadKey an optional filehandle can be supplied, otherwise standard input is
used. A list of key-value pairs is returned by GetControlChars, with the key name being the hash key
and the key code associated with it being the value. For example, to find out which key code generates
an interrupt, we can use:

%controlchars = GetControlChars;
print "INTERRUPT is ", ord($controlchars{INTERRUPT});

Similarly we can dump out the entire list to the screen with a small program, though since not all
platforms support this function we might not actually get any output:

#!/usr/bin/perl
getcontrolchars.pl
use strict;
use warnings;

use Term::ReadKey;

my %controlchars = GetControlChars;

foreach (sort keys %controlchars) {
print "$_\t=>", ord ($controlchars{$_}), "\n";

}

Terminal Input and Output

573

This produces a list resembling (but possibly not exactly the same, depending on where and on what we
run the program) the following:

> perl getcontrolchars.pl
DISCARD => 15
EOF => 4
EOL => 0
EOL2 => 0
ERASE => 127
ERASEWORD => 23
INTERRUPT => 3
KILL => 21
MIN => 1
QUIT => 28
QUOTENEXT => 22
REPRINT => 18
START => 17
STOP => 19
SUSPEND => 26
SWITCH => 0
TIME => 0

This list of operations and characters comes from the terminal, and represents the internal mapping that
it is using to process control characters. Many of the operations returned in the list may not be assigned
and so have a character value of zero (or 255, depending on the platform) in the returned array – these
characters are discarded by the terminal.

Note that if the terminal is not a real terminal, which is usually the case, what it receives may
already have been processed by something else first. For instance, the X-Window system defines its
own character mapping (the xrdb utility can do this), which takes effect before our terminal even
sees the character. Likewise, PC keyboards actually generate 16 bit values, which are translated by
the operating system into characters before we see them.

On UNIX platforms only, we can also alter which control characters trigger which operations, using
SetControlChars. This takes a list of key-value pairs as arguments and applies them to the terminal's
built-in list. Each pair consists of a name, as returned by GetControlChars, followed by the character
or character value. A value of zero disables the operation. For example, we can redefine or disable the
delete key by setting the ERASE operation:

SetControlChars ERASE => 0; # disables delete
SetControlChars ERASE => 2; # sets delete to control-B

In the following program we extract and print the list of control characters, alter some of them, and then
print it out again. Note that the attempted alterations will not produce any effect on Windows systems
(and will, in fact, generate an error):

#!/usr/bin/perl
setcontrolchars.pl
use warnings;
use strict;

use Term::ReadKey;

TE
AM
FL
Y

Team-Fly®

Chapter 15

574

my %oldcontrolchars = GetControlChars;

sub dump_list {

my %controlchars = GetControlChars;
foreach my $key (sort keys %controlchars) {

print "$key\t => ",ord($controlchars{$key}),"\n";
}

print "\n";
}

dump_list;

disable interrupt, suspend and erase (delete)
change eof to whatever suspend is (i.e. ctrl-D to ctrl-Z)
SetControlChars INTERRUPT => 0,

EOF => $oldcontrolchars{SUSPEND},
SUSPEND => 0,
ERASE => 0;

dump_list;

reset control characters to their old values
SetControlChars %oldcontrolchars;

dump_list;

In this program we have disabled the interrupt operation, normally bound to Ctrl-C, and changed the
end-of-file (or more accurately end-of-transmission, EOT) character, Ctrl-D under UNIX, to Ctrl-Z, which
is more like Windows.

Advanced Line Input with 'Term::ReadLine'
Perl provides a module called Term::ReadLine as part of the standard library. Although it does little
by itself, it provides an interface to a system readline library, if one is installed. Two libraries are
currently available (at least on UNIX systems), the standard Perl readline library and the much more
capable third party GNU Readline library. GNU Readline is also available under Windows as a Cygwin
package.

Whichever library we have installed we can use Term::ReadLine to access it – if the GNU library is
installed Term::ReadLine will automatically use it, so we do not have to cater for different libraries in
our own code. The module Term::ReadLine will work with no underlying readline library, but few of
the advanced features supported by a real readline library, like editable command-lines or command-
line history traversal will be available. By writing our programs to use Term::ReadLine, however, we
can transparently and automatically make use of these features if our program is run on a system where
they are installed.

Also supported by Term::ReadLine are several standard methods, which we can call on terminal
objects created with the module. They are:

Terminal Input and Output

575

Name Function

ReadLine Return the name of the underlying library module

new Create a new terminal object

readline Read a line. This is the central method of the module

addhistory Add a new line to the input line history

IN/OUT Return the input and output file handles of the terminal, respectively. See
also findConsole

MinLine Set a limit on the shortest length of an input line before it is allowed in the
input line history

findConsole Return an array of two strings containing the appropriate filename strings for
opening the input and output respectively. See also IN and OUT

Attribs Return a reference to a hash of internal configuration details

Features Return a reference to a hash of supported features

In addition Term::ReadLine supplies some stub methods. Without an underlying library these have
no useful effect, but if one is present they will perform the relevant function. The stubs ensure that we
can call these methods even if the library we are using doesn't actually support them. If we want to
check if a given method is supported (as we probably should) we can use the Features method to find
out.

Name Function

tkRunning Enable or disable the tk event loop while waiting for input. Perl-Tk only

ornaments Enable, disable, or change the decoration of the prompt and input text when
using readline

newTTY Switch the terminal to a new pair of input and output file handles

In addition to the standard methods, the underlying library may define other methods that are unique to
it. The GNU library in particular defines a very extensive set of calls, in fact more than we have time to
touch on here. For full details, see perldoc Term::ReadLine::Gnu.

Each library adds its own set of features to the list returned by Features so we can also test for them
before trying to use the corresponding methods. Before calling any methods, however, we first have to
create a terminal object.

Creating a Terminal Object
The Term::ReadLine module is object-oriented, so to use it we first instantiate a terminal object. We
give this object a name, presumably a descriptive name for the program, and then optionally typeglobs
for the filehandles that we wish to use for input and output:

use Term::ReadLine;

use STDIN and STDOUT by default
$term = new Term::ReadLine "Demo";

Chapter 15

576

use file handles IN and OUT explicitly
$term = new Term::ReadLine "Demo", *IN, *OUT;

use a serial connection (same file handle for both input and output)
$serialterm = new Term::ReadLine "Remote", *SERIAL, *SERIAL;

Once we have created a terminal object we can use it to both read and write to the terminal. The
following script shows the general idea:

#!/usr/bin/perl
termobject.pl
use warnings;
use strict;

use Term::ReadLine;

my $term = new Term::ReadLine "My Demo Application";
print "This program uses ", $term->ReadLine, "\n";

my $input = $term->readline("Enter some text: ");
print "You entered: $input\n";

First we load in the Term::ReadLine module. Then, just for curiosity, we use the ReadLine method
to find out the name of the underlying package, if any. Then we use the readline method (note the
difference in case) to read a line from the terminal, optionally supplying a prompt.

When this program is run it causes Term::ReadLine to look for and load an underlying readline
library if it can find one. If it can, it passes control to it for all other functions. The library in turn
provides editing functionality for the actual input of text. If we are using the GNU library, we can take
advantage of its more advanced features like editable command-lines automatically, since they are
provided automatically by the library. In our own code we don't have to raise a finger, which is the
point, of course.

If we happen to be using a terminal that isn't connected to standard input and standard output, we need
to direct output to the right filehandle, which means passing print the right filehandle. The above
happens to work because the terminal is connected to standard out, so a simple print works. We really
ought to direct output to the terminal's output, irrespective of whether it is standard output our not.
Fortunately we can find both the input and output filehandles from the terminal object using the IN and
OUT methods:

$input_fh = $term->IN;
$output_fh = $term->OUT;

print $term->OUT "This writes to the terminal";

Once created, the filehandles used by the terminal can (usually) be changed with the newTTY method.
This takes two typeglobs as arguments and redirects the terminal to them:

$term->newTTY *NEWIN *NEWOUT;

Terminal Input and Output

577

It is possible, though unlikely, that this will not work if the library does not support the switch. To be
sure of success we can interrogate Term::ReadLine to find out whether the newTTY feature (or indeed
any feature), is actually supported.

Supported Features
Due to the fact that different readline implementations support different features of Term::ReadLine,
we can interrogate the module to find out what features are actually supported using the Features
method. This returns a reference to a hash with the keys being the features supported:

#!/usr/bin/perl
features.pl
use warnings;
use strict;

use Term::ReadLine;

my $term = new Term::ReadLine "Find Features";
my %features = %{$term->Features};

print "Features supported by ", $term->ReadLine, "\n";
foreach (sort keys %features) {

print "\t$_ => \t$features{$_}\n";
}

When run with Term::ReadLine::Gnu (available from CPAN) installed, this produces the following
output:

> perl xxx_features.pl
Features supported by Term::ReadLine::Gnu

addHistory => 1
appname => 1
attribs => 1
autohistory => 1
getHistory => 1
minline => 1
newTTY => 1
ornaments => 1
preput => 1
readHistory => 1
setHistory => 1
stiflehistory => 1
tkRunning => 1
writeHistory => 1

We should not confuse these features with callable methods. Some, though not all, of these features
correspond to methods supported by the underlying library. Unfortunately, the feature names do not
always match the names of the methods that implement them. For example the method to add a line of
history is addhistory not addHistory.

We can use the feature list to check that a feature exists before trying to use it. For example, to change a
terminal to use new filehandles we could check for the newTTY feature, using it if present, and resort to
creating a new object otherwise:

Chapter 15

578

sub switch_tty {
($term, *IN, *OUT) = @_;
$features = $term->Features;
if ($features->{newTTY}) {

$term->newTTY(*IN, *OUT);
} else {

$name = $term->appname;
$term = new Term::ReadLine $name, *IN, *OUT;

}
return $term;

}

Regardless of which features are actually supported, Term::ReadLine defines stub methods for a
selected subset so that calling them will not cause an error in our program, even if they don't have any
useful effect.

Setting the Prompt Style and Supplying Default Input
The readline method takes a prompt string as its argument. This string is printed to the screen using
ornaments (if any have been defined) that alter the look of the prompt and the entered text. For
example, GNU Readline underlines the prompt text by default.

Ornamentation can be enabled, disabled, or redefined with the ornaments method. Enabling and
disabling the currently defined ornaments is achieved by passing 1 or 0 (a True or False value) to
ornaments:

#!/usr/bin/perl
ornament.pl
use warnings;
use strict;

use Term::ReadLine;

my $term = new Term::ReadLine "Ornamentation";

disable ornaments
$term->ornaments(0);
my $plain = $term->readline("A plain prompt: ");
print "You entered: $plain\n";

enable default ornaments
$term->ornaments(1);
my $fancy = $term->readline("A fancy prompt: ");
print "You entered: $fancy\n";

Alternatively the current ornamentation can be redefined by passing four parameters containing
terminal capabilities (as deduced by the Term::Cap module – see later) as a string. The first two are
applied before and after the prompt, and the second two before and after the input text. For example:

define ornaments (md = bold, me = normal)
$term->ornaments('md, me, ,');
$userd = $term->readline("A user-defined prompt: ");
print "You entered: $userd\n";

Terminal Input and Output

579

In this example we have used md, which is the terminal capability code for bold, and me, which is the
terminal capability code to return to normal. We don't want to change the input line, so we have left
those two entries blank.

Note that if we have no termcap library this will fail since Term::Cap is used to determine how to
handle ornaments. To enable the ornaments subroutine to work without generating a warning, add:

disable warnings for platforms with no 'termcap' database
$Term::ReadLine::termcap_nowarn = 1;

The GNU version of readline supports a second optional parameter that contains the default input
text. This is known as the preput text and we can test to see if it is supported by checking for the
preput feature. Since passing extra parameters is not an error, not checking is fine – we simply won't
see the default text. Here is a short example of supplying some default text to the readline method:

#!/usr/bin/perl
defaulttext.pl
use warnings;
use strict;

use Term::ReadLine;

my $term = new Term::ReadLine "Default Input";

my $input = $term->readline("Enter some text: ", "Default Text");
print "You entered: $input\n";

If the preput text is supplied and the library supports it, the input line is automatically filled with the
default text. The user can then either delete and replace or edit (because GNU Readline supports in-line
editing) the default text, or just press return to accept it.

Command-Line History
The Term::ReadLine module provides support for command-line history – that is, a record of what
has been typed beforehand. This can be used to allow the user to step backward or forward through
previous commands, typically using the up and down cursor keys. This functionality is provided
automatically (assuming a library is present which supports it) so again we do not have to do anything
ourselves to provide it.

We can control the history several ways, however. First, we can lie about previously entered commands
by using the addhistory method:

$term->addhistory("pretend this was previously entered text");

If we have the GNU Readline library we can also remove a line from the history by giving its line
number to remove_history:

$term->remove_history(1); # remove line 1 from history, GNU only

Chapter 15

580

We can also, using the GNU library, retrieve the whole history as an array with GetHistory:

@history = $term->GetHistory;

We can then step through this array and pass the index numbers to remove_history if desired. Of
course to prevent the line numbers changing as we proceed, traversing the array in reverse order is
recommended. For example, this loop traverses the history array removing all lines that have less than
three characters:

@history = $term->GetHistory;
traverse in reverse order, to preserve indices in loop
foreach my $item (reverse 0..$#history) {

$term->remove_history($item) if length($history[$item])<3);

}

We can actually do this automatically with the standard MinLine method, which should work
regardless of the underlying library. Additionally, we can disable the history entirely by passing an
undefined value to it:

$term->MinLine(3); # only record lines of three plus characters
$term->MinLine(undef); # disable history

The GNU Readline library goes far beyond these features however. It also provides support for editing,
moving around, saving, loading and searching the history. For a complete, if terse, list of available
features see the Term::ReadLine::Gnu documentation.

Word Completion
Some shell programs support the concept of 'completion', where the shell attempts to deduce the rest of
a partially entered word from the first few letters. We can provide the same feature within our own Perl
programs with either the GNU Readline library or the somewhat simpler (but less able)
Term::Complete module.

This module supplies the Complete function, which takes a prompt and a list of words for matching
against. This is an example of how we might use it:

#!/usr/bin/perl
complete.pl
use warnings;
use strict;

use Term::Complete;

my @terms = qw(one two three four five six seven eight nine ten);
my $input = Complete("Enter some number words: ",@terms);

print "You entered: $input\n";

Completion is triggered if we press the Tab key. When this occurs, Term::Complete attempts to match
the text entered so far against one of the words in the completion list. If there is a unique match, it fills
in the rest of the word. For example, if we were to enter e and then press Tab, Term::Complete would
automatically fill in ight for eight, since that is the only word that begins with e.

Terminal Input and Output

581

If there is not a unique match then Tab will produce no useful effect. Instead, we can type Ctrl-D to have
Term::Complete return a list of valid matches. If we were to enter t then Ctrl-D, the list two, three, ten
would be returned, for example.

The Term::Complete module supplies several functions that allow various keys to be redefined, with
the curious exception of Tab for completion. None of these functions are exported by the module so we
must access them via their full names. They are as follows:

Function Keystroke Action

Term::Complete::complete Ctrl-D List matching completions, if any

Term::Complete::kill Ctrl-U Erase whole line

Term::Complete::erase1 del Delete last character

Term::Complete::erase2 backspace Delete last character

The Term::ReadLine::Gnu package provides a more comprehensive completion mechanism, but
depends on the GNU Readline library being installed on the system. This may be more trouble than we
want to go to, especially on a non-UNIX or non-Windows system. It is also a much more involved
library to program, and is beyond the scope of this book – consult the documentation and the manual
page for the bash shell (which makes extensive use of GNU Readline) if available.

Writing to the Screen
Perl provides a lot of different approaches to writing to a terminal screen, from simply printing to
standard output, through low-level terminal control modules like Term::Cap and the
POSIX::Termios interface through to very high-level modules like the third-party Curses module.
Somewhere in the middle we can find modules like Term::ANSIColor and the third-party
Term::Screen, which provide a slightly simpler interface to the features of the low-level modules.

The Term::ANSIColor module handles the specific problem of using colors and other text attributes
like blinking, bold, or underline. Other commands can be sent to the screen by interrogating the
terminal capabilities with Term::Cap. However, since Term::Cap is a rather low-level module, the
third-party Term::Screen module provides a few of these facilities in a more convenient form. If we
plan to do a lot of screen output, however, such as writing a complete text-based GUI application, then
we might want to look at the Curses module.

Terminal Capabilities
However we want to talk to a terminal, it ultimately boils down to a case of terminal capabilities. There
are many different kinds of terminal, both real and simulated, each with its own particular range of
features. Even if a terminal supports all the usual features, it may not do it in the same way as another.
In order to make sense of the huge range of possible terminals and different terminal features and
options UNIX machines make use of a terminal capability or 'termcap' database. A given terminal has a
terminal type associated with it. Interested applications can look up in the database to find out how to
tell the terminal to do things like move the cursor or change the color of text.

Chapter 15

582

We send commands to terminals in the form of ANSI escape sequences, a series of characters starting
with an escape (character 27, or \e). To switch on blue text, for example, we could use:

print "\e[34m--this is blue text--\e[0m\n";

Of course, this relies on the terminal supporting ANSI escape sequences, which is likely on a UNIX
system but is not the case for a DOS shell – if characters like e[32m appear on the screen, it's a safe bet
that ANSI isn't supported so the rest of this discussion is likely to be academic.

Remembering that \e[...m is the sequence for change screen colors and that 34 is the number for blue
is hardly convenient, however. Worse, while things like the color blue are standard across all terminals
(all color terminals, that is), many other terminal capabilities vary widely in the precise escape
sequences that control them. For that reason, rather than write escape sequences explicitly we use
Term::Cap to find them out for us.

The Term::Cap module is an interface to the terminal capability or 'termcap' database commonly
found on UNIX systems that allows us to issue commands to terminals based on what kind of terminal
we are using. To use it we create a terminal capability object using Term::Cap, then pass that object
information about what we want to do, along with the filehandle of the terminal we want to do it on. In
order to use the module therefore, we first have to create a terminal capability object (or termcap object
for short) that points to the entry in the termcap database that we want to use. We also need a termcap
database for Term::Cap to work with, so again, this is academic for platforms that do not possess one.

Creating a Termcap Object
Using the Tgetent method, Term::Cap creates terminal capability objects. In order to use it we must
pass it a hash reference, which it blesses, populates with capability strings, and returns to us. In order to
work out which entry to look up Tgetent needs to know the terminal name, for example ansi for a
standard ANSI terminal, vt100 for a terminal that adheres to the VT100 standard and so on. UNIX
shell tools like xterm use their own terminal mode, for example xterm, which is a superset of the ANSI
terminal that also knows a few things particular to living inside a window, such as resizing the screen.

In general we want Term::Cap to look up the entry for whatever terminal it is our program happens to
be running in, which it can normally deduce from the environment. To tell Tgetent to look at the
environment we pass it an anonymous hash containing a key-value pair of TERM and undef:

#!/usr/bin/perl
anonhash.pl
use warnings;
use strict;

use Term::Cap;

create a terminal capability object - warns of unknown output speed
my $termcap = Term::Cap->Tgetent({ TERM => undef });

print "Capabilities found: ", join(',', sort(keys %{$termcap})), "\n";

Just to illustrate what this actually does we have looked at the hash that the termcap object actually is
and printed out its keys. That's usually a rather rude way to treat an object, but it serves our purpose for
illustrative purposes. Run from a UNIX xterm window, this program produces the following output:

Terminal Input and Output

583

> perl anonhash.pl
OSPEED was not set, defaulting to 9600 at ./termcap1.pl line 7
Capabilities found:
OSPEED,PADDING,TERM,TERMCAP,_AL,_DC,_DL,_DO,_IC,_LE,_RI,_UP,_ae,_al,_am,_as,_bc,_b
l,_cd,_ce,_cl,_cm,_co,_cr,_cs,_ct,_dc,_dl,_do,_ei,_ho,_ic,_im,_is,_it,_k1,_k2,_k3,_k4,_k5,_k6,_k7,_k
8,_k9,_kI,_kN,_kP,_kb,_kd,_ke,_kh,_kl,_km,_kr,_ks,_ku,_le,_li,_md,_me,_mi,_mr,_ms,_nd,_pc,_rc,_
sc,_se,_sf,_so,_sr,_ta,_te,_ti,_ue,_up,_us,_xn,_xo

Note that we avoided actually printing out the values of the hash, which contain the ANSI escape
sequences themselves. That is partly because printing them would actually cause the terminal to react to
them, which will likely confuse it considerably and leave it in an unusable state. Escape sequences are
not that interesting to look at in any case; the whole point of the termcap database is that we don't need
to look at them directly.

Disregarding the warning (which we'll come to in a moment) and the upper cased entries, each of the
underscore prefixed entries is a capability of this terminal, and the value of that entry in the hash is the
ANSI escape sequence that creates that effect. By using this object we can generate valid escape
sequences to do the things we want without needing to worry about what the correct sequence is for any
given terminal. In fact, we can disregard the terminal type altogether most of the time, which is the idea,
of course.

If we want to pretend we're an ANSI terminal rather than anything else, or we just happen to know that
the terminal we're using (remembering that we could be in some sort of shell window that doesn't
correspond to any specific terminal) happens to be ANSI compatible, we could write:

$termcap = Term::Cap->Tgetent({TERM =>'ansi'});

Tgetent also seeks the output speed of the terminal because terminal capabilities may be defined to be
dependent on the speed of the connection. If it isn't told, it will complain with a warning, but retrieve
the terminal capability information anyway based on an assumed speed of 9600bps. In order to silence
this, we can feed it a speed from the POSIX module:

#!/usr/bin/perl
speed.pl
use warnings;
use strict;

use POSIX;
use Term::Cap;

set the line speed explicitly - but 'POSIX::B9600' may not be defined
my $termcap1 = Term::Cap->Tgetent({

TERM => undef,
OSPEED => POSIX::B9600

});

Better, we can use the POSIX::Termios package to ask the terminal directly, and then feed that value
to Term::Cap:

interrogate the terminal for the line speed, no need for a constant
my $termios = new POSIX::Termios;
$termios->getattr(fileno(STDOUT));
my $termcap2 = Term::Cap->Tgetent({

TERM => undef,
OSPEED => $termios->getospeed

});

TE
AM
FL
Y

Team-Fly®

Chapter 15

584

The POSIX::Termios is a very low-level way to control a terminal directly. Modules like
Term::ReadKey use it, along with Term::Cap, behind the scenes to perform many of their functions.
We can also use it directly, and we will cover it in more detail later. Of course this might seem a
pointless exercise if we know we will be talking to a screen or a shell window that doesn't have a line
speed, but Term::Cap is not able to assume that, and can't determine it from the terminal type, since
that's just an emulation. Additionally, we should not assume that our application won't one day run on a
real terminal on the end of a real serial connection.

Clearing the Screen, Moving the Cursor, and Other Tricks
Now we have an object representing the terminal's capabilities we can use it to make the terminal do
things. One of the first obvious things to do is clear the screen. The terminal capability code for that is
cl, so we feed that to the Tputs method of Term::Cap along with the number 1 to tell Tputs to
generate a code that does clear the screen (rather than doesn't, strangely – the command needs a
parameter), and the filehandle of the terminal:

$termcap->Tputs('cl', 1, *STDOUT);

Similarly, to move the cursor about we use the cm (cursor move) capability with the Tgoto method. For
instance, to move the cursor to position x = 3 and y = 5 we would use:

$termcap->Tgoto('cm', 3, 5, *STDOUT);

Then, to write some text in bold we could use:

$termcap->Tputs('md', 1, *STDOUT);
print "Bold Text";

We can use any capability of the terminal in this way, so long as we have a thorough knowledge of
terminal capability codes. Since that is rather a lot of work to go to we might be given to wonder if
someone has already done all this work and parceled up the most common features for us. Fortunately,
someone has – see Term::Screen and the Curses module later in the chapter.

Writing in Colors
Most terminal emulations support the ANSI standard for escape sequences that control aspects of the
terminal such as cursor position or the appearance of text. Unlike a lot of other escape sequences, the
color and text attribute sequences are pretty standard across all terminals, so instead of writing ANSI
sequences by hand or resorting to Term::Cap we can make use of the Term::ANSIColor module
from CPAN instead.

This module works by defining an attribute name for each of the escape sequences related to text
representation, such as bold for bold text and on_red for a red background. We can use these
attributes to create text in any style we like, with the twin advantages of simplicity and legibility.

There are two basic modes of operation. The first is a functional one, using the subroutines color and
colored to generate strings containing ANSI escape sequences, passing the names of the attributes we
want to create as the first argument. The second uses constants to define each code separately, and we
will see how to use it shortly. Before we look at a short example of using the Term::ANSIColor
module, a short word of warning. The effects of using the module will be dependant on the settings of
your terminal. For example if your terminal is set to print red on white, the following example will
exhibit no noticeable difference. In the meantime, here is a short example of how color can be used to
generate red text on a white background:

Terminal Input and Output

585

#!/usr/bin/perl
text.pl
use warnings;
use strict;

use Term::ANSIColor;

print color('red on_white'), 'This is Red on White';

The argument to color is a list of attribute names, in this case the attributes red and on_white to
produce red-on-white text. Here we have passed them as space separated terms in a string, but we can
also supply the attributes as a list:

@attributes = 'red';
push @attributes, 'on_white';
print color(@attributes), 'Or supply attributes as a list...';

Note that color does not print anything by itself. It returns a string to us and leaves it to us to print it
or otherwise use it. Similarly, here is how we can produce bold underlined text:

print color('bold underline'), 'This is bold underlined';

We can generate any of the color sequences supported by the ANSI standard using Term::ANSIColor,
all of which have been given convenient textual names for easy access. The following table lists all the
names defined by Term::ANSIColor. Note that several attributes have synonyms, and that case is
irrelevant – RED works as well as red:

Name Action

clear, reset Reset and clear all active attributes.

bold Start bolding.

underline, underscore Start underlining.

blink Start blinking.

reverse Reverses both foreground and background colors logically. If
no colors are set, inverts white on black to black on white.

concealed Conceal text.

black, red, green, yellow,
blue, magenta

Put text into given color. May be combined with a
background color.

on_black, on_red, on_green,
on_yellow, on_blue,
on_magenta

Put text background into given color. May be combined with
a foreground color.

The problem with color is that it does not switch off what it switches on. If we run the above programs
then whatever escape sequences were in effect at termination continue on after the end of the program.
That means that without special care and attention we can end up typing bold underlined green on cyan
text at our shell prompt, or even worse. In order to prevent this we need to remember to clear the active
attributes before we finish:

print color('red on_white'), 'This is Red on White', color('reset');

Chapter 15

586

This is another case where an END block is potentially useful, of course:

make sure color is switched off before program exits
END {

print color('reset');
}

However, passing reset to the end of all our print statements is clumsy. The colored function solves
this problem by automatically adding escape codes to clear the active attributes to the end of the
returned string. With colored we don't need to reset the screen ourselves, so the following is exactly
equivalent to, but simpler to write than, the previous example:

print colored('This is Red on White', 'red on_white');

The text to be encapsulated comes first, so we can still pass attributes as a list if we want:

my @attributes = ('red', 'on_white');
print colored('Or as a list of attributes...', @attributes);

It is important to realize, however, that reset (or the synonymous clear) resets all active ANSI
sequences, not just the ones we issued last. This is more obvious with color than colored, which
might give the impression that we can switch from green-on-black to red-on-white and back to green-on-
black using a reset, which is not the case:

print colored('green on black, colored('red on white'), 'and back', 'green');

In this example the and back will be white on black, not green, because the reset generated by the
internal call to colored overrides the original color setting and then resets it. The reset added by the
outer call to colored is therefore redundant.

The function colored has been written with multi-line text in mind. Ordinarily, it places codes at the
beginning and end of the string passed as its first argument. If, however, the package variable
$Term::ANSIColor::EACHLINE is set to a string of one of more characters then colored splits the
line on each occurrence of this separator and inserts codes to clear and then re-establish the passed
attributes on either side of it. The most obvious use of this feature is, of course, to set the separator to
\n, as in:

#!/usr/bin/perl
multicolor.pl
use warnings;
use strict;

use Term::ANSIColor;

$Term::ANSIColor::EACHLINE = "\n";

my $text = "This is\nan example\nof multiline\ntext coloring\n";

print colored($text, 'bold yellow');

There is no reason why we should just apply this to lines. As a slightly different example of what we can
do, here is a way to display binary numbers with the 1s emphasized in bold. It works by making the
separator 0 and using bold cyan as the attribute:

Terminal Input and Output

587

#!/usr/bin/perl
boldbin.pl
use warnings;
use strict;

use Term::ANSIColor;

my $number = rand 10_000_000;

my $bintext = sprintf '%b', $number; # if Perl >=5.6
my $bintext = unpack 'B32', pack('d', $number);

$Term::ANSIColor::EACHLINE ='0';

print colored($bintext, 'bold cyan');

The second mode of operation bypasses color and colored entirely by importing symbols for each
attribute directly into our own namespace with the :constants label. To use this mode, we need to
import the constants from the module by using the :constants tag:

use Term::ANSIColor qw(:constants);

By doing this, we create a host of constant subroutines, one for each attribute. The constants are all
uppercase, so instead of calling color or colored we can now print out attributes directly. Here is red
on white text, generated using constants:

#!/usr/bin/perl
constants.pl
use warnings;
use strict;

use Term::ANSIColor qw(:constants);

print RED, ON_WHITE, "This is Red on White", RESET;

The values of these constants are strings, so we can also concatenate them with the . operator:

$banner = BLUE.ON_RED.UNDERSCORE."Hello World".RESET;

print $banner, "\n";

As these examples show, constants suffer from the same problem as color, in that we have to explicitly
switch off whatever attributes we switch on. However, if we leave out the commas and set the variable
$Term::ANSIColor::AUTORESET then the module will automatically figure things out and add the
reset for us:

automatically append reset code
$Term::ANSIColor::AUTORESET = 1;

look, no commas!
print RED ON_WHITE "This is Red on White";

Chapter 15

588

This is very clever, but mysterious. We might be given to wonder how this works, since this doesn't look
like a legal print statement. The answer is that the 'constants' are not strings but subroutines. With the
commas, each is called with no arguments. Without the commas, each is called with the rest of the
statement as its argument, and returns a string based on its own name prefixed to whatever the rest of
the line returns. By working out if they were called with or without arguments each subroutine can work
out whether it needs to append a reset or not. Cunning, if a little strange at first glance. Since RED in this
example looks exactly like a filehandle, we may prefer to avoid this syntax and live with resets. Notice
that we can define the output record separator to produce a similar effect:

$/ = RESET; # automatically suffix all 'print' statements with a reset
print RED, ON_WHITE, "This is Red on White";

The advantage of the 'constants' approach is that Perl can check our code at compile time, rather than at
run time, since a misspelled constant will cause a syntax error, unlike an attribute string passed to
color or colored, which will only cause a problem when we try to use it. The disadvantage is that we
get a lot of attribute constants in the namespace of our code, which isn't always desirable.

Higher-Level Terminal Modules
The Term::Cap module gives us the ability to send a range of commands to terminals without having
to worry about what kind of terminal we are actually talking to, although it is a little too low-level for
convenient use. Fortunately there are several third-party solutions that build on basic terminal
capabilities to make our job easier. We're going to mention just two here – Term::Screen, which is a
friendly wrapper around Term::Cap that implements many of the most common functions in an easy
to use form, and Curses, a terminal programming library vast enough that it has entire books dedicated
to it.

'Term::Screen'
The third-party Term::Screen module (available at the nearest CPAN mirror) encapsulates a lot of the
most common terminal functionality into a simpler and easy to use form, if we want to spend significant
time exerting control over the terminal screen and want to avoid writing all our own Term::Cap
subroutines. Although it is not a standard module it does use Term::Cap to do all the actual work, so
wherever Term::Cap works, Term::Screen ought to. It actually uses the UNIX stty command to do
the dirty work, so it won't work for other platforms. However, it is designed to be subclassed, so an MS-
DOS module is a distinct possibility, if not supplied (at least, not yet).

As an example, here is how we can clear the screen and move the cursor with Term::Screen. Notice
that it is a lot simpler and more legible than the Term::Cap version we saw earlier:

#!/usr/bin/perl
movecurs.pl
use warnings;
use strict;

use Term::Screen;

my $terminal = new Term::Screen;
$terminal->clrscr();
$terminal->at(3,4);
$terminal->puts("Here!");
$terminal->at(10,0);
$terminal->puts("Hit a key...");

Terminal Input and Output

589

my $key = $terminal->getch();
$terminal->at(10,0);
$terminal->puts("You pressed '$key'");
$terminal->at(11,0);

This example also demonstrates the getch method, an alternative to using ReadKey from the
Term::ReadKey module that we covered earlier. getch is more convenient since it doesn't involve
messing about with the terminal read mode, but of course it requires having Term::Screen installed.
Of course, Term::ReadKey is not a standard module either.

As an added convenience, Term::Screen's output methods are written so that they return the terminal
object created by new Term::Screen. This means they can be used to call other methods, allowing us
to chain methods together. For example, we could have concatenated much of the above example script
into:

$terminal->clrscr->at(3,4)->puts("Here!")->at(10,0)->puts("Hit a key...");

The Term::Screen module provides a toolkit of methods for working with terminals. The following
table summarizes these, along with the arguments they take:

Name Action

resize (rows,
cols)

Resize the screen, in the same way that Term::ReadKey's
SetTerminalSize does.

at (row, col) Move the cursor to the given row and column of the screen.

normal

bold

reverse

Set the text style to normal, bold, or reverse respectively. For example
$terminal->bold() puts the terminal into bold.

clrscr Clear the screen and moves the cursor to 0,0.

clreol Clear from the cursor position to the end of the line.

clreos Clear from the cursor position to the end of the screen.

il Insert a blank line before the line the cursor is on.

dl Delete the line the cursor is on. Lower lines move up.

ic (char)

exists_ic

Insert a character at the cursor position. Remainder of line moves right.
The method exists_ic returns True if this actually exists as a termcap
capability, False otherwise.

dc

exists_dc

Delete the character at the cursor position. Remainder of line moves left.
The method exists_dc returns True of this actually exists as a termcap
capability, False otherwise.

echo

noecho

Enable or disable echoing of typed characters to the screen, in the same
way that Term::ReadKey's ReadMode does.

puts (text) Print text to the screen. Identical to print except that it can be chained
with at as illustrated above.

Table continued on following page

Chapter 15

590

Name Action

getch Return a single character in raw mode.

key_pressed See if a key has been pressed without actually reading it.

flush_input Clear any current data in the input buffer.

stuff_input Insert characters into the input of getch for reading. Note that this only
works for getch – it does not put characters into the real input buffer.

def_key (cap,
keycode)

Define a function key sequence. char is the character generated by the
definition (and read by getch). keycode is what the function key
actually generates. The definition causes keycode to be translated into
char by the terminal.

get_fn_keys Define a default set of function key definitions.

All of these methods are fairly explanatory, with the exception of def_key. This programs the function
keys (which includes the cursor keys and keys like insert and home) of a keyboard to return a given
character, if the terminal is programmable. The keycode is a particular escape sequence such as \e[11~
for function key F1 or \e[A for the up cursor key, and the cap is a terminal capability such as ku for
cursor up. That is, to swap the up and down cursor keys we could write:

$terminal->def_key('ku', "\e[B~");
$terminal->def_key('kd', "\e[A~");

A list of common escape sequences generated by function keys can be found in the Term::Screen
module itself, inside the get_fn_keys method. As well as being informative, when called this also
resets the definitions to their defaults, handy if we just swapped our cursor keys around:

$terminal->get_fn_keys();

The is certainly useful, but it does have one liability – with the exception of the ic and dc methods, it
assumes that the given capability exists. That is, though it uses Term::Cap to issue escape sequences, it
does not actually check that the given capability exists. However, since all the capabilities it supports
are fairly standard, it is likely that they will work as advertised.

If even Term::Screen is not up to the task, we might consider turning to the very capable and feature-
rich Curses module. However, Curses depends on an implementation of the curses library on our
platform – Term::Screen only needs Term::Cap, which is a standard Perl library module.

The Curses Library
The Curses library is the granddaddy of all screen manipulation libraries. It supports everything we
have discussed so far, including all the tricky details of terminal capabilities, mouse input, and text-
based windows as well as many other features. It is quite possible to write entire windowed GUI
applications that work entirely in a terminal window using the Curses library. There are many different
implementations of Curses, all of which are in the form of C libraries. Most UNIX platforms have a
Curses library installed, and several ports exist to other platforms such as Windows, including the free
GNU ncurses implementation.

Terminal Input and Output

591

Perl supports Curses libraries through the Curses module, available from any CPAN mirror. As well as
the Curses library, it also supports the extension Panel library, which adds overlapping window support
to Curses. Assuming that we have these libraries and the Curses module installed, we can write
terminal applications using Curses. The actual features of a given Curses library depend on the
implementation (early implementations do not support Windows, for example), but all libraries support
the same general set of operations.

The C interface to Curses tends to support four different subroutines for each function; the basic feature,
the basic feature within a window, the basic feature combined with a cursor movement, and the basic
feature combined with a cursor movement within a window. For example, the addstr subroutine,
which writes text to the screen comes in four different flavors, each with a different set of arguments, as
these four different C statements demonstrate:

/* write text at cursor */
addstr("Text...");

/* move cursor, write text */
mvaddstr(3, 5, "Text");

/* in window write text at cursor */
waddstr(window, "Text...");

/* in window move cursor, write text */
mvwaddstr(window, 3, 5, "Text");

The Curses module greatly simplifies this, first by providing an object-oriented interface for
programming windows, and secondly by wrapping all of the variants into one Perl subroutine. In order
to work out which one we actually want, the Curses module merely inspects the number of arguments
and their type. This makes the whole business of programming Curses applications much simpler.

Since Curses is a huge library (and not strictly Perl either, for that matter) we cannot hope to document
it all here. When perusing the Curses documentation that comes with the library (for example man
curses or man ncurses on a UNIX system) we can make use of the homogenization to mentally
reduce the number of subroutine calls we need to use by stripping off any w or mv prefixes we see.

A Simple Curses Application
A simple Curses program starts with initscr that initializes the screen for use by Curses. After this we
can configure the terminal in any way we like, for example to switch echoing off. We can send output to
the screen with addstr, followed by refresh to tell Curses to actually draw it. Finally, when we are
finished, we call endwin to reset the terminal for normal use again. Here is a short example program
that lists environment variables one by one and shows the basic structure of a Curses program:

#!/usr/bin/perl
curses1.pl
use warnings;
use strict;

use Curses;

initscr(); # initialize the screen to use curses
cbreak(); # go into 'cbreak' mode
noecho(); # prevent key presses echoing

Chapter 15

592

move and addstr as separate actions
attron(A_BOLD|A_UNDERLINE);
move(2, 5);
addstr("Environment Variable Definitions:");
attroff(A_BOLD|A_UNDERLINE);
move(15, 5);
addstr("Hit a key to continue, 'Q' to finish...");

enable color
start_color();

define some color pairs
init_pair(1, COLOR_WHITE,COLOR_BLACK);
init_pair(2, COLOR_YELLOW,COLOR_BLACK);
init_pair(3, COLOR_BLACK,COLOR_CYAN);

OUTER: while (1) {
foreach (sort keys %ENV) {
attron(COLOR_PAIR(3)); # set black-on-cyan
addstr(5, 8, " $_ "); # move and write variable name

clrtoeol(); # delete anything beyond it
attron(COLOR_PAIR(2)); # set yellow-on-black
addstr(6, 8, $ENV{$_}); # move and write variable value

clrtoeol(); # delete anything beyond it
move(9, 79); # move the cursor out of the way
refresh(); # send output to the screen
last OUTER if (lc(getch) eq 'q');

}
}

attron(COLOR_PAIR(1)); # set white-on-black

move(9, 5);
addstr("All Done");
refresh(); # send output to the screen
END {endwin;} # end Curses properly even on abnormal termination

There are a few points to note about this application:

First, all Curses programs that do not use Windows must start with initstr. Similarly, all Curses
programs must end with endwin to reset the terminal into a useable state afterwards.

Second, nothing appears on the screen until we call refresh. Up until this point, Curses carries out all
the changes in an internal buffer, recording what parts of the screen have been changed. When we call
refresh all the changes – and only the changes – made since the last refresh (or initscr) are sent
to the terminal in one go. This makes Curses very effective for programming in situations that may
involve a slow serial or network connection since it uses only the minimum bandwidth necessary to do
the job.

Third, if no coordinates are specified to subroutines that output to the screen then the current cursor
position is used instead. This can be seen in the move and addstr pairs, and also in the use of
clrtoeol after the addstrs in the loop to clear from the end of the string (which is where the cursor
ends up after addstr has finished) to the end of the line.

Terminal Input and Output

593

Fourth, we can enable and disable text attributes like bold or underline by using attron and attroff.
The different attributes can be numerically ored together to switch several attributes on or off at the
same time.

Fifth, to use colors in Curses we need to first call start_color. Curses handles colors in pairs, setting
both foreground and background at once. We therefore define some color pairs using init_pair,
which takes an arbitrary pair number and a foreground and background color. These pairs can be used
with attorn (and attroff) using the COLOR_PAIR macro. The whole system is a lot more
sophisticated than this of course – this is just a quick example.

Lastly, as we discussed earlier, most Curses features take variable numbers of arguments and determine
what to do based on how many there are. To write at a given position of the screen we can therefore use
move and then addstr with one argument, or supply the coordinates and the string as three arguments
to addstr. The clrtoeol subroutine also accepts coordinates, though we haven't used them here.

Curses Windows
The Curses module has two modes of operation. The simple mode, which we have just seen, is suitable
for full screen programs where we use the entire screen (by which we also mean an entire terminal
window on a GUI desktop, of course; Curses has no idea what the terminal 'really is' – that's the point)
as a single window. The object-oriented version is useful if we are programming Curses windows, where
each window is effectively a small screen in its own right. In this case we do not use initscr but create
and call methods on window objects. The homogenization of the Curses module interface means that
we still use the same names for the methods as we did for the functions. Here is how we create a
window in Curses:

create a new 20x10 window, top left corner at coordinates 5, 5
$window = new Curses (10, 20, 5, 5);

Once we have created a window, we can move the cursor around in it, write to it, refresh it, and set
attributes on it, just as we can with the whole screen. Here is a short program to demonstrate the object-
oriented Curses window interface. It creates a window, puts something in it, and then moves it across
the screen each time we press a key:

#!/usr/bin/perl
curses2.pl
use warnings;
use strict;

use Curses;

create a 3x20 window with top corner at 0, 0
my $window = new Curses(3, 22, 0, 0);

cbreak(); # go into 'cbreak' mode
noecho(); # prevent key presses echoing

define some colors
start_color();
init_pair(1, COLOR_YELLOW, COLOR_BLUE);
init_pair(2, COLOR_GREEN, COLOR_BLUE);

TE
AM
FL
Y

Team-Fly®

Chapter 15

594

put something in the window
$window->attron(COLOR_PAIR(1));
$window->clear();
$window->box(0, 0);
$window->attron(COLOR_PAIR(2));
$window->addstr(1, 2, "This is a Window");
$window->attroff(COLOR_PAIR(2));

$window->refresh();
getch;

foreach (5..25) {
$window->mvwin($_, $_);
$window->refresh();
last if (lc(getch) eq 'q');

}

END {endwin;} # end Curses properly even on abnormal termination

One irritating aspect of this application is that it leaves a trail of old window borders across the screen
as the window moves. This is because windows are not windows in the desktop sense but just predefined
boxes of text we can place on the screen at will. To avoid the trailing effect we would need to delete the
old window first – fortunately Curses' refresh mechanism means that blanking the whole block and then
replacing the window in its new position is as efficient as trying to work out the parts that have changed
and only updating them. However, it doesn't take account of the possibility that something else might
be underneath the window. To solve that problem we can make use of Panels, an extension to Curses
frequently supplied as a secondary library that provides intelligent windows that can stack and overlap.
Not all systems support Panels, however, and some provide it as a separate library, so the Curses
module may not be able to make use of it directly. We can of course use h2xs to bridge the gap, but we
can also make use of a number of third-party modules.

Third-Party Extensions to Curses
Curses is a popular library and has been around for some time now. Consequently, a lot of other
libraries and Perl modules have been written that build on Curses to provide everything from simple
menus to complete GUI toolkits. Checking CPAN for modules providing more advanced Curses-based
features is well worth the time before embarking on a Curses-based project – the Curses::Forms
module (for data entry) and Curses::Widgets module (for button bars, dialog boxes and other 'GUI'
components) in particular. Other Curses modules include Cdk, which uses a third-party C library built
on Curses, and PV.

Programming the Terminal Directly via 'POSIX'
For occasions when modules like Term::ReadKey won't do and we just have to program the terminal
directly, we can use the POSIX module. Among many other things, the POSIX module provides a direct
low-level interface to the terminal in the POSIX::Termios package, from which we can control any
aspect of the terminal we wish. In fact many of the modules we have discussed so far in the chapter
make use of this interface, along with modules like Term::Cap, to do most of their work. The drawback
is that while many platforms support POSIX compliance, it doesn't necessarily mean that they will be
able to handle programming the terminal directly. On UNIX, these techniques will usually work; other
platforms may not be so fortunate.

Terminal Input and Output

595

Whereas Term::Cap interrogates the termcap database, POSIX::Termios is concerned with the
terminal itself. That is, Term::Cap can tell us what the delete key ought to be; POSIX::Termios can
tell us what it actually is right now. To use it we first need to create a termios object, then associate
that object with the file handle of the terminal we want to manipulate:

use POSIX;

$termios = new POSIX::Termios;

We then tell the object to read the attributes of a terminal by passing a filehandle number to getattr.
This can be either a simple integer such as 0 for STDIN, 1 for STDOUT, or 2 for STDERR, or a file
number extracted from a filehandle with fileno:

three different ways to get the attributes of STDIN
$termios->getattr;
$termios->getattr(0);
$termios->getattr(fileno(STDIN));

Once we have the attributes in our termios object we can retrieve them with functions like getospeed
(for the terminal output speed) and getcc (for the control characters) and set them with functions like
setospeed and setcc. All this just changes values in a hash, however. Once we have finished
modifying the attributes we then set them on a filehandle by using setattr. Here is a short program
that redefines a few properties of STDIN and STDOUT by way of an example:

#!/usr/bin/perl
termios.pl
use warnings;
use strict;

use POSIX qw(:termios_h);

my $stdin = fileno(STDIN);
my $stdout = fileno(STDOUT);

print "\nInterrogating STDIN:\n";
my $termios_stdin = new POSIX::Termios;
$termios_stdin->getattr($stdin);

redefine the erase (delete) key
print "\tErase key is ", $termios_stdin->getcc(VERASE), "\n";
print "Set Erase to Control-D:\n";
$termios_stdin->setcc(VERASE, 4);
print "\tErase key is ", $termios_stdin->getcc(VERASE), "\n";

set the terminal to no-echo
my $lflag = $termios_stdin->getlflag;
printf "\tLocal flag is %b\n", $lflag;
Perl<5.6: print "\tLocal flag is ",unpack("B16", pack('n', $lflag)), "\n";
print "Set Terminal Mode to Noecho\n";
$termios_stdin->setlflag($lflag & ~(ECHO | ECHOK));
printf "\tLocal flag is %b\n", $termios_stdin->getlflag;

Perl<5.6: print "\tLocal flag is ",
unpack("B16", pack('n', $termios_stdin->getlflag)), "\n";

Chapter 15

596

set changes on STDIN
print "Setting STDIN from termios object\n";
$termios_stdin->setattr($stdin,POSIX::TCSANOW);

restore original local flag (enable echo)
$termios_stdin->setlflag($lflag | ECHO | ECHOK);
printf "\tLocal flag is %b\n",$termios_stdin->getlflag;
Perl<5.6: print "\tLocal flag is
", unpack("B16", pack('n', $termios_stdin->getlflag)), "\n";
print "Setting STDIN from termios object\n";
$termios_stdin->setattr($stdin, POSIX::TCSANOW);

print "\nInterrogating STDOUT:\n";
my $termios_stdout = new POSIX::Termios;
$termios_stdout->getattr($stdout);
my $old_stdout = new POSIX::Termios;
$old_stdout->getattr($stdout);

set the output speed
print "\tOutput speed is ",$termios_stdout->getospeed, "\n";
print "Set speed to 9600 bps:\n";
$termios_stdout->setospeed(POSIX::B9600);
print "\tOutput speed is ", $termios_stdout->getospeed, "\n";

set changes on STDOUT
print "Setting STDOUT from termios object\n";
$termios_stdout->setattr($stdout, POSIX::TCSANOW);

When run, this script should produce output similar to the following, if the platform supports termios
operations:

> perl termios.pl
Interrogating STDIN:

Erase key is 127
Set Erase to Control-D:

Erase key is 4
Local flag is 1000101000111011

Set Terminal Mode to Noecho
Local flag is 1000101000010011

Setting STDIN from termios object
Local flag is 1000101000111011

Setting STDIN from termios object

Interrogating STDOUT:
Output speed is 15

Set speed to 9600 bps:
Output speed is 13

Setting STDOUT from termios object

For more information on the POSIX module and in particular the subroutines and arguments of the
POSIX::Termios module, consult the POSIX manual page and the documentation under:

> perldoc POSIX

Terminal Input and Output

597

Summary
In this chapter, we saw how communication with terminals has developed over the years, and how to
determine whether a script is interactive. We then covered controlling terminal input using the
Term::ReadKey module – particularly we looked at read modes and reading single characters.

After this we looked at reading complete lines, and covered the following topics in more depth:

� Passwords and invisible input

� Finding and setting the screen size

� Serial connections and terminal speed

� Line end translation

� Getting and setting control characters

We then discussed the creation of terminal objects (their supported features, and the command-line
history), following which we discussed terminal capabilities like:

� Creating a termcap object

� Clearing the screen

� Moving the cursor

We briefly looked at the Term::Screen module, and then learned about the Curses library, by
creating a simple application. Finally, we saw how to program a terminal directly via POSIX.

Chapter 15

598

Warnings and Errors

Errors are not something we have a choice about, they are always enabled. Warnings on the other hand
we have to enable ourselves. There is usually no good reason for not doing this, but Perl still gives us
the choice.

In this chapter we will explore various options that Perl gives us to deal with warnings and errors.

Enabling Warnings
To enable warnings from the command line we can use the -w switch:

> perl -w myscript.pl

We can force warnings on, even if the application tries to switch them off by using the -W option
instead:

> perl -W myscript.pl

Conversely, if we really want to run an application we know works and just have it shut up about
warnings, we can use -X:

> perl -X myscript.pl

Inside the application, the setting of the -w options is expressed by the special variable $^W. We can
switch warnings on and off on a program-wide scale using this variable, or localize it, for example to
disable warnings temporarily:

sub mywarningpronesub {
local $^W = 0;
...

}

Chapter 16

600

This only works for run-time warnings however, since at compile time Perl is clearly not actually
assigning variables or running code. From Perl 5.6, use of $^W is deprecated. Instead, we can enable
(and disable) warnings from inside the application with the warnings pragma, as we have been doing
in our previous examples:

use warnings;

Unless -W has been specified, we can disable warnings with:

sub mywarningpronesub {
no warnings;
...

}

But why would it be advantageous to disable warnings? One reason is to suppress warnings from Perl
for things that look wrong, but actually are not. For example, only using a variable once is usually an
error, but if we are setting a variable for the benefit of other packages, or for reasons not directly
connected to the program, we might easily set it once and then never refer to it again. A source control
ID string is a good example:

#!/usr/bin/perl
$rcsid = '$Id$';
use warnings;

Or, better:

#!/usr/bin/perl
use warnings;
{
no warnings; # no warnings inside block
$rcsid = '$id$';
}

The warnings pragma is actually a lot more versatile than this and has the potential to allow us to
enable or disable warnings selectively. It also works at compile time, unlike $^W. We will cover it in
more detail at the end of this section.

Enabling Diagnostics
Occasionally the errors and warnings emitted by Perl are not completely transparent. In these cases we
can use the diagnostics pragma to provide a complete (and frequently very long) description of what
Perl is trying to tell us. To enable it we just write:

use diagnostics;

As an example, the following program generates a void context warning:

#!/usr/bin/perl
use diagnostics;

2**2;

Warnings and Errors

601

Note that use diagnostics automatically enables warnings if they have not been enabled at this
point, but that we can still disable them with no warnings later. This is the warning that Perl produces
from the above program when the warnings pragma is enabled:

Useless use of a constant in void context at ./diagnostics.pl line 4 (#1)

And here is what the diagnostics pragma has to say about it:

 (W void) You did something without a side effect in a context that does nothing
with the return value, such as a statement that doesn't return a value
from a block, or the left side of a scalar comma operator. Very often
this points not to stupidity on your part, but a failure of Perl to parse
your program the way you thought it would. For example, you'd get this
if you mixed up your C precedence with Python precedence and said

$one, $two = 1, 2;

when you meant to say

($one, $two) = (1, 2);

Another common error is to use ordinary parentheses to construct a list
reference when you should be using square or curly brackets, for
example, if you say

$array = (1,2);

when you should have said

$array = [1,2];

The square brackets explicitly turn a list value into a scalar value,
while parentheses do not. So when a parenthesized list is evaluated in
a scalar context, the comma is treated like C's comma operator, which
throws away the left argument, which is not what you want. See
perlref for more on this.

This information comes from the perldiag.pod file, which is otherwise available as perldoc
perldiag. The (W void) prefix indicates that this is a warning (as opposed to a fatal error, for instance)
in the void category.

By default use diagnostics will generate diagnostics for warnings at both the compile and run-time
stages. It is not possible to disable diagnostics during the compile stage (no diagnostics does not
work), but they can be enabled and disabled at run time with enable diagnostics and disable
diagnostics:

use diagnostics;
disable diagnostics;

sub diagnose_patient {
enable diagnostics;
$undefined_filehandle;
print $undefined_filehandle "It's worse than that, he's dead Jim";
disable diagnostics;

}

Chapter 16

602

Optionally, -verbose may be specified to have the diagnostics pragma output an introduction
explaining the classification of warnings, errors, and other salient information:

use diagnostics qw(-verbose);

Two variables may also be set to control the output of the diagnostics module prior to using use on it.
$diagnostics::PRETTY enhances the text a little for browsing. $diagnostics::DEBUG is for the
curious. Both are not set by default but can be enabled with:

BEGIN {
$diagnostics::PRETTY = 1;
$diagnostics::DEBUG = 1;

}

Needless to say, it's not a good idea to enable use diagnostics in programs that generate a lot of
warnings, and it should not be present in production code at all. The command line tool splain will
generate diagnostic messages from warnings if they have been stored in a file, which is sometimes an
acceptable alternative:

> perl myscript.pl 2>warnings.log
> splain -v -p < warnings.log

The -v (verbose) and -p (pretty) options are optional, they have the same meanings as they do for the
diagnostics pragma if specified.

Generating Warnings and Errors
We can generate our own (non-fatal) warnings and (fatal) errors using the warn and die functions. Both
functions take a list of arguments, which are passed to print and sent to standard error.

The key distinction between them is of course that die causes the application to exit, whereas warn
merely sends a message and allows the application to continue running. The die function returns the
value of $! to the caller, which can be retrieved through $? if the caller is also a Perl script. If $! is not
set but $? is, then die shifts it right eight places ($? >> 8) and returns that as the exit code, to
propagate the exit code from a child process to the parent. The value returned by die (or exit) can
also be modified through $? (we will come to this a little later).

If the message passed to either warn or die ends with a newline, then it is printed verbatim, without
embellishment. If however no trailing newline is present then Perl will add details of the file and line
number to the end of the message (plus a newline). For example:

> perl -e 'warn "Eek! A Mouse\n"' # On Windows: perl -e "warn \"Eek! A Mouse\n\""
Eek! A Mouse!

> perl -e 'warn "Eek! A Mouse"' # On Windows: perl -e "warn \"Eek A Mouse\""
Eek! A Mouse! at -e line 1.

If no message at all is passed to warn or die then they consult the value of $@ to see if an error has
been trapped by an eval statement (see below). In this case they use the message contained in $@ and
append "\t...caught" or "\t...propagated" to it, respectively. If even $@ is not defined then they
get creative, die simply produces:

Warnings and Errors

603

Died at <file> line <line>.

warn produces the paranoid:

Warning: something's wrong at <file> line <line>.

Of course giving either function no arguments is questionable at best, unless we are checking explicitly
the result of an eval:

die if !eval($evalstr) and $@;

As a special case for evaluated code, if the die function is passed a reference (not a message), then this
reference is set into the variable $@ outside the eval. The main point of this is to allow object-oriented
programs to raise exceptions as objects rather than messages:

eval {
...
die new MyModule::PermissionsException;

}

if ($@) {
if ($@ == MyModule::PermissionsException) {

...
} else {

...
}
}

If die is given a reference as an argument and it is not in an eval then it simply prints the reference by
converting it into a string, as usual.

Intercepting Warnings and Errors
Warnings and errors, whether issued by Perl directly or generated by applications through the warn or
die functions can be trapped within program code using the __WARN__ and __DIE__ pseudo-signal
handlers, by defining values for them in the %SIG signal handler hash. For example, we can suppress
warnings completely by saying:

$SIG{__WARN__} = sub{};

A more useful warnings handler might embellish the warning before printing it, or redirect it to a file:

$SIG{__WARN__} = sub{print WARNLOG, "$0 warning: ", @_, "\n"};

We can even call warn from inside the handler; the handler itself is disabled for duration of the handler
subroutine:

$SIG{__WARN__} = sub{warn "$0 warning: ", @_;};

TE
AM
FL
Y

Team-Fly®

Chapter 16

604

The die handler is defined in much the same way, but unlike a warn handler we cannot suppress it
completely, only change the message by calling die a second time. Any other action will cause Perl to
carry on and continue dying with the original arguments. This means that we can use a die handler to
perform cleanup actions, but we cannot use it to avoid death.

$SIG{__DIE__} = sub {

send real message to log file
print LOGFILE "Died: @_";
Give the user something flowery
die "Oh no, not again";

}

This approach is useful in things like CGI programs, where we want the user to know something is
wrong, but do not want to actually give away potentially embarrassing details.

Deciphering Error Results from System Calls
Many of Perl's functions make calls to the operating system in order to carry out their task; examples of
this are the open and close functions. None of these functions cause fatal errors or even produce
warnings if they fail. Instead, they return an undefined value and set the value of the special variable $!.

Error Numbers and Names
$!, also known as $ERRNO if we have used the English module, is directly related to the C errno
value and holds the error status of the last system function called. In a string context it returns a textual
description, which we can use in our own messages:

warn "Warning - failed: $! \n";

In a numeric context it returns the actual value of errno, which we can use programmatically. In order
to use symbolic names rather than numbers for errors it is convenient to use the Errno module:

use Errno qw(EAGAIN);

if ($!) {
check for EAGAIN in numeric comparison
sleep(1), redo if $! == EAGAIN;
die, using $! in string context
die "Fatal error: $!\n";

}

Alternatively we can avoid importing error symbols and just write them explicitly:

sleep(1), redo if $! == Errno::EAGAIN;

Errno also defines the hash variable %!, which looks like a Perl special variable but actually is not. It
allows us to check for errors by looking them up as keys in the hash and seeing if they are set to a True
value. Because $! can only hold one error at a time there can only be one key with a True value, so this
is really just an alternative syntax to using ==:

sleep(1), redo if $!{EAGAIN};

Warnings and Errors

605

The Errno module is smart in that it understands which errors are actually available on the platform
that Perl is running on, so we can check for the existence of a particular symbol with exists:

#!/usr/bin/perl
errno.pl
use warnings;
use strict;

use Errno;

print "EAGAIN = ", Errno::EAGAIN, "\n" if exists &Errno::EAGAIN;
print "EIO = ", Errno::EIO, "\n" if exists &Errno::EIO;

The symbols defined by Errno are subroutines, in the style of use constant, not scalars.
Alternatively, we can use %!:

continuation of errno.pl
foreach ('EAGAIN','EIO','EVMSERR','EKETHUMP') {

warn "$_ not supported\n" unless exists $!{$_};
}

This will generate the warning EKETHUMP not supported on all platforms. EVMSERR should only be
defined on a VMS system.

Setting the Error Number
In a few cases it can be advantageous to actually set the value of $!. Although it can be treated either
numerically or as a string, $! can only be assigned a numeric value. Despite this, we can still produce a
textual message from it:

$! = 1;
print "$!"; # display 'Operation not permitted'.

Setting $! should not be done lightly; since we can obscure a previous error that we ought to be
handling. A common reason to set it is, as we saw earlier, to handle a child process exit and propagate
the child's value of $! to the parent.

if ($?) {
$! = $? >> 8;
die "Child exited abnormally: $!";

}

Note however that the die function automatically performs this job for us if our intent is only to return
a child's exit status to a parent process of our own.

Errors from Evaluated Code
Code evaluated inside an eval statement, which includes code evaluated indirectly via do, require, or
even use (if the module contains a BEGIN block) may also set the variable $!. However, if the code
fails to compile at all (in the event of a syntax error), then the special variable $@ is set to a textual
description of the syntax error. The return value from eval is undef in this case, but it may also be
undef in many cases that set $!, if the return value is determined by a function like open that returns
undef itself. In order to properly handle an eval therefore, we need to check both variables.

Chapter 16

606

eval $evalstr;
if ($@) {

die "Eval error: $@\n";
} elsif ($!) {

die "Error: $!\n";
}

In the event of success, eval returns the value of the last expression that it evaluated, not a Boolean
'success' or 'failure' as we might like. Since this can frequently be 0 or undef, a common trick for
checking eval for errors is to explicitly add a final statement of 1 to guarantee that the eval will
always return True on success. A syntax error of any kind, on the other hand, will cause eval to return
undef since it never gets to the 1.

For example, to find out if the symlink function is supported on our platform we can write:

$symlink_ok = eval{symlink("", ""); 1}

This works because in the event of the success or failure of the symlink, the eval will always return 1.
It will return undef due to a fatal error raised by Perl in the event that the platform does not support
symlink. In this case symlink will return 0 but not raise a fatal error if it is supported, since we cannot
link an empty filename to itself. The added 1 allows us to ignore the issue of a successful compile but a
failed call. Of course if we actually want to return a meaningful value from the eval this is not going to
work, but for many cases it's a useful trick.

Extended Error Messages
Some platforms also supply additional error information in the special variable $^E, or
$EXTENDED_OS_ERROR with the English module. Currently only OS/2, Windows, and VMS provide
additional information here:

OS/2 $^E is set to the last call to the OS/2 API via the underlying C runtime libraries, or
directly from Perl. Incidental causes of $! being set are not carried over to $^E.

VMS $^E may provide more specific information about errors than $!. This is
particularly true for the VMS specific EVMSERR, which we mentioned briefly in the
example earlier.

Windows $^E contains the last error returned by the Win32 API, as opposed to $!, which is
more generic. It may contain additional information or a better description of the
error, but may also be empty even after an error, due to the non-unified nature of
the Win32 error reporting system.

For all other platforms, $^E is identical to $!. The best approach for handling $^E therefore is to add it
to an error message if it is set and is not equal to the message returned from $!:

$message = $!;
$message .= "\n $^E" if $^E ne $!;
warn $message;

Finer grained control may be possible by checking $^O ($OSNAME with use English) and dealing with
errors in a platform-specific way, but this is overkill for most applications.

Warnings and Errors

607

'Errno' and The 'POSIX' Module
The POSIX module provides a direct interface from Perl to the underlying C standard library. Many of
the functions in this library set errno and therefore the value of $! in Perl, and can be handled in the
same way as standard Perl functions like open and close. The POSIX module supplies its own errno
function, which is just an explicit numeric evaluation of $! (literally, $!+0), which illustrates how
closely $! is linked to the errno value.

The POSIX module also defines constants for the standard system errors like EAGAIN, EINVAL, EPERM
and so on, which we can import with the errno_h tag, along with the errno subroutine:

use POSIX qw(:errno_h);

In general, the Errno module is preferred over this approach since it has better portability across
different platforms (it allows us to check for the availability of a given error, for instance). However, for
programs that make extensive use of the POSIX module this may be an acceptable alternative.

All (modern) UNIX systems conform closely to the POSIX standard, so the POSIX module works well
on these platforms. Windows and other platforms can make some use of the module, but many aspects
of it (in particular the API) will not be available. In particular, this module has no direct correspondence
to the somewhat approximate POSIX compatibility layer in Windows NT.

Checking the Exit Status of Subprocesses and External
Commands

Child processes run by Perl (for example external commands run via system, backticks, and forked
processes) return their status in the special variable $? when they exit. This is traditionally a 16-bit
value (though it's 32 bit on Windows), containing two eight bit values:

my $exitcode = $? >> 8; # exit code
my $exitsignal = $? & 127; # signal that caused exit

The 'exit code' is the exit value returned by the subprocess. It should be zero for success, and a number
corresponding to an error code, such as returning a True value on success or 0 on failure. For example,
the UNIX ping command returns 0 if it resolves the IP address, regardless of whether it actually
reaches the requested host.

The signal is often 0, but if set indicates that the child died because of a signal which it did not trap or
ignore, for example 2 would correspond to a SIGINT and 9 would be a SIGKILL. This is one way we
could check for and handle a process terminated by either a signal, or returning with an exit code (the
command is in @args):

my $result = system(@args);
if (my $signal = $? & 127) {

warn "External command exited on signal $signal\n";
} elsif (our $! = $? >> 8) {

assign $! numerically
$! = $exitcode;

display it textually
warn "External command existed with error: $!\n";

}

Chapter 16

608

We take advantage of the special properties of $! to generate a textual message from the returned exit
code, but note that this is only appropriate if the exit code corresponds to an errno value. The concept
of signals is much more concrete on UNIX platforms than others, in particular Windows. For example,
when a CTRL-C interrupt occurs on Win32, the operating systems generate a new thread to specifically
handle that interrupt. This can cause a single-thread application such as UNIX, to become
multithreaded, resulting in unexpected behavior.

We can also use $? to intercept and change the exit status of an application by redefining it in an END
block. For example, to pretend that all is well even if it isn't:

END {
$? = 0 if $? and $ENV{'ALLS_WELL_THAT_ENDS_BADLY'};

}

Making Non-Fatal Errors Fatal
The Fatal module provides a simple and effective way to promote system-level errors to fatal errors in
Perl. Normally when a function like open fails, it sets $! and returns undef, but does not otherwise flag
an error or even a warning. The Fatal module allows us to change that. To use it, we simply pass an
import list of the functions we want to handle:

use Fatal qw(open close);

Fatal works on the assumption that an undefined or empty value return is a sign of failure, so it will
only trap functions like open and close that adhere to this rule. However, most of Perl's functions that
make calls to the operating system, and therefore set $! on failure, do exactly this. We can even trap a
failed print this way, something that we rarely do because of the problems of clarity this would
otherwise cause:

use Fatal qw(print open close sysopen);

The Fatal module wraps the named functions in its import list with versions that emit errors, so it can
also work on subroutines, so long as they have been previously declared or defined:

use Fatal qw(mysubroutine);

This works well if we never check for failures ourselves, but otherwise it can be limiting. Rather than
simply making failures fatal errors, which we must catch with a signal handler to prevent our application
exiting, we can use Fatal to supplement our own error checking by producing a fatal error only if the
return value is not checked explicitly. To do this we add the special label :void (for void context) to
the import list. Any subroutines or functions listed before this label are treated as before and always
issue an error on failure. Any subroutines or functions listed afterward issue an error only if their return
value is ignored:

use Fatal qw(sysopen :void open close);

open FILE, "> /readonly/area/myfile"; # fails with error

unless (open FILE, "> /readonly/area/myfile") { # no error issued
... handle error explicitly

}

unless (sysopen FILE, "/readonly/area/myfile", O_RDWR|O_CREAT) {
}

Warnings and Errors

609

This works because the wrapper generated by Fatal can check for the calling context by examining the
value of wantarray. If it is defined, the wrapper was called in a scalar or list context and the return
value is therefore being used. If it is undefined then the wrapper was called in a void context and the
return value is being ignored. In this case the wrapper issues a fatal error.

It is important to realize that the wrappers generated by Fatal do not perform compile-time checking,
nor does it issue an error if a function or subroutine succeeds in a void context; it will only be triggered
in the event of a failure.

Returning Warnings and Errors in Context with 'Carp'
The Carp module is one of Perl's most enduringly useful modules. Its primary subroutines carp and
croak work exactly like warn and die but return details of the calling context rather than the one in
which they occurred. They are therefore ideal for library code and module subroutines, since the
warning or error will report the line in the code that called them rather than a warning or error in the
module source itself.

Both subroutines track back up the stack of subroutine calls looking for a call from a different package.
They then use and return the details of that call. The upshot of this is that irrespective of how many
subroutine or method calls might have occurred within the package, it is the calling package that
resulted in the carp or croak that is reported:

package My::Module;

sub mymodulesub {
carp "You called me from your own code";

}

This generates a message like:

You called me from your own code at ./owncode.pl line N.

From the point of view of an application developer this gives them a message that originates in their
own code, and not in a library module which they have no immediate way of tracing back to the call
that caused the warning or error to occur.

The cluck and confess subroutines are more verbose versions of carp and croak. They generate
messages for the file and line number they were actually called at (unlike carp and croak, but like
warn and die) but make up for this by generating a full stack trace of subroutine calls in reverse order,
from the subroutine they were called from back up to the top of the program.

Here is a short program that demonstrates carp, cluck, and confess. To make things interesting we
have used three subroutines each in their own package, to illustrate the effect of calling these
subroutines at different points:

#!/usr/bin/perl
carpdemo.pl
use warnings;

&Top::top;

Chapter 16

610

package Top;
use Carp qw(cluck);
sub top {

cluck "Called 'top'";
&Middle::middle;

}

package Middle;
use Carp;
sub middle {

carp "Are we there yet? Called 'middle'";
&Bottom::bottom;

}

package Bottom;
use Carp;
sub bottom {

carp "Here we are. Called 'bottom'";
confess "I did it!";

}

This is the output generated from this program:

Called 'top' at ./carpdemo.pl line 8
Top::top called at ./carpdemo.pl line 3

Are we there yet? Called 'middle' at ./carpdemo.pl line 9
Here we are. Called 'bottom' at ./carpdemo.pl line 16
I did it! at ./carpdemo.pl line 23

Bottom::bottom called at ./carpdemo.pl line 16
Middle::middle called at ./carpdemo.pl line 9
Top::top called at ./carpdemo.pl line 3

If the symbol verbose is imported into the application then carp and croak are automatically
upgraded into cluck and confess, that is, a stack trace is generated by all four subroutines. We do not
typically want to do this within applications, but it is very handy on the command line if we want to get
extra detail on a problem:

> perl -MCarp=verbose myscript.pl

Since carp and cluck are essentially improved versions of warn they can, like warn be trapped by
assigning a handler to $SIG{__WARN__}. Similarly, croak and confess can be caught with
$SIG{__DIE__}.

Developers who are engaged in writing server-side applications like CGI scripts should instead make
use of the CGI::Carp module. This overrides the default subroutines provided by Carp with versions
that are formatted to be compatible with the format of a web server's error log, and is therefore
considerably friendlier to log analysis tools, as well as allowing the log to show which script actually
generated the message.

Warnings and Errors

611

Error Logs and System Logs
We frequently want to arrange for errors and logging messages to go to a file rather than directly to the
screen. This is simple enough to arrange both within and outside Perl. Outside, we can usually make use
of output redirection in the shell to create a log file. Most modern shells (including NT's cmd.exe)
allow standard error (filehandle number 2) to be directed with:

> perl myscript.pl 2>error.log

From inside Perl we can redirect the STDERR filehandle in a number of ways, which we cover in more
detail in Chapter 5. Here is one simple way of doing it, by simply reopening STDERR to a new location:

open STDERR, "> /tmp/error.log" or print STDERR "Failed to open error log: $!";

Note that if this open fails, the original STDERR filehandle remains intact. Since this is likely to be
our fallback option, we allow the open to fail but issue a warning about it on the original STDERR.

On UNIX and UNIX-like platforms we may also make use of the system log, run by the system log
daemon syslogd and generally configured by a file called /etc/syslog.conf or similar. Perl
provides a standard interface to the UNIX system log through the Sys::Syslog module:

use Sys::Syslog;

To open a connection to the system log daemon, use openlog. This takes three arguments: a program
identifier, so we can be uniquely identified, a string containing optional options and a syslog service,
for example user:

openlog 'myapp', 0, 'user';

Instead of 0 or '', the options can also be a comma separated combination of cons, pid, nowait, and
ndelay, which are passed to the underlying socket, for example cons,pid,nowait. Once a
connection is established we can log messages with syslog, which takes a priority as its first argument
and a printf style format and values as the second and further arguments. The syslog daemon itself
takes the priority, for example error, and uses it to determine where the message is sent to, as
determined by its own configuration (the file /etc/syslog.conf on most UNIX systems).

syslog('debug', 'This is a debug message');
syslog('info', 'Testing, Testing, %d %d %d', 1, 2, 3);
syslog('news|warning', 'News unavailable at %s', scalar(localtime));
syslog('error', "Error! $!");

The value of $! is also automatically substituted for the %m format, in syslog only, so the last example
above can also be written as:

syslog('error', 'Error! %m');

The socket type used to the connection may also be set (for openlog) or changed (even in between calls
to syslog) with setlogsock, which we could use to switch between local and remote logging services.
The default is to use an Internet domain socket. (But note that a UNIX domain socket is often better
both from a security and a performance point of view. It is potentially possible to overrun syslog on
an Internet domain socket, resulting in lost messages.):

setlogsock ('unix'); # use a UNIX domain socket
setlogsock ('inet'); # use an Internet domain socket

Chapter 16

612

The return value from setlogsock is True if it succeeds, or 0 if it fails. Consult the system
documentation for more information on the system log and how to use and configure it.

On Windows NT we can make use of the Win32::Eventlog module, available from CPAN, which
provides an interface to the NT system log. For some reason known only to the developers of NT, this
log is a binary file and cannot be easily read except with the eventvwr utility. Even then, useful error
messages may be hard to find.

Here is a short example of using the Win32::EventLog module:

#!/perl/bin/perl
win32.pl
use Win32::EventLog;
use strict;

my $e = new Win32::EventLog($0);
my %hash = (Computer => $ENV{COMPUTERNAME},

EventType => EVENTLOG_ERROR_TYPE,
Category => 42,
Data => "Data about this error",
Strings => "this is a test error"

);
$e->Report(\%hash);

For more information about programming the Event Log on Windows NT, you can use perldoc
Win32::Eventlog.

Advanced Warnings
The warnings pragma, introduced in Perl 5.6, allows us to turn warnings on and off within Perl. We
saw an example of it in one of its more simple uses earlier. However, it is a lot more powerful than this.
The default use of use warnings is actually equivalent to:

use warnings qw(all);

By supplying alternative and more specific category names to the warnings pragma, and especially
using no, we can enable or disable warnings selectively. For example, the following disables all void
warnings, including the Useless use of in void context messages:

no warnings qw(void);

This is a lexically scoped declaration, so we can use it inside (say) a subroutine in the same way we can
say things like no strict 'refs', with the effect of the pragma extending only across the body of the
subroutine.

Warning pragmas stack up cumulatively, and several categories may also be given at once, so the
following are equivalent:

no warnings 'void';
no warnings 'untie';
no warnings 'uninitialized';
use warnings 'untie';

no warnings qw(void uninitialized);

Warnings and Errors

613

If we want to check whether a warnings group is enabled or not we can do so with
warnings::enabled:

$checking_for_void = warnings::enabled('void');

We can also manage our own category, if we are programming modules. We can dynamically add a new
warnings category under the name of the module with:

use warnings::register;

To issue warnings in our own category we then simply pass the warning we want to issue to
warnings::warn:

warnings::warn ('This warning is in our own category');

To issue a warning in a specific category, we can pass the category name as the first argument:

warnings::warn ('void', 'This warning is in the void category');

Code that uses our module may now switch warnings from our module on and off by issuing the
appropriate pragmas:

no warnings qw(MyModule);

Here is a list of all the categories currently supported by the warnings pragma. Note that this is a
hierarchical list, so we disable all io warnings except unopened filehandle warnings with no warnings
qw(io) followed by use warnings qw(unopened):

TE
AM
FL
Y

Team-Fly®

Chapter 16

614

chmod

closure

exiting

glob

io

closed

exec

newline

pipe

unopened

misc

numeric

once

overflow

pack

portable

recursion

redefine

regexp

severe

debugging

inplace

internal

malloc

signal

substr

syntax

ambiguous

bareword

deprecated

digit

parenthesis

precedence

printf

prototype

qw

reserved

semicolon

taint

unmask

uninitialized

unpack

untie

utf8

void

y2k

all

Warnings and Errors

615

Summary
In the course of this chapter we examined the tools that Perl provides us with for generating warnings
and reporting errors. We covered the following:

� Obtaining longer descriptions of Perl warnings using the diagnostics pragma.

� Generating non-fatal and fatal warnings with the warn and die functions, respectively, and
trapping them with __WARN__ and __DIE__.

� Handling errors that result from system calls.

� Making non-fatal errors fatal using the Fatal module.

� Determining the context of the resulting warnings and errors using the Carp module. We
examined the carp, croak, cluck, and confess subroutines.

� Logging errors.

� Using the advanced options of the warnings pragma.

Chapter 16

616

Debugging
Perl comes with a comprehensive and fully featured debugger. Unlike other languages, however, the
debugger is not a separate tool but simply a special mode of the Perl interpreter, which makes use of an
external library called perl5db.pl. To enable it we simply use the -d option, after which we may step
through code, set breakpoints, examine, and execute code selectively from inside the debugger.

In addition to the debugger, Perl supplies a number of modules designed for debugging support or
simply useful for debugging. In particular the Safe module allows us to create a restricted environment
for Perl scripts to run in, and the Test and Test::Harness modules allow us to create automated
testing scripts, among other things.

We do not always need to reach for the debugger at the first sign of trouble. With a little thought it is
relatively simple to build debugging support into the application itself, which, if done correctly, can
greatly help in tracking down problems. It also makes us think about what could go wrong, which itself
helps to prevent bugs from occurring.

Irrespective of whether we implement our own debugging framework, it is always a good idea to
minimize the amount of trouble we can get into by using the pragmatic modules Perl supplies to aid in
developing our code in the first place.

In this chapter we will examine various debugging modules and techniques that Perl makes available
to us.

Pragmatic Debugging Support
Before reaching for the debugger it is worth taking some simple and basic precautions that will fix a lot
of problems before they start by making use of some of Perl's pragmatic modules. All of these modules
are far more effective at preventing problems than curing them (they will do that too, but the process of
fixing problems can be painful), so use them to start with rather than adding them later; prevention is
better than cure.

Chapter 17

618

The most important Perl module for preventing problems is the warnings module, which we examined
in Chapter 16.

The second line of defense in good Perl programming is the use strict pragma. This tightens up and
restricts three areas of Perl's syntax that can otherwise lead to problems:

❑ use strict vars – variables must be declared with my or our or written explicitly as
package variables.

❑ use strict subs – barewords are not allowed because of their possible conflict with
subroutine names.

❑ use strict refs – symbolic references are prohibited.

To get all three of these syntax checks at once, simply use:

use strict;

To get only some of them or disable one temporarily, qualify the pragma:

use strict 'vars'; # enable strict variables
no strict 'refs'; # allow symbolic references

Any Perl application that is designed to run on a public server or can be accessed by an unqualified
user, such as a CGI script, should always have taint checking enabled. This is turned on with the -T
command-line switch, which is commonly combined with -w:

> perl -Tw...

If Perl detects that a script is being run under an effective user id, which is different from the real user id
(web servers that run on UNIX and UNIX-like platforms commonly do this, see for instance, Apache's
User and Group directives) then taint mode is enabled automatically. This security feature only
applies when the platform has a meaningful definition of 'effective' and 'real' user ids, which essentially
limits it to UNIX platforms. Other platforms must specify -T explicitly. There is no way to disable
taint from within the program once it has been enabled.

Perl's regular expression engine also comes with its own debugging support, which is entirely
independent of the Perl debugger. To enable it, we add the following to any Perl script or application:

use re qw(debug);

Applications that Debug Themselves
It makes a lot of sense to build an application with debugging in mind, since debug support that is
tailored to the design of an application is frequently more effective than a generic debugging tool,
however powerful it is.

Debugging

619

A Simple Debugging System
It pays to add debug support early on when writing code. One typical approach is to write a debug
subroutine and then call it at appropriate moments:

simple debug
sub debug {

print STDERR @_,"\n";
}
...
debug "The value of 'scalar' is $scalar";

This simple debug routine mimics print but sends its output to standard error. But it also cannot be
switched off. If we are happy to edit the code to enable or disable debugging we can define two
subroutines and keep one of them commented:

sub debug {}
sub debug { print STDERR @_, "\n"; }

This will not suffice if we want to be able to enable debugging from outside the program. A better
debugging subroutine might use the environment to enable or disable debug messages, as this one does:

a better debug
sub debug {

print STDERR @_, "\n" if $ENV{'DEBUG'};
}

This debug routine only prints out messages if the DEBUG environment variable is set. This is generally
better than implementing a debug option through a command-line argument, since other people can
sometimes switch that on. A CGI debug parameter for example is not a good idea, since it can print out
debugging information to an unqualified user if they are able to figure out how to enable it.

A Better Debugging System
Here is a simple script that implements a multi-level debugging scheme, so we can assign different levels
of debug to different messages. Thus, level 2 messages only appear with level 2 debug or higher, but
level 1 messages appear for any debug level. We have also implemented it as a closure, so that the
debug level can only be changed through the debug subroutine itself or the more specific
debug_level, which also returns the debug level if we wish to know it programmatically:

#!/usr/bin/perl
debug.pl
use warnings;
use strict;

define a debugging infrastructure
{

my $debug_level = $ENV{'DEBUG'};
$debug_level |= 0; # set if unset

return and optionally set debug level
sub debug_level {

my $old_level = $debug_level;
$debug_level = $_[0] if @_;
return $old_level;

}

Chapter 17

620

print debug message or set debug level
sub debug {

remove first argument, if present
my $level = shift;

@_ will contain more elements if 2+ arguments passed
if (@_) {

2+ argument calls print debug message if permitted
print STDERR @_, "\n" if $level <= debug_level();
} else {

one and no-argument calls set level
debug_level($level?$level:1);

}
}

}

Having created these debug subroutines and their hidden debug level variable, we can now use them
like this:

continuation of debug.pl
set debugging level explicitly
debug_level(1);

send some debug messages
debug 1, "This is a level 1 debug message";
debug 2, "This is a level 2 debug message (unseen)";

change debug level with single argument 'debug'
debug 2;
debug 2, "This is a level 2 debug message (seen)";

return debugging level programmatically
debug 0, "Debug level is: ", debug_level;

set debug level to 1 with no argument 'debug'
debug;
debug 0, "Debug level now: ", debug_level;

In this scheme we have the choice of letting the environment determine the debugging level, or
overriding it with our own value inside the program. This is clearly a lot better than the first attempt,
but it is also a lot bigger, which is a waste if we are not actually going to use the debugger. We also
waste time passing arguments and processing them. To fix this we can avoid defining the debugging
code unless we actually intend to use it. The following example shows one way to do this, by defining
the debug subroutine conditionally. To keep the example short we have used a simpler debug routine:

#!/usr/bin/perl
debug2.pl
use warnings;
use strict;

predeclare 'debug' in the symbol table
use subs 'debug';

if ($ENV{'DEBUG'}) {
define a real debug subroutine if debugging is enabled
*debug = sub {

print STDERR @_, "\n";
}

Debugging

621

} else {
otherwise define a useless stub
*debug = sub {};

}

debug "This is a debug message";

Now we have a debug subroutine that only contains code to perform debugging if we actually have
debugging turned on in the environment. Otherwise, a stub subroutine is generated so debug is still
defined but without actually doing anything.

Creating Debug Logs
We might also want to create a debug log rather than have debugging messages go to standard error.
This is not a problem as we can just redirect standard error to the place we want it to go in the shell. For
example, most UNIX shells, and the Windows NT shell cmd.exe, will let us do things like the lines that
follow. Firstly, on UNIX we can use:

> DEBUG=1 perl myscript.pl 2> error.log

And on Windows:

> set DEBUG=1
> perl myscript.pl 2> error.log

We could also write the application to use another environment variable for a log name:

> DEBUG=1 DEBUG_LOG="error.log" perl myscript.pl

Again, on Windows this needs to be changed to:

> set DEBUG=1
> set DEBUG_LOG="error.log"
> perl myscript.pl

All the application needs to do is check for the DEBUG_LOG environment variable and send a logging
message to it:

*DEBUG = *STDERR unless defined($ENV{'DEBUG_LOG'}) and
open DEBUG "> $ENV{DEBUG_LOG}";

Here we guarantee the existence of a DEBUG filehandle for print DEBUG statements by using STDERR if
the debug log is either not defined or cannot be opened.

Adding Calling Context to Debug Messages
A final useful feature that we can add to debugging messages is to include the place that they were
issued from. This is invaluable, for finding precisely where a debugging message is coming from. It is
particularly useful when locating debugging messages in a large application of many modules and files.
We can find this information easily through the caller function, covered in some detail back in
Chapter 7. With no arguments it returns the details of the current caller, which in the examples above
would be the debug subroutine itself. To return the details of the subroutine containing the debug
message we need to go back up the calling stack one frame by passing 1 to caller. The caller
function returns a list of ten values, of which the first four are the most useful:

($pkg, $file, $line, $sub) = caller(1);

Chapter 17

622

Armed with these values we can create a debug message that reports the filename line number, or
possibly the subroutine name, as in this case:

print STDERR "** $sub | ", @_, "\n";

Note that the value of $sub in this case includes the package, so we do not need $pkg in this case. We
are assuming here that the subroutine in question is small enough so that we do not need to search it by
hand to locate the debug call, and that the package it is defined in is not spread across several files. We
are also assuming that only subroutines will be calling it; this will not work if called outside a
subroutine. Another more general debug message might use the file and line number instead:

print STDERR "** $file:$line | ", @_, "\n";

It all depends on what our debugging scheme is designed to handle. The first is more suitable for object
programming where the debug calls are coming from object methods, whereas the second is more
generic. We can of course construct a more complex conditional message if we like. In any event, we
can substitute this code for the print statement in any of the previous debug examples to give us
context-specific debug messages with relative ease.

The Perl Debugger
The Perl debugger is a tool for analyzing Perl programs during the course of their execution. It allows us
to step line by line through a Perl program, examining the state of variables and calling subroutines
interactively. We can set breakpoints in the code and let the program run until it encounters one,
passing control back to us in the debugger. We can also execute arbitrary code, define new subroutines,
and even use the debugger as a basic Perl shell if we want to.

We can configure the debugger in a number of ways to control its operation and the way in which it
reports information to us. Options can be set interactively within the debugger, but we can also set up a
configuration file to be read automatically by Perl when we enter debugging mode. I can also set
options in the environment variable PERL5DB. The main functionality of the debugger is implemented
in the external library perl5db.pl, which makes use of the 'debugging' hooks in the Perl interpreter to
provide debugging services. We can therefore customize the debugger through this library. The hooks
are a generic interface, so we can also replace the debugger with something else entirely. One example
replacement debugger is the Perl profiler, which we will cover later in the chapter.

Starting the Debugger
To start the Perl debugger we use the -d option. For example, to debug a program called
mybuggyscript.pl we would use:

> perl -d mybuggyscript.pl

We can combine -d with other flags, for example the taint and warnings flags for really
conscientious debugging:

> perl -Twd mybuggyscript.pl

Debugging

623

If we combine -d and -e we can debug code supplied directly on the command-line. Since the
debugger allows us to type in and execute arbitrary code, this makes for a simple but effective Perl shell.
We have to supply a valid program, but it does not have to do anything useful, or indeed anything at all.
The value 1 is therefore a legal Perl program:

> perl -dwe 1;

The -d flag also accepts an argument that allows us to provide our own alternative debugger. One
possible use for this is to use a customized replacement debugger created by modifying the
perl5db.pl script that provides the standard debugger. Another is to use an existing alternative like
the Perl profiler, which we can do with:

> perl -d:DProf rapidoffensiveunit.pl

The profiler collects information about the speed of execution of every part of a Perl program and
dumps it to an output file we can analyze later. We will cover it in more detail later in the chapter.
Meanwhile, assuming we start the standard debugger, it will load in the Perl script (or code, in the case
of -e), execute any BEGIN blocks it finds, and provide us with a prompt ready to execute the first line of
code in the program proper. For example:

> perl -d config.pl

This is using the config.pl script example from Chapter 6. It produces a standard startup message,
the first line of the script (in this case a hash variable declaration) and a prompt:

Default die handler restored.

Loading DB routines from perl5db.pl version 1.07
Editor support available.

Enter h or `h h' for help, or `man perldebug' for more help.

main::(config.pl:3): my %config=();
DB<1>

The line my %config=() is the line that is about to be executed. The 3 is the line number in the file at
which this statement was found. The DB<1> tells us that the command we are about to execute is the
first command, we can go back and re-execute commands later with !<command no>.

The debugger will only start up if the program compiles successfully. If it has errors that prevent
this, we will have to fix them before we can use the debugger. Assuming that the program is at least
good enough to compile, we can execute debugging commands.

Entering Commands
The debugger supplies a large number of commands to do everything from pulling Perl data apart and
scrutinizing it to rewriting the program interactively. It also allows us to execute arbitrary code, which
means it can be used as a passable Perl shell (see Chapter 14 for more on the subject of shells).

TE
AM
FL
Y

Team-Fly®

Chapter 17

624

Simple Debugging Commands – Single Stepping
Debugger commands are single letters followed in some cases by space-separated arguments. One
particularly useful command is h, which displays a summary of the currently supported debugger
commands (like many things in Perl, the debugger evolves from release to release):

DB<1> h
T Stack trace.
s [expr] Single step [in expr].
n [expr] Next, steps over subroutine calls [in expr].
<CR> Repeat last n or s command.
r Return from current subroutine.

Since the output of h is quite long, we might want to page it by prefixing it with |, so the full command
is, |h. (For this to work the platform needs to have a valid pager program configured. UNIX users will
be fine, but other platforms may need to configure the pager; consult the configuration section below to
see how to configure a pager program.)

Possibly the two most used commands are s, which single-steps through a program one line at a time,
and n, which executes the next line. The distinction between these two is that s will step into
subroutines and offer them to us to execute line by line, whereas n will call the subroutine and offer the
next line in the current context. Here is an example of how we can use s to step through a Perl script, in
this case the config.pl script. Note that the bold lines are typed in by us in response to the <> being
executed:

DB<1> s
main::(config.pl:4): while (<>) {

DB<1> s
Dante=Too Cool To Kill
main::(config.pl:5): chomp; #strip linefeed

DB<1>
main::(config.pl:7): next if /^\s*$/; # skip to the next iteration on empty lines

DB<1> p $_
Dante=Too Cool To Kill

DB<2> s
main::(config.pl:8): next if /^\s*#/; # skip to the next iteration on comments

DB<2> s
main::(config.pl:9): my ($param, $value) = split("=", $_,2); # split on first '='

DB<2> s
main::(config.pl:10): print("No value for parameter '$_'\n"), next unless $value;

DB<2> x $param
0 'Dante'

DB<3> x $value
0 'Too Cool To Kill'

DB<3> s
main::(config.pl:12): $config{$param} = $value;

DB<3> s
main::(config.pl:4): while (<>) {

DB<3> s
Joe=I am the Law
main::(config.pl:5): chomp; # strip linefeed

DB<3> s

Debugging

625

main::(config.pl:7): next if /^\s*$/; # skip to the next iteration on empty lines
DB<3> s

main::(config.pl:8): next if /^\s*#/; # skip to the next iteration on comments
DB<3> s

main::(config.pl:9): my ($param, $value)=split("=",$_,2); # split on first '='
DB<3> s

main::(config.pl:10): print("No value for parameter '$_'\n"), next unless $value;
DB<3> s

main::(config.pl:12): $config{$param} = $value;
DB<3> s

main::(config.pl:4): while (<>) {
DB<3> x %config

0 'Joe'
1 'I am the Law'
2 'Dante'
3 'Too Cool To Kill'

DB<4>

As it happens (and as the snippet of the help text we showed earlier explains), just entering return re-
executes the last s or n we used, so we did not need to type s after the first time.

This example output also shows the p command, which prints out values in exactly the same way that
Perl's print statement does; and the x command, which examines the contents of values, expanding
and printing their contents prefixed with an index number if they are arrays or hashes. The x command
will descend any number of levels in order to fully display the contents of an array or hash, which
makes it very useful.

Running Arbitrary Code
Any line that is not recognized as a debugger command is executed as Perl code (incidentally h does not
count as a command proper, so it does not increment the command number in the prompt):

DB<1> print "Hello Debugger World\n", 2+2, " is 4\n";
Hello Debugger World
4 is 4

In the rare cases where we want to execute code (most probably a subroutine in the script being
debugged or defined by ourselves for debugging) that looks like a debugger command, we can resolve it
by prefixing the line with anything that is not a valid debugger command, such as ;. For example, the
debugger command x examines (dumps out) the contents of variables, so if we want to execute a
subroutine called x, we can use:

DB<2> ;x 1,2,3

This calls x with arguments 1,2,3, rather than triggering the debugger's examine command. Note that
having subroutines with the same names as debugger commands is terribly sensible in the first place.

Multiline Commands
Since we can execute arbitrary code, we can do things like write foreach loops and define subroutines.
We can also, in some cases, come up with very long debugging commands if we need to specify a lot of
arguments. If we want to be able to do this without entering the entire command on a single line we can
use a backslash at the end of the line to continue the command onto the next line. We can do this as
many times as we need to. For example, to define a handy environment dumping command we can
define a subroutine:

Chapter 17

626

DB<7> sub dumpenv { \
cont: foreach (sort keys %ENV) { \
cont: print "$_ => $ENV{$_}\n"; \
cont: } \
cont: }

DB<8> dumpenv
DISPLAY => :0.0

ENV => /home/gurgeh/.bashrc
HOME => /home/gurgeh
...

If we make a mistake and forget a trailing slash at any point the debugger will complain at us and we
will have to start again. If we have ReadLine support enabled (automatically provided by the
Term::ReadLine module if we have it installed, see Chapter 15) then we can use the up cursor key to
re-enter each line again, which is quicker than typing it. If we really like this subroutine we can also
define it in an external configuration file so it is automatically available whenever we start the debugger.

Debugging Commands
Having seen how to make use of simple debugging commands like the s, p, and x commands, we can
now take a more detailed look at all the commands that are executable from the Perl debugger prompt.
In order to make them a little more digestible, we have loosely and informally organized them into the
following functional groups:

Help Commands Action

h Display a summary of all debugger commands. To display information on a
single option, for example, the x command, type h followed by the
command letter:

h x

Rather intelligently, the h command correctly substitutes the current values
of recallCommand and shellBang for the commands whose letters are
determined by these configuration options, see later.

man [page] Calls the system manual page viewer for the given page, or perldoc if no
such viewer is available. The actual viewer can be configured by setting
$DB::doccmd to the viewer command. If no page is supplied, it calls the
viewer on itself (for help on using the viewer, fro example, man man or
perldoc perldoc).

Non-UNIX platforms may experience problems such as leaving the screen
in a strange state if they don't support any sensible definition of manual
pages. Using a separate window for documentation is a better idea in this
case.

Debugging

627

Display
(Variables)

Action

p [expr] Print the expression expr to the debugger's output terminal, defined by
$DB::OUT, which is independent of wherever STDOUT may have been
redirected to (see 'Tracing and Terminals' later). For example:

p $param,'=', $value

p works exactly like the print statement (though it only adheres to the values
of $/ and $, if they are set in the same command). References and complex data
structures are printed out as-is, in the style of print. For a more intelligent
display of complex data, use x.

x [expr] Evaluate and print out expr as a list, formatting the output prettily. Nested
array and hash references are listed recursively. For example:

DB<1> $href={ 'top'=>{ middle=>['left','right', { 'bottom'=>1 }]}}

DB<2> x $href

0 HASH(0x8223380)

'top' => HASH(0x822335c)

'middle' => ARRAY(0x82232cc)

0 'left'

1 'right'

2 HASH(0x825276c)

'bottom' => 1

V [pkg
[vars]],
X [vars]

These commands list the contents of the named variables from the named
package. If vars is omitted, list all variables from the named package. If pkg is
also omitted, it lists variables in the current package (frequently main if we are
debugging a Perl application and not a module). For example, to display the
current value of $DB::doccmd:

DB<1> V DB doccmd

 $doccmd = 'man'

To list all variables in DB, the debugger's own package:

DB<1> V DB

To list all variables in the current package:

DB<1> V

To list variables selectively in the current package, use the X command instead,
which omits the pkg argument:

DB<1> X param value config

Note that the prefix $, @, % etc., should not be supplied to either of X or V, and
that all variables with a corresponding name will be displayed, for example,
$config, @config and %config, if they exist.

If the variable name starts with ~ or !, the name is used as a regular expression
and is matched against the names of the variables in the package. Matching (or
in the case of !, non-matching) variables are dumped. Remember to use anchors
(^ or $) to match variables with prefixes or suffixes.

Table continued on following page

Chapter 17

628

Display
(Variables)

Action

T Display the calling stack, listing the callers of the current subroutine in a similar
way to the caller function, if the debugger is halted within a subroutine. If there
is no stack to display, it produces nothing. Note that the debugger itself is
technically at the top of the stack, but it removes itself when displaying the stack
with T.

Display
(Source Code)

Action

w List a window of lines around the current line. The window is chosen to be a
sensible range of lines determined by the context around the current line. For
example, when debugging a loop or subroutine, w returns the code of the loop
or subroutine if it is of a reasonable size.

l List the next window of lines in the current source file. Again, this is
determined by context and will usually follow the window given by w:

If there is no next window, l will return lines roughly similar to those returned
by w. It can be used with the following arguments.

DB<1> l line

A single line itself can be displayed by specifying, for example, to list line 7
only:

DB<1> l 7

DB<1> l start+lines

If a start and increment are specified with a +, list lines starting from line
number 'start' and listing 'lines' lines in total. For example, to list lines 3 to 7:

DB<1> l 3+4

DB<1> l start-end

If a start and end range are specified with -, list lines starting from line number
'start' and ending at line number 'end'. For example, to list lines 3 to 7:

DB<1> l 3-7

DB<1> l sub

Finally, if a subroutine name is specified, list the first window of lines of the
named subroutine. For example:

DB<1> l mysubroutine

- Lists the previous window of lines in the current source file. This is the reverse
of l and will usually list the previous window before that given by w. If there is
no previous window -, like l, will return lines roughly similar to w.

. List the last line to be executed by the debugger.

Debugging

629

Display (Source
Code)

Action

f filename Switch to viewing the named file (or eval expression), which must be
loaded (or to be more precise, present as a key in the %INC hash). If the
filename does not precisely match an entry in %INC it is used as an
unanchored regular expression. For example, to find and view CGI.pm we
need only put:

DB<1> f CGI

Normally the debugger will show the appropriate file for the current
execution context of the application being debugged, switching between
files as necessary. This command is helpful for setting breakpoints in other
files.

The keys of %INC hold filenames, not package names with colons, so f
Term::ReadKey will not work but f Term/ReadKey will. eval
statements are remembered and numbered in the order that they are
defined, and can be accessed by number. For example, f 3 for the third
eval statement.

/pattern Search forward for the regular expression pattern in the source file.
Searches are case-insensitive, and return the next match forward from the
position where the last match was found. For example:

DB<1> /$param

A match may be repeated by entering a single / or ?. A second optional /
may also be specified, which has no effect (and notably regular expression
flags may not be put after it). Without meta characters or other special
regular expression terms this is equivalent to a case-insensitive text match.

?pattern Search backward for the regular expression pattern in the source file. As
with /pattern, further matches are carried out from the position of the
last successful match, and a single ? or / will rematch with the same
pattern.

m expr Displays the list of methods that may be called on the object (blessed
reference) or package name that is the result of expr. Inherited methods
are marked with the module from which they are inherited. For example m
CGI displays all the methods defined for the CGI module, assuming it is
loaded; typing use CGI at the debugger prompt will do that if it isn't.

Chapter 17

630

Commands Action

! [[-]number] Repeat or recall a previous command. Without arguments, repeats the last
command:

DB<1> !

With a numeric argument, repeats the command with that number. To
repeat the 3rd command:

DB<1> !3

With a negative numeric argument, repeats the (n+1)th previous command.
To repeat the command before last:

DB<1> !-1

The character used for this command is the same as that used for executing
temporary shells from within the debugger, but it can be reconfigured with
the recallCommand option.

H [-number] List previous commands. Without arguments, lists all previous commands:

DB<1> H

An argument of zero or any positive number also lists all previous
commands. A negative number lists that many previous commands,
including the H command itself. To list the previous command, therefore,
use:

DB<1> H -2

To list the six previous commands, excluding the H, use:

DB<1> H -7

= [alias cmd] Define command alias. Without arguments, lists currently defined aliases:

DB<1> =

With one argument, gives the command that the alias is an alias to:

DB<1> = next

With arguments, define a command alias. For example, to define aliases for
the next, step, and alias commands:

DB<10> = next n

next = n

DB<11> = alias =

alias = =

DB<12> alias step s

step = s

Aliases can be made to other aliases. Redefining an alias (by aliasing it to
something else) will then alter the effect of all secondary aliases. Note that
the alias comes first, the command to be aliased second.

Debugging

631

Execution Options Action

s Single-step execute the next line, stepping into subroutines if present.
Subroutine calls in expressions will also be single-stepped into.

n Single-step execute the next line, executing and stepping over
subroutine calls. If a subroutine call forms part of a larger expression it
will still be stopped after, so breaks in mid-expression are possible.

<return> Repeat the last s or n command, whichever was more recently issued.
This allows us to effectively use s and n to set a 'stepping mode' and
then use return to execute lines in that mode.

c [line|sub] Continue executing lines in non-stop mode, optionally setting a once-
only breakpoint at the specified line-number or subroutine. Without an
argument, it executes the program continuously until it exits or a
previously set breakpoint or watch-point is encountered:

DB<1> c

With a line number, enters continuous execution until the given line
number is reached:

DB<1> c 12

On return (which will only happen if one of the above criteria is met), c
displays a list of the lines that were executed. The subroutine name
variant is similar, but stops inside the next call to the named subroutine.

r Continue executing lines in non-stop mode until the return from the
current subroutine. This implicitly sets a once-only breakpoint on the
next line after the statement that led to this subroutine call.

q (^D/^C) Quit the debugger. Ctrl-D (or Ctrl-C on Windows) is an alias for q.

R Restart the debugger by causing it to 'exec' itself (this may not work well
on some platforms, like Windows). The command history, breakpoints,
actions, and debugger options are preserved; other states may be lost.

| Page output of debugger command or arbitrary code by piping the
output DB::OUT to the currently defined pager program, as given by
$DB::pager (|more on most UNIX platforms). For example:

DB<1> |V DB

This dumps out all variables in the debugger's own DB package, leading
to potentially large output which is paged for easier reading.

|| The same as | above, except that the debugger also uses select to
make DB::OUT the currently selected output filehandle for the duration
of the command. This is mostly relevant to executing arbitrary code:

DB<1> || print "This goes to DB::OUT, not STDOUT";

Table continued on following page

Chapter 17

632

Execution Options Action

! [shell cmd] Run a shell command using the shell defined by $ENV{SHELL}, with a
command equivalent to $ENV{SHELL} -c 'shell cmd'. Non-UNIX
systems may need to reconfigure the shell used first before this will work.
Note that this is the same character as the repeat command, but it can be
redefined with shellBang.

!! [shell cmd] Run a shell command in a subprocess, using the shell defined by
$ENV{SHELL} and using DB::IN and DB::OUT as standard input and
output; this is useful if standard input and output have been redirected.

See also the shellBang configuration option, which sets the character
used for this command and the one above.

Control Action

t [expr] Without arguments, this toggles tracing mode from on to off, and vice-
versa:

DB<1> t

With tracing mode enabled, the lines that were executed by the last c or
n are listed out when the debugger next returns, giving a complete trace
of all code executed. Without this, only the line due to be executed next
is listed.

If an expression is supplied, trace through that expression. See 'Tracing
and Terminals' for more information.

Breakpoints Action

b [line] [condition]

b sub [condition]

b postpone sub

b compile sub

b load file

Set a breakpoint to cause the debugger to return to the user from
continuous execution, as entered by the c command. The most
common form of breakpoints are those set on line numbers. For
example, to set a breakpoint at line ten:

DB<1> b 10

Line-number breakpoints may optionally be followed by a
condition, which will cause the breakpoint to be triggered only if
the condition also holds. The condition is an arbitrary Perl
expression of the kind that is used in if or while statements. For
example, to break only when the %config hash has at least three
key-value pairs defined:

DB<1> b 10 keys(%config)>2

The line number may also be omitted, in which case the
breakpoint is set on the next line to be executed. An optional
condition may still be set in this case:

DB<1> b keys(%config)>2

Debugging

633

Breakpoints Action

b [line]
[condition]

b sub
[condition]

b postpone sub

b compile sub

b load file

A subroutine breakpoint is set by using b with the name of the subroutine to
break in. Execution is halted by the debugger on entry to the subroutine but
before the first statement in the subroutine is executed:

DB<1> b mysubroutine

As with line breakpoints, a condition may be specified:

DB<1> b mysubroutine keys(%config)>2

A subroutine reference (supplied in a variable) may also be supplied,
however conditions are not supported in this case:

DB<1> b $mysubref

Lesser variants of the b command include b postpone sub, which sets the
breakpoint only after the subroutine has been compiled.

b compile sub also waits for the subroutine to compile but then sets a
breakpoint at the first line of execution.

b load file breaks when the named file is loaded by use, require, or
do. Note that this is an effective way of breaking inside a BEGIN block if
specified prior to starting the debugger in a configuration file or PERL5DB.

L List all breakpoints and actions currently defined.

S List all subroutines currently defined, including those defined interactively in
the debugger. This is obviously handy for setting breakpoints.

d [line] Delete the breakpoint at the specified line number, as returned by the L
command. If no line number is specified, delete the breakpoint on the next
line to be executed, if any is present.

D Delete all existing breakpoints.

Actions Action

a [[line]
action]

With two arguments, sets an action to be done before the line given by
line is executed. The action is any arbitrary Perl code (not, however a
debugger command), for example:

DB<1> a 10 print "Got to line 10!\n";

With one or no arguments, deletes the action from the specified line
number, or the next line to be executed if the line number is omitted. For
example:

DB<1> a 10

Actions are a very effective way of adding temporary code to an
application without actually editing it. With actions, we can add additional
debug messages and set variables to experimental values, without
disturbing the source code.

A Delete all existing actions.

TE
AM
FL
Y

Team-Fly®

Chapter 17

634

Watchpoints Action

W [expr] Without arguments, delete all existing watch expressions (watchpoints). With
an argument, sets a watch expression or watchpoint for the debugger to study
during execution. If the value of the expression changes, the debugger breaks
program execution and returns control to the user. Typically c is used to
continue execution until a breakpoint or watchpoint is encountered. If a
watchpoint is encountered the debugger will display the old and new values of
the expression that triggered the break:

DB<1> W $value

main::(config.pl:5): chomp; # strip linefeed

DB<2> c

nokeyvaluepairhere

No value for parameter 'nokeyvaluepairhere'

key=value

Watchpoint 0: $value changed:

old value: undef

new value: 'value'

main::(config.pl:10): print("No value for parameter '$_'\n"),next

unless $value;

DB<2> c

Watchpoint 0: $value changed:

old value: 'e'

new value: undef

main::(config.pl:4): while (<>) {

Each watchpoint we set incurs a performance penalty, since the Perl
interpreter must track each value watched. Though there is no limit, it makes
sense to only watch one or two values at a time.

Note that the lowercase w command does not set watchpoints (or indeed have
anything to do with them) but prints the source code in the current window.

Prompt Action

< [action] Set an action, which can be any arbitrary Perl code, to execute immediately
before the debugger prompt is displayed. (We cannot specify debugger
commands, however; the { command does that.) For example, to display the
current time and date:

DB<1> < print scalar(localtime)

< clears any existing actions set to execute before the prompt. However, see <<
below. If no action is specified, existing actions are cleared but no new one is
set.

Debugging

635

Prompt Action

<< Append an action to execute immediately before the debugger prompt is
displayed and after any existing actions. For example, to add the current
working directory:

DB<1> use POSIX qw(getcwd);

DB<2> << print ' ',getcwd

< ? List the actions currently set to execute before the prompt. For example:

Tue Dec 26 15:06:35 2000 /home/gurgeh DB<74> < ?

Perl commands run before each prompt:

< -- print scalar(localtime)

< -- print ' ',getcwd

> [action] Set an action to execute immediately after a debugger command to execute
program code (that is, s, n, c, r, etc.) has been entered but before any results
are displayed. For example:

DB<30> > print "Here we go! \n"

As with < this command clears any and all actions already set to be executed
after the prompt. To add to an existing action, use >>. If no action is specified,
existing actions are cleared but no new one is set.

>> Append an action to execute immediately after a debugger command to
execute program code has been given, and after any already set actions.

>? List the actions currently set to execute after the prompt. For example:

DB<1> >?

Perl commands run after each prompt:

> -- print "Here we go!\n"

{ [cmd] Set a debugger command to be executed before each debugger prompt. This
works identically to the < command except that it takes a debugger command
as an argument instead of arbitrary Perl code. For example, to examine the
contents of a variable step-by-step:

DB<1> { x %config

If no command is specified, all existing commands are removed, the same as <
and >. Note that setting commands like s, n, c, and r is perfectly possible, but
can potentially have interesting, if not entirely helpful, effects.

{{ cmd Append a new debugger command to be executed before each debugger
prompt and after any commands already set .

{ ? List debugger commands set to execute before the prompt. For example:

DB<1> { ?

Debugger commands run before each prompt:

{ -- x %config

Chapter 17

636

Configure Options Action

O Any number of options may be set with one O command, each option
separated from the last by a space. Boolean options may be set on
simply by giving their name:

DB<1> O inhibit_exit

inhibit_exit = '1'

To clear a Boolean option, or set a non-Boolean option, use an equals
sign followed by the new value:

DB<1> O pager=|less inhibit_exit=0

pager = '|less'

inhibit_exit = '0'

Alternatively, and at the same time, options may be queried by suffixing
them with a ?:

DB<1> O pager? pager='|more'

pager = '|less'

pager = '|more'

For more information on configuration options, read on.

Configuring the Debugger
The Perl debugger supports a collection of configuration options that control how it presents output and
deals with situations during the course of debugging. These options may be set in a variety of different
ways, interactively with the O command, through the environment via the PERLDB_OPTS environment
variable, or in a .perldb configuration script.

Interactively
First and most obviously, the O command detailed above can be used to set one or more configuration
options interactively from inside the debugger, for example:

DB<101> O pager=|less recallCommand=[warnlevel=2 dielevel=1 NonStop]

Through the Environment
Second, options may be specified in the environment variable PERLDB_OPTS, which takes the form of a
string with the options to be set in the same format as the O command; for example, on a UNIX shell:

> PERLDB_OPTS="NonStop warnlevel=2 dielevel=1" perl -d...

The Windows equivalent is somewhat less terse:

> set PERLDB_OPTS=NonStop warnlevel=2 dielevel=1
> echo %PERLDB_OPTS%
NonStop warnlevel=2 dielevel=1

Debugging

637

The '.perldb' Script
Finally, we can create a configuration file containing arbitrary code, including subroutine definitions
useful for debugging and use statements to pull in modules that supply useful debugging features.

This file is called .perldb on UNIX systems, or perldb.ini on Windows and must be placed either
in the current directory, or our home directory (as defined by the HOME or LOGDIR environment
variables). On UNIX systems it must also be executable and owned by either the superuser or the user
running the debugger. Finally, it must not give write permission to 'others'. To arrange that under
UNIX, we can use:

> chmod go-w .perldb

On Windows NT, use:

> attrib +r perldb.ini

This makes the file read-only for everyone. Or we can edit perl5db.pl to remove the check in the
subroutine is_safe_file (this is potentially a reason for creating a custom debugger).

The reason for these security precautions is that an insecure database configuration file is a large
potential security hazard, since the code in it is added to any application if the -d option can be
triggered. If Perl detects that our configuration file is insecure on a UNIX platform, it refuses to run it
and returns the message:

perldb: Must not source insecure rcfile ./.perldb.
You or the superuser must be the owner, and it must not
be writable by anyone but its owner.

The content of the file is actually Perl code run within the DB package, not a configuration file in the
traditional sense. To set up aliases we plug in new entries to the %DB::alias hash, and to set options
we call the subroutine parse_options (which is supplied by DB).

Aliases take the form of regular expression substitutions, substituting the replacement text for the
matching part of the command given in the debugger. We can define more powerful aliases than the =
command allows. For example, many debuggers support the stop at and stop in commands to set
breakpoints on lines and in subroutines respectively. Since these are two-word commands the =
command has trouble defining them, but we can define both in a single alias in a .perldb file:

This is a .perldb configuration file
$DB::alias{'stop'} = 's/stop (at|in)/b/';

To set options, use the parse_options subroutine:

set some options
parse_options("pager =|less NonStop AutoTrace");

The .perldb file is processed before the contents of PERL_DBOPTS are considered, so PERL_DBOPTS
will override options specified in the .perldb file. However, if we define a subroutine called
afterinit within the file, it will be called after the PERLDBOPTS options have been processed:

these options will override PERL_DBOPTS
sub afterinit {

parse_options("AutoTrace");
}

Chapter 17

638

Since this is a conventional Perl script (if used in an unconventional setting) we can place anything in
here:

generally useful stuff

use re 'debug'; # enable regular expression traces

sub dumpenv {
foreach (sort keys %ENV) {

print "$_ => $ENV \n";
}

}

Debugger Configuration Options
Configuration options fall into four loose categories: Debugger, Readline, Output, and Terminal.
Debugger options are related to the operation of the debugger itself. ReadLine Library options control
the interface between the debugger and the Term::ReadLine module. Output options are related to
the Dumpvalue module, which implements the output display of the x, X, and V commands. Finally,
Terminal options control how the debugger connects to terminals for debugging output, this is where
the DB::OUT filehandle connects to for debugging output.

The default value returned by O for a number of these values is N/A. This reflects the fact that no
explicit value has been set, and that the default is being used, rather than that the value of these
options is the string N/A.

Debugger Option Action

recallCommand Set the character used for the recall/repeat command Debugger command (by
default !). For example:

DB<1> O recallCommand=P

shellBang Set the character used for the shell and subprocess commands (by default !
and !!). For example:

DB<1> O shellBang=Z

Note that this is case-sensitive; Z is not the same as z.

pager Set the command used to run external pagers by the | command (by default
|more on UNIX). It should start with a | to pipe output. For example:

DB<1> O pager=|less

dieLevel

warnLevel

signalLevel

These three options control how the debugger deals with signals. The
dieLevel and warnLevel options deal with the die and warn
pseudohandlers. The signalLevel deals with real signals:

DB<1> O dieLevel=1 warnLevel=1

The default of 0 has the debugger leave most signals alone, since many
programs install their own handlers to deal with these conditions. Setting 1
will generate a backtrace for dies, warnings, and other signals respectively, and
embellish warnings originating from evaled code. Setting 2 will cause the
debugger to intercept and rephrase all warnings and errors, irrespective of
their origin. In general, don't change these values unless the situation merits it.

Debugging

639

Debugger Option Action

inhibit_exit If True (default), this prevents stepping from passing over the end of the script
(be it the actual end or an exit). If False, the debugger will leave the script
and lose context information like global variables.

PrintRet If True (default), this prints out the return value from subroutines that have
just been terminated via the r command. If False, nothing is printed.

frame Control the printing of messages on entry and exit from subroutines, in
addition to the normal trace messages for line numbers. The default is 0,
which does nothing. Other values are made up of different bits, which set
different display options:

bit 1 (1) – not used
bit 2 (2) – print messages on entry
bit 3 (4) – print function arguments
bit 4 (8) – execute tied and overloaded arguments to get
 their string representations
bit 5 (16) – print return value (this affects subroutines
 returning as a result of any debugger command;
 the PrintRet configuration option applies only
 to returning explicitly from a subroutine with r)

A frame of 2 (bit 2) or 6 (bits 2 and 3) is the most common. When combined
with NonStop it allows us to generate an execution trace of subroutine and
function calls within a program:

DB<1> O NonStop frame=6

maxTraceLen This is the maximum length to truncate the argument list to, when bit 3 of the
frame option is set. The default is 400, which is likely to be long enough for
most simple arguments. Set to something shorter to be briefer:

DB<1> O frame=6 maxTraceLen=60

NonStop If True, the debugger executes programs continuously (as if c was typed
automatically) until interrupted by a breakpoint or watchpoint, or
programmatically by $DB::signal or $DB::single. Note that watchpoints
and breakpoints can be set prior to entering the debugger via the .perldb
script.

Readline Option Action

tkRunning If the debugger is running within a tk environment, setting this value to 1 will
enable tk events to be processed while the debugger is waiting for input. See
the Term::ReadLine section in Chapter 6 for more information.

ornaments The ANSI escape sequences used to highlight the prompt. See Chapter 6 for
details on how to disable or configure these. Note that this can only be done
from inside a .perldb script, and may cause strange effects in a non-ANSI
shell.

ReadLine Set to 0 to disable use of the readline library. This is primarily useful for
debugging applications, which use readline themselves. Default is 1.

Chapter 17

640

Output Options Action

arrayDepth Print only the number of elements specified. If undefined (the default),
print all elements.

hashDepth Print only the number of key-value pairs specified. If undefined (the
default), print all pairs.

compactDump If set to a positive value, and if the length of the line is less than the value,
this causes arrays and hashes to be displayed on one line. If set to 1, a
suitably large value (400+) is used. Only arrays and hashes that do not
contain references will be compacted. The default is off.

veryCompact If True, this prints arrays and hashes that do not contain references on one
line irrespective of how long the resulting line is. The default is off. Setting
veryCompact effectively overrides compactDump.

globPrint If True, print out the contents of globs (treat them as specialized
references). Otherwise, do not. The default is off.

DumpDBFiles If True, print out the arrays holding debugged files. The default is off.

DumpPackages If True, print out package symbol tables. The default is off.

DumpReused If True, print out values multiple times if multiple references to them are
encountered. Otherwise, REUSED_ADDRESS is inserted instead of repeating
the dump. The default is off.

quote Prints out strings in the configured style. The default is auto, which uses
double or single quoted strings, whichever is more appropriate for the
string (if it contains a double quote single quotes are used). It can also be
set to single or double quotes with quote=" or quote='.

HighBit If True (default), this prints out characters with their high bit (bit 8) set as-
is. Otherwise, it masks out the high bit and prints the result.

undefPrint If True (default), this represents undefined values with the string undef,
otherwise it represents them as empty strings.

UsageOnly If True, this generates a simple per-package memory usage report. The
default is off.

Terminal/Tracing
Options

Action

AutoTrace If True, this enables tracing by default, in the same way that the t
command toggles tracing on. The default is 0, off.

LineInfo A file or pipe to send line number information to (that is the debugger
output of actual source code lines). To create a trace file, set to:
LineInfo=trace.log.

To send to an external program (which uses a shorter message), prefix the
program name with a pipe. This is how external editors that support Perl
debugging interface to the debugger: LineInfo=|debugger.

Debugging

641

Terminal/Tracing
Options

Action

TTY This is the name of the terminal to use for debugging output (for example,
con on Windows). By default, the output is sent to the current terminal.
Note that commands like p and x send their output to this device and not
to standard output, so if that is redirected, debugging output still goes to the
debugging terminal.

noTTY If set to a True value, the debugger automatically starts up in NonStop
mode. It then connects to the terminal specified by TTY when execution is
broken by a breakpoint, watchpoint, or programmatic return like
$DB::single. The third party module Term::Rendezvous may also be
used to search for a suitable terminal at the point of interrupt.

Tracing and Terminals
The debugger supports two different kinds of tracing. Line tracing consists of numbered lines of source
code, and is controlled by the AutoTrace option. Frame tracing reports the entry and exit details from
subroutines and is controlled by the frame configuration option. By default, both go to the same place,
the terminal attached to the DB::OUT filehandle. This is usually the same terminal that the program
itself is attached to, but importantly is not affected by redirecting standard output or standard error
within the program or from the command-line.

Tracing can be used interactively, but is most useful for generating non-interactive traces from running
programs. We can stop the debugger from entering an interactive section with the NonStop option; in
combination with AutoTrace we can produce a line trace to the screen with:

> PERLDB_OPTS='NonStop AutoTrace' perl -d myscript.pl

The frame option is a combined flag that contributes additional information to the trace, depending on
which bits are set. If frame is set to 2, the debugger will log all subroutines entered during the course of
the program's execution. With NonStop or noTTY also set, this allows us to generate an execution trace
of subroutine calls:

> PERLDB_OPTS='NonStop frame=2' perl -d myscript.pl

In this example there is no line tracing, so the output we see will contain only subroutine call trace
messages. If we wanted line tracing too, we would enable it by adding the AutoTrace option as well.
Setting other bits in the frame value produces other values. 22 prints subroutine arguments (4) and
return values (16). Here is an example with both AutoTrace and a frame of 22:

> PERLDB_OPTS='NonStop frame=22 AutoTrace' perl -d myscript.pl

All of these examples output tracing information to the screen, mixed in with the normal standard
output and standard error of the program. Since the debugger uses its own filehandle for output,
redirecting standard output and standard error will not redirect the tracing output. To get a trace log we
instead use the LineInfo option. This controls where tracing output sent is sent (both line and frame,
despite the name). For example, to redirect tracing to a trace log and debug messages (printed out by
the program itself) to a debug log, we could use:

> PERLDB_OPTS='NonStop frame=2 AutoTrace LineInfo=trace.log' perl -d myscript.pl 2>
debug.log

Chapter 17

642

The normal standard output of the program will appear on the screen, while tracing information will go
to trace.log and error output from the program itself will end up in debug.log. If we wanted to
capture standard output too, we would do this:

> PERLDB_OPTS='NonStop frame=2 AutoTrace LineInfo=trace.log' perl -d myscript.pl >
output.log 2> debug.log

In this instance we have also redirected standard output from the program to a file called output.log.

Two other configuration options control how the debugger interacts with terminals: TTY and noTTY.
The TTY option determines where non-trace debugger output goes (for example, output from the p and
x commands, which could be triggered as actions). The value of the TTY option is expected to be
interactive, for example another terminal window or a serial port; both DB::IN and DB::OUT are
attached to it. The related noTTY option prevents the debugger from attaching to the device named by
TTY unless and until the debugger is entered interactively; it takes no argument.

Entering the Debugger Programmatically
As well as setting breakpoints and watchpoints from the debugger to break the flow of execution, we
can also have the program trigger a break itself. This is especially useful for compile-time statements
executed in BEGIN blocks, since the debugger will not ordinarily break in these. Instead it executes
them and halts on the first line of normal execution. It is also useful if we have specified the NonStop or
noTTY configuration options.

To have a program pass control back to the debugger, set the variable $DB::single. This sets the
debugger, if running, into single step mode, therefore out of continuous execution mode. For example:

#!/usr/bin/perl -T
an example start to an about-to-be debugged application

allow debugger to break during compile phase
use warnings;

BEGIN {
$DB::single = 1;
...

}

now load modules with complex 'BEGIN' blocks so we can debug them
use CGI;
use DBI;
use SomeOtherModule;

...

If the debugger is not present, setting this variable has no other effect than to create the variable and
give it a value, so it is not detrimental to leave the statement in even if the application is not being
debugged.

The debugger enters interactive mode in a slightly different way depending on the value $DB::single
is set to. Setting $DB::single=1 gives rise to a debugging prompt as if an s had just been typed, so
pressing return will cause further s commands to be executed. Setting $DB::single=2 enters the
debugger's interactive mode as if an n has just been typed. Further returns will therefore produce n
commands.

Debugging

643

As an alternative to setting $DB::single to break within a BEGIN block, we can also set one of two
more specialized breakpoints. First, the b load file breakpoint can be used to break in a use
statement at the point the file is loaded, for example:

DB<1> b load CGI.pm

Second, we can use the compile breakpoint to break on the compilation of a subroutine:

DB<1> b compile mysubroutine

Both of these work well; which we use depends entirely on what we are trying to achieve at the time.

Another way to trigger a return to the debugger's prompt is to set the value of the variable
$DB::signal to a suitable signal number. Both the program and debugger will behave as if the given
signal had just been raised, with the debugger's behavior taking precedence, determined by the value of
the signalLevel configuration option. For example:

define a signal handler
$SIG{10} = sub {

print "Hello Debugger \n";
}

simulate a USR1 signal when debugging
$DB::signal = 10;

Note that both the subroutine and the setting of $DB::signal could be defined in the debugger itself.
In particular, we could set a debugger action to define $DB::signal at a given line. See Chapter 22 for
more on signals.

In addition, and independently of $DB::single, the t command can be simulated by setting the value
of $DB::trace to either 0 or 1, enabling or disabling tracing respectively. This allows us to toggle
tracing on and off within a program without setting breakpoints. For example, we can define our own
tracing environment variable to do the job for us, so we can generate trace output selectively in
NonStop mode without any further debugger configuration:

...
trace the next bit
$DB::trace = 1 if $ENV{DO_TRACING};
...
finished tracing the bit of interest
$DB::trace = 0 if $ENV{DO_TRACING};
...

Using Debugger Hooks
Perl grants extra access to the internals of the interpreter to code in the DB package. By placing our own
code into this package we can create our own debugger alternatives. We can also extend the capabilities
of our own debugging modules.

As a practical example, we can access the list of arguments passed to a subroutine from the DB package,
which allows us to determine not only where a subroutine was called, but how. This information is not
normally reported by a die or warn, but by placing code into the DB package we can create our own
stack trace that reports not just the subroutine stack but the arguments that were passed at each stage
too. Here is a module that does just this by registering a handler for the __DIE__ hook.

TE
AM
FL
Y

Team-Fly®

Chapter 17

644

Note that the subroutine itself is in the package My::StackTrace but the body of the subroutine is
placed into the DB package in order to gain access to the subroutine arguments in the @DB::args array,
an array not normally available to us:

StackTrace.pm
package My::StackTrace;
require 5.000;
use FileHandle;

$SIG{'__DIE__'} = 'My::StackTrace::DumpStack';

sub DumpStack {
my $msg = shift;
my ($pack, $file, $line, $subname, $hasargs, $wantarray, $i, @tmp, @args);
my ($args_safe, $routine);

enable argument processing with DB::args;
package DB;

for inclusion in HTML error documents
print "<PRE><HR>\n" if $ENV{"REMOTE_HOST"};
print "\n$msg\n";

$i = 1;
while (($pack, $file, $line, $subname, $hasargs, $wantarray) = caller($i++)) {

@args = @DB::args;
@tmp = caller($i);

print "$file:$line ";
print "(in $tmp[3])" if $tmp[3];

$routine = $pack.'::'. $subname;
print "\n\t&$routine";
$args_safe = 1;

if ($routine =~/SQL_OpenDatabase/o ||
$routine =~/RPC::PlClient::new/o ||
$routine =~/DBD::Proxy::dr::connect/o ||
$routine =~/DBI::connect/o

) {
$args_safe = 0;

}

if ($args_safe) {
if ($hasargs) {

print "(", join(", ", @args), ")";
}

} else {
if ($hasargs) {

print "(", scalar(@args), " arguments hidden for security)";
}

}
print "\n";

}
print "\n\n";
print "<HR></PRE>\n" if $ENV{"REMOTE_HOST"};

exit; # transmute death into a graceful exit
}

1;

Debugging

645

This module provides an improved stack trace. Here is a short example program that makes use of it
and puts it through its paces:

#!/usr/bin/perl
StackTrace.pl
use warnings;
use strict;

use StackTrace;

sub a {push @_, shift @_; b(@_);}
sub b {push @_, shift @_; c(@_);}
sub c {push @_, shift @_; d(@_);}
sub d {push @_, shift @_; e(@_);}
sub e {

push @_, shift @_;
print "@_";
die "Sudden death";

}

a('Testing', 1, 2, 3);

The output from this program is:

1 2 3 Testing
Sudden death at ./stacktrace.pl line 12.

./stacktrace.pl:8 (in main::d)
&main::main::e(1, 2, 3, Testing)

./stacktrace.pl:7 (in main::c)
&main::main::d(Testing, 1, 2, 3)

./stacktrace.pl:6 (in main::b)
&main::main::c(3, Testing, 1, 2)

./stacktrace.pl:5 (in main::a)
&main::main::b(2, 3, Testing, 1)

./stacktrace.pl:15
&main::main::a(1, 2, 3, Testing)

We could make this module a good deal more flexible by adding the ability to trace warnings too, or
report only the last subroutine rather than the whole trace, but this simple version illustrates the basic
technique. See Chapters 9 and 10 for more on writing modules and the use of packages.

Debugging and Informational Modules
In addition to the Perl debugger, the Perl standard library supplies a number of different modules that
are useful for debugging and developing programs in various controlled ways. We will examine here
two modules, Dumpvalue and Safe. Other modules, from the B:: family, which have debugging
applications will be investigated in Chapter 20.

The 'Dumpvalue' Module
The Dumpvalue module provides the basis for the Perl debugger's configurable output in the x, X, and
V commands, and is the source of the 'Output' configuration options such as arrayDepth,
compactDump, and globPrint.

Chapter 17

646

However, since the Dumpvalue module is an independent part of the Perl library we can make use of it
without using the debugger. Dumpvalue works through an object-oriented interface, with a dumper
object that has configuration options identical to those detailed under 'Output' in the 'Debugger
Configuration Options' section.

Basic value output is supported by the dumpValue and dumpValues methods, which dump out one
value and a list of values respectively. For both methods the value or values must be scalars. For
example:

#!/usr/bin/perl
dumpval.pl
use warnings;
use strict;

use Dumpvalue;

my $dumper = new Dumpvalue(compactDump => 1, globPrint => 1);

my %myhashvariable = (
'top' => {

middle => [
'left', 'right', {

'bottom' =>
}

]
}

);

dump one variable
$dumper->dumpValue(\%myhashvariable)

This produces:

0 HASH(0x8223380)
'top' => HASH(0x822335c)

'middle' => ARRAY(0x82232cc)
0 'left'
1 'right'
2 HASH(0x825276c)

'bottom' => 1

The dumpValues method works similarly, but treats its list of arguments as a top- level array:

dump several variables
$dumper->dumpValues ($var1, $var2, \@anarray, \%anotherhash);

dump each element of an array:
$dumper->dumpValues (@myarrayvariable);

The Dumpvalue module works well with modified tracing arrangements, especially if it is encapsulated
in tracing subroutines. For example, the following script illustrates a simple trace subroutine that
implements level-based tracing based on the value of the putative environment variable TRACE_ON:

Debugging

647

#!/usr/bin/perl
trace.pl
use warnings;
use strict;

{
use Dumpvalue;

private dumper object for 'trace' subroutine
my $dumper = new Dumpvalue (compactDump => 1);

my $level = $ENV{'TRACE_ON'};
$level |= 0; # default to no tracing

sub trace {
$dumper->dumpValues(@_) if $_[0] <= $level;

}
}

my %hash = (one => 1, two => 2);
my @array = (1..10);

a level 2 trace statement
trace 2, \%hash, \@array;

> TRACE_ON=2 perl trace.pl
0 2
1 HASH(0x81269c0)

'one' => 1
'two' => 2

2 ARRAY(0x8126ac8)
0 1
1 2
2 3
3 4
4 5
5 6
6 7
7 8
8 9
9 10

The other output method supported by Dumpvalue is dumpvars, which prints out details of package
variables. This method is the basis of the X and V debugger commands and takes the form:

dumpvars(pkg, var, var...);

As with the X command, we can give just a package name to dump all variables, or specify a list of
variables (minus data type prefixes) to dump. If the variable name starts with ~ or!, the name is applied
as a regular expression and all matching (or in the case of!, non-matching) names are dumped. For
example:

Chapter 17

648

#!/usr/bin/perl
dumpvars.pl
use strict;
use warnings;

use Dumpvalue;

my $dumper = new Dumpvalue(compactDump => 1, globPrint => 1);

dump out '@INC', '%INC', and '%ENV':
$dumper->dumpvars('main', 'INC', 'ENV');

dump out everything else
$dumper->dumpvars('main', '!(INC|ENV)');

dump out anything that ends in a digit:
handy after a regexp!
$dumper->dumpvars('main', '~\d$');

The other methods supported by dumper objects all relate to configuration options:

Method Action

set_quote('"'|"'"|, 'auto') Set options to handle printout with the given quote type.
Strings are rendered to use either single quotes, double
quotes, or (with auto) whichever is most logical. The
content of the string is adjusted to fit the quote type.

set_unctrl('quote'|'unctrl') Set the unctrl option to vary how non-alphanumeric
characters are represented, quote when the quote type is
a double quote. The quote option attempts to escape all
characters in a way that allows them to be interpolated
back again. The unctrl option represents them in a
more human readable form, for example ^D is equivalent
to Ctrl-D.

compactDump(0|1|number) Set or clear the compactDump option

veryCompact(0|1) Set or clear the veryCompact option. This also sets the
compactDump option.

set (option => value, ...) Set or clear general options, for example:

$dumper->set(tick => 'auto');

get (option, option, ...) Get general options, for example:

@opts = $dumper->get('tick', 'HighBit',
'printUndef');

Note that a similar kind of functionality is provided by the Data::Dumper module, which is also handy
for serialization. They both produce legible output for values, so we can use either for this purpose.
Data::Dumper is covered in Chapter 5 (in the context of printing out values).

Debugging

649

The 'Safe' Module
The Safe module creates a protective 'compartment' for the execution of Perl code. Within the
compartment, a different namespace prevails, and code within the compartment is not allowed to
access variables in other namespaces, even the main namespace. This is somewhat reminiscent of the
Java 'Sandbox' concept, code outside the compartment may place variables into the compartment's
namespace, but access to anything outside the compartment from within is strictly forbidden.

Additionally, a new operator mask is applied to the compartment, which allows the disabling of
operators by removing their opcodes from the mask. The default mask is the :default mask;
described in more detail back in Chapter 4, although there is more detail on operator masks later in
this chapter.

Creating Compartments
You can use the new method to create the compartment, and then either the reval (restricted eval)
method to execute code within the compartment, or the rdo (restricted do) method to execute an
external file within the compartment.

use Safe;

my $compartment = new Safe;
$compartment->reval($string_to_eval);
$compartment->rdo('myscript.pl');

If the code executed in the compartment attempts to reach outside its bounds, or use an operator
forbidden by the compartment it fails with an error, at the compile stage in the case of operators, and
potentially at either compile or run time in the case of variable access.

Both methods are identical in operation to their functional counterparts eval and do. For example,
reval returns the value of the last expression evaluated on success, and sets $@ on an error.

Sharing Variables and Subroutines
Variables may be shared between the outside world and the compartment using the share and
share_from methods. The share method takes a list of package variables defined in the current
package (global variables) and imports them into the compartment's namespace:

note, variables cannot be lexical - declare with 'our', not 'my'
our $scalar = "This is a scalar";
our (@array, %hash);
sub external {

external subroutine...
};
$compartment->share('$scalar', '@array', '%hash', '&external');

Alternatively, variables can be imported into the compartment namespace from another named package
with share_from. This takes a package name as its first argument and an array reference to a list of
variable names similar to that accepted by share:

$compartment->share_from('My::Package', ['$scalar', '@array', '%hash',

'&external']);

Chapter 17

650

The variables (for example, $My::Package::scalar) must already exist in the named package to be
imported into the compartment successfully.

Variables may be retrieved from the compartment in the reverse direction using the varglob method.
This returns a typeglob of a symbol inside the compartment. For example, to alias a compartment
typeglob to an external typeglob:

*compartmentvar = $compartment->varglob('varname');

Variables with the name varname ($varname, @varname, the subroutine varname, etc.) may now be
accessed by the equivalent names $compartmentvar and so on. Alternatively, to set the variable
$scalar inside the compartment without aliasing:

${$compartment->varglob('scalar')} = "This is a scalar";

This allows external code to access variables inside the compartment without needing to know the root
namespace of the compartment. If we really want to know the root namespace we can do so with the
root method:

$cmp_ns = $compartment->root();

Using this with symbolic references would allow us to set variables inside the compartment. However
this is not encouraged as the point of the compartment is to keep the namespace anonymous to prevent
accidental cross talk.

Operator Masks
Other methods of the compartment object relate to the control of the operator mask, and are direct
interfaces to the functions of the Opcode module. In brief, they are:

$c->permit(OP, ...) Add the listed operators to those allowed in the
compartment.

$c->permit_only(OP, ...) Allow only the listed operators to be executed within the
compartment – all others are denied.

$c->deny(OP, ...) Remove the listed operators from those allowed in the
compartment.

$c->deny_only(OP, ...) Deny only the listed operators in the compartment, all others
are allowed.

As an example, the following method call removes the system and backtick opcodes from the
permitted list:

$c->deny('system', 'backtick');

Similarly, to explicitly enable a more relaxed set of operators, including open, close, and stat:

:browse is a superset of :default plus some others
$c->allow_only(':browse', ':filesys_open');

Debugging

651

Note that opcodes are not operators; they are the foundations upon which operators are implemented.
For a detailed account of operators, opcodes, and means of determining their relationships, see the
section on the Opcode module and the use ops pragma in Chapter 4 on 'Operators'. This section also
details the opcode categories like :browse and :filesys_open.

The 'Safe' Module in Use
As an example of how we can use the Safe module, here is a short utility that creates and uses a
compartment to deny the use of backtick quotes (which includes the qx operator) and to log all uses of
system:

#!/usr/bin/perl
loggedsystem.pl
use warnings;
use strict;

use Safe;
my $compartment = new Safe;

$compartment->deny('system', 'backtick');

use subs qw(system);

sub system {
warn "About to execute: @_ \n";
CORE::system @_;

}

offer our 'system' to the compartment
$compartment->share('&system');

test line to prove compartment is working
$compartment->reval('system("ls")');
$compartment->reval('CORE::system("ls")');
warn $@ if $@;

process command-line
foreach (@ARGV) {

die "'$_' not found or not executable \n" unless -x;
$compartment->rdo($_);
warn $@ if $@;

}

Windows users should note that they should exchange the UNIX command ls in this example with the
DOS command dir if they want to see an output from this example.

Note that both rdo and reval use eval internally, so to check for errors we need to inspect the value
of $@, rather than $!. In both cases the code may not even compile (because it uses a forbidden
operator) so checking $@ is vital for using compartments successfully.

If we give this program a name like logsystem we could use it like this:

> logsystem perl myscript.pl

Chapter 17

652

The point of this is that not only have we replaced the original system with our own logging version– we
have also prevented the script we execute from bypassing us, by disabling the core system function
inside the compartment. If the script tries to use CORE::system to get around our logger, it will be
denied access by the compartment.

Debugging the Perl Interpreter
It is possible to build Perl with internal debugging support built-in. This has nothing to do with
debugging using the -d option, but rather allows us to debug the interpreter itself as it executes code.
We can use this to generate various different kinds of information with the -D option, which takes a
number of additional parameters. Each parameter enables a different debugging feature and we may
enable as many as we see fit. To summarize the perlrun manual page:

1 p Tokenizing and parsing

2 s Stack snapshots

4 l Context (loop) stack processing

8 t Trace execution

16 o Method and overloading resolution

32 c String/numeric conversions

64 P Print preprocessor command for -P

128 m Memory allocation

256 f Format processing

512 r Regular expression parsing and execution

1024 x Syntax tree dump

2048 u Tainting checks

4096 L Memory leaks (only if Perl was compiled with -DLEAKTEST)

8192 H Hash dump – usurps values()

16384 X Scratchpad allocation

32768 D Cleaning up

65536 S Thread synchronization

Options have both a numeric and symbolic value, and we may combine either as a value to the -D
option. For example, to enable trace execution and stack snapshots we can any of:

> perl -Dst ...
> perl -Dts ...
> perl -D10 ...

Debugging

653

If Perl has not been built with internal debugging support, then the -D option will not be available to us.
However, we can generate much of the same information, albeit not always in an identical manner, with
some of the B modules as described above. Note that unless we are actually interested in debugging Perl
itself then we are probably safe not compiling it with the -D option enabled. It is of strictly limited use
for debugging applications, for which it was not really designed.

Automated Testing
Perl provides a pair of modules that allow us to easily implement and carry out automated tests. The
Test::Harness module provides a mechanism to perform tests mechanically, running through a series
of specified tests and checking the results for a satisfactory outcome. The complementary Test module
provides a simple toolkit of features to enable us to write scripts that produce output compatible with
what the Test::Harness module expects.

The main application of these modules is in creating installable module packages, and the h2xs utility
which we cover in Chapter 21 puts together a framework including a Makefile that automatically makes
use of Test::Harness. That section is advanced reading for these modules if creating tests for
installable module packages is the main goal. However, the modules can be used independently too.

Writing a Test Script
It is not actually necessary to use Test to create tests compatible with Test::Harness, but since the
alternative is hard work, it makes sense to use the Test module.

To use the Test module we first need to pass a list of key-value pairs to the plan subroutine. The only
required pair key is tests, which defines the number of tests' results that the test script returns.
Typically this is placed in a BEGIN block to make sure it initializes before any program code is
evaluated:

use Test;
BEGIN {plan tests => 8}

This specifies that this test script will return eight results, and we will have to ensure that we do indeed
return eight results during the course of the script. Normally tests are fatal to Test::Harness if they
fail, but we can make tests we expect to fail non-fatal by marking them as todo tests. To do this we add
a todo key to the list passed to plan, followed by a reference to an array of test numbers:

BEGIN {plan tests => 8, todo => [7, 8]}

This marks tests 7 and 8 as non-fatal. The implication is that these tests apply to features that do not yet
work; we can write the test for them anyway, and update the code later. If a test starts to work it should
be taken off the todo list so that a failure causes Test::Harness to register a fatal problem.

Finally, we can pass a subroutine to be called on failed tests with the onfail key:

BEGIN {plan tests => 8, todo => [7, 8], onfail =>
sub {warn 'Oh no, not again'}

}

TE
AM
FL
Y

Team-Fly®

Chapter 17

654

Test passes a hash containing the keys package, repetition, and result to the subroutine
specified by onfail, so we have the option of recording more sophisticated diagnostics if we so choose.
Regardless of whether todo or onfail is specified, having given plan a number of tests to expect we
now need to perform them. Test provides two subroutines to return test results compatible with
Test::Harness, namely ok and skip.

The ok subroutine actually performs tests and takes one or two arguments. The one-argument form
simply returns its value, and produces an ok result if that result is True:

ok (0); # an automatic failure
ok (1); # an automatic success
ok (mysubtotest($testarg1, $testarg2)); # test for true result

This is suitable for tests that can be deemed to have succeeded if they return any True result. For other
tests, we supply a two-argument form. The first argument is the expected result and must be an
expression leading to a result to test against; this value can validly be 0 or even undef. The second
argument is the test to perform; again, this can be an expression, for example:

test subroutine call against expected value
use My::Rhyme;
$farming_wife = new My::Rhyme('reason');
ok(3, $farming_wife->count('blind mice'));

test the results of two calls for equality
ok(search_here('needle', 'haystack'), search_there('needle', 'haystack'));

test against undef – a function with arguments expected to fail
ok(undef, reassemble_humpty(king => ['horses', 'men']));

The second argument may also be a regular expression, in which case it is matched against the expected
result:

$re_pattern = comple_pattern('test');
$match_text = match_on('default_text');
ok($match_text, qr/$re_pattern/);

Other than the regular expression case, the two arguments to ok are equivalent, the ok subroutine
simply tests them for equality, so it does not matter which way around we put them. However, the
convention is to put the result first, and the test second.

The skip subroutine works exactly as the ok subroutine does but takes a single initial argument that
determines whether or not the test should be considered. If it evaluates to a False value the test result is
used as normal. If it evaluates to a string value it is used to describe the reason for the test; otherwise
skip is automatically used. Either way, the reason is placed after the ok message, prefixed by a #. For
example:

use Platform::Specific::Package qw(incompatible wise_men);
$message = incompatible($^O);
skip($message, 3, wise_men);

In this case the subroutine incompatible should return 0 or undef if the platform is supported, and
return a message like Sorry, not supported on this platform if it isn't. Of course the test script itself can
define this subroutine itself if the package does not.

Debugging

655

Test scripts that wish to check if they are being run through Test::Harness can check for the
environment variable HARNESS_ACTIVE, which the Test::Harness module sets when it calls test
scripts. If it isn't running then scripts can alter their output or simply refuse to run:

die "Not being run by Test::Harness" unless defined $ENV{'HARNESS_ACTIVE'};

Note that a test script can execute any code it likes, and define any subroutine it needs to perform the
necessary tests. After all, it is an ordinary Perl script, just one that generates a specific output. However,
it should avoid printing output to STDOUT explicitly, relying on the ok or skip subroutines instead. It
may however print its own messages to STDERR. Doing this selectively is one good use of the
HARNESS_ACTIVE environment variable.

Automating Tests
Once we have one or more test scripts we can process them through the Test::Harness module. The
module supplies one single subroutine, runtests, which takes one or more script names as arguments.
For cross-platform compatibility it is a good idea if the script paths are absolute, but it is not a hard and
fast requirement. Here is a script that uses Test::Harness to run though a series of test scripts
supplied on the command-line:

#!/usr/bin/perl
use warnings;
use Test::Harness;
runtests(@ARGV);

As this UNIX-specific example shows, Test::Harness is not a hard module to use. A slightly more
complex example might keep all its scripts in a particular subdirectory passed in as an environment
variable:

#!/usr/bin/perl
use warnings;
use Test::Harness;

die "Path to test scripts not defined" unless $ENV{'TESTSCRIPT_DIR'};

foreach (@ARGV) {
$_ = $ENV{'TESTSCRIPT_DIR'}."/$_";

}

runtests (@ARGV);

In the event that we choose not to use the Test module, runtests expects to get output for each test
consisting of a series of lines. The first line should be a test range of the form 1..N. It should then be
followed by a series of ok or not ok lines, with # Skip... plus a reason optionally appearing after ok
lines, and continue in this manner for as many tests as the range specified. For example:

1..8
ok
not ok
ok # 'Skip': not implemented on this platform
ok
ok
ok
not ok
ok

Chapter 17

656

Note that the Test module generates numbered tests, with the number coming after the ok (or not ok)
and before the skip comment. This is optional, and we do not need to supply it, but if we do it ought to
start at 1 and increment monotonically.

If an entire test script wishes to have itself skipped, it can return a range 1..0, optionally with a reason:

1..0 # Skipped: bottled out at the last moment

runtests will then analyze and produce a statistical analysis of the test results. If all tests were
successful, it prints some timing information supplied by the Benchmark module. If any tests failed, it
dies with output similar to the following:

FAILED tests 2, 7
Failed 2/8 tests, 75.00% okay

If a test does not return a zero exit code, runtests will also report this. It does not die as a result. The
HARNESS_IGNORE_EXITCODE environment variable, if set, suppresses this message.

Test::Harness also makes use of several environment variables, if defined:

HARNESS_FILELEAD_IN_DIR Specifies the name of a directory in which runtests will
check for new files. If a test generates files but does not clean
them up afterward, runtests will report them. For example:

LEAKED FILES: temp.file

HARNESS_PERL_SWITCHES Can be used to specify extra options to pass Perl when
executing each test. One obvious definition for this variable
is -w, to force warnings to be enabled.

HARNESS_IGNORE_EXITCODE If True, instructs runtests not to check or report on tests
that return non-zero exit codes.

HARNESS_COMPILE_TEST If True, will cause runtests to use the perlcc utility to
attempt to compile the test as a stand-alone executable before
running it. The object of this is to see whether it works as a
stand-alone application, but as perlcc is still relatively new,
it might not.

HARNESS_NOTTY If True, tells runtests to treat its output as a non-terminal
device, even if it is a terminal.

runtests Sets the environment variable HARNESS_ACTIVE. Tests and
applications can check for this variable if need be to
determine if they are being tested or being run outside of
Test::Harness.

Profiling
Profiling is the process of collecting timing statistics for an application. In general this occurs in two
steps. First, a raw data file of timing information is generated by running the application in a profiling
mode. Second, an analysis tool is then used to read the raw statistics and generate a report.

Debugging

657

Perl is no exception in this case, but unlike many other languages it does not use a separate profiling
tool. Instead, the Devel::DProf module is provided to alter the behavior of the Perl interpreter itself
to generate the raw statistics. Once the file has been generated the dprofpp tool can then be used to
analyze the results.

We do not necessarily have to use the profiler to generate timing information, however. Firstly, for very
simple cases we can get away with using the times function (covered in Chapter 24), which is the basis
of the profiler's statistics and other timing modules as well. Secondly, we can use the Benchmark
module to generate timing statistics for repeated execution. As its name suggests, the Benchmark
module is not so much aimed at providing detailed timing information as performance statistics; it is
handy for testing the speed of a Perl script or application on different platforms.

Profiling Perl Applications
To profile an application we use the Devel::DProf module. This is implemented as an alternative
debugger module, which hooks into Perl's debugging interface via the -d option. To specify the profiler
rather than the normal debugger we suffix the -d option with :DProf, to specify the profiler module:

> perl -d:DProf myscript.pl

This will generate a file of raw profile statistics called tmon.out in the current directory. There are no
options that can be supplied to the profiler, not even one to change the name of the output file.

The profiler is essentially a statistics collection package built around the times function, generating a
file of raw data as its output. In order to make sense of this file we need to use a profile analyzer such as
dprofpp, which is supplied as standard with Perl.

Note that not all modules in the Devel family can be used in this way. Only modules that define a
DB subroutine are actually designed to work with Perl's debugging interface. The Devel::DProf
module is the only such alternative supplied with Perl as standard, though other third-party modules
exist on CPAN.

Generating Profile Reports
On its own the profile information produced by the Devel::DProf module is not of much use to us.
Fortunately Perl provides a profile analysis tool called dprofpp that can interpret profile files and
generate various kinds of report from them. This tool is written in Perl, so it will work anywhere that
Perl does.

By default, dprofpp looks for a file called tmon.out, the name of the profile file generated by
Devel::DProf. It then prints out the details of the fifteen most time consuming subroutines. This is a
common enough occurrence that we can frequently just type:

> perl -d:DProf myscript.pl
> dprofpp

We can even have dprofpp run the profiling stage for us, generating and analyzing the tmon.out file
in one easy step. The command below is exactly equivalent to the two above:

> dprofpp -p myscript.pl

Chapter 17

658

The usual output of dprofpp is a table of subroutines and associated timing statistics (we say usual
because the -S, -T, and -t options cause dprofpp to generate an execution tree instead). For example,
here is a short script that lists installed files using the ExtUtils::Installed module. We use it an
example because it is both short and takes a little time to run, and so generates some meaningful
statistics (on a UNIX platform):

#!/usr/bin/perl
installed.pl
use warnings;
use strict;

use ExtUtils::Installed;

my $inst = ExtUtils::Installed->new();
print join "\n", $inst->modules();

> dprofpp -p installed.pl

The output reports something similar to the following (the times are of course entirely dependent on the
hardware we run the script on):

Total Elapsed Time = 3.638225 Seconds
User+System Time = 1.178225 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

19.5 0.230 0.239 76 0.0030 0.0031 ExtUtils::Packlist::read

12.7 0.150 0.149 1 0.1496 0.1493 SelfLoader::_load_stubs

11.0 0.130 0.269 9 0.0144 0.0299 ExtUtils::Installed::BEGIN

10.3 0.122 0.755 2 0.0608 0.3776 File::Find::_find_dir

9.34 0.1 10 0.138 68 0.0016 0.0020 ExtUtils::MM_UNIX::parse_version

8.49 0.100 0.634 1864 0.0001 0.0003 ExtUtils::Installed::__ANON__

5.94 0.070 0.067 566 0.0001 0.0001 ExtUtils::MM_UNIX::canonpath

5.09 0.060 0.080 4 0.0150 0.0200 ExtUtils::MakeMaker::BEGIN

4.24 0.050 0.076 283 0.0002 0.0003 ExtUtils::MM_UNIX::catdir

3.39 0.040 0.151 283 0.0001 0.0005 ExtUtils::MM_UNIX::catfile

1.70 0.020 0.020 2 0.0100 0.0100 Exporter::export

1.70 0.020 0.020 1 0.0200 0.0200 vars::BEGIN

1.70 0.020 0.030 8 0.0025 0.0037 ExtUtils::MM_UNIX::BEGIN

1.70 0.020 0.289 2 0.0100 0.1445 main::BEGIN

0.85 0.010 0.010 71 0.0001 0.0001 strict::bits

Debugging

659

The columns in this report have the following meanings:

Column Action

%Time The percentage of time spent in this subroutine as a fraction of the total runtime,
not including time spent in subroutines called from this one. The -I option
alters this column to include time spent.

ExclSec The amount of time spent in this subroutine, not including time spent in
subroutines called from this one.

CumulS The amount of time spent in this subroutine, including time spent in subroutines
called from this one. This contrasts to ExclSec.

#Calls The total number of calls made to this subroutine during the course of execution.
The sec/call and Csec/c values are computed from this plus ExclSec and
CumulS respectively.

sec/call Time spent on average per call to this subroutine, not including time spent in
subroutines called from this one: sec/cal=ExclSec/#Calls. This is in
contrast with Csec/c.

Csec/c Time spent on average per call to this subroutine, including time spent in
subroutines called from this one: Csec/c=CumulS/#Calls. Contrast to
sec/call.

Name The name of the subroutine, if available. Anonymous subroutines are still listed
under __ANON__ in the package in which they are created. However, see the -A
and -R command-line options below.

The dprofpp utility understands a number of command-line options that alter the way that it computes
statistics and the way in which it displays them. These can be loosely categorized into five groups:
sorting, display, subroutines, timing, and interpretation options:

Sorting
Options

Action

-a Sort subroutines alphabetically (sort on Name column).

-l Sort by number of subroutine calls (sort on #Calls column).

-U Do not sort. Subroutines are listed in the order they are found in the profile file.
This is more efficient if we want to do our own sorting later, in which case we
probably also want to use -q.

-v Sort by average call time (sort on sec/call column).

-z The default sort order. Sort by percentage of time used (sort on %Time column).

Display
Options

Action

-O number Limit the number of subroutines displayed to 'number'. The number may be
optionally separated from the option by a space. The default is 15, equivalent to
-O 15. Setting this value to a negative number will display all subroutines:

> dprofpp -O-1

Table continued on following page

Chapter 17

660

DDisplay
Options

Action

-q Suppress column headings. This stops dprofpp from generating the column
headings line and also the Total and User+System elapsed time lines,
making the output easier for machine parsing.

-S Generate an execution tree showing all subroutine calls instead of a normal
profile report, including timing statistics. Multiple calls, even if not
consecutive, are listed only once, with a repeat count. Note that this differs
from the behavior of -t, and means that the execution tree is not a literal
description of the chain of subroutine calls but a hierarchical form of the
standard profile report. Contrast to -T and -t.

-T Generate an execution tree showing all subroutine calls instead of a normal
profile report, without statistics. Multiple consecutive calls are listed separately.
Contrast to -S and -t.

-t Generate an execution tree showing all subroutine calls instead of a normal
profile report, without statistics. Multiple consecutive calls are listed only once,
with a repeat count. This generates a shorter and generally more readable
report than -T. Contrast to -S and -T.

Subroutines
Options

Action

-A In older releases of Perl, this causes dprofpp to assign the time spent
autoloading a subroutine definition to the subroutine entry *::AUTOLOAD. The
default is to include the autoload time in the first call to the subroutine. Newer
releases of Perl automatically assign time to AUTOLOAD separately, so this
option is redundant.

-g subname Profile only the named subroutine and the subroutines that it calls. This is
handy for profiling a specific part of the application, and isolates calls to
subroutines from the named subroutine from calls to them from elsewhere. For
example:

> dprofpp -p myscript.pl -g mysubname

-R Count calls to anonymous subroutines in the same package separately. The
default is to accumulate all anonymous subroutine calls together into an
__ANON__ entry. Note that for obvious reasons, dprofpp is not able to give a
name for an anonymous subroutine.

At the time of writing there is a bug in the dprofpp, but the original line 556
in the file, shown here:

if ($opt_R and ($name =~/::(__ANON_|END)$/)) {

Can be changed to:

if ($opt_R and ($name =~/(__ANON__|END)$/)) {

This will allow it to work. In future versions of dprofpp, this bug may well be
fixed.

Debugging

661

Timing Options Action

-E Displays the percentage of time not including time spent in subroutines
called from them. This affects only the %Time column and therefore the
sort order if sorting by percentage time (-z, the default). This is the default.

-I Displays the percentage of time including time spent in subroutines called
from them. This affects only the %Time column and therefore the sort order
if sorting by percentage time (-z, the default).

-s Display system time only, rather than User+System time, in contrast to -u
and -r. See 'Collecting Timing Information Directly' below for an
explanation of the distinction between user and system time.

-r Display elapsed real time, rather than User+System time, in contrast to -s
and -u. Note that this value is likely to be fairly meaningless for profiling.

-u Display user time only, rather than User+System time. Contrast to -s
and -r.

Interpretation
Options

Action

-F Generate fake exit timestamps for profiles that are missing them, possibly
due to the influence of goto (dprofpp reports that the profile is 'garbled').
Note that the results of using this option are indeterminate.

-p scriptname Run the profiler on the script to generate a tmon.out file and then
generate a report from it. The tmon.out file is left after the command has
completed generating a report from it.

-Q In combination with the -p option, run the profiler to create a tmon.out
file, but do not generate a report from the results. For example:

> dprofpp -p myscript.pl -Q

-V Print the version number of dprofpp and exit. If a tmon.out file is
present then the version number found in the XS_VERSION field inside the
file is also reported.

Collecting Timing Information Directly
Perl provides two functions that return information to us about the current time. The time function
returns the number of seconds since midnight January 1, 1970 GMT (the notional moment that UNIX
was born). Unfortunately, while this is useful for computing real times it is no use for computing
execution times because it does not take into account the fact that system time is split between many
processes (including operating system calls), and only measures to the nearest second.

Before we leave the subject of time, it is worth mentioning the Time::HiRes module, available
from CPAN, which replaces both the time and sleep functions with versions that work down to
the microsecond. If we want to work with real time at a higher resolution, this is a very useful
module to install.

Chapter 17

662

To examine time from the point of view of the application, we use the times function. This function
returns not one but four values to us:

($user, $system, $cuser, $csystem) = times;

The $user and $system values refer to the user and system time of the current process. The $cuser
and $csystem values refer to the user and system time used by child processes (see Chapter 22), these
will have values if we have used system, fork, the forking version of open, and so on and zero
otherwise. In and of itself this is not useful, but if we call times twice and take the difference between
the returned values then we can compute the user and system time taken by the code that was executed
between the two calls.

The distinction between user and system time is simple once the concepts are explained. user time is
time spent running the application itself, the time is spent in user space. system time is time spent by
the operating system dealing with requests from our application. For example, calls to the time function
cause the operating system to retrieve the current time, so the time spent doing this is system time. By
contrast, adding and subtracting numbers does not require operating system services and so this counts
as user time. The total of user and system time equates to the total amount of time used.

As an example of the use of both user and system time, consider the following program, which
computes the time taken for a loop by calling times before and after it:

#!/usr/bin/perl
gettime.pl
use warnings;
use strict;

my ($user1, $system1) = times;
my ($a, $t);

repeat a loop one million times
foreach (1..1000000) {

incur some user time
$a += 2**2000;
incur some system time
$t = time;

}
my ($user2, $system2) = times;

compute times
my $user = $user2 - $user1;
my $system = $system2 - $system1;
my $total = $user + $system;

print "Time taken: user = $user system = $system total = $total \n";

The body of the loop contains two lines. The first line computes 2 to a high power, and consumes a
little user time. There are no calls to the operating system involved here, and therefore no system time
is taken to do this. The second line uses the Perl time function, which makes a call to the operating
system and so does consume system time. The assignment also consumes a little user time, but not much
in comparison to computing 2 to the power of 2000. If we run this program we get a result similar to the
following:

Time taken: user=3.05 system=0.52 total=3.57

Debugging

663

If we run this repeatedly we get a slightly different result, simply depending on what else the processor
and operating system are involved with at that particular point in time, and how accessible the system
clock was. However, the total tends to be almost exactly the same because we are only counting time
spent actually running this program, and not other processes that may also be running elsewhere. The
wall clock time taken may be quite different to the total, but that is not of any relevance for computing
timing information:

Time taken: user=3.01 system=0.57 total=3.58
Time taken: user=2.79 system=0.78 total=3.57
Time taken: user=3.06 system=0.52 total=3.58
Time taken: user=3.03 system=0.54 total=3.57
Time taken: user=3.08 system=0.49 total=3.57

It is because of these variations that serious testing of application performance is better performed by
the Benchmark module.

Testing for Performance
The Benchmark module is a standard part of the Perl library that allows us to write performance tests
for our code. It operates on the same basic principles as the profiler, and uses the times function
detailed above as the basis for its results. However, it is not aimed at highlighting under-performing
code but generating accurate and consistent performance statistics, which it does by repeatedly running
code to generate a more representative average time.

Benchmark can be used to run simple time comparisons, shown earlier using times. We do this by
creating new raw Benchmark objects with new, which contain absolute times. Then we compare them
with timediff to generate a relative Benchmark we can actually use:

$start = new Benchmark;
...do time consuming things...
$finish = new Benchmark;

$difference = timediff($start, $finish);

print "Time taken: ", timestr($difference);

The real meat of the module is in the timeit, timethis, timethese, and countit subroutines,
however.

Benchmark works by generating Benchmark objects that encapsulate times internally. We can generate
these objects with subroutines like timethis and timethese, and then print them out in a friendly
format using the timestr subroutine. A summary of the methods and subroutines available follows
below, and must be given explicitly along with any other subroutines if not qualified by package. For
example:

need to import 'timesum' and therefore also 'timediff' and 'timestr'
use Benchmark qw(timesum timediff timestr);

Or:

use 'timesum' via package, no need to import 'timediff' or 'timestr'
use Benchmark;
...
print timestr Benchmark::timesum ($difference1, $difference2);

TE
AM
FL
Y

Team-Fly®

Chapter 17

664

The Benchmark module provides the following three methods:

Method Action

new Class method. Creates a new raw Benchmark object containing absolute times.
timediff is needed to convert two of these into a useful result Benchmark
object. For example:

$start = new Benchmark;

debug Object or class method. Set debugging either globally or per-object:

enable debugging on this Benchmark object

$start -> debug(1);

switch off debugging globally

debug Benchmark 0;

iters Object method. Returns the number of iterations used to generate this benchmark
(for Benchmark objects generated by the timeit, timethis, timethese, and
countit subroutines). For example:

$result = timeit(1000, 'mysubroutine');

$count = $result->iters;

Basic benchmarking can be done just using the new and timediff functions, as noted above. We can
also compute sums of differences with timesum:

Method Action

timediff Computes the difference in times between two raw Benchmark objects (as created
by new) and returns a new Benchmark object containing the difference. For
example:

$difference = timediff($start, $end);

print timestr $difference;

*timesum Computes the sum of times of two relative Benchmark objects (computed
themselves with timediff), returning a new Benchmark object. For example:

$diff1 = timediff ($start1, $end1);

$diff2 = timediff ($start2, $end2);

$total = Benchmark::timesum ($diff1, $diff2);

Note that this subroutine is not imported by default.

Debugging

665

Method Action

timestr Generates a friendly string representation of a Benchmark object calculated from
timediff (or potentially timesum) above. This is the easy way of turning a
Benchmark object into something we can look at. For example:

print timestr $difference;

A second optional style argument determines the contents of the returned string,
the default is auto:

all Produce all times

none Produce no times

noc Produce parent process times only

nop Produce child process times only

auto Produce child process times only if they are non-zero (all or noc).

A third parameter may be used to define the format of the output times; it takes
the form of a sprintf style format, only without a leading %. The default is 5.2f.
For example:

print timestr ($difference, 'noc', '10.5f');

See timeit and countit below for some examples of the strings produced by
timestr.

Benchmark calculations are performed by the timeit, timethis, timethese, and countit
subroutines. Additionally, the cmpthese subroutine generates a table of results from the output of
timethese.

'timeit'
Given a number of iterations and some code to test, timeit runs the code for that number of iterations
and returns a Benchmark object containing the result. For example:

time one thousand iterations of '2**rand'
$result = timeit(1000, "2**rand");

The code may be either given as a string, in which case it is evaled to produce the code to test, or it
may be a reference to a subroutine:

time an anonymous subroutine
$result = timeit(1000, sub {2**rand});

time a named subroutine
$result = timeit(1000, \&mysubroutine);

Note that either of these approaches allows compile-time checking of the code, unlike the eval version,
but passing arguments is not possible this way. To achieve that, we need to define a new subroutine to
pass test arguments for the benchmark:

sub testmysubroutine {
mysubroutine('testing', 1, 2, 3);

}
$result = timeit(1000, \&testmysubroutine);

Chapter 17

666

Or use an eval string:

$result = timeit(1000, "mysubroutine 'test', 1, 2, 3");

A test subroutine will incur a slight additional cost, but it should be negligible compared to the actual
subroutine unless it is very fast and we are testing it a large number of times.

As a concrete example, this program benchmarks a simple expression by executing it one million times:

#!/usr/bin/perl
timeit.pl
use warnings;
use strict;

use Benchmark;

sub mysubroutine {
my $timewaster = time**rand;

}

my $result = timeit(1000000, 'mysubroutine');

print "Executed ", $result->iters, " iterations in ", timestr($result),"\n";

The output of this program is (but times may vary) something like:

Executed 1000000 iterations in 8 wallclock secs (7.54 usr + 0.46 sys = 8.00 CPU) @ 125000.00/s
(n=1000000)

'timethis'
This subroutine combines timeit with timestr and prints the results to standard output. timethis
takes four arguments; a count and code string, just as timeit does, followed by an optional title and
optional style, which has the same meaning and values as the style argument of timestr above. For
example:

default output
timethis(1000, \&mysub);

customized output
timethis(1000, \&mysub, "Testing!", 'toc');

Alternatively, if the count is negative or zero then timethis uses countit below instead of timeit,
with the count interpreted as a minimum number of seconds to run for. Note that time is taken as
User+System time, not real ('wallclock') time. The actual time taken may therefore be longer. In
addition, the last iteration will likely carry the actual time incurred over the limit since the limit will
expire while it is in progress.

The return value of timethis is a Benchmark object, with the same meaning as the result returned
from timeit. If no title is specified, it defaults to timethis COUNT, where COUNT is the value of the
first argument. Note that the real point of the title is for use by the timethese subroutine.

Debugging

667

'timethese'
This subroutine carries out bulk benchmark calculations by calling timethis multiple times. The
arguments of timethese are counts. This is applied to every individual benchmark and may be
negative to define a minimum time. As with timethis, a hash reference with a list of tests to perform
is passed to timestr. It has the same meaning and values as timestr's style argument.

The hash of tests consists of key value pairs, the keys of which are names for the tests and are used
as the titles in timethis, and values, which are the actual tests: evaluable strings or code references.
For example:

$resulthashref = timethese (1000, {
'Test 1' => sub {time()**rand()**rand()},
'Test 2' => "2 + 2 + 2 + 2 + 2 + 2 + 2 + 2",
'Test 3' => \&mysub,

}, 'all');

The return value from timethese is a hash reference containing the same keys as the test hash and
with the Benchmark result objects as the values. This hash can be passed to cmpthese to generate a
comparative report.

See the example output of cmpthese for an example of the output produced by timethese (which is
called by cmpthese).

'cmpthese'
cmpthese carries out bulk benchmark calculations and then generates a comparative report of
percentage differences between each pair of tests. This subroutine can either be passed arguments
identical to those accepted by timethese, in which case it simply calls timethese to get a hash of
results, or the hash reference containing the results from a previous timethese:

cmpthese(1000, {
'Test 1' => sub { time()**rand()**rand() },
'Test 2' => "2 + 2 + 2 + 2 + 2 + 2 + 2 + 2",
'Test 3' => \&mysub,

}, 'all');

Or:

cmpthese($resulthashref);

The return result of cmpthese is a hash reference of results, the same as that returned by timethese,
potentially useful if we passed in explicit arguments rather than a result hash reference.

As a practical example, here is a benchmark program that determines whether or not there is any
noticeable difference between a named subroutine, an anonymous subroutine, and an evaluated code
fragment:

#!/usr/bin/perl
cmpthese.pl
use warnings;
use strict;

use Benchmark qw(cmpthese);

Chapter 17

668

sub mysubroutine {
my $timewaster = time**rand;

}

cmpthese(1000000, {
'Anon Test' => sub {my $timewaster = time**rand},

'Eval Test' => 'my $timewaster = time**rand',
'Ref Test' => \&mysubroutine,

}, 'all');

In order to get accurate results we have to push up the number of iterations so that a significant number
of seconds elapse, so we give the test one million iterations (for a slower computer we may want to tone
this number down a little). The output of this program consists of the output from timethese, followed
by a comparative table:

Benchmark: timing 1000000 iterations of Anon Test, Eval Test, Ref Test...
Anon Test: 6 wallclock secs (5.22 usr 0.74 sys + 0.00 cusr 0.00 csys = 5.96 CPU) @

167785.23/s (n=1000000)
Eval Test: 6 wallclock secs (5.27 usr 0.49 sys + 0.00 cusr 0.00 csys = 5.76 CPU) @ 173611.11/s

(n=1000000)
Ref Test: 7 wallclock secs (5.09 usr 0.62 sys + 0.00 cusr 0.00 csys = 5.71 CPU) @ 175131.35/s

(n=1000000)

Rate Anon Test Eval Test Ref Test
Anon Test 167785/s -- -3% -4%
Eval Test 173611/s 3% -- -1%
Ref Test 175131/s 4% 1% --

Apparently an anonymous subroutine is fractionally faster that a named one, with eval bringing up the
rear, though there's not much in it.

Conceivably, cmpthese can be used with a self-assembled hash of keys and values. This will work so
long as the keys are descriptive labels and the values are Benchmark result objects computed by
timethis, timethese, countit, or timediff, and timesum. However, the result is unlikely to be
useful unless the same count value is used for each benchmark result in the hash.

Note that there is no way to silence the output of timethese and just display the comparative table.

'countit'
This subroutine computes the number of iterations possible in the given time. It takes two arguments, a
time to compute against and the code to compute. It returns the number of iterations that fit into the
given time, including the iteration in process when the time expired. For example:

#!/usr/bin/perl
countit.pl
use warnings;
use strict;

use Benchmark qw(countit timestr);
sub mysubroutine {

my $timewaster = time**rand;
}

my $result = countit(10, 'mysubroutine');

print "Executed ", $result->iters, " iterations in ", timestr($result, 'noc'),
"\n";

Debugging

669

The Benchmark module also contains a caching mechanism for storing the results of null-loops; that is
loops containing no body (or at least no body that performs useful work, as determined by Perl's
optimization algorithms). This allows the module to subtract its own overheads from the benchmarks it
computes.

Mechanism Action

Enablecache Enable caching of times for null-loops. Each iteration count used for a null-
loop is cached and reused if requested a second time:

Benchmark::enablecache;

disablecache Do not cache null-loop times

Benchmark::disablecache;

clearcache Clear the cached time for the null-loop for the given number of iterations.
For example:

Benchmark::clearcache(1000);

clearallcache Clear all cached times for the null-loop:

Benchmark::clearallcache;

In general we can ignore this caching, it happens automatically and without our intervention. If we want
to disable it for any reason we can do so with Benchmark::disablecache.

Summary
We have covered in this chapter various approaches that we can take to debug our programs. We saw
first how to write programs that debug themselves, before examining in detail the Perl debugger. We
looked at how to start the debugger, the available commands and how to configure the debugger.

We then examined the Dumpvalue and Safe modules and looked briefly at debugging the Perl
interpreter before covering automating tests using the Test::Harness module.

Finally, we covered various aspects of profiling.

Chapter 17

670

Text Processing and Document
Generation

Perl has many strengths and chief among these is its ability to process text in a comprehensive and
commanding manner. It is this aspect of Perl that is largely responsible for its success as a CGI scripting
language for use on the World Wide Web, which is largely concerned with the receipt, analysis,
generation, and dissemination of large quantities of text.

In this chapter we are going to look at Perl's major text-processing features, building on some of the
features already seen in Chapter 11 on regular expressions. The text-processing modules that come as
part of Perl's standard library can solve many common problems associated with manipulating text,
such as tab expansion, determining abbreviations, and the formatting of paragraphs. While these
modules are not especially advanced, they eliminate the need for us to code our own solutions,
providing a simple way of performing some useful functions.

In the second part of the chapter we look at the other class of text-processing modules, which concern
Perl syntax known as pod, or plain old documentation. Put simply, pod documentation allows us to
comment out our code in various forms. The Pod:: family of Perl modules enable us to perform
various functions such as creating, transforming, and generally manipulating pod documentation in
many different ways.

The final section of this chapter deals with reports, allowing us to format text using layout definitions.
Formatting enables us to do many handy things with text, and we will explore, among other things,
format structure, page control, and the format datatype. First, we will look at text processing.

Chapter 18

672

Text Processing
Perl provides a flexible text-processing toolkit as part of its core features, of which interpolation and
regular expressions are the most powerful features. However, the Perl standard library contains several
handy text-processing modules that solve many common problems and can save us a lot of time. These
modules are often overlooked when considering Perl's text-processing capabilities simply because the
core language already provides such a rich set of functionality.

The main text-processing modules are all members of the Text:: family of which the following are the
most common:

Module Function

Text::Tabs Convert tabs to and from spaces

Text::Abbrev Calculate unique abbreviations from a list of words

Text::ParseWords Parse text into words and phrases

Text::Wrap Convert unformatted text into paragraphs

Text::Soundex Convert similar sounding text into condensed codes

In addition to these modules, many of Perl's other standard modules have more than a little to do with
text-processing of one kind or another. We make a brief note of them and where they are covered at the
end of this section.

Expanding and Contracting Tabs with 'Text::Tabs'
The Text::Tabs module is the simplest of the text-processing modules. It provides two subroutines,
unexpand for converting sequences of spaces into tab characters, and expand for converting tab
characters into spaces. Here is how they work:

convert spaces into tabs
$tabbed_text = unexpand($spaced_text);

convert tabs into spaces
$spaced_text = expand($tabbed_text);

Both of these subroutines work on either single strings, as shown above, or lists of strings, as in:

@tabbed_lines = unexpand(@spaced_lines);

Any spaces or tabs that already exist in the text when it is translated into spaced or tabbed text
respectively are not affected, so this is an excellent way to make a document consistently tabbed rather
than being tabbed in some places and spaced in others.

Both functions work by calculating the location of the tab positions across the document, and
maintaining the correct number of spaces before each stop. The gap between stops (the stop gap, so to
speak) is determined by the variable $tabstop which is set to the desired tab width, 4 by default. This
is actually imported into our own package by default so we can set it with:

$tabstop = 8; # set a tab width of eight characters

Text Processing and Document Generation

673

It is probably better from a namespace-pollution point of view to only import the subroutines and set
$tabstop as a package variable, if only to clearly indicate that $tabstop is not a locally defined
variable:

use Text::Tabs qw(expand unexpand);

We can change the spacing of a document using this module, by converting it to tabs and then back to
spaces with a different tab width. The following short application uses Text::Tabs to do just this. It
takes three or more arguments, an input tab width, an output tab width, and one or more files to
process:

#!/usr/bin/perl
tabconvert.pl
use warnings;
use strict;

use Text::Tabs qw(expand unexpand);

insist on at least three arguments
die "Usage: $0 <in width> <out width> <file>...\n" if $#ARGV<2;

pull in the input and output tab widths
my $width_in = shift @ARGV;
$width_in = 4 unless $width_in;
my $width_out = shift @ARGV;
$width_out = 4 unless $width_out;

quit if the tab lengths are the same
die "Nothing to do\n" if $width_in eq $width_out;

die on failure to open @ARGV
$SIG{__WARN__} = sub {die @_};
my @text = <>;

convert to tabs using input tab width
$Text::Tabs::tabstop = $width_in;
@text = unexpand @text;

print out text converted to output tab width
$Text::Tabs::tabstop = $width_out;
print expand @text;

To use this script to adjust indentation from four to eight characters we would use a command like:

> perl tabconvert.pl 4 8 infile > outfile

Calculating Abbreviations with 'Text::Abbrev'
It is occasionally useful to be able to quickly determine the unique abbreviations for a set of words, for
instance when implementing a command-line interface. Assuming we wish to create our own, rather
than use an existing solution like Term::Complete or (sometimes) Term::Readline, we can make
use of the Text::Abbrev module to precompute a table of abbreviations and their full-name
equivalents.

TE
AM
FL
Y

Team-Fly®

Chapter 18

674

The Text::Abbrev module supplies one function, abbrev, which works by taking a list of words and
computing abbreviations for each of them in turn by removing one character at a time from each word
and recording the resultant word stalk in a hash table. The Getopt::Long module does something
similar for command-line abbreviations, though it doesn't use Text::Abbrev for the job. If the
abbreviation has already been seen, it must be because two words share that abbreviation and it is
removed from the table. However, if a supplied word is itself an abbreviation of another, it is recorded
anyway. Longer abbreviations remain, pointing to the longer word, while shorter abbreviations shared
by both words are removed. This short script shows the results of calculating the unique abbreviations
for gin, gang, and goolie:

#!/usr/bin/perl
goolie.pl
use warnings;
use strict;

use Text::Abbrev;

my $abbreviations;

sub print_hash {
print "Abbreviations: \n";
foreach (sort keys %{$abbreviations}) {

print "\t$_ => $abbreviations->{$_} \n";
}

}

$abbreviations = abbrev('gin', 'gang', 'goolie');

print_hash($abbreviations);

When run, this script produces a hash of unique abbreviations. The single letter g is not present because
it does not uniquely identify a single word, but ga, gi, and go are:

> perl goolie.pl
Abbreviations:

ga => gang
gan => gang
gang => gang
gi => gin
gin => gin
go => goolie
goo => goolie
gool => goolie
gooli => goolie
goolie => goolie

Generating an abbreviations table makes it very easy to quickly look up the complete word regardless of
how many letters were actually supplied:

chomp; # chomps '$_'
SWITCH: foreach ($abbreviations->{$_}) {

/gin/ and do { print "Gin!"; last; };
/gang/ and do { print "Gang!"; last; };
/goolie/ and do { print "Goolie!"; last; };

}
}

Text Processing and Document Generation

675

The abbrev function returns either a list suitable for creating a hash or a hash reference, depending on
whether it was called in list or scalar context:

%abbreviations = abbrev('gin', 'gang', 'goolie');
$abbreviations = abbrev('gin', 'gang', 'goolie');

We can also pass in a reference to a hash or a typeglob (deprecated) as the first argument. However, the
original contents, if any, are not maintained:

overwrite previous contents of $abbreviations
abbrev($abbreviations, 'ghost', 'ghast', 'ghoul');

To add new words to the table we can simply combine two hashes, but if we do so we have to make
sure that we remove non-unique abbreviations ourselves:

%{$abbreviations} = (%{$abbreviations}, abbrev('giggle'));
delete $abbreviations->{'g'};

Since this requires knowing what we placed into the table in the first place, it is less than ideal. The
same problem arises if we want to remove a term since new, unique abbreviations may become
available. The only way to reliably generate a consistent modified list is to re-execute abbrev with the
original list plus the additions. A simple way to regenerate the original word list is to check through the
existing table looking for keys that match their values – these are the original words:

@words = grep {$_ eq $abbreviations->{$_}} keys %{$abbreviations};

abbrev ($abbreviations, @words, 'giggle');

Note that the Term::Complete module combines abbreviations with a command-line entry
mechanism (although it does not use Text::Abbrev to determine abbreviations). If we don't need
anything more complex, this is a simpler solution than rolling our own with Text::Abbrev. See
Chapter 15 for more details.

Parsing Words and Phrases with 'Text::ParseWords'
Many applications that accept textual input need to be able to parse the text into distinct words for
processing. In most simple cases we can simply get away with using split. Since this is such a common
requirement, split even splits using whitespace as a default. For instance, this rather terse program
carves up its input text into a list of words, separated by whitespace and split using split with no
arguments:

#!/usr/bin/perl
splitwords.pl
use warnings;
use strict;

my @words;
push @words, split foreach(<>);
print scalar(@words), "words: @words \n";

Chapter 18

676

While effective, this kind of approach falls short if we want to handle more advanced constructs like
quotes. If two or more words are surrounded by quotes we often want to treat them as a single word or
phrase, in which case we can't easily use split. Instead we can use the Text::ParseWords module,
which handles quotes and produces a list of words and phrases using them.

Parsing Space-Separated Text
The Text::ParseWords module supports the parsing of text into words and phrases, based on the
presence of quotes in the input text. It provides four subroutines:

❑ shellwords – processes strings using whitespace as a delimiter, in the same manner as shells

❑ quotewords – handles more general cases where the word separator can be any arbitrary
text

❑ nested_quotewords – similar to quotewords, word separator can be any arbitrary text

❑ parse_line – a simpler version of quotewords, which handles a single line of text and
which is actually the basis of the other three

The first, shellwords, takes one or more lines of text and returns a list of words and phrases found
within them. Since it is set to consider whitespace as the separator between words, it takes no other
parameters:

@words = shellwords(@input);

Here is a short program that shows shellwords in action:

#!/usr/bin/perl
shell.pl
use warnings;
use strict;

use Text::ParseWords qw(shellwords);

my @input = (
'This is "a phrase"',
'So is\ this',
q('and this'),
"But this isn\\'t",
'And neither \"is this\"',
);

print "Input: ", join('',@input),"\n";

my @words = shellwords(@input); print scalar(@words), " words:\n";
foreach (@words) {

print "\t$_\n";
}

When run, this program should produce the output:

Text Processing and Document Generation

677

> perl shell.pl
Input: This is "a phrase" So is\ this 'and this' But this isn\'t And neither \"is this\"
13 words:

This
is
a phrase
So
is this
and this
But
this
isn't
And
neither
"is
this"

This program demonstrates several points about how we use shellwords and its relations. First, we
can define phrases with double quotes, or single quotes if we use the q function. We can also define
phrases by escaping spaces that we want shellwords to overlook. In order to have shellwords
process these backslashes, we have to use single quotes (or q) around the string as a whole to avoid
interpolation from evaluating them first. To have shellwords ignore a quote, we can escape it, but to
escape a single quote we have to use double quotes around the string and escape it twice (once for
interpolation, once for shellwords). Of course a lot of this is simpler if the text is coming from a
variable rather than a literal string.

Parsing Arbitrarily Delimited Text
The quotewords subroutine is a more flexible version of shellwords that allows the word separator
to be defined. It takes two additional parameters, a regular expression pattern describing the word
separator itself, and a keep flag that determines how quotes are handled. This is how we might use it to
emulate and modify the result of shellwords. Note the value of the keep flag in each case:

emulate 'shellwords' with 'quotewords'
@words = quotewords('\s+', 0, @lines);

emulate 'shellwords' but keep quotes and backslashes
@words = quotewords('\s+', 1, @lines);

As a more complete example, here is a short program that parses a file of comma-separated lines into a
long list of fields:

#!/usr/bin/perl
readpw.pl
use warnings;
use strict;

use Text::ParseWords;

my (@users, @fields);
if (open PASSWD,"/etc/passwd") {

@users = <PASSWD>;
chomp @users; # remove linefeeds
@fields = quotewords(':', 0, @users);
close PASSWD;

}
print "@fields";

Chapter 18

678

The keep parameter determines whether quotes and backslashes are removed once their work is done,
as real shells do, or whether they should be retained in the resulting list of words. If False, quotes are
removed as they are parsed. If True, they are retained. The keep flag is almost but not quite Boolean.
If set to the special case of delimiters, both quotes and characters that matched the word separator
are kept:

emulate 'shellwords' but keep quotes and backlashes and also store the
matched whitespace as tokens too
@words = quotewords('\s+', 'delimiters', @lines);

Batch Parsing Multiple Lines
The /etc/passwd/ example above works, but assembles all the resultant fields of each user into one
huge list of words. Far better would be to keep each set of words found on each individual line in a
separate list. We can do that with the nested_quotewords subroutine, which returns a list of lists, one
list for each line passed in. Here is a short program that uses nested_quotewords to do just that:

#!/usr/bin/perl
password.pl
use warnings;
use strict;

use Text::ParseWords;

@ARGV = ('/etc/passwd');
my @users = nested_quotewords(':', 0, <>);

print scalar(@users)," users: \n";
foreach (@users) {

print "\t${$_}[0] => ${$_}[2] \n";
}

This program prints out a list of all users found in /etc/passwd and their user id. When run it should
produce something resembling the following:

> perl password.pl
16 users:

root => 0
bin => 1
daemon => 2
adm => 3
lp => 4
sync => 5
shutdown => 6
halt => 7
mail => 8
news => 9
uucp => 10
operator => 11
games => 12
gopher => 13
ftp => 14
nobody => 99

Text Processing and Document Generation

679

As it happens, in this case we could equally well have used split with a split pattern of a colon since
quotes do not usually appear in a password file. However, the principle still applies.

Parsing a Single Line Only
We mentioned earlier that there were four subroutines supplied by Text::ParseWords. The fourth is
parse_line, and it is the basis of the other three. This subroutine parses a single line only, but is
otherwise identical in operation to quotewords and takes the same parameters with the exception that
the last can only be a scalar string value:

@words = parse_line('\s+', 0, $line);

The parse_line subroutine provides no functional benefit over quotewords, but if we only have one
line to parse, for example a command-line input, then we can save a subroutine call by calling it directly
rather than via quotewords or shellwords.

Formatting Paragraphs with 'Text::Wrap'
The Text::Wrap module provides text-formatting facilities to automate the task of turning irregular
blocks of text into neatly formatted paragraphs, organized so that their lines fit within a specified width.
Although it is not particularly powerful, it provides a simple and quick solution.

It provides two subroutines; wrap handles individual paragraphs and is ideally suited for formatting
single lines into a more presentable form and fill handles multiple paragraphs and will work on entire
documents.

Formatting Single Paragraphs
The wrap subroutine formats single paragraphs, transforming one or more lines of text of indeterminate
length and converting them into a single paragraph. It takes three parameters; an initial indent string,
which is applied to the first line of the resulting paragraph, a following indent string, applied to the
second and all subsequent lines, and finally a string or list of strings.

Here is how we could use wrap to generate a paragraph with an indent of five spaces on the first line
and an indent of two spaces on all subsequent lines:

$para = wrap(' ',' ', @lines);

Any indentation is permissible. Here is a paragraph formatted (crudely) with HTML tags to force the
lines to conform to a given line length instead of following the browser's screen width:

$html = wrap("<p> ", "
", $text);

If a list is supplied, wrap concatenates all the strings into one before proceeding – there is no essential
difference between supplying a single string over a list. However, existing indentation, if there is any, is
not eliminated so we must take care to deal with this first if we are handling text that has already been
formatted to a different set of criteria. For example:

map {$_ =~ s/^\s+//} @lines; # strip leading whitespace from all lines

Chapter 18

680

The list can be of any origin, not just an array variable. For example, take this one line reformatting
application:

print wrap("\t", "", <>); # reformat standard input/ARGV

Tabs are handled by Text::Wrap to expand them into spaces, a function handled by Text::Tabs,
previously documented. When formatting is complete, spaces are converted back into tabs, if possible
and appropriate. See the section on Text::Tabs for more information.

Customized Wrapping
The Text::Wrap module defines several package variables to control its behavior, including the
formatting width, the handling of long words, and the break text.

Formatting Width

This is the most obvious variable to configure. The number of columns to format is held in the package
variable Text::Wrap::columns, and has a default value of 76, which is the polite width for things like
e-mail messages (to allow a couple of > quoting prefixes to be added in replies before 80 columns is
reached). We can change the column width to 39 with:

$Text::Wrap::columns = 39;

All subsequent calls to wrap will now use this width formatting.

Long Words

Words that are too long to fit the line are left as is (URLs in text documents are a common culprit). This
behavior can be altered to a fatal error by setting the variable the following line:

$Text::Wrap::huge = 'die';

This will cause wrap to die with an error can't wrap '<text>', where <text> is the paragraph text.
Unfortunately wrap does not support anything resembling a user-defined subroutine to handle long
words, for example by hyphenating them, though since Text::Wrap is not a very complicated module,
creating our own customized version to do this would not prove too difficult.

Break Text

Although it is not that likely that we would want to change it, we can also configure the break text, that
is, the character or characters that separate words. In fact the break text is a regular expression, defined
in the package variable $Text::Wrap::break, and its default value is \s for any whitespace
character.

As the break text is presumed to lie between words (that is, the actual meaningful content), it is removed
from the paragraph before reformatting takes place. That means that while it might seem appealing to
specify a break text pattern of \s|- to allow wrap to wrap on hyphenated words, we would lose the
hyphen whenever this actually occurred.

Debugging

A limited debugging mode can be enabled by setting the variable $Text::Wrap::debug:

$Text::Wrap::debug = 1;

Text Processing and Document Generation

681

The columns, break, and huge variables can all be exported from the Text::Wrap package by
specifying them in the import list:

use Text::Wrap($columns $huge $break);

$columns = 39;
$huge = 'die';

As with any module symbols we import, this is fine for simple scripts but is probably unwarranted for
larger applications – use the fully qualified package variables instead.

Formatting Whole Documents
Whole documents can be formatted with the fill subroutine. This will chop the supplied text into
paragraphs first by looking for lines that are indented, indicating the start of a new paragraph, and blank
lines, indicating the end of one paragraph and the start of another. Having determined where each
paragraph starts and ends, it feeds the resulting lines to wrap, before merging the resulting wrapped
paragraphs back together.

The arguments passed to fill are the same as those for wrap. Here is how we would use it to reformat
paragraphs into unindented and spaced paragraphs:

$formatted_document = fill("\n", "", @lines);

If the two indents are identical, fill automatically adds a blank line to separate each paragraph from
the previous one. Therefore the above could also be achieved with:

$formatted_document = fill("", "", @lines);

If the indents are not identical then we need to add the blank line ourselves:

$formatted_document = fill("\t", "", @lines);

indent each new paragraph with a tab, paragraphs are continuous

$formatted_document = fill("\n\t", "", @lines);

indent each new paragraph with a tag, paragraphs are separated

All the configurable variables that affect the operation of wrap also apply to fill, of course, since
fill uses wrap to do most of the actual work. It is not possible to configure how fill splits text into
paragraphs.

Note that if fill is passed lines already indented by a previous wrap operation, then it will incorrectly
detect each new line as a new paragraph (because it is indented). Consequently we must remove
misleading indentation from the lines we want to reformat before we pass them to fill.

Formatting on the Command Line
Although it is a somewhat simplistic module, Text::Wrap's usage is simple enough for it to be used on
the fly on the command-line:

> perl -MText::Wrap -e "fill('','',<>)" -- textfile ...

Chapter 18

682

Here we have used -- to separate Perl's arguments from filenames to be fed to the formatter. We can
supply any number of files at once, and redirect the output to a file if we wish.

Matching Similar Sounding Words with 'Text::Soundex'
The Text::Soundex module is different in nature to the other modules in the Text:: family. Whilst
modules such as Text::Abbrev and Text::ParseWords are simple solutions to common problems,
Text::Soundex tackles a different area entirely. It implements a version of the Soundex algorithm
developed for the US Census in the latter part of the 19th century, and popularized by Donald Knuth of
TeX fame.

The Soundex algorithm takes words and converts them into tokens that approximate the sound of the
word. Similar sounding words produce tokens that are either the same or close together. Using this, we
can generate soundex tokens for a predetermined list of words, say a dictionary or a list of surnames,
and match queries against it. If the query is close to a word in the list, we can return the match even if
the query is not exactly right, misspelled7, for example.

Tokenizing Single Words
The Text::Soundex module provides exactly one subroutine, soundex that transforms one word into
its soundex token. It can also accept a list of words and will return a list of the tokens, but it will not
deal with multiple words in one string:

print soundex "hello"; # produces 'H400'
print soundex "goodbye"; # produces 'G310'
print soundex "hilo"; # produces 'H400' - same as 'Hello'
print soundex qw(Hello World); # produces 'H400W643'
print soundex "Hello World" # produces 'H464'

The following short program shows the Soundex algorithm being used to look up a name from a list
given an input from the user. Since we are using Soundex, the input doesn't have to be exact, just
similar:

#!/usr/bin/perl
surname.pl
use warnings;
use strict;

use Text::Soundex;

define an ABC of names (as a hash for 'exists')
my %abc = (

"Hammerstein" => 1,
"Pineapples" => 1,
"Blackblood" => 1,
"Deadlock" => 1,
"Mekquake" => 1,
"Rojaws" => 1,

);

create a token-to-name table
my %tokens;
foreach (keys %abc) {

$tokens{soundex $_} = $_;
}

Text Processing and Document Generation

683

test input against known names
print "Name? ";
while (<>) {

chomp;
if (exists $abc{$_}) {

print "Yes, we have a '$_' here. Another? ";
} else {

my $token = soundex $_;
if (exists $tokens{$token}) {

print "Did you mean $tokens{$token}? ";
} else {

print "Sorry, who again? ";
}

}
}

We can try out this program with various different names, real and imaginary, and produce different
answers. The input can be quite different from the name if it sounds approximately right:

> perl surname.pl
Name? Hammerstone
Did you mean Hammerstein? Hammerstein
Yes, we have a 'Hammerstein' here. Another? Blockbleed
Did you mean Blackblood? Mechwake
Did you mean Mekquake? Nemesis
Sorry, who again?

Tokenizing Lists of Words and E-Mail Addresses
We can produce a string of tokens from a string of words if we split up the string before feeding it to
soundex. Here is a simple query program that takes input from the user and returns a list of tokens:

#!/usr/bin/perl
soundex.pl
use warnings;
use strict;

use Text::Soundex;

while (<>) {
chomp; #remove trailing linefeed
s/\W/ /g; #zap punctuation, e.g. '.', '@'
print "'$_' => '@{[soundex(split)]}'\n";

}

We can try this program out with phrases to illustrate that accuracy does not have to be all that great, as
a guide:

> perl soundex.pl
definitively inaccurate
'definitively inaccurate' => 'D153 I526'
devinatovli inekurat
'devinatovli inekurat' => 'D153 I526'

As well as handling spaces we have also added a substitution that converts punctuation into spaces first.
This allows us to generate a list of tokens for an e-mail address, for example. By concatenating and
storing these with a list of e-mail addresses in the same way as the name example we showed earlier we
could easily implement a simple e-mail-matching program. Used correctly we could handle e-mails sent
to pestmaster instead of postmaster, for example.

TE
AM
FL
Y

Team-Fly®

Chapter 18

684

The 'Soundex' Algorithm
As the above examples illustrate, Soundex tokens consist of an initial letter, which is the same as that of
the original word, followed by three digits that represent the sound of the first, second and third syllable
respectively. Since one has one syllable, only the first digit is non-zero. On the other hand, seven has
two syllables, so it gets two non-zero digits. Comparing the two results we can notice that both one and
seven contain a 5, which corresponds to the syllable containing n in each word.

The Soundex algorithm has some obvious limitations though. In particular, it only resolves words up to
the first three syllables. However, this is generally more than enough for simple 'similar sounding' type
matches, such as surname matching, for which it was designed.

Handling Untokenizable Words
In some rare cases, the Soundex algorithm cannot find any suitable token for the supplied word. In
these cases it usually returns nothing (or to be more accurate, undef). We can change this behavior by
setting the variable

$Text::Soundex::soundex_nocode:

$Text::Soundex::soundex_nocode = 'Z000'; # a common 'failed' token

print soundex "=>"; # produces 'Z000'

If we change the value of this variable we must be sure to set it to something that is not likely to
genuinely occur. The value of Z000 is a common choice, but matches many words including Zoo. A
better choice in this case might be Q999, but there is no code that is absolutely guaranteed not to occur.
If we do not need to conform to the Soundex code system (we might want to pass the results to
something else that expects valid Soundex tokens as input) then we can simply define an impossible
value like _NOCODE_ or ?000, which soundex cannot generate.

Other Text Processing Modules
As well as the modules in the Text:: family, several other Perl modules outside the Text:: hierarchy
involve text-processing or combine text-processing with other functions.

Several of the Term:: modules involve text-processing in relation to terminals. For instance,
Term::Cap involves generating ANSI escape sequences from capability codes, while
Term::ReadLine provides input line text-processing support. These modules are all covered in
Chapter 15.

Documenting Perl
Documentation is always a good idea in any programming language, and Perl is no exception. In fact,
because Perl is so good (or, as some might have it, so bad) at allowing us to create particularly
indecipherable code, documentation is all the more important. There is also such a thing as too much
documentation; the more there is, the more we have to keep up to date with the actual code. If we are
documenting every line of code it is probably a sign we need to spend more time making the code
easier to understand and less time writing commentary to make up for it.

Text Processing and Document Generation

685

Like most programming languages, Perl supports simple comments. However, it also attempts to
combine the onerous duties of commenting code and documenting software into one slightly less
arduous task through the prosaically named pod syntax.

Comments
Perl comments are, as we would expect, very simple and traditional. In the style of C++ (but not C) and
too many shells to count, they consist of a leading #, plus whatever it is we want to say:

like this

Anything after the # is ignored by Perl's interpreter. Comments may be placed on a line of their own, or
after existing Perl code. They can even be placed in the middle of statements:

print 1 * # depth
4* # width
9 # height
;

Perl is smart enough not to try to interpret a # inside a string as the start of a comment, but conversely
we cannot comment here documents. Also we also cannot comment multiple lines at once, in C-style
/*...*/ comments, but we can use pod for that if we want.

plain old documentation
pod is a very simple markup syntax for integrating documentation with the source code that it is
documenting. It consists of a series of special one-line tokens that separate pod from anything else in a
file (presumably code), and also allows us to define simple structures like headings and lists.

In and of itself, pod does nothing more than regular comments do, except give us the ability to write
multi-line comments. However, its simple but flexible syntax also makes it very simple to convert into
'real' documents like text files and HTML documents. Indeed, Perl comes with the pod2text and
pod2html tools for this very purpose. The elegance of pod is that if we want to read the documentation
for a particular module or library file we can just run pod2text against the module file to generate the
documentation. The perldoc utility is just a friendlier interface to the same pod translation process.

Java programmers will be right at home with pod – it is basically a similar (and incidentally, prior) idea
to javadoc, which also encourages self-documenting code.

pod Paragraphs
Pod allows us to define documentation paragraphs, which we can insert into other documents – most
usually, but by no means exclusively, Perl code. The simplest sequence is =pod ... =cut, which
simply states that all the following text is to be taken as pod paragraphs, until the next =cut or the end
of the file:

...
$scalar = "value";
=pod

This is a paragraph of pod text embedded into some Perl code. It is not indented,
so it will be treated as normal text and word wrapped by pod translators.

=cut
print do_something($scalar);
...

Chapter 18

686

Within pod, text is divided into paragraphs, which are simply blocks of continuous text, just as they are
anywhere else. A paragraph ends and a new one begins when a completely empty line is encountered.
All pod tokens absorb the paragraph after them on the same line or immediately following. Some
tokens, such as headings, use this paragraph for display purposes. Others, like =pod and =cut simply
ignore it, so we can document the pod itself:

=pod this is just a draft document

mysubname - this subroutine doesn't do much of anything
at all and is just serving as an example of how to document it with
a pod paragraph or two

=cut end of draft bit

The only partial exception to this is =cut. While translators will absorb text immediately following
=cut, Perl itself will not, so we cannot spread a 'cut comment' across more than one line.

Paragraphs and Paragraph Types

If a paragraph is indented then we consider it to be preformatted, much in the same way that the HTML
<PRE> tag works. The following example shows three paragraphs two of which are indented:

=pod
This paragraph is indented, so it is taken as
is and not reformatted by translators like:

pod2text - the text translator
pod2html - the HTML translator
pod2man - the UNIX manual page translator

Note that 'as is' also means that escaping does not work, and that
interpolation doesn't happen. What we see is what we get.

This is a second paragraph in the same =pod..=cut section. Since it is
not indented it will be reformatted by translators.

Again indented
This is a third paragraph
Useful for Haikus

=cut

Headings

Headings can be added with the =head1 and =head2 tokens, which provide first and second-level
headings respectively. The heading text is the paragraph immediately following the token, and may start
(and end) on the same line:

=head1 This is a level one heading

Or:

=head2 This is
a level
two heading

Text Processing and Document Generation

687

Or:

=head2
As is this

Both heading tokens start a pod section in the same way that =pod does if one is not already active. pod
sections do not nest, so we only need one =cut to get back to Perl code. In general we tend to use the
first form, but it is important to leave an empty line if we do not want our heading to absorb the
following paragraph:

=head1 This heading has accidentally swallowed up
this paragraph, because there is no separating line.

=head2 Worse than that, it will absorb this second level heading too
so this is all one long level one heading, and not the two headings
and paragraphs as we actually intended.

=cut

This is how we should really do it:

=head1 This is a level one heading

This is a paragraph following the level one heading.

=head2 This is a level two heading

This a preformatted paragraph following the level 2 heading.

=cut

How the headings are actually rendered is entirely up to the translator. By default the text translator
pod2text indents paragraphs by four spaces, level-two headings by two, and level-one headings by
none – crude, but effective. The HTML translator pod2html uses <Hn> tags, as we might expect.

Lists

Lists can be defined with the =over...=back and =item tokens. The =over token starts a list, and
can be given a value such as 4, which many formatters use to determine how much indentation to use.
The list is ended by =back, and is optional if the pod paragraph is at the end of the document. =item
defines the actual list items of which there should be at least one, and we should not use this token
outside an =over...=back section. Here is an example four item list – note again the empty lines that
separate the items from the paragraphs between them.

=over 4

=item 1

This is item number one on the list

=item 2

This is item number two on the list

=item 3

Chapter 18

688

This is the third item

=item 4

Guess...

=back

Since the =over and =item tokens can take values, and because the only kind of value pod knows is
the paragraph, we can also say:

=over
4

=item
1

...

In practice we probably do not want to do this, but the same caveats about headings and paragraphs
also apply here. Note that =over works like =pod, and starts a pod section if one is not active.

The numbers after the =item tokens are purely arbitrary; we can use anything we like for them,
including meaningful text. However, to make the job of pod translators easier we should stick to a
consistent scheme. For example if we number them, we should do it consistently, and if we want to use
bullet points then we should use something like an asterisk. If we want named items, we can do that too.
For example, a bullet pointed list with paragraphs:

=over 4

=item *
This is a bullet pointed list
=item *
With two items

=back

A named items list:

=over 4

=item The First Item
This is the description of the first item

=item The Second Item
This is the description of the second item

=back;

Text Processing and Document Generation

689

A named items list without paragraphs:

=over 4

=item Stay Alert

=item Trust No one

=item Keep Your Laser Handy

=back

pod translators will attempt to do the best they can with pod lists, depending on what it is they think we
are trying to do, and the constraints of the document format into which they are converting. The
pod2text tool will just use the text after the item name. The pod2html tool is subject to the rules of
HTML, which has different tags for ordered, unordered, and descriptive lists (, , and <dl>) so
it makes a guess based on what the items look like. A consistent item naming style will help it make a
correct guess.

If =over is used outside an existing pod section then it starts another one. The =back ends the list but
not the pod section, so we also need to add a =cut to return to Perl code:

=over 4

=item *
This is item 1

=item *
This is item 2

=back
=cut

Translator-Specific Paragraphs

The final kind of pod token are the =for and =begin...=end tokens. The former token takes the
name of a specific translator and a paragraph, which is rendered only if that translator is being used.
The paragraph should be in the output format of the translator, that is, already formatted for output.
Other translators will entirely ignore the paragraph:

=for text
This is a paragraph that will appear in documents produced by the pod2text format.

=for html
<p>But this paragraph will appear in HTML documents

Again, like the headings and item tokens, the paragraph can start on the next line as in the first
example, or immediately following the format name, as in the second.

Since it is annoying to have to type =for format for every paragraph in a collection of paragraphs we
can also use the pair of =begin...=end markers. These operate much like =pod...=cut but mark the
enclosed paragraphs as being specific to a particular format:

Chapter 18

690

=begin html
<p>Paragraph1
<p><table>......
......</table>
<p>Paragraph2
=end

If =begin is used outside an existing pod section then it starts one. The =end ends the format specific
section but not the pod section, so we also need to add a =cut to return to Perl code, just as for lists.

=begin html
<p>A bit of HTML document
=end
=cut

The =begin and =end tokens can also be used to create multi-line comments, simply by providing
=begin with a name that does not correspond to any translator. We can even comment out blocks of
code this way:

=begin disabled_dump_env
foreach (sort keys %ENV) {

print STDERR, "$_ => $ENV{$_}\n";
}
=end

=begin comment
This is an example of how we can use pod tokens to create comments.
Since 'comment' is not a pod translator type, this section is never used in
documents created by 'pod2text', 'pod2html', etc.
=end

Using pod with 'DATA' or 'END' tokens
If we are using either a __DATA__ or a __END__ token in a Perl script then we need to take special care
with pod paragraphs that lie adjacent to them. pod translators require that there must be at least one
empty line between the end of the data and a pod directive for the directive to be seen, otherwise it is
missed by the translation tools. In other words, write:

...
__END__

=head1
...

And not:

...
__END__
=head1

Text Processing and Document Generation

691

Interior Sequences
We mentioned earlier that pod paragraphs could either be preformatted (indicated by indenting), or
normal. Normal paragraphs are reformatted by translators to remove extraneous spaces, newlines, and
tabs. Then the resulting paragraph is rendered to the desired width if necessary.

In addition to this basic reformatting, normal paragraphs may also contain interior sequences – specially
marked out sections of the text with particular meanings. Each sequence consists of a single capital
letter, followed by the text to treat specially within angle brackets. For example:

=pod
This is a B<paragraph> that uses I<italic> and B<bold> markup using the
BE<lt>textE<gt> and IE<lt>text<gt> interior sequences. Here is an example code
fragment: C<substr $text,0,1> and here is a filename: F</usr/bin/perl>. All these
things are of course represented in a style entirely up to the translator. See
L<perlpod> for more information.
=cut

Note that to specify a real < and > we have to use the E<lt> and E<gt> sequences, reminiscent of the
< and > HTML entities.

Pod Tools and Utilities
Having documented our code using pod, it is time to generate some documents from it. Perl provides a
collection of modules in the Pod:: family that perform various kinds of translations from pod to other
formats. Perl also provides utility modules for checking syntax. We can use these modules
programmatically in our own documentation utilities, but more commonly we simply use one of the
utilities that Perl provides as standard.

All of these tools support both long and short option names, in the manner of the Getopt::Long
module (which is what they all use to process the command-line), so we can say -v or --verbose or a
number of things in between for the pod2usage tool. We have used the long names below, but all of
them can be abbreviated to one extent or another.

Translator Tools
We have already mentioned pod2text and pod2html a few times. Perl also comes with other
translators and some utilities based on pod too. All the translators take an input and optional output file
as arguments, plus additional options to control their output format. Without either, they take input
from standard input and write it to standard output.

The list of pod translators supplied with Perl is as follows:

❑ pod2text – translates pod into plain text. If the -c option is used and Term::ANSIColor is
installed (see Chapter 15) colors will also be used.

❑ pod2html – translates pod into HTML, optionally recursing and processing directories and
integrating cross-links between pages.

❑ pod2roff, pod2man – both these tools translate pod into UNIX manual pages using the
Pod::Man module.

Chapter 18

692

As always, for more details on these translators we consult the relevant perldoc page using the now
familiar command-line and substituting our choice of translator:

> perldoc <translatorname>

The pod2man translator also supplies font arguments, which only apply to troff, an -official
argument for official Perl documentation, and a -lax argument, which is meant to check that all parts
of a UNIX manual page are present. Unfortunately at present it does not do this. See:

> perldoc pod2man

for details on these.

Note that there are plenty of additional pod translation tools available from CPAN; including translators
for RTF/Word, LaTex, Postscript, and plenty of other formats. Chances are that, if it is a halfway
popular format, there will be a pod translator for it.

Retrieval Tools
In addition to the translators, Perl provides three tools for extracting information from pods selectively.
Of these, perldoc is by far the most accomplished. Although not strictly a translator, perldoc is a
utility that makes use of translators to provide a convenient Perl documentation lookup tool. We
covered it in detail back in Chapter 1.

To attempt to retrieve usage information about the given Perl script, we can use the pod2usage tool.
For example:

> pod2usage myscript.pl

The tool searches for a SYNOPSIS heading within the file and prints it out using pod2text. A verbosity
flag may be specified to increase the returned information:

-v 1 (default) SYNOPSIS only
-v 2 OPTIONS and ARGUMENTS too
-v 3 All pod documentation

A verbosity of 3 is equivalent to using pod2text directly. If the file is not given with an absolute
pathname then -pathlist can be used to provide a list of directory paths to search for the file in.

A simpler and more generic version of pod2usage, is podselect. This tool attempts to locate a level 1
heading with the specified section title and returns it from whichever files it is passed:

> podselect -s='How to boil an egg' *.pod

Note that podselect does not do any translation, so it needs to be directed to a translator for
rendering into reasonable documentation.

pod Verification
It is easy to make simple mistakes with pod, omitting empty lines or forgetting =cut for example.
Fortunately pod is simple enough to be easy to verify as well. The podchecker utility scans a file
looking for problems:

> podchecker poddyscript.pl

Text Processing and Document Generation

693

If all is well then it will return:

poddyscript.pl pod syntax OK.

Otherwise it will produce a list of problems, which we can then go and fix, for example:

*** WARNING: file does not start with =head at line N in file poddyscript.pl

This warning indicates that we have started pod documentation with something other than a =head1 or
=head2, which the checker considers to be suspect. Likewise:

*** WARNING: No numeric argument for =over at line N in file poddyscript.pl
*** WARNING: No items in =over (at line 17) / =back list at line N in file poddyscript.pl

This indicates that we have an =over...=back pair, which not only does not have a number after the
over, but does not even contain any items. The first is probably an omission. The second indicates that
we might have bunched up our items so they all run into the =over token, like this:

=over
=item item one
=item item two

=back

If we had left out the space before the =back we would instead have got:

*** ERROR: =over on line N without closing =back at line EOF in file poddyscript.pl

In short, podchecker is a useful tool and we should use it if we plan to write pod of any size in our Perl
scripts.

The module that implements podchecker is called Pod::Checker, and we can use it with either
filenames or file handles supplied for the first two arguments:

function syntax
$ok = podchecker($podfile, $checklog, %options);

object syntax
$checker = new Pod::Checker %options;
$checker->parse_from_file($podpath, $checklog);

Both file arguments can be either filenames or filehandles. By default, the pod file defaults to STDIN and
the check log to STDERR, so a very simple checker script could be:

use Pod::Checker;
print podchecker?"OK":"Fail";

The options hash, if supplied, allows one option to be defined: enable or disable the printing of
warnings. The default is on, so we can get a verification check without a report using STDIN and
STDERR:

$ok = podchecker(*STDIN, *STDERR,'warnings' => 0);

The actual podchecker script is more advanced than this, of course, but not by all that much.

TE
AM
FL
Y

Team-Fly®

Chapter 18

694

Programming pod
Perl provides a number of modules for processing pod documentation – we mentioned Pod::Checker
just a moment ago. These modules form the basis for all the pod utilities, some of which are not much
more than simple command-line wrappers for the associated module. Most of the time we do not need
to process pod programmatically, but in case we do, here is a list of the pod modules supplied by Perl
and what each of them does:

Module Action

Pod::Checker The basis of the podchecker utility. See above.

Pod::Find Search for and return a hash of pod documents. See 'Locating pods'
below.

Pod::Functions A categorized summary of Perl's functions, exported as a hash.

Pod::Html The basis for the pod2html utility.

Pod::Man The basis for both the pod2man and the functionally identical
pod2roff utilities.

Pod::Parser The pod parser. This is the basis for all the translation modules and
most of the others too. New parsers can be implemented by
inheriting from this module.

Pod::ParseUtils A module containing utility subroutines for retrieving information
about and organizing the structure of a parsed pod document, as
created by Pod::InputObjects.

Pod::InputObjects The implementation of the pod syntax, describing the nature of
paragraphs and so on. In-memory pod documents can be created on
the fly using the methods in this module.

Pod::Plainer A compatibility module for converting new style pod into old style
pod.

Pod::Select A subclass of Pod::Parser and the basis of the podselect utility,
Pod::Select extracts selected parts of pod documents by
searching for their heading titles. Any translator that inherits from
Pod::Select rather than Pod::Parser will be able to support the
Pod::Usage module automatically.

Pod::Text The basis of the pod2text utility.

Pod::Text::Color Convert pod to text using ANSI color sequences. The basis of the
-color option to pod2text. Subclassed from Pod::Text. This
uses Term::ANSIColor, which must be installed; see Chapter 15.

Pod::Text::Termcap Convert pod to text using escape sequences suitable for the current
terminal. Subclassed from Pod::Text. Requires termcap support,
see Chapter 15.

Pod::Usage The basis of the pod2usage utility; this uses Pod::Select to
extract usage-specific information from pod documentation by
searching for specific sections, for example, NAME, SYNOPSIS.

Text Processing and Document Generation

695

Using Pod Parsers
Translator modules, which is to say any module based directly or indirectly on Pod::Parser, may be
used programmatically by creating a parser object and then calling one of the parsing methods:

parse_from_filehandle($fh, %options);

Or:

parse_from_file($infile, $outfile, %options);

For example, assuming we have Term::ANSIColor installed, we can create ANSIColor text
documents using this short script:

#!/usr/bin/perl
parseansi.pl
use warnings;
use strict;

use Pod::Text::Color;

my $parser = new Pod::Text::Color(
width => 56,
loose => 1,
sentence => 1,

);

if (@ARGV) {
$parser->parse_from_file($_, '-') foreach @ARGV;

} else {
$parser->parse_from_filehandle(*STDIN);

}

We can generate HTML pages, plain text documents, and manual pages using exactly the same process
from their respective modules.

Writing a pod Parser
Writing our own pod parser is surprisingly simple. Most of the hard work is done for us by
Pod::Parser, so all we have to do is override the methods we need to replace in order to generate the
kind of document we are interested in. Particularly, there are four methods we may want to override:

� command – Render and output POD commands.

� verbatim – Render and output verbatim paragraphs.

� textblock – Render and output regular (non-verbatim) paragraphs.

� interior_sequence – Return rendered interior sequence.

By overriding these and other methods we can customize the document that the parser produces. Note
that the first three methods display their result, whereas interior_sequence returns it. Here is a short
example of a pod parser that turns pod documentation into an XML document (albeit without a DTD):

Chapter 18

696

#!/usr/bin/perl
parser.pl
use warnings;
use strict;

{
package My::Pod::Parser;

use Pod::Parser;

our @ISA = qw(Pod::Parser);

sub command {
my ($parser, $cmd, $para, $line) = @_;
my $fh = $parser->output_handle;

$para =~s/[\n]+$//;
my $output = $parser->interpolate($para, $line);
print $fh "<pod:$cmd> $output </pod:$cmd> \n";

}

sub verbatim {
my ($parser, $para, $line) = @_;
my $fh = $parser->output_handle;

$para =~s/[\n]+$//;
print $fh "<pod:verbatim> \n $para \n </pod:verbatim> \n";

}

sub textblock {
my ($parser, $para, $line) = @_;
my $fh = $parser->output_handle;

print $fh $parser->interpolate($para, $line);
}

sub interior_sequence {
my ($parser, $cmd, $arg) = @_;
my $fh = $parser->output_handle;

return "<pod:int cmd=\"$cmd\"> $arg </pod:int>";
}

}

my $parser = new My::Pod::Parser();

if (@ARGV) {
$parser->parse_from_file($_) foreach @ARGV;

} else {
$parser->parse_from_filehandle(*STDIN);

}

To implement this script we need the output filehandle (since the parser may be called with a second
argument), which we can get from the output_handle method. We also take advantage of
Pod::Parser to do the actual rendering work by using the interpolate method, which in turn calls
our interior_sequence method. Pod::Parser provides plenty of other methods too, some of which
we can override as well as or instead of the ones we used in this parser, see:

> perldoc Pod::Parser

Text Processing and Document Generation

697

for a complete list of them. The Pod::Parser documentation also covers more methods that we might
want to override, such as begin_input, end_input, preprocess_paragraph, and so on. Each of
these gives us the ability to customize the parser in increasingly finer-grained ways.

We have placed the Parser package inside the script in this instance, though we could equally have had
it in a separate module file. To see the script in action we can feed it with any piece of Perl
documentation – the pod documentation itself, for example. On a typical UNIX installation of Perl 5.6,
we can do that with:

> perl mypodparser /usr/lib/perl5/5.6.0/pod/perlpod.pod

This generates an XML version of perlpod that starts like this:

<pod:head1>NAME</pod:head1>
perlpod - plain old documentation

<pod:head1>DESCRIPTION</pod:head1>
A pod-to-whatever translator reads a pod file paragraph by paragraph,
and translates it to the appropriate output format. There are
three kinds of paragraphs:
<pod:int cmd="L">verbatim|/"Verbatim Paragraph"</pod:int>,
<pod:int cmd="L">command|/"Command Paragraph"</pod:int>, and
<pod:int cmd="L">ordinary text|/"Ordinary Block of Text"</pod:int>.

<pod:head2>Verbatim Paragraph</pod:head2>
A verbatim paragraph, distinguished by being indented (that is,
it starts with space or tab). It should be reproduced exactly,
with tabs assumed to be on 8-column boundaries. There are no
special formatting escapes, so you can't italicize or anything
like that. A \ means \, and nothing else.

<pod:head2>Command Paragraph</pod:head2>
All command paragraphs start with "=", followed by an
identifier, followed by arbitrary text that the command can
use however it pleases. Currently recognized commands are

<pod:verbatim>
=head1 heading
=head2 heading
=item text
=over N
=back
=cut
=pod
=for X
=begin X
=end X

</pod:verbatim>

By comparing this with the original document we can see how the parser is converting pod tokens into
XML tags.

Chapter 18

698

Locating pods
The UNIX-specific Pod::Find module searches for pod documents within a list of supplied files and
directories. It provides one subroutine of importance, pod_find, which is not imported by default. This
subroutine takes one main argument – a reference to a hash of options including default search
locations. Subsequent arguments are additional files and directories to look in. The following script
implements a more or less fully-featured pod search based around Pod::Find and Getopt::Long,
which we cover in detail in Chapter 14.

#!/usr/bin/perl
findpod.pl
use warnings;
use strict;

use Pod::Find qw(pod_find);
use Getopt::Long;

default options
my $verbose = undef;
my $include = undef;
my $scripts = undef;
my $display = 1;

allow files/directories and options to mix
Getopt::Long::Configure('permute');

get options
GetOptions('verbose!' => \$verbose,

'include!' => \$include,
'scripts!' => \$scripts,
'display!' => \$display,

);

if no directories specified, default to @INC
$include = 1 if !defined($include) and (@ARGV or $scripts);

perform scan
my %pods = pod_find({

-verbose => $verbose,
-inc => $include,
-script => $scripts,
-perl => 1

}, @ARGV);

display results if required
if ($display) {

if (%pods) {
foreach(sort keys %pods) {

print "Found '$pods{$_}' in $_\n";
}

} else {
print "No pods found\n";

}
}

Text Processing and Document Generation

699

We can invoke this script with no arguments to search @INC, or pass it a list of directories and files to
search. It also supports four arguments to enable verbose messages, disable the final report, and enable
Pod::Find's two default search locations. Here is one way we can use it, assuming we call it findpod:

> perl findpod.pl -iv /my/perl/lib 2> dup.log

This command tells the script to search @INC in addition to /my/perl/lib (-i), produce extra
messages during the scan (-v), and to redirect error output to dup.log. This will capture details of any
duplicate modules that the module finds during its scan. If we only want to see duplicate modules, we
can disable the output and view the error output on screen with:

> perl findpod.pl -i --nodisplay /my/perl/lib

The options passed in the hash reference to pod_find are all Boolean and all default to 0 (off). They
have the following meanings:

Option Action

-verbose Print out progress during scan, reporting all files scanned that did not contain pod
information.

-inc Scan all the paths contained in @INC.

-script Search the installation directory and subdirectories for pod files. If Perl was
installed as /usr/bin/perl then this will be /usr/bin for example.

-perl Apply Perl naming conventions for finding likely pod files. This strips likely Perl
file extensions (.pod, .pm, etc.), skips over numeric directory names that are not
the current Perl release, and so on. Both -inc and -script imply -perl.

The hash generated by findpod.pl contains the file in which each pod document was found as the
key, and the document title (usually the module package name) as the value. This is the reverse
arrangement to the contents of the %INC hash, but contains the same kinds of keys and values.

Reports – The 'r' in Perl
Reports are a potentially useful but often overlooked feature of Perl that date back to the earliest
versions of the language. In short, they provide a way to generate structured text such as tables or forms
using a special layout description called a format.

Superficially similar in intent to the print and sprintf functions, formats provide a different way to
lay out text on a page or screen, with an entirely different syntax geared specifically towards this
particular goal. The particular strength of formats comes from the fact that we can describe layouts in
physical terms, making it much easier to see how the resulting text will look and making it possible to
design page layouts visually rather than resorting to character counting with printf.

Formats and the Format Datatype
Intriguingly, formats are an entirely separate data type, unique from scalars, arrays, hashes, typeglobs,
and filehandles. Like filehandles, they have no prefix or other syntax to express themselves and as a
consequence often look like filehandles, which can occasionally be confusing.

Chapter 18

700

Formats are essentially the compiled form of a format definition, a series of formatting or picture lines
containing literal text and placeholders, interspersed with data lines that describe the information used
to fill placeholder and comment lines. As a simple example, here is a format definition that defines a
single pattern line consisting mainly of literal text and a single placeholder, followed by a data line that
fills that placeholder with some more literal text:

this is the picture line
This is a @<<<<< justified field
this is the data line
"left"

To turn a format definition into a format we need to use the format function, which takes a format
name and a multi-line format definition, strongly reminiscent of a here document, and turns it into a
compiled format. A single full stop on its own defines the end of the format. To define the very simple
format example above we would write something like this:

format MYFORMAT =
This is a @<<<<< justified field
"left"
.

Note that the trailing period is very important, as it is the end token that defines the end of the implicit
here document. A format definition will happily consume the entire contents of a source file if left
unchecked.

To use a format we use the write function on the filehandle with the same name as the format. For the
MYFORMAT example above we would write:

print format definition to filehandle 'MYFORMAT'
write MYFORMAT;

This requires that we actually have an open filehandle called MYFORMAT and want to use the format to
print to it. More commonly we want to print to standard output, which we can do by either defining a
format called STDOUT, or assigning a format name to the special variable $~ ($FORMAT_NAME with the
English module). In this case we can omit the filehandle and write will use the currently selected
output filehandle, just like print:

$~ = 'MYFORMAT';
write;

We can also use methods from the IO:: family of modules, if we are using them. Given an
IO::Handle-derived filehandle called $fh, we can assign and use a format on it like this:

$fh->format(MYFORMAT);
$fh->format_write();

We'll return to the subject of assigning formats a little later on.

The write function (or its IO::Handle counterpart format_write) generates filled-out formats by
combining the picture lines with the current values of the items in the data lines to fill in any
placeholder present, in a process reminiscent of, but entirely unconnected to, interpolation. Once it has
finished filling out, it sends the results to standard output.

Text Processing and Document Generation

701

If we do not want to print output we can instead make use of the formline function. This takes a single
picture line and generates output from it into the special variable $^A. It is the internal function that
format uses to generate its output, and we will see a little more of how to use it later. There is,
strangely, no string equivalent of write in the same way that printf has sprintf, but it is possible to
create one using formline.

Format picture lines are usually written as static pieces of text, which makes them impossible to adjust to
cater for different circumstances like calculated field widths. As an alternative, we can build the format
inside a string and then eval it to create the format, which allows us to interpolate variables into the
format at the time it is evaluated. Here is an example that creates and uses a dynamically calculated
format associated with the STDOUT filehandle:

#!/usr/bin/perl
evalformat.pl
use warnings;
use strict;

list of values for field
my @values=qw(first second third fourth fifth sixth penultimate ultimate);

determine maximum width of field
my $width=0;
foreach (@values) {

my $newwidth=length $_;
$width=$newwidth if $newwidth>$width;

}

create a format string with calculated width using '$_'
my $definition = "This is the \@".('<'x($width-1))." line\n".

'$_'."\n.\n";

define the format through interpolation
eval "format STDOUT = \n$definition";

print out the field values using the defined format
write foreach @values;

The advantage of this approach is it allows us to be more flexible, as well as calculate the size of fields
on the fly. The disadvantage is that we must take care to interpolate the \n newlines, but not
placeholders and especially not variables in the data lines, which can lead to a confusing combination of
interpolated and non-interpolated strings. This can make formats very hard to read if we are not very
careful.

Formats and Filehandles
Formats are intimately connected with filehandles, and not just because they often look like them.
Formats work by being directly associated with filehandles, so that when we come to use them all we
have to do is write to the filehandle and have the associated format automatically triggered.

It might seem strange that we associate a format with a filehandle and then write to the filehandle,
rather than specifying which format we want to use when we do the writing, but there is a certain logic
behind this mechanism. There are in fact two formats that may be associated with a filehandle; the main
one is the one that is used when we write, but we can also have a top-of-page format that is used
whenever Perl runs out of room on the current page and is forced to start a new one. Since this is
associated with the filehandle, Perl can use it automatically when we use write rather than needing to
be told.

Chapter 18

702

Defining the Top-of-Page Format

Perl allows two formats to be associated with a filehandle. The main format is used whenever we issue a
write statement. The top-of-page format, if defined, is issued at the start of the first page and at the top
of each new page. This is determined by the special variable $= (length of page) and $- (the number of
lines left). Each time we use write the value of $- increases. When there is no longer sufficient room to
fit the results of the next write, a new page is started, a new top-of-page format is written and only then
is the result of the last write issued.

The main format is automatically associated with the filehandle of the same name, so that the format
MYFORMAT is automatically used when we use write on the filehandle MYFORMAT. Giving it the name of
the filehandle with the text _TOP appended to it can similarly associate the top-of-page format. For
instance, to assign a main and top-of-page format to the filehandle MYFORMAT we would use something
like this:

format MYFORMAT =
...main format definition...
.

define a format that gives the current page number
format MYFORMAT_TOP =
This is page @<<<
$=

.

Assigning Formats to Standard Output
Since standard output is the filehandle most usually associated with formats, we can omit the format
name when defining formats. Here is a pair of formats defined explicitly for standard output:

format STDOUT=
The magic word is "@<<<<<<<<";
$word
.

format STDOUT_TOP=
Page @>
$#

.

We can however omit STDOUT for the main format and simply write:

format =
The magic word is "@<<<<<<<<";
$word
.

This works because standard output is the default output filehandle. If we change the filehandle with
select then format creates a format with the same name as that filehandle instead. The write
function also allows us to omit the filehandle; to write out the formats assigned to standard output (or
whatever filehandle is currently selected) we can simply put:

write;

Text Processing and Document Generation

703

Determining and Assigning Formats to Other Filehandles
We are not constrained to defining formats with the same name as a filehandle in order to associate
them. We can also find their names and assign new ones using the special variables $~ and $^.

The special variable $~ ($FORMAT_NAME with use English) defines the name of the main format
associated with the currently selected filehandle (which will be standard output unless we have issued a
select statement). For example, to find out the name of the format associated with standard output we
would write:

$format = $~;

Likewise, to set the current format we can assign to $~:

set standard output format to 'MYFORMAT';
$~ = 'MYFORMAT';

use English;
$FORMAT_NAME = 'MYFORMAT'; # more legibly

Note that the variable is set to the name of the format as a string, not to the format itself, hence the
quotes.

The special variable $^ ($FORMAT_TOP_NAME with use English) performs the identical role for the
top-of-page format:

save name of current top-of-page format
$topform = $^;

assign new top-of-page format
$^ = 'MYFORMAT_TOP';

write out main format associated with standard out, using top-of-page format if
necessary
write;

restore original top-of-page format
$^ = $topform;

Setting formats on other filehandles using the variables $~ and $^ requires special maneuvering with
select. select makes a different filehandle the default filehandle, and as a by-product causes all the
special variables such as $~ to refer to it. The original filehandle is returned, so we can use that to
restore the default filehandle once we have finished:

set formats on a different filehandle
$oldfh = select MYHANDLE;
$~ = 'MYFORMAT';
$^ = 'MYFORMAT_TOP';
select $oldfh;

TE
AM
FL
Y

Team-Fly®

Chapter 18

704

A better way to handle this without resorting to select is to use the IO::Handle module, or
IO::File if we want to open and close files too. This provides an altogether simpler object-oriented
way of setting reports:

$fh = new IO::File ("> $outputfile");

...

$fh->format_name ('MYFORMAT');
$fh->format_top_name ('MYFORMAT_TOP');

...

write $fh; # or $fh->format_write ();

Format Structure
Having seen how to assign and use formats it's now time to take a look at actually defining them. As we
have already explained in brief, formats consist of a collection of picture and data lines, interspersed
with optional comments, combined into a here-style document that is ended with a single full stop.

Of the three, comments are by far the simplest to explain, but have no effect on the results of the
format. They resemble conventional Perl comments and simply start with a # symbol, as this example
demonstrates:

format FORMNAME =
this is a comment. The next line is a picture line
This is a pattern line with one @<<<<<<<<<<.
this is another comment.
the next line is a data line
"placeholder"
and don't forget to end the format with a '.':
.

Picture and data lines take a little more explaining. Since they are the main point of using formats at all,
we will start with picture lines.

Picture Lines and Placeholders
Picture lines consist of literal text intermingled with placeholders, which the write function fills in with
data at the point of output. If a picture line does not contain any placeholders at all it is treated as literal
text, and can simply printed out. Since it does not require any data to fill it out it is not followed by a
data line. This means that several picture lines can appear one after the other, as this static top-of-page
format illustrates:

STATIC_TOP =

This header was generated courtesy of Perl formatting
See Chapter 18 of Professional Perl for details

.

Text Processing and Document Generation

705

Placeholders are defined by either an @ or a ^, followed by a number of <, |, >, or # characters that
define the width of the placeholder. Picture lines that contain placeholders must be followed by a data
line (possibly with comments in between) that defines the data to be placed into the placeholder when
the format is written.

Formats do not support the concept of a variable-width placeholder. The resulting text will always
reserve the defined number of characters for the substituted value irrespective of the actual length of the
value, even if it is undefined. It is this feature that makes formats so useful for defining structured text
output – we can rely on the resulting text exactly conforming to the layout defined by the picture lines.
For example, to define a ten-character field that is left justified we would use:

This is a ten character placeholder: @<<<<<<<<<
$value_of_placeholder

Note that the @ itself counts as one of the characters, so there are nine < characters in the example, not
ten. To specify multiple placeholders we just use multiple instances of @, and supply enough values in
the data line to fill them. This example has a left, center, and right justified placeholder:

This picture line has three placeholders: @<<<@|||@>>>
$first, $second, $third

The second example defines three four character wide placeholders. The <, |, and > characters define
the justification for fields more than one character wide; we can define different justifications using
different characters as we will see in a moment.

Programmers new to formats are sometimes confused by the presence of @ symbols. In this case @ has
nothing to do with interpolation, it indicates a placeholder. Because of this, we also cannot define a
literal @ symbol by escaping it with a backslash, that is an interpolation feature. In fact the only way to
get an actual @ (or indeed ^) into the resulting string is to substitute it from the data line:

this '@' is a placeholder:
This is a literal '@'
but we can get a literal '@' by substituting one in on the data line:
'@'

Simple placeholders are defined with the @ symbol. The caret ^ or 'continuation' placeholder however
has special properties that allow it to be used to spread values across multiple output lines. When Perl
sees a ^ placeholder it fills out the placeholder with as much text as it reasonably can and then truncates
the text it used from the start of the string. It follows from this that the original variable is altered and
that to use a caret placeholder we cannot supply literal text. Further uses of the same variable can then
fill in further caret placeholders. For example, this format reformats text into thirty-eight columns with a
> prefix on each line:

format QUOTE_MESSAGE =

> ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$message
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$message
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$message
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$message
.

Chapter 18

706

This creates a format that processes the text in the variable $message into four lines of forty characters,
fitting as many words as possible into each line. When write comes to process this format it uses the
special variable $: to determine how and where to truncate the line. By default it is set to ' \n-' to
break on spaces, newlines or hyphens, which works fine for most plain text.

There are a number of problems with this format – it only handles four lines, and it always fills them out
even if the message is shorter than four lines after reformatting. We will see how to suppress redundant
lines and automatically repeat picture lines to generate extra ones with the special ~ and ~~ strings
shortly.

Justification
It frequently occurs that the width of a field exceeds that of the data to be placed in it. In these cases, we
need to decide how the format will deal with the excess, since a fixed width field cannot shrink (or
grow) to fit the size of the data. A structured layout is the entire point of formats. If the data we want to
fill the placeholder is only one character wide, we need no other syntax. As an extreme case, to insert
six single character items into a format we can use:

The code is '@@@@@@'
use first six elements of digits, assumed to be from 0 to 9.
@digits

For longer fields we need to choose how text will be aligned in the field through one of four justification
methods, depending on which character we use to define the width of the placeholder:

Placeholder Alignment Example

< Left justified. @<<<<

> Right justified. @>>>>

| Center justified. @||||

Right justified numeric. @####

The <, |, and > justification styles are mostly self-explanatory; they align values shorter than the
placeholder width to the left, center, or right of the placeholder. They pad the rest of the field with
spaces (note that padding with other characters is not supported; if we want to do that we will have to
generate the relevant value by hand before it is substituted). If the value is the right length in any case,
then no justification occurs. If it is longer, then it is truncated on the right irrespective of the justification
direction.

The numeric # justification style is more interesting. With only # characters present it will insert an
integer based on the supplied value – for an integer number it substitutes in its actual value, but for a
string or the undefined value it substitutes in 0, and for a floating point number it substitutes in the
integer part. To produce a percentage placeholder for example we can use:

Percentage: @##%
$value * 100

If however we use a decimal point character within the placeholder then the placeholder becomes a
decimal placeholder, with floating-point values point-justified to align themselves around the position of
the point:

Result (2 significant places): @####.##
$result

Text Processing and Document Generation

707

This provides a very simple and powerful way to align columns of figures, automatically truncating
them to the desired level of accuracy at the same time.

If the supplied result is not a floating-point number then the fractional places are filled in with 0, and for
strings and undefined values the ones column is also filled in with 0.

The actual character used by the decimal placeholder to represent the decimal point is defined by the
locale, specifically the LC_NUMERIC value of the locale. In Germany for instance, the conventional
symbol to separate the integer and fractional parts is a comma, not a point. Formats are in fact the only
part of Perl that directly accesses the locale in this way, possibly because of their long history; all other
parts of the language adhere to the use locale directive. Although deprecated in modern Perl, we can
also use the special variable $# to set the point character.

The final placeholder format is the * placeholder. This creates a raw output placeholder, producing a
complete multiple line value in one go and consequently can only be placed after an @ symbol; it makes
no sense in the context of a continuation placeholder since there will never be a remainder for a
continuation to make use of. For example:

> @* <
$multiline_message

In this format definition the value of $multiline_message is output in its entirety when the format is
written. The first line is prefixed with a > and the last is suffixed with <. No other formatting of any kind
is done. Since this placeholder has variable width (and indeed, variable height) it is not often used since
it is effectively just a poor version of print that happens to handle line and page numbering correctly.

Data Lines
Whenever a picture line contains one or more placeholders it must be immediately followed by a data
line consisting of one or more expressions that supply the information to fill them. Expressions can be
literal numeric, string values, variables, or compound expressions:

format NUMBER =
Question: What do you get if you multiply @ by @?

6, 9
Answer: @#
6*9
.

Multiple values can be given either as an array or a comma separated list:

The date is: @###/@#/@#
$year, $month, $day

If insufficient values are given to fill all the placeholders in the picture line then the remaining
placeholders are undefined and padded out with spaces. Conversely if too many values are supplied
then the excess ones are discarded. This behavior changes if the picture line contains ~~ however, as
shown below.

Chapter 18

708

If we generate a format using conventional quoted strings rather than the here document syntax we
must take special care not to interpolate the data lines. This is made more awkward because in order for
the format to compile we need to use \n to create newlines at the end of each line of the format,
including the data lines, and these do need to be interpolated. Separating the format out onto separate
lines is probably the best approach, though as this example shows even then it can be a little hard to
follow:

define page width and output filehandle
$page_width = 80;
$output = "STDOUT_TOP";

construct a format statement from concatenated strings
$format_st = "format $output = ";

'Page @<<<'. "\n".
'$='. "\n".
('-'x$page_width). "\n".

".\n"; # don't forget the trailing '.'

define the format - note we do not interploate, to preserve '$='
eval $format_st;

Note that continuation placeholders (which are defined by a leading caret) need to be able to modify the
original string supplied in order to truncate the start. For this reason an assignable value such as a scalar
variable, array element or hash value must be used with these fields.

Suppressing Redundant Lines
format and write support two special picture strings that alter the behavior of the placeholders in the
same picture line, both of which are applied if the placeholders are all continuation (caret) placeholders.

The first is a single tilde or ~ character. When this occurs anywhere in a picture line containing caret
placeholders the line is suppressed if there is no value to plug into the placeholder. For example, we can
modify the quoting format we gave earlier to suppress the extra lines if the message is too short to fill
them:

format QUOTE_MESSAGE =

> ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$message
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~
$message
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~
$message
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<...~
$message
.

In this example the bottom three picture lines have a ~ suffix, so they will only be used if $message
contains sufficient text to fill them after it has been broken up according to the break characters in $:.
When the format is written, the tildes are replaced with spaces. Since they are at the end of the line in
this case, we will not see them, which is why conventionally they are placed here. If we have spaces
elsewhere in the picture line we can replace one of them with the tilde and avoid the trailing space.

Text Processing and Document Generation

709

We modify the last picture line to indicate that the message may have been truncated because we know
that it will only be used if the message fills out all the previous lines. In this case we have replaced the
last three < characters with dots.

The ~ character can be thought of as a zero-or-one modifier for the picture line, in much the same way
that ? works in regular expressions. The line will be used if Perl needs it, but it can also be ignored if
necessary.

Autorepeating Pattern Lines
If two adjacent tildes appear in a pattern line then write will automatically repeat the line while there
is still input. If ~ can be likened to the ? zero-or-one metacharacter of regular expressions, ~~ can be
likened to *, zero-or-more. For instance, to format text into a paragraph of a set width but an unknown
number of lines we can use a format like this:

format STDOUT =
^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
$text
.

Calling write with this format will take the contents of $text and reformat it into a column thirty
characters wide, repeating the pattern line as many times as necessary until the contents of $text are
exhausted. Anything else in the pattern line is also repeated, so we can create a more flexible version of
the quoting pattern we gave earlier that handles a message of any size:

format QUOTE =
>~~^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$message
.

Like ~, the ~~ itself is converted into a space when it is output. It also does not matter where it appears,
so in this case we have put it between the > quote mark and the text, to suppress the extra space on the
end of the line it would otherwise create.

Note that ~~ only makes sense when used with a continuation placeholder, since it relies on the
continuation to truncate the text. Indeed, if we try to use it with a normal @ placeholder Perl will return
a syntax error since this would effectively be an infinite loop that repeats the first line. Since write
cannot generate infinite quantities of text, Perl prevents us from trying.

 Page Control
Perl's reporting system uses several special variables to keep track of line and page numbering. We can
use these variables in the output to produce things like line and page numbers. We can also set them to
control how pages are produced. There are four variables of particular interest:

Variable Corresponds to:

$= The page length

$% The page number

$- The number of lines remaining

$^L The formfeed string

Chapter 18

710

$= (or $FORMAT_LINES_PER_PAGE with use English) holds the page length, and by default is set to
60 lines. To change the page length we can assign a new value to $=, for example:

$= = 80; # set page length to 80 lines

Or more legibly:

use English;
$FORMAT_LINES_PER_PAGE = 80;

If we want to generate reports without pages we can set $= to a very large number. Alternatively we can
redefine $^L to nothing and avoid (or subsequently redefine to nothing) the 'top-of-page' format.

$% (or $FORMAT_PAGE_NUMBER with use English) holds the number of the current page. It starts at 1
and is incremented by one every time a new page is started, which in turn happens whenever write
runs out of room on the current page. We can change the page number explicitly by modifying $%, for
example;

$% = 1; # reset page count to 1

$- (or $FORMAT_LINES_LEFT with use English) holds the number of lines remaining on the current
page. Whenever write generates output it decrements this value by the number of lines in the format.
If there are insufficient lines left (the size of the output is greater than the number of lines left) then $- is
set to zero, the value of $% is incremented by one and a new page is started, starting with the value of
$^L and followed immediately by the top-of-page format, if one is defined. We can force a new page
immediately on the next write by setting $- to zero:

$- = 0; # force a new page on the next 'write'

Finally, $^L (or $FORMA_FORMFEED with use English) is output by write whenever a new page is
started. Unlike the top-of-page format it is not issued before the first page, but it is issued before the top-
of-page format for all subsequent pages. By default it is set to a formfeed character, \f, but can be set to
nothing or a longer string if required. See 'Creating Footers' below for a creative use of $^L.

As an example of using the page control variables, here is a short program that paginates its input file,
adding the name of the file and a page number to the top of each page. It also illustrates creating a
format dynamically with eval so we can define not only the height of the resulting pages but their
width as well.

#!/usr/bin/perl
paginate.pl
use warnings;
use strict;

no strict 'refs';

use Getopt::Long;

get parameters from the user
my $height = 60; # length of page
my $width = 80; # width of page
my $quote = ""; # optional quote prefix

Text Processing and Document Generation

711

GetOptions ('height|size|length:i', \$height,
'width:i', \$width, 'quote:s', \$quote);

die "Must specify input file" unless @ARGV;

get the input text into one line, for continuation
undef $/;
my $text = <>;

set the page length
$= = $height;

if we're quoting, take that into account
$width -= length($quote);

define the main page format - a single autorepeating continuation field
my $main_format = "format STDOUT = \n".

'^'.$quote.('<' x ($width-1))."~~\n".
'$text'. "\n".
".\n";

eval $main_format;

define the top of page format
my $page_format = "format STDOUT_TOP = \n".

'@'.('<' x ($width/2-6)). ' page @<<<'. "\n".
'$ARGV,$%'. "\n".
'-'x$width. "\n".
".\n";

eval $page_format;

write out the result
write;

To use this program we can feed it an input file and one or more options to control the output, courtesy
of the Getopt::Long module, for example:

> perl paginate.pl input.pl -w 50 -h 80

Creating Footers
Footers are not supported as a concept by the formatting system, there is no 'bottom-of-page' format.
However, with a little effort we can improvise our own footers. The direct and obvious way is to keep
an eye on $-, and issue the footer when we get close to the bottom of the page. For instance, if the
footer is smaller in lines than the output of the main format we can use something like the following,
assuming that we know what the size of output is and that it is consistent.

print "\nPage $%\n" if $- < $size_of_format;

This is all we need to do, since the next attempt to write will not have sufficient space to fit and will
automatically trigger a new page. If we want to make sure that we start a new page on the next write we
can set $- to '0' to force it:

print ("\nPage $% \n"), $- = 0 if $- < $size_of_format;

Chapter 18

712

A more elegant and subtle way of creating a footer is to redefine $^L. This is a lot simpler to arrange,
but suffers in terms of flexibility since the footer is fixed once it is defined, so page numbering is not
possible unless we redefine the footer on each new page.

For example, if we want to put a two line footer on the bottom of sixty line pages, we can do so by
putting the footer into $^L (suffixed with the original formfeed) and then reducing the page length by
the size of the footer, in this case to fifty eight lines:

define a footer.
$footer = ('-'x80). "\nEnd of Page\n";
redefine the format formfeed to be the footer plus a formfeed
$^L = $footer. "\f";

reduce page length from default 60 to 58 lines
if we wanted to be creative we could count the instances of '\n' instead.
$= -= 2;

Now every page will automatically get a footer without any tracking or examination of the line count.
The only work we have to do now is to add the footer to the last page, since the formatting will not do
that for us. That is easily achieved by outputting new line characters up to the page length and then
printing the footer ourselves. The number of lines left to fill is already held by $-, so this turns out to be
trivial:

print ("\n" * $-); # fill out the rest of the page (to 58 lines)
print $footer; # print the final footer

As we mentioned earlier, arranging for a changing footer such as a page number is slightly trickier, but
it can be done by remembering and checking the value of $- after each write:

$lines = $-;
write;
redefine_footer() if $- > $lines;

This will work for a lot of cases, but will not always work if we are using ~~, since it may cause write
to generate more lines than the page has left before we get a chance to check it. Like many things in
Perl, which approach is preferable is often down to the particular task at hand.

Combining Reports and Regular Output
It is perfectly possible to print both formatted output, such as that generated by write, and
unformatted output, such as that generated by print, on the same filehandle. We have two possible
approaches; mixing write and print, or using the formline function to generate formatted text that
can then be printed using print at a later date.

Mixing 'write' and 'print'
write and print can be freely mixed together, sending both formatted and unformatted output to the
same filehandle. However, print knows nothing about the special formatting variables such as $=, $-,
and $% that track pagination and trigger the top-of-page format. Consequently pages will be of uneven
length unless we take care of tracking line counts ourselves.

Text Processing and Document Generation

713

For instance, if we print out a three-line record after each write, we can keep write up-to-date on
what is happening by decrementing $-, the number of lines left:

write;
foreach (@extra_lines) {

print $_, "\n";
--$-; # decrement $-.

}

Unfortunately this does not take into account that $- might become negative if there is not enough
room left on the current page. Due to the complexities of managing mixture of write and print it is
often simpler to either use formline, or create a special format that is simply designed to print out the
information we were using print for. Here's an example that defines several different formats and
switches between them to handle different contingencies in outputting records with varying content and
structure:

#!/usr/bin/perl
multiformat.pl
use warnings;
use strict;

#set the lines remaining on the default page size
$- = 60;
define some simple records to demonstrate the technique
my @records=(

{
main => 'This is the first record, with three extra lines of data',
extra => ['Extra 1','Extra 2','Extra 3'],
comment => 'Each part of the record is printed out using a
different format'

}, {
main => 'This is the second record, which has only one extra line',
extra => ['An extra line']

}, {
main => 'The third record has no extra data at all',
comment => 'So we switch to a different format and print a special
message instead'

},{
main => 'This is the fourth record, with three more extra lines',
extra => ['Extra 4','Extra 5','Extra 6']

}
);

define main format for main body of record
format MAIN =
@#: ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$_+1, $records[$_]{main}

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
$records[$_]{main}
.

define a format for displaying extra data
format EXTRA =

[@<<<<<<<<<<<<<<<<<<<<<<<<<<<<]
$_
.

define a format for no extra data
format NO_EXTRA =

< No extra data for this record >
.

TE
AM
FL
Y

Team-Fly®

Chapter 18

714

define a format for displaying extra data
format COMMENT =

Comment: ^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
$records[$_]{comment}

^<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<~~
$records[$_]{comment}
.

iterate through the list of hashes, using extra format when required
foreach (0..$#records) {

write out the main format
$~ = 'MAIN';
write;

if (exists $records[$_]{extra}) {
change format
$~ = 'EXTRA';
write out the extra lines
foreach (@{$records[$_]{extra}}) {

write;
}

} else {
change to the no data message format
$~ = 'NO_EXTRA';
write;

}

$~ = 'COMMENT', write if exists $records[$_]{comment};

}

A less flexible but simpler solution to the same problem might use the special @* placeholder to output
the extra lines; see earlier for a description of what this placeholder does and its limitations.

Generating Report Text with 'formline'
The formline function is a lower-level interface to the same formatting system that write uses, and is
in fact the internal function that write uses to perform its task. formline generates text from a single
picture line and a list of values, the result of which is placed into the special variable $^A. For example,
this is how we could create a formatted string containing the current time using formline:

($sec, $min, $hour) = localtime;
formline '@#/@#/@#', $hour, $min, $sec;
$time = $^A;
print "The time is: $hour:$min.$sec \n";

Of course in this case it is probably easier to use sprintf, but we can also use formline to create text
from more complex patterns. For instance to format a line of text into an array of text lines we could use
formline like this:

$text = get_text(); # get a chunk of text from somewhere

@lines;
while ($text) {

formline '^<<<<<<<<<<<<<<<<<<<', $text;
push @lines, $^A;

}

Text Processing and Document Generation

715

This code takes the contents of $text and turns it into an array of lines word-wrapped to fit inside a
twenty-character column.

formline is only designed to handle single lines, so it ignores newlines in the supplied pattern and
treats the whole of the picture text as one line for the purposes of processing. This means that we cannot
feed formline a complete format definition and expect it to produce the correct result in $^A.

Strangely, there is no simple way to generate text from write, other than by redirecting filehandles,
since write sends its results to a filehandle. However, we can produce a version of write that returns
its result instead, in the same way that sprintf returns a string instead of printing it like printf.

sub swrite ($@) {
$picture = shift;
formline ($picture, @_);
return $^A;

}

This function is a friendly version of formline, but it is not a direct replacement for write, since it
only operates on a single picture line and expects a conventional list of values as an argument.
However, for generating text for use in print and other code, it is a lot more convenient than either
write or formline.

Summary
This chapter dealt with text-processing in some depth. To begin with, we looked at text-processing
modules, including Text::Teb and Text::Abbrev. Following this we covered parsing, with particular
reference to the following topics:

� Parsing space-separated text.

� Parsing arbitrarily delimited text.

� Batch parsing multiple lines.

� Parsing a single line.

A section followed on customized wrapping discussed, among other things, the following topics:

� Formatting width.

� Long words.

� Break text.

� Debugging.

Then we looked at tokenizing text, and the Soundex algorithm and module. After this we covered pod,
with emphasis on the following topics:

� pod paragraphs.

� pod tools and utilities.

� Programming pod.

The final section in this chapter dealt with reports. We looked at the format datatype, formats and
filehandles, format structure (including justification), and page control. To top it all off we briefly talked
about combining reports and regular output, and how to generate report text with formline.

Chapter 18

716

Object-oriented Perl

Objects are, in a nutshell, a way to hide complexity behind an opaque value which holds not only data,
but all the code necessary to access, manipulate, and store it. All objects belong to an object class, and
the class defines what kind of object they are. The code that implements the object's features also
belongs to the class, and the objects, sometimes called object instances, are simply values that belong to
a given class. They 'know' what kind of object they are, and therefore which class the subroutines that
can be used through them come from. In Perl, an object class is just a package, and an object instance is
just a reference that knows its class and points to the data that defines the state of that particular
instance.

Perl was not originally an object-oriented language; only from version 5 did it acquire the necessary
features (symbolic references and packages) to implement objects. As a result, Perl's object-oriented
features are relatively basic, and not compulsory. Perl takes a belt-and-braces approach to object-
oriented programming, espousing no particular object-oriented doctrine (of which there are many), but
permitting a broad range of different object-oriented styles.

Many object-oriented languages take a much stricter line. Being strict is the entire point for some
languages. Java, for instance, requires that everything be an object, even the main application. Other
languages have very precise views about what kind of object model they support, how multiple
inheritance works, how public and private variables and methods are defined, how objects are created,
initialized, and destroyed, and so on. Perl does not have any particular perspective, which make it both
extremely flexible and highly disconcerting to programmers used to a different object-oriented style.

Because Perl does not dictate how object-oriented programming should be done, it can leave
programmers who expect a more rigorous framework confused and aimless, which is one reason why
Perl sometimes has a bad reputation for object-oriented programming. However, during the course of
this chapter we hope to show that by learning the basics of how Perl implements objects, a programmer
can wield Perl in a highly effective way to implement object-oriented programs.

Chapter 19

718

In this chapter we introduce object-oriented programming from the Perl perspective. We then go on to
using objects (which need not imply an object-oriented program), and then tackle the meat of the
chapter – writing object classes, including constructors and destructors, properties and attributes, and
single and multiple inheritance. We also take a look at a uniquely Perlish use of objects – mimicking a
standard data type by tieing it to an object-oriented class. The DBM modules are a well-known
example, but there are many other interesting uses for tied objects too.

Introducing Objects
Object-oriented programming is an entirely different method of implementing libraries and applications
from the traditional or functional approach. Object orientation allows us to clearly define the interface
to our library, and thereby allows us to abstract the actual implementation so it can be easily reused and
adapted through inheritance. Although we can do the same thing in functional implementations, it is a
lot harder and more prone to error. Object orientation helps us to rethink the way we design programs
so that we gain these advantages more easily. In order to appreciate how Perl implements and provides
for object-oriented programming, therefore, a basic grasp of object-oriented concepts is necessary.

Object Concepts
Since this is not a treatise on object orientation, we will not dwell on the fundamentals of object
orientation in detail. Indeed, one of the advantages of Perl's approach is that we do not need to pay
nearly so much attention to them as we often do in other languages; Perl's hands-on approach means
that we can strip away a lot of the jargon that object orientation often brings with it. However, several
concepts are key to any kind of object-oriented programming, so here is a short discussion of the most
important ones, along with Perl's perspective on them:

Classes
An object class provides the implementation of an object. It consists of class methods, which are
routines that perform functions for the class as a whole. It also consists of object methods, routines that
perform functions for individual objects (or object instances). It may also contain package variables, or
in object-oriented terminology, class attributes. The details of the class are hidden behind the interface
provided by these methods, in the same way that a regular functional module hides its details.

All object classes contain at least one important class method; a constructor that generates new object
instances. In addition, they may have a destructor, for tidying up after objects that are destroyed.

Perl implements object classes with packages. In fact, a package is an object class by another name.
This basic equivalence is the basis for much of Perl's simple and obvious approach to objects in
general. A class method is just a subroutine that takes a package name as its first argument, and an
object method is a subroutine that takes an object name as its first argument. Perl automatically
handles the passing of this first argument when we use the arrow (->) operator.

Objects
Objects are individual instances of an object class, consisting of an opaque value representing the state
of the object but abstracting the details. Because the object implicitly knows what class it belongs to,
we can call methods defined in the object class through the object itself, in order to affect the object's
state. Objects may contain, within themselves, different individual values called object attributes (or
occasionally instance attributes).

Object-oriented Perl

719

Perl implements objects through references; the object's state is held by whatever it is that the reference
points to, which is up to the object's class. The reference is told what class it belongs to with the bless
function, which marks the references as belonging to a particular class. Since a class is a package,
method calls on the object (using ->) are translated by Perl into subroutine calls in the package. Perl
passes the object as the first argument so the subroutine knows which object to operate on.

An object may have properties and attributes representing its state. The storage of these is up to the
actual data type used to store this information; typically it is a hash variable and the attributes are
simply keys in the hash. Of course, the point of object orientation is that the user of an object does not
need to know anything about this.

Inheritance, Multiple Inheritance, and Abstraction
One important concept of object-oriented programming, and the place where objects score significant
gains over functional programming, is inheritance. An object's classes may inherit methods and class
attributes from parent classes, in order to provide some or all of their functionality; a technique also
known as subclassing. This allows an object class to implement only those features that differentiate it
from a more general parent, without having to worry about implementing the classes contained in its
parent. Inheritance encourages code reuse, allowing us to use tried and tested objects to implement
our core features rather than reinventing the wheel for each new task. This is an important goal of any
programming environment, and one of the principal motivations behind using object-oriented
programming.

Multiple inheritance occurs when a subclass inherits from more than one parent class. This is a
contentious issue, since it can lead to different results depending on how parent classes are handled
when two classes both support a method that a subclass needs. Accordingly, not all object-oriented
languages allow or support it. Dynamic inheritance occurs when an object class is able to change the
parent or parents from which it inherits. It also occurs when a new subclass is created on the fly during
the course of execution. Again, not all languages allow or support this.

An important element of inheritance is that the subclass does not need to know how the parent class
implements its features, only how to use them to implant its own variation – the interface. This gives
us abstraction, an important aspect of object-oriented programming that allows for easy reuse of code;
the parent class should be able to change its implementation without subclasses noticing.

Inheritance in most object-oriented languages happens through some sort of declaration in the class. In
Perl, inheritance is supported through a special array that defines 'is a' relationships between object
classes. Logically enough, it is called @ISA, and it defines what kind of parent class a given subclass is.
If anything is in the @ISA array of a package, then the object class defined by that package 'is a'
derived class of it.

Perl allows for multiple inheritance by allowing an object class to include more than one parent class
name in its @ISA array. When a method is not found in the package of an object, its parents are
scanned in order of their place in the array until the method is located. If a parent also has an @ISA
array, it is searched too. Multiple inheritance is not always a good thing, and Perl's approach to it has
problems, but it makes up for it by being blindingly simple to understand.

Inheritance in Perl can also be dynamic, since @ISA has all the properties of a regular Perl array
variable, so it can be modified during the course of a program's execution to add new parent classes,
remove existing ones, entirely replace the parent class(es), or reorder them.

Chapter 19

720

Public and Private Methods and Data
Both object classes and object instances may have public data, private data, and methods. Public data
and methods make up the defined interface for the object class and the objects it implements that
external code may use. Private data and methods are intended for use only by the object class and its
objects themselves (such as supporting methods and private state information). Making parts of an
object class private is also known as encapsulation, though that is not an exclusively object-oriented
concept. Good object-oriented design suggests that all data should be encapsulated (accessed by
methods, as opposed to being accessed directly). In other words, there should be no such thing as
public data in a class or object.

Perl does not have any formal definition of public and private data; it operates an open policy
whereby all data and methods are visible to the using package. There is no 'private' declaration,
though my can by used to declare file-scoped variables, which are effectively private. The using
package is expected to abide by the intended and documented interface and not abuse the fact that it
can circumvent it if it chooses.

If we really want to we can enforce various types of privacy (for example with a closure), but only by
implementing it by hand in the object class. Strangely, by not having an explicit policy on privacy,
Perl is a lot simpler than many object-oriented languages that do, because dubious concepts like
friend classes, and selective privacy simply do not exist.

Polymorphism
Another concept that is often associated with objects is polymorphism. This is the ability of many
different object classes to respond to the same request, but in different ways. In essence, this means
that we can call an object method on an object whose class we do not know precisely, and get some
form of valid response. The class determines the actual response of the object, but we do not need to
know which class the object is contained in, in order to call the method. Inheritance provides a very
easy way to create polymorphic classes. By inheriting and overriding methods from a single parent
class, many subclasses can behave the same way to the user. Because they inherit a common set of
methods, we can know with surety that the parent interface will work for all its subclasses.

In Perl, polymorphism is simply a case of defining two or more methods (subroutines), in different
classes (packages), with the same name and handling the same arguments. A method may then be
called on an object within any of the classes without knowing in which class the object actually is.

In some cases we might want to use a method which may or may not exist; either we can attempt the
call with -> inside an eval, or use the special isa and can methods supported by all objects in order
to determine what an object is and isn't capable of. These methods are provided for by the
UNIVERSAL object, from which all objects implicitly inherit.

Overloading
Overloading is the ability of an object class to substitute for existing functionality supplied by a parent
class or the language itself. There are two types of overloading, method overloading and operator
overloading.

Method overloading is simple in concept. It occurs whenever a subclass implements a method with the
same name as a parent's method. An attempt to call that method on the subclass will be satisfied by the
subclass, and the parent class will never see it. Its method is said to have been overloaded. In the
context of multiple inheritance some languages also support parameter overloading, where the correct
method can be selected by examining the arguments passed to the method call, and comparing it to
the arguments accepted by the corresponding method in each parent class.

Object-oriented Perl

721

Operator overloading is more interesting. It occurs when an object class implements special methods for
the handling of operators defined by the core language. When the language sees that an operator, for
which an object class supplies a method, is used adjacent to an object, it replaces the regular use of the
operator with the version supplied by the class. For instance, this allows us to 'add' objects together
using +, even though objects cannot be added. The object class supplies a meaning for the operator, and
returns a new object reflecting the operation.

Perl supports both kinds of overloading. Method overloading is simply a case of defining a subroutine
with the same name as the subroutine to be overloaded in the parent. The subclass can still access the
parent's method if it wishes, by prefixing the package name with the special SUPER:: prefix. There is
no such thing as parameter overloading in Perl, since its parameter passing mechanism (the @_ array)
does not lend itself to that kind of examination. However, a method can select a parent class at run-
time by analyzing the arguments passed to it.

Operator overloading is also supported through the overload pragmatic module. With this module
we can implement an object replacement for any of Perl's built-in operators, including all the
arithmetic, logical, assignment, and dereferencing operators.

Adaptabilty (also called Casting or Conversion)
Objects may sometimes be reclassified and assigned to a different class. For instance, a subclass will
often use a parent class to create an object, then adjust its properties for its own needs before
reclassifying the object as an instance of itself rather than its parent. Objects can also be reclassified en
route through a section of code; for example, an object representing an error may be reclassified into a
particular kind of error, or reclassified into a new class representing an error that has already been
handled.

In Perl, objects can be switched into a new class at any time, even into a class that does not exist. We
can bless a reference into any class simply by naming the class. If we also create and fill an @ISA
array inside this class, then it can inherit from a parent class too, enabling us to create a functional
subclass on the fly.

Programming with Objects
Although Perl supports objects, it does not require that we use them exclusively; it is possible and
feasible to use objects from otherwise entirely functional applications. Using objects is therefore not
inextricably bound up with writing them. So, before delving into implementation, we will take a brief
look at using objects from the outsider's perspective, with a few observations on what Perl does behind
the scenes.

Creating Objects
All object classes contain at least one method known in general object-oriented programming circles as
a constructor – a class method that creates brand new object instances based on the arguments passed to
it. In many object-oriented languages (C++ and Java being prime examples) object creation is
performed by a keyword called new. Perl allows us to give a constructor any name, since it is just a
subroutine. For example:

$object = My::Object::Class->new(@args);

Chapter 19

722

In deference to other languages that provide a new keyword, Perl also allows us to invert this call and
place the new before the package name:

$object = new My::Object::Class(@args);

This statement is functionally identical to the one above, but bears a stronger resemblance to traditional
constructors in other languages. However, since Perl does not give new any special meaning, a
constructor method may have any name, and take any arguments to initialize itself. We can therefore
give our constructor a more meaningful name. We can have multiple constructors too if we like; it is all
the same to Perl:

$object = old My::Object::Class(@args);
$object = create_from_file My::Object::Class($filename);

$object = empty My::Object::Class ();

Using Objects
The principal mechanism for accessing and manipulating objects is the -> operator. In a non-object-
oriented context this is the dereferencing operator, and we use it on an unblessed reference to access the
data it points to. For example, to access a hash by reference:

$value = $hashref->{'key'};

However, in object-oriented use, -> becomes a class access operator, providing the means to call class
and object methods (depending on whether the left-hand side is a class name or an object) and access
properties on those objects:

$object_result = $object->method(@args);

$class_result = Class::Name->classmethod(@args);

$value = $object->{'property_name'};

Since an object is at heart a reference, these two uses are not as far apart as they might at first seem; the
difference is that a blessed reference allows us to call methods because the reference is associated with a
package. A regular reference is not associated with anything, and so cannot have anything called
through it.

Accessing Properties
Since an object is just a blessed reference, we can access the underlying properties of the object by
dereferencing it just like any other reference. For instance, if the object is implemented in terms of a
hash we can access its properties like this:

$value = $object->{'property_name'};

Similarly, we can set a property or add a new one with:

$object->{'property_name'} = $value;

Object-oriented Perl

723

We can also undef, delete, push, pop, shift, unshift, and generally manipulate the object's
properties using conventional list and hash functions. If the underlying data type is different, say an
array, or even a scalar, we can still manipulate it, using whatever processes are legal for that kind of
value.

However, this is really nothing to do with object orientation at all, but rather the normal non-object-
oriented dereferencing operator. Perl uses it for object orientation so that we can think of dereferencing
an object in terms of accessing an object's public data. In other words, it is a syntactic trick to help keep
us thinking in object-oriented terms, even though we are not actually performing an object-oriented
operation at heart.

One very major disadvantage of accessing an object's data like this, is that we break the interface
defined by the object class. The class has no ability to restrain or control how we access the object's data
if we access it directly; neither can it spot attempts to access invalid properties. Indeed, even the fact
that we know what the underlying data type is breaks the rules of good object-oriented programming.
The object should be able to use a hash, array, scalar, or even a typeglob, but we should not have to
know. Therefore it is better for us to use methods defined by the class to access and store properties on
its objects whenever possible. In an ideal world the class should be even able to change the underlying
data representation and still work perfectly in existing code – the object should essentially be an abstract
data type.

Calling Class Methods
A class method is a subroutine defined in the class, which operates on a class as a whole, rather than a
specific object of that class. To call a class method, we use the -> operator on the package name of the
class, which we give as a bare, unquoted term, just as we do for use:

$result = My::Object::Class->classmethod(@args);

The new class method typically implemented by most classes is one such case of a class method, and the
inverted syntax we used before will also work with any other class method, for example:

$result = classmethod My::Object::Class(@args);

In general this syntax should only be used for constructors, where its ordering makes logical sense.

The subroutine that implements the class method is called with the arguments supplied by us, plus the
package name, which is passed first. In other words, this class method call and the following subroutine
call are handled similarly for classes that do not inherit:

method call - correct object-oriented syntax
My::Object::Class->method(@args);

subroutine call - does not handle inheritance
My::Object::Class::method ('My::Object::Class', @args);

For classes that do inherit, it uses the @ISA array to search for a matching method if the class in which
the method is looked for does not implement it. This is because the -> operator has an additional
important property that differentiates method calls from subroutine calls. A subroutine call has no such
magic associated with it.

TE
AM
FL
Y

Team-Fly®

Chapter 19

724

It might seem redundant that we pass the package name to a class method, since the method surely
already knows what package it is in, and can find out by using __PACKAGE__ even if it did not know.
Again, however, this is only true for classes that do not inherit. If a parent method is called because a
subclass did not implement a class method (a result of using the -> operator), then the package name
passed will not be that of the parent but that of the subclass.

Calling Object Methods
An object method is a subroutine defined in the class that operates on a particular object instance. To
call an object method we use the -> operator on an object of a class that supports that method:

$result = $object->method(@args);

The subroutine that implements the object method is called with the argument we supply, preceded by
the object itself (a blessed reference, and therefore a scalar). Therefore the following calls are again
nearly the same:

method call - correct object-oriented syntax
$object->method(@args);

subroutine call - does not handle inheritance
My::Object::Class::method($object, @args);

Just as with class methods, if the package into which the object is blessed does not provide the named
method, the -> operator causes Perl to search for it in any and all parent classes, as defined by the @ISA
array; the method call will find a method in a parent class (provided it is present), but the subroutine
call will not.

Nesting Method Calls
If the return value from a method (class or object) is another object, we can call a second method on it
directly, without explicitly using a temporary variable to store the returned object. Such methods
usually occur where there is a 'has-a' relationship between two object classes, and objects of the holding
class contain instances of the held class as attributes. The result of this is that we can chain several
method calls together:

print "The top card is ", $deck->card(0)->fullname;

This particular chain of method calls is from the Game::Deck example which we provide later in the
chapter. It prints out the name of the playing card on the top of the deck of playing cards represented
by the $deck object. Game::Deck supplies the card method, which returns a playing card object. In
turn, the playing card object (Game::Card, not that we need to know the class) provides the fullname
method. We will return to this subject again when we cover 'Has-a' versus 'Is-a' relationships.

Determining what an Object Is
An object is a blessed reference. Calling the ref function on an object returns not the actual data type
of the object but the class into which it was blessed:

$class = ref $object;

Object-oriented Perl

725

If we really need to know the underlying data type (which in a well designed object-oriented application
should be never, but it can be handy for debugging) we can use the reftype subroutine supplied by
the attributes module, see 'References' in Chapter 5 for details.

However, knowing what class an object belongs to does not always tell us what we want to know; for
instance, we cannot easily use it to determine if an object belongs to a subclass of a given parent class,
or even find out if it supports a particular method or not.

Determining Inherited Characteristics
The ref function will tell us the class of an object, but it cannot tell us anything more than this. Because
determining the nature and abilities of an object is a common requirement, Perl provides the
UNIVERSAL object class, which all objects automatically inherit from. UNIVERSAL is a small class, and
contains only three methods for identifying the class, capabilities, and version of an object or object
class. Because Perl likes to keep things simple, this class is actually implemented as a module in the
standard library, and is not a built-in part of the language.

Determining an Object's Ancestry
The isa method, provided by UNIVERSAL to all objects, allows us to determine whether an object
belongs to a class or a subclass of that class, either directly or through a long chain of inheritance. For
example:

if ($object->isa("My::Object::Class")) {
$class = ref $object;
if ($class eq "My::Object::Class") {

print "Object is of class My::Object::Class \n";
} else {

print "Object is a subclass of My::Object::Class \n";
}

}

We can also use isa on a class name or string variable containing a class name:

$is_child = My::Object::Subclass->isa("MyObjectClass");
$is_child = $packagename->isa($otherpackagename);

Before writing class names into our code, however, we should consider the issue of code maintenance.
Explicitly hard-coding class names is an obstacle to portability, and can trip up otherwise functional
code if used in an unexpected context. If the class name is derived programmatically, it is more
acceptable.

Determining an Object's Capabilities
Knowing an object's class and being able to identify its parents does not tell us whether or not it can
support a particular method. For polymorphic object classes, where multiple classes provide versions of
the same method, it is often more useful to know what an object can do rather than what its ancestry is.
The UNIVERSAL class supplies the can method for this purpose:

if ($object->can('method')) {
return $object->method(@args);

}

Chapter 19

726

If the method is not found in either the object's class or any of its parents can returns undef. Otherwise,
it returns a code reference to the method that was found:

if ($methodref = $object->can('method')) {
$object->$methodref(@args);

}

We can also use can on an object class to determine whether it or any of its ancestors provides a given
method:

foreach (@methods) {
$can{$_} = My::Object::Class->can('method');

}

Again, the package name may also be given in a string variable:

$can_do = $package->can($methodname);

Alternatively, we can simply try to call the method and see if it works or not, wrapping the call in an
eval to prevent it from generating a fatal error:

$result = eval {$object->method(@args)};
if ($@) {

error - method did not exist
}

Determining an Object's Version
The final method provided by the UNIVERSAL object is VERSION, which looks for a package variable
called $VERSION in the class on which it is called:

version of a class
$version = $packagename->VERSION;

version of an object's class
$version = $object->VERSION;

test version
if ($packagename->VERSION < $required_version) {

die "$packagename version less than $required_version";
}

In practice we usually don't need to call VERSION directly, because the use and require statements do
it for us providing we supply a numeric value rather than an import list after a package name:

use class only if it is at least version 1
require My::Object::Class 1.00;

Note that use differs from require in that, apart from using an implicit BEGIN block, it imports from
the package as well. However, since an object-oriented class should rarely define anything for export,
since this breaks the interface and causes problems for inheritance, there is usually no advantage to
useing an object class over requireing it.)

Object-oriented Perl

727

However, we can in some cases use version to alter behavior depending on another module's version,
using an added method in more recent versions and resorting to a different approach in older versions.
For example, here is a hypothetical object having a value assigned to one of its attributes. The old class
did not provide a method for this attribute, so we access the attribute directly from the underlying hash.
From version 1 onward all attributes are accessed by method:

if ($object->VERSION < 1.00) {
old version - set attribute directly
$object->{'attribute'} = $value;

} else {
new version - use the provided method instead
$object->attribute($value);

}

Note that we could have done the same thing with can, but this is slower since it tests the entire object
hierarchy of parents looking for a method; it's also less clear, since without additional comments it is not
obvious why we would be checking for the availability of the method in the first place. In these cases
checking the version is the better approach.

Writing Object Classes
Writing an object class is no more difficult than writing a package, it just has slightly different rules.
Indeed, an object class is just a package by a different name. Like packages, object classes can spread
across more than one file but more often than not are implemented in a single module with the same
name (after translation into a pathname) as the package that implements them.

What makes object classes different from packages is that they tend to have specific features within
them. The first and most obvious is that they have at least one constructor method. As well as this, all
the subroutines take an object or a class name as a first parameter. The package may also optionally
define a DESTROY block for destroying objects, analogous to an END block in ordinary packages.

A final difference, and arguably one of the most crucial, is that object classes can inherit methods from
one or more parent classes. We are going to leave the bulk of this discussion to later in the chapter, but
because inheritance and designing object classes for reuse are so fundamental to object-oriented
programming, we will be introducing inheritance examples from time to time before we come to discuss
it in full. Fortunately, inheritance in Perl is very easy to understand, at least in the simpler examples
given here.

Constructors
The most important part of any object class is its constructor; a class method whose job it is to generate
new instances of objects. Typically the main (or only) constructor of an object class is called new, so we
can create new objects with any of the following statements:

Using traditional object-oriented syntax:

$object = new My::Object::Class;
$object = new My::Object::Class('initial', 'data', 'for', 'object');

Chapter 19

728

Or, using class method call syntax:

$object = My::Object::Class->new();
$object = My::Object::Class->new('initial', 'data', 'for', 'object');

This new method is just a subroutine that accepts a class name as its first parameter (supplied by the ->
operator) and returns an object. At the heart of any constructor is the bless function. When given a
single argument of a reference, bless bestows a new name upon it to mark it as belonging to the
current package. Here is a fully functional (but limited, as we will see in a moment) constructor that
illustrates it in action:

#Class.pm
package My::Object::Class;
use strict;

sub new {
$self = {}; # create a reference to a hash
bless $self; # mark reference as object of this class
return $self; # return it.

}

The problem with this simple constructor is that it does not handle inheritance. With a single argument,
bless puts the reference passed to it into the current package. However, this is a bad idea because the
constructor may have been called by a subclass, in which case the class to be blessed into is the subclass,
and not the class that the constructor is defined in. Consequently, the single argument form of bless is
rarely, if ever used, and we mention it only in passing. Correctly written object classes use the two
argument version of bless to bless the new object into the class passed as the first argument. This
enables inheritance to work correctly, as the object created is now the one asked for, which may be a
subclass inheriting our constructor:

sub new {
$class = shift;
$self = {};
bless $self, $class;
return $self;

}

Or, equivalently but much more tersely:

sub new {
return bless {}, shift;

}

Typically we want to be able to initialize an object when we create it, which we can do by passing
arguments to the constructor. For example, here is a package that implements the bare essentials of a
playing card class. It takes two additional parameters, a name, and a suit:

card1.pm
package Game::Card1;
use strict;

sub new {
my ($class, $name, $suit) = @_;
my $self = bless {}, $class;

Object-oriented Perl

729

$self->{'name'} = $name;
$self->{'suit'} = $suit;
return $self;

}

1;

The underlying representation of the object is a hash, so we can store attributes as hash keys. We could
also check that we actually get passed a name and suit, but in this case we are going to handle the
possibility that a card has no suit (a joker, for example), or even no name (in which case it is, logically, a
blank card). A user of this object could now access the object's properties (in an non-object-oriented
way) through the hash reference:

#!/usr/bin/perl
ace.pl
use warnings;
use strict;

use Game::Card1;

my $card = new Game::Card1('Ace', 'Spades');
print $card->{'name'}; # produces 'Ace';
$card->{'suit'} = 'Hearts'; # change card to the Ace of Hearts

Just because we can access an object's properties like this does not mean we should. If we change the
underlying data type of the object (as we are about to do) this code will break. A better way is to use
accessor and mutator methods, which we cover in the appropriately titled section 'Accessors and
Mutators' shortly.

Choosing a Different Underlying Data Type
Objects are implemented in terms of references, therefore we can choose any kind of reference as the
basis for our object. The usual choice is a hash, as shown in the previous example, since this provides a
simple way to store arbitrary data by key; it also fits well with the 'properties' or 'attributes' of objects,
which in general object-oriented parlance are named values that can be set and retrieved on objects.

Using an Array

However, we can also choose other types that might suit our design better. For instance, we can use an
array, as this constructor does:

Card.pm
package Game::Card2;
use strict;

use Exporter;

our @ISA = qw(Exporter);
our @EXPORT = qw(NAME SUIT);

use constant NAME => 0;
use constant SUIT => 1;

sub new {
my ($class, $name, $suit) = @_;
my $self = bless [], $class;

Chapter 19

730

$self->[NAME] = $name;
$self->[SUIT] = $suit;
return $self;

}

1;

This object is functionally identical to the hash-based one (although, since it is at this point only a
constructor, not a terribly useful one), but has a different internal representation. In this simple
example, we want to allow users to access properties directly, so we export the constants to them when
they use our object with use Exporter. Now the code to use the object looks like this (note that by
accessing the object properties directly we are forced to change the code that uses the object. This is
why methods are better, as we mentioned earlier):

#!/usr/bin/perl
arrayuse.pl
use warnings;
use strict;

use Game::Card2; # imports 'NAME' and 'SUIT'

my $card = new Game::Card2('Ace', 'Spades');
print $card->[NAME]; # produces 'Ace'
$card->[SUIT] = 'Hearts'; # change card to the Ace of Hearts
print " of ", $card->[SUIT]; # produces ' of Hearts'

The advantage of the array-based object is that arrays are a lot faster to access than hashes are, so
performance is improved. The disadvantage is that it is very hard to reliably derive a subclass from an
array-based object class because we need to know what indices are taken, and which are safe to use.
Though this can be done, it requires extra effort and outweighs the benefits of avoiding a hash. It also
makes the implementation uglier, which is usually a sign that we are on the wrong track. For objects that
we do not intend to use as parent classes, however, arrays can be an effective choice.

Using a Typeglob

Hashes and arrays are the most logical choice for object implementations because they allow the storage
of multiple values within the object. However, we can use a scalar or typeglob reference if we wish. For
instance, we can create an object based on a typeglob and use it to provide object-oriented methods for
a filehandle. Indeed, this is exactly what the IO::Handle class (which is the basis of the object-oriented
filehandle classes IO::File, IO::Dir, and IO::Socket) does.

Here is the actual constructor used by IO::Handle, with additional comments:

sub new {
determine the passed class, by class method, object method,
or preset it to 'IO::Handle' if nothing was passed (subroutine).
$class = ref($_[0]) || $_[0] || "IO::Handle";

complain if additional arguments were passed
@_ == 1 or croak "usage: new $class";

create an anonymous typeglob (from the 'Sybmol' module)
$io = gensym;
bless it into the appropriate subclass of 'IO::Handle'
bless $io, $class;

}

Object-oriented Perl

731

Just as we can dereference a blessed hash or array reference to access and set the underlying values
contained within, Perl automatically dereferences the reference to a filehandle contained in a typeglob.
So we can pass the objects returned from this handle to Perl's IO functions, and they will use them just
as if they were regular filehandles. But because the filehandle is also an object, we can call methods on it
as this example of using the IO::File subclass demonstrates:

#!/usr/bin/perl
output1.pl
use warnings;
use strict;

use IO::File;

my $object_fh = new IO::File ('> /tmp/io_file_demo');
$object_fh->print ("An OO print statement\n");
print $object_fh "Or we can use the object as a filehandle";

$object_fh->autoflush(1); # this is much nicer than 'selecting'
close $object_fh;

We have already seen the IO:: family of modules in use, most particularly in Chapter 12. Now we can
see how and why these modules work as they do.

Using a Scalar

Limited though it might seem, we can also use a scalar to implement an object. For instance, here is a
short but functional 'document' object constructor, which takes a filehandle as an optional argument:

Document.pm
package Document;
use strict;

scalar constructor
sub new {
my $class = shift;

my $self;
if (my $fh = shift) {

local $/ = undef;
$$self = <$fh>;

}

return bless $self, $class;
}

We can now go on to implement methods that operate on text, but hide the details behind the object.
We can for example create methods to search the document through other methods that hide the details
of regular expressions behind a friendlier object-oriented interface.

Using a Subroutine

Finally, we can also use a subroutine as our object implementation, blessing a reference to the
subroutine to create an object. In order to do this we have to generate and return an anonymous
subroutine on-the-fly in our constructor. This might seem like a lot of work, but it provides us with a
way to completely hide the internal details of an object from prying eyes; because all properties are
accessed via the subroutine, it can permit or deny whatever kinds of access it likes. We will see an
example of this kind of object later in the chapter under 'Keeping Data Private'.

Chapter 19

732

Methods
Methods, as we have already observed, are just subroutines that are designed to be called with the ->
operator. There are two broad types:

❑ Class methods perform tasks related to the class as a whole, and are not tied to any specific
object instance.

❑ Object methods perform a task for a particular object instance.

Although in concept these are fundamentally different ideas, Perl treats both types of method as just
slightly different subroutines, which differ only in the way that they are called and in the way they
process their arguments. With only minor adjustments to our code, we can also create methods that will
operate in either capacity, and even as a subroutine too, if the design supports it.

Class Methods

A class method is a method that performs a function for the class as a whole. Constructors, which we
have already seen examples of, are a common example, and frequently they are the only class methods
an object class provides. Here is another, which sets a pair of global resources that apply to all objects of
the class:

$MAX_INSTANCES = 100;

sub set_max {
($class, $max) = @_;
$MAX_INSTANCES = $max;

}

sub get_max {
return $MAX_INSTANCES;

}

We would call these class methods from our own code with:

My::Object::Class->set_max(1000);
print "Maximum instances: ", My::Object::Class->get_max();

Setting and returning class data like this is probably the second most common use for a class method
after constructors. Only class-level operations can be performed by a class method, therefore all other
functions will be performed by object methods.

A special case of a class method that can set class data is the import method, which we dwelt on in
Chapter 17. We will take another look at import methods when we come to discuss class data in more
detail later on in the chapter.

Object Methods

An object method does work for a particular object, and receives an object as its first argument.
Traditionally we give this object a name like $self or $this within the method, to indicate that this is
the object for which the method was called. Like many aspects of object-oriented programming in Perl
(and Perl programming in general) it is just a convention, but a good one to follow. Other languages are
stricter; we automatically get a variable called self or sometimes this and so don't have a choice
about the name.

Object-oriented Perl

733

Here is a pair of object methods that provide a simple object-oriented way to get and set properties (also
known as attributes, but either way they are values) on an object. In this case the object is implemented
as a hash, so within the class this translates into setting and getting values from the hash:

get a property - read only
sub get {

($self, $property) = @_;

return $self->{$property} if exists $self->{$property};
return undef; # no such property!

}

set a property - return the old value
sub set {

($self, $property, $value) = @_;
$oldvalue = $self->property if exists $self->{$property};
$self->{$property} = $value;
return $oldvalue; #may be undef

}

In practice the users of our objects could simply dereference them and get to the hash values directly.
However, we do not want to encourage this since it bypasses our interface. So instead we provide some
methods to do it for them. These methods are still very crude though, since they do not check whether a
property is actually valid. We will look at some better ways of handling properties later.

As a more practical example, here are a pair of search methods that belong to the Document object
class we created a constructor for earlier, along with the constructor and the rest of the package, to make
it a complete example. Note that the wordsearch method itself makes an object-oriented call to the
search method to carry out the actual work:

Document.pm
package Document;
use strict;

scalar constructor
sub new {

my $class = shift;

my $self;
if (my $fh = shift) {

local $/ = undef;
$$self = <$fh>;

}

return bless $self, $class;
}

search a document object
sub search {

my ($self, $pattern) = @_;

my @matches = $$self =~ /$pattern/sg;
return @matches;

}

TE
AM
FL
Y

Team-Fly®

Chapter 19

734

search and return words
sub wordsearch {

my ($self, $wordbit) = @_;

my $pattern = '\b\w*'.$wordbit.'\w*\b';
return $self->search($pattern);

}

1;

We can use this object class to perform simple searches on documents read in by the constructor, in an
object-oriented style:

#!/usr/bin/perl
search.pl
use warnings;
use strict;

use IO::File;
use Document;

my $fh = new IO::File('file.txt');
my $document = new Document($fh);

find words containing e or t
print join(' ', $document->wordsearch('[et]'));

If the file file.txt contains this text:

This is a file of text to
test the Document object
on.

The program produces:

file text to test the Document object

This is not a very well developed object class; it does not allow us to create an object from anything
other than a filehandle, and it needs more methods to make it truly useful. However, it is the beginning
of a class we could use to abstract simple text operations on documents. Already it has removed a lot of
the ugliness of regular expression code and abstracted it behind the class implementation, with
relatively little effort.

Multiple Context Methods
Class methods expect a package name as their first argument, whereas object methods expect an object.
Other than this, however, they are identical. Since we can determine an object's class by using ref, we
can easily write a method that works as both a class and an object method.

The most common kind of method we can develop with this approach is a class method that is adapted
to work from objects as well, by extracting the class of the object from it using ref and using that
instead. For example:

sub classmethod {
$self = shift;
$class = (ref $self)?(ref $self):$self;
...

}

Object-oriented Perl

735

Or, more tersely, using a logical ||:

sub classmethod {
$self = shift;
$class = ref $self || $self;
...

}

Or, even more tersely:

sub classmethod {
$class = (ref $_[0]) || $_[0];
...

}

The methods that use this trick the most are constructors that allow us to create a new object from an
old one. This allows users to create new objects without even knowing exactly what they are –
abstraction taken to the extreme. Here is a version of the Game::Card constructor that does this:

sub new {
($class, $name, $suit) = @_;
$class = (ref $class) || $class;

$self = bless {}, $class;

$self->{'name'} = $name;
$self->{'suit'} = $suit;

return $self;
}

We can also create a subroutine that can be called as a subroutine, in addition to being called as a
method. This takes a little more thought, since the first argument is whatever we pass to the subroutine
when we use it as such. If the subroutine gets no arguments at all it knows it must have been called as a
subroutine and not a method. For example, if a constructor takes no initialization data, we can do this:

a constructor that may be called as a subroutine
sub new {

$class = (ref $_[0]) || $_[0] || __PACKAGE__;
return bless {}, $class;

}

The first line of this subroutine translates as: 'if we were passed an object, use the class returned as its
reference, otherwise if we were passed anything at all use that as the class, otherwise we must have been
called as a subroutine so use the name of the package we are in'. We can construct an object from this
subroutine using any of the following means:

as class method:
$object = My::Flexible::Constructor::Class->new;
$object = new My::Flexible::Constructor::Class;

as object method:
$object = $existing_flexible_object->new;

as subroutine:
$object = My::Flexible::Constructor::Class::new;

Chapter 19

736

Here is another version of the Game::Card constructor that also handles being called as a subroutine.
Because it takes additional arguments we have to make some assumptions in order to work out what the
first argument is. In this case we will assume that the class name, if supplied, will start with Game::.
This is a limitation, but one we are willing to accept in this design:

sub new {
($class, $name, $suit) = @_;
$class = (ref $class) || $class;

check for the first argument and adjust for subroutine call
unless ($class =~ /Game::/) {

($class, $name, $suit) = (__PACKAGE__, $class, $name);

}

$self = bless {}, $class;
$self->{'name'} = $name;
$self->{'suit'} = $suit;
return $self;

}

Of course, whether or not this is actually worth doing depends on whether we actually expect a method
to be called as a subroutine. If this is not part of the design of our object class we should probably avoid
implementing it, just to discourage non-object-oriented usage.

Object Data
Object properties, also called object attributes, are values that are stored within the object. We do not
necessarily know how they are stored, but we know what they are because the object class
documentation will (or at least, should) tell us.

If we know the object's underlying implementation we can access and set these values directly. The
attribute becomes just an array element or hash value:

print $card->{'suit'};
$card->{'name'} = 'Queen';

This is very bad, however, for several reasons. First, since we are bypassing the object class by not
calling a method to do this, the object will have no knowledge of what we are doing. Hence it cannot
react or correct us if we do something unexpected, like add a season attribute. The design of this class
is not supposed to include an attribute for season, but it has no way of knowing what we are doing.
Second, if the names of the attributes change, or the implementation alters in any way, we may find that
our code breaks. For instance, if we alter the class to use an array rather than a hash as its underlying
data type, all our code will instantly break.

Both problems are symptomatic of violating the principle of encapsulation, which dictates that the
implementation of the object should be hidden behind the interface. They derive from the fact that we,
as users of the class, are determining how the object is accessed, when we should really be using an
interface provided for us by the class. In other words, we should be using object methods to both get
and set the values of the object's attributes.

A related concept to both class and object data is the idea of private class and object data. Perl does
not provide a strict mechanism for enforcing privacy, preferring that we respect the design of the
object class and don't attempt to work around the provided interface. For cases where we do want to
keep data private we can resort to several options, which we will cover a little later in the chapter.

Object-oriented Perl

737

Accessors and Mutators

The methods that are provided to get and set object attributes are known in object-oriented circles as
accessors and mutators. Despite this jargon, they are really just subroutines that set values in a hash,
array, or whatever data type we used to implement the object.

Here is an example of accessor and mutator methods for the suit attribute of the Game::Card class
(we can just duplicate them for the name attribute), complete with prototypes:

get passed card object and return suit attribute
sub get_suit ($) {

return shift->{'suit'};
}

set suit attribute on passed card object
sub set_suit ($$){

$_[0]->{'suit'} = $_[1];
}

Having separate accessor and mutator methods can be a little awkward, however, especially if we have a
lot of attributes to deal with. An object with twenty possible attributes needs forty subroutine definitions
to handle them. A popular alternative is to combine accessors and mutators into one method, using the
number of arguments passed to determine what to do. For example:

sub suit ($;$) {
my ($self, $suit) = @_;

if ($suit) {
my $oldsuit = $self->{'suit'};
$self->{'suit'} = $suit;
return $oldsuit;

}

return $self->{'suit'};
}

This accessor/mutator method gets the current value of the suit attribute if no value is passed, or sets it
if one is. As a bonus, it also makes a note of and returns the old value of the attribute. We do not need
to check whether the attribute exists because we know (because we wrote the class) that the constructor
always sets the hash keys up, even if they have undefined values.

This method does not allow us to unset the suit either, in this case intentionally. If we want to permit the
suit to be unset we will have to check to see if we were passed a second argument of undef as opposed
to no second argument at all. We can do that by replacing the line:

if ($suit) {

With:

if (scalar(@_)>1) {

Chapter 19

738

Or, more tersely:

if ($#_) {

Either replacement checks that at least two arguments were passed to the method, without checking
what the second argument is, so undef can be passed as the new attribute value, as can an empty string.
However, since the fullname method concatenates this attribute into a string, we probably do not want
to allow undef, so this is probably the best variation to use:

sub suit ($;$){
($self, $suit) = @_;

if (defined $suit) {
$oldsuit = $self->{'suit'};
$self->{'suit'} = $suit;
return $oldsuit;

}

return $self->{'suit'};
}

This will allow an empty string to set the attribute, but not undef.

Generic Accessors/Mutators

Combining accessors and mutators into one method is an improvement over the case of separate
accessors and mutators methods, at least in terms of the number of subroutines we define, but it comes
at the cost of increased code complexity.

We do not really want to have to repeat the same subroutine twenty times for each attribute we might
want to set or get. However, since all the attributes are essentially just different cases of key-value
pairs, we can write one generic accessor/mutator and make all the actual attribute methods wrappers for
it, as this example demonstrates:

sub _property ($$;$) {
my ($self, $attr, $value) = @_;

if (defined $value) {
my $oldv = $self->{$attr};
$self->{$attr} = $value;
return $oldv;

}

return $self->{$attr};
}

sub suit ($;$) {return shift->_property('suit', @_);}
sub name ($;$) {return shift->_property('name', @_);}

Now each new method we want to add requires just one line of code. Better still, the relationship
between the name of the method and the name of the hash key has been reduced to one single instance.
The setting and getting of attributes is also fully abstracted now. Subclasses that make use of a parent
class containing this method can set and get their own properties without needing to know how or
where they are stored. This is a very attractive benefit for a properly written object class.

Object-oriented Perl

739

The underscore at the start of _property is meant to imply that this subroutine is not meant for public
consumption, it is a private method for the use of the class only. Perl does not enforce this, but by
naming it this way and not including it in the user documentation, we make our intention clear. If a user
of the class chooses to ignore the design and use it anyway, they cannot say they have not been warned.

Having a generic accessor/mutator method gives us great power to develop our object class. Anything
we implement in this method will apply to all attributes supported by the object. As an example, here is
another version that allows new attributes to be created, but only if another force flag is added. We
also add a nonfatal flag to determine whether or not an attempt to set a non-existent attribute is fatal
or not:

sub _property ($$;$$$) {
my ($self, $attr, $value, $force, $nonfatal) = @_;

if (defined $value) {
if ($force || exists $self->{$attr}) {

my $oldv = $self->{$attr};
$self->{$attr} = $value;
return $oldv;

} else {
croak "Attempt to set non-existent attribute '$attr'"
unless $nonfatal;
return undef;

}
}

return (exits $self->{$attr})?$self->{$attr}:undef;
}

To handle fatal errors we have made use of croak, from the Carp module; we will need to add a use
Carp; line to our object class for it to work. As we covered in Chapter 16, croak reports errors in the
context of the caller rather than the place at which the error occurs. This is very useful in packages, and
object classes are no exception.

If we are using accessors and mutators for attribute access we should use them everywhere, including
inside the object itself. Here is another version of the constructor for the Game::Card class, written to
use the methods of the class rather than initializing them directly. We have also added a prototype at
the same time:

sub new ($;$$) {
my ($class, $name, $suit) = @_;
$class = (ref $class) || $class;

my $self = bless {}, $class;
$self->name($name);
$self->suit($suit);
return $self;

}

This further protects the object class against alterations, this time of itself. However, it does come at a
performance penalty of an additional subroutine call. For the constructor above, this is minor and
acceptable, but if we are writing a method that uses a loop to access or modify attributes, we may want
to compromise and access the attributes directly (only because we're inside the object class) for speed.

Chapter 19

740

Class Data
Class data is associated with a class as a whole, rather than with an individual object, and is used to
define properties that affect the class as a whole. This can include things like global constants that never
change, or changing values like serial numbers or a maximum limit on the number of permitted objects.

As an example, here is an object class that generates serial numbers for objects. It keeps a record of the
next serial number in the start key of the global variable %conf, and increments it each time a new
object is created:

extract from Serial.pm
package Serial;
use strict;

use Carp;

our %conf = (
'start' => 1,
'increment' => 1,

);

sub new {
my $class = (ref $_[0]) || $_[0];
$conf{'start'} = $_[1] if defined $_[1];

my $self=bless {}, $class;
$self->{'serial'} = $conf{'start'};
$conf{'start'} += $conf{'increment'};
return $self;

}

sub serial {
return shift->{'serial'};

}

1;

Having built this class we can use it to create new Serial objects, as this short script does. If we pass in
a serial number, the count is reset to that point:

#!/usr/bin/perl
serial1.pl
use warnings;
use strict;

use Serial;

my @serials;
foreach (1..10) {

push @serials, new Serial;
}

print $serials[4]->serial, "\n";
my $serial = new Serial(2001);
print $serial->serial, "\n";

Object-oriented Perl

741

The value of the two serial numbers displayed by this program produces the output:

5
2001

This shows us that the fifth serial number (index 4, counting from zero) is 5, as we would expect if the
loop generated successive serial numbers starting from 1, with an increment of 1. The second serial
number has the value 2001 as we specifically requested. If we generated another serial number object it
would have a serial number of 2002.

Although it might not seem terribly useful, this is actually a perfectly functional and usable object class
because we can inherit from it. Any object can add serial number functionality to itself by inheriting
from this object and making sure to call the new method of Serial from its own new method. We will
see more about this later.

The class data of the Serial object class is declared with our, which means that it is package data and
therefore accessible outside the class. We can configure the object class itself by altering these values.
For example, to reset the serial number to 42 and the increment to 7:

$Serial::conf{'start'} = 42;
$Serial::conf{'increment'} = 7;

Now when we call new we will get serial numbers 42, 49, 56, and so on. However, just as we do not
really want to allow users to control object data directly, neither do we want to allow users to set class
data without supervision. The better approach is to implement a class method to set, and check, new
values for class data. Here is a configure method that we can add to the Serial object class to
handle this for us:

extract from Serial.pm
sub configure {

my $class = shift;
return unless @_;
while (my ($key, $value) = (shift, shift)) {

$key =~ /start/ and $conf{'start'} = int($value), last;
$key =~ /increment/ and do {

$value = int($value);
croak "Invalid value '$_'" unless $value;

$conf{'increment'} = $value;
last;

};
croak "Invalid name '$key' in import list";

}
}

Better still, we can now change the definition of %conf to make it a lexically scoped variable with my:

my %conf = (
'start' => 1,
'increment' => 1,

);

Chapter 19

742

Defined this way, the configuration hash is inaccessible to external users, and has become private class
data – only the configure method can alter it, because only it is in the same lexical scope. We can
now call this method to configure the class, as shown by this modified version of our script:

#!/usr/bin/perl
serial_a.pl
use warnings;
use strict;

use Serial;

Serial->configure(start => 42, increment => 7);

my @serials;
foreach (1..10) {

push @serials, new Serial;
}

print $serials[4]->serial, "\n";
my $serial = new Serial(2001);
print $serial->serial, "\n";

The output from this version of the script is (as a little arithmetic would lead us to expect):

70
2001

This class method ensures that we only try to set the two configuration values the class actually
supports, and also checks that we do not try to set an increment of zero (which would cause all objects
to have the same serial number, of course); neither check would be possible if we simply reached in and
changed the hash values directly.

Inheriting Class Data

In the class method shown above we ignore the class passed to us because we want to set the class data
of this particular class, even if we are being called by a subclass. This means that different objects from
different classes, all inheriting from Serial will all have different and distinct serial numbers. However,
if we wanted to set class data on a per-class basis we would alter the assignments in this method to
something like:

${"$class\:\:conf"}{'start'} = int($value); # or ${$class.'::conf'}...,
or ${"${class}::conf"}

This sets the value of $conf{'start'} as a package variable in whichever package the call to the
configure method actually originated from; in this version of the class, each class that inherits from
Serial would have its own configuration and its own sequence of serial numbers.

If we have classes inheriting from each other, each with the same class data values, we need to pay
attention to this kind of detail or we can easily end up setting class data in the wrong class. See 'Non-
Object Classes' for an example of a class that works this way. An alternative approach that gets around
these difficulties is to set class data via objects; we will also look at that in a moment.

Object-oriented Perl

743

Setting Class Data through Import Methods

We mentioned the import method briefly earlier in the chapter, and discussed it at some length in
Chapter 10. From the point of view of object-oriented programming, the import method is just another
class method, with the unusual property that the use statement calls it. We can easily adapt our earlier
example of the configure method to work as an import method too, simply by renaming it import.
However, calling Serial->import to configure a variable is confusing, so instead we can just create
an import method that calls the configure method, leaving it available under the old name:

sub import {
shift->configure(@_);

}

We could also just alias it, if we like typeglobs:

*import = &configure;

Either way, we can now configure the Serial class with:

use Serial qw(start => 42, increment => 7);

Everything that applies to the import method also applies to the unimport method, of course, for when
we use no rather than use. This is a lot less common, but is ideal for controlling Boolean flags, as the
next example illustrates.

Non-Object Classes

All the classes we have looked at so far have been object classes, containing at least one constructor.
However, we can create classes that work entirely on class data. This might seem like a strange idea, but
it makes sense when we also include the possibility of inheritance. Just as inheriting object methods
from a parent class allows us to abstract details of an object's workings, we can inherit class methods to
abstract class data manipulations.

The following class continues the theme of the previous section by implementing both import and
unimport methods to create a set of Boolean flags stored as class data. It provides methods to get,
set, delete, and create new variables, as well as a list method to determine which variables exist,
or are set or unset. It is also an example of a class-data only package, and contains no constructor at all.
Rather than being an object class in its own right, it is designed to be inherited by other object classes to
provide them with class data manipulating methods.

Booleans.pm
package Booleans;
use strict;
no strict 'refs';

use Carp;

establish set boolean vars
sub import {

my $class = shift;
map {${"$class\:\:conf"}{$_} = 1} @_;

}

establish unset boolean vars
sub unimport {

my $class = shift;

TE
AM
FL
Y

Team-Fly®

Chapter 19

744

map {${"$class\:\:conf"}{$_} = 0} @_;
}

private method -- does all the actual work for set, unset, and delete
only variables already established may be altered here.
sub _set ($$$) {

my $class = (ref $_[0]) || $_[0];
unless (exists ${"$class\:\:conf"}{$_[1]}) {

croak "Boolean $_[1] not imported";
}

if (defined $_[2]) {
${"$class\:\:conf"}{$_[1]} = $_[2]?1:0;

} else {
delete ${"$class\:\:conf"}{$_[1]};

}
}

return variable value
sub get ($$) {

my $class = (ref $_[0]) || $_[0];
return ${"$class\:\:conf"}{$_[1]};

}
set a variable
sub set ($$) {

shift->_set(@_, 1);
}

clear a variable
sub unset ($$) {

shift->_set(@_, 0);
}

delete an existing variable
sub delete ($$) {

shift->_set(@_, undef);
}

invent a new variable -- _set doesn't allow this
sub create ($$$) {

${"$_[0]\:\:conf"}{$_[1]}=$_[2]?1:0;
}

return a list of all set, all unset or all variables
sub list ($;$) {

my ($class,$set)=@_;

if (defined $set) {
return list of set or unset vars
my @vars;
foreach (keys %{"$class\:\:conf"}) {

push @vars,$_ unless ${"$class\:\:conf"}{$_} ^ $set;
}
return @vars;

} else {
return list of all vars in set
return keys %{"$_[0]\:\:conf"};

}
}

1;

Object-oriented Perl

745

This non-object class is designed to be inherited by other classes, which can use the methods it supplies
to set their own Boolean flags. This accounts for all the occurrences of things like:

%{"$class\:\:conf"}

This is a symbolic reference that resolves to the %conf hash in the package that was first accessed
through the method call, so every class that makes use of this class gets its own %conf hash, rather than
sharing one in Booleans. Indeed, we do not even declare a %conf hash here since it is not necessary,
both because we do not expect to use the module directly and because we always refer to the hash by its
full package-qualified name, so no our or use vars declaration is necessary. This is an important point,
because it means that a subclass can have a conf array just by subclassing from Booleans. It need not
declare the hash itself. It is still free to do so, but the point of this class is that all Boolean variable access
should be via the methods of this class, so it should never be necessary.

We can test out this class with a short script that does use the module directly, just to prove that it
works:

#!/usr/bin/perl
booleans.pl
use warnings;
use strict;

use Booleans qw(first second third);
no Booleans qw(fourth fifth);

print "At Start: \n";
foreach (Booleans->list) {

print "\t$_ is\t:", Booleans->get($_), "\n";

}

Booleans->set('fifth');
Booleans->unset('first');
Booleans->create('ninth', 1);
Booleans->delete('fourth');

print "Now: \n";
foreach (Booleans->list) {

print "\t$_ is\t:", Booleans->get($_), "\n";

}

print "By state: \n";
print "\tSet variables are: ", join(', ', Booleans->list(1)), "\n";
print "\tUnset variables are: ", join(', ', Booleans->list(0)), "\n";

The output of this program is:

At Start:
first is :1
fifth is :0
fourth is :0
third is :1
second is :1

Chapter 19

746

Now:
first is :0
fifth is :1
ninth is :1
third is :1
second is :1

By state:
Set variables are: fifth, ninth, third, second
Unset variables are: first

Clearly the most immediately useful improvement we could make to this class is to have list return
the flags in the order of creation (if only for cosmetic purposes) but it serves to prove that the class, such
as it is, performs as designed.

Accessing Class Data via Objects

We sometimes want to allow users of our object class to find out the contents of our class data, and even
in some cases set it. The lazy way to do this is simply to access the data directly, but as we have already
noted this is not object-oriented and therefore bad practice. Better is to use a class method, as we did
earlier. Both approaches suffer from the fact that we need to use the class name to access either the data
or the method to manipulate it, which varies between a class and its subclasses.

An alternative approach, which avoids all this complexity, and also avoids instances of constructing
package variable names on the fly with expressions like $class\:\:variable, is to store references
to the class data in the objects. We can then access and set the class data through the object using an
accessor/mutator style method.

In order to use this approach we need to add some private attributes to the object instance that contain
references to the class data. The key point of this technique is that we establish a relationship between
the object and its class data in the constructor at the moment the object is created. From this point on,
so long as we use the object to access the class data, there is no ambiguity as to which class we are
referring to, and we do not need to figure out package prefixes or object class names. The object 'knows'
which class data applies to it.

Here is a modified version of the constructor for the Serial class that provides references for the class
data of the class. The key lines are the ones containing the definitions for the _next and _incr
attributes:

part of xxx_serial2/Serial.pm
sub new {

my $class = (ref $_[0]) || $_[0];
$conf{'start'} = $_[1] if defined $_[1];

my $self = bless {}, $class;
$self->{'serial'} = $conf{'start'};
$self->{'_next'} = \$conf{'start'};
$self->{'_incr'} = \$conf{'increment'};
$conf{'start'} += $conf{'increment'};
return $self;

}

We create the two new attributes by assigning references to the hash values we want to provide access
for. We give them underscored names, to indicate that these are intended for private use, not for public
access. Finally, we provide object methods that use these new attributes. Here is an accessor/mutator
object method that we can append to our Serial class that performs this duty for us:

Object-oriented Perl

747

sub next ($;$) {
my ($self, $new) = @_;
${$self->{'_next'}} = $new if $new;
return ${$self->{'_next'}};

}

Now, if we want to change the serial number for the next object created we can find any existing
Serial object (or subclass thereof) and use the next method, as this short script illustrates:

#!/usr/bin/perl
serial2.pl
use warnings;
use strict;

use Serial;

my $serial = new Serial;
print "First serial number is ", $serial->serial, "\n";
$serial->next(10000);
my $serial2 = new Serial;
print "Second serial number is ", $serial2->serial, "\n";

When we run this script we get the expected output:

First serial number is 1
Second serial number is 10000

When we use the Serial class directly, the next method has exactly the same effect as configuring the
increment through the configure class method. However, if we create a subclass for this class we can
now choose whether to keep the references to Serial's class data, or replace them with references to
class data for the subclass. If we change the references to point to class data for the new class, the next
method will adapt automatically because it works through the reference. When we cover inheritance
more fully we'll develop a subclass of Serial that makes use of this.

Debugging Object Classes
We frequently want to include some form of debugging support in our code, where messages are
conditionally logged depending on the value of a debugging flag set elsewhere. In the case of object
classes, we have two different places to put such a flag, as class data in the class itself for overall
debugging of all objects in that class, or at a per-object level, using object properties. In the case of class-
level debugging, we also have the choice of handling all classes with a single debugging flag, or giving
each class its own debugging flag.

This is more than just a debugging design issue; all data must fall into one of these three categories.
Debugging support is thus a good general example of how to handle data in an object-oriented context.
It pays to consider inheritance here, because it is better to create a generic debugging module and use it
in many places, rather than repeat it for each object class we create. So, while we have yet to cover that
subject in detail we will introduce some inheritable debugging object classes too. It is never too early to
start planning code reuse.

Chapter 19

748

Class-Level Debugging

Class-level debugging revolves around a class data variable, which controls whether debug messages
will be printed on a class-wide basis. The debug method itself, which prints out the messages, can work
as either a class or object method, but the flag that enables or disables messages applies to all objects.

Here is a simple example that provides two new methods for multi-level debugging support. Any
method within the class can use them, and any user of the class can also use them to enable debugging
for the class:

package My::Debuggable::Class;
use switch;

my $debug_level = 0;

accessor/mutator
sub debug_level {

my ($self, $level) = @_;
$debug_level = $level;

}

debug method
sub debug {

my ($self, $level) = (shift, shift);
print STDERR @_, "\n" if $level <= $debug_level;

}

We can now write methods that use these debugging methods like so:

sub a_method {

my $self = shift;

$self->debug(1, "This is a level one debug message");
...

}

Or, from elsewhere:

My::Debuggable::Class->debug_level(2);
My::Debuggable::Class->debug(1, "A debug message");
$my_debuggable_class_object->debug(2, "Another debug message");

We can also inherit the debug methods into a subclass to implement a generic debugging facility for that
class:

package Other::Class;

use Debuggable;
our @ISA = qw(Debuggable);

__PACKAGE__->debug_level(1);

Object-oriented Perl

749

Or, from elsewhere:

Other::Class->debug_level(1);
$other_class_object->debug(1, "Debug message");

In this version, the class provides a global debugging switch; since all objects inherit the same debug
flag, all objects would have their debugging messages enabled or disabled according to that debug flag.
Alternatively, if we want to enable debugging on a per-class basis, we can do by replacing the private
$debug_level with a constructed package variable name, as this adjusted debugging class does:

Debugpack.pm
package Class::Debuggable;
use strict;
no strict 'refs';

accessor/mutator
sub debug_level {

my ($self, $level) = @_;
my $class = (ref $self) || $self;
${"$class\:\:debug_level"} = $level;

}

debug method
sub debug {

my ($self, $level) = (shift, shift);
print STDERR @_, "\n" if $level <= ${"$class\:\:debug_level"};

}

1;

Note that because we are using symbolic references to compute the name of the class-specific debugging
flag we disable strict references for this class only. Now when we enable or disable the debug level for a
particular object class, only the objects of that class will notice:

set different debug levels for different classes
Class::One->debug_level(2);
Class::Two->debug_level(1);
Class::Three->debug_level(0);

Object-Level Debugging

Debugging at the object level is essentially similar to the class level, but this time we are enabling
debugging on particular objects only. To do that, we need to create a debug attribute associated with the
object, which we can do in the constructor.

The following debugging class is designed to be inherited, but we could plug its methods into an
existing class with only a little modification. It implements an object-level debugging scheme, and is
broadly similar to the earlier examples, except that it uses an object attribute instead of class data. The
object attribute is stored as a hash key, so any object class that inherits from it must use a hash as its
underlying representation, which is an important limitation we need to be aware of when using it (but if
we plan to stick to hashes for our objects then we may consider this acceptable).

Chapter 19

750

It also provides a constructor, for classes that want to inherit from it, and a separate initializer to create
the debugging flag attribute independently for objects that already exist. This gives us maximum
flexibility when using the class in combination with others; we will delve into this in more detail when
we come to discuss writing inheritable classes later in the chapter.

Object/Debuggable.pm
package Object::Debuggable;
use strict;
no strict 'refs';

constructor - for new objects
sub new {

my ($self, $level) = @_;
my $class = (ref $self) || $self;

$self = bless {}, $class;
$self->initialize($level);

return $self;
}

initializer - for existing objects
sub initialize {

my ($self, $level) = @_;
$self->{'debug_level'} = $level;

}

accessor/mutator
sub debug_level {

my ($self, $level) = @_;

if (defined $level) {
my $oldlevel = $self->{'debug_level'};
$self->{'debug_level'} = $level;
return $oldlevel;

}

return $self->{'debug_level'};
}

debug method
sub debug {

my ($self, $level) = (shift, shift);
print STDERR @_, "\n" if $level <= $self->{'debug_level'};

}

1;

Implementing a Multiplex Debug Strategy

Having shown three different ways to implement debugging support in our object classes, it would be
nice to be able support all of them simultaneously. In fact, with a little thought, we can. Here is a jack-
of-all-trades debugging class that implements a single global debugging flag that affects all classes and
objects that inherit from it, a per-class debugging flag, and individual debugging flags for each object:

Debuggable.pm
package Debuggable;
use strict;
no strict 'refs';

Object-oriented Perl

751

global debugging flag -- all classes
my $global_level = 0;

object constructor
sub new {

my ($self, $level) = @_;
my $class = (ref $self) || $self;

$self = bless {}, $class;
$self->initialize($level);
return $self;

}

initializer for existing objects
(actually just a wrapper for debug_level)
sub initialize {

my ($self, $level) = @_;
$self->debug_level($level);

}

get/set global debug level
sub global_debug_level {

my ($self, $level) = @_;

if (defined $level) {
set new level, return old one
my $old = $global_level;
$global_level = $level;
return $old;

}

return current global debug level
return $global_level;

}

get/set class debug level
sub class_debug_level {

my ($self, $level) = @_;
my $class = (ref $self) || $self;

if (defined $level) {
set new level, return old one
my $old = ${"$class\:\:class_debug"};
${"$class\:\:class_debug"} = $level;
return $old;

}

return current class debug level
return ${"$class\:\:class_debug"};

}

get/set object debug level
sub debug_level {

my ($self, $level) = @_;
my $class = ref $self;

check to see if we were called as class method
unless (my $class = ref $self) {

'$self' is a class name
return $self->class_debug_level($level);

}

Chapter 19

752

if (defined $level) {
set new level, return old one
my $old = $self->{'debug_level'};
$self->{'debug_level'} = $level;
return $old;

}

return current object debug level
return $self->{'debug_level'};

}

sub debug {
my ($self, $level) = (shift, shift);

if no message, set the (class or object) debug level itself
return $self->debug_level($level) unless @_;

write out debug message if criteria allow
object debug is allowed if object, class or global flag allows
class debug is allowed if class or global flag allows
my $class = (ref $self) || $self;
print STDERR @_, "\n" if
$level <= $global_level ||
(defined ${"$class\:\:class_debug"} and
$level <= ${"$class\:\:class_debug"}) ||
(ref($self) and $level <= $self->{'debug_level'});

}

1;

This class attempts to handle almost any kind of debugging we might want to perform. We can set
debugging globally, at the class level, or on individual objects. If we do not have an object already we
can use the constructor, otherwise we can just initialize debugging support with initialize, which
operates as either a class or object method and sets the class-wide or object-specific flag appropriately.
In fact, it just calls debug_level, which does exactly the same thing, but initialize sounds better in
a constructor.

The three accessor/mutator methods all work the same way and perform the same logic, applied to
their particular debugging flag, global, class, or object, with the exception of the object-level
accessor/mutator, which passes class-level requests to the class method if it is called with a package
name rather than an object.

The debug routine itself now checks all three flags to see if it should print a debug message; if any one
of the three is higher than the level of the message, it is printed, otherwise it is ignored. Class-level
debugging messages ignore the object-level debug flag, since in their case there is no object to consult.
As a convenience, if we supply no message at all we can set and get the debug level instead. Since we
simply pass the request to debug_level, and debug_level in turn passes class method calls to
class_debug_level, we can in fact handle all of the module's functionality except the global flag
through debug.

To demonstrate all this in action, here is a short script, complete with its own embedded test object class
(which does nothing but inherit from Debuggable) that tests out the features of the module:

#!/usr/bin/perl
debugged.pl
use warnings;
use strict;

Object-oriented Perl

753

a test object class
{

package Debugged;
use Debuggable;
our @ISA = qw(Debuggable);
sub new {return bless {}, shift;}

}

create a test object from the test class
my $object = new Debugged; # defined below so no 'use'

set debug levels globally, at class level, and on the object
Debugged->global_debug_level(0);
Debugged->class_debug_level(2);
$object->debug_level(1);

print class and object level debug messages
Debugged->debug(1, "A class debug message");
$object->debug(1, "A debug message");

find current debug levels with _level methods
print "Class debug level: ", Debugged->class_debug_level, "\n";
print "Object debug level: ", $object->debug_level, "\n";

find current debug levels with no-argument 'debug'
print "Class debug level: ", Debugged->debug, "\n";
print "Object debug level: ", $object->debug, "\n";

switch off class and object debug with 1-argument 'debug'
Debugged->debug(0);
$object->debug (0);

The output from this program is:

A class debug message
A debug message
Class debug level: 2
Object debug level: 1
Class debug level: 2
Object debug level: 1

Inheriting from an object class, and then using the subclass as a substitute for the parent class is a good
test of inheritance. If the module is written correctly, everything the parent class does should work
identically for the subclass. However, to really appreciate this we really need to discuss inheritance
properly.

Inheritance and Subclassing
Inheritance is the cornerstone of code reuse in object-oriented programming. By inheriting the
properties and methods of one class into another, we can avoid having to reimplement code a second
time, while at the same time retaining abstraction in the existing implementation. A well designed object
class can allow classes that inherit from it, also known as subclasses, to carry out their own tasks using
the parent class as a foundation without knowing more than the bare minimum of how the class is
actually implemented. If a subclass can carry out all its work in terms of methods supplied by the
parent, it need not know anything at all. Inheritance is thus a powerful tool for abstraction, which in
turn allows us to write more robust and more reusable object classes. There is no need to reinvent the
wheel, particularly if the wheel is already working and is well tested.

TE
AM
FL
Y

Team-Fly®

Chapter 19

754

Perl's inheritance mechanism is, yet again, both matter-of-fact and extremely powerful. It consists of two
parts, the special package variable @ISA, which defines inheritance simply by naming the class or
classes from which an object class inherits methods and/or class data, and the -> operator, which
searches the packages named by @ISA whenever the immediate class does not provide a method.

There are many different forms of inheritance in the object-oriented world, but all of them revolve
around the basic principles of abstraction and propagation of method calls from subclasses to their
parents. Some, but not all, languages permit multiple inheritance, where a subclass can inherit from
more than one parent. Similarly, some but not all languages permit dynamic inheritance (a class's
parents can be changed by the class at will). Perl permits both of these mechanisms in the @ISA array;
adding more than one package to @ISA is multiple inheritance, and modifying the contents of @ISA
programmatically is dynamic inheritance. It is this kind of simple implementation of complex concepts
that makes Perl such an endearing language.

One limitation (or strength, depending on how we look at it) of Perl's approach is that subclasses always
know who their parents are, but parents have no idea who their children are. There is no way for a
parent class to determine what classes may be using it, nor any mechanism, short of returning undef
from a constructor, to bar inheritance. Perl's attitude is that classes ought to be inherited, and that
knowledge of subclasses is neither necessary nor desirable for good object-oriented programming.

In addition to whatever classes they may explicitly inherit from, all classes inherit automatically from
the UNIVERSAL object, which, as we mentioned nearer the start of the chapter, provides the can, isa,
and version methods for all objects. We can place our own methods in this special package if we wish,
to give all objects new capabilities.

Inheriting from a Parent Class
The basis of all inheritance is the @ISA array, a special package variable, which, if defined, describes the
package or packages from which an object class will inherit methods. To inherit from a parent class we
need only specify its package name in the @ISA array. For example:

package Sub::Class;
use Parent::Class;
our @ISA = qw(Parent::Class);

@ISA works hand in glove with the -> operator, which actually enacts the process of searching for
inherited methods. Any method call for a method that is not implemented by this class will
automatically be forwarded up to the parent class. If it also does not implement the method then its
parent class(es) are searched until Perl runs out of ancestors or a matching method is found.

Overriding and Calling Overridden Methods
We frequently want to implement our own version of a method supplied by a parent, but in doing so,
we also often want to take advantage of the parent's method, to carry out tasks related to the parent's
implementation of our object. We do not necessarily need to know what these are (that is the point of
abstraction), but we would still like to have them done for us.

Since by replacing (or in object-oriented terms, overriding) a method in a parent class, we suppress the
call to the parent, we need to call it explicitly ourselves in the replacement method if we want to make
use of it. For instance, if we are in a package which is a subclass of Parent::Class, we might write:

sub a_method {

$self = shift;

Object-oriented Perl

755

$self->Parent::Class::a_method(@_);
... do our own thing ...

}

The effect of this, is to call the method a_method in the parent class, but with the package or object
specified by $self: that of our own class rather than that of our parent's. From the parent's perspective
there is not (or should not) be any difference. Our class is a subclass of it and therefore has all the same
properties except that which it overrides.

Many objects only have one parent class, but still name the parent class explicitly, as in the example
above. This is an irritation – there is only one parent, and so we should not have to mention it.
Fortunately, we can make use of the special package prefix SUPER::, which allows us to refer to our
parent class without explicitly naming it:

sub a_method {
$self = shift;

$self->SUPER::a_method(@_);
... do our own thing ...

}

Note that this is different from writing the incorrect:

SUPER->a_method(@_);

In this case, the call to a_method gets the package that SUPER resolved to as its first argument – this is
not the object making the call.

The SUPER:: package does not actually exist, but evaluates at run time to all of the packages (since we
may have more than one) from which this package inherits. Perl carries out another search for the
method, starting from each of the packages in @ISA in turn, until it either finds the method, or it runs
out of object classes to search. If we only inherit from one parent class then SUPER:: is almost (but not
quite) the same as $ISA[0]:::

$self->$ISA[0]::a_method(@_);

The difference is subtle, but important. All objects implicitly inherit from the UNIVERSAL object, but
only SUPER:: takes this into account when searching for methods. $ISA[0]:: does not.

Overriding and Calling Overridden Constructors
Constructors are an important case of overriding and inheriting from a parent class. Here we frequently
want to have a parent class create our object for us, but we want it to create an object of our class, and
not its own; to achieve that, we must call the constructor in the parent class with our own class name as
the first argument:

sub new {
$self = shift;
$class = (ref $self) || $self;

$self = $class->SUPER::new(@_);
... do our own thing ...
return $self;

}

Chapter 19

756

If the parent class is well behaved and allows inheritance to take place properly, it should return an
object blessed into whatever package we sent it. We do not even know what that package is ourselves,
because it was passed to us. It might be our own class, but it might equally be a subclass of ourselves. By
avoiding naming a package explicitly, we handle all these possibilities without having to overtly worry
about any of them.

Writing Inheritable Classes
In order for an object class to be inheritable, we need to implement it so that it does not contain or refer
to any non-inheritable elements. Although this takes a little extra work, it pays dividends because we
create object classes that can be reused and customized by implementing subclasses that add to and
override the methods of the original.

In addition, the very act of writing an object class with inheritance in mind helps us develop it more
robustly, and exposes weaknesses in the design that might otherwise pass unnoticed until much later.
The three golden rules for writing inheritable objects are:

❑ Do not refer directly to class data

❑ Always write constructors to use the passed class name

❑ Never, ever, export anything

A fourth less formal but handy rule-of-thumb is:

❑ Work through the passed object

This is a more general form of the second rule, but directed towards object methods rather than
constructors. Class methods are off the hook a little here. Since we do not usually expect a class method
to be inherited (they work on a class-wide basis), they tend to be more class-specific. Having said that, it
is better if we can write our class methods to be inheritable too. Finally, a fifth rule-of-thumb is:

❑ Call parent constructors first

Following this rule ensures that resources are properly allocated by the parent class (or classes) before
we do our own initialization. Of course we might need to do some initialization to call a parent
constructor, but as a general rule-of-thumb it is a good one to stick to.

More on Class Data through Objects
As we saw earlier, if we do not want to refer to the same class data in every subclass, we need to take
special steps involving symbolic references (though we could also use the qualify_to_ref subroutine
provided by the Symbol module). The problem with either approach is that we are stuck with it, we
cannot choose whether we want to access the original parent's class data or our own version in further
subclasses. Grandchildren get the grandparent's data or their own, depending on how the parent decides
to implement its class data accessors and mutators.

The solution is to allow the class to be accessed indirectly, through the objects that we build, which we
do by building references to the class data as properties of the objects of the class. We have already seen
this in action earlier in the chapter when we altered the constructor and accessor/mutator methods of
the Serial module to work with the classes' data through object properties. Here is the constructor of
the last version of the Serial class again, as a reminder:

Object-oriented Perl

757

sub new {
my $class = (ref $_[0]) || $_[0];
$conf{'start'} = $_[1] if defined $_[1];

my $self = bless {}, $class;
$self->{'serial'} = $conf{'start'};
$self->{'_next'} = \$conf{'start'};
$self->{'_incr'} = \$conf{'increment'};

$conf{'start'} += $conf{'increment'};
return $self;

}

The essential point of this design, from an inheritance point of view, is that any object classes that
inherit this constructor may override it with their own constructor. This can choose to either leave the
references defined in the object alone, or replace them with new references. Here is a complete subclass
that does just this, as well as adding a new read-only attribute, at the time of creation:

MySerial.pm
package MySerial;
use strict;

use Serial;

our @ISA = qw(Serial);

my $next = 1;
my $plus = 1;

sub new {
my $class = shift;

call Serial::new
my $self = $class->SUPER::new(@_);

override parent serial with our own
$self->{'serial'} = $next;

replace class data references
$self->{'_next'} = \$next;
$self->{'_incr'} = \$plus;

add a creation time
$self->{'time'} = time;

return $self;
}

sub time {
return shift->{'time'};

}

1;

Chapter 19

758

To test out this new subclass we can use a modified version of our last test script:

#!/usr/bin/perl
myserial.pl
use warnings;
use strict;

use MySerial;

my $serial = new MySerial;
print "Serial number ", $serial->serial, " created at ",
scalar(localtime $serial->time), "\n";
$serial->next(10000);
sleep(1);
my $serial2 = new MySerial;
print "Serial number ", $serial2->serial," created at ",
scalar(localtime $serial2->time), "\n";

The output of this script should look like (depending on the time we run this script, of course)
the following:

Serial number 1 created at Mon Jan 1 12:11:17 2001
Serial number 10000 created at Mon Jan 1 12:11:18 2001

What makes this subclass interesting is that it can continue to use the methods provided by the parent
class, which use the object properties to access the class data. We do not even need to replace the class
data with the same kinds of variables – in the original it was a hash of two key-value pairs. In the
subclass it is two discrete scalar variables. By altering these properties, the subclass effectively
reprograms the parent's methods to work with the class data that the subclass wants to use. We have
moved the choice of which class data is accessed from the parent to the subclass.

There is one remaining flaw in the subclass constructor – it sets the attributes of the parent object class
directly. In order to enable the subclass to set its class data without referring directly to the hash we
should provide a method to set the class data, and a method to set the serial number. Here are two
methods that when appended to the Serial class will do the job for us:

private method to set location class data
sub _set_config {

my ($self, $nextref, $incrref) = @_;

$self->{'_next'} = $nextref;
$self->{'_incr'} = $incrref;

}

private method to set serial number
sub _set _serial {

$self->{'serial'} = shift;
}

We have avoided mentioning a method to set the serial number up to now because it is not a feature we
want to allow publicly. Therefore we have given it a leading underscore and called it _set_serial to
emphasize that it is for the use of subclasses only. The method to set the class data is similarly only for
the use of subclasses, so we have called it _set_config. The subclass constructor can now be modified
to use these methods, resulting in this new, correctly object-oriented, constructor:

Object-oriented Perl

759

part of MySerial.pm
sub new {

my $class = shift;

call Serial::new
my $self = $class->SUPER::new(@_);

override parent serial with our own
$self - >_set_serial($next);

replace class data references
$self->set_config(\$next, \$plus);

add a creation time
$self->{'time'} = time;

return $self;
}

Not only is this more correct, it is simpler to understand too. It is not quite perfect though – the time
attribute assumes that the Serial class uses a hash as its underlying representation. We may be happy
to live with that, but if we wanted to fix that too we could make use of the private _property method
we created earlier in 'Generic Accessors/Mutators' for the easy creation of, and access to, attributes. By
adding this method to the Serial class we could then replace the line setting the time attribute:

$self->{'time'} = time;

to:
$self->_property('time', time);

Exports
Avoiding exports from object classes almost goes without saying. If we export any variable or
subroutine from an object class we allow it to be accessed outside the method calling scheme, breaking
the design. Avoiding exports is of course very easy; we just do not do it. In particular we do not use the
Exporter.

There is one exception to this rule, however, which comes about when we design an object class to be
used both with objects, and with a functional interface, as the CGI module does. Here we generally use a
default object created inside the package as global data, and use it whenever an explicit object is not
passed to us. To do that requires writing the required methods so they can also be called as functions.
For example:

package My::FunctionalObject;
use strict;
use Exporter;

our @ISA = qw(Exporter);
our @EXPORT_OK = qw(method_or_function);

my $default_object = new My::FunctionalObject;

sub new {
...

}

Chapter 19

760

sub method_or_function {
my $self = (ref $_[0])?shift:$default_object;

return $self->do_something_else (@_);
}

This hypothetical method relies on the fact that, if called as a function, its first argument will not be a
reference. It uses this fact to test whether it had been called as a function or method, and sets $self to
be either the passed object or the default object accordingly. So long as we design all our
methods/subroutines so that the first argument passed in the argument list can never be a reference, this
technique will work very well.

Private Methods
A private method is one that can only be called from the class in which it is defined, or alternatively, a
method that can only be called from a subclass. Both concepts are implemented as specific features in
many object-oriented languages. Typically, Perl does not provide any formal mechanism for defining
either type of method. However, its pragmatic approach makes both easy to implement, simply by
checking the class name within the method. The catch is that although easy to do, this kind of privacy is
enforced at run time, rather than at compile time. Pragmatism is good, but it has its drawbacks too.

To make a method private to its own class we can check the package name of the caller and refuse to
execute unless it's our own, as returned by the __PACKAGE__ token. Here is the _property method we
developed for the Game::Card class from earlier in the chapter, adapted to enforce privacy rather than
just implying it with a leading underscore:

_property method private to methods of this class
sub _property ($$;$) {

my ($self, $attr, $value) = @_;
my $class = ref $self;
croak "Attempt to call private method if $class ne __PACKAGE__";

if ($value) {
my $oldv = $self->{$attr};
$self->{$attr} = $value;
return $oldv;

}

return $self->{$attr};
}

To restrict access to subclasses and ourselves only, we can make use of the isa method. This returns
True if a class is a subclass of the named class, so we can use it to create a subclass-private method like
this. This version of _property takes this approach, which makes it much more suitable in an
inheritable parent class.

_property method private to methods of this class
sub _property ($$;$) {

my ($self, $attr, $value) = @_;
my $class = ref $self;
croak "Attempt to call private method unless $class->isa(__PACKAGE__)";

Object-oriented Perl

761

if ($value) {
my $oldv = $self->{$attr};
$self->{$attr} = $value;
return $oldv;

}

return $self->{$attr};
}

Extending and Redefining Objects
Perl's objects are dynamic in more than one way. We can change their ancestry by manipulating the
@ISA array, though this is not a common, and arguably not an advisable thing to do. More interestingly
and somewhat more usefully, we can call bless on an object a second time to alter the package to
which it belongs. We do not need to do this for extending an object class, because we should be able to
pass the new class as the first argument to the constructor of a parent class through inheritance, but we
can also use bless to create specialized subclasses, to indicate particular situations.

Extending a Parent Class
Properly designed parent classes should be able to create objects in any requested subclass on demand,
by virtue of the two-argument form of bless. For example, say we want to extend the DBI module to
batch up do requests and then execute them all at once. We could just place our methods directly into
the DBI class to ensure that a database handle object (of class DBI) can use them. This is a bad idea,
however, because we might break the parent class if it happens to define a method with the same name.
This is, again, a case of defining the class interface from outside the class, which is an object-oriented
no-no. Instead, the DBI module can bless a returned handle into our own class rather than the DBI
class:

Extended/DBI.pm
package Extended::DBI;
use strict;

use DBI;
our @ISA = qw(DBI);

my @cache;

sub do_later {
my ($dbh, $statement) = @_;

push @cache, $statement;
if ($#cache == 3) {

map {$dbh->do($_)} @cache;

@cache = ();
}

}

sub do_now {
return map {$dbh->do($_)} @cache;

}

1;

Chapter 19

762

In our code:

use Extended::DBI;

my $dbh = Extended::DBI->connect($dsn, $user, $password);
$dbh->do_later($statement);
$dbh->do_later($another_statement);
...
$dbh->do_now();

This works because while we call the DBI class method connect to create the database handle, we pass
the name of the class into which we want the returned handle blessed. Inside connect, the new
database handle is blessed into the class we asked for, Extended::DBI. The new handle works just like
a regular DBI handle, but we can now cache and execute do statements with it too.

Constructing Subclasses On the Fly
Another interesting case of extending a parent object is where the parent object does it itself in order to
reflect the circumstances under which it was created. There is no particular reason why a constructor
cannot create an object of a different class to the one it is in, or the one passed to it. If we define an
@ISA array for the new class (which we can do simply by assigning it with a fully qualified package
name), we can also have this new class inherit its methods from ourselves. This gives us the possibility
of creating different versions of ourselves for different occasions, an approach that is often referred to as
a 'factory object'.

For example, a common approach taken by other object-oriented languages is to represent errors as
objects (generically known as exception objects) rather than as raw numbers or some other basic data
type, so errors can be handled in a more object-oriented style, without relying on an arbitrary system
error value. Perl does not support such a concept since error objects are altogether too complicated for a
pragmatic language like Perl. However, we can create an error object class that supports various
different methods for handling errors, and then subclass this class on the fly when a new type of error
occurs. By choosing to do it this way we need not create subclasses for every error type, and we
automatically support any new errors that may arise without needing to change the code.

The following example demonstrates an object class that translates system errors, as communicated by
the special variable $! (or $ERRNO, if using the English module), into objects whose class is based on
the common name for the error, ENOENT for error number 2, for example. Each object class is created
on the fly if it does not exist, and an @ISA array is placed into it to subclass it from the parent class
passed to the constructor (which is either ourselves or something that inherits from us; either way, the
methods of our class can be called from the new subclass). The key parts of the module are the new
constructor and the _error_from_errno subroutine:

ErrorClass.pm
package ErrorClass;
use strict;

use Errno;
no strict 'refs';

my %errcache;

sub new {
my ($class, $error) = @_;
$class = (ref $class) || $class;
$error = $error || $!;

Object-oriented Perl

763

construct the subclass name
my $subclass = $class. '::'. _error_from_errno($error);

cause subclass to inherit from us
unless (@{$subclass. '::ISA'}) {

@{$subclass. '::ISA'} = qw(ErrorClass);
}

return reference to error, blessed into subclass
return bless \$error, $subclass;

}

return the integer value of the error
sub number {

my $self = shift;
return int($$self);

}

return the message of the error
sub message {

my $self = shift;
return ''.$$self;

}

accessor/mutator
sub error {

my ($self, $error) = @_;
if (defined $error) {

my $old = $$self;
$$self = $error;
return $old;

}
return $$self;

}

subroutine to find the name of an error number
sub _error_from_errno {

my $errno = int(shift);

do we already know this one by name?
if (defined $errcache{$errno}) {

return $errcache{$errno};
}

otherwise, search for it in the export list
my ($name, $number);
foreach $name (@Errno::EXPORT_OK) {

$number = Errno->$name;
$errcache{$number} = $name;
return $name if $errno == $number;

}

unlikely, but just in case...
return 'UNKNOWN';

}

1;

The class works by using the Errno package to find names for errors, and then scanning each in turn by
calling the constant subroutine defined by Errno. When it finds a match, it creates a new subclass
comprising the passed class name and the error name, and then blesses the error into that class before
returning it. It also caches the error numbers and error names as it searches so it can avoid calling too
many subroutines in future.

TE
AM
FL
Y

Team-Fly®

Chapter 19

764

It is interesting to see just how easily a class can be created in code. The only thing that exists in the
subclasses we create is a definition for the @ISA array – everything else is inherited. Despite this, they
are still fully functional object classes, with methods that can be called, and, if we wish, they can even be
subclassed.

The ErrorClass object class is also an example of an object based on a scalar value, in this case, the
value of $!. If no initial value is given, the constructor defaults to using the current value of $! as the
basis for the object it is about to return. $! is an interesting value because it has both an integer and
string definition, as we covered in Chapter 16. This object simply blesses that value, which retains its
dual nature even when copied to a new variable, and allows the integer and string aspects of it to be
retrieved by different accessors. Here is a short script that demonstrates how this class can be used:

#!/usr/bin/perl
error.pl
use warnings;
use strict;

use ErrorClass;

generate an error
unless (open IN, "no.such.file") {

my $error = new ErrorClass;

print "Error object ", ref $error, "\n";
print "\thas number ", $error->number, "\n";
print "\thas message '", $error->message, "'\n";

print "It's not there! \n" if $error->isa("ErrorClass::ENOENT");
}

Running this script produces the output:

Error object ErrorClass::ENOENT
has number 2
has message 'No such file or directory'

It's not there!

Note that we will also get a warning from Perl because we have only used IN once – we never intended
to use it anyway.

The last line of this script demonstrates the real point of the class. Rather than checking numbers or
using the Errno module to call a constant subroutine to determine the numeric value of the error, we
convert the error into an object. We can now, in a properly object-oriented way, check the type of an
error by looking to see what kind of error object it is.

Multiple Inheritance
In object-oriented circles, the whole idea of multiple inheritance is fiercely debated, with many
languages banning it outright. The idea of multiple inheritance (inheriting from several parents at once)
seems simple enough, but while multiple inheritance is very powerful, it is also a very quick route to
object-oriented chaos. Perl abstains from this debate – although it does allow it, it doesn't take great
pains to support it either.

Object-oriented Perl

765

To inherit from more than one class is very simple indeed; we just place more than one class into the
@ISA array:

package My::Subclass;

use Parent::Class::One;
use Parent::Class::Two;

our @ISA = qw(Parent::Class::One Parent::Class::Two);

When we come to call a method on My::Subclass, Perl will first check that the package actually
implements it. If it does, there is no problem; the method is called and its value returned. If it does not,
Perl checks for the method in the parent classes in @ISA, in the order in which they are defined. This
means that Parent::Class::One is searched first, including all the classes that it in turn inherits from.
If none of them satisfy the method call, Parent::Class::Two is searched. If both packages (or
ancestors thereof) define the method then only the one found in Parent::Class::One is called, and
the version in Parent::Class::Two is never seen.

The manner of searching is therefore crucially affected by the order in which packages are named in
@ISA. The following statement is at first sight the same as the one above, but in actuality differs in the
order in which packages are searched, leading to potentially different results:

our @ISA = qw(Parent::Class::Two Parent::Class::One);

Writing Classes for Multiple Inheritance
Inheriting more than one class into our own is easy; we just add the relevant package names to our
@ISA array. Writing a class so that it is suitable for multiple inheritance takes a little more thought. By
definition, we can only return one object from a constructor, so having multiple constructors in different
parent classes gives the subclass a dilemma; it cannot call a constructor in each parent class, since that
will yield it several objects of which it can only return one. It also cannot just call one parent
constructor, since that will prevent the other parent classes from doing their part in the construction of
the inherited object. The same problem, but to a lesser degree, also affects other methods; do we call all
the parent methods that apply, or just one? And in that case, how do we choose which one?

In the case of constructors, the best way to implement the class so that it can easily be a co-parent with
other classes is to separate the construction of the object from its initialization. We can then provide a
separate method to initialize the object if another constructor has already created it. For example, here
is the constructor for the Game::Card class we displayed at the start of the chapter:

sub new {
my ($class, $name, $suit) = @_;
$class = (ref $class) || $class;

my $self = bless {}, $class;

$self->{'name'} = $name;
$self->{'suit'} = $suit;

return $self;
}

Chapter 19

766

This constructor is fine for single inheritance, but it's no good for multiple inheritance, since the only
way a subclass can initialize the name and suit properties is to create an object containing them. If it
has already created an object, say with the Serial module, it cannot easily combine the two together.
(Well, in fact, it can because both modules produce hash-based objects and combining hashes is easy.
But that requires the subclass to mess with the underlying data of the object, which is bad for
abstraction.)

Instead, we split the constructor in two, like this:

sub new {
my $class = shift;
$class = (ref $class) || $class;

my $self = bless {}, $class;
$self->initialize(@_);
return $self;

}

sub initialize {
my ($self, $name, $suit) = @_;

$self->{'name'} = $name;
$self->{'suit'} = $suit;

}

With this done, we can now create a subclass that inherits from the Serial, Game::Card, and
Debuggable object classes all at the same time, in order to create a serialized debuggable game
card class:

Debuggable.pm
package Game::Card::Serial::Debuggable;
use strict;

use Game::Card;
use Serial;
use Debuggable;

our @ISA = qw(Serial Debuggable Game::Card);

sub new {
my $class = shift;
$class = (ref $class) || $class;

my $self = $class->Serial::new;
$self->Debuggable::initialize();
$self->Game::Card::initialize(@_);
return $self;

}

We can test that this combined subclass works using the following script:

#!/usr/bin/perl
dsgamecard.pl
use warnings;
use strict;

Object-oriented Perl

767

use Game::Card::Serial::Debuggable;

my $card = new Game::Card::Serial::Debuggable('Ace', 'Spades');

print $card->fullname, " (", $card->serial, ") \n";
$card->debug(1);
$card->debug(1, "A debug message on object #", $card->serial, "\n");

The output from this script should be:

Ace of Spades (1)
A debug message on object #1

Although a simplistic example, classes like this are actually genuinely useful, just for the fact that they
combine the features of multiple parent classes. Both the Serial and Debuggable object classes can
be added to any other object to add serial numbers and debugging support. This is one of the more
common uses of multiple inheritance, and a great example of how object-oriented programming helps
encourage code reuse.

In this example we used the Serial module to create the object. In practice, it does not matter which
of the three parents actually creates our object (unless of course one of them does not have a separate
initializer method). Analyzing the pattern here, we can see that in fact we could call initializer
methods on all three parent objects, Serial::initialize, Debuggable::initialize, and
Game::Card::Initialize, and create the object ourselves:

sub new {
my $class = shift;
$class = (ref $class) || $class;

my $self = bless {}, $class;
$self->Serial::initialize();
$self->Debuggable::initialize();
$self->Game::Card::initialize(@_);
return $self;

}

One problem with this scenario is how to deal with arguments if more than one parent initializer
method needs arguments. In this case we did not need to worry about that because only the
Game::Card class needs arguments to initialize it. Another is that, implicitly, all the object classes
involved have to use a hash as their underlying data representation, since they all presume a hash.
However, this is a problem for regular inheritance too, rather than being a specific issue for multiple
inheritance. As a rule, alternative object implementations can be good for isolated classes, but they do
not work well when inheritance enters the picture.

Drawbacks with Multiple Inheritance
Multiple inheritance can get very messy very quickly, which is one of the reasons why many languages
disapprove of it. The normal inheritance hierarchy is rooted at the top and spreads out and down, each
subclass adding to and overriding the methods of its parent. Multiple inheritance stands this
arrangement on its head, with each subclass inheriting methods from more than one parent, which in
turn may inherit methods from more than one grandparent.

Chapter 19

768

This is problematic for two reasons. The first, and nastiest, is that we can end up with a cyclic
dependency, where an ancestor inherits from one of its descendants. This is possible to do in single
inheritance too, but it is easier to do it accidentally with multiple inheritance. Fortunately Perl can
detect this and aborts if we try to create a cyclic dependency.

The second is simply that objects with multiple inheritance can quickly become hard to understand and
even harder to debug, because their behavior is no longer predictable, we do not know in advance
which parent object will satisfy a given method call without studying all the parent methods and their
grandparents and the contents of the @ISA arrays of all the objects concerned.

A particularly nasty but all too common example of object inheritance that is hard to predict is where
two parent classes inherit from the same grandparent, or in more general cases, where two ancestors
inherit from the same common ancestor. This is programmatic incest, so to speak. We now end up with
recombinant branches where a method in the common ancestor can potentially be called by either of
two different routes from the original subclass, entirely dependent on the order of parent classes in the
@ISA array. There are arguments for designing applications which use object hierarchies like this, but in
general recombinant inheritance is a sign that the design of our classes is over complex and that there is
probably a different organization of classes that would better suit our purposes.

There is also a rather pragmatic reason why multiple inheritance can cause us problems: it prevents the
effective use of prototypes. In many languages, methods can be selected not just by their name but also
by the type and number of arguments that they accept. Perl does not support this model, so prototypes
of inherited classes are ignored. (Having said this, the Class::Multimethods module on CPAN does
provide an argument-list based mechanism for searching for methods in parent classes, if that is what we
want to do.)

The bottom line for designing classes with multiple inheritance is therefore to keep them as simple as
possible, and avoid complex inverted trees of parent classes if at all possible.

A 'UNIVERSAL' Constuctor
As we have already shown, all object classes implicitly inherit from the UNIVERSAL class and therefore
can always make use of the can, isa, and VERSION methods that it provides.

With a little thought, we can also add our own methods to UNIVERSAL to make them generic across
all the methods in our application. This is not something to be done lightly, because it can cause
unexpected problems by inadvertently satisfying a method call that was intended for a different
parent class.

Having said this, there are some methods that we can place into UNIVERSAL that are so common among
objects that it is worth creating a generic method for them. For instance, we introduced the concept of
initializer methods when we talked about multi-classing. The constructor we created as a result of
this was totally generic; so we could place it in UNIVERSAL to give all our object classes a new
constructor that calls an initializer, then just define an initializer rather than a constructor.

To place anything into UNIVERSAL we only have to specify it as the package name. Here is an example
object class that adds a generic new constructor to all objects:

Univeral/Constructor.pm
package UNIVERSAL;
use strict;

Object-oriented Perl

769

sub new {
my $class = shift;
$class = (ref $class) || $class;

my $self = bless {}, $class;
$self->initialize(@_);
return $self;

}

sub initialize { }

1;

To use this constructor we now only have to use the module and provide an initializer method if
we want to actually perform some initialization:

package My::Class;
use strict;
use Universal::Constructor;

sub initialize {
my ($self, $value1, $value2) = @_;

$self->{'attr1'} = $value1;
$self->{'attr2'} = $value2;

return $self;
}

1;

Note that we don't need an @ISA definition for this class because it implicitly inherits from UNIVERSAL
already. We could similarly, assuming we based all our objects on a hash, create universal accessors,
universal mutators, or a universal accessor/mutator of the types we created before. If any object wants
to have its own constructor it only has to override the new provided by our universal class, or just not
use it at all.

Whether or not putting methods into UNIVERSAL is a good idea or not is debatable. Certainly, over-
complex or task-specific methods are a bad idea, as is any kind of class data. If most of our object
classes all use the same methods then it can be a workable approach, but in the end it is only one line
less than using a different package name and placing it in an @ISA definition.

It is also possible that we want to avoid having another class satisfy a method provided by the
UNIVERSAL package. It would be strange, but not impossible, for a parent class to provide a can
method (an object that defines an AUTOLOAD method might want to do this to return a True result for
methods that it supports but has not yet defined). If we need to avoid calling it, we can explicitly add
UNIVERSAL to the start of the @ISA array for our object class (or at the least in front of the class with the
troublesome can method). For example:

our @ISA = qw(UNIVERSAL Problem::Parent Other::Class);

Chapter 19

770

Is-a Versus Has-a
So far we have only talked about one kind of relationship between objects, the is-a relationship.
However, not all object relationships can be expressed in terms of is-a. It may be true that a tire is-a
wheel, but it does not make sense to say that a deck of playing cards is-a playing card. The other form
of relationship is has-a; a deck of cards has-a collection of cards in it.

Perl does not provide support for the has-a relationship inside the language in the same way that the
@ISA array supports is-a relationships. However, it does not need to. Since an object is just a scalar
value, one object has another just by storing it as an attribute. Using objects to manage groups of other
objects is a very effective technique; such objects are sometimes called containers or 'container objects'.

Extending our Game::Card example, here is new class Game::Deck, that manages a list of
Game::Card objects. This new class allows us to create a new deck of cards of our chosen suits and
names, and then deal cards from it. We can also replace them on the top or bottom, peek at any card in
the deck, and print out the whole deck:

Game/Deck.pm
package Game::Deck;
use strict;

use Game::Card;

Constructor

sub new {
my ($class, $suits, $names, $cardclass) = @_;
my $self = bless {}, $class;

if ($suits) {
create cards according to specified arguments

these allow us to specify a single suit or name
$suits = \$suits unless ref $suits;
$names = \$names unless ref $names;

record the names and suits for later
$self->{'suits'} = $suits;
$self->{'names'} = $names;

generate a new set cards
my @cards;
foreach my $suit (@$suits) {

foreach my $name (@$names) {
my $card = new Game::Card($name, $suit);
bless $card, $cardclass if defined $cardclass;
push @cards, $card;

}
}

add generated cards to deck
$self->{'cards'} = \@cards;
} else {

initialize an empty deck
$self->{'cards'} = [];

}

return $self;
}

Object-oriented Perl

771

Cards, Suits and Names

return one or more cards from deck by position
sub card {

my ($self, @range) = @_;

return @{$self->{'cards'}} [@range];
}

sub suits {
return @{shift->{'suits'}};

}

sub names {
return @{shift->{'names'}};

}

Deal and Replace

shuffle cards randomly
sub shuffle {

my $self = shift;

create a hash of card indices and random numbers
my %order = map {$_ => rand()} (0..$#{$self->{'cards'}});

rebuild the deck using indices sorted by random number
my @newdeck;
foreach (sort {$order{$a} <=> $order{$b}} keys %order) {

push @newdeck, $self->{'cards'}[$_];
}

replace the old order with the new one
$self->{'cards'} = \@newdeck;

}

deal cards from the top of the deck
sub deal_from_top {

my ($self, $qty) = @_;

return splice @{$self->{'cards'}}, 0, $qty;
}

deal cards from the bottom of the deck
sub deal_from_bottom {

my ($self, $qty) = @_;

return reverse splice @{$self->{'cards'}}, -$qty;
}

replace cards on the top of the deck
sub replace_on_top {

my ($self, @cards) = @_;

unshift @{$self->{'cards'}}, @cards;
}

replace cards on the bottom of the deck
sub replace_on_bottom {

my ($self, @cards) = @_;

Chapter 19

772

push @{$self->{'cards'}}, reverse @cards;
}

Nomenclature

return string for specified cards
sub fullnames {

my ($self, @cards) = @_;

my $text;
foreach my $card (@cards) {

$text .= $card->fullname. "\n";
}
return $text;

}

return string of whole deck ('fullname' for Deck class)
sub fulldeck {

my $self = shift;

return $self->fullnames (@{$self->{'cards'}});
}

print out the whole deck
sub print {

my ($self, @range) = @_;

if (@range) {
print $self->fullnames (@{$self->{'cards'}}[@range]);

} else {
print $self->fulldeck;

}
}

1;

To use this class we first call the constructor with a list of suits and card names. We can then manipulate
the deck according to our whims. Here is a short script that puts the class through its paces. Note how
simple the construction of a standard 52-card deck is:

#!/usr/bin/perl
gamedeck.pl
use warnings;
use strict;

use Game::Deck;

create a standard deck of playing cards
my $deck = new Game::Deck(

['Spades', 'Hearts', 'Diamonds', 'Clubs'],
['Ace', 2..10, 'Jack', 'Queen', 'King'],

);

spread it out, shuffle it, and spread it out again
print "The unshuffled deck looks like this: \n";
$deck->print;
$deck->shuffle;
print "After shuffling it looks like this: \n";
$deck->print;

Object-oriented Perl

773

peek at, deal, and replace a card
print "Now for some card cutting... \n";
print "\tTop card is ", $deck->card(0)->fullname, "\n";
my $card = $deck->deal_from_top(1);
print "\tDealt ", $card->fullname, "\n";
print "\tTop card is now ", $deck->card(0)->fullname, "\n";
$deck->replace_on_bottom($card);
print "\tReplaced ", $card->fullname, " on bottom \n";
print "The deck now looks like this: \n";
$deck->print;

As we briefly mentioned earlier in the chapter, if the result of calling an object method is another object
then we can chain method calls together and avoid storing the intermediate objects in temporary
variables. We can see this happening in the above script in the expression:

$deck->card(0)->fullname

Because the has-a relationship fits this model very well, the meaning of this expression is obvious just
by inspection, give me the full name of the first card in the deck.

The concept of the deck implemented by this object class extends readily to other kinds of deck, for
example, a hand of cards is really just a small deck; it has an order with a top and bottom card, we can
deal from it, and so on. So, to deal a hand of cards we just create a hand deck and then deal cards from
the main deck, adding them to the hand. This extension to the test script shows this in action (we have
dealt from the bottom just for variety):

gamedeck.pl (continued)
deal a hand of cards - a hand is just a small deck
my $hand = new Game::Deck;
my @cards = $deck->deal_from_bottom(7);
$hand->replace_on_top(@cards);
print "Dealt seven cards from bottom and added to hand: \n";
$hand->print;

This example demonstrates how effective a has-a relationship can be when it fits the requirement for
the design of a class.

Autoloading Methods
There is no intrinsic reason why we cannot use the autoloader to load methods on their first use, just as
we can load subroutines on their first use in ordinary non-object-oriented packages; both the
SelfLoader and AutoLoader modules, which we covered in Chapter 10 will work just as well with
methods as they do with subroutines.

We can also generate methods on the fly using the autoloader if we wish. Typically this is useful for
accessor or mutator methods when we do not want to define them all at once (or indeed at all, unless we
have to). Fortunately, Perl searches for methods in parent classes before it resorts to the autoloader;
otherwise this technique would be impractical.

As an example of how we can adapt a class to use autoloading, here is a generic accessor/mutator
method and the first two of a long line of specific methods that use it, borrowed from an edition of the
Game::Card object class.

TE
AM
FL
Y

Team-Fly®

Chapter 19

774

sub _property ($$;$) {
my ($self, $attr, $value) = @_;

if (defined $value) {
my $oldv = $self->{$attr};
$self->{$attr} = $value;
return $oldv;

}

return $self->{$attr};
}

sub propone ($;$) {return shift->_property('propone', @_);}
sub proptwo ($;$) {return shift->_property('proptwo', @_);}
...

Even though this is an efficient implementation, it becomes less than appealing if we have potentially
very many attributes to store. Instead, we can define an AUTOLOAD method to do it for us. Here is a
complete and inheritable object class that takes this approach, allowing us to set and get any attribute
we please by calling an appropriately named method:

Autoloading.pm
package Autoloading;
use strict;

sub new {return bless {}, shift}

sub _property ($$;$) {
my ($self, $attr, $value) = @_;

if ($value) {
my $oldv = $self->{$attr}{$value};
$self->{$attr} = $value;
return $oldv;

}

return $self->{$attr};
}

sub AUTOLOAD {
our $AUTOLOAD;

my $attr;
$AUTOLOAD =~ /([^:]+)$/ and $attr = $1;

abort if this was a destructor call
return if $attr eq 'DESTROY';

otherwise, invent a method and call it
eval "sub $attr {return shift->_property('$attr', \@_);}";
shift->$attr(@_);

}

1;

Object-oriented Perl

775

To test out this class we can use the following script:

#!/usr/bin/perl
autol.pl
use warnings;
use strict;

use Autoloading;

my $object = new Autoloading;

$object->name('Styglian Enumerator');
$object->number('say 6');

print $object->name, " counts ", $object->number, "\n";

The output should be:

Styglian Enumerator counts say 6

This class is, in essence, very similar to examples we covered using the discussion on autoloading in
Chapter 10, only now we are in an object-oriented context. Because of that, we have to take an
additional step and suppress the call to DESTROY that Perl will make when an object falls out of scope.
Otherwise, if this class is inherited by a subclass that defines no DESTROY method of its own, we end up
creating an attribute called DESTROY on the object (shortly before it becomes recycled). In this case it
would not have done any harm, but it is wasteful.

Another problem with this class is that it is not very selective; it allows any method to be defined,
irrespective of whether the class or any subclass actually requires or intends to provide that method. To
fix this, we need to add a list of allowed fields to the class and then check them in the autoloader. The
following modified example does this, and also creates an object reference to the list of allowed fields
(which is created as a hash for easy lookup) to allow the method to be properly inherited:

package Autoloading2;
use strict;
use Carp;

my %attrs=map {$_ => 1} qw(name number rank);

sub new {
my $class = shift;

my $self = bless {},$class;
$self->{'_attrs'} = \%attrs;

return $self;
}

sub _property ($$;$) {
my ($self,$attr,$value) = @_;

if ($value) {
my $oldv = $self->{$attr};
$self->{$attr} = $value;
return $oldv;

}

Chapter 19

776

return $self->{$attr};
}

sub AUTOLOAD {
our $AUTOLOAD;

my $attr;
$AUTOLOAD=~/([^:]+)$/ and $attr=$1;

abort if this was a destructor call
return if $attr eq 'DESTROY';

otherwise, invent a method and call it
my $self=shift;
if ($self->{'_attrs'}{$attr}) {

eval "sub $attr {return shift->_property('$attr',\@_);}";
$self->$attr(@_);

} else {
my $class=(ref $self) || $self;
croak "Undefined method $class\:\:$attr called";

}
}

sub add_attrs {
my $self=shift;

map {$self->{'_attrs'}{$_}=1} @_;
}

1;

This module presets the attributes name, number, and rank as allowed. So any attempt to set a different
attribute, for example size, on this class (or a subclass) will be met with an appropriate error, directed
to the line and file of the offending method call by the Carp module. Here is a script that tests it out:

#!/usr/bin/perl
auto2.pl
use warnings;
use strict;

use Autoloading;

my $object = new Autoloading;

$object->name('Styglian Enumerator');
$object->number('say 6');
$object->size('little'); # ERROR
print $object->name, " counts ", $object->number, "\n";
print "It's a ", $object->size, " one.\n";

When we run this program we get:

Undefined method Autoloading::size called at auto2.pl line 12

Subclasses can create their own set of attributes simply by defining a new hash and assigning a reference
to it to the special _attrs key. However, any subclass that wishes to also allow methods permitted by
the parent needs to combine its own attribute list with that defined by the parent. This is done most
easily by calling the constructor in the parent, and then appending new fields to the hash attached to the
_attrs hash key.

Object-oriented Perl

777

Since this is a generic requirement for all subclasses, the first thing we should do is add a method to the
Autoloading class that performs this function for subclasses. Here is a method that does what we
want, taking a list of attributes and adding them to the hash. Again, we have it working through the
object attribute to preserve inheritance:

added to 'Autoloading' class
sub add_attrs {

my $self = shift;

map {$self->{'_attrs'}{$_} = 1} @_;
}

Having added this method to the parent Autoloading class, we can now have subclasses use it to add
their own attributes. Here is a subclass that uses it to add two additional attributes to those defined by
the parent class:

#!/usr/bin/perl
Autoloading::Subclass
package Autoloading::Subclass;
use warnings;
use strict;

use Autoloading;
our @ISA = qw(Autoloading);

my @attrs = qw(size location);

sub new {
my $class = shift;

my $self = $class->SUPER::new();
$self->add_attrs(@attrs);
return $self;

}

1;

If we adjust our test script to use and create an object of this new class it now works as we intended:

Styglian Enumerator counts say 6
It's a little one.

Although in this example our main autoloading class defines its own attributes, by removing the
hard-coded attributes defined in the Autoloading module, we could create a generic autoloading
module suitable for adding to the @ISA array of any object wishing to make use of it.

Keeping Data Private
In other (some might say proper) object-oriented languages, methods, class data, and object data may
be declared private or public, and in some cases, with varying degrees of privacy (somewhere between
absolute privacy and complete public access). Perl does not support any of these concepts directly, but
we can provide for all of them with a little thought. We have already seen and covered private methods
in the discussion on inheritance. Private class and object data are, however, another matter.

Chapter 19

778

Private Class Data
Keeping class data private is very simple indeed, we just declare our global variables with my to give
them a lexical scope of the file that contains them, and prevent them having entries in the symbol table.
Since code in the same file can access them, no other object class can touch class data declared this way
(not even by declaring the same package name in a different file).

If we want to keep class data private to only a few methods within a file, we can do that too by adding
some braces to define a new lexical scope, then defining a lexically scoped variable and methods to use
it within them. To emphasize the fact that it is private to the class, we use underscores for the variable
name. Here is a simple example:

package My::Class;
use strict;

create private data and methods to handle it

{
my $_class_private_data;
sub _set_data {shift; $_class_private_data = shift;}
sub _get_data {return $_class_private_data;}

}

methods outside the scope of the private data must use the methods
provided to access it

sub store_value {
my ($self, $value) = @_;
$self->_set_data($value);

}

sub retrieve_value {

my $self = shift;
return $self->_get_data();

}

1;

Strictly speaking this is not object-oriented programming at all, but a restriction of scope within a file
using a block, a technique we have seen before. However, 'private class data' does not immediately
translate into 'lexical variables and block scope' without a little thought.

Private Object Data
Perl's general approach to privacy is that it should be respected, rather than enforced. While it is true
that we can access the data underlying any blessed reference, the principles of object-oriented
programming request that we do not, and if we do so, it is on our own head if things break later.
However, if we really want to enforce the privacy of object data there are a few ways that we can
accomplish it. One popular way is to implement the object not in terms of a reference to a basic data
type like a hash or array, but as a reference to a subroutine, which alone has the ability to see the
object's internal data.

Object-oriented Perl

779

This technique is known as a closure, and we introduced it in Chapter 7. Closures in object-oriented
programming are no different except that each reference to a newly created closure is turned into an
object. The following example demonstrates one way of implementing an object as a closure:

Closure.pm
package Closure;
use strict;

use Carp;

my @attrs = qw(size weight shape);

sub new {
my $class = shift;
$class = (ref $class) || $class;

my %attrs = map {$_ => 1} @attrs;

my $object = sub {
my ($attr, $value) = @_;

unless (exists $attrs{$attr}) {
croak "Attempt to ", (defined $value)?"set":"get",
" invalid attribute '$attr'";

}

if (defined $value) {
my $oldv = $attrs{$attr};
$attrs{$attr} = $value;
return $oldv;

}

return $attrs{$attr};
};
return bless $object, $class;

}

generate attribute methods for each valid attribute
foreach my $attr (@attrs) {

eval "sub $attr {\$_[0]('$attr', \$_[1]);}";
}

1;

And here is a short script to show it in action:

#!/usr/bin/perl
closure.pl
use warnings;
use strict;

use Closure;

my $object = new Closure;

$object->size(10);
$object->weight(1.4);
$object->shape('pear');

Chapter 19

780

print "Size:", $object->size,
" Weight:", $object->weight,
" Shape:", $object->shape, "\n";

print "Also size:", &$object('size'), "\n";

When run, the output of this script should be:

Size:10 Weight:1.4 Shape:pear
Also size:10

This object class uses a constructor to create and return a blessed code reference to a closure. The
closure subroutine itself is just what it seems to be; a subroutine, not a method. However, it is defined
inside the scope of the new method, so the lexical variables $class and %attrs created at the start of
new are visible to it. At the end of new, both lexical variables fall out of scope, but %attrs is used
inside the anonymous subroutine whose reference is held by $object, so it is not recycled by the
garbage collector. Instead, the variable becomes persistent, surviving as long as the object created from
the closure reference does, and becomes the internal storage for the object's attributes. Each time new is
called, a fresh %attrs is created and used by a new closure subroutine, so each object is distinct and
independent.

We generate the accessor/mutator methods using an eval, and also demonstrate that, with a little
ingenuity, we can avoid naming the attributes in more than one place. This code is evaluated when the
module is compiled, so we do not lose any performance as a result of doing it this way.

Another efficiency measure we could use, in order to improve the above example, is to reduce the size
of the closure subroutine, since Perl holds a compiled copy of this code for every object we create. With
a little inspection, we can see that by passing a reference to the %attrs hash to an external subroutine
we can reduce the size of the closure and still retain its persistent data. In fact, we can reduce it to a
single line:

Closure2.pm
package Closure;
use strict;

use Carp;

my @attrs = qw(size weight shape);

sub new {
my $class = shift;
$class = (ref $class) || $class;

my %attrs = map {$_ => 1} @attrs;

my $object = sub {
return _property_sub(\%attrs, @_);

};

return bless $object, $class;
}

Object-oriented Perl

781

sub _property_sub {
my ($href, $attr, $value) = @_;

unless (exists $href->{$attr}) {
croak "Attempt to ", (defined $value)?"set":"get",

" invalid attribute '$attr'";
}

if (defined $value) {
my $oldv = $href->{$attr};
$href->{$attr} = $value;
return $oldv;

}

return $href->{$attr};
}

generate attribute methods for each valid attribute
foreach my $attr (@attrs) {

eval "sub $attr {\$_[0]('$attr', \$_[1]);}";
}

1;

The _property_sub subroutine in this example bears more than a little resemblance to the
_property method we used in earlier examples. Here though, the first argument is an ordinary hash
reference, and not the blessed hash reference of an object. We can test this version of the Closure class
with the same script as before, and with the same results. However, note the last line of that test script:

print "Also size:", &$object('size'), "\n";

As this shows, we can call the closure directly rather than via one of its officially defined accessor
methods. This does no harm, but if we wanted to put a stop to it we could do so by checking the identity
of the caller. There are several ways we can do this, of which the fastest is probably to use the caller
function to determine the package of the calling subroutine. If it is the same package as the closure's,
then it must be an accessor, otherwise it is an illegal external access. Here is a modified version of the
anonymous subroutine from the new constructor that performs this check:

my $object = sub {
croak "Attempt to bypass accessor '$_[0]'"
if caller(1) ne __PACKAGE__;

return _property_sub(\%attrs, @_);
};

Now if we try to access the size attribute directly we get:

Attempt to bypass accessor 'size' at closure.pl line 10

Now we have an object class that cannot be used in any way other than the way we intended.

Chapter 19

782

Destroying Objects
Just as we can create objects with a constructor, we can destroy them with a destructor. For many
objects this is not a step we need to take, since by eliminating all references to an object, we will cause
Perl to perform garbage collection and reclaim the memory it is using. This is also known more
generally as resource deallocation.

However, for some objects this is not enough; if they contain things like shared memory segments,
filehandles, or other resources that are not directly held within the object itself, then these also need to
be freed and returned to the system. Fortunately, whenever Perl is given a blessed reference to destroy
it checks for a destructor method in the object's class, and if one is defined, calls it.

As an example, here is a destructor for a putative object that contains a local filehandle and a network
socket:

sub DESTROY {
$self = shift;

close a filehandle...
close $self->{'filehandle'};
shutdown a network socket
shutdown $self->{'socket'};

}

Of course, it is not too likely a real object will have both of these at once, but it demonstrates the point.
Any system resource held by the object should be destroyed, freed up, or otherwise returned in the
destructor.

We can also use destructors for purely informational purposes. Here is a destructor for the Serial
object class, which takes advantage of the fact that each object has a unique serial number to log a
message to the effect that it is being destroyed:

destructor for 'Serial' class ...
sub DESTROY {

my $self = shift;
print STDERR ref($self), " serial no ", $self->serial, " destroyed\n";

}

With this destructor added to the object class, we can now run a program like this to create a collection
of serial objects:

#!/usr/bin/perl
serialdestroy.pl
use warnings;
use strict;

use Serial;

my @serials;
foreach (1..10) {

push @serials, new Serial;
}

my $serial = new Serial(2001);

Object-oriented Perl

783

When the program ends Perl calls the destructor for each object before discarding the reference,
resulting in the following output:

Serial serial no 10 destroyed
Serial serial no 9 destroyed
Serial serial no 8 destroyed
Serial serial no 7 destroyed
Serial serial no 6 destroyed
Serial serial no 5 destroyed
Serial serial no 4 destroyed
Serial serial no 3 destroyed
Serial serial no 2 destroyed
Serial serial no 1 destroyed
Serial serial no 2001 destroyed

Other than the fact that it is called automatically, a destroy method is no different from any other object
method. It can also, from a functional programming point of view, be considered the object-oriented
equivalent of an END block.

Destructors and Inheritance
We never normally need to call a destructor directly, since it is called automatically whenever the object
passes out of scope and is garbage-collected. However, in the case of inherited classes we have a
problem, since destructors are called the same way any other method is called (Perl searches for it and
calls the first one it finds in the hierarchy of objects from child to parent). If a subclass does not define a
destructor then the destructor in the parent class will be called and all is well. However, if the subclass
does, it overrides the parent's destructor.

In order to make sure that all aspects of an object are properly destroyed, we need to take steps to call
parent destructors if we don't define a destructor for ourselves. For objects that inherit from only one
parent we can do that calling the method SUPER::DESTROY:

sub DESTROY {
$self = shift;

destroy our own resources (e.g. a subhash of values for this class):
undef $self->{'our_own_hash_of_data'};

call parent's destructor
$self->SUPER::DESTROY;

}

We should take care to destroy our own resources first. When we are writing constructors it is good
practice to call the parent constructor before doing our own initialization. Similarly, when we destroy an
object we should destroy our own resources first and then call the parent destructor (reverse order). The
logic behind this is simple, we may need to use the parent class to destroy our resources, and destroying
the parts of the object it relies on may prevent us from doing that.

Alternatively, and more interestingly, we can re-bless the object into the class of its parent. This is
analogous to peeling an onion where each subclass is a layer. Once the subclass has destroyed the
object's resources that pertain to it, what is left is, at least for the purposes of destruction, an object of
the parent class:

TE
AM
FL
Y

Team-Fly®

Chapter 19

784

sub DESTROY {
my $self = shift;

destroy our own resources
undef $self->{'our_own_hash_of_data'};

bless $self, $ISA[0];
}

The parent object's class name is defined by the element in the @ISA array – we only have one, so it
must be element index zero. What actually happens here is that we catch Perl's garbage collection
mechanism with our DESTROY method, remove the resources we are interested in, and then toss the
object back to the garbage collector by allowing the reference to go out of scope a second time. But as
we re-blessed the object, Perl will now look for the DESTROY method starting at the parent class
instead.

Although elegant, this scheme does have one major flaw; it fails if any subclass uses multiple
inheritance. In this case, re-blessing the object can cause considerable confusion when the object is
passed on to other destructors in different parents of the subclass. Both the examples in the following
section would potentially fail if the first parent destructor re-blessed the object before the second sees it.

Destructors and Multiple Inheritance
In objects classes that use multiple inheritance, we have to get more involved, since SUPER:: will only
call one parent destructor:

sub DESTROY {
$self = shift;

...destroy our own resources...

$self->First::Parent::Object::DESTROY;
$self->Second::Parent::Object::DESTROY;

}

This is a little ugly, however, since it involves writing the names of the parent packages explicitly. If we
change the contents of the @ISA array then this code will break. It also depends on us knowing that the
parent object or objects actually have a DESTROY method. A better way to do it is to iterate through the
@ISA array and test for parent DESTROY methods:

sub DESTROY {
$self = shift;

foreach (@ISA) {
if ($destructor = $_->can('DESTROY')) {

$self->$destructor;
}

}
}

Object-oriented Perl

785

Overloading Operators
So far we have looked at objects from the point of view of methods. We can get quite a long way like
this, but sometimes it becomes desirable to be able to treat objects as if they were conventional data
types. For instance, if we have an object class, which can in some sense be added or concatenated with
another object of the same type, we would like to be able to say:

$object1 += $object2;

Or, rather than presuming we have an add method for the purpose:

$object1->add($object2);

Unfortunately, we cannot add objects or easily apply any other operator to them, because they are at
heart just references, and obey the same rules that normal references do. Instead, what we want to do is
redefine the + operator (and by inference, the += operator) so that it works correctly for particular
object classes too.

Basic Overloading
This redefinition of standard operators for objects is known as operator overloading, and Perl supports it
through the overload module. Presuming that we have an add method for a given object class, we can
assign it to the + operator so that when an object of our class is added to anything, it is called to perform
the actual 'addition' instead of the default + operator supplied by Perl. Here is an example of an object
class that handles addition and addition assignment operations:

addition.pm
package My::Value::Class;
use strict;

use overload '+' => \&add,
'+=' => \&addassign;

sub new {
my ($class, $value) = @_;
my $self = bless {}, $class;

return $self;
}

sub value {
my ($self, $value) = @_;
$self->{'value'} = $value if defined $value;
return $value;

}

sub add {
my ($operand1, $operand2) = @_;
my $result=$operand1->new;
$result->value($operand1->value + $operand2->value);
return $result;

}

Chapter 19

786

sub addassign {
my ($operand1, $operand2) = @_;

$operand1->value($operand1->value + $operand2 - value);
}

1;

The add and addassign methods handle the + and += operators respectively. Unfortunately they only
work when both operands are objects of type My::Value::Class. If one operand is not of the right
type then we have to be more cautious. Perl automatically flips the operands around so that the first one
passed is always of the object type for which the method has been called. Since binary operations take
two operands we have broken our usual habit of calling the object $self: $operand1 makes more
sense in this case.

Consequently, we only have to worry about the type of the second operand. In this example case we
can simply treat it as a numeric value and combine it with the value attribute of our object. To test the
operand to see if it is of a type we can add as an object we use ref and isa:

sub add {
my ($operand1, $operand2) = @_;

my $result = $operand1->new;
if (ref $operand2 and $operand2->isa(ref $operand1)) {

$result->value($operand1->value + $operand2->value);
} else {

$result->value($operand1->value + $operand2);
}
return $result;

}

Determining the Operand Order and Operator Name
For some operations the order of the operands can be important, a good example being subtraction,
and another being concatenation. In order to deal with this, operator methods are called with a third
Boolean flag that indicates whether the operands are given in reverse order, or to put it another way,
if the object for which this method is implemented came second rather than first. If set, this flag also
tells us by implication that the first operand was not of the correct object class (and possibly not even
an object).

As an example, here is a concatenation method that uses this flag. It also checks the type of the other
operand passed and returns a different type of result depending on the order; if a plain string was
passed as the first argument, a plain string is returned, otherwise a new object is returned. To keep the
example simple, we have presumed an object whose textual representation is in the attribute name:

sub concatenate {
my ($operand1, $operand2, $reversed) = @_;

if ($reversed) {
if string came first, return a string
return $operand2.$operand1->{'name'};

Object-oriented Perl

787

} else {
if object came first, return an object
my $result = $operand1->new();
$result->{'name'} = $operand1->{'name'}.$operand2;
return $result;

}
}

Now all we have to do is overload the concatenation operator with this method:

use overload '.' => \&concatenate;

Occasionally we might also want to know the name of the operator that triggered the method. This is
actually passed in a fourth argument to all operator methods, though we do not usually need it. The
obvious and probably most common application is for errors (another is for the nomethod operator
method discussed later). For example, to reject operands unless they both belong to the right class (or
subclass) we do this:

sub an_operator {
my ($op1, $op2, $rev, $name)=@_;

unless (ref $op2 and $op2->isa(__PACKAGE__)) {

croak "Cannot use '$name' on non-",
__PACKAGE__, " operands";

}
}

Overloading Comparisons
An interesting operator to overload is the <=> operator, for comparison. By providing a method for this
operator we can allow sort to work with our objects. For example, dealing only with an object to
object comparison:

use overload '<=>' => \&compare;

sub compare {
($operand1, $operand2) = @_;
return $operand1->{'value'} <=> $operand2->{'value'};

}

With this method in place, we can now say (at least for objects of this class):

@result = sort @objects;

and get a meaningful result.

This is a more useful operator to overload than it might seem even from the above, because the
overload module can deduce the correct results for all the other numeric comparison operations based
on it. Likewise, if we define an operator method for cmp, all the string comparison operations can be
deduced for it. This deduction is called autogeneration by the overload module, and we cover it in
more detail in a moment.

Chapter 19

788

Overloading Conversion Operations
The numeric and string conversion of objects are two operators, which we may overload, even though
we do not normally think of them as operators. However, objects, being references at heart, do not have
useful numeric or string values by default; by overloading these operations, we can create objects that
can take part in numeric calculations or be printed out.

Overloading String Conversion
String conversion happens whenever a Perl value is used in a string context, such as concatenation or as
an argument to a print statement. Since objects ordinarily render themselves as a class name plus a
memory address, which is generally less than meaningful, providing a string representation for them can
be an extremely useful thing to do.

String conversion is not an operator in the normal sense, so the string conversion operator is
represented as a pair of double quotes. Here is how we can assign an operator method for string
conversion:

use overload '""' => \&render_to_string;

We now only have to create an operator method that produces a more sensible representation of the
object. For example, this method returns the object name, as defined by a name attribute, enclosed
within double quotes:

sub render_to_string {

$self = shift;
return '"'.$self->{'name'}.'"';

}

Alternatively, this more debugging-oriented renderer dumps out the contents of the hash being used to
implement the object (in the case of other representations we would need to use different methods, of
course):

sub render_to_string {

$self = shift;
$out = "$self:\n";
map {

$out .= "\t$_ => $self->{$_} \n"

} keys %{$self};
return $out;

}

Finally, here an object class that uses a converter to translate date values into different formats,
depending on what format we require:

DateString.pm
package DateString;
use strict;

construct date object and values
sub new {

my ($class, $time, $format) = @_;
$class = ref $class || $class;

Object-oriented Perl

789

$time = time() unless $time;
my ($d, $m, $y) = (localtime($time))[3, 4, 5];
my $self = bless {

day => $d,
month => $m+1, # months 0-11 to 1-12
year => $y+1900, # years since 1900 to year
format => $format || 'Universal'

}, $class;

return $self;
}

only the format can be changed
sub format {

my ($self, $format) = @_;
if ($format) {

$self->{'format'} = $format;
}
return $self->{'format'};

}

the string conversion for this class
sub date_to_string {

my $self = shift;
my $format = shift || $self->{'format'};

my $string;
SWITCH: foreach ($self->{'format'}) {

/^US/ and do {
$string = sprintf "%02d/%02d/%4d", $self->{'month'}, $self->{'day'},

$self->{'year'};
last;

};

/^GB/ and do {
$string = sprintf "%02d/%02d/%4d", $self->{'day'}, $self->{'month'},

$self->{'year'};
last;

};

universal format
$string = sprintf "%4d/%02d/%02d",
$self->{'year'}, $self->{'month'}, $self->{'day'};

}
$string .= " ($self->{format})";

}

overload the operator to use convertor
use overload '""' => \&date_to_string;

1;

Chapter 19

790

To show how this class operates, here is a short program that prints out the current date in English, US,
and Universal format:

#!/usr/bin/perl
datestring.pl
use warnings;
use strict;

use DateString;

my $date = new DateString(time);
print "$date \n";
$date->format('GB');
print "$date \n";
$date->format('US');
print "$date \n";

Here is what the script produces, assuming we run it on February 14th 2001:

2001/02/14 (Universal)
14/02/2001 (GB)
02/14/2001 (US)

We wrote these conversion methods in the style of conventional object methods, using shift and
$self. This does not mean they do not receive four arguments like other overloaded operator methods,
simply that we do not need or care about them. There is only one operand.

Overloading Numeric Conversion
Just as we can overload string conversion, so we can overload numeric conversion. Numeric conversion
takes place whenever a data value is used in a numeric context (such as addition or multiplication), or as
an argument to a function that takes a numeric argument.

There are two numeric conversion operators, both of which are specially named since, like string
conversion, they do not correspond to any actual operator. The standard numeric conversion is called
0+, since adding anything to zero is a common trick for forcing a value into a numeric context. Here's
how we can assign an operator method for numeric conversions:

"0+" => \&render_to_number;

sub render_to_number {

$self = shift;
return 0+ $self->{'value'};

}

Similarly, here is a numeric converter for the date class we converted into a string earlier. The numeric
value of a date is not obvious, so we will implement it in terms of a 32-bit integer with two bytes for the
year and one byte each for the month and day:

sub date_as_version {

$self = shift;
$year_h = $self->year / 256;
$year_l = $self->year % 256;
return pack('C4', $year_h, $year_l, $self->month, $self->day);

}

Object-oriented Perl

791

This conversion is not useful for display, but it will work just fine for numeric comparisons, so we can
compare date objects using traditional operators like < and == rather than by overloading these
operators to have a special meaning for dates:

die "Date is in the future" if $day > $today; # date objects

The second numeric conversion handles translation into a Boolean value, which takes place inside the
conditions of while and until loops, and also in the ?: operator, unless we overloaded that too.
References are always True, since they always have values, so to test objects meaningfully, we need to
provide a Boolean conversion. The operator is called bool, and is used like this:

"bool" => \&true_or_false;

The meaning of truth or falsehood in an object is of course very much up to the object. The return value
should be either True or False to Perl; for example 1 for True and the empty string for False:

sub true_or_false {
$self = shift;
return $self->{'value'}?1:'';

}

Note that if we do not provide an overload method for Boolean conversion, the overload module will
attempt to infer it from string conversion instead.

Falling Back to Unoverloaded Operations
Earlier in the chapter we introduced the ErrorClass object class, which encapsulated errno values
inside an object. While we could compare the object class as a string or convert it into a number, we
had to call methods in the object class to do so. It would be much nicer if we could have this dealt with
for us.

Here is an extension to the ErrorClass object that does just that. For the sake of this example we will
give it the filename ErrorClass/Overload.pm, though it actually adds overloaded methods to the
base ErrorClass object class:

ErrorClass/Overload.pm
package ErrorClass;
use strict;

use ErrorClass;

use overload (
'""' => \&error_to_string,
'0+' => \&error_to_number,
fallback => 1,

);

sub error_to_string {
my $class = (ref $_[0]) || $_[0];
my $package = __PACKAGE__;
$class =~ /$package\:\:(\w+)/ and return $1;

}

sub error_to_number {
return shift->number;

}

1;

Chapter 19

792

This extension package provides two new methods, error_to_string and error_to_number, which
overload the string and numeric conversion operators. Because we do not want to actually change the
names of the objects generated by the ErrorClass class, we add the methods directly to the
ErrorClass package instead of subclassing as we would ordinarily do.

As well as overloading the operators, we have set the fallback flag. This flag has a very useful
function – it permits conversion methods to be called when no overloaded object method is available.
Instead of complaining that there is no eq string comparison operation for ErrorClass objects, for
example, Perl will 'fall back' to the ordinary string comparison, converting ErrorClass objects into
strings in order to carry it out. Without this, we would be able to print out ErrorClass objects and
convert them into integers with int, because these are direct uses of the conversion operators, but we
would not be able to write a line like this:

print "It's not there! \n" if $error eq 'ENOENT';

Without fallback, this operation will fail because the eq operator is not overloaded for ErrorClass
objects. With fallback, the error will be converted into a string and then eq will compare it to the string
ENOENT. In fact, this handles all the string comparison operators, including cmp. Similarly, the numeric
conversion operation allows Perl to fall back to all the normal numeric comparison operators.

Here is a modified version of the test script for the ErrorClass module that shows how we can use
these new overloaded conversions to simplify our programming with ErrorClass objects:

#!/usr/bin/perl
overload.pl
use warnings;
use strict;

use ErrorClass::Overload;

generate an error
unless (open STDIN, "no.such.file") {

my $error = new ErrorClass;

print "Error object ", ref $error, "\n";
print "\thas number ", $error->number, "\n";
print "\thas message '", $error->message, "'\n";
print "Text represetation '", $error, "'\n";
print "Numeric representation = ", int($error), "\n";
print "It's not there! \n" if $error eq 'ENOENT';

}

Running this script should produce the output:

Error object ErrorClass::ENOENT
has number 2
has message 'No such file or directory'

Text representation 'ENOENT'
Numeric representation = 2
It's not there!

Object-oriented Perl

793

Overloading and Inheritance
Operators' methods are automatically inherited by child classes, but the hard reference syntax we have
used so far does not allow us to specify that an inherited method should be used; it requires us to specify
a reference to the actual method (be it in our own class or a parent). However, we can have Perl search
our parent classes for the implementation of an overloaded operator by supplying the name of the
method rather than a reference to it. Here is how we would overload the <=> operator with an inherited
method:

use overload '<=>' => "compare";

The method name is essentially a symbolic reference, which is looked up using the -> operator
internally. This may or may not be a good thing; it allows inheritance, but a hard reference has the
advantage of producing a compile-time error if the method does not exist.

Inheriting methods for operators rather than inheriting the overloaded operator assignments can also
have a serious effect on performance if we are not careful. If autogeneration (below) is enabled,
inheritance can cause Perl a lot of needless extra work as it tries to construct new methods from existing
ones. Ordinarily, the search for methods is quick since we only need to see what references exist in the
list of overloaded operators. But with inheritance, a search through the hierarchy for each method not
implemented in the class is performed – for large inheritance trees that can cause a lot of work.

Autogenerated Operations
When we started out with the overload module we provided methods to handle both the + and +=
operators. However, we actually only needed the + operation overloaded, because the overload
module is smart enough that it can infer operations that have not been overloaded from those that have
been.

For instance, the current behavior for the operation += can be inferred from the + operator, since $a
+= $b is just shorthand for $a = $a + $b, and Perl knows how to do that for our object class.
Similarly, if Perl knows how to do subtraction, it also knows how to do a unary minus (since that is just
0-$a) and -=. The ++ and -- operators can likewise be inferred from + and -; they are just $a = $a
+ 1 and $a = $a - 1. The overload module can even infer abs from '-'. That said, we could often
supply more efficient versions of these operators, but autogeneration means that we do not have to.

Unfortunately, just because an operator can be deduced does not mean that it should be. For instance,
we may have a date class that allows us to compute differences between dates expressed as strings, as in:

'1 Jan 2001' - '30 Dec 2000' = '2 days'

A binary subtraction makes sense in this context, but a unary minus does not. There is no such thing as
a negative date. In order to distinguish it from the binary subtraction operator, the unary minus is called
neg when used in the list supplied to the overload module. So, one way we can implement subtraction
but forbid negation is:

use overload '-' => \&subtract,
neg => sub {croak "Can't negate that!"};

TE
AM
FL
Y

Team-Fly®

Chapter 19

794

This is awkward if we need to prevent several autogenerated operators, not least because we have to
work out what they are to disable them. Instead, to prevent the overload module autogenerating
operator methods we can specify the fallback flag. The default value is undefined, which allows
autogeneration to take place, but dies if no matching operator method could be found or autogenerated.

The fallback flag is intimately connected to autogeneration; we only saw it in its most basic use
before. If set to 1, Perl reverts to the standard operation rather than fail with an error, which is very
useful for object classes that define only conversion operations like the ErrorClass::Overload
extension we showed earlier.

If fallback is set to 0, however, autogeneration is disabled completely but errors are still enabled
(unfortunately there is no way to disable both errors and autogeneration at the same time). A better way
to disable negation is like this:

use overload '-' => \&subtract,
fallback => 0;

We also have the option to supply a default method (for when no other method will suit), by specifying
an operator method for the special nomethod keyword. This operates a little like an AUTOLOAD method
does for regular methods, and is always called if a method can neither be called nor autogenerated. The
fourth argument comes in very handy here, as this nomethod operation method illustrates:

sub no_operator_found {

my $result;

deal with some operators here
SWITCH: foreach ($_[3]) {

/^ <=> / and do {$result = 0, last}; # always lexically equal
/^cmp/ and do {$result = 0, last}; # always numerically equal
insert additional operations here

croak if the operator is not one we handle
croak "Cannot $_[3] this";

}
return $result;

}

use overload '-' => \&subtract,
'+' => \&add,
nomethod => \&no_operator_found;

We can also use this with the fallback flag, in which case autogeneration is disabled. Only explicit
addition and subtraction (plus numeric and string comparisons through the nomethod operation) are
enabled:

use overload '-' => \&subtract,
'+' => \&add,
fallback => 0,
nomethod => \&no_operator_found;

Object-oriented Perl

795

Overloadable Operations
Not every operator provided by Perl can be overloaded. Conversely, some of the things we might
normally consider functions can be overloaded. The table below summarizes the different categories of
operators understood by the 'overload' module and the operators within each category that it handles:

Operator Category Operators

with_assign + - * / % ** << >> x .

assign += -= *= /= %= **= <<= >>= x= .=

str_comparison < <= > >= == !=

3way_comparison <=> cmp

num_comparison lt le gt ge eq ne

binary & | ^

unary neg ! ~

mutators ++ --

func atan2 cos sin exp abs log sqrt

conversion bool "" 0+

For more details on these categories and the overload pragma, see perldoc overload.

Automating Object Class Development
There are several helper modules available for Perl, which automate much of the process of creating
new object classes. Two of the more useful third-party modules on CPAN are Class::MethodMaker,
which can automatically generate object properties and methods, and Class::Multimethods, which
gives Perl the ability to select methods from multiple parent classes based on the type and number of
arguments passed (a feature present in several other object-oriented languages but absent from Perl).

Perl does come with the Class::Struct module, however. This provides much more limited but
considerably simpler object class generation features than modules like Class::MethodMaker. Several
object classes provided by Perl are based on it, including all the hostent, netent, protoent, and
servent modules, as well as stat and several others. All of these modules make good working
examples of how Class::Struct is used.

The module provides one subroutine, struct. The name is taken from C's struct declaration after
which the module is patterned. To use it we supply a list of attributes and their data types, indicated by
the appropriate Perl prefix, $ for scalars, @ for arrays, and % for hashes. In return it defines a constructor
(new) and a complete set of accessor/mutator methods for each attribute we request. For example, this is
how we can create a constructor and six accessor/mutator methods for an address class in one
statement:

Address.pm
package Address;
use strict;

use Class::Struct;

Chapter 19

796

struct (
name => '$',
address => '@',
postcode => '$',
city => '$',
state => '$',
country => '$',

);

1;

This object class creates objects with five scalar attributes, and one array attribute whose value is stored
as an array reference. When we use this module struct is called and the class is fully defined. The
constructor new, generated on-the-fly by struct accepts initialization of the object with named
arguments, so we can create and then print out the fields of an object created by this class using a script
like the following:

#!/usr/bin/perl
address.pl
use warnings;
use strict;

use Address;

my $address = new Address(
name => 'Me Myself',
address => ['My House', '123 My Street'],
city => 'My Town',

);

print $address->name," lives at: \n",
"\t", join("\n\t", @{$address->address}), "\n",
"in the city of ", $address->city, "\n";

This produces the output:

Me Myself lives at:
My House
123 My Street

in the city of My Town

Getting and setting attributes on these automatically generated objects is fairly self-evident. Each
accessor/mutator follows the pattern of accessor/mutator methods we have seen before. Scalars are
retrieved by passing no arguments, and set by passing one:

$name = $address->name; # get an attribute
$address->name($name); # set an attribute

Array and hash attributes return a reference to the whole array or hash if no arguments are passed,
otherwise they return the value specified by the passed index or hash key if one argument is passed, and
set the value specified if two arguments are passed:

$arrayref = $address->address;
$first_line = $address->address(0);

$address->address(0, $firstline);

Object-oriented Perl

797

$hashref = $address->hashattr;
$value = $address->hashattr('key');
$address->hashattr('key', $value);

The underlying object representation of this class is an array. If we want to be able to inherit the class
reliably we are better off using a hash, which we can do by passing struct (the name of the class we
want to create methods for), followed by the attributes we want to handle in a hash or array reference. If
we pass an array reference, the class is based on an array. If we pass a hash reference, it is based on a
hash like so:

AddressHash.pm
package Address;
use strict;

use Class::Struct;

struct Address => {
name => '$',
address => '@',
postcode => '$',
city => '$',
state => '$',
country => '$',

};

1;

We can create and then print out the fields of the object created by this version of the class using the
same script, producing the same output as before.

In fact, we do not even need the package Address at the top of this module since struct creates
subroutines in the package passed to it as the first argument anyway.

We can also use objects as attributes by the simple expedient of naming an object class instead of a Perl
data type prefix. Here's a modified Address class that replaces the address array attribute with a
subclass called Address::Lines with an explicit house and street attribute:

AddressNest.pm
package Address;
use strict;

use Class::Struct;

struct 'Address::Lines' => [
house => '$',
street => '$',

];

struct (
name => '$',
address => 'Address::Lines',
postcode => '$',
city => '$',
state => '$',
country => '$',

);

1;

Chapter 19

798

Since we can chain together object calls if the result of one method is another object, we can modify the
test script to be:

#!/usr/bin/perl
addressnest.pl
use warnings;
use strict;

use AddressNest;

my $address = new Address(
name => 'Me Myself',
city => 'My Town',

);

$address->address->house('My House');
$address->address->street('123 My Street');

print $address->name, " lives at: \n",
"\t", $address->address->house, "\n",
"\t", $address->address->street, "\n",
"in the city of ", $address->city, "\n";

We can, if we choose, optionally prefix the attribute type with an asterisk, to make *$, *@, *%, or
*Object::Class. When present, this causes the accessor for the attribute to return references rather
than values. For example, if we used name => '*$' in the arguments to struct, we could do this:

$scalar_ref = $address->name;
$$scalar_ref = "My New Name";
$new_scalar = "A Different Name Again";
$address->name(\$newscalar);

The same referential treatment is given to array, hash, and object attributes, for example with address
=> '*@':

$first_element = $address->address(0);
$$first_element = "My New House";

If we want to provide more precise control over attributes we can do so by redefining the
accessor/mutator methods with explicit subroutines. Be aware, however, that Perl will warn about
redefined subroutines if warnings are enabled. If we need to override a lot of methods, however, the
benefits of using Class::Struct begin to weaken and we are probably better off implementing the
object class from scratch.

As a final example, if we want to create a class that contains attributes of one type only (most probably
scalars), we can create very short class modules, as this rather terse but still fully functional example
illustrates:

AddressMap.pm
use strict;

use Class::Struct;
struct Address => {map {$_ => '$'} qw(

name house street city state country postcode)
};

1;

Object-oriented Perl

799

For completeness, here is the test script for this last class; note that it is very similar to our first example,
which was mostly made up of scalars. Again it produces the same output as all the others:

#!/usr/bin/perl
addressmap.pl
use warnings;
use strict;

use AddressMap;

my $address = new Address(
name => 'Me Myself',
house => 'My House',
street => '123 My Street',
city => 'My Town',

);

print $address->name," lives at:\n",
"\t", $address->house, "\n",
"\t", $address->street, "\n",
"in the city of ", $address->city, "\n";

Ties and Tied Objects
One of the more intriguing parts of Perl's support for object-oriented programming is the tied object.
Tied objects are somewhat at odds with the normal applications of object orientation. In most object-
oriented tasks we take a functional, non object-oriented problem and rephrase it in object-oriented
terms. Ties go the other way, taking an object class and hiding it behind a simple non object-oriented
variable.

Tied objects allow us to replace the functionality of a standard data type with an object class that
secretly handles the actual manipulations, so that access to the variables is automatically and
transparently converted into method calls on the underlying object. The object can then deal with the
operation as it sees fit. Perl allows us to tie any standard data type, including scalars, arrays, hashes, and
filehandles. In each case the operations that the underlying object needs to support vary.

There are many possible uses for tie, from hashes that only allow certain keys to be stored (as used by
the fields module), to the DBM family of modules, which use tied hash variables to represent DBM
databases. The Perl standard library provides several tied classes, including the fields module and the
DBM family of modules, and there are many, many tied class implementations available from CPAN.
Before implementing a tied class it is worth checking to see if it has already been done.

Tied object classes are a powerful way to use objects to provide enhanced features in places that are
otherwise hard to reach or difficult to implement. The tie makes the object appear as a conventional
variable. This allows us to replace ordinary variables with 'smart' ones, so any Perl code that works
with the original data type will also work with the tied object, oblivious to the fact that we have replaced
it with something else of our own design.

Chapter 19

800

Using Tied Objects
Variables are bound to an underlying object with the tie function. The first argument to tie is the
variable to be bound, and the second is the name of the object class, which will provide the
functionality of the tied variable. Further arguments are passed to the constructor that is, in turn, used to
create the object used to implement this particular variable, which is, of course, determined by the type
of variable being tied. For example, to tie a scalar variable to a package called My::Scalar::Tie we
could put:

$scalar;
tie $scalar, 'My::Scalar::Tie', 'initial value';

The initial value argument is passed to the constructor; in this case it is expected to be used to set
up the scalar in some way, but that is up to the constructor. Similarly, to tie a hash variable, this time to
a DBM module:

tie %dbm, 'GDBM_File', $filename, $flags, $perm;

The GDBM_File module implements access to DBM files created with the gdbm libraries. It needs to
know the name of the file to open, plus, optionally, open flags and permissions (in exactly the same way
that the sysopen function does). Given this, the module creates a new database object that contains an
open filehandle for the actual database handle as class data. If we tie a second DBM database to a second
variable, a second object instance is created, containing a filehandle for the second database. Of course,
we only see the hash variable; all the work of reading and writing the database is handled for us by the
DBM module (in this case GDBM_File).

The return value from tie is an object on success, or undef on failure:

$object = tie $scalar, 'My::Scalar::Tie', 'initial value';

We can store this object for later use, or alternatively (and more conveniently) we can get it from the
tied variable using tied:

$object = tied $scalar;

Handling Errors from 'tie'
Many, though not all, tied object modules produce a fatal error if they cannot successfully carry out the
tie (the database file does not exist, or we did not have permission to open it, for example). To catch
this we therefore need to use eval. For example, this subroutine returns a reference to a tied hash on
success, or undef on failure:

sub open_dbm {
my $filename = shift;
my %dbm;

eval {tie %dbm, 'GDBM_File', $filename};
if ($@) {

print STDERR "Dang! Couldn't open $filename: $@";
return undef;

}

return \%dbm;
}

Object-oriented Perl

801

This is not a property of tie, but rather a general programming point for handling any object
constructor that can emit a fatal error, but it's worth mentioning here because it is easy to overlook.

Accessing Nested References
The special properties of a tied variable apply only to that variable; access to the internal values of a
tied hash or array is triggered by our use of the tied variable itself. If we extract a reference from a tied
hash or array, the returned value is likely to be a simple untied reference, and although attempts to
manipulate it will work, we will really be handling a local copy of the data that the tied hash represents
and not the data itself.

The upshot of this is that we must always access elements through the tied variable, and not via a
reference. In other words, the following is fine:

$tied{'key'}{'subkey'}{'subsubkey1'} = "value1";
$tied{'key'}{'subkey'}{'subsubkey2'} = "value2";
$tied{'key'}{'subkey'}{'subsubkey3'} = "value3";

But this is probably not:

$subhash = $tied{'key'}{'subkey'};
$subhash->{'subsubkey1'} = "value1";
$subhash->{'subsubkey2'} = "value2";
$subhash->{'subsubkey3'} = "value3";

Although this appears to work, the extraction of the hash reference $subhash actually caused the tied
variable to generate a local copy of the data that the hash represents. Our assignments to it therefore
update the local copy, but do not have any effect whatsoever on the actual data that the tied hash
controls access to.

Having said that we cannot use internal references, this is not absolutely the case. It is perfectly possible
for the tied object class to return a newly tied hash that accesses the nested data we requested, in which
case we can use the subreference with impunity, just like the main tied variable. However, this is a lot of
effort to go to, and most tied object classes do not go to the lengths necessary to implement it.

Testing a Variable for 'tied'ness
The tied function returns the underlying object used to implement the features of the tied variable, or
undef otherwise. The most frequent use for this is to test whether a tie succeeded. For example, here is
another way to trap and test for a failed tie:

eval {tie %hash, My::Tied::Hash}
handle_error($@) unless tied %hash;

We can also call methods on the underlying object class through tied. For example, wrapping tied
and an object method call into one statement:

(tied %hash)->object_method(@args);

Chapter 19

802

Just because we can call an underlying method does not mean we should, though. If the tied object class
documentation provides additional support methods (and most tied classes of any complexity do),
calling these is fine. But calling the methods that implement the tie functionality itself is a bad idea.
The whole point of the tie is to abstract these methods behind ordinary accesses to the variable;
sidestepping this is therefore breaking the interface design.

'Untie'ing Objects
Tied objects consume system resources just like any other object, or indeed variable. When we are
finished with a tied object we should dispose of it so that the object's destructor method, if any, can be
called. In the case of the DBM modules this flushes any remaining output and closes the database
filehandle.

In many instances, the only reference to the underlying object is the tie to the variable, so by undoing
the tie between the variable and the object we cause Perl to invoke the garbage collector on the now
unreferenced object. Appropriately enough, the function to do this is untie:

untie %hash;

untie always succeeds, unless the destructor emits a fatal error, in which case we need to trap it with
eval. The fact it never returns a 'failed' result makes writing a test very easy:

handle_error($@) unless eval {untie %hash};

If we pass untie on a variable that is not tied, nothing happens, but untie still succeeds. However, if
we want to check explicitly we can do so, for example:

untie %hash if tied %hash;

Writing Tied Objects
Tied object classes work by providing methods with predefined names for each operation that Perl
requires for the data type of the variable being tied. For instance, for tied scalars, an object class needs
to define a constructor method called TIESCALAR, plus the following additional methods:

Method Description

FETCH An accessor method that returns a scalar value.

STORE A mutator method that stores a passed scalar value.

DESTROY Optionally, a destructor for the object.

Scalars are the simplest class to tie because we can essentially only do two things to a scalar – read it,
which is handled by the FETCH method, and write it, which is handled by the STORE method. We can
also tie arrays, hashes, and filehandles if we define the appropriate methods.

Some methods are always mandatory; we always need a constructor for the class, with the correct name
for the data type being tied. We also always need a FETCH method, to read from the object. Others are
required only in certain circumstances. For instance, we do not need a STORE method if we want to
create a read-only variable, but it is better to define one and place a croak in it, rather than have Perl
stumble and emit a less helpful warning when an attempt to write to the object is made.

Object-oriented Perl

803

Standard Tie Object Classes
Creating the supporting methods for every required operation can be tedious, particularly for arrays,
which require thirteen methods in a fully implemented object class.

Fortunately, Perl removes a lot of the grunt-work of creating tied object classes, by providing template
object classes in the standard library that contain default methods which we can inherit from, or
override with our own implementations. The default methods mostly just croak when they are not
implemented, but each module also provides a minimal, but functional, Std object class that
implements each data type as an object of the same type blessed and returned as a reference.

Module Data Type

Tie::Scalar Tied scalars.

Tie::Array Tied arrays.

Tie::Hash Tied hashes.

Tie::Handle Tied handles (file, directory, socket, ...).

Module Data Type

Tie::StdScalar Minimal tied scalar class.

Tie::StdArray Minimal tied array class.

Tie::StdHash Minimal tied hash class.

Tie::StdHandle Minimal tied handle class.

In addition, we can make use of two enhanced tied hash classes:

Module Description

Tie::RefHash Tied hashes that allow references to be used as the hash keys,
overcoming the usual restriction of hash keys to static string values.

Tie::SubstrHash Tied hashes that permit only a fixed maximum length for both keys and
values, and, in addition to this, limit the total number of entries allowed
in the hash.

Tied Object Methods
The methods we need to define for each data type vary, but loosely fall into the categories of
constructor/destructor, accessor/mutator, function implementations, and specialized operations that
apply to specific data types. All tied object classes need a constructor, and may implement a destructor.
All types except filehandles may also (and usually should) define an accessor and mutator. Arrays,
hashes, and filehandles also need to define methods for Perl's built-in functions that operate on those
data types, for instance pop, shift, and splice for arrays, delete, and exists for hashes, and
print, readline, and close for filehandles.

TE
AM
FL
Y

Team-Fly®

Chapter 19

804

We are free to define our own methods in addition to the ones required by the tie, and can call them
via the underlying object if we desire. We can also create additional class methods; the only one
required (for all classes) is the constructor.

The standard library modules define default versions of all these methods, but we may choose to
implement a tied object class without them, or even want to override them with our own methods. The
following summaries list the methods required by each data type, along with a typical use of the tied
variable that will trigger the method, and some brief explanations:

Methods and Uses for Scalars

Here are the creator/destructor methods for scalars:

Method Use

TIESCALAR class, list

DESTROY self

tie $scalar, Class::Name, @args;

undef $scalar;

The accessor/mutator methods for scalars are as follows:

Method Use

FETCH self

STORE self, value

$value = $scalar;

$scalar = $value;

Scalars are the simplest tied object class to implement. The constructor may take any arguments it likes,
and the only other method that needs to handle an argument is STORE. Note that the constructor is the
only method we call directly, so we cannot pass extra arguments to the other methods even if we
wanted to, all information required must be conveyed by the object.

Methods and Uses for Arrays

Arrays require the same methods as scalars, but take an additional index argument for both FETCH and
STORE. These are the creator/destructor methods for arrays:

Method Use

TIEARRAY class, list tie @array, Class::Name, @list;

DESTROY self undef @array;

The accessor/mutator methods for arrays are:

Method Use

FETCH self, index $value = $array[$index];

STORE self, index, value $array[$index] = $value;

Object-oriented Perl

805

We also need implementations for the push, pop, shift, unshift, and splice functions if we want
to be able to use these functions on our tied arrays. The function implementation methods are as
follows:

Method Use

PUSH self, list push @array, @list;

POP self $value = pop @array;

SHIFT self $value = shift @array;

UNSHIFT self, list unshift @array, @list;

SPLICE self, offset,
length, list

splice @array, $offset, $length, @list;

Finally, we need methods to handle the extension or truncation of the array. Unique to arrays are the
EXTEND, FETCHSIZE, and STORESIZE methods, which implement implicit and explicit alterations the
extent of the array; real arrays do this through $#array, as covered in Chapter 5. The
extension/truncation methods for arrays are:

Method Use

CLEAR self @array = ();

EXTEND self, size $array[$size] = $value;

FETCHSIZE self $size = $#array;

STORESIZE self, size $#array = $size;

Methods and Uses for Hashes

Hashes are more complex than arrays, but ironically are easier to implement. These are the
creator/destructor methods for hashes:

Method Use

TIEHASH class, list tie %hash, Class::Name, @list;

DESTROY self undef %hash;

Like arrays, the FETCH and STORE methods take an additional argument, this time of a key name.
Here are the accessor/mutator methods for hashes:

Method Use

FETCH self, key $value = $hash{$key};

STORE self, key,
value

$hash{$key} = $value;

Chapter 19

806

The delete and exists functions are implemented through the DELETE and EXISTS methods. In
addition, CLEAR is used for deleting all the elements from a hash. The defined function is
implemented in terms of FETCH, so there is no DEFINED method. This is also why there is no EXISTS
or DEFINED method for arrays or scalars, since both operations are equivalent to defined for anything
except hashes. Here are the function implementation methods for hashes:

Method Use

CLEAR self %hash = ();

DELETE self, key $done = delete $hash{$key};

EXISTS self, key $exists = exists $hash{$key};

The FIRSTKEY and NEXTKEY methods need a little more explanation. Both methods are needed for the
each keyword, which retrieves each key-value pair from a hash in turn. To do this, the class must
define some form of iterator that stores the current position, so that the next key produces a meaningful
result. This iterator should be reset when FIRSTKEY is called, and incremented when NEXTKEY is
called. Both methods should return the appropriate key and value as a list. Finally, when there are no
more key-value pairs to return, NEXTKEY should return undef. Here are the each iteration
methods:

Method Use

FIRSTKEY self ($key, $value) = each %hash;

first time

NEXTKEY self, lastkey ($key, $value) = each %hash;

second and subsequent times

Methods and uses for Filehandles

Filehandles are unique among tied variables because they define neither an accessor nor mutator
method. Instead, the constructor makes available some kind of resource, typically with open, pipe,
socket, or some other method that generates a real filehandle. The creator/destructor methods for
filehandles are the following:

Method Use

TIEHANDLE class, list tie $fh, Class::Name, @args;

DESTROY self undef $fh;

Whatever the creator method does, the CLOSE method needs to be defined to undo whatever it creates.

The only other methods required are for the standard filehandle functions: print, printf, and write
for output and read, readline, and getc for input. If we are implementing a read-only or write-only
filehandle we need only define the appropriate methods, of course.

Object-oriented Perl

807

Function Implementation method Use

READ self, scalar, length,
offset

read $fh, $in, $size, $from

READLINE self $line = <$fh>

GETC self $char = getc $fh

WRITE self, scalar, length,
offset

write $fh, $out, $size, $from

PRINT self, list print $fh @args

PRINTF self, format, list printf $fh $format @values

CLOSE self close $fh

DESTROY self undef $fh

An Example Tied Hash Class
The tied hash class below demonstrates a basic use of the tied functionality provided by Perl by creating
hashes that can have read, write, or delete access enabled or disabled. It defines methods for all the
possible access types for a hash, and so does not need to use Tie::Hash. Despite this, it is very simple
to understand.

The design follows a common theme for a lot of tied classes, where the actual data is stored as an
element of a hash that represents the object, with other elements holding flags or values that configure
how the real data is handled. This is a general template that works well for all manner of 'smart' scalars,
arrays, hashes, and filehandles.

Permission/Hash.pm
package Permission::Hash;
use strict;

use Carp;

sub TIEHASH {
my ($class, %cfg) = @_;

my $self = bless {}, shift;

$self->{'value'} = ();
foreach ('read', 'write', 'delete') {

$self->{$_} = (defined $cfg{$_})?$cfg{$_}:1;
}

return $self;
}

sub FETCH {
my ($self, $key) = @_;
croak "Cannot read key '$key'" unless $self->{'read'};
return $self->{'value'}{$key};

}

Chapter 19

808

sub STORE {
my ($self, $key, $value) = @_;
croak "Cannot write key '$key'" unless $self->{'write'};
$self->{'value'}{$key} = $value;

}

sub EXISTS {
my ($self, $key) = @_;
croak "Cannot read key '$key'" unless $self->{'read'};
return exists $self->{'value'}{$key};

}

sub CLEAR {
my $self = shift;
croak "Cannot delete hash" unless $self->{'delete'};
$self->{'value'} = ();

}

sub DELETE {
my ($self, $key) = @_;
croak "Cannot delete key '$key'" unless $self->{'delete'};
return delete $self->{'value'}{$key};

}

sub FIRSTKEY {
my $self = shift;
my $dummy = keys %{$self->{'value'}}; #reset iterator
return $self->NEXTKEY;

}

sub NEXTKEY {
return each %{shift->{'value'}};

}

1;

Because we are creating a tied hash that controls access to a real hash, most of the methods are very
simple. We are relaying the operation requested on the tied variable to the real variable inside. This
class could be improved a lot, notably by adding proper accessor/mutator methods for the three flags.
We could also add other permission types. A more interesting and complex example would be to set the
flags on each key, rather than for the hash as a whole. Here is a short script that puts the
Permission::Hash class through its paces:

#!/usr/bin/perl
permhash.pl
use warnings;
use strict;

use Permission::Hash;

my %hash;
tie %hash, 'Permission::Hash', read => 1, write => 1, delete => 0;

$hash{'one'} = 1;
$hash{'two'} = 2;
$hash{'three'} =3 ;

print "Try to delete a key... \n";
unless (eval {delete $hash{'three'}; 1}) {

print $@;
print "Let's try again... \n";
(tied %hash)->{'delete'} = 1;
delete $hash {'three'};
print "It worked! \n";

Object-oriented Perl

809

(tied %hash)->{'delete'} = 0;
}

print "Disable writing... \n";
(tied %hash)->{'write'} = 0;
unless (eval {$hash{'four'} = 4; 1}) {

print $@;
}
(tied %hash)->{'write'} = 1;

print "Disable reading... \n";
(tied %hash)->{'read'} = 0;
unless (defined $hash{'one'}) {

print $@;
}
(tied %hash)->{'read'} = 1;

When run this script should produce output resembling the following:

Try to delete a key...
Cannot delete key 'three' at permhash.pl line 12
Let's try again...
It worked!
Disable writing...
Cannot write key 'four' at permhash.pl line 23
Disable reading...
Cannot read key 'one' at permhash.pl line 30

Many other variants on this design can be easily implemented. In the case of hashes alone, we can
easily create case-insensitive hashes (apply lc to all passed keys), accumulative hashes (make each value
an array and append new values to the end in STORE), or restrict the number of keys (count the keys
and check whether the key already exists in STORE, before creating a new one), or the names of the
keys that can be assigned (pass a list of acceptable keys to the constructor, then check that any key
passed to STORE is in that list).

An Example Class Using 'Tie::StdHash'
The standard Tie modules provide inheritable methods for all the required actions needed by each type
of tied variable, but for the most part, these simply produce more informative error messages for
methods we do not implement ourselves. However, each package comes with a Std object class that
implements a minimal, but functional, tied object of the same class. Here is the implementation of
Tie::StdHash defined inside the Tie::Hash module:

package Tie::StdHash;
@ISA = qw(Tie::Hash);

sub TIEHASH {bless {}, $_[0]}
sub STORE {$_[0]->{$_[1]} = $_[2]}
sub FETCH {$_[0]->{$_[1]}}
sub FIRSTKEY {my $a = scalar keys %{$_[0]}; each %{$_[0]}}
sub NEXTKEY {each %{$_[0]}}
sub EXISTS {exists $_[0]->{$_[1]}}
sub DELETE {delete $_[0]->{$_[1]}}
sub CLEAR {%{$_[0]} = ()}

1;

Chapter 19

810

We can use this object class to implement our own tied hash classes, as long as we are willing to accept
the implementation of the object as a directly tied hash. As an example, here is a hash class that will
limit either the total number of hash keys allowed, or restrict keys to one of a specific list provided when
the object is initialized:

Limit/Hash.pm
package Limit::Hash;
use strict;

use Carp;
use Tie::Hash;
our @ISA = qw(Tie::StdHash);

sub TIEHASH {
my ($class, @keys) = @_;

my $self = $class->SUPER::TIEHASH;
croak "Must pass either limit or key list" if $#keys == -1;
if ($#keys) {

$self->{'_keys'} = {map {$_ => 1} @keys};

} else {
croak ",", $keys[0], "' is not a limit" unless int($keys[0]);
$self->{'_limit'} = $keys[0]+1; #add one for _limit

}

return $self;
}

sub FETCH {
my ($self, $key) = @_;
croak "Invalid key '$key'" if defined($self->{'_keys'}) and
(!$self->{'_keys'}{$key} or $key =~ /^_/);
return $self->SUPER::FETCH($key);

}

sub STORE {
my ($self, $key, $value) = @_;
croak "Invalid key '$key'" if defined($self->{'_keys'}) and
(!$self->{'_keys'}{$key} or $key =~ /^_/);
croak "Limit reached" if defined($self->{'_limit'}) and
(!$self->{'_limit'} or $self->{'limit'} <= scalar(%{$self}));

$self->SUPER::STORE($key, $value);
}

1;

The constructor works by examining the passed arguments and either establishing a limit, or a list of
valid keys depending on what it was passed (we assume that establishing a single key is not an unlikely
requirement). If a limit was passed, we add one to it to allow for the _limit key itself, which also
resides in the hash. If no arguments are passed at all, we complain. Otherwise, we set up two special
keys in the hash to hold the configuration.

The only other methods we override are FETCH and STORE. Each method checks that the key is valid,
and prevents 'private' underscore prefixed keys from being set. If the key passes the check, we pass the
request to the FETCH and STORE methods of Tie::StdHash, our parent.

Object-oriented Perl

811

Technically we do not need to pass the method request up to the parent object from our versions of
TIEHASH, FETCH, and STORE since they are obvious implementations. However, it is good practice to
use parent methods where possible, so we do it anyway.

limithash.pl
#!/usr/bin/perl
use warnings;
use strict;

use Limit::Hash;

tie my %hash, 'Limit::Hash', 'this', 'that', 'other';

$hash{'this'} = 'this is ok';
$hash{'that'} = 'as is this';
print $hash{'this'}, "\n";
$hash{'invalid-key'} = 'but this croaks';

When run, this script should produce:

this is ok
Invalid key 'invalid-key' at limithash.pl line 13

Summary
In this chapter, we were introduced to objects, and concepts relating to objects. We saw how to create
objects, and use them by:

❑ Accessing properties

❑ Calling class methods

❑ Calling object methods

❑ Nesting method calls

We then learned how to determine what inherited characteristics an object possesses, for example, its
ancestry, capabilities, and version. After this, we saw how to write object classes; specifically we looked
at constructors and choosing an underlying data type. As well as this, we looked at class, object, and
multiple-context methods.

From here we discussed object and class data, which involved learning about accessors and mutators,
along with inheriting and setting class data. Then we learned about class and object-level debugging,
and implemented a multiplex debug strategy.

A large section was devoted to inheritance and subclassing, and the topics covered included:

❑ Inheriting from a parent class

❑ Writing inheritable classes

❑ Extending and redefining objects

❑ Multiple inheritance

❑ The UNIVERSAL constructor

❑ Autoloading methods

Chapter 19

812

We also saw how to keep class and object data private, and discussed the ins-and-outs of destroying
objects. We also saw that it is possible to overload conversion operators as well as normal ones, and that
we can 'fall back' to unoverloaded operators if need be.

The final topics involved ties and tied objects, and in this section we saw how to use tied objects,
including:

❑ Handling errors from tie

❑ Accessing nested references

❑ Testing a variable for tiedness

❑ Untieing objects

On top of this, we learned, among other things, how to write tied objects, and finished the chapter with
an example of a tied hash class, and an example of a class using Tie::StdHash.

Object-oriented Perl

813

TE
AM
FL
Y

Team-Fly®

Chapter 19

814

Inside Perl

In this chapter, we will look at how Perl actually works – the internals of the Perl interpreter. First, we
will examine what happens when Perl is built, the configuration process and what we can learn about it.
Next, we will go through the internal data types that Perl uses. This will help us when we are writing
extensions to Perl. From there, we will get an overview of what goes on when Perl compiles and
interprets a program. Finally, we will dive into the experimental world of the Perl compiler: what it is,
what it does, and how we can write our own compiler tools with it. To get the most out of this chapter, it
would be best advised for us to obtain a copy of the source code to Perl. Either of the two versions,
stable or development, is fine and they can both be obtained from our local CPAN mirror.

Analyzing the Perl Binary – 'Config.pm'
If Perl has been built on our computer, the configuration stage will have asked us a number of questions
about how we wanted to build it. For instance, one question would have been along the lines of building
Perl with, or without threading. The configuration process will also have poked around the system,
determining its capabilities. This information is stored in a file named config.sh, which the
installation process encapsulates in the module Config.pm.

The idea behind this is that extensions to Perl can use this information when they are being built, but it
also means that we as programmers, can examine the capabilities of the current Perl and determine
whether or not we could take advantage of features such as threading provided by the Perl binary
executing our code.

Chapter 20

816

'perl -V'
The most common use of the Config module is actually made by Perl itself: perl –V, which produces
a little report on the Perl binary. It is actually implemented as the following program:

#!/usr/bin/perl
config.pl
use warnings;
use strict;

use Config qw(myconfig config_vars);

print myconfig();
$"="\n ";
my @env = map {"$_=\"$ENV{$_}\""} sort grep {/^PERL/} keys %ENV;
print " \%ENV:\n @env\n" if @env;
print " \@INC:\n @INC\n";

When this script is run we will get something resembling the following, depending on the specification
of the system of course:

> perl config.pl
Summary of my perl5 (revision 5.0 version 7 subversion 0) configuration:

Platform:
osname=linux, osvers=2.2.16, archname=i686–linux
uname='linux deep–dark–truthful–mirror 2.4.0–test9 #1 sat oct 7 21:23:59 bst 2000 i686
unknown '
config_args='–d –Dusedevel'
hint=recommended, useposix=true, d_sigaction=define
usethreads=undef use5005threads=undef useithreads=undef usemultiplicity=undef
useperlio=undef d_sfio=undef uselargefiles=define usesocks=undef
use64bitint=undef use64bitall=undef uselongdouble=undef

Compiler:
cc='cc', ccflags ='–fno–strict–aliasing –I/usr/local/include –D_LARGEFILE_SOURCE –

D_FILE_OFFSET_BITS=64',
optimize='–g',
cppflags='–fno–strict–aliasing –I/usr/local/include'
ccversion='', gccversion='2.95.2 20000220 (Debian GNU/Linux)', gccosandvers=''
intsize=4, longsize=4, ptrsize=4, doublesize=8, byteorder=1234
d_longlong=define, longlongsize=8, d_longdbl=define, longdblsize=12
ivtype='long', ivsize=4, nvtype='double', nvsize=8, Off_t='off_t', lseeksize=8
alignbytes=4, usemymalloc=n, prototype=define

Linker and Libraries:
ld='cc', ldflags =' –L/usr/local/lib'
libpth=/usr/local/lib /lib /usr/lib
libs=–lnsl –ldb –ldl –lm –lc –lcrypt –lutil
perllibs=–lnsl –ldl –lm –lc –lcrypt –lutil
libc=/lib/libc–2.1.94.so, so=so, useshrplib=false, libperl=libperl.a

Dynamic Linking:
dlsrc=dl_dlopen.xs, dlext=so, d_dlsymun=undef, ccdlflags='–rdynamic'
cccdlflags='–fpic', lddlflags='–shared –L/usr/local/lib'
@INC:

Inside Perl

817

lib
/usr/local/lib/perl5/5.7.0/i686–linux
/usr/local/lib/perl5/5.7.0
/usr/local/lib/perl5/site_perl/5.7.0/i686–linux
/usr/local/lib/perl5/site_perl/5.7.0
/usr/local/lib/perl5/site_perl

How It Works
Most of the output is generated by the myconfig function in Config. It produces a list of the variables
discovered by the Configure process when Perl was built. This is split up into four sections: Platform,
Compiler, Linker and Libraries, and Dynamic Linking.

Platform
The first section, platform, tells us a little about the computer Perl was being built on, as well as some of
the choices we made at compile time. This particular machine is running Linux 2.4.0–test9, and the
arguments –d –Dusedevel were passed to Configure during the question and answer section. (We will
see what these arguments do when we come to looking at how Perl is built.)

hint=recommended means that the configure program accepted the recommended hints for how a
Linux system behaves. We built the POSIX module, and we have a struct sigaction in our C
library.

Next comes a series of choices about the various flavors of Perl we can compile: usethreads is turned
off, meaning this version of Perl has no threading support.

Perl has two types of threading support. See Chapters 1 and 22 for information regarding the old Perl
5.005 threads, which allow us to create and destroy threads in our Perl program, inside the Perl
interpreter. This enables us to share data between threads, and lock variables and subroutines against
being changed or entered by other threads. This is the use5.005threads option above.

The other model, which came with version 5.6.0, is called interpreter threads or ithreads. In this model,
instead of having two threads sharing an interpreter, the interpreter itself is cloned, and each clone runs
its own portion of the program. This means that, for instance, we can simulate fork on systems such as
Windows, by cloning the interpreter and having each interpreter perform separate tasks. Interpreter
threads are only really production quality on Win32 – on all other systems they are still experimental.
Allowing multiple interpreters inside the same binary is called multiplicity.

The next two options refer to the IO subsystem. Perl can use an alternative input/output library called
sfio (http://www.research.att.com/sw/tools/sfio) instead of the usual stdio if it is available. There is also
a separate PerlIO being developed, which is specific to Perl. Next, there is support for files over 2Gb if
our operating system supports them, and support for the SOCKS firewall proxy, although the core does
not use this yet. Finally, there is a series of 64-bit and long double options.

Compiler
The compiler tells us about the C environment. Looking at the output, we are informed of the compiler
we used and the flags we passed to it, the version of GCC used to compile Perl and the sizes of C's types
and Perl's internal types. usemymalloc refers to the choice of Perl's supplied memory allocator rather
than the default C one.

The next section is not very interesting, but it tells us what libraries we used to link Perl.

Chapter 20

818

Linker and Libraries
The only thing of particular note in this section is useshrplib, which allows us to build Perl as a shared
library. This is useful if we have a large number of embedded applications, and it means we get to
impress our friends by having a 10K Perl binary. By placing the Perl interpreter code in a separate
library, Perl and other programs that embed a Perl interpreter can be made a lot smaller, since they can
share the code instead of each having to contain their own copy.

Dynamic Linking
When we use XS modules (for more information on XS see Chapter 21), Perl needs to get at the object
code provided by the XS. This object code is placed into a shared library, which Perl dynamically loads
at run time when the module is used. The dynamic linking section determines how this is done. There
are a number of models that different operating systems have for dynamic linking, and Perl has to select
the correct one here. dlsrc is the file that contains the source code to the chosen implementation.
dlsymun tells us whether or not we have to add underlines to symbols dynamically loaded. This is
because some systems use different naming conventions for functions loaded at run time, and Perl has to
cater to each different convention.

The documentation to the Config contains explanations for these and other configure variables
accessible from the module. It gets this documentation from Porting/Glossary in the Perl source kit.

What use is this? Well, for instance, we can tell if we have a threaded Perl or whether we have to use
fork:

use Config;

if ($Config{usethreads} eq "define") {
we have threads.
require MyApp::Threaded;

} else {
make do with forking
require MyApp::Fork;

}

Note that Config gives us a hash, %Config, which contains all the configuration variables.

Under the Hood
Now it is time to really get to the deep material. Let us first look around the Perl source, before taking
an overall look at the structure and workings of the Perl interpreter.

Around the Source Tree
The Perl source is composed of around 2190 files in 186 directories. To be really familiar with the
source, we need to know where we can expect a part of it to be found, so it is worth taking some time to
look at the important sections of the source tree. There are also several informational files in the root of
the tree:

Inside Perl

819

❑ Changes* – a very comprehensive list of every change that has been made to the Perl source
since Perl 5.000

❑ Todo* – lists the changes that haven't been made yet – bugs to be fixed, ideas to try out, and
so on

❑ MANIFEST – tells us what each file in the source tree does

❑ AUTHORS and MAINTAIN – tell us who is 'looking after' various parts of the source

❑ Copying and Artistic – the two licenses under which we receive Perl

Documentation The bulk of the Perl documentation lives in the pod/ directory. Platform-
specific notes can be found as README.* in the root of the source tree.

Core modules The standard library of modules shipped with Perl is distributed around two
directories: pure-Perl modules that require no additional treatment are
placed in lib/, and the XS modules are each given their own subdirectory
in the ext/ directory.

Regression tests When a change to Perl is made, the Perl developers will run a series of tests
to ensure that this has not introduced any new bugs or reopened old ones;
Perl will also encourage us to run the tests when we build a new Perl on our
system. These regression tests are found in the t/ directory.

Platform–
specific code

Some platforms require a certain amount of special treatment. They do not
provide some system calls that Perl needs, for instance, or there is some
difficulty in getting them to use the standard build process. (See Building
Perl.) These platforms have their own subdirectories: apollo/, beos/,
cygwin/, djgpp/, epoc/, mint/, mpeix/, os2/, plan9/, qnx/, vmesa/,
vms/, vos/, and win32/.

Additionally, the hints/ subdirectory contains a series of shell scripts,
which communicate platform-specific information to the build process.

Utilities Perl comes with a number of utilities scattered around. perldoc and the
pod translators, s2p, find2perl, a2p, and so on. (There is a full list, with
descriptions, in the perlutils documentation of Perl 5.7 and above.)

These are usually kept in utils/ and x2p/, although the pod translators
have escaped to pod/.

Chapter 20

820

Helper Files The root directory of the source tree contains several program files that are
used to assist the installation of Perl, (installhtml, installman,
installperl) some which help out during the build process (for instance,
cflags, makedepend, and writemain) and some which are used to
automate generating some of the source files.

In this latter category, embed.pl is most notable, as it generates all the
function prototypes for the Perl source, and creates the header files
necessary for embedding Perl in other applications. It also extracts the API
documentation embedded in the source code files.

Eagle-eyed readers may have noticed that we have left something out of that list – the core source to
Perl itself! The files *.c and *.h in the root directory of the source tree make up the Perl binary, but
we can also group them according to what they do:

Data Structures A reasonable amount of the Perl source is devoted to managing the various
data structures Perl requires, we will examine more about these structures in
'Internal Variable Types' later on. The files that manage these structures –
av.c, av.h, cv.h, gv.c, gv.h, hv.c, hv.h, op.c, op.h, sv.c, and sv.h
– also contain a wide range of helper functions, which makes it considerably
easier to manipulate them. See perlapi for a taste of some of the functions
and what they do.

Parsing The next major functional group in the Perl source code is the part turns our
Perl program into a machine-readable data structure. The files that take
responsibility for this are toke.c and perly.y, the lexer and the parser.

PP Code Once we have told Perl that we want to print 'hello world' and the parser has
converted those instructions into a data structure, something actually has to
implement the functionality. If we wonder where, for instance, the print
statement is, we need to look at what is called the PP code. (PP stands for
push-pop, for reasons will become apparent later).

The PP code is split across four source files: pp_hot.c contains 'hot'
code which is used very frequently, pp_sys.c contains operating-system-
specific code, such as network functions or functions which deal with the
system databases (getpwent and friends), pp_ctl.c takes care of
control structures such as while, eval, and so on. pp.c implements
everything else.

Miscellaneous Finally, the remaining source files contain various utility functions to
make the rest of the coding easier: utf8.c contains functions that
manipulate data encoded in UTF8; malloc.c contains a memory
management system; and util.c and handy.h contain some useful
definitions for such things as string manipulation, locales, error messages,
environment handling, and the like.

Inside Perl

821

Building Perl
Perl builds on a mind-boggling array of different platforms, and so has to undergo a very rigorous
configuration process to determine the characteristics of the system it is being built on.

There are two major systems for doing this kind of probing: the GNU project autoconf is used by the
vast majority of free software, but Perl uses an earlier and less common system called metaconfig.

'metaconfig' Rather than 'autoconf'?
Porting /pumpkin.pod explains that both systems were equally useful, but the major reasons for
choosing metaconfig are that it can generate interactive configuration programs. The user can
override the defaults easily: autoconf, at the time, affected the licensing of software that used it, and
metaconfig builds up its configuration programs using a collection of modular units. We can add our
own units, and metaconfig will make sure that they are called in the right order.

The program Configure in the root of the Perl source tree is a UNIX shell script, which probes our
system for various capabilities. The configuration in Windows is already done for us, and an NMAKE
file can be found in the win32/ directory. On the vast majority of systems, we should be able to type
./Configure –d and then let Configure do its stuff. The –d option chooses sensible defaults instead
prompting us for answers. If we're using a development version of the Perl sources, we'll have to say
./Configure –Dusedevel –d to let Configure know that we are serious about it. Configure asks if
we are sure we want to use a development version, and the default answer chosen by –d is 'no'.–
Dusedevel overrides this answer. We may also want to add the –DDEBUGGING flag to turn on special
debugging options, if we are planning on looking seriously at how Perl works.

When we start running Configure, we should see something like this:

> ./Configure -d -Dusedevel
Sources for perl5 found in "/home/simon/patchbay/perl".
Beginning of configuration questions for perl5.
Checking echo to see how to suppress newlines...
...using –n.
The star should be here––>*

First make sure the kit is complete:

Checking...

And eventually, after a few minutes, we should see this:

Creating config.sh...
If you'd like to make any changes to the config.sh file before I begin
to configure things, do it as a shell escape now (e.g. !vi config.sh).
Press return or use a shell escape to edit config.sh:

After pressing return, Configure creates the configuration files, and fixes the dependencies for the
source files.

We then type make to begin the build process.

Chapter 20

822

Perl builds itself in various stages. First, a Perl interpreter is built called miniperl; this is just like the
eventual Perl interpreter, but it does not have any of the XS modules – notably, DynaLoader – built in
to it. The DynaLoader module is special because it is responsible for coordinating the loading of all the
other XS modules at run time; this is done through DLLs, shared libraries or the local equivalent on our
platform. Since we cannot load modules dynamically without DynaLoader, it must be built in statically
to Perl – if it was built as a DLL or shared library, what would load it? If there is no such dynamic
loading system, all of the XS extensions much be linked statically into Perl.

miniperl then generates the Config module from the configuration files generated by Configure,
and processes the XS files for the extensions that we have chosen to build; when this is done, make
returns to the process of building them. The XS extensions that are being linked in statically, such as
DynaLoader, are linked to create the final Perl binary.

Then the tools, such as the pod translators, perldoc, perlbug, perlcc, and so on, are generated,
these must be created from templates to fill in the eventual path of the Perl binary when installed. The
sed–to–perl and awk-to-perl translators are created, and then the manual pages are processed.

Once this is done, Perl is completely built and ready to be installed; the installperl program looks
after installing the binary and the library files, and installman and installhtml install the
documentation.

How Perl Works
Perl is a byte-compiled language, and Perl is a byte-compiling interpreter. This means that Perl, unlike
the shell, does not execute each line of our program as it reads it. Rather, it reads in the entire file,
compiles it into an internal representation, and then executes the instructions.

There are three major phases by which it does this: parsing, compiling, and interpreting.

Parsing
Strictly speaking, parsing is only a small part of what we are talking of here, but it is casually used to
mean the process of reading and 'understanding' our program file. First, Perl must process the
command-line options and open the program file.

It then shuttles extensively between two routines: yylex in toke.c, and yyparse in perly.y.
The job of yylex is to split up the input into meaningful parts, (tokens) and determine what 'part of
speech' each represents. toke.c is a notoriously fearsome piece of code, and it can sometimes be
difficult to see how Perl is pulling out and identifying tokens; the lexer, yylex, is assisted by a sublexer
(in the functions S_sublex_start, S_sublex_push, and S_sublex_done), which breaks apart
double-quoted string constructions, and a number of scanning functions to find, for instance, the end of
a string or a number.

Once this is completed, Perl has to try to work out how these 'parts of speech' form valid 'sentences'. It
does this by means of grammar, telling it how various tokens can be combined into 'clauses'. This is
much the same as it is in English: say we have an adjective and a noun – 'pink giraffes'. We could call
that a 'noun phrase'. So, here is one rule in our grammar:

adjective + noun => noun phrase

Inside Perl

823

We could then say:

adjective + noun phrase => noun phrase

This means that if we add another adjective – 'violent pink giraffes' – we have still got a noun phrase. If
we now add the rules:

noun phrase + verb + noun phrase => sentence
noun => noun phrase

We could understand that 'violent pink giraffes eat honey' is a sentence. Here is a diagram of what we
have just done:

sentence

verbNP

Adj NP

Adj N

NP

N

violent pink giraffes eat honey

We have completely parsed the sentence, by combining the various components according to our
grammar. We will notice that the diagram is in the form of a tree, this is usually called a parse tree. This
explains how we started with the language we are parsing, and ended up at the highest level of our
grammar.

We put the actual English words in filled circles, and we call them terminal symbols, because they are at
the very bottom of the tree. Everything else is a non-terminal symbol.
We can write our grammar slightly differently:

s : np v np
;
np : adj np
| adj n
| n
;

This is called 'Backhaus-Naur Form', or BNF; we have a target, a colon, and then several sequences
of tokens, delimited by vertical bars, finished off by a semicolon. If we can see one of the sequences
of things on the right-hand side of the colon, we can turn it into the thing on the left – this is known
as a reduction.

TE
AM
FL
Y

Team-Fly®

Chapter 20

824

The job of a parser is to completely reduce the input; if the input cannot be completely reduced, then a
syntax error arises. Perl's parser is generated from BNF grammar in perly.y; here is an (abridged)
excerpt from it:

loop : label WHILE '(' expr ')' mblock cont
| label UNTIL '(' expr ')' mblock cont
| label FOR MY my_scalar '(' expr ')' mblock cont

| ...
cont :

| CONTINUE block
;

We can reduce any of the following into a loop:

❑ A label, the token WHILE, an open bracket, some expression, a close bracket, a block, and a
continue block

❑ A label, the token UNTIL, an open bracket, some expression, a close bracket, a block, and a
continue block

❑ A label, the tokens FOR and MY, a scalar, an open bracket, some expression, a close bracket, a
block, and a continue block. (Or some other things we will not discuss here.)

And that a continue block can be either:

❑ The token CONTINUE and a block

❑ Empty

We will notice that the things that we expect to see in the Perl code – the terminal symbols – are in
upper case, whereas the things thatare purely constructs of the parser, like the noun phrases of our
English example, are in lower case.

Armed with this grammar, and a lexer, which can split the text into tokens and turn them into non-
terminals if necessary, Perl can 'understand' our program. We can learn more about parsing and the
yacc parser generator in the book Compilers: Principles, Techniques and Tools, ISBN 0-201100-88-6.

Compiling
Every time Perl performs a reduction, it generates a line of code; this is as determined by the grammar
in perly.y. For instance, when Perl sees two terms connected by a plus sign, it performs the following
reduction, and generates the following line of code:

term | term ADDOP term
{$$ = newBINOP($2, 0, scalar($1), scalar($3));}

Here, as before, we're turning the things on the right into the thing on the left. We take our term, an
ADDOP, which is the terminal symbol for the addition operator, and another term, and we reduce those
all into a term.

Now each term, or indeed, each symbol carries around some information with it. We need to ensure
that none of this information is lost when we perform a reduction. In the line of code in braces above,
$1 is shorthand for the information carried around by the first thing on the right – that is, the first term.
$2 is shorthand for the information carried around by the second thing on the right – that is, the ADDOP
and so on. $$ is shorthand for the information that will be carried around by the thing on the left, after
reduction.

Inside Perl

825

newBINOP is a function that says 'Create a new binary op'. An op (short for operation) is a data
structure, which represents a fundamental operation internal to Perl. It's the lowest–level thing that Perl
can do, and every non–terminal symbol carries around one op. Why? Because every non–terminal
symbol represents something that Perl has to do: fetching the value of a variable is an op; adding two
things together is an op; performing a regular expression match is an op, and so on. There are some 351
ops in Perl 5.

A binary op is an op with two operands, just like the addition operator in Perl-space – we add the thing
on the left to the thing on the right. Hence, along with the op, we have to store a link to our operands;
if, for instance, we are trying to compile $a + $b, our data structure must end up looking like this:

add is the type of binary op that we have created, and we must link this to the ops that fetch the values
of $a and $b. So, to look back at our grammar:

term | term ADDOP term
{$$ = newBINOP($2, 0, scalar($1), scalar($3));}

We have two 'terms' coming in, both of which will carry around an op with them, and we are producing
a term, which needs an op to carry around with it. We create a new binary op to represent the addition,
by calling the function newBINOP with the following arguments: $2, as we know, stands for the second
thing on the right, ADDOP; newBINOP creates a variety of different ops, so we need to tell it which
particular op we want – we need add, rather than subtract or divide or anything else. The next value,
zero, is just a flag to say 'nothing special about this op'. Next, we have our two binary operands, which
will be the ops carried around by the two terms. We call scalar on them to make them turn on a flag
to denote scalar context.

As we reduce more and more, we connect more ops together: if we were to take the term we've just
produced by compiling $a + $b and then use it as the left operand to ($a + $b) + $c, we would end
up with an op looking like this:

Chapter 20

826

Eventually, the whole program is turned into a data structure made up of ops linking to ops: an op tree.
Complex programs can be constructed from hundreds of ops, all connected to a single root; even a
program like this:

while(<>) {
next unless /^#/;
print;
$oklines++;

} print "TOTAL: $oklines\n";

Turns into an op tree like this:

leave

enter

enterloop

nextstate nextstateleaveloop print

null null

null

null

pushmark

concat

concat const

gvsv

gvsvgvsv

or

match nextgvgvsv

readlinenull

defined lineseq

nextstatenextstatenextstatenextstate nullnullnull constunstackpreincprint

and

nullpushmark

We can examine the op tree of a Perl program using the B::Terse module described later, or with the
–Dx option to Perl if we told Configure we wanted to build a debugging Perl.

Interpreting
Once we have an op tree, what do we do with it? Having compiled the program into an op tree, the
usual next stage is to do the ops. To make this possible, while creating the op tree, Perl has to keep track
of the next op in the sequence to execute. So, running through the tree structure, there is an additional
'thread', like this:

add

fetch value of Sc

fetch value of Sa fetch value of Sb

add

Inside Perl

827

Executing a Perl program is just a matter of following this thread through the op tree, doing whatever
instruction necessary at each point. In fact, the main code, which executes a Perl program is deceptively
simple: it is the function run_ops_standard in run.c, and if we were to translate it into Perl, it would
look a bit like this:

PERL_ASYNC_CHECK() while $op = &{$op–>pp_function};

Each op contains a function reference, which does the work and returns the next op in the thread. Why
does the op return the next one? Don't we already know that? Well, we usually do, but for some ops,
like the one that implements if, the choice of what to do next has to happen at run time.
PERL_ASYNC_CHECK is a function that tests for various things like signals that can occur asynchronously
between ops.

The actual operations are implemented in PP code, the files pp*.c; we mentioned earlier that PP stands
for push-pop, because the interpreter uses a stack to carry around data, and these functions spend a lot
of time popping values off the stack or pushing values on. For instance, to execute $a = $b + $c the
sequence of ops must look like this:

❑ Fetch $b and put it on the stack.

❑ Fetch $c and put it on the stack.

❑ Pop two values off the stack and add them, pushing the value.

❑ Fetch $a and put it on the stack.

❑ Pop a value and a variable off the stack and assign the value to the variable.

We can watch the execution of a program with the –Dt flag if we configured Perl with the –DEBUGGING
option. We can also use –Ds and watch the contents of the stack.

And that is, very roughly, how Perl works: it first reads in our program and 'understands' it; second, it
converts it into a data structure called an op tree; and finally, it runs over that op tree executing the
fundamental operations.

There's one fly in the ointment: if we do an eval STRING, Perl cannot tell what the code to execute will
be until run time. This means that the op that implements eval must call back to the parser to create a
new op tree for the string and then execute that.

Internal Variable Types
Internally, Perl has to use its own variable types. Why? Well, consider the scalar variable $a in the
following code:

$a = "15x";
$a += 1;
$a /= 3;

Is it a string, an integer, or a floating-point number? It is obviously all three at different times,
depending on what we want to do with it, and Perl has to be able to access all three different
representations of it. Worse, there is no 'type' in C that can represent all of the values at once. So, to get
around these problems, all of the different representations are lumped into a single structure in the
underlying C implementation: a Scalar Variable, or SV.

Chapter 20

828

PVs
The simplest form of SV holds a structure representing a string value. Since we've already used the
abbreviation SV, we have to call this a PV, a Pointer Value. We can use the standard Devel::Peek
module to examine a simple SV, (see the section 'Examining Raw Datatypes with Devel::Peek' later in
the chapter for more detail on this module):

> perl -MDevel::Peek -e '$a = "A Simple Scalar"; Dump($a)'
SV = PV(0x813b564) at 0x8144ee4

REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x81471a8 "A Simple Scalar"\0
CUR = 15
LEN = 16

What does this tell us? This SV is stored at memory location C<0x8144ee4>; the location can vary on
different computers. The particular type of SV is a PV, which is itself a structure; that structure starts at
location C<0x813b564>.

Next comes some housekeeping information about the SV itself: its reference count (the REFCNT field)
tells us how many references exist to this SV. As we know from our Perl-level knowledge of references,
once this drops to zero, the memory used by the SV is available for reallocation. The flags tell us, in this
case, that it's OK to use this SV as a string right now; the POK means that the PV is valid. (In case we
are wondering, the pPOK means that Perl itself can use the PV. We shouldn't take advantage of this –
the little p stands for 'private'.)

The final three parts come from the PV structure itself: there's the pointer we talked about, which tells
us that the string is located at 0x81471a8 in memory. Devel::Peek also prints out the string for us, to
be extra helpful. Note that in C, but not in Perl, strings are terminated with \0 – character zero.

Since C thinks that character zero is the end of a string, this causes problems when we want to have
character zero in the middle of the string. For this reason, the next field, CUR is the length of the string;
this allows us to have a string like a\0b and still 'know' that it's three characters long and doesn't finish
after the a.

The last field is LEN, the maximum length of the string that we have allocated memory for. Perl
allocates more memory than it needs to, to allow room for expansion. If CUR gets too close to LEN, Perl
will automatically reallocate a proportionally larger chunk of memory for us.

IVs
The second-simplest SV structure is one that contains the structures of a PV and an IV: an Integer
Value. This structure is called a PVIV, and we can create one by performing string concatenation on an
integer, like this:

> perl -MDevel::Peek -e '$a = 1; Dump($a); $a.="2"; Dump($a)'
SV = IV(0x8132fe4) at 0x8132214

REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 1
SV = PVIV(0x8128c30) at 0x8132204
REFCNT = 1

Inside Perl

829

FLAGS = (POK,pPOK)
IV = 1
PV = 0x8133e38 "12"\0
CUR = 2
LEN = 3

Notice how our SV starts as a simple structure with an IV field, representing the integer value of the
variable. This value is 1, and the flags tell us that the IV is fine to use.

However, to use it as a string, we need a PV; rather than change its type to a PV, Perl changes it to a
combination of IV and PV. Why? Well, if we had to change the structure of a variable every time we
used it as an integer or a string, things would get very slow. Once we have upgraded the SV to a PVIV,
we can very easily use it as PV or IV.

Similarly, Perl never downgrades an SV to a less complex structure, nor does it change between equally
complex structures.

When Perl performs the string concatenation, it first converts the value to a PV – the C macro SvPV
retrieves the PV of a SV, converting the current value to a PV and upgrading the SV if necessary. It
then adds the 2 onto the end of the PV, automatically extending the memory allocated for it. Since the
IV is now out of date, the IOK flag is unset and replaced by POK flags to indicate that the string value is
valid.

On some systems, we can use unsigned (positive only) integers to get twice the range of the normal
signed integers; these are implemented as a special type known as a UV.

NVs
The third and final (for our purposes) scalar type is an NV (Numeric Value), a floating-point value. The
PVNV type includes the structures of a PV, an IV, and an NV, and we can create one just like our
previous example:

> perl -MDevel::Peek -e '$a = 1; Dump($a); $a.="2"; Dump($a); $a += 0.5; Dump($a)'
SV = IV(0x80fac44) at 0x8104630

REFCNT = 1
FLAGS = (IOK,pIOK,IsUV)
UV = 1

SV = PVIV(0x80f06f8) at 0x8104630
REFCNT = 1
FLAGS = (POK,pPOK)
IV = 1
PV = 0x80f3e08 "12"\0
CUR = 2
LEN = 3

SV = PVNV(0x80f0d68) at 0x8104630
REFCNT = 1
FLAGS = (NOK,pNOK)
IV = 1
NV = 12.5
PV = 0x80f3e08 "12"\0
CUR = 2
LEN = 3

Chapter 20

830

We should be able to see that this is very similar to what happened when we used an IV as a string: Perl
had to upgrade to a more complex format, convert the current value to the desired type (an NV in this
case), and set the flags appropriately.

Arrays and Hashes
We have seen how scalars are represented internally, but what about aggregates like arrays and hashes?
These, too, are stored in special structures, although these are much more complex than the scalars.

Arrays are, as we might be able to guess, a series of scalars stored in a C array; they are called an AV
internally. Perl takes care of making sure that the array is automatically extended when required so that
new elements can be accommodated.

Hashes, or HVs, on the other hand, are stored by computing a special value for each key; this key is
then used to reference a position in a hash table. For efficiency, the hash table is a combination of an
array of linked lists, like this:

Hash key Hashing Algorithm Distribute across buckets

Array of hash buckets

"hello"

for (split //, $string)
{

$hash =
($hash * 33 + ord ($_)) %429467294;

}
return ($hash + $hash>>5)

"hello" => 7942919

7942919 & 7 => 7

0

1

2

3

4

5

6

7

Hash entry
Hash chain

(More entries in same bucket)
7942919

"Value"

Thankfully, the interfaces to arrays and hashes are sufficiently well-defined by the Perl API that it's
perfectly possible to get by without knowing exactly how Perl manipulates these structures.

Examining Raw Datatypes with 'Devel::Peek'
The Devel::Peek module provides us with the ability to examine Perl datatypes at a low level. It is
analogous to the Dumpvalue module, but returns the full and gory details of the underlying Perl
implementation. This is primarily useful in XS programming, the subject of Chapter 21 where Perl and
C are being bound together and we need to examine the arguments passed by Perl code to C library
functions.

For example, this is what Devel::Peek has to say about the literal number 6:

> perl -MDevel::Peek -e "Dump(6)"
SV = IV(0x80ffb48) at 0x80f6938
REFCNT = 1
FLAGS = (IOK,READONLY,pIOK,IsUV)
UV = 6

Inside Perl

831

Other platforms may add some items to FLAGS, but this is nothing to be concerned about. NT may add
PADBUSY and PADTMP, for example.

We also get a very similar result (with possibly varying memory address values) if we define a scalar
variable and fill it with the value 6:

> perl -MDevel::Peek -e '$a=6; Dump($a)'
SV = IV(0x80ffb74) at 0x8109b9c
REFCNT = 1
FLAGS = (IOK,pIOK,IsUV)
UV = 6

This is because Devel::Peek is concerned about values, not variables. It makes no difference if the 6
is literal or stored in a variable, except that Perl knows that the literal value cannot be assigned to and
so is READONLY.

Reading the output of Devel::Peek takes a little concentration but is not ultimately too hard, once the
abbreviations are deciphered:

❑ SV means that this is a scalar value.

❑ IV means that it is an integer.

❑ REFCNT=1 means that there is only one reference to this value (the count is used by Perl's
garbage collection to clear away unused data).

❑ IOK and pIOK mean this scalar has a defined integer value (it would be POK for a string value,
or ROK if the scalar was a reference).

❑ READONLY means that it may not be assigned to. Literal values have this set whereas
variables do not.

❑ IsUV means that it is an unsigned integer and that its value is being stored in the unsigned
integer slot UV rather than the IV slot, which indeed it is.

The UV slot is for unsigned integers, which can be twice as big as signed ones for any given size of
integer (for example, 32 bit) since they do not use the top bit for a sign. Contrast this to –6, which
defines an IV slot and doesn't have the UV flag set:

SV = IV(0x80ffb4c) at 0x80f6968
REFCNT = 1
FLAGS = (IOK,READONLY,pIOK)
IV = –6

The Dump subroutine handles scalar values only, but if the value supplied to Dump happens to be an
array or hash reference, then each element will be dumped out in turn. A second optional count
argument may be supplied to limit the number of elements dumped. For list values (that is lists, arrays,
or hashes) we need to use DumpArray, which takes a count and a list of values to dump. Each of these
values is of course scalar (even if it is a reference), but DumpArray will recurse into array and hash
references:

> perl -MDevel::Peek -e '@a=(1,[2,sub {3}]); DumpArray(2, @a)'

Chapter 20

832

This array has two elements, so we supply 2 as the first argument to DumpArray. We could of course
also have supplied a literal list of two scalars, or an array with more elements (in which case only the
first two would be dumped).

The example above produces the following output, where the outer array of an IV (index no. 0) and an
RV (reference value, index no. 1) can be clearly seen, with an inner array inside the RV of element 1
containing a PV (string value) with the value two and another RV. Since this one is a code reference,
DumpArray cannot analyze it any further. At each stage the IOK, POK, or ROK (valid reference) flags
are set to indicate that the scalar SV contains a valid value of that type:

Elt No. 0 0x811474c
SV = IV(0x80ffb74) at 0x811474c

REFCNT = 1
FLAGS = (IOK,pIOK,IsUV)
UV = 1

Elt No. 1 0x8114758
SV = RV(0x810acbc) at 0x8114758

REFCNT = 1
FLAGS = (ROK)
RV = 0x80f69a4
SV = PVAV(0x81133b0) at 0x80f69a4

REFCNT = 1
FLAGS = ()
IV = 0
NV = 0
ARRAY = 0x81030b0
FILL = 1
MAX = 1
ARYLEN = 0x0
FLAGS = (REAL)
Elt No. 0
SV = PV(0x80f6b74) at 0x80f67b8

REFCNT = 1
FLAGS = (POK,pPOK)
PV = 0x80fa6d0 "two"\0
CUR = 3
LEN = 4

Elt No. 1
SV = RV(0x810acb4) at 0x80fdd24

REFCNT = 1
FLAGS = (ROK)
RV = 0x81077d8

We mentioned earlier in the chapter how Perl can hold both a string and an integer value for the same
variable. With Devel::Peek we can see how:

> perl -MDevel::Peek -e '$a="2701"; $a*1; Dump($a)'

Or on Windows:

> perl -mDevel::Peek -e "$a=q(2701); $a*1; Dump($a)"

Inside Perl

833

This creates a variable containing a string value, then uses it (redundantly, since we do not use
the result) in a numeric context and then dumps it. This time the variable has both PV and NV
(floating-point) values, and the corresponding POK and NOK flags set:

SV = PVNV(0x80f7648) at 0x8109b84
REFCNT = 1
FLAGS = (NOK,POK,pNOK,pPOK)
IV = 0
NV = 2701
PV = 0x81022e0 "2701"\0
CUR = 4
LEN = 5

It is interesting to see that Perl actually produced a floating-point value here and not an integer – a
window into Perl's inner processes. As a final example, if we reassign $a in the process of converting it,
we can see that we get more than one value stored, but only one is legal:

> perl -MDevel::Peek -e '$a="2701"; $a=int($a); Dump($a)'

This produces:

SV = PVNV(0x80f7630) at 0x8109b8c
REFCNT = 1
FLAGS = (IOK,pIOK)
IV = 2701
NV = 2701
PV = 0x81022e8 "2701"\0
CUR = 4
LEN = 5

The int subroutine is used to reassign $a an integer value. As we can see from the results of the dump,
Perl actually converted the value from a string into a floating point NV value before assigning an integer
IV to it. Because the assignment gives the variable a new value (even if it is equal to the string), only
the IOK flag is now set.

These are the main features of Devel::Peek from an analysis point of view. Of course in reality we
would not be using it from the command line but to analyze values inside Perl code. Here we have just
used it to satisfy our curiosity and understand the workings of Perl a little better.

If we have a Perl interpreter combined with DEBUGGING_MSTATS we can also make use of the mstat
subroutine to output details of memory usage. Unless we built Perl specially to do this, however, it is
unlikelyto be present, and so this feature is not usually available.

Devel::Peek also contains advanced features to edit the reference counts on scalar values. This is not
a recommended thing to do even in unusual circumstances, so we will not do more than mention that it
is possible here. We can see perldoc Devel::Peek for information if absolutely necessary.

The Perl Compiler
The Perl Compiler suite is an oft-misunderstood piece of software. It allows us to perform various
manipulations of the op tree of a Perl program, including converting it to C or bytecode. People expect
that if they use it to compile their Perl to stand-alone executables, it will make their code magically run
faster, when in fact, usually the opposite occurs. Now we know a little about how Perl works internally,
we can determine why this is the case.

TE
AM
FL
Y

Team-Fly®

Chapter 20

834

In the normal course of events, Perl parses our code, generates an op tree, and then executes it. When
the compiler is used, Perl stops before executing the op tree and executes some other code instead, code
provided by the compiler. The interface to the compiler is through the O module, which simply stops
Perl after it has compiled our code, and then executes one of the "compiler backend" modules, which
manipulate the op tree. There are several different compiler back-ends, all of which live in the 'B::'
module hierarchy, and they perform different sorts of manipulations: some perform code analysis, while
others convert the op tree to different forms, such as C or Java VM assembler.

The 'O' Module
How does the O module prevent Perl from executing our program? The answer is by using a CHECK
block. As we learnt in Chapter 6, Perl has several special blocks that are automatically called at various
points in our program's lifetime: BEGIN blocks are called before compilation, END blocks are called
when our program finishes, INIT blocks are run just before execution, and CHECK blocks are run after
compilation.

sub import {
($class, $backend, @options) = @_;
eval "use B::$backend ()";
if ($@) {

croak "use of backend $backend failed: $@";
}
$compilesub = &{"B::${backend}::compile"}(@options);
if (ref($compilesub) eq "CODE") {

minus_c;
save_BEGINs;
eval 'CHECK {&$compilesub()}';

} else {
die $compilesub;

}
}

The 'B' Module
The strength of these compiler back-ends comes from the B module, which allows Perl to get at the C-
level data structure which makes up the op tree; now we can explore the tree from Perl code, examining
both SV structures, and OP structures.

For instance, the function B::main_start returns an object, which represents the first op in the tree
that Perl will execute. We can then call methods on this object to examine its data:

use B qw(main_start class);

CHECK {
$x= main_start;
print "The starting op is in class ", class($x), " and is of type:

", $x–>ppaddr, "\n";
$y = $x –> next;
print "The next op after that is in class ", class($y), " and is of type

", $y–>ppaddr, "\n";
};
print "This is my program";

Inside Perl

835

The class function tells us what type of object we have, and the ppaddr method tells us which part of
the PP code this op will execute. Since the PP code is the part that actually implements the op, this
method tells us what the op does. For instance:

The starting op is in class OP and is of type: PL_ppaddr[OP_ENTER]
The next op after that is in class COP and is of type: PL_ppaddr[OP_NEXTSTATE]
This is my program

This tells us we have an ENTER op followed by a NEXTSTATE op. We could even set up a little loop to
keep looking at the next op in the sequence:

use B qw(main_start class);

CHECK {
$x= main_start;
print "The starting op is in class ", class($x), " and is of type:

", $x–>ppaddr, "\n";
while ($x = $x–>next and $x–>can("ppaddr")) {

print "The next op after that is in class ",class($x),
" and is of type ", $x–>ppaddr, "\n";

}
};
print "This is my program";

This will list all the operations involved in the one-line program print This is my program:

The starting op is in class OP and is of type: PL_ppaddr[OP_ENTER]
The next op after that is in class COP and is of type PL_ppaddr[OP_NEXTSTATE]
The next op after that is in class OP and is of type PL_ppaddr[OP_PUSHMARK]
The next op after that is in class SVOP and is of type PL_ppaddr[OP_CONST]
The next op after that is in class LISTOP and is of type PL_ppaddr[OP_PRINT]
The next op after that is in class LISTOP and is of type PL_ppaddr[OP_LEAVE]
This is my program

Since looking at each operation in turn is a particularly common thing to do when building compilers,
the B module provides methods to 'walk' the op tree. The walkoptree_slow starts a given op and
performs a breadth-first traversal of the op tree, calling a method of our choice on each op. Whereas
walkoptree_exec does the same, but works through the tree in execution order, using the next
method to move through the tree, similar to our example programs above.

To make these work, we must provide the method in each relevant class by defining the relevant
subroutines:

use B qw(main_start class walkoptree_exec);
CHECK {

walkoptree_exec(main_start, "test");

sub B::OP::test {
$x = shift;
print "This op is in class ", class($x), " and is of type:

", $x–>ppaddr, "\n";
}

};
print "This is my program";

Chapter 20

836

The 'B::' Family of Modules
Now let us see how we can use the O module as a front end to some of the modules, which use the B
module.

We have seen some of the modules in this family already, but now we will take a look at all of the B::
modules in the core and on CPAN.

'B::Terse'
The job of B::Terse is to walk the op tree of a program, printing out information about each op. In a
sense, this is very similar to the programs we have just built ourselves.

Let us see what happens if we run B::Terse on a very simple program:

> perl -MO=Terse -e '$a = $b + $c'
LISTOP (0x8178b90) leave

OP (0x8178bb8) enter
COP (0x8178b58) nextstate
BINOP (0x8178b30) sassign

BINOP (0x8178b08) add [1]
UNOP (0x81789e8) null [15]

SVOP (0x80fbed0) gvsv GV (0x80fa098) *b
UNOP (0x8178ae8) null [15]

SVOP (0x8178a08) gvsv GV (0x80f0070) *c
UNOP (0x816b4b0) null [15]

SVOP (0x816dd40) gvsv GV (0x80fa02c) *a
-e syntax OK

This shows us a tree of the operations, giving the type, memory address and name of each operator.
Children of an op are indented from their parent: for instance, in this case, the ops enter, nextstate,
and sassign are the children of the list operator leave, and the ops add and the final null are
children of sassign.

The information in square brackets is the contents of the targ field of the op; this is used both to show
where the result of a calculation should be stored and, in the case of a null op, what the op used to be
before it was optimized away: if we look up the 15th op in opcode.h, we can see that these ops used to
be rv2sv – turning a reference into an SV.

Again, just like the programs we wrote above, we can also walk over the tree in execution order by
passing the exec parameter to the compiler:

> perl -MO=Terse,exec -e '$a = $b + $c'
OP (0x80fcf30) enter
COP (0x80fced0) nextstate
SVOP (0x80fc1d0) gvsv GV (0x80fa094) *b
SVOP (0x80fcda0) gvsv GV (0x80f0070) *c
BINOP (0x80fce80) add [1]
SVOP (0x816b980) gvsv GV (0x80fa028) *a
BINOP (0x80fcea8) sassign
LISTOP (0x80fcf08) leave
-e syntax OK

Inside Perl

837

Different numbers in the parenthesis or a different order to that shown above may be returned as this is
dependent on the version of Perl. This provides us with much the same information, but re-ordered so
that we can see how the interpreter will execute the code.

'B::Debug'
B::Terse provides us with minimal information about the ops; basically, just enough for us to
understand what's going on. The B::Debug module, on the other hand, tells us everything possible
about the ops in the op tree and the variables in the stashes. It is useful for hard-core Perl hackers trying
to understand something about the internals, but it can be quite overwhelming at first sight:

> perl -MO=Debug -e '$a = $b + $c'
LISTOP (0x8183c30)

op_next 0x0
op_sibling 0x0
op_ppaddr PL_ppaddr[OP_LEAVE]
op_targ 0
op_type 178
op_seq 6437
op_flags 13
op_private 64
op_first 0x8183c58
op_last 0x81933c8
op_children 3

OP (0x8183c58)
op_next 0x8183bf8
op_sibling 0x8183bf8
op_ppaddr PL_ppaddr[OP_ENTER]
op_targ 0
op_type 177
op_seq 6430
op_flags 0
op_private 0

...
-e syntax OK

Here's a slightly more involved cross-reference report from the debug closure example debug.pl,
which we have already encountered in Chapter 17:

#!/usr/bin/perl
debug.pl
use warnings;
use strict;

define a debugging infrastructure
{

my $debug_level = $ENV{'DEBUG'};
$debug_level| = 0;

return and optionally set debug level
sub debug_level {

my $old_level = $debug_level;
$debug_level = $_[0] if @_;
return $old_level;

}

Chapter 20

838

print debug message or set debug level
sub debug {

remove first argument, if present
my $level = shift;

@_ will contain more elements if 2+ arguments passed
if (@_) {

2+ argument calls print debug message if permitted
print STDERR @_, "\n" if $level <= debug_level();

} else {
one and no-argument calls set level
debug_level($level?$level:1);

}
}

}

set debugging level explicitly
debug_level(1);

send some debug messages
debug 1, "This is a level 1 debug message";
debug 2, "This is a level 2 debug message (unseen)";

change debug level with single argument 'debug'
debug 2;
debug 2, "This is a level 2 debug message (seen)";

return debugging level programmatically
debug 0, "Debug level is: ", debug_level;

set debug level to 1 with no argument 'debug'
debug;
debug 0, "Debug level now: ", debug_level;

Below is the command and the output that is produced:

> perl -MO=Xref debug.pl
File debug.pl

Subroutine (definitions)
Package UNIVERSAL

&VERSION s0
&can s0
&isa s0

Package attributes
&bootstrap s0

Package main
&debug s27
&debug_level s12

Subroutine (main)
Package (lexical)

$debug_level i6
Package main

%ENV 6
&debug &34, &35, &38, &39, &42, &45, &46
&debug_level &31, &42, &46

Subroutine debug

Inside Perl

839

Package (lexical)
$level i17, 20, 25, 25

Package main
&debug_level &20, &25
*STDERR 20
@_ 17, 20, 20

Subroutine debug_level
Package (lexical)

$debug_level 10, 11
Package main

@_ 10
debug.pl syntax OK

Subroutine (definitions) details all the subroutines defined in each package found, note the debug and
debug_level subroutines in package main. The numbers following indicate that these are subroutine
definitions (prefix s) and are defined on lines 12 (debug_level) and 27 (debug), which is indeed
where those subroutine definitions end.

Similarly, we can see that in package main the debug_level subroutine is called at lines 31, 42, and
46, and within debug it is called at lines 20 and 25. We can also see that the scalar $debug_level is
initialized (prefix i) on line 6, and is used only within the debug_level subroutine, on lines 10 and 11.
This is a useful result, because it shows us that the variable is not being accessed from anywhere that it
is not supposed to be.

Similar analysis of other variables and subroutines can provide us with similar information, allowing us
to track down and eliminate unwanted accesses between packages and subroutines, while highlighting
areas where interfaces need to be tightened up, or visibility of variables and values reduced.

'B::Deparse'
As its name implies, the B::Deparse module attempts to 'un-parse' a program. If parsing is going from
Perl text to an op tree, deparsing must be going from an op tree back into Perl. This may not look too
impressive at first sight:

> perl -MO=Deparse -e '$a = $b + $c'
$a = $b + $c;
-e syntax OK

It can be extremely useful for telling us how Perl sees certain constructions. For instance, we can show
that && and if are almost equivalent internally:

> perl -MO=Deparse -e '($a == $b or $c) && print "hi";'
print 'hi' if $a == $b or $c;
-e syntax OK

We can also understand the strange magic of while(<>) and the –n and –p flags to Perl:

> perl -MO=Deparse -e 'while(<>){print}'
while (defined($_ = <ARGV>)) {

print $_;
}
-e syntax OK

Chapter 20

840

> perl -MO=Deparse -pe 1
LINE: while (defined($_ = <ARGV>)) {

'???';
}
continue {

print $_;
}
-e syntax OK

The '???' represents a useless use of a constant – in our case, 1, which was then optimized away.

The most interesting use of this module is as a 'beautifier' for Perl code. In some cases, it can even help
in converting obfuscated Perl to less-obfuscated Perl. Consider this little program, named strip.pl,
which obviously does not follow good coding style:

($text=shift)||die "$0: missing argument!\n";for
(@ARGV){s-$text--g;print;if(length){print "\n"}}

B::Deparse converts it to this, a much more readable, form:

> perl -MO=Deparse strip.pl
die "$0: missing argument!\n" unless $text = shift @ARGV;
foreach $_ (@ARGV) {

s/$text//g;
print $_;
if (length $_) {

print "\n";
}

}

B::Deparse also have several options to control its output. For example, -p to add parentheses even
where they are optional, or –l to include line numbers from the original script. These options are
documented in the pod documentation included with the module.

'B::C'
One of the most sought-after Perl compiler backends is something that turns Perl code into C. In a
sense, that's what B::C does – but only in a sense. There is not currently a translator from Perl to C, but
there is a compiler. What this module does is writes a C program that reconstructs the op tree. Why is
this useful? If we then embed a Perl interpreter to run that program, we can create a stand-alone binary
that can execute our Perl code.

Of course, since we're using a built-in Perl interpreter, this is not necessarily going to be any faster than
simply using Perl. In fact, it might well be slower and, because it contains an op tree and a Perl
interpreter, we will end up with a large binary that is bigger than our Perl binary itself.

However, it is conceivably useful if we want to distribute programs to people who cannot or do not want
to install Perl on their computers. (It is far more useful for everyone to install Perl, of course...)

Instead of using perl -MO=C, the perlcc program acts as a front-end to both the B::C module and our
C compiler; it was recently re-written, so there are two possible syntaxes:

Inside Perl

841

If we're using 5.6.0, we can say:

> perlcc hello.pl

To create a binary called hello with 5.7.0 or 5.6.1 and above, the syntax and behavior is much more
like the C compiler:

> perlcc –o hello hello.pl

Do not believe that the resulting C code would be readable, by the way; it truly does just create an op
tree manually. Here is a fragment of the source generated from the famous 'Hello World' program;

static OP op_list[2] = {
{ (OP*)&cop_list[0], (OP*)&cop_list[0], NULL, 0, 177, 65535, 0x0, 0x0 },
{ (OP*)&svop_list[0], (OP*)&svop_list[0], NULL, 0, 3, 65535, 0x2, 0x0 },

};
static LISTOP listop_list[2] = {

{ 0, 0, NULL, 0, 178, 65535, 0xd, 0x40, &op_list[0], (OP*)&listop_list[1], 3 },
{ (OP*)&listop_list[0], 0, NULL, 0, 209, 65535, 0x5, 0x0,&op_list[1], (OP*)&svop_list[0], 1 },

};

And there are another 1035 lines of C code just like that. Adding the –S option to perlcc will leave the
C code available for inspection after the compiler has finished.

'B::CC'
To attempt to bridge the gap between this and 'real' C, there is the highly experimental 'optimized' C
compiler backend, B::CC. This does very much the same thing, but instead of creating the op tree, it
sets up the environment for the interpreter and manually executes each PP operation in turn, by setting
up the arguments on the stack and calling the relevant op.

For instance, the main function from 'Hello, World' will contain some code a little like this:

lab_8135840:
PL_op = &op_list[1];
DOOP(PL_ppaddr[OP_ENTER]);
TAINT_NOT;
sp = PL_stack_base + cxstack[cxstack_ix].blk_oldsp;
FREETMPS;

lab_82e7ef0:
PUSHMARK(sp);
EXTEND(sp, 1);
PUSHs((SV*)&sv_list[3]);
PL_op = (OP*)&listop_list[0];
DOOP(PL_ppaddr[OP_PRINT]);

lab_81bca58:
PL_op = (OP*)&listop_list[1];
DOOP(PL_ppaddr[OP_LEAVE]);
PUTBACK;
return PL_op;

Chapter 20

842

We should be able to see that the code after the first label picks up the first op, puts it into the PL_op
variable and calls OP_ENTER. After the next label, the argument stack is extended and an SV is grabbed
from the list of pre-constructed SVs. (This will be the PV that says 'Hello, world') This is put on the
stack, the first list operator is loaded (that will be print), and OP_PRINT is called. Finally, the next list
operator, leave is loaded and OP_LEAVE is called. This is, in a sense, emulating what is going on in the
main loop of the Perl interpreter, and so could conceivably be faster than running the program through
Perl.

However, the B::C and B::CC modules are still very experimental; the ordinary B::C module is not
guaranteed to work but very probably will, whereas the B::CC module is not guaranteed to fail but
almost certainly will.

'B::Bytecode'
Our next module, B::Bytecode, turns the op tree into machine code for an imaginary processor. This
is not dissimilar to the idea of Java bytecode, where Java code is compiled into machine code for an
idealized machine. And, in fact, the B::JVM::Jasmin module discussed below can compile Perl to
JVM bytecode. However, unlike Java, there are no software emulations of such a Perl 'virtual machine'
(although see http://www.xray.mpe.mpg.de/mailing–lists/perl5–porters/2000–04/msg00436.html for
the beginnings of one).

Bytecode is, to put it simply, the binary representation of a program compiled by Perl. Using the
B::Bytecode module this binary data is saved to a file. Then, using the ByteLoader module, it is
read in memory and executed by Perl.

Getting back to the source code of a byte-compiled script is not simple but not impossible, as in the
previous case. There is even a disassembler module, as we'll see below, but it does not produce Perl
code. Someone with a very good knowledge of the Perl internals could understand from here what the
program does, but not everybody.

The execution speed is just the same as normal Perl, and here too, only the time of reading the script
file and parsing it is cut off. In this case, however, there's the additional overhead of reading the
bytecode itself, and the ByteLoader module too. So, an overall speed increase can be obtained only on
very large programs, whose parsing time would be high enough to justify the effort.

We may ask, how does this magic take place? How does Perl run the binary data as if it was a normal
script?

The answer is that the ByteLoader module is pure magic: it installs a 'filter' that lets Perl understand a
sequence of bytes in place of Perl code. In Chapter 21 we'll introduce filters and their usage.

Using the bytecode compiler without the perlcc tool (if we're running an older version of Perl, for
example) is fairly trivial. The O compiler frontend module can be used for this:

> perl -MO=Bytecode hello.pl > hello.plc

To run the bytecode produced, we need to specify the ByteLoader module on the command line,
because the file generated this way does not contain the two header lines that perlcc adds for us:

> perl -MByteLoader hello.plc

Inside Perl

843

An op tree stored as Perl bytecode can be loaded back into Perl using the Byteloader module;
perlcc can also compile programs to bytecode by saying:

> perlcc -b -o hello.plc hello.pl

The output will be a Perl program, which begins something like:

#!/usr/bin/perl
use ByteLoader 0.04;

This is then followed by the binary bytecode output.

'B::Disassembler'
The Perl bytecode produced can be 'disassembled' using the disassemble tool, placed in the B
directory under the Perl lib path.

The output of this program is a sort of 'Perl Assembler' (thus the name): a set of basic instructions that
describe the low level working of the Perl interpreter.

It is very unlikely that someone will find this Assembler-like language comfortable (that's the reason
why high-level languages were invented, after all). However, if we already have a good knowledge of
the Perl internals, the disassembled code can provide many useful insights about the way Perl works.

The disassemble script is just a front-end for the B::Disassembler module, which does all the work.
To convert from bytecode to assembler we can use this command line:

> perl disassemble hello.plc

The output, as we can expect if we have some experience with 'regular' Assembler, is very verbose. Our
simple 'hello world' script generates 128 lines of output, for a single Perl instruction! Once the bytecode
has been disassembled, it can also be regenerated using the opposite assemble program:

> perl disassemble hello.plc > hello.S
> perl assemble hello.S > hello.plc

This could be used, for example, to convert bytecode from one Perl version to another. The
intermediate assembler should be understood by the two versions, while the binary format can change.

'B::Lint'
Like the lint utility for C files, this module acts as a basic 'style checker', looking for various things
which may indicate problems. We can select from a variety of checks, by passing a list of the names of
the tests to O as follows:

> perl -MO=Lint,context,undefined-subs program.pl

TE
AM
FL
Y

Team-Fly®

Chapter 20

844

This will turn on the context and undefined–subs checks. The checks are:

Check Type Description

context Warns whenever an array is used in a scalar context, without the
explicit scalar operator. For instance:

$count = @array;

will give a warning, but:

$count = scalar @array;

will not.

implicit–read Warns whenever a special variable is read from implicitly; for instance:

if(/test/) {...}

is an implicit match against $_.

implicit–write Warns whenever a special variable will be written to implicitly:

s/one/two/

both reads from and writes to $_, and thus causes an warning in both
the above categories.

dollar–
underscore

Warns whenever $_ is used explicitly or implicitly.

private–names Warns when a variable name is invoked which starts with an
underscore, such $_self; these variable names are, by convention,
private to some module or package.

undefined–subs Warns when a subroutine is directly invoked but not defined; this will
not catch subroutines indirectly invoked, such as through subroutine
references which may be empty.

regexp–variables The regular expression special variables $`, $', and $& slow our
program down; once Perl notices one of them in our program, it must
keep track of their value at all times. This check will warn if the regular
expression special variables are used.

all Turns on all of the above checks.

For instance, given the following file:

#!/usr/bin/perl
B_Lint.pl
use warnings;
use strict;

$count = @file = <>;
for (@file) {

if (/^\d\d\d/ and $& > 300) {
print

} else {
summarize($_);

}
}

Inside Perl

845

B::Lint reports:

> perl -MO=Lint,all test
Implicit use of $_ in foreach at test line 4
Implicit match on $_ at test line 5
Use of regexp variable $& at test line 5
Use of $_ at test line 5
Use of $_ at test line 8
Undefined subroutine summarize called at test line 8
test syntax OK

'B::Showlex'
The B::Showlex module is used for debugging lexical variables. For instance, when used on the
following short file:

#!/usr/bin/perl
#B_Showlex.pl
use warnings;
use strict;

my $one = 1;
{

my $two = "two";
my $one = "one";

}

Again, we can use the O module to drive it:

> perl -MO=Showlex B_Showlex.pl

The result shown below may differ slightly depending on the system setup:

Pad of lexical names for comppadlist has 4 entries
0: SPECIAL #1 &PL_sv_undef
1: PVNV (0x80fa0c4) "$one"
2: PVNV (0x816b070) "$two"
3: PVNV (0x8195fa0) "$one"

Pad of lexical values for comppadlist has 4 entries
0: SPECIAL #1 &PL_sv_undef
1: NULL (0x80f0070)
2: NULL (0x80fa130)
3: NULL (0x816b0dc)

This tells us that this program has four lexical key-value pairs; (remember that variables are stored in a
hash, effectively) the first is the special variable undef, the undefined value. Then follows our three
lexical variables, which have no values before our program is executed.

'B::Xref'
Generating cross-reference tables can be extremely useful to help understand a large program. The
B::Xref module tells us where subroutines and lexical variables are defined and used. For instance,
here is an extract of the output for a program called Freekai, (http://simon-
cozens.org/software/freekai/) broken down into sections:

Chapter 20

846

> perl -MO=Xref File
File freekai
Subroutine (definitions)

Package UNIVERSAL
&VERSION s0
&can s0
&isa s0

Package attributes
&bootstrap s0

Package main
&dotext s11

First, Xref tells us about the subroutine definitions; the subroutines UNIVERSAL::VERSION,
UNIVERSAL::can, UNIVERSAL::isa, and attributes::bootstrap are special subroutines internal
to Perl, so they have line number 0. On line 11, Freekai's one subroutine, dotext, is defined.

Subroutine (main)
Package ?

? &6
text &7, &8

Package Text::ChaSen
&getopt_argv &5

This section talks about subroutine calls in the main body of the program; there are some calls that it
cannot understand (these are actually handlers to HTML::Parser) and the subroutine
Text::ChaSen::getopt_argv is called on line 5.

Package main
$cset 4
$p 6, 7, 8, 9
$res 5
&dotext 7
*STDIN &9, 9

Now we describe the global variables used in the main body of the program: $cset is used on line 4,
the subroutine reference &dotext is used on line 7, and so on.

Subroutine dotext
Package (lexical)

$deinflected i19, 21
$kanji i19, 20, 21, 21
$pos i19, 20, 21
$yomi i19, 21

We enter the subroutine dotext and look at the lexical variables used here: i19 says that these
variables were all initialized on line 19, and the other numbers tell us which lines the variables were
used one.

Package Text::ChaSen
&sparse_tostr &16

Inside Perl

847

We refer to the subroutine Text::ChaSen::sparse_tostr on line 16.

Package main
$_ 12, 14, 15, 16, 19
$cset 21
@_ 12
@chars 16, 17, 18

And, finally, these are the global variables used in this subroutine.

B::Xref is an excellent way of getting an overall map of a program, particularly one that spans
multiple files and contains several modules.

Here's a slightly more involved cross-reference report from the debug closure example debug.pl we
have analyzed earlier:

> perl -MO=Xref debug.pl

Below is the output that this command produces:

File debug.pl
Subroutine (definitions)

Package UNIVERSAL
&VERSION s0
&can s0
&isa s0

Package attributes
&bootstrap s0

Package main
&debug s27
&debug_level s12

Subroutine (main)
Package (lexical)

$debug_level i6
Package main

%ENV 6
&debug &34, &35, &38, &39, &42, &45, &46
&debug_level &31, &42, &46

Subroutine debug
Package (lexical)

$level i17, 20, 25, 25
Package main

&debug_level &20, &25
*STDERR 20
@_ 17, 20, 20

Subroutine debug_level
Package (lexical)

$debug_level 10, 11
Package main

@_ 10
debug.pl syntax OK

Chapter 20

848

Subroutine (definitions) details all the subroutines defined in each package found; note the
debug and debug_level subroutines in package main. The numbers following indicate that these are
subroutine definitions (prefix s) and are defined on lines 12 (debug_level) and 27 (debug), which is
indeed where those subroutine definitions end.

Similarly, we can see that in package main the debug_level subroutine is called at lines 31, 42, and
46, and within debug it is called at lines 20 and 25. We can also see that the scalar $debug_level is
initialized (prefix i) on line 6, and is used only within the debug_level subroutine, on lines 10 and 11.
This is a useful result, because it shows us that the variable is not being accessed from anywhere that it
is not supposed to be.

Similar analysis of other variables and subroutines can provide us with similar information, allowing us
to track down and eliminate unwanted accesses between packages and subroutines, while highlighting
areas where interfaces need to be tightened up, or visibility of variables and values reduced.

'B::Fathom'
Turning to the B::* modules on CPAN, rather than in the standard distribution, B::Fathom aims to
provide a measure of readability. For instance, running B::Fathom on Rocco Caputo's Crossword
server (http://poe.perl.org/poegrams/index.html#xws) produces the following output:

> perl -MO=Fathom xws.perl
237 tokens
78 expressions
28 statements
1 subroutine
readability is 4.69 (easier than the norm)

However, do not take its word as gospel: it judges the following code (due to Damian Conway) as 'very
readable'

$;=$/;seek+DATA,!++$/,!$s;$_=<DATA>;$s&&print||$g&&do{$y=($x||=20)*($y||8);
sub
i{sleep&f}sub'p{print$;x$=,join$;,$b=~/.{$x}/g}$j=$j;sub'f{pop}sub
n{substr($b,&f%$y,3)=~tr,O,O,}sub'g{$f=&f–1;($w,$w,substr($b,&f,1),O)
[n($f–$x)+
n($x+$f)–(substr($b,&f,1)eq+O)+n$f]||$w}$w="\40";$b=join'',@ARGV?<>:$_,$w
x$y;$b=~s).)$&=~/\w/?O:$w)ge;substr($b,$y)=q++;$g='$i=0;$i?$b:$c=$b;
substr+$c,$i,1,g$i;$g=~s?\d+?($&+1)%$y?e;$i–$y+1?eval$g:do{$i=–1;$b=$c;p;i
1}';sub'e{eval$g;&e}e}||eval||die+No.$;

'B::Graph'
The B::Graph module, by Stephen McCamant, is not part of the standard compiler suite, but is
available as a separate download from CPAN.

This backend produces a graphical representation of the op tree that the compiler sees. Output is in
plain text by default, but this is not very appealing.

With the –vcg and –dot options the module generates vector graphs that can be displayed using,
respectively, the VCG (Visualization of Compiler Graphs) program (from http://www.cs.uni-
sb.de/RW/users/sander/html/gsvcg1.html) and the GraphViz module with the Graphviz package
(available from http://www.graphviz.org/). Both are free software tools, available for UNIX as well as
Windows. A VCG graph can be generated with the following command:

Inside Perl

849

> perl -MO=Graph,-vcg -e '$a = $b + $c' > graph.vcg

Here is the graph produced by the module of our old friend, $a = $b + $c.

leave (LISTOP)
flags: 'VKP'
private: 64

first
children: 3

(child)
last

enter (OP)
flags: "

next
sibling

nextstate (COP)
flags: 'V'

next
sibling

cop_seq: 663
line: 1

sassign (BINOP)
flags: 'VKT'

next
private: 2

first
last

add (BINOP)
flags: 'SK'

next
sibling
targ: 1

private: 2
first
last

null (UNOP)
was rv2vsv

flags: 'SKRM*'
next

private: 1
first

null (UNOP)
was rv2sv
flags: 'SK'

next
sibling

private: 1
first

null (UNOP)
was rv2sv
flags: 'SK'

next
private: 1

first

gvsv (SVOP)
flags: 'S'

next
private: 16

sv

gvsv (SVOP)
flags: 'S'

next
private: 16

sv

gvsv (SVOP)
flags: 'S'

next
private: 16

sv

Aside from being nice (plenty of colorful boxes connected by arrows; the colors can't be displayed in
the diagram), the output can be very useful if we're going to seriously study the internal working of the
Perl compiler. It can be seen as a graphical disassembler, a feature that few programming languages can
offer.

'B::JVM::Jasmin'
Finally, one of the most ambitious modules is an attempt to have Perl output Java bytecode; it creates
Java assembly code, which is assembled into bytecode with the Jasmin assembler, available from
http://mrl.nyu.edu/meyer/jasmin.

It provides a compiler, perljvm, which turns a Perl program into a compiled class file. Running:

> perljvm myprog.pl MyProgram

will create MyProgram.class.

If this is of interest we should also look in the jpl/ directory of the Perl source tree; JPL (Java Perl
Lingo) is a way of sharing code between Perl and Java, just like XS and embedding shared code
between Perl and C. B::JVM::Jasmin, on the other hand, makes Perl code run natively on the Java
Virtual Machine.

Chapter 20

850

Writing a Perl Compiler Backend
Now that we have looked at the backends that are available to us, let's think about how we can write our
own. We'll create something similar to B::Graph, but we will make it a lot more simple – let's call it
B::Tree.

We will use the GraphViz module just like B::Graph, because its interface is very simple: to add a
node, we say:

$g–>add_node({name => 'A', label => 'Text to appear on graph'});

and to connect two nodes, we say:

$g–>add_edge({from => 'A', to => 'B'});

Let's start off slowly, by just having our backend visit each op and say hello. We need to remember two
things: to be a proper backend usable by the O module, we need to define a compile subroutine which
returns a subref which does the work; if we are using walkoptree_slow to visit each op, we need to
define a method for each class we are interested in.

Here is the skeleton of our module:

#!/usr/bin/perl
ourmodule1.pm
package B::Tree;
use strict;

use B qw(main_root walkoptree_slow);

sub compile {
return sub {walkoptree_slow(main_root, "visit")};

}
sub B::OP::visit {

print "Hello from this node. \n";
}
1;

Now let's change it so that we add a GraphViz node at every op:

#!/usr/bin/perl
ourmodule2.pm
package B::Tree;
use strict;

use GraphViz;
use B qw(main_root walkoptree_slow);
sub compile {

return sub {
$g = new GraphViz;
walkoptree_slow(main_root, "visit");
print $g–>as_dot;

};
}
sub B::OP::visit {

my $self = shift;
$g–>add_node({name => $$self, label => $self–>name});

}
1;

Inside Perl

851

This time, we load up the GraphViz module and start a new graph. At each op, we add a node to the
graph. The node's name will be the address of its reference, because that way we can easily connect
parent and child ops; ${$self–>first}, for instance, will give the address of the child. For the label,
we use the name method to tell us what type of op this is.

Once we have walked the op tree, we print out the graph; at the moment, this will just be a series of
non–connected circles, one for each op. Now we need to think about how the ops are connected
together, and that's where the difference between the op structures comes into play.

The ops are connected up in four different ways: a LISTOP can have many children, a UNOP (unary
operator) has one child, and a BINOP (binary operator) has two children; all other ops have no children.

Let's first deal with the easiest case, the op with no children:

sub B::OP::visit {
my $self = shift;
$g–>add_node({name => $$self, label => $self–>name});

}

This is exactly what we had before; now, in the case of an UNOP, the child is pointed to by the first
method. This means we can connect an UNOP up by adding an edge between $$unop and ${$unop–
>first}, like so:

sub B::UNOP::visit {
my $self = shift;
my $first = $self–>first;
$g–>add_node({name => $$self, label => $self–>name});
$g–>add_edge({from => $$self, to => $$first});

}

A BINOP is very similar, except that its other child is pointed to by the last method:

sub B::BINOP::visit {
my $self = shift;
my $first = $self–>first;
my $last = $self–>last;
$g–>add_node({name => $$self, label => $self–>name});
$g–>add_edge({from => $$self, to => $$first});
$g–>add_edge({from => $$self, to => $$last});

}

The trickiest one is the LISTOP. Here, the first child is pointed to by first and the last child by last.
The other children are connected to each other by the sibling method. Hence, if we start at first,
we can add each sibling until we get to last:

sub B::LISTOP::visit {
my $self = shift;
$g–>add_node({name => $$self, label => $self–>name});
my $node = $self–>first;
while ($$node != ${$self–>last}) {

$g–>add_edge({from => $$self, to => $$node});
$node = $node–>sibling;

}
$g–>add_edge({from => $$self, to => $$node}); # finally add the last

}

Chapter 20

852

And that's it! Putting the whole thing together:

#!/usr/bin/perl
ourmodule3.pm
package B::Tree;
use strict;

use GraphViz;
use B qw(main_root walkoptree_slow);
sub compile {

return sub {
$g = new GraphViz;
walkoptree_slow(main_root, "visit");
print $g–>as_dot;

};
}
sub B::LISTOP::visit {

my $self = shift;
$g–>add_node({name => $$self, label => $self–>name});

my $node = $self–>first;
while ($$node != ${$self–>last}) {

$g–>add_edge({from => $$self, to => $$node});

$node = $node–>sibling;
}
$g–>add_edge({from => $$self, to => $$node});

}
sub B::BINOP::visit {

my $self = shift;
my $first = $self–>first;
my $last = $self–>last;
$g–>add_node({name => $$self, label => $self–>name});
$g–>add_edge({from => $$self, to => $$first});
$g–>add_edge({from => $$self, to => $$last});

}
sub B::UNOP::visit {

my $self = shift;
my $first = $self–>first;
$g–>add_node({name => $$self, label => $self–>name});
$g–>add_edge({from => $$self, to => $$first});

}
sub B::OP::visit {

my $self = shift;
$g–>add_node({name => $$self, label => $self–>name});

}
1;

We can now use this just like B::Graph:

> perl -I. -MO=Tree -e '$a= $b+$c' | dot –Tps > tree.ps

Inside Perl

853

gvsv

gvsv

gvsv

leave

enter

null

nullnull

add

nextstate sassign

And in fact, this was the module we used to make the tree diagrams earlier on in this chapter!

Actually, there was one complication that we did not explore here. Sometimes, unary operators are
not really unary; ops that have been simplified to NULLs during the optimization stage will still
have siblings which need to be connected to the graph. The full version of B::Tree is on CPAN
and works around this.

Summary
In this chapter, we have seen a little bit of how Perl goes about executing a program: the parsing and
the execution stages. We have looked at the internal data structures that represent Perl variables, such as
SVs, and we have also had a look at the Perl compiler, which transforms the op tree of a program into
various different formats: C code, Java assembler, and so on.

For more information on how Perl works internally, look at the perlguts and perlhack
documentation files. perlguts is more of a reference on how to use the Perl API as well as how the
Perl core works, while perlhack is a more general tutorial on how to get to grips with working on the
Perl sources. TE

AM
FL
Y

Team-Fly®

Chapter 20

854

Integrating Perl with Other
Programming Languages

In this chapter, we shall explore several ways to integrate Perl with other programming languages. The
main theme will be, for reasons that will become evident, integrating with C in both directions.

Using C from Perl will show how to write C code and call it from a Perl program, or how to build a Perl
wrapper to existing C code, using the XS interface (also known as XSUB, for eXternal SUBroutine) to
write Perl extensions.

We will also take a look at how to dynamically link to compiled libraries (on systems that support
dynamic linking), and perform calls to their exported functions directly from Perl, without the need to
compile anything.

Using Perl from C deals with the opposite topic: how to take advantage of Perl's functionalities in C
programs. This technique, usually referred to as 'embedding Perl', consists of linking the Perl library
with a C project and, using the provided include files and definition, implementing a Perl interpreter
in the application.

What we discuss here requires some degree of familiarity with the Perl internals, as seen in Chapter 20.
Even if there are a number of well established techniques, there are also a lot of pitfalls, undocumented
features, and probably even bugs that exist. Last, but not least, the whole knowledge base is subject to
change as Perl evolves.

At the end of this chapter, we'll take a quick tour around integration with different languages: from the
JPL (Java-Perl Lingo), to developing with the COM framework on Windows machines, to rather
esoteric implementations and possibilities lying around in the labyrinthine world of Perl.

Chapter 21

856

Using C from Perl
Putting some C code at the disposal of Perl is something that one would do for a number of reasons,
such as gaining access to otherwise unimplemented low-level system calls and libraries, interfacing with
other programs or tools that expose C APIs, or simply speeding up a Perl script by rewriting time-
consuming tasks in C.

In fact, a large part of Perl's riches comes from the numerous extensions it has already. Modules are
provided to interface the GD (to produce graphic files) and Tk (Tcl's GUI toolkit) libraries, to name a
few. Even on specific platforms, there is usually a whole set of modules that puts Perl in a position to
interact with every single part of that operating system (for example, on the Windows platform, we have
modules to manage the registry, services, event logs, and much more).

All this is made possible by what is called the XS interface, a quite complex set of Perl scripts and
modules that work together to ease the task of linking C code into Perl. Many major modules, like the
ones we just mentioned, make use of this interface to have C code that can be directly seen by Perl as a
set of subroutines.

In this chapter, we are going to introduce the use of this interface in its most common form. We will see
how to write XS code, and how it interfaces with Perl. For a more complete reference, and some
advanced topics not covered here, we can refer to the following manual pages from the standard Perl
documentation:

Manual Page Description

perlxs The reference manual for the XS format.

perlxstut An example driven, lightweight tutorial.

perlguts The official Perl internal's user's guide: explains almost everything anyone
needs to know to use Perl and C together.

perlapi The official Perl internal's API reference (available from version 5.6.0; on
earlier versions this was part of perlguts).

perlcall A lot of information about calling Perl from C, dealing with stack
manipulation, creating callback code and other advanced techniques.

We also suggest looking at the Extension-Building Cookbook by Dean Roehrich, available on CPAN
(search for distributions matching Cookbook on http://search.cpan.org), as well as the PerlGuts
Illustrated paper by Gisle Aas, available at http://gisle.aas.no/perl/illguts/.

Finally, probably the best and most complete reference material is the source code written by others.
The POSIX extension, for example, available in the ext/POSIX directory of the Perl source tree, is a
very good example of both basic and advanced techniques. We shouldn't be afraid of learning from
existing extensions, as that is one of the benefits of open source after all. We just need to remember to
be good citizens, and give the appropriate credits when reusing someone else's work.

Integrating Perl with Other Programming Languages

857

An Overview of XS
The 'core' of the XS interface is a Perl script called xsubpp, which is part of the standard ExtUtils
distribution. This script translates an XS file, which is basically a C file with some special markers here
and there, to a regular C file that is compiled and linked as usual.

The purpose of the XS format is to hide most of the required Perl C API calls from the programmer, so
that he or she can concentrate on writing the C code. xsubpp will do its best to automate the
interactions between C and Perl, simplifying all the routine jobs of declaring XSUBs and converting
data back and forth; as we'll see later.

The process of building a Perl extension is handled by the ExtUtils::MakeMaker module (and the
locally installed C compiler and make program, of course) that was introduced in Chapter 10.

The resulting binary will usually be a shared object known as DSO (Dynamic Shared Object), on most
UNIX platforms. On 'Windows' it is known as Dynamic Link Library (DLL).

Once we have this library, with all its exported symbols, the job of linking to it and performing calls is
done at run-time by the DynaLoader module, which is a special extension often built together with the
Perl executable and statically linked to it. There is more detail on this module in Chapter 20.

If our operating system does not support dynamic linking, we can still use the XS interface. Only the
build process will differ, because the extension has to be statically linked into the Perl executable (just as
DynaLoader is). This means that, by building an extension, a completely new Perl executable will be
built. Fortunately, the majority of modern operating systems do support dynamic linking.

The only other bit of glue that needs to be in the process is a Perl module (a regular PM file), which
simply inherits from DynaLoader, and is instructed to call the bootstrap function responsible for
doing the run-time link to the XS shared object.

'h2xs', or Where to Start
The XS interface was originally developed to provide transparent access to C libraries, which usually
come with header files defining the API (function calls, constants, macros, and whatever else). There is
in fact, a dedicated Perl script, called h2xs, which handles this task. As the name implies, it is a C
header file (.h) to XS translator. It is automatically installed in the bin directory of the Perl's
installation, so chances are that if the Perl executable is in the path, it can be called directly in the shell.
This command creates stubs in the makefile to handle C integration.

Beyond its original intent, h2xs can, and definitely should, be used as a starting point to create an
extension, even if there is no header to translate and we're writing code from scratch. The script has a
number of options, which we'll see below, that makes it very flexible. In particular, it can be used to
build a skeleton module, with or even without, the XS part (see Chapter 10 for an example of using it
on plain Perl modules).

This script, h2xs, will take over all the routine jobs of preparing a module, generating the
Makefile.PL, the PM file, a MANIFEST, and everything that should be in every well packaged
distribution.

Chapter 21

858

We can suppress the C aspects of the Makefile by adding –X (note the case sensitivity) option. The–n
flag specifies the name for the extension. For example:

> h2xs -X -n Installable::Module

In addition to these flags, h2xs supports a large number of options to control various aspects of the
generated files. For a pure Perl module, the most important of these are:

-h Print out some usage information about the h2xs utility.

-A Do not include the AutoLoader module, (see Chapter 10). By default, h2xs generates a
module source file including the AutoLoader. If present, the install makefile target
automatically calls the AutoSplit module to perform a split on installation. If we do not
want to use the AutoLoader, this option will suppress it.

-C Do not create a Changes file. Instead, h2xs will add a HISTORY section to the pod
documentation at the bottom of the module source file.

-P Suppress generation of the pod documentation in the module source file.

-v Specify a version number for the module other than the default of 0.01. For example, -v
0.20.

-X Suppress the XS part of the makefile – pure Perl module distributions should use this.
Modules that make use of C code should not.

By default, the created module file incorporates code to use both the Exporter and AutoLoader. As
an example, to suppress the lines involving the AutoLoader, we can add the -A option as well:

> h2xs -XA -n Installable::Module

Similarly, to create a module with a version of 0.20 and no Changes file, but which does use the
AutoLoader:

> h2xs -C -v 0.20 -n Installable::Module

Converting C Header Files
To start, let us consider the 'canonical' situation. Suppose we have a C header file, called xs_test.h,
with some constants, and a pair of function prototypes, as shown below:

#define FIRST 1
#define SECOND 2
#define THIRD 3

int first_function(int number, void *databuffer);
void second_function(char *name, double a, double b);

In the simplest case, we can call the h2xs script with the name of the header file as the only argument:

> h2xs xs_test.h

Integrating Perl with Other Programming Languages

859

This will create a directory called Xs_test (the name is taken from the header file), which contains
everything that is needed to build the extension: the PM and XS files (Xs_test.pm and Xs_test.xs),
a Makefile.PL, a simple test script, a nicely initialized Changes log, and finally the MANIFEST file:

Writing Xs_test/Xs_test.pm
Writing Xs_test/Xs_test.xs
Writing Xs_test/Makefile.PL
Writing Xs_test/test.pl
Writing Xs_test/Changes
Writing Xs_test/MANIFEST

Once built with the following command, our extension will simply export all the constants found in the
header file.

> perl Makefile.Pl
> make
> make test
> su
Password:
make install

This means that we can already write a script with it:

#!/usr/bin/perl
xs_test.pl
use warnings;
use strict;

use Xs_test;

my @names = qw(none foo bar baz);
print $names[SECOND];

This will correctly print out bar. Not a big thing yet, but this procedure, applied to more meaningful
headers, will provide a good starting point in implementing an existing API.

By default, h2xs can only search the header file for constants (the #define directives above) and make
them accessible from the generated extension. The code to access the defined functions must be
provided by the programmer. However, if we have installed the C::Scan module, available from CPAN,
we can add the -x switch (note the case sensitivity, using a capital X will suppress the XS part of the
Makefile) to h2xs and it will recognize function definitions too, and put them in the generated XS file.

For example, by running

> h2xs -Ox xs_test.h

(we also add the -O switch to allow h2xs to overwrite the files we previously generated), some stub
code will be added to Xs_test.xs. With this code, we are already able to call
Xs_test::first_function from a Perl script, and access the C function defined by this name; as
long as we have included the object file that contains the declared function. We will see later how to add
external libraries to the build process.

Chapter 21

860

It should be said that this procedure, by itself, is unlikely to be enough for real-world applications: the
job done by h2xs and C::Scan can only generate useful interface code for very simple cases. Most of
the time, if not always, some coding will be required to successfully implement a C API as a Perl
extension.

But the value of these tools should not be underestimated: it's much easier to add the missing pieces on
a prepared template, than to start with a blank file and write everything by hand.

Starting from Scratch
The header file name supplied to h2xs is not mandatory: the tool can be used without any existing file
to convert. In this case, we must add the –n flag we met earlier, which specifies the name for the
extension. Let's see what happens when we call the script like this:

> h2xs -n XS::Test

This time, the directory structure XS/Test is created, and the same set of files seen above is generated:

Writing XS/Test/Test.pm
Writing XS/Test/Test.xs
Writing XS/Test/Makefile.PL
Writing XS/Test/test.pl
Writing XS/Test/Changes
Writing XS/Test/MANIFEST

The only difference is that our XS::Test extension provides nothing of its own. Still, the generated
files are convenient templates with which to start writing our own code, and this is what we will use for
the rest of the section as our workbench.

The XS File
Now that we have defined the starting point, lte's first see what's in our XS file. We start
with what was generated by our last example, a truly bare XS file (Test.xs), and explore its content
bit by bit:

#include "EXTERN.h"
#include "perl.h"
#include "XSUB.h"

The first three lines are standard to every XS file: the included headers contain all the definitions
needed to use Perl's internals and write XSUBs Additional #include directives and definitions can be
put here, but these three should always be left untouched.

Next, we have two regular C functions.

static int
not_here(s)
char *s;
{

croak("%s not implemented on this architecture", s);
return -1;

}

Integrating Perl with Other Programming Languages

861

static double
constant (name, arg)
char *name;
int arg;
{

errno = 0;
switch (*name) {
}
errno = EINVAL;
return 0;

not_there:
errno = ENOENT;
return 0;

}

These are put here by default, and work together with the AUTOLOAD function placed in the PM file to
give convenient access to C constants. Given the constant name as a string, the constant function returns
its corresponding numerical value (or calls not_here to complain with a not implemented error, in
case the constant is not defined).

From this point on, we have what is properly called the XS code:

MODULE = XS::Test PACKAGE = XS::Test

double
constant(name, arg)

char * name
int arg

In fact, everything before the MODULE keyword is just plain C, and it will be passed untouched to the
compiler. The xsubpp work only begins here, and it concerns the functions defined in this section.

Declaring the 'MODULE' and 'PACKAGE'
The MODULE and PACKAGE directives tell XS, respectively, the name of the module for which the
resulting loadable object is being generated, and the namespace, or Perl package, where the functions
will be defined (in this case is XS::Test for both). We should never need to change MODULE, but we
can, at some point, change to another PACKAGE. This could happen, for example, when we're writing a
module that implements different packages or subpackages:

put some functions in XS::Test
MODULE = XS::Test PACKAGE = XS::Test

other functions in XS::Test::foo
MODULE = XS::Test PACKAGE = XS::Test::foo

in XS::Test::bar
MODULE = XS::Test PACKAGE = XS::Test::bar

Note that PACKAGE can't be changed without declaring (or repeating) MODULE right before it. The first
MODULE occurrence, as we've seen, marks the start of the XS section. After this, the file contains
function definitions.

Chapter 21

862

XS Functions
In its simplest form, an XS function is just a wrapper for the corresponding C function – that's exactly
what the last four lines of our example do:

double
constant(name, arg)

char * name
int arg

This snippet defines the XSUB constant: to Perl, this means sub Xs::Test::constant. That sub,
in turn, calls the C function named constant (defined before in the same file), passing any input and
output parameters, to and from Perl, as required.

The XS definition is very similar to a C function definition, except for the missing semicolons after the
parameters type declaration. Note, however, that the return value must be on the line before the
function name, so it's not correct to squeeze the lines above to this:

/* ERROR: this is wrong */
double constant(name, arg)

char * name
int arg

Types must also be defined after the function name, as in good old pre ANSI C, so this is incorrect:

/* ERROR: this is wrong too */
double
constant(char *name, int arg)

A more elaborate XS function, however, will usually do more than map one-to-one with a C function.
This can happen for a number of reasons, including handling complex C data type like structures,
providing more 'perlish' syntactic sugar, or grouping a series of calls as one. Last, but not least, if we're
writing C code from scratch, we need to provide some code for our functions.

Putting the 'CODE' in
In fact, an XS function can contain code, just like a C function can have a body: but this time, the
syntax is more particular. This is the most common form of an XS function:

int
first_function(number, databuffer)

int number
void * databuffer

CODE:
/* place C code here */

OUTPUT:
RETVAL

The CODE: identifier marks the start of the function, while OUTPUT: marks its end and returns the
indicated value to Perl (RETVAL has a special meaning as we will see shortly).

Integrating Perl with Other Programming Languages

863

Take care; xsubpp wants functions to be separated by a blank line, so if there is no output to give (for
example, if the function is declared to return void), the blank line marks the end of the function.

void
first_function()
CODE:

/* place C code here */

void
second_function()
CODE:

/* place C code here */

There are no brackets to mark the end of the function body, so we have to pay attention to blank lines,
which is something that may be confusing at first. Let's see a very simple C function, expressed in XS,
which returns the greater one of the two numbers passed:

int
maximum(a, b)

int a
int b

CODE:
if(a > b) {

RETVAL = a;
} else {

RETVAL = b;
}

OUTPUT:
RETVAL

As mentione earlier, there is a special variable lying around, which is RETVAL. This variable is
automatically defined by xsubpp from the function definition's return type. In this case, RETVAL is
declared to be an int. The last two lines are there to return the calculated variable to Perl.

Now that we have added these lines to our Test.xs file, we simply need to rebuild the extension, and
our maximum function is already available as a Perl sub:

use Xs::Test;
print Xs::Test::maximum(10, 20);

This simple script will print out 20, as we would expect.

Complex Output, 'PPCODE' and the Stack
There are times when we want more than one return value (this is Perl, after all, and we shouldn't suffer
from the limitations of C). To achieve this result, we should take the following steps:

❑ Use void for the return value. This way, XS will not provide an automatic RETVAL variable.

❑ Use the PPCODE keyword instead of CODE, to let XS know that we're going to handle return
values on our own.

TE
AM
FL
Y

Team-Fly®

Chapter 21

864

❑ Allocate the needed number of return values on the stack by calling:

EXTEND(SP, number);

❑ For each value, use the XST_m* set of macros to actually put the value onto the stack. The
macros are XST_mIV, XST_mNV and XST_mPV for the Perl integer, double and string datatypes
respectively. The first argument to the macros is the stack position where we want our value to
be placed (0 is the first position), and the second argument is the value itself.

❑ Finally, return the desired number of values by ending the function with:

XSRETURN(number);

There are also different XSRETURN macros to return special values (eg. XSRETURN_UNDEF,
XSRETURN_EMPTY, XSRETURN_YES and others).

In the next example, we will make a little example function using this technique: our 'zeroes' function
just returns an array composed by the given number of zeroes (equivalent to Perl's (0) x number). We
do this by using a variable to loop from 0 to the given number, and for each value of the loop variable,
we place the IV 0 at the corresponding stack position.

Here we introduce another keyword, PREINIT, which should be used whenever the function needs to
declare local C variables. This is necessary because xsubpp, as we'll see later, actually uses function
calls for the XS arguments. If we place our definition of i after the PPCODE keyword, it will result in it
being placed after some code has already been evaluated, which will upset the compiler.

void
zeroes(number)

int number
PREINIT:

int i;
PPCODE:

EXTEND(SP, number);
for(i=0; i<number; i++) {

XST_mIV(i, 0);

}
XSRETURN(number);

We can go even further, and inspect the context in which the function was called in Perl, by using the
GIMME function (same as Perl's built-in wantarray). Based on this, we may decide to return different
results. GIMME returns one of the following values: G_ARRAY when the function is called in list context,
and G_SCALAR when it is called in scalar context.

Let's see also how to cope with memory allocation in XS. Perl defines its own API for this, so we have
safemalloc and safefree instead of the C's standard malloc and free, as well as Zero instead of
memzero. There are additional substitutes like Copy for memcpy, Move for memmove, and so on.

void
zeroes(number)

int number
PREINIT:

char * string;
int i;

Integrating Perl with Other Programming Languages

865

PPCODE:
if(number <= 0) {XSRETURN_UNDEF;}
if(GIMME == G_ARRAY) {

EXTEND(SP, number);
for(i=0; i<number; i++) {

XST_mIV(i, 0);

}
XSRETURN(number);

} else {
string = (char *) safemalloc(number+1);
Zero(string, number+1, char);
for(i=0; i<number; i++) {

strcat(string, "0");
}
EXTEND(SP, 1);
XST_mPV(0, string);

safefree(string);
XSRETURN(1);

}

This version returns an array of zeroes when called in list context, and a string made up of zeroes when
called in scalar context.

@z = XS::Test::zeroes(3); # returns (0, 0, 0)
$z = XS::Test::zeroes(3); # returns "000"

As a side note, it should always be kept in mind that we're working at a low level, so we don't have nice
Perl error messages when something goes wrong, which is why we added the line:

if(number <= 0) {XSRETURN_UNDEF;}

This is to avoid allocating a huge amount of memory when the function is called with a negative
number, which would make Perl blow up (probably with an Out of memory! error).

Complex Input, Default Values and Variable Input Lists
We have ways to deal with variable input too: again, the power of dealing with Perl's @_ input to a
subroutine should not be left without being addressed.

The simplest case is having optional arguments, for which we assume a default value when one is not
supplied. To provide default values, we simply assign them to our arguments on the function prototype
line.

For example, this function behaves like Perl's built-in rand, which returns a random number between 0
and the given number, or between 0 and 1 when no arguments are given:

double
xrand(max=1)

int max
CODE:

RETVAL = (double) rand() * max / RAND_MAX;
OUTPUT:

RETVAL

Chapter 21

866

There can be more than one argument for which a default value is defined, but they should always be at
the end of the argument list. For example, the following forms are wrong:

void
my_function(arg1=NULL, arg2)

char * arg1
char * arg2

void
my_function(arg1, arg2=NULL, arg3)

char * arg1
char * arg2
char * arg3

While the following are correct:

void
my_function(arg1, arg2=NULL)

char * arg1
char * arg2

void
my_function(arg1, arg2=NULL, arg3=NULL)

char * arg1
char * arg2
char * arg3

A more complex case occurs when the number of arguments is not known in advance. We can use the
special identifier '...' (also known as an ellipsis). When it appears in the argument list of the function,
any number of arguments can be passed to it. To actually work with the supplied arguments, we can
follow this procedure:

❑ Use items to inspect the number of values in the input stack (items is an integer variable
automatically defined by xsubpp).

❑ Access a specific value with the ST(n) macro, which returns the element n on the stack.

❑ Since ST returns a pointer to an SV, use the Sv* macros to convert the value to the
corresponding C type (as before, we have SvIV, SvNV and SvPV for integers, doubles and
strings respectively).

This simple function shows this at work. It accepts a variable list of values (a Perl array, for example)
and returns the number of positive integers found in the list:

int
find_positive_numbers(...)
PREINIT:

int i;
CODE:

RETVAL = 0;
for(i=0; i<items; i++) {

if(SvIV(ST(i)) > 0) {
RETVAL++;

}
}

OUTPUT:
RETVAL

Integrating Perl with Other Programming Languages

867

The 'TYPEMAP'
So far, we've seen examples with rather plain variables involved, and Perl happily understood C
variable types and vice versa. This is true for the most common basic datatypes, but not for the many
cases when we will need to define our own mappings. This is done by a special file called typemap,
which xsubpp will use when converting from XS to C. In reality, even the work on simple datatypes is
done by the default typemap file, which resides in the lib/ExtUtils directory and is always used by
xsubpp.

A typemap consists of three parts:

❑ The enumeration of the C types we use (sometimes introduced by an optional TYPEMAP
identifier).

❑ An INPUT section, which is used when passing Perl variables to C.

❑ An OUTPUT section, which is used when returning C variables to Perl.

The example below shows the general syntax. We use c_type here as a placeholder for the C datatype,
and T_TYPE as our self-defined tag for the datatype:

c_type T_TYPE

INPUT
T_TYPE

/* code to convert from Perl to C */

OUTPUT
T_TYPE

/* code to convert from C to Perl */

As an example implementation, let's see how the default typemap deals with integers:

int T_IV
...
INPUT
T_IV

$var = ($type)SvIV($arg)
...
OUTPUT
T_IV

sv_setiv($arg, (IV)$var);

The process involves using the SvIV macro to convert from a Perl value (an SV) to a C int, and the
sv_setiv function to convert the other way around. There are three special identifiers (which look like
Perl variables, but are just patterns for xsubpp to substitute the actual C expressions) that can be used
in the typemap code fragments:

$arg The XS argument, which gets translated into the ST(n) macro.

$var The corresponding C variable.

$type The C type, as defined in the XS file.

Chapter 21

868

To see how the mechanism really works, we refer back to the example maximum function from the
section entitled 'Putting the 'CODE' in'. The typemap at work produced the following results, which we
can see by peeking into the generated Test.c file: our declarations of int a and int b have been
translated to:

int a = (int)SvIV(ST(0));
int b = (int)SvIV(ST(1));

The return value for the function has become:

sv_setiv(ST(0), (IV)RETVAL);

A custom typemap must be built if we're using C types that are not included in the default one. For
example, if our library defines a type, say, little_number, to represent an integer, it must be in the
typemap if we want to use input/output values of this type. If we just have a different name for an
already defined type, we can use the tags defined in the default typemap:

little_number T_IV

This is enough to treat a little_number as if it was an int. A typemap definition can be much more
complicated. For example, suppose we have this C structure:

typedef struct {
int red;
int green;
int blue;

} my_rgb;

we may decide that we want a my_rgb variable passed to our extension as an array reference, holding
values for the red, green, and blue components (as in [128, 128, 128]). We implement this in the
typemap:

my_rgb T_RGB

INPUT
T_RGB

if(SvROK($arg) && SvTYPE(SvRV($arg)) == SVt_PVAV) {

$var.red =
(av_fetch((AV*)SvRV($arg), 0, 0) == NULL) ?

0
:

SvIV(*(av_fetch((AV*)SvRV($arg), 0, 0)));

$var.green =
(av_fetch((AV*)SvRV($arg), 1, 0) == NULL) ?

0
:

SvIV(*(av_fetch((AV*)SvRV($arg), 1, 0)));

$var.blue =
(av_fetch((AV*)SvRV($arg), 2, 0) == NULL) ?

0
:

SvIV(*(av_fetch((AV*)SvRV($arg), 2, 0)));

} else
croak(\"$var is not a reference to an array!\");

Integrating Perl with Other Programming Languages

869

The above code checks that the argument is a reference, and a reference to an array. If it is, it tries to
fetch three values from the referenced array, and assigns them to the red, green, and blue components
of the C structure. To be safe in case of failures, we first check the result of av_fetch and, in case it is
NULL, we use zero for the corresponding component.

Now we can write an XS function that accepts my_rgb as input:

bool
is_gray(color)

my_rgb color

CODE:
RETVAL = (

color.red == color.green &&
color.green == color.blue

) ? 1 : 0;
OUTPUT:

RETVAL

and we can use this from Perl as:

XS::Test::is_gray([128, 128, 128]);

Any other kind of value passed to our function will cause a fatal error (with the message color is not a
reference to an array!).

Dealing with the corresponding OUTPUT part requires a different approach. For example, we can use a
PPCODE function, as seen above, to return an array of three values for the red, green, and blue
components.

A more functional implementation of a C structure can be achieved using the T_PTROBJ tag, defined in
the standard typemap. It requires, however, some additional work, which is outlined below:

❑ We add to the typemap a line for a pointer to the structure, specifying the T_PTROBJ tag for it:

my_rgb * T_PTROBJ

❑ When returning a variable, we need to be sure to allocate memory for it. This simple function
initializes and returns a my_rgb structure:

my_rgb *
new_color(r, g, b)

int r
int g
int b

CODE:
RETVAL = (my_rgb *) safemalloc(sizeof(my_rgb));
RETVAL->red = r;
RETVAL->green = g;
RETVAL->blue = b;

OUTPUT:
RETVAL

Chapter 21

870

❑ Now, we add another PACKAGE to the XS file, named after the structure, with the addition of a
final Ptr:

MODULE = XS::Test PACKAGE = my_rgbPtr

❑ After this line, we add functions to access the structure members. Here is the one for red, and
we can do the same for the green and blue members:

int
red(color)

my_rgb * color

CODE:
RETVAL = color->red;

OUTPUT:
RETVAL

❑ We should also add a DESTROY function, to free the allocated memory when the variable we
have returned to Perl goes out of scope:

void
DESTROY(color)

my_rgb * color

CODE:
safefree(color);

Now that we've done all this, we can use the new_color function, which returns a Perl object blessed
into the my_rgbPtr class. To access the underlying C structure, we simply call the methods we've
defined on it:

my $Black = XS::Test::new_color(0, 0, 0);

print "red component of Black is: ", $Black->red, "\n";

Et voila, $Black is now a real C structure implemented in Perl.

The 'Makefile'
The extension we've played with until now, as we have already mentioned, can be built using the
standard procedure:

> perl Makefile.PL
> make
> make test
> su
Password:
make install

The starting point of the build process is the Makefile.PL, which uses the ExtUtils::MakeMaker
module to build a Makefile suitable for make. In most cases, the default file, built for us by h2xs, will
do its job. But there are times when something needs to be added to the build process.

The most common case is when the extension is going to use external C libraries, or particular switches
need to be passed to the C compiler. If we look at the default Makefile.PL, we will see that it already
has pointers for us to fill the missing parts:

Integrating Perl with Other Programming Languages

871

use ExtUtils::MakeMaker;
see lib/ExtUtils/MakeMaker.pm for details of how to influence
the contents of the Makefile that is written
WriteMakefile(

'NAME' => 'XS::Test',
'VERSION_FROM' => 'Test.pm', # finds $VERSION

'LIBS' => [''], # e.g., '-lm'
'DEFINE' => '', # e.g., '-DHAVE_SOMETHING'
'INC' => '', # e.g., '-I/usr/include/other'

);

The LIBS, DEFINE and INC parameters to WriteMakefile should satisfy most of our needs; they're
even well documented on the right.

There are additional parameters that may sometimes be useful, like CCFLAGS to pass additional
switches to the C compiler, or XSOPT to alter the behaviour of xsubpp. The ExtUtils::MakeMaker
documentation lists all the options recognized by WriteMakefile. We should note that, normally,
most of these should be left to their default, since changing them may result in our extension being
unusable.

If we still require more control over the generated Makefile, we can replace (or 'overload') some, or all,
of the code that is behind WriteMakefile. To do that, we simply define a sub in a package called MY
with the same name of a MakeMaker sub. The output of our sub will override the one produced by the
module's sub.

Usually, however, we just need to modify the output of the corresponding MakeMaker function. So, we
first call the function from the SUPER package (which is ExtUtils::MakeMaker), then modify its
result and return it. This example, which can be added to the Makefile.PL, overrides the constants
sub, to move everything that resides in /usr to /tmp/usr:

package MY;

sub constants {
my $inherited = shift->SUPER::constants(@_);
$inherited =~ s|/usr/|/tmp/usr/|g;
return $inherited;

}

This kind of tweak should be used with caution, and only when it is really needed. If we are having
troubles producing a working Makefile, we ought to think about patching MakeMaker.pm, and sharing
our work with the perl5-porters mailing list for inclusion in the Perl standard distribution.

Dynamic Linking
If we already have a dynamic library (a shared object on UNIX platforms or a DLL on the Windows
platform), we can use a different approach to access the code in there; one which does not require
writing extension code and messing with compilers and linkers.

Basically, we make use of the same mechanism Perl makes use of with XS extensions. The library is
loaded at runtime, references to its exported symbols are created, and then the library code is executed,
as if it was a Perl sub, through this reference.

Chapter 21

872

From the programmer's point of view, this is an all Perl solution and only requires some script coding.
Under the hood, however, there's some C code, and really clever code indeed, because we don't know
until runtime what the C prototype of the function we're going to call is. So, deep magic (and usually
resorting to assembler code) is involved to provide a generic, all-purpose link to anonymous C
functions.

There are currently three modules that have been written to address the issue. We'll give them a quick
look in descending order of completeness and portability.

Using the 'FFI' Module
The FFI module by, Paul Moore, uses the ffcall library, developed by Bruno Haible for the LISP
language; a very powerful set of tools to interface foreign functions (functions defined in external
libraries).

The internals of the library are, obviously, quite complex. It uses a lot of assembler code to deal with
the way data is passed to and from functions at a very, very, low level.

The Perl module, fortunately, hides all this from our eyes and allows us to link with a shared library in
just a few lines of code. We only need to know where (in which library) a function is located, its name,
and its C prototype. This prototype then needs to be converted to a 'signature', a short string defining
the function's input and output parameter types.

Next we will make a little example program that links to the standard C math library and calls the cos
function. First of all, we use the FFI::Library module to link to a shared library. Once we have
obtained an FFI::Library object, we can import functions with the function method.

We add some conditions to make our script work on both UNIX and Windows platforms. Firstly, the
name of the library, which is different on both platforms (libm.so on UNIX and MSVCRT.DLL on
Windows). Secondly, the signature for the function, because we have to use different calling conventions
on UNIX and Windows. We'll explain more about signatures and calling conventions below:

use FFI;
use FFI::Library;

dynamically link to the library
$libm = new FFI::Library(

$^O eq 'MSWin32' ? 'msvcrt' : 'm'
);

import the cos function
$cos = $libm->function('cos',

$^O eq 'MSWin32' ? 'sdd' : 'cdd'
);

$cos is a CODE reference
$result = $cos->(2.0);

print "cos(2.0) = $result\n";

Integrating Perl with Other Programming Languages

873

The name of the library can be expressed either in an abbreviated form or with a full pathname. In the
script above, we have used m for UNIX machines, which is equivalent to the -lm switch to the C
compiler: it searches the system library path (for example, /lib, /usr/lib) and adds lib and .so
before and after the name, respectively. The library, in fact, resides in /lib/libm.so, so just m is
enough. If a library resides in a different location, or uses a different naming scheme, its full path and
filename can be specified.

On Windows too, the DLL extension is automatically added, and the library is searched in the default
system path. The DLL we specified might reside, for example, in C:\WINNT\SYSTEM32\MSVCRT.DLL,
so saying msvcrt is enough. Here too, if a DLL resides in a directory not searched by the system, the
full path can be specified.

Signatures for the functions are made up of three distinct parts:

❑ The first letter is the calling convention: this is usually c for UNIX (for cdecl) and s for
Windows (for stdcall). We should be aware that the s convention requires parameters to be
passed in reverse order, so we need to adjust the signature as appropriate.

❑ The second letter is the return value of the function.

❑ From the third letter on, there are the arguments that the function expects (one letter for each
argument).

The C prototype for the cos function is double cos (double x), so we have a return value of d
(double), and one single parameter d (double too). This makes up our signature as cdd (or sdd for
Windows).

Here is another example with this C function:

char *strncat(char *dest, const char *src, size_t n);

On UNIX machines, this needs to be translated, for use by FFI, into:

$strncat = $libc->function('strncat', 'cpppI');

The cpppI signature tells us that the function uses c calling convention, returns a pointer (p), and
accepts two pointers and an unsigned integer (I).

On Windows, the correct signature is:

$strncat = $libc->function('strncat', 'spIpp');

The calling convention is s, the return value is a pointer as before, but the parameters are now in
reverse order.

The next example shows how to use a callback using FFI, to enumerate the window handles on a
Windows machine. A callback is defined using the FFI::callback function, which takes a signature
and a code reference, containing the body for the callback. When passing the callback to a C function,
we need to get its address using the addr method.

use FFI;
use FFI::Library;

my $user32 = new FFI::Library('user32');

TE
AM
FL
Y

Team-Fly®

Chapter 21

874

my $enumwindows = $user32->function(
'EnumWindows', 'siLp' # note reverse order here!

);

my @windows;

my $cb = FFI::callback('siLL',
sub {

my($hwnd, $lparam) = @_;
push(@windows, $hwnd);
return 1;

}
);

$enumwindows->($cb->addr, 100);
print join(', ', @windows), "\n";

For more information, and additional tips, tricks, and type definitions, refer to the pod documentation
included in the module.

One final note for Windows users. Building the module may require some little hacks to the included
ffcall library, but Paul Moore also provides a binary distribution for Perl 5.6.0, which can be installed
using ppm:

> ppm install --location=http://www.perl.com/CPAN/authors/id/P/PM/PMOORE FFI

Using the 'C::DynaLib' Module
The C::DynaLib module, written by John Tobey, is very similar to FFI. The major differences are that
it does not use the ffcall library, and is somewhat more limited – a small number of callbacks can be
defined in one go, and it has UNIX support only (it may be possible to build it on a Windows machine
with some hacking, but this had not been done at the time of writing).

The usage differs only slightly from what we've seen in the previous paragraph. This is a rewrite of
call_cos.pl using C::DynaLib:

use C::DynaLib;

dynamically link to the library
$libm = new C::DynaLib('m');

import the cos function
$cos = $libm->DeclareSub('cos', 'd', 'd');

$cos is a CODE reference
$result = $cos->(2.0);

print "cos(2.0) = $result\n";

The syntax is different, but the principle is just the same. For more information consult the module's
documentation.

Integrating Perl with Other Programming Languages

875

Using the 'Win32::API' module
The Win32::API module is written by Aldo Calpini. As its name implies, this module works on the
Windows platform only. Furthermore, it uses assembler calls that are specific to the Microsoft Visual
C++ compiler, so building it with a different environment may be difficult. Also, this module does not
support callbacks, so only simple function calls can be made. Here is another rewrite of our
call_cos.pl sample using Win32::API:

use Win32::API;

import the cos function
$cos = new Win32::API('msvcrt', 'cos', 'D', 'D');

$cos is an object, use the Call() method on it
$result = $cos->Call(2.0);

print "cos(2.0) = $result\n";

Again, the principles are just the same, and other information can be found by looking at the module's
documentation.

Using Perl from C
Using Perl from C is a technique usually referred to as embedding Perl. This means, taking the Perl
kernel and embedding it into a C program. There are several different forms of embedding, depending
on which functionality of Perl we want to include in our program. We can use, for example, Perl's
arrays and hashes as C structures, or we can write Perl code snippets to create them and modify them.
We can use external script files that our application will interpret, or we can store the Perl code we want
to be evaluated, as strings inside our C program.

In this section, we will see some basic examples of this technique at work. For a more in-depth coverage
of the details involved in programming with Perl internals, refer to the same documents that
werementioned in the first section. In most regards, embedding and extending (writing XS extensions)
are two sides of the same coin. Knowledge of the Perl's internal structure and its C APIs is required in
both tasks.

More specific documentation can be found in the perlembed manual page, and by downloading the
ExtUtils::Embed module from CPAN. The package contains additional information and examples,
which are not included in the standard ExtUtils distribution.

First Steps
Writing a C program which makes use of Perl requires, in addition to writing proper C code, a
particular build procedure to correctly generate an executable. The compiler must get the same defines,
includes, and library paths that were used to build the Perl binary. We must also link the object with the
Perl library, which contains the code for the Perl internals we're going to use.

This means, of course, that if we're using this technique, we absolutely need to have a Perl binary that
was built on the local machine. It needs to find the required libraries and include files where Perl
searches for them. In other words, the configuration saved in Config.pm (which was explained in
Chapter 20) needs to be the actual configuration of the Perl build in use.

Chapter 21

876

If our Perl was built on a different system and installed as a binary, we would probably be unable to
write C programs with embedded Perl. So, the first requirement is to download the Perl source tree, and
build it on the system we're going to program.

Even when we have successfully built our own Perl, tracing back all the information our compiler needs
would not be easy without a little help. Fortunately, we have it – there is a specific module, called
ExtUtils::Embed, which deals with all the gory details of finding the correct parameters to satisfy the
compiler and linker.

Building a Program (The Hard Way)
Just to better understand what is going on, before taking the easier route, we will take the long, hard one
and try to deduce all the needed parameters from Perl itself, using the -V switch;

The values shown here are just examples, they are dependent on a system's configuration, (such as
OS and C compiler) and may, of course be, different.

First of all, let's find our compiler and linker:

> perl -V:cc
cc='gcc';

> perl -V:ld
ld='gcc';

This tells us that we're using the Gnu C compiler, which is what we will use to build our Perl-embedded
programs. Now, let's find the path to the include files and libraries:

> perl -V:archlib
archlib='/usr/local/perl-5.6/lib/5.6.0/i686-linux';

We'll need to add /CORE to this path, since the standard installation of Perl puts the files there. Now
let's find the name of the Perl library which we'll link to, as well as any other library originally used to
build Perl:

> perl -V:libperl
libperl='libperl.a';

> perl -V:libs
libs='-lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt';

Finally, we need the flags that we must pass to the compiler and the linker:

> perl -V:ccflags
ccflags='-fno-strict-aliasing -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64';

> perl -V:ldflags
ldflags=' -L/usr/local/lib';

We put all this information together to obtain a command line, which we can use to build our program.
Only the name of the source file (we have just called this program.c in the following command) needs
to be added to this command, and it will correctly compile with embedded Perl:

Integrating Perl with Other Programming Languages

877

> gcc program.c -fno-strict-aliasing -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64
-I/usr/local/perl-5.6/lib/5.6.0/i686-linux/CORE
/usr/local/perl-5.6/lib/5.6.0/i686-linux/CORE/libperl.a
-L/usr/local/lib -lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt

Building a Program (The Easy Way)
What we've just seen is quite complex and somewhat boring. We don't want to remember all the four
line stuff when compiling a program, which is why we use ExtUtils::Embed to reduce everything to
this single command:

> perl -MExtUtils::Embed -e ccopts -e ldopts

With the ccopts and ldopts functions, the module prints out more or less the same command line we
obtained before (with the addition of the DynaLoader library, which is needed to use XS extensions
from C):

> -rdynamic -L/usr/local/lib
/usr/local/perl-5.6/lib/5.6.0/i686-linux/auto/DynaLoader/DynaLoader.a
-L/usr/local/perl-5.6/lib/5.6.0/i686-linux/CORE
-lperl -lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt
-fno-strict-aliasing -D_LARGEFILE_SOURCE -D_FILE_OFFSET_BITS=64
-I/usr/local/perl-5.6/lib/5.6.0/i686-linux/CORE

This one liner is primarily intended to be used (in the UNIX shell) inside backticks, to have the output
appended to the compilation command line like this:

> gcc -o program program.c 'perl -MExtUtils::Embed -e ccopts -e ldopts'

This is the normal procedure used to compile a C program with embedded Perl. But, if even this
command line seems too long, or the backticks trick does not work (for example, on Windows
machines, where the standard shell has some severe limitations), there is another, possibly simpler,
approach provided by ExtUtils::Embed. The distribution from CPAN comes with a script called
genmake, which produces a Makefile that can be used to build the executable. The procedure is:

> perl genmake program.c
Writing Makefile for program
> make

genmake uses the ExtUtils::MakeMaker module, tweaking it from its original intent to produce
Makefiles for Perl modules into producing one for a C program.

Implementing the Perl Interpreter
Now that we've prepared the ground, let's see what is needed to actually write the C program. To start,
some header files need to be included:

#include <EXTERN.h>
#include <perl.h>

Chapter 21

878

We have already seen these two files included in the first section. We can skip the third, XSUB.h, as
long as we don't plan to use XS extensions from our code (we'll cover this later).

Then, we need to implement an interpreter, which is an instance of Perl that is kept in a Perl Interpreter
structure. We initialize it with the functions:

PerlInterpreter *my_perl;
my_perl = perl_alloc();
perl_construct(my_perl);

Once the my_perl variable has been allocated and constructed, it can be fed to other functions which
actually do the Perl job:

perl_parse(my_perl, NULL, argc, argv, env);
perl_run(my_perl);

This really explains the double nature of Perl as a compiler and an interpreter. First, the code is parsed
and internally compiled by perl_parse. Then, it is run by perl_run.

The parameters to perl_parse are, in order:

❑ The pointer to the Perl interpreter.

❑ A pointer to initialized XSUBs. (See the 'Using Modules' section later in this chapter for this;
we'll use NULL for now.)

❑ argc, argv, and env like the ones C's main function gets.

If the env parameter is NULL, the current environment is passed to the interpreter.

After our run, we clean up with the following two functions:

perl_destruct(my_perl);
perl_free(my_perl);

One thing to note about the perl_parse function, is that it is, by itself, an implementation of the Perl
executable that we're familiar with. In fact, it accepts all the switches and options Perl does, in argc and
argv. By simply putting it in a main function and passing the relevant arguments, exactly the same
functionalities of the Perl binary are implemented.

Of course, we can also provide our own arguments to it. This little program, called pversion.c, prints
out the current version of Perl (as perl –v does):

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
/* we pass a dummy argv[0] */
char *switches[] = {"", "-v"};
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 2, switches, (char**)NULL);
perl_run(my_perl);
perl_destruct(my_perl);
perl_free(my_perl);

}

Integrating Perl with Other Programming Languages

879

We can compile our program with one of the two procedures we've seen in the last paragraph;

> gcc –o pversion pversion.c 'perl –MExtUtils::Embed -e ccopts -e ldopts'

or by using the genmake script:

> perl genmake pversion.c
> make

Both procedures (remember, only the second option is available on Windows machines) generate an
executable called pversion that will produce, for example, this output:

> pversion
This is perl, v5.6.0 built for i686-linux

Copyright 1987-2000, Larry Wall

Perl may be copied only under the terms of either the Artistic License, or the
GNU General Public License, which may be found in the Perl 5.0 source kit.

Complete documentation for Perl, including FAQ lists, should be found on
this system using 'man perl' or 'perldoc perl'. If you have access to the
Internet, point your browser at http://www.perl.com/, the Perl Home Page.

If a filename is hard coded in the switches, Perl will execute the script by that name, just as the
executable does. We can even put a -e switch followed by code there:

/* shorter version */
/* note we have to escape quotes and backslashes! */
char *switches[] = {"", "-e", "print \"$]\\n\";"}

/* later, we'll call perl_parse with 3 arguments this time */
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);

Note that this calling sequence (perl_alloc, construct, parse, run, destruct, and free) is
always needed, even if there is nothing to pass to perl_parse. We can't simply pass a blank argument
list, because this corresponds to calling the Perl executable without arguments, so it will read code from
standard input, which is probably not what we want. To have the interpreter ready to run code, we
usually pass -e 0 on its command line, which results in perl_parse doing nothing. Here, we have a
script named do_nothing.c, which shows this:

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
/* 'void' command line */
char *switches[] = {"", "-e", "0"};
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);
perl_run(my_perl);

Chapter 21

880

/* my_perl is now ready to receive orders */

perl_destruct(my_perl);
perl_free(my_perl);

}

We'll use this skeleton for the next samples, whenever we need a bare implementation of the Perl
interpreter.

Embedding Perl Code
We have many ways of embedding Perl code. As said above, the interpreter can execute the script
contained in a file. This is a convenient approach, for example, when we want to change some portions
of an application without the need to rebuild the executable. This can be seen as having Perl plug-ins
added to a C application.

The drawback to this is that the script, or scripts need to be shipped together with the application, which
is something we may not want to do. Being normal scripts, anybody can open the scripts and mess with
the source code, which could make our application unusable.

We can decide that we want to properly 'embed' Perl code in our application instead of depending on
external files. We have already seen that the -e switch can be used to pass code directly to the Perl
interpreter, but there is also a more convenient, and efficient, way, which is the eval_pv function,
which works like Perl's built-in eval. We take our last sample from the previous paragraph and we
make it print Hello, world. This script is called phello.c:

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
char *switches[] = {"", "-e", "0"};
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);
perl_run(my_perl);

eval_pv("print \"Hello, world\\n\";", 0);

perl_destruct(my_perl);
perl_free(my_perl);

}

eval_pv takes a string, containing Perl code, and a flag called croak_on_errors (the zero above). If
the flag is set, and the evaluated code produces an error, Perl will die with its own error message (and of
course, the C program dies with it). If it is zero, it acts just like eval does, ignoring fatal errors and
setting the $@ variable (which can be accessed in C under the name ERRSV). We show how error
handling works with this code:

/* 'safe' eval */
eval_pv("a deliberate error", 0);

if(SvTRUE(ERRSV)) {
printf("eval_pv produced an error: %s\n",

SvPV(ERRSV, PL_na));
}

Integrating Perl with Other Programming Languages

881

/* 'unsafe' eval */
eval_pv("a deliberate error", 1);

/* this is never reached */
printf("too late, we died...\n");

In the first part, we use the SvTRUE function to check if the global variable ERRSV is true. If it is, then
the evaluated block produced an error (and we report the error message by getting the PV stored in
ERRSV). In the second part, the error simply causes the program to end.

Getting Perl Values
The value of defined Perl variables can be obtained using the get_* family of functions. We have
get_sv for scalars, get_av for arrays, and get_hv for hashes.

This little program, called dump_inc.c, gets the @INC array using get_av, and dumps its content using
av_len to get the array length, and av_fetch to fetch values from it in a loop:

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
AV* inc;
SV** value;
int i;

char *switches[] = {"", "-e", "0"};
my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);
perl_run(my_perl);

inc = get_av("INC", 0);

if(NULL != inc) {
for(i = 0; i <= av_len(inc); i++) {

value = av_fetch(inc, i, 0);

if(NULL != value) {
printf("%s \n", SvPV(*value, PL_na));

}
}

}
perl_destruct(my_perl);
perl_free(my_perl);

}

The combination of eval and get functions is a powerful means to integrate Perl functionalities into a
C program. For example, this function performs a pattern substitution on a string:

bool
substitute(char *string[], char *from, char *to, char *flags) {

char *default_flag = "g";

SV* instruction;
SV* result;

Chapter 21

882

if(flags == NULL) flags = default_flag;

/* note we use an SV* to evaluate */
instruction = newSVpvf(

"($string = '%s') =~ s/%s/%s/%s",
*string, from, to, flags

);

/* evaluate the code */
eval_sv(instruction, 0);

/* oops, something went wrong... */
if(SvTRUE (ERRSV)) return 0;

/* $string now contains the new string, let's get it */
result = get_sv("string", 0);

/* and give it back to C */
*string = SvPV(result, PL_na);
return 1;

}

The function can be used comfortably from C as shown in foobar.c below:

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
char *string = "foo is foo";
char *switches[] = {"", "-e", "0"};

my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);
perl_run(my_perl);

printf("string is '%s'\n", string);
substitute(&string, "foo", "bar", NULL);
printf("string is now '%s'\n", string);

perl_destruct(my_perl);
perl_free(my_perl);

}

The program performs the Perl instruction s/foo/bar/g on our string, and correctly outputs:

string is 'foo is foo'
string is now 'bar is bar'

Using Perl Subroutines
Calling a Perl subroutine instead of evaluating pieces of code requires some additional steps. Parameters
can't be simply passed from C to a Perl subroutine and vice versa, we have to perform a series of calls to
set up the stack, push, and pop parameters to and from it.

Integrating Perl with Other Programming Languages

883

This is the usual procedure to call a Perl subroutine from C, supposing our sub is called foo:

dSP; /* declare the stack */
int count;

ENTER; /* prepare the stack */
SAVETMPS;
PUSHMARK(SP);
XPUSHs("bar"); /* push input parameters */
XPUSHi(42);
PUTBACK; /* finalize the stack */

count = call_pv("foo", 0); /* call the sub 'foo' */

/* count holds the numbers of return values */

SPAGAIN; /* query the stack */
for(i=0; i<=count; i++) {

temp = POPp; /* pop a string */
}
PUTBACK; /* clean up */
FREETMPS;
LEAVE;

We have used call_pv to call a named subroutine, which could have been defined in an external Perl
file, or built with an eval_pv statement. But if we don't want to pollute Perl's namespace, we can also
use a reference to an anonymous subroutine. In the next example, we take the commify sub from the
Perl FAQ (this sub formats a number with commas to separate thousands, for example 123456 will
become 123,456) and store it in a SV* in our C program:

static SV* commify_sub;

void create_sub() {
commify_sub = eval_pv(

"sub {local $_ = shift; \

1 while s/^(-?\\d+)(\\d{3})/$1,$2/; \
return $_;}", 0);

}

Now that we have obtained commify_sub, we can use call_sv to actually call the code reference
stored in it:

int
commify(char *result[], double number) {

dSP;
int count;
int success;

ENTER;
SAVETMPS;
PUSHMARK(SP);
XPUSHn(number);
PUTBACK;
count = call_sv(commify_sub, G_SCALAR);
SPAGAIN;

TE
AM
FL
Y

Team-Fly®

Chapter 21

884

if(count != 1) {
success = 0;

} else {
*result = POPp;
success = 1;

}
PUTBACK;
FREETMPS;
LEAVE;
return success;

}

Our commify function, created above, will call our globally stored commify_sub. This is now ready to
be used from C:

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
char *switches[] = {"", "-e", "0"};
char *commified;

my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);
perl_run(my_perl);

create_sub();

if(commify(commified, 1675002)) {
printf("commified: %s\n", commified);
free(commified);

}
if(commify(commified, 39852.12)) {

printf("commified: %s\n", commified);
free(commified);

}

perl_destruct(my_perl);
perl_free(my_perl);

}

This program will output, as expected, the result from the Perl commify sub:

commified: 1,675,002
commified: 39,852.12

Working with Perl Internals
Some parts of the Perl internals can also be accessed directly from C, without a line of Perl code. For
example, Perl variables (scalars, arrays, and hashes) can be created and managed using Perl's C APIs.

Integrating Perl with Other Programming Languages

885

This program, hash.c, shows how to build a hash using the newHV function: the hash is stored in a HV
structure. We can then store a value in it using hv_store, and query the hash with hv_fetch. Full
documentation for the C representation of Perl's variables can be found in the perlguts manual page.

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
char *switches[] = {"", "-e", "0"};
HV* hash;
SV** value;

my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);
perl_run(my_perl);

/* create the hash */
hash = newHV();

/* store the 'test' value... */
hv_store(hash, "test", 4, newSViv(42), 0);

/*...and fetch it */
value = hv_fetch(hash, "test", 4, 0);

/* first check it is defined */
if(NULL != value) {

printf("hash{test}=%d\n", SvIV(*value));
}

perl_destruct(my_perl);
perl_free(my_perl);

}

Instead of fetching a single key from the hash, we can iterate through its keys, as per Perl's each
function, with this code:

SV* val;
char* key;
I32 keylen;

hv_iterinit(hash);
while ((val = hv_iternextsv(hash, &key, &keylen))) {

printf("hash{%s}=%s\n", key, SvPV(val, PL_na));
}

The next example, do_join.c, goes even further and shows how to call the equivalent of Perl's built-in
join directly from C. This is not part of the officially exposed APIs, so this can be considered as a little
hack. The prototypes for many of the Perl built-ins are contained in proto.h, which is in the source
distribution.

Chapter 21

886

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
PerlInterpreter *my_perl;
char *switches[] = {"", "-e", "0"};
SV* joined;
SV* stack[4];

my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 3, switches, (char**)NULL);
perl_run(my_perl);

/* place a dummy SV on top of the stack */
stack[0] = &PL_sv_undef;

/* the strings we want to join */
stack[1] = newSVpv("one", 0);
stack[2] = newSVpv("two", 0);
stack[3] = newSVpv("three", 0);

/* this will hold the result */
joined = &PL_sv_undef;

do_join(joined, newSVpv(", ", 0), stack, stack+3);

printf("and the result is: '%s'\n", SvPV(joined, PL_na));

perl_destruct(my_perl);
perl_free(my_perl);

}

This program does the equivalent of Perl's join (', ', 'one', 'two', 'three'), producing
this output:

and the result is: 'one, two, three'

Using Modules
Using a Perl module is not a problem, as long as the module is pure Perl. For example, to use the
Config module, the -MConfig switch can be added to perl_parse, as shown in this code,
use_config.c:

#include <EXTERN.h>
#include <perl.h>

int main(int argc, char** argv, char** env) {
static PerlInterpreter *my_perl;
char *switches[] = {"", "-MConfig", "-e", "0"};
HV* config;
SV** osname;

Integrating Perl with Other Programming Languages

887

my_perl = perl_alloc();
perl_construct(my_perl);
perl_parse(my_perl, NULL, 4, switches, (char**)NULL);
perl_run(my_perl);

config = get_hv("Config", 0);
osname = hv_fetch(config, "osname", 6, 0);

if(NULL != osname) {
printf("$Config{osname} = '%s'\n", SvPV(*osname, PL_na));

}

perl_destruct(my_perl);
perl_free(my_perl);

}

The module could also have been accessed using this code instead:

eval_pv("use Config", 0);

The program will act just like Perl does: it will search for the Config.pm file in its @INC, read it and
evaluate it. This also means that it needs to find the file where it's supposed to be, so the program will
not run on a machine without a proper Perl lib directory set up.

As mentioned before, this works only as long as the module is made up of Perl and nothing else. If we
try to use a module that uses the XS interface, it will fail miserably. We'll get an error message saying
that our Perl can't do dynamic loading.

To use a module that in turn loads a shared library, the DynaLoader module, which takes care of
loading the library and providing hooks to its exported symbols, must have been previously initialized.

To do this, we use the second parameter to perl_parse, which we've left to NULL until now. The
definition for this parameter in the prototype is void(*xsinit)(void), a function which takes no
arguments and returns none.

This function, usually simply defines an XS subroutine to 'bootstrap' DynaLoader: the rest is done by
the module itself:

void xs_init() {
char *file = __FILE__;
newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);

}

We also need to provide, before this function, the prototype for the boot_DynaLoader function,
defined in the module's library:

void boot_DynaLoader (CV* cv);

Now xs_init can be passed to perl_parse, and we are able to use XS extensions. This sample
program, named use_posix.c, calls a function contained in the POSIX module, which has an XS part:

Chapter 21

888

#include "embedded_perl.h"

void boot_DynaLoader (CV* cv);

void xs_init() {
char *file = __FILE__;
newXS("DynaLoader::boot_DynaLoader", boot_DynaLoader, file);

}

int main(int argc, char** argv, char** env) {
dSP;

perl_prologue();

printf("using POSIX...\n");
eval_pv("use POSIX", 0);

printf("calling POSIX::clock...\n");
call_pv("POSIX::clock", G_SCALAR|G_NOARGS);

SPAGAIN;
printf("POSIX::clock returned %ld\n", POPi);

perl_epilogue();
}

If the genmake script is used to do the build, a file called perlxsi.c is automatically generated and
compiled together with the program. This file defines the xs_init function for us, so we only need to
include its prototype before the main function:

void xs_init();

The Java-Perl Lingo
The Java-Perl Lingo (or JPL for short), originally put up by Larry Wall, provides interoperability
between Perl and Java. It is composed of two distinct parts: one that allows Java classes and methods to
be used from Perl, and another that allows Perl code to be 'embedded' into Java classes. To use this
package, a JDK (Java Development Kit) must also be available on our system.

This example shows the first part at work:

use JPL::Class 'java::lang::StringBuffer';
$sb = java::lang::StringBuffer->new__s("TEST");
print "Java string: ", $sb->toString____s(), "\n";

With the use JPL::Class directive, we import, in Java terms, the desired class. The class becomes a
regular Perl package, exposing its methods as Perl methods. We only need to 'decorate' the names with
the signature for input and output parameters.

Details for this can be found in the JNI (Java Native Interface) documentation. The JPL delimiter for
signatures is a double underscore, so we gather that the new method gets a string (s is a special case for
the JNI Ljava/lang/String; signature) as its argument, while the toString method gets no
argument and returns a string.

Integrating Perl with Other Programming Languages

889

The next example shows how to define a Perl method inside a Java class. We simply define a Java
method with the perl prefix, and put its body into double brackets:

class foo {
perl int add(int a, int b) {{

return $a + $b;
}}

// ...rest of the code here
}

The file should be named foo.jpl, and it will be compiled by JPL into foo.class. The provided JPL
tool will perform all the necessary steps for us. The command for this is:

> jpl foo.jpl

In reality, the result will be composed of the Java class, a Perl file, and a dynamic library to provide glue
between the two.

Perl and COM
ActiveState's Perl Dev Kit (or PDK for short) contains two tools that allow Perl to be used in a COM
environment. The advantages of doing this, in terms of integration, are quite high on the Windows
operating systems, where many programming languages and applications make use of the COM
architecture.

Take just a quick look at what these tools provide; for further information, refer to the documentation
included with the copy of the PDK.

PerlCOM
PerlCOM is, basically, a DLL that exposes a COM interface to a Perl interpreter. Using PerlCOM is
very similar to having an embedded Perl. This time, however, it can be embedded in every
programming language, or application, which supports COM objects, not only in C as we've seen so far.
The next sample shows how to embed PerlCOM, and evaluate a snippet of code inside Visual Basic:

Dim my_Perl
Set my_Perl = CreateObject("PerlCOM.Script")

my_Perl.EvalScript("print ""Hello, world!\n"" ")

The my_Perl object can also be used to access Perl functions and variables directly:

my_Perl.EvalScript("$foo = 'bar'")
MsgBox my_Perl.foo

my_Perl.EvalScript(_
"sub hello {my($name) = @_; return 'Hello '.$name;}" _

)
MsgBox my_Perl.hello("Joe")

Chapter 21

890

PerlCOM provides some additional methods for useing Perl modules and datatypes, such as
UsePackage, and CreateHash.

Here we've made some samples using Visual Basic, but PerlCOM objects can be instantiated in
a number of other environments, including Microsoft Visual C++ and J++, Delphi, VBA, and
even Python.

'PerlCtrl'
PerlCtrl is another variation on the COM theme: it is a command line tool that takes a Perl script and
turns it into an ActiveX component.

This way, instead of implementing a full-blown Perl interpreter, we can implement a 'control' that
exposes only the methods and properties we have defined in the appropriate type library. This requires
a bit of coding, in the Perl script itself, to properly define what should and should not be exposed.

In a few words, the script should contain a %TypeLib hash (commented out from Perl's view with pod
directives, but interpreted by the PerlCtrl program) with all the information about the COM interface
we are going to expose. Here, we take the code from a sample control implementation, hello.ctrl,
included with the PDK to illustrate what a PerlCtrl program looks like:

package Hello;
sub Hello {

return "Hello, world!";
}

=pod

=begin PerlCtrl

%TypeLib = (
PackageName => 'Hello',

DO NOT edit the next 3 lines.
TypeLibGUID => '{E91B25C6-2B15-11D2-B466-0800365DA902}',
ControlGUID => '{E91B25C7-2B15-11D2-B466-0800365DA902}',
DispInterfaceIID=> '{E91B25C8-2B15-11D2-B466-0800365DA902}',

ControlName => 'Hello World Control',
ControlVer => 1,
ProgID => 'Hello.World',

DefaultMethod => '',

Methods => {
'Hello' => {
RetType => VT_BSTR,
TotalParams => 0,
NumOptionalParams => 0,
ParamList =>[]
},

}, # end of 'Methods'

Integrating Perl with Other Programming Languages

891

Properties => {
} ,
end of 'Properties'

); # end of %TypeLib

=end PerlCtrl

=cut

This script is simply passed to the PerlCtrl command line utility that will generate a DLL from our
code. This DLL is then registered on our system, and we can instantiate the COM object as we've seen
before:

Dim my_Hello
Set my_Hello = CreateObject("Hello.World")

MsgBox my_Hello.Hello()

The same considerations made about implementing PerlCOM apply, of course, to PerlCtrl objects as
well. The resulting object can be instantiated in every language or application that supports COM.

Miscellaneous Languages
So far, we have seen a number of ways to integrate other programming languages with Perl. On CPAN,
however, there are also Perl modules that implement different languages, and modules that are designed
to implement language parsers. The proverbial flexibility of Perl in text parsing and string handling
makes it a perfect candidate for writing language interpreters.

Some of them are purely academic exercises, and far from being fully functional interpreters, but
nonetheless they may contain useful bits of code. CPAN offers little gems like Language::Basic by
Amir Karger, or Language::Prolog by Jack Shirazi, and the perl-lisp package by Gisle Aas, for
example. These are all interesting efforts to implement, at least subsets, of other languages in Perl.

Damian Conway has released a very interesting module called Lingua::Romana::Perligata. This
module is an interpreter that uses the ancient latin language as a 'dialect' to write Perl code. Agreed, it is
unlikely that someone will actually write programs in this language, but the code that's behind it
deserves a mention.

The module has a very complex grammar and uses Latin inflections to distinguish, for example, hashes
from scalars. It makes use of the Filter (covered in the next section) and the Parse::Yapp modules
(by Francois Desarmenien).

The last of the two modules is a grammar compiler, similar to the UNIX yacc tool. In a few words, it
generates a parser based on user-defined rules and syntax. Another similar tool is the
Parse::RecDescent module, also written by Damian Conway.

Chapter 21

892

These modules are the building blocks of language design, and if anyone is serious about this topic, they
definitely should learn to use them.

The Filter Module
Something that deserves a special mention is the Filter module, by Paul Marquess, which gives us the
ability to turn Perl into something else. The module makes use of a very powerful feature of the Perl
internals, that we saw at work with the ByteLoader module in Chapter 20.

The principle is very simple: a hook function is installed, and then it is called when data is read from
the program source. This function can modify the data before it is passed to the Perl interpreter. This
way, the source code of a program can be modified before it is parsed by Perl. This means, for example,
that we can write our code in something that isn't Perl, and using an appropriate filter we can translate it
back to Perl before it is interpreted.

The Filter distribution, available from CPAN, comes with a module called Filter::Util::Call,
which hides all the complexities of working with the Perl internals, and allows us to write a Perl filter in
a few lines of code.

We'll see how it works with a basic example: this filter reads its input and uses tr to shift the letters
thirteen places forward in the alphabet. There is a simpleminded 'encoding' algorithm known on the
Usenet as rot13, and so this script is named rot13.pm:

package rot13 ;
use Filter::Util::Call ;
sub import {

filter_add(
sub {

my $status;
tr/n-za-mN-ZA-M/a-zA-Z/
if ($status = filter_read()) > 0;

return $status;
}

);
}
1;

The import function, which is called automatically when the module is used, contains a filter_add
call. It takes a code reference as its argument, which is the hook code for doing the real filtering.

This filter routine takes a line from the file using the filter_read function, and uses the $status
variable to check for the end of file. The filter works directly on $_, so we use tr implicitly on it. The
modified $_ is then passed to the Perl interpreter.

We can 'encode' a script with the rot13 algorithm using the following one liner. The hello.pl sample
script contains one line (print "Hello, world\n"):

> perl -pi.bak -e 'tr/a-zA-Z/n-za-mN-ZA-M/' hello.pl

Integrating Perl with Other Programming Languages

893

The script now contains what, at a first glance, looks like funny characters and nothing more (cevag
"Uryyb, jbeyq\a"). Of course if we try to execute it, we'll get a syntax error. But it still can be
executed using the filter package we've prepared, like this:

> perl -Mrot13 hello.pl
Hello, world!

Although simple, this trick shows a very powerful technique. Of course, much more power can be
obtained using an XS extension instead of plain Perl code. The Filter distribution contains examples
of filters written in C, which may be used as a template for our own filters.

Starting from version 5.6.0, the Perl documentation also includes a perlfilter manual page, which
explains in more depth the concepts of source filtering and their usage.

Summary
Throughout this chapter, we have seen how Perl can interact with a number of other programming
languages, in particular with C. We have looked at this interaction in two different directions; using C
from Perl and using Perl from C. This is done by utilizing various tools, interfaces and modules. As a
summary we have:

❑ Introduced the XS interface to extend Perl by making use of C.

❑ Seen how Perl can call functions residing in external libraries using dynamic loading.

❑ Seen how to embed the Perl interpreter in a C program.

❑ Reviewed integration with different languages like Java, and (on Windows) Visual Basic, and
other COM-aware environments.

❑ Given some pointers to useful tools when implementing language design in Perl.

TE
AM
FL
Y

Team-Fly®

Chapter 21

894

Creating and Managing Processes

When a script is run, regardless of whatever language it has been compiled in, there are certain features
common to each execution. In this chapter, we shall be looking at some of these aspects more closely in
order to gain a better understanding of processes and how they behave within a program.

First we shall begin by laying a solid foundation on understanding signals. Even simple, single processes
will be able to benefit from the proper handling of them. Then we shall move on to the manipulation
and behavior of processes before moving on to the subject of how they can be split up and utilized.

Another important aspect of processes, much like the real-life analogy of parents and children, is the
communication between them. In the later sections we expand the ideas of using pipes and other objects
in handling data between processes. Finally we cover a major new topic, which is experimental in Perl
at the present moment – threads. We can still use it at this stage so long as we are careful but threading
will be built into future Perl releases, beginning with Perl 6.

Signals
Much like hardware interrupts, signals are exception events that happen independently of a process.
They are even considered to be 'out of band', since they cannot be deferred for handling. Any signal
sent is received by the process instantly, and must be processed immediately. Typically, our operating
environment has defined default behaviors for most signals. A UNIX shell, for instance, maps some
signals to key sequences, such as KILL to Ctrl-C, and STOP to Ctrl-Z. Other processes, as well as the OS
kernel, have the ability to send signals to any designated process.

Chapter 22

896

Every process keeps an index of signals and their defined behaviors. Whenever a process receives a
signal, it stops normal execution and executes the behavior defined for that signal. Depending on the
signal, that behavior may take some action and return control back to the interrupted routine. Other
behaviors may do some cleaning up and exit the program, while others can do nothing, effectively
ignoring the signal. Regardless of the signal, Perl allows the programmer to redefine the behaviors of
most signals as necessary. The signal index is stored as the hash variable %SIG, with the key value being
the signal name, and the value being either a reference to a subroutine to execute, or an appropriate
return value. By assigning various values to signals in the hash, we can control how Perl and our process
handle different kinds of signals.

To elaborate a little on what kind of signals we have available, we can dump out a list of them by
printing out the keys of the %SIG hash:

#!/usr/bin/perl
signals.pl
use warnings;
use strict;

foreach (sort keys %SIG) {
print "$_\n";

}

At the system level each signal is denoted as an integer, rather than as the name we know them. As seen
from the above, however, Perl does not index the signals in %SIG by their numeric values, but by the
name. If we need to cross reference the numeric and names, we can discover them via the kill -l
command (provided we're on a UNIX platform, of course) or through the position of the name in Perl's
Config variable sig_name, which is a space-delimited string:

#!/usr/bin/perl
siglist.pl
use warnings;
use strict;

use Config;

my @signals = split ' ', $Config{sig_name};
for (0..$#signals) {

print "$_ $signals[$_] \n" unless $signals[$_] =~ /^NUM/;
}

This generates a list of all signals and their associated numbers, skipping over real time signal numbers
beginning NUM (in the range between RTMIN and RTMAX):

0 ZERO
1 HUP
2 INT
3 QUIT
4 ILL
5 TRAP
6 ABRT
7 BUS
8 FPE
9 KILL
10 USR1
...

Creating and Managing Processes

897

Many of these signals are obscure, unlikely, or only occur if we have certain things enabled. The signal
SIGPWR for example, applies to power failure situations and SIGIO occurs only with filehandles set to
asynchronous mode using O_ASYNC. The most commonly used signals are as follows (please note that
not all of the signals below work on non-UNIX platforms):

Name Key Meaning

SIGHUP HUP Hangup

Controlling terminal or process has terminated (for example a
modem, hence 'hang up'). Often redefined in daemons to tell them
to re-read their configuration files and restart operations.

SIGINT INT Interrupt

Instructs the process to interrupt what it is doing and exit. This
signal is trappable (which means we can redefine its handler) so that
a process can perform any necessary clean up before doing so.
Pressing Ctrl-C on the keyboard is often the manual way to send this
signal.

SIGQUIT QUIT Quit

A higher priority signal to shut down and, depending on the
system's configuration, may produce a core dump. This signal, too,
is trappable.

SIGKILL KILL Kill

An explicit command to tell the process to immediately exit. This
signal is not trappable (would we really want to take away the
kernel's ability to terminate run-away processes?).

SIGUSR1 USR1 User-defined signal

While this signal is never used by the kernel, the default behavior
for any process receiving the signal is to exit.

SIGUSR2 USR2 User-defined signal

A second signal for process definition. Like USR1, the default
behavior is to exit.

SIGPIPE PIPE Broken pipe

A pipe that a process was either reading from or writing to has been
closed by the other end.

SIGALRM ALRM Alarm

An alarm timer for this process has expired. Not supported on
Microsoft platforms.

SIGTERM TERM Terminate

Like INT, this instructs the process to exit, and is trappable. This
signal has a higher priority than INT, but lower than QUIT and
KILL.

Table continued on following page

Chapter 22

898

Name Key Meaning

SIGCHLD CHLD Child exit

A child process has exited.

SIGFPE FPE Floating point exception

SIGSEGV SEGV Invalid memory reference

SIGCONT CONT Continue

Resume execution if stopped by a STOP signal.

SIGSTOP STOP Stop

The process is halted until it receives a CONT, at which point it
resumes operational. This signal is not trappable.

SIGIO IO Asynchronous IO event

If a filehandle is set for asynchronous operation (O_ASYNC), this
signal is raised whenever an event (for example, more input) occurs
on it.

SIGWINCH WINCH Window changed

The window or terminal in which the console of a process is running
has changed size. Chapter 15 discusses this in more detail.

For a complete list of signals, consult system documentation (> man 7 signal on UNIX), but be aware
that even on UNIX, some signals are platform dependent. The same documentation should inform us of
the default behavior of each signal. Regardless, by manipulating the contents of the %SIG hash we can
override these defaults for most signal types, and install our own mechanisms for handling signals.

Signal Handling
A string or subroutine reference may be set as values of the %SIG hash to control what happens when a
given signal is received:

Value Action

DEFAULT or undef Performs the default behavior as determined by the system.

IGNORE Instructs the process to take no action in response to the signal. Un-
trappable signals are unaffected by this setting (such as KILL).

\&subreference If a subroutine reference is set as the value of a signal then it is called
whenever that signal is received. We can then decide how to handle it
ourselves, including ignoring it, raising a different signal, dying, and so
on.

subroutine If the name of the subroutine is set as a string, this will be evaluated by
&main::subroutine when the signal is received.

For example, to ignore SIGPIPE signals, we would put:

$SIG{PIPE} = 'IGNORE';

Creating and Managing Processes

899

To restore the default handling for SIGINT signals:

$SIG{INT} = 'DEFAULT';

To find out the current setting of SIGALRM (remembering that undef is equal to DEFAULT):

$alarming = $SIG{ALRM};

To set a subroutine as a signal handler:

$SIG{USR1} = \&usr1handler;

The last of these is of course the most interesting. Signal handlers, when called, receive the name of the
signal that called them as an argument, so we can assign multiple signals to the same handler, or handle
each signal individually.

$SIG{HUP} = \&handler;
$SIG{STOP} = \&handler;
$SIG{USR1} = \&handler;

If we set a text string that is not DEFAULT or IGNORE then it is taken as a symbolic reference to a
subroutine in the main (not the current) package. So be careful about spelling. Thus:

$SIG{INT} = 'DEFLAT';

actually means:

$SIG{INT} = \&main::DEFLAT;

This will silently fail unless we are using the -w flag with Perl, in which case it will merely complain on
STDERR that the handler DEFLAT is undefined. Although this is a perfectly legal way to set a signal
handler, the fact that it defaults to the main package can cause problems when handling signals inside
packages. Note also that though this is a form of symbolic reference, it is not trapped by the use
strict refs pragma. Conversely, if we try to set a signal that does not exist, Perl will complain with
an error, for example:

No such signal SIGFLARE at...

A practical example for redefining trappable signals would be when our program creates temporary
files. A well-behaved program should clean up after itself before exiting, even when unexpectedly
interrupted. In the following example we will redefine the INT handler to remove a temporary PID file
before exiting. This will keep the program from leaving PID files around when the user interrupts the
program with a Ctrl-C:

$SIG{INT} = sub {
warn "received SIGINT, removing PID file and exiting.\n";
system("rm", "$ENV{HOME}/.program.pid");
exit 0;

};

Chapter 22

900

The 'die' and 'warn' Handlers
In addition to the standard signals, the %SIG hash also allows us to set handlers for Perl's error reporting
system, specifically the warn and die functions together with derivatives of them like carp and croak
(supplied by the Carp module). These are not true signal handlers but hooks into Perl's internals, which
allow us to react to events occurring within Perl. The %SIG hash makes a convenient interface because,
aside from some minor differences in behavior, it operates very similarly to signals.

Neither the warn nor die hooks are present as keys in the %SIG hash by default – we have to add
them:

$SIG{__WARN__} = \&watchout;
$SIG{__DIE__} = \&lastwillandtestament;

Both handlers may customize the error or warning before passing it on to a real warn or die (the action
of the handler is suppressed within the handler itself, so calling warn or die a second time will do the
real thing). A warning handler may choose to suppress the warning entirely; die handlers cannot,
however, avert death, but only do a few things on their deathbed, so to speak. See Chapter 16 for more
on die, warn, and registering handlers for them.

The hook mechanism is not extensible; the __ prefix and suffix merely distinguish these special handlers
from true signal handlers. They do not, however, allow us to create arbitrary signals and handlers.

Writing Signal Handlers
Signal handlers are just subroutines. When they are called, Perl passes them a single parameter: the
name of the signal. For example, here is a program containing a very simple signal handler that raises a
warning whenever it receives an INT signal, but otherwise does nothing with it:

#!/usr/bin/perl
inthandler1.pl
use warnings;
use strict;

sub handler {
my $sig = shift;
print "Caught SIG$sig! \n";

}

register handler for SIGINT
$SIG{INT} = \&handler;

kill time
while (1) { sleep 1; }

Note that since the handler, for all intents and purposes, handled the exception, the program does not
exit. If we still want the handler to exit after performing whatever other actions we need done, we must
add the exit command to the end of our handler. Here is another handler that implements this
scheme, with a private counter. It will catch the first two signals, but defer to the normal behavior on
the third reception:

#!/usr/bin/perl
inthandler2.pl
use warnings;
use strict;

Creating and Managing Processes

901

{
define counter as closure variable
my $interrupted = 0;

sub handler {
foreach ($interrupted) {

$_ == 0 and warn("Once..."), $interrupted++, last;
$_ == 1 and warn("Twice..."), $interrupted++, last;
$_ == 2 and die ("Thrice!");

}
}

}

register handler for SIGINT
$SIG{INT} = \&handler;

kill time
while (1) { sleep 1; }

A few platforms (BSD systems, typically) cancel signal handlers once they have been called. On these
systems (and if we want to be maximally portable) we have to reinstall the handler before we exit it, if
we wish to call it again:

handler {
$sig = shift;

reinstate handler
$SIG{$sig} = \&handler;

... do stuff ...
}

To prevent another signal from coming in before we have redefined it, we will do that first in every
handler. Since this does no harm even on platforms that do not need it, it is a good piece of defensive
programming if we are worried about portability.

Avoid Complex Handlers
The above handlers are good examples of signal handlers in that they do very little. By their nature,
signals herald a critical event. In many cases, that condition means that executing complex code, and
especially anything that causes Perl to allocate more memory to store a value, is a bad idea. For
example, this signal counting handler is not a good idea because it allocates a new key and value for the
hash each time a signal it has not previously seen arrives.

%sigcount;

sub allocatinghandler {
$sig = shift;
$sigcount {$sig}++;

}

Chapter 22

902

This is fine though, as we have guaranteed that all the keys of the hash already exist and have defined
values:

%sigcount = map { $_ => 0 } keys %SIG;

sub nonallocatinghandler {
$sig = shift;
$sigcount{$sig}++;

}

Regardless, there is one rule of thumb that must be adhered to wherever possible: do the absolute
minimum necessary in any signal handler. If we do not, and another signal comes in while we are doing
some kind of extensive processing, our program may suffer random core dumps. Perl, like many low-
level system calls, is not re-entrant at the lowest levels.

Un-interruptible Signal Handlers

Unlike the warn and die hooks, real signal handlers do not suppress signals while they are running,
so if we want to avoid being interrupted a second time while we are still handling a signal, we have to
find a way to avoid further signals. One way to do this is simply to disable the handler for the duration
of the handler:

sub handler {
$sig = shift;

$SIG{$sig} = 'IGNORE';
... do something ...
$SIG{$sig} = \&handler;

}

A better way is to localize a fresh value for the signal value in $SIG using local. This has the same
effect as reassigning it explicitly, but with the advantage that the old value is restored immediately on
exiting the handler without our intervention:

sub handler {
local $SIG{shift} = 'IGNORE';

... do something...
}

We can suppress signals in normal code using the same principles, for instance by temporarily
reassigning a signal to a new handler or value. We can do that by either making a record of the old one,
or using local to suppress it if we happen to be in a section of code that is scoped appropriately:

$oldsig = $SIG{INT};
$SIG{INT} = 'IGNORE';

... code we do not want interrupted ...

$SIG{INT} = $oldsig;

As always, these techniques only work on trappable signals.

Creating and Managing Processes

903

Aborting System Level Operations

On many versions of UNIX, as well as a few other platforms, signals that occur during some system
calls, and in particular during input and output operations, may cause the operation to restart on
receiving the return from the signal handler. Frequently we would rather abort the whole operation at
this point, since resuming is likely to be either pointless or plain wrong. Unfortunately the only way to
abort the interrupted code from inside a signal handler is die or CORE::exit. Moreover, to be able to
resume normal execution at a point of our choice rather than jump into a die handler or exit the
program, we have to put the die (or rather, the context of the die) inside an eval, since that will exit
the eval and resume execution beyond it. So the code we want to abort must all be inside an eval:

sub handler {
$SIG{shift} = 'DEFAULT';
die;

}

$result = eval {
$SIG{INT} = \&handler;
...read from a network connection...
$SIG{INT} = 'DEFAULT';
1; # return true on completion

}

warn "Operation interrupted! \n" unless $result;

If the code in the eval completes successfully it returns 1 (because that is the last expression in the
eval). If the handler is called, the die causes the eval to return undef. So we can tell if the handler
was called or not by the return value from eval, and therefore we can tell if the code was interrupted.
We can vary this theme a little if we want to return an actual result from the eval, so long as we do not
need to validly return a false value, we can always use this technique. Note that even though the die
itself is not in the eval, the context in which it is called is the eval's context, so it exits the eval, not
the program as a whole.

This approach also works for setting and canceling alarms to catch system calls that time out, see
'Alarms' later for more.

Flexibly Installing Signal Handlers
We have already seen how to install a signal handler by hand; simply set the value of the relevant signal
in the signal hash:

$SIG{INT} = \&handler;

While fine for a single signal, this is cumbersome for handling many of them. One way to set up
multiple signals is to assign a new hash to %SIG, for example:

%SIG = (%SIG, INT => IGNORE, PIPE = \&handler, HUP => \&handler);

There is, however, a better way, with the sigtrap pragmatic module. This takes a list of signal actions
and signals and assigns each signal the action that immediately preceded it. sigtrap provides two
handlers of its own; a stack-trace handler, the default action, and die, which does what it implies. It
also provides several keywords for common groups of signals, as well as a keyword for currently
unassigned signals.

TE
AM
FL
Y

Team-Fly®

Chapter 22

904

The default action is stack-trace, so the following three pragmas all have the same effect; normal-
signals is the group comprised of the SIGINT, SIGHUP, SIGPIPE, and SIGTERM signals:

use sigtrap qw(INT HUP PIPE TERM);
use sigtrap qw(stack-trace INT HUP PIPE TERM);
use sigtrap qw(stack-trace normal-signals);

Alternatively we can choose to set a die handler. Here are two examples of using die with the signals
that sigtrap categorizes under error-signals:

use sigtrap qw(die ABRT BUS EMT FPE ILL QUIT SEGV SYS TRAP);
use sigtrap qw(die error-signals);

We can also supply our own handler, by prefixing it with the keyword handler:

use sigtrap qw(handler myhandler ALRM HUP INT);

If we want to be sure the handler exists before we install it we can drop the qw and use a sub reference
in a regular list:

use sigtrap (handler => \&myhandler, ALRM HUP INT);

We may assign different handlers to different signals all at the same time; each signal is assigned the
handler before it in the list. The signals at the front are assigned stack-trace if the first item in the list
is not die or a handler of our own devising:

use sigtrap qw(
stack-trace normal-signals ALRM USR2
die error-signals
handler usrhandler USR1 USR2
die PWR
handler inthandler INT HUP

);

We can specify as many handlers and signals as we like. In addition, later assignments supplant earlier
ones, so handler inthandler INT HUP replaces the assignment to stack-trace of these signals in
the first line (in the guise of normal-signals). If we want to assign a handler to all signals only if they
have not already been assigned or ignored, we can precede the signals we want to trap conditionally
with the untrapped keyword. For example, to call the stack-trace handler for normal signals not
already trapped:

use sigtrap qw(stack-trace untrapped normal-signals);

The opposite of untrapped is any; this cancels the conditional assignment of untrapped:

use sigtrap qw(stack-trace untrapped normal-signals any ALRM USR1 USR2);

If sigtrap is not passed any signal names at all, it defaults to a standard set that is trapped in previous
incarnations of the module. This list is also defined as old-interface-signals. The following are
therefore equivalent:

Creating and Managing Processes

905

use sigtrap qw(stack-trace old-interface-signals);
use sigtrap;

Sending Signals
The traditional UNIX command (and C system call) for sending signals is kill, a curious piece of
nomenclature that comes about from the fact that the default signal sent by the kill command was 15
- SIGTERM which caused the program to exit. Despite this, we can send any signal using Perl's kill
function.

The kill command takes at least two arguments. The first is a signal number or a signal name given as
a string. The second and following arguments are the IDs of processes to kill. The return value from
kill is the number of processes to which a signal was delivered (which, since they may ignore the
signal, is not necessarily the number of processes that acted on it):

tell kids to stop hogging the line
kill 'INT', @mychildren;

a more pointed syntax
kill INT => @mychildren, $grandpatoo;

commit suicide (die would be simpler)
kill KILL => $$; # $$ is our own process ID
kill (9, $$); # put numerically

send our parent process a signal
kill USR1 => getppid

Sending a signal to a negative process ID will send it to the process group of that process (including any
child processes it may have, and possibly the parent process that spawned it too, unless it used
setpgrp). For example, this instruction will send an HUP signal to every other process in the same
process group:

kill HUP => -$$;

The HUP signal in particular is useful for a parent process to tell all its children to stop what they are
doing and re-initialize themselves. The Apache web server does exactly this in forked mode (which is to
say, on UNIX but not Windows) if we send the main process an HUP. Of course, the main process does
not want to receive its own signal, so we would temporarily disable it:

sub huphandler {
local $SIG{HUP} = 'IGNORE';
kill HUP => -$$;

}

The signal 0 (or ZERO) is special. It does not actually send a signal to the target process or processes at
all, but simply checks that those process IDs exist. Since kill returns the number of processes to which
a signal was successfully sent, for signal 0 it reports the number of processes that exist, which makes it a
simple way to test if a process is running:

warn "Child $child is dead!" unless kill 0, $child;

Chapter 22

906

Alarms
An alarms is a particularly useful kind of signal that is issued whenever an internal timer counts down to
zero. We can set an alarm with the alarm function, which takes an integer number of seconds as an
argument:

set an alarm for sixty seconds from now
alarm 60;

If the supplied number is zero, the previous alarm, if any, is cancelled:

cancel alarm
alarm 0;

Setting the alarm will cause the process to exit (as per the default behavior of the signal), unless we also
set a new handler for the signal:

alarmhandler {
print "Alarm at ", scalar(localtime), "\n";

}

$SIG{ALRM} = \&alarmhandler;

Please note that specifying a time interval does not mean that the timer will raise a SIGALRM in exactly
that interval. What it says is that sometime after that interval, depending on the resolution of the system
clock and whether our process is in the current context, a signal will be sent.

A Simple Use of Alarms
We can only ever have alarm active at one time, per process, so setting a new alarm value resets the
timer on the existing alarm, with zero canceling it as noted above. Here is a program that demonstrates
a simple use of alarms, to keep re-prompting the user to input a key:

#!/usr/bin/perl
alarmkey.pl
use strict;
use warnings;

use Term::ReadKey;

Make read blocking until a key is pressed, and turn on autoflushing (no
buffered IO)
ReadMode 'cbreak';
$| = 1;

sub alarmhandler {
print "\nHurry up!: ";
alarm 5;

}

Creating and Managing Processes

907

$SIG{ALRM} = \&alarmhandler;
alarm 5;

print "Hit a key: ";
my $key = ReadKey 0;
print "\n You typed '$key' \n";

cancel alarm
alarm 0;

reset readmode
ReadMode 'restore';

We use the Term::ReadKey module to give us instant key-presses without returns, and set $| = 1 to
make sure the Hurry up! prompt appears in a timely manner. In this example the alarm 0 is redundant
because we are about to exit the program anyway, but in a larger application this would be necessary to
stop the rest of the program being interrupted by Hurry up! prompts every five seconds.

Using Alarms to Abort Hung Operations
We can also use alarms to abort an operation that has hung or is taking too long to complete. This
works very similarly to the eval-and-die example we gave earlier for aborting from a section of code
rather than continuing it – this time we use alarms instead to catch an interrupt. Here is a code snippet
that aborts from an attempt to gain an exclusive lock over the file associated with the filehandle HANDLE
if the lock is not achieved within one minute:

sub alarmhandler {
die "Operation timed out!";

}

sub interrupthandler {
die "Interrupted!";

}

$SIG{ALRM} = \&alarmhandler;
$SIG{INT} = \&interrupthandler;

$result = eval {
set a timer for aborting the lock
alarm 60;

block waiting for lock
flock HANDLE, LOCK_EX;

lock achieved! cancel the alarm
alarm 0;

... read/write to HANDLE ...

flock HANDLE, LOCK_UN;
1; # return true on completion

}

warn @_ unless $result;

Chapter 22

908

The alternative approach to this is to turn the lock into a non-blocking lock, then check the return value,
sleep for a short while, and then try again. The signal approach is more attractive than this solution in
some ways, since it spends less time looping. It is, though, limited by the fact that we can no longer use
an alarm for any other purpose until we have stopped using the alarm here for this purpose.

Starting New Processes
Perl supports the creation of new processes through the fork function, which is an interface to the
operating system's underlying fork function, if we have one. Forking is a pre-UNIX concept, and is
universal on all UNIX-like operating systems. Other platforms like Windows and Macintosh have
chosen the threading model over the forking model, but Perl can still fork on these platforms. For
those that do not support true forking, Perl emulates it closely. We can also choose to use the native
thread model instead, should our Perl installation be built to support threads. See below for more
information on threads.

The fork function spawns a clone of itself, creating a child process (the original process is called the
parent process). The cloning is 'complete' since the child shares the same application code, variables,
and filehandles, as the parent. The typical method used to tell the difference between the parent and
child is in the return value from fork. For the child, it is zero and for the parent it is the process ID of
the child if successful, undef if not. As a result, fork is always found in close proximity to an if
statement, for example:

if ($pid = fork) {
print "Still in the parent process – we started a child with ",
"process id $pid \n";

} else {
print "This is the child process\n";

terminate child and return success to the parent
exit 0;

}

What the above example does not do, though, is check the return value for a failure of the fork
operation. If the fork failed entirely it would return undef and we should always check for this
possibility (which might occur if the system has reached a limit on processes or does not have enough
memory to create the new process). So, we can check it using defined:

$pid = fork;
die "Failed to fork: $! \n" unless defined $pid;
if ($pid) {

parent
...

} else {
child
...

}

Creating and Managing Processes

909

Replacing the Current Process with Another
On a related topic, we can replace the current process with a completely different one by using the
exec command. This command is a rather dramatic function as it replaces the current process in its
entirety with the external command supplied as an argument in the same context. Even the PID is
inherited for the calling process:

exec 'command', @arguments;

In general exec is used with fork to run an external command as a sub-process. We will show some
examples of this in action a little later in the chapter. We do not need to check the return value from
exec since if it succeeds we will not be there to return to. Consequently the only time that we will
continue past an exec is if it fails:

hand over to the next act
exec @command;

if we get here the exec must have failed
die "Exec failed: $!\n";

Several of Perl's built-in functions perform automatic fork-and-execs, including the system and
backtick functions, and certain variants of open. We cover all of these later on in this chapter.

Process IDs
The process ID of the current process can always be found from the special variable $$ ($PID or
$PROCESS_ID with the English module):

print "We are process $$\n";

A child process can find the process ID of the parent process with the getppid function (not
implemented on Win32):

$parent = getppid;
print "Our parent is $parent \n";

This allows us to use kill to send a signal to the parent process:

kill "HUP", $parent;

On Win32, there is one caveat to be aware of: Handles (the Win32 equivalents of PIDS) are unsigned 32
bit integers, while Perl's 32 bit integers are signed. Due to this fact, PIDS are occasionally interpreted as
a negative integer. Any signal sent to a negative integer goes to the entire process group, not just a
specific process and these process groups are explained in more detail below.

Process, Groups and Daemons
Whenever a parent process uses fork (either directly or implicitly) to create a child, the child inherits
the process group of the parent. Process groups become significant when signals are sent to a group
rather than a single process. If it is intended to be an independent process then the parent may have its
own group ID (which is generally the same as its process ID), otherwise it will have inherited the
process group from its own parent.

Chapter 22

910

We can find the process group of a process by using the getpgrp function (like getppid, this is not
implemented on Win32), which takes a process ID as an argument. To find our own process group, we
can write:

$pgid = getpgrp $$;

We can also supply any false value, including undef, to get the process group for the current process.
This is generally a better idea because not all versions of getpgrp are the same, and the only value
they have in common is 0. Since Perl maps directly to the underlying function, it means only 0 is truly
portable:

$pgid = getpgrp 0;
$pgid = getpgrp;

In practice we usually do not want to find out the process group, we already know the child will have
the same group as the parent. What we often do want to do is change the group, which we can do with
setpgrp, which takes a process ID and a process group ID as arguments:

setpgrp $pid, $pgid;

In practice the only process we want to change the group for is our own – if we are a child process and
we want to divorce ourselves from the fate of our parent. Likewise, while we can in theory join any
group, we generally want to create our own group. Process group IDs are just numbers, and usually
have the same value as the process ID that owns the group, that is, there is usually one process whose
process ID and process group ID are the same. Children of that process, which didn't change their
group have the same process group ID.

To put ourselves in our own group therefore, we simply need to give ourselves a process group ID that
is equal to our process ID:

setpgrp $$, $$;

Again, we can use a false value for both IDs to default to the current process ID, so we can also say:

setpgrp 0, 0;

Or even just the following (though not quite as portable):

setpgrp;

Both calls will put the child process into its own group. By doing this we isolate the child from the
process group that the parent originally belonged to. Here is a quick example of a daemon that performs
the role of a back seat driver (that is, it keeps shouting out directions when we're trying to concentrate):

#!/usr/bin/perl
backseat.pl;
lack of use warnings;
use strict;

Creating and Managing Processes

911

setpgrp 0, 0;

if (my $pid = fork) {
exit if parent
print "Backseat daemon started with id $pid \n";
exit 0;

}

child loops in background
while (1) {

alarm 60;
foreach (int rand(3)) {

$_ == 0 and print ("Go Left! \n"), last;
$_ == 1 and print ("Go Right! \n"), last;
$_ == 2 and print ("Wait, go back! \n"), last;

}
sleep rand(3)+1;

}

Yes, this example did not use warnings. We intentionally left it out this time, since the valid syntax in
the foreach loop would otherwise generate spurious warnings to verify our intent. Regardless, note
that in this example we changed the process group of the parent, then forked the child before exiting.
We could equally fork and then change the process group of the child since it makes little difference. If
we do not want to print a friendly message we can also simplify the fork statement to just:

fork and exit; # isn't self documenting code great?

Handling Children and Returning Exit Codes
Keeping an eye on children is always a challenging task, and it is just as true for processes as real life.
We can get a child to stop if it is running away with itself by killing it (which may involve sending it a
friendlier signal like TERM, so it has an opportunity to tidy up and exit, rather than simply killing it
outright), but we still have to deal with the remnants regardless of who killed it or why it died.

When a child exits, the operating system keeps a record of its exit value and retains the process in the
process table. The process is stored until the exit value is recovered by the parent. We are expected to
tidy up after ourselves and recover the return values of child processes when they exit. If we fail to do
this, the dead children turn into zombies when the parent exits (no, really – this is all serious UNIX
terminology, do not think that it all sounds like a Hammer horror flick) and hang around the process
table, dead but not buried. Using the ps command on a system where this is happening reveals entries
marked zombie or defunct.

Perl's built-in functions (other than fork) automatically deal with this issue for us, so if we create extra
processes with open we do not have to clean up afterwards. For fork and the IPC::Open2 and
IPC::Open3 modules (both of which we cover later) we have to do our own housekeeping.

Chapter 22

912

Waiting for an Only Child
If we, as the parent process, want to wait for a child to finish before continuing then there is no
problem, we simply use the wait function to cease execution until the child exits:

fork a child and execute an external command in it
exec @command unless fork;

wait for the child to exit
$child_pid = wait;

The process ID of the child is returned by wait, if we need it.

Getting the Exit Status
When wait returns it sets the exit code of the child in the special variable $?. This actually contains
two eight-bit values, the exit code and the signal (if any) that caused the child to exit, combined into a
sixteen-bit value. To get the actual exit code and signal number we therefore need to use:

$exitsig = $? & 0xff; # signal is lower 8 bits
$exitcode = $? >> 8; # exit code is upper 8 bits

If we import the wait symbols from the POSIX module we can also say things like:

use POSIX qw(:sys_wait_h);

$exitsig = WSTOPSIG($?);
$exitcode = WEXITSTATUS($?);

The POSIX module also contains a few other handy functions in the same vein, we list them all
briefly at the end of the section.

Only one of the exit codes and the signals will be set, so for a successful exit (that is, an exit code of
zero), $? will be zero too. This is a convenient Boolean value, of course, so we can test $? for truth to
detect a failed process, whether it exited with a non-zero status or aborted by a signal. Of course, since
such codes are often left to the discretion of the developer to respect, we cannot always rely on that.

In some cases, particularly if we wrote the external command, the returned code may be an errno
value, which we can assign to $! for a textual description of the error.

In the child process/external command:

exit with $! explicitly
exit $! if $!;

'die' automatically returns $!
die;

Creating and Managing Processes

913

In the parent process:

wait;
$exitcode = $? >> 8;
if ($exitcode) {
$! = $exitcode;
die "Child aborted with error: $! \n";
}

If there are no child processes then wait returns immediately with a return value of -1. However, this
is not generally useful since we should not be in the position of calling wait if we did not fork first,
and if we did attempt to fork, we should be testing the return value of that operation. If we are
handling more than one process we should use waitpid instead.

Handling Multiple Child Processes
If we have more than one child process then wait is not always enough, because it will return when any
child process exits. If we want to wait for a particular child then we need to use waitpid:

$pid = fork;
if ($pid) {

waitpid $pid, 0;
} else {

...child...
}

Two arguments are taken by waitpid. The first is the process ID of the child to wait for. The second
argument is a flag that effects the operation of waitpid. The most common flag to place here is
WNOHANG, which tells waitpid not to wait if the child is still running but return immediately with -1.
This argument is one of several constants defined by the POSIX module, and we can import it either
from the :sys_wait_h group or directly:

use POSIX qw(:sys_wait_h);

Or:

use POSIX qw(WNOHANG);

We can use this to periodically check for a child's exit without being forced to wait for it:

if ($pid = fork) {
while (1) {

$waiting = 1;
if ($waiting and (waitpid $pid, WNOHANG)!= -1) {

$waiting = 0;
handle_return_value($? >> 8);
...
last;

}
... check on other children, or do other misc. tasks...

}
} else {

... child ...
}

TE
AM
FL
Y

Team-Fly®

Chapter 22

914

This works for a single child process, but if we have several children to tidy up after we have to collect
all their process IDs into a list and check all of them. This is not convenient. Fortunately we can pass -1
to waitpid to make it behave like wait and return with the value of the first available dead child:

wait until any child exits
waitpid -1, 0;

this is the non-blocking version
waitpid -1, WNOHANG;

We do not necessarily want to keep checking for our children exiting, particularly if we do not care
about their exit status and simply want to remove them from the process table because we are
conscientious and responsible parents. What we need is a way to call waitpid when a child exits
without having to check periodically in a loop. Fortunately we can install a signal handler for the
SIGCHLD signal that allow us to do exactly this:

sub waitforchild {
waitpid -1, 0;

}

$SIG{CHLD} = \&waitforchild;

We do not need to specify WNOHANG here because we know by the fact that the signal handler was
called, a child has exited. Unfortunately, if more than one child exits at once, we might only get one
signal, so calling waitpid once is not enough. A truly efficient signal handler thus needs to keep calling
waitpid until there are no exit codes left to collect, which brings us back to WNOHANG again:

sub waitforchildren {
$pid;
do {

$pid = waitpid -1, WNOHANG;
} until ($pid! == -1);

}

$SIG{CHLD} = \&waitforchildren;

This is of course rather tedious, but it is necessary if we are to manage child processes responsibly. On
some systems we can get away with simply ignoring SIGCHLD, and have the operating system remove
dead children for us:

$SIG{CHLD} = 'IGNORE';

Or, if we can let the child change its process group, we can let init reap children instead. This is not
portable across all systems, though, so in general the above solutions are preferred.

POSIX Flags and Functions
The POSIX module defines several symbols and functions other than WNOHANG for use with the wait
and waitpid system calls. We can make all of them available by importing the :sys_wait_h tag:

use POSIX qw(:sys_wait_h);

Creating and Managing Processes

915

There are two flags. One is WNOHANG, which we have already seen. The other, WUNTRACED, also returns
process IDs for children that are currently stopped (that is, have been sent a SIGSTOP) and have not
been resumed. For example:

$possibly_stopped_pid = waitpid -1, WNOHANG | WUNTRACED;

In addition, the following convenience functions are defined:

Function Action

WEXITSTATUS Extract the exit status, if the process has exited. Equivalent to $? >> 8. For
example:

$exitcode = WEXITSTATUS($?);

The exit code is zero if the process was terminated by a signal.

WTERMSIG Extract the number of the signal that terminated the process, if the process
aborted on a signal. For example:

$exitsignal = WTERMSIG($?);

The signal number is zero if the process exited normally (even if with an
error).

WIFEXITED Check that the process exited, as opposed to being aborted by a signal. The
opposite of WIFSIGNALED. For example:

if (WIFEXITED $?) {

return WEXITSTATUS($?)

} else {return -1};

WIFSIGNALED Check that the process terminated on a signal, as opposed to exited. The
opposite of WIFEXITED. For example:

if (WIFSIGNALED $?) {

print "Aborted on signal ",

WTERMSIG($?), "\n";

} elsif (WEXITSTATUS $?) {

print "Exited with error ",

WEXITSTATUS($?), "\n";

} else {

exit code was 0

print "Success! \n";

}

Table continued on following page

Chapter 22

916

Function Action

WSTOPSIG Extract the number of the signal that stopped the process, if we specified
WUNTRACED and the process returned is stopped as opposed to terminated.
For example:

$stopsig = WSTOPSIG($?)

This is usually SIGSTOP, but not necessarily.

WIFSTOPPED If we specified WUNTRACED as a flag, this returns true if the returned process
ID was for a stopped process:

if (WIFSTOPPED $?) {

print "Process stopped by signal ",

WSTOPSIG($?),"\n";

} elsif (...){

...

}

Communicating Between Processes
Communicating between different processes, or Inter-Process Communication (IPC), is a subject with
many facets. Perl provides us with many possible ways to establish communications between processes,
from simple unidirectional pipes, through bi-directional socket pairs to fully-fledged control over an
externally executed command.

In this section we are going to discuss the various ways in which different processes can communicate
with one another, and the drawbacks of each approach whilst paying particular attention to
communications with an externally run command. The open function provides a simple and easy way
to do this, but unless we trust the user completely it can also be a dangerous one, unless we take the
time to do some thorough screening. Instead we can turn to the forking version of open, or use the
IPC::Open2 or IPC::Open3 library modules for a safer approach.

Before covering the more advanced ways to establish communications between processes and external
programs we will cover the obvious and simple methods like system and do. They may not be
sophisticated, but sometimes they are all we need to get the job done.

Very Simple Solutions
If we simply want to run an external program we do not necessarily have to adopt measures like pipes
(covered in the next section) or child processes, we can just use the system function:

system "command plus @arguments";

However, if system is passed a single argument it checks it to see if it contains shell-special characters
(like spaces, or quotes), and if present, starts a shell as a sub-process to run the command. This can be
dangerous if the details of the command are supplied by the user; we can end up executing arbitrary
commands like rmdir.

Creating and Managing Processes

917

A better approach is to pass the arguments individually and this causes Perl to execute the command
directly, bypassing the shell:

system 'command', 'plus', @arguments;

However, system only returns the exit code of the command, which is great if we want to know if it
succeeded or not but fairly useless for reading its output. For that we can use the backtick operator qx,
or backtick quotes:

these two statements are identical. Note both interpolate too.
$output = `command plus @arguments`;
$output = qx/command plus @arguments/;

Unfortunately, both variants of the backtick operator create a shell, and this time there is no way to
avoid it, since there is no way to pass a list of arguments. If we really want to avoid the shell we have to
start getting creative using a combination of open, pipe, and fork. Fortunately Perl makes this a little
simpler for us, as we will see shortly.

Not to be overlooked, we can also execute external programs with the do command if they are written
in Perl. This command is essentially an enhanced version of eval which reads its input from an
external file rather than having it written directly into the code. Its intended purpose is for loading in
library files (other than modules, for which use or require are preferred), which do not generate
output. If the script happens to print things to standard output, that will work too, so long as we don't
want to control the output.

$return_value = do './local_script.pl';

The do command has a lot of disadvantages, however. Unlike eval it does not cache the code executed
for later use, and it is strictly limited in what it can do. For more useful and constructive forms of inter-
process communication we need to involve pipes.

Pipes
A pipe is, simply put, a pair of file handles joined together. In Perl we can create pipes with the pipe
function, which takes two filehandle names as arguments. One filehandle is read-only, and the other is
write-only. By default, Perl attempts to buffer IO. This is also the case when we want a command to
respond to each line without waiting for a series of lines to come through to flush the buffer. So we
would write:

pipe (READ, WRITE);
select WRITE;
$| = 1;

Or, using IO::Handle:

use IO::Handle;
pipe (READ, WRITE);
WRITE->autoflush(1);

Chapter 22

918

We can also create pipes with the IO::Pipe module. This creates a 'raw' IO::Pipe object that we
convert into a read-only or write-only IO::Handle by calling either the reader or writer methods:

use IO::Pipe;

$pipe = new IO::Pipe;
if (fork) {

$pipe->reader;
$pipe is now a read-only IO::Handle

} else {
$pipe->writer;
$pipe is now a write-only IO::Handle

}

The most common use for pipes is for IPC (Inter-Process Communication mentioned earlier), which is
why we bring them up here rather than in Chapter 23. As a quick example and also as an illustration of
pipes from the filehandle perspective, here is a program that passes a message back and forth between a
parent and child process using two pipes and a call to fork:

#!/usr/bin/perl
message.pl
use warnings;
use strict;

pipe CREAD, PWRITE; # parent->child
pipe PREAD, CWRITE; # child->parent

my $message = "S";

if (fork) {
parent - close child end of pipes
close CREAD;
close CWRITE;

syswrite PWRITE, "$message \n";
while (<PREAD>) {

chomp;
print "Parent got $_ \n";
syswrite PWRITE, "P$_ \n";

sleep 1;
}

} else {
child - close parent end of pipes
close PREAD;
close PWRITE;

while (<CREAD>) {
chomp;
print "Child got $_ \n";
syswrite CWRITE, "C$_ \n";

}
}

Creating and Managing Processes

919

As this example shows, both processes have access to the filehandles of the pipes after the fork. Each
process closes the two filehandles that it does not need and reads and writes from the other two. In
order to ensure that buffering does not deadlock the processes waiting for each other's message, we use
the system level syswrite function to do the actual writing, which also absolves us of the need to set
the autoflush flag. When run, the output of this program looks like this:

Child got : S
Parent got: CS
Child got : PCS
Parent got: CPCS
Child got : PCPCS
Parent got: CPCPCS
Child got : PCPCPCS
Parent got: CPCPCPCS
Child got : PCPCPCPCS
Parent got: CPCPCPCPCS
Child got : PCPCPCPCPCS
Parent got: CPCPCPCPCPCS
Child got : PCPCPCPCPCPCS
Parent got: CPCPCPCPCPCPCS
...

Note that this program works because each process reads exactly one line of input and produces exactly
one line of output, so they balance each other. A real application where one side or the other needs to
read arbitrary quantities of data will have to spend more time worrying about deadlocks; it is all too
easy to have each process waiting for input from the other.

Opening and Running External Processes
If the first or last character of a filename passed to open is a pipe (|) symbol, the remainder of the
filename is taken to be an external command. A unidirectional pipe connects the external process to our
program. Input to or output from the external process is connected to our process based on the position
of the pipe symbol. If the symbol precedes the command, the program's input (STDIN) is connected to
an output statement in our process. If the symbol appends the command, the program's output
(STDOUT) is accessed with an input type statement from our process.

If the pipe character occurs at the start of the filename then the input to the external command is
connected to the output of the filehandle, so printing to the filehandle will send data to the input of the
command. For example, here is a standard way of sending an email on a UNIX system by running the
sendmail program and writing the content of the email to it through the pipe:

get email details from somewhere, e.g. HTML form via CGI.pm
($from_addr, $to_addr, $subject, $mail_body, $from_sig) = get_email();

open connection to 'sendmail' and print email to it
open (MAIL, '|/usr/bin/sendmail -oi -t') || die "Eep! $! \n";
print MAIL <<END_OF_MAIL;
From: $from_addr;
To: $to_addr
Subject: $subject

$mail_body

Chapter 22

920

$from_sig
END_OF_MAIL

close connection to sendmail
close MAIL;

If, on the other hand, the pipe character occurs at the end then the output of the external command is
connected to the input of the filehandle. Reading from the filehandle we will receive anything that the
external command prints. For example, here is another UNIX-based example of using an open to
receive the results of a ps (list processes) command:

#!/usr/bin/perl
pid1.pl
use warnings;
use strict;

my $pid = open (PS,"ps aux|") || die "Couldn't execute 'ps': $! \n";
print "Subprocess ID is: $pid \n";
while (<PS>) {

chomp;
print "PS: $_ \n";

}
close PS;

The return value of open when it is used to start an external process this way, is the process ID of the
executed command. We can use this value with functions such as waitpid, which we covered earlier in
this chapter.

Note that it is not possible to open an external program for both reading and writing this way, since the
pipe is unidirectional. Attempting to pass a pipe in at both ends will only result in the external
command's output being chained to nothing, which is unlikely to be what we want. One solution to this
is to have the external command write to a temporary file and then read the temporary file to see what
happened:

if (open SORT, "|sort > /tmp/output$$") {
... print results line by line to SORT ...
close SORT;
open(RESULT, '/tmp/output$$')
... read sorted results ...
close RESULT;
unlink '/tmp/output$$';

}

Another, better, solution is to use the IPC::Open2 or IPC::Open3 modules, which allow both read
and write access to an external program. The IPC:: modules are also covered in this chapter, under
'Bi-directional Pipes to External Processes'.

Bi-directional Pipes
Standard pipes on UNIX are only one-way, but we can create a pair of filehandles that look like
just one.

Creating and Managing Processes

921

Perl provides a number of functions to create and manage sockets, which are bi-directional networking
endpoints represented in our applications as filehandles. They can be used to communicate between
different processes and different systems across a network.

The socketpair function stands from the other socket functions because it does not have any
application in networking applications. Instead, it creates two sockets connected back to back, with the
output of each connected to the input of the other. The result is something which looks and feels like a
bi-directional pipe. This is unsupported on Win32 platforms.

Sockets have domains, types and protocols associated with them. The domain in Perl can be either the
Internet or UNIX, the type a streaming socket, datagram socket or raw socket, and the protocol can be
something like PF_INET or PF_UNIX (these constants actually stand for Protocol Families). This is the
general form of socketpair being used to create a parent and child filehandle:

socketpair PARENT, CHILD, $domain, $type, $protocol;

However, most of this is fairly irrelevant to socketpair; its sockets do not talk to network interfaces or
the filesystem, they do not need to listen for connections, they cannot be bound to addresses and finally
are not bothered about protocols, since they have no lower level protocol API to satisfy. Consequently,
we generally use a UNIX domain socket, since it is more lightweight than an Internet domain socket.
We make it streaming so we can use it like an ordinary filehandle, and don't bother with the protocol at
all. The actual use of socketpair is thus almost always:

use Socket;

socketpair PARENT, CHILD, AF_UNIX, SOCK_STREAM, PF_UNSPEC;

The symbols AF_UNIX, SOCK_STREAM, and PF_UNSPEC are all defined by the Socket module, which
provides support for Perl's socket functions. We cover it in a lot more detail in Chapter 23, when we
come to real sockets.

Here is a version of the message passing program we showed earlier using a pair of sockets rather than
two pairs of pipe handles:

#!/usr/bin/perl
socketpair.pl
use warnings;
use strict;

use Socket;

socketpair PARENT, CHILD, AF_UNIX, SOCK_STREAM, PF_UNSPEC;

my $message = "S";

if (fork) {
syswrite PARENT, "$message \n";
while (<PARENT>) {

chomp;
print "Parent got: $_ \n";
syswrite PARENT, "P$_ \n";

sleep 1;
}

Chapter 22

922

} else {
while (<CHILD>) {

chomp;
print "Child got : $_ \n";
syswrite CHILD, "C$_ \n";

}
}

In fact we could also close the parent and child socket handles in the child and parent processes
respectively, since we do not need them – we only need one end of each pipe. We can also use the
socket in only one direction by using the shutdown function to close either the input or the output:

shutdown CHILD, 1; # make child read-only
shutdown PARENT, 0; # make parent write-only

The difference between close and shutdown is that close only affects the filehandle itself, the
underlying socket is not affected unless the filehandle just closed was the only one pointing to it. In
other words, shutdown includes the socket itself, and hence all filehandles associated with it are
affected.

This program is a lot more advanced in the way that it manufactures the conduit between the two
processes, because it uses Perl's socket support to create the filehandles, but the benefit is that it makes
the application simpler to write and generates fewer redundant filehandles.

Avoiding Shells with the Forked Open
One problem with using open to start an external process is that if the external command contains
spaces or other such characters that are significant to a shell, open will run a shell as a sub-process and
pass on the command for it to interpret, so that any special characters can be correctly parsed. The
problem with this is that it is potentially insecure if the program is to be run by un-trusted users, as for
example is the case with a CGI script. Functions such as exec and system allow us to separate the
parameters of a command into separate scalar values and supply them as a list, avoiding the shell.

Unfortunately open does not directly allow us to pass in a command as a list. Instead it allows us to use
exec to actually run the command by supplying it with the magic filenames |- or -|. This causes open
to create a pipe and then fork to create a child process. The child's standard input or standard output
(depending on whether |- or -| was used) is connected to the filehandle opened in the parent. If we
then use exec to replace the child process with the external command, the standard input or output is
inherited, connecting the external process directly to the filehandle created by open in the parent.

The return value from open in these cases is the process ID of the child process (in the parent) and zero
(in the child), the same as the return value from fork, enabling us to tell which process we are now
running as.

Of course it is not obligatory to run an external command at this point, but this is by far the most
common reason for using a forked open. It is also by far the most common reason for using exec,
which replaces the current process by the supplied command. Since exec allows the command to be
split up into a list (that is, a list containing the command and arguments as separate elements), we can
avoid the shell that open would create if we used it directly (or handed it a scalar string with the
complete command and arguments in it). Here's an example of running the UNIX ps command via a
forked open:

Creating and Managing Processes

923

#!/usr/bin/perl
pid2.pl
use warnings;
use strict;

my $pid = open (PS, "-|");
die "Couldn't fork: $! \n" unless defined $pid;
if ($pid) {

print "Subprocess ID is: $pid \n";
while (<PS>) {

chomp;
print "PS: $_\n";

}
close PS;

} else {
exec 'ps', 'aef'; # no shells here

}

Or, more tersely and without recording the process ID:

#!/usr/bin/perl
pid3.pl
use warnings;
use strict;

open (PS, "-|") || exec 'ps', 'aux';
while (<PS>) {

chomp;
print "PS: $_ \n";

}
close PS;

Bi-directional Pipes to External Processes
Perl provides a pair of modules, IPC::Open2 and IPC::Open3, which provide access to bi-directional
pipes. These modules have the added advantage that the subroutines they supply, open2 and open3,
permit the external commands to be given as a list, again avoiding an external shell.

As we know from Chapter 12, all applications get three filehandles for free when they start which are
represented by STDIN, STDOUT, and STDERR. These are the three filehandles all applications use, and
they are also the three filehandles with which we can talk and listen to any external process. This is
what the piped open does, but only for one of the filehandles. However, due to the facts that STDIN is
read-only, and STDOUT and STDERR are write-only, we can in theory create pipes for each of them,
since we only need a unidirectional conduit for each handle. This is what the open2 and open3
subroutines provided by IPC::Open2 and IPC::Open3 do. The difference between them is that
open2 creates pipes for standard input and output, whereas open3 deals with standard error too.

Using either module is very simple. In the old style of Perl IO programming we supply typeglobs (or
typeglob references) for the filehandles to associate with the external command, followed by the
command itself:

use IPC::Open2;

$pid = open2(*RD, *WR, @command_and_arguments);

TE
AM
FL
Y

Team-Fly®

Chapter 22

924

Or:

use IPC::Open3;

$pid = open3(*WR, *RD, *ERR, @command_and_arguments);

Confusingly, the input and output filehandles of open2 are in a different order in open3. This is a great
source for errors, so check carefully, or only use open3 to avoid getting them the wrong way around.

Since typeglobs are considered somewhat quaint these days we can also pass in IO::Handle objects for
much the same effect:

use IPC::Open2;
use IO::Handle;

$in = new IO::Handle;
$out = new IO::Handle;
$pid = open2($in, $out, 'command', 'arg1', 'arg2');
print $out "Hello there \n";
$reply = <$in>;

In a similar vein but without the explicit calls to IO::Handle's new method, we can have open2 or
open3 create and return the filehandles for us if we pass in a scalar variable with an undefined value:

use IPC::Open3;

$pid = open3($out, $in, $error, 'command', 'arg1', 'arg2');
print $out "Hello there \n";
$reply = <$in>;

If we also use IO::Handle in this example the returned filehandles will be easily manipulated with
IO::Handle's methods.

Both open2 and open3 perform a fork-and-exec behind the scenes, in the same way that a forked
open does. The return value is the process ID of the child that actually executed (with exec) the
external command. In the event that establishing the pipes to the external command fails, both
subroutines raise a SIGPIPE signal, which we must catch or ignore (this we have covered earlier on in
the chapter). Neither subroutine is concerned with the well-being of the actual external command,
however, so if the child aborts or exits normally we need to check for ourselves and clean up with
waitpid:

use POSIX qw(WNOHANG);

$pid = open2($in, $out, 'command', @arguments);
until (waitpid $pid, WNOHANG) {

do other stuff, and/or read/writes to $in & $out
}

Note that this particular scheme assumes we are using non-blocking reads and writes, otherwise the
waitpid may not get called. We can also check for a deceased external process by detecting the EOF
condition on the input or error filehandles (or by returning nothing from a sysread), but we still need
to use waitpid to clean up the child process.

Creating and Managing Processes

925

If we do not want to do anything else in the meantime, perhaps because we have another child process
busy doing things elsewhere, we can simply say:

wait for child process to finish
waitpid $pid, 0;

If the write filehandle is prefixed with >& then the external command is connected directly to the
supplied filehandle, so input that arrives on it is sent directly to the external command. The filehandle is
also closed in our own process. Similarly, if <& is given to the read or error filehandles they are
connected directly to the application. Here's a script that illustrates this in action:

Usage: myscript.pl 'somecommand @args'

use IPC::Open3;

print "Now entering $ARGV[0] \n";
$pid = open3('>&STDIN', '<&STDOUT', '<&STDERR', @ARGV);
waitpid $pid, 0;
print "$ARGV[0] finished. \n";

Note that we use standard input for the writing handle and standard output for the reading handle.
That's because we are in the middle of this transaction; input comes in from standard input but then
goes out to the external command, and vice versa for standard output.

Of course this particular script is fairly redundant, but with a little embellishment it could be made
useful, for example, logging uses of various commands, checking arguments, and processing tainted data
(if we switch on the -T option). We also do not have to redirect all three filehandles, only the ones we
don't want to deal with:

sub open2likeopen3 {
return open3(shift, shift, '>&STDERR', @_);

}

This implements a subroutine functionally identical to open2 (unless we have redirected standard error
already, that is) but with the arguments in the same order as open3.

Handling Bi-directional Communications
Some external command will communicate with us on a line-by-line basis. That is, whenever we send
them something we can expect at least one line in response. In these cases we can alternate between
writing and reading as we did with our pipe and socketpair examples earlier. Commands like ftp
are a good example of this kind of application.

However, many commands can accept arbitrary input, and will not send any output until they have
received all of the input. The only way to tell such a command that it has all the input it needs is to
close the filehandle, so we often need to do something like this:

@instructions = <ARGV>;
($in, $out);

send input and close filehandle
$pid = open2($in, $out, 'command', @arguments);
print $out @instructions;
close $out;

Chapter 22

926

receive result
@result = <$in>;
close $in;

clean up and use the result
waitpid $pid, 0;
print "Got: \n @result";

If we want to carry out an ongoing dialogue with an external process then an alternating write-read-
write process is not always the best way to approach the problem. In order to avoid deadlocks we have
to continually divert attention from one filehandle to the other. Adding standard error just makes things
worse.

Fortunately there are two simple solutions, depending on whether we can (or want to) fork or not. First,
we can use the select function or the vastly more convenient IO::Select module to poll multiple
input filehandles, including both the normal and error output of the external command plus our own
standard input. Alternatively, we can fork child processes to handle each filehandle individually. We
can even use threads, if we have a version of Perl that is built to use them. We go into more detail on
threads later on.

Sharing Data Between Processes
The problem with forked processes, as we have observed before and will observe again when we get to
threads, is that they do not share any data between them. Consequently to communicate with each other
and share resources, processes need to either establish a channel for communication or find some
common point in memory that can be seen by all the processes that need access to it.

In this section we are going to discuss the IPC facilities provided by UNIX systems and their near
cousins, generically known as System V IPC, after the variant of UNIX on which it first appeared.
There are three components to System V IPC: message queues, semaphores and shared memory
segments. While the first of these is now rarely used because we can replicate some of its functionality
far more easily with pipes, semaphores and shared memory are still very useful, as we will see later in
this chapter.

System V IPC is now a fairly venerable part of UNIX, and is not generally portable to non-UNIX
platforms that do not comply with POSIX. Some parts of it are also implemented through pipes and
socket pairs for ease of implementation. It still has its uses, though, in particular because the objects that
we can create and access with it are persistent in memory and can survive the death of the applications
that use them. This allows an application to store all its mission-critical data in shared memory, and to
pick up exactly where it left off if it is terminated and restarted.

Like most parts of Perl that interface to a lower level library, IPC requires a number of constants that
define the various parameters required by its functions. For IPC these constants are defined by the
IPC::SysV module, so almost any application using IPC includes the statement:

use IPC::SysV;

Creating and Managing Processes

927

Note that we do not actually have to be on a System V UNIX platform to use IPC, but we do have to be
on a platform that has the required IPC support. In general Perl will not even have the modules
installed if IPC is not available, and we will have to find alternative means to our goal, some of which
are illustrated during the course of the other sections in this chapter. Even on UNIX systems IPC is not
always present. If it is, we can usually find out by executing the command:

> ipcs

If IPC is available this will produce a report of all currently existing shared memory segments,
semaphores, and message queues, usually in that order.

The common theme between IPC message queues, semaphores, and shared memory segments is that
they all reside persistently in memory, and can be accessed by any process that knows the resource ID
and has access privileges. This differentiates them from most other IPC strategies, which establish
private lines of communication between processes that are not so easily accessed by other unrelated
processes.

Strictly speaking, Perl's support for IPC is available in the language as the function calls msgctl,
msgget, msgrcv, msgsnd, semctl, semget, semop, shmctl, shmget, shmread, and shmwrite.
These are merely wrappers for the equivalent C calls, and hence are pretty low-level, though very well
documented. However, since these functions are not very easy to use, the IPC:: family of modules
includes support for object-oriented IPC access. In the interests of brevity, we will concentrate on these
modules only in the following sections.

IPC::SysV
The IPC::SysV module imports all of the specified SysV constants for use in our programs in
conjunction with the other IPC modules. The following is a summary of the most widely used constants.
To see the full set of what IPC::SysV can export, we can do a perldoc -m on the module, and
consult development man pages for further information. Error constants are imported with the core
module Errno.

Constant Purpose

GETALL Return an array of all the values in the semaphore set.

GETNCNT Return the number of processes waiting for an increase in value of the
specified semaphore in the set.

GETPID Return the PID of the last process that performed an operation on the
specified semaphore in the set.

GETVAL Return the value of the specified semaphore in the set.

GETZCNT Return the number of processes waiting for the specified semaphore in the set
to become zero.

IPC_ALLOC Currently allocated.

IPC_CREAT Create entry if key doesn't exist.

IPC_EXCL Fail if key exists.

Table continued on following page

Chapter 22

928

Constant Purpose

IPC_NOERROR Truncate the message and remove it from the queue if it is longer than the read
buffer size (normally keeps the message, and returns an error) when applied to
message queues.

IPC_NOWAIT Error if request must wait.

IPC_PRIVATE Private key.

IPC_RMID Remove resource.

IPC_SET Set resource options.

IPC_STAT Get resource options.

IPC_W Write or send permission.

MSG_NOERROR The same as IPC_NOERROR.

SEM_UNDO Specifies the operation be rolled when the calling process exits.

SETALL Set the value of all the semaphores in the set to the specified value.

SETVAL Set the value of the semaphore in the set to the specified value.

S_IRUSR 00400 – Owner read permission.

S_IWUSR 00200 – Owner write permission.

S_IRWXU 00700 – Owner read/write/execute permission.

S_IRGRP 00040 – Group read permission.

S_IWGRP 00020 – Group write permission.

S_IRWXG 00070 – Group read/write/execute permission.

S_IROTH 00004 – Other read permission.

S_IWOTH 00002 – Other write permission.

S_IRWXO 00007 – Other read/write/execute permission.

ftok Convert a pathname and a process ID into a key_t type SysV IPC identifier.

Messages Queues
At one time, message queues were the only effective way to communicate between processes. They
provide a simple queue that processes may write messages into at one end, and read out at the other.
We can create two kinds of queue, private and public. Here is an example of creating a private queue:

use IPC::SysV qw(IPC_PRIVATE IPC_CREAT S_IRWXU);
use IPC::Msg;

$queue = new IPC::Msg IPC_PRIVATE, S_IRWXU | IPC_CREAT;

Creating and Managing Processes

929

The new constructor takes two arguments. The first is the queue's identifier, which for a private queue is
IPC_PRIVATE. The second is the permissions of the queue, combined with IPC_CREAT if we wish to
actually create the queue. Like files, queues have a mask for user, group, and other permissions. This
allows us to create a queue that we can write to but applications running under other user IDs can only
read, or not read at all.

For a private queue, full user permissions are the most obvious and we specify these with S_IRWXU. This
is defined by the Fcntl module, but IPC::SysV imports the symbols for us so we don't have to use
Fcntl ourselves. We could also have said 0700 using octal notation. (Permissions are discussed in
detail in Chapter 13.)

If the queue is private, only the process that created the queue and any forked children can access it.
Alternatively, if it is public, any process that knows the queue's identifier can access it. For a queue to be
useful, therefore, it needs to have a known identifier, or key, by which it can be found. The key is
simply an integer, so we can create a public queue, which can be written to by processes running under
our user ID (that is this application) and only read by others with something like the following:

create a queue for writing
$queue = new IPC::Msg 10023, 0722 | IPC_CREAT;

Another process can now access this message queue with:

$queue = new IPC::Msg 10023, 0200;

On return, $queue will be a valid message object for the queue, or undef if it did not exist. Assuming
success, we can now read and write the queue to establish communications between the processes. If we
had created a private queue (not specifying the SysV ID key) and we want to send the message queue's
key to another process so we can establish communications, we can extract it with id:

$queue = new IPC::Msg IPC_PRIVATE, 0722 | IPC_CREAT;
$id = $queue->id;

To send a message we use the snd method:

$queue->snd($type, $message, $flags);

The message is simply the data we want to send. The type is an integer that is a positive long integer,
and which can be used by the rcv method to select different messages based on their type. The flags
argument is optional, but can be set to IPC_NOWAIT to have the method return if the message could not
be sent immediately (in this case $! will be set to EAGAIN). It is possible for error code constants to be
imported by the module.

To receive a message we use the rcv method:

$message;
$queue->rcv ($message, $length, $type, $flags);

The first argument is a scalar variable into which the message is read. The length defines the maximum
length of the message to be received. If the message is larger than this length then rcv returns undef
and sets $! to E2BIG. The type allows us to control which message we receive, and is an integer with
the following possible meanings:

Chapter 22

930

Integer Value Meaning

0 Read the first message on the queue, regardless of type.

> 0 Read the first message on the queue of the specified type. For example, if the
type is 2 then only messages of type 2 will be read. If none are available, this
will cause the process to block until one is. However, see IPC_NOWAIT and
MSG_EXCEPT below.

< 0 Read the lowest and furthest forward message on the queue with a type equal
to or less than the absolute value of the specified type. For example, if the type
is -2 then the first message with type 0 will be returned, if no messages of type
0 are present, the first message of type 1 will be returned, or if no messages of
type 1 are present, the first message of type 2 will be returned.

The flags may be one or more of:

Flag Action

MSG_EXCEPT Invert the sense of the type so that for zero or positive values it retrieves the
first message not of the specified type. For instance, a type of 1 causes rcv to
return the first message not of type 1.

MSG_NOERRO
R

Allow outsize messages to be received by truncating them to the specified
length, rather than returning E2BIG as an error.

IPC_NOWAIT Do not wait for a message of the requested type if none are available but return
with $! set to EAGAIN.

Put together, these two functions allow us to set up a multi-level communications queue with differently
typed messages for different purposes. The meaning of the type is entirely up to us; we can use it to
send different messages to different child processes or threads within our application. Also it can be
used as a priority or Out-Of-Band channel marker, to name a few examples.

The permissions of a queue can be changed with the set method, which takes a list of key-value pairs
as parameters:

$queue->set (
uid => $user_id, # i.e., like 'chmod' for files
gid => $group_id, # i.e., like 'chgrp' for files
mode => $permissions, # an octal value or S_ flags
qbytes => $queue_size # the queue's capacity

)

We can also retrieve an IPC::Msg::stat object, which we can in turn create, modify, and then update
the queue properties via the stat method:

$stat = $queue->stat;
$stat->mode(0722);
$queue->set($stat);

Creating and Managing Processes

931

The object that the stat method returns is actually an object based on the Class::Struct class. It
provides the following get/set methods (the * designates portions of the stat structure that cannot be
directly manipulated):

Method Purpose

uid The effective UID queue is running with.

gid The effective GID queue is running with.

cuid* The UID queue was started with.

cgid* The GID queue was started with.

mode Permissions set on the queue.

qnum* Number of messages currently in the queue.

qbytes Size of the message queue.

lspid* PID of the last process that performed a send on the queue.

lrpid* PID of the last process that performed a receive on the queue.

stime* Time of the last send call performed on the queue.

rtime* Time of the last receive call performed on the queue.

ctime* Time of the last change performed on the stat data structure.

Note that changes made to the object returned by the stat method do not directly update the queue's
attributes. For that to happen, we need to either pass the updated stat object or individual key-value
pairs (using the keys listed above as stat methods) to the set method.

Finally, we can destroy a queue, assuming we have execute permission for it, by calling remove:

$queue->remove;

If we cannot remove the queue, the method returns undef, with $! set to indicate the reason, most
likely EPERM. In keeping with good programming practices, it is important that the queue is removed,
especially since it persists even after the application exits. However, it is equally important that the
correct processes do so, and no process pulls the rug out from under the others.

Semaphores
IPC Semaphores are a memory-resident set of one or more numeric flags (also known as semaphore
sets) that can be read and written by different processes to indicate different states. Like message
queues, they can be private or public having an identifier by which they can be accessed with a
permissions mask control rolling who can access them.

Semaphores have two uses, firstly, as a set of shared values, which can be read and written by different
processes. Secondly, to allow processes to block and wait for semaphores to change value, so that the
execution of different processes can be stopped and started according to the value of a semaphore
controlled by a different process.

Chapter 22

932

The module that implements access to semaphores is IPC::Semaphore, and we can use it like this:

use IPC::SysV qw(IPC_CREAT IPC_PRIVATE S_IRWXU);
use IPC::Semaphore;

$size = 4;
$sem = new IPC::Semaphore(IPC_PRIVATE, $size,IPC_CREAT | S_IRWXU);

This creates a private semaphore set with four semaphores and owner read, write and execute
permissions. To create a public semaphore set we provide a literal key value instead:

$sem = new IPC::Semaphore(10023, 4, 0722 | IPC_CREAT);

Other processes can now access the semaphore with:

$sem = new IPC::Semaphore(10023, 4, 0200); # or S_IRDONLY

As with message queues, we can also retrieve the key of the semaphore set with the id method, should
we not know it and have access to the semaphore object that is:

$id = $sem->id;

Once we have access to the semaphore we can use and manipulate it in various ways, assuming we have
permission to do so. A number of methods exist to help us do this:

Name Action

getall Return all values as a list. For example:

@semvals = $sem->getall;

getval Return the value of the specified semaphore. For example:

first semaphore is 0, so 4th is 3

$sem4 = $sem->getval(3);

setall Set all semaphore values. For example, to clear all semaphores:

$sem->setall((0) x 4);

setval Set the value of the specified semaphore. For example:

set value of 4th semaphore to 1

$sem->setval(3, 1);

set Set the user ID, group ID or permissions of the semaphore. For example:

$sem->set(

uid => $user_id,

gid => $group_id,

mode => $permissions,

);

Creating and Managing Processes

933

Alternatively we can get, manipulate, and set a stat object as returned by the stat method in the
same manner as IPC::Msg objects.

Name Action

stat Generate an IPC::Semaphore::stat object we can manipulate and then use
with set. For example:

$semstat = $sem->stat;

$semstat->mode(0722);

$sem->set($semstat);

getpid Return the process ID of the last process to perform a semop operation on the
semaphore set.

getncnt Return the number of processes that have executed a semop and are blocked
waiting for the value of the specified semaphore to increase in value.

$ncnt = $sem->getncnt;

getzcnt Return the number of processes that have executed a semop and are blocked
waiting for the value of the specified semaphore to become zero.

The real power of semaphores is bound up in the op method, which performs one or more semaphore
operations on a semaphore set. This is the mechanism by which processes can block and be unblocked
by other processes.

Each operation consists of three values; the semaphore number to operate on, an operation to perform,
and a flag value. The operation is actually a value to increment or decrement by, and follows these
rules:

❑ If the value is positive, the semaphore value is incremented by the supplied value. This always
succeeds, and never blocks.

❑ If the supplied value is zero, and the semaphore value is zero, the operation succeeds. If the
semaphore value is not zero then the operation blocks until the semaphore value becomes
zero. This increases the value returned by getzcnt.

❑ If the value is negative, then the semaphore value is decremented by this value, unless this
would take the value of the semaphore negative. In this case, the operation blocks until the
semaphore becomes sufficiently positive enough to allow the decrement to happen. This
increases the value returned by getncnt.

We can choose to operate as many semaphores as we like. All operations must be able to complete
before the operation as a whole can succeed. For example:

$sem->op(
0, -1, 0, # decrement semaphore 1
1, -1, 0, # decrement semaphore 2
3, 0 , 0 # semaphore 3 must be zero

);

TE
AM
FL
Y

Team-Fly®

Chapter 22

934

The rules for blocking on semaphores allow us to create applications that can cooperate with each
other; one application can control the execution of another by setting semaphore values. Applications
can also coordinate over access to shared resources. This a potentially large subject, so we will just give
a simple illustrative example of how a semaphore can coordinate access to a common shared resource:

Application 1 creates a semaphore set with one semaphore, value 1, and creates a shared resource, for
example a file, or an IPC shared memory segment. However, it decides to do a lot of initialization and
so doesn't access the resource immediately.

Application 2 starts up, decrements the semaphore to 0, and accesses the shared resource.

Application 1 now tries to decrement the semaphore and access the resource. The semaphore is zero,
so it cannot access, it therefore blocks.

Application 2 finishes with the shared resource and increments the semaphore, an operation that
always succeeds.

Application 1 can now decrement the semaphore since it is now 1, and so the operation succeeds and
no longer blocks.

Application 2 tries to access the resource a second time. First it tries to decrement the semaphore, but
is unable to, and blocks.

Application 1 finishes and increments the semaphore.

Application 2 decrements the semaphore and accesses the resource.

...and so on.

Although this sounds complex, in reality it is very simple. In code, each application simply accesses the
semaphore, creating it if isnot present, and then adds two lines around all accesses to the resource to be
protected:

sub access_resource {

decrement semaphore, blocking if it is already zero
$sem->op(0, -1, 0);
... access resource ...
increment semaphore, allowing access by other processes
$sem->op(0, 1, 0);

}

If we have more than one resource to control, we just create a semaphore set with more semaphores.

The basis of this approach is that the applications agree to cooperate through the semaphore. Each one
has the key for the semaphore (because it is given in a configuration file, for instance), and it becomes
the sole basis for contact between them. Even though the resource being controlled has no direct
connection to the semaphore, each application always honors it before accessing it. The semaphore
becomes a gatekeeper, allowing only one application access at a time.

If we do not want to block while waiting for a semaphore we can specify IPC_NOWAIT for the flag value.
We can do this on a 'per semaphore basis' too, if we want, though this could be confusing. For example:

Creating and Managing Processes

935

sub access_resource {
return undef unless $sem->op(0, -1, IPC_NOWAIT);
... access resource ...
$sem->op(0, 1, 0);

}

We can also set the flag SEM_UNDO (if we import it from IPC::SysV first). This causes a semaphore
operation to be automatically undone if the process exits, either deliberately or due to an error. This is
helpful in preventing applications that abort while locking a resource and then never releasing it again.
For example:

$sem->op(0, -1, IPC_NOWAIT | SEM_UNDO);
die unless critical_subroutine();

As with message queues, care must be not to leave unused segments around after the last process exits.

We will return to the subject of semaphores when we come to talk about threads, which have their own
semaphore mechanism, inspired greatly by the original IPC implementation described above.

Shared Memory Segments
While message queues and semaphores are relatively low level constructs made a little more accessible
by the IPC::Msg and IPC::Semaphore modules, shared memory has an altogether more powerful
support module in the form of IPC::Shareable. The key reason for this is that IPC::Shareable
implements shared memory through a tie mechanism, so rather than reading and writing from a
memory block we can simply attach a variable to it and use that.

The tie takes four arguments, a variable (which may be a scalar, an array or a hash),
IPC::Shareable for the binding, and then an access key, followed optionally by a hash reference
containing one or more key-value pairs. For example, the following code creates and ties a hash
variable to a shared memory segment:

use IPC::Shareable;

%local_hash;
tie %local_hash, 'IPC::Shareable', 'key', {create => 1}

$local_hash{'hashkey'} = 'value';

This creates a persistent shared memory object containing a hash variable which can be accessed by any
application or process by tie-ing a hash variable to the access key for the shared memory segment (in
this case key):

in a process in an application far, far away...
%other_hash;
tie %other_hash, 'IPC::Shareable', 'key';

$value = $other_hash{'hashkey'};

Chapter 22

936

A key feature of shared memory is that, like memory queues and semaphores, the shared memory
segment exists independently of the application that created it. Even if all the users of the shared
memory exit, it will continue to exist so long as it is not explicitly deleted (we can alter this behavior,
though, as we will see in a moment).

Note that the key value is actually implemented as an integer, the same as semaphores and message
queues, so the string we pass is converted into an integer value by packing the first four characters into a
32 bit integer value. This means that only the first four characters of the key are used. As a simple
example, baby and babyface are the same key to IPC::Shareable.

The tied variable can be of any type, including a scalar containing a reference, in which case whatever
the reference points to is converted into a shared form. This includes nested data structures and objects,
making shared memory ties potentially very powerful. However, each reference becomes a new shared
memory object, so a complex structure can quickly exceed the system limit on shared memory
segments. In practice we should only try to tie relatively small nested structures to avoid trouble.

The fourth argument can contain a number of different configuration options that determine how the
shared memory segment is accessed:

Option Function

create If true, create the key if it does not already exist. If the key does exist, then the
tie succeeds and binds to the existing data, unless exclusive is also true. If
create is false or not given then the tie will fail if the key is not present.

exclusive Used in conjunction with create. If true, allows a new key to be created but
does not allow an existing key to be tied to successfully.

mode Determine the access permissions of the shared memory segment. The value is
an integer, traditionally an octal number or a combination of flags like S_IRWXU
| S_IRGRP.

destroy If true, cause the shared memory segment to be destroyed automatically when
this process exits (but not if it aborts on a signal). In general only the creating
application should do this, or be able to do this (by setting the permissions
appropriately on creation).

size Define the size of the shared memory segment, in bytes. In general this defaults
to an internally set maximum value, so we rarely need to use it.

key If the tie is given three arguments, with the reference to the configuration options
being the third, this value specifies the name of the shared memory segment:

tie %hash, 'IPC::Shareable' {key => 'key', ...};

For example:

tie @array, 'IPC::Shareable', 'mysharedmem', {

create => 1,

exclusive => 0,

mode => 722,

destroy => 1,

}

Creating and Managing Processes

937

Other than the destroy option, we can remove a shared memory segment by calling one of three
methods implemented for the IPC::Shareable object that implements the tie (which may be returned
by the tied function):

Option Function

remove Remove the shared memory segment, if we have permission to do so.

clean_up Remove all shared memory segments created by this process.

clean_up_all Remove all shared memory segments in existence for which this process
has permissions to do so.

For example:

grab a handle to the tied object via the 'tied' command

$shmem = tied $shared_scalar;

use the object handle to call the 'remove' method on it

print "Removed shared scalar" if $shmem->remove;

We can also lock variables using the IPC::Shareable object's shlock and shunlock methods. If the
variable is already locked, the process attempting the lock will block until it becomes free. For example:

$shmem->lock;
$shared_scalar = "new value";

$shmem->unlock;

Behind the scenes this lock is implemented with IPC::Semaphore, so for a more flexible mechanism,
use IPC::Semaphore objects directly.

As a lightweight alternative to IPC::Shareable, we can make use of the IPC::ShareLite module,
naturally available from CPAN. This provides a simple store-fetch mechanism using object methods and
does not provide a tied interface. However, it is faster than IPC::Shareable.

Threads
Threads are, very loosely speaking, the low fat and lean version of forked processes. The trouble with
fork is that it not only divides the thread of execution into two processes, it divides their code and data
too. This means that where we had a group containing the Perl interpreter, %ENV hash, @ARGV array,
and the set of loaded modules and subroutines, we now have two groups. In theory, this is wasteful of
resources, very inconvenient, and unworkable for large numbers of processes. Additionally, since
processes do not share data they must use constructs like pipes, shared memory segments or signals to
communicate with each other. In practice, most modern UNIX systems have has become very
intelligent in sharing executable segments behind the scenes, reducing the expense of a fork.

Chapter 22

938

Regardless, threads attempt to solve all these problems. Like forked processes, each thread is a
separate thread of execution. Also similar to forked processes, newly created threads are owned by
the thread that created them, and they have unique identifiers, though these are thread IDs rather than
process IDs. We can even wait for a thread to finish and collect its exit result, just like waitpid does
for child processes. However, threads all run in the same process and share the same interpreter, code,
and data, nothing is duplicated except the thread of execution. This makes them much more
lightweight, so we can have very many of them, and we don't need to use any of the workarounds that
forked processes need.

Thread support in Perl is still experimental. Added in Perl 5.6, work continues into Perl 5.7 and Perl 6.
As shipped, most Perl interpreters do not support threads at all, but if we build Perl from scratch, as in
Chapter 1, we can enable them. There are actually two types of thread; the current implementation
provides for a threaded application but with only one interpreter dividing its attention between them.
The newer implementation uses an interpreter that is itself threaded, greatly improving performance.
However, this thread support is so new it isn't even available in Perl code yet. The likelihood is that full
official thread support will arrive with Perl 6, but that doesn't mean we can't use it now – carefully – for
some useful and interesting applications.

Checking for Thread Support
To find out if threads are available programmatically we can check for the usethreads key in the
%Config hash:

BEGIN {
use Config;
die "Threadbare! \n" unless $Config{'usethreads'};

}

From the command line we can check if threads are present by trying to read the documentation, the
Thread module will only be present if thread support is enabled:

> perldoc Thread

The Thread module is the basis of handling threads in Perl. It is an object-oriented module that
represents threads as objects, which we can create using new and manipulate with methods. In addition
it provides a number of functions that operate on a per-thread basis.

Creating Threads
Threads resemble forked processes in many ways, but in terms of creation they resemble and indeed
are subroutines. The standard way of creating a thread, the new method, takes a subroutine reference
and a list of arguments to pass to it. The subroutine is then executed by a new thread of execution,
while the parent thread receives a thread object as the return value. The following code snippet
illustrates how it works:

use Thread;

sub threadsub {
$self = Thread->self;
...

}

$thread = new Thread \&threadsub, @args;

Creating and Managing Processes

939

This creates a new thread, with threadsub as its entry point, while the main thread continues on. The
alternative way to create a thread is with the async function, whose syntax is analogous to an
anonymous subroutine. This function is not imported by default so we must name it in the import list to
the Thread module:

use Thread qw(async);

$thread = async {
$self = Thread->self;
...

};

Just like an anonymous subroutine, we end the async statement with a semicolon; the block may not
need it, but the statement does.

The choice of new or async depends on the nature of the thread we want to start; the two are identical
in all respects apart from their syntax. If we only want to start one instance of a thread then async
should be used whereas new is better if we want to use the same subroutine for many different threads:

$thread1 = new Thread \&threadsub, $arg1;
$thread2 = new Thread \&threadsub, $arg2;
$thread3 = new Thread \&threadsub, $arg3;

Or, with a loop:

start a new thread for each argument passed in @ARGV:
@threads;
foreach (@ARGV) {

push @threads, new Thread \&threadsub, $_;
}

We can do this with a certain level of impunity because threads are so much less resource consumptive
than forked processes.

Identifying Threads
Since we can start up many different threads all with the same subroutine as their entry point, it might
seem tricky to tell them apart. However, this is not so. First, we can pass in different arguments when we
start each thread to set them on different tasks. An example of this would be a filehandle, newly created
by a server application, and this is exactly what an example of a threaded server in Chapter 23 does.

Second, a thread can create a thread object to represent itself using the self class method:

$self = Thread->self;

With this thread object the thread can now call methods on itself, for example tid, which returns the
underlying thread number:

$self_id = $self->tid;

Chapter 22

940

It is possible to have more than one thread object containing the same thread ID, and this is actually
common in some circumstances. We can check for equivalence by comparing the IDs, but we can do
better by using the equals method:

print "Equal! \n" if $self->equal($thread);

Or, equivalently:

print "Equal! \n" if $thread->equal($self);

Thread identities can be useful for all kinds of things, one of the most useful being thread-specific data.

Thread-specific Data
One of the drawbacks of forked processes is that they do not share any of their data, making
communication difficult. Threads have the opposite problem; they all share the same data, so finding
privacy is that much harder.

Unlike some other languages, Perl does not have explicit support for thread-specific data, but we can
improvise. If our thread all fits into one subroutine we can simply create a lexical variable with my and
use that. If we do have subroutines to call and we want them to be able to access variables we create the
our can be used. Alternatively we can create a global hash of thread IDs and use the values for thread-
specific data:

%thread_data;

sub threadsub {
$id = Thread->self->tid;
$thread_data{$id}{'Started'} = time;

...
$thread_data{$id}{'Ended'} = time;

}

new Thread \&thread_sub, $arg1;
new Thread \&thread_sub, $arg2;

The advantage of using my or our is that the data is truly private, because it is lexically scoped to the
enclosing subroutine. The advantage of the global hash is that threads can potentially look at each
other's data in certain well-defined circumstances.

Thread Management
Perl keeps a list of every thread that has been created. We can get a copy of this list, as thread objects,
with the Thread->list class method:

@threads = Thread->list;

Creating and Managing Processes

941

One of these threads is our own thread. We can find out which by using the equal method:

$self = Thread->self;
foreach (@threads) {

next if $self->equal($_);
...

}

Just because a thread is present does not mean that it is running, however. Perl keeps a record of the
return value of every thread when it exits, and keeps a record of the thread for as long as that value
remains unclaimed. This is similar to child processes that have not had waitpid called for them. The
threaded equivalent of waitpid is the join method, which we call on the thread we want to retrieve
the exit value for:

$return_result = $thread->join;

The join method will block until the thread on which join was called exits. If the thread aborts (for
example by calling die) then the error will be propagated to the thread that called join. This means
that it will itself die unless the join is protected by an eval:

$return_result = eval {$thread->join;}

if ($@) {
warn "Thread unraveled before completion \n";

}

As a convenience for this common construct, the Thread module also provides an eval method, which
wraps join inside an eval for us:

$return_result = $thread->eval;

if ($@) {
warn "Thread unraveled before completion \n";

}

It is bad form to ignore the return value of a thread, since it clutters up the thread list with dead threads.
If we do not care about the return value then we can tell the thread that we do not want it to linger and
preserve its return value by telling it to detach:

$thread->detach;

The catch to this is that if the thread dies, nobody will notice, unless a signal handler for the __DIE__
hook, which checks Thread->self for the dying thread, has been registered. To reiterate: if we join a
moribund thread from the main thread without precautions we do have to worry about the application
dying as a whole.

As a slightly fuller and more complete (although admittedly not particularly useful) example, this short
program starts up five threads, then joins each of them in turn before exiting:

#!/usr/bin/perl
join.pl
use warnings;
use strict;

Chapter 22

942

check we have threads
BEGIN {

use Config;
die "Threadbare! \n" unless $Config{'usethreads'};

}
use Thread;

define a subroutine for threads to execute
sub threadsub {

my $self = Thread->self;
print "Thread ", $self->tid, " started \n";
sleep 10;
print "Thread ", $self->tid, " ending \n";

}

start up five threads, one second intervals
my @threads;
foreach (1..5) {

push @threads, new Thread \&threadsub;
sleep 1;

}

wait for the last thread started to end
while (my $thread = shift @threads) {

print "Waiting for thread ", $thread -> tid, " to end... \n";
$thread->join;
print "Ended \n";

}

exit
print "All threads done \n";

Typically, we care about the return value, and hence would always check it. However, in this case we
are simply using join to avoid terminating the main thread prematurely.

Variable Locks
When multiple threads are all sharing data together we sometimes have problems stopping them from
treading on each other's toes. Using thread-specific data solves part of this problem, but it does not deal
with sharing common resources amongst a pool of threads.

The lock subroutine does handle this, however. It takes any variable as an argument and places a lock
on it so that no other thread may lock it for as long as the lock persists, which is defined by its lexical
scope. The distinction between lock and access is important; any thread can simply access the
variable by not bothering to acquire the lock, so the lock is only good if all threads abide by it.

As a short and incomplete example, this subroutine locks a global variable for the duration of its body:

$global;

sub varlocksub {
lock $global;

}

Creating and Managing Processes

943

It is not necessary to unlock the variable; the end of the subroutine does it for us. Any lexical scope is
acceptable, so we can also place locks inside the clauses of if statements, loops, map and grep blocks,
and eval statements. We can also choose to lock arrays and hashes in their entirety if we lock the
whole variable:

lock @global;
lock %global;
lock *global;

Alternatively, we can lock just an element, which gives us a form of record-based locking, if we define a
record as an array element or hash value:

%global;

sub varlocksub {
$key = shift;
lock $global{$key};
...

}

In this version, only one element of the hash is locked, so any other thread can enter the subroutine
with a different key and the corresponding value at the same time. If a thread comes in with the same
key, however, it will find the value under lock and key (so to speak) and will have to wait.

Condition Variables, Semaphores, and Queues
Locked variables have more applications than simply controlling access. We can also use them as
conditional blocks by having threads wait on a variable until it is signaled to proceed. In this mode the
variable, termed a condition variable, takes on the role of a starting line; each thread lines up on the
block (so to speak) until the starting pistol is fired by another thread. Depending on the type of signal
we send, either a single thread is given the go-ahead to continue, or all threads are signaled.

Condition variables are a powerful tool for organizing threads, allowing us to control the flow of data
through a threaded application and preventing threads from accessing shared data in an unsynchronized
manner. They are also the basis for other kinds of thread interaction. We can use thread semaphores,
provided by the Thread::Semaphore module, to signal between threads. We can also implement a
queue of tasks between threads using the Thread::Queue module. Both these modules build upon the
basic features of condition variables to provide their functionality but wrap them in a more convenient
form.

To get a feel for how each of these work we will implement a basic but functional threaded application,
first using condition variables directly, then using semaphores, and finally using a queue.

Condition Variables
Continuing the analogy of the starting line, to 'line up' threads on a locked variable we use the
cond_wait subroutine. This takes a locked variable, unlocks it, and then waits until it receives a signal
from another thread. When it receives a signal, the thread resumes execution and relocks the variable.
To have several threads all waiting on the same variable we need only have each thread lock and then
cond_wait the variable in turn. Since the lock prevents more than one thread executing cond_wait
at the same time, the process is automatically handled for us. The following code extract shows the basic
technique applied to a pool of threads:

TE
AM
FL
Y

Team-Fly®

Chapter 22

944

$lockvar; # lock variable – note it is not locked at this point

sub my_waiting_thread {

wait for signal
{
lock $lockvar;
cond_wait $lockvar;

}

...the rest of the thread, where the work is done
}

for (1..10) {
new Thread \&my_waiting_thread;

}

This code snippet shows ten threads, all of which use the same subroutine as their entry point. Each one
locks and then waits on the variable $lockvar until it receives a signal. Since we don't want to retain
the lock on the variable after we leave cond_wait, we place both lock and cond_wait inside their
own block to limit the scope of the lock. This is important since other threads cannot enter the waiting
state while we have a lock on the variable; sometimes that is what we want, but more often it isn't.

Having established a pool of waiting threads, we need to send a signal to wake one of them up, which
we do with cond_signal:

wake up one thread
cond_signal $lockvar;

This will unlock one thread waiting on the condition variable. The thread that is restarted is essentially
random; we cannot assume that the first thread to block will be the first to be unlocked again. This is
appropriate when we have a pool of threads at our disposal, all of which perform the same basic
function. Alternatively, we can unlock all threads at once by calling cond_broadcast thus:

everybody up!
cond_broadcast $lockvar;

This sends a message to each thread waiting on that variable, which is appropriate for circumstances
where a common resource is conditionally available and we want to stop or start all threads depending
on whether the resource is available or not. It is important to realize, however, that if no threads are
waiting on the variable, the signal is discarded; it is not kept until a thread is ready to respond to it. It is
also important to realize that this has nothing (directly) to do with process signals, as handled by the
%SIG array; writing a threaded application to handle process signals is a more complex task; see the
Thread::Signal module for details.

Note that the actual value of the lock variable is entirely irrelevant to this process, so we can use it for
other things. For instance we can use it to pass a value to the thread at the moment that we signal it. The
following short threaded application does just this, using a pool of service threads to handle lines of
input passed to them by the main thread. While examining the application, pay close attention to the
two condition variables that lay at the heart of the application:

Creating and Managing Processes

945

❑ $pool – used by the main thread to signal that a new line is ready. It is waited on by all the
service threads. Its value is programmed to hold the number of threads currently waiting, so
the main thread knows whether or not it can send a signal or if it must wait for a service
thread to become ready.

❑ $line – used by whichever thread is woken by the signal to $pool. Lets the main thread
know that the line of input read by the main thread has been copied to the service thread and
that a new line may now be read. The value is the text of the line that was read.

The two condition variables allow the main thread and the pool of service threads to cooperate with
each other. This ensures that each line read by the main thread is passed to one service thread both
quickly and safely:

#!/usr/bin/perl
threadpool.pl
use warnings;
use strict;

use Thread qw(cond_signal cond_wait cond_broadcast yield);

my $threads = 3; # number of service threads to create
my $pool = 0; # child lock variable and pool counter set to 0 here,

service threads increment it when they are ready for input
my $line=""; # parent lock variable and input line set to "" here, we

assign each new line of input to it, and set it to 'undef'
when we are finished to tell service threads to quit

a locked print subroutine – stops thread output mingling
sub thr_print : locked {

print @_;
}

create a pool of three service threads
foreach (1..$threads) {

new Thread \&process_thing;
}

main loop: Read a line, wait for a service thread to become available,
signal that a new line is ready, then wait for whichever thread picked
up the line to signal to continue
while ($line = <>) {

chomp $line;
thr_print "Main thread got '$line'\n";

do not signal until at least one thread is ready
if ($pool==0) {

thr_print "Main thread has no service threads available, yielding\n";
yield until $pool>0;

}
thr_print "Main thread has $pool service threads available\n";

signal that a new line is ready
{

lock $pool;
cond_signal $pool;

}
thr_print "Main thread sent signal, waiting to be signaled\n";

Chapter 22

946

wait for whichever thread wakes up to signal us
{

lock $line;
cond_wait $line;

}
thr_print "Main thread received signal, reading next line\n";

}

thr_print "All lines processed, sending end signal\n";
set the line to special value 'undef' to indicate end of input
$line = undef;
{

lock $pool;
tell all threads to pick up this 'line' so they all quit
cond_broadcast $pool;

}
thr_print "Main thread ended\n";
exit 0;

the thread subroutine – block on lock variable until work arrives
sub process_thing {

my $self=Thread->self;
my $thread_line;

thr_print "Thread ",$self->tid," started\n";
while (1) {

has the 'quit' signal been sent while we were busy?
last unless (defined $line);

wait to be woken up
thr_print "Thread ",$self->tid," waiting\n";
{

lock $pool;
$pool++;
cond_wait $pool; #all threads wait here for signal
$pool--;

}

retrieve value to process
thr_print "Thread ",$self->tid," signaled\n";
$thread_line = $line;

was this the 'quit' signal? Check the value sent
last unless (defined $thread_line);

let main thread know we have got the value
thr_print "Thread ",$self->tid," retrieved data, signaling main\n";
{

lock $line;
cond_signal $line;

}

do private spurious things to it
chomp ($thread_line=uc($thread_line));
thr_print "Thread ",$self->tid," got '$thread_line'\n";

}
thr_print "Thread ",$self->tid," ended\n";

}

Creating and Managing Processes

947

Once the basic idea of a condition variable is understood, the way in which this application works
becomes clearer. However, a few aspects are still worth pointing out. In particular, the $pool variable
is used by the main thread to ensure that it only sends a signal when there is a service thread waiting to
receive it. To achieve this, we increment $pool immediately before cond_wait and decrement it
immediately afterwards. By doing this we ensure that $pool accurately reflects the number of waiting
service threads; if it is zero, the main thread uses yield to pass on execution until a service thread
becomes available again.

The means by which the application terminates is also worth noting. Threads do not necessarily
terminate just because the main thread does, so in order to exit a threaded application cleanly we need
to make sure all the service threads terminate, too. This is especially important if resources needed by
some threads are being used by others. Shutting down threads in the wrong order can lead to serious
problems. In this application the main thread uses cond_signal to signal the $pool variable and wake
up one service thread when a new line is available. Once all input has been read we need to shut down
all the service threads, which means getting their entire attention. To do that, we give $line the special
value undef and then use cond_broadcast to signal all threads to pick up the new 'line' and exit
when they see that it is undef. However, this alone is not enough because a thread might be busy and
not waiting. To deal with that possibility, the service thread subroutine also checks the value of $line
at the top of the loop, just in case the thread missed the signal.

Finally, this application also illustrates the use of the locked subroutine attribute. The thr_print
subroutine is a wrapper for the regular print function that only allows one thread to print at a time.
This prevents the output of different threads from getting intermingled. For simple tasks like this one,
locked subroutines are an acceptable solution to an otherwise tricky problem that would require at least
a lock variable. For longer tasks, locked subroutines can be a serious bottleneck, affecting the
performance of a threaded application, so we should use them with care and never for anything likely to
take appreciable time.

Semaphores
Although it works perfectly well, the above application is a little more complex than it needs to be.
Most forms of threads (whatever language or platform they reside on) support the concept of
semaphores and Perl is no different. We covered IPC semaphores earlier, and thread semaphores are
very similar. They are essentially numeric flags that take a value of zero or any positive number and
obey the following simple rules:

❑ Only one thread at a time may manipulate the value of a semaphore in either direction.

❑ Any thread may increment a semaphore immediately.

❑ Any thread may decrement a semaphore immediately if the decrement will not take it below
zero.

❑ If a thread attempts to decrement a semaphore below zero, it will block until another thread
raises the semaphore high enough.

Perl provides thread semaphores through the Thread::Semaphore module, which implements
semaphores in terms of condition variables – the code of Thread::Semaphore is actually quite short,
as well as instructive. It provides one subroutine and two object methods:

Chapter 22

948

new – create new semaphore, for example:

$semaphore = new Thread::Semaphore; # create semaphore, initial value 1
$semaphore2 = new Thread::Semaphore(0) # create semaphore, initial value 0

up – increment semaphore, for example:

$semaphore->up; # increment semaphore by 1
$semaphore->up(5); # increment semaphore by 5

down – decrement semaphore, blocking if necessary:

$semaphore->down; # decrement semaphore by 1
$semaphore->down(5); # decrement semaphore by 5

Depending on our requirements we can use semaphores as binary stop/go toggles or allow them to
range to larger values to indicate the availability of a resource. Here is an adapted form of our earlier
threaded application, rewritten to replace the condition variables with semaphores:

#!/usr/bin/perl
semaphore.pl
use warnings;
use strict;

use Thread qw(yield);
use Thread::Semaphore;

my $threads = 3; # number of service threads to create
my $line = ""; # input line

my $main = new Thread::Semaphore; # proceed semaphore, initial value 1
my $next = new Thread::Semaphore(0); # new line semaphore, initial value 0

a locked print subroutine – stops thread output mingling
sub thr_print : locked {

print @_;
}

create a pool of three service threads
foreach (1..$threads) {

new Thread \&process_thing;
}

main loop: read a line, raise 'next' semaphore to indicate a line is
available, then wait for whichever thread lowered the 'next' semaphore
to raise the 'main' semaphore, indicating we can continue.
while ($line = <>) {

chomp $line;
thr_print "Main thread got '$line'\n";

notify service threads that a new line is ready
$next->up;
thr_print "Main thread set new line semaphore, waiting to proceed\n";

Creating and Managing Processes

949

do not proceed until value has been retrieved by responding thread
$main->down;
thr_print "Main thread received instruction to proceed\n";

}

thr_print "All lines processed, sending end signal\n";

set the line to special value 'undef' to indicate end of input
$line = undef;
to terminate all threads, raise 'new line' semaphore to >= number of
service threads: all service threads will decrement it and read the
'undef'
$next->up($threads);
thr_print "Main thread ended\n";

exit 0;

the thread subroutine - block on lock variable until work arrives
sub process_thing {

my $self = Thread->self;
my $thread_line;

thr_print "Thread ", $self->tid, " started\n";

while (1) {
try to decrement 'next' semaphore - winning thread gets line
thr_print "Thread ", $self->tid, " waiting\n";

$next->down;

retrieve value to process
thr_print "Thread ", $self->tid, " signalled\n";
$thread_line = $line;

was this the 'quit' signal? Check the value sent
last unless (defined $thread_line);

let main thread know we have got the value
thr_print "Thread ", $self->tid, " retrieved data, signaling main\n";

$main->up;

do private spurious things to it
chomp ($thread_line=uc($thread_line));
thr_print "Thread ", $self->tid, " got '$thread_line'\n";

}
thr_print "Thread ", $self->tid, " ended\n";

}

The semaphore version of the application is simpler than the condition variable implementation, if
only because we have hidden the details of all the cond_wait and cond_signal functions inside calls
to up and down. Instead of signaling the pool of service threads via a condition variable, the main
thread simply raises the next semaphore by one, giving it the value 1. Meanwhile, all the service threads
are attempting to decrement this semaphore. One will succeed and receive the new line of input, and
the others will fail, continuing to block until the semaphore is raised again. When it has copied the line
to its own local variable, the thread raises the main semaphore to tell the main thread that it can
proceed to read another line. The concept is recognizably the same as the previous example, but is
easier to follow.

Chapter 22

950

We have also taken advantage of the fact that semaphores can hold any positive value to terminate the
application. When the main thread runs out of input it simply raises the 'next' semaphore to be equal to
the number of service threads. At this point all the threads can decrement the semaphore, read the value
of $line that we again set to undef, and quit. If a thread is still busy the semaphore will remain
positive until it finishes and comes back to decrement it – we have no need to put in an extra check in
case we missed a signal.

Queues
Many threaded applications, our example a case in point, involve the transport of data between several
different threads. In a complex application incoming data might travel through multiple threads, passed
from one to the next before being passed out again: a bucket-chain model. We can create pools of
threads at each stage along the chain in a similar way to the example application above, but this does
not improve upon the mechanism that allows each thread to pass data to the next in line.

The two versions of the application that we have produced so far are limited by the fact that they only
handle a single value at a time. Before the main thread can read another line, it has to dispose of the
previous one. Even though we can process multiple lines with multiple service threads, the
communication between the main thread and the service threads is not very efficient. If we were
communicating between different processes we might use a pipe, which buffers output from one process
until the other can read it; the same idea works for threads, too, and takes the form of a queue.

Perl provides support queues through the Thread::Queue module, which implements simple thread
queues in a similar way to the semaphores created by Thread::Semaphore. Rather than a single
numeric flag, however, the queue consists of a list to which values may be added to one and removed
from the other. At heart this is essentially no more than a shift and pop operation. Using conditional
variables and locking the module, however, creates a queue that values may be added to and removed
from safely in a threaded environment, following rules similar to those for semaphores:

❑ Only one thread may add or remove values in the queue at a time.

❑ Any thread may add values to a queue immediately.

❑ Any thread may remove values from a queue immediately if there are enough values available
in the queue.

❑ If a thread attempts to remove more values than are available, it will block until another
thread adds sufficient values to the queue.

The Thread::Queue module provides one subroutine and four methods to create and manage queues:

new – create a new queue, for example:

$queue = new Thread::Queue;

enqueue – add one or more values to a queue, for example:

$queue->enqueue($value); # add a single value
$queue->enqueue(@values); # add several values

Creating and Managing Processes

951

dequeue – remove a single value from a queue, blocking if necessary:

$value = $queue->dequeue; # remove a single value, block

dequeue_nb – remove a single value from a queue, without blocking (instead returning undef if
nothing is available):

$value = $queue->dequeue; # remove a single value, don't block
if (defined $value) {

...
}

pending – return the number of values currently in the queue, for example:

print "There are ",$queue->pending," items in the queue\n";

Using a queue we can rewrite our threaded application again to separate the main thread from the pool
of service threads. Since the queue can take multiple values, the main thread no longer has to wait for
each value it passes on to be picked up before it can continue. This simplifies both the code and the
execution of the program. The queue has no limit, however, so we make sure not to read too much by
checking the size of the queue, and yielding if it reaches a limit we choose. Here is a revised version of
the same application, using a queue:

#!/usr/bin/perl
queue.pl
use warnings;
use strict;

use Thread 'yield';
use Thread::Queue;
use Thread::Semaphore;

my $threads = 3; # number of service threads to create
my $maxqueuesize = 5; # maximum size of queue allowed

my $queue = new Thread::Queue; # the queue
my $ready = new Thread::Semaphore(0); # a 'start-gun' semaphore

initialized to 0 each service
thread raises it by 1

a locked print subroutine – stops thread output mingling
sub thr_print : locked {

print @_;
}

create a pool of service threads
foreach (1..$threads) {

new Thread \&process_thing, $ready, $queue;

}

wait for all service threads to increment semaphore
$ready->down($threads);

Chapter 22

952

main loop: Read a line, queue it, read another, repeat until done
yield and wait if the queue gets too large.
while (<>) {

chomp;
thr_print "Main thread got '$_'\n";

stall if we're getting too far ahead of the service threads
yield while $queue->pending >= $maxqueuesize;

queue the new line
$queue->enqueue($_);

}

thr_print "All lines processed, queuing end signals\n";

to terminate all threads, send as many 'undef's as there are service
threads
$queue->enqueue((undef)x$threads);
thr_print "Main thread ended\n";
exit 0;

the thread subroutine - block on lock variable until work arrives
sub process_thing {

my ($ready,$queue)=@_;

my $self=Thread->self;
my $thread_line;

thr_print "Thread ",$self->tid," started\n";
$ready->up; #indicate that we're ready to go

while (1) {
wait for queue to deliver an item
thr_print "Thread ",$self->tid," waiting\n";
my $thread_line=$queue->dequeue();

was this the 'quit' signal? Check the value sent
last unless (defined $thread_line);

do private spurious things to it
chomp ($thread_line=uc($thread_line));
thr_print "Thread ",$self->tid," got '$thread_line'\n";

}
thr_print "Thread ", $self->tid, " ended\n";

}

Since the service threads block if no values are waiting in the queue, this approach effectively handles
the job of having service threads wait – we previously dealt with this using condition variables and
semaphores. However, we don't need a return semaphore anymore because there is no longer any need
for a service thread to signal the main thread that it can continue – the main thread is free to continue as
soon as it has copied the new line into the queue.

The means by which we terminate the program has also changed. Originally we set the line variable to
undef and broadcast to all the waiting threads. We replaced that with a semaphore, which we raised
high enough so that all service threads could decrement it. With a queue we use a variation on the
semaphore approach, adding sufficient undef values to the queue so that all service threads can remove
one and exit.

Creating and Managing Processes

953

We have added one further refinement to this version of the application – a 'start-gun' semaphore.
Simply put, this is a special semaphore that is created with a value of zero and increments it by one each
service thread as it starts. The main thread attempts to decrement the semaphore by a number equal to
the number of service threads, so it will only start to read lines once all service threads are running.
Why is this useful? Because threads have no priority of execution. In the previous examples the first
service threads will start receiving and processing lines before later threads have even initialized. In a
busy threaded application, the activity of these threads may mean that the service threads started last do
so very slowly, and may possibly never get the time to initialize themselves properly. In order to make
sure we have a full pool of threads at our disposal, we use this semaphore to hold back the main thread
until the entire pool is assembled.

There are many other ways that threaded applications can be built and with more depth to the
examples than we have shown here. Applications that also need to handle process signals should
consider the Thread::Signal module, for instance. Perl threads are still experimental, so an in-depth
discussion of them is perhaps inappropriate. However, more examples and a more detailed discussion of
threaded programming models and how Perl handles threads can be found in the perlthrtut manual
page by executing:

> perldoc perlthrtut

Thread Safety and Locked Code
Due to the fact that threads share data, modules and applications that were not built with them in mind
can become confused if two threads try to execute the same code. This generally comes about when a
module keeps data in global variables, which is visible to both threads and which is overwritten by each
of them in turn. The result is threads that pollute each other's data.

The best solution to avoid this problem is to rewrite the code to allow multiple threads to execute it at
once. Code that does this is called thread safe. If this is too hard or time consuming we can use the
:locked subroutine attribute to force a subroutine into a single-threaded mode, only one thread can be
inside the subroutine at any one time (other calling threads will block until the current call is
completed):

singlethreadedsub:locked {
print "One at a time! Wait your turn! \n";

}

This works well for functional applications, but for object-oriented programming locking a method can
be overly restrictive; we only need to make sure that two threads handling the same object do not
conflict. To do this we can add the :method attribute:

singlethreadedmethod:locked:method {
$self = shift;
...

}

TE
AM
FL
Y

Team-Fly®

Chapter 22

954

We can also lock a subroutine in code by calling lock on it:

sub mysub {
lock \&mysub if $Config{'usethreads'};
...

}

The main use for this is for applications that we want to work in both threaded and unthreaded
environments and which contain subroutines that cannot have two threads executing them at once.

Summary
Over the course of this chapter we have covered the following:

❑ Signals and how to handle them.

❑ Using Perl's fork function to start new processes.

❑ Inter-Process Communication and the various ways in which different processes can
communicate with one another.

❑ Sharing of data between processes, using message queues, semaphores, and shared memory
segments.

❑ Thread support in Perl.

Creating and Managing Processes

955

Chapter 22

956

Networking with Perl

Network programming is a very large topic. In this chapter, we will attempt to provide a solid
foundation in the basic concepts and principles of networking. We will cover the TCP/IP protocol and
its close relatives, then move on to developing simple network clients and servers using Perl's standard
libraries. We will also look at the functions Perl provides for determining network configurations, and
the helper modules that make analyzing this information simpler.

An Introduction to Networks
Most Perl network programming involves establishing connections across, and communicating through,
TCP/IP networks. In order to understand how network-programming interfaces work the way that they
do, an overview of networking and the TCP/IP protocol in particular can be useful. In pursuit of this,
what follows is a somewhat terse but reasonably informative overview of how networks function at a
fundamental level, and how TCP/IP bridges the gap between basic network functionality and the
application services.

Protocol Layers
For any message to be communicated it must travel through some form of medium. This medium can
range from air and space (used for satellite links and packet radio), to copper cabling and fiber optics.
The medium of choice for the last twenty years has been copper cabling, due to the ubiquity of cost-
effective equipment based on open standards like Ethernet. This supplies the physical part of the
network, also known as the physical layer.

Chapter 23

958

On top of this is layered a series of protocols, each providing a specific function – the preceding layer
acting as the foundation for the one above. ISO worked on a seven-layer reference model for protocol
standardization, to allow multiple vendors to communicate with each other. While it does not define
any specific protocol or implementation, many modern protocols were designed against its model. The
OSI (Open Systems Interconnection) reference model appears as follows:

OSI Model

Application

Presentation

Session

Transport

Network

Data-link

Physical

The bottom layer, which we already mentioned, is the communication, or physical, medium. Using
Ethernet as an example, this layer includes not only the copper cabling, but also the impedance and
voltage levels used on it.

The second layer, known as the data-link layer, defines how that medium is to be used. For instance, our
standard telephone systems are analog devices; the voice traffic is carried over analog carrier waves on
the wire. Ethernet, like most computer network devices, prefers square waves. Because of this, this layer
comprises the circuitry used to encode any transmissions in a form the physical layer can deliver, and
decode any incoming traffic. It also has to ensure successful transmission of traffic.

If none of this makes any sense, don't despair, as this is typically the domain of electrical and
electronic engineers, not programmers.

The network layer works very closely with the data-link layer. Not only must it ensure that it is
providing the data-link layer with information it can encode (handling only digital traffic to digital
networks, etc.), but it also provides the addressing scheme to be used on the network.

Transport layers provide handshaking and check to ensure reliability of delivery. Certain protocols
demand acknowledgment of every packet of information delivered to the recipient, and if certain
portions aren't acknowledged, they are re-sent by this layer.

The session layer is responsible for establishing and maintaining sessions, as its name would suggest.
Sessions are typically necessary for larger and multiple exchanges between specific services and/or
users, where the order of information transmitted and received is of great importance.

The presentation layer is just that – a layer responsible for presenting a consistent interface or API for
anything needing to establish and maintain connections.

Networking with Perl

959

Finally, the application layer specifies precisely how each type of service will communicate across these
connections. HTTP, NNTP, and SMTP are examples of application protocols.

Frames, Packets, and Encapsulation
In order to put all of this into perspective, let's examine how one of the most prevalent network
architectures compares to this reference model. Since we'll be reusing much of this information later in
the chapter, we'll look at TCP/IP networks running over Ethernet:

OSI Model

Application

Presentation

Session

Transport

Network

Data-link

Physical

TCP/IP over Ethernet

Application/Terminal

Ethernet Topology

IP

TCP/UDP

As you can see, the Ethernet standard itself (of which, there are several variations and evolutions)
encompasses both the physical and data-link layers. At the physical layer, it specifies the electrical
signaling, clocking requirements, and connectors.

At the data-link layer, Ethernet transceivers accomplish the encoding and decoding of traffic, and
ensure delivery of traffic at both ends of the communication. This last part is actually a bit more
involved than one might guess, due to the nature of the physical layer. Since the medium is copper, it
should be obvious that only one host (or node) can transmit at a time. If more than one tries to send out
a signal simultaneously, all signals are effectively scrambled by the mixed voltage levels. This event is
called a collision. The Ethernet specification anticipates that this will happen (especially on extremely
busy networks), and so provides a solution. When a collision is detected, each node will wait for a
random interval before re-transmitting its data.

In order to prevent particularly long communication sessions between hosts from hogging the line,
Ethernet specifies that all communications be of a specific length of data, called a frame. Each frame is
delivered only as the wire is sensed as free of traffic. This allows multiple hosts to appear to be
communicating simultaneously. In truth, they are cooperatively sending out their frames one at a time,
allowing control of the wire to be passed among several hosts before sending out the succeeding frames.

On the receiving end, the specification requires that every node on the network have a unique hardware
address (called a MAC address). Every frame is addressed to a specific address, and hence, only the
node with that address should actually listen to those frames. Each address is comprised of two 24-bit
segments. The first is the manufacturer's ID, assigned by the IEEE body. The last 24 bits are the unique
equipment identifiers. The exception, of course, is broadcast traffic, which is not so addressed, since all
nodes should be listening for it.

This brings up a couple of caveats that I should mention here; while in theory you should never have to
worry about two pieces of off-the-shelf gear having the same MAC address, it can and does happen,
especially with those units that allow that address to be reprogrammed. This can cause some quite
bizarre network problems that are extremely difficult to isolate if we're not expecting them.

Chapter 23

960

Another caveat is that while each node should only read the frames addressed to it, it doesn't necessarily
have to be that way. Low-level network monitoring software ignores this, and reads all traffic. This is
called sniffing the wire, and there are legitimate reasons to do this. With the case mentioned above,
realizing that two nodes have the same MAC address often requires that you sniff the wire. As you can
see, Ethernet is a carefully managed cooperative environment, but it is fallible.

To learn more about Ethernet, or any of the competing standards, we can order publications from the
IEEE (Institute of Electrical and Electronics Engineers) web site (http://www.ieee.org/), which governs
the standards; or alternatively, from related sites like the Gigabit Ethernet Alliance (http://www.gigabit-
ethernet.org/). http://www.ethernet.org/, while offering a few forums discussing Ethernet standards, is
not affiliated with any of the official industry bodies. Lastly, we can always search on the Internet for
IEEE 802.3, the CSMA/CD specification that defines the operation of Ethernet technologies. For
printed references, Macmillan Technical Publishing's Switched, Fast, and Gigabit Ethernet
ISBN-1578700736, written by Robert Breyer and Sean Riley, is one of the best publications available. It
covers the whole gamut of Ethernet networking, including bridging, routing, QOS, and more.

The Internet Protocol
Referring once more to our comparison chart, we now move into the realm of TCP/IP. TCP/IP is
actually a bit misleading, since it refers to two separate protocols (and more are used, though not
explicitly mentioned). As can be seen, the network layer in the OSI model directly correlates to IP
(Internet Protocol), providing an addressing and routing scheme for the networks. Why, if Ethernet
provides for addressing via MAC addresses, we need yet another addressing scheme? The answer is,
because of the segmented nature of large networks. The Ethernet MAC system only works if every node
addressed is on the same wire (or bridge). If two segments, or even two separate networks, are linked
together via a router or host, then a packet addressed from one host on one network to another on the
other network would never reach its destination if it could only rely on the MAC address. IP provides
the means for that packet to be delivered across the bridging router or host onto the other network,
where it can finally be delivered via the MAC address.

We'll illustrate this more clearly in a moment, but first let's get a better understanding of what IP is. IP
as we know it today is actually IPv4, a protocol that provides a 32 bit segmented addressing system. The
protocol specification is detailed in RFC 791 (all RFC documents can be obtained from the RFC
Editor's office web site, http://www.rfc-editor.org/, which is responsible for assigning each of them
numbers and publishing them).

As an aside, we should notice that we're dealing with more than one governing body just to implement
one model. The reason for this is simple; the IEEE, being electrical and electronics engineers, are
responsible for the hardware portion of the implementation. Once we move into software, though, most
open standards are suggested through RFCs, or 'Request for Comments'. Multiple bodies work closely
with the RFC Editor's office, including IANA (Internet Assigned Numbers Authority), IETF (Internet
Engineering Task Force), and others.

There is an emerging new standard, called IPv6, which offers a larger addressing space and additional
features, but we won't be covering them here since IPv6 networks are still fairly rare. You can read
more about IPv6 through RFC 2460.

Networking with Perl

961

Back to IPv4 and its addressing scheme. Notice that we said that IPv4 provides a segmented 32-bit
address space. This address space is similar to MAC addresses, in that we divide the 32 bits into two
separate designators. Unlike MAC's manufacturer:unit–# scheme, the first segment refers to the
network, and the second the host. Also unlike MAC, the division doesn't have to be equally sized – in
fact, it rarely is. While the distinction between the network and host can appear subtle, it's extremely
important for routing traffic through disparate networks, as you will see. Regardless of this, an IP
address is usually represented as four quads (as in four bits) in decimal form, and incorporates both the
network and the host segment: 209.165.161.91.

In RFC 1700, the Assigned Numbers standard, five classes of networks are defined:

Class Range Bitmask of first octet

A 0-127 0xxxxxxx

B 128-191 10xxxxxx

C 192-223 110xxxxx

D 224-239 1110xxxx

E 240-255 1111xxxx

The 10.0.0.0 network address, for instance, is a class A network, since the first octet falls in the class
A range, and 192.168.1.0 is a class C network. In practice, A-C are reserved for unicast addresses
(networks where nodes typically communicate with single end-to-end connections), class D is reserved
for multicast (nodes typically talking simultaneously to groups of other nodes), and E is reserved for
future use. We need only be concerned with A through C here.

The class of each unicast network determines the maximum size of each network, since each class masks
out an additional octet in each IP address, restricting the number of hosts:

Class Netmask

A 255.0.0.0

B 255.255.0.0

C 255.255.255.0

For instance, a class A network, say 10.0.0.0, has a netmask of 255.0.0.0, which, in binary, would be
represented as such:

00001010 00000000 00000000 00000000 Network address
11111111 00000000 00000000 00000000 Netmask

The network administrator knows that the netmask masks (with 1s) all of the bits that he's not allowed to
use as valid addresses. Hence, he or she can use any of the last three quads to address a specific host,
allowing him or her to potentially address 16,777,216 hosts.

Chapter 23

962

An administrator assigned a class C network, like 198.168.1.0, would only be able to use the last octet,
and hence only address 256 hosts (actually, the number of hosts is always 2 less, since 0 is reserved for
the network address, and the highest number is usually reserved for network-wide broadcasts, which is
255 in this example):

11000000 10101000 00000001 00000000 Network address
11111111 11111111 11111111 00000000 Netmask

As you might have surmised, an independent authority allocates network addresses, which prevents
conflicting addresses. There are also, however, smaller blocks within each class that are set aside for
internal use for all organizations (and homes, if need be):

Class Private IP block

A 10.0.0.0 - 10.255.255.255

B 172.16.0.0 - 172.31.255.255

C 192.168.0.0 - 192.168.255.255

Because these are unregulated addresses, multiple organizations will often use the same blocks
internally. This does not cause any conflicts since these blocks are not routable on public networks (like
the Internet). Any host on a company network using these blocks needs to either go through a proxy
with a public address, or use some sort of network address translation (often referred to as NAT) in
order to communicate with other hosts on public networks. Private IP assignments are covered in RFC
1918.

It is important to note that none of this precludes the ability of any network administrator from
subdividing internal network blocks in any manner they see fit – dividing the 10.x.x.x class A address
space into several class Cs, or even smaller divisions (bit masks can also be applied to the last octet as
well). This is performed quite frequently to relieve network congestion and localize traffic onto subnets.
This, in essence, creates a classless (or CIDR, Classless InterDomain Routing) network, though it may
still appear as one monolithic class network to the outside world.

IP uses these network addresses and masks to determine the proper routing and delivery for each bit of
information being sent. Each connection is evaluated as either needing local or remote delivery. Local
delivery is the easiest, since IP will actually delegate to the lower layers to deliver the data:

192.168.1.7 192.168.1.10

3C:89:00:10:FA:0B 5A:03:26:DE:02:A1

In this example, both hosts are on the same network, so IP requests that Ethernet deliver the data
directly. A separate protocol (called ARP – Address Resolution Protocol, which is covered in RFC 826)
is used for this. That transaction will go along these lines (imagine that the host above, 192.168.1.7, is
sending a message to its neighbor, 192.168.1.10):

Networking with Perl

963

❑ IP receives a packet (in this case, packet refers to some kind of payload) for delivery.

❑ IP determines that local delivery can be done since the destination address appears to be on
the same network as its own.

❑ An ARP request is broadcasted asking, 'Who has .10?'.

❑ 192.168.1.10 replies with its own MAC address.

❑ IP hands over the packet to the Ethernet layer for delivery to the MAC in the ARP response.

❑ Ethernet delivers the packet directly.

This method will not work, however, when the network is segmented. When this is done, some sort of
bridge or router must exist that links the two networks, such as a host with two NICs, or a router. That
bridge will have a local address on both networks, and the network will be configured to deliver all
traffic that's not for local hosts through the bridge's local address.

Recall that we explained that Ethernet delivers all of its payloads in frames. IP delivers all of its
payloads in packets, and both frames and packets have their own addressing schemes. The Ethernet
layer is intentionally ignorant of what it is delivering, and who the ultimate recipient is, since its only
concern is local delivery. In order to preserve all of that extra addressing information that IP requires, it
performs complete encapsulation of the IP packet. That packet, as you may have guessed, has more
than just raw data from the upper layers, it begins with a header that includes the IP addressing
information, with the remainder taken up by the data itself. Ethernet receives that packet (which must
be small enough to fit into an Ethernet frame's data segment), stores the entire packet in its frame's data
segment, and delivers it to the local recipient's MAC address.

Accordingly, remote traffic is processed at two layers. Once IP determines that it is delivering to a
remote host, it requests the local address of the router or gateway, and has Ethernet deliver the packet
to the gateway, and the gateway forwards to the other network for local delivery:

192.168.1.7

192.168.2.4

192.168.1.10

192.168.2.101

3C:89:00:10:FA:0B

3C:E9:34:01:0A:AC

5A:03:26:DE:02:A1

5A:03:A3:56:02:01

192.168.1.1
2B:00:3E:46:20:01

2B:00:3E:56:F2:FA
192.168.2.1

TE
AM
FL
Y

Team-Fly®

Chapter 23

964

So, if 192.168.1.7 wanted to send a message to 192.168.2.4, the transaction would look like:

❑ IP receives a packet for delivery.

❑ IP determines that local delivery cannot be done since the destination address appears to be
on a different network from its own, and so needs to deliver it through the local gateway
(referred to as the default route in networking terms), which it has previously been informed is
192.168.1.1.

❑ An ARP request is broadcasted asking, 'Who has .1?'

❑ 192.168.1.1 replies with its own MAC address.

❑ IP hands over the packet to the Ethernet layer for delivery to the MAC in the ARP response.

❑ Ethernet delivers the packet to the gateway.

❑ The gateway examines the packet, and notices the IP address is meant for its other local
network.

❑ The IP layer on the gateway's other local port receives the packet.

❑ IP determines that it can deliver the packet locally.

❑ An ARP request is broadcasted asking, "Who has .4?"

❑ 192.168.2.4 replies with its own MAC address.

❑ IP hands over the packet to the Ethernet layer for delivery to the MAC in the ARP response.

❑ Ethernet delivers the packet.

IP is also responsible for another very important task: if the upper layers hand it large bundles of data
(each individual bundle would be considered an IP datagram), it must break them apart into something
small enough for it to handle with its header information, and still be encapsulated into a single frame.
When this happens, each packet sent out includes a sequence number in the header, allowing the
receiving end's IP layer to reconstruct the original datagram from the individual packets.

UDP & TCP
By now, we should have a good idea how networks deliver and route traffic as needed, and we've
covered the first three layers of the OSI Model with illustrations from TCP/IP over Ethernet. We can
also see that IP could also route traffic from Ethernet to another network layer, such as token ring, or
PPP over a MODEM connection. We're now ready to move on to the next two layers in the OSI model,
Transport and Session. These two layers are combined and handled by TCP (Transmission Control
Protocol) and UDP (User Datagram Protocol). We'll cover UDP since it's the simpler of the two
protocols.

UDP provides a simple transport for any applications that don't need guarantees for delivery or data
integrity. It may not be apparent from that description what the benefits of UDP are, but it does have a
few. For one, UDP gains a great deal of performance since less work needs to be done. There's a great
deal of overhead involved in maintaining TCP's state and data integrity. UDP applications can send and
forget. Another benefit is the ability to broadcast (or multicast) data to groups of machines. TCP is a
tightly controlled end-to-end protocol, permitting only one node to be addressed.

Networking with Perl

965

NTP (Network Time Protocol) is one application protocol that derives some great advantages from
using UDP over TCP. Using TCP, a time server would have to wait and allow individual machines to
connect and poll the time, meaning that redundant traffic is generated for every additional machine on
the network. This would mean a second or more could elapse between the time being sent and the time
being received, meaning an incorrect time being recorded. Using UDP allows it to multicast its time
synchronization traffic in one burst and have all machines receive and respond accordingly, relieving a
significant amount of traffic, which can be better used for other services. In this scenario, it's not critical
that each machine be guaranteed delivery of that synchronization data since it's not likely that a
machine will drift much, if at all, between the multicast broadcasts. As long as it receives some of the
broadcasts occasionally, it will stay in sync, and bandwidth is preserved.

TCP, on the other hand, is much more expensive to maintain, but if you need to ensure that all the data
arrives intact, there's no other alternative. TCP also allows state-full connections, with each exchange
between nodes acknowledged and verified. If any portion of the data fails to come in, TCP will
automatically request a retransmission, and the same would occur for any data arriving that fails to
generate the same checksum.

Another important feature is TCP's use of internal addressing. Every application using a TCP
connection is assigned a unique port number. Server applications typically will use the same port to
listen on, to ensure that all clients know what IP port they need to connect to for reaching that service.
TCP connections take this one step farther, by maintaining each completed circuit by independent local
and remote IP:port pairs. This allows the same server to serve multiple clients simultaneously since the
traffic is segregated according to the combined local and remote addresses and ports. It important to
note that while UDP has a concept of ports as well, being a connectionless protocol, no virtual circuits
are built, it simply sends and receives on the port the application has registered with the UDP layer, and
hence, the same capabilities do not exist. Also note that port addressing for UDP and TCP exist
independently, allowing you to run a UDP and a TCP application on the same port number
simultaneously.

The port portion of the IP:port pair is only 16 bits, though that rarely presents a problem. Traditionally,
ports 1-1023 are reserved as privileged ports, which means that no service should be running on these
ports that hasn't been configured by the system administrator. Web servers, as an example, run on port
80, and mail services run on port 25. When a user application connects to such a service, it is assigned a
random high number port that is currently unused. Therefore, the connection to a web server will
typically look like 209.165.161.91:80 <-> 12.18.192.3:4616.

These features make TCP the most widely used protocol on the Internet. Applications like web services
(HTTP protocol) would certainly not be as enjoyable if the content came in out of order and
occasionally corrupted. The same goes for other application protocols like mail (SMTP), and news
(NNTP).

Both protocols are covered by their own RFCs: 768 for UDP, and 793 for TCP.

ICMP
ICMP (Internet Control Message Protocol) is another protocol that should be mentioned for
completeness. It's not a transport protocol in its own right, but a signaling protocol used by the other
protocols. For instance, should a problem arise that appears to blocking all datagrams from reaching the
recipient, IP would use ICMP to report the problem to the sender. The popular ping command
generates ICMP messages ('Echo Request' message, in this case) too, to verify that the desired hosts are
on the network, and 'alive'.

Chapter 23

966

ICMP can deliver a range of messages including Destination Unreachable, Time Exceeded, Redirect
Error, Source Quench, Parameter Problem, and a wide variety of sub-messages. It can also provide
some network probing with Echo/Timestamp/Address Mask Request and Replies.

ICMP is more fully documented in RFC 792.

Other Protocols
It is important to realize that other protocols exist at various levels of the OSI reference model, such as
IPX, Appletalk, NetBEUI, and DecNET. Perl can even work with some of these protocols. We won't be
covering them here, though, since a clear majority of Perl applications reside in the TCP/IP domain.
Furthermore, the principles illustrated here will apply in part to the operation of other types of
networks.

Presentation/Application Layers
The last part of our OSI model comparison to examine is the presentation and application layers.
TCP/IP doesn't actually have any formal presentation services, but there are many that can be
optionally used as needed. Terminal applications, for instance, use a character-based service called the
Network Virtual Terminal. Many applications, however, simply send their data and commands directly
through the transport layer for direct handling by the application.

As mentioned earlier, SMTP, HTTP, and NNTP are examples of application protocols that work
directly with the transport protocol. The only thing that these types of protocols specify is how they are
to use the connection presented by the lower layers. For HTTP, as an example, the protocol specifies
that each connection will consist of simple query and response pairs, and what the syntax and
commands allowed in the queries are.

Anonymous, Broadcast, and Loopback Addresses
Any address within a network with a host segment (the host segment, remember, is the unmasked
portion of any network address) that consists entirely of ones or zeros is not normally treated as a
specific network interface. By default, a host with segments containing all zeros is an 'anonymous'
address (since it is, in actuality, the network's address) that can be set as the sender in a TCP/IP packet.
For example: 192.168.0.0.

Of course, a receiving system is entirely within its rights to ignore anonymous transmissions sent to it.
This is not a valid address for the recipient however. Conversely, setting the host segment to all ones is
a broadcast to all of the systems that have IP addresses in that range, for example: 192.168.255.255.

Pinging this address would result in every host on that subnet returning that echo request (at least, it
does with UNIX systems, Windows NT appears to ignore it).

In addition, most hosts define the special address 127.0.0.1 as a self-referential address, also known
as the loopback address. The loopback address allows hosts to open network connections to themselves,
which is actually more useful than it might seem; we can for example run a web browser on the same
machine as a web server without sending packets onto the network. This address, which is usually
assigned to the special host name localhost, is also useful for testing networking applications when no
actual network is available.

Networking with Perl

967

Networking with Perl
Sockets are Perl's interface into the networking layer, mapping the details of a network connection into
something that looks and feels exactly like a filehandle. This analogy didn't start with Perl, of course,
but came into popular usage with BSD UNIX. Perl merely continues that tradition, just as it is with
other languages.

Sockets
There are two basic kinds of sockets: Internet Domain and UNIX domain sockets. Internet Domain
sockets (hereafter referred to as INET sockets) are associated with an IP address, a port number, and a
protocol, allowing you to establish network connections. UNIX domain sockets, on the other hand,
appear as files in the local filing system, but act as a FIFO stack and are used for communication
between processes on the same machine.

Sockets have a type associated with them, which often determines the default protocol to be used. INET
stream sockets use the TCP protocol, since TCP provides flow control, state, and session management.
INET datagram sockets, on the other hand, would naturally use UDP. Information flows in the same
way that it does with a regular filehandle, with data read and written in bytes and characters.

Some socket implementations already provide support for the IPv6 protocol or handle other protocols
such as IPX, X25, or AppleTalk. Depending on the protocol used, various different socket types may or
may not be allowed. Other than stream and datagram sockets, a 'raw' socket type exists, which gives a
direct interface to the IP protocol. Other socket types supported will be documented in the socket(2)
man page on a UNIX-like system.

'Socket.pm'
Since Perl's socket support is a wrapper for the native C libraries (on UNIX, anyway), it can support any
type your system can. Non-UNIX platforms may have varying or incomplete support for sockets (like
Windows), so check your Perl documentation to determine the extent of your support. At the very least,
standard INET sockets should be supported on most platforms.

The socket functions are a very direct interface. One consequence of this is that the idiosyncrasies of the
original C API poke through in a number of places, notably the large number of numeric values for the
various arguments of the socket functions. In addition, the address information arguments required by
functions like bind, connect, and send need to be in a packed sockaddr format that is acceptable to
the underlying C library function. Fortunately, the Socket module provides constants for all of the
socket arguments, so we won't have to memorize those numeric values. It also provides conversion
utilities like inet_aton and inet_ntoa that convert string addresses into the packed form desired and
returned by the C functions.

A summary of Perl's socket functions is given overleaf, some directly supported by Perl, the rest
provided by Socket.pm. Each of them is explained in more detail later in the chapter.

Chapter 23

968

General:

Function Description

socket Create a new socket filehandle in the specified domain (Internet or UNIX) of the
specified type (streaming, datagram, raw, etc.) and protocol (TCP, UDP, etc.). For
example:

socket(ISOCK, PF_INET, SOCK_STREAM, $proto);

shutdown Close a socket and all filehandles that are associated with it. This differs from a
simple close, which only closes the current process's given filehandle, not any
copies held by child processes. In addition, a socket may be closed completely or
converted to a read-only or write-only socket by shutting down one half of the
connection. For example:

shutdown(ISOCK, 2);

socketpair Generate a pair of UNIX domain sockets linked back-to-back. This is a quick and
easy way to create a full-duplex pipe (unlike the pipe function) and is covered in
more detail in Chapter 22. For example:

socketpair(RSOCK, WSOCK, SOCK_STREAM, PF_UNSPEC);

Servers:

Function Description

bind Bind a newly created socket to a specified port and address. For example:

bind ISOCK, $packed_addr;

listen (Stream sockets only) Set up a queue for receiving incoming network connection
requests on a bound socket. For example:

listen ISOCK, $qsize;

accept (Stream sockets only) Accept and create a new communications socket on a bound
and listened to server socket. For example:

accept CNNCT, ISOCK;

Clients:

Function Description

connect Connect a socket to a remote server at a given port and IP address, which must
be bound and listening to the specified port and address. Note: while datagram
sockets can't really connect, this is supported. This sets the default destination for
that type. For example:

connect ISOCK, $packed_addr;

Networking with Perl

969

Options:

Function Description

getsockopt Retrieve a configuration option from a socket. For example:

$opt = getsockopt ISOCK, SOL_SOCKET, SO_DONTROUTE;

setsockopt Set a configuration option on a socket. For example:

setsockopt ISOCK, SOL_SOCKET, SO_REUSEADDR, 1;

IO:

Function Description

send Send a message. For UDP sockets this is the only way to send data, and an
addressee must be supplied, unless a default destination has already been set by
using the connect function. For TCP sockets no addressee is needed. For example:

send ISOCK, $message, 0;

recv Receive a message. For a UDP socket, this is the only way to receive data, and
returns the addressee (as a sockaddr structure) on success. TCP sockets may also
use recv. For example:

$message = recv ISOCK, $message, 1024, 0;

Conversion Functions:

Function Description

inet_aton aton = ASCII to Network byte order.

Convert a hostname (for example, www.myserver.com) or textual
representation of an IP address (for example, 209.165.161.91)
into a four byte packed value for use with INET sockets. If a host
name is supplied, a name lookup, possibly involving a network
request, is performed to find its IP address (this is a Perl extra, and
not part of the C call). Used in conjunction with
pack_sockaddr_in. For example:

my $ip = inet_aton($hostname);

inet_ntoa ntoa = Network byte order to ASCII

Convert a four byte packed value into a textual representation of an
IP address, for example, 209.165.161.91. Used in conjunction
with unpack_sockaddr_in.

Table continued on following page

Chapter 23

970

Function Description

pack_sockaddr_in Generate a sockaddr_in structure suitable for use with the bind,
connect, and send functions from a port number and a packed
four-byte IP address. For example:

my $addr = pack_sockaddr_in($port, $ip);

The IP address can be generated with inet_aton.

unpack_sockaddr_in Extract the port number and packed four-byte IP address from the
supplied sockaddr_in structure:

my ($port, $ip) = unpack_sockaddr_in($addr);

sockaddr_in Call either unpack_sockaddr_in or pack_sockaddr_in
depending on whether it is called in a list (unpack) or scalar (pack)
context:

my $addr = sockaddr_in($port, $ip);

my ($port, $ip) = sockaddr_in($addr);

The dual nature of this function can lead to considerable confusion,
so using it in only one direction or using the pack and unpack
versions explicitly is recommended.

pack_sockaddr_un Convert a pathname into a sockaddr_un structure for use with
UNIX domain sockets:

my $addr = pack_sockaddr_un($path);

unpack_sockaddr_un Convert a sockaddr_un structure into a pathname:

my $path = unpack_sockaddr_un($addr);

sockaddr_un Call either unpack_sockaddr_un or pack_sockaddr_un
depending on whether it is called in a list (unpack) or scalar (pack)
context:

my $addr = sockaddr_in($path);

my ($path) = sockaddr_in($addr);

This function is even more confusing than sockaddr_in, since it
only returns one value in either case. Using it for packing only, or
using the pack and unpack versions explicitly is definitely
recommended.

In addition to the utility functions, Socket supplies four symbols for special IP addresses in a pre-
packed format suitable for passing to pack_sockaddr_in:

Networking with Perl

971

Symbol Description

INADDR_ANY Tells the socket that no specific address is requested for use, we just
want to be able to talk directly to all local networks.

INADDR_BROADCAST Uses the generic broadcast address of 255.255.255.255, which
transmits a broadcast on all local networks.

INADDR_LOOPBACK The loopback address for the local host, generally 127.0.0.1.

INADDR_NONE An address meaning 'invalid IP address' in certain operations. Usually
255.255.255.255. This is invalid for TCP for example, since TCP
does not permit broadcasts.

Opening Sockets

The procedure for opening sockets is the same for both UNIX and INET sockets; it only differs
depending on whether you're opening a client or server connection. Server sockets typically follow
three steps: creating the socket, initializing a socket data structure, and binding the socket and the
structure together:

socket(USOCK, PF_UNIX, SOCK_STREAM, 0) || die "socket error: $!\n";
$sock_struct = sockaddr_un('/tmp/server.sock');
bind(USOCK, $sock_struct) || die "bind error: $!\n";

Of course, you may also need to insert a setsockopt call to fully configure the socket appropriately,
but the above three steps are needed as a minimum. Opening client connections is similar: create
socket, create the packed remote address, and connect to the server:

socket(ISOCK, PF_INET, SOCK_STREAM, getprotobyname('tcp')) || die "socket error:

$!\n";
$paddr = sockaddr_in($port, inet_aton($ip));
connect(ISOCK, $paddr) || die "connect error: $!\n";

Configuring Socket Options

The socket specification defines a number of options that may be set for sockets to alter their behavior.
For direct manipulation of socket options, we can make use of Perl's built-in getsockopt and
setsockopt functions, which provide low-level socket option handling capabilities. For the most part
we rarely want to set socket options; however, there are a few socket options that are worth dealing with
from time to time. These options apply almost exclusively to INET sockets.

The getsockopt function takes three arguments: a socket filehandle, a protocol level, and the
option to set. Protocol level refers to the level the desired level operates at in the network stack. TCP,
for instance, is a higher-level protocol than IP, and so has a higher value. We needn't bother with the
particular values, though, since constants are available. setsockopt takes the same three arguments,
but it can also include a value to set the option to. Leaving that argument out effectively unsets
that option.

Chapter 23

972

Options include:

Option Description

SO_ACCEPTCONN The socket is listening for connections.

SO_BROADCAST The socket is enabled for broadcasts (used with UDP).

SO_DEBUG Debugging mode enabled.

SO_LINGER Sockets with data remaining to send continue to exist after the
process that created them exits, until all data has been sent.

SO_DONTROUTE The socket will not route. See also MSG_DONTROUTE in 'Reading from
and Writing to Sockets' below.

SO_ERROR (Read-only) The socket is in an error condition.

SO_KEEPALIVE Prevent TCP/IP closing the connection due to inactivity by
maintaining a periodic exchange of low-level messages between the
local and remote sockets.

SO_DONTLINGER Sockets disappear immediately, instead of continuing to exist until all
data has been sent.

SO_OOBINLINE Allow 'out of band' data to be read with a regular recv – see
'Reading fromand Writing to Sockets' below.

SO_RCVBUF The size of the receive buffer.

SO_RCVTIMEO The timeout value for receive operations.

SO_REUSEADDR Allow bound addresses to be reused immediately.

SO_SNDBUF The size of the send buffer.

SO_SNDTIMEO The timeout period for send operations.

SO_TYPE The socket type (stream, datagram, etc.).

Of these, the most useful is SO_REUSEADDR, which allows a given port to be reused, even if another
socket exists that's in a TIME_WAIT status. The common use for this is to allow an immediate server
restart, even if the kernel hasn't finished it's garbage collection and removed the last socket:

setsockopt SERVER, SOL_SOCKET, SO_REUSEADDR, 1;

We can be a little more creative with the commas to provide an arguably more legible statement:

setsockopt SERVER => SOL_SOCKET, SO_REUSEADDR => 1;

The SO_LINGER option is also useful, as is its opposite, SO_DONTLINGER. Usually the default,
SO_DONTLINGER causes sockets close immediately when a process exits, even if data remains in the
buffer to be sent. Alternatively, you can specify SO_LINGER, which causes sockets to remain open as
long as they have data still to send to a remote client.

setsockopt SERVER, SOL_SOCKET, SO_DONTLINGER, 1;

Networking with Perl

973

SO_KEEPALIVE informs the kernel that TCP messages should be periodically sent to verify that a
connection still exists on both ends. This feature can be handy for connections going through a NAT
firewall, since that firewall has to maintain a table of connection translations, which are expired
automatically after an interval with no activity. It also provides a periodic link test for those applications
that keep predominantly idle connections, but need to be assured that a valid connection is maintained.

setsockopt SERVER, SOL_SOCKET, SO_KEEPALIVE, 1;

SO_BROADCAST sets or tests a socket for the ability to broadcast, an option which is only applicable to
UDP sockets. SO_TYPE is a read-only option that returns the socket type. SO_ERROR indicates that the
socket is in an error condition, though $! is an alternative.

The getsockopt function simply retrieves the current value of a socket option:

my $reusable = getsockopt SERVER, SOL_SOCKET, SO_REUSEADDR;

For experienced developers, there are also some lower-level options The expert network programmer
can use getsockopt and setsockopt at lower levels in the protocol stack by supplying a different
level as the protocol level argument. The Socket module does not define symbols for these levels since
they are nothing directly to do with sockets, so to get useful names we must include the
sys/socket.ph definition file:

require 'sys/socket.ph'.

This file defines symbols for all the system constants related to networking on the platform in question,
including SOL_ symbols for lower-level protocols. The most interesting for us are:

Symbol Description

SOL_IP IP version 4 protocol

SOL_TCP TCP protocol

SOL_UDP UDP protocol

SOL_IPV6 IP version 6 protocol

SOL_RAW 'raw' protocol (SOCK_RAW)

SOL_IPX IPX protocol

SOL_ATALK Appletalk protocol

SOL_PACKET 'packet' protocol (SOCK_SEQPACKET)

Each protocol defines its own set of options. The only one of immediate interest to us here is
TCP_NODELAY, which disables buffering at the TCP protocol level, essential for sending things like
typed characters in real time across network connections:

setsockopt CONNECTION, SOL_TCP, TCP_NODELAY, 1;

TE
AM
FL
Y

Team-Fly®

Chapter 23

974

Reading from and Writing to Sockets

Reading from and writing to sockets is handled by the 'recv' and 'send' functions, respectively. This is
used with datagram sockets more often than with other types, but it's a valid call for all of them. As was
mentioned above, Perl merely wraps the C function, so the syntax and behaviors are the same. While
we'll be covering them in some detail here, you can get more information directly from the
development manual pages (see recv(2) and send(2)).

The send function takes four arguments; a socket filehandle, a message, a numeric flag (which in most
cases can be '0'), and an addressee, in the form of a sockaddr_in or sockaddr_un structure:

send SOCKET, $message, $flags, $addressee;

Since stream sockets are connected, we can omit the last argument for that type. For other types, the
addressee is a sockaddr structure built from either a host and port number, or a local pathname,
depending on the socket domain:

my $inetaddr = sockaddr_in($port, inet_aton($hostorip));
my $unixaddr = sockaddr_un($pathname);

The flags argument is a little more interesting, and is combined from a number of flags with symbols
(defined by the Socket module) that alter the form or way in which the message is sent:

Send Flag Description

MSG_OOB Send an Out-Of-Band (that is, high priority) message.

MSG_DONTROUTE Ignore the local network gateway configuration and attempt to send the
message directly to the destination.

MSG_DONTWAIT Do not wait for the message to be sent before returning. If the message
would have blocked, the error EAGAIN (see the Errno module in
Chapter 16) is returned, indicating that we must try again later.

MSG_NOSIGNAL TCP sockets only. Do not raise a SIGPIPE signal when the other end
breaks the connection. The error EPIPE is still returned.

For example:

use Errno qw(EAGAIN EPIPE);

$result = send SOCKET, $message, MSG_DONTWAIT|MSG_NOSIGNAL, $addressee;

if ($result == EAGAIN) {
...
}

The recv function also takes four arguments, but instead of an addressee, it specifies a length for the
data to be received. It resembles the read function in several ways; the arguments are a socket
filehandle, as before, then a scalar variable into which the message is placed and an expected length,
followed up by a flags argument as before. The return value on success is the sockaddr structure for
the client:

my $message; # scalar to store message in
my $length = 1024; # expected maximum length
my $sender = recv SOCKET, $message, $length, $flags;

Networking with Perl

975

The length argument is in fact somewhat arbitrary, since the size of the message is determined when it is
read and adjusted accordingly. However, the supplied length is used to pre-allocate storage for the
received message, so a size that is equal to or larger than the message will allow Perl to perform slightly
quicker. Conversely, configuring a too large message will waste time to start with. A reasonable value
is therefore the best idea.

The flags argument allows us to modify the way in which we receive messages:

Receive Flag Description

MSG_OOB Receive an Out-Of-Band message rather than a message from the normal
message queue, unless OOB messages are being put at the head of the
queue of normal messages by setting the SO_OOBINLINE socket option
(see 'Configuring Socket Options').

MSG_PEEK Examine and return the data of the next message on the socket without
removing it.

MSG_WAITALL Wait until a message has been completely received before attempting to
retrieve it.

MSG_ERRQUEUE Retrieve a message from the error queue rather than the normal message
queue.

MSG_NOSIGNAL TCP sockets only. Do not raise a SIGPIPE signal when the other end
breaks the connection. The error 'EPIPE' is still returned.

For example:

my $message;
my $sender = recv SOCKET, $message, 1024,MSG_PEEK|MSG_WAITALL;

Note that depending on the socket implementation, the send and recv methods may accept more or
different flags from those listed above. However, these are reasonably typical for most platforms, and
certainly most UNIX platforms.

Closing Sockets

Like all other in-memory variables, Perl performs reference counting on sockets, and will close them
automatically, should all the existing references go out of scope. In keeping with good programming
practice, we should explicitly release unneeded resources, and Perl provides a way to do so. In fact,
since sockets are in most ways filehandles, you can use the same function you would on a filehandle,
like this:

close ISOCK;

There is a caveat to this rule, however. If a child has been forked that has a handle to the same
socket, close only affects the process that called it. All other children with a handle to the socket
will still have access to it, and the socket remains in use. A workaround for this situation exists in the
shutdown function:

shutdown(ISOCK, 2);

Chapter 23

976

This function closes the socket completely, even for any child processes with handles to it. The second
argument to this function is what instructs shutdown to do this, and changing that value illuminates
further capabilities of shutdown. Sockets can provide bi-directional communication, and shutdown will
allow you to shut down either of the two channels independently. If we wish the socket to become a
read-only socket, we can call shutdown with a second argument of 1. To make it write-only, we call it
with a second argument of 0. The Socket module also defines constants for these values, which make
them slightly friendlier:

shutdown SOCKET, SHUT_RD; # shutdown read
shutdown SOCKET, SHUT_WR; # shutdown write
shutdown SOCKET, SHUT_RDWR; # shutdown completely

'IO::Socket.pm'
Although the Socket module makes using the socket functions possible, it still leaves a lot to be
desired. To make life simper all round, the IO::Socket module and its children, IO::Socket::INET
and IO::Socket::UNIX, provide a friendlier and simpler interface that automatically handles the
intricacies of translating host names into IP addresses and thence into the sockaddr structure as well as
translating protocol names into numbers and even services into ports.

All the socket functions are represented as methods; new sockets are created, bound, listened to,
or connected with the new method, and all other functions become methods of the resulting
filehandle object:

$socket->accept;
$udpsocket->send("Message in a Datagram", 0, $addressee);
$tcpsocket->print("Hello Network World!\n");
$socket->close;

The main distinctions from the native Perl functions are in the way they are created and configured.

Configuring Socket Options

Options can be set on sockets at creation time using the new method, but the IO::Socket modules also
support getsockopt and setsocketopt methods. These are direct interfaces to the functions of the
same name and behave identically to them, though usage syntax differs:

$connection->setsockopt(SOL_SOCKET, SO_KEEPALIVE => 1);

The IO::Socket modules also allow us to configure aspects of the socket when we create it, though not
with the same flexibility as getsockopt and setsockopt. The arguments differ for Internet and
UNIX domain sockets, in accordance with their different behaviors.

Networking with Perl

977

The full range of options accepted by the new method of IO::Socket::INET can be seen below:

INET Options Description

LocalAddr

LocalHost

(Server only) The local address or hostname to serve optionally followed by
the port number or service name (which may additionally be followed by a
default in parentheses) prefixed by a colon. For example:

127.0.0.1

127.0.0.1:4444

127.0.0.1:myservice(4444)

www.myserver.com

www.myserver.com:80

www.myserver.com:http

LocalPort (Server only) The local port number or service name, if not given in
LocalAddr/LocalHost. For example:

80

http

Listen (Server only) The size of the queue to establish on the bound server socket.
The maximum possible size is defined on a platform basis by the constant
SOMAXCONN.

Default: 5

Multihomed (Server only) Boolean value. Listen for connections on all locally available
network interfaces.

Default: 0

Reuse (Server only) Boolean value. Set the SO_REUSEADDR option to free up the
socket for immediate reuse.

Default: 0

PeerHost (Client only) The remote address or hostname to connect to optionally
followed by a port number or service name (which may additionally be
followed by a default in parentheses) prefixed by a colon. For example:

127.0.0.1

127.0.0.1:4444

127.0.0.1:myservice(4444)

www.myserver.com

www.myserver.com:80

www.myserver.com:http

PeerPort (Client only) The remote port number or service name, if not given in
PeerAddr/PeerHost. For example:

80

http

Table continued on following page

Chapter 23

978

INET Options Description

Proto The protocol number, or more sensibly, name. For example:

tcp

udp

icmp

The type is set implicitly from the socket type if it is SOCK_STREAM,
SOCK_DGRAM, or SOCK_RAW.

Default: tcp

Timeout Timeout value for socket operations, in seconds. Default: 0 (no timeout).

Type The socket type. For example:

SOCK_STREAM (for TCP)

SOCK_DGRAM (for UDP)

SOCK_RAW (for ICMP)

SOCK_SEQPACKET

The socket type is set implicitly from the protocol if it is tcp, udp, or icmp.

Default: SOCK_STREAM

If only one argument is passed to the new method of IO::Socket::INET, it is assumed to be a client's
peer address, including the port number or service name.

my $server = new IO::Socket::INET($server_address_and_port);

The new method of IO::Socket does not have this shorthand: defining the socket domain is
mandatory.

The new method of the IO::Socket::UNIX module is considerably simpler. It takes only four
arguments, three of which we have already seen:

UNIX Option Description

Local (Server only) The pathname of the socket connection in the filesystem, for
example:

/tmp/myapp_socket

The pathname should be somewhere that the server has the ability to create a
file. A previous file should be checked for and removed first if present.

Listen (Server only) Specify that this is a server socket, and set the size of the queue to
establish on the bound server socket. The maximum possible size is defined on
a platform basis by the constant SOMAXCONN.

Note that unlike INET sockets, it is the setting of this parameter, not Local or
Peer, that causes the module to bind and listen to the socket. It is not implied
by Local.

Default: 5

Networking with Perl

979

UNIX Option Description

Peer (Client only) The pathname of the socket connection in the filesystem, for
example:

/tmp/myapp_socket

Type The socket type, for example:

SOCK_STREAM

SOCK_DGRAM

SOCK_RAW

SOCK_SEQPACKET

Default: SOCK_STREAM

If using new via the parent IO::Socket module we must also supply a domain for the socket:

my $socket = new IO::Socket(Domain => PF_INET, ...);

This may be from the PF_ family of constants, for example PF_INET or PF_UNIX (or indeed
PF_APPLETALK, etc.). These are not to be confused with the AF_ constants (as supplied to
gethostbyaddr, or getnetbyaddr, which are from the address family of symbols).

Now that we've covered all of the basics of using both Socket and IO::Socket methodologies, we'll
illustrate them will sample applications. We'll cover both client and server implementations, using both
methodologies, and using both TCP and UDP protocols.

TCP INET Examples
A server is simply an application that listens for and accepts incoming connections from client
applications. Once the connection is established, the two ends may then carry out whatever service the
server is there to perform – receive a file, send a web page, relay mail, and so on.

In general, a server creates a TCP socket to listen for incoming connections, by first creating the socket
with socket, and then assigning it to server duty with the bind function. The resulting socket is not
connected, nor can it be used for communications, but it will receive notification of clients that connect
to the address and port number otof which it is bound. To prepare to receive connections, we use the
listen function, which creates an internal queue for incoming connections to collect. We then use the
accept function to pull a connection request from the queue and create a socket filehandle for it. With
it, we can communicate with the remote system. Behind the scenes, TCP sends an acknowledgment to
the client, which creates a similar socket to communicate with our application.

A Simple TCP Socket Server

The following simple application demonstrates one way to create a very simple TCP server operating
over an INET socket, using Perl's built-in socket functions:

#!/usr/bin/perl
tcpinetserv.pl
use strict;
use warnings
use Socket;

Chapter 23

980

my $proto = getprotobyname('tcp');
my $port = 4444;

Create 'sockaddr_in' structure to listen to the given port

on any locally available IP address
my $servaddr = sockaddr_in($port, INADDR_ANY);

Create a socket for listening on
socket SERVER, PF_INET, SOCK_STREAM, $proto

or die "Unable to create socket: $!";

bind the socket to the local port and address
bind SERVER, $servaddr or die "Unable to bind: $!";

listen to the socket to allow it to receive connection requests
allow up to 10 requests to queue up at once.
listen SERVER, 10;

now accept connections
print "Server running on port $port...\n";
while (accept CONNECTION, SERVER) {

select CONNECTION; $| = 1; select STDOUT;
print "Client connected at ", scalar(localtime), "\n";
print CONNECTION "You're connected to the server!\n";
while (<CONNECTION>) {

print "Client says: $_\n";
}
close CONNECTION;
print "Client disconnected\n";

}

We use the Socket module to define the constants for the various socket functions – PF_INET means
create an INET socket (we could also have said PF_UNIX for a UNIX domain socket or even
PF_APPLTALK for a Macintosh Appletalk socket). SOCK_STREAM means create a streaming socket, as
opposed to SOCK_DGRAM, which would create a datagram socket. We also need to specify a protocol. In
this case we want TCP, so we use the getprotobyname function to return the appropriate protocol
number – we explore this and similar functions at the end of the chapter.

Once the constants imported from Socket are understood, the socket function becomes more
comprehensible; it essentially creates a filehandle that is associated with a raw, unassigned socket. To
actually use it for something, we need to program it. First, we bind it to listen to port 4444 on any
locally available IP address using the bind function. The bind function is one of the esoteric socket
functions that requires a packet C-style data structure, so we use the sockaddr_in function to create
something that is acceptable to bind from ordinary Perl values. The special INADDR_ANY symbol tells
bind to listen to all local network interfaces; we could also specify an explicit IP address with
inet_aton:

bind to the loopback address
(will only respond to local clients, not remote)
bind SERVER, inet_aton('127.0.0.1');

Networking with Perl

981

The listen function enables the socket's queue to receive incoming network connections, and sets the
queue size. It takes the socket as a first argument and a queue size as the second. In this case, we said 10
to allow up to ten connections to queue; after that, the socket will start rejecting connections. We could
also use the special symbol (again defined by Socket) of SOMAXCONN to create a queue of the
maximum size supported by the operating system:

create a queue of the maximum size allowed
listen SERVER, SOMAXCONN;

Having gone through all this setup work, the actual server is almost prosaic – we simply use accept to
generate sockets from the server socket. Each new socket represents an active connection to a client. In
this simple example we simply print a hello message and then print out whatever the client sends until it
disconnects. In order to make sure that anything we send to the client is written out in a timely manner
we set autoflush on the socket filehandle. This is an important step since our response to the client may
never reach them since our socket is waiting for enough data to fill the buffer before flushing it to the
client. IO buffering is enabled in Perl by default. Alternatively, we could have used the syswrite
function, which explicitly bypasses any buffering.

A Simple TCP 'IO::Socket' Server

The IO::Socket module simplifies all this somewhat by relieving us from having to do all of the low
level sockaddr_in manipulation socket function calls. Here is the same server written using
IO::Socket:

#!/usr/bin/perl
tcpioinetserv.pl
use warnings;
use strict;

use IO::Socket;

my $port = 4444;

my $server = IO::Socket->new(
Domain => AF_INET,
Proto => 'tcp',
LocalPort => $port,
Listen => SOMAXCONN,

);

print "Server running on port $port...\n";
while (my $connection = $server->accept) {

print "Client connected at ", scalar(localtime), "\n";
print $connection "You're connected to the server!\n";
while (<$connection>) {

print "Client says: $_";
}
close $connection;
print "Client disconnected\n";

}

This is altogether simpler, as well as being easier to read. Note that we didn't need to specify a socket
type, since the IO::Socket module can work it out from the protocol – TCP means it must be a
SOCK_STREAM. It also has the advantage that autoflushing is enabled by default on the newly created
sockets, so we don't have to do it ourselves.

Chapter 23

982

As a slightly simplified case for when we know we want an INET socket we can use the
IO::Socket::INET module directly, obviating the need for the Domain argument:

my $server = new IO::Socket::INET(
Proto => 'tcp',
LocalPort => $port,
Listen => SOMAXCONN,

);

The filehandles returned by either approach work almost identically to 'ordinary' filehandles for files
and pipes, but we can distinguish them from other filehandles with the -S file test:

print "It's a socket!" if -S CONNECTION;

Filehandles returned by the IO::Socket modules also support all the methods supported by the
IO::Handle class, from which they inherit, so we can for example say:

$socket->autoflush(0);
$socket->printf("%04d %04f", $int1, $int2);
$socket->close;

See Chapter 12 for more on the IO::Handle module and the other modules in the 'IO' family.

Our example above lacks one primary attribute necessary for a true multi-user server – it can only
handle one connection at a time. A true server would either fork or use threads to handle each
connection, freeing up the main process to continue to accept concurrent connections. For more
information on that aspect, please consult Chapter 22.

A Simple TCP Socket Client

While servers listen for and accept network connections, clients originate them. Implementing a client is
similar to creating a server, although simpler. We start out by creating an unconnected stream socket of
the correct domain and protocol with socket. We then connect the socket to the remote server with
the connect function. If the result of the connect is not a failure, then this is all we have to do, apart
from use the socket. Once we're done, we need to close the socket, in order to maintain our status as
good denizens on the host.

The following simple application demonstrates a very simple INET TCP client, using Perl's built-in
socket functions:

#!/usr/bin/perl
tcpinetclient.pl
use warnings;
use strict;

use Socket;

my $proto = getprotobyname('tcp');
my $host = inet_aton('localhost');
my $port = 4444;

Networking with Perl

983

Create 'sockaddr_in' structure to connect to the given

port on the IP address for the remote host
my $servaddr = sockaddr_in($port, $host);

Create a socket for connecting on
socket SERVER, PF_INET, SOCK_STREAM, $proto

or die "Unable to create socket: $!";

bind the socket to the local port and address
connect SERVER, $servaddr or die "Unable to connect: $!";

enable autoflush
select SERVER; $| = 1; select STDOUT;

communicate with the server
print "Client connected.\n";
print "Server says: ", scalar(<SERVER>);
print SERVER "Hello from the client!\n";
print SERVER "And goodbye!\n";
close SERVER;

The initial steps for creating the client are identical to those for the server. First, we create a socket of
the right type and protocol. We then connect it to the server by feeding connect the socket filehandle
and a sockaddr_in structure. However, in this case the address and port are those of the server, not
the client (which doesn't have a port until the connection succeeds). The result of the connect is either
an error, which returns undef and we catch with a die, or a connected socket. If the latter, we enable
autoflush on the server connection to ensure data is written out in a timely manner, read a message from
the server, send it a couple of messages, and close the connection.

Clients may bind to a specific port and address if they wish to, just like servers, but may not listen on
them. It is not common that we would want to create a bound client, but one possible use is to prevent
two clients on the same machine from talking to the server at the same time. This would only be useful
if SO_REUSEADDR is not set for the socket.

A Simple TCP 'IO::Socket' Client

Again, we can use the IO::Socket module to create the same client in a simpler fashion, avoiding the
need to convert the hostname to a packed internet address with inet_aton and setting autoflush:

#!/usr/bin/perl
tcpioinetclient.pl
use warnings;
use strict;

use IO::Socket;

my $host = 'localhost';
my $port = 4444;

my $server = IO::Socket->new(
Domain => PF_INET,
Proto => 'tcp',
PeerAddr => $host,
PeerPort => $port,

);

TE
AM
FL
Y

Team-Fly®

Chapter 23

984

die "Connect failed: $!\n" unless $server;

communicate with the server
print "Client connected.\n";
print "Server says: ", scalar(<$server>);
print $server "Hello from the client!\n";
print $server "And goodbye!\n";
close $server;

As with the server, we can also eliminate the Domain argument by using the IO::Socket::INET
module directly:

my $server = new IO::Socket::INET(
Proto => 'tcp',
PeerAddr => $host,
PeerPort => $port,

);

In fact, if we use IO::Socket::INET we can omit the protocol too, and combine the address and port
together. This gives us a single argument, which we can pass without a leading name:

my $server = new IO::Socket::INET("$host:$port");

This one argument version only works for creating INET TCP clients, since all other uses of the
IO::Socket modules require at least one other argument. Fortunately, creating an INET TCP client is
a common enough requirement that it's still a useful shortcut.

Reading from and Writing to TCP Sockets

Socket filehandles that represent the ends of a TCP connection are trivial to use for input and output.
Since TCP streams data, we can read and write it in bytes and characters, just as we do with any normal
filehandle:

send something to the remote socket
print SOCKET "Send something to the other end\n";

get something back
my $message = <SOCKET>;

As we mentioned in the previous examples, Perl buffers IO by default, since the message will only reach
the client as we fill the buffer and force a flush. For that reason, we need to either use the syswrite
function, or set autoflushing to 1 after selecting our handle:

select SOCKET; $| = 1; select STDOUT;

The IO::Socket modules sets autoflush automatically on the socket filehandles it creates, so we
don't have to worry when using it. If we wanted to send individual key presses in real time, we might
also want to set the TCP_NODELAY option as an additional measure.

Networking with Perl

985

We can also use send and recv to send messages on TCP connections, but in general we don't usually
want to – the whole point of a streaming socket is that it is not tied to discrete messages. These functions
are more useful (indeed, necessary) on UDP sockets. On a TCP connection, their use is identical –
except that we do not need to specify a destination or source address since TCP connections, being
connection-oriented, supply this information implicitly.

Determining Local and Remote Addresses

We occasionally might care about the details of either the local or the remote address of a connection.
To find our own address we can use the Sys::Hostname module, which we cover at the end of the
chapter. To find the remote address we can use the getpeername function. This function returns a
packed address sockaddr structure, which we will need to unpack with unpack_sockaddr_in:

my ($port, $ip) = unpack_sockaddr_in(getpeername CONNECTION);
print "Connected to: ", inet_ntoa($ip), ", port $port\n";

We can use this information for a number of purposes, for example keeping a connection log, or
rejecting network connections based on their IP address:

reject connections outside the local network
inet_ntoa($ip) !~ /^192\.168\.1\./ and close CONNECTION;

A quirk of the socket API is that there is no actual 'reject' capability – the only way to reject a
connection is to accept it and then close it, which is not elegant but gets the job done. This does open
the possibilities of Denial of Service (DoS) attacks, though, and care needs to be taken to protect
against such.

The IO::Socket::INET module also provides methods to return the local and remote address of the
socket:

find local connection details
my $localaddr = $connection->sockaddr;
my $localhost = $connection->sockhost;
my $localport = $connection->sockport;

find remote connection details
my $remoteaddr = $connection->peeraddr;
my $remotehost = $connection->peerhost;
my $remoteport = $connection->peerport;

As with other methods of the IO::Socket::INET module, unpacking the port number and IP address
is done for us, as is automatic translation back into an IP address, so we can do IP-based connection
management without the use of unpack_sockaddr_in or inet_ntoa:

reject connections outside the local network
$remoteaddr =~ /^192.168.1/ and close CONNECTION

We can also reject by host name, which can be more convenient but which can also be unreliable
because it may require DNS lookups on which we cannot necessarily rely. The only way to verify that a
host name is valid is to use gethostbyname on the value returned by peerhost and then check the
returned IP address (or possibly addresses) to see if one matches the IP address returned by peeraddr.
Comparing both forward and reverse name resolutions is a good security practice to employ. See the
end of the chapter and the discussion on the host functions for more details.

Chapter 23

986

UDP INET Examples
UDP servers and clients have many uses. The NTP protocol, for instance, relies on it to conserve
bandwidth by broadcasting time synchronization information to multiple clients simultaneously.
Obviously, clients missing the occasional broadcast aren't a critical issue. If it is imperative that your
clients receive all of your broadcasts, then you should be using TCP.

A Simple UDP Socket Server

Here is an example of a simple INET UDP server, written using Perl's built-in socket functions. It is
similar to the TCP server, creating a server socket and binding it, but differs in that you don't listen to it
(that call is restricted to stream and sequential packet sockets):

#!/usr/bin/perl
udpinetserv.pl
use warnings;
use strict;

use Socket;

my $proto = getprotobyname('udp');
my $port = 4444;

Create 'sockaddr_in' structure to listen to the given port

on any locally available IP address
my $servaddr = sockaddr_in($port, INADDR_ANY);

Create a socket for listening on
socket SERVER, PF_INET, SOCK_DGRAM, $proto

or die "Unable to create socket: $!";

bind the socket to the local port and address
bind SERVER, $servaddr or die "Unable to bind: $!";

now receive and answer messages
print "Server running on port $port...\n";
my $message;
while (my $client = recv SERVER, $message, 1024, 0) {

my ($port, $ip) = unpack_sockaddr_in($client);
my $host = gethostbyaddr($ip, AF_INET);
print "Client $host:$port sent '$message' at ", scalar(localtime), "\n";
send SERVER, "Message '$message' received", 0, $client;

}

The key difference with this server is that because UDP is connectionless we do not generate new
filehandles with accept and then communicate over them. Instead, we read and write messages
directly using the send and recv functions. Each of those functions takes optional flags (which we did
not use, hence the argument of 0 on both calls), and they are documented in your development man
pages:

> man 2 recv
> man 2 send

Networking with Perl

987

Every message we receive comes with the sender's address attached. When we retrieve a message with
recv we get the remote address of the client (as a sockaddr_in structure for INET servers or a
sockaddr_un structure for UNIX domain ones), which we can feed directly to the send function to
return a response.

A Simple UDP' IO::Socket' Server

Again we can use the IO::Socket modules to do the same thing in a clearer way:

#!/usr/bin/perl
udpioinetserv.pl
use warnings;
use strict;

use IO::Socket;

my $port = 4444;

my $server = new IO::Socket(
Domain => PF_INET,
LocalPort => $port,
Proto => 'udp',

);

die "Bind failed: $!\n" unless $server;

print "Server running on port $port...\n";
my $message;
while (my $client = $server->recv($message, 1024, 0)) {

my ($port, $ip) = unpack_sockaddr_in($client);
my $host = gethostbyaddr($ip, AF_INET);
print "Client $host:$port sent '$message' at ", scalar(localtime), "\n";
$server->send("Message '$message' received", 0, $client);

}

The send and recv methods of IO::Socket are simply direct interfaces to the functions of the same
name, so the client address passed to the send method is a sockaddr_in (or sockaddr_un, in the
UNIX domain) structure. We'll cover both send and recv in more depth shortly.

A Simple UDP Socket Client

Whereas TCP clients create a dedicated connection to a single host with each socket, a UDP client can
broadcast packets to any host it wishes to with the same socket. Consequently, we do not use connect
but use send and recv immediately on the created socket:

#!/usr/bin/perl
#udpinetclient.pl
use warnings;
use strict;

use Socket;

my $proto = getprotobyname('udp');
my $host = inet_aton('localhost');
my $port = 4444;

Chapter 23

988

Create a socket for sending & receiving on
socket CLIENT, PF_INET, SOCK_DGRAM, $proto

or die "Unable to create socket: $!";

Create 'sockaddr_in' structure to connect to the given

port on the IP address for the remote host
my $servaddr = sockaddr_in($port, $host);

communicate with the server
send CLIENT, "Hello from client", 0, $servaddr or die "Send: $!\n";
my $message;
recv CLIENT, $message, 1024, 0;
print "Response was: $message\n";

The UDP socket is free to communicate with any other UDP client or server on the same network. In
fact, we can bind and listen to a UDP socket and use it as a client to send a message to another server as
well.

A Simple UDP IO::Socket Client

The IO::Socket version of this client is:

#!/usr/bin/perl
udpioinetclient.pl
use warnings;
use strict;

use IO::Socket;

my $host = 'localhost';
my $port = 4444;

my $client = new IO::Socket(
Domain => PF_INET,
Proto => 'udp',

);

die "Unable to create socket: $!\n" unless $client;

my $servaddr = sockaddr_in($port, inet_aton($host));
$client->send("Hello from client", 0, $servaddr) or die "Send: $!\n";
my $message;
$client->recv($message, 1024, 0);
print "Response was: $message\n";

We can also use IO::Socket::INET directly and omit the Domain argument:

my $client = new IO::Socket::INET(Proto => 'udp');

Unfortunately, because the send and recv methods are direct interfaces to the send and recv
functions, the recipient address is still a sockaddr_in structure and we have to do the same contortions
to provide send with a suitable addressee that we do for the built-in function version. This aside,
IO::Socket still makes writing UDP clients simpler, if not quite as simple as TCP clients.

Networking with Perl

989

Broadcasting

One of the key benefits of UDP is that we can broadcast with it. In fact, broadcasting is trivially easy to
do once we realize that it simply involves sending messages to the broadcast address of the network we
want to communicate with. For the 192.168 network, the broadcast address is 192.168.255.255:

my $port = 444;
my $broadcast = '192.168.255.255';
my $broadcastaddr = ($port, inet_aton($broadcast));

The special address 255.255.255.255 may therefore be used to broadcast to any local network. The
pre-packed version of this address is given the symbolic name INADDR_BROADCAST by the Socket and
IO::Socket modules:

$udpsocket->send("Hello Everybody", 0, INADDR_BROADCAST);

Standard UDP makes no provision for narrowing the hosts to which a broadcast is sent – everything
covered by the broadcast address will get the message. An enhancement to UDP called Multicast UDP
provides for selected broadcasting, subscribers, and other enhancements to the standard UDP protocol.
However, it is more complex to configure and requires multicast-aware routers and gateways if
broadcasts are to travel beyond hosts on the immediate local network. The IO::Socket::Multicast
module found on CPAN provides a programming interface to this capability.

UNIX Sockets
UNIX domain sockets are the second type of socket that we can create. Whereas INET sockets allow
remote communications via the networking infrastructure of the operating system, UNIX domain
sockets work through the filing system, restricting communications to local processes. They behave (and
are used) in the same manner as INET sockets, and are preferred for inter-process communication
where no networking support is needed. The absence of network support makes this a lighter-weight
implementation with higher performance.

As the name implies, UNIX domain sockets may not be supported on non-UNIX systems.

A Simple UNIX Socket Server

Writing an application to a UNIX domain socket is almost identical to writing it to use an INET socket:

#!/usr/bin/perl
unixserv.pl
use warnings;
use strict;

use Socket;

my $file = '/tmp/unixserv_socket';

Create 'sockaddr_un' structure to listen the local socket
my $servaddr = sockaddr_un($file);

remove an existing socket file if present
unlink $file;

Chapter 23

990

Create a socket for listening on
socket SERVER, PF_UNIX, SOCK_STREAM, 0

or die "Unable to create socket: $!";
bind the socket to the local socket
bind SERVER, $servaddr or die "Unable to bind: $!";

listen to the socket to allow it to receive connection requests
allow up to 10 requests to queue up at once.
listen SERVER, 10;

now accept connections
print "Server running on file $file...\n";
while (accept CONNECTION, SERVER) {

select CONNECTION; $| = 1; select STDOUT;
print "Client connected at", scalar(localtime), "\n";
print CONNECTION "You're connected to the server!\n";
while (<CONNECTION>) {

print "Client says: $_";
}
close CONNECTION;
print "Client disconnected\n";

}

First, we create a socket, but now we make it a UNIX domain socket by specifying PF_UNIX for the
socket domain. We also do not specify a protocol – unlike INET sockets, UNIX domain sockets do not
care about the protocol ahead of time – so instead we give it a value of 0 for the protocol.

Before we create the socket we clear away the filename created, if any, by the previous incarnation of
the server, otherwise we may not be able to create the new socket. The address for bind still needs to
be converted into a form it will accept, but since we are converting a UNIX domain address (a
filename), we use sockaddr_un rather than sockaddr_in. Other than these changes, the server is
identical.

A Simple UNIX 'IO::Socket' Server

The IO::Socket implementation of this server is similarly changed in only the barest details from the
INET version. One important, but perhaps not obvious, difference is that an explicit Listen argument
must be given to the new method for the socket to be bound and listened to. Without this, the server
will generate an 'invalid argument' error from accept. This is not the case with INET sockets, though
we can specify a Listen argument if we want.

#!/usr/bin/perl
iounixserv.pl
use warnings;
use strict;

use IO::Socket;

my $file = '/tmp/unixserv_socket';

remove previous socket file, if present
unlink $file;

Networking with Perl

991

my $server = IO::Socket->new(
Domain => PF_UNIX,
Type => SOCK_STREAM,
Local => $file,
Listen => 5,

);

die "Could not bind: $!\n" unless $server;

print "Server running on file $file...\n";
while (my $connection = $server->accept) {

print $connection "You're connected to the server!\n";
while (<$connection>) {

print "Client says: $_\n";
}
close $connection;

}

A Simple UNIX Socket Client

The UNIX domain version of the client is also almost identical to its INET counterpart:

#!/usr/bin/perl
unixclient.pl
use warnings;
use strict;

use Socket;

my $file = '/tmp/unixserv_socket';

Create 'sockaddr_un' structure to connect to the given
port on the IP address for the remote host
my $servaddr = sockaddr_un($file);

Create a socket for connecting on
socket SERVER, PF_UNIX, SOCK_STREAM, 0

or die "Unable to create socket: $!";

bind the socket to the local socket
connect SERVER, $servaddr or die "Unable to connect: $!";

enable autoflush
select SERVER; $| = 1; select STDOUT;

communicate with the server
print "Client connected.\n";
print "Server says: ", scalar(<SERVER>);
print SERVER "Hello from the client!\n";
print SERVER "And goodbye!\n";
close SERVER;

Again, we create a socket in the UNIX domain and specify a protocol of '0'. We provide connect with
a UNIX domain address compiled by sockaddr_un and connect as before. Together, this server and
client operate identically to their INET counterparts – only they do it without consuming network
resources. The only drawback is that a remote client cannot connect to our UNIX domain-based server.
Of course, in some cases, we might actually want that, for security purposes for example.

Chapter 23

992

A Simple UNIX 'IO::Socket' Client

The IO::Socket version of this client is:

#!/usr/bin/perl
iounixclnt.pl
use warnings;
use strict;

use IO::Socket;

my $file = '/tmp/unixserv_socket';

my $server = IO::Socket->new(
Domain => PF_UNIX,
Type => SOCK_STREAM,
Peer => $file,

);

die "Connect failed: $!\n" unless $server;

communicate with the server
print "Client connected.\n";
print "Server says: ", scalar(<$server>);
print $server "Hello from the client!\n";
print $server "And goodbye!\n";
close $server;

Determining Local and Remote Pathnames

When called on a UNIX domain socket, getpeername should return the name of the file being
accessed by the other end of the connection. This would normally be the same as the file used for this
end, but the presence of symbolic or hard links might give the client a different pathname for its
connection than that of the server.

get remote path
my $remotepath = unpack_socket_un(getpeername);

The IO::Socket::UNIX module provides the peerpath and hostpath to return the name of the file
used by the local and remote sockets respectively:

my $localpath = $server->hostpath;
my $remotepath = $server->peerpath;

Multiplexed Servers
So far in this chapter, we have covered networking fundamentals implementing simple single-client
TCP/IP servers that are capable of handling only one connection at a time.

For UDP this isn't too much of a limitation, since UDP works on a message-by-message basis. For TCP
it is severely limiting, however, because while one client has the server's attention, connection requests
from other clients must wait in the queue until the current client disconnects. If the number of requests
exceeds the size of the queue specified by listen, connection requests will begin to bounce.

Networking with Perl

993

In order to solve this problem we need to find a way to multiplex the server's attention, so that it can
handle multiple clients at once. Depending on our requirements, we have three options:

❑ Give the server the ability to monitor all client connections at once. This involves using the
select function to provide one loop with the ability to respond to any one of several
connections whenever any one of them becomes active. This kind of server is called a 'non-
forking' or 'polling' server. Although it is not as elegant or efficient as a forking or threading
server (code-wise), a polling server does have the advantage that it will work on any platform.

❑ Dedicate a separate process to each connection. This involves the fork function, and consists
of forking a new child process to manage each connection. This kind of server is called a
'forking' server. However, fork may not be available on all platforms.

❑ Spawn a new thread to handle each connection. This is a similar idea to the forking server but
is much more resource-efficient since threads are much more lightweight than separate
processes. This kind of server is called a threaded server. However, like the fork function,
threads are not always available to us, though this situation is improving and threads are
available on more platforms than fork. Perl has two different thread models, as we discussed
in Chapter 22, and we may or may not have access to either of them.

We'll consider and give an example of each kind of server in the following section, illustrating the basic
similarities and differences between them.

Polling Servers
If we want to write a single process server that can handle multiple connections we need to use the
select function, or more conveniently, the IO::Select module. Both the function and the module
allow us to monitor, or poll, a collection of filehandles for events, in particular readability. Using this
information we can build a list of filehandles and watch for activity on all of them. One of the
filehandles is the server socket, and if input arrives on it, we accept the new connection. Otherwise, we
read from an existing client's filehandle, and do whatever processing we need to, based on what it
sends. Developing a selecting server is actually simple, once the basics of the select function are
understood.

The 'select' Function
The select function has two completely different uses in Perl. The standard use takes one argument
that changes the default output filehandle (STDOUT is the unstated default filehandle for functions like
print, but we can change that). The select function also has a four-argument version, which takes
three bitmasks (read, write, and exceptions) and an optional timeout value. We can use this version of
select to continuously scan multiple filehandles simultaneously for a change in their condition, and
react whenever one of them becomes available for reading or writing, or enters an error condition.

The bitmasks represent the file numbers, also called file descriptors, of filehandles that we are interested
in communicating with; the first bit refers to filehandle number 0 (usually STDIN), the second to 1
(STDOUT) and the third to 2 (STDERR). Every new filehandle that we create contains inside it a low-level
file descriptor, which we can extract with fileno.

Using select effectively requires first extracting the file numbers from the filehandles we want to
monitor, which we can do with fileno, then building bitmasks from them, which we can do with vec.
The following code snippet creates a mask with bits set for standard input and a handle created with one
of the IO:: modules, for example IO::Socket:

TE
AM
FL
Y

Team-Fly®

Chapter 23

994

my @handles;
$mask = 0;

push @handles, *STDIN;
vec($mask, fileno(STDIN), 1);
push @handles, $handle;
vec($mask, fileno($handle), 1);

We can now feed this mask to select. The @handles array is going to be useful later, but we will
disregard it for now.

The select function works by writing new bitmasks indicating the filehandles that are actually in the
requested state into the passed arguments; each bit initially set to '1', will be turned off if the handle is
not either readable or writable, and does not have an exception (meaning an unusual condition, such
Out-Of-Band data), and left at '1' otherwise. To preserve our mask for a later date, we have to assign it
to new scalars that select will assign its result to. If we don't want to know about writable file
descriptors, which is likely, we can pass undef for that bitmask:

my ($read, $except) = ($mask, $mask);
while (my $got = select $read, undef, $except) {

$except?handle_exception:handle_read;
my ($read, $except) = ($mask, $mask);

}

Here handle_read and handle_exception are subroutines, which we have yet to write. We can also
write, more efficiently but marginally less legibly:

while (my $got = select $read = $mask, undef, $except = $mask) {
$except?handle_exception:handle_read;

}

If select is not given a fourth argument for a timeout, it will wait forever for something to happen, at
which point the number of interesting file descriptors is returned. If a fourth parameter of a timeout in
seconds is specified $got will contain '0':

my ($read, $except);
while ('forever') {

while (my $got = select $read = $mask, undef, $except = $mask, 60) {
$except?handle_exception:handle_read;

}
print "Nothing happened for an entire minute!\n";

}

The only remaining aspect to deal with is how to handle the result returned by select. We can again
use vec for this, as well as the @handles array we created earlier but have not until now used. In
essence, we scan through the array of filehandles, checking for the bit that represents its file descriptor
in the mask. If it is set, that file descriptor is up to something and we react to it:

Networking with Perl

995

handle_read {

foreach (@handles) {
vec($read, fileno $_) and read_from_client($_);

}
}

Both select and the IO::Select module are unbuffered operations. That is, they operate directly on
file descriptors. This means that buffers are ignored and buffered IO functions such as print and read
may produce inconsistent results; for example, there may be input in the filehandle buffer but not at the
system level, so the file descriptor shows no activity when there is in fact data to be read.

Therefore, rather than using print, read, and other buffered IO functions, we must use system level
IO functions like sysread and syswrite, which write directly to the file descriptor and avoid the
buffers. Note that simply setting '$| = 1' is not adequate – see Chapter 12 for more details. Also note
that one advantage of forked and threaded servers is that they do not have this requirement to use
system IO, though we may choose to do so anyway.

The' IO::Select' Module
Having described how the select function works, we don't actually need to use it because the
IO::Select module provides a far friendlier interface to the select function. Instead of building
bitmasks, we just create an object and add filehandles to it:

new IO::Select;

my $selector = new IO::Select(*STDIN, $handle);

To scan for active filehandles we then use the can_read method. The return value from both functions
is an array of the filehandles (not file descriptors) that are currently in the requested state:

my @handles = $selector->can_read;

We can now iterate commands for each handle:

foreach (@handles) {
read_from_client $_;

}

The counterpart to can_read, can_write, scans for writable filehandles. The has_exception
method checks for filehandles that are in an exception state. To add a new handle, for example from an
accept, we use add:

$selector->add($server->accept);

Finally, to remove a handle, we use remove:

$selector->remove($handle);

Chapter 23

996

These are the primary methods supplied by IO::Select. There are other, less commonly used
methods. For completeness, we will mention each of them briefly:

Method Description

exists Called with a filehandle, returns the filehandle if it is present in the select object,
and undef if not. For example:

$selector->add($fh) unless $selector->exists($fh);

handles Returns an array of all the filehandles present in the select object:

my @handles = $selector->handles;

count Returns the number of filehandles present in the select object:

my $handles = $selector->count;

bits Returns a bitmask representing the file numbers of the registered filehandles,
suitable for passing to the select function:

my $bitmask = $selector->bits;

select Class method. Performs a select in the style of the function but using select
objects rather than bitmasks. Three array references are returned, each holding the
handles that were readable, writable, and exceptional (so to speak) respectively.
An optional fourth argument containing a timeout in seconds may also be
supplied. For example:

my ($readers, $writers, $excepts) = select IO::Select(

$read_selector, $write_selector,

$except_selector, 60 # timeout

);

foreach (@{$readers}) {

...

}

This function is essentially similar to calling can_read, can_write and
has_exception on three different select objects simultaneously. It mimics the
simultaneous polling of these three conditions with three different bitmasks that
the select function performs. Note that the same select object can be passed
for all three select object arguments.

Armed with this interface, we can now build a simple multiplexing server based on the select
function.

A Simple Polling Server
Here is an example of a simple INET polling TCP server. It uses IO::Select to monitor a collection
of filehandles, and reacts whenever one of them becomes active. The first handle to be monitored is the
server socket, and we check for it especially when an input event occurs. If the server socket is active, it
means a new connection request has arrived, so we accept it. Otherwise, it means a client has sent us
something, so we respond:

Networking with Perl

997

#!/usr/bin/perl
ioselectserv.pl
use warnings;
use strict;

use IO::Socket;
use IO::Select;

my $serverport = 4444;

create a socket to listen on
my $server = new IO::Socket(

Domain => PF_INET,
Proto => 'tcp',
LocalPort => $serverport,
Listen => SOMAXCONN,

);

die "Cannot bind: $!\n" unless $server;

create a 'select' object and add server fh to it
my $selector = new IO::Select($server);

stop closing connections from aborting the server
$SIG{PIPE} = 'IGNORE';

loop and handle connections
print "Multiplex server started on port $serverport...\n";
while (my @clients = $selector->can_read) {

input has arrived, find out which handles(s)
foreach my $client (@clients) {

if ($client == $server) {
it's a new connection, accept it
my $newclient = $server->accept;
syswrite $newclient, "You've reached the server\n";

my $port = $newclient->peerport;
my $name = $newclient->peerhost;
print "New client $port:$name\n";
$selector->add($newclient);

} else {
it's a message from an existing client
my $port = $client->peerport;
my $name = $client->peerhost;
my $message;
if (sysread $client, $message, 1024) {

print "Client $name:$port sent: $message";
syswrite $client, "Message received OK\n";

} else {
$selector->remove($client);
$client->shutdown(SHUT_RDWR);
print "Client disconnected\n"; # port, name not defined

}
}

}
}

This passable server handles new connections, carries out a simple exchange of messages with a client,
and drops them when they disconnect. The select call causes Perl to raise SIGPIPE signals that will
cause our application to abort if not trapped. In this case, we choose to ignore them and detect the
closing of the connection by getting a read event on a filehandle with no data – sysread returns 0 bytes
read. As we discussed in Chapter 12, this is the only reliable way to check for closed connections at the
system level, as eof does not work on unbuffered connections.

Chapter 23

998

A Simple Forking Server
The alternative to using a single process to read from multiple connections is to use multiple processes
to read from a single connection. The following server uses fork to generate an individual child process
for each child connection:

#!/usr/bin/perl
ioforkserv.pl
use warnings;
use strict;

use IO::Socket;

Turn on autoflushing
$| = 1;

my $port = 4444;

my $server = IO::Socket->new(
Domain => PF_INET,
Proto => 'tcp',
LocalPort => $port,
Listen => SOMAXCONN,
Reuse => 1,

);

die "Bind failed: $!\n" unless $server;

tell OS to clean up dead children
$SIG{CHLD} = 'IGNORE';

print "Multiplex server running on port $port...\n";
while (my $connection = $server->accept) {

my $name = $connection->peerhost;
my $port = $connection->peerport;
if (my $pid = fork) {

close $connection;
print "Forked child $pid for new client $name:$port\n";
next; # on to the next connection

} else {
child process - handle connection
print $connection "You're connected to the server!\n";
while (<$connection>) {

print "Client $name:$port says: $_";
print $connection "Message received OK\n";

}
print "Client $name:$port disconnected\n";
$connection->shutdown(SHUT_RDWR);

}
}

When the server receives a connection, it accepts it and then forks a child process. It then closes its
copy of the connection since it has no further use for it – the child contains its own copy, and can use
that. Having no further interest in the connection, the main process returns to the accept call and waits
for another connection.

Networking with Perl

999

Meanwhile, the child communicates with the remote system over the newly connected socket. When the
readline operator returns a false value, an indication of the end-of-file condition, the child determines
that the remote end has been closed, and shuts down the socket.

Because each connection communicates with a separate child process, each connection can coexist with
all the others. The main process, freed from the responsibility of handling all the communication duty,
is free to accept more connections, allowing multiple clients to communicate with the server
simultaneously.

A Simple Threaded Server
The alternative to forking processes is to use threads. Like forking, threads may or may not be available
on our platform, so which we use may be as much a matter of circumstance as choice. Instructions on
how to build a thread-capable Perl are included in Chapter 1.

Assuming we do have threads, we can write a multiplexed server along very similar lines to the forking
server. The threaded version is however simpler, as well as considerably less resource hungry. Below is
a threaded version (designed for Perl's older threaded model) of the forking server we showed above:

#!/usr/bin/perl
iothreadserv.pl
use warnings;
use strict;

BEGIN {
use Config;
die "No thread support!\n" unless $Config{'usethreads'};

}
use Thread;
use IO::Socket;

Autoflushing on
$| = 1;

my $port = 4444;

my $server = IO::Socket->new(
Domain => PF_INET,
Proto => 'tcp',
LocalPort => $port,
Listen => SOMAXCONN,
Reuse => 1,

);

die "Bind failed: $!\n" unless $server;

print "Multiplex server running on port $port...\n";
while (my $connection = $server->accept) {

my $name = $connection->peerhost;
my $port = $connection->peerport;

my $thread = new Thread(\&connection, $connection, $name, $port);
print "Created thread ",$thread->tid," for new client $name:$port\n";
$thread->detach;

}

Chapter 23

1000

child thread - handle connection
sub connection {

my ($connection, $name, $port) = @_;
$connection->autoflush(1);
print $connection "You're connected to the server!\n";
while (<$connection>) {

print "Client $name:$port says: $_";
print $connection "Message received OK\n";

}
$connection->shutdown(SHUT_RDWR);

}

When the server receives a connection, it accepts it and spawns a new thread to handle it. We pass the
connection filehandle to the new thread on start up. We don't need to worry about locking variables
either, since each thread cares only about its own connection. Of course, in a real server environment,
when performing more complex tasks such as database queries, we would probably need to worry about
this, but this simple example can get away without them. We also pass in the name of the host and the
port number, though we could have easily passed these inside the thread as well.

The main thread is only concerned with accepting new connections and spawning child threads to deal
with them. It doesn't care about what happens to them after that (though again a more complex server
probably would), so it uses the detach method to renounce all further interest in the child.

Threads all run in the same process, so there are no process IDs to manage, no child processes to
ignore, and no duplicate filehandles to close. In fact, all the threads have access to all the same
filehandles, but since each thread only cares about its own particular filehandle, none of them treads on
etheach others' toes. It's a very simple design and it works remarkably well. More information about
threaded processes in Perl can be found in Chapter 22.

Getting Network Information
All systems have network information configured locally (unless of course they are diskless
workstations, in which case their configuration was loaded from the network and stored in memory).
This information includes things like host names and IP addresses, network services and so on.

General information about addresses (both hostnames and resolved IPs), networks, services, and
protocols can usually be accessed through a standard suite of operating system functions to which Perl
provides a direct mapping. Alternatively, for the specific and common purpose of finding the name of
our own system (which is more complex than it might at first appear), we can use the Sys::Hostname
module.

Hostname queries in particular will also make use of any name resolution services available on the
system, including DNS, NIS/NIS+, and files, if configured. This is because they use the underlying
operating system calls to do the actual work rather than attempting to parse local configuration files.
Not only does this make them more portable, it also makes them able to work on both local and remote
hostnames.

A lot of the functions detailed here, particularly for hosts and networks, are wrapped and made easier to
use by the utility functions inet_aton and inet_ntoa, covered under Sockets earlier in the chapter.
The IO::Socket module further abstracts the details of service, protocol, and network configuration
from the user; in these cases we may be able to avoid actually calling any of these functions directly.

Networking with Perl

1001

System Network Files
All networked systems hold information about hosts, services, networks, and protocols. UNIX systems
keep this information in a set of specially formatted files in the /etc directory, while Windows NT
stores them under \WinNT\system32\drivers\etc:

Hosts: /etc/hosts

Networks: /etc/networks

Services: /etc/services

Protcols: /etc/protocols

To extract information from these files, UNIX defines a standard set of C library functions, analogues of
which are available within Perl as built-in functions. Because Perl tries to be a platform-independent
language, many of these functions also work on other systems such as Windows or VMS, though they
don't always read the same files or formats as the UNIX equivalents.

Perl provides no fewer than twenty built-in functions for making inquiries of the system network
configuration. They are divided into four groups of five, for hosts, networks, services, and protocols
respectively. Each group contains three functions for getting, resetting, and closing the related network
information file, plus two functions for translating the name of the host, network, service, or protocol to
and from its native value. The table below summarizes all twenty (functions marked with an * are not
supported on Win32 platforms, and many applications will not run because of their use):

Read Reset Close From Name To Name

Hosts gethostent sethostent endhostent* gethostbyname gethostaddr

Networks getnetent setnetent endnetent* getnetbyname getnetbyaddr

Services getservent setservent endservent* getservbyname getservbyport

Protocols getprotoent setprotoent endprotoent* getprotobyname getprotobynumber*

Perl's versions of these functions are smart and pay attention to the contexts in which they are called. If
called in a scalar context, they return the name of the host, network, service or protocol. For example:

find the service assigned to port 80 (it should be 'http')
my $protocol = getprotobyname('tcp');
my $servicename = getservbyport(80, $protocol);

The only exception to this is the -name functions, which return the other logical value for the network
information being queried – the IP address for hosts and networks, the port number for services, and the
protocol number for protocols:

find out what port this system has 'http' assigned to
my $httpd_port = getservbyname('http', $protocol);

Chapter 23

1002

Called in a list context, each function returns a list of values that varies according to the type of
information requested. We can process this list directly, for example:

#!/usr/bin/perl
listserv.pl
use warnings;
use strict;

while (my ($name, $aliases, $port, $proto) = getservent) {
print "$name\t$port/$proto\t$aliases\n";

}

Alternatively we can use one of the four Net:: family modules written for the purpose of making these
values easier to handle. Each module overrides the original Perl built-in function with a new object-
oriented version that returns an object, with methods for each value:

#!/usr/bin/perl
listobjserv.pl
use warnings;
use strict;

use Net::servent;

while (my $service = getservent) {
print 'Name : ', $service->name, "\n";
print 'Port No: ', $service->port, "\n";
print 'Protocol: ', $service->proto, "\n";
print 'Aliases: ', join(', ', @{$service->aliases}), "\n\n";

}

These four modules all accept an optional fields argument that imports a variable for each part of the
returned list. For the Net::servent module, the variables are the subroutines prefixed with s_, so the
alternative way of writing the above is:

#!/usr/bin/perl
listfldserv.pl
use warnings;
use strict;

use Net::servent qw(:FIELDS);

while (my $service = getservent) {
print 'Name : ', $s_name, "\n";
print 'Port No: ', $s_port, "\n";
print 'Protocol: ', $s_proto, "\n";
print 'Aliases: ', join(', ', @s_aliases), "\n\n";

}

Importing the variables still overrides the core functions however. We can get them back by prefixing
them with CORE::, as in:

($name, $aliases, $proto) = CORE::getprotobyname($name_in);

Networking with Perl

1003

Alternatively, we can gain access to the object methods without the overrides by passing an empty
import list:

#!/usr/bin/perl
listcorserv.pl
use warnings;
use strict;

use Net::servent ();

while (my $service = Net::servent::getservent) {
print 'Name : ', $service->name, "\n";
print 'Port No: ', $service->port, "\n";
print 'Protocol: ', $service->proto, "\n";
print 'Aliases: ', join(', ', @{$service->aliases}), "\n\n";

}

We will cover each of the four kinds of network information in a little more detail below.

Hosts
Host information consists of an IP address followed by a primary name and possibly one or more
aliases. On a UNIX server, this is defined in the /etc/hosts file, of which a semi-typical example
might be:

127.0.0.1 localhost localhost.localdomain myself
192.168.1.10 borahorzagobachul.culture.gal horza
192.168.1.102 sleepersevice.culture.gal sleeper
192.168.1.103 littlerascal.culture.gal rascal
192.168.1.1 hub.chiark.culture.gal hub chiark

Host information is also available via DNS, NIS, NIS+, files, and a number of other name resolution
protocols; the gethostent, gethostbyname, and gethostbyaddr will all use these automatically
if they are configured on the system. Whatever the eventual origin of the information, each definition
(or 'entry', hence gethostent) comprises an IP address, a primary name, and a list of aliases. The
gethostent function retrieves one of these in turn from the local host configuration, starting from
the first:

#!/usr/bin/perl
listhost.pl
use warnings;
use strict;

while (my ($name, $aliases, $type, $length, @addrs) = gethostent) {
print "$name\t[$type]\t$length\t$aliases\n";

}

Here the name and aliases are as listed above in the example hosts file. The type and length are the
address type (2, or AF_INET for Internet addresses, which is in fact the only supported type) and length
(4 for IPv4 and 16 for IPv6). The list of addresses comprises all the IP addresses to which this entry
applies. In a local host configuration file this should only be one element in length, so we could also get
away with saying:

my ($name, $aliases, $type, $length, @addrs) = gethostent;

TE
AM
FL
Y

Team-Fly®

Chapter 23

1004

The format of the address or addresses is a packed string of four bytes (or octets) describing the IP
address. To get a string representation we need to process it with unpack or use the Socket module's
inet_ntoa subroutine, which we'll come back to in a moment or two.

Since gethostent only operates on the local host configuration, this is okay. For network lookups as
performed by gethostbyname or gethostbyaddr we may get more than one address. Alternatively,
if gethostent is called in a scalar context, it just returns the name:

#!/usr/bin/perl
listhostnames.pl
use warnings;
use strict;

my @hosts;
while (my $name = gethostent) {

push @hosts, $name;
}
print "Hosts: @hosts\n";

gethostent resembles the opendir and readdir directory functions, except that the open happens
automatically and there is no filehandle that we get to see. However, Perl does keeps a filehandle open
internally, so if we only want to pass partway through the defined hosts we should close that filehandle
with:

endhostent;

If the resolution of the request involves a network lookup to a remote DNS or NIS server, endhostent
will also close down the resulting network connection.

We can also carry out the equivalent of rewinddir with the sethostent function:

sethostent 1;

If we are querying the local host file, this rewinds to the start of the file again. If we are making network
queries, this tells the operating system to reuse an existing connection if one is already established.
More specifically, it tells the operating system to open and maintain a TCP connection for queries
rather than use a one-off UDP datagram for the query. In this case, we can shutdown the TCP
connection with:

sethostent 0;

Rather than scanning host names one by one, we can do direct translations between name and IP
address with the gethostbyname and gethostbyaddr functions. Both these functions will cause the
operating system to make queries of any local and remote name resolution services configured.

In list context, both functions return a list of values like gethostent. In scalar context, they return the
name (for gethostbyaddr) or address (for gethostbyname):

($name, $aliases, $type, $length, @addrs) = gethostbyname($name);
$name = gethostbyaddr($addr, $addrtype);
$addr = gethostbyname($name);

Networking with Perl

1005

In the event that the host could not be found, both functions return undef (or an empty list, in list
context) and set $? (not, incidentally, $!) to indicate the reason. We can use $? >> 8 to obtain a real
exit code that we can assign to $!, however (see Chapter 16 for more on this and the Errno module
too).

The addrtype parameter of gethostbyaddr specifies the address format for the address supplied.
There are two formats we are likely to meet, both of which are defined as symbolic constants by the
Socket module:

AF_INET Internet address

AF_INET6 IPv6 Internet address

In all cases, the addresses returned (and in the case of gethostbyaddr, the address we supply) are in
packed form. This isn't (except by sheer chance) printable, and it isn't very convenient to pass as a
parameter either. We can use pack and unpack to convert between 'proper' integers and addresses (the
following example is for IPv4, or AF_INET addresses, on a little-endian machine):

$addr = pack('C4', @octets);
@octets = unpack('C4', $addr);

More conveniently, we can make use of the inet_aton and inet_ntoa functions from the Socket
module to convert between both addresses and hostnames and IP strings of the form n1.n2.n3.n4.
For example, this short script looks up and prints out the IP addresses for the hostnames given on the
command line:

#!/usr/bin/perl
hostlookup.pl
use warnings;
use strict;

use Socket qw(/inet/);

die "Give me a hostname!\n" unless @ARGV;

while (my $lookup = shift @ARGV) {
my ($name, $aliases, $type, $length, @addrs) = gethostbyname($lookup);
if ($name) {

foreach (@addrs) {
$_ = inet_ntoa($_);

}
if ($name eq $lookup) {

print "$lookup has IP address: @addrs\n";
} else {

print "$lookup (real name $name) has IP address: @addrs\n";
}

} else {
print "$lookup not found\n";

}
}

We could use this script like this:

> perl hostlookup.pl localhost rascal hub chiark

Chapter 23

1006

And we would get (assuming the host file example above and no network lookups):

localhost has IP address: 127.0.0.1
rascal (real name rascal.culture.gal) has IP address: 192.168.1.103
hub (real name hub.chiark.culture.gal) has IP address: 192.168.1.1
chiark (real name hub.chiark.culture.gal) has IP address: 192.168.1.1

Likewise, to look up a host by address:

$localhostname = gethostbyaddr(inet_aton('127.0.0.1'));

Or to find the true name, using a hostname lookup:

$localhostname = gethostbyaddr(inet_aton('localhost'));

While we're examining this particular example, it is worth noting that for finding the hostname of our
own system we are better off using the Sys::Hostname module, described later in the chapter.

One word of warning – be aware that both gethostbyname and gethostbyaddr reset the pointer
used by gethostent in the same way that sethostent does, so they cannot be used in a loop of
gethostent calls.

The object-oriented override module for the host query functions is Net::hostent. It provides both an
object-oriented alternative and on request, a collection of imported scalar variables that are set by each
request. Strangely, however, it only provides an object-oriented interface for gethostbyname and
gethostbyaddr, not gethostent, so to avoid resetting the pointer of gethostent we have to take a
two-stage approach. Here is a short program to list all hosts in the object-oriented style:

#!/usr/bin/perl
listobjhost.pl
use warnings;
use strict;

use Net::hostent;
use Socket qw(inet_ntoa);

my @hosts;
while (my $host = gethostent) {

push @hosts, $host;
}

while (my $host = shift @hosts) {
$host = gethostbyname($host);
print 'Name : ', $host->name, "\n";
print 'Type : ', $host->addrtype, "\n";
print 'Length : ', $host->length, " bytes\n";
print 'Aliases : ', join(', ', @{$host->aliases}), "\n";
print 'Addresses: ', join(', ', map {inet_ntoa($_)}

@{$host->addr_list}), "\n\n";

}

Networking with Perl

1007

And again using variables:

#!/usr/bin/perl
listfldhost.pl
use warnings;
use strict;

use Net::hostent qw(:FIELDS);
use Socket qw(inet_ntoa);

my @hosts;
while (my $host = CORE::gethostent) {

push @hosts, $host;
}

while (my $host = shift @hosts) {
$host = gethostbyname($host);
print 'Name : ', $h_name, "\n";
print 'Type : ', $h_addrtype, "\n";
print 'Length : ', $h_length, " bytes\n";
print 'Aliases : ', join(', ', @h_aliases), "\n";
print 'Addresses: ', join(', ', map{inet_ntoa($_)} @h_addr_list), "\n\n";

}

If we only want to import some variables, we can pass them directly in the import list, but we must also
import the overrides we want to use if so:

use Net::hostent qw($h_name @h_aliases @h_addr_list gethostent);

We use the CORE:: prefix here partly to remind ourselves that gethostent is not being overridden,
and partly to protect ourselves in case a future version of the Net::hostent module extends to cover
it.

gethostbyname and gethostbyaddr also return objects. gethostbyaddr automatically makes use
of the Socket module to handle conversions so we can supply an IP address like 127.0.0.1 without
needing to worry about whether it will be understood or not. In addition, the Net::hostent module
supplies a shorthand subroutine, gethost, which calls either gethostbyname or
gethostbyaddress, depending on whether its argument looks like an IP address or a hostname.

Networks
Networks are simply groups of IP addresses that have been assigned a network name. For example, for
the host file example given earlier, 127 and 192.168.1 are potential groupings that may be given a
network:

loopback 127.0.0.0
localnet 192.168.1.0

Networks are therefore essentially very much like hosts; see below:

($name, $aliases, $type, $netaddr) = getnetent;

Chapter 23

1008

Or, in scalar context:

$netname = getnetent;

All these values have the same meanings as the same values returned by gethostent etc., only of
course for networks. The $netaddr is now an IP address for the network and unlike hosts, where there
is only one, this refers to many.

use Socket qw(/inet/);

$netip = inet_ntoa($netaddr);
$netaddr = inet_aton('192.168');

The setnetent function resets the pointer in the network information file to the start or (in the case of
NIS+ lookups) preserves an existing network connection if one happens to be active. Like sethostent
it takes a Boolean flag as a parameter, and switches between TCP and UDP connections for network
requests. For file-based access, using getnetbyname or getnetbyaddr also resets the pointer of
getnetent in the local network file. The endnetent function closes the network information file or
network connection.

getnetbyname and getnetbyaddr work similarly to their 'host' counterparts, except for network
addresses. Like gethostbyname, getnetbyname will do a remote lookup if the host network
configuration is set to do that, although this is considerably more rare.

$netaddr = getnetbyname('mynetwork');
$netname = getnetbyaddr('192.168.1', AF_INET); # from 'Socket'

The object-oriented override module for the network query functions is Net::netent. Like
Net::hostent, it does not override getnetent, only getnetbyaddr and getnetbyname. Since
both these functions reset the pointer of getnetent we have to collect names (or addresses) first, then
subsequently run through each one with getnetbyname or getnetbyaddr. Here's a script that dumps
out network information in the same vein as the object-oriented host script earlier:

#!/usr/bin/perl
getobjnet.pl
use warnings;
use strict;

use Net::netent;
use Socket qw(inet_ntoa);

my @nets;
while (my $net = CORE::getnetent) {

push @nets, $net;
}
while (my $net = shift @nets) {

$net = getnetbyname($net);
print 'Name : ', $net->name, "\n";
print 'Type : ', $net->addrtype, "\n";
print 'Aliases : ', join(', ', @{$net->aliases}), "\n";
print 'Addresses: ', $net->addr_list, "\n\n";

}

Networking with Perl

1009

Note that this script will happily return nothing at all if we don't have any configured networks, which is
quite possible. The field-based version of this script is:

#!/usr/bin/perl
getfldnet.pl
use warnings;
use strict;

use Net::netent qw(:FIELDS);
use Socket qw(inet_ntoa);

my @nets;
while (my $net = CORE::getnetent) {

push @nets, $net;
}

while (my $net = shift @nets) {
$net = getnetbyname($net);
print 'Name : ', $n_name, "\n";
print 'Type : ', $n_addrtype, "\n";
print 'Aliases : ', join(', ', @n_aliases), "\n";
print 'Addresses: ', $n_net, "\n\n";

}

In addition, Net::netent defines the getnet subroutine. This attempts to produce the correct
response from whatever is passed to it by calling either getnetbyname or getnetbyaddr
depending on the argument. Like gethost, it automatically handles strings that look like IP
addresses so we can say:

$net = gethost('192.168.1');
print $net->name; # or $n_name;

Network Services
All networked hosts have the ability to service network connections from other hosts in order to satisfy
various kinds of request; anything from a web page to an email transfer. These services are
distinguished by the port number that they respond to; web service (HTTP) is on port 80, FTP is on
port 21, SMTP (for email) on port 25, and so on.

Rather than hard-code a port number into applications that listen for network connections, we can
instead configure a service, assign it to a port number, and then have the application listen for
connections on the service port number. On UNIX systems, this association of service to port number
is done in the /etc/services file, a typical sample of which looks like this:

tcpmux 1/tcp # TCP port service multiplexer
ftp-data 20/tcp
ftp 21/tcp
telnet 23/tcp
smtp 25/tcp mail
time 37/tcp timserver
time 37/udp timserver
nameserver 42/tcp name # IEN 116
whois 43/tcp nicname
domain 53/tcp nameserver # name-domain server
domain 53/udp nameserver
finger 79/tcp
www 80/tcp http # World Wide Web HTTP
www 80/udp # Hypertext Transfer Protocol

Chapter 23

1010

A real services file contains a lot more than this, but this is an indicative sample. We can also define our
own services, though on a UNIX system they should be on at least port 1024 or higher, since many
ports lower than this are allocated as standard ports for standard services. Furthermore, only the
administrator has the privileges to bind to ports under 1024. For example:

myapp 4444/tcp myserver # My server's service port

Each entry consists of a primary service name, a port number and a network protocol, and an optional
list of aliases. The getservent function retrieves one of these in turn from the local host configuration,
starting from the first. For example, as we showed earlier in the general discussion:

#!/usr/bin/perl
listserv.pl
use warnings;
use strict;

while (my ($name, $aliases, $port, $proto) = getservent) {
print "$name\t$port/$proto\t$aliases\n";

}

Here name, aliases, and port are reasonably self-evident. The protocol is a numeric value describing
the protocol number – 6 for TCP, 7 for UDP, for example. We can handle this number and convert it to
and from a name with the protocol functions such as getprotoent and getprotobynumber, which
we will come to in a moment.

setservent resets the pointer for the next getservent to the start of the services file, if given a true
value. endservent closes the internal filehandle. These are similar to their network and host
counterparts, but are far less likely to open network connections for queries (DNS and NIS do not do
this, but NIS+ conceivably might).

Services are related to ports, not addresses, so the function getservbyport returns a list of parameters
for the service defined for the named port, or an empty list otherwise. Since ports may be assigned to
different services using different network protocols, we also need to supply the protocol we are
interested in:

$protocol = getprotobyname('tcp');

($name, $aliases, $port, $proto) = getservbyport(80, $protocol);
($name, $aliases, $port, $proto) = getservbyname('http', $protocol);

Or, in scalar context, for our user-defined service:

$name = getservbyport(4444, $protocol);
$port = getservbyname('myserver', $protocol);

The object-oriented override module for service queries is Net::servent, and we saw examples of
using it in both the object-oriented style and with imported variables earlier. Unlike the host and
network modules, Net::servent does override getservent, so we can iterate through services
without having to collect names or port numbers into a list first and then running through the result with
'getservbyname or getservbyport.

Networking with Perl

1011

In addition, Net::servent defines the getserv as a convenience subroutine that maps a passed
argument onto either getservbyproto or getservbyname depending on whether the passed
argument looks numeric or not.

Network Protocols
Protocols are defined in terms of numbers at the network level – 0 for IP, 6 for TCP, 17 for UDP and so
on. These are designated standards defined in RFCs. Locally, these numbers are associated with a user-
friendly name, so instead of referring to 'protocol number 6' we can say 'tcp' instead. For example, here
are a few entries from a typical /etc/protocols file on a UNIX server:

ip 0 IP # internet pseudo protocol number
icmp 1 ICMP # internet control message protocol
igmp 2 IGMP # Internet Group Management
ipencap 4 IP-ENCAP # IP encapsulated in IP (officially `IP')
tcp 6 TCP # transmission control protocol
udp 17 UDP # user datagram protocol

This file is not one we are expected ever to add to; although we can create a protocol if we want. We
can, however, interrogate it.

We can list the protocol definitions defined for the local system with the getprotoent, which works in
the familiar way, reading the first entry in the list and then each subsequent entry every time it is called.
In scalar context, it returns the protocol name:

$firstprotoname = getprotoent;

In list context it returns a list of values consisting of the primary name for the protocol, the port
number, and any aliases defined for it. This short script illustrates how we can use it to dump out all the
protocol details defined on the system:

#!/usr/bin/perl
listprot.pl
use warnings;
use strict;

while (my ($name, $aliases, $proto) = getprotoent) {
print "$proto $name ($aliases)\n";

}

endprotoent closes the internal filehandle, and setprotoent resets the pointer for the next entry to
be returned by getprotoent to the start of the file if given a true value, as usual. Also as usual, calling
getprotobyname and getprotobynumber also resets the pointer. As with their similarly named
brethren, getprotobyname and getprotobynumber return the port number and port name
respectively in a scalar context:

$proto_name = getprotobynumber($proto_number);
$proto_number = getprotobyname($proto_name);

In list context, they return the same values as getprotoent.

Chapter 23

1012

The object-oriented override module for protocols is Net::protoent, which overrides the
getprotoent, getprotobyname, and getprotobynumber functions with equivalents that return
objects. Here is the object-oriented way of listing protocol information using Net::protoent:

#!/usr/bin/perl
listobjproto.pl
use warnings;
use strict;

use Net::protoent;

while (my $protocol = getprotoent) {
print "Protocol: ", $protocol->proto, "\n";
print "Name : ", $protocol->name, "\n";
print "Aliases : ", join(', ', @{$protocol->aliases}), "\n\n";

}

As with the other Net:: modules that provide object-oriented wrappers for Perl's network information
functions, we can also import variables that automatically take on the values of the last call. The
equivalent field-based script is:

#!/usr/bin/perl
listfldproto.pl
use warnings;
use strict;

use Net::protoent qw(:FIELDS);

while (my $protocol = getprotoent) {
print "Protocol: ", $p_proto, "\n";
print "Name : ", $p_name, "\n";
print "Aliases : ", join(', ', @p_aliases), "\n\n";

}

In addition, Net::protoent defines the getproto subroutine as a convenient way to produce a valid
response from almost any passed value. Numeric values are passed to getprotobynumber; anything
else is presumed to be a name and passed to getprotobyname.

Determining the Local Hostname
Determining the local hostname for the system can sometimes be a tricky thing. Firstly, a system can
happily have more than one network interface and therefore more than one name. Secondly, the means
by which the hostname is defined varies wildly from one operating system to another.

If we just want to open a network connection to a service or application (such as a web server) running
on the local machine, we can often get away with simply connecting to the local loopback IP address.
However, this is not enough if we need to identify ourselves to the application at the other end.

On most UNIX platforms, we can execute the hostname command to find the name of the host, or
failing that name, uname -n, or alternatively we can use the gethostbyname function to try to identify
the true name of the local host from one of its aliases. The localhost alias approach should work on
any system that has it defined as the hostname for the loopback address in either DNS or the hosts file.
Be aware, though, that it may not always return a fully qualified name (hostname.domain).

Networking with Perl

1013

Because of this confusing mess of alternative approaches Perl comes with the Sys::Hostname module
which attempts all of these methods and more in turn, with different tests depending on the underlying
platform. It provides a single subroutine, hostname, which hides all of these mechanics from us and
allows us simply to say:

#!/usr/bin/perl
hostname.pl
use warnings;
use strict;

use Sys::Hostname;

print "We are: ", hostname, "\n";

This will try to produce the correct result on almost any platform (even, interestingly, Symbian's EPOC)
and is probably the best solution for both simplicity and portability.

Summary
In this chapter, we covered networking with Perl in some detail. We started by explaining how the
Internet protocols work, and how packets are routed from network to network. We then moved on to
explaining how to use the Socket and IO::Socket modules to create network clients and servers.
Specifically, we covered:

❑ Using Socket.pm; we covered how to create simple servers and clients that connect and
listen to specified sockets. We showed how to do this using TCP, UDP, and UNIX domain
sockets.

❑ Using IO::Socket we repeated every example used above in the simpler format used with
the IO::Socket module.

❑ Broadcasting with UDP, and how to send packets to multiple destinations simultaneously.

Later, we covered how to use forking, threading, and polling to create network servers that can deal
with multiple requests from clients. We had examples of each type of server included in the text, which
can be adapted to any other projects.

In the last section of this chapter, we looked at retrieving different kinds of network information, and
discussed the following topics:

❑ Getting host information, including a portable way to discover the local hostname, and how to
discover the IP address of a specified hostname, and to acquire any aliases it might have.

❑ Getting network information and discovering what host or IP address is part of what network,
and whether network names have been defined.

❑ We described how to discover what network services are available on our system.

❑ Finally, we saw how to examine the network protocols available to our system, even though it
is very rare to ever update this information

The examples throughout this chapter performed similar tasks in different ways (including writing the
applications in an object-oriented style).

TE
AM
FL
Y

Team-Fly®

Chapter 23

1014

Writing Portable Perl

Perl runs on every major operating system, and most of the minor ones, from VOS and Cray to Mac OS
and Windows, and, of course, UNIX. Most of the time, Perl code will work the same on any of these
platforms, because Perl is one of the most portable programming languages around.

It may be difficult to see how a language, or any program written in that language, could work the same
across all of these disparate platforms. They are often significantly different in, amongst other things,
memory management, file systems, and networking. The developers of Perl have done their best to hide
these differences, but it is still possible to write Perl code that runs properly on only one platform.

A portable Perl program may be portable only on all UNIX platforms (sometimes, depending on the
task, that in itself is difficult or impossible). Most often though, 'portable Perl' is code that will work on
all the platforms Perl runs on. Calling fork on Mac OS or symlink on MS Windows are two examples
of non-portable code, since the functionality for those functions does not exist on those platforms.
However, the great thing about Perl is that the overwhelming majority of Perl code is portable.

Remember, no code is universal – no matter what it is, it will always fail on some platform, somewhere.
However, where Perl does exist, most Perl code will run; or it can be made to run, if the author of the
code keeps some portability guidelines in mind.

Chapter 24

1016

Maybe We Shouldn't Bother?
Before we start with any programming task, we should give at least a moment of thought to the scope of
the project. Think about where the program will be used, who will use it, and what its lifetime might be.
If we are writing a ten line script for the cron daemon to export our CVS tree to our home directory on
our Linux box every night, it is probably a waste of time bothering to make sure the program will run
on Windows and Mac OS. It is probably even a waste of time to concentrate on making it portable to
multiple UNIX platforms, with multiple versions of cvs, and with other CVS repositories and users. It
is enough to know how to talk to our CVS server, get our CVS repository, and find our home directory.

However, a module placed on CPAN for parsing XML should run anywhere Perl runs, if possible.
That's a general task, not specific to any platform, because it may be used by any number of users in
any number of ways. It will save ourselves and our users time and headaches if portability is taken care
of at the beginning.

There are many choices between these extremes – it might be tempting to use Mac-specific file
specifications in a module for sending and receiving Apple events in Mac OS, but what happens when
someone wants to use the module on Perl under Mac OS X, which uses UNIX-style file specifications?
Sometimes it is best to write portably, even if we think it might not be necessary, if there's a chance that
someone might be using our code on a different platform.

Newlines
Perhaps the most common portability problem is improper use of the newline character. In most
operating systems, lines in files are terminated by a specific character sequence. This logical end of line
is called the newline, and is represented in Perl, and many other languages, by the symbolic
representation \n.

Many portability problems are rooted in the incorrect assumption that a newline is the same thing as a
line feed (octal 012, the LF in CRLF), which it isn't. The newline has no absolute, portable value; it is a
logical concept. Unfortunately, there are plenty of historical reasons why we have a line feed, a carriage
return (CR), and a newline. It is reasonable to suspect that if time travel were possible, going back to
standardize a single newline character would be a worthwhile goal, but alas, we are stuck with the
problem and need to deal with it.

UNIX defines newline as the octal number 012. Mac OS uses 015 (carriage return / CR). On Windows,
it is represented by two bytes together, 015 and 012 (CRLF). On Windows (and other DOS-like
platforms), those bytes are automatically translated to the single newline character when reading and
writing a file; this is done by Perl to aid portability. We can get the exact data in the file without
translation by calling the binmode operator on the file handle:

open $file, "< $binaryfile" or die "Can't open file: $!";
binmode($file);

Since binmode has no effect on other systems, it should be used for cross platform code that deals with
binary data (assuming it is known that the data will be binary). Note that because DOS-like platforms
will convert two characters into one, using binmode can break the use of seek and tell. We will
however, be safe using seek if we stick to seeking to locations we obtained from tell and no others.

Writing Portable Perl

1017

Some of this may be confusing. Here's a handy reference for the ASCII CR and LF characters.

Octal Hex Decimal Ctrl

LF (line feed) 012 x0A 10 \cJ

CR (carriage
return)

015 x0D 13 \cM

UNIX DOS/Windows Mac

\n LF CRLF CR

\r CR CR LF

Often, a file we want to read will be taken from another platform. If the file we are reading is native –
that is, uses the same newline as our operating system, then, we can use the common idiom:

while (<$file>) {
chomp;
... do something with the data in $_

}

However, that won't work if the file is not native. chomp, <>, and other operators assume that the file is
terminated with the native newline, so reading a DOS text file in UNIX will not work properly without
some extra work.

There are several ways to deal with this. We can preprocess the file before reading it, either by sucking
in all the data and doing a global fix, or by changing it on disk before reading it in. A simpler method
however, is to change the input record separator variable $/, which determines the definition for
newline, and defaults to the native newline. So, to read a DOS file on a UNIX system, we would code
something like this:

{
local $/ = "\015\012"; # temporary change
while (<$file>) {

read file with \015\012
chomp; # chomp \015\012
...

}
}
$/ reverts to previous value automatically

We may need to use something like this, if we are reading a file from a network file system, or portable
media (like CD-ROM), where the file is not native, or if we have a file transferred over the network
from one system to another without text translation.

A similar problem occurs when reading and writing sockets. Sockets are doubly troublesome because
different protocols use different newlines, and some will even allow for more than one. For example, the
HTTP protocol requires CRLF in headers, but the content itself may be terminated with any of CR, LF,
or CRLF, or may be binary data without newlines at all. Even though the HTTP specification requires
CRLF in the headers, an HTTP server might not be compliant, perhaps sending plain LF instead.

Chapter 24

1018

While Perl will automatically use the proper newline for the native platform when handling files, it will,
by default, use the UNIX values for sockets and most other forms of I/O. With sockets, it is best to be
specific, and use the absolute value instead of the symbolic representation.

print $socket "Hi there client!\015\012"; # right
print $socket "Hi there client!\r\n"; # wrong

To write to a socket, we need to know what newline is expected by the protocol. Reading from the
socket is, however, a little bit more flexible. Most protocols will use either LF or CRLF, so we can adjust
on the fly, converting either one to whatever our local newline happens to be. Since both end in LF, we
can set $/ to LF. Bear in mind, however, that the Mac uses CR as its newline character so a Mac-based
protocol may require that character. If we don't want to remember the absolute values, we can import
$CR, $LF, and $CRLF variables from the Socket module.

#!/usr/bin/perl
importabs.pl
use warnings;
use strict;

use Socket qw(:DEFAULT :crlf);

{
local $/ = $LF;
while (<$socket>) {

s/$CR?$LF/\n/; # not sure if CRLF or LF
...

}
}

Similarly, functions that return text data (like a function that fetches a web page), may translate newlines
before returning the data, so the caller doesn't have to worry about it.

sub fetch_page {

...
$html =~ s/$CR?$LF/\n/g;
return $html;

}

Files and File Systems
Most platforms structure files in a hierarchical fashion, and support the notion of a unique path to a file.
How that path is represented may differ significantly between operating systems. For example, UNIX is
one of the few operating systems with the concept of a single root directory. UNIX uses / as, path
separator, while DOS-like systems use \. Mac OS uses :. VOS uses the native pathname characters >,
<, and %. RISC OS Perl uses . for path separator and : for file systems and disk names. RISC OS, VOS,
and DOS-like Perl interpreters, can all emulate the use of /.

Writing Portable Perl

1019

Thankfully, Perl ships with the File::Spec module, which provides simple functions to create file
specifications for the current platform:

use File::Spec::Functions; # export functions
chdir(updir()); # change dir, up one dir
$file = catfile(curdir(), 'temp', 'file.txt');
open $fh, "< $file" or die $!;

On UNIX and DOS-like platforms, $file would be ./temp/file.txt. On Mac OS, it would be
:temp:file.txt. On VMS, it would be [.temp]file.txt. This is one of those cases where using
the module is often much better than trying to figure out all of the options for ourselves.

For writing file specifications portably, use File::Spec (see below for more on File::Spec). For
parsing file specs portably, use File::Basename:

use File::Basename;
($file, $dir) = fileparse($file);

If newlines are the most common portability problem, then non-portable file specifications are not far
behind. We should use these modules when we want to be portable and not hardcode paths if possible.
This is especially a problem in scripts like Makefile.PLs and test suites, which often assume / as a
path separator for subdirectories.

Even when on a single platform (if we can call UNIX a single platform), we must remember not to
count on the existence or the contents of particular system specific files or directories like
/etc/passwd, /etc/sendmail.cf, /etc/resolv.conf, or even /tmp/. For example,
/etc/passwd may exist but may not contain the encrypted passwords, because the system is using
some form of enhanced security; or it may not contain all the accounts, because the system is using NIS.
Instead it is better to use getpwnam and its relatives, to get information about a user. If code does need
to rely on such a file, we should include a description of the file and its format in the code's
documentation, then we make it easy for the user to override the default location of the file.

We must not have two files of the same name within different cases, like test.pl and Test.pl, as
many file systems are case insensitive. Whitespace in filenames is tolerated on most systems, but not all,
and many systems (DOS, and VMS for example.) cannot have more than one . in their filenames.
Others only allow a limited subset of characters in names. If filenames are limited to word characters (a-
z, A-Z, 0-9, _), plus . for the extension, this should be sufficient on most systems. We should also keep
them to the 8.3 convention for maximum portability, since some older platforms and file systems cannot
use files that do not fit the convention.

Likewise, when using the AutoSplit module, we should try to keep our functions to 8.3 naming and
case-insensitive conventions; or, at the least, make it so that the resulting files have a unique, case
insensitive, first eight characters. When a function is autosplit, it is saved to disk using the name of the
function, and if we have functions called getSomething and getSomethingElse, then the subroutine
names will be truncated and will therefore become indistinguishable.

If it is possible that a filename contains strange characters, it is safest to open it with sysopen instead of
open. The open function can translate characters like >, <, and |, which may be the wrong thing to do
(of course, it may also be the right thing). If we do use open, and the filename in a variable is unknown,
don't assume > won't be the first character of the filename. We must always use < explicitly to open a
file for reading, unless we want the user to be able to specify a pipe open.

Chapter 24

1020

open(FILE, $file) or die $!; # wrong
open(FILE, "< $file") or die $!; # right

Beyond path differences, there are many other fundamental differences between file systems. Some
don't support hard links (link) and symbolic links (symlink, readlink, lstat, -l). Some don't
support the access to, creation of, or changing of timestamps for files. Modifying timestamps is usually
supported, but may have a granularity of something other than one second (FAT uses two seconds).

Portable File Handling with 'File::Spec'
File::Spec provides a standard toolkit of filename conversion methods that work across all the
common platforms that support Perl. The actual implementation is provided by a submodule that
implements the details of file naming on the platform in question, as determined by the value of the
special variable $^O. On a UNIX system for example, File::Spec automatically uses the
File::Spec::UNIX module. The platforms supported by File::Spec are:

'$^O' 'File::Spec' module

MacOS File::Spec::Mac

os2 File::Spec::OS2

MSWin32 File::Spec::Win32

VMS File::Spec::VMS

All others File::Spec::UNIX

File::Spec provides two interfaces. The standard object interface imports no functions but provides
class methods, which we can call in the usual manner, for example:

use File::Spec;
...
$newpath = File::Spec->canonpath($path);

For translations, we can also make use of two File::Spec submodules at the same time. For example,
the following subroutine converts an arbitrary Macintosh pathname into a Windows one (see the table
below for an explanation of the methods used in this example):

use File::Spec::Win32;
use File::Spec::Mac;

sub mac2win {
$mac_path = shift;
@ary = File::Spec::Mac->splitpath $mac_path;
$ary[1] = File::Spec::Win32->catdir(File::Spec::Mac->splitdir $ary[1]);
return File::Spec::Win32->catpath @ary;

}

Writing Portable Perl

1021

Alternatively, we can use File::Spec's methods as functions if we use the File::Spec::Functions
module instead:

use File::Spec::Functions;
...
$newpath = canonpath($path);

Not all of File::Spec's methods are exported automatically by File::Spec::Functions. By
default, the functions that are exported are: canonpath, catdir, catfile, curdir,
file_name_is_absolute, no_upwards, path, rootdir, and updir. The functions that are exported
only if we ask for them are: abs2rel, catpath, devnull, rel2abs, splitpath, splitdir, tmpdir.

For example, to get the devnull and tmpdir functions we would use:

use File::Spec::Functions qw(devnull tmpdir);

File::Spec provides eighteen routines for the conversion and manipulation of filenames:

Subroutine Action

canonpath($path) Returns the filename cleaned up to remove redundant
elements such as multiple directory separators or
instances of the current directory (as returned by
curdir), and any trailing directory separator if present.
It does not resolve parent directory elements; we use
no_upwards for that. For example:

$canonical = canonpath($path);

catdir(@dirs) Concatenates a list of directory names to form a
directory path, using the directory separator of the
platform. For example:

$path = catdir(@directories);

catfile/join(@dirs, $file) Concatenates a list of directory names followed by a
filename to form a file path, using the directory
separator of the platform. On platforms where files and
directories are syntactically identical, (DOS/Windows
and UNIX both fall into this category), this produces
exactly the same result as catdir. join is an alias for
catfile. For example:

$filepath = join(@dirs, $filename);

curdir Returns the filename of the current directory, . on
DOS/Windows and UNIX systems.

devnull Returns the filename of the null device, which reads but
ignores any output sent to it. This is /dev/null under
UNIX.

Table continued on following page

Chapter 24

1022

Subroutine Action

rootdir Returns the filename of the root of the filesystem and the
prefix to filenames that makes them absolute rather than
relative. This is / on UNIX and \ on DOS/Windows. This
is also frequently the name of the directory separator.

tmpdir Returns the first writable directory found in the two-
element list $ENV{TMPDIR} and /tmp. Returns ' ' if
neither directory is writable.

updir Returns the filename for the parent directory, .. on many
platforms including DOS/Windows and UNIX.

no_upwards($path) Resolves the supplied filename to remove any parent
directory elements, as returned by updir, and returns it. It
does not resolve symbolic links. However, we can use
abs_path or realpath from the File::Path module for
that. It can be used in combination with canonpath above.
For example:

$path = no_upwards($path);

$path = canonpath($path);

case_tolerant Returns true if the case of filenames is not significant, or
false if it is.

file_name_is_absolute
($path)

Returns true if the filename is absolute, that is it starts with
an anchor to the root of the filesystem, as returned by
rootdir. For example:

$path = rel2abs($path) unless

file_name_is_absolute($path);

path Returns the value of the environment variable PATH –
identical to $ENV{'PATH'}.

splitpath($path, 0|1) Returns a three element list consisting of the volume,
directory path, and filename. On systems that do not
support the concept of a 'volume', such as UNIX, the first
element is always undef. For platforms like
DOS/Windows, it may be something like C: if the supplied
pathname is prefixed with that volume identifier. On
platforms that do not distinguish file names from directory
names, the third element is simply the last element of the
pathname, unless the second Boolean argument is true, or
the path ends in a trailing directory separator (e.g /), a
current directory name (e.g. .), or a parent directory name
(e.g. ..).

($vol, $dirs, $file) = splitpath($path, 1);

The directory path can be further split into individual
directories using splitdir.

Writing Portable Perl

1023

Subroutine Action

splitdir($dirs) Returns a list of directories split out from the supplied
directory path, as returned in the second element of the list
produced by splitpath. It uses the directory separator of
the platform. Note that splitdir requires directories only,
so we use splitpath to remove the volume and file
elements on platforms that support those concepts. For
example:

@dirs = splitdir($dirs);

Leading, trailing, and multiple directory separators will
create empty strings in the resulting list. Using canonpath
first will prevent all but the leading empty string.

catpath($vol, $dirs,
$file)

Combines a three element list containing a volume, directory
path, and filename, and returns a complete path. On
platforms that do not support the concept of volumes, the
first element is ignored. For example:

$path = catpath($vol, $dirs, $file);

The directory path can be generated by catdir or
alternatively determined from another pathname via
splitpath.

abs2rel($relativepath,
$base)

Takes an absolute pathname and generates a relative
pathname, relative to the base path supplied. If the base path
is not specified, it generates a pathname relative to the
current working directory as determined by cwd from the
File::Path module. The volume and filename of the
basepath are ignored. For example:

$relpath = abs2rel($abspath);

rel2abs($relativepath,
$base)

Combines a relative pathname and a base path and returns
an absolute pathname based on the combination of the two.
If the base path is not specified, the current working
directory, as determined by cwd from the File::Path
module, is used as the base path. The volume and filename of
the basepath are ignored. For example:

$abspath = rel2abs($relname);

Endianness and Number Width
Different types of CPUs store integers and floating-point numbers in different orders (called endianness)
and widths (32-bit and 64-bit being the most common today). Any time that binary data is read or
written with different architectures involved, these differences can become an issue. Most of the time
this occurs when writing files with pack. For instance, we can write four bytes representing the hex
number 0x12345678 (305419896 in decimal) to a file in this way:

print $file pack 'l', 0x12345678;

TE
AM
FL
Y

Team-Fly®

Chapter 24

1024

We can later read it back in like this:

$line = <$file>;
print unpack 'l', $line;

This prints the decimal value 305419896. However, if this is done on an Intel x86 computer and the file
is transferred over to a Motorola 68K computer, and we then read it in with the same program, we
would get 2018915346, because the order of the bytes is reversed; instead of 0x12345678 we get
0x78563412.

To avoid this problem in network connections, the pack and unpack functions have the n (16-bit) and
N (32-bit) formats for network order. These are guaranteed to be portable, as they are defined as
big-endian, regardless of hardware platform.

Differing widths can cause truncation, even between platforms of equal endianness. The platform of
shorter width loses the upper parts of the number. Most platforms can only count up to 2^(32-1). If we
have a 64-bit platform and store 2^42 with pack (using the q and Q formats), we will lose badly if we
try to unpack it on a 32-bit platform. Even seemingly innocuous pack formats like I, can be dependent
on the local C compiler's definitions, and may be nonportable. It's best to stick with n and N when
porting between platforms.

One can circumnavigate the problems of width and endianness by representing the data
unambiguously, like writing numbers out in plain text. Using a module like Data::Dumper or
Storable, can also ensure the correct values are maintained.

System Interaction
Perl provides a nice environment to program in, but also relies on the system, and is limited by it. There
are certain things we just shouldn't do in order to be portable:

❑ Don't delete or re-name open files. Some platforms won't allow it. untie or close the file
before doing anything to it

❑ Don't open the same file more than once at the same time for writing. Some platforms place a
mandatory lock on files opened for writing

❑ Don't count on filename globbing. Use opendir, readdir, and closedir instead. As of Perl
5.6, the default glob is implemented with the portable File::Glob module by default;
however, some people might not be using Perl 5.6, or might be using Perl built to use the old
style csh glob instead of File::Glob. It may be best to use the built-in directory functions

❑ Don't count on per-program environment variables or current directories, such as $TEMP or
$HOME

❑ Don't count on a specific environment variable existing in %ENV. Don't count on %ENV entries
being case sensitive, or even case preserving

❑ Don't count on user accounts, whether it is specific information about a user, or the existence
of users at all

❑ Don't count on signals or %SIG for anything

❑ Don't count on specific values of $!

Writing Portable Perl

1025

Platforms that rely primarily on a Graphical User Interface (GUI) for user interaction do not all provide
a command line. A program requiring a command line interface might not work everywhere. In most
cases this is probably for the user of the program to deal with, so don't stay up late worrying about it too
much. If a Mac developer wants to use our command line tool, they'll convert it to a droplet or rewrite
it, so it will be usable. Even platforms that do have a command line might not be able to execute
programs in the same way UNIX does, by putting the path to perl after #! on the first line and making
the file executable.

Inter-Process Communication (IPC)
Whereas system interaction involves a big list of things not to do to retain maximum portability, in
general, inter-process communication is something we just don't do at all. Don't directly access the
system in code, which is meant to be portable. That means, no system, exec, fork, pipe, ``, qx//,
open with a pipe, or any of the other things that makes being a Perl and UNIX hacker really fun (for
more on IPC see Chapter 22).

Commands that launch external processes are generally supported on most platforms (though many of
them do not support any type of forking). The problem with using them arises from where we invoke
them. External tools are often named differently on different platforms, they may not be available in the
same location, might accept different arguments, can behave differently, and often present their results
in a platform dependent way. Consequently, we should seldom depend on them to produce consistent
results. Then again, if we are calling netstat -a, we probably don't expect it to run on both UNIX
and CP/M.

Opening a pipe to sendmail is one especially common bit of Perl code:

open(my $mail, '|/usr/sbin/sendmail -t') or die "cannot fork sendmail: $!";

This is fine for systems programming when sendmail is known to be available, but it is not fine for
many non UNIX systems, and even some UNIX systems that may not have sendmail installed, or may
have it installed elsewhere. If a portable solution is needed, see the various distributions on CPAN that
deal with it. Mail::Mailer and Mail::Send in the MailTools distribution are commonly used and
provide several mailing methods including mail, sendmail, and direct SMTP (via Net::SMTP) if a
mail transfer agent is not available. Mail::Sendmail is a stand-alone module that provides simple,
platform independent mailing.

Note that the UNIX System V IPC (msg*, sem*, shm*) is not available even on all UNIX
platforms, so we should also try to avoid using those.

Instead of directly accessing the system, use a module if one is available, that may internally implement
the functionality with platform-specific code, but expose a common interface.

External Subroutines (XS)
XS, explored in Chapter 21, is a language used to create an extension interface between Perl and some
C library that we may wish to use with Perl. While XS code can usually be made to work with any
platform; dependent libraries, header files, etc., might not be readily available or portable, or the XS
code itself might be platform-specific, just as Perl code might be. If the libraries and headers are
portable, then it is normally reasonable to make sure the XS code is portable, too.

Chapter 24

1026

A different type of portability issue arises when writing XS code – availability of a C compiler on the
end user's system. Many Mac OS or Windows users might not have compilers, and those compilers will
sometimes be expensive, hard to obtain, hard to use, or all of the above; and the initial setup to get the
source working for the build may be prohibitive to many users. Furthermore, C brings with it its own
portability issues, and writing XS code will expose us to some of those. Writing purely in Perl is an
easier way to achieve portability.

Modules
In general, the standard modules, those included with the standard Perl distribution, work across
platforms. Notable exceptions are the platform specific modules (like ExtUtils::MM_VMS) and DBM
modules.

There is no one DBM module available on all platforms. SDBM_File and the others are generally
available on all UNIX and DOS like ports, but not in MacPerl, where only NBDM_File and DB_File
are available.

The good news is, that at least some DBM modules should be available, and AnyDBM_File will use
whichever module it can find. Of course, then the code needs to be fairly strict, dropping to the lowest
common denominator (for example, not exceeding 1K for each record, and not using exists on a hash
key) so that it will work with any DBM module.

One very useful module for achieving portability in programs is the POSIX module. It provides nearly
all the functions and identifiers found in the POSIX 1003.1 specification. Now, there is no guarantee
that all of the functions will work on a given platform. It depends on how well the platform has
implemented POSIX 1003.1. Most of it will work, however, and can provide a good way to achieve
portability.

Many of the modules on the CPAN are portable. However, many are not. Many of them could be
portable, but are not, simply because the author only had access to one platform. Sometimes the module
will have noted in its documentation what platforms it will work on, but one of the best places to look is
the CPAN Testers web site (http://testers.cpan.org/). CPAN Testers is a group of volunteers that tests
modules on CPAN and reports (usually PASS or FAIL) for the given module with a given distribution of
Perl on a given platform. This is useful for module authors, not just so that they can get help in making
the module as portable as possible, but also as a sanity check to make sure their module works even on
the platforms they intended it to work on.

The CPAN Testers results are cross-referenced on the CPAN Search site (http://search.cpan.org/), so
when we find a module on that site, we are told which platforms it has been tested on, and what the
results were. CPAN Search is a great tool in its own right, providing a central location for information
about the various module distributions on CPAN.

Time and Date
The system's notion of time of day and calendar date is controlled in widely different ways. We can't
assume the time zone is stored in $ENV{TZ}, and even if it is, we can't assume that we can control the
time zone through that variable.

Writing Portable Perl

1027

We shouldn't assume that the epoch starts at 00:00:00, January 1, 1970, because that is OS- and
implementation specific. It is better to store a date in an unambiguous representation. The ISO-8601
standard defines YYYY-MM-DD as the date format. A text representation (like 1979-07-12) can be
easily converted into an OS specific value using a module like Date::Parse. An array of values, such
as those returned by localtime, can be converted to an OS specific representation using
Time::Local. Be careful, however: converting between unambiguous representations of times and
dates can be very slow, so, if the calculations are internal to the program, then it is usually better to use
the native values.

When calculating specific times, such as for tests in time or date modules, it may be appropriate to
calculate an offset for the epoch.

require Time::Local;
$offset = Time::Local::timegm(0, 0, 0, 1, 0, 70);

The value for $offset in UNIX will be 0, but in Mac OS it will be some large number. $offset can
then be added to a UNIX time value to get what should be the proper value on any system:

$nativetime = $unixtime + $offset;

Character Sets and Character Encoding
We should assume little about character sets. We must assume nothing about numerical values (ord,
chr) of characters: the decimal value of a may be 97 in ASCII, but may be something entirely different
in another character set, like EBCDIC. We shouldn't assume that the alphabetic characters are encoded
contiguously (in the numeric sense). We shouldn't assume anything about the ordering of the characters.
The lowercase letters may come before or after the uppercase letters; the lowercase and uppercase may
be interlaced so that both a and A come before b; the accented and other international characters may
be interlaced so that ä comes before b.

Furthermore, it may be unreasonable to assume that a single character is one byte. In various character
sets, a character may constitute more than one byte. Unicode is becoming more prevalent, and its
characters also often occupy more than one byte, too. If Unicode text will be used, then we use the
UTF8 directive in Perl 5.6. With use utf8, regular expressions and many string functions will treat the
characters in Unicode text as characters instead of individual bytes.

@bytes = split //, "\x{263A}"; # 3 elements in @bytes
{

use utf8;
@chars = split //, "\x{263A}"; # 1 element in @char

}

Unicode handling in Perl 5.6 is still incomplete and subject to change in future revisions. See
Chapter 25 for more on Unicode.

Chapter 24

1028

Internationalization
If we may assume POSIX (a rather large assumption), we may read more about the POSIX locale
system from the perllocale and POSIX.pm documentation. The locale system at least attempts to
make things a little bit more portable, or at least more convenient and native-friendly for non english
users. The system affects character sets and encoding, regular expressions, sort order, date and time
formatting, and more. Simply adding use locale to the top of our program will make it respect the
behavior of the current locale, if set.

While the locale directive will do most of the work for us, one thing to keep especially in mind is that
when using regular expressions, we don't use [a-zA-Z] to match letters and [0-9] to match numerals;
instead, we use meta characters like \w and \d, or the POSIX character classes like [:alpha:] and
[:digit:]. Exactly what constitutes an alpha or a numeric changes depending on the locale, so we let
Perl do the work for us.

Internationalization is examined in Chapter 26.

System Resources
If our code is destined for systems with severely constrained (or missing) virtual memory systems, then
we want to be especially mindful of avoiding wasteful constructs such as:

@lines = <VERY_LARGE_FILE>; # bad

while (<FILE>) {$file .= $_} # sometimes bad

$file = join('', <FILE>); # better

The difference between the last two constructs may appear unintuitive to some people. The first
repeatedly grows a string, whereas the second allocates a large chunk of memory in one go. On some
systems, the second is more efficient that the first.

Security
Most multiuser platforms provide basic levels of security, usually implemented at the filesystem level.
Some, however, do not. Thus the notion of user ID, or home directory, or even the state of being
logged-in, may be unrecognizable on many platforms. If we write programs that are security-conscious,
it is usually best to know what type of system we will be running under so that we can write code
explicitly for that platform (or class of platforms).

Style
For those times when it is necessary to have platform specific code, consider keeping the platform
specific code in one place; this will make porting to other platforms easier. We might keep the platform-
specific code in its own module, or have a separate module for each platform, or in the base code, with
just different subroutines or code blocks for each case.

Writing Portable Perl

1029

We use the Config module and the special variable $^O to differentiate between platforms (as
described in 'Platforms' below), if necessary. However, we should probably only separate code based on
platform, if we know for sure that the different platforms have different requirements. For instance, the
File::Spec module loads another platform specific module depending on what platform is running, to
construct proper file specifications for that platform. Its code looks something like this:

%module =
(

MacOS => 'Mac',
MSWin32 => 'Win32',
os2 => 'OS2',
VMS => 'VMS'

);

$module = 'File::Spec::' . ($module{$^O} || 'Unix');
eval "require $module" or die $@;
@ISA = ($module);

In the above case, and in others, the choice is clear-cut: we know exactly what behavior a specific
platform will require, and select the code based on which platform is in use. However, sometimes we
don't know, or would be better off not guessing, which platforms support a given block of code. For
example, the MS Windows operating system does not support fork. However, Perl on Windows, as of
Perl 5.6, can emulate fork. So, if we had code like this:

die "Sorry, no fork! \n" if $^O eq 'MSWin32';

we would be excluding users of Perl 5.6 unnecessarily, while catching users of older versions of Perl. If a
specific function is required, we can check for the existence of that function by trying to execute it with
eval:

eval {fork()};
die $@ if $@ && $@ =~ /(?:not |un)implemented/;

There are problems with this method. The text returned by $@ may differ from platform to platform, or
even function to function on one platform. Furthermore, a function may not return unimplemented
until after it is processed, so if we don't give it the correct number of arguments, we can get a prototype
error. In addition, of course, we may not want to actually use the function to make sure it is there.
Therefore, we would need to pass it arguments that are acceptable to the prototype of the function, and
it will either do nothing, or execute in the way we want. So, if we want to use getpwuid to get a user
name from a user ID, and die if the function is unimplemented, we can try:

eval {getpwuid(0)}; # 'getpwuid' with argument triggers prototype error
die $@ if $@ && $@ =~ /(?:not |un)implemented/;
my $user = getpwuid($uid);

Or:

$user = eval {getpwuid($uid)};
die $@ if $@ && $@ =~ /(?:not |un)implemented/;

Chapter 24

1030

We might, of course, not wish to die if it is unimplemented, but we may wish to just ask for a user name
if $user is false. Of course, there are many reasons why it could be false. It could be that there is no
user for that user id, or that getpwuid is not implemented, or that there is some bug in the OS, or a
broken /etc/passwd file. We might not care why $user is false, we may only care about getting a
name, so if it is false, we just prompt for a user name:

$user = eval {getpwuid($uid)};
unless ($user) {

print 'What is the user name?';
chomp($user = <STDIN>);

}

We could extend this a bit further. Even though this code already works on UNIX, MS Windows, Mac
OS, and just about any other Perl platform, we might want to bring up a dialog box in Mac OS.

$user = eval {getpwuid($uid)} || query('What is the user name?');

sub query
{

$question = @_;
$answer;

if ($^O eq 'MacOS')
{

$answer = MacPerl::Ask($question);
}
else
{

print $question, ' ';
chomp($answer = <STDIN>);

}

return $answer;
}

To add code for a Windows dialog box, we just add another test, this time for $^O eq 'MSWin32', and
bring up a Windows dialog if it is true. Until then, Windows will just use the default. This is nice
because it is not only very portable, but it is easy to make future changes, because the code is well
encapsulated.

We must be careful not to depend on a specific output style for errors, such as when checking $! after a
system call or $@ after an eval. Some platforms expect a certain output format, and Perl on those
platforms may have been adjusted accordingly. Most specifically, we don't anchor a regular expression
when testing an error value, because the error might be wrapped by the system in some other text. For
example:

print $@ =~ /^Expected text/ ? 'OK' : 'Not OK'; # wrong
print $@ =~ /Expected text/ ? 'OK' : 'Not OK'; # right

We should be especially mindful to keep all of these issues in mind in the tests we supply with our
module or program. Module code may be fully portable, but its tests might not be. This often happens
when tests spawn off other processes or call external programs to aid in the testing, or when (as noted
above) the tests assume certain things about the file system and paths.

Writing Portable Perl

1031

Platforms
As of version 5.002, Perl is built with a $^O variable that indicates the operating system for which it was
built. This was implemented to help speed up code that would otherwise have to use the Config
module and get the value of $Config{osname}. Of course, to get more detailed information about the
system, looking into %Config is certainly recommended.

It might be useful for us to look at a platform's $^O or $Config{archname} value. This is often useful
for setting platform specific values. Below is an incomplete table of some of the more (or less) popular
platforms. Note that how $^O and $Config{archname} are determined is platform dependent, and in
some cases just hard-coded by the person who builds for that platform.

Operating System '$^O' '$Config{archname}'

AIX Aix aix

Amiga DOS amigaos m68k-amigos

BSD/OS bsdos i386-bsdos

Darwin darwin darwin

dgux dgux

AViiON-dgux

DYNIX/ptx dynixptx i386-dynixptx

FreeBSD freebsd freebsd-i386

HP-UX Hpux PA-RISC1.1

IRIX Irix irix

Linux Linux arm-linux

Linux linux i386-linux, i586-linux, i686-linux

Linux linux ppc-linux

Mac OS MacOS

MachTen PPC machten Powerpc-machten

MPE/iX mpeix PA-RISC1.1

MS-DOS dos

NeXT 3 next next-fat

NeXT 4 next OPENSTEP-Mach

openbsd openbsd i386-openbsd

OS/2 os2

Table continued on following page

Chapter 24

1032

Operating System '$^O' '$Config{archname}'

OS/390 os390 os390

OS400 os400 os400

OSF1 dec_osf alpha-dec_osf

PC-DOS dos

POSIX-BC posix-bc BS2000-posix-bc

reliantunix-n svr4 RM400-svr4

RISC OS riscos

SCO_SV sco_sv i386-sco_sv

SINIX-N svr4 RM400-svr4

sn4609 unicos CRAY_C90-unicos

sn6521 unicosmk t3e-unicosmk

sn9617 unicos

CRAY_J90-unicos

SunOS solaris i86pc-solaris

SunOS solaris sun4-solaris

SunOS4 sunos sun4-sunos

VM/ESA vmesa Vmesa

VMS VMS

VOS VOS

Windows 95 MSWin32 MSWin32-x86

Windows 98 MSWin32 MSWin32-x86

Windows NT MSWin32 MSWin32-x86, MSWin32-ALPHA, MSWin32-ppc

UNIX
Perl works on a bewildering variety of UNIX and UNIX-like platforms (for example, most of the files in
the hints directory in the source code kit). On most of these systems, the value of $^O is determined
either by lowercasing and stripping punctuation from the first field of the string returned by typing
uname -a (or a similar command) at the shell prompt, or by testing the file system for the presence of
uniquely named files such as a kernel or header file. Since the value of $Config{archname} may
depend on the hardware architecture, it can vary more than the value of $^O.

Writing Portable Perl

1033

DOS and Derivatives
Perl has long been ported to Intel-style microcomputers running under systems like PC-DOS, MS-DOS,
OS/2, and most Windows platforms. Users familiar with COMMAND.COM or CMD.EXE style shells should
be aware that there may be subtle differences in using \ or / as a path separator. System calls accept
either / or \ as the path separator; however, many command line utilities of DOS vintage treat / as the
option prefix, so may get confused by filenames containing /. Aside from calling any external programs,
/ will work just fine, and probably better, as it is more consistent with popular usage, and avoids the
problem of remembering what characters to escape in our filename strings, and what not to. So we
should stick with / unless we know that we need to use \.

The DOS FAT file system can only accommodate 8.3 filenames. FAT32, HPFS (OS/2), and NTFS (NT)
file systems can have longer filenames, and are case insensitive but case preserving. DOS also treats
several filenames as special, such as AUX, PRN, NUL, CON, COM1, LPT1, LPT2, etc. Unfortunately, these
filenames won't even work if we include an explicit directory prefix. It is best to avoid such filenames, if
we want our code to be portable to DOS and its derivatives. Unfortunately, it's hard to know what these
all are.

Users of these operating systems may also wish to make use of scripts such as pl2bat.bat, pl2cmd, or
the commercial Perl2Exe to put wrappers around scripts. ActiveState, the company that releases
ActivePerl, also wrote the Perl Package Manager, the system used primarily by Windows systems to get
Perl modules that we mentioned in Chapter 1 of this book. This includes prebuilt binaries of modules
that need a C compiler. See the documentation for PPM in ActivePerl, and download packages from
http://www.activestate.com/packages/.

Mac OS
Mac OS is in some ways the most problematic platform, since there is no native, built-in command line.
MacPerl, the version of Perl for Mac OS, does have several facilities for working around this limitation,
such as droplets and run-times.

For more information on how to do really cool stuff in MacPerl, check out the various MacPerl
mailing lists on http://www.macperl.org/, or the authoritative reference on MacPerl, MacPerl:
Power and Ease, from Prime Time Freeware.

In the MacPerl application, we can't run a program from the command line; programs that expect
@ARGV to be populated can be edited with something like the following, which brings up a dialog box
asking for the command line arguments.

if (!@ARGV)
{

@ARGV = split /\s+/, MacPerl::Ask('Arguments?');
}

A MacPerl script saved as a droplet will populate @ARGV with the full pathnames of the files dropped
onto the script, just as a Perl script in UNIX called with filenames passed to it will have those names
passed into @ARGV.

TE
AM
FL
Y

Team-Fly®

Chapter 24

1034

A command line interface does exist for Mac OS. Macintosh Programmer's Workshop (MPW) is
currently a free development environment from Apple. MacPerl was first introduced as an MPW tool,
and MPW can be used like a shell:

perl myscript.plx some arguments

MPW is dissimilar to a UNIX shell, having its own conventions, commands, and behaviors, but the
basic concepts are the same. ToolServer is another free application from Apple that provides access to
MPW tools from MPW and the MacPerl application, which allows MacPerl programs to use system,
backticks, and even piped open.

Any module requiring XS compilation is right out for most Mac users, because compilers on Mac OS
are not very common (and often expensive). Some XS modules that can work with MacPerl are built
and distributed in binary form on the CPAN, and are available from MacPerl Module Porters at
http://pudge.net/mmp/.

MacPerl is currently at version 5.004. MacPerl 5.6 is currently in development, but any features of Perl
from 5.004_01 and later, such as the new open my $file idiom, will not work under the current
version of MacPerl.

Directories in Mac OS are specified with any path including the volume, such as
volume:folder:file being absolute, and any others, including :file, being relative. Files are
stored in the directory in alphabetical order. Filenames are limited to 31 characters, and may include
any character except for Null and :, which is reserved as the path separator.

Mac OS has no concept of the UNIX flock, so flock is not implemented. Mac OS will put a
mandatory lock on any file opened for writing (in most cases), and we can do a Mac OS lock on a file
with the functions FSpSetFLock and FSpRstFLock in the Mac::Files module. Also, chmod(0444,
$file) and chmod(0666, $file) (implementations of the UNIX chmod command using octal
switches to specify the permissions) are mapped to FSpSetFLock and FSpRstFLock.

Mac OS is the proper name for the operating system, but the value in $^O is Mac OS. To determine
architecture, version, or whether Perl is running as the MacPerl application or the MPW tool, check:

($version) = $MacPerl::Version =~ /^(\S+)/;
$is_app = $MacPerl::Version =~ /App/;
$is_tool = $MacPerl::Version =~ /MPW/;
$is_ppc = $MacPerl::Architecture eq 'MacPPC';
$is_68k = $MacPerl::Architecture eq 'Mac68K';

Mac OS X, based on NeXT's OpenStep OS, can run MacPerl natively, under the Classic environment.
The new Carbon API, which provides much of the Classic API under the new environment, may be
able to run a slightly modified version of MacPerl in the new environment, if someone wants it in the
future. Mac OS X and its Open Source brother, Darwin, both run UNIX Perl natively. It is unclear
what the $^O value will be for Mac OS X, since it is not yet released, but only available as a beta, but in
the betas, it too, was darwin. The MacPerl toolbox modules (Mac::Files, Mac::Speech, etc.) may
be ported to Mac OS X at some point, so many Mac-specific scripts will work under either Mac OS or
Mac OS X.

Writing Portable Perl

1035

Other Perls
Perl has been ported to many platforms that do not fit into any of the categories listed above. Some,
such as AmigaOS, Atari MiNT, BeOS, HP MPE/iX, QNX, Plan 9, VOS, and VMS, have been well
integrated into the standard Perl source code kit. We may need to see the ports directory on CPAN for
information, and possibly binaries, for the likes of aos, Atari ST, LynxOS, RISCOS, Novell Netware,
Tandem Guardian, etc. Some of these OSes may fall under the UNIX category.

Function Implementations
Listed below are functions that are either completely unimplemented, or else have been implemented
differently on various platforms. Following each description will be, in parentheses, a list of platforms to
which the description applies. Larry Wall once noted that, 'Perl is, in intent, a cleaned up and
summarized version of that wonderful seminatural language known as UNIX.' Almost everything in
core Perl will work in UNIX, so we note only those places where some platform might differ from the
expected behavior for UNIX.

When in doubt, we can consult the platform-specific README files in the Perl source distribution, and
any other documentation resources accompanying a given port. We should be aware, moreover, that
even among UNIX-like systems there are variations.

Function Platform Variations

binmode(FILEHANDLE) Win32: The value returned by tell may be affected after the
call, and the file handle may be flushed.

Mac OS, RISC OS: Meaningless.

VMS: Reopens the file and restores the pointer; if function
fails, the underlying file handle may be closed, or the pointer
may be in a different position.

chmod(LIST) Win32: Only good for changing 'owner' read write access.
'Group', and 'other' bits are meaningless, as is setting the
executable bit.

Mac OS: Only limited meaning. Disabling/enabling write
permission is mapped to locking/unlocking the file.

RISC OS: Only good for changing 'owner' and 'other'
read/write access.

VOS: Access permissions are mapped onto VOS access control
list changes.

chown(LIST) Win32: Does nothing, but won't fail.

Mac OS, Plan9, RISC OS, VOS: Not implemented.

Table continued on following page

Chapter 24

1036

Function Platform Variations

chroot(FILENAME)

chroot(FILENAME)

Win32, Mac OS, VMS, Plan9, RISC OS, VOS, VM/ESA: Not
implemented.

crypt(PLAINTEXT, SALT) Win32: In rare cases, may not be available if library or source
was not provided when building Perl.

VOS: Not implemented.

dbmclose (HASH) VMS, Plan9, VOS: Not implemented.

dbmopen(HASH, DBNAME,
MODE)

VMS, Plan9, VOS: Not implemented.

dump(LABEL) Win32: Not implemented.

Mac OS, RISC OS: Not useful.

VMS: Invokes VMS debugger.

endpwent Win32, Mac OS, MPE/iX, VM/ESA: Not implemented.

exec(LIST) Mac OS: Not implemented.

VM/ESA: Implemented via Spawn.

Fcntl(FILEHANDLE,
FUNCTION, SCALAR)

Win32, VMS: Not implemented.

flock(FILEHANDLE,
OPERATION)

Win32: Available only on Windows NT (not on Windows 95).

Mac OS, VMS, RISC OS, VOS: Not implemented.

fork Win32, Mac OS, AmigaOS, RISC OS, VOS, VM/ESA: Not
implemented. As of Perl 5.6, however, the Win32 port does
have support for fork.

getlogin Mac OS, RISC OS: Not implemented.

getpgrp(PID) Win32, Mac OS, VMS, RISC OS, VOS: Not implemented.

getppid Win32, Mac OS, VMS, RISC OS: Not implemented.

getpriority(WHICH,
WHO)

Mac OS, Win32, VMS, RISC OS, VOS, VM/ESA: Not
implemented.

getpwnam(NAME) Win32, Mac OS: Not implemented.

RISC OS: Not useful.

getgrnam(NAME) Win32, Mac OS, VMS, RISC OS: Not implemented.

getnetbyname(NAME) Win32, Mac OS, Plan9: Not implemented.

getpwuid(UID) Win32, Mac OS: Not implemented.

RISC OS: Not useful.

Writing Portable Perl

1037

Function Platform Variations

getgrgid(GID) Win32, Mac OS, VMS, RISC OS: Not implemented.

getnetbyaddr(ADDR,
ADDRTYPE)

Win32, Mac OS, Plan9: Not implemented.

getprotobynumber(NUMBER) Mac OS: Not implemented.

getservbyport(PORT,
PROTO)

Mac OS: Not implemented.

getpwent Win32, Mac OS, VM/ESA: Not implemented.

getgrent Win32, Mac OS, VMS, VM/ESA: Not implemented.

gethostent Win32, Mac OS: Not implemented.

getnetent Win32, Mac OS, Plan9: Not implemented.

getprotoent Win32, Mac OS, Plan9: Not implemented.

getservent Win32, Plan9: Not implemented.

setpwent Win32, Mac OS, RISC OS, MPE/iX: Not implemented.

setgrent Win32, Mac OS, VMS, MPE/iX, RISC OS: Not
implemented.

sethostent(STAYOPEN) Win32, Mac OS, Plan9, RISC OS: Not implemented.

setnetent(STAYOPEN) Win32, Mac OS, Plan9, RISC OS: Not implemented.

setprotoent(STAYOPEN) Win32, Mac OS, Plan9, RISC OS: Not implemented.

setpgrp(PID, PGRP)

setpriority(WHICH, WHO,
PRIORITY)

Win32, Mac OS, VMS, RISC OS, VOS: Not implemented.

setservent(STAYOPEN) Win32, Plan9, RISC OS: Not implemented.

setsockopt(SOCKET, LEVEL,
OPTNAME, OPTVAL)

Mac OS, Plan9: Not implemented.

endpwent Win32, Mac OS, MPE/iX, VM/ESA: Not implemented.

endgrent Win32, Mac OS, MPE/iX, RISC OS, VM/ESA, VMS: Not
implemented.

endhostent Win32, Mac OS: Not implemented.

endnetent Win32, Mac OS, Plan9: Not implemented.

endprotoent Win32, Mac OS, Plan9: Not implemented.

endservent Win32, Plan9: Not implemented.

Table continued on following page

Chapter 24

1038

Function Platform Variations

getsockopt(SOCKET,
LEVEL, OPTNAME)

Mac OS, Plan9: Not implemented.

glob(EXPR)

glob

Win32: Features depend on external perlglob.exe or
perlglob.bat. May be overridden with something like
File::DosGlob, which is recommended.

Mac OS: Globbing built-in, but only * and ? meta characters
are supported.

RISC OS: Globbing built-in, but only * and ? meta characters
are supported. Globbing relies on operating system calls,
which may return filenames in any order. As most file systems
are case insensitive, even 'sorted' filenames will not be in case
sensitive order.

ioctl(FILEHANDLE,
FUNCTION, SCALAR)

Win32: Available only for socket handles, and it does what the
ioctlsocket call in the Winsock API does.

VMS: Not implemented.

RISC OS: Available only for socket handles.

kill(SIGNAL, LIST) Win32: Unlike UNIX platforms, kill(0, $pid) will actually
terminate the process.

Mac OS, RISC OS: Not implemented, hence not useful for
taint checking.

link(OLDFILE, NEWFILE) Win32: Hard links are implemented on Win32 (Windows NT
and Windows 2000) under NTFS only.

Mac OS, MPE/iX, VMS, RISC OS: Not implemented.

AmigaOS: Link count not updated because hard links are not
quite that hard (They are sort of halfway between hard and soft
links).

lstat(FILEHANDLE)

lstat(EXPR)

lstat

Win32: Return values may be bogus.

VMS, RISC OS: Not implemented.

msgctl(ID, CMD, ARG)

msgget(KEY, FLAGS)

msgsnd(ID, MSG, FLAGS)

msgrcv(ID, VAR, SIZE,
TYPE, FLAGS)

Win32, Mac OS, VMS, Plan9, RISC OS, VOS: Not
implemented.

open(FILEHANDLE, EXPR)

open(FILEHANDLE)

Win32, Mac OS, RISC OS: open to |- and -| are
unsupported.

Mac OS: The | variants are supported only if ToolServer is
installed.

Writing Portable Perl

1039

Function Platform Variations

pipe(READHANDLE,
WRITEHANDLE)

Mac OS: Not implemented.

MiNT: Very limited functionality.

readlink(EXPR)

readlink

Win32, VMS, RISC OS: Not implemented.

semctl(ID, SEMNUM,
CMD, ARG)

semget(KEY, NSEMS,
FLAGS)

semop(KEY, OPSTRING)

Win32, Mac OS, VMS, RISC OS, VOS: Not implemented.

shmctl(ID, CMD, ARG)

shmget(KEY, SIZE,
FLAGS)

shmread(ID, VAR, POS,
SIZE)

shmwrite(ID, STRING,
POS, SIZE)

Win32, Mac OS, VMS, RISC OS, VOS: Not implemented.

socketpair(SOCKET1,
SOCKET2, DOMAIN, TYPE,
PROTOCOL)

Mac OS, Win32, VMS, RISC OS, VOS, VM/ESA: Not
implemented.

stat(FILEHANDLE)

stat(EXPR)

stat

Win32: device and inode are not meaningful.

MacOS: mtime and atime are the same, and ctime is
creation time instead of inode change time.

VMS: device and inode are not necessarily reliable.

RISC OS: mtime, atime and ctime all return the last
modification time. Device and inode are not necessarily
reliable.

symlink(OLDFILE,
NEWFILE)

Win32, VMS, RISC OS: Not implemented.

syscall(LIST) Win32, Mac OS, VMS, RISC OS, VOS, VM/ESA: Not
implemented.

sysopen(FILEHANDLE,
FILENAME, MODE, PERMS)

Mac OS, OS/390, VM/ESA: The traditional 0, 1, and 2 modes
are implemented with different numeric values on some
systems. Though the flags exported by Fcntl (O_RDONLY,
O_WRONLY, O_RDWR) should work everywhere.

Table continued on following page

Chapter 24

1040

Function Platform Variations

system(LIST) Win32: As an optimization, may not call the command shell
specified in $ENV{PERL5SHELL}. system(1, @args)
spawns an external process and immediately returns its process
designator, without waiting for it to terminate. Return value
may be used subsequently in wait or waitpid.

Mac OS: Only implemented if ToolServer is installed.

RISC OS: There is no shell to process meta characters, and the
native standard is to pass a command line terminated by \n,
\r or \0 to the spawned program. Redirection, such as > foo,
is performed (if at all) by the runtime library of the spawned
program. system LIST will call the UNIX emulation library's
exec emulation, which attempts to provide emulation of the
stdin, stdout, stderr in force in the parent, providing the
child program uses a compatible version of the emulation
library. scalar will call the native command line direct and
no such emulation of a child UNIX program exists. Mileage
will vary.

MiNT: Far from being POSIX compliant. Because there may
be no underlying /bin/sh, system trying to work around the
problem by forking and execing the first token in its argument
string. Handles basic redirection (< or >) on its own behalf.

times Win32: 'cumulative' times will be bogus. On anything other
than Windows NT, 'system' time will be bogus, and 'user' time
is actually the time returned by the clock function in the C
runtime library.

Mac OS: Only the first entry returned is non zero.

RISC OS: Not useful.

truncate(FILEHANDLE,
LENGTH)

truncate(EXPR, LENGTH)

Win32: If a FILEHANDLE is supplied, it must be writable and
opened in append mode (use open(FH, '>filename')> or
sysopen(FH,...,O_APPEND|O_RDWR). If a filename is
supplied, it should not be held open elsewhere.

VMS: Not implemented.

VOS: Truncation to zero length only.

umask(EXPR)

umask

Returns undef where unavailable, as of version 5.005.

AmigaOS: umask works, but the correct permissions are set
only when the file is finally closed.

Writing Portable Perl

1041

Function Platform Variations

utime(LIST) Win32: May not behave as expected. Behavior depends on the
C runtime library's implementation of utime, and the file
system being used. The FAT file system typically does not
support an access time field, and it may limit timestamps to
a granularity of two seconds.

Mac OS, VMS, RISC OS: Only the modification time is
updated.

wait

waitpid(PID, FLAGS)

Win32: Can only be applied to process handles returned for
processes spawned using system(1, ...). Unless we are
using Perl 5.6 where there's support for fork.

Mac OS, VOS: Not implemented.

RISC OS: Not useful.

Summary
In this chapter, we looked at many portability issues that we should be aware of if we want to write
cross-platform programs. We have covered differences between various platforms in the way they
handle newlines, filenames and using the File::Spec module, endianness, system interaction, IPC,
XS, modules, time and date, character sets and character encoding, internationalization, system
resources, security, and style.

We have also explored Perl's support for particular platforms, namely UNIX, DOS, MS Windows, and
Mac. Finally, we looked at a number of Perl functions with peculiar implementations, which are not
implemented, or which are meaningless on non-UNIX platforms.

Chapter 24

1042

Unicode

Symbols are used to convey and to record meaning. We have been using them since time immemorial –
they have been the building blocks of communication, from the earliest inscriptions on cave walls to the
multitude of scripts that are used today. The language that the modern PC can deal with at the lowest
level has only two symbols, traditionally represented by us as zeros and ones. People in every culture
have programmed the computer to interact with them using their own set of symbols. Certain
combination of zeros and ones were invented to stand for letters of the alphabet, monetary units,
arithmetic symbols – things that made sense to humans.

Just as most microprocessors would like to see a language of fixed high and low voltages being spoken
on their data buses instead of some fancy noise, humans would like to see the computer respond to
them in their own native language. Things were fine until recently, when most of the people using
computers belonged to the English-speaking world, or had previously taught themselves English.

The Internet brought about a paradigm shift, with people and machines across cultures interacting with
each other. Half a decade ago, a company could not have had its web pages in multiple languages
rendered correctly on browsers all over the world. Due to the variety of ways in which information in
various languages could be stored, it was also difficult for a program to deal with multiple language
input. It used to be impossible to have an online document containing multiple scripts, for example, an
English newspaper containing a Japanese haiku or a quote from a speech in Russian. We are looking at
two problems here:

❑ We have many different ways of representing our symbols (character codes and encoding).

❑ We have many different sets of symbols (languages).

TE
AM
FL
Y

Team-Fly®

Chapter 25

1044

Whom Does It Affect?
This affects almost everyone involved with creating software to be used across language boundaries.
The world is a big place and most of it is still untouched by information technology. In addition, people
will prefer software that uses their native symbols and language – not someone else's! Even today, the
reaches of the Internet and the World Wide Web are not really utilized if the audience is limited only to
people who share a particular language – it does not make economic sense to people doing business
using various mechanisms running on computers and over networks. Therefore, by extension, it affects
the creators of those mechanisms.

What Are the Solutions?
These problems were recognized quite some time ago and now we have many solutions that have been
implemented and are evolving, most of them working together to make sure that data is usable by
everyone. We have technologies such as XML, locales and Unicode to help us internationalize our
applications and web pages. We don't have any magic fixes yet, but we are moving towards the solution.
What we are going to look at in this chapter is a solution to the first problem mentioned above, and how
Perl can help. We also take a look at a small example of how Perl can also help solve the second
problem using Unicode.

Characters and Unicode 101
There is a lot of confusion in this field since the terminology varies and definitions are not universally
accepted. Let us take a look at some of these. A set or a collection of distinct characters is called a
character repertoire. It is defined by giving a name for each character and a visible presentation as an
example. A sample of a character repertoire may look like:

Character Value

The English lowercase alphabet a. a

The English lowercase alphabet b. b

: :

The English upper case alphabet Z. Z

A table that establishes one-to-one correspondence between characters from a repertoire and a table of
non-negative integers is called a character code or a character set. The integer corresponding to a
character is also called its code position since it also serves as an index in the character set.

A sample character set may look like this (using decimal values):

The English lowercase alphabet y 121

The English lowercase alphabet z 122

The character { 123

The character | 124

Unicode

1045

The most well known character set so far has been the one defined by the ASCII standard. Many
character sets were developed later to cater for a growing variety of character repertoires with a growing
number of characters.

The character sets specified by the ISO 8859 family of standards extend the ASCII character set in
different ways for different cultures and their character repertoires. However, all of them are supersets
of ASCII in the sense that code positions 0-127 contain the same characters as in ASCII. Furthermore,
positions 128-159 are unused (reserved for control characters) and positions 160-255 are used differently
in different members of the ISO 8859 family. For example the ISO 8859-1 character set extends ASCII
to cover West European characters – a repertoire identified as 'Latin alphabet No. 1.' ISO 8859-2 does
the same for Central and East European characters – 'Latin alphabet No. 2,' and so on to ISO 8859-15.

Standard Name of alphabet Characterization

ISO 8859-1 Latin alphabet No. 1 'Western,' 'West European'

ISO 8859-2 Latin alphabet No. 2 'Central European,' 'East European'

ISO 8859-3 Latin alphabet No. 3 'South European;' 'Maltese and
Esperanto"

ISO 8859-4 Latin alphabet No. 4 'North European'

ISO 8859-5 Latin/Cyrillic alphabet (for Slavic languages)

ISO 8859-6 Latin/Arabic alphabet (for the Arabic language)

ISO 8859-7 Latin/Greek alphabet (for modern Greek)

ISO 8859-8 Latin/Hebrew alphabet (for Hebrew and Yiddish)

ISO 8859-9 Latin alphabet No. 5 'Turkish'

ISO 8859-10 Latin alphabet No. 6 'Nordic' (Sámi, Inuit, Icelandic)

ISO 8859-11 Latin/Thai alphabet (for the Thai language)

(Part 12 has not been defined)

ISO 8859-13 Latin alphabet No. 7 'Baltic Rim'

ISO 8859-14 Latin alphabet No. 8 'Celtic'

ISO 8859-15 Latin alphabet No. 9 An update to Latin1 with a few
modifications and the addition of the
Euro currency symbol. Nicknamed
Latin0

The Windows character set, more properly called Windows code page 1252, is similar to ISO 8859-1,
but uses positions 128-159 (reserved for control characters in ISO 8859-1) for printable characters.
MS-DOS had its own character sets called code pages. CP 437, the original American code page, and
CP 850, extended for the West European languages, have largely the same repertoire as ISO 8859-1 but
with characters in different code positions.

Various character sets may be found all over the world, such as ISCII in India, Big5 in Taiwan, and JIS
X 0208:1997 in Japan. Now back to our two problems. The first step towards solving the first problem
would be to have a single character set or a table that served all of the character repertoires in the
world. There have been two major efforts towards solving this problem.

Chapter 25

1046

The ISO 10646 project of the International Organization for Standardization (ISO, counter-intuitively)
defines the mother of all character sets – the Universal Character Set (UCS). The ISO 10646 standard
defines a 32-bit character set, with only the first 65534 positions assigned as of now. This subset of the
UCS is also known as the Basic Multilingual Plane, or Plane 0. It has enough character space to
encompass practically all known languages. This not only includes Latin, Greek, Arabic, Hebrew,
Armenian, Georgian, but also encompasses scripts such as Devanagari, Bengali, Gurumukhi, Gujarati,
Oriya, Tamil, Telugu, Kannada, Malayalam, Thai, Khmer, Lao, Runic, Cherokee, Sinhala, Katakana,
Hiragana, Hangul and Chinese, Japanese and Korean ideographs. The UCS also has a lot of space
outside the Basic Multilingual Plane for hieroglyphics and some selected artistic scripts such as Klingon,
Cirth, and Tengwar, which may be implemented in the future. This space in the UCS was reserved for
other 'planes' that could be switched by using escape sequences.

The other effort was the Unicode Project organized by a consortium of multilingual software
development houses. The Unicode Standard, published by the Unicode Consortium also has
information other than just the character sets, for example algorithms for handling bi-directional texts,
say, a mixture of Latin and Hebrew (Hebrew is written right to left). Around 1991, the ISO and the
Unicode Consortium agreed that it would make more sense to have one universal standard instead of
two different ones, and so now, the Unicode Standard defines a character repertoire and character set
corresponding to Plane 0 of the UCS, or the Basic Multilingual Plane. Unicode characters are
represented as U+xxxx where xxxx is the code position in hexadecimal. For example, the code for a
white smiley face is written as U+263A. That solved half of the first problem.

The other half is to do with the representation of those non-negative integers for storage and
transmission encoding. Data is usually composed of octets or bytes of 8 bits. For ASCII, 7 bits were
enough to represent a code position, for other larger character sets like those for the Chinese, Japanese
and Korean languages, or for the UCS, this is grossly insufficient. Therefore, we have many encoding
schemes using more than a byte to represent a character. Now, for Universal Character Set, the two
most obvious choices would be to use a fixed size of two or four bytes since any one of the 2^32
characters can be accommodated in 4 bytes, or 32 bits. These encoding schemes are known as UCS-2
and UCS-4 respectively. However there are problems associated with them. Most importantly, programs
expecting ASCII as input would fail even for plain (ASCII repertoire) text, since they have not been
designed to handle multi-byte encoding. Plain ASCII repertoire text would unnecessarily take up twice
or four times the space required. Furthermore, strings encoded in UCS-2 or UCS-4 may contain
characters like \, 0 or / having special significance in filenames in various operating systems. Therefore,
UCS-2 or UCS-4 would not work well as a universal encoding scheme.

Annex R of the ISO 10646-1 standard and RFC 2279 define a variable length encoding scheme called
UTF-8. In this scheme, a character from the ASCII repertoire (U+0000 to U+007F) looks like an ASCII
character encoded in a single byte (such as 0x00 to 0x7F). Any higher character is encoded as a
sequence of 2 to 6 bytes, according to a scheme where the first byte has the highest bit set and gives the
count for the number of bytes to follow for that character. More information about UTF-8 can be
acquired from http://www.ietf.org/rfc/rfc2279.txt.

Data in Perl
From Perl 5.6 onwards, strings are not treated as sequences of bytes but instead as sequences of
numbers in the range 0 to (2^32)-1, using an encoding scheme based on UTF-8. Perl may store a string
containing characters between 0x00 to 0x7F with fixed 8-bit encoding, but will promote it to UTF-8 if it
is involved in an operation with another UTF-8 encoded string. Therefore, it converts between UTF-8
and fixed 8 bit encoding wherever necessary. As a result, we should not rely upon the encoding used by
Perl internally. The whole idea of Unicode support in Perl is to spare us the burden of such details.

Unicode

1047

Unless told otherwise, a typical operator will deal with characters, or sequences of characters. We can
explicitly tell Perl to treat strings like byte sequences by surrounding the concerned operator with the
scope of a use bytes directive. We have to explicitly tell Perl to allow UTF-8 encoded characters
within literals and identifier strings by the use utf8 directive. Variable names could thus be in Hindi,
Thai, Japanese, one's own native language, or any of the many supported symbols. For example:

$������ = "Hello Unicode Chess Pieces";

If UTF-8 is in use, string literals in Unicode can be specified using the \x{} notation:

$string = "\x{48}\x{49}\x{263A}";

Note: use utf8 is a temporary device. Eventually it will be implicit when Unicode support is
completely transparent to the user.

However, even if we do not explicitly tell Perl anything about our strings, the operators will still treat
them correctly. That is, all operands with single byte encoded characters will remain so, until they get
involved in expressions or operations with anything having a wider encoding. Then, all programs that
expected 8 bit encoded ASCII and gave out 8 bit encoded ASCII, should still work as they did before.
If an ASCII encoded operand is involved in an operation with an UTF-8 encoded operand, the 8-bit
encoded operand is promoted to UTF-8.

Unicode and Regular Expressions
Perl 5.6 has Unicode support for regular expressions. So, how does one specify Unicode characters in a
regular expression? Unicode characters may be represented as \x{hex number here} so that
matching data with /\x{05D0}/ is the same as matching it with Hebrew letter �. In order to do this, we
need to use the use utf8 directive to tell Perl that it may encounter Unicode characters in a literal.
Also, even if the Unicode character lies between 0x80 and 0xFF, it must be enclosed in braces in order
to be recognized as Unicode; \x80 is not the same as the Unicode character \x{80}. However, unless
one writes poetry in hexadecimal, seeing many of those sprinkled throughout regular expressions will
not be a pretty sight. This is where the use charnames directive comes in handy. The name specified
for the character by the Unicode standard, enclosed within braces in a named character escape
sequence \N{}, may be used instead of the code itself. For example, if we wanted to match the
character for a white chess king \x{2654} we would use the following:

use utf8;
use charnames ":full"; # use Unicode with full names
$chess_piece = "Opponents move \N{WHITE CHESS KING}";
$chess_piece =~ /\N{WHITE CHESS KING}/; # this will match

Short names can also be used instead of full names:

use utf8;
use charnames ":full"; # use Unicode with full names
print " \N{CYRILLIC CAPITAL LETTER PSI} is a psi in Cyrillic \n";
use charnames ":short"; # use Unicode with short names
print " \N{Cyrillic:Psi} is also a capital psi in Cyrillic \n";

Chapter 25

1048

We can also restrict the language:

use utf8;
use charnames qw(cyrillic); # restricts charnames to the cyrillic script
print " \N{Psi} is also a capital psi in Cyrillic";

We can match characters based on Unicode character properties. A property is used as a shortcut for
character classes in regular expressions. The properties are usually of the form \p{IsPROPERTY} and
its complement \P{IsPROPERTY}. For example, we can use \p{IsCntrl} to match any character
belonging to the set of control characters, whereas \P{IsCntrl} matches any character belonging to
its complement set – any character that is not a control character is matched:

if ($var =~ /\p{IsCntrl}/) {print "control character found";}

The Unicode Consortium publishes data associated with these properties in machine-readable format.
This data is used to create the tables and files Perl uses in order to have properties that can be used as
character classes. There are certain standard Unicode properties where no character can belong to more
than one category.

A few examples of standard Unicode properties are:

❑ IsLu – An uppercase letter.

❑ IsNd – A decimal digit number.

❑ IsPd – A dash (punctuation character).

Perl also has certain composite properties implemented as combinations of basic standard Unicode
properties, other composite properties and other basic pattern elements.

For example:

❑ IsASCII – Equivalent to the character class [\x00-\x7f].

❑ IsSpace – Equivalent to the character class [\t\n\f\r\p{IsZ}] where \p{IsZ} is given
below.

❑ IsZ – Same as the set consisting of IsZl (line separator), IsZp (paragraph separator) and
IsZs (space separator).

Unicode block properties can be used to determine if a certain character belongs to a certain script, or
to test the range of a script. The block properties are of the form \p{InSCRIPTNAME}, its complement
being \P{InSCRIPTNAME}, where SCRIPTNAME may be replaced by Arabic, Armenian, Bopomofo and
so on. So we could write:

if ($var =~ /\P{InHebrew}) {warn "I only understand the Hebrew script!";}

A complete list of the properties available on our system can be found by exploring the contents of the
Unicode subdirectory, where the Perl library files are stored. To find out where these libraries are stored
we can issue this command at the prompt:

> perl -V

Unicode

1049

All the files corresponding to the InSCRIPTNAME properties can be found in
OUR_PERL_LIBPATH\unicode\In\.

We can have a look at the files that actually implement these properties. For example, let us look at one
such file, Devanagari.pl residing in this subdirectory:

!!!!!!! DO NOT EDIT THIS FILE !!!!!!!
This file is built by mktables.PL from e.g. Unicode.300.
Any changes made here will be lost!
return <<'END';
0900 097F
END

The second last line is important in the implementation. This file simply says return the range delimiters
(in hex) for the block that constitutes the Devanagari script.

Writing Our Own Character Property
If for some reason we need a character property that we cannot locate, it is possible for us to write our
own. We do this by writing a subroutine using the name of the property desired. In a manner similar to
that we saw in the file Devanagari.pl, we return a list of characters, or character ranges (in
hexadecimal), we want the property to match, one per line. Existing property names may also be used
instead of returning the ranges in hexadecimal. For example:

+utf8::InBasicLatin

would be the same as:

0000 007F

Now, if we want a property called InBasicLatinOrGreek (Greek and Latin, except that here we are
talking about the BasicLatin script and not the language) this is what must be done:

sub IsBasicLatinOrGreek {
return <<'END';
+utf8::InGreek
+utf8::InBasicLatin
END

}

For specifying a character that should not match a certain property, we prefix the property with a bang
(!) to signify negation, or use the - sign. So if we want a property to match a character that is not Greek,
say, we should create a subroutine called IsUnderstandable (assuming that we understand all other
scripts) as follows:

sub IsUnderstandable {
return <<'END';
!utf8::InGreek
END

}

Chapter 25

1050

Or using the alternative method:

sub IsUnderstandable {
return <<'END';
-utf8::InGreek
END

}

These scripts create a character property that matches any character that is not Greek to us (or anyone
who agrees to the Greek script as defined by the Unicode standard).

The tr operator now supports the conversion of Latin-1 to UTF-8 and vice versa:

tr/\x00-\xff//CU; # convert $_ from Latin-1 into Unicode
tr/\x00-\x{ff}//UC; # convert $_ from Unicode into Latin-1

Another question that could arise is how Perl decides whether to match data as bytes or as characters.
Well the answer is that if a regexp contains Unicode characters, then the string to be matched is treated
like a sequence of characters, otherwise it is treated as a sequence of bytes. This is done when the
pattern is compiled.

The use utf8 pragma may be used to tell the engine to match a Unicode character for a period (.) in
an expression. The \X metasymbol tells the engine to match a combining character sequence, consisting
of a base character followed by one or more mark characters (diacritical marks like the umlaut or a
cedilla).

We can force the engine to match a byte even in the middle of a UTF-8 string by using the \C escape
sequence, which matches any byte from values 0 to 255. Postponing the decision until runtime when the
matching happens is something that is in the 'to do' list for Perl as of 5.6. We are still waiting for support
for matching characters, if we get some in the string to be matched.

Bi-directional Scripts
Languages such as Arabic, Hebrew, Farsi, Urdu, and Yiddish are written from right to left. However,
embedded segments of text in other languages or numeric data, such as phone numbers, are written
from left to right.

Since it is possible to have segments of data written in different directions, the scripts of these languages
are called bi-directional (or bidi) scripts. For example:

HHHHHHHH HHHH HHHH phone 12345 HHHHHHHHHHHHHHHH
<------- <--- <--- ----> ----> <---------------

Here we have the Hebrew characters, H, written right to left and Latin characters and numerals written
left to right. The --> and <-- represent the directions of the text.

In these scripts, the data may be stored in two ways, either with characters in visual or physical order.
This means having the characters ordered as they are presented on the screen or with characters stored
in the logical order, in other words the order in which they are read and spoken.

Unicode

1051

Since it would be much easier to process data stored in the way it is read and spoken, the logical or
physical order is preferred. This would be clear after looking at the following, interesting exercise:

Try searching for a word in a string if it were stored in the order opposite to the order in which it is
spoken!

Now try the same thing with the following sentence:

!nekops si ti hcihw ni redro eht ot etisoppo redro eht ni derots erew ti fi gnirts a ni drow a rof
gnihcraes yrT

The Unicode standard specifies an algorithm called the bidi algorithm, according to which the
rendering process is responsible for switching from the logical order of the characters, to the visual
order for displaying the glyphs.

Perl provides character properties that classify characters based on their bidi properties. A complete list
of bidi properties on our system can be determined by looking at the files in
OUR_PERL_LIBPATH\unicode\Is\ and so the property names corresponding to them are IsBidiAN,
IsBidiB, IsBidiCS, and so on. People who perform bi-directional rendering can use these character
properties for things such as determining whether a character is to be rendered left to right or right to
left.

Rendering bidi
There are a few other things that need to be known in order to understand how rendering of the bidi
scripts is handled. A detailed description of the bidi algorithm is available in an annex to the Unicode
standard, called Technical Report #9 (available from http://www.unicode.org/).

This report defines a few special codes, called Directional Formatting Codes, to associate segments of
text with the directions in which they should be rendered. These codes affect only the directional
properties of characters, and, thus, should be ignored for all other processing or analysis of the text
except rendering for display.

Some of the basic codes and what they mean are as follows:

❑ LRE (left to right embedding) – The following text is embedded left to right.

❑ RLE (right to left embedding) – The following text is embedded right to left.

❑ RLO (right to left override) – Force following characters to be right to left.

❑ LRO (left to right override) – Force following characters to be left to right.

❑ PDF (pop directional format) – Restore the direction to what it was before the last LRE, RLE,
RLO, LRO. The word pop is used since the bidi algorithm requires the usage of a stack where
Directional Formatting Codes are pushed as they are encountered.

An easy way to embed right to left text within, say, English text, is to enclose the text between an RLE
code and a PDF code:

eeeee eeeeee eeeee RLE RIGHT-TO-LEFT-TEXT PDF eeeeee eeeeeee eee eee

Chapter 25

1052

There are some other implicit formatting codes – implicit in the sense that they do not result in the
creation of a directional boundary. This will be clear with the help of a simple example.

For the purposes of this example, assume that all characters shown in UPPER CASE are in the Arabic
script.

Suppose that a word processor stores a sentence in the logical order, typed in as follows:

"WELCOME TO THE DESERT!", said the camel, in Arabic, to the world.

In the absence of any formatting codes, implicit bidi re-ordering would render it thus:

"TRESED EHT OT EMOCLEW!", said the camel, in Arabic, to the world.

Note that the exclamation mark was not treated as a part of the Arabic sentence. To rectify this, the
word processor could have stored it within an explicitly created directional boundary as follows:

"<RLE>WELCOME TO THE DESERT!<PDF>", said the camel, in Arabic, to the world.

This would have been rendered as we wanted it:

"!TRESED EHT OT EMOCLEW", said the camel, in Arabic, to the world.

Now, the creation of an explicit directional boundary (and the stack pushing and popping that goes with
it) could have been avoided by adding an implicit formatting code (RLM – right to left directional mark)
after the exclamation mark. Then the sentence is stored as follows:

"WELCOME TO THE DESERT!<RLM>", said the camel, in Arabic, to the world.

This would also have been rendered as desired:

"!TRESED EHT OT EMOCLEW", said the camel, in Arabic, to the world.

Every Unicode character has been assigned a Bi-directional Character Type that determines one or
more of the following:

❑ How it is to be rendered (directly important in the absence of any explicit directional
formatting codes).

❑ If its directional properties are affected by that of the adjacent characters (in other words if
they belong to the weaker bidi character types). Examples include plus sign, minus sign,
degree, currency symbols, colon, comma, full stop, numerals, and so on.

❑ Whether it has anything to do with direction or not – if it is a neutral character. Examples
include paragraph separator, tab, line separator, form feed, general punctuation, space, and
so on.

There are various embedding levels that specify how deeply the associated text has been embedded. For
example, consider the following sentence:

This sentence in Latin script has a "QUOTE IN ARABIC SCRIPT" embedded within it.

Unicode

1053

The text outside the quotes has an embedding level of 0, whereas the text within the quotes (shown in
ALL CAPITALS and assumed to be in the Arabic script) has an embedding level of 1.

Each level has a default direction called the embedding direction. This direction is L (left to right) if the
level number is even and R (right to left) if the level number is odd.

Every paragraph has a default embedding level, and thus a default direction associated with it. This is
also called the base direction of the paragraph. For example:

A paragraph with a beginning like this in the Latin script would have a default
embedding level as Level 0, and hence its base direction would be left to right.

What the bidi Algorithm Does
The bidi algorithm uses all these formatting codes and embedding levels for analyzing text to decide
how it should be rendered. Here is briefly how it goes about doing it:

❑ It breaks up the text into paragraphs by locating the paragraph separators. This is necessary
because all the directional formatting codes are only effective within a paragraph.
Furthermore this is where the base direction is set. The rest of the algorithm treats the text on
a paragraph-by-paragraph basis.

❑ The directional character types and the explicit formatting codes are used to resolve all the
levels of embedding in the text.

❑ The text is then broken up into lines, and the characters are re-ordered on a line-by-line basis
for rendering on the screen.

Perl and bidi
Since Perl is a language frequently used for text processing, it is natural that Perl should have bidi
capabilities. We have an implementation of the bidi algorithm on Linux that can be used by Perl.

We require a C library named FriBidi, which is basically a free implementation of the bidi algorithm,
written by Dov Grobgeld. A Perl module has also been written by the same author, acting as an
interface to the C library and is available as FriBidi-0.03.tar.gz from
http://imagic.weizmann.ac.il/~dov/freesw/FriBidi.

The FriBidi module enables us to do the following:

❑ Convert an ISO 8859-8 string to a FriBidi Unicode string:

iso8859_8_to_unicode($string);

❑ Perform a logical to visual transformation. In other words, run the string obtained above
through the bidi algorithm:

log2vis($UniString, $optionalBaseDirection);

This calculates the base direction if not passed as the second argument, returns the re-ordered
string in scalar context, and additionally returns the base direction as the second element of
the list in an array context.

TE
AM
FL
Y

Team-Fly®

Chapter 25

1054

❑ Convert the string obtained above to an ISO 8859-8 character set:

unicode_to_iso8859_8($toDisplay);

This makes sure that it is in a 'ready-to-display' format, assuming the terminal can display
ISO 8859-8 characters (such as xterm).

❑ Translate a string from a FriBidi Unicode string to capRTL and vice versa:

caprtl_to_unicode($capRTLString);

unicode_to_caprtl($fribidiString);

The capRTL format is where the CAPITAL LETTERS are mapped as having a strong right to
left character property (RTL). This format is frequently used for illustrating bidi properties on
displays with limited ability, such as ASCII-only displays.

The following is a small example to demonstrate FriBidi's capabilities.

First, we create a small file with the following text, named bidisample:

THUS, SAID THE CAMEL TO THE MEN, "...there is more than one way to do it."
AND THE MEN REPLIED "...now we see what you mean by bidi",
RISING WITH CONTENTMENT WRIT ON THEIR FACES.

This is the code to render the above file in bidi fashion:

#!/usr/bin/perl
bidirender.pl
use warnings;
use strict;

use FriBidi;

my ($uniStr, $visStr, $outStr);

open (BIDISAMPLE,"bidisample");
while(<BIDISAMPLE>){

chop; # remove line separator
$uniStr = caprtl_to_unicode ($_); # convert line to FriBidi string

$visStr = log2vis ($uniStr); # run it through the bidi algorithm
$outStr = unicode_to_caprtl ($visStr); # convert it back to format

that can be displayed on
usual ASCII terminal

print $outStr,"\n";
}

> perl bidirender.pl
"theres more than one way to do it..." ,NEM EHT OT LEMAC EHT DIAS SUHT
,"now we see what you mean by bidi..." DEILPER NEM EHT DNA
.SECAF RIEHT NO TIRW TNEMTNETNOC HTIW GNISIR

Unicode

1055

Perl, I18n and Unicode
Now let us take a brief look at a solution to the problem of language barriers. A more extensive view of
internationalization can be found in Chapter 26. Unicode helps us out in this matter, by providing a
uniform way of representing all possible characters of all the living languages in this world.

We are about to see how easy it is to enable people all over the world to understand what we are saying
in their own language. This example may be tried out by anyone with a day or two of Perl experience.
Although it is in no way complete, with no error checking and pretense of handling any real-world
complexity, it demonstrates the ease with which Perl handles Unicode. Let us imagine the following
scenario:

An airport wants to have information kiosks at various locations outside the arrival lounge for foreign
tourists. They need the information to be displayed in Arabic, Japanese, Russian, Greek, English,
Spanish, Portuguese, and a whole host of other languages. They would like the kiosks to enable the user
to view information about the city, events, weather, flight schedule, sight-seeing tours, and also be able
to make and confirm reservations in affiliated hotels.

Our task here is obviously to create a Perl program that is able to handle Unicode and, therefore, to
an extent, solve this problem. The first thing we need to do is create a template HTML file containing
a few HTML tags, but with the text replaced by text 'markers' – M1, M2, M3, and so on. We one file
for each language, in the following format (obviously, all the files should contain Unicode text encoded
in UTF-8):

M1:charset "string corresponding to charset"
M2:title "string corresponding to title"
M3:heading "string corresponding to heading"
M4:text "text string"

To put the task in another way, we need to write a program that takes in the language name as the input
and accordingly generates a file called outfile.html by filling in the template file with the strings in
the language requested. The outputted file should be UTF-8 encoded Unicode.

This involves a few things such as installing Unicode fonts, installing a Unicode editor, creating
template HTML files, writing scripts, and so on. Let us look at these step-by-step.

Installing Unicode Fonts
For UNIX with the X Window System and Netscape Navigator, information regarding Unicode
fonts for X11 in general can be found on http://www.cl.cam.ac.uk/~mgk25/ucs-fonts.html. The latest
version of the UCS fonts package is available from http://www.cl.cam.ac.uk/~mgk25/download/ucs-
fonts.tar.gz.

For Windows with IE 5.5, Unicode fonts can be selected during installation or can be downloaded from
http://www.microsoft.com/typography/multilang/default.htm. Another good place for links to fonts is
http://www.ccss.de/slovo/unifonts.htm.

Installing a Unicode Editor
For UNIX with the X Window System Yudit is a good choice of an editor that supports UTF-8.
Available from http://www.yudit.org/.

For Windows 95 and 98 Sharmahd Computing's UniPad is a good editor, available from
http://www.sharmahd.com/unipad/. For Windows NT and 2000, Notepad is able to handle Unicode.

Chapter 25

1056

Creating the HTML Template
Now we can go about creating the template HTML files and the string resource files. The next script is
simply an HTML template, called templateLeft.html that we will use with our program:

<html>
<head>
<meta http-equiv="Content-Type" Content="text/html" Charset=M1:charset>
<title>M2:title</title>
</head>
<body>
<h1>M3:heading</h1><hr>
<p>M4:text</p>
</body>
</html>

Note that this is intuitively correct for languages written from left to right but for languages written the
other way, we need a modified template to follow suit. So for languages such as Arabic, we can simply
right-justify the displayed text using the ALIGN attribute and setting its value to RIGHT. This should be
done for all text in the body of the document to be displayed in the correct direction, that is from right
to left. This is the template templateRight.html that we will use with right-to-left languages:

<html>
<head>
<meta http-equiv="Content-Type" Content="text/html" Charset=M1:charset>
<title>M2:title</title>
</head>
<body>
<h1 ALIGN=RIGHT>M3:heading</h1><hr>
<p ALIGN=RIGHT>M4:text</p>
</body>
</html>

This next image is the sample string resource file for the English language using UniPad:

Unicode

1057

The following image is a screenshot of a sample string file for the Arabic language. Note the rendering
of Arabic text from left to right:

Processing the Resource Files
The fourth stage in our solution to the problem is creating the Perl script. This script will process the
resource files it is given and generate the localized pages:

#!/usr/bin/perl
Xlate.pl
use warnings;
use strict;

my ($langname,$filename, $marker, $mark, $value, $wholefile, $thisval, $template,
%valueof);

print "Enter the language for the output html file: \n";
$langname = lc<>; # get language name and turn it into lowecase
chomp $langname;

$filename = $langname . ".str"; # generate filename from language name
open(LANGFILE, "$filename");

#read in the markers & values in a hash
while(<LANGFILE>) {

chomp($_);
($marker, $value) = split("\t", $_);
$valueof{$marker} = $value;

}
close(LANGFILE);
use the correct template
if ($langname =~ /arabic|hebrew/) {
$template = 'templateRight.html';
} else {$template = 'templateLeft.html'}

open(TMPLT,$template);
open(OUTFILE, ">$langname.html");

$wholefile=join('', <TMPLT>); # slurp entire file into a string

Chapter 25

1058

close TMPLT;

foreach $mark (keys %valueof) {
$thisval = $valueof{$mark}; # get the value related to the marker
$wholefile =~ s/$mark/$thisval/g; # do the replacement

}

print OUTFILE $wholefile; # write out complete langname.html file
print "output written to $langname.html \n";
close OUTFILE;

This is the big surprise – the script looks too simple. In fact, no extra processing is required to handle
Unicode.

Running the Script
Now we can execute the code in the usual way and provide the language required:

> perl Xlate.pl
Enter the language for the output html file:
ENGLISH
output written to english.html
> perl Xlate.pl
Enter the language for the output html file:
Arabic
output written to arabic.html

The Output Files
After running the script and having it produce the *.html files, we can open them in a browser and see
what has been written.

The following is a screenshot of the english.html file generated by the script:

Unicode

1059

Next, is the arabic.html file generated by the script. Note the direction of Arabic script as rendered
by the browser:

There are more examples of the same phrase written in different languages at
http://www.trigeminal.com/samples/provincial.html, thanks to Michael Kaplan. A few more such sites
are http://www.columbia.edu/kermit/utf8.html (hosted by the Kermit Project),
http://www.unicode.org/unicode/standard/WhatIsUnicode.html (hosted by the Unicode Consortium)
and http://hcs.harvard.edu/~igp/glass.html (hosted by the IGP).

This simple method of replacing text markers is still widely used. However, localizing a large web site
takes much more than just being able to handle Unicode strings. Things such as cultural preferences,
date format, currency (which are covered in Chapter 26) need to be taken into consideration. This
means we should probably turn to using methods such as HTML::Template, HTML::Mason,
HTML::Embperl or maybe something like XML::Parser in order to create an industrial strength
multilingual site.

Work in Progress
There are still a few things about Unicode support in Perl that are under development. For instance, it is
not possible right now to determine if an arbitrary piece of data is UTF-8 encoded or not. We cannot
force the encoding to be used when performing I/O to anything other than UTF-8, and will have a
problem if the pattern during a match does not contain Unicode, but the string to be matched at
runtime does. Also the use utf8 pragma is on its way out. In order to follow the current state of
Unicode support in Perl, one can join the Perl-unicode mailing list by sending a blank message to
majordomo@perl.org with a subject line saying subscribe perl-unicode.

Chapter 25

1060

Summary
All said and done, we should not need to worry ourselves about the support of Unicode within Perl
unless we really have to. All code we create will work just as well as it did before Unicode support came
on the scene. So we only need to use it when dealing with foreign scripts for example, but more on
using Perl around the world in Chapter 26.

In this chapter we have looked at the details concerning the use of Perl with non-standard characters
such as symbols or some foreign writings. We began with the problems we face as Perl is used across the
globe and then we looked at what can be done to provide solutions. As a summary, we have:

❑ Seen how people have tackled the issue of providing an international coding system.

❑ Looked at how Unicode can be used in regular expressions and tried our hand at writing our
own character property.

❑ Demonstrated how Perl can be used to deal with texts in languages that are written from right
to left as opposed to left to right such as English.

❑ Provided a real world example of how we can deal with language barriers across the world.

Unicode

1061

Chapter 25

1062

Locale and Internationalization

Not everybody understands English, and not everybody expresses dates in the standard US format for
example, 2/20/01. Instead, people worldwide speak hundreds of different languages and express
themselves in almost as many alphabets. Furthermore, even if they do speak the same language, they
may have different ways of expressing dates, times, and so on. This chapter aims to provide us with the
tools to write Perl programs in many different languages, and to see the kinds of problems we may
encounter along the way.

We will take a look at the kinds of ways we can develop a multilingual application in Perl, be it for a
web site or for something entirely different. Going multilingual does not only mean expressing messages
in different languages, but also adapting the minor details of our site, for instance, to obey the
conventions of other cultures. To use the example mentioned above, it means that we must change the
presentation of a date or time. Catering for other languages will always be a good thing to do, attracting
more visitors to our website.

As an example, we may be surprised with the results if we translated a personal home page from
Spanish into German. Its popularity and number of hits would rise rapidly, and visitors will be
especially surprised at how the page may be instantly translated into German – if someone in Germany
accessed it. The same goes for all multilingual websites: the site does its best to guess the country of
origin of the user, and show messages accordingly. For instance, if we connect to Google from a Spanish
domain (.es), for example melmac.ugr.es we will immediately get the URL
http://www.google.com/intl/es/, which is in Spanish. This is a neat trick that deduces the location from
the Top-Level Domain (TLD) of our machine, and it will score points with the Spanish-speaking
population.

However, localization is not as easy as showing two different pages depending on where the client
comes from. It is also a matter of knowing the language that the user, or more correctly, the user's
application's client, is immersed in. The site will then show information in such a way that the client,
and therefore the user, can understand it. For example, a quantity such as 3'5 will not mean much to an
English person, but it means 3.5 to a Spaniard. The application must be aware of its cultural 'location',
and act accordingly.

TE
AM
FL
Y

Team-Fly®

Chapter 26

1064

If we live in a country whose native language is not English, undergoing this process is a must. We will
need to use it for undertaking tasks as simple as alphabetical sorting, showing quantities, or matching
regular expressions. Our program will not work correctly, at least from the point of view of the user, if
we do not use the right locale settings.

The good news is that many people have already thought about this problem in depth. There are
several frameworks that make writing multilingual and localized applications easier. It will come as even
better news to readers of this book, that Perl has excellent support for this, as we shall soon see.

In this chapter, we will see several ways of creating Perl applications for a multilingual environment,
from simple tricks such as storing messages in different languages, and sorting according to local uses, to
recognizing a foreign language or conjugating foreign verbs. At this early stage it is important to note
that most of the programs presented in this chapter will not work in non-POSIX machines, including
Win9x, and Macs.

Why Go Locale?
Suppose we want to create a Spanish web site to show the number of firms investing in a particular
venture. Users should be able to access the site and find out the names of the primary investors, and the
site should be designed accordingly. One basic hurdle to overcome would be the need to show a list of
those firms in alphabetical order.

First, we need to create a plain text file in which we can list the firms. Note that these are in no
alphabetical order. We call this file firms.txt:

Chilindrina
Ántico
Cflab.org
Cantamornings
Cántaliping
Andalia
Zinzun.com

We can use a simple Perl command line that prints a sorted list on the screen (note that on Windows the
special characters are not displayed properly):

> perl -e 'print sort <>;' firms.txt
Andalia
Cantamornings
Cflab.org
Chilindrina
Cántaliping
Zinzun.com
Ántico

This is not ideal though. In Spanish, 'Ch' is used as a stand-alone letter, coming after 'C' in the alphabet
(although admittedly, this is slowly being phased out). The letters 'A' and 'Á' are in fact the same, the
only difference being that the latter has an acute accent, so they should go together. To help solve this
problem, we can find a useful tutorial included with Perl itself, by typing:

> perldoc perllocale

Locale and Internationalization

1065

This should tell us most of what we need to know about locale, a method that most versions of UNIX
use for taking alphabets and time/date expressions into account .

Once we are happy with the basic principles and concepts, we can leave the reading for later on, and
just add a simple part to our command line. When applied to the same file, and when issued from a
computer with the Spanish locale installed, we can expect something like the following output:

> perl -e 'use locale; print sort <>;' firms.txt
Andalia
Ántico
Cántaliping
Cantamornings
Cflab.org
Chilindrina
Zinzun.com

There is a great likelihood that something slightly different will be displayed on our computer (if it uses
Linux or another strain of UNIX), but this will allow us to gauge differences between English, Spanish,
and whatever locale sorting we have. In any case, this is not completely correct even for the Spanish
traditional sorting, although it is an improvement on the last attempt. The 'ch' was still not considered to
be a different letter, but at least accented vowels were not alphabetized as different characters from their
unaccented counterparts. The bad ordering of the 'ch' could be a bug in the locale implementation of
our system (or maybe a bug in our understanding of the local alphabetization rules, as we will see later
on). It could be improved for other Spanish locale implementations, so in order to fix it, we have to
delve a little deeper into what locale actually means.

The locale framework is concurrent with the phrase 'When in Rome, do as the Romans do' – computers
have to use the local alphabet and local numbers. This is the reason why localization was included into
the POSIX standard, (that is, the set of functions and files that should be understood by all UNIX
platforms). There are some non-UNIX platforms, such as Windows NT (which has a slightly flawed
implementation of the POSIX standard) which can use the locale set of functions, also known as NLS
(for National Language Support). If one arrives at Perl from the C field, all functions, constants etc.
related to locale are in the locale.h header file.

This header distributes localization elements into several categories:

LC_COLLATE Collation or sorting.

LC_CTYPES Character types, distinguishing whether a character is alphanumeric or not.

LC_MONETARY Handling monetary amounts.

LC_TIME Displaying time.

LC_MESSAGES Messages, not used in Perl by default.

There are a few more categories that are not so widely used, whose names should give away their
meanings: LC_PAPER, LC_NAME, LC_ADDRESS, and LC_MEASUREMENT, LC_IDENTIFICATION.

Chapter 26

1066

These constants can be used as environment variables, or else using the POSIX setlocale function.
This means we have to use POSIX to have them available in our program. Going back to our problem
regarding the alphabet of the Spanish language, we can locate a locale definition on the Internet, which
effectively includes the traditional sorting, that is, 'ch' after 'c'. One place in which such a locale
definition can be found, amongst many others, is under the name locales-es-2.1-
1mdk.noarch.rpm, at http://www.ping.be/linux/locales/.

We can install it by issuing the following command:

> rpm -Uvhf locales-es-2.1-1mdk.noarch.rpm

The f option is needed since one of the files, LC_COLLATE, conflicts with the existing settings; the file
was renamed and then moved back to its original value, (we need to do this, or the locale settings will
not work properly in Spanish). One of the locales included in that package is es@tradicional. This
should sort the 'ch' in the traditional way. However, this implementation does not work very well, as we
will see.

There is a more complete list of locales for Linux available from IBM DeveloperWorks, at
http://oss.software.ibm.com/developerworks/opensource/locale/download.html.

This includes locales such as Maltese, which will be required later. These locales are still in beta stages,
and thus look set to change considerably in the future.

After installing the package, we can create the following short script:

#!/usr/bin/perl
sort.pl
use warnings;
use strict;

use POSIX qw(LC_COLLATE setlocale strcoll);

setlocale(LC_COLLATE, 'es_US');
print sort {strcoll($a, $b);} <>;

When we run this program we will obtain the following output:

> perl sort.pl firms.txt
Andalia
Ántico
Cántaliping
Cantamornings
Cflab.org
Chilindrina
Zinzun.com

Before we continue, this program probably needs a bit of explanation. Instead of using the use locale
pragma, it relies on POSIX calls to do sorting correctly. By default, locale uses the locale settings
contained in the LC_* UNIX environment variables. However, in this case we want to be able to change
locale in runtime. The POSIX setlocale function allows us to do this; we take the locale category
we want to change as the first argument. We then take the locale we want to change it to as the second
argument. It must be a valid locale, that is, it must correspond to a file already installed on our system.
If it works correctly, it returns the name of the locale it has been set to; in this case, es_US. The reason
for using this locale is that, for some strange reason, it seems to be the only one to use the 'traditional'
Spanish ordering.

Locale and Internationalization

1067

The problem with setting locales using this function (instead of the pragma), is that despite what is said
in the perllocale documentation, the Perl functions cmp and sort do not use it by default. For this
reason we need to use an alternative form of sort, sort {expr}, and the POSIX function strcoll,
which compares (or collates, hence the name) using the setting specified in the setlocale call.

Delving Deeper into Local Culture
Now, suppose we have a scenario where a user views the site and wants to add another firm to the list of
investors. Using the current code, they would have to undertake this process in Spanish, therefore
eliminating the likelihood of nonSpanish speaking firms investing through the site. At first this may
seem a difficult task because it is impossible to find out where the user is from, since Spanish
autonomous regions do not have their own top level domains. It would however, be possible if there
was only one user in each region responsible for liaising through our web site.

So, how can we use those different locales? To start with, we need to find the way locales are called.
Locales usually have three, sometimes four parts, written in the following way:
xx_YY.charset@dialect. Breaking this down would perhaps make it easier to understand.

❑ xx represents the language.

❑ YY represents the country.

❑ charset is the character set, such as ISO8859-15 (for Latin languages) or KOI8 (for
Russian).

❑ @dialect is a particular modality, for instance, a dialectal variety, such as no@nynorsk in
Norwegian. It also represents special symbols such as ca_ES@euro (which is a variant of the
ca_ES locale including the euro symbol).

Following this form, a typical Spanish locale would be es_ES.iso885915, or es_ES@euro, which can
be found in any of the above-mentioned web sites if they are not already installed in the system. On the
same page we can find locales for Basque, Catalan and Galician – the three other official languages in
Spain.

Getting back to the example, we decide to greet the visitors to our site in their own language and show
them the local time (of our site) using the format favored by them. The site will then show them how
much money each company has invested. In order to do this, we start by creating a new plain text file
called firms_money.txt:

Ántico 1000000
Chilindrina 2000.35
Cflab.org 123456.7
Cantamornings 6669876
Cántaliping 46168.5
Andalia 4567987
Zinzun.com 33445

We also need to remember that a Spanish language web site can be accessed from all over the world,
and that there are large Spanish-speaking populations in South America, Central America, and North
America. This adds an extra issue; different countries will more than likely have different currencies.
Not everyone would understand the value of a given number of Pesetas offhand, and users may want
to use the site to find out the amount of money invested in their own currency. A more general
solution would be considering the names of the people connecting to our site from different parts of
the world.

Chapter 26

1068

#!/usr/bin/perl
invest.pl
use warnings;
use strict;

use Finance::Quote;
use POSIX qw (localeconv setlocale LC_ALL LC_CTYPE strftime strcoll);

my %clientMap = (
'Jordi' => ['ca_ES', 'Hola', "aquí está el teu inform per"],
'Patxi' => ['eu_ES', 'Kaixo', "egunkaria hemen hire"],
'Miguelanxo' => ['gl_ES', 'Olá', "aquí está o seu relatório pra"],
'Orlando' => ['es_AR', 'Holá', "aquí está tu informe para"],
'Arnaldo' => ['es_CO', 'Holá', "aquí está tu informe para"],
'Joe', ['en_US', 'Hi', "here's your report for"]

);

This script takes as its arguments the name of the client, and the name of the file that contains the firm
and amount of money invested. In our case, our file is firms_money.txt.

Firm Quantity
die "Usage: $0 <clientName> <fileName>\n" if $#ARGV <1;
my ($clientName,$fileName) = @ARGV;
default
my ($locale, $hello, $notice) = ('es_ES', 'Hola',

'aquí está tu informe para');

if ($clientMap{$clientName}) {
($locale, $hello, $notice) = @{$clientMap{$clientName}};

}

setlocale(LC_ALL, $locale); # use settings

Arguments are read in the lines above, and locales assigned. The default value in Spain is (somewhat
unsurprisingly) Spanish. If the name of the client given as the first argument in the command line is a
key in clientMap, the values are assigned to the three variables that represent the locale name, the
hello message, and the message to be given as an introduction. The locale name is then used in the
setlocale function to assign that value to all categories.

my %investments;
open(F, "<$fileName"); # open file and process it
while (<F>) {

chop;
my ($firm, $invest) = split;
$investments{$firm} = $invest;

}
close F;

The file has been read, and entered into the %investments hash, keyed by the name of the firm.

obtain time info
my ($sec, $min, $hour, $mday, $mon, $year, $wday) = localtime (time);
print "$hello $clientName, $notice ",
strftime("%c", $sec, $min, $hour, $mday, $mon, $year, $wday), "\n";

Locale and Internationalization

1069

Currency conversion is used in the lines below. The objective of these lines is to show how information
about the local international currency name and symbol is also contained in the locale settings; they
are retrieved using the localeconv POSIX function. This function returns a hash reference, but we
only use the keys int_curr_symbol, which references the three letter international name of the
currency, such as USD (for US dollars) and ESP (Spanish pesetas), and currency_symbol. The
currency_symbol references the symbol of such currency, such as $ for the US dollar (amongst
others), and £ for the British pound.

#Set up currency conversion
my $q = Finance::Quote->new;

$q->timeout(60);
my $lconv = localeconv(); chop($lconv->{int_curr_symbol});
my $conversion_rate=$q->currency("ESP",$lconv->{int_curr_symbol}) || 1.0;

for (sort {strcoll($a,$b);} keys %investments) {
printf
("%s %.2f ESP %.2f %s %s \n",
$_, $investments{$_},
$investments{$_}*$conversion_rate,
$lconv->{int_curr_symbol},
$lconv->{currency_symbol}
);

}

Now, we can use the script and obtain output such as the following. Of course the exact output will
depend on the country we are in, the date, time, currency rates, etc.

> perl invest.pl Arnaldo firms_money.txt
Holá Arnaldo, aquí está tu informe para 13 dic 2000 14:56:22 CET
Andalia 4567987.00 ESP 52530160.34 USD $
Ántico 1000000.00 ESP 11499630.00 USD $
Cántaliping 46168.50 ESP 530920.67 USD $
Cantamornings 6669876.00 ESP 76701106.15 USD $
Chilindrina 2000.35 ESP 23003.28 USD $
Cflab.org 123456.70 ESP 1419706.37 USD $
Zinzun.com 33445.00 ESP 384605.13 USD $

> perl invest.pl Patxi firms_money.txt
Kaixo Patxi, egunkaria hemen hire 00-12-13 14:57:38 CET
Andalia 4567987.00 ESP 4567987.00 ESP Pts
Ántico 1000000.00 ESP 1000000.00 ESP Pts
Cántaliping 46168.50 ESP 46168.50 ESP Pts
Cantamornings 6669876.00 ESP 6669876.00 ESP Pts
Chilindrina 2000.35 ESP 2000.35 ESP Pts
Cflab.org 123456.70 ESP 123456.70 ESP Pts
Zinzun.com 33445.00 ESP 33445.00 ESP Pts

> perl invest.pl Orlando firms_money.txt
Holá Orlando, aquí está tu informe para 13 dic 2000 14:57:59 CET
Andalia 4567987.00 ESP 23995.27 USD $
Ántico 1000000.00 ESP 5252.92 USD $
Cántaliping 46168.50 ESP 242.52 USD $
Cantamornings 6669876.00 ESP 35036.33 USD $
Chilindrina 2000.35 ESP 10.51 USD $
Cflab.org 123456.70 ESP 648.51 USD $
Zinzun.com 33445.00 ESP 175.68 USD $

Chapter 26

1070

> perl invest.pl Joe firms_money.txt
Hi Joe, here's your report for Wed 13 Dec 2000 02:59:49 PM CET
Andalia 4567987.00 ESP 24019.30 USD $
Cantamornings 6669876.00 ESP 35071.41 USD $
Chilindrina 2000.35 ESP 10.52 USD $
Cflab.org 123456.70 ESP 649.16 USD $
Cántaliping 46168.50 ESP 242.76 USD $
Zinzun.com 33445.00 ESP 175.86 USD $
Ántico 1000000.00 ESP 5258.18 USD $

Barring bugs such as the alphabetic ordering in Basque (whose alphabet does not include the letter 'c',
and thus, no word starting with 'c' can possibly go before 'd') and the dancing of the 'ch' from one place
to another, this should look like something native speakers would feel comfortable with.

First thing we put into this program is the Finance::Quote module (available from CPAN). The main
use of this module is for stock quotes, but it is basically a front end for doing searches over the Yahoo
Finance servers. This also means that we must be on-line to take advantage of it. Each time we try to get
a currency conversion rate, it is forwarded to a UserAgent. This requests the rate from Yahoo,
manipulates it, and gives it back to us. It might also take a while, depending on the speed of the
connection, and it could result in some additional errors, depending on the state of the Yahoo site. The
program would work perfectly without this currency conversion, but the point of including it here is to
show another aspect of localization: local currencies.

The subsequent lines create a hash of arrays with the (theoretically unique) names of the customers, and
set a different locale, currency, and greeting, with respect to the local language. If the name given is
none of the above, it defaults to the es_ES locale and greetings. From that line on, the following action
takes place: locale is set, file is read, and system time is read and converted to local time. The
strftime function is used; this function formats time into a string using different options; in this case,
%c instructs it to use the preferred date format for the local settings. This format will even translate
weekday names, in addition to putting date and time in the local favorite arrangement. For instance,
Americans prefer 12-hour clocks plus AM/PM, while many Europeans opt for 24 hour clocks.

A Finance::Quote object is then created, setting the timeout, so that it will only wait 60 seconds for
the answer. The object is used in the next line, where it is asked for the conversion rate between the
Spanish peseta (ESP) and local currency. If the quantities in the file were in euros, we could have used
the es_ES@euro locale instead, and conversions would have been made from euros instead of from
pesetas.

Finally, the hash containing the firm names and investment is printed in three columns: name,
investment in pesetas, and investment translated into the local currency. It should be noted, however,
that the period (.) is used as separator for decimals in English speaking countries, whilst the comma is
used in Latin countries.

We could even mix and match several settings; for instance, in the case of our friend, Alberto, who lives
in Miami, we would have used en_US, for currency and numbers, and es_MX (for México), or es_CU
(Cuba) for sorting:

setlocale(LC_COLLATE, 'es_MX');
setlocale(LC_NUMERIC, 'en_US');
setlocale(LC_MONETARY, 'en_US');
setlocale(LC_TIME, 'en_US');

Locale and Internationalization

1071

We will probably be better off using the es_US locale, which can be downloaded from one of the above
mentioned pages, if not already on the system.

However, there are several things that may cause problems. Every time a new language shows up, we
will have to go back to the original code, grok what was there, and modify it a little. What would
happen, if all of a sudden the user needed another phrase? would they have to modify the whole hash
table they had created from scratch? This is why we start to look for something better: a whole
framework for internationalization of programs. The idea would be to have a way to store program
messages in several languages, and retrieve them using a key, preferably the short version of the
message. In reality there are two of them:

❑ gettext – a GNU standard tool for internationalization. It is widely used by many GNU
applications. The current version at the time of writing is 0.10.35. It is directly available from
http://www.gnu.org/software/gettext/gettext.html and is supported by several tools, and an
EMACS mode. For more information regarding this subject, refer to a book such as
Professional Linux Programming from Wrox Press, ISBN 1861003013.

❑ Locale::Maketext – a complete and purely Perl based solution. At the time of writing the
latest version is 0.18. The documentation (available by typing > Perldoc
Locale::Maketext, after installation) includes a synopsis. It is important to note that at
present, Locale::Maketext is still in its early stages.

For the purposes of our site, we have decided upon gettext, since it has very good support in Perl.
The first thing we have to do is to create a so-called Portable Object (PO) file, which contains the
necessary information to translate messages. The main elements of PO files are the keywords msgid
and msgstr, which contain the plain (in this case, Spanish) and translated string, respectively. A file can
just be created using a text editor (or EMACS + PO mode) in this form:

msgid "Hola"
msgstr "Olá"

A set of these messages in a file, along with other information such as comments, and context, is called a
catalogue, and corresponds to a domain, which is usually a language. For instance, the file above could
be saved as CA.po, for the Catalan language.

There are also a couple of editors we can use to edit PO files. POedit, which is available from
http://www.volny.cz/v.slavik/poedit/, has a simple to use interface based on the GTK library. As an
alternative, if we favor the desktop environment, KBabel is available as a part of the KDE software
development kit, which can be obtained from http://www.kde.org. For the time being, we opt for the
Perl way, and choose to use Locale::PO, an object oriented class for creating PO files. The following
program is written using this module:

#!/usr/bin/perl
pocreate.pl
use warnings;
use strict;

use Locale::PO;

my $i;

Chapter 26

1072

my %hash = (
"EN" => ['Hello', "here's your report for"],
"EU" => ['Kaixo', "egunkaria hemen hire"],
"CA" => ['Hola', "aquí está el teu inform per"],
"GA" => ['Olá', "aquí está o seu relatório pra"],
"FR" => ['Salut', "voici votre raport pour"],
"DE" => ['Hallo', "ist hier ihr Report für"],
"IT" => ['Ciao', "qui è il vostro rapporto per"]

);

my @orig = ("Hola", "aquí está tu informe para");

For each element in this hash, a PO file is created. This file receives a reference to an array of
Locale::PO objects, which features as main elements' a msgid, containing the key to the message, and
a msgstr, the translation of the message to the language represented in the file.

After saving the file using the Locale::PO->save_file_fromarray function, it is converted to an
internal format using the MsgFormat command. We are using the Spanish equivalent as keys, but any
other language, such as English, can be used. Theoretically, these are the files that should be handled by
the team of translators in charge of localizing a program.

for (keys %hash) {
my @po;
for ($i = 0; $i <= $#orig; $i++) {

$po[$i] = new Locale::PO();
$po[$i]->msgid($orig[$i]);
$po[$i]->msgstr($hash{$_}->[$i]);

}
Locale::PO->save_file_fromarray("$_.po",\@po);
`MsgFormat . $_ < $_.po`;

}

Running this program produces files similar to the following CA.po (for the Catalan language):

msgid "Hola"
msgstr "Hola"

msgid "aquí está tu informe para"
msgstr "aquí está el teu inform per"

These files can be used by any program compliant with gettext (that is, any program that uses the
libgettext library). In the case of Perl, there are two modules that use them: Locale::PGetText and
Locale::gettext. The main difference between them is that the first is a pure Perl implementation of
gettext, using its own machine readable file formats, while the second needs to have gettext
installed. In both cases, .po files have to be compiled to a machine readable file. We will opt for the
first, but both are perfectly valid. Indeed, a program that belongs to the Locale::PGetText module is
called in the following line of the above code:

MsgFormat . $_ < $_.po;

Locale and Internationalization

1073

The following program produces a database file, which can then be read by Locale::PGetText. The
implementation of this module is reduced to a few lines; it merely reads the DB file and ties it to a hash.
The hash is accessed using a couple of functions, shown in the following example, which is an
elaboration of the previous invest.pl program:

#!/usr/bin/perl
pouse.pl
use warnings;
use strict;

use Finance::Quote;
use POSIX qw(localeconv setlocale LC_ALL LC_CTYPE strftime strcoll);

use Locale::PGetText; # this is new

in this case only the locale is needed, the rest is stored in PO files
my %clientMap = (

'Jordi' => 'ca_ES',
'Patxi' => 'eu_ES',
'Miguelanxo' => 'gl_ES',
'Orlando' => 'es_AR',
'Arnaldo' => 'es_CO',
'Joe' => 'en_US'

);

die "Usage: $0 <clientName> <fileName> \n" if $#ARGV <1;
my ($clientName,$fileName) = @ARGV;
my $locale = $clientMap{$clientName} || 'es_ES';
setlocale(LC_ALL, $locale); # use settings

my %investments;
open(F,"<$fileName"); # open file and process it
while (<F>) {

chop;
my ($firm, $invest) = split;
$investments{$firm} = $invest;

}
close F;

Local messages are retrieved from the PO files using functions from the Locale::PGetText module.
The directory where the files are located, is first set with setLocaleDir and then the corresponding
file is loaded.

my ($lang) = ($locale =~ /^(\w{2})/);

Locale::PGetText::setLocaleDir('/root/txt/properl');
change to our own dir here

Locale::PGetText::setLanguage(uc($lang));
#Spanish for 'hello'
my $hello = gettext("Hola");

#Spanish for 'Here is your report for'
my $notice = gettext("Aquí está tu informe para");

TE
AM
FL
Y

Team-Fly®

Chapter 26

1074

#The rest is the same as invest.pl

#Set up currency conversion
my $q = Finance::Quote->new;

$q->timeout(60);
my $lconv = localeconv(); chop($lconv->{int_curr_symbol});
my $conversion_rate=$q->currency("ESP", $lconv->{int_curr_symbol}) || 1.0;

This will output exactly the same as the last but one example, invest.pl, with the only difference
being, that in this case, we did not need to code the translated languages explicitly within the program.
Adding new languages and messages is just a matter of adding the name of a person, and the locale, and
the currency they use. The program will select the relevant file itself, extracting the language code from
the two first letters of the locale name. In this case, the directory /root/txt/properl should be
substituted for the directory in which our own .po files reside. The main change from the previous
version is around the lines where Locale::PGetText functions are used: the two letter code for the
language is extracted from the locale name and translated to all capitals; this code is used to set the
language, using the function setLanguage. This in turn loads the corresponding database file;
messages are then obtained from the DB, and used as they were in the previous example. This is not a
huge improvement, but at least we can now build, bit by bit, a multilingual dictionary of words and
phrases that can be used and reused in all of our applications, with a common (and simple) interface.

We soon realize that looking for an archetypal name in each place and deducing their mother tongue
(and everything else) is not very efficient. Besides, it is not very efficient to have to translate every single
message by hand. What is needed is a way of automating the process. For example, using the Internet to
do the job.

Suppose now, that we want to go one step further and design a web site (which we will call El Escalón),
enabling users all over the world to log in using their own specific username, and then to type a short
report. The following program implements these ideas (note that it will not work on Windows as it uses
the WWW::Babelfish module, which is only available on UNIX systems):

#!/usr/bin/perl -T
babelfish.pl
use warnings;
use strict;

use CGI qw(:standard *table);
use Locale::Language;
use WWW::Babelfish;

print header, start_html(-bgcolor => 'white', -title => "El Escalón");

We find out the language from the TLD, or by using any of the other tricks contained in the
grokLanguage subroutine. If nothing works, we can always query the user.

my ($TLD) = (remote_host() =~ /\.(\D+)$/);
print start_form;
my $language = grokLanguage($TLD) || print "Your language",

textfield('language'); # English name of the language

Locale and Internationalization

1075

We now ask the user to type in their name and report; messages are translated using the translate
subroutine.

if ($language) { # language has been set
print start_table({bgcolor => 'lightblue', cellspacing => 0,

cellpadding => 5}),
Tr(td([translate("What is your code name?", $language),

textfield('codename')])), "\n",
Tr(td([translate('Type in your report', $language),

textfield('report')])), "\n",
Tr(td([translate('What is your assessment of the situation', $language),
popup_menu('situation',

[translate('Could not be worse', $language),
translate('Pretty good', $language),
translate('Could be worse', $language)])])), "\n",

end_table;
}

print p({align => 'center'}, submit()), end_form, end_html;

For a more fuller description of the methods supported by the WWW::Babelfish module, we can do
the usual command:

> perldoc WWW::Babelfish

In this next subroutine, we use one of these methods to hide the call to the WWW::Babelfish module.
The arguments it takes are the message in English, and the name of the language to which the message
is going to be translated.

sub translate {
my ($toTranslate, $language) = @_;
my $tr;
eval {

$tr = new WWW::Babelfish();
};

if (!$tr) {
print("Error connecting to babelfish: $@");
return $toTranslate;

}

my $translated = $tr->translate('source' => 'English',
'destination' => $language,
'text' => $toTranslate);

print $language, " ", $tr->error if $tr->error;
$translated = $toTranslate unless defined ($translated);
return $translated;

}

Chapter 26

1076

This subroutine tries to find out the language of the client using several tricks, which will be explained
later.

sub grokLanguage {
Returns the name of the language, in English, if possible
my $TLD = shift;
return param('language') if (param('language')); # try predefined
my ($ua) = user_agent() =~ /\[(\w+)\]/ ; # and now from the user agent

return code2language($ua) if ($ua);
return code2language($TLD) if (defined ($TLD));
Or from the top-level domain
return;

}

This file is rather long, but it performs many functions. First, using the subroutine grokLanguage it
tries to find out what language we speak, deducing it via the following channels (in order of
precedence):

❑ The declaration of the user; for example, by calling it using something like: http://myhost/cgi-
bin/babelfish.pl?language=German or http://myhost/cgi-bin/babelfish.pl?language=Spanish.

❑ The user_agent string, sent from the browser (at least, from Netscape Navigator and MS
Internet Explorer) to the server, which in some cases takes this form: Mozilla/4.75 [es] (X11;
U; Linux 2.2.16-22smp i686).

The [es] means it is a client compiled for the Spanish language. Not all languages are represented, and
this might not be valid for browsers outside the Mozilla realm, but if this information is there, we can
take advantage of it. This code is translated to a language name using code2language, which is part of
the Locale::Language module.

Then it tries to deduce our language from the top-level domain of our computer. Our server receives,
along with the name of the file the client requires, a wealth of information from the client. For example,
it receives the host name of the computer of the client. In some cases, the host name will not be
resolved, that is, converted from its numerical address, and it will only get an address of the form
154.67.33.3. From this address it would be difficult to ascertain the native language of the client in the
area of the calling computor; in many other cases, generic TLDs such as .com or .net are used.

Finally, the computer is revealed as something like somecomputer.somedomain.it, which means that
this calling computer is most probably in Italy. In this case we use the Perl module
Locale::Language, which comes along with Locale::Country, to deduce the language from the
two-letter TLD code. This is a good hunch at best, since in most countries more than one language is
spoken, but at least we can use it as a fallback method if the other two fail. The code2language
function in this module understands most codes, and translates them to the English name of the
language that is spoken. However, there is a small caveat here: the language code need not be the same
as the TLD code; for instance, UK is the top level domain for the United Kingdom, but it is the code for
the Ukrainian language. However, we can expect that most English clients will be caught by one of the
other methods. The right way to proceed, would be to convert TLD to country name, and then to one
or several language codes or names. This is not practical, however, so we have to make do with the
above method, which will work in at least some cases.

Locale and Internationalization

1077

Once the language is known (or guessed), it is used to translate messages from English to several other
languages (the translate subroutine performs this task). It uses the WWW::Babelfish module
(available on CPAN), which is a front end to the translating site at: http://babelfish.altavista.com/. This
site then takes phrases in several languages, translates them to English, and back again. All this implies
two requirements:

❑ The user must be on-line; each call to translate means a call to Babelfish.

❑ The language requiring translation must be included in this list.

In summary, the program could determine which language the user is accustomed to speaking. Of
course, this is not the best solution in terms of speed or completeness for a multilingual web site. If we
receive more than a couple of requests an hour, we will be placing a heavy load on Babelfish, and we
will have access cut down. A solution based on gettext can suffice for a few languages and a few
messages, but it will not scale up particularly well. The best solution is to keep messages in a relational
database, indexed by message key and language, and have a certified translator to do all the translation.
Another possible solution in Windows (and other operating systems with shared libraries) is to use one
file for each language, and load the file which best suits the language of the user during run-time.

It's About Time: Time Zones
It goes without saying that different areas of the globe fall into different time zones, and users from
different countries will log in at different local times. To take this into account, we can create a Perl
program to remind us of the local time. Just by inputting the name of the city and general zone we are
in, our computer returns local time:

#!/usr/bin/perl
zones.pl
use warnings;
use strict;

use Time::Zone;
use POSIX;

die "Usage = $0 City Zone \n" if $#ARGV < 1;
my ($city, $zone) = @ARGV;
$ENV{TZ} = "$zone/$city";
tzset();

The following POSIX call returns the time zone, and DST (Daylight Saving Time) zone, the computer is
set to:

my ($thisTZ, $thisDST) = tzname();
my $offset = tz_offset($thisTZ);
my ($sec, $min, $hour) = localtime(time + $offset);
print qq(You are in zone $thisTZ
Difference with respect to GMT is),$offset/3600, qq(hours
And local time is $hour hours $min minutes $sec seconds
);

Chapter 26

1078

When issued with the following example commands, the program outputs something similar to:

> perl zones.pl Cocos Indian
You are in zone CCT
Difference with respect to GMT is 8 hours
And local time is 14 hours 34 minutes 38 seconds

> perl zones.pl Tokyo Asia
You are in zone JST
Difference with respect to GMT is 9 hours
And local time is 18 hours 4 minutes 42 seconds

> perl zones.pl Tegucigalpa America
You are in zone CST
Difference with respect to GMT is -6 hours
And local time is 12 hours 4 minutes 48 seconds

Time zone notation is hairy stuff. There are at least three ways of denoting it:

❑ Using a (normally) 3 letter code, such as GMT (Greenwich Mean Time), CET (Central
European Time), or JST (Japan Standard time). A whole list can be found in the file
/usr/lib/share/zoneinfo/zone.tab (in a RedHat >=6.x system; we might have to look
for it in a different place, or not find it at all, in a different system). The Locale::Zonetab
module also provides a list, and comes with examples. Here is a list of the codes for all time-
lines. These are not exactly the same as time zones, as a country might choose to follow the
time-line it falls into:

Change with respect to GMT Time zone denomination

-11 NT

-10 HST

-9 YST

-8 PST

-7 MST

-6 CST

-5 EST

-4 EWT

-3 ADT

-2 AT

-1 WAT

0 GMT

1 CET

2 EET

Locale and Internationalization

1079

Change with respect to GMT Time zone denomination

3 BT

4 ZP4

5 ZP5

6 ZP6

7 (No denomination)

8 WST

9 JST

10 EAST

11 EADT

12 NZT

❑ Using delta with respect to GMT; GMT+1 for instance, or GMT-12.

❑ Using the name of a principal city and zone; but zones are not exactly continents. There are
ten zones: Europe, Asia, America, Antarctica, Australia, Pacific, Indian, Atlantic, Africa and
Arctic. For instance, the time zone a Spaniard is in would be Madrid/Europe. This
denomination has the advantage of also including Daylight Saving Time information (more on
this later).

❑ there are several other notations: A to Z (used by US Military), national notations (for
instance, in the US)... well, a whole lot of them. There is a lot of information in the
Date::Manip pod page.

The whole time zone aspect is a bit more complicated, since local time changes according to Daylight
Saving Time, a French invention to make people go to work by night and come back in broad daylight.
We therefore have two options: go back to old times, when people worked to the sun, or use local rules
by asking the users, which is the approach most operating systems take. Most operating systems include
information for all possible time zones; for instance, Linux includes local time and time zone
information in the /usr/lib/share/zoneinfo directory, which has been compiled using the zic
compiler from time zone rule files. The baseline is that we really have to go out of our way, and ask a
lot of local information to find out what the local time zone is. Most people just ask, or take time from
the local computer. Ideally, a GPS-equipped computer would have a lookup table allowing it to know
the local time for every co-ordinates in the world.

In our case, we solve the problem the fast way. In most cases, knowing the name of the most populous
city in the surroundings, and the general zone out of the ten mentioned above is all we need. From this
information, the three letter code of the time zone, along with DST information, is obtained using
POSIX functions tzset and tzname. The first sets the time zone to the one contained in the TZ
environment variable, and the second deduces the time zone and DST information from it. This
information is later used to compute the offset in seconds with respect to local time, which is used to
compute the new time by adding that offset, in seconds, to actual time. Finally, all the above
information is printed out. We will skip formatting it in the way required by locale, since we have
seen that already in a previous section. Besides, city and general zone might not be enough information
to find out which locale the user prefers.

Chapter 26

1080

Looks Like a Foreign Language
Continuing with our scenario, we were not too convinced by the setup of our reporting web site. There
were many reports, coming in from many well-known (and not so well-known) domains, and we could
not find out which language they were written in. Even though we can not translate between these
languages, we would like at least to know which language was being used. The following script goes
some way to remedying this situation:

#!/usr/bin/perl -T
langident.pl
use warnings;
lack of use strict;

use CGI qw(:standard);
use Locale::Language;
use Lingua::Ident;
print header, start_html;

if (!param('phrase')) {
print start_form,
"->", textfield('phrase'), "<-", end_form;

} else {
my @dataFiles = qw(data.de data.eu data.en data.fr data.it data.mt

data.nl data.ko);
for (@dataFiles) {
if (! -e $_) {
print "Will not work: File $_ does not exist";

exit;
}

}
print em(param('phrase')), br,
"Looks ";
my $i = new Lingua::Ident(@dataFiles);
my $lang = $i->identify(param('phrase'));
my ($langCode) = $lang =~ /^(\w{2})/;
print code2language($langCode), " to me!";

}

print end_html;

This program prints a text field, which invites the user to key in a phrase, in a language-independent
way. It then takes its input and tries to find out what language it is written in using the Lingua::Ident
module. To do that, a previous step is needed:

> trainlid xx < sample.xx > data.xx

This has to be done for each sample.* we have. There are some samples supplied with the
Lingua::Ident module, but we also look at three samples extracted from appropriate web pages say,
namely Maltese, Basque, and Dutch (sample.mt, sample.eu and sample.nl). The trainlid
program, which comes with the module, creates a data.* file with letter combination frequencies. As
an argument, it takes the name of the locale the language refers to, and as input, a file with a sample of a
language, and then it outputs the frequency file.

Locale and Internationalization

1081

The data.* files are then used to initialize the Lingua::Ident module. This will enable it to identify
as many languages as it is given. Unfortunately, this is done statistically, and it is not guaranteed to
identify the correct language; Dutch and German are often mistaken for each other, but it will work for
most languages, as can be seen in the following figures:

Chapter 26

1082

Conjugating in Portuguese
A rather striking way of learning a foreign language would be to use Perl. Surprisingly, a very useful
module called Lingua::PT::Conjugate has been written, for the purpose of conjugating Portuguese
verbs. It includes two utilities, conjug, and treinar, the first for conjugating, and the second for
interactive training with Portuguese verbs. For instance, we could type:

> conjug i ficar pres
ficar :
pres fico ficas fica ficamos ficais ficam

This is the equivalent of the verb 'to do' in English, conjugated in present tense, from the first person in
the singular to the third person in the plural. It does not use ISO-8859-1 encoding (due to the i in
conjug i). The following script utilizes this module, although it should be noted that this is not Windows
compliant because the WWW::Babelfish module cannot be installed on Windows systems:

#!/usr/bin/perl -T
conjug.pl
use warnings;
lack of use strict here

use CGI qw(:standard *table);
use WWW::Babelfish;
use Lingua::PT::Conjugate;

print header, start_html(-bgcolor => 'white', -title => "Conjugando");

if (!param(verb)) {
my %tenses =

(pres => Present,
perf => Perfect,
imp => Imperfect,
fut => Future,
mdp => Pluscuamperfect,
cpres => 'Subjunctive Present',
cimp => 'Subjunctive Imperfect',
cfut => 'Subjunctive Future',
ivo => Imperative,
pp => 'Past Participle',
grd => Gerund);

my @labels = keys %tenses;
my %persons =

(1 => I,
2 => You,
3 => 'He/She/It',
4 => We,
5 => You,
6 => They);

my @labelsP = keys %persons;

Locale and Internationalization

1083

After setting up data for the combo boxes (popup_menu), here comes the program itself:

print start_table({bgcolor => 'lightblue', cellspacing => 0,

cellpadding => 5}),
start_form,
Tr(td(["English Verb",

textfield('verb')])), "\n",
Tr(td(['Tense',,

popup_menu('tense' , \@labels, 'pres', \%tenses)])), "\n",

Tr(td(['Person',
popup_menu('person', \@labelsP, 1, \%persons)])),

Tr(td({colspan => 2, align => 'center'}, submit())),
end_form, end_table;

This is the part of the script that processes the form, translates the verb, and conjugates it:

} else {
print h1("Translating ", param('verb'), " to ", param('tense'),

" in person ", param('person')),
p(em (conjug(translate(param('verb')), param('tense'), param('person')))
);

}

print end_html;

sub translate {
my ($toTranslate) = @_;
my $tr = new WWW::Babelfish() || return $toTranslate;
my $translated = $tr->translate('source' => 'English',

'destination' => 'Portuguese',
'text' => "$toTranslate");

print $language, " ", $tr->error if $tr->error;
$translated = $toTranslate unless defined ($translated);
return $translated;

}

In this script, our knowledge of the WWW::Babelfish module is used to translate the gerund (that is,
the English form of the verb ending in '-ing') of the verb from English to Portuguese, and then conjugate
the verb in Portuguese. Verbs in Portuguese are pretty much the same as many other Latin languages:
they have to be conjugated, and have different forms for different tenses and different persons, not just a
couple of forms as in English. Thus, we have to state the person (first, second, or third, singular or
plural) and the tense.

The script follows two paths, depending on whether it is called for the first time or called with a verb. If
it is called directly, it prints a form that queries for the verb, which should be entered in gerund form,
since this seems to be the way of getting infinitives in Babelfish. The tense is then requested, and this
takes the English form as a parameter, and the script outputs the Portuguese form (for instance, ivo as
in imperativo, which means, obviously enough, imperative).

Once the verb has been set, the script, using a version of the translate subroutine locked for
Portuguese, translates the verb into Portuguese, then conjugates it by calling the
Lingua::PT::Conjugate::conjug method. This method takes the verb, tense, and person as
arguments, and returns the verb form. For instance, typing in driving and selecting the first person
plural in the future tense (we will drive) will be processed by the program as:

TE
AM
FL
Y

Team-Fly®

Chapter 26

1084

The only problem is that there is no such module for other languages as well, though if we want to work
with other languages, CPAN includes several 'national' modules that take into account national
peculiarities. The two main groups are the No::* set, and the Cz::* set.

The Cz:: set includes Cz::Cstocs, Cz::Sort, and Cz::Time. The reasoning for the presence of
these modules is basically due to the fact that locale settings for the Czech and Slovak languages seem to
be broken, so these modules include their own sorting and time display routines. Cz::Cstocs encodes
from il2 to ASCII and back. These modules will probably be made obsolete with better locale modules,
and Unicode/UTF8 encoding.

The No:: set also includes modules for date and sorting in Norway, No::Dato and No::Sort
respectively. In addition, several modules that might be useful for e-commerce applications are
available:

❑ No::KontoNr – checks social security numbers.

❑ No::PersonNr – checks account numbers.

❑ No::Telenor – computes, phone call prices for different telephone companies, times, and
days of the week.

The 'Lingua::*' Modules
We can extend our login/report based web site so that users can be known by a pseudonym or
nickname (this may not seem very useful, but it is not an uncommon feature on many sites these days).
The major new feature though, is that users should now be able to type their report into the site, and the
site can give them feedback on their report, judging it on its readability rating. The following code
implements these new ideas (note that the Lingua::EN::Fathom module cannot be installed on a
Windows machine as yet):

#!/usr/bin/perl -T
report.pl
use warnings;
lack of use strict

use CGI qw(:standard *table *ul);
use Lingua::EN::Syllable;
use Lingua::EN::Nickname;
use Lingua::EN::Fathom;

Locale and Internationalization

1085

print header, start_html(-bgcolor => white, -title => "Reporting");

if (!param(report)) {
print start_table({bgcolor => lightblue,

cellspacing => 0, cellpadding => 5}), start_form,
Tr(td(["Name" , textfield('name')])), "\n",
Tr(td(["Report" , textarea('report')])), "\n",
Tr(td({colspan => 2, align => center}, submit())),
end_form, end_table;

} else {
my $text = new Lingua::EN::Fathom;
$text->analyse_block(param(report));
my $numSyll = syllable(param(report));
print h1("Received report by ", nickroot(param(name)), ":"),
p(em(param(report))),
p("Which has received the following ratings"),
start_ul, li("Fog = ", $text->fog),

li("Kincaid = ", $text->kincaid),
li("Flesch = ", $text->flesch),
end_ul,
p("And you will be paid ", $numSyll*0.25,
"\$ for $numSyll syllables"),

}
print end_html;

This script manages to use all three Lingua modules mentioned above (we may have some problems
building the Lingua::En::Fathom module in English, but we can try and build it in Linux and then
copy the resulting files to Windows). The main topic of the Lingua modules is (the English) language;
and there are modules for syntactic parsing, recognizing gender, and so forth. There are also a few
modules that deal with Russian (Lingua::RU::Charset), and the Portuguese module mentioned
above. Hopefully, this will be extended in the future, but for the moment, we have to make do with the
many modules that deal with the English language. In this case, we are using modules that count
syllables (Lingua::EN::Syllable), and find the real name that corresponds to a nickname such as
'Joe' or 'Jimmy' (Lingua::EN::Nickname). Most curious of all, Lingua::EN::Fathom analyzes text
for readability, assigning it three standard indices called Kincaid, Flesch, and Fog. Kincaid returns the
Flesch-Kincaid grade level for the text. Flesch grades the text from 0 to 100 according to its readability;
a score between 60 and 70 being ideal. Fog returns the (theoretical) mental age needed to understand
the text.

The structure of the script is very similar to the others in this chapter. It checks if the CGI parameter
report is present. If it is not present, it prints the form, requesting the nickname and the report. If it is
present, it is processed, creating a Fathom object, which analyzes text, counts syllables, and computes
the name corresponding to the nickname, using nickroot from the following lines (taken from the
above code):

$text->analye_block(param(report));
my $numSyll = syllable(param(report));
print h1("Received report by ", nickroot(param(name)), ":"),
p(em(param(report))),

Chapter 26

1086

The rest is printing, and calling the fog, kincaid, and flesch functions to get the respective indices.
The expected style of result is shown in the following figure:

This does not say much about the linguistic reporting skills of 'Tamara'. A fog index of 21 is way out (18
would already be pretty difficult to understand), and the Kincaid index is also quite far from the optimal
(between 7 and 8).

A small piece of advice here: nickroot does not appear in the Nickname POD; rootname is
mentioned instead. The documentation, (version 1.1) is badly out of sync with the current release.

Spelling and Stemming
A simple way to improve the readability ratings of the reports submitted by users would be to check the
spelling for errors. The previous program has therefore been modified to check English spelling and
correct it, if possible:

This code is not Windows compliant. Although the Lingua::Ispell module can be installed on
Windows, the code will not work, because the Windows spellchecker does not work in the same way
as the ispell program on UNIX

#!/usr/bin/perl -T
spell.pl
use warnings;
lack of use strict

Locale and Internationalization

1087

use CGI qw(:standard *table *ul);
use Lingua::EN::Syllable;
use Lingua::EN::Nickname;
use Lingua::EN::Fathom;
use Lingua::Ispell qw(spellcheck);

print header, start_html(-bgcolor => white,

-title => "Reporting");
if (!param(report)) {

print start_table({bgcolor => 'lightblue', cellspacing => 0,
cellpadding => 5}), start_form,

Tr(td(["Name" , textfield('name')])), "\n",
Tr(td(["Report" , textarea('report')])), "\n",
Tr(td({colspan => 2, align => 'center'}, submit())), end_form, end_table;

} else {
my $text = new Lingua::EN::Fathom;
my $report = param('report');
$text->analyse_block($report);
my $numSyll = syllable($report);
$report =~ s/\n//g; # needed by spellcheck

Most of the new code is below. The correct path to ispell is set, and then the text is spell checked:

$Lingua::Ispell::path = '/usr/bin/ispell';
my @checks = spellcheck($report);
my %errors;
for (@checks) {

$errors{$_->{term}} = $_->{misses} if ($_->{type} = 'miss');

}
print h1("Received report by ", nickroot(param(name)), ":"),
p(em(param(report))),
p("Which has received the following ratings"),
start_ul, li("Fog = ", $text->fog),

li("Kincaid = ", $text->kincaid),
li("Flesch = ", $text->flesch),
end_ul,
p("And had the following misspellings "), start_ul;
for (keys %errors) {

print li($_, " Suggestions :", join(" ", @{$errors{$_}}));
}
print end_ul, p("And you will be paid ", $numSyll*0.25, "\$ for

$numSyll syllables ");
}
print end_html;

As we can see, this program is quite similar to the previous example. In the highlighted lines, the path
to the ispell program is set in the following line:

$Lingua::Ispell::path = '/usr/bin/ispell';

and spellcheck is called in the following line:

my @checks = spellcheck($report);

Chapter 26

1088

This function returns an array of references to hashes, which has several keys for each word in the input
string; term contains the original word, type is the flag set by ispell. We should pay attention if
type is none or miss. In this last case, a new key, misses, can be used. This contains an array of
possible correct spellings of the word. We only flag near misses and place them in the %errors hash,
and print them afterwards.

Take into account that the ispell utility seems to be a bit obsolete, and may not be widely available.
Indeed, it has been replaced with aspell in the current RedHat Linux distributions, but there is no
difference in results, since aspell includes an ispell wrapper in the package. If we type in an English
name and a report composed of the following phrases, the program will return something like this:

Perl can play other word games besides the spell check. For instance, in many information retrieval
applications, it is sometimes useful to know the root of a word. Take the case where somebody is
searching for the word 'birds'. They may also be looking for 'birdies', 'bird' or 'bird's nest'. The
operation that extracts the root of a word is called stemming, and it is a language dependent operation.
Incidentally, this operation is very easy in English, with conjugations that have only a few forms, no
declinations, and no male/female variation in adjectives. Difficulties may arise in other languages such
as Basque, which has 14 different declinations or cases, and 3 different numbers: singular, plural and
mugagabe, indefinite or collective. There is, however, a Lingua::Stem module that can help (in the
English case at least):

#!/usr/bin/perl
stem.pl
use warnings;
use strict;

Locale and Internationalization

1089

use Lingua::Stem qw(stem);
my @words = qw(birds birdie flying flown worked working);
my $stemmer = Lingua::Stem->new(-locale => 'EN-US');
my $stems = $stemmer->stem(@words);
print "Word \tStem \n";
while (@$stems) {

print pop @words, "\t", pop @$stems, "\n";
}

This returns something like this:

> perl stem.pl
Word Stem
working work
worked work
flown flown
flying fly
birdie birdi
birds bird

Well, it is not perfect. It cannot spot irregular verbs, or familiar diminutives such as 'birdie'. However, it
would be useful in a search engine looking for all strings in a text containing the stem, so that more
matches would be returned. Of course, this is not the ultimate information retrieval pre-processing
system; synonyms, numbers, and names will have to be taken into account, as well as the weight of
words within the text, but in any case, stemming is the first step in many information retrieval
applications.

Writing Multilingual Web Pages
In order to give an example of a multilingual web page, we are going to create two forms. The first
allows users to input their name, and the language they understand. User information will be stored in
cookies by the first script for use in the second script. The second script will then display, amongst other
things, a greeting in the users' chosen language, and will also allow users to type in text and have it
translated into Spanish.

#!/usr/bin/perl -T
form.pl
use warnings;
lack of use strict;

use CGI qw(:standard *table);
use Locale::Language;
use Locale::Country;

if (!param('name')) {
print header, start_html(-bgcolor => 'white', -title => "ID card"),
start_table({bgcolor => 'lightblue', cellspacing => 0, cellpadding => 5}
), start_form,

Tr(td("Name"),td({colspan => 3},textfield('name'))), "\n",

Chapter 26

1090

Tr(td(["Language you understand",
radio_group('lang', [English, French, Spanish])])), "\n",
Tr(td({colspan => 4, align => 'center'}, submit())), end_form, end_table;

} else { #Process form and set cookie
my @cookies;
push(@cookies,
cookie(-name => 'name', -value => param('name'),

-expires => '+3M', -path => '/cgi-bin'));
push(@cookies, cookie (-name => 'lang', -value =>

language2code(param('lang')),
-expires => '+3M', -path => '/cgi-bin'));

print header(-cookie => \@cookies),
start_html(-bgcolor => 'white', -title => "ID card accepted"),

"Application accepted \n";
}
print end_html;

This example is pretty straightforward: by default, it prints a form, and if the name field is already filled,
it is processed. The language is also processed to a language code: en, fr, or es. The path in the
cookie function will have to be changed to whatever path our script resides in. The expiry date can
also be changed to suit any other needs; in our case it was set to 3 months.

Next, we will use a comma separated flatfile called messages.txt to store our multilingual messages.
Our application will then search through it, displaying the correct language on our report form. Of
course, this depends on the language that the user has indicated that they understand.

All messages are normalized, with no capitals, so that capitalization can be established by the
application:

hello, hola, salut
please, por favor, s'il vous plait
here is, aquí está, voici
welcome, bienvenido, bienvenu
today's date is, la fecha del día es, aujourd'hui est le
your name, su nombre, votre nom
report, informe, rapport
send, enviar, envoyer
received, recibido, reçu
by, por, par

Since languages are taken from cookies, and we set the cookies ourselves, we would not expect this to
give an error (but there will always be nonvalid input when one expects valid input). Again note that the
script will not work on Windows, since the WWW::Babelfish module cannot be installed:

#!/usr/bin/perl -T
babel.pl
use warnings;
lack of strict

Locale and Internationalization

1091

use CGI qw(:standard *table);
use locale;
use IO::File;
use POSIX;
use WWW::Babelfish;
use Locale::Language;

if (cookie('name')) {
my $name = cookie('name');
my $language = cookie('lang');

print header, start_html(-bgcolor => 'white', -title => "Reporting");
setlocale(LC_TIME, cookie('locale'));
If it does not exist, defaults to local

So far, common processing is used for both showing and processing the form. Now, if the report CGI
parameter is not present, it will show the form. If it is present, it will process it.

if (!param('report')) { #Show form
my ($sec, $min, $hour, $mday, $mon, $year, $wday) = localtime (time);
print h2(ucfirst(getMessage('hello', $language)),
" $name,", getMessage("today's date is", $language),
strftime("%c", $sec, $min, $hour, $mday, $mon, $year, $wday), "\n");

print start_table({bgcolor => 'lightblue', cellspacing => 0,
cellpadding => 5}),

start_form,
Tr(td([ucfirst(getMessage('report', $language)) ,
textarea(-rows => 10,

-columns => 50,
-name => 'report')])), "\n",

Tr(td({colspan => 2, align => 'center'},
submit(ucfirst(getMessage('send', $language))))),

end_form, end_table;

If the form has been completed, we have the parameter report. We then have to process it:

} else { # process it and show it in English
print h2(ucfirst(getMessage('received', $language)),
getMessage('report', $language),
getMessage('by', $language), " $name"),
p(b("Original"), param('report')),
p(em (translate(param('report'), code2language($language))));

}
} else { # ask login
print redirect(-uri => '/cgi-bin/form.pl');

}
print end_html;

The getMessage subroutine (below) opens up a filehandle to the flatfile database, taking the key and
the language code as parameters. It then places each phrase into an array, and then searches it,
returning the desired element. The other subroutine, translate, does exactly as expected – it
translates our report into Spanish. Beware, however, that Babelfish cannot translate every language into
any other language. In our case, users selecting French as the language they understand, will not have
their report translated into Spanish. For a full listing of languages Babelfish can translate to and from,
visit http://www.infotektur.com/demos/babelfish/en.html.

Chapter 26

1092

This is the getMessage subroutine used in the babel.pl script:

sub getMessage {
my ($key,$language) = @_;
chomp ($key,$language);
my $filename = 'messages.txt';
my $counter = -1;

my $fh = new IO::File;
$fh->open("< $filename") or die "Can't open '$filename': $!\n";

my (@messages,@final);
while (<$fh>) {

@messages = (split ', ');
push @final, @messages;

}

chomp @final;

foreach (@final){
my $msg;
$counter++;

if($_ =~ /$key/ and $language =~ /es/){

$msg = $final[$counter+1];
return $msg;

}
elsif ($_ =~ /$key/ and $language =~ /fr/) {

$msg = $final[$counter+2];
return $msg;

}
elsif ($_ =~ /$key/ and $language =~ /en/) {

$msg = $final[$counter];
return $msg;

}
else {

next;
}

}
}

and here is the translate subroutine:

sub translate {
my ($toTranslate, $language) = @_;
my $tr = new WWW::Babelfish() || return $toTranslate;
my $translated = $tr->translate('source' => $language,

'destination' => 'Spanish',
'text' => $toTranslate);

print $language, " ", $tr->error if $tr->error;
$translated = $toTranslate unless defined ($translated);
return $translated;

}

Locale and Internationalization

1093

This script is basically a form processing CGI; the only difference being that we make use of the locale
to show the date, and the selected language for the messages. Recall that the user selected the locale, in
their choice of country and language, in the sign in script. Cookies are retrieved using standard CGI.pm
instructions. If the cookie name is not present, we redirect the script to form.pl. If it is present, there
are two different paths it could take, depending on whether the parameter report has been set, or not.

We have taken the 'atomic' approach to messages, putting words or short phrases into the database and
building up phrases little by little. We could also insert whole phrases, but in that case we would have to
include every possible message. For instance, in this script, the phrase Received report by is made up of
three different atoms, Received, report, and by.

We now briefly show how these scripts are implemented in, say, a simple multilingual web site. First we
run the form.pl script and the user will input their name and the language they understood:

After submitting the form, a screen showing acceptance is displayed. Now we move to using the
second script, babel.pl, to perform our translation from the selected language to Spanish, as hard-
coded in the script:

TE
AM
FL
Y

Team-Fly®

Chapter 26

1094

And the result of the call to Babelfish is as below:

Creating our own Local Perl module
Despite all the precautions we have taken thus far to make our site multilingual, some countries still
have peculiarities that we have not catered for. This can be important when writing a program or
representing any user interface. For instance, local geographical divisions are often quite specific to a
place: there are states in the US, provinces in Canada, etc. Along similar lines, postal or ZIP codes are
also specific to a place – routines for converting from postal code to geographical place (and back) could
be quite useful when processing, for example, a mail order. Some other modules could serve as a front-
end to national news services, stock tickers, search engines, etc.

At the time of writing, only two countries have been fortunate enough to have some of these modules
written for them: the Czech Republic and Norway (as we have seen in previous sections). We will try to
take the first steps towards the creation of other object sets; in this case, the Es::* set. The first
problem to arise is how we should name the module. We could use the continent::country
convention, (especially in Europe, where everybody is part of one big family), or just go for the national
two-letter code; but in this case, should the language code or the national ISO code be used? Our
suggestion is that it will depend upon the topic of the module. Matters relative to the whole Spanish
state should be called Es::*, while matters peculiar to an autonomous region should follow the locale
convention: languagecode_COUNTRYCODE. For instance, national Catalan modules could be named
Ca_ES::*. This is only a suggestion, and the right way to baptize a module is to issue a request for
comments in the news:comp.lang.Perl.modules and/or other national discussion groups, such as
Perl-es@egroups.com. More details can also be found in the Modules FAQ, available by entering

> perldoc perlmodlib.

One of the varying aspects between countries is the id card number. In Spain, it is the same number as
the national revenue service code and includes a letter, which acts as a checksum. The following
Es::Nif package can be used to check an NIF (Número de Identificación Fiscal, or fiscal identification
number).

#!/usr/bin/perl
ES/Nif.pm
use strict;

package ES::Nif;
Check that the letter of the Spanish NIF is correct. A Spanish personal
NIF is a set of numbers followed by a letter. It can be expressed in upper
or lower case, separated by a dash or not.

Locale and Internationalization

1095

use Carp qw(carp);

sub check {
my $nif = shift;
carp "Incorrect NIF format: $nif \n" if $nif !~ /^(\d+)\-?(\w)$/;
my ($number, $letter) = ($1, $2);
return letter($number) eq uc($letter);

}

sub letter {
my $number = shift;
my $mod = $number % 23;
my ($digit1, $digit2) = split(//, $mod);
my $letterComputed = $::lookup[$digit1][$digit2];
return $letterComputed;

}

This routine is called when the package is declared in a program. It reads the letter codes and builds up
the lookup table:

INIT {
my $i = 0;
while (<DATA>) {

my @data = split;
push(@{$::lookup[$i++]}, @data);

}
}
"No te lo digo"; # this is a true value
taken from http://www.terra.es/personal2/bomb009/telefonos.htm

__DATA__
T R W A G M Y F P D
X B N J Z S Q V H L
C K E T

The letter in the fiscal number is found using the remainder of dividing the id number by 23, that is,
DNI % 23. The result is then looked up in a double entry table; the first digit corresponds to the row,
the second digit to the column, remembering that we start counting from zero. For instance, if DNI %
23 = 12, we would look up second row and third column, that is, N.

There are only two routines, one computes the letter from the number, and the other checks it against
the letter that comes with the NIF. They can be used like this:

#!/usr/bin/perl
ES/Nif.pl
use warnings;
use strict;

use ES::Nif;

print "Checking $ARGV[0] ";
if (ES::Nif::check($ARGV[0])) {

print "Correct";
} else {

chop($ARGV[0]); # This chops off letter
print "Incorrect. Letter should be ", ES::Nif::letter($ARGV[0]);

}
print "\n";

Chapter 26

1096

This would produce an output similar to:

> perl ES/Nif.pl 2345678U
Checking 2345678U Incorrect. Letter should be T
> perl ES/Nif.pl 3332210Q
Checking 3332210Q Correct

Summary
Over the course of this chapter, we have taken a look at Perl internationalization and localization from
different angles. As an overview we have:

❑ Seen how to use the locale framework in order to present information according to local
conventions.

❑ Covered modules and tools available that deal with languages, alphabets, time zones, etc.

❑ Looked at how we can use Perl to help us identify and manipulate unknown languages when
we come across them.

❑ Created a basic translation page using flatfiles incorporating three common languages.

❑ Illustrated guidelines and possible topics for module creation, as well as writing our own
simple module.

Locale and Internationalization

1097

Chapter 26

1098

Command Line Options

The following is a list of the available switches, which can be appended to the calling of Perl from the
command line. The exact syntax for calling Perl from the command line is as follows:

> perl (switches) (--) (programfile) (arguments)

Switch Function

-0(octal) This sets the record separator $/ by specifying the character's number in
the ASCII table in octal. For example, if we wanted to set our separator to
the character e we would say perl -0101. The default is the null
character, and $/ is set to this if no argument is given.

-a -a can be used in conjunction with -n or -p. It enables autosplit, and
uses whitespace as the default delimiter. Using -p will print out the
results, which are always stored in the array @F.

-C Enables native wide character system interfaces.

-c This is a syntactic test only. It stops Perl executing, but reports on any
compilation errors that a program has before it exits. Any other switches
that have a runtime effect on your program will be ignored when -c is
enabled.

-d filename This switch invokes the Perl debugger. The Perl debugger will only run
once you have gotten your program to compile. Enabling -d allows you
to prompt debugging commands such as install breakpoints, and many
others.

Table continued on following page

Appendix A

1100

Switch Function

-D(number)

-D(list)

-D will set debugging flags, but only if you have debugging compiled into
your program. The following table shows you the arguments that you may
use for -D, and the resulting meaning of the switch.

Argument Argument Operation

(number) (character)

1 p Tokenizing and parsing

2 s Stack snapshots

4 l Label stack Processing

8 t Trace execution

16 o Object method lookup

32 c String/numeric conversions

64 p Print preprocessor command for -p

128 m Memory allocation

256 f Format processing

512 r Regular expression processing

1024 x Syntax tree dump

2048 u Tainting checks

4096 L Memory leaks

8192 H Hash dump

16384 X Scratchpad allocations

32768 D Cleaning up

65536 S Thread synchronization

-e This allows you to write one line of script, by instructing Perl to execute
text following the switch on the command line, without loading and
running a program file. Multiple calls may be made to -e in order to
build up scripts of more than one line.

-F/pattern/ Causes -a to split using the pattern specified between the delimiters. The
delimiters may be / /, " ", or ' '.

-h Prints out a list of all the command line switches.

-i(extension) Modifies the <> operator. Makes a backup file if an argument is given.
The argument is treated as the extension that the saved file is to be given.

-I (directory) Causes a directory to be added to the search path when looking for files
to include. This path will be searched before the default paths, one of
which is the current directory, the other is generally
/usr/local/lib/Perl on UNIX and C:\perl\bin on Windows.

Command Line Options

1101

Switch Function

-l(octal) -l adds line endings, and defines the line terminator by specifying the
character's number in the ASCII table in octal. If it is used with -n or -p,
it will chomp the line terminator. If the argument is omitted, then $\ is
given the current value of $/. The default value of the special variable $/
is newline.

-(mM)(-)module Causes the import of the given module for use by your script, before
executing the program.

-n Causes Perl to assume a while (<>) {My Script} loop around your
script. Basically it will iterate over the filename arguments. It does no
printing of lines.

-p This is the same as -n, except that it will print lines.

-P -P causes your program to be run through the C preprocessor before it is
compiled. Bear in mind that the preprocessor directives begin with #, the
same as comments, so preferably use ;# to comment your script when
you use the -P switch.

-s This defines variables with the same name as the switches that follow on
the command line. The other switches are also removed from @ARGV. The
newly-defined variables are set to 1 by default. Some parsing of the other
switches is also enabled.

-S Causes Perl to look for a given program file using the PATH environment
variable. In other words, it acts much like #!

-T Stops data entering a program from performing unsafe operations. It is a
good idea to use this when there is a lot of information exchange
occurring, like in CGI programming.

-u This will perform a core dump after compiling the program.

-U This forces Perl to allow unsafe operations.

-v Prints the version of Perl that is currently being used (includes VERY
IMPORTANT Perl info).

-V(:variable) Prints out a summary of the main configuration values used by Perl
during compiling. It will also print out the value of the @INC array.

-w Invokes the raising of many useful warnings based on the (poor or bad)
syntax of the program being run.

This switch has been deprecated in Perl 5.6, in favor of the use
warnings pragma.

-W Enables all warnings.

-X This will disable all warnings. We already know that we always use use
warnings when writing our programs. So you will not need this.

-x(directory) Tells Perl to get rid of extraneous text that precedes the shebang line. All
switches on the shebang line will still be enabled.

Appendix A

1102

Special Variables

This is a categorized listing of the predifined variables provided by Perl. The longer and more
descriptive 'English' names become available when using the English module with use English.

Default Variables and Parameters
Variable English Name Description

$_ $ARG This global scalar acts as a default variable for function
arguments and pattern-searching space – with many common
functions, if an argument is left unspecified, $_ will be
automatically assigned. For example, the following statements
are equivalent:

chop($_) and chop

$_ =~ m/expr/ and m/expr/

@_ n/a The elements of this array are used to store function arguments,
which can be accessed (from within a function definition) as
$_[num]. The array is automatically local to each function.

@ARGV n/a The elements of this array contain the command line arguments
intended for use by the script.

$ARGV n/a This contains the name of the current file when reading from the
null filehandle <>. <> is a literal, and defaults to standard input,
<STDIN>, if no arguments are supplied from elements in @ARGV.

TE
AM
FL
Y

Team-Fly®

Appendix B

1104

Regular Expression Variables (all read-only)
Variable English Name Description

$(num) n/a The scalar $n contains the substring matched to the n'th
grouped subpattern in the last pattern match, and
remains in scope until the next pattern match with
subexpressions. It ignores matched patterns occurring in
nested blocks that are already exited. If there are no
corresponding groups, then the undefined value is
returned.

$& $MATCH This scalar contains the string matched by the last
successful pattern match. Once again, this will not
include any strings matched in nested blocks. For
example:

'UnicornNovember' =~ /Nov/;

print $&;

will print Nov. For versions of Perl since 5.005, this is not
an expensive variable to use.

$' $POSTMATCH This scalar holds the substring following whatever was
matched by the last successful pattern match. For
example, if we say:

'UnicornNovember' =~ /Nov/;

$' will return ember.

$` $PREMATCH This scalar holds the substring preceding whatever was
matched by the last successful pattern match. For
example, if we say:

'UnicornNovember' =~ /Nov/;

$` will return Unicorn.

$+ $LAST_PAREN_MATCH This scalar holds the last substring matched to a grouped
subpattern in the last search. It comes in handy if you're
not sure which of a set of alternative subpatterns
matched. For example, if you successfully match on
/(ab)*| (bc*)/, then $+ stores either $1 or $2,
depending on whether it was the first or second grouped
subpattern that matched. For example, following:

'UnicornNovember' =~ /(Nov)|(Dec)/;

$+ will return Nov.

Special Variables

1105

Variable English Name Description

$* $MULTILINE_MATCHING This sets to 1 to do multi-line matching within a string, or
0 to tell Perl that it can assume that strings contain a
single line, for the purpose of optimizing pattern matches.
Pattern matches on strings containing multiple newlines
can produce confusing results when $* is 0.

Default is 0. (Mnemonic: * matches multiple things.)

This variable influences the interpretation of only ^ and
$. A literal newline can be searched for even when $*
== 0.

Use of $* is deprecated in modern Perl, supplanted by
the /s and /m modifiers on pattern matching.

@+ @LAST_MATCH_END This array lists the back pointer positions (in the
referenced string) of the last successful match. The first
element @+[0] contains the pointer's starting position
following that match, each subsequent value corresponds
to its position just after having matched the
corresponding grouped subpattern. For example,
following:

'UnicornNovember' =~ /(U)\w?(N)/;

@+ will return: (8,1,8), while following:

'UnicornNovember' =~ /(Uni)\w?(Nov)/;

@+ will return: (10,3,10).

@- @LAST_MATCH_START This array lists the front pointer positions (in the
referenced string) of the last successful match. The first
element @-[0] contains the pointer's starting position
prior to that match, each subsequent value corresponds to
its position just before having matched the corresponding
grouped subpattern. For example following:

'UnicornNovember' =~ /(Uni)\w?(Nov)/;

@- will return: (0,0,7), while following:

'UnicornNovember' =~ /(Uni)(\w?)(Nov)/;

@- will return: (0,0,3,7).

Appendix B

1106

Input/Output Variables
Variable English Name Description

$. $INPUT_LINE_NUMBER This scalar holds the current line number of the last
filehandle on which you performed either a read,
seek, or tell. It is reset when the filehandle is
closed.

NB: <> never does an explicit close, so line numbers
increase across ARGV files. Also, localizing $. has the
effect of localizing Perl's notion of 'the last read
filehandle'.

$/ $INPUT_RECORD_SEPARATOR This scalar stores the input record separator, which
by default is the newline \n. If it's set to " ", input
will be read one paragraph at a time.

 $\ $OUTPUT_RECORD_SEPARATOR This scalar stores the output record separator for
print – normally this will just output consecutive
records without any separation (unless explicitly
included). This variable allows you to set it for
yourself. For example:

$\ = "-";

print "one";

print "two";

will print: one-two-.

$| $OUTPUT_AUTOFLUSH This corresponds to an internal flag used by Perl to
determine whether buffering should be used on a
program's write/read operations to/from files. If the
value is TRUE ($| is greater than 0), buffering is
disabled.

$, $OUTPUT_FIELD_SEPARATOR This is the output field separator for print.
Normally this will just output consecutive fields
without any separation (unless explicitly included).
This variable allows you to set it for yourself. For
example:

$, = "-";

print "one", "two";

will print: one-two.

$" $LIST_SEPARATOR This is the output field separator for array values
interpolated into a double-quoted string (or similar
interpreted string), the default is a space. For
example:

$" = "-";

@ar = ("one", "two", "three");

print "@ar";

will print: one-two-three.

Special Variables

1107

Variable English Name Description

$; $SUBSCRIPT_SEPARATOR This is the subscript separator for multidimensional
array emulation. If you refer to a hash element as:

$foo{$a, $b, $c}

it really means

$foo{join($;, $a, $b, $c)}

Filehandle/format Variables
Variable English Name Description

$# $OFMT This holds the output format for printed numbers.

NB: The use of this variable has been deprecated.

$| $OUTPUT_AUTOFLUSH This corresponds to an internal flag used by Perl to
determine whether buffering should be used on a
program's write/read operations to/from files, if its value
is TRUE ($| is greater than 0), then buffering is disabled.

$% $FORMAT_PAGE_NUMBER The current page number of the selected output
channel.

$= $FORMAT_LINES_PER_PAGE The current page length, measured in printable lines, the
default is 60.

This only becomes important when a top-of-page format
is invoked, if a write command does not fit into a given
number of lines, then the top-of-page format is used,
before any printing past the page length continues.

$- $FORMAT_LINES_LEFT The number of lines left on a page, when a page is
finished, it's given the value of $=, and is then
decremented for each line outputted.

$~ $FORMAT_NAME The currently selected format name, the default is the
name of the filehandle.

$^ $FORMAT_TOP_NAME The name of the top-of-page format.

$: $FORMAT_LINE_BREAK_
CHARACTERS

The set of characters after which a string may be broken
to fill continuation fields (starting with ^) in a format –
default is ' \n-' to break on whitespace or hyphens.

$^L $FORMAT_FORMFEED This holds a character that is used by a format's output
to request a form feed, default is \f.

$^A $ACCUMULATOR This is the current value of the write() accumulator
for format() lines. A format contains formline()
calls that put their result into $^A. After calling its
format, write() prints out the contents of $^A and
empties. We never really see the contents of $^A unless
we call formline() ourselves and then look at it.

Appendix B

1108

Error Variables
Variable English Name Description

$? $CHILD_ERROR This holds the status value returned by the last pipe
close, backtick (``) command, or system() operator.

$@ $EVAL_ERROR This holds the syntax error message from the last
eval() command, it evaluates to null if the last eval()
parsed and executed correctly (although the operations
you invoked may have failed in the normal fashion).

$! $ERRNO If used in a numeric context, this returns the current
value of errno, with all the usual caveats (so you
shouldn't depend on $! to have any particular value
unless you've got a specific error return indicating a
system error).

If used in a string context, it returns the corresponding
system error string. We can assign a set errno value to $!
if, for instance, we want it to return the string for that
error number, or we want to set the exit value for the
die() operator.

$^E $EXTENDED_OS_ERROR This returns an extended error message, with
information specific to the current operating system. At
the moment, this only differs from $! under VMS,
OS/2, and Win32 (and for MacPerl). On all other
platforms, $^E is always the same as $!.

System Variables
Variable English Name Description

$$ $PROCESS_ID The process ID (pid) of the Perl process running the
current script.

$< $REAL_USER_ID The real user ID (uid) of the current process.

$> $EFFECTIVE_USER_ID The effective uid of the current process.

NB: $< and $> can only be swapped on machines
supporting setreuid().

$($REAL_GROUP_ID The real group ID (gid) of the current process.

$) $EFFECTIVE_GROUP_ID The effective group ID (gid) of the current process.

$0 $PROGRAM_NAME The name of the file containing the Perl script being
executed.

$^X $EXECUTABLE_NAME The name that the Perl binary was executed as.

Special Variables

1109

Variable English Name Description

$] n/a The version number of the Perl interpreter, including
patchlevel / 1000, can be used to determine whether the
interpreter executing a script is within the right range of
versions.

See also use VERSION and require VERSION for a way to
fail if the interpreter is too old.

$[n/a The index of the first element in an array, and of the first
character in a substring. Default is 0.

As of release 5 of Perl, assignment to $[is treated as a
compiler directive, and cannot influence the behavior of any
other file. Its use is highly discouraged.

$^O $OSNAME The name of the operating system under which this copy of
Perl was built, as determined during the configuration process,
identical to $Config{'osname'}.

$^T $BASETIME The time at which the current script began running, in seconds
since the beginning of 1970. Values returned by -M, -A, and -C
filetests are based on this value.

$^W $WARNING The current value of the warning switch, either TRUE or FALSE

%ENV n/a Your current environment, altering its value changes the
environment for child processes.

%SIG n/a Used to set handlers for various signals.

$^C $COMPILING The current value of the flag associated with the -c switch.
Mainly of use with -MO=... to allow code to alter its behavior
when being compiled, such as to AUTOLOAD at compile time
rather than normal, deferred loading. See perlcc. Setting $^C
= 1 is similar to calling B::minus_c.

$^D $DEBUGGING The current value of the debugging flags.

$^F $SYSTEM_FD_MAX The maximum system file descriptor, ordinarily 2.

$^I $INPLACE_EDIT The current value of the inplace-edit extension. Use undef to
disable inplace editing.

$^M n/a Perl can use the contents of $^M as an emergency memory pool
after die()ing. Suppose that your Perl was compiled with
DPERL_EMERGENCY_SBRK and used Perl's malloc. Then

$^M = 'a' x (1 << 16);

would allocate a 64K buffer for use when in emergency.

$^P $PERLDB The internal variable for debugging support.

$^R $LAST_REGEXP_
CODE_RESULT

The result of evaluation of the last successful regular expression
assertion.

Table continued on following page

Appendix B

1110

Variable English Name Description

$^S $EXCEPTIONS_
BEING_CAUGHT

Current state of the interpreter. Undefined if parsing of the
current module/eval is not finished (may happen in
$SIG{__DIE__} and $SIG{__WARN__} handlers). True if
inside an eval(), otherwise false.

$^V $PERL_VERSION The revision, version, and subversion of the Perl interpreter,
represented as a string composed of characters with those
ordinals.

This can be used to determine whether the Perl interpreter
executing a script is in the right range of versions.

Others
Variable English Name Description

@INC n/a A list of places to look for Perl scripts for evaluation by the do
EXPR, require, or use constructs.

%INC n/a Contains entries for each filename that has been included via
do or require. The key is the specified filename, and the
value the location of the file actually found. The require
command uses this array to determine whether a given file has
already been included.

Special Variables

1111

Appendix B

1112

Function Reference

The first table in this appendix lists the file test operators. The syntax of these tests can take one of the
following forms:

-X filehandle
-X expression
-X

X here is one of the following letters: ABCMORSTWX bcdefgkloprstuwxz. If the filehandle or
expression argument is omitted, the file test is performed against $_, with the exception of -t, which
tests STDIN.

Here is a complete rundown of what each file test checks for:

Test Meaning

-A How long in days between the last access to the file and latest startup.

-B True if the file is a binary file (Compare with -T).

-C How long in days between the last inode change and latest startup.

-M How long in days between the last modification to the file and latest startup.

-O True if the file is owned by a real uid/gid.

-R True if the file is readable by a real uid/gid.

Table continued on following page

TE
AM
FL
Y

Team-Fly®

Appendix C

1114

Test Meaning

-S True if the file is a socket.

-T True if the file is a text file (compare with -B).

-W True if the file is writable by a real uid/gid.

-X True if the file is executable by a real uid/gid.

-b True if the file is a block special file.

-c True if the file is a character special file.

-d True if the file is a directory.

-e True if the file exists.

-f True if the file is a plain file, not a directory.

-g True if the file has the setgid bit set.

-k True if the file has the sticky bit set.

-l True if the file is a symbolic link.

-o True if the file is owned by an effective uid/gid.

-p True if the file is a named pipe or if the filehandle is a named pipe.

-r True if the file is readable by an effective uid/gid.

-s True if the file has non-zero size, returns size of file in bytes.

-t True if the filehandle is opened to a tty.

-u True if the file has the setuid bit set.

-w True if the file is writable by an effective uid/gid.

-x True if the file is executable by an effective uid/gid.

-z True if the file has zero size.

The following table includes an alphabetical list of every function in Perl 5.6. Marked against its name
will be the syntax for the function, a brief description of what it does and any directly related functions:

Function Syntax Description

abs abs value

abs

Returns the absolute (non-negative) value of an
integer. For example abs(-1) and abs(1) both
return 1 as a result.

If no value argument is given, abs returns the
absolute value of $_.

accept accept newsocket,
genericsocket

Accepts an incoming socket connect with
sessions enabled if applicable.

Function Reference

1115

Function Syntax Description

alarm alarm num_seconds

alarm

Starts a timer with num_seconds seconds on the clock
before it trips a SIGALRM signal. Before the timer runs
out, another call to alarm cancels it and starts a new
one with num_seconds on the clock. If num_seconds
equals zero, the previous timer is cancelled without
starting a new one.

atan2 atan2 x, y Returns the arctangent of x/y within the range -� to �.

bind bind socket, name Binds a network address (TCP/IP, UDP, etc) to a
socket, where name should be the packed address for
the socket.

binmode Binmode filehandle Sets the specified filehandle to be read in binary
mode explicitly for those systems, that cannot do this
automatically. UNIX and MacOS can and thus
binmode has no effect under these OS's.

bless bless ref, classname

bless ref

Takes the variable referenced by ref and makes it an
object of class classname.

caller caller expression

caller

Called within a subroutine, caller returns a list of
information outlining what called it, that is the sub's
context. This actually returns the caller's package
name, its filename, and the line number of the call.
Returns the undefined value if not in a subroutine. If
expression is used, also returns some extra
debugging information to make a stack trace.

chdir chdir new_directory

chdir

Changes your current working directory to
new_directory. If new_directory is omitted, the
working directory is changed to that one specified in
$ENV(HOME).

chmod chmod list Changes the permissions on a list of files. The first
element of list must be the octal representation of
the permissions to be given to it.

chomp chomp variable

chomp list

chomp

Usually removes \n from a string. Actually removes
the trailing record separator as set in $/ from a string
or from each string in a list and then returns the
number of characters deleted. If no argument is given,
chomp acts on $_.

chop chop variable

chop list

chop

Remove the last character from a string, or from each
string in a list, returning the (last) character chopped.
If no argument is given, chop acts on $_.

Table continued on following page

Appendix C

1116

Function Syntax Description

chown chown list Changes the ownership on a list of files. Within
list, the first two elements must be the user ID and
group ID of that user and group to get ownership,
followed by any number of filenames. Setting -1 for
either ID means, 'Leave this value unchanged.'

chr chr number

chr

Returns ASCII character number number. If
number is omitted, $_ is used.

chroot chroot directory

chroot

Changes the root directory for all further path
lookups to directory. If directory is not given,
$_ is used as the new root directory.

close close filehandle

close

Closes the file, pipe or socket associated with the
nominated filehandle, resetting the line counter
$. as well. If filehandle is not given, closes the
currently selected filehandle. Returns true on
success.

closedir closedir dirhandle Closes the directory opened by opendir() given by
dirhandle.

connect connect socket,
address

Tries to connect to a socket at the given address.

continue continue block A flow control statement rather than a function. If
there is a continue attached to a block (typically in
a while or foreach), it is always executed just
before the conditional is about to be evaluated again.

cos cos num_in_radians Calculates and returns the cosine of a number given
in radians. If num_in_radians is not given,
calculates the cosine of $_.

crypt crypt plaintext, key A one-way encryption function (there is no decrypt
function) that takes some plaintext (a password
usually) and encrypts it with a two character key.

dbmclose dbmclose hash Deprecated in favor of untie(). Breaks the binding
between a dbm file and the given hash.

dbmopen dbmopen hash, dbname,

mode

Deprecated in favor of tie(). Binds the specified
hash to the database dbname. If the database does
not exist, it is created with the specified read\write
mode, given as an octal number.

defined defined expression

defined

Checks whether the value, variable, or function in
expression is defined. If expression is omitted,
$_ is checked.

Function Reference

1117

Function Syntax Description

delete delete $hash{key}

delete @hash{keys
%hash}

Deletes one or more specified keys and their
corresponding values from the hash. Returns the
associated values.

die die message Writes message to the standard error output and
then exits the currently running program with $! as
its return value.

do do filename Executes the contents of filename as a Perl script.
Returns undef if it cannot read the file.

dump dump label

dump

Initiates a core dump to be undumped into a new
binary executable file, which when run will start at
label. If label is left out, the executable will start
from the top of the file.

each each hash Returns the next key/value pair from a hash as a
two-element list. When hash is fully read, returns
null.

endgrent engrent Frees the resources used to scan the /etc/group
file or system equivalent.

endhostent endhostent Frees the resources used to scan the /etc/hosts
file or system equivalent.

endnetent endnetent Frees the resources used to scan the
/etc/networks file or system equivalent.

endprotoent endprotoent Frees the resources used to scan the
/etc/protocols file or system equivalent.

endpwent endpwent Frees the resources used to scan the /etc/passwd
file or system equivalent.

endservent endservent Frees the resources used to scan the
/etc/services file or system equivalent.

eof eof filehandle

eof()

eof

Returns 1 if filehandle is either not open or will
return the end of file on the next read. eof()
checks for the end of the pseudo file containing the
files listed on the command line as the program was
run. If eof does not have an argument, it will check
the last file to be read.

eval eval string

eval block

eval

Parses and executes string as if it were a mini-
program and returns its result. If no argument is
given, it evaluates $_. If an error occurs or die() is
called eval returns undef. Works similarly with
block except eval block is parsed only once.
eval string is re-parsed each time eval executes.

Table continued on following page

Appendix C

1118

Function Syntax Description

exec exec command Abandons the current program to run the specified
system command.

exists exists $hash{$key} Returns true if the specified key exists within the
specified hash.

exit exit status Terminates current program immediately with
return value status. N.B. The only universally
recognized return values are 1 for failure and 0 for
success.

exp exp number Returns the value of e to the power of number (or
$_ if number is omitted).

fcntl fcntl filehandle,

function, args

Calls the fcntl function, to use on the file or
device opened with filehandle.

fileno fileno filehandle Returns the file descriptor for filehandle.

flock flock filehandle,
locktype

Tries to lock or unlock a write-enabled file for use
by the program. Note that this lock is only advisory
and that other systems not supporting flock will be
able to write to the file. locktype can take one of
four values; LOCK_SH (new shared lock), LOCK_EX
(new exclusive lock), LOCK_UN (unlock file) and
LOCK_NB (do not block access to the file for a new
lock if file not instantly available). Returns true for
success, false for failure.

for for loop iterator

block

Perl's C-style for loop works exactly like the
corresponding while loop.

There is one minor difference: The first form
implies a lexical scope for variables declared with
my in the initialization expression.

foreach foreach loop iterator

statement

The foreach loop iterates over a normal list value
and sets the variable VAR to be each element of the
list in turn.

The foreach keyword is actually a synonym for the
for keyword, so you can use foreach for
readability, or for for brevity.

fork fork System call that creates a new system process also
running this program from the same point the fork
was called. Returns the new process's ID to the
original program, 0 to the new process, or undef if
the fork did not succeed.

format format Declares an output template for use with write().

Function Reference

1119

Function Syntax Description

formline formline template,
list

An internal function used for formats. Applies
template to the list of values and stores the
result in $^A. Always returns true.

getc getc filehandle

getc

Waits for the user to press Return and then
retrieves the next character from filehandle's
file. Returns undef if at the end of a file. If
filehandle is omitted, uses STDIN instead.

getgrent getgrent Gets the next group record from /etc/group or
the system equivalent, returning an empty record
when the end of the file is reached.

getgrgid getgrgid gid Gets the group record from /etc/group or the
system equivalent whose ID field matches the
given group number gid. Returns an empty
record if no match occurs.

getgrnam getgrnam name Gets the group record from /etc/group or the
system equivalent whose name field matches the
given group name. Returns an empty record if no
match occurs.

gethostbyaddr gethostbyaddr
address,

addrtype

gethostbyaddr
address

Returns the hostname for a packed binary network
address of a certain address type. By default,
addrtype is assumed to be IP.

gethostbyname gethostbyname
hostname

Returns the network address given its
corresponding hostname.

gethostent gethostent Gets the next network host record from
/etc/hosts or the system equivalent, returning
an empty record when the end of the file is
reached.

getlogin getlogin Returns the user ID for the currently logged
in user.

getnetbyaddr getnetbyaddr
address,

addrtype

getnetbyaddr
address

Returns the net name for a given network
address of a certain address type. By default,
addrtype is assumed to be IP.

Table continued on following page

Appendix C

1120

Function Syntax Description

getnetbyname getnetbyname name Returns the net address given its
corresponding net name.

getnetent getnetent Gets the next entry from
/etc/networks or the system
equivalent, returning an empty record
when the end of the file is reached.

getpeername getpeername socket Returns the address for the other end of
the connection to this socket.

getpgrp getpgrp process_id

getpgrp

Returns the process group in which the
specified process is running. Assumes
current process if process_id is not
given.

getppid getppid Returns the process ID of the current
process's parent process.

getpriority getpriority type, id Returns current priority for a process,
process group, or user as determined by
type.

getprotobyname getprotobyname name Returns the number for the protocol
given as name.

getprotobynumber getprotobynumber
number

Returns the name of the protocol given
its number.

getprotoent getprotoent Gets the next entry from
/etc/protocols or the system
equivalent, returning an empty record
when the end of the file is reached.

getpwent getpwent Gets the next entry from /etc/passwd
or the system equivalent, returning an
empty record when the end of the file is
reached.

getpwnam getpwnam name Gets the password record whose login
name field matches the given name.
Returns an empty record if no match
occurs.

getpwuid getpwuid uid Gets the password record whose user ID
field matches the given uid. Returns an
empty record if no match occurs.

getservbyname getservbyname name,

protocol

Returns the port number for the named
service on the given protocol.

getservbyport getservbyport port,

protocol

Returns the port name for the service
port on the given protocol.

Function Reference

1121

Function Syntax Description

getservent getservent Gets the next entry from
/etc/services or the system
equivalent, returning an empty record
when the end of the file is reached.

getsockname getsockname socket Returns the address for this end of the
connection to this socket.

getsockopt getsockopt socket,
level,

optname

Returns the specified socket option or
undef if an error occurs.

glob glob expression

glob

Returns a list of filenames matching the
regular expression in the current
directory. If expression is omitted, the
comparison is made with $_.

gmtime gmtime time Returns a nine-element integer array
representing the given time (or time()
if not given) converted to GMT. By index
order, the nine elements (all zero-based)
represent:

0 Number of seconds in the current
minute

1 Number of minutes in the current hour

2 Current hour

3 Current day of month

4 Current month

5 Number of years since 1900

6 Weekday (Sunday = 0)

7 Number of days since January 1

8 Whether daylight savings time is in
effect

goto goto tag

goto expression

goto &subroutine

Looks for tag either given literally of
dynamically derived by resolving
expression and resumes execution of the
program there on the provision that it is
not inside a construct which requires
initializing. For example, a for loop.

Alternatively, goto &subroutine
switches a call to subroutine for the
currently running subroutine.

Table continued on following page

Appendix C

1122

Function Syntax Description

grep grep expression, list

grep {block} list

Evaluates a given expression or block
of code against each element in list and
returns a list of those elements for which
the evaluation returned true.

hex hex string

hex

Reads in string as a hexadecimal
number and returns the corresponding
decimal equivalent. Uses $_ if string is
omitted.

if if expression block Executes block if expression is true.

if..else if expression block1

else block2

Executes block1 if expression is true,
otherwise executes block2.

if..elsif if expression1 block1

elsif expression2
block2

else block3

If expression1 is true, block1,
otherwise, if expression2 is true then
block2 is executed. If both
expression1 and expression2 are
false then block3 is executed.

import import module list

import module

Patches a module's namespace into your
own, incorporating the listed
subroutines and variables into your own
package (or all of them if list is not
given).

index index string,
substring,

position

index string,
substring

Returns the zero-based position of
substring in string first occurring after
character number position. Assumes
position equals zero if not given.
Returns -1 if match not found.

int int number

int

Returns the integer section of number, or
$_ if number is omitted.

ioctl ioctl filehandle,
function,

argument

Calls the ioctl function, to use on the
file or device opened with filehandle.

join join character, list Returns a single string comprising the
elements of list, separated from each
other by character.

keys keys hash Returns a non-ordered list of the keys
contained in hash.

kill kill signal,
process_list

Sends a signal to the processes and/or
process groups in process_list.
Returns number of signals successfully
sent.

Function Reference

1123

Function Syntax Description

last last label

last

Causes the program to break out of the
labeled loop (or the innermost loop, if
label is not given) surrounding the
command and to continue with the
statement immediately following the
loop.

lc lc string Returns string in lower case, or $_ in
lower case if string is omitted.

lcfirst lcfirst string Returns string with the first character
in lower case. Works on $_ if string is
omitted.

length Length expression Evaluates expression and returns the
number of characters in that value.
Returns length $_ if expression is
omitted.

link link thisfile,
thatfile

Creates a hard link in the filesystem, from
thatfile to thisfile. Returns true
on success, false on failure.

listen listen socket,

max_connectons

Listens for connections to a particular
socket on a server and reports when the
number of connections exceeds
max_connections.

local local var Declares a 'private' variable, which is
available to the subroutine in which it is
declared and any other subroutines,
which may be called by this subroutine.

Actually creates a temporary value for a
global variable for the duration of the
subroutine's execution.

localtime localtime time Returns a nine-element array
representing the given time (or time()
if not given) converted to system local
time. See gmtime() for description of
elements.

log log number Returns the natural logarithm for a
number. That is, returns x where
ex=number.

lstat lstat filehandle

lstat expression

lstat

Returns a thirteen-element status array
for the symbolic link to a file and not the
file itself. See stat() for further details.

Table continued on following page

TE
AM
FL
Y

Team-Fly®

Appendix C

1124

Function Syntax Description

m// m// Tries to match a regular expression
pattern against a string.

map map expression, list

map {block} list

Evaluates a given expression or block
of code against each element in list and
returns a list of the results of each
evaluation.

mkdir mkdir dirname, mode Creates a directory called dirname and
gives it the read\write permissions as
specified in mode (an octal number).

msgctl msgctl id, cmd, arg Calls the System V IPC msgctl function.

msgget msgget key, flags Calls the System V IPC msgget function.

msgrcv msgrcv id, var, size,
type,

flags

Calls the System V IPC msgrcv function.

msgsnd msgsnd id, msg, flags Calls the System V IPC msgsnd function.

my my variable_list Declares the variables in
variable_list to be lexically local to
the block or file it has been declared in.

next next label

next

Causes the program to start the next
iteration of the labeled loop (or the
innermost loop, if label is not given)
surrounding the command.

no no module_name Removes the functionality and semantics
of the named module from the current
package. Compare with use() which
does the opposite.

oct oct string

oct

Reads in string as an octal number and
returns the corresponding decimal
equivalent. Uses $_ if string is omitted.

open open filehandle,
filename

open filehandle

Opens the file called filename and
associates it with filehandle. If
filename is omitted, open assumes that
the file has the same name as
filehandle.

opendir opendir dirhandle,
dirname

Opens the directory called dirname and
associates it with dirhandle.

ord ord expression Returns the numerical ASCII value of the
first character in expression.

Function Reference

1125

Function Syntax Description

pack pack template, list Takes a list of values and puts them
into a binary structure using template (a
sequence of characters as shown below)
to give the structure an ordered
composition. The possible characters for
template are:

a

Null-padded ASCII string

A

Space-padded ASCII string

b

A bit string (low-to-high)

B

A bit string (high-to-low)

c

A signed char value

C

An unsigned char value

d

A double-precision float in the native
format

f

A single-precision float in the native
format

h

A hexadecimal string, low to high

H

A hexadecimal string, high to low

Table continued on following page

Appendix C

1126

Function Syntax Description

pack (continued) pack template, list i

A signed integer

I

An unsigned integer

l

A signed long value

L

An unsigned long value

n

A big-endian short (16-bit) value

N

A big-endian long (32-bit) value

p

A pointer to a null-terminated string

P

A pointer to a fixed-length string

q

A signed quad (64-bit) value

Q

An unsigned quad (64-bit) value

s

A signed short (16-bit) value

S

An unsigned short (16-bit) value

Function Reference

1127

Function Syntax Description

pack (continued) pack template, list v

A little-endian short (16-bit) value

V

A big-endian long (32-bit) value

u

An uuencoded string

w

A BER compressed integer - an unsigned
integer in base 128, high-bit first.

x

A null byte

X

Back up a byte

Z

A null-padded, Null-terminated string

@

Null-fill to absolute position

package package namespace Declares that the following block of code
is to be defined within the specified
namespace.

pipe pipe readhandle,

writehandle

Opens and connects two filehandles, such
that the pipe reads content from
readhandle and passes it to
writehandle.

pop pop array

pop

Removes and returns the last element (at
largest index position) from array. Pops
@ARGV if array is not specified.

pos pos scalar Returns the position in scalar of the
character following the last m//g match.
Uses $_ for scalar if omitted.

Table continued on following page

Appendix C

1128

Function Syntax Description

print print filehandle list

print list

print

Prints a list of comma-separated strings
to the file associated with filehandle or
STDOUT if not specified. If both
arguments are omitted, prints $_ to the
currently selected output channel.

printf printf filehandle format,

list

printf format, list

As print() but prints to the output
channel using a specified format.

prototype prototype function Returns the prototype of a function as
a string or undef if the prototype does
not exist.

push push array, list Adds the elements of list to the array
at position max_index.

q/ / q/string/ Alternative method of putting single
quotes around a string.

qq/ / qq/string/ Alternative method of putting double
quotes around a string.

quotemeta quotemeta expression Scans through expression and returns
it having prefixed all the metacharacters
with a backslash.

qr/ / qr/strings/ Method used for quoting and compiling
its string element as a regular
expression.

qw/ / qw/strings/ Returns a list of strings, the elements of
which are created by splitting a string
by whitespace, or the strings sent to
qw//.

qx/ / qx/string/ Alternative method of backtick-quoting a
string (which now acts as a command-
line command).

rand rand expression Evaluates expression and then returns a
random value x where 0 <= x < the value
of expression.

read read filehandle, scalar,

length, offset

read filehandle, scalar,

length

Reads length number of bytes in from
filehandle, placing them in scalar.
Starts by default from the start of the file,
but you can specify offset, the position
in the file you wish to start reading from.
Returns the number of bytes read, zero if
at the end of the file or undef if file does
not exist.

Function Reference

1129

Function Syntax Description

readdir readdir dirhandle Returns the next entry in the directory
specified by dirhandle, or if being used
in list context, the entire contents of the
directory.

readline readline filehandle Returns a line from filehandle's file if
in scalar context, else returns a list
containing all the lines of the file as its
elements.

readlink readlink linkname Returns the name of the file at the end of
symbolic link linkname.

readpipe readpipe command Executes command on the command line
and then returns the standard output
generated by it as a string. Returns a list
of lines from the standard output if in list
context.

recv recv socket, scalar,
length, flags

Receives a length byte message over the
named socket and reads it into a
scalar string.

redo redo label

redo
Causes the program to restart the current
iteration of the labeled loop (or the
innermost loop, if label is not given)
surrounding the command without
checking the while condition.

ref ref reference

ref
Returns the type of object being
referenced by reference, or a package
name if the object has been blessed into a
package.

rename rename oldname, newname Renames file oldname as newname.
Returns 1 for success, 0 otherwise.

require require file

require package

require num

require

Ensures that the named package or
file is included at runtime. If num is
argument, ensures that version of Perl
currently running is greater than or equal
to num (or $_ if omitted).

reset reset expression Resets all variables in current package
beginning with one of the characters in
expression and all ?? searches to their
original state.

return return expression Returns the value of expression from a
subroutine or eval().

reverse reverse list Returns either list with its elements in
reverse order if in list context or a string
consisting of the elements of list
concatenated together and then written
backwards.

Table continued on following page

Appendix C

1130

Function Syntax Description

rewinddir rewinddir dirhandle Resets the point of access for
readdir()to the top of directory
dirhandle.

rindex rindex string, substring,

position

rindex string, substring

Returns the zero-based position of the last
occurrence of substring in string at
or before character number position.
Returns -1 if match not found.

rmdir rmdir dirname If directory dirname (or that given in $_
if omitted) is empty, it is removed.
Returns true on success, false
otherwise.

s/// s/matchstring/replacestrin
g/

Searches for matchstring in $_ and
replaces it with replacestring if
found.

scalar scalar expression Evaluates expression in scalar context
and returns the resultant value.

seek seek filehandle, position,
flag

Sets the position (character number) in
a file denoted by filehandle from
which the file will be read/written. flag
tells seek whether to goto character
number position (flag = 0), number
current position + position (flag = 1),
or number EOF + position (flag=2).
Returns 1 on success, 0 otherwise.

seekdir seekdir dirhandle,
position

Sets the position (entry number) in a
directory denoted by dirhandle from
which directory entries will be read.

select select filehandle

select

Changes the current default filehandle
(starts as STDOUT) to filehandle.
Returns the current default filehandle if
filehandle is omitted.

select select rbits, wbits,
ebits, timeout

Calls the system select command to wait
for timeout seconds until one (if any) of
your filehandles become available for
reading or writing and returns either
success or failure.

semctl semctl id, sem_num,
command, argument

Calls the System V IPC semctl function.

semget semget id, semnum,
command, argument

Calls the System V IPC semget function.

semop semop key, opstring Calls the System V IPC semop function.

send send socket, message,
flags, destination

send socket, message,
flags

Sends a message from a socket to the
connected socket, or, if socket is
disconnected, to destination. Takes
account of any system flags given to it.

Function Reference

1131

Function Syntax Description

setgrent setgrent (void) The setgrent function rewinds the file
pointer to the beginning of the
/etc/group file.

sethostent sethostent stayopen The sethostent function specifies, if
stayopen is true (1), that a connected
TCP socket should be used for the name
server queries and that the connection
should remain open during successive
queries. Otherwise, name server queries
will use UDP datagrams.

setnetent setnetent stayopen The setnetent function opens and
rewinds the database. If the stayopen
argument is non-zero, the connection to
the net database will not be closed after
each call to getnetent (either directly,
or indirectly through one of the other
getnet* functions).

setpgrp setpgrp process_id,
process_group

Sets the process_group in which the
process with the given process_id
should run. The arguments default to 0 if
not given.

setpriority setpriority which, id,
priority

Adds to or diminishes the priority of
either a process, process group, or user,
as determined by which and specifically
identified by its id.

setprotoent setprotoent stayopen The setprotoent function opens and
rewinds the /etc/protocols file. If
stayopen is true (1), then the file will
not be closed between calls to
getprotobyname or
getprotobynumber.

setpwent setpwent (void) The setpwent function rewinds the file
pointer to the beginning of the
/etc/passwd file.

setservent setservent stayopen The setservent function opens and
rewinds the /etc/services file. If
stayopen is true (1), then the file will
not be closed between calls to
getservbyname and getservbyport.

setsockopt setsockopt socket, level,
option,
optional_value

Sets the option for the given socket.
Returns undef if an error occurs.

Table continued on following page

Appendix C

1132

Function Syntax Description

shift shift array

shift

Returns the element at position 0 in array
and then removes it from array. Returns
undef if there are no elements in the
array. Shifts @_ within subroutines and
formats and @ARGV otherwise if array is
omitted.

shmctl shmctl id, command,
argument

Calls the System V IPC shmctl function.

shmget shmget key, size, flags Calls the System V IPC shmget function.

shmread shmread id, variable,
position, size

Calls the System V IPC shmread
function.

shmwrite shmwrite id, string,
position, size

Calls the System V IPC shmwrite
function.

shutdown shutdown socket, manner Shuts down the socket specified in the
following manner.

0

Stop reading data

1

Stop writing data

2

Stop using this socket altogether

sin sin expression

sin

Evaluates expression as a value in
radians and then returns the sine of that
value. Returns the sine of $_ if expression
is omitted.

sleep sleep n

sleep

Causes the running script to 'sleep' for n
seconds or forever if n is not given.

socket socket filehandle, domain,
type, protocol

Opens a socket and associates it to the
given filehandle. This socket exists
within the given domain of
communication, is of the given type and
uses the given protocol to
communicate.

socketpair socketpair sock1, sock2,
domain, type,
protocol

Creates a pair of sockets named sock1
and sock2. These sockets exist within the
given domain of communication, are of
the given type and use the given
protocol to communicate.

Function Reference

1133

Function Syntax Description

sort sort subroutine list
sort block list
sort list

Takes a list of values and returns it with
the elements having been sorted into an
order. If subroutine is given, uses that to
sort list. If block is given, this is used as
an anonymous subroutine to sort list. If
neither is given, list is sorted by simple
string comparisons.

splice splice array, offset,
length, list

splice array, offset,
length

splice array, offset

Takes array elements from index offset
to (offset+length) and replaces them
with the elements of list, if any. If
length is removed, removes all the
elements of array from index offset
onwards. If negative, leaves that many
elements at the end of the array. If offset is
negative, splice starts from index number
(maxindex-offset). Returns the last
element removed if in scalar context or
undef if nothing was removed.

split split /pattern/, string,
limit

split /pattern/, string
split /pattern/
split

Takes the given string, and returns it as
an array of smaller strings where any
instances in the string matching pattern
have been used as the delimiter for the
array elements. If given, limit denotes the
number of times the pattern will be
searched for in the string.
If string is omitted, $_ is split. If
pattern is omitted, $_ is split by
whitespace.

sprintf sprintf format, list As printf() but prints list to a string
using a specified format.

sqrt sqrt expression
sqrt

Evaluates expression and then returns
the square root of either it or $_ if it was
left out of the call.

srand srand expression
srand

Seeds the random number generator.

stat stat filehandle
stat expression
stat

Returns a thirteen element array
comprising the following information about
a file named by expression, represented
by filehandle or contained in $_. (by
index number)
0 $dev Device number of filesystem

1 $ino Inode number
Table continued on following page

TE
AM
FL
Y

Team-Fly®

Appendix C

1134

Function Syntax Description

stat
(continued)

stat filehandle

stat expression

stat

2
$mode

File mode

3
$nlink

Number of links to the file

4
$uid

User ID of file's owner

5
$gid

Group ID of file's owner

6
$rdev

Device identifier

7
$size

Total size of file

8
$atime

Last time file was accessed

9
$mtime

Last time file was modified

10
$ctime

Last time inode was changed

11
$blksize

Preferred block size for file I/O

12
$blocks

Number of blocks allocated to file

Function Reference

1135

Function Syntax Description

study study string

study

Tells Perl to optimize itself for repeated
searches on string or on $_ if string
is omitted.

sub sub subname block

sub subname

sub block

Declares a block of code to be a
subroutine with the name subname. If
block is omitted, this is just a forward
reference to a later declaration. If
subname is omitted, this is an
anonymous function declaration.

substr substr string, position,

length, replacement

substr string, position,

length

substr string, position

Returns a substring of string that is
length characters long starting with the
character at index number position. If
given, that substring is then silently
replaced with replacement. If length
is not given, substr assumes the entire
string from position onwards.

symlink symlink oldfile, newfile Creates newfile as a symbolic link to
oldfile. Returns 1 on success, 0 on
failure.

syscall syscall list Assumes the first element in the list is
the name of a system call and calls it,
taking the other elements of the list to
be arguments to that call.

sysopen sysopen filehandle,

filename, mode,

permissions

sysopen filehandle,

filename, mode

Opens file filename under the specified
mode and associates it with the given
filehandle. permissions is the octal
value representing the permissions that
you want to assign to the file. If not given,
the default is 0666.

sysread sysread filehandle,
scalar,

length, offset

sysread filehandle,
scalar,

length

Reads length number of bytes in from
filehandle, placing them in scalar
using the system call read. Starts by
default from the start of the file, but you
can specify offset, the position in the
file you wish to start reading from.
Returns the number of bytes read, zero if
at the end of the file or undef if file does
not exist.

sysseek sysseek filehandle, pos,
flag

Sets the system position for the file
denoted by filehandle. Flag tells
sysseek whether to goto position
number pos (flag = 0), number current
position + pos (flag = 1), or number
EOF + pios (flag = 2). Returns 1 on
success, 0 otherwise.

Appendix C

1136

Function Syntax Description

system system list Forks the process that the current
program is running on, lets it complete
and then abandons the current program
to run the specified system command in
list. This will be the first element of
list and any arguments to it are stored
in subsequent list elements.

syswrite syswrite filehandle,

scalar, length,

offset

syswrite filehandle,

scalar, length

syswrite filehandle,
scalar

Writes length number of bytes from the
scalar to the file denoted by filehandle,
starting at character number offset if
specified. If length is not given, writes
the entire scalar to the file.

tell tell filehandle

tell

Returns the current read\write position
for the file marked by filehandle. If
filehandle is not given, the info is given
for the last accessed file.

telldir telldir dirhandle Returns the current readdir position for
the directory marked by dirhandle.

tie tie variable, classname,

list

Binds the named variable to package
class classname, which works on a
variable of that type. Passes any
arguments (in list) to the new function
of the class (TIESCALAR, TIEHASH, or
TIEARRAY).

tied tied variable Returns a reference to the object tied to
the given variable.

time time Returns the number of non-leap seconds
elapsed since Jan 1, 1970. Can be
translated into recognizable time values
with gmtime() and localtime().

times times Returns a four-element list holding the
user and system CPU times (in seconds)
for both the current process and its child
processes. The list is comprised as
follows:

$user

Current process user time

$system

Function Reference

1137

Function Syntax Description

times
(continued)

times Current process system CPU time

$cuser

Child process user time

$csystem

Child process system time

tr/// tr/string1/string2/ Transliterates a string (also known as
y///).

truncate truncate filehandle,
length

truncate expression,
length

Truncates the file given by filehandle
or named literally by expression to
length characters. Returns true on
success, false otherwise.

uc uc string

uc

Returns string in upper case, or $_ in
upper case if string is omitted.

ucfirst ucfirst string

ucfirst

Returns string with the first character
in upper case. Works on $_ if string is
omitted.

umask umask expression

umask

Returns the current umask and then sets
it to expression if this is given. The
umask is a group of three octal numbers
representing the access permissions for a
file or directory of its owner, a group and
other users, where execute = 1, write = 2,
and read = 4. So a umask of 0777 would
give all permissions to all three levels of
user. 0744 would restrict all except the
owner to read access only.

undef undef expression

undef

Removes the value of expression,
leaving it undefined, else just returns the
undefined value.

unless unless condition block Similar to the simple if statement, the
statement runs along the lines of 'unless
this exists, then {…}'.

unlink unlink list Deletes the files specified in list (or $_
if not given), returning the number of files
deleted. NB: For UNIX users, unlink()
removes a link to each file but not the
fields themselves if other links to them
still exist.

Table continued on following page

Appendix C

1138

Function Syntax Description

unpack unpack template, string The reverse of pack(). Takes a packed
string and then uses template to read
through it and return an array of the
values stored within it. See pack() for
how template is constructed.

unshift unshift array, list Adds the elements of list in the same
order to the front (index 0) of array,
returning the number of elements now in
array.

untie untie variable Unbinds the variable from the package
class it had previously been tied to.

until until expression block Executes block until expression
becomes true.

use use module version list

use module list

use module

use version

Requires and imports the (listed
elements of the) named module at
compile time. Checks module being used
is the specified version if combined
with module and list. use version
meanwhile makes sure that the Perl
interpreter being used is no older than
the stated version.

utime utime atime, mtime,

filelist

Sets the access (atime) and modification
(mtime) times on files listed in
filelist, returning the number of
successful changes that were made.

values values hash Takes the named hash and returns a list
containing copies of each of the values in
it.

vec vec string, offset, bits Takes string and regards it as a vector
of unsigned integers. Then returns the
value of the element at position offset
given that each element has 2 to the
power of bits in it.

wait wait Waits for a child process to die and then
returns the process ID of the child
process that did or -1 if there are no
child processes.

waitpid waitpid pid, flags Waits for the child process with process
ID pid to die.

wantarray wantarray Returns true if the subroutine currently
running is running in list context. Returns
false if not. Returns undef if the
subroutine's return value is not going to
be used.

Function Reference

1139

Function Syntax Description

warn warn message Prints message to STDERR, but does not throw
an error or exception.

while while expression block Executes block as long as expression is true.

write write filehandle

write expression

write

Writes a formatted record to filehandle,
the file named after evaluating expression,
or the current default output channel if neither
are given.

y/// y/string1/string2/ Transliterates a string (also known as tr///).

Appendix C

1140

Regular Expressions

Pattern Matching Operators

Match – 'm//'
Syntax: m/pattern/

If a match is found for the pattern within a referenced string (default $_), the expression returns true.
Note that if the delimiters // are used, the preceding m is not required.

Modifiers: g, i, m, o, s, x

Substitution – 's///'
Syntax: s/pattern1/pattern2/

If a match is found for pattern1 within a referenced string (default $_), the relevant substring is
replaced by the contents of pattern2, and the expression returns true.

Modifiers: e, g, i, m, o, s, x

Quoting - 'qr//'
Syntax: qr/string/imosx

This operator quotes and compiles its string as a regular expression. string is interpolated the same
way as pattern in m/pattern/. It returns a Perl value which may be used instead of the
corresponding /string/imosx expression.

Appendix D

1142

Since Perl may compile the pattern at the moment of execution of qr() operator, using qr() may have
speed advantages in some situations, notably if the result of qr() is used standalone.

Modifiers: i, m, o, s, x

Transliteration –' tr///' or 'y///'
Syntax: tr/pattern1/pattern2/

y/pattern1/pattern2/

If any characters in pattern1 match those within a referenced string (default $_), instances of each are
replaced by the corresponding character in pattern2, and the expression returns the number of
characters replaced.

Note that if one character occurs several times within pattern1, only the first will be used. For
example, tr/abbc/xyz/ is equivalent to tr/abc/xyz/.

Modifiers: c, d, s

Delimiters
Patterns may be delimited by character pairs <>, (), [], {} or any other non-word character. For
example, s<pattern1><pattern2> and s#pattern1#pattern2# are both equivalent to
s/pattern1/pattern2/.

Binding Operators

Binding Operator - '=~'
Syntax: $refstring =~ m/pattern/

Binds a match operator to a variable other than $_. Returns true if a match is found.

Negation Operator - '!~'
Syntax: $refstring !~ m/pattern/

Binds a match operator to a variable other than $_. Returns true if a match is not found.

Modifiers

Match and Substitution
The following can be used to modify the behavior of match and substitution operators:

Cancel Position Reset - '/c'

Used only with global matches, that is as m//gc, to prevent the search cursor returning to the start of
the string if a match cannot be found. Instead, it remains at the end of the last match found.

Regular Expressions

1143

Evaluate Replacement – '/e'

Evaluate the second argument of the substitution operator as an expression.

Global Match – '/g'

Finds all the instances in which the pattern matches the string rather than stopping at the first match.
Multiple matches will be numbered in the operator's return value.

Case-insensitive – '/i'

Matches pattern against string whilst ignoring the case of the characters in either pattern or string.

Multi-line Mode – '/m'

The string to be matched against is to be regarded as a collection of separate lines, with the result that
the metacharacters ^ and $ which would otherwise just match the beginning and end of the entire text
now also match the beginning and end of each line.

One-time Pattern Compilation - '/o'

If a pattern to match against a string contains variables, these are interpolated to form part of the
pattern. Later these variables may change and the pattern will change with it when next matched
against. By adding /o the pattern will be formed once and will not be recompiled even if the variables
within have changed value.

Single-line Mode – '/s'

The string to be matched against will be regarded as a single line of text, with the result that the
metacharacter '.' will match against the newline character, which it would not do otherwise.

Free-form – '/x'

Allow the use of whitespace and comments inside a match to expand and explain the expression.

Transliteration
The following can be used to modify the behavior of the transliteration operator:

Complement - '/c'

Use complement of pattern1, substitutes all characters except those specified in pattern1.

delete - '/d'

Deletes all the characters found but not replaced.

squash - '/s'

Multiple replaced characters squashed – only returned once to transliterated string.

Localized modifiers
Syntax:

/CaseSensitiveTxt((?i)CaseInsensitiveTxt)CaseSensitiveText/

/CaseInsensitiveTxt((?-i)CaseSensitiveTxt)CaseInsensitiveText/i

TE
AM
FL
Y

Team-Fly®

Appendix D

1144

The following inline modifiers can be placed within a regular expression to enforce or negate relevant
matching behavior on limited portions of the expression:

Modifier Description Inline enforce Inline negate

/i case insensitive (?i) (?-i)

/s single-line mode (?s) (?-s)

/m multi-line mode (?m) (?-m)

/x free-form (?x) (?-x)

Metacharacters

Metacharacter Meaning

[abc] Any one of a, b, or c.

[^abc] Anything other than a, b, and c.

\d \D A digit; a non-digit.

\w \W A 'word' character; a non-'word' character.

\s \S A whitespace character; a non-whitespace character.

\b The boundary between a \w character and a \W character.

. Any single character (apart from a new line).

(abc) The phrase 'abc' as a group.

? Preceding character or group may be present 0 or 1 times.

+ Preceding character or group is present 1 or more times.

* Preceding character or group may be present 0 or more times.

{x,y} Preceding character or group is present between x and y times.

{,y} Preceding character or group is present at most y times.

{x,} Preceding character or group is present at least x times.

{x} Preceding character or group is present x times.

Non-greediness for Quantifiers
Syntax: (pattern)+?

(pattern)*?

The metacharacters + and * are greedy by default, and will try to match as much as possible of the
referenced string (while still achieving a full pattern match). This 'greedy' behavior can be turned off by
placing a ? immediately after the respective metacharacter. A non-greedy match finds the minimum
number of characters matching the pattern.

Regular Expressions

1145

Grouping and Alternation

'|' For Alternation
Syntax: pattern1|pattern2

By separating two patterns with | we can specify that a match on one or the other should be attempted.

'()' For Grouping and Backreferences ('capturing')
Syntax: (pattern)

This will group elements in pattern – if those elements are matched, a backreference is made to one
of the numeric special variables ($1, $2, $3 etc.)

'(?:)' For Non-backreferenced Grouping ('clustering')
Syntax: (?:pattern)

This will group elements in pattern without making backreferences.

Lookahead/behind assertions

'(?=)' for positive lookahead
Syntax: pattern1(?=pattern2)

This lets us look for a match on 'pattern1 followed by pattern2', without back-referencing
pattern2.

'(?!)' for negative lookahead
Syntax: pattern1(?!pattern2)

This lets us look for a match on 'pattern1 not followed by pattern2', without back-referencing
pattern2.

'(?<=)' for positive lookbehind
Syntax: pattern1(?<=pattern2)

This lets us look for a match on 'pattern1 preceded by pattern2', without back-referencing
pattern2. This only works if pattern2 is of fixed width.

'(?<!)' for negative lookbehind
Syntax: pattern1(?<!pattern2)

This lets us look for a match on 'pattern1 not preceded by pattern2', without back-referencing
pattern2. This only works if pattern2 is of fixed width.

Appendix D

1146

Backreference Variables

Variable Description

\num (num = 1, 2, 3…) Within a regular expression, \num returns the substring that was
matched with the numth grouped pattern in that regexp.

$num (num = 1, 2, 3…) Outside a regular expression, $num returns the substring that was
matched with the numth grouped pattern in that regexp.

$+ This returns the substring matched with the last grouped pattern
in a regexp.

$& This returns the string that matched the whole regexp, this will
include portions of the string that matched (?:) groups, which
are otherwise not backreferenced.

$` This returns everything preceding the matched string in $&.

$' This returns everything following the matched string in $&.

Other

'(?#)' for comments
Syntax: (?#comment_text)

This lets us place comments within the body of a regular expression, an alternative to the /x modifier.

Regular Expressions

1147

Appendix D

1148

Standard Pragmatic Modules

The following is a list of the pragmatic modules, which are installed with Perl 5.6. They have been
ordered alphabetically. Note that these module names are case sensitive and are given as they should be
written in a use statement.

Using pragmatic modules affects the compilation of Perl programs. These modules are lexically scoped
and so to use, or to uninclude, them with no like this:

use attrs;
use warnings;
no integer;
no diagnostics;

is effective only for the duration of the block in which the declaration was made. Furthermore, these
declarations may be reversed within any inner blocks in the program.

Appendix E

1150

Module Function

attributes Gets or sets the attribute values for a subroutine or variable.

attrs Gets or sets the attribute values for a subroutine.

Deprecated in Perl 5.6 in favor of attributes.

autouse Moves the inclusion of modules into a program from compile time to
runtime. Specifically, it postpones the module's loading until one of its
functions is called.

base Takes a list of modules, requires them and then pushes them onto @ISA.
Essentially, it will establish an 'IS-A' relationship with these classes at
compile time.

blib Used on the command line as -Mblib switch to test your scripts against an
uninstalled version of the package named after the switch.

caller Causes program to inherit the pragmatic attributes of the program, which has
called it.

charnames Allows you to specify a long name for a given string literal escape.

constant Allows you to define constants as a name=>value pair.

diagnostics Returns verbose output when errors occur at runtime. This verbose output
consists of the message that Perl would normally give plus any accompanying
text that that error contained in the perldiag manpage.

fields Takes a list of valid class fields for the package and enables the class fields at
compile time.

filetest Changes the operation of the -r, -w, -x, -R, -W, and -X file test operators.

integer Changes the mathematical operators in a program to work with integers only
and not floating point numbers.

less Currently not implemented.

lib Adds the listed directories to @INC.

locale Enables\disables POSIX locales for built-in operations.

open Sets default disciplines for input and output.

ops Restricts potentially harmful operations occurring during compile time.

overload Allows you to overload built-in Perl operations with your own subroutines.

re Allows you to alter the way regular expressions behave.

sigtrap Enables some simple signal handlers.

strict Enforces the declaration of variables before their use.

subs Allows you to predeclare subroutine names.

utf8 Enables\disables Unicode support. Note that at the time of writing, Unicode
support in Perl was incomplete.

vars Allows you to predeclare global variable names.

warnings Switches on the extra syntactic error warning messages.

Standard Pragmatic Modules

1151

Appendix E

1152

Standard Functional Modules

The standard modules are those that are installed with our distribution of Perl. They are listed
here alphabetically.

Module Function

AnyDBM_File Acts as a universal virtual base class for those wanting to access any of the
five types of DBM file.

AutoLoader Works with Autosplit to delay the loading of subroutines into the
program until they are called. These subroutines are defined following the
__END__ token in a package file.

AutoSplit Splits a program into files suitable for autoloading or selfloading.

B The Perl compiler module.

B::Asmdata Contains autogenerated data about Perl ops used in the generation of
bytecode.

B::Assembler Assembles Perl bytecode for use elsewhere.

B::Bblock Used by B::CC to walk through 'basic blocks' of code.

B::Bytecode Compiler backend for generating Perl bytecode.

B::C Compiler backend for generating C source code.

B::CC Compiler backend for generating optimized C source code.

Table continued on following page

TE
AM
FL
Y

Team-Fly®

Appendix F

1154

Module Function

B::Debug Walks the Perl syntax tree, printing debug info about ops.

B::Deparse Compiler backend for generating Perl source code from compiled Perl.

B::Disassembler Disassembles Perl bytecode back to Perl source.

B::Graph Compiler backend for generating graph-description documents that
show the program's structure.

B::Lint Module to catch dubious constructs.

B::Showlex Shows the file-scope variables for a file or the lexical variables for a
subroutine if one is specified.

B::Stackobj Helper module for CC backend.

B::Stash Shows what stashes are loaded.

B::Terse Walks the Perl syntax tree, printing terse info about ops.

B::Xref Compiler backend for generating cross-reference reports.

Benchmark Contains a suite of routines that let you benchmark your code.

ByteLoader Used to load byte-compiled Perl code.

bytes Perl pragma to force byte semantics rather than character semantics.

CGI The base class that provides the basic functionality for generating web
content and CGI scripting.

CGI::Apache Backward compatibility module.

Deprecated in Perl 5.6.

CGI::Carp Holds the equivalent of the Carp module's error logging functions CGI
routines for writing time-stamped entries to the HTTPD (or other) error
log.

CGI::Cookie Allows access and interaction with Netscape cookies.

CGI::Fast Allows CGI access and interaction to a FastCGI web server.

CGI::Pretty Generates 'pretty' HTML code on server in place of slightly less pretty
HTML written in the CGI script file.

CGI::Push Provides a CGI interface to server-side push functionality. For example,
as used with channels.

CGI::Switch Backward compatibility module.

Deprecated in Perl 5.6.

CPAN Provides you with the functionality to query, download, and build Perl
modules from any of the CPAN mirrors.

Standard Functional Modules

1155

Module Function

CPAN::FirstTime Utility for CPAN::Config to ask a few questions about the system
and then write a config file.

CPAN::Nox As CPAN module, but does not use any compiled extensions during
its own execution.

Carp Provides warn() and die() functionality with the added ability to
say in which module something failed and what it was.

Carp::Heavy Carp guts. For internal use only.

Class::Struct Lets you declare C-style struct-like complex datatypes and
manipulate them accordingly.

Config Allows access to the options and settings used by Configure to
build this installation of Perl.

Cwd Gets the pathname of the current working directory.

DB Programmatic interface to the Perl debugger's API (Application
Programming Interface). NB: This may change.

DB_File Provides an interface for access to Berkeley DB version 1.x. Note
that you can access versions 2.x and 3.x of Berkeley DB with this
module but will have only the version 1.x functionality.

Data::Dumper Returns a stringified version of the contents of an object, given a
reference to it.

Devel::DProf A Perl code profiler. Generates information on the frequency of
calls to subroutines and on the speediness of the subroutines
themselves.

Devel::Peek A debugging tool for those trying to write C programs
interconnecting with Perl programs.

Devel::SelfStubber Stub generator for a SelfLoading module.

DirHandle Provides an alternative set of functions to opendir(),
closedir(), readdir() and rewinddir().

Dumpvalue Dumps info about Perl data to the screen.

DynaLoader Dynamically loads C libraries when required into your Perl code.

English Allows you to call Perl's special variables by their 'English' names.

Env Allows you to access the key\value pairs in the environment hash
%ENV as arrays or scalar values.

Errno Exports (to your code) the contents of the errno.h include file.
This contains all the defined error constants on your system.

Exporter Implements the default import method for modules.

Table continued on following page

Appendix F

1156

Module Function

Exporter::Heavy The internals of the Exporter module.

ExtUtils::Command Contains equivalents of the common UNIX system commands
for Windows users.

ExtUtils::Embed Contains utilities for embedding a Perl interpreter into our
C/C++ programs.

ExtUtils::Install Contains three functions for installing, uninstalling, and
installing-as-autosplit/autoload programs.

ExtUtils::Installed Keeps track of what modules are and are not installed.

ExtUtils::Liblist Determines which libraries should be used in an install and how
to use them and sends its finding for inclusion in a Makefile.

ExtUtils::MakeMaker Used to create makefiles for an extension module.

ExtUtils::Manifest Utilities to write and check a MANIFEST file.

ExtUtils::Miniperl Contains one function to write perlmain.c, a bootstrapper
between Perl and C libraries.

ExtUtils::Mkbootstrap Contains one function to write a bootstrap file for use by
DynaLoader.

ExtUtils::Mksymlists Contains one function to write linker options files for dynamic
extension.

ExtUtils::MM_Cygwin Contains methods to override those in ExtUtils::MM_Unix
when ExtUtils::MakeMaker is used on a Cygwin system.

ExtUtils::MM_OS2 Contains methods to override those in ExtUtils::MM_Unix
when ExtUtils::MakeMaker is used on an OS\2 system.

ExtUtils::MM_Unix Contains the methods used by ExtUtils::MakeMaker to work.

ExtUtils::MM_VMS Contains methods to override those in ExtUtils::MM_Unix
when ExtUtils::MakeMaker is used on a VMS system.

ExtUtils::MM_Win32 Contains methods to override those in ExtUtils::MM_Unix
when ExtUtils::MakeMaker is used on a Windows system.

ExtUtils::Packlist Contains a standard .packlist file manager.

ExtUtils::testlib Adds blib/* directories to @INC.

Fatal Provides a way to replace functions, which return false with
functions that raise an exception if not successful.

Fcntl Loads the libc fcntl.h defines.

File::Basename Provides functions that work on a file's full path name.

File::CheckTree Allows you to specify file tests to be made on directories and
files within a directory all at once.

Standard Functional Modules

1157

Module Function

File::Compare Compares the contents of two files.

File::Copy Copies files or directories.

File::DosGlob Implements DOS-like globbing but also accepts wildcards in
directory components.

File::Find Searches/traverses a file tree for requested file.

File::Glob Implements the FreeBSD glob routine.

File::Path Creates or deletes a series of directories.

File::Spec Group of functions to work on file properties and paths.

File::Spec::Functions Support module for File::Spec.

File::Spec::Mac Contains methods to override those in File::Spec::Unix
when File::Spec is used on a MacOS system.

File::Spec::OS2 Contains methods to override those in File::Spec::Unix
when File::Spec is used on an OS/2 system.

File::Spec::Unix Methods used by File::Spec.

File::Spec::VMS Contains methods to override those in File::Spec::Unix
when File::Spec is used on a VMS system.

File::Spec::Win32 Contains methods to override those in File::Spec::Unix
when File::Spec is used on a Win32 system.

File::stat A by-name interface to Perl's built-in stat() functions.

FileCache Allows you to keep more files open than the system allows.

FileHandle Provides an OO-style implementation of filehandles.

FindBin Locates the directory holding the currently running Perl
program.

GDBM_File Provides an interface for access and makes use of the GNU
Gdbm library.

Getopt::Long Enables the parsing of long switch names on the command line.

Getopt::Std Enables the parsing of single-character switches and clustered
switches on the command line.

I18N::Collate Compares 8-bit scalar data according to the current locale.

Deprecated in Perl 5.004.

IO Front-end to load the IO modules listed below.

IO::Dir Provides an OO-style implementation for directory handles.

Table continued on following page

Appendix F

1158

Module Function

IO::File Based on FileHandle, it provides an OO-style implementation of
filehandles.

IO::Handle Provides an OO-style implementation for I/O handles.

IO::Pipe Provides an OO-style implementation for pipes.

IO::Poll Provides an OO-style implementation to system poll calls.

IO::Seekable Provides seek(), sysseek() and tell() methods for I/O objects.

IO::Select Provides an OO-style implementation for the select system call.

IO::Socket Provides an OO-style implementation for socket communications.

IO::Socket::INET Provides an OO-style implementation for AF_INET domain sockets.

IO::Socket::UNIX Provides an OO-style implementation for AF_UNIX domain sockets.

IPC::Msg Implements a System V Messaging IPC object class.

IPC::Open2 Opens a process for both reading and writing.

IPC::Open3 Opens a process for reading, writing, and error handling.

IPC::Semaphore Implements a System V Semaphore IPC object class.

IPC::SysV Exports all the constants needed by System V IPC calls as defined in
your system's libraries.

Math::BigFloat Enables the storage of arbitrarily long floating-point numbers.

Math::BigInt Enables the storage of arbitrarily long integers.

Math::Complex Enables work with complex numbers and associated mathematical
functions.

Math::Trig Provides all the trigonometric functions not defined in the core of Perl.

NDBM_File Provides access to 'new' DBM files via tied hashes.

Net::Ping Provides the ability to ping a remote machine via TCP, UDP and ICMP
protocols.

Net::hostent Replaces the core gethost*() functions with those that return
Net::hostent objects.

Net::netent Replaces the core getnet*() functions with those that return
Net::netent objects.

Net::protoent Replaces the core getproto*() functions with those that return
Net::protoent objects.

Net::servent Replaces the core getserv*() functions with those that return
Net::servent objects.

Standard Functional Modules

1159

Module Function

O This is the generic front-end for the Perl compiler. The back-ends in
the B module group are all addressed with this.

Opcode Allows you to disable named opcodes when compiling Perl code.

open Sets Perl pragma to default disciplines for input and output.

Pod::Checker Provides a syntax error checker for pod documents.

Note that this was still in beta at the time of publication.

Pod::Html pod to HTML converter.

Pod::InputObjects A set of objects that can be used to represent pod files.

Pod::Man pod to *roff converter.

Pod::Parser Base class for creating pod filters and translators.

Pod::Select Used to extract selected sections of pod from input.

Pod::Text pod to formatted ASCII text converter.

Pod::Text::Color pod to formatted, colored ASCII text converter.

Pod::Text::Termcap Converts pod data to ASCII text with format escapes.

Pod::Usage Print a usage message from embedded pod documentation.

POSIX Provides access to (nearly) all the functions and identifiers named in
the POSIX international standard 1003.1.

Safe Creates a number of 'safe' compartments in memory in which Perl
code can be tested and the functions for this testing.

SDBM_File Provides access to sdbm files via tied hashes.

Search::Dict Provides function to look for a key in a dictionary file.

SelectSaver Selects a filehandle on creation, saves it and restores it on
destruction.

SelfLoader As Autoloader, works with Autosplit to delay the loading of
subroutines into the program until they are called. These
subroutines are defined following the __DATA__ token in a package
file.

Shell Allows shell commands to be run transparently within Perl
programs.

Socket Imports the definitions from libc's socket.h header file and
makes available some network manipulation functions.

Symbol Qualifies variable names and creates anonymous globs.

Sys::Hostname Makes several attempts to get the system hostname and then caches
the result.

Sys::Syslog Perl's interface to the libc syslog(3) calls.

Table continued on following page

Appendix F

1160

Module Function

Term::Cap Provides the interface to a terminal capability database.

Term::Complete Provides word completion on the word list in an array.

Term::ReadLine Provides access to various 'readline' packages.

Test Provides a simple framework for writing test scripts.

Test::Harness Implements a test harness to run a series of test scripts and returns
the results.

Text::Abbrev Takes a list and returns a hash containing the elements of the list
as the values and unambiguous abbreviations of each element as
their respective keys.

Text::ParseWords Provides functions for parsing a text file into an array of tokens or
an array of arrays.

Text::Soundex Implementation of the Soundex Algorithm.

Text::Tabs Works through lines of text replacing tabs with spaces, or if space-
saving, replacing spaces with tabs if there are none in the text.

Text::Wrap Simple paragraph formatter. Takes text, wraps lines around text
boundaries, and controls the indenting of the text.

Tie::Array Base class for tied arrays.

Tie::Handle Base class definitions for tied handles.

Tie::Hash Base class definitions for tied hashes.

Tie::RefHash Allows you to use references as the keys in a hash if it is tied to
this module.

Tie::Scalar Base class definitions for tied scalars.

Tie::SubstrHash Allows you to rigidly define key and value lengths within the hash
for the entire time it is tied to this module.

Time::gmtime Object-based interface to Perl's built-in gmtime() function.

Time::Local Provides efficient conversion functions between GMT and local
time.

Time::localtime Object-based interface to Perl's built-in localtime() function.

Time::tm Internal object used by Time::gmtime and Time::localtime.

UNIVERSAL The base class for ALL classes (blessed references).

User::grent Object-based interface to Perl's built-in getgr*() functions.

User::pwent Object-based interface to Perl's built-in getpw*() functions.

Win32::ChangeNotify Monitors events related to files and directories.

Win32::Console Use the Win32 console and character mode functions.

Standard Functional Modules

1161

Module Function

Win32::Event Use Win32 event objects from Perl.

Win32::EventLog Process Win32 event logs from Perl.

Win32::File Manage file attributes in Perl.

Win32::FileSecurity Manage FileSecurity discretionary access control lists in Perl.

Win32::IPC The base class for Win32 synchronization objects.

Win32::Internet Access to WININET.DLL functions.

Win32::Mutex Use Win32 mutex objects from Perl.

Win32::NetAdmin Manage network groups and users in Perl.

Win32::NetResource Manage network resources in Perl.

Win32::ODBC Use the ODBC extension for Win32.

Win32::OLE Use the OLE Automation extensions.

Win32::OLE::Const Extract the constant definitions from TypeLib.

Win32::OLE::NLS Use the OLE national language support.

Win32::OLE::Variant Create and modify OLE VARIANT variables.

Win32::PerfLib Access the Windows NT performance counter.

Win32::Process Create and manipulate processes.

Win32::Semaphore Use Win32 semaphore objects from Perl.

Win32::Service Manage system services in Perl.

Win32::Sound Plays with Windows sounds.

Win32::TieRegistry Manipulate a registry.

Win32API::File Low-level access to Win32 system API calls for files/dirs.

Win32API::Net Manage Windows NT LanManager API accounts.

Win32API::Registry Low-level access to Win32 system API calls from WINREG.H.

XSLoader Dynamically loads C or C++ libraries as Perl extensions.

Appendix F

1162

Perl Resources

Books
This is a list of books that the reader may find interesting.

Perl Programming
Beginning Perl, Simon Cozens, Wrox Press (ISBN 1861003439).

CGI Programming with Perl (Second Edition), Scott Guelich, Shashir Gundavaram, and Gunther
Birznieks, O'Reilly and Associates (ISBN 1565924193).

Learning Perl, Randal L. Schwartz and Tom Christiansen, O'Reilly and Associates (ISBN 1565922840).

Learning Perl/Tk, Nancy Walsh, O'Reilly and Associates (ISBN 1565923146).

Mastering Algorithms with Perl, Jon Orwant, Jarkko Hietaniemi, and John Macdonald, O'Reilly and
Associates (ISBN 1565923987).

Mastering Regular Expressions, Jeffrey E. F. Friedl, O'Reilly and Associates (ISBN 1565922573).

Object Oriented Perl, Damien Conway, Manning (ISBN 1884777791).

Perl Cookbook, Tom Christiansen and Nathan Torkington, O'Reilly and Associates (ISBN 1565922433).

Programming Perl (Third Edition), Larry Wall, Tom Christiansen, and Jon Orwant, O'Reilly and
Associates (ISBN 0596000278).

Programming the Perl DBI, Alligator Descartes and Tim Bruce, O'Reilly and Associates (ISBN
1565926994).

TE
AM
FL
Y

Team-Fly®

Appendix G

1164

Linux Based Books
Beginning Linux Programming, Neil Matthew and Richard Stones, Wrox Press (ISBN 1861002971)

Professional Apache, Peter Wainwright, Wrox Press (ISBN 1861003021)

Professional Linux Programming, Neil Matthew and Richard Stones, Wrox Press (ISBN 1861003013)

Web Sites
There are a great many resources on the Internet for Perl, here are just a few places we might want to
start looking up.

Perl Resources

1165

Appendix G

1166

Support, Errata, and
p2p.wrox.com

One of the most irritating things about any programming book is when you find that bit of code you've
just spent an hour typing simply doesn't work. You check it a hundred times to see if you've set it up
correctly and then you notice the spelling mistake in the variable name on the book page. Of course,
you can blame the authors for not taking enough care and testing the code, the editors for not doing
their job properly, or the proofreaders for not being eagle-eyed enough, but this doesn't get around the
fact that mistakes do happen.

We try hard to ensure no mistakes sneak out into the real world, but we can't promise that this book is
100% error free. What we can do is offer the next best thing by providing you with immediate support
and feedback from experts who have worked on the book and try to ensure that future editions
eliminate these gremlins. We also now commit to supporting you not just while you read the book, but
once you start developing applications as well through our online forums where you can put your
questions to the authors, reviewers, and fellow industry professionals.

In this appendix we'll look at how to:

❑ Enroll in the Programmer To Programmer™ forums at http://p2p.wrox.com.

❑ Post and check for errata on our main site, http://www.wrox.com.

❑ E-mail technical support queries or feedback on our books in general.

Between all three of these support procedures, you should get an answer to your problem in no time
at all.

Appendix H

1168

The Online Forums at p2p.wrox.com
Join the Professional Perl Programming mailing list for author and peer support. Our system provides
Programmer To Programmer™ support on mailing lists, forums, and newsgroups all in addition to our one-
to-one e-mail system, which we'll look at in a minute. Be confident that your query is not just being examined
by a support professional, but by the many Wrox authors and other industry experts present on our mailing
lists.

How to Enroll for Support
Just follow these simple instructions:

1. Go to http://p2p.wrox.com in your favorite browser.
Here you'll find any current announcements concerning P2P – new lists created, any
removed and so on:

Support, Errata, and p2p.wrox.com

1169

2. Click on the Open Source button in the left hand column.

3. Choose to access the Pro Perl list.

4. If you are not a member of the list, you can choose to either view the list without joining
it or create an account in the list, by hitting the respective buttons.

5. If you wish to join, you'll be presented with a form in which you'll need to fill in your
e mail address, name, and a password (of at least 4 alphanumeric characters). Choose how
you would like to receive the messages from the list and then hit Save.

6. Congratulations. You're now a member of the Professional Perl Programming mailing list.

Why this System Offers the Best Support
You can choose to join the mailing lists to receive mails as they are contributed, or a daily digest, or you
can receive them as a weekly digest. If you don't have the time or facility to receive the mailing list,
then you can search our online archives. You'll find the ability to search on specific subject areas or
keywords. As these lists are moderated, you can be confident of finding good, accurate information
quickly. Mails can be edited or moved by the moderator into the correct place, making this a most
efficient resource. Junk and spam mail are deleted, and your own email address is protected by the
unique Lyris system from web-bots that can automatically hoover up newsgroup mailing list addresses.
Any queries about joining, or leaving lists, or any query about the list should be sent to:
support@wrox.com.

Checking the Errata Online at www.wrox.com
The following section will take you step by step through the process of posting errata to our web site to
get that help. The sections that follow, therefore, are:

❑ Finding a list of existing errata on the web site.

❑ Adding your own erratum to the existing list.

There is also a section covering how to e-mail a question for technical support. This comprises:

❑ What your e-mail should include.

❑ What happens to your e-mail once it has been received by us.

Finding an Erratum on the Web Site
Before you send in a query, you might be able to save time by finding the answer to your problem on
our web site – http://www.wrox.com.

Appendix H

1170

Each book we publish has its own page and its own errata sheet. You can get to any book's page by
clicking on Books on the left hand navigation bar. To view the errata for that book, click on the Book
errata link on the right hand side of the book information pane, underneath the book information.

We update these pages regularly to ensure that you have the latest information on bugs and errors.

Add an Erratum
If you wish to point out an erratum to put up on the web site or directly query a problem in the book
page with an expert who knows the book in detail then e-mail support@wrox.com, with the title of the
book and the last four numbers of the ISBN in the subject field of the e-mail. Clicking on the submit
errata link on the web site's errata page will send an e-mail using your e-mail client. A typical email
should include the following things:

❑ The name, last four digits of the ISBN, and page number of the problem in the Subject field.

❑ Your name, contact info, and the problem in the body of the message.

Support, Errata, and p2p.wrox.com

1171

We won't send you junk mail. We need the details to save both your time and ours. If we need to
replace a disk or CD we'll be able to get it to you straight away. When you send an e-mail it will go
through the following chain of support:

Customer Support
Your message is delivered to one of our customer support staff who will be the first people to read it.
They have files on most frequently asked questions and will answer anything general immediately. They
answer general questions about the book and the web site.

Editorial
Deeper queries are forwarded to the technical editor responsible for that book. They have experience
with the programming language or particular product and are able to answer detailed technical
questions on the subject. Once an issue has been resolved, the editor can post the erratum to the web
site.

The Authors
Finally, in the unlikely event that the editor can't answer your problem, they will forward the request to
the author. We try to protect the author from any distractions from writing. However, we are quite
happy to forward specific requests to them. All Wrox authors help with the support on their books.
They'll mail the customer and the editor with their response, and again all readers should benefit.

What We Can't Answer
Obviously with an ever-growing range of books and an ever-changing technology base, there is an
increasing volume of data requiring support. While we endeavor to answer all questions about the book,
we can't answer bugs in your own programs that you've adapted from our code. So, while you might
have loved the chapters on file handling, don't expect too much sympathy if you cripple your company
with a routine that deletes the contents of your hard drive. But do tell us if you're especially pleased
with the routine you developed with our help.

How to Tell Us Exactly What You Think
We understand that errors can destroy the enjoyment of a book and can cause many wasted and
frustrated hours, so we seek to minimize the distress that they can cause.

You might just wish to tell us how much you liked or loathed the book in question. Or you might have
ideas about how this whole process could be improved. If this is the case, you should e-mail
feedback@wrox.com. You'll always find a sympathetic ear, no matter what the problem is. Above all you
should remember that we do care about what you have to say and we will do our utmost to act upon it.

Appendix H

1172

	sample.pdf
	sterling.com
	Welcome to Sterling Software

